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Introduction

Nowadays, the hardware landscape has changed. It is not necessary to have a
multi-node server to get tremendous computing power available. Massively parallel
single nodes with multiple CPUs, accelerators, and GPUs become more and more
available to a new public: small companies, non-expert academic teams, etc. Parallel
computing comes with a set of challenges such as orchestrating concurrent computa-
tions, managing multiple memory resources, race conditions, deadlocks, and data
motion costs. Therefore, all users, from library developers to end-users, need to face
them. There are a lot of available solutions, their forms and levels of accessibility
vary: from one-call parallel library that will hide completely the computation to
exascale approach that offers a level of complexity difficult to apprehend.

At NIST, in the ITL group, a first effort called HTGS [Blattner et al., 2017] for
"Hybrid Task Graph Scheduler", driven by Timothy Blattner and Walid Keyrouz,
proposes a framework to tackle efficient parallel computation on a heavy and hetero-
geneous node. In this manuscript, we present the architecture of Hedgehog, the next
version of HTGS, that targets more extensibility, more expressiveness, and more
safety during the design of parallel code.

HTGS and Hedgehog are based on a simple and understandable execution model
using a data-flow graph representation for expressing coarse grain parallel executions.
It uses data-pipelining to fully exploit the available hardware by firing a task as
soon as a piece of data is available. The threading model consists only of threads
statically bound to persistent tasks during the whole runtime.

The developer is at the center of our approach, in order to provide him/her the
keys to control the performance of the parallel execution. The first principle is to
keep the data-flow graph model that the developer uses to express an algorithm,
from the first steps of the conception to its effective execution. Then, costless visual
feedback mechanisms are provided by the library to expose how the computation is
conducted on a specific hardware. We profile at node level the computations and
present in a graphical representation graphs with the different metrics gathered.
The representation helps the developer, who at a glance can assess the computation
and determine the bottleneck. With this help and the fact that the model remains
unchanged, the end-user can iteratively improve the end-to-end performance, that is
what we call experimentation for performance.

Building the data-flow graph is secured through compile-time checking that uses
common template metaprogramming techniques of the C++ language combined with
concepts, a recent addition to the language. It allows detecting incompatible or
potentially unsafe elements in the graph structure at an early step of the design,
thus providing some guaranty for runtime; and presenting clear error messages to
the developer at compile-time, or even during development if the IDE (Integrated
Development Environment) used is powerful enough.

The data-flow graph remaining unchanged from design to execution, it is fixed
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at compile-time. We propose to use a recent addition to the C++ language, the
generalized constant expressions, to write an additional library to Hedgehog that
acts mainly at compile-time to represent the data-flow graph and to design complex
algorithms to analyze its structure.

With this library, it is possible to test a graph structure at compile-time and
thus to provide extended guarantees at runtime. This approach is totally different
from the usual template metaprogramming techniques, as there is no fundamental
difference between code written for compile-time analysis before execution, or for
runtime directly. The library comes with out-of-the-box compile-time tests, but
is extensible enough for an end-user to add other tests to broaden the variety of
checking done at compile-time.

Chapter 1 presents existing parallel run-time systems. We discriminate among
6 different types of models for different kinds of parallelism, from the lowest level
available like the threads to the highest level approaches like the task-based approach
for clusters. These approaches have their own advantages and disadvantages that we
analyze through code examples and with a user perspective. From this analysis, we
propose the features that are important to us for a “good” parallel model.

Chapter 2 showcases metaprogramming techniques in C++ that are a cornerstone
of our model implementation. In this chapter, we propose an overview of the available
techniques in C++, with a strong focus on template metaprogramming and on the
generalized constant expressions available in the latest C++ 20 standard. The focus on
template metaprogramming concerns both the classic approach with metafunctions
but also the newly introduced concepts and constraints.

Chapter 3 reveals the Hedgehog framework, both the execution model and the
software architecture of the runtime system. Hedgehog results in a library for helping
developers doing parallel computation on heterogeneous computing nodes. It is the
successor of the HTGS library that we introduce in this chapter. We then develop
our model based on the properties highlighted in Chapter 1. Hedgehog exploits a
data-flow graph with data pipelining to get performance on heterogeneous nodes. It
is different from traditional data-flow approaches as it does not have any scheduler
to manage the computation. Moreover, we describe the library’s architecture and
the different ways the library can be extended by developers.

Chapter 4 elaborates on our experimentation for performance approach. First,
we present our costless visual feedback and our integration of the NVTX library
from NVIDIA to help assessing the computation; and then, we discuss different
experiments and results. Notably, as Hedgehog is a library that succeeds to HTGS,
it was important for us to have a system that is at least as-good-as the previous one,
so we first compare their performance. Then, we propose to delimit the cost of the
library and the performance achievable on real-life problems. To end this chapter, we
present two libraries built with Hedgehog: an image processing and a linear algebra
libraries.

Chapter 5 introduces the compile-time aspects of the Hedgehog library. Based
on what is presented in Chapter 2, we propose two main systems to secure our
Hedgehog model (presented in Chapter 3). The first consists of constraints on
templates included in Hedgehog library to secure its API, notably during local graph
interaction (like connecting nodes). We experiment with this first system in two
versions, both using template metaprogramming, the first in C++ 17 with traditional
techniques and the second in C++ 20 with concepts. The second system is a side
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library called HedgehogCX that only exists for the second version of Hedgehog
in C++ 20. This side library presents a limited Hedgehog graph representation
at compile-time, allowing to test globally its structure during compilation, and to
transform it afterwards into a completely operational Hedgehog graph. We close this
chapter with an analysis of the compilation performance of these systems with the
GCC and Clang compilers.
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Chapter 1

Parallel runtime systems

Achieving parallel computing is difficult: on top of the classical software engineering,
the software design needs to use efficient parallel constructs to take advantage of
the available hardware. It becomes even harder with high-end massively-parallel
computing platforms: 64-core CPUs are currently available, with 80-core and 128-core
CPUs promised to arrive soon; and accelerators such as GPUs extend this hardware
parallelism both within a single accelerator and between multiple accelerators in the
same compute node.

In order to explore the different software solutions, we first discuss a classification
of computer architectures proposed by Michael J. Flynn in Section 1.2. Then
we showcase different approaches available to the user to tackle parallelism. In
Sections 1.3 and 1.4, we show two elementary mechanisms: the threads and the
futures, respectively. These are parts of the fundamental tools to create parallel
programs. In Section 1.5, we show domain-specific parallel libraries. They help users
with no background in computer science to achieve efficient one-call functions on
domain-specific problems. In Section 1.6, we introduce the algorithmic skeletons.
They are a tool to construct complex algorithms with basic building blocks. In
Section 1.7, we present two task-based approaches. They consider the algorithm as
an interconnected set of tasks. In Section 1.8, we overview libraries offering multiple
kinds of models. Notably, it presents OpenMP used mainly to parallelize loops
and Kokkos proposing a task-based and an algorithmic skeleton approaches. In
Section 1.9, we elaborate on parallel languages. This kind of languages considers
concurrency as fundamental building blocks. Then in Section 1.10, we identify the
challenges that we propose to tackle.

To compare the different strategies, we will illustrate, with pseudo codes or
graphical representations, how to implement a matrix multiplication algorithm:
C ′ = C + α ∗ A ∗B + β, where A, B, and C, are matrices, and α and β are scalars.

1.1 Parallel programming

1.1.1 Some definitions

An accelerator is a piece of hardware with a different architecture than the main
processor, located on the same die or elsewhere; it is designed to answer a specific set
of applications [Patel and Wen-mei, 2008]. We call a node a process entity separated
from the other nodes (e.g., a computer in a local network). A heterogeneous node is
a processing unit containing at least a CPU and an accelerator. In the experiments
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presented in this document, the accelerators are GPUs.
In the following sections, we use concurrency (sections of code that can run

independently, i.e. they run alternatively in the same process unit) and parallelism
(sections of code that run at the same time) [Silberschatz et al., 1991] without any
distinction except when explicitly stated.

1.1.2 Complexity

When dealing with parallel computing, the first problem encountered is the expression
of the parallelism, from low-level thread constructs (Section 1.3) to high-level domain-
specific parallel libraries (Section 1.5), through mid-level constructs (Section 1.4).

After expressing the parallelism, problems specific to this type of computation
arise. Usually, to safely use a resource in a concurrent way, the actor locks a resource
access for its own usage, uses it and releases it, making it available to other actors.
However, this process is not enough to guarantee the proper execution of the program.
A deadlock can occur if multiple actors are holding resources and waiting for resources
held by other actors.

If the locking mechanism is not implemented properly, two actors may have access
at the same time to the same resource. We can overview two cases: if both actors
read data of the resource, or if at least one of them writes data in the resource. In
the first case, there is no problem, the data of the resource stay valid for both actors.
In the second case, the order of operations, i.e. if the write operation occurs before or
after the read of the other actor, changes the outcome of the process. In the example
shown in Table 1.1, two actors read the same variable val and each one stores it in
a (local) variable x, sets x to a different value (1 or 2, respectively), and writes x
back in variable val. We observe that the final value of the variable depends on the
order of execution of both actors, which is called a data race.

Time Actor 1 Memory Actor 2 Time Actor 1 Memory Actor 2
0 x ← val val = 0 0 val = 0 x ← val
1 x ← 1 x ← val 1 x ← val x ← 2
2 val ← x val = 1 x ← 2 2 x ← 1 val = 2 val ← x
3 val = 2 val ← x 3 val ← x val = 1

Table 1.1: Situation of data race with different outcomes

These problems are functional: they can change the proper execution of the
algorithm or impact the performance of the computation. Moreover, when dealing
with heterogeneous computing or cluster computing, we need to take into account the
cost of moving data. In cluster computing, compute nodes are often connected through
a network interface, and memory has to be sent in order to do the computation.
The network interface in the DGX A100 of Nvidia has a 200Gbit s−1 (25GB s−1)
Ethernet connection. In heterogeneous computing, the GPUs have their own memory
that we need to fill. A 4th generation PCI express has a bandwidth of 32GB s−1 with
16 lines. In both cases, these costs are not trivial and need to be overlapped with
computation to reduce the overall execution time.
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1.2 Flynn’s taxonomy
Back in 1972, Flynn presented a taxonomy to organize computer architectures [Flynn,
1972]. The way the computer is organized implies the way data move, how the
processing units do their works, and what kind of parallelism is available. He
categorizes the computer architectures following two axes, one is the number of
instruction streams and second is the number of data streams as shown in Table 1.2.

Single Data Multiple Data
Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

Table 1.2: Flynn’s taxonomy

The number of instruction streams translates into the idea that each process-
ing unit executes the same (single instruction) or different instructions (multiple
instructions) during the same cycle. The number of data streams translates into the
idea that each processing unit can operate on the same (single data) or on different
data pieces (multiple data) per clock cycle. This taxonomy is still used to classify
architectures, and libraries also use it to target such architectures and to exploit the
underlying parallelism.

However, when building a library it is better to not target a specific architecture.
This reflection results from our goal of creating a library that can tackle heterogeneous
nodes with simple models to express coarse-grained parallelism structures. A user
can use specialized libraries to exploit the underlying parallelism and tackle specific
architectures. Therefore, we think possible to target different architectures with Intel
CPUs and Nvidia GPUs seamlessly.

1.3 Thread, a low-level primitive
A thread is a "process within another process that uses the resources of the latter
process" (ISO/IEC 2382:2015). It is a basic unit of execution, each thread possesses
a program counter, a stack, some registers, and a thread identifier. Threads in the
same program have access to the heap memory (and the access to this shared memory
sometimes needs to be controlled).

The threads by themselves do not provide any guarantee on common parallel
programming problems such as race condition or interlocking for example. Shared
resource access and synchronization need to be managed by the developer; and other
synchronization primitives like mutexes, semaphores, or condition variables, need to
be used to guarantee the proper execution of the program.

A mutex (for mutual exclusion), is an object available in many languages that
can be locked to protect a critical section of code (code that must only be executed
by one thread at a time) from being accessed by multiple threads at the same
time. Condition variables allow many threads to check a global condition (i.e.,
condition on a global resource that needs concurrent access control). A semaphore is
a synchronization primitive with a counter. Unlike a mutex, it can allow more than
one concurrent access to the same resource. A barrier is a coordination construct
(that can be implemented with a condition variable) that will stop a group of threads
at this point, until all of them reach the barrier.
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The C++ thread is a direct encapsulation of the system thread. When creating a
thread (an instance of class std::thread), it will be bound to a section of code that
it will execute separately from the main thread. Its termination is usually checked
by calling its join method that waits for this section of code to return. C++ 11
introduces a standard interface for creating and managing threads depending on
what is available on the system. Since C++ 20, the semaphore and the barrier are
available in the standard library.

Source Code 1.1: Matrix multiplication with std::thread

1 // Constants used in the algorithm
2 size_t const matSize = 10, blkSize = 3,
3 nbBlk = (matSize + blkSize - 1) / blkSize,
4 nbThreads = nbBlk * nbBlk;
5

6 float const alpha = 2, beta = 3;
7

8 // Matrices
9 std::array<float, matSize * matSize> A{}, B{}, C{};

10

11 // Block matrix multiplication algorithm
12 void blkMatMul(size_t const & row, size_t const & col) {
13 auto maxRow = std::min(matSize, (row + 1) * blkSize);
14 auto maxCol = std::min(matSize, (col + 1) * blkSize);
15

16 // For all elements in a C block
17 for(size_t i = row * blkSize; i < maxRow; ++i)
18 for(size_t j = col * blkSize; j < maxCol; ++j) {
19 // Along the common dimension of A and B
20 for(size_t k = 0; k < matSize; ++k){
21 // Does the multiplication
22 C.at(i * matSize + j) +=
23 alpha * A.at(i * matSize + k) * B.at(k * matSize + j);
24 }
25 // Adds beta
26 C.at(i * matSize + j) += beta;
27 }
28 }
29

30 int main() {
31 size_t index = 0; // Threads counter
32 std::array<std::thread, nbThreads> threads; // Array of threads
33

34 // Generates randomly the matrices
35 // ...
36

37 // Loops over the blocks of C
38 for(size_t rowIndex = 0; rowIndex < nbBlk; ++rowIndex)
39 for(size_t colIndex = 0; colIndex < nbBlk; ++colIndex)
40 // Creates a thread for each C block
41 threads[index++] = std::thread(blkMatMul, rowIndex, colIndex);
42

43 // Waits for the threads to terminate
44 for(auto & myThread : threads) myThread.join();
45 }

Code 1.1 presents a parallel implementation of the matrix multiplication using
only the std::thread API. Each thread computes its own block of the C matrix.
In this configuration, the matrices A and B are accessed concurrently by all the
threads in read-only mode. Because each thread computes its own blocks with no
overlapping with another one, there is no inter-thread communication, risk of data
race, or interlocking possibility.
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At lines 38 and 39, we iterate over the different block indexes in row and column
dimensions. At line 41, we instantiate the threads bound to the function blkMatMul
with the block indexes as arguments. The thread created is then stored in an array.
At line 44, we join all the threads, meaning that we wait for all the block matrix
multiplication to be done on separate regions of the matrix.

In order to help managing the parallelism and the computation synchronization,
we introduce two possible common design patterns: the fork-join model that is a
fundamental pattern when using threads, and the thread pool pattern, that is more
dynamic (as the threads are not assigned on predetermined tasks) in order to achieve
load-balancing.

In the fork-join model, multiple child threads are created (forked) from a main
thread at one point in the execution to compute in parallel concurrent sections,
and are joined when all the concurrent sections are done. So, only the main thread
remains at the end.

In the thread pool, many threads are usually created ahead of time in a pool.
When a section of concurrent code, a task, needs to be executed, it is submitted to a
scheduler that assigns the task to an available thread. If no thread is available, the
task is stored in a waiting queue for the next available thread. Each time a thread
finishes a task, it becomes available for a new task. This mechanism naturally allows
load balancing (which is interesting when the length of the tasks is not homogeneous).

1.4 Futures and promises, mid-level constructs

The concept of [a]synchronicity is orthogonal to the concept of concurrent pro-
gramming. Synchronous tasks are executed in sequence. Each call is blocking,
the execution of the following task is not started until the previous one is done.
Asynchronous computations can start other computations before the previous ones
are not completed.

In C++, std::async is a function that executes any callable (i.e., function, functor
or lambda) asynchronously. The value returned by the callable is presented under the
form of a future (std::future object). This is a difference with threads manipulated
directly: it is possible to get a "return" value. With the thread mechanism alone, it is
only possible to get a "return" value by passing an address or a reference of a value as
argument, or putting the value in a shared memory location with a synchronization
mechanism (e.g., condition variable) to alert when the information is available.

With futures, it is possible to wait for a value to become available. By calling its
get method hiding the synchronisation mechanism, the current thread waits for the
value associated with the future to be ready (another thread will update the value
and alert that it is available). Automatically, std::async creates and manages a
future object for the value returned by the callable it handles, but it is also possible
to create promises (std::promise objects) that can be passed as arguments to the
callable and, at any time, the callable can update the value and make it available.
From outside the callable, one can associate a future to a promise and wait for its
value to be ready.

We do not present a code for matrix multiplication with asynchronous constructs,
the changes from Code 1.1 using threads will be minimal because of the way we
do the computation. Instead, we have chosen to present a simple Monte Carlo
simulation to estimate the π value in Appendix A. The algorithm considers a circular
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sector inscribed in a unit square that forms a quadrant. It generates points in this
space and counts the number of points inside the sector. The ratio of the quadrant
area over the unit square area is π/4, we can then estimate the value of π from
estimations of both areas by counting points put randomly in the unit square. The
inputs of the algorithm are the number of samples (i.e., points) and the number of
concurrent workers that will work in parallel. The output is the estimated value of
π. An excerpt of the code in Appendix A is presented in Code 1.2.

Source Code 1.2: Excerpt of synchronization code with futures for π estimation

1 double approximatePi() {
2 durations_.clear();
3 durations_.reserve(numberWorkers_);
4

5 // Creates a vector of futures to gather the number of inside
points↪→

6 std::vector<std::future<unsigned long long int>> futures;
7 futures.reserve(numberWorkers_);
8

9 // Runs the different workers asynchronously
10 for(int t = 0; t < numberWorkers_; ++t)
11 futures.emplace_back(std::async(std::launch::async,

&ExperimentPI::piMonteCarlo, this));↪→
12

13 // Gathers the results of each worker when they are done
14 unsigned long long int numberPointsInside = 0;
15 for(std::future<unsigned long long int>& f : futures)

numberPointsInside += f.get();↪→

16 }

Each worker has its own random generator, generates its amount of points, and
has its local count of "inside points" which will be returned into the main method
as shown in Code 1.3. Then every "inside points" are accumulated to estimate the
value of π.

Source Code 1.3: Worker code for π estimation

1 [[nodiscard]] unsigned long long int piMonteCarlo() {
2 std::random_device rd;
3 std::mt19937 gen(rd());
4 std::uniform_real_distribution<double> dis(0.0, 1.0);
5 double x, y;
6 unsigned long long int points_inside = 0;
7

8 for(unsigned long long int i = 0; i < samplesPerWorker_; ++i) {
9 x = dis(gen); y = dis(gen);

10 if (x*x + y*y <= 1.0) ++points_inside;
11 }
12

13 return points_inside;
14 }

In order to get some insight on how the computation performed, we also gather the
duration of the computation for each asynchronous worker. In order to achieve that,
we have added a vector of durations, and to protect it from concurrent manipulation,
the insertion into the vector is controlled by a mutex (cf. registerDuration in
Appendix A).

And to compute the mean and standard deviation of the computation duration
for each worker, we have used the algorithm library. The std::transform call in
double stdvDurationPerWorker() (Code 1.4) method uses a lambda expression.

23



CHAPTER 1. PARALLEL RUNTIME SYSTEMS

Source Code 1.4: Standard deviation computation for π estimation

1 double stdvDurationPerWorker() {
2 std::chrono::duration<double> mean = meanDurationPerWorker();
3 std::vector<double> diff(durations_.size());
4

5 std::transform(
6 durations_.cbegin(), durations_.cend(), diff.begin(),
7 [mean] (std::chrono::duration<double>const & x)
8 { return x.count() - mean.count(); }
9 );

10

11 double sq_sum =
12 std::inner_product(diff.begin(), diff.end(), diff.begin(), 0.);
13

14 return std::sqrt(sq_sum / durations_.size());
15 }

A lambda is a closure, a callable unnamed function object which can "capture"
variables in the current scope [Järvi and Freeman, 2010]. A simple non template
lambda, as the one used here (lines 7-8), consists of the following three parts: [
part 1 ] ( part 2 ) { part 3 }. The first part is the capture list, where one
indicates which variables from the context (current scope) are accessible inside the
lambda. The second part is the parameters list, that is where the lambda parameters
are declared. In our case, std::transform will call in sequence the lambda for each
element of the durations_ vector. The third part is the body of the lambda: it is
what is executed by the lambda for each call. For each element x of the duration_
vector, the code x.count()-mean.count() is executed (notice that mean is captured
from the context) and its result (return of the lambda) is written in diff vector.

To help manage the tasks and their synchronization induced by futures, it can
be useful to have a graphical representation as a task graph (see Section 4.1.1).
With futures, a task graph is implicitly created, it is a graph where nodes represent
tasks and edges the connection between them (cf. Section 1.7.2). We can consider
the asynchronous calls as the graph’s nodes and the futures as the graph’s edges
symbolizing the transmission of data (the associated value is updated by one node
and it is read by another one). At the opposite, it is possible, like MetaPASS
(Section 2.4.4) to use std::async to implement an execution with futures based on
a task graph representation.

1.5 Domain-specific parallel libraries

One approach to design parallel algorithms is to use specialized parallel libraries
such as OpenBLAS (Section 1.5.1), OpenCV (Section 1.5.1), FFTW (Section 1.5.1),
and libvips (Section 1.5.1). They allow developers to use parallel computing without
even knowing it by invoking direct functions of a specific domain that are designed
to perform efficient parallel computation.

The downside of this method is the implicitness of the mechanisms that are
enabled to "optimize" the computation. This has multiple impacts: first, it is
difficult to know how the computation is actually conducted because it is hidden
by the simplicity of the single call. Second, it is often difficult to tweak, because
of the lack of options in the parameters or in the general configuration. This is
especially a problem when using special hardware that is not compatible with the
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library to perform the computation or attempting to get better performance on
current hardware. In order to get performance, such libraries will need to analyze the
current platform and to choose parameters. It is difficult to imagine that they will be
able to get the best performance on every possible type of platforms. Third, because
the parallelization concerns only the library calls, there are implicit synchronization
barriers between these invocations that slow down the whole computation or limit
some more optimization. The advantages of this type of libraries are (1) the simplicity
and (2) all the problems cited previously in Section 1.1.2 are directly tackled by the
libraries.

1.5.1 Examples of libraries

OpenBLAS

OpenBLAS [Wang et al., 2013] is an open-source implementation of BLAS (Basic
Linear Algebra Subprograms) specification and LAPACK specification in mainly
C and Fortran. BLAS is decomposed into three levels. Level one offers an API to
perform scalar, vector and vector-vector operations. Levels two and three present
matrix-vector and matrix-matrix operations, respectively. LAPACK defines routines
to solve "simultaneous linear equations, least-squares solutions of linear systems
of equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also
provided, as are related computations such as reordering of the Schur factorizations
and estimating condition numbers. Dense and banded matrices are handled, but not
general sparse matrices. In all areas, similar functionality is provided for real and
complex matrices, in both single and double precision." [Angerson et al., 1990].

In order to get performance, the library can either use "basic" threads, OpenMP,
or special kernels for some architectures.

OpenCV

OpenCV for Open Source Computer Vision is a library for image and video analysis
[Culjak et al., 2012] developed in C and C++. It presents more than 2500 optimized
algorithms and more than 40000 persons in the user group. The goal of the library is
to help developers express complex image or video processing algorithms. OpenCV,
during its compilation, uses existing parallel libraries such as OpenMP (Section 1.8.1)
available on the system to enable parallelism in the library. It can also use SIMD
processing or accelerators such as GPU if CUDA, OpenCL or OpenGL is available.
Because it is such a large library, it is difficult to know how a particular functionality
is implemented and if some parallelization techniques are used except by digging in
the code itself. OpenCV can use OpenMP directives (Section 1.8.1) to parallelize
some algorithms.

FFTW

FFTW (Fastest Fourier Transform in the West) [Frigo and Johnson, 1998], is a
C subroutine library for computing the discrete Fourier transform. FFTW aims
a narrower set of operations than OpenCV but shows performance comparable or
superior to vendor algorithms [Frigo and Johnson, 1997].

25



CHAPTER 1. PARALLEL RUNTIME SYSTEMS

In order to achieve high performance, the library proposes a pre-processing step
to create a computation plan called wisdom. It is possible to choose the precision of
the wisdom by allocating more or less time to create it. Such an approach allows
one to have an efficient portable code where the only prerequisite is to re-compute
the plan on each new platform.

Libvips

Libvips [Martinez and Cupitt, 2005] is a parallel large image processing library.
When invoking the different routines, the library builds a processing pipeline. The
input image will be automatically decomposed into a set of regions, allowing the
library to do computations on very large images. The computation is conducted
without lock because each used thread will be associated to a private copy of one
of these tiles. It uses a mutex to read the input file and another one to write the
output file. The computation kernel streams the different tiles thanks to the threads
through the pipeline of functions. The library can use multiple CPUs by duplicating
the pipeline into each of them.

1.5.2 Implicit execution model

Domain-specific parallel libraries only offer the level of details available in a one-call
function or in library-wide parameters. This type of libraries presents a strong
difference between the programming model and the execution model. The program-
ming model is what is shown to the developer and the model he or she can interact
with. In this case, it is just a set of calls that will do a complex algorithm. The
execution model is the model used by the library to conduct the actual computation.
Depending on the library, the computation can be represented with task graphs,
with OpenMP loops, with vectorization instructions, etc.

The execution model used for executing the tasks is totally hidden by the API,
and often no low-level details option is available to customize the computation.
Because of the implicitness of the model, there is no way for a developer to analyze
the computation that happened and to modify it in consequence.

An enlightened end-user may prefer an explicit model even if it is more involving
for him or her. This user may want the ability to analyze the performances obtained
by the computation, and if the solution allows it, to tweak the computation at a
higher level to improve the performance.

1.5.3 Specificity of the libraries

A parallel library often targets a domain or a set of applications, for example linear
algebra for OpenBLAS or image processing for libvips. Because these libraries
propose only parallelism during the function calls, synchronization barriers appear
possibly slowing down the overall computation.

It would be preferable to have a parallel approach that can be used independently
of the domain of the computation. Such library could allow a global approach of the
parallelism for the entire computation, and overlap domain specific library calls for
specific tasks.
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1.5.4 Matrix multiplication with domain-specific libraries

In order to compute the matrix multiplication of our example, we could use a parallel
library specialized in linear algebra, e.g., OpenBLAS. It has a subroutine called gemm,
with different versions handling the precision of the matrices values: GEMM (&transa,
&transb, &m, &n, &k, alpha, a, &lda, b, &ldb, beta, c, &ldc). This call
here proposes different options about how the library will treat the pieces of contiguous
memories a, b, and c: (1) if they need to be transposed (transa, transb) and (2)
what are their leading dimensions (lda, ldb, ldc). alpha and beta are the scalars
for the matrix multiplication (C ← α× A×B + β × C).

1.6 Algorithmic skeletons

Another method to design parallel programs is based on algorithmic skeletons. We
only focus on the ones suited to C++ and more specifically on Intel TBB because it is
well-known and is general purpose. An algorithmic skeleton is a piece of software
representing a generic parallel pattern [Darlington et al., 1993]. The usage principle
is to build a complex algorithm by composing common programming patterns. It is
also possible to combine these simple patterns to build more complex ones. A few
examples of skeletons are pipeline, farm, parallel composition, divide & conquer, and
branch & bound. The algorithmic skeletons can be classified into task parallel and
data parallel ones [Poldner and Kuchen, 2008]. In the first category, the parallelism
is gained from efficient communication between sub-tasks. In the second category,
the skeleton works by performing the same computation over part or all the data in
a distributed data-structure. These patterns implicitly define how the parallelization
and the synchronization are made when constructing the program which leads to
potential optimizations in the scheduling. Intel TBB (section 1.6.2) is an example of
a high-level library providing such patterns. Some languages or their standard library
propose some form of skeletons. For example, C++ proposes such skeletons associated
with the parallel execution policy directives since C++ 17 [Hoberock, 2016].

1.6.1 C++ execution policies

In C++ 17, some algorithms from the standard library can be parameterized with an
execution policy. They are part of the algorithms library [Hoberock, 2016].

The algorithms are separated into categories: (1) non-modifying sequence oper-
ations, (2) modifying sequence operations, (3) partitioning operations, (4) binary
search operations (on sorted ranges), (5) other operations on sorted ranges, (6)
set operations (on sorted ranges), (7) heap operations, (8) minimum/maximum
operations, (9) comparison operations, (10) permutation operations, (11) numerical
operations, (12) operations on uninitialized memory, or (13) C library. In the past
years, presentations 1 have presented the variety, possibilities, and usage of the
algorithms library.

Source Code 1.5: Composition of algorithm with execution policies

1At CppCon, 2018: Jonathan Boccara https://youtu.be/2olsGf6JIkU, 2019: Conor
Hoekstra https://youtu.be/pUEnO6SvAMo and https://youtu.be/sEvYmb3eKsw, 2020: Ben
Deane https://youtu.be/InMh3JxbiTs
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1 int main() {
2 uint64_t sum;
3 std::vector<std::vector<int>> vv;
4 const size_t sizeVectors = 20000;
5

6 for (int iteration = 0; iteration < 20; ++iteration) {
7 vv.clear();
8 for (auto i = 0; i < sizeVectors; ++i)

vv.emplace_back(sizeVectors, 1);↪→

9 const auto startTime = high_resolution_clock::now();
10

11 std::for_each(std::execution::seq, vv.begin(), vv.end(),
12 [&sum](auto& v) {
13 std::for_each(std::execution::seq,
14 v.begin(), v.end(), [&sum](auto& value) {sum += value;}); }
15 );
16

17 std::cout << duration_cast<duration<double, milli>>(
18 high_resolution_clock::now() - startTime).count() << ",";
19 }
20 }

Execution policies are the standard library way to execute these algorithms in
parallel. The standard library does not provide any guarantee about data races
or deadlocks. We are a step away from the algorithmic skeletons because of the
composability and we have to indicate by hand the parallelism. As an example, we
present Code 1.5, in which we have two nested for_each calls (cf. lines 11-15).

The goal of the snippet of code is to sum up all elements in a matrix of 20000×
20000 elements. The first for_each (line 11) traverses the matrix in rows and the
second (line 13) traverses each row to get each element of the matrix and accumulates
it in a variable sum. Each for_each can be parameterized either by a parallel or
sequential policy. The first obvious consequence of this implementation is if at least
one for_each has a parallel execution policy, there is a data race on the sum variable
because multiple threads access concurrently to the variable in a write fashion.

Depending on the execution policies set for each loop, on a Windows computer
with a Intel Core i7-9750H over 20 computations, we obtained the results summed
up in Table 1.3.

Outer
execution policy

Inner
execution policy Execution time (ms)

Sequential Sequential 959.74 +- 23.35
Sequential Parallel 1122.37 +- 24.40
Parallel Sequential 379.66 +- 15.55
Parallel Parallel 509.03 +- 11.69

Table 1.3: Execution time (ms) of nested execution policies over 20 iterations

The best times are with the outer for_each parallelized. In the case the outer
algorithm is sequential, parallelizing the inner algorithm lowers the overall perfor-
mance. This is counter-intuitive as one could think that such parallelized code should
be faster than its sequential counterpart. So these results indicate that the parallel
execution are applied mechanically without any considerations about the nesting.
Furthermore, this technique does not provide any guarantee about data race.

The Code 1.6 shows an implementation of the matrix multiplication using the C++

algorithms library and execution policies. The parallelism is made element wise, the
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std::for_each is parallelized by simply adding std::execution::par parameter.
On a Windows computer with a Intel Core i7-9750H, we have been able to gain ≈ 4×
speedup by just adding the parallel execution policy (0.71 s±0.01 versus 2.61 s±0.02
with and without the parallel execution policy respectively, computed over 20 runs
with MSVC++ version 14.26).

Source Code 1.6: Matrix multiplication with C++ algorithms library and execution
policies

1 int main() {
2 // Generates matrices A, B, and C
3 // ...
4 // Generates indexes
5 std::iota(indexes->begin(), indexes->end(), 0);
6

7 // Computes matrix multiplication
8 std::for_each(std::execution::par,
9 indexes->begin(), indexes->end(),

10 [&A, &B, &C, &alpha, &beta] (auto & index) {
11 auto col = index / matrixSize;
12 auto row = index % matrixSize;
13

14 for(auto i = 0; i < matrixSize; ++i)
15 C->at(index) += alpha * A->at(row * matrixSize + i)
16 * B->at(i * matrixSize + col);
17

18 C->at(index) += beta;
19 }
20 );
21 }

1.6.2 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) [Kukanov and Voss, 2007] is a library which
provides concurrent containers, synchronization primitives, and algorithmic skeletons
for parallel execution to C++. These skeletons such as map, reduce, pipeline, and
fork-join propose a high-level API to express parallel sections of complex algorithms.
They work alongside TBB containers, an alternative version of the standard library’s
containers, which allows concurrent read/write actions. The library is optimized for
Intel processors and targets only CPU. It is possible to express a computation with
a data-flow graph where lambdas/functors describe tasks.

1.6.3 Composability

The main idea behind the algorithmic skeletons is the composability of skeletons
to describe a whole computation. Task-based solutions (Section 1.7.2) can also use
graph composability to connect different graphs together to formulate a multi-step
algorithm. It should be possible to mimic such skeletons with task graphs to express
these general algorithms and use graph composability to have the same behavior
as composed skeletons. Internal graphs (or sub-graphs) can express logical parts
of complex algorithms, such as communication and computation for the matrix
multiplication on a GPU can be a sub-graph linked to two other sub-graphs, one for
data decomposition on a CPU, and the other one for aggregation.
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1.6.4 Matrix multiplication with algorithmic skeletons

We propose an implementation of the matrix multiplication algorithm with Intel
TBB. Code 1.7 is inspired by code available online 2. We are using two features
from the library : the range and the parallel for. The range helps dividing C arrays
(the matrix) into blocks. The blocked_range [Robison et al., 2008] is a "recursively
divisible half-open interval". The parallel_for applies the lambda to each element
of the blocks in parallel.

Source Code 1.7: Matrix multiplication with TBB

1 int main() {
2 float alpha = 2, beta = 1;
3 // Initializes buffers.
4 // ...
5

6 // Computes matrix multiplication
7 parallel_for(
8 blocked_range<int>(0, size),
9 [&alpha, &beta] (blocked_range<int> r) {

10 for (int i = r.begin(); i != r.end(); ++i)
11 for (int j = 0; j < size; ++j) {
12 for (int k = 0; k < size; ++k)
13 c[i][j] += alpha * a[i][k] * b[k][j];
14 c[i][j] += beta;
15 }
16 });
17 }

1.7 Task-based approach
In this section, we present two types of task-based libraries. The first one allows
defining a set of tasks that communicate through a message passing system. The
second one allows defining a set of tasks ordered in a graph representation.

1.7.1 Message-driven libraries

Charm++

Charm++ [Kale and Krishnan, 1993] is an object-oriented parallel message passing
programming system based on C++. It follows an asynchronous many-task model
where an application is decomposed into transferable units of work with their inputs.
These units are called chares. They start their execution upon reception of a
message. These chares are presented under the form of C++ objects with all the
particularities brought by the language; they present encapsulation of data and
inheritance capabilities. A chare will do its computation based on the data it
embeds and transferred input data. Data safety is guaranteed by only running
one chare on a piece of data. The execution system will associate each chare to a
different execution unit thanks to a dynamic scheduler to maximize the performance.
The overall workflow is described in a "charm interface" cross-compiled into C++

code [Bennett et al., 2015]. They claim portability without changes on all MIMD
(multiple instruction, multiple data) computers.

2http://blog.speedgocomputing.com/2010/08/parallelizing-matrix-multiplication_
8641.html

30



1.7. TASK-BASED APPROACH

HPX

HPX [Kaiser et al., 2020] (for High Performance ParallelX) is a C++ library for
exascale computation. Exascale computing is an architecture dealing with the
parallelism and communication between nodes achieving 1018 Tflops. HPX AMT
(Asynchronous Many-Task) runtime system presents an API conforming to the C++

standard for local or remote computation, and implements an asynchronous execution
model that semi-automatically parallelizes user code.

HPX uses C++ futures (Section 1.4) to transform sequential algorithms into
asynchronous executions with a wait-free property; computation and communication
can be overlapped with the usage of C++ 20 co_await operator. They have created
"local control objects" (LCO) for synchronization mechanisms. One of them, the
data-flow, allows the execution of a piece of code on a separate thread when the
values that it depends on become available. The thread usage allows to get a minimal
overhead for synchronization and context switching.

The HPX scheduler comes with a work stealing algorithm and an automatic
load balancer. HPX has its own C++ implementation of the C++ 17 algorithms
(Section 1.6.1) and C++ 20 concurrency facilities. Their work served the design for
the C++ parallelism technical specification 3. Compared to other AMT systems,
HPX brings a "future-proof C++ conforming API" and an exposed asynchronous
programming model.

1.7.2 Graph-based libraries

Another model for parallel applications is based on a graph representation for a
computation. We discuss the different graph models in the following section, with
some examples of libraries based on graphs.

Type of graphs

The terms and notions introduced in this section come from two recognized sources:
Timothy Mattson’s book [Mattson et al., 2004] and Olivier Sennen’s book [Sinnen,
2007]. In particular, we focus on two chapters of The Encyclopedia of Parallel
Computing describing two types of graphs: (1) the task graphs [Robert, 2011] and
(2) the data-flow graphs [Dennis, 2011].

The main model of graph is the task graph. The basic idea is to decompose a
large problem into smaller interdependent chunks called tasks. Tasks, as graph nodes,
are mainly defined by their inputs and outputs, what they receive and produce, and
the computations they achieve. A task can only start when all of its antecedents
have completed their work. This is the dependence relationship between tasks that
is represented by graph edges. A task executes its kernel, terminates, and then the
results are passed to its successors without being streamed.

A task graph needs to be mapped to the process unit (e.g., a thread) into the
computational node in order to be executed. That is the role of a scheduler to
choose the process unit that will be in charge of running each task’s kernel. This
matching mechanism is complex and gathers multiple types of computation such
as work stealing or work balancing. The work stealing is a process that allows an
idle worker to steal work from another busy worker. The load balancing is a process

3https://stellar-group.org/2016/03/hpx-and-cpp17/
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that balances the work among workers. StarPU 1.7.2 proposes different APIs to
customize an application scheduling. Usually, task graph libraries use a Directed
Acyclic Graph (DAG), a graph without directed cycle, in order to avoid deadlocks.
A deadlock can occur with directed cycles because two tasks become inter-dependent
and information from the computation in progress is needed to break the cycle.

The second kind of model is the data-flow graph which presents a different
meaning of edges. In a data-flow graph the nodes are called actors. These actors will
apply their kernels to the data they receive. The graph’s edges represent the path for
a data to move between two actors and also the dependency/precedence relationship.
An actor is enabled, i.e. it processes data, when it receives them. Which means that
more than one actor can be enabled at the same time.

For example, some libraries such as Legion (Section 1.7.2) add metadata to each
input to determine if the data are ready to be computed. Others like HTGS and
our proposal Hedgehog fire their tasks when one of their input data arrive in one of
the task’s queues. We will present HTGS and Hedgehog’s model in Section 3. The
data-flow graph computation representation presents naturally parallelism, because
if several tasks have their dependencies met, they can be fired simultaneously.

In the following sections, we present different libraries using graphs.

Anthill

Anthill [Teodoro et al., 2012] is a data-flow graph library. It targets clusters of
heterogeneous nodes. It decomposes its computation into computational nodes called
filters. Each filter is duplicated into each node of the cluster. A filter presents
multiple input streams with one input queue for each, creating their own events. An
event scheduler associates a task to a filter when an event is received. The default
policy follows a first-come first-served policy. Because the devices have different
executions depending on the data they receive, the framework uses a performance
estimator utilizing a model learning algorithm (k-nearest neighbors’ algorithm) to
improve performances in different runtime environments.

Qilin

Qilin [Luk et al., 2009] is a framework for heterogeneous single nodes. Qilin provides
an API to parallelize sections of code. Through the API, an abstract directed acyclic
graph is created to represent the whole computation.

The main proposition of Qilin is its automatic adaptive mapping. The goal of
the map process is to associate a task ready to be executed to a processing element,
a CPU or a GPU for example. The mapping bases its decision on (1) all previous
executions of Qilin that store execution times of calls on the different processing
elements, and (ii) a training drill when an execution first runs.

It also extracts automatically parallel sections and generates TBB (see the section
1.6.2) code for CPUs and Nvidia CUDA [Garland et al., 2008] code for GPUs that
will be dynamically compiled at runtime. In the case of GPU computation, if Qilin
detects that the memory used exceeds the available memory on the device, the graph
is split into subgraphs that will be executed sequentially.
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StarPU

StarPU [Augonnet et al., 2011] is a C library to execute parallel tasks over hetero-
geneous hardware on a single node with a task graph representation. It proposes
a unified approach (a codelet) to implement a task. End-users can use additional
libraries like Nvidia CUDA [Garland et al., 2008] or BLAS routines to implement the
kernel inside the same codelet. The codelet will be then offloaded to the execution
unit used, CPU or accelerators. In addition to the unified execution model, StarPU
proposes a generic scheduling framework. It enables users to customize low-level
scheduling decisions, such as work stealing or work balancing, with high-level calls
or per-task performance models.

Legion

Legion [Bauer et al., 2012] is a task graph library for heterogeneous nodes. The
library defines "logical regions" in memory as collections of objects. When creating a
task, the end-user defines explicitly the task’s input data plus the attached properties.
The properties include the logical regions privileges (read, write, or both), the region
organization (if it is an array of structures or a structure of arrays), the partitioning
and the coherence (the types of treatments that a task can do in another task’s
logical region). The runtime system will use these different logical regions’ properties
to define the scheduling between these tasks and handle tasks reordering. It can also
duplicate shared read-only logical regions to improve parallelism between multiple
tasks.

Uintah

Uintah [Meng and Berzins, 2012] is a parallel asynchronous many-task runtime
system with multiple simulation components made for exascale computation designed
for multi-physics simulation. The simulation components as of January 2015 are
ARCHES (combustion simulation component), ICE (compressible flows component),
MPM (particle-based for structural mechanics component), and MPM-ICE (fluid
structure interactions simulation) [Holmen et al., 2017].

The simulation spatial grid is divided into patches by a scalable regridder. Patches
are assigned to nodes thanks to a measure-based load-balancer. A patch is a chunk
of data used by a node and shares ghost values (interface data) computed by other
nodes. The patch is stored and managed by a local data warehouse; it is updated by
MPI calls.

The computation is represented with a task graph (a directed acyclic graph) where
the task dependencies are determined by the required data and data usage (read,
write, and read/write) for individual tasks. The Uintah runtime system schedules
the tasks on the patches.

At each tick of the simulation, the data warehouse is updated with the computed
data and old data can be removed. The MPI scheduler creates multiple worker
threads on each multi-core node with one MPI rank per CPU core. All workers in a
node have access to all variables contained in the node. A unified scheduler supports
GPU tasks with a combination of MPI, POSIX Threads, and CUDA.
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HTGS

HTGS [Blattner et al., 2017] is the data-flow library that inspired Hedgehog. As
such, they share some important concepts and design decisions. It was developed at
NIST by Timothy Blattner and Walid Keyrouz.

It is based on an explicit data-flow graph representation where each vertex has a
defined role. Its execution relies only on the OS scheduler, no external mapper or
scheduler are used. The explicitness of the model and a cost-free feedback mechanism
allow the user to understand how the computation is conducted and to improve it.
This is made possible because the designed model is exactly the one being executed.
Details about the architecture and the model are given in Section 3.

Threading model

We have observed that the libraries in this section base their representation on task
graphs. Their execution mechanism maps dynamically, at runtime, a task ready to
be executed to a thread from a pool with a scheduler. The decision is made from a
variety of properties depending on the library, state of needed data, communication
costs, etc. In some cases, other algorithms like work stealing or load balancing
help scheduling decisions. Multiple schedules are possible for a given algorithm;
the scheduler aims to find a schedule that minimizes overall execution time. The
general decision problem associated with the scheduling problem is a NP-complete
problem [Sinnen, 2007].

Another solution, used in HTGS, would be to statically bind a thread to each
task. In most cases, the scheduler will do the association between a task and a
thread, and then the operating system schedules the thread. With this method, no
external scheduler is needed, the sole OS scheduler can be used to organize the tasks
on the available hardware. There is a major advantage to this technique: no extra
overhead is added by a scheduler.

Directed cycles in task graphs

The other common property of these libraries is the usage of directed acyclic graphs.
Directed cycles could be problematic as they are a cause of deadlocks between tasks.
The graph can only terminate if all its vertices terminate. A node termination is
linked to its predecessor vertex; it can usually terminate if all its predecessor nodes
terminate. If there is a directed cycle, there is always an alive predecessor for each
vertex of the cycle.

We advocate that an explicit model that is easy to understand could allow the
end-user to (1) create directed cycles in his or her graph to increase the expression
capabilities of the library, notably useful to model a loop (cf. matrix multiplication in
Section 1.7.2) and (2) express termination conditions to break the cycles depending
on the algorithm implemented (in the same example, to stop the loop).

Matrix multiplication with a graph

In this section, we will give an overview of how to represent the parallel execution of
the matrix multiplication of our example based on a data-flow graph as in HTGS.
We will discuss this approach with much more details in Chapter 3.
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For this example, we need to decompose the matrices into blocks to operate on
them in parallel as shown in Figure 1.1. This allows us to decompose the algorithm
into independent tasks and to manage the production order of blocks.

α×A×B+ β = C∑M
i=1 α× (Ar,i × Bi,c) + β = Cr,c

A

B

C

C1,1A1,1 A1,M

B1,1

BM,1

Figure 1.1: Simple matrix multiplication decomposition in blocks

This workflow is presented in the Figure 1.2 (circles are tasks and diamonds are
management steps). The algorithm is decomposed into three tasks: (1) the matrices
decomposition into blocks, (2) a multiplication between matrices A and B blocks and
(3) an accumulation into blocks of matrix C. In order to compute a block of C at
position (r, c), we need to multiply appropriate blocks of A and B (all Ar,i and Bi,c)
together with the α value creating temporary blocks. We can then accumulate these
temporary blocks into the corresponding block of C plus at the end the β value.
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Figure 1.2: Matrix multiplication with a graph approach

However, the tasks may receive decomposed blocks of matrices A, B, and C out
of order if the productions of blocks from these matrices are made in parallel. In
that case, additional management phases would be required. One will be in front
of the block multiplication to gather compatible blocks of A and B. The other will
be in front of the final accumulation to manage the different aggregations of the
temporary blocks into C.

There are three major steps: (1) decomposition of matrices A and B, (2) multipli-
cation of block matrices and (3) accumulation into C matrix, plus two management
phases: (1) gather compatible blocks of A and B and (2) manage accumulation into
C.
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1.8 Multi-paradigm models

1.8.1 OpenMP

The OpenMP Task Model [Dagum and Menon, 1998] is a multi-faceted library born
in 1997. At its core, it proposes to parallelize loops on a single node through pragma
annotation of C/C++/Fortran sequential code. It offers a large variety of options to
customize the access, computation and synchronization on these loops. Internally, it
uses a fork-join model to handle the threads and master/minion design to manage
the computation.

This methodology comes with some drawbacks. First, it needs a sequential code
that will be later augmented. Parallelism is not considered as a first-class citizen.
Second, if parallelism is considered, the algorithm needs to be mainly centered around
loop constructs. Complex algorithms may be difficult to design that way. Third,
synchronization barriers appear between parallel sections because OpenMP only
considers the fork-join model for those loops. Finally, the library presents some
complexity due to its options. In order to get maximum performance, deep knowledge
is required to fully exploit the library.

Last versions of the library provide accelerator support through direct compiler
code generation and a task-based approach to represent parts of the algorithm with
lambdas.

1.8.2 OmpSs-2

OmpSs-2 [Catalán et al., 2019] is a programming model built upon OpenMP (Sec-
tion 1.8.1) among others. The usage is close to OpenMP, the library works by
annotating sequential code. The main differences come from the internals, where
OpenMP uses a fork-join model, OmpSs-2 uses a pool of threads. The support for
accelerators is achieved by calling kernels’ implementation for these targets. The
library proposes a more implicit programming model. The end-user does not need to
declare the parallel regions because the parallelism is created from the beginning of
the program.

1.8.3 Kokkos

Kokkos [Edwards et al., 2014a] is a C++ library targeting manycore architecture.
Kokkos focuses on the parallelism and on the data access pattern to get performance.
The programming model consists of two parts: (1) the thread parallel execution (the
execution space) and (2) the multidimensional arrays (the memory space).

It targets performance portability, a user code will be compiled specifically for
various devices to get performance equivalent to hand tuned code. This is possible
due to a unified abstraction for CPU and GPU architectures. Kokkos achieves this
by using different back-ends depending on the targeted hardware: CUDA for Nvidia
GPUs, POSIX threads (Section 1.3) or OpenMP (Section 1.8.1) for CPUs.

The Kokkos multidimensional arrays have a polymorphic data layout. The data
layout can be changed from an array of structures to a structure of arrays to improve
the performance on a specific target.

The Kokkos abstraction for an HPC environment is a network of computing
nodes with manycore devices. They therefore propose two levels of parallelism, one
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at the memory distribution level through MPI, and the other one at the thread level
in each of the node.

Kokkos proposes two types of parallel patterns: (1) parallel algorithmic constructs
with parallel_for, parallel_reduce, and parallel_scan, and (2) parallel tasks.
These Kokkos tasks (2) form implicit directed acyclic graphs with Kokkos future
constructs.

1.8.4 Parallelism considerations

OpenMP relies on a sequential code that is later augmented with directives. This
means that the base computation needs to be sequential and the parallelism is
considered as an afterthought. If the parallelism is taken into account during
development, the code needs to be written around array structures to benefit from
the API.

It seems preferable to have access to a library with an explicit model for the
parallelism that drives the end-user to express his/her algorithm with a set of
concurrent pieces of code. This way, the algorithm can naturally expose parallelism
and can use special data structures inside the concurrent sections to express more
fine-grained parallelism.

1.8.5 Matrix multiplication with OpenMP

To implement a version of matrix multiplication with OpenMP, we started with a
triple loop implementation as shown in Code 1.8. Then, we added 2 directives: (1)
for defining a parallel section and how the variables are shared among the threads,
and (2) for parallelizing the outer loop with its static scheduling (the library will
divide the outer loop into chunks that will be distributed to each thread in a circular
order).

Source Code 1.8: Matrix multiplication with OpenMP

1 int main () {
2 const int size = 10;
3 float alpha = 2, beta = 3;
4 int i,j,k;
5

6 float a[size][size];
7 float b[size][size];
8 float c[size][size];
9

10 #pragma omp parallel shared(a,b,c) private(i,j,k)
11 {
12 #pragma omp for schedule(static)
13 for (i=0; i<size; i=i+1)
14 for (j=0; j<size; j=j+1) {
15 for (k=0; k<size; k=k+1)
16 c[i][j] += (a[i][k])*(b[k][j]) * alpha;
17 c[i][j] += beta;
18 }
19

20 }
21 }
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1.9 Parallel languages
Parallel computing can be achieved using parallel programming languages where
parallelism is a first-class citizen, they define constructs to express parallelism. Chapel
(Section 1.9.1), Rust (Section 1.9.2), and Go (Section 1.9.3) are three examples.

1.9.1 Chapel

Chapel [Gmys et al., 2020] (Cascade High Productivity Language) is a parallel
programming language aiming at single node and cluster computations. It mainly
uses a task model to build parallel constructs. At runtime, Chapel will spawn a
task and run the main function. To generate parallel executions, it is possible to use
unstructured tasks, structured tasks or to exploit data parallelism. An unstructured
task will execute its kernel and then terminate. At the same time, the main task
continues. For a structured task, the parent task will wait for its child tasks to
complete before continuing. Data parallelism (distribution of data across different
execution units executing in parallel) is achieved through forall-loops, ranges, domains,
and arrays constructs. Task parallelism comes with problems such as data races
and deadlocks that the user needs to tackle. It provides work stealing schemes to
improve task scheduling.

1.9.2 Rust

Rust is a recent multi-paradigm language that first appeared in 2010. One of
its main concerns is to help the programmer build safe and efficient concurrent
programs [Klabnik and Nichols, 2019a]. Rust defines two types of code sections: safe
and unsafe.

In a safe section, Rust will guarantee memory safety (access in read and write
for data race prevention) by checking the code at compile-time. By default, the
language is conservative, and it prefers rejecting a correct piece of code rather than
accepting an incorrect one. Memory checking provides some guarantee on concurrent
computation.

In an unsafe section, it is possible to (1) dereference a raw pointer, (2) call
an unsafe function or method, (3) access or modify a mutable static variable, (4)
implement an unsafe trait, and (5) access fields of unions [Klabnik and Nichols,
2019b].

It is recommended to wrap an unsafe section in a safe section. The idea is to
add guarantees or checks around unsafe code to contain the unsafe portions of code.
This way, Rust can provide guarantees over this wrapper like over all safe parts of
the code.

This distinction is important in Rust as safe sections are guaranteed by the
language to be free of data races [Qin et al., 2020].

1.9.3 Go

Go is also a recent multi-paradigm language that first appeared in 2009. It is meant
to be a simple language that provides a way to do concurrency considered essential
from the beginning of the language. It provides two main primitives to express
concurrent programs: (1) the goroutines (go-coroutines) and (2) the channels.
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A goroutine is a concurrent function [Doxey, 2016]. They choose to provide this
construct instead of threads to hide low-level details to the developer. The runtime
is in charge of executing these goroutines in a thread or in many threads depending
on the architecture. If one thread blocks, the system is also in charge of moving all
other goroutines to different threads to avoid all of them to wait.

The channels are the communication and synchronization mechanism. It allows
sending messages between goroutines and waiting for them. Lower level synchro-
nization techniques also exist in the language such as mutexes. In the language
philosophy, these primitives are used for simple tasks while the channels are structural
high-level patterns. They have a proverb about it: "Do not communicate by sharing
memory. Instead, share memory by communicating". One way to proceed is to
structure the program around the idea that only one goroutine is responsible / holds
a piece of data, and the property is passed by communicating.

The motto is a guide used to avoid data races. In addition the language possesses
a data race detector. The language can also detect a deadlock when the whole
program is frozen. In paper [Tu et al., 2019], the authors studied the concurrency
safety of the language and pointed some limits.

1.9.4 Matrix multiplication with a parallel language

In Code 1.9, we present a full implementation of the matrix multiplication algorithm
with the Chapel language. Usually, a Chapel developer would have directly used the
LinearAlgebra module using BLAS routines behind.

The code could be understood as a sequential code as it is only composed of a
for-loop construct. Chapel is a parallel language and the for-loop, coforall, is a
parallel loop that will compute, in parallel, blocks of matrix C. D2 is a 2D block
dimension of the matrix that allows traversal of the matrix in blocks.

Source Code 1.9: Matrix multiplication with Chapel

use Random;

config const size = 10000;
config const alpha = 10;
config const beta = 5;
var A : [1..size, 1..size] real;
var B : [1..size, 1..size] real;
var C : [1..size, 1..size] real;
const D2 = {1..size, 1..size};

fillRandom(A);
fillRandom(B);

coforall (i,j) in D2 do {
for k in 1..size do { C[i,j] += alpha * A[i,k] * B[k,j]; }
C[i,j] += beta;

}
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1.10 Conclusion
In this chapter, we have presented approaches to exploit parallelism on various
hardware platforms. Parallelism is complicated and there is no perfect solution that
fits all problems and users. However, we have found interesting properties that could
be used to express parallelism and to suit a large spectrum of users.

An interesting property is the accessibility of the approach. The model needs to
be well defined and explicit. What is presented to the programmer should be reused
during the execution to help him/her understand how the computation is conducted.
Moreover, it should not act as a black box, but it should rather allow the user to
tune the execution to improve the overall performances. Also, since we are designing
a parallel approach, the parallelism should be intrinsic to the model, like what we
have described with the parallel languages.

A good base model with this property is the data-flow graph model. This model
is well defined with its vertices describing the computational kernels and its edges
indicating the flow of data. One can consider using the graph without any adjustment
from the library. Provided that the tasks run on different threads, the model proposes
an intrinsic parallelism. However, the model is commonly used with an execution
model where there is a scheduler along with a pool of threads; the HTGS model
proposes an interesting alternative with tasks statically bound to threads and an
execution that only relies on the OS scheduler. This novel approach reinforces the
idea of explicitness, as it is easier to think about the algorithm representation without
any interface doing NP-complex mapping.

Another major asset of such an approach is the idea of open computation. Even
if the structure is well defined, the data-flow graph model is totally compatible with
other approaches to express kernels in the graph’s nodes. It has also no specific
domain target, as long as the algorithm is expressed under the form of such graphs, it
is possible to express linear algebra, image processing, or other types of applications.

In addition, if a data-flow graph can be considered as a node itself, it can
be embedded in another graph, sharing the same composability property as the
algorithmic skeletons. This is a major property as it helps with abstracting parts of
an algorithm and therefore helps a user to reason and to design the whole algorithm’s
structure. It also helps with sharing codes as it suffices to only share a graph to
share a full algorithm for reuse by others. We can also imagine building libraries of
graphs for a given set of applications, like what OpenBLAS did for linear algebra by
implementing BLAS routines.

40



Chapter 2

Metaprogramming techniques in C++

The parallel run-time systems presented in the previous chapter usually require the
developer to design the parallel process using abstractions (the programming model)
that may have an impact on the execution time (an execution plan is produced from
the programming model). Moreover, it seems important to bring as much checking
as possible to the programming model before starting the execution.

As the programming model is usually known before execution (e.g., a data-flow
graph), it can be considered analyzing the graph during the preparation phase
of the program, in order to avoid some checking at run-time that could lead to
overhead and to detect as soon as possible potential incoherence. Metaprogramming
is usually used to manipulate models (representing programs), analyze them, produce
new models and ultimately produce the final executable code. There exist many
metaprogramming techniques that differ on what can be done and how to achieve
it, as shown by Damaševičius and Štuikys [Damaševičius and Štuikys, 2008] that
have identified and classified 35 concepts around metaprogramming presented in
Table 2.1. Among the possible techniques, the C++ language offers possibilities of
metaprogramming during the compilation steps, which enables designing libraries
that perform some computations at compile-time, such libraries are called active
libraries [Veldhuizen and Gannon, 1998].

With the objective of providing a library-based solution that is portable, we chose
to focus our study on what is available with C++. The latest C++ norms bring new
facilities that enhance a programmer’s capabilities to design complex algorithms
at compile-time. Especially the "generalized constant expression" concept (mainly
known through the constexpr keyword) has gained a lot of capabilities that help in
the design of active libraries.

In this chapter, we first present in Section 2.1 different taxonomies that try
in their respective times to classify metaprogramming techniques. We follow this
presentation by a discussion about different types of metaprogramming techniques
enabled by the C++ language. It includes trivial metaprogramming techniques in
Section 2.2, template metaprogramming techniques in Section 2.3 and constant
expressions metaprogramming techniques in Section 2.4.

2.1 Metaprogramming taxonomies

Metaprogramming is a programming technique to manipulate programs, either for
analyzing or generating programs. A metaprogram can be defined as a program that
manipulates other programs as its data [Czarnecki and Eisenecker, 2000]. Thus, a
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metaprogram can take programs either as input or output, or both.

Concept class Concept Concept class Concept

Transformation

Manipulation
Generalization

Construction
Transformation Generalization
Modification Parametrization
Adaptation Separation of concerns Analysis
Translation Concern separation
Preprocessing Reflection Reflection

Generation
Code generation Introspection
Instantiation Metadata Metadata
Weaving Parameters

Metaprogram

Template

Other concepts

Metaobject protocol
Generic component Traits
Macro Theorem proving
Metaprogram Partial evaluation
Metaspecification Inspection

Levels of abstraction
Representation Specialization
Abstraction Runtime execution
Encapsulation Optimization

Interpretation

Table 2.1: Concepts related to metaprogramming from Damaševičius and Štuikys’
analysis

In the last decades, Pasalic [Pasalic, 2004], Sheard [Sheard, 2001], Damaševičius
and Štuikys [Damaševičius and Štuikys, 2008], and Lilis and Savidis [Lilis and
Savidis, 2019] proposed multiple taxonomies to classify metaprogramming techniques,
each focusing on different aspects, which means that none of these taxonomies is
considered more accepted than the others.

In order to discuss these classifications, we first introduce some terms. We
call metalanguage the language used to express a metaprogram, object-program a
program manipulated by a metaprogram, and object-language the language that the
metaprogram manipulates, i.e. the language used to express the object-program(s)
treated by the metaprogram.

2.1.1 Pasalic’s taxonomy

In 1995, Emir Pasalic proposed to classify metaprograms according to three axes:
generator vs. analyzer, homogeneous vs. heterogeneous and open vs. closed.

A generator creates its output, an object-program, based on its inputs (a compiler
could be considered as a generator [Aho et al., 1986]). An analyzer analyzes an object-
program and computes some results (a proof program is a good example [Hoare,
1971,Binkley, 2007]). It is possible to have metaprograms that enable creating both
generator and analyzer, while others like C++ template metaprogramming (cf. section
2.3) are considered by the authors to do just one, they assume that it is only possible
to write generators at that time.

The difference between homogeneous and heterogeneous metaprograms lies in the
comparison between the metalanguage and the object-language. If the metalanguage
and the object-language are the same, the metaprogram is homogeneous; if they
are different the metaprogram is heterogeneous. In a way, every language using
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strings can be heterogeneous or homogeneous, because the strings can represent
metaprograms. C++ template metaprogramming can not be clearly categorized in one
of these two categories. Template metaprogramming follows a syntax defined by the
language, so template metaprogramming is part of C++. However, it is undeniably
different to code a "usual" program in C++ than using template metaprogramming.
We do consider template metaprogramming heterogeneous, while, by contrast, C++

generalized constant expressions are homogeneous as they allow using the same
syntax as usual code (cf. Section 2.4).

Finally, whether the metalanguage is open or closed is the metalanguage designer’s
choice. A closed metalanguage can only manipulate an object-language known in
advance. An open metalanguage offers features that can encode and manipulate
multiple object-languages chosen by the designer of the metalanguage. In the cases
of template metaprogramming and generalized constant expressions, they are both
closed, as they are meant to manipulate C++ code only.

2.1.2 Sheard’s taxonomy

In 2001, Tim Sheard proposes its taxonomy [Sheard, 2001]. He shares with Pasalic
the generators vs. analyzers and homogeneous vs. heterogeneous differences. The
taxonomy adds a distinction between static/run-time generator and manually/auto-
matically annotated.

A static generator generates a program that is "written to disk" and later exploited
by a compiler. A run-time generator generates the object-program and executes it
right after. For the author, if the generated code is a generator itself we have a form
of multistage programming [Taha, 1999].

C++ template metaprogramming is mostly a static generator, the code issued
from the instantiation of a metaprogram (i.e. a template, cf. section 2.3) is then
compiled.

He calls staging annotations, notations that separate static and dynamic sections of
code (in the metalanguage and in the object-language respectively). These notations
can be placed manually by a developer (manually staged system) or automatically by
a process (automatically staged system). For the author, the partial evaluation [Jones,
1996] technique is the pioneer of the automatic staging annotation.

2.1.3 Damaševičius and Štuikys’ taxonomy

In 2008, Robertas Damaševičius and Vistautas Štuikys propose a new taxon-
omy [Damaševičius and Štuikys, 2008] to classify metaprogramming techniques
(summarized by Figure 2.1) based on their analysis (Table 2.1). The taxonomy
focuses on two classes: structural and processing classes. The different concepts are
sorted in these two concept classes presented in Figure 2.1.
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Structure
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Processing

Transformation

Generation

Reflection

Generalization

Figure 2.1: Damaševičius and Štuikys’ taxonomy

The Structural concept class presents the metalanguage abstractions. It is static
and tool-dependent because it depends on the metalanguage designer and the capacity
of the language. It is used during the construction of the metaprogram. This concept
class is composed of different concepts: metaprogram, level of abstraction, separation
of concerns and metadata. A metaprogram is a generic component representing
similar component instances and containing different functionalities. The layers
of abstraction model a semantic system that represents different aspects of design.
The separation of concerns is a process to break a problem into orthogonal distinct
tasks implemented separately. Metadata are annotations to describe properties on a
specific layer of abstraction.

Processing concepts present the metalanguage operations. They are dynamic
because they describe some processing rather than tools and domain-dependent
because they can be implemented using different meta and domain structures. The
transformation process allows the program to change form to another one. The
generation process allows to create a target system from high-level specifications.
The reflection is the ability to observe and change its structure and behavior. The
generalization is the transformation of a domain specific component to a generic one,
making it more widely usable.

The authors remark that the structural and processing concepts are inter-
dependent. They sum up these relations in Figure 2.2, for example generation
processing depends on metaparameters described as metadata.

2.1.4 Lilis and Savidis’ taxonomy

In 2019, Lilis and Savidis propose their own taxonomy of metaprogramming [Lilis
and Savidis, 2019] presented in Figure 2.3.

This taxonomy presents four dimensions to classify metaprogramming languages:
(1) the relation between the metalanguage and the object-language, (2) the source
location, (3) when the metaprogram is evaluated, and (4) the metaprogramming
model.

The taxonomy studies, like the previous ones, the relation between the metalan-
guage and the object-language. What was called homogeneous and heterogeneous is
respectively called indistinguishable and different here. Lilis and Savidis add a third
classification called extension, where the metalanguage reuses the base language
while adding new syntax to express the code of the metaprogram. The classification
of template metaprogramming and constant expression in C++ is not obvious. We
can make a separation between the "usual" C++ language and the language specific
to the templates, making template metaprogramming heterogeneous. However, the
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Figure 2.2: Relations between structural and processing concepts

"template language" is part of the C++ norm, making it more an extension of the
"main" language. Constant expression can be seen homogeneous with the "main" C++

language, although the entire language is not available inside constant expressions
(cf. Section 2.4).
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Figure 2.3: Lilis and Savidis’ taxonomy

45



CHAPTER 2. METAPROGRAMMING TECHNIQUES IN C++

They also classify a metaprogram depending on its source location, it can be
located either (1) inside the code it modifies or (2) it can be independent. In C++,
template metaprogramming and constant expressions are inside the code they modify.

Another metric used to classify metaprogramming techniques is when the code
is evaluated. They have distinguished three periods: (1) during preprocessing, (2)
during compilation, and (3) during execution. For example, C++ macros are executed
during preprocessing, C++ template metaprogramming or constant expressions are
evaluated during compilation, and Java reflection is made during execution.

Finally, metaprograms can be classified depending on the model they follow.
They distinguish six categories of models:

1. macro systems (cf. Section 2.2.2) available in C/C++.

2. reflection systems: possibility for a program to observe and modify its own
structure like Java.

3. metaobject protocols: possibility for a system to manipulate the original object
system behavior and implementation. The authors cite Smalltalk and the
Common Lisp Object System (CLOS) as example of such systems.

4. aspect-oriented programming: addition of advices (additional behaviors) to
be executed at join points, AspectJ is an example of extension of the Java
language for aspect programming.

5. generative programming: transformation and creation of a program based on
algorithm or program representation, C++ template metaprogramming is an
example of such programming (cf. Section 2.3).

6. multistage programming: making available to the developer levels of evalua-
tion [Glück and Jørgensen, 1996] of the program computations with a special
syntax called staging annotations. Languages supporting multistage program-
ming typically support an unbound number of stages and are called multistage
languages. An example of language that allows multistage programming is
MetaML.

2.1.5 Conclusion

As we have written, there is no taxonomy that dominates in the literature compared
to the others. We have seen that these taxonomies can follow orthogonal approaches
to classify metaprogramming methods and should be considered as complementary.
Pasalic and Sheard’s taxonomies base their classification on the type of computation
done whether it is generation or analysis. Damaševičius and Štuikys’ taxonomy adds
structural and processing concepts notions. Lilis and Savidis’ taxonomy, the most
recent one, is closer to the latter one while adding the model of metaprogramming
used. It seems the most wide and precise compared to the previous ones.

In the next sections, we cover metaprogramming techniques in C++. We have
chosen the C++ language because in addition to the performance available from the
language at runtime, it allows one to do more complex computation at compile-time
with the introduction of new facilities that result from the need of developers to
run complex programs at compile-time. The language presents different forms of
metaprogramming techniques that have evolved following the different norms. C++
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template metaprogramming is a form of functional programming (so not the style
of programming that is common with C++) that allows one to manipulate mainly
types and integers at compile-time. Constant expressions use the "classical" C++

syntax to write programs and allow one to manipulate (and generate) any "data
structure" (values of primitive types or POD, instances of classes) that are known at
compile-time. They allow designing complex programs more easily.

2.2 Trivial metaprogramming in C++

Luc Touraille in his PhD thesis [Touraille, 2012] proposed a survey of metaprogram-
ming techniques with C++. We recap the different methods, from the trivial ones like
string manipulation and macros in this section, to metaprogramming techniques like
template metaprogramming and constant expressions in the next sections. The first
technique that we cover is the usage of strings to represent programs, presented in Sec-
tion 2.2.1. Then, we do a quick overview of macro mechanisms in Section 2.2.2. Next,
we will present different ways of doing template metaprogramming in Section 2.3.
Finally, in Section 2.4, we elaborate on the usage of the constexpr keyword.

2.2.1 Metaprogramming with strings

This is the most immediate technique as every language with string capabilities can
achieve it. We present the following Code 2.1 that will generate a new code file 2.2
which, upon compilation, will print what has been given as parameter to the program
of Code 2.1.

Source Code 2.1: Metaprogram based on strings

1 #include <fstream>
2

3 int main(int argc, char ** argv) {
4 std::ofstream ofs ("meta.cpp", std::ofstream::out);
5

6 ofs << "#include <iostream>\n\n";
7 ofs << "int main() {\n";
8 ofs << " std::cout << \"" << argv[1] << "\";\n";
9 ofs << " return 0;\n";

10 ofs << "}\n";
11

12 ofs.close();
13 return 0;
14 }

Source Code 2.2: Output of the previous code with "blabliblou" given as argument

#include <iostream>

int main() {
std::cout << "blabliblou";
return 0;

}
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When developing with this technique, there is no advanced syntactic checking
and we do not have access to help given by integrated development environment,
because we do not manipulate the actual language. Transforming an existing source
code is possible but difficult, because it relies only on text operations.

2.2.2 Metaprogramming with macros

Macros in C++ are constructs (based on C constructs [Ritchie et al., 1988]) that are
executed by the preprocessor during the 4th phase of the translation process. Theses
constructs are defined with directives. Directives start with the # character, and
represent instructions, mainly #if for conditional statement and #define that allows
defining a "code pattern" (possibly with parameters) that will then be "called" to
be applied/expanded anywhere in the code. The #define directive is used to define
macros. Their purpose is to substitute text but without syntactic checks.

For example, in the following Code 2.31, the pattern CREATE_OPERATOR with the
parameter OP is defined (lines 1 to 3). It defines the pattern of the code to write the
overload of the unary operator OP for the Vec class. The pattern CREATE_OPERATOR
is then expanded for the operators +=, -=, *=, and /=, by giving respectively the
argument +, -, * and / (lines 5 to 8). It avoids to repeat by hand the writing of this
structure, which avoids errors and lowers maintenance costs.

Source Code 2.3: Metaprogram based on macro

1 #define CREATE_OPERATOR(OP) \
2 Vec& Vec::operator OP##= (const double x) \
3 { return apply([x](double y) { return x OP y; }); }
4

5 CREATE_OPERATOR(+)
6 CREATE_OPERATOR(-)
7 CREATE_OPERATOR(*)
8 CREATE_OPERATOR(/)

Operator overloading is a feature from the C++ language that is used to customized
operations, in our case, +=, -=, *= and /= for objects of class Vec. Overloading
is a type of polymorphism allowing functions (and thus operators) to have several
implementations that can be distinguished mainly by the types of their arguments.
The type deduction mechanism of C++ finds the right implementation to call based
on the types of the arguments when calling a function. In our example, we do not
have to write the overloading for each operator by hand. The code produced with
the macro expansion is equivalent to the Fragment 2.4.

Source Code 2.4: Code with the macro expanded

1 Vec& Vec::operator+= (const double x) {
2 return apply([x](double y) { return x + y; });
3 }
4 Vec& Vec::operator-= (const double x) {
5 return apply([x](double y) { return x - y; });
6 }
7 Vec& Vec::operator*= (const double x) {
8 return apply([x](double y) { return x * y; });

1Taken from Stack Overflow website: https://stackoverflow.com/questions/34090385/c-
macro-metaprogramming
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9 }
10 Vec& Vec::operator/= (const double x) {
11 return apply([x](double y) { return x / y; });
12 }

The macro in this case does direct code replacement while using the argument
provided, which means that there is no type-safety check and side effects are possible,
cf. Code 2.5.

Source Code 2.5: Metaprogram based on macro with side effects

1 #define POWER(x) ((x) * (x))
2

3 int main() {
4 int val = 41.0;
5 int result = POWER(++val);
6 }

In this example, the macro acts like a basic power function. We are expecting in
the variable result the value 1764 (because 42 ∗ 42 = 1764). The generated code is
result = (++val) * (++val) and the result is 1936, because the variable val is
incremented twice.

This shows with a simple example that macros could do some metaprogramming,
as we have generated some code in our first example, but could be difficult to use
especially due to the side effects and their limitation. However, the Boost library
proposes a library using macros for complex metaprogramming operations on data
structures notably, called Preprocessor 2.

2.3 Template metaprogramming
Template metaprogramming in C++ is based on templates that are the way generic
programming [Musser and Stepanov, 1989] is offered in C++. Programs are defined
with undefined parameter types (and/or values, mainly integers), and later at
compile-time, from these generic definitions, concrete code will be built by revealing
the unknown parameter values and types, in a process called instantiation. The
original idea is to remove source code redundancy by defining generic function, class,
or method that will be applicable to multiple types. In this section, we present
the basic principles of generic programming with templates, and their specificity
of instantiation and specialization needed for template metaprogramming. The
specificities of templates, mainly the way they are instantiated (creating the concrete
element from its generic form that is usually costless at runtime), and their ability
to be specialized, allow template metaprogramming and make it relevant to use in
some situations.

2.3.1 Fundamental template principles

In order to describe the template mechanism, we need to introduce how templates
can be declared and used, and give some details on the fundamental instantiation
and specialization principles [Vandevoorde et al., 2017].

2https://www.boost.org/doc/libs/1_72_0/libs/preprocessor/doc/index.html
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In Code 2.6, we declare a template function called equal with one template
parameter T that represents an unknown type at this point. At line 1, we declare
the template parameter (there can be many, the list of parameters is delimited by <
and >), and at line 2, the function is defined the classical way, the only difference
being the use of parameter T instead of an actual type. Thus, at this point, the type
of arguments lhs and rhs is unknown.

Instantiation

The instantiation is the process of binding values to the parameters of a template in
order to create a concrete entity; this entity could be a function, a class, a variable,
or a type alias.

Code 2.6 presents an example of explicit and implicit instantiation. At lines 1-2,
we define a method equal with a template parameter T. At line 8, we instantiate the
equal function by binding the int type to parameter T. To get a concrete function
from the template function, a "value" for the template parameter is provided in
order for the compiler to produce a dedicated version of equal. This instantiation
generates the equal function from the template equal function, with the int type
replacing the unknown type T, so the compiler generates a function with the signature:
bool equal (int const & lhs, int const & rhs). At line 9, we instantiate the
same way the equal function with the type float, which induces the creation of
another concrete equal function with the signature: bool equal (float const &
lhs, float const & rhs). These instantiations are explicit, as we provide clearly
the value for T when using the equal functions: equal<int> and equal<float>.

Source Code 2.6: Template definition and instantiation

1 template <class T>
2 bool equal(T const & lhs, T const & rhs) { return lhs == rhs; }
3

4 int main (){
5 int a = 4, b = 2;
6 float c = 42, d = 42;
7

8 equal<int>(a, b);
9 equal<float>(c, d);

10

11 equal(a, b);
12 equal(c, d);
13 }

However, it is possible to let the compiler deduce the type bound to parameter
T as shown at lines 11-12, this is called implicit instantiation. The compiler knows
the type of a, b, c, and d, and because arguments of type T are expected, it will
deduce that int should be bound to parameter T at line 11 and float at line 12 to
get appropriate instantiations of equal. This deduction is not always possible and
follows some rules 3.

In the final code, the equal function exists in two flavors, one for each type,
which results in a larger code base, so a larger executable. The counterpart of the
increased size is a gain in performance because it exists as dedicated code of the
equal function for each type bound to T (cf. Section 2.3.4).

3https://en.cppreference.com/w/cpp/language/template_argument_deduction
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The same principle can apply for classes and variables; they can be parameterized
with the same kind of construct to build generic classes (cf. lines 2-4 in Code 2.7)
and variables (cf. lines 7-8 in Code 2.7).

Source Code 2.7: Class and variable templates

1 // Class template
2 template <class T> class GenericClass {
3 T attribute_;
4 };
5

6 // Variable template, available since C++14
7 template<class T>
8 constexpr T pi = T(3.1415926535897932385L);

Specialization

The specialization of a template is the declaration or definition of a dedicated version
of a template for specific values bound to at least one parameter of the template. If
all template parameters are bound to a value in a specialization, we talk about a full
specialization; alternatively, if at least one template parameter remains undefined,
we talk about partial specialization.

Code 2.8 shows examples of specializations. First, the template structure
MyStruct is defined at lines 2-4, we call it the "primary" template version. The
structure MyStruct is defined with two template parameters T and N. At lines 6-8
and 10-12, we have two partial template instantiations, one binding int type to T
and the other float type. In both cases, the value of template parameter N is still
undefined. In the last specialization, at lines 15-17, both parameters T and N are
bound to values, so it is a full specialization.

Source Code 2.8: Partial and full template specializations

1 // Primary template
2 template <class T, int N> struct MyStruct {
3 MyStruct() { std::cout << "MyStruct<?,?>\n"; }
4 };
5 // #0: partial specialization where T is int
6 template <int N> struct MyStruct<int, N> {
7 MyStruct() { std::cout << "MyStruct<int,?> init\n"; }
8 };
9 // #1: partial specialization where T is float

10 template <int N> struct MyStruct<float, N> {
11 MyStruct() { std::cout << "MyStruct<float,?> init\n"; }
12 };
13

14 // #2: full specialization where T is float and N equals 1
15 template <> struct MyStruct<float, 1> {
16 MyStruct() { std::cout << "MyStruct<float,1> init\n"; }
17 };
18

19 int main() {
20 MyStruct<double, 10> class1; // Print "MyStruct<?,?> init"
21 MyStruct<int, 10> class2; // Print "MyStruct<int,?> init"
22 MyStruct<float, 10> class3; // Print "MyStruct<float,?> init"
23 MyStruct<float, 1> class4; // Print "MyStruct<float,1> init"
24 }
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In Code 2.8, N is a non-type template parameter (NTTP). An NTTP however
presents some limitations: it needs to have a structural type 4. Until C++ 20, theses
types were mostly reduced to integral types and pointer types. For example, a
template parameter of integral type can be used to define at compile-time the size
of a std::array as shown in code 2.9. In this example, we design a house full of
humans, the number is statically set with the NTTP NumberOfHumans that is used
to parameterize the std::array of Human.

Source Code 2.9: NTTP usage

1 #include <array>
2 #include <cstddef>
3

4 class Human {};
5

6 // Usage of NTTP
7 template <size_t NumberOfHumans> class House {
8 std::array<Human, NumberOfHumans> humans_;
9 };

2.3.2 Variadic templates

A variadic template is a template that can accept variable/unbound template
arguments as shown in Code 2.10. In this case, the variadic template function
sumOfSquares is defined with a set of parameters (undefined types and quantity)
identified as a unique identifier Args called a template parameter pack (cf. line
6). This pack represents here a set of undefined types and is used to declare the
parameters of the function; it is also represented by a unique identifier args called
a function parameter pack. The parameter pack consists of an undefined number
of parameters, with unknown types (represented by the template parameter pack)
introduced using an ellipsis (...). Contrary to classical variadic functions that use only
an ellipsis without information on the types, this approach as a variadic template
allows more type control at compile-time.

Source Code 2.10: Variadic template and pack expansion

1 // Generic square function
2 template<class Arg>
3 Arg square(Arg const & arg) { return arg * arg; }
4

5 // Variadic template function
6 template<class ...Args>
7 auto sumOfSquares(Args const & ... args) {
8 // Right argument unfolding with a + operator
9 return (square(args) + ...);

10 }
11

12 int main (){
13 int a = 4;
14 float b = 2;
15 double c = 6;
16 return sumOfSquares(a, b, c);
17 }

As a parameter pack is a list of parameters, it cannot be used as is, it must be
"expanded", in order to get the list of the parameters used in a given context. Pack

4https://en.cppreference.com/w/cpp/language/template_parameters
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expansion appears when at least a pack is used in an expression pattern followed by
an ellipsis. Pack expansion can appear at many places, when building, for instance,
a template argument list to instantiate another template, a function argument list, a
series of operations on each element of a function parameter pack... More specifically,
the last kind of pattern implying a binary operator is called fold-expression, and the
expansion of fold-expressions follows some rules presented in Table 2.2 [Vandevoorde
et al., 2017].

Fold Expression Evaluation

(... op pack) ((( pack1 op pack2) op pack3) ... op packN)
(pack op ...) (pack1 op ( ... (packN-1 op packN)))
(init op ... op pack) (((init op pack1) op pack2) ... op packN)
(pack op ... op init) (pack1 op ( ... (packN op init)))

Table 2.2: Fold expression evaluation

In Code 2.10, a, b, and c are int, float, and double values respectively.
When calling the method sumOfSquare(a, b, c), the compiler deduces these
types and instantiates the function with those types, meaning the set of types
<int,float,double> is bound to the parameter pack Args (line 6). Then, the ar-
gument list at line 7 is expanded into int const & args1, float const & args2,
float const & args3. Finally, at line 9, we sum the square of each number of
the function parameter pack args: the fold-expression (square(args) + ...) is
expanded into square(args1) + square(args2) + square(args3).

The template instantiation looks like the output presented in Source Code 2.11.
It is a modified output (to ease understanding) from the source code compiled with
C++ and some plugins (clang++ -std=c++17 -Xclang -ast-print -fsyntax-only). We
can see in this output the instantiations of the square function for each of the types
(int, float, and double), and also the instantiation of sumOfSquare function with
a pack.

Source Code 2.11: Output example after template instantiation

1 template <class Arg> Arg square(const Arg &arg) {
2 return arg * arg;
3 }
4 template<> double square<double>(const double &arg) {
5 return arg * arg;
6 }
7 template<> float square<float>(const float &arg) {
8 return arg * arg;
9 }

10 template<> int square<int>(const int &arg) {
11 return arg * arg;
12 }
13 template <class ...Args> auto sumOfSquare(const Args &...args) {
14 return (square(args) + ...);
15 }
16 template<> double sumOfSquare<<int, float, double>>(const int

&args1, const float &args2, const double &args3) {↪→

17 return square(args1) + square(args2) + square(args3);
18 }

Elements in a template parameter pack can be manipulated without the expansion
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mechanism. It is possible to extract recursively the types from a template parameter
pack as shown in Code 2.12.

Source Code 2.12: Recursive manipulation of pack elements

1 #include <iostream>
2

3 template <class Front, class ...Types>
4 void foo(Front front, Types... remaining) {
5 std::cout << __PRETTY_FUNCTION__ << " front: " << front << "\n";
6 if constexpr (sizeof...(Types) > 0) foo<Types...>(remaining...);
7 }
8

9 int main () {
10 foo<int, float, double>(1, 2., 42.);
11 }
12

13 // Execution output
14 // void foo(Front, Types...) [Front = int, Types = <float, double>]

front: 1↪→

15 // void foo(Front, Types...) [Front = float, Types = <double>]
front: 2↪→

16 // void foo(Front, Types...) [Front = double, Types = <>] front: 42

If one or more arguments are passed to foo, identifying the first argument
separately from the remaining ones allows doing a computation on this first one
before calling recursively the same function on the remaining ones. The operator
sizeof... allows to get the size of the template parameter pack and to stop the
computation when no type in Types... and no argument in remaining remain.
The output of the execution shows how the function is recursively called and how
the types are extracted from the parameter pack. Note here that this code is only
valid if at least one argument is given to the function, otherwise the function is not
defined, because front is not provided.

2.3.3 Type deduction

The C++ language offers two keywords, auto and decltype, to explicitly use its
type deduction mechanisms. They are useful in template metaprogramming, first
to avoid writing explicitly complex type expressions, but more important, to allow
powerful expressiveness. For instance, without such feature, writing a simple generic
addition function is tedious (if not impossible): how to express the type that auto
represents at line 24 in Code 2.13 ?

Source Code 2.13: Difference of deduction between auto and decltype

1 #include <string_view>
2 #include <iostream>
3

4 // For illustration purpose, works only with GCC
5 template <typename T> constexpr auto type_name() noexcept {
6 std::string_view name = __PRETTY_FUNCTION__;
7 std::string_view prefix = "constexpr auto type_name() [with T = ";
8 std::string_view suffix = "]";
9 name.remove_prefix(prefix.size());

10 name.remove_suffix(suffix.size());
11 return name;
12 }
13

14 // Class declaration for testing
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15 class A {
16 int i_;
17 public:
18 A(int const i) : i_(i) {}
19 int const & i() { return i_; }
20 };
21

22 // Generic addition function
23 template <class T, class U>
24 auto add(T const & lhs, U const & rhs) { return lhs + rhs; }
25

26 // Generic multiplication function
27 auto mul(auto const & lhs, auto const & rhs){ return lhs + rhs; }
28

29 int main(void) {
30 A a(12);
31

32 auto i = a.i();
33 decltype(a.i()) j = a.i();
34

35 std::cout << type_name<decltype(i)>(); // => int
36 std::cout << type_name<decltype(j)>(); // => const int&
37

38 std::cout << type_name<decltype(add(i, 12.5))>(); // => double
39 std::cout << type_name<decltype(mul(i, 12.5))>(); // => double
40 }

We will not describe all the differences between these two deduction features,
but we illustrate some of them with Code 2.13. In this code, we use a template
function (lines 5-12, only for GCC) to get precisely what is the type bound to its
template parameter T. Class A is used to test which return type is deduced by auto
and decltype for the accessor i() at lines 32 and 33.

The first keyword, auto [Järvi et al., 2006], is used as a placeholder for a type
that will automatically be deduced by the compiler based on the expression in which
auto is used. The deduction follows the same logic as template type deduction 5.
For instance, expression at line 32 will result in the deduction that auto is of type
int. Note that here, the deduced type comes with no type qualifier (e.g., const)
and not as a reference (e.g., one could have expected here const int &). To get a
reference for instance, one would write: const auto & i = a.i().

decltype [Niebler et al., 2011] is a specifier that deduces the type of an expression.
For instance, expression at line 33 in Code 2.13 will deduce type const int &. Note
that the expression is analyzed to find out its type, but it will not lead to runtime
code (no binary code is generated).

Keyword auto is also used in two functions in our code. First, at lines 23-24,
add function uses auto as a placeholder for the return type of the function. Second,
at line 27, the mul function also uses auto as placeholders for the types of its two
arguments, illustrating that type deduction with auto behaves as with template
parameters.

2.3.4 C++ templates vs. Java generics

One thing that makes template metaprogramming interesting, and that is one speci-
ficity of C++, is its almost no overhead at runtime, which is due to the instantiation
mechanism of C++. Indeed, some languages like Java use another mechanism for
instantiation that is based on type erasure, that may imply runtime overhead.

5https://en.cppreference.com/w/cpp/language/template_argument_deduction
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Java 5 brought generic programming [Parnin et al., 2013] with a construct that
allows a class, an interface or a method to be parameterized with unknown types,
in a way similar to C++. Instantiating such a generic element is apparently very
similar to C++, but the instantiation process actually generates very different code
as explained in this section.

Class-based type parameters

First, we need to recall that every object in Java inherits from the Object class, which
means there exists a valid cast from any class to Object. Thus, one way to abstract
any class-based type is by using the base class Object. This is illustrated in Code 2.14
at lines 3-5, where method foo receives any possible object as argument. This way of
abstracting class-based types in Java is used in generics: when a generic parameter
is declared, it represents a class-based type, which means that non class-based types
cannot be bound directly to a parameter type.

By contrast, in C++, any type (either class-based or not) can be abstracted by a
template parameter. If we consider for instance the ArrayList<T> generic standard
class of Java, instantiating ArrayList<int> to get a resizable array of integers is not
possible directly. One needs to instantiate ArrayList<Integer>, where Integer is
a class that represents "integer" objects (i.e., objects wrapping an integer value).
Storing integers with this generic class leads to an array of integer objects that is
an inefficient data structure compared to an array of integer values that would have
been produced with the equivalent template in C++.

The transformation of an integer value (of a non class-based type) into an integer
object is called "boxing", and is implicitly performed every time an object is expected
and a non-class based value is provided (cf. line 13 of Code 2.14). The opposite
operation (cf. line 16 of Code 2.14) is called "unboxing".

Source Code 2.14: Boxing in Java

1 public class ObjectTest {
2 // Method accepting any object
3 public static void foo(Object obj) {
4 System.out.println("obj = " + obj);
5 }
6

7 // Method accepting any object and returning it back
8 public static Object bar(Object obj) {
9 return obj;

10 }
11

12 public static void main(String []args){
13 foo(1); // Calls "foo" with an integer object (auto boxing)
14 foo("blabliblou"); // Call "foo" with a string object
15

16 int i = (Integer)bar(5);
17 // Call "bar" with an integer object (auto boxing)
18 // Mandatory downcast from "Object" to "Integer"
19 // And ultimately, auto unboxing to get integer value
20

21 System.out.println("i = " + i);
22 }
23 }
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Type erasure

In Code 2.15, we introduce a generic class Box with a parameter type T, whose
purpose is to wrap an object of type T inside an object Box<T>. Again, T can only
be a class-based type, so many auto boxing and unboxing are induced in the code
(lines 12, 15, and 18).

Source Code 2.15: Generics in Java

1 public class Box<T> {
2 private T value;
3

4 public Box(T v) { value = v; }
5

6 public T getValue() { return value; }
7 public void setValue(T v) { value = v; }
8

9 @Override public String toString() { return value.toString(); }
10

11 public static void main(String[] args) {
12 Box<Integer> i = new Box<Integer>(5); // explicit + auto boxing
13 Box<String> s = new Box<String>("Hello !");
14

15 int j = i.getValue(); // auto unboxing
16 String t = s.getValue();
17

18 i.setValue(2); // auto boxing
19 s.setValue("Bonjour !");
20

21 System.out.println("i = "+i); System.out.println("s = "+s);
22 System.out.println("j = "+j); System.out.println("t = "+t);
23 }
24 }

In this example, the generic class Box is instantiated with T = Integer and
T = String at lines 12 and 13. This induces the generation of only one class in
Java. What happens is called type erasure. Each generic parameter is replaced
by class Object (or its bound class [Bracha, 2004]) in all the code of generic class
Box to produce a concrete class Box, as shown by Code 2.16 that is the Java code
resulting from the decompilation of the bytecode of Code 2.15. We can notice that
the instantiation process also adds automatically type casts and generates bridges to
guarantee type safety and preserve polymorphism in extended generic types [Ghosh,
2004]. We can also see that the final bytecode has no trace of generic parameters.

Source Code 2.16: Code produced by the instantiation process of Java

1 // Decompiled by Jad v1.5.8g.
2

3 import java.io.PrintStream;
4

5 public class Box{
6 public Box(Object obj){ value = obj; }
7

8 public Object getValue(){ return value; }
9 public void setValue(Object obj){ value = obj; }

10 public String toString(){ return value.toString(); }
11

12 public static void main(String args[]){
13 Box box = new Box(Integer.valueOf(5));
14 Box box1 = new Box("Hello !");
15 int i = ((Integer)box.getValue()).intValue();
16 String s = (String)box1.getValue();
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17 box.setValue(Integer.valueOf(2));
18 box1.setValue("Bonjour !");
19 System.out.println(
20 (new StringBuilder()).append("i = ").append(box).toString());
21 System.out.println(
22 (new StringBuilder()).append("s = ").append(box1).toString());
23 System.out.println(
24 (new StringBuilder()).append("j = ").append(i).toString());
25 System.out.println(
26 (new StringBuilder()).append("t = ").append(s).toString());
27 }
28 private Object value;
29 }

This type erasure mechanism, which produces additional code like casts, combined
with the implicit boxing and unboxing, could lead to particularly inefficient code
if not carefully crafted. Similar code in C++ would produce, for each template
instantiation, a dedicated code that is somehow equivalent to the handwritten code
issued by copying the generic code and replacing each occurrence of the template
parameters by their value. It means that dedicated code is generated at compile-time
for each different set of values bound to the parameters of a template, avoiding thus
any overhead due to genericity, but creating larger executable as many instances of
a template can possibly be produced.

2.3.5 Metafunction

Metafunctions in C++ are not part of the standard or directly supported by the
language, but are a community-wide defined construct. A metafunction acts as
a function at compile-time that takes as arguments static data (mainly types or
numbers), and possibly returns static data. Metafunctions can be used to perform
actual computation (cf. factorial in Section 2.3.9), to generate code (cf. power in
Section 2.3.9), or to manipulate types for checking (cf. is_same in this section) or
to produce types (cf. remove_reference in this section).

While there is the term "function" in their name, metafunctions are not actual
functions but are built as template classes with a specific structure: the template
parameters of the class represent the parameters of the metafunction and the return
value(s) is/are member(s) exposed by the class.

Traditional functions can have zero to many parameters and can return a value
or none, as shown at lines 1-3 in code 2.17 with a function add that takes two
parameters x and y and returns the addition x+y. Such a function is designed to
compute the addition at runtime (line 5).

Source Code 2.17: Example of addition function and metafunction

1 int add(int x, int y) {
2 return x + y;
3 }
4

5 assert(42 == add(13,29));
6

7 template <int X, int Y> struct Add {
8 static constexpr int value = X + Y;
9 }

10

11 static_assert(42 == Add<13,29>::value);
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A similar metafunction Add can be designed to statically perform the addition.
It can be represented by a class Add with two template parameters X and Y, and
the return value is the class member value assigned with the result of the addition
X + Y (lines 7-9). Such a function can be used at compile-time, as shown at line 11
with an assertion checked during compilation.

Type metafunctions are metafunctions that expose a type and value metafunctions
are metafunctions that expose a value. By convention, a type metafunction returns
a type by having an attribute type, and a value metafunction returns a value by
having an attribute value. This allows the composition of metafunctions as we see in
Code 2.19. To ease metafunction definitions, static integral numbers can notably be
represented by the standard integral_constant template class, whose simplified
definition is presented at lines 2-6 of Code 2.18. Among others, this class has the
attributes value and type. Using this template, static integers 2 and 4 can be
defined at lines 10 and 11.

Source Code 2.18: Example of value metafunction (integral_constant)

1 // Simplified definition of "integral_constant"
2 template<class T, T V> struct integral_constant {
3 static constexpr T value = V;
4 using value_type = T;
5 using type = integral_constant<T,V>;
6 };
7

8 int main() {
9 using two_t = integral_constant<int,2>;

10 using four_t = integral_constant<int,4>;
11

12 static_assert(two_t::value*2 == four_t::value);
13 }

In Code 2.19, we first present at lines 2-4 the type metafunction remove_reference
with one parameter T. Its goal is to return the actual type behind type T that can
possibly be a reference. The primary version of the template (line 2) returns T by
default, and specializations of the template (lines 3 and 4) for patterns of T that
match T = U& and T = U&& both return U (lines 3 and 4).

Source Code 2.19: Example of type metafunction composition

1 // Metafunction "remove_reference"
2 template<class T> struct remove_reference { using type = T; };
3 template<class U> struct remove_reference<U&> { using type = U; };
4 template<class U> struct remove_reference<U&&> { using type = U; };
5

6 // Definition of "true_type" and "false_type"
7 using true_type = integral_constant<bool, true>;
8 using false_type = integral_constant<bool, false>;
9

10 // Metafunction "is_same" to test type equality
11 template<class T, class U> struct is_same : false_type {};
12 template<class T> struct is_same<T, T> : true_type {};
13

14 // Metafunction "is_same_v2" to test types without references
15 template<class T, class U> struct is_same_v2
16 : is_same< typename remove_reference<T>::type,
17 typename remove_reference<U>::type > {};
18

19 int main () {
20 static_assert(is_same<int,int>::value);
21 static_assert(!is_same<int,int&>::value);
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22 static_assert(!is_same<int,int&&>::value);
23

24 static_assert(is_same_v2(int,int)::value);
25 static_assert(is_same_v2(int,int&)::value);
26 static_assert(is_same_v2(int,int&&)::value);
27 }

From the previous definition of integral_constant, true_type and false_type
constants are built (lines 7-8), and we can define a metafunction is_same<T,U> to
compare two types (lines 11 and 12). If the two types are the same, the specialization
of is_same inheriting from true_type is selected (line 12); if the two types are
different, the primary definition is selected inheriting from false_type (line 11).
Notice that inheritance is used as the "return" construct in metafunctions, as the
public members of the super-class will be accessible in the class representing the
metafunction.

Metafunctions can be composed. The comparison of types is very strict with
is_same, for instance, types int and int& are considered different. To loosen the
test, one can first apply remove_reference on both T and U before comparison, as
shown in metafunction is_same_v2 (lines 15-17).

2.3.6 SFINAE

SFINAE for "Substitution Failure Is Not An Error", is a rule used in template
metaprogramming. The rule says: "When substituting the explicitly specified or
deduced type for the template parameter fails, the specialization is discarded from
the overload set instead of causing a compile error." [Järvi et al., 2003].

Code 2.20 presents an example of a construct that exploits the SFINAE rule.
The main idea is to test if a class has a foo method defined. At lines 6 and 7, we
define two types, yes and no, that have different sizes, 1 and 2 respectively. At lines
9 and 11, we define two times the template method fooExist with parameter U. The
first one returns yes if it possible to get the address of a method called foo from the
type U (if method U::foo does not exist, the SFINAE applies); the second one, the
fallback, can possibly be called in every situation, as it is a variadic function, and
returns no. The size of the return of the call to fooExist<T> at lines 14-15 is then
compared with the size of the yes type, and the result is stored into the exposed
return of metafunction testFoo called "value".

Source Code 2.20: Usage of SFINAE to test if a member function exists

1 struct A { void foo(){} };
2 struct B {};
3

4 template <class T> class testFoo {
5 private:
6 using yes = char[1];
7 using no = char[2];
8

9 template <class U> static yes& fooExist(decltype(&U::foo));
10

11 template <class U> static no& fooExist(...);
12

13 public:
14 static const bool value =
15 sizeof(fooExist<T>(nullptr)) == sizeof(yes);
16 };
17
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18 int main () {
19 static_assert(testFoo<A>::value);
20 static_assert(!testFoo<B>::value);
21 }

When instantiated with the type A (that has a method foo) at line 19, or with
the type B (that has no method foo) at line 20, metafunction testFoo returns a
value that implies the test of lines 14-15 with two possible overloads (line 9 and 11).
When considering the first one, line 9, the compiler tries to deduce the type of the
address of a method foo belonging to the type A or B. As foo exists for the type A,
the address &A::foo exists and its type can be deduced with decltype, but for type
B, method foo does not exist, which induces a substitution failure and ultimately
the SFINAE applies. The second overload, line 11, is always valid as it is a variadic
function. The compiler selects the more specific overload, which is the one returning
yes for the instantiation testFoo<A>, and has no choice but to select the fallback
fooExist that returns no for the instantiation testFoo<B>.

A common idiom exploiting the SFINAE rule is based on the standard enable_
if<B,T> metafunction presented in Code 2.21 (lines 2-6). The principle of this
metafunction is to expose a member type (equal to T) when the boolean parameter B
is true (lines 5-6), and no member otherwise (lines 2-3). This way, using enable_if
in the substitution of template parameters can activate the definition of a method
depending on a test (similarly to the previous example).

For example, Code 2.21 defines two template functions printInteger<T> and
printDouble<T>. The former function will be defined only if the type bound to
parameter T is int, int&, or int&&, and the latter function will be defined only if
the type bound to T is double, double&, or double&&. Lines 29 and 30 provide valid
code, whereas lines 33 and 34 lead to compilation errors.

Source Code 2.21: enable_if metafunction

1 // Metafunction "enable_if"
2 template<bool B, class T = void>
3 struct enable_if {};
4

5 template<class T>
6 struct enable_if<true, T> { using type = T; };
7

8 // Function "printInteger"
9 template <class T,

10 class = typename enable_if<
11 is_same<int, typename remove_reference<T>::type>::value
12 >::type
13 >
14 void printInteger(T t) {
15 std::cout << "Integer: " << t << std::endl;
16 }
17

18 // Function "printDouble"
19 template <class T,
20 class = typename enable_if<
21 is_same<double, typename remove_reference<T>::type>::value
22 >::type
23 >
24 void printDouble(T t) {
25 std::cout << "Double: " << t << std::endl;
26 }
27

28 int main() {
29 printInteger(1); // print "Integer: 1"
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30 printDouble(1.1); // print "Double: 1.1"
31

32 // Compilation errors
33 // printInteger(1.1); // no match for "printInteger(double)"
34 // printDouble(1); // no match for "printDouble(int)"
35 return 0;
36 }

2.3.7 Traits and helpers

Because template metaprogramming is mainly about type computation, there is
a templatized interface to interact with type properties called type traits [Myers,
1996,Austern, 2005]. Their purpose is to give information and apply transformations
on unknown types. They include type classification traits, type property inspection
traits, and type transformations. The first ones propose a taxonomy of types and
situate a type in this taxonomy; the second ones inspect types for their important
characteristics; the third ones propose a type manipulation interface.

Standard type traits satisfy some requirements that have been organized in named
requirements that should be formalized in C++ 20 with concepts (cf. Section 2.3.8).
Mainly, three categories have been defined. A UnaryTypeTrait is a class template
that takes one template argument and optional additional argument(s) to get the
property of the template argument (e.g., is_array template). A BinaryTypeTrait
is a class template that describes the relation between two types with optional
additional argument(s) (e.g., is_same template). A TransformationTrait is a class
template that takes one or more template arguments defining a transformation on
the argument(s) (e.g., remove_reference template).

Traits are mainly metafunctions. However, some of them like std::is_pod
(deprecated in C++ 20) or std::is_union are intrinsic, and they need assistance
from the compiler.

A full list of type traits is available online 6. Here is a list of the ones we have
used:

• is_constructible<T>: Tests if a class T has a constructor with defined pa-
rameters,

• is_default_constructible<T>: Tests if a class T has a default constructor,

• is_base_of<A,B>: Tests if a class A inherits from a class B, or if A and B are
the same class,

• is_same<A,B>: Tests if two types A and B are the same,

• disjunction<B...>: Logical OR operation to chain the traits in pack B.

Helper templates provide a generalized and easier way to access the result value
or type of a trait or metafunction. The name of a standard helper has a suffix _v or
_t to indicate the access to the return value or type respectively of the metafunction.
The helper types were introduced first in C++ 14; for instance, in Code 2.21, to
access the type attribute of enable_if metafunction, one need to use the typename
keyword (lines 11 and 21). With the helper type enable_if_t (lines 2-3 of Code 2.22),
the definition of function printInteger of Code 2.21 can be simplified (line 11 of

6https://en.cppreference.com/w/cpp/header/type_traits
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Code 2.22). Similarly, the helper variable templates are a construct popularized in
C++ 17; for instance, the helper variable is_same_v can be defined as at lines 5-6.

Source Code 2.22: Helper type and variable templates

1 // Helper type template
2 template<bool B, class T = void>
3 using enable_if_t = typename enable_if<B,T>::type;
4

5 // Helper variable template
6 template<class T, class U>
7 constexpr auto is_same_v = is_same<T,U>::value;
8

9 // Function "printInteger"
10 template <class T,
11 class = enable_if_t< is_same_v< int, remove_reference_t<T> > >
12 >
13 void printInteger(T t) {
14 std::cout << "Integer: " << t << std::endl;
15 }

2.3.8 Constraints and concepts

The constraints and concepts are an important addition in the C++ 20 norm [Strous-
trup, 1997]. A first attempt to introduce concepts in the language has been stud-
ied [Gregor et al., 2007], but was abandoned for the benefit of a simpler approach [Sut-
ton et al., 2013,Sutton, 2015]. Library-based implementations have been proposed,
i.e. a Boost library for concepts checking [Siek and Lumsdaine, 2000], or a library
for concept-based specialization of templates [Bachelet and Yon, 2017]. Ultimately,
language-level implementations have been proposed (e.g. Clang compiler [Voufo
et al., 2011]).

Constraints and concepts first purpose is to allow specifying constraints on
unknown types (mainly template parameters and automatically deduced types like
with the placeholder auto), either directly by a sequence of requirements (called
constraint) or a named set of requirements (called concept). The second objective of
constraints and concepts is to specify requirements on template parameters that will
be used in the selection of the most appropriate template specialization or function
overload, replacing the enable_if technique.

Constraints

A constraint is a sequence of logical operations and operands that specifies require-
ments on one or several template parameters. A constraint can be used directly
on a class template, function template, or a member of a class template using the
requires keyword to force template parameters to be bound to types that satisfy
the constraint. As explained later, a constraint can also be used to define a concept.
There are exists three types of constraints: conjunction of constraints, disjunction of
constraints, and atomic constraint.

For example, Code 2.23 defines a function template add<T,U> to add two numbers
of types T and U respectively. We want the use of this function to be limited to
integer and floating point types for T and U.

Source Code 2.23: Conjunction and disjunction of constraints
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1 #include <concepts>
2

3 class House {};
4

5 template <class T, class U>
6 requires (std::integral<T> || std::floating_point<T>) &&

(std::integral<U> || std::floating_point<U>)↪→

7 auto add(T const & lhs, U const & rhs) { return lhs + rhs; }
8

9 int main () {
10 int i = 1;
11 float j = 2;
12 add(i, j); // Compilation successful
13

14 House h;
15 add(i,h); // Compilation fails => constraint not satisfied for U
16 }

Such a constraint can be expressed as: (T is integral OR T is floating point)
AND (U is integral OR U is floating point). The logical AND defines a conjunction
constraint (operator &&) and the logical OR defines a disjunction constraint (operator
||). This constraint is imposed on the add function with the requires statement at
line 6.

The add function is then instantiated at line 12 with i and j as arguments,
because T and U are bound to int and float respectively that satisfy fully the
constraint. The function is not instantiated at line 15 with i and h as arguments,
because U is bound to House that is neither an integral nor a floating point, which
fails satisfying the constraint.

Concepts

The standard integral<T> and floating_point<T> are concepts, and more pre-
cisely named atomic constraints from the standard traits is_integral and is_
floating_point, as shown in Code 2.24 at line 3. An atomic constraint can be
any expression on template parameters that can be statically evaluated as true
and cannot be decomposed into a conjunction or a disjunction (if the expression is
not valid, it is considered as evaluating to false). An atomic constraint can also
be a requires expression (explained below); for instance in Code 2.24 at line 7, the
constraint is a requirement that expression a+b is valid for variables a and b of type
T (the expression is not evaluated, only language correctness is checked). Atomic
constraints can be used directly as template constraints, see at lines 11 and 16.

Source Code 2.24: Concept definitions with a atomic constraint.

1 // Concept definition from a type trait
2 template <class T>
3 concept integral = std::is_integral<T>::value;
4

5 // Concept definition from a requires expression
6 template <class T>
7 concept Addable = requires (T a, T b) { a+b; };
8

9 // Atomic constraint from a type trait
10 template <class T>
11 requires (std::is_integral<T>::value)
12 auto f1(T const & lhs,T const & rhs) { return lhs+rhs; }
13

14 // Atomic constraint from a requires expression
15 template <class T>
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16 requires (requires (T a, T b) { a+b; })
17 auto f2(T const & lhs,T const & rhs) { return lhs+rhs; }

It is possible to bundle constraints in a named concept to define a class of types.
As such, we can think of functions or classes as accepting some type to bound a
template parameter only if it satisfies a concept (i.e., satisfies all its requirements) as
shown in Code 2.25: at line 3 with a requires statement and at line 7 directly in the
declaration of a template parameter. It is also possible to use a concept to constrain
a placeholder declaration with auto (line 11).

Source Code 2.25: Different usages of concepts

1 // Concept in requires statement
2 template <class T>
3 requires Addable<T>
4 auto f3(T const & lhs,T const & rhs) { return lhs+rhs; }
5

6 // Concept in template parameter declaration
7 template <Addable T>
8 auto f4(T const & lhs,T const & rhs) { return lhs+rhs; }
9

10 // Concept in placeholder declaration
11 auto f4(Addable auto const & lhs,Addable auto const & rhs)
12 { return lhs+rhs; }

To define requirements for one or more types, different kinds of requires expressions
are available7. A requires expression follows the syntax requires {requirement-
sequence} or requires (parameter-list) {requirement-sequence}. A requirement can
be either a simple requirement, a type requirement, a compound requirement, or a
nested requirement as shown in Code 2.26.

• A simple requirement asserts that an unevaluated expression statement is valid,
only based on checking language correctness (line 4).

• A type requirement consists of the keyword typename followed by a type name.
It can be used for testing (1) the existence of a nested type (line 7) or (2)
that a template specialization names a type (line 8: the instantiation is not
prevented by a constraint).

• A compound requirement has the form {expression} [noexcept] [-> type con-
straint] . The noexcept and the type constraint are optional. The requirement
tests the validity of the expression: if it is throwing an exception or not, and
the constraint on the return type of the expression is satisfied (line 11).

• Finally, a nested requirement is another requires statement that can be used
on local parameters (like variable a at line 17).

Source Code 2.26: Types of requirements

1 template<typename T>
2 concept RequirementExample = requires (T a, T b) {
3 // Simple requirement
4 a + b; // Expression a+b is a valid expression that will compile

7https://en.cppreference.com/w/cpp/language/constraints
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5

6 // Type requirements
7 typename T::inner; // Type T has a nested type named "inner"
8 typename A<T>; // Type A<T> is a valid instantiation
9

10 // Compound requirement
11 {a * 1} -> std::convertible_to<T>;
12 // Expression a*1 must be valid
13 // And result must be convertible to T
14 // (i.e. must satisfy concept convertible_to<decltype(a*1),T>)
15

16 // Nested requirement
17 requires std::is_same<T*, decltype(&a)>::value;
18 };

Replacing enable_if

As an example (Code 2.27), we design a concept that defines what a cat is. After a long
observation of test subjects, in its natural environment, a cat is default constructible,
it meows, purrs, and sleeps. This is defined on lines 3 to 9 by concept CatConcept<T>.
We use a standard trait to require the type T to be default constructible and add
simple requirements to type T. Then, we define two types DefinitelyACat (lines
11-15) and NotACat (lines 17-21) that respectively meet and not meet the concept
requirements. Finally, we define a function doCatThings that will accept anything
that satisfies the concept of cat defined earlier. When we call doCatThings with an
instance of DefinitelyACat the code compiles. The code does not compile with an
instance of NotACat.

To show the improvement from traditional template metaprogramming techniques
enabled by the use of concepts, we propose Code 2.28 that is equivalent to Code 2.27
to model the same concept of cat, using the SFINAE technique both to detect the
existence of methods (like Code 2.20) and to constrain the instantiation of function
template doCatThings using metafunction enable_if (like Code 2.21).

Source Code 2.27: Concept example

1 #include <type_traits>
2

3 template <class T>
4 concept CatConcept = requires(T aCat) { // Define what a cat is
5 requires std::is_default_constructible_v<T>;
6 aCat.meow();
7 aCat.purr();
8 aCat.sleep();
9 };

10

11 struct DefinitelyACat {
12 void meow(){};
13 void purr(){};
14 void sleep(){};
15 };
16

17 struct NotACat {
18 void fly(){};
19 void peck(){};
20 void sleep(){};
21 };
22

23 void doCatThings(CatConcept auto & cat) {
24 cat.meow();
25 cat.purr();
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26 }
27

28 int main() {
29 DefinitelyACat aCat;
30 doCatThings(aCat);
31

32 // NotACat whatCouldItBe;
33 // doCatThings(whatCouldItBe); // Compilation failure
34 }

Source Code 2.28: SFINAE alternative to concept

1 template <class T> class IsCatSFINAE {
2 private:
3 using yes = char[1];
4 using no = char[2];
5

6 template <class U>
7 static yes& testCat(decltype(&U::meow), decltype(&U::purr),

decltype(&U::sleep));↪→
8

9 template <class U> static no& testCat(...);
10

11 public:
12 static const bool value =
13 std::is_default_constructible_v<T> &&
14 (sizeof(testCat<T>(nullptr, nullptr, nullptr)) == sizeof(yes));
15 };
16

17 template <class T,
18 class = std::enable_if_t<IsCatSFINAE<T>::value>
19 >
20 void doCatThings(T & cat) {
21 cat.meow();
22 cat.purr();
23 }

2.3.9 Computation with template metaprogramming

C++ templates allow computations on types and to a certain extent on values using
template metaprogramming techniques. The first use of such techniques has been
described in [Unruh, 1994]. The template system of C++ is Turing complete [Veld-
huizen, 2003]. As such, it is possible to theoretically solve any computational problem
with template metaprogramming that is doable by a Turing machine, without any
guarantees about runtime or memory footprints at compilation. More practically it is
possible to compute simple values at compile-time or to generate a more specialized
code, as we will show in the following examples.

Code 2.29 presents the well-known example of factorial computation with template
metaprogramming.

Source Code 2.29: Factorial computation with template metaprogramming

1 template <int N>
2 struct Factorial {
3 static const unsigned long long value = N * Factorial<N-1>::value;
4 };
5

6 template <>
7 struct Factorial<0> {
8 static const unsigned long long value = 1;
9 };
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10

11 int main() {
12 auto facto = Factorial<20>::value;
13 }

Metafunction Factorial<N> is first defined with a primary template that ex-
presses the recursive computation N ! = N × (N − 1)! (lines 1-4). The result of the
computation is stored in attribute value. The terminal case of recursion, here when
N = 0, is expressed as a specialization of Factorial (lines 6-9). At compile-time,
the Factorial template is recursively instantiated (line 12, starting with N = 20),
and the calculus 20× 19...× 1 is progressively built and is computed by the compiler
(as all values are known), and the final value is directly set in variable facto as
shown in the assembly Code 2.30 resulting from the compilation of Code 2.29: the
value 2432902008176640000 (20!) is stored on register rax.

Source Code 2.30: Assembly code of compile-time factorial

1 main:
2 push rbp
3 mov rbp, rsp
4 movabs rax, 2432902008176640000
5 mov QWORD PTR [rbp-8], rax
6 mov eax, 0
7 pop rbp
8 ret

To illustrate template metaprogramming for code generation, we present an
example in Code 2.31 of three different implementations of the power function:
powerDyn(v,n) that computes vn, with v and n being dynamic values; power<N>(v)
that computes vN , with v being a dynamic value and N a static one; power4(v) that
computes v4, with v being a dynamic value. We study how GCC and Clang compile
these implementations with different variations: (1) if the functions are inline or not
(i.e., the keyword inline precedes the function definition or not), (2) the nature of
the arguments passed to the functions (dynamic values - coming from arguments -
or static values - literals), and (3) the compiler optimization flag (-O0 - almost no
optimization, or -O1/-O2 - first levels of optimization for code size and execution
time).

Source Code 2.31: Different power function implementations

1 // Function "power" with a partial static evaluation
2 template <unsigned N>
3 inline double power(double v) { return v*power<N-1>(v); }
4

5 template <>
6 inline double power<0>(double) { return 1; }
7

8 // Function "powerDyn" with a fully dynamic evaluation
9 inline double powerDyn(double v,unsigned p) {

10 double r = 1; while (p-- > 0) r*=v; return r;
11 }
12

13 // Function "power4" that is dedicated to n = 4
14 inline double power4(double v) { return v*v*v*v; }
15

16 // Test with "v" and "n" unknown at compile-time
17 double test_1(double v, unsigned n) { return powerDyn(v,n); }
18
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19 // Tests with "v" unknown and "n" known at compile-time
20 double test_2(double v) { return powerDyn(v,4); }
21 double test_3(double v) { return power<4>(v); }
22 double test_4(double v) { return power4(v); }
23

24 // Tests with "v" and "n" known at compile-time
25 double test_5() { return powerDyn(12,4); }
26 double test_6() { return power<4>(12); }
27 double test_7() { return power4(12); }

We have observed different behaviors: (1) the function is created (symbol and
body are present in assembly code) (F); (2) the function is invoked (a call to the
function is present in assembly code) (C); (3) the function body is moved to the test
function (the function is actually inlined and its code is present in the assembly code
of the test function) (I); (4) the loop is unrolled (U); (4) the result value is computed
at compile-time (the result value is present in the assembly code and directly used)
(V). These behaviors are recapitulated in Table 2.3.

Table 2.3: Evaluation of the power function implementations for Clang 12.0.1 and
GCC 11.1 (cf. Code 2.31)

Power

No optimisation GCC Optimized -O1 Clang Optimized -O2
Inlined Not Inlined Inlined Not Inlined

test_1 F & C I F & I I F & I
test_2 F & C I & U F & I & U I & U F & I & U
test_3 F & C I & U F & I & U I & U F & I & U
test_4 F & C I F & I I F & I
test_5 F & C V F & V V F & V
test_6 F & C V F & V V F & V
test_7 F & C V F & V V F & V

F = [F]unction created / C = function is [C]alled / I = effective [I]nline /
V = [V]alue computed at compile-time / U = loop [U]nrolled

We notice that when optimization is activated, the compilers decide to both inline
and execute at compile-time, when possible, the code of function powerDyn, which
leads to code similar to the one produced with template metaprogramming. Thus,
we propose a second test that, in a similar way, implements the calculus of sine based
on Taylor series. We recall that sin(x) can be approximated by

∑K
k=0−1k

x2k+1

(2k+1)!
,

which can be implemented with template metaprogramming as in Code 2.32.

Source Code 2.32: Different sine function implementations

1 // Function "sine" with a partial static evaluation
2 template <int K>
3 inline double sine(double x) {
4 return power<K>(-1) * power<2*K+1>(x) / Factorial<2*K+1>::value
5 + sine<K-1>(x);
6 }
7

8 template <>
9 inline double sine<0>(double x) { return x; }

10

11 // Function "sineDyn" with a fully dynamic evaluation
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12 inline double sineDyn(double x,unsigned k) {
13 double r = x;
14

15 while (k>0) {
16 r += powerDyn(-1,k) * powerDyn(x,2*k+1) / factorialDyn(2*k+1);
17 k--;
18 }
19
20 return r;
21 }
22

23 // Test with "x" and "k" unknown at compile-time
24 double test_1(double x,int k) { return sineDyn(x,k); }
25

26 // Test with "x" unknown and "k" known at compile-time
27 double test_2(double x) { return sineDyn(x,5); }
28 double test_3(double x) { return sine<5>(x); }
29

30 // Test with "x" and "k" known at compile-time
31 double test_4() { return sineDyn(std::numbers::pi/4,5); }
32 double test_5() { return sine<5>(std::numbers::pi/4); }

It appears this time that the compiler cannot always optimize code (Clang 12.0.1
does, but not GCC 11.1) to get the value of sine directly computed when both x
and k are known at compile-time, as shown in Table 2.4.

Table 2.4: Evaluation of the sine function implementations for Clang 12.0.1 and
GCC 11.1 (cf. Code 2.32)

Sine

No optimisation GCC (-O1) Clang (-O2)
Inlined Not Inlined Inlined Not Inlined

test_1

F & C

I

F & C

I F & I
test_2 I I & U F & I & U
test_3 I & U I & U F & I & U
test_4 I V F & V
test_5 V V F & V

F = [F]unction created / C = function is [C]alled / I = effective [I]nline /
V = [V]alue computed at compile-time / U = loop [U]nrolled

When used regularly, these possibilities are limited as writing elaborated algo-
rithms becomes rapidly laborious, and the main interest of template metaprogram-
ming is its ability of computation on types as seen in Section 2.3.5. Notably, to
manipulate sets of types, the typelist and tuple [Vandevoorde et al., 2017] structures
are commonly used. As we have seen before, it is possible to use traits to define
properties of types, SFINAE constructs to test them, and the newest addition, the
concepts, allows one to create classes of types.

Lilis and Savidis (Section 2.1.4) classified template metaprogramming as different
from the object language, thereby requiring "an entirely different programming style
and involving custom coding practices that deviate from common programming
styles" [Lilis and Savidis, 2019].

For example, Code 2.33 shows the common way to define a simple if statement in
template metaprogramming (lines 1-5), with a use case, metafunction Absolute<N>
that computes the absolute value of N (N is a class with a value attribute) at lines
7-12.
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Source Code 2.33: If construct with template metaprogramming

1 template <class TEST, class IF, class ELSE, bool = TEST::value>
2 struct If : ELSE {};
3

4 template <class TEST, class IF, class ELSE>
5 struct If<TEST, IF, ELSE, true> : IF {};
6

7 template <typename N>
8 struct Absolute : If<
9 isNeg<N>,

10 Number<typename N::type, -N::value>,
11 Number<typename N::type, N::value>
12 > {};

The if<TEST,IF,ELSE> construct is defined with a primary template (lines 1-2)
that returns ELSE whatever the value of TEST. The specialization when TEST (more
precisely its value attribute) is true returns IF. This way, the public members of IF,
or ELSE depending on the value of TEST, become the members of IF<TEST,IF,ELSE>.

Now, if we consider for instance the OR statement as designed in Code 2.34,
the first implementation at lines 2-3 has the inconvenience that T1 and T2 need to
be evaluated any time or<T1,T2> is instantiated, which can possibly lead to long
compilation time, notably if this phenomenon occurs recursively in the evaluation of
T1 and T2. The second implementation at lines 6-14 will evaluate T2 only if T1 is
false; for this purpose, the two branches of the if statement are split in two parts
as shown at lines 11-12 and 14.

Source Code 2.34: OR statement with template metaprogramming

1 // Easily readable version
2 template <class T1, class T2>
3 struct or : if<T1,std::true_type,T2> {};
4

5 // Improved for performance version
6 template <class T1, class T2, bool TEST> struct _or_if_;
7

8 template <class T1, class T2>
9 struct or : _or_if_<T1,T2,T1::value> {};

10

11 template <class T1, class T2>
12 struct _or_if_<T1,T2,true> : std::true_type {};
13

14 template <class T1, class T2> struct _or_if_<T1,T2,false> : T2 {};

2.4 Constant expressions
A constant expression is an expression that can be executed at compile-time [Dos Reis
et al., 2007]. There are different types of constant expressions; we focus on the ones
that are tagged with the constexpr specifier. constexpr was introduced in C++

11. It states that an expression can be evaluated at compile-time. The constexpr
follows a long set of rules to be actually applied. We have mainly used it on variables,
lambda expressions, functions, constructors, and if statements.

The following properties are the most important for our needs and are not meant
to be exhaustive:

• A constexpr variable must be immediately initialized and constexpr implies
const.
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• A constexpr function only accepts and returns literal types ; it does not contain
any expression that can produce undefined behavior in the context of the call.
An undefined behavior is a situation where the result of an expression is not
defined by the C++ norm. For example, in Code 2.39, we try to dereference
a pointer to a freed memory (call to destructor at line 4). The content of
the pointed memory is thus in an unknown state, therefore dereferencing the
now invalid pointer that produces an undetermined result, thus leading to an
undefined behavior in the following code.

• A literal type is either a scalar, an array of literal type, a reference, a lambda,
or a class type with a trivial constexpr destructor, a constexpr constructor,
or literal type data members.

• A defined constexpr constructor should initialize all of its base class and
non-static data members (including POD - Plain Old Data - type).

• When calling a constexpr function, it can be evaluated at compile-time only
if its arguments can be evaluated at compile-time, and each of its inside
instructions can be evaluated at compile-time.

If these constraints are met, the variable or function is allowed to be evaluated at
compile-time, but it is not mandatory. Indeed, each compiler has its own compile-time
execution policy and even if the previous conditions are all satisfied, the compiler
can decide not to execute the function at compile-time, based on its own criteria.

For example, Code 2.35 presents two implementations, one recursive and one
iterative, of the factorial computation using the constexpr specifier. This use case
shows that the compilers can handle the computation differently, and that even when
a constexpr function is called with arguments set at compile-time (this makes the
compile-time execution of the function totally valid), there is no guarantee that the
function will actually be executed at compile-time. GCC does the computation at
compile-time, so the result (2432902008176640000) is directly stored in the variable
in the final assembly code. Clang compiles the function which will be called at
runtime.

Source Code 2.35: Factorial with constexpr specifier (using C++ 11 norm)

1 // C++11 constexpr function using recursion
2 constexpr unsigned long long factorial(unsigned long long n) {
3 return n <= 1 ? 1 : (n * factorial(n - 1));
4 }
5

6 // C++11 constexpr function using iteration
7 constexpr unsigned long long factorialLoop(unsigned long long n) {
8 unsigned long long result = 1;
9

10 for(unsigned long long loop = 2; loop <= n; ++loop)
11 result *= loop;
12

13 return result;
14 }
15

16 int main() {
17 auto facto = factorial(20);
18 auto factoLoop = factorialLoop(20);
19 }
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We will not present all the functionalities of the specifier constexpr; they are
available in reference documentation 8. However, there have been a lot of changes
following the evolution of C++ standards 14, 17 and 20. The specifier gains in options
and complexity. For example, in C++ 11, it is not possible to have local variables and
loops in constexpr functions, they have been introduced in C++ 14. C++ 17 added
the constexpr if statement and the constexpr lambda expressions. With these
tools, it is now possible to have most of the basic mechanism to develop natural C++

code at compile-time. C++ 17, constexpr enables compile-time evaluation which
gathers compile-time function evaluation, constant folding, intra-function cycles and
branching. These facilities are discussed by Yauhen Klimiankou [Klimiankou, 2019].

C++ 20 added new complementary features to the constexpr that enable the
compile-time functionalities of Hedgehog. Allocation in C++ can be summarized for
most user to the usage of the new (and delete) instruction for dynamic allocation.
Although there is no constexpr new and a constexpr delete, instructions new
and delete can be used in a constexpr context. In this situation, the allocation
and deallocation should be made in the same constexpr context.

This has two direct consequences: it is not possible to pass a pointer from a
constexpr context to a non-constexpr context, and no allocation is made in the
final runtime code, because only the final result of the constexpr is computed.
However, this induces a support for allocators, and added to algorithms and utilities,
it also allows the usage of dynamic containers like the constexpr std::vector.

Source Code 2.36: "constexpr" new support, direct use

1 class ClassTest {};
2

3 int main() {
4 auto constexpr res = [] () {
5 auto classTest = new ClassTest();
6 delete classTest;
7 return 0;
8 }();
9 }

Codes 2.36 and 2.37 show two valid (i.e., compiling) codes in constexpr contexts.
In both of them, the constexpr lambda expression allocates and deallocates an object
ClassTest in the same constexpr context, even if the allocation and deallocation
are made by separate functions (allocate and deallocate) called inside the lambda
expression (lines 8 and 9, Code 2.37).

Source Code 2.37: "constexpr" new support, indirect use

1 class ClassTest {};
2

3 constexpr ClassTest* allocate() { return new ClassTest(); }
4

5 constexpr void deallocate(ClassTest* classTest)
6 { delete classTest; }
7

8 int main() {
9 auto constexpr res = [] () {

10 auto classTest = allocate();
11 deallocate(classTest);
12 return 0;

8https://en.cppreference.com/w/cpp/language/constexpr
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13 }();
14 }

Codes 2.38, 2.39, and 2.40, show three invalid (i.e., non-compiling) codes.
Code 2.38 does not compile because the memory is not deallocated in the constexpr
context.

Source Code 2.38: "constexpr" new support, deallocation missing

1 class ClassTest {};
2

3 int main() {
4 auto constexpr res = [] () {
5 auto classTest = new ClassTest();
6 return 0;
7 }();
8 }

Code 2.39 does not compile because we try to dereference a pointer that references
memory that has been deallocated, which is an undefined behavior. The GCC
compiler returns with the following error: use of allocated storage after deallocation
in a constant expression.

Source Code 2.39: "constexpr" new support, undefined behavior

1 int main() {
2 auto constexpr res = [] () {
3 int *i = new int {42};
4 delete i;
5 auto value = *i;
6 return 0;
7 }();
8 }

Code 2.40 does not compile because the code returns a pointer referencing memory
that was allocated in the constexpr context. GCC v.11.1 returns with the following
error: is not a constant expression because it refers to a result of ’operator new’.

Source Code 2.40: "constexpr" new support, return of allocated memory

1 class ClassTest {};
2

3 int main() {
4 auto constexpr res = [] () {
5 auto res = new ClassTest();
6 return res;
7 }();
8 }

The last major addition to C++ 20 that we heavily use is the support of constexpr
virtual member function, which also comes with dynamic casting. It is however
not possible to use virtual inheritance on a literal class. These additions allow the
creation of much more complex codes. We showcase our usage of these recent tools
in Section 2.
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2.4.1 Constant expressions in Lilis and Savidis’ taxonomy

We can situate metaprogramming with constant expressions in Lilis and Savidis’
taxonomy. In contrast to template metaprogramming, which is a different language
from the object language (C++), constexpr is just a specifier added to the core
language. In this case, the metalanguage is indistinguishable from the core language,
but only a subset of the language is available. The metalanguage source is embedded
into the object language source, and is possibly evaluated at compilation-time.
It proposes mainly generative programming. The main idea is to do complex
computation at compile-time and produce a result that can be used during execution.

2.4.2 constexpr vs. consteval

There is a variant of the constexpr specifier called consteval. It forces the compiler
to perform the function’s computation at compile-time, as opposed to constexpr
which only ensures that the function can possibly be executed at compile-time, as
seen previously. Such functions are called immediate functions.

There are no tools embedded in the language that help debug compile-time code.
Debugging has proven to be a challenge with common template metaprogramming;
this problem remains when using constant expressions and is even magnified when
aiming for the design of complex algorithms. If we had chosen to only use immediate
functions, we would have found no help in common tools, while with constexpr
functions we can. constexpr allows the compiler to execute the functions at compile-
time. This means that is it possible to also compile them as regular code and execute
them at runtime. Because it is common code, we can use common tools such as
GDB or IDE visual debuggers to debug them.

Because of the possible virtuality added in C++ 20, the code we are proposing is
not only a bundle of routines ready to be called, but also a library that end-users
can extend. If the API was just exposing consteval methods, any derived method
would also have been consteval. This means that the method would have been
much more difficult to debug and test for an end-user. This is why we only use
constexpr on our code, making it easier to debug and also that constexpr code is
executed at compile-time.

2.4.3 Template metaprogramming and constant expressions

Coexistence

Constant expressions with constexpr are the newest addition to C++ to do metapro-
gramming. There is no question about replacement of traditional template metapro-
gramming by constant expressions. They are both targeting different types of
computation. Template metaprogramming has a lot of possibilities to deal with types
while constexpr expressions allow more traditional computations at compile-time.
It is also possible to express some computation with both techniques. For example in
Codes 2.41 and 2.42, we propose two functions, uniqueConstexpr and uniqueTMP,
that use constant expressions and template metaprogramming techniques respectively
to remove duplicate types from a tuple.

Source Code 2.41: Removing duplicates from tuples, using constant expressions
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1 template<class Current, class ... Others>
2 static auto uniqueConstexpr() {
3 if constexpr (sizeof...(Others) == 0) {
4 return std::tuple<Current >{};
5 } else if constexpr (std::disjunction_v<std::is_same<Current,

Others>...>) {↪→

6 return uniqueConstexpr<Others...>();
7 } else {
8 return std::tuple_cat(std::tuple<Current>{},

uniqueConstexpr<Others...>());↪→

9 }
10 }

Source Code 2.42: Removing duplicates from tuples, using template metaprogram-
ming

1 template <typename T, typename... Ts>
2 struct uniqueTMP : std::type_identity<T> {};
3

4 template <typename... Ts, typename U, typename... Us>
5 struct uniqueTMP<std::tuple<Ts...>, U, Us...>
6 : std::conditional_t<(std::is_same_v<U, Ts> || ...),
7 uniqueTMP<std::tuple<Ts...>, Us...>,
8 uniqueTMP<std::tuple<Ts..., U>, Us...>> {};
9

10 template <typename... Ts>
11 using unique_tuple =
12 typename uniquetemplate metaprogramming<std::tuple<>,

Ts...>::type;↪→

In this example, the constexpr function uniqueConstexpr manipulates val-
ues (from which types can be deduced), and template metaprogramming manip-
ulates types directly. Another difference is that void cannot be manipulated by
uniqueConstexpr directly, because it can not be instantiated, while uniqueTMP has
no such problem. In Hedgehog, we use the uniqueConstexpr version with pointers
only, which avoids this problem.

Template metaprogramming criticism

Template metaprogramming is the most common way to do computation at compile-
time in C++. The technique is not exempt of criticisms.

Google through its C++ style guide 9 formulates the following ones.

• Template metaprogramming is often obscure to non-experts.

• It is often unreadable, hard to debug and maintain.

• It has poor compile-time error messages because implementation details become
visible.

• It makes it hard large code base refactoring.

• It is easy to go "too far" and be "overly clever".

9https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
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However, they recognize that it allows to create cleaner and easier-to-use interfaces
and they suggest to minimize and isolate template metaprogramming code and add
comments to help end-users debug their code in case of error.

They cover until the C++ 17 norm, which means they do not include “concepts”
in their guide. Concepts are the main improvement of template metaprogramming
in C++ 20. They definitely help for debugging and maintenance related issues with
clearer error messages. If the program fails when trying to check the requirements
for a type, the compiler will point to the concept itself and the corresponding failing
requirement(s).

Source Code 2.43: Output from Code 2.27, with a faulty case

1 <source>: In function 'int main()':
2 <source>:33:14: error: no matching function for call to

'doCatThings(NotACat&)'↪→

3 33 | doCatThings(whatCouldItBe); // Compilation failure
4 | ~~~~~~~~~~~^~~~~~~~~~~~~~~
5 <source>:23:6: note: candidate: 'template<class auto:1> requires

CatConcept<auto:1> void doCatThings(auto:1&)'↪→

6 23 | void doCatThings(CatConcept auto & cat){
7 | ^~~~~~~~~~~
8 <source>:23:6: note: template argument deduction/substitution

failed:↪→
9 <source>:23:6: note: constraints not satisfied

10 <source>: In substitution of 'template<class auto:1> requires
CatConcept<auto:1> void doCatThings(auto:1&) [with auto:1 =
NotACat]':

↪→
↪→

11 <source>:33:14: required from here
12 <source>:4:9: required for the satisfaction of

'CatConcept<auto:1>' [with auto:1 = NotACat]↪→

13 <source>:4:22: in requirements with 'T aCat' [with T = NotACat]
14 <source>:6:12: note: the required expression 'aCat.meow()' is

invalid↪→

15 6 | aCat.meow();
16 | ~~~~~~~~~^~
17 <source>:7:12: note: the required expression 'aCat.purr()' is

invalid↪→

18 7 | aCat.purr();
19 | ~~~~~~~~~^~

In the case of Output 2.43 which is the compiler output from the faulty case com-
mented at line 33 of Code 2.27, the compiler indicates clearly that when instantiating
function doCatThings(NotACat&), the constraints are not satisfied: the expressions
aCat.meow() and aCat.purr() are not valid for the NotACat type.

Source Code 2.44: Output from Code 2.28, with a faulty case

1 <source>: In function 'int main()':
2 <source>:41:30: error: no matching function for call to

'doCatThings(NotACat&)'↪→

3 41 | doCatThings(whatCouldItBe); // Compilation failure
4 | ^
5 <source>:34:6: note: candidate: 'template<class T, class> void

doCatThings(T&)'↪→

6 34 | void doCatThings(T & cat){
7 | ^~~~~~~~~~~
8 <source>:34:6: note: template argument deduction/substitution

failed:↪→
9 In file included from <source>:1:
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10 /opt/compiler-explorer/gcc-10.2.0/include/c++/10.2.0/type_traits: In
substitution of 'template<bool _Cond, class _Tp> using
enable_if_t = typename std::enable_if::type [with bool _Cond =
false; _Tp = void]':

↪→
↪→
↪→

11 <source>:32:9: required from here
12 /opt/compiler-explorer/gcc-10.2.0/include/c++/10.2.0/type_traits:

2554:11: error: no type named 'type' in 'struct
std::enable_if<false, void>'

↪→
↪→

13 2554 | using enable_if_t = typename enable_if<_Cond,
_Tp>::type;↪→

14 | ^~~~~~~~~~~
15 Compiler returned: 1

In the case of compiler’s Output 2.44 using the SFINAE equivalent Code 2.28 of
Code 2.27 based on concepts, no clear information about what is causing the problem
is exposed, only that the enable_if of doCatThings was not able to produce a type.
Therefore, its condition fails.

However, the concepts, as they are for now, do not change the template language
itself, so if custom metafunctions need to be developed, they will be usually of no
help.

constexpr criticism

The constexpr specifier had tremendous improvements in C++ 20 as presented in
Section 2.4. Because it is so recent, there is little published research on its use or a
library fully exploiting the novelties added.

The receptions of this specifier are mitigated, some like Ben Dean and Jason
Turner suggest to "constexpr all the things" in their proposal for C++ [Deane and
Turner, 2017]; others like Yauhen Klimiankou consider it as a "great good but wrong
idea" [Klimiankou, 2019]. Yauhen Klimiankou in his paper expresses 7 critiques over
constexpr.

• First, constexpr is only a hint for the compiler. The difference between
equivalent functions that can be evaluated at compile-time depends on the
presence of the keyword and not on the ability to evaluate the functions.
According to the author, the compiler should be able to do it by itself and
take care of these low-level optimizations in the case of compile-time variable
initialization.

• Second, constexpr brings to C++, like template metaprogramming, a new
language that the author refers to as Generalized Constant Expression C++

(GCEC++). For him, this metalanguage is different from the object language.
There are two reasons behind considering this a new language: the first is to
guarantee "cross-compiler portability" and the second is because we can only
use a subset of the C++ language.

• Third, the author says this tool is only a "tool for the psychological satisfaction
of the programmer", giving him/her a "feeling of power and mastership" while
the compiler could do it better.

• Fourth, in the history of C++, constexpr is close to what has been the register
specifier removed in C++ 17, and close to the inline or volatile specifiers.
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They all are designs that do not add new semantics and are optimization
dedicated solely for optimization enforcement.

• Fifth, the C++ standard does not specify resources limits used by compile-time
function evaluation. This means that a code can be compiled by a compiler
while reflected by another. As such, cross-compiler compatibility cannot be
guaranteed.

• Sixth, a modification of a function from being compile-time to runtime or
conversely, implies a cascade of changes to preserve language semantics. For
instance, to declare a function as constexpr, one needs to declare also all
called functions as constexpr.

• Seventh, the author claims having better results with an automatic post-
compilation tool rather than using constexpr.

Notice that we have observed some behavior of the compilers during our study of
the various implementations of power and sine functions (cf. Section 2.3.9) that
suggests that compilers decide, to some extent, to evaluate at compile-time functions
that are not marked as constexpr. From our experience, we consider that the
constexpr facility does not imply using a different language than the common C++.
Even if it only uses a subset of the possibilities of the language, it exploits the same
language with the same syntax and the same grammar as C++ and that is one of
the main differences with template metaprogramming. Even it were possible to
express some computation with template metaprogramming, it is much more complex
and different than the common C++ language compared to constexpr expressions.
Furthermore, we disagree when the author says that this addition is just a hint.
It allows with the same language to express compile-time execution. If we let the
compiler choose automatically whether to process some code or not at compile-time,
how do we debug code processed at compile-time with common tools? In our opinion,
it is always better to have an explicit keyword that gives the possibility to the
programmer to choose when to do the processing. In C++ 20, it is possible to use
consteval to force a computation at compile-time, and constexpr is the best of
both worlds because it allows one to do computation at compile-time and to do
debugging with common tools with the exact same code.

2.4.4 Usage of metaprogramming

We found many usages of metaprogramming techniques in different types of libraries.
The C++ standard library uses constexpr to extend the variety of objects and

tools available at compile-time.
Kokkos [Edwards et al., 2014b], a library used for manycore parallelism on clusters

with MPI, targets HPC applications. It also comes with a co-library, kokkos-kernel,
specialized for linear algebra. They claim to use template metaprogramming in order
to optimize code for some architectures [Edwards and Sunderland, 2012].

We found libraries like Eve [Penuchot et al., 2018] or Spy [Falcou, 2019] that use
the constexpr specifier. Eve is a C++ 20 wrapper implementation around SIMD
extensions sets for different architectures. Spy is a C++ 17 library that gathers
information on the architecture used and made it available in constexpr context.
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MetaPASS [Hollman et al., 2016], for "Metaprogramming-enabled Parallelism
from Apparently Sequential Semantics", is a proof-of-concept library that analyzes a
sequential code and deduces a parallel code using a directed acyclic graph (DAG)
representation. It relies on a dependency analysis, using template metaprogramming,
of read/write variable access to derive a DAG of the execution to be performed. The
C++ type system (reference, const) is analyzed with metafunctions and SFINAE
constructs, to derive the usage of the variables.

2.5 Conclusion
In this chapter, we presented different techniques to do computations at compile-time.
We mainly focused on different taxonomies to sort those approaches and on what
is nowadays available with the C++ language. The two main approaches for static
metaprogramming in C++ are template metaprogramming and metaprogramming
based on constant expressions. Both approaches are complementary because they
bring different kinds of compile-time capabilities to the language.

Template metaprogramming is particularly fitted to do computation on types.
This technique is widely used in the standard library, notably to design traits and
metafunctions. It can also be combined with the SFINAE rule, using the enable_if
construct, to remove functions from the overload resolution. The latest additions
to this field are concepts and constraints. They allow one to define sets of named
constraints to filter types used in class or function template parameters, and are a
true alternative to enable_if.

Constant expressions allow one to do complex computations on values (either
of primitive types or objects). However, they only propose a subset of the C++

language that can be executed at compile-time. The possibilities offered by constant
expressions are growing with the evolution of C++, and yet, it is possible to create
extensible libraries through inheritance.

We utilize both approaches in the design of our library Hedgehog, as explained
in Chapter 5. Our proposal is based on the manipulation of a data-flow graph,
known at compile-time, where some checking and analysis is necessary. Template
metaprogramming is used to secure our API and add some constraints on types to
check the coherence of the data-flow graph designed by a user of the library. And
constant expressions are used to create a fully extensible compile-time library to
perform advanced analysis on the data-flow graph before execution.
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Chapter 3

Hedgehog framework

In Chapter 1, we presented different ways to achieve parallelism. We articulated
that a good approach should be accessible, explicit, present intrinsic parallelism, and
present composability properties to help design complex algorithms and enable code
sharing.

Our solution is a library called Hedgehog. It is a revised version of the Hybrid
Task Graph Scheduler (HTGS) made by Timothy Blattner and Walid Keyrouz at
NIST. It is mainly composed of two parts, the runtime system that is presented first
in this chapter and a compile-time system that is presented in Chapter 5.

To introduce the runtime system, we first overview the original system HTGS
(briefly introduced in Section 1.7.2), with a few of its limitations, in Section 3.2.
Then, we expose the early decisions that we made to develop Hedgehog in Section 3.3.
With all the context described, we then present the Hedgehog model in Section 3.4,
with a special focus on a core design aspect, the separation of concerns, in Section 3.5.
After, in Section 3.6, we dive into the library architecture.

The base model presented in this chapter and our results in Chapter 4 were
published by IEEE [Bardakoff et al., 2020a], presented at the Nvidia GPU Technol-
ogy Conference held in 2020 [Bardakoff et al., 2020b], and at the HiHAT1 online
workgroup.

3.1 HTGS
HTGS [Blattner et al., 2017,Blattner, 2016] is a library developed to help conceiving
parallel applications on a single heterogeneous compute node. It is available on
GitHub2 and is used for internal applications at NIST or by external users.

3.1.1 Model and types of nodes

HTGS bases its representation of the computation of a program on an explicit data-
flow graph, with a well-defined type of graph nodes. The data-flow graph execution
consists of statically associated threads to each node from the graph’s construction
to its destruction. It aims at managing coarse-grained parallelism to amortize the
cost of sending data from one node to another.

Parallelism granularity is a qualitative measurement of the amount of work done
for a task over the communication time. It is opposed to fine-grained parallelism

1https://hihat-wiki.modelado.org/
2https://pages.nist.gov/HTGS/
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which defines the type of computation composed of small tasks. For example, a
parallel addition over all elements of an array with vectorization instruction is
considered fine-grained parallelism, as a task, i.e. the computation for an element, is
on the order of nanoseconds. We designed HTGS and Hedgehog to target coarse-
grained parallelism, their tasks ingest big pieces of data and therefore have long
computation times. They present reasonable communication times (what we call
latency, cf. Section 4.2.1) from 1µs to 10µs.

The graph nodes of HTGS have one input type and one output type, meaning
that a node can only receive one type of data and produce one type. Each node
possesses a queue to store incoming data corresponding to the node’s input type.
Each node can only have one output edge and there is only one connection possible
between two nodes.

When a node receives a piece of data, it wakes up its associated thread(s), pops
the piece of data out of the input queue, executes the kernel with this data, and if
the end-user chooses so, sends output data to the next node. If the queue is not
empty, the node will automatically pop another element and repeat this process.

For usual graphs, these nodes can be (1) computational tasks or (2) bookkeepers
as shown in Figure 3.1. More complex graphs can present nodes that are graphs,
they wrap them into specialized tasks or into structures called execution pipelines.

Task
Input Output

Bookeeper

State 1

State 2

State 3

State 4

Input

Output 1

Output 2

Output 3

Output 4

Figure 3.1: Task and bookkeeper in HTGS

The computational tasks, or simply tasks, are the nodes where the computation
kernels are deployed. The graph tasks can be duplicated by the runtime system and
associated with multiple threads.

The bookkeepers are a type of nodes for managing the computations. They are
single-threaded and associated with a set of rules to represent the different options
the bookkeepers will traverse. A bookkeeper and its rules present the same input
types. The bookkeeper by itself does not have an output type per se but its rules
may have diverse output types and be linked to different nodes. If we consider the
bookkeeper and its rules, this gathering produces multiple output types and can
broadcast data to multiple other nodes. When a bookkeeper receives a piece of data,
it will send it sequentially to the different rules, and depending on the computation,
a rule sends output data on its output edge.

83



CHAPTER 3. HEDGEHOG FRAMEWORK

Two more categories of nodes are available to an end-user: (1) the graph by itself,
and (2) the execution pipeline. The role of a graph is to gather a set of nodes to
present a black-box abstraction to the user. A graph can be transformed into a
special type of node, a TGTask for "Task-Graph Task". This TGTask can be then
embedded in another graph as a normal task.

In order to tackle heterogeneous computing, a specialized task abstraction for
Nvidia GPUs, the CUDATask, was created. Such a task works like a normal task; it
is just associated with a specific GPU at initialization and allows one to execute the
computation on this GPU. A design decision constrains all CUDATasks in a graph to
be bound to the same device. To achieve multi-GPU computation, the execution
pipeline needs to be used. The execution pipeline will duplicate a graph, and its
inner nodes recursively, and binds each of the copies to different GPU. We can also
choose in which graph of an execution pipeline to send the data to.

3.1.2 Memory manager

One of the major problems when dealing with GPU computation is memory manage-
ment. The memory available in a GPU is limited compared to the memory available
in a CPU node. For example, on an Nvidia DGX A100, there are 8 Nvidia A100 with
80GB of memory each (640GB total) compared to the 2TB of memory available
to CPU. A base principle to get performance on a GPU is to feed the GPU while
staying within its capacity limit while avoiding allocation during the execution to
avoid synchronization.

In HTGS, the memory manager was designed to help end-users deal with these
problems. The memory manager has a pool of memory allocatable on a device that
lives in its own thread. The memory manager is then associated with tasks that can
pull data from it. With this construct, it is possible to throttle the computation by
limiting the quantity of memory available and staying below the threshold available
in the device while improving the locality. There are different types of memory
managers, static or dynamic depending on when the allocation happens, before the
execution of the memory pool creation (to avoid GPU synchronization for example)
or during the execution, respectively.

3.1.3 Graphical feedback

HTGS’s explicit model allows the end-user to understand the computation. But
sometimes the computation does not run as expected, deadlocks, heavyweight tasks,
or other problems can occur. In order to get a view of how the execution behaves, a
graphical feedback mechanism was put in place. The idea is to gather metrics at
runtime, at the node level, to understand the execution. A color code allows us to
understand where the critical path is; also it detects where a deadlock occurs by
analyzing how much data are left to be processed on nodes.

3.2 HTGS limitations

HTGS as it is presented has some limitations.
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3.2.1 IData interface

All data that go through an HTGS graph need to inherit from the IData class. This
means that even an int needs to be embedded into a class, MyInt for example, that
must inherit from IData to be used in a graph.

3.2.2 Graph manipulation

In order to construct and use a graph, an end-user needs to:

1. Create an empty TaskGraphConf.

2. Create the graph structure with the TaskGraphConf by adding edges between
the different graph’s nodes.

3. Transform a TaskGraphConf into a TaskGraphRuntime.

4. Execute the TaskGraphRuntime.

5. Push data to the TaskGraphConf with the produceData method.

6. Indicate to TaskGraphConf that no more data will be sent to the graph.

7. Get result out of the TaskGraphConf with the consumeData method.

8. Wait for the runtime, the TaskGraphRuntime, to terminate.

9. If needed, the graphical output can be produced from the TaskGraphConf.

This process is complex and requires handling multiple objects like TaskGraphConf
and TaskGraphRuntime. It may be possible to simplify this API for end-users.

3.2.3 Graph construction

To construct the graph and, in particular, define edges between two nodes, several
methods in the API exist:

• addEdge: creates an arc between two tasks or bookkeepers.

• addRuleEdge: creates a link between a bookkeeper and a rule.

• addMemoryManagerEdge: creates a link between a memory manager and a task
for "normal" data.

• addCudaMemoryManagerEdge: creates a link between a memory manager and
a CUDATask.

• setGraphConsumerTask: sets a node as the graph’s input.

• setGraphProducerTask: sets a node as the graph’s output.

Internally, the different edge objects are connected to nodes through interfaces
named connectors. They are used to manage the input and output of IData between
tasks.

Two questions arise: is it possible to simplify the creation of the edges? Is it
necessary to use the connectors?
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3.2.4 Bookkeeper broadcast

The bookkeeper is an HTGS node that helps to manage the computation. It is
combined with different rules to conditionally apply a set of computations. Because
each rule can send data to a node, the bookkeeper and the rules can send the same
data to multiple nodes and therefore redirect the flow of data.

It may be a good option to generalize the possibility to send a piece of data to
multiple nodes for any node. We could also study the idea for a node to accept or
produce multiple types of data.

3.2.5 Internals

Looking at the code, a lot of internal methods that should be hidden are available
to the end-user through the API. For example, the TaskGraphConf initialization
is directly callable; it is also possible to access the underlying connectors and set
them etc.3 From the ITask objects, we can get all information about the graphical
feedbacks, the internal identifiers of the connectors, etc.4 A new architecture to
separate the internals or limit their access from the end-user could be implemented
to ease the usability.

Furthermore, manager classes, like the different types of TaskManager used to "en-
capsulates an ITask to interact with an ITask’s functionality", or the RuleManager
used to "connects a Bookkeeper to another ITask using one or more IRule(s)" seem
redundant. An ITask should not need a wrapper to access its own functionality and
the Bookkeeper should only use its IRule(s) to be connected to other ITask.

3.2.6 Memory manager

A memory manager is associated with a thread. However, it is usually used with
a task that also has its own thread. The overall model can use fewer resources by
removing these extra threads and handle a memory manager as an extra tool used
by active tasks.

3.2.7 Conclusion

These limitations give us opportunities to design Hedgehog. The new architecture
should offer a clear separation between the internals and the API for end-users.
About the internals, the interfaces between the different nodes can be reworked to
offer more flexibility and allow the graph to accept any type, even primitives types.
The API can also be revised to offer simpler objects with simpler interactions to
build the graph.

3.3 Early decisions

Our goal when designing and developing Hedgehog is to propose a library succeeding
HTGS. It aims at the same purpose, helping developers create parallel libraries
with a graph-based model. It should at least provide the same features as HTGS.

3https://pages.nist.gov/HTGS/doxygen/classhtgs_1_1_task_graph_conf.html
4https://pages.nist.gov/HTGS/doxygen/classhtgs_1_1_i_task.html
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All limitations that we have presented in Section 3.2 need to be tackled and are
opportunities for extra features. In terms of usability, we target an API close to
HTGS while simplifying the manipulation of the model. In terms of performance,
Hedgehog needs to be at least as fast as HTGS. In this section, we present what are
the early thoughts that we had to design Hedgehog.

3.3.1 Multiple inputs and output broadcast

Limitation description

This section is made to express the idea and examines the repercussion of changing a
task’s behavior from having one input and one output to multiple inputs and outputs.
HTGS uses one interface for all execution kernels, the template class ITask. An
ITask (that will be specialized to define specific tasks) has two template parameters,
the first is its input type, the second is its output type. As such, a task of class T
inheriting from ITask<I,O>, will accept an object I as input and will produce an
object of type O. Another HTGS class that is affected by the proposed modification
is the bookkeeper. A bookkeeper is a special task that will have different outputs
depending on the rules it follows. These rules specify a scheduling over input data,
and each rule executes on that data synchronously. Therefore, a bookkeeper BK<I>,
will accept an object I as input and can produce object O, P, Q... depending on the
rules.

Multiple inputs

The third HTGS tutorial (matrix multiplication 5) was chosen to illustrate the
discussion. Figure 3.2 presents the matrix multiplication task graph.

Figure 3.2: Graph representation of the matrix multiplication algorithm in HTGS

This graph presents four major steps: (1) the loading of matrices A and B blocks
into memory (LoadA and LoadB), (2) the block matrix multiplication (GEMM ), (3)
the accumulation (Acc) of resulting blocks, and (4) the output of C matrix blocks
(WriteC). Three bookkeepers (BK1, BK2, and BK3) are used to control the flow of
data.

Focusing on the first bookkeeper BK1, it just takes the same objects
(MatrixRequestData), either it receives a block of matrix A or matrix B, with
a flag in the data indicating to which matrix it belongs. Then depending on this flag,
the data are sent to task LoadA or LoadB. To define the load task, only one method
executeTask needs to be overridden from class ITask as shown in Code 3.1.

5https://github.com/usnistgov/HTGS-Tutorials
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Source Code 3.1: LoadMatrixTask basic structure

1 class LoadMatrixTask
2 : public htgs::ITask<MatrixRequestData, MatrixBlockData<double *>> {
3 //...
4 void executeTask(std::shared_ptr<MatrixRequestData> data) override
5 {/*...*/ }
6 //...
7 };

Instead of having one bookkeeper just checking for a flag in each input data and
then producing the data to the right task, we propose to have multiple inputs. The
task LoadMatrixTask would be rewritten as shown in Code 3.2.

Source Code 3.2: LoadMatrixTask rewritten

1 class LoadMatrixTask :
2 public htgs::ITask<
3 MatrixBlockData<double *>,
4 MatrixRequestDataA, MatrixRequestDataB
5 > {/*...*/ };

The first template parameter of class ITask would be the output type, and the
last ones the multiple input types. This means that the task will accept a piece of
data of type MatrixRequestDataA or MatrixRequestDataB and then have different
functionality for each type as shown in code 3.3. Methods executeTask will still be
overridden from ITask to provide an overload for each kind of input data.

Source Code 3.3: LoadMatrixTask executeTask rewritten

1 virtual void executeTask(std::shared_ptr<MatrixRequestDataA> data)
2 {/*...*/ }
3

4 virtual void executeTask(std::shared_ptr<MatrixRequestDataB> data)
5 {/*...*/ }

The idea is to reduce the complexity of the graph building code (avoiding
unnecessary bookkeepers), by adding more input data types that represent the
current execution. A task will also be able to accept different types of objects which
have common processing.

For the next point, let us take as an example the following task: class Task
: public ITask<O, I1, I2>. This task will accept I1 or I2 as input and O as
output. By accepting I1 or I2, we mean that the task has a computation kernel
implemented for each type. A problem arises if a kernel needs to use both of them.
A first solution would be to store in the instance of the task pieces of data from I1 or
I2 when they arrive and use them when a piece of data from the other type arrives.
Another solution would be to rewrite the task as ITask<O, I1, I2, I3>. I3 in this
case would be a union of I1 and I2. This latter scenario, the task proposes three
kernels: one for I1, one for I2, and one for I3 that represents the execution done for
I1 and I2 together. This second solution requires a bookkeeper in front of the task
to produce I3 from I1 and I2.
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Output broadcast

Each task can only have one output edge sending a single type of objects. The task’s
produced output will become part of another task’s input. The exception is the
bookkeeper that will be able to send different kinds of objects to different nodes
depending on its rules. A task can only be implied in one call of the addEdge method
as source node when representing the links between tasks in the data-flow graph.

We propose that a task should be able to broadcast its output to multiple tasks
that share the same object type. So, a task T1 will be able to send its output to T2
and T3 for instance, as represented in Code 3.4.

Source Code 3.4: Broadcast writing proposal

1 graph->addEdge(T1, T2);
2 graph->addEdge(T1, T3);

Conclusion

The new interface for the ITask will allow to have multiple input types and one
output type that can be broadcast to multiple tasks. The task representation brings
then more flexibility and the graph gains in expressiveness.

The multiple inputs need to be expressed in some way with C++. The language
feature that we need to use is variadic templates (cf. Section 2.3.2). We choose
to express the output first, instead of the inputs, because of the way the variadic
templates work. If the template parameters were written <I1, I2, I3, O> by the
end-user, the abstraction would be the parameter list <class... Types>. It is
possible to extract the last type of the list with a simple metafunction, but in our
design, we need to have direct access to the type of output. As the parameter list
<class... Inputs, class Output> is not a valid syntax (the pack representing
variable parameters in a template is always the last one in the list of parameters),
our choice as a design is to have the output declared first and then the list of input
types: <class Output, class... Inputs>. In this case, the output type Output
is directly accessible, and the inputs are accessible as a pack Inputs, or they can be
unfolded.

For the same reason we do not, as a first version of the library, allow a node
to send different types of output. The main concerns are to express two lists of
types in the same template declaration and be able to capture the correct types (the
ones for the input types and the ones for the output types) to express some form
of inheritance. If we express this with only one pack, <class... Types>, we can
not differentiate the input types from the output types, and <class... Inputs,
class... Outputs> is not a valid syntax.

3.3.2 Major API terminology changes

From the bookkeeper to the state manager

As explained in the previous section, all Hedgehog’s nodes can send their output to
multiple successors, something that was only possible in some way by the bookkeeper
with HTGS. The other role of the bookkeeper is to manage the flow of data within a
task graph.
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The bookkeeper does the management of the flow of data for a task graph between
a set of nodes. It can then be seen as a local computation doing state management.
This is where the state manager terminology comes from. A state manager manages
a state. We have renamed the bookkeeper’s rules the state and this is why we have
transformed the HTGS bookkeeper node and rules to tightly couple state and state
manager.

Graph terminology

The graph model in HTGS is designed as a task graph. The choice was made to
separate configuration from usage during the execution of the graph representation,
the TaskGraphConf and the TaskGraphRuntime. In Hedgehog we merged both into
the Graph object. It is used to create, run and interact with the computation.

To connect different nodes in the HTGS graph, the library used different types
of edges depending on what is connected: an edge (producer / consumer edge) for
connecting tasks or bookkeepers, a rule edge to link a rule to its bookkeepers, or
a memory manager edge or a CUDA memory manager edge to connect a memory
manager to a task depending on the type of memory managed. In Hedgehog we
decided to give less importance to the edge and to have only one type of edge for
everything in our API.

3.3.3 Key decisions from HTGS

Hedgehog being the successor of HTGS, it follows the same philosophy as the original
library. The separation of concerns put in place to separate computation clearly
nodes (tasks), and management nodes (bookkeepers) is a clear asset of the library.
The threading model without a scheduler allows having a clear execution policy
based solely on the graph representation. The representation under the form of
a graph allows wrapping nicely a set of coherent tasks. It allows also sharing a
computation via the graph abstraction. Heterogeneity is dealt with at a graph level,
a graph is assigned to a device. To achieve multi-GPU computation, the GPU
graph is duplicated via an execution pipeline to the different GPUs. The graphical
representation is also an asset of the library to understand how the computation
went on the current hardware.

3.3.4 Conclusion

In this section, we presented the technical and conceptual origins of Hedgehog. HTGS
is a task graph library with an explicit model focusing strongly on a strict separation
of concerns concerning the objects available through the API. HTGS presents some
limitations in its API, and in the way, the internals are exposed and used. These
limitations are opportunities for designing new functionalities and improvement for
Hedgehog. While maintaining the philosophy of the model of HTGS, Hedgehog
proposes a more flexible library with a simpler interface. This simplicity for the
end-user requires adding more control from the library at compile-time to avoid
design errors, as presented in Section 5.1. A detailed description of the architecture
is presented in Section 3.6. Hedgehog has also refined the execution model used as
presented in the following section.
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3.4 Hedgehog model
Hedgehog like HTGS has an explicit runtime system. It is explicit because the
objects defined by the end-user are the ones used during the execution with no
transformations like many parallel runtime systems would do as seen in Section 1.7.
What is designed by the end-user is exactly what is executed by the system, which
allows the user to understand what happens during execution and get exploitable
feedback from profiling as seen in Section 4.1. HTGS refers to its model as a "task
graph". We have refined in Hedgehog the model denomination. We first present
this representation in Section 3.4.1 and then its specificities in Sections 3.4.2, 3.4.3,
and 3.4.4.

3.4.1 Hedgehog data-flow graph

Hedgehog bases its representation on a data-flow graph.
For instance, the data-flow graph in Figure 3.3 is composed of data streams

represented by the edges and of tasks represented by the vertices.

A B C

Source D E

T1
T2 T3

T
4

T5 T6
T 6

T7

Figure 3.3: Hedgehog data-flow graph model

The term "task" refers here to any type of computation. A node is therefore an
instance of an execution kernel that will take an input on one of its input edge, do
its computation, and send its results on its output edges. In the example: A, B,
C, D, E are the nodes. A node in Hedgehog can accept multiple input types, for
example, node C accepts two types as inputs T3 and T6. A node is defined by its
input types and its output type, among other properties.

The arcs are just the data stream support. They are explicitly created by the end-
user but have no object representation. They are directional and support only one
type. To be able to draw an edge between two nodes, the output type of the sender
should correspond to one of the input types of the receiver, that is our compatibility
rule (checked at compile-time). There is no restriction on creating an edge between
two nodes if they are compatible; it is then possible to draw directed cycles in
the graph (such cycles can potentially lead to deadlock, and are thus detected at
compile-time to emit a warning).

The graph has only one entry point, the source node (double circle in the figure),
and one exit point, the sink node (the dot in the figure). The source and sink are
parts of the graph. When a user pushes data into the graph, it interacts with the
source that will transfer the data to its successor nodes (i.e. the graph input nodes).
These input nodes are specifically tagged by the developer. By symmetry, the output
nodes are the nodes that create the final output data, transfer them to the sink to
make them available to the client code. In the example A and D are the input nodes
and E is the output node. We can see that in this example, the graph accepts T1
and T5 types of data and produces T7 type of data.
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In the graph API that we present later, the input and output types are defined
explicitly when defining the graph object. To set a node as input of the graph, it
should share at least one input type in common with the graph. To set a node as an
output of the graph, it should share the same output type as the graph. In addition
to these two rules there are other requirements to fully build a Hedgehog graph that
have to be checked at compile-time.

3.4.2 Data pipelining

The data pipelining is a direct consequence of our execution model. For a sequence
of linked tasks that run independently from each other, it is possible to execute
concurrently many tasks on a set of data.

In the example presented in Figure 3.4, there are three connected tasks: Read,
Compute, and Write. Read ’s output is Compute’s input, and Compute’s output is
Write’s input. The execution mechanism for each task is simple: at the moment a
new piece of data is available for a task, the task grabs it, does its processing, and
sends the output data to the successor task.

Read Compute Write

Data 1

Data 2 Data 1

Data 3 Data 2 Data 1

Data 3 Data 2

Data 3
Time O
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Figure 3.4: Data pipelining

At the beginning, "Data 1" is sent to the pipeline and only the Read task becomes
active. When Read has done its processing, it sends its output to Compute (that
becomes active) and gets a new data "Data 2". At this moment, two tasks are
executing concurrently on a unique set of data in a streaming fashion.

This mechanism is important because it keeps the hardware busy and overlaps
memory transfer and computation. A way to do heterogeneous computing is to have
in sequence for instance: a CPU task, a copy to GPU task, a GPU task, a copy to
CPU task, and a CPU task. In this sequence, the copies happen as soon as a piece
of data is ready to be copied, the copies in and out of the device are overlapped with
computations, and the computations from CPU and GPU are overlapped.

One crucial parameter in such systems is latency: the time to transfer a piece
of data between tasks. The latency will determine how fine-grained the data need
to be streamed into the graph and the execution time of the tasks. The higher the
latency, the more this time needs to be amortized by an important computation,
which means having a huge amount of data for a task and/or a lot of computation
in a task. On the contrary, if the latency is small, the system is able to achieve more
fine-grained parallelism.

In Hedgehog, we have designed a visual feedback to help the developer understand
how a computation went, and therefore customize the size of the data chunk that

92



3.4. HEDGEHOG MODEL

traverses the graph and the grain of the tasks in order to improve the performance.
A study on the latency is given in Section 4.2.1.

3.4.3 Output streaming

As seen in the previous sections, the runtime system relies on a graph representation
and on data pipelining to get performance. An important consideration is the data
streaming aspect. In order to keep the system busy, the data need to be streamed
into the graph.

A direct consequence of the streaming aspect is that it enables one to have a
partial final result much sooner than the complete result. If we chain multiple graphs,
it is possible to start the computation of the next graph in the sequence much earlier
than waiting for the full result. Even if the graph is not linked to another graph,
but the end-user gathers in some other way the partial output data, it is possible for
him or her to exploit these results without waiting the full computation.

It is based on this behavior that we have started a study on a linear algebra
library [Kroiz et al., 2021] to compare Hedgehog implementation and BLAS/LAPACK
implementation of matrix multiplication and LU decomposition with partial pivoting.
We present our results in Section 4.2.

3.4.4 Scheduler-free execution

The fundamental difference between Hedgehog and other graph-based libraries (Cf.
Section 1.7.2) is thread management.

In Hedgehog, some nodes conduct an execution and live on a thread. We associate
the threads with these nodes at graph construction and until graph destruction.
There is no thread management, there is no scheduler nor additional algorithm to
manage the association between the threads and the nodes. We only rely on the OS
scheduler to manage the threads. In our experiments, we did not need to customize
the priority (nice values) of the threads or the processor affinity.

In terms of performance, a thread is not active all the time. If the node associated
with a thread has no input data and this thread is not processing data, it will be in
a waiting state. We will cover the node operation with the different calls and the
different thread status in Section 3.5.

3.4.5 Conclusion

Hedgehog relies on a simple and explicit model. Computation needs to be represented
with a data-flow graph where the nodes are parts of the targeted algorithm. It relies on
data pipelining to maximize the overall usage of hardware and overlap communication
and different kinds of computations.

The threading model is one-of-a-kind, where each node that does a computation
is associated to a thread from the beginning of the graph’s execution, up to the
graph’s termination. Other than that, the threads are managed by the OS scheduler,
without any hint provided (nor only priority or affinity).
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3.5 Separations of concerns

One cornerstone design decision Hedgehog took from HTGS is the separation of
concerns. The main idea is to have a specific object per usage. In this section, we
cover the different objects available to the end-user to compose its computation.

3.5.1 Computational task

The main abstraction for doing computations is represented by the AbstractTask
class (cf. Section 3.6). For the sake of simplicity, we refer to it as a task. A task in
Hedgehog is an abstraction where a computational kernel is implemented. We built it
to represent a compute-intensive section of the algorithm with all the additions used
by Hedgehog to manage and execute the kernel (i.e., input and output management,
the copies in the case of multi-threaded task, memory management etc.).

Multi-threaded tasks

A task is by default attached to a thread. To improve its performance, it is possible
to copy it and attach each copy to a new thread. This copy mechanism is customized
by overloading the copy method. It is invoked by the Hedgehog runtime system
automatically when constructing the graph and instantiating its nodes. By default
the method return a nullptr. This default value is used to detect if the end-user
has overloaded the method or not, when the library needs it, and also allows us to
not force the user to overload the method when he or she is using tasks with only
one thread.

Figure 3.5 shows how the input queues are handled with multiple copies of a
task. A task with multiple inputs has one queue per input type shown in the upper
sub-figure. The bottom sub-figure shows the configuration for a multi-thread task
with multiple inputs. In this example, a task is copied n− 1 times, for a total of n
instances, and they all share the same queues.

The connection between the queues and the copies is managed by Hedgehog. The
queues are thread-safe; they are secured with mutexes that will lock all inputs for a
task when one tries to access them. The number of inputs and copies of a task have
an impact on the latency as shown in Section 4.2.1

Task runtime

The task execution is a multi-step process (cf. Figure 3.6), in which some steps can
be customized by the end-user to represent the computation needed. In this diagram,
the blue shapes are all the steps that are customizable by the end-user.

The first step is an initialization step. It is done once when the thread is associated
with the task, before it starts running. It is customizable by overloading the preRun
method. The task runtime follows then a cycle that repeats executing the kernel on
every piece of data that is received.

This cycle starts by determining if the task must end. By default, a task ends if
there are no more predecessor nodes connected to it and if there is no more data
available in the input queues. If the task does not end, it enters in a waiting state
unless there is data available in one of its input queues. If no data is available,
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the thread is blocked with an std::condition_variable 6 until an antecedent
node sends data to the task and notifies it. When data arrive, the task wakes up,
checks again if it needs to terminate, and if not, it will process its different inputs.
Sequentially for all its input types, the task will lock a queue, get an element if the
queue is not empty, unlock the queue, and run the execute method with the data
popped from the queue. When the execution returns, the task tests again if the task
must end, finishing the task runtime cycle.

The default condition to stop a task works well for graphs without directed
cycles. The termination condition for a task is therefore customizable to avoid
deadlocks. For instance, one simple case of directed cycle is with two interconnected
tasks, A and B, having an edge from A to B and an arc from B to A. In this case,
without any additional mechanism, both A and B will never match the condition
presented above to stop, as A is an antecedent of B and B is an antecedent of A.
This interlocking situation prevents the whole graph from ending. In such a situation,
the canTerminate method can be overloaded to customize the termination condition
of a task and therefore give the end-user the possibility to break the cycle with
information from the task.

If the task must end, the task executes once a shutdown method called postRun.
When a task ends, it notifies its successors and its copies, enabling to end in cascade
these tasks if the conditions presented previously are met.

At the task creation, it is possible to set the task as automatic, by setting a flag
at construction. An automatic task is a task that will start automatically without
getting a piece of data from its input queues when the graph is first executed, but
with a nullptr sent to its execute method. After this first execution, the task
continues its usual runtime cycle.

Nvidia GPU tasks

Tasks are meant by default to achieve CPU computations. We designed a task for
GPU computations on Nvidia devices represented by the AbstractCUDATask class
(cf. Section 3.6).

In term of C++ objects, an AbstractCUDATask inherits from AbstractTask, so
they mainly behave the same way. The only differences are in the initialization phase,
where we bind the task to a device, enable peer access if needed, and create a stream
to the device. In the shutdown phase, we destroy the stream to the device.

The only constraint put in place is that all the tasks in a given graph are bound
to the same device. It is possible to do multi-GPU computation by duplicating a
graph via an execution pipeline (cf. Section 3.5.4).

If the developer needs to add steps in the initialization phase, he/she has at his/her
disposal a virtual initializeCuda method that is called after the initialization
that we described earlier and a virtual shutdownCuda method that is called before
destroying the stream to the device.

This design is replicable by developers for other device as developers just need to
create a specialized task for another device provided the specialized task has the same
behavior as a normal task. If the internal behavior changes, it is possible to create
other types of nodes. We describe this possibility with our internal architecture in
Section 3.6.

6https://en.cppreference.com/w/cpp/thread/condition_variable
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Memory manager

One of the key problems with GPU computation is dealing with memory. To be
efficient, we should avoid allocating memory in a device to avoid synchronization, we
should stay within the limit of memory available on the device and we should reuse
memory already allocated on the device.

These goals are achievable with a memory manager. The memory manager in
Hedgehog is a tool attachable to any task (AbstractTask and any subclass). It is a
limited pool of memory that will be accessible by the task attached to it.

When the task is initializing, the attached memory manager’s pool is filled with its
data. By default, the data are initialized with their default constructor. It is possible
to customize the memory manager to initialize the data with a special constructor.
The special constructor can create pieces of data suitable for GPU computation
(previous HTGS static memory manager). We can use the default constructor as is
or with allocation later when used by the task (previous HTGS dynamic memory
manager). For both cases, the data can be reinitialized when recycled to the memory
manager.

When the task wants to get data out of the memory manager, a piece of data is
taken from the pool. If there is no more data available, the task blocks until a piece
of data is given back to the memory manager and made available.

A managed memory should know by which manager it is supervised. That is
why any memory that is handled by a memory manager should inherit from our
MemoryData interface. This specific interface is designed following the curiously
recurring template pattern (CRTP). If we want a class A to be a managed mem-
ory, we will define it as follows: class A : public hh::MemoryData<A>, where
MemoryData<A> provides the functionalities necessary to be supervised by a memory
manager. That way, in any other node or even outside the graph a piece of data can
be returned to its memory manager, cleaned, and made available again to the task.

The memory manager helps with the data locality as the pool is filled with data
allocated at a specific location: main memory or specific device. We can stay under
the memory limit of devices as we can throttle the computation by limiting the
number of data in the pool. Device synchronization can also be avoided by reusing
the same piece of data, doing so no re-allocation.

3.5.2 Management node

While tasks are meant to achieve computations, we added a special type of node
for managing computations. This type of node is represented by the StateManager
class. Technically a StateManager is a task limited to only one thread, demanding
a State object at construction. A State is an object used to express the data
synchronization strategy of a set of nodes handled by a state manager.

For example, we used blocks to parallelize the computation in the matrix multi-
plication algorithm (cf. Section 4.3.1). Matrices A and B are fed into the algorithm
(we ignore matrix C for this demonstration). Input tasks will decompose them into
blocks, in row fashion for the Matrix A and in column fashion for the Matrix B.
The first step of the algorithm will be to multiply these blocks of matrices together.
The problem is that we should not multiply all the blocks together, only compatible
blocks should be multiplied following their positions in the matrix. A block of matrix
A will need to be multiplied multiple times to blocks of B : for a given block of matrix
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A at row i, it will be multiplied by all blocks of matrix B at column i. In order to
manage the blocks coming from the decomposition tasks, forming the compatible
pairs we use a StateManager and a State. The State holds a representation of the
grid of blocks, retains them until a compatible pair is possible, forms then the pair
of blocks and sends it to the block multiplication task (cf. Diagram 1.2). The code
for a block of A is presented in Code 3.5. This code is symmetric for a block of B.

Source Code 3.5: Block management of matrix A for the matrix multiplication
algorithm

1 void execute(std::shared_ptr<MatrixBlockData<Type, 'a', Ord>> ptr)
override {↪→

2 // Stores the block of A
3 matrixA(ptr);
4

5 // For every compatible block of B
6 for(size_t jB = 0; jB < gridWidthRight_; ++jB){
7

8 // Checks if the block of B has already been received
9 if(auto bB = matrixB(ptr->colIdx(), jB)){

10

11 // Counts down the amount of time the block of A will be used
12 ttlA_[ptr->rowIdx() * gridSharedDimension_ + ptr->colIdx()]
13 = ttlA_[ptr->rowIdx() * gridSharedDimension_ +

ptr->colIdx()] - 1;↪→
14

15 // Deletes the local representation of the block of A if it
won't be used anymore↪→

16 if(ttlA_[ptr->rowIdx() * gridSharedDimension_ + ptr->colIdx()]
== 0) {↪→

17 gridMatrixA_[ptr->rowIdx() * gridSharedDimension_ +
ptr->colIdx()] = nullptr;↪→

18 }
19

20 // Creates the pair of blocks A and B
21 auto res = std::make_shared<
22 std::pair<std::shared_ptr<MatrixBlockData<Type, 'a', Ord>>,
23 std::shared_ptr<MatrixBlockData<Type, 'b', Ord>> >
24 >();
25

26 res->first = ptr;
27 res->second = bB;
28

29 // Sends the pair to the next task
30 this->push(res);
31 }
32 }
33 }

In terms of design, a state manager is a special task associated with one thread
only, and constructed with a state object. Moreover, the state manager is a Hedgehog
node while the state is not. In a graph, the state manager will be connected to another
node and will be the only one to interact with the state as shown in Figure 3.7.

A detailed sequence diagram, Figure 3.8, shows the interactions between the
state manager and the state. Upon receiving data (call to method addResult), a
state manager will automatically execute its own execute method as presented in
Figure 3.6 (a state manager is a task). Its execute method will lock the state with
a mutex and call the state’s execute method. Then, the user code is executed to
manage the computation’s state. In contrast with a normal task, the state will not
directly send data to the output node, it will rather store them in an internal vector.
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Figure 3.7: Relation between tasks and a state manager

When the execution is done and the execute method returns, the state manager
will empty the queue and broadcast every piece of output data to the following node
(call to method addResult). When this is done, it unlocks the state.

The state is thus thread-safe, and therefore can be shared among different state
managers. These will share the same view of the computation because they share
the same state, but they will have their own predecessor and successor nodes. This
is particularly useful if, at different points of the graph, we need to have the same
view of the data received, or if data need to be shared between different graphs. This
second option is useful because a graph in Hedgehog can be bound to a GPU, and in
order to achieve multi-GPU computations, a state can be shared and therefore data
are shared.

The counterpart is that the state is locked by a state manager. The computation
in a state should be as minimal as possible to avoid any bottlenecks, especially if the
state is shared, contrary to a task that is made for heavy computations.

3.5.3 Graph

A graph in Hedgehog is a node that bundles a coherent and organized (tasks are
linked together) set of tasks. It is meant to be the main interface that a user faces
for building algorithms. Once the nodes are instantiated, they are placed into the
graph. There are three main API methods to build the graph: input, output, and
addEdge.

Method input(x) will set Node x as an input of the graph, which means that
when a piece of data is sent to the graph it is transmitted to these input nodes. A
node can only be set as an input of a graph if it shares at least one input type with
the graph. Method output(x) will set Node x as an output of the graph, which
means that when a piece of data is produced by an output node, it will be accessible
as a result out of the graph. We can only set a node as an output of a graph if it
has the same output as the graph. It is possible to set more than one node as input
or output of the graph.

Method addEdge(x,y) will connect two nodes x and y. An antecedent node x can
only be linked to a successor node y if the output type of Node x is one of the input
types of Node y. When a piece of data is produced by a node, it will be automatically
sent to its connected successor nodes; this occurs when the addResult method is
invoked by the producing node. Internally, there is no explicit representation of
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Figure 3.8: UML sequence diagram of interactions between a state manager and a
state
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an edge by an object, each node has a list of its antecedent nodes and a list of its
successor nodes. The connection rules are checked for each edge at compile-time (cf.
Section 5.1). In our design, all nodes bound to a GPU inside the same graph must
be bound to the same GPU.

We have attached two important tools to the graph that an end-user can customize:
(1) the printer and (2) the scheduler. The printer is a visitor (common design
pattern [Gamma et al., 1994]) that traverses the graph and its nodes to gather
metrics and render them.

The DotPrinter is a class producing a DOT file containing a visual graph
representation (cf. Section 4.1.1).

The scheduler is the abstraction to manage the graph’s threads. This is a major
difference from other graph-based libraries, as the Hedgehog DefaultScheduler
object is used to only create all the threads, using std::thread API, of the internal
nodes recursively at graph creation. The graph joins all the threads when the
graph’s waitForTermination() method is called by the end-user. If a user wants
to use another thread model or create a custom scheduler, he or she can do so by
implementing a scheduler from our abstraction AbstractScheduler that will be
provided to the graph at construction. This abstraction existed already in HTGS
and has been amenable to further studies and published [Wu et al., 2021].

Graph composition

As discussed previously, a graph represents a complex computation made of a set
of nodes, and because a graph is a node, it is possible to compose graphs together.
It can therefore be connected to other nodes. When a user connects an antecedent
node to a graph, this node is internally connected to all the graph’s input nodes.
When an internal graph is connected to a successor node, the graph’s output nodes
are connected to the successor node. At the moment a graph is connected inside
another graph it can no longer be modified.

This feature has multiple advantages. First, the composition helps with the
abstraction; it is possible to decompose a complex algorithm into a set of independent
smaller graphs and create them independently. This methodology helps thinking
about large computations by breaking them into smaller ones.

Second, the composition helps with code sharing. A graph can represent a full
computation. Another developer can import this computation into his or her graph
as a black box node. The only thing that matters when building the graph is the
explicit output and input types to link it to other nodes. When visualizing the graph
computation, the structure will be exposed showing any bottleneck.

Third, the composition helps with multiple GPU computations. It is then possible
to have a computation per GPU by building a graph for each device. However, if all
GPUs should execute the same piece of code on separate data, an execution pipeline
can be used (cf. Section 3.5.4).

3.5.4 Execution pipeline

An execution pipeline is a node that is used to duplicate a graph for multi-GPU
computations. It is constructed by specifying the following parameters: the graph,
the number of times the graph needs to be duplicated, and the devices’ IDs. To
duplicate a graph, all internal graph nodes are recursively copied. Then, each graph
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is associated with a device id, and all its CUDATask are bound to the GPU with this
device id.

In order to fully define an execution pipeline, the user needs to implement a
decomposition strategy. When data are sent to an execution pipeline, they are
transferred through the decomposition strategy to the desired graph represented
by its identifier (graphId). To define this, the end-user needs to overload the
pure virtual method bool sendToGraph(std::shared_ptr<GraphInput> &data,
size_t const &graphId). The method must return true if the piece of data
should be sent to the graph of identifier graphId.

3.6 Software architecture

In the previous section, we presented the different parts of the Hedgehog library
with a focus on their usage by an end-user. In this section, we present a more
technical point of view of the library with highlights on its architecture. The library
is decomposed into two main parts, the API (elements used by the end-user) and the
core (internal representation, mainly of nodes), that we describe here. This separation
is based on two behavioral design patterns (template method and strategy [Gamma
et al., 1994]).

In this section, we present UML class diagrams. They are a simplified version of
the actual classes; we have removed non-useful methods or attributes for the sake
of clarity while keeping a representation of the design choices. Moreover, we have
suppressed mention of the standard library name space (std::) and have renamed
the shared_ptr "sh" to limit the dimension of the diagrams.

3.6.1 API

The API presents all programming elements (classes, functions...) that a usual user
will use to build and execute a Hedgehog graph.

We implemented all the API calls useful to end-users with a focus on simplicity.
If the end-user uses an IDE, it should mainly show only the methods that are useful
to define and initiate the computations.

Base classes are provided in the hh::behavior namespace, they hide implemen-
tation details that have been isolated in the core part of the library. They expose
methods that the user may want to use or need to implement. Notably he/she can
inherit from these classes to adapt their behavior to his/her needs and implement
the kernel codes, by redefining some of their methods. The design to adapt the base
classes relies on the template method design pattern.

The cores represent all the internals required by the library to manage the nodes
from data I/O to memory management or computational kernel invocation. We
define the relation between the API and the core in Section 3.6.2.

Graph

Figure 3.9 presents the API that the end-user must use to design a Hedgehog
graph. After designing subclasses of Node (cf. next subsection) to define specific
computational nodes, the user instantiates objects of those classes before adding them
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hh::behavior::Node

+ core() : void

hh::behavior::MultiReceivers

+ inputs_t : tuple<Inputs...>

Inputs...

hh::behavior::Sender

+ output_t : Output

Output

hh::Graph

+input<T>(sh<T> input) : void
+output<T>(sh<T> output) : void
+addEdge<T,U>(sh<T> from, sh<U> to) : void
+executeGraph() : void
+pushData<T>(sh<T> data) : void
+getBlockingResult() : sh<GraphOutput>
+finishPushingData() : void
+waitForTermination() : void
+createDotFile(...) : void

GraphOutput, GraphInputs...

hh::AbstractPrinter

- uniqueNodes_ = set<core::CoreNode const *>

+ printGraphHeader(...) : void
...

hh::DotPrinter

+ printGraphHeader(...) final : void
...

hh::AbstractScheduler

+ create() : unique_ptr<AbstractScheduler>
+ spawnThreads(vector<sh<core::CoreNode> > &) : void
+ joinAll() : void

hh::DefaultScheduler

threads_ : unique_ptr<vector<thread> >
innerGraphs_ : unique_ptr<vector<sh<core::CoreNode> > >

+ create() : unique_ptr<AbstractScheduler>
+ spawnThreads(vector<sh<core::CoreNode> > &) : void
+ joinAll() : void

Figure 3.9: UML class diagram of the graph modeling 6

to an object of class Graph, using methods input, output or addEdge (as presented
in Section 3.5.3), thereby describing the whole desired computational process.

Classes MultiReceivers and Sender, inheriting from Node, have been defined
to represent respectively a node that can receive inputs of multiple types and can
send an output. By specialization, the graph is, (1) a node because it has a core,
(2) multi-receivers because it can receive data of multiple types, and (3) a sender
because it can send data of one type. This induces a diamond inheritance between
these classes that is used for type cast in the different cores.

The figure presents the building methods input, output, and addEdge and the exe-
cution methods executeGraph, pushData, getBlockingResult, finishPushingData,
WaitForTermination, and createDotFile. executeGraph does the task copies and
attaches the threads. pushData allows sending data to the graph. getBlockingResult

6In UML, a class or method name in italic font means abstract.
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allows getting data from the graph. finishPushingData signals to the graph that
no more input data will be sent to it; this signal enables the shutdown in cascade
of the graph’s nodes when they have finished processing their input data (with the
default behavior).

When connecting a node into the graph, type checking has to take place. Method
input for example is only defined (compile-time checking that validates the overload
of the method) if the argument object T is a Hedgehog node that can receive data
(i.e., of type MultiReceivers) and is compatible with the graph (i.e., its set of
input types is a subset of the graph’s set of input types). In this method, we only
know that T is a MultiReceivers, but do not know about its real type: a graph, a
task, or another compatible class defined by the user. Moreover, we have the same
situation (1) between the Sender class and the output method and (2) between the
MultiReceivers and Sender classes and the addEdge method.

A graph uses an AbstractPrinter class to gather metrics from its nodes and vi-
sualizes them, via the DotPrinter methods available in the library (cf. Section 4.1.1).
As presented in Section 3.5.3, the graph uses an AbstractScheduler class to manage
its threads (the DefaultScheduler only creates the threads and attaches them to
tasks).

Task

A task (of base abstract class AbstractTask), like a graph, is a node that can receive
and send data, but it can also perform some computation, as shown by the UML
class diagram of Figure 3.10. The task inherits from the execute interface for each of
its input types to define a specific computation for each one, while the graph does
not.

This computation is made available through the Execute abstract class, which
class defines a method execute for an input type as argument. This means that
because the AbstractTask class can accept multiple input types (it has TaskInputs
as a template parameter pack), it inherits multiple times from class Execute<T>
with different values for T (each one of template parameter pack TaskInputs).

For example, the instantiation AbstractTask<O, A, B, C> inherits three times
from the Execute<T> class with T = A, T = B, and T = C. The pure virtual method
execute will need to be defined three times, one per input, when the end-user will
define its own task class inheriting from AbstractTask<O, A, B, C>:

• void execute(std::shared_ptr<A>),
• void execute(std::shared_ptr<B>),
• void execute(std::shared_ptr<C>).

This design also adds some type safety because it avoids constructing multiple
inheritances of the same type, as without virtual inheritance, a class can not inherit
multiple times from the same class. We therefore avoid this kind of construction:
AbstractTask<O, A, A>. A check is also done at compile-time to give a proper
error message and avoid compiler automatic messages.

The methods of AbstractTask define the steps of the execution cycle of a
task (Section 3.5.1) : initialize, shutdown, canTerminate, and copy. The other
methods help the end-user connect and use a memory manager.
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- memoryManager_ : sh<MemoryManager <TaskOutput> >

+ addResult(sh<TaskOutput> output) : void
+ connectMemoryManager(sh<MemoryManager<TaskOutput> > mm) : void
+ getManagedMemory() : sh<TaskOutput>
+ initialize() : void
+ shutdown() : void
+ canTerminate() : bool
+ copy() : sh<AbstractTask<TaskOutput, TaskInputs...> >

TaskOutput, TaskInputs...

hh::MemoryManager

- pool_ : unique_ptr<behavior::Pool<ManagedMemory> >
# memoryManagerMutex_ : mutex

+ MemoryManager(size_t const &capacity)
+ getManagedMemory() : sh<ManagedMemory>
+ recycleMemory(sh<MemoryData<ManagedMemory> > mm) : void
+ initialize() : void

ManagedMemory

hh::StaticMemoryManager

- args_ : tuple<Args...>

+ StaticMemoryManager(size_t const &capacity, Args ... args)
+ initialize() final : void

ManagedMemory, Args...

hh::MemoryData

- memoryManager_ : MemoryManager <ManagedMemory>*

+ returnToMemoryManager() : void
+ canBeRecycled() : bool
+ recycle() : void

ManagedMemory

An AbstractTask can get
MemoryData from its
MemoryManager

An AbstractTask can get
MemoryData from its
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Figure 3.10: UML class diagram of the task modeling 6
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A memory manager can be attached to a task to throttle the memory produced
by this task from this point in the graph (cf. Section 3.5.1). The task can then get
memory out of the manager by calling the method getManagedMemory.

The base class MemoryManager populates its pool at construction with default
constructed objects of type MemoryData. The specialization StaticMemoryManager
populates its pool with MemoryData objects constructed with the arguments args
received and transferred by the constructor of the manager. For example, a memory
manager of type MemoryManager<A> creates a pool with A instances constructed with
constructor A(). The memory manager StaticMemoryManager<A, int, float, Z>
creates a pool with A instances constructed with constructor A(int, float, Z).

Not all types can be managed by a memory manager; the type needs to implement
the interface MemoryData. This is different from HTGS where all types flowing in
the graph needed to implement the IData interface; in Hedgehog, only the types
managed by the memory manager need to implement a specific interface. This
is needed because memory data must know which memory manager so it can be
produced and returned to it from anywhere in the graph or outside of the graph.
The return to the memory manager by calling method returnToMemoryManager will
start a recycle mechanism. The idea is to clean a piece of data in order to be reused
afterwards. The data is cleaned with the method recycle. Because a managed data
can be used by many nodes, it may need to be returned multiple times before being
recycled. This is the role of the canBeRecycled method; it determines if the data
needs to be recycled and made available to the pool now or in a later return.

Specialized tasks

Hedgehog defines other specialized tasks from the AbstractTask class as shown in
Figure 3.11.

The AbstractCUDATask class defines a task specialized for CUDA computations
on Nvidia devices. To achieve a computation on a GPU, we need to associate the task
thread to the device. This is done by creating an Nvidia stream on this thread to the
GPU during the task’s initialization. During this phase, peer access is also enabled
if needed; the stream is destroyed during the shutdown phase. Both initialization
and shutdown phases for CUDA tasks follow a specific pattern defined in the final
redefinition of methods initialize and shutdown inherited from AbstractTask.
The customization of these two steps is still partially/locally possible for the end-user
by redefining methods initializeCuda and shutdownCuda.

The state manager is another special type of task. However, it cannot di-
rectly inherit from AbstractTask because of the execute method that needs to
be defined for each input type (from the StateInputs pack) to manage and per-
form the execution on the state as presented in Section 3.5.2, which is done in
the StateManagerExecuteDefinition class for a given input type StateInput.
Similarly, the AbstractTask inherits multiple times from the Execute class, the
StateManager inherits multiple times from StateManagerExecuteDefinition for
each type in StateInputs pack.

The AbstractState inherits from the Execute class (the same base class as
AbstractTask), once per input type in StateInputs pack, to define its computation
kernels. It also has a private list of output data and a mutex for its execution and
management by multiple state managers.
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Figure 3.11: UML class diagram of specialized tasks modeling 6
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Execution pipeline

The execution pipeline is a special node type that acts as a wrapper around a graph
to implement multi-GPU computation, as shown in Figure 3.12.
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+ canTerminate() : bool
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+ sendToGraph(sh<GraphInput> &data, size_t const &graphId) : bool
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+ AbstractExecutionPipeline(sh<Graph<GraphOutput, GraphInputs...» graph, size_t const &duplications, bool iota)

GraphOutput, GraphInputs...

hh::Graph

input(sh<UserDefinedInput> input) : void
output(sh<UserDefinedOutput> output) : void
addEdge(sh<UserDefinedSender> from, sh<UserDefinedMultiReceiver> to) : void
executeGraph() : void
pushData(sh<Input> data) : void
getBlockingResult() : sh<GraphOutput>
finishPushingData() : void
waitForTermination() : void
createDotFile(...) : void

GraphOutput, GraphInputs...

Figure 3.12: UML class diagram of the execution pipeline modeling 6

Its goal is to clone a graph duplications − 1 times and associate each graph
(including the original one) to different GPUs. The execution pipeline accepts the
same input types and output type as the graph it manages and can be connected
to any other graph as a single node. The specificity of the execution pipeline is
the multiple inheritance from SwitchRule for each input type to get an overload
of method sendToGraph for each input type. Each time a piece of data is sent to
the execution pipeline, the execution pipeline calls the corresponding sendToGraph
method (type deduction selects automatically the suitable overload). This method
returns true if the piece of data must be sent to the graph of identifier graphId, so
it is tested for every graph ID until the good one is found.

The graph copy mechanism is based on the visitor pattern [Gamma et al., 1994]
that will iterate over all the nodes of the graph to clone them. If the node is a graph,
then all of its nodes will also be cloned recursively.

If the node is a task or a state manager, it will be cloned by calling the copy
method. By default, a state manager will share the state it manages with its copies.
In the case of multi-GPU computations, this behavior allows managing computations
between GPUs, as it is possible to know in a thread-safe manner what piece of data
is available in all GPUs. If peer access is enabled, all the GPUs have access to the
memory of the other GPUs. If not, a piece of data can be sent to a task in order
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to transfer it from a device to where it is needed, or use unified memory that will
handle this automatically with a pre-fetching task before the data is needed to avoid
page faults.

Smart pointers

In order to offer the simplest and safest API possible, we chose to use smart pointers
to manage the data transferred between nodes of a graph. Smart pointers under the
form of shared_ptr are an implementation of a Resource acquisition is initialization
(RAII) technique [Stroustrup, 1997]. This is a paradigm change in the language for
managing memory in C++. Common memory management is based on how the piece
of memory is used, from when it is created with new to when it is destructed with
delete. This new technique is not focused on a manually managed life cycle of the
object but on the ownership of the data. The base mechanism behind a shared_ptr
is that the object is automatically destructed when the last owner loses sight of the
data.

This mechanism has three direct impacts on the usage of the library and the API.
The first one is the security of the library. The graph only accepts shared_ptr of
the nodes when it is constructed and keeps a copy of them. This means that when
the graph is destructed and if the user has not kept a reference to the graph’s nodes,
all registered nodes are safely destructed without calling explicitly their destructors.
If the user has kept references, they will be deallocated at program termination.

The second impact is about data transfer between nodes. Each piece of data is
wrapped into a shared_ptr, this lowers the latency because we do not copy the data
itself but only a [smart-]pointer. Indirectly, it also enables the broadcast mechanism,
the same piece of data can be sent and used by different nodes at the same time.

The third impact is the additional management needed by the API level to check
the acceptance of some nodes. For example, an input node of a graph needs to be
a receiver, a node as output needs to be a sender, and when connecting an edge
between two nodes, the first node needs to be a sender and the second needs to
be a receiver. These conditions are not sufficient but are the first checking step
that is needed at compile-time. We have implemented that through inheritance,
these nodes inherit from two interfaces to ensure these connections: Sender and
MultiReceivers. If we had used only raw pointers, we could have written for
a graph instance Graph<Output, Input1, Input2> the method output as void
output(Sender<Output> * nodeOutput). The checking would thus be done auto-
matically by the compiler, thanks to the inheritance principle: only the pointers to
objects of class Sender<Output> or any subclass are accepted by method output.

But, this type checking mechanism does not handle smart pointers as simply as it
handles raw pointers. If class A inherits from class B, a pointer of A (A*) can be stored
into a pointer of B (B*). However, a smart pointer of A (std::shared_ptr<A>) can
not be stored into a smart pointer of B (std::shared_ptr<B>).

To achieve the same behavior with smart pointers, we introduce two versions
of the Hedgehog library, the first one bases this inheritance check on template
metaprogramming techniques and is compatible with the C++ 17 norm (cf. Code 3.6);
the second version uses concepts and is compatible with the C++ 20 norm (cf.
Code 3.7).
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Source Code 3.6: Smart pointer checking on Hedgehog API v.1 (C++ 17)

1 template<
2 class UserDefinedSender,
3 class IsSender = typename std::enable_if_t<
4 std::is_base_of_v<
5 behavior::Sender<GraphOutput>, UserDefinedSender
6 >
7 >
8 >
9 void output(std::shared_ptr<UserDefinedSender> output) {/*...*/ }

Source Code 3.7: Smart pointer usage on Hedgehog API v.2 (C++ 20)

1 template<typename DynamicHedgehogNode>
2 concept HedgehogNode = std::is_base_of_v<
3 hh::behavior::Node,
4 DynamicHedgehogNode>;
5

6 template<typename DynamicHedgehogNode>
7 concept HedgehogMultiReceiver = HedgehogNode<DynamicHedgehogNode>
8 && std::is_base_of_v<
9 typename hh::helper::HelperMultiReceiversType<

10 typename DynamicHedgehogNode::inputs_t>::type,
11 DynamicHedgehogNode
12 >;
13

14 template<typename DynamicHedgehogNode>
15 concept HedgehogSender = HedgehogNode<DynamicHedgehogNode>
16 && std::is_base_of_v<
17 hh::behavior::Sender<
18 typename DynamicHedgehogNode::output_t
19 >,
20 DynamicHedgehogNode
21 >;
22

23 template<typename DynamicHedgehogNode>
24 concept HedgehogConnectableNode = HedgehogNode<DynamicHedgehogNode>
25 && HedgehogMultiReceiver<DynamicHedgehogNode>
26 && HedgehogSender<DynamicHedgehogNode>;
27

28 template<HedgehogConnectableNode UserDefinedOutput>
29 void output(std::shared_ptr<UserDefinedOutput> output){//...}

In the C++ 17 version, we need to first extract the type embedded into the
smart pointer (here UserDefinedSender), and then check if this type has the
good inheritance property. This is achieved with trait std::is_base_of_v that
returns true if type ((behavior::Sender<GraphOutput>)) is the base class of type
(UserDefinedSender). With this mechanism, we can filter which type is accept-
able by keeping the method for this type in the overload resolution thanks to the
enable_if construct 2.21 (cf. Section 2.3.6).

In C++ 20, we use concepts (cf. Section 2.3.8). We defined a base concept of what
is a Hedgehog node (HedgehogNode, lines 1-4), and build from this concept what is a
node that 1) can send data (concept HedgehogSender, lines 14-21), 2) can receive data
(concept HedgehogMultiReceiver, lines 6-12), and 3) is connectable so it can receive
and send data (HedgehogConnectableNode). HedgehogMultiReceiver uses a meta-
function HelperMultiReceiverType that constructs a MultiReceivers<Inputs...>
type from its input types (template parameter pack Inputs). We can then use these
concept definitions to add checking in our API (lines 28-29). We could have use
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HedgehogSender instead of HedgehogConnectableNode to be close of the previous
API, but we have preferred specifying a more restrictive constraint.

We have only presented the checking of method output, but the API has been
produced the same way for methods input and addEdge.

3.6.2 Core

Now that the structure of the API has been introduced (what is offered/accessible
to the user), we present in this section the cores, the internal representation of the
nodes.

Definition and relation with the API

Each of the API nodes is associated with a core, which defines the logic of a node.
The nodes and the cores are interdependent: the nodes define the user code like the
computation on the tasks (e.g., the block multiplication in the matrix multiplication);
the cores define the logic of the nodes (e.g., the task runtime cycle presented in
Figure 3.6) and all the internals needed to conduct the computation. Therefore,
if multiple nodes behave in the same manner, they will share the same core type.
In Table 3.1, we see that AbstractTask, AbstractCudaTask, and StateManager,
shares the same type of core CoreTask.

Node Core
Graph CoreGraph

AbstractTask CoreTask
AbstractCudaTask CoreTask

StateManager CoreTask
AbstractExecutionPipeline CoreDefaultExecutionPipeline

Table 3.1: Relation between the nodes and their cores

Core architecture

The cores are defined with an architecture close to the API. The proximity of both
architectures is meant to ease extensibility. However, they are different in numerous
ways, the core hierarchy is more complex with more layers. The concept of sender
and receiver that respectively sends and receives data is not precise enough. We need
a more complex communication layer. This part of the architecture is presented in
Figure 3.13. We decompose this communication into two parts: (1) a data transfer
part and (2) a notification part.

For memory, a node in Hedgehog can accept multiple input types and can
produce data from one output type only. To implement this, the data transfer part is
decomposed into three main interfaces: a sender, a receiver, and multi-receiver. The
sender is responsible for transferring data to a receiver, and because a node can accept
multiple input data types, a core inherits once from MultiReceivers that inherits
for each type from Receiver. The problem is that the data transfer is not identical
for all nodes. Let us consider, for example, the graph and the task kinds of nodes.
When a graph receives a piece of data, it needs to transfer it to all of its input nodes.
When a task receives a piece of data, it stores it into the input queue corresponding
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Figure 3.13: Simplified UML class diagram of the communication layer 6

to the data type. The QueueMultiReceivers and the GraphMultiReceivers inherit
both from MultiReceivers. These interfaces are sufficient to implement all data
transfers in Hedgehog, but we need to add a notification mechanism to wake up the
threads.

This notification mechanism follows a notification/slot architecture. It is composed
of a notifier that will signal potentially multiple slots when an action is done, for
example a piece of data has been sent. A notifier is attached to a sender and the
slot is attached to a multi-receiver. Then depending on the core that receives the
signal, the reaction is different.

We separate the data communication from the notification mechanisms to keep
the library modular and because the notification is not only used when a data is sent.
For example when a task terminates, it notifies its copies and its successor nodes of
its termination to ensure that all the nodes in the graph terminate properly.

For a task, the thread is woken up if it is in a waiting state or does not take
care of the notification if the task attached to the thread is already performing some
computation as shown in Figure 3.6. When ready to treat new input data, the task
locks its multi-receiver and therefore all of its receivers containing each a queue. We
chose to have a locking mechanism at the multi-receiver level and not at the receiver
level to avoid a heavy locking mechanism at the cost of a coarser grain control. The
mechanism to test if a queue is not empty and to pull a piece of data is a minimal
set of instructions in a critical section protected by a mutex, lowering the impact of
the coarse grain control, and not impacting too much the system latency 4.2.1.

For a graph, the notification mechanism is a bit different, it does not have a
thread attached to it so there is nothing to wake up.

We differentiate the graph that the end-user uses to conduct computations (the
outer graph) from the possible inner graphs that compose the outer graph. When
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an antecedent node is connected to an inner graph, it is in fact directly connected
to the input nodes of the inner graph. By symmetry, the output nodes of an inner
graph are connected to the successor nodes of the inner graph. The outer graph has
a core that is composed of hidden cores for the input and the output, namely the
CoreGraphSource and the CoreGraphSink of the graph.

We added these cores to ease the interactions with the graph in a transparent
manner for the end-user, he or she only sees a graph. When a piece of data is sent to
a graph, the CoreGraph transmits the data to its source, which knows all its input
nodes and sends the piece of data to them. When the output tasks produce output
data, they are all transferred to the sink that gathers them and waits for the user to
pop them.

When a graph is used inside another graph as a node, the source and the sink
are not used anymore to favor a direct connection to the inside nodes.

An execution pipeline uses two cores. The first, of class
CoreDefaultExecutionPipeline, defines how the pipeline behaves such as
the CoreTask does for the AbstractTask. It inherits from the CoreTask class, but
redefines some behaviors to use a CoreSwitch instance. This second core is used to
redirect the data flowing to the execution pipeline to the correct graph duplicate.

In Table 3.2, we sum up all the cores with the most precise interfaces they inherit
from. The one in italic are the cores that does not have a direct counterpart in the
API.
Core CoreGraphMultiReceivers CoreQueueMultiReceivers CoreQueueSender CoreExecute CoreTask
CoreGraph x
CoreTask x x x
CoreDefaultExecutionPipeline x
CoreSwitch x
CoreGraphSource x
CoreGraphSink x

Table 3.2: Inheritance table of the cores and their interfaces

The CoreExecute interface is made for calling the user implementation of the
execute method. Figure 3.14 presents the relationship between the core and the
API for an AbstractTask. All inheritance is presented, including the CoreExecute
interface.

3.6.3 Library extensibility

We have already explained that the differentiation between the core and the API is
to limit what the end-user sees and can interact with. However, the main reason
behind this architecture is the extensibility.

If a developer wants to create a new type of node that behaves internally like
a task, he/she can simply inherit from AbstractTask, which was done for the
AbstractCUDATask and the StateManager classes. We can also define a new kind
of core by inheriting from an existing one to change its behavior. Then if needed, we
just have to create a new node that uses this new core.

Finally, if a new behavior needs to be created, for example, a non-locking
communication, a developer can create a new sender and new receiver classes by
inheriting from Receiver, Sender, and/or MultiReceivers to add this extra feature.
The library uses solely the interface of these abstractions (i.e. the communication
classes like Sender). As such, any subclass that integrates a new behavior by
redefining some method should be compatible with the rest of the library.
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Figure 3.14: Simplified UML class diagram of the relation between the AbstractTask
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3.7 Conclusion
In this chapter, we have presented our heterogeneous coarse-grained parallel runtime
system, Hedgehog. Its execution model is based on a data-flow graph that works
without any scheduler, which contrasts with many existing task-based libraries.

Hedgehog is based on HTGS, while adding new features. Mainly, the multiple
input types and the output broadcast capabilities for any node of the data-flow graph
enable new possibilities to create more expressive graphs. Notably, the bookkeepers
from HTGS have been replaced by state managers to allow the generalization of the
broadcast mechanism. However, we kept from HTGS its approach for composing
graphs, its memory management for limiting the memory in the graph and staying
within the limits of GPUs, its graph duplication mechanism in execution pipelines
for multi-GPUs computation, and the logic of the API.

Hedgehog proposes a new architecture that separates what should be usable to
an end-user, and what he/she can extend to implement domain-specific algorithms,
from what is modifiable by advanced users who want to implement new task logic,
all this allowing diverse degrees of extensibility. For example, a new node which acts
like a classical task, requests only a specialization of a class from our API abstraction.
By contrast, a new way to transmit data requires specializing a class from our core
abstraction, while being fully compatible with the rest of the library.

The possibility for the user to keep the same model, from its early design to
its implementation and execution with Hedgehog, allows him/her to get perfor-
mance feedback that can be directly understandable. This enables what we call
experimentation for performance, which we present in the next chapter.
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Experimentation for performance

In this chapter, we present how the approach that we call experimentation for
performance can be achieved. The principle is to put the developer at the center
of all the decisions to get performance. The Hedgehog model is explicit: what is
designed by the end-user is what is actually executed. That is what we think to be
the first step to get performance, a developer cannot really improve something that
he or she does not fully understand.

However, this is not enough to get performance. Tools to give feedback on how
the computation has been conducted on a specific hardware are necessary, first for
debugging purpose, and then to identify possible ways of improvement of a parallel
design. For this purpose, we have developed costless visual profiling tools presented
in Section 4.1.

We explain in Section 4.3 how we conducted an experimentation for performance
to reach performance of real-life applications on various architectures: CPU only,
CPU with a GPU, CPU with multi-GPU. But before, Section 4.2 presents experiments
that focus on determining the intrinsic performance of the library, mainly the internal
data transfer latency and the cost of our profiling tools. The real-life applications
show different implementations of a matrix multiplication algorithm for homogeneous
and heterogeneous nodes, and a CPU-only LU decomposition with partial pivoting.
Experiments showing the achieved performance are discussed.

We conclude this chapter by presenting in Section 4.4 two domain-specific libraries
that we designed using Hedgehog. They aim at facilitating the design of linear algebra
and image processing parallel algorithms.

4.1 Profiling and feedback

In Hedgehog, the developer is at the center of our approach to optimize performance.
First, the library has been designed to be as easy as possible to design a parallel
algorithm with an explicit model and a strong separation of concerns. Secondly, in
order to help understand how the computation is performed on specific hardware,
and help to optimize the performance of an implementation, we provide few profiling
and feedback mechanisms.

There are three tools directly available: (1) the graphical representation (cf.
Section 4.1.1), (2) the signal handler (cf. Section 4.1.2), and (3) the NVTX integration
(cf. Section 4.1.3). We have made some tests to evaluate the cost of these profiling
tools in Section 4.2.2.
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Figure 4.1: DOT representation of the graph achieving a LU decomposition algorithm
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4.1.1 Graphical representation

The graphical representation, produced by an implementation of the Printer interface
in Hedgehog, is a Graphviz [Ellson et al., 2001] DOT file representing the executed
data-flow graph with measures collected during runtime. It is based on the visitor
design pattern [Gamma et al., 1994] that visits all nodes in the graph, all sub-graphs
recursively, and gathers metrics depending on the kind of visited node.

Figure 4.1 presents such an output of a graph achieving a LU decomposition
algorithm. Shapes are significant: the double circle is the source of the graph, the
dot at the bottom is the sink, the circles are the tasks, and the diamonds are the
state managers. All the nodes present a customizable color outline depending on
their accumulated execution or accumulated wait times. In this example, we chose
the execution time to be represented: blue is the fastest and red is the slowest.
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Figure 4.2: Graphical representation showing an execution pipeline

There are multiple options to represent the graph structure. As presented here,
all the threads of a task are gathered into one shape and the metrics are presented
with some statistics (average and standard deviation). It is possible to serve each
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thread on a different shape to have the performance per thread. It is also possible to
get some metrics about the queues: how many elements are currently in the queue
and what is the maximum size of the queue during the execution.

The metrics gathered for the tasks and state managers are the number of elements
received, the global node wait time (no data in queue available), the accumulated
dequeue (access to a data in a queue) time added to the accumulated execution time,
and the execution time per element. For the overall graph, we present the creation
time and the end-to-end execution time.

In this example, there is one task at the bottom (MatMulTask) that seems to
be the bottleneck because it has the highest execution time (it is in red). A way
to improve the overall execution would be to increase the degree of parallelism in
this task. This visual feedback used here provides an easy way to improve the
computation at a glance.

Not presented in this example, managed memory data are presented with thicker
arrows, and execution pipelines appear with the different graphs in a common
bounding rectangle with the switch redirecting the data as shown in Figure 4.2. The
switch is presented with a triangle in this figure, and the data of type A flowing in
the graph are managed by a memory manager.

4.1.2 Signal handler

Our feedback mechanism is not only useful to gain performance but also to debug.
A graph in Hedgehog can present some directed cycles and, if not handled properly
can result in a deadlock situation. A kernel that has not been developed properly
can also lead to a segmentation fault. In both cases, a signal can be sent to stop the
execution, either manually to stop a deadlock or automatically by the system in the
case of a segmentation fault.

We created a signal handler that will produce a DOT representation of the graph,
at reception of a registered signal (e.g. SIGTERM or SIGKILL) before exiting the
program. For example, Code 4.1 presents a graph with a directed cycle (lines 3-7)
and the usage of the GraphSignalHandler class to handle signals (lines 9-14). Its
template parameters are the output and input types of the graph. The directed cycle
is not taken care of (no override of canTerminate for all tasks t1, t2, and t3 of the
graph), in order to willingly produce a deadlock. Figure 4.3 presents the output
produced by the code execution after a SIGTERM signal is sent to the program.

We explicitly see that there is a directed cycle in the graph that needs to be
handled. With a look at the edges, between t2 and t3 there are 100 elements in the
queue (QS:100 ), indicating that there is a lot of stalling in this task compared to
the maximum queue size (MQS:100 ).

This output helps with solving the current problem of deadlock because of the
directed cycle that needs to be handled. Furthermore, there is a lot of waiting in
front of the tasks indicating that either the data are too small and the system is too
impacted by the inherent system latency and/or the tasks do not present enough
parallelism to empty the input queues in time.
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Graph x0x55eecb8973f8
Execution time:8.977s

Creation time:19.394ms

Source x0x55eecb897638 (0, 0)

t1 x0x55eecb895fd8 (0, 0)
Active input connection: 1

Active threads: 1
Number of Elements Received Per Task: 1.30534e+06

Wait Time: 6.073s
Dequeue + Execution Time: 1.429s

Execution Time Per Element: 1.03193us

int QS:0 MQS:100

t2 x0x55eecb8966c8 (0, 0)
Active input connection: 1

Active threads: 1
Number of Elements Received Per Task: 1.30534e+06

Wait Time: 7.349s
Dequeue + Execution Time: 188.894ms

Execution Time Per Element: 0.105842us

int QS:0 MQS:100

t3 x0x55eecb896db8 (0, 0)
Active input connection: 1

Active threads: 1
Number of Elements Received Per Task: 1.30524e+06

Wait Time: 5.729s
Dequeue + Execution Time: 1.597s

Execution Time Per Element: 1.08303us

int QS:100 MQS:100

int QS:1305244 MQS:1305244

int QS:0 MQS:100

Figure 4.3: Graphical output produced by the signal handler
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Source Code 4.1: Usage of the signal handler for a graph with deadlock

1 int main(){
2 //...
3 g.input(t1);
4 g.addEdge(t1, t2);
5 g.addEdge(t2, t3);
6 g.addEdge(t3, t1);
7 g.output(t3);
8

9 using SigHandler = hh::GraphSignalHandler<int, int>;
10

11 SigHandler::registerGraph(&g);
12 SigHandler::registerSignal(SIGTERM);
13 SigHandler::setColorScheme(hh::ColorScheme::EXECUTION);
14 SigHandler::setStructureOptions(hh::StructureOptions::QUEUE);
15

16 g.executeGraph();
17 for (int i = 0; i < 100; ++i)

g.pushData(std::make_shared<int>(i));↪→

18 g.finishPushingData();
19 g.waitForTermination();
20 }

4.1.3 NVTX

The NVIDIA Tools Extension (NVTX)1 is an annotation library from NVIDIA. We
integrated the library annotations into Hedgehog to follow the different statuses of
the Hedgehog nodes. The statuses registered and followed are initialization, execution
(execute method), wait time, shutdown, acquisition, and release of managed memory.
This allows us to visualize how the different Hedgehog nodes behave in a time-series
graph generated with the NVIDIA Nsight Graphics tool2. As such, this library is
fully compatible with NVIDIA devices. So it is possible to follow the computation
on all the hardware (CPU and GPU) in a heterogeneous computational node. The
visualization highlights how the overlapping computation is achieved, which tasks are
waiting, and when. This new perspective allows us to study how the computation is
achieved dynamically and how the different nodes behave.

For example, in Figures 4.4 and 4.5, we show an output of the NVTX profiling
for a matrix multiplication implementation on a heterogeneous node, as designed
in Figure 4.10. The tasks named CUDA Product Task, Addition Task, and Prefetch
in GPU in the NVTX output correspond to the tasks respectively named GEMM,
Accumulation, and Prefetch In A or B in Figure 4.10.

The green rectangles are the execution steps, the orange rectangles are the memory
wait steps (when no more free piece of data is available in the memory manager,
the task is waiting), the red rectangles are the wait steps (waiting for input data
from the queues), and the brown rectangles are the shutdown steps (which may be
specialized by the end-user and executed once when the task is terminating, it is the
shutdown step in Figure 3.6).

The CUDA Execution Pipeline task consists mainly in a shutdown step because
it is unused in this example; the code is actually made for multi-GPU computation
but this run has only been achieved with one GPU.

1https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html
2https://developer.nvidia.com/nsight-graphics
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Figure 4.4: Full NVTX profiling of a heterogeneous matrix multiplication implemen-
tation

Figure 4.5: Zoom into NVTX profiling of a heterogeneous matrix multiplication
implementation

The CPU Addition Task is mostly waiting; its sole computation is to aggregate two
pieces of data together (MatrixC =MatrixC + Partial as shown in Section 4.3.1),
which is faster compared to the CUDA Product Task made on the GPU.

The GPU tasks CUDA Product Task and Prefetch In GPU appear in the figure
to overlap with the CPU tasks. The prefetch is efficient because it mainly consists
of waiting for memory to be available. The GPU main computation task (CUDA
Product Task) is mainly in an execution state, showing that the device is utilized at
most of its capacity by being fed as fast as possible by the prefetch task.

The StateManager task deals with pieces of data coming from CUDA Product
Task and Addition Task. It is mainly in a wait state; the computation is minimal,
which was expected because it should not do any heavy computation due of the state
locking mechanism. If the computation were longer, the state manager would easily
become a bottleneck.

This example shows the interest in such profiling tools when dealing with hetero-
geneous nodes. It exposes that tasks are interdependent, how they overlap, which
ones are waiting for memory operations to do the computation, and which ones start
right away. The full execution view shows also that both most heavy computation
tasks (Addition Task and CUDA Product Task) end almost at the same time, showing
that the work balance between these tasks is efficient. These insights, that clearly
refer to the nodes of the data-flow graph, help to debug and to improve a parallel
implementation, or to design better algorithms.

123



CHAPTER 4. EXPERIMENTATION FOR PERFORMANCE

4.2 Intrinsic performance

One of our principal concerns when developing Hedgehog was to made it easy to
develop with performance in mind. It is difficult to prove the ease of use of a library,
but we can provide some metrics about its performance. First, we propose to compare
Hedgehog and HTGS by measuring their latencies, the duration to send a piece of
data between two tasks, in Section 4.2.1. Then, in Section 4.2.2, we present the cost
of our feedback mechanism. Finally, in Section 4.3, we present performance results
of matrix multiplication and LU decomposition implementations.

4.2.1 Data transfer latency

Hedgehog inherits from HTGS the execution model as a whole and how an end-user
interacts with the graph. When designing Hedgehog, we wanted to have a system
that works at least as efficiently as HTGS. The problem is that Hedgehog adds
capabilities in the way a graph is expressed (nodes with multiple inputs) and others
are simply expressed differently (state manager versus bookkeeper). So, instead
of comparing implementations that will inherently present differences in terms of
execution, we thought more relevant to compare the latencies in both systems.

We call latency the atomic duration to send a piece of data from a node to
another. This duration is variable because the tasks defined with multiple inputs
have more work to do than a task with only one input and multi-threaded tasks will
share the input queue among the different task copies.

Codes used to achieve this comparison are available in appendices B and C. The
main idea of the test consists in a simple graph with only one multi-threaded task
that does nothing, so the received data is just transferred to the next node (here
to the output of the graph). This task can receive a variable number of different
input types in Hedgehog and a structure containing data of different types in HTGS.
1,000,000 elements of different types are sent into the graph. The time between the
moment the first piece of data is sent and when the graph terminates is measured.
This duration is divided by the number of elements sent to have an estimate of
the latency. We repeat this operation for different number of threads attached to
the task and for different number of input types. We have gathered these latency
measurements in Figure 4.6.

The blue, red, and brown series show the latency measurements for Hedgehog,
depending on the number of inputs of the tasks, and the black one shows HTGS
measurements. Hedgehog presents a latency from 1µs to 10µs. HTGS is only
presented in one series because the nodes can only have one input type. We have
made those measurements for different numbers of threads per task.

We see that in the fairest comparison possible with one input type for Hedgehog
and HTGS, we achieve a lower latency in Hedgehog than in HTGS. We have the
same analysis with 5 input types per task. We need to have 10 different input types
for a receiving node with a high thread count to have higher latency in Hedgehog
than in HTGS. This measure is important because (1) this is an indivisible amount
of time to transmit a piece of data between two nodes and (2) it determines the
granularity of the library parallelism.

The amount of work for each kernel needs to be big enough to balance the latency.
This can be adjusted by changing the size of the pieces of data, the block size, stream-
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ing through the graph. If the size is “too small”, then the underlying hardware may
be underutilized, because some tasks do not execute enough instructions compared to
the system latency. If the block size is “too big”, then this will reduce the parallelism
in Hedgehog because fewer pieces of data will feed the nodes. The number of data
items streaming through the graph affects the degree of parallelism that can be
achieved.
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Figure 4.6: Hedgehog and HTGS latency for different task’s number of threads

The number of threads assigned to each task will also determine how many ele-
ments a task can process in parallel. Setting this number too high can be detrimental
if the processor gets oversubscribed. The best methodology for approaching compu-
tation in Hedgehog is setting values that the developer estimates are good enough,
based on his/her experience, for a first run. This run will be used to generate the
DOT file feedback, which will allow identifying bottlenecks, and will help determining
better parameters (number of threads and block size) to improve the performance
for a specific architecture.

4.2.2 Profiling cost

In Section 4.1, we presented different profiling tools embedded into Hedgehog. We
essentially have two profiling approaches: (1) in our implementation the visitor
pattern can annotate the data-flow graph with performance measures in a graphical
DOT representation, and (2) the integration of the NVTX library to get detailed
profiling of the steps of tasks. In order to analyze the impact of these profiling tools,
we propose the following statistical analysis.

We compare the performance of Hedgehog’s first tutorial (Hadamard product) 3,
with and without profiling. The Hadamard product is an element wise product of
two matrices. To parallelize the computation, we decompose the matrices into blocks.
We execute it 1000 times on 16k × 16k matrices and 2k × 2k blocks on a Mac Book
Pro Mid 2015, results are shown in Figure 4.7. This figure shows different end-to-end
algorithm execution durations placed into time bins.

3https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial1.html
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Figure 4.7: Hadamard product using Hedgehog, with and without profiling

We denote X1 (respectively X2) as the execution time without (respectively with)
profiling. Because of the high number of experiments and thanks to the central limit
theorem, the experimental averages, noted X1 and X2, are distributed following a
normal distribution.

We pose X =
X1 −X2√
S2
1

N
+
S2
2

N

which follows a normal distribution of expectation

µ1 − µ2 (µ1 and µ2 are expectations of X1 and X2 respectively) and variance σ2 = 1.
S2
1 and S2

2 are estimators of σ2
1 and σ2

2 (variances of X1 and X2 respectively).
We test the statistical hypothesis that µ1 = µ2 (the null hypothesis): there is on

average no statistical difference between a computation with and without profiling.
Consequently, X is transformed into a standard normal distribution.

The size of our sample is N = 1000. For this sample, the values of X1 and X2

are respectively x1 = 1742.28ms and x2 = 1743.06ms, and the estimations of the
variances σ2

1 and σ2
2 are respectively s21 = 14.03ms and s22 = 12.49ms. With this

sample, the value of X is x = −1.32, whose p-value is 0.4066, so we can accept the
null hypothesis.

Therefore, the average execution runtime with or without profiling does not
differ significantly. We believe this is because we gather performance metrics at the
node level, which is far less intensive than fine-grained profiling approaches, such as
measuring all function invocations.

4.3 Real-life experiments

The experiments presented previously are simple graphs to highlight the measure-
ments. To present real-life parallel computation, we propose in a first section to study
matrix multiplication. We present our implementation strategy and our choices, from
a CPU-only implementation to an advanced multi-GPU implementation. We also
show some results for the latter one. We then present a parallel implementation of a
LU decomposition with partial pivoting and some CPU-only results.
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4.3.1 Matrix multiplication

For matrix multiplication implementations, we compared our results with ground
truth results from the OpenBLAS implementation. The difference between our
implementations and OpenBLAS has to be less than 3 × ε, ε being the hardware
precision of the float number representation used. This threshold has been determined
with a statistical analysis presented in Annex D.

We propose three implementations for the matrix multiplication algorithm: CPU
only in Section 4.3.1, CPU with one NVIDIA GPU in Section 4.3.1, and CPU with
multi-GPU in Section 4.3.1.

CPU only matrix multiplication

The first implementation that we propose is CPU only. We use the graph (cf.
Figure 1.2) that we have presented in Section 1.7.2. The code is taken from Hedgehog
tutorial 3 4. The algorithm takes as input matrices A, B, and C, and compute
C ′ = A×B +C. A is a n×m matrix, B is a m× p matrix, and C is a n× p matrix
defined as shown in Equations 4.1.

A =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

... . . . ...
an,1 an,2 · · · an,m

B =


b1,1 b1,2 · · · b1,p
b2,1 b2,2 · · · b2,p
...

... . . . ...
bm,1 bm,2 · · · bm,p



C =


c1,1 c1,2 · · · c1,p
c2,1 c2,2 · · · c2,p
...

... . . . ...
cn,1 cn,2 · · · cn,p


(4.1)

In order to get performance by parallelizing the algorithm, we propose to decom-
pose the matrices into blocks. This decomposition forms matrices of blocks A, B,
and C of dimension i× j, j × k, and i× k respectively presented in Equation 4.2.
The algorithm can be expressed: C ′i,k = Ci,k +

∑j
t=1Ai,t ×Bt,k.

A =


A1,1 A1,2 · · · A1,j

A2,1 A2,2 · · · A2,j
...

... . . . ...
Ai,1 Ai,2 · · · Ai,j

B =


B1,1 B1,2 · · · B1,k

B2,1 B2,2 · · · B2,k
...

... . . . ...
Bj,1 Bj,2 · · · Bj,k



C =


C1,1 C1,2 · · · C1,k

C2,1 C2,2 · · · C2,k
...

... . . . ...
Ci,1 Ci,2 · · · Ci,k


(4.2)

We can decompose the algorithm in two main steps, the block multiplication
between blocks of A and B (Pi,k,t = Ai,t × Bt,k) and the accumulation into C’ :
C ′i,k = Ci,k+

∑j
t=1 Pi,k,t. We pose Pi,k,t as the partial blocks produced by the product

task. The block matrix multiplication can be achieved with a call to the gemmm
routine from OpenBLAS to reuse its optimized implementation as presented in

4https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial3.html
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Code 4.2. The Order template parameter is used to indicate the matrix leading
dimension (row or column based).

Source Code 4.2: Product task, from CPU matrix multiplication

1 template<class Type, Order Ord = Order::Row>
2 class ProductTask : public hh::AbstractTask<
3 MatrixBlockData<Type, 'p', Ord>,
4 std::pair<
5 std::shared_ptr<MatrixBlockData<Type, 'a', Ord>>,
6 std::shared_ptr<MatrixBlockData<Type, 'b', Ord>> >
7 > {
8 //...
9 void execute(std::shared_ptr<

10 std::pair<
11 std::shared_ptr<MatrixBlockData<Type, 'a', Ord>>,
12 std::shared_ptr<MatrixBlockData<Type, 'b', Ord>> >
13 > ptr) override {
14 auto matA = ptr->first;
15 auto matB = ptr->second;
16 auto matP = new Type[matA->blockSizeHeight() *

matB->blockSizeWidth()]();↪→
17

18 auto res = std::make_shared<MatrixBlockData<Type, 'p',
Ord>>(...);↪→

19

20 if constexpr(std::is_same_v<Type, float>) cblas_sgemm(...);
21 else if (std::is_same_v<Type, double>) cblas_dgemm(...);
22 else {
23 std::cerr << "The matrix can't be multiplied" << std::endl;
24 exit(43);
25 }
26 this->addResult(res);
27 }
28 };

The accumulation (Code 4.3) into C is only an in-place summation of two matrix
blocks.

Source Code 4.3: Addition task, from CPU matrix multiplication

1 template<class Type, Order Ord = Order::Row>
2 class AdditionTask : public hh::AbstractTask<
3 MatrixBlockData<Type, 'c', Ord>,
4 std::pair<
5 std::shared_ptr<MatrixBlockData<Type, 'c', Ord>>,
6 std::shared_ptr<MatrixBlockData<Type, 'p', Ord>> >
7 > {
8 //...
9 void execute(std::shared_ptr<

10 std::pair<
11 std::shared_ptr<MatrixBlockData<Type, 'c', Ord>>,
12 std::shared_ptr<MatrixBlockData<Type, 'p', Ord>> >
13 > ptr) override {
14 auto c = ptr->first;
15 auto p = ptr->second;
16

17 if constexpr (Ord == Order::Row) {
18 for (size_t i = 0; i < c->blockSizeHeight(); ++i)
19 for (size_t j = 0; j < c->blockSizeWidth(); ++j)
20 c->blockData()[i * c->leadingDimension() + j] +=

p->blockData()[i * p->leadingDimension() + j];↪→

21 } else {
22 for (size_t j = 0; j < c->blockSizeWidth(); ++j)
23 for (size_t i = 0; i < c->blockSizeHeight(); ++i)

128



4.3. REAL-LIFE EXPERIMENTS

24 c->blockData()[j * c->leadingDimension() + i] +=
p->blockData()[j * p->leadingDimension() + i];↪→

25 }
26

27 delete[] p->blockData();
28 this->addResult(c);
29 }
30 };

At this point, there are two problems. First, we push complete matrices into the
graph and we manipulate blocks inside the graph. Second, not all blocks need to
be multiplied or accumulated altogether. To recall, a block of A, Ai,t, needs to be
multiplied with all the blocks of B of column j. The multiplication task receives a
compatible pair of blocks of A and B (created from blocks of A and B by a state
manager) in a "chaotic" order, and produces j partial blocks Pi,k,t. All of these
partial blocks Pi,k,t need to be accumulated in the same C block Ci,k.

To answer the second problem, we need to manage the flow of data. The two
traversals produce in a specific order blocks of A and B, but we do not know in
which order we receive them. In order to manage this flow, we add a state manager
in front of the product task to produce a pair of compatible blocks A and B when
it receives them. Each block is used multiple times, the state manager keeps them
locally as long as there are needed as shown in Code 4.4.

Source Code 4.4: Input state, from CPU matrix multiplication

1 template<class Type, Order Ord = Order::Row>
2 class InputBlockState : public hh::AbstractState<
3 std::pair<
4 std::shared_ptr<MatrixBlockData<Type, 'a', Ord>>,
5 std::shared_ptr<MatrixBlockData<Type, 'b', Ord>> >,
6 MatrixBlockData<Type, 'a', Ord>, MatrixBlockData<Type, 'b', Ord>
7 > {
8 //...
9 void execute(std::shared_ptr<MatrixBlockData<Type, 'a', Ord>> ptr)

override {↪→

10 // Store the received block of A
11 for(size_t jB = 0; jB < gridWidthRight_; ++jB)
12 if (/* A compatible block of B is available */ ) {
13 // Update the time to live of A block
14 // If time to live is 0, remove local reference
15 // Create a pair of blocks A and B => "res"
16 this->push(res);
17 }
18 }
19

20 void execute(std::shared_ptr<MatrixBlockData<Type, 'b', Ord>> ptr)
override {↪→

21 // Store the received block of B
22 for(size_t iA = 0; iA < gridHeightLeft_; ++iA)
23 if (/* A compatible block of A is available */ ) {
24 // Update the time to live of B block
25 // If time to live is 0, remove local reference
26 // create a pair of blocks A and B => "res"
27 this->push(res);
28 }
29 }
30 };

To split the matrices into blocks, we created two traversal tasks, one that traverses
the matrix in row (Code 4.5) and the second that traverses the matrix in column
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to create the matrix blocks. This way we can optimize the flow of data to have
compatible blocks faster from matrices A and B, instead of traversing both of them
in a row fashion.

Source Code 4.5: Row traversal task, from CPU matrix multiplication

1 template<class Type, char Id, Order Ord>
2 class MatrixRowTraversalTask : public hh::AbstractTask<
3 MatrixBlockData<Type, Id, Ord>, MatrixData<Type, Id, Ord> > {
4 //...
5 void execute(std::shared_ptr<MatrixData<Type, Id, Ord>> ptr)

override {↪→

6 for (size_t iGrid = 0; iGrid < ptr->numBlocksRows(); ++iGrid)
7 for (size_t jGrid = 0; jGrid < ptr->numBlocksCols(); ++jGrid)
8 if constexpr (Ord == Order::Row)
9 this->addResult(

10 std::make_shared<MatrixBlockData<Type, Id, Ord>>(...)
11 );
12 else
13 this->addResult(
14 std::make_shared<MatrixBlockData<Type, Id, Ord>>(...)
15 );
16 }
17 };

The product task needs to have compatible blocks of A and B (
∑j

t=1Ai,t ×Bt,k).
To execute this task as efficiently as possible, it is best to traverse A in row order
and B in column order to produce the blocks. This way, compatible blocks of A
and B can be quickly paired to be multiplied. Note here, that the choice of the
traversal of C is less impactful because these blocks are used later in the graph for
the accumulation.

Finally, we need a state manager to handle the accumulation into C blocks. We
have the C blocks coming from the matrix C traversal and partial blocks P coming
from the product tasks. The accumulation task accumulates P blocks into blocks
of C ; the resulting block C is the output of the task that is also sent back to the
memory manager. The core computation of the state is to form a pair of blocks C
and P, P coming from the product task, and C coming either from the traversal or
the accumulation task. There is another problem to tackle there: the directed cycle
between the state manager and the accumulation task. We know in advance how
many times a specific block of C needs to be accumulated: j times. We can compute
then the global task time to live which is the number of blocks in C multiplied
by t (named ttl in Code 4.6). We chose for each block to store how many times
each C block has been accumulated and to stop the task when all blocks have been
accumulated the right number of times. This state is presented in Code 4.6, its state
manager that ultimately breaks the cycle is presented in Code 4.7.

Source Code 4.6: Partial computation state, from CPU matrix multiplication

1 template<class Type, Order Ord = Order::Row>
2 class PartialComputationState : public hh::AbstractState<
3 std::pair<
4 std::shared_ptr<MatrixBlockData<Type, 'c', Ord>>,
5 std::shared_ptr<MatrixBlockData<Type, 'p', Ord>> >,
6 MatrixBlockData<Type, 'c', Ord>, MatrixBlockData<Type, 'p', Ord>
7 > {
8 //...
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9 void execute(std::shared_ptr<MatrixBlockData<Type, 'c', Ord>> ptr)
override {↪→

10 if (/* P block is available at same position as C block */ ) {
11 // Create a pair of C and P
12 // Push the pair in output queue
13 // Decrements the time to live
14 }
15 else // Store the received C block
16 }
17

18 void execute(std::shared_ptr<MatrixBlockData<Type, 'p', Ord>> ptr)
override {↪→

19 if (/* C Block is available at same position as P block */ ) {
20 // Create a pair of C and P
21 // Push the pair in output queue
22 // Decrements the time to live
23 }
24 else // Stores the received P block
25 }
26

27 bool isDone() { return ttl_ == 0; };
28 };

Source Code 4.7: Partial computation state manager, from CPU matrix multiplication

1 template<class Type, Order Ord = Order::Row>
2 class PartialComputationStateManager : public hh::StateManager<
3 std::pair<
4 std::shared_ptr<MatrixBlockData<Type, 'c', Ord>>,
5 std::shared_ptr<MatrixBlockData<Type, 'p', Ord>> >,
6 MatrixBlockData<Type, 'c', Ord>, MatrixBlockData<Type, 'p', Ord>
7 > {
8 //...
9 // To break the cycle, the "canTerminate" method is overriden

10 bool canTerminate() override {
11 using state_t = PartialComputationState<Type,Ord>;
12 auto s = std::dynamic_pointer_cast<state_t>(this->state());
13 s->lock();
14 auto ret = s->isDone();
15 s->unlock();
16 return ret;
17 }
18 };

The last piece is a state manager attached to the output of the addition task that
will filter the final C blocks from the ones that need to be accumulated.

The execution of this graph on a Mac Book Pro Mid 2015, with 10000× 10000
float matrices divided into blocks of 2048× 2048 elements, and with 3 threads for
the addition and product tasks, produces the graphical output with performance
measurements presented in Appendix E. We see here that the most expensive part
of our algorithm is the product task, even with three threads. A way to improve the
overall computation duration would be to add more threads to this task.

Heterogeneous matrix multiplication

We now try to achieve the computation with both a CPU and a GPU. The code
presented in this section is from Hedgehog tutorial 45. To propose a heterogeneous

5https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial4.html
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implementation of the algorithm, we reuse the graph designed in the CPU-only
implementation.

When dealing with small matrices, it is often much better to just keep everything
in the GPU and copy the minimum amount of data back to the CPU. When dealing
with large matrices, we want to avoid excessive copies as much as possible. The
implementation presented targets large out-of-core matrices (i.e., ones that do not fit
into GPU memory).

We changed the traversal behavior to operate on a matching column of A with
its corresponding row of B. Doing so will reduce the amount of copies required when
doing the computation. However, it will also produce an entire copy of the result
matrix. To limit memory requirements for the result matrix, we copy the partial
results back to the CPU and perform the accumulation on the CPU.

We only change the block product part, because it is the most expensive task in
the graph and can benefit from the capabilities of the GPU computation. Moreover,
the matrices do not fit in memory, since we limit the usage of C matrix to the CPU
and carry out the accumulation on CPU.

Source Code 4.8: Product task on GPU, from heterogeneous matrix multiplication

1 template<class Type>
2 class CudaProductTask : public AbstractCUDATask<
3 CudaMatrixBlockData<Type, 'p'>,
4 std::pair<
5 std::shared_ptr<CudaMatrixBlockData<Type, 'a'>>,
6 std::shared_ptr<CudaMatrixBlockData<Type, 'b'>> >
7 > {
8 private:
9 cublasHandle_t handle_ = {};

10 public:
11 //...
12 void initializeCuda() override {
13 checkCudaErrors(cublasCreate_v2(&handle_));
14 checkCudaErrors(cublasSetStream_v2(handle_, this->stream()));
15 }
16

17 void shutdownCuda() override {
18 checkCudaErrors(cublasDestroy_v2(handle_));
19 }
20

21 void execute(std::shared_ptr<
22 std::pair<
23 std::shared_ptr<CudaMatrixBlockData<Type, 'a'>>,
24 std::shared_ptr<CudaMatrixBlockData<Type, 'b'>> >
25 > ptr) override {
26 //...
27 cublasSgemm_v2(...);
28 // or
29 cublasDgemm_v2(...);
30 //...
31 this->addResult(res);
32 }
33 };

To port our first CPU-only implementation, we only need to rewrite the product
task (cf. Code 4.8) to do the computation on a GPU, and to add two tasks to deal
with the data motions (cf. Codes 4.9 and 4.10).

Thanks to the abstraction AbstractCUDATask, the CUDA methods cudaSet-
Device, cudaStreamCreate, cudaStreamDestroy, and optionally cudaDeviceCan-
AccessPeer are already managed. In the initialization phase (initializeCuda),
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we call cublasCreate_v2 and cublasSetStream_v2, because they are necessary for
cublasSgemm_v2 or cublasDgemm_v2 during the execution of the task. In the shut-
down phase (shutdownCuda), we need to destroy the handle created at initialization
by calling cublasDestroy_v2. The last modification for this task is to invoke the
kernel cublasSgemm_v2 or cublasDgemm_v2 depending on the matrix type.

As presented in Section 3.5.1, initializeCuda and shutdownCuda are the ini-
tialization and shutdown steps and are customizable by the end-user for CUDA
GPU computation. The initialize method from AbstractTask is redefined for
the AbstractCUDATask to bind the threads of a CUDA task to a GPU by call-
ing cudaSetDevice to create a CUDA stream cudaStreamCreate and to call the
customizable initialization step initializeCuda. The shutdown method is also
redefined to call the customizable shutdownCuda method and to destroy the CUDA
stream. Because the initialize method binds the threads to a device, all the
CUDA functions in initializeCuda, execute, and shutdownCuda are executed on
this device.

We need now to handle the communication between the CPU and the GPU. The
order of operations is first a copy of blocks of A and B in the GPU, then the product
task, and finally a copy of P blocks out of the GPU. We associate a memory manager
to the copy in GPU task, the following GPU computation is then throttled and can
run on matrices bigger than the GPU’s memory.

In Code 4.9, we show the implementation of the copy in GPU task. When a block
is received, it is embedded in a CudaMatrixBlockData that is acquired from the
attached memory manager. The GPU block is then sent to the device asynchronously
with cublasSetMatrixAsync. The addResult is called to inform the next Hedgehog
task (the CudaProductTask) that a block has been sent to the device.

Source Code 4.9: Copy in GPU task, from heterogeneous matrix multiplication

1 template<class MatrixType, char Id>
2 class CudaCopyInGpu : public hh::AbstractCUDATask<
3 CudaMatrixBlockData<MatrixType, Id>,
4 MatrixBlockData<MatrixType, Id, Order::Column> > {
5 //...
6 void execute(std::shared_ptr<MatrixBlockData<MatrixType, Id,

Order::Column>> ptr) override {↪→
7 std::shared_ptr<CudaMatrixBlockData<MatrixType, Id>> block =

this->getManagedMemory();↪→

8 //...
9 cublasSetMatrixAsync(/*...*/ );

10 //...
11 this->addResult(block);
12 }
13 };

The following operations are performed by the copy out GPU task, as presented
in Code 4.10. When the product task is done, we need to send back the result from
the device to the CPU (line 7) and to return the piece of data to the pool (line 8) in
order to allow another copy in. Once the block is in CPU memory, it can be sent to
the state manager and then to the accumulation task.

Source Code 4.10: Copy out GPU task, from heterogeneous matrix multiplication

1 template<class MatrixType>
2 class CudaCopyOutGpu : public hh::AbstractCUDATask<
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3 MatrixBlockData<MatrixType, 'p', Order::Column>,
4 CudaMatrixBlockData<MatrixType, 'p'> > {
5 //...
6 void execute(std::shared_ptr<CudaMatrixBlockData<MatrixType, 'p'>>

ptr) override {↪→

7 auto ret = ptr->copyToCPUMemory(this->stream());
8 ptr->returnToMemoryManager();
9 this->addResult(ret);

10 }
11 };

These modifications allow porting the CPU-only implementation to a heteroge-
neous implementation. The resulting data-flow graph is presented in Figure 4.8. The
edges holding a memory-managed piece of data are presented thicker than edges
holding normally managed data. The green tasks are the CUDA tasks that we have
added for this implementation. As usual, the tasks are represented as circles and the
memory managers as diamonds. This implementation is limited to one GPU only.
We will next discuss how to port this code to a multi-GPU node.
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CopyAIn

CopyBIn
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GEMM
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OutputS.M.

Figure 4.8: Data-flow graph of the heterogeneous matrix multiplication implementa-
tion

Multi-GPU matrix multiplication

The code presented in this section has been taken from Hedgehog tutorial 5 6. We
made some early decisions to achieve multi-GPU computation. First, the computation

6https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial5.html
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on all the devices is the same, so we can duplicate the computation on each of them
with an execution pipeline. Second, even if optional, we create a separate graph
type for the GPU tasks to separate more explicitly the code. Third, to get some
performance, we choose to be smart about how we send the blocks to the different
GPUs. We start by presenting the GPU’s task graph in Code 4.11. In the graph’s
constructor, the CUDA tasks and the memory managers mentioned in the previous
section are instantiated. Then, the data-flow graph is built as usual.

Source Code 4.11: Data-flow graph, from multi-GPU matrix multiplication

1 template<class MatrixType>
2 class CUDAComputationGraph : public hh::Graph<
3 MatrixBlockData<MatrixType, 'p', Order::Column>,
4 MatrixBlockData<MatrixType, 'a', Order::Column>,
5 MatrixBlockData<MatrixType, 'b', Order::Column> > {
6 public:
7 CUDAComputationGraph(/*...*/ ) : hh::Graph</*...*/ >("GPU Graph") {
8 //...
9 // Cuda tasks

10 auto copyInATask = /*...*/ ;
11 auto copyInBTask = /*...*/ ;
12 auto productTask = /*...*/ ;
13 auto copyOutTask = /*...*/ ;
14

15 // Memory managers
16 auto cudaMemoryManagerA = /*...*/ ;
17 auto cudaMemoryManagerB = /*...*/ ;
18 auto cudaMemoryManagerProduct = /*...*/ ;
19

20 // Connect the memory managers
21 productTask->connectMemoryManager(cudaMemoryManagerProduct);
22 copyInATask->connectMemoryManager(cudaMemoryManagerA);
23 copyInBTask->connectMemoryManager(cudaMemoryManagerB);
24

25 // State & state manager
26 auto stateInputBlock = /*...*/ ;
27 auto stateManagerInputBlock = /*...*/ ;
28

29 // Copy the blocks to the device (NVIDIA GPU)
30 this->input(copyInATask);
31 this->input(copyInBTask);
32

33 // Connect to state manager to get compatible blocks of A and B
34 this->addEdge(copyInATask, stateManagerInputBlock);
35 this->addEdge(copyInBTask, stateManagerInputBlock);
36

37 // Perform the CUDA product task
38 this->addEdge(stateManagerInputBlock, productTask);
39

40 // Send back the memory to the CPU
41 this->addEdge(productTask, copyOutTask);
42

43 // Send out the data
44 this->output(copyOutTask);
45 }
46 };

To use this graph on several GPUs, we can embed it into an execution pipeline
as shown in Code 4.12. The execution pipeline holding the different graphs is used
as any other node, it is connected to its predecessors and successor tasks.

Source Code 4.12: Usage of execution pipeline, from multi-GPU matrix multiplication
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1 // GPU Graph
2 auto cudaMatrixMultiplication =
3 std::make_shared<CUDAComputationGraph<MatrixType>>(n, m, p,
4 blockSize, numberThreadProduct);
5

6 // Execution pipeline
7 auto executionPipeline =
8 std::make_shared<MultiGPUExecPipeline<MatrixType>>(
9 cudaMatrixMultiplication, deviceIds.size(), deviceIds);

10

11 // Link the traversal tasks to the execution pipeline
12 matrixMultiplicationGraph.addEdge(taskTraversalA,
13 executionPipeline);
14 matrixMultiplicationGraph.addEdge(taskTraversalB,
15 executionPipeline);
16

17 // Link the execution pipeline to the state manager
18 matrixMultiplicationGraph.addEdge(executionPipeline,
19 stateManagerPartialComputation);

The only change needed in the implementation of the execution pipeline node is
to override the sendToGraph method when writing the node’s class to fully define
our execution pipeline as shown in Code 4.13.

Source Code 4.13: Definition of an execution pipeline, from multi-GPUs matrix
multiplication

1 template<class MatrixType>
2 class MultiGPUExecPipeline : public AbstractExecutionPipeline<
3 MatrixBlockData<MatrixType, 'p', Order::Column>,
4 MatrixBlockData<MatrixType, 'a', Order::Column>,
5 MatrixBlockData<MatrixType, 'b', Order::Column> > {
6 //...
7 bool sendToGraph(
8 std::shared_ptr<
9 MatrixBlockData<MatrixType, 'a', Order::Column>> &data,

10 size_t const &graphId) override {
11 return data->colIdx() % numberGraphDuplication_ == graphId;
12 }
13

14 bool sendToGraph(
15 std::shared_ptr<
16 MatrixBlockData<MatrixType, 'b', Order::Column>> &data,
17 size_t const &graphId) override {
18 return data->rowIdx() % numberGraphDuplication_ == graphId;
19 }
20 };

Our decomposition strategy is to send to the same GPU the matching columns of
A and rows of B in a round-robin fashion. This strategy allows us to minimize the
number of data motions to the devices and avoid inter-device communication. The
final data-flow graph is presented in Figure 4.9. In this figure, the dotted rectangles
are the duplicated GPU graphs that we have defined and the triangle is the switch
that redirects the different pieces of data to the wanted graphs.
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Figure 4.9: Data-flow graph of the multi-GPU matrix multiplication implementation

Advanced multi-GPU matrix multiplication

The most efficient multi-GPU implementation that we have developed and presented
is based on the previous implementation with more advanced CUDA features. The
code presented in this section is from Hedgehog Advanced Tutorial7. Its data-flow
graph can be represented by Figure 4.10.

Prefetch In
A or B

Input
state GEMM

Accumulation
stateAccumulation

Block Block Pair

Block

Pair

Block

Block

Sub-graph (1 per GPU)

Figure 4.10: Data-flow graph of the advanced multi-GPU matrix multiplication
implementation

7https://github.com/usnistgov/hedgehog-Tutorials/tree/master/advanced/
tutorial1
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In this graph, the diamonds are the state managers and the circles are the tasks,
the black ones being on CPU and the green ones on GPUs. The dotted rectangle
is the GPU graph duplicated in an execution pipeline for each GPU. Properties of
these different nodes are given in Table 4.1.

Table 4.1: Properties of the nodes used in the advanced multi-GPU matrix multipli-
cation implementation

Nodes Prefetch in Input state GEMM

Number of Threads 2
(1 stream per thread) 1 5

(1 stream per thread)

Process
Get MemA|B

Prefetch MemA|B to GPU
Create Event1

Pair MemA and MemB

Get MemP

Prefetch MemP to GPU
Synchronize Event1

GEMM call
Synchronize stream

Recycle MemA and MemB

Prefetch MemP to CPU
Create Event2

Nodes Accumulation State Accumulation
Number of Threads 1 N

Process Pair MemP with C
Synchronize Event2
C =MemP + C
Recycle MemP

Even if the implementation in Section 4.3.1 and this one both target multi-GPU
nodes, they present multiple differences.

First, we use CUDA unified memory8. This memory is in an address space
available to the CPU and the different devices. This data approach expects memory
to be contiguous, whereas in our previous implementations the data were stridden,
as they were only pointing to different locations in the matrix plus some metadata.
This is why we directly feed contiguous unified memory blocks of data from matrices
A, B, and C into the graph. These unified blocks are asynchronously prefetched into
the GPU or the CPU. The prefetching is synchronized using CUDA events when the
data is needed to be used. The memory managers are used to throttle how many
prefetches take place in parallel. The product task uses multiple threads to improve
the overlap of copying and computing, and provide concurrent kernel execution.

From the matrix decomposition to the product task, the blocks are in-flight.
Meaning that when we pair them in the state manager, they are in the process of
being sent to the devices, hiding totally the I/O cost. Given a 12 GB/s bandwidth,
it takes ≈ 20.8ms to send a block of 8k × 8k to the 3 tasks, plus the contention on
the product tasks (it has 4 threads).

We ran this implementation on a node with two Intel Xeon Silver 4216 CPUs
@2.1 GHz (16 physical cores, 32 logical cores) with 768 GiB DDR4 memory and 4
Tesla V100-PCIe with 32 GiB HBM2 GPU, for 64k× 64k single-precision matrices
decomposed in 8k × 8k blocks.

We present in Figure 4.11 the performance obtained with this last Hedgehog
implementation compared with NVIDIA implementations from the GPU-accelerated
libraries for basic linear algebra, cuBLASMg and cuBLAS-XT 9. With the optimal

8https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
9https://developer.nvidia.com/cublas
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block size on this configuration, we achieved a performance > 85% of the theoretical
peak across 4 GPUs.

1 2 3 4

10

20

30

40

50

60

Number of GPUs

T
F
LO

P
s

Hedgehog
cuBLAS-XT
cuBLASMg

Theoretical peak

Figure 4.11: Advanced multi-GPU matrix multiplication of 64k × 64k matrices
decomposed in 8k × 8k blocks

4.3.2 LU decomposition with partial pivoting

After showing the different phases of development of the matrix multiplication, we
present our implementation of the LU decomposition with partial pivoting. Like the
matrix multiplication algorithm, we decompose the matrix into blocks to parallelize
the algorithm, as presented in Figure 4.12. The implementation is taken from the
library HMBLib presented in Section 4.4.1.

(1) Gauss (2) Swap (3) Solve

(4) Update(5) Iterate

Figure 4.12: LU decomposition algorithm

The algorithm traverses the matrix from left to right (a block of columns),
defining the algorithm’s iterations. At each iteration the algorithm (1) does a
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Gaussian elimination on the panel, (2) swaps the rows on the right or left of the
panel, (3) solves the triangular matrix equation on the strip containing the top block,
(4) updates the matrix blocks (we decompose the panel in blocks and apply GEMM
on them in parallel), and (5) as soon as a panel has been updated, it is sent to the
Gaussian elimination. This method overlaps the update of the previous iterations
(steps 4-5) and the Gaussian elimination for the next iteration (step 1). The partial
pivoting drives our choice of using panels, lowering the degree of parallelism. Timothy
Blattner in his thesis [Blattner, 2016] conducted experiments over different task-
graphs for LU decomposition in order to improve the overall performance. The
resulting data-flow graph is shown in Figure 4.13, circles are tasks and diamonds are
state managers.
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Figure 4.13: Data-flow graph of LU decomposition with partial pivoting

This implementation uses multiple BLAS and LAPACK routines: (1) GETRF
for a LU factorization using partial pivoting with row interchanges, (2) LASWP for
row interchanges, (3) TRSM for solving a triangular matrix equation, and (4)GEMM
for matrix multiplication.

We tested this implementation on a compute node with two Intel Xeon E5-2680
@ 2.40 GHz with 28 physical cores (56 logical) and 512 GiB memory (AVX2, 256-
bit SIMD vector instruction, is activated). Each experiment was run 10 times for
different block sizes from 256× 256 to 4096× 4096, computing LU decomposition on
a 32k × 32k matrix.

From Figure 4.14, we see the importance of choosing the right block size. In this
setup, only a block size of 1024×1024 is able to get in par performance (≈ 238 versus
≈ 224 Gflops, for a 1.06× performance improvement) compared to the out-of-the-box
LAPACK implementation (getrf routine). This is why we have put the developer
at the center of our approach and gave him or her all the tools to debug and improve
the algorithms that need to be developed. Furthermore, with this block approach,
we are able to have a streaming ability as shown in Figure 4.15. In this figure, we
measure when the blocks are output and differentiate the first one from the others:
(1) the delay between the start of the algorithm and the output of the first block, (2)
the average delay between the output of two consecutive blocks.
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Figure 4.14: CPU implementation performance of LU decomposition with partial
pivoting

In fact, we are able to get partial result 42× faster for the first computed block
compared to the time needed by LAPACK to get the whole result. So if we chain
two graphs, our LU decomposition being the first graph, the second computation can
potentially start 42 times earlier than using LAPACK to perform LU decomposition.
We also see that on average the blocks are released faster than the first block,
showcasing the impact of overlapping computation of several blocks at the same
time.
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Figure 4.15: Block release time of CPU implementation of LU decomposition

4.4 Libraries based on Hedgehog

We present in this section two libraries constructed using Hedgehog. The first one is
closely related to the results from the real-life algorithm we have presented in the
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previous section. The second one is a high-performance accessor for loading (tiled)
files.

4.4.1 HMBLib

HMBLib, for Hedgehog Matrix Block Library, is a linear algebra library built on
Hedgehog [Kroiz et al., 2021] to help designing linear algebra algorithms. It proposes
abstraction to represent matrices and blocks that are useful to decompose the matrix
data and to feed a Hedgehog graph. A block is constructed with only a pointer to a
piece of matrix data and some metadata with it to help in the design.

The implementation and achieved results presented in Section 4.3.2 for LU decom-
position with partial pivoting came from this library. It also proposes implementations
for LU decomposition without partial pivoting and matrix multiplication on CPU.

In this last implementation, we get the same kind of results as for LU decompo-
sition with partial pivoting. These results are obtained on the same computer as
for the results already presented (two Xeon E5-2680 @ 2.40 GHz with 28 physical
cores - 56 logical - and 512 GiB Memory), over 10 runs for each experiment on a
matrix of 32k × 32k elements. We observe that the performance differs depending
on the block size. With this implementation, the best performance (≈660 Gflops) is
achieved with a block size of 2048× 2048 elements, as shown in Figure 4.16.

512 1,024 2,048 4,096 8,192

100

120

140

160

Block Size

R
un

ti
m
e
(s
)

Hedgehog
OpenBLAS (gemm)

Figure 4.16: Performance of HMBLib matrix multiplication implementation

Moreover, if we study the release rate of blocks, we see that we obtain the first
fully computed block 57 times faster with our library than the fully computed matrix
using OpenBLAS, and the impact of the overlapped computation on the release rate
of the following blocks, as shown in Figure 4.17.
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Figure 4.17: Block release time of CPU implementation of matrix multiplication
with HMBLib

4.4.2 FastLoader

The second library that we present here is FastLoader 10. It is an efficient open-source
parallel file accessor library, successor of FastImage, an image accessor library based
on HTGS. FastLoader proposes to access, with the same API, 2D or 3D, planar or
pyramidal, files. The data-flow graph of the library is presented in Figure 4.18.

The library never presents the full file to the end-user, but a portion called a
view. A view is a contiguous piece of data that is centered on a region of the file,
called a tile, plus the data of its surrounding area. The views, like the tiles, can be
in 2D or 3D, and are either on CPU memory or NVIDIA unified memory to help
with GPU computation.

When the end-user, through his or her algorithm (in red in the figure), requests
a view to the graph, the library will request the needed tiles from the file through
the Abstract Tile Loader abstraction (in blue in the figure). The core library is
agnostic towards file formats; only a specialized tile loader for a specific file format
accesses the file (in brown in the figure), does the necessary conversion depending
on what is requested by the user, and provides the data to the library. To get
performance, the tile loaders are used with multiple threads, and to avoid too many
I/O operations, tile caches are used to temporarily store file tiles.

When the view is fully constructed, it is sent to the algorithm. It is possible to
request multiple views at the same time, thereby improving the overall performance
by overlapping the different graph’s tasks. However, if we request unified memory,
we may want to stay in the limit of a GPU, and then memory managers (in violet in
the graph) have to be added for each sub-graph.

This library shows another usage of execution pipelines. Here, we do not have a
sub-graph per GPU, as we had for the matrix multiplication implementation with
multiple GPUs, but we have a sub-graph per pyramid level.

10https://github.com/usnistgov/FastLoader
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Figure 4.18: FastLoader data-flow graph

This library is recent and features are currently added to the library. We are
currently working on data bindings between FastLoader and OpenCV plus TensorRT
to ease the usage of the library for image processing and deep learning algorithms.
Efforts are put in place to propose a binding in Python and Java, to let users reluctant
to use C++ the possibility to use the library to access big files.

4.5 Conclusion

Hedgehog puts the developer at the center of the approach to design parallel algo-
rithms. The explicit data-flow model and the multiple costless graphical feedback
mechanisms available help the user to understand with details how the computa-
tion is really conducted on specific hardware, and allow him/her to iterate in the
implementation process to improve performance.

We have also shown that despite being explicit and accessible, the library is
totally amenable to building efficient parallel algorithms and also to creating libraries
to ease the design of domain-specific parallel algorithms. We briefly presented two
libraries, FastLoader for image processing and HMBLib for linear algebra, built upon
Hedgehog.

We have also shown that the data pipelining inherent in the model of Hedgehog
presents a latency between 1µs and 10µs to transfer a piece of data between two
nodes of the data-flow graph. The advanced multi-GPU implementation of the
matrix multiplication explained how to reach above 95% of the theoretical peak on a
node with 4 GPUs. With our LU decomposition CPU implementation, we showed
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that additionally to get good performance, we enabled, thanks to our block approach,
streaming properties that allow chaining algorithms more than 40 times sooner than
executing algorithms in sequence, each time waiting for the full result of the previous
task.

To the accessibility and performance of the library, we want to add safety in the
development of parallel algorithms. In the next chapter, we propose compile-time
mechanisms to secure the use of the library by the developer, and to detect potential
issues in the designed data-flow graph.
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Hedgehog at compile-time

Hedgehog provides an API for end-users to build a data-flow graph from separate
elements (tasks, managers, other graphs...) by connecting them together. During the
graph assembling phase, some checking is necessary to be performed at compile-time
by the library, to provide clear error or warning messages as soon as possible in the
design process. We would like as much of the checking as possible to take place
before running the program, to provide maximal guarantees to the end-user on the
built graph structure and avoid failure later at runtime. Furthermore, some IDEs
could be "smart" enough to provide the result of this checking while the developer is
still coding.

Some conformity checking can be done directly when connecting two elements,
for instance, examining the output type of a node to determine if it is compatible
with the input type of the node one wants to connect it with. We present in
Section 5.1 an approach for achieving this type of checking, using either template
metaprogramming’s usual techniques solely (cf. Section 2.3.9), or combined with
C++ 20’s concepts (cf. Section 2.3.8). As we have mentioned in Section 3.6.1, these
two approaches have been implemented in two versions of the library, one compliant
with C++ 17 (v.1) and the other one with C++ 20 (v.2).

More sophisticated analyses of the whole resulting graph structure can also
be performed at compile-time. For instance, one would be alerted of directed
cycles in the graph, which can lead to deadlocks if not handled properly before
runtime, or of data races that could occur when data are broadcast to multiple nodes
(possible concurrent read and write operations). This is made possible with constant
expressions as explained in Section 5.2, but it requires the graph to be handled
both at compile-time and runtime. That implies the end-user must separate his/her
design of a data-flow graph in two parts, and this necessitates a mechanism inside
the library that automatically merges those two parts. This advanced compile-time
functionality is compliant with C++ 20 (Hedgehog v.2).

In Section 5.3, we propose experiments on these checking capabilities to draw
some limits and determine the compile-time performance of these features.

5.1 Conformity checking at graph construction

When building a Hedgehog graph, an end-user needs to specialize different API
abstractions to create his or her own kinds of nodes. Nodes are then instantiated from
these user-defined classes and connected in a graph through our API, mainly methods
input, output, and addEdge of class Graph. These methods are template and the
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compiler usually deduces the true types bound to the template parameters when the
methods are called. More precisely, the compiler attempts to instantiate them, and
then use them, notably when connecting nodes, their respective type is normally
automatically deduced (cf. Section 2.3.3). However, we have to add constraints
on these template parameters that will be asserted during the instantiation of the
template methods (or template classes) to ensure compatibility on the node usage
when connecting nodes together.

5.1.1 Basic checking

In the simplest cases, the types needed to achieve checking are directly available
from the context. For example, a memory manager can be connected to a task using
method connectMemoryManager of class AbstractTask, and this operation should
be allowed only if the type handled by the memory manager, the same type as the
output type of the task (TaskOutput), has specific properties (i.e. inherits from
MemoryData and has a default constructor). Such checking can be achieved as shown
in Code 5.1.

Source Code 5.1: Static checking at memory manager connection

1 template<class TaskOutput, class... TaskInputs>
2 class AbstractTask {
3 //...
4 void

connectMemoryManager(std::shared_ptr<MemoryManager<TaskOutput>>
mm){

↪→
↪→

5 static_assert(
6 traits::is_managed_memory_v<TaskOutput>,
7 "The type given to the managed memory should inherit

\"MemoryData\", and be default constructible!");↪→
8 mm_ = mm;
9 }

10 //...
11 };

In this case, the context is the class AbstractTask. It presents immediately the
necessary information, the TaskOutput type, to constrain what type is accepted
by the connectMemoryManager method (line 4). Once this first filtering step is
done, a static_assert(p,m) tests at compile-time a predicate p (lines 5-7). The
predicate for this example is is_managed_memory_v: it tests if the type TaskOutput
is manageable through a MemoryManager, if not, we print an error message m in the
compiler’s output.

Not all checks in Hedgehog are as direct as this one; the following sections show
more sophisticated type checking tests and we discuss many ways of implementing
them.

5.1.2 Input node connection

To connect a node x as input of a graph g by calling g.input(x), the node
needs to (1) be a receiver and (2) share at least one input type with the graph.
As shown in Figure 5.1, if we consider g of type Graph<O1,I1,I2,I3>, node x
of type Node<O2,I1,I4> is compatible (left case in the figure), whereas of type
Node<02,I4,I5> is not (right case).
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Figure 5.1: Input conformity check between a node and a graph

Implementation with template metaprogramming

In the first version of Hedgehog, the check is made with template metaprogramming
techniques as shown in Code 5.2. Method input receives a shared pointer of type Node
(line 19), and there are two checks at compile-time: (1) Node is a MultiReceivers
(constraint at lines 9-14), (2) the input types of Node are compatible with those of
the graph (constraint at lines 15-17).

To achieve this test, we need first to get the input types of type Node (InputsN
at line 6); this is the type inputs_t, which is defined in superclass MultiReceivers
with a using statement and which provides a tuple with the input types. The same
technique is used to get the input types of the graph at lines 7-8. Later in this
section, the output type of a node will be accessed similarly, with the inner type
output_t defined in class Sender.

Source Code 5.2: Static checking of graph input method, using template metapro-
gramming

1 template<class GraphOutput, class... GraphInputs>
2 class Graph{
3 //...
4 template<
5 class Node,
6 class InputsN = typename Node::inputs_t,
7 class InputsG =
8 typename behavior::MultiReceivers<GraphInputs...>::inputs_t,
9 class isMultiReceiver = std::enable_if_t<

10 std::is_base_of_v<
11 typename helper::HelperMultiReceiversType<InputsN>::type,
12 Node
13 >
14 >,
15 class isInputCompatible = std::enable_if_t<
16 traits::is_included_v<InputsN, InputsG>
17 >
18 >
19 void input(std::shared_ptr<Node> input) { /*...*/ }
20 };

We test if type Node inherits from our multi-receiver class as shown at lines 9-14
of Code 5.2, using HelperMultiReceiversType defined in Code 5.3 that returns
class MultiReceivers instantiated with, as arguments, the input types of type Node.

Source Code 5.3: Helper to get MultiReceivers type from input type list
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1 // Primary version: only declaration
2 template<class Inputs>
3 struct HelperMultiReceiversType;
4

5 // Specialized version: the parameter is "tuple<Inputs...>"
6 template<class ...Inputs>
7 struct HelperMultiReceiversType<std::tuple<Inputs...>> {
8 using type = behavior::MultiReceivers<Inputs...>;
9 };

Finally, we need to check if at least one of the input types of Node is part of the
input types of the graph at lines 15-17 of Code 5.2. This test is achieved by trait
is_included (defined in Code 5.4) that is used in conjunction with the enable_if
metafunction to remove the input method from the overload resolution, and leading
to compilation error if providing a Node type failing this test.

Source Code 5.4: Metafunction checking if at least one of the set of types T1 is
included in set T2

1 // "T1" and "T2" must be tuples
2

3 // Primary version (hidden sub-part): only declaration
4 template<class T1, class T2, class Is>
5 struct _is_included_;
6

7 // Specialized version (hidden sub-part): generate sequence of
indexes to test each element↪→

8 template<class T1, class T2, std::size_t... Is>
9 struct _is_included_<

10 T1, T2,
11 std::integer_sequence<std::size_t, Is...> > {
12 static bool const
13 value = std::disjunction_v<
14 Contains<typename std::tuple_element<Is, T1>::type, T2>...
15 >;
16 };
17

18 // Primary version (visible part)
19 template<class T1, class T2>
20 struct is_included :
21 _is_included_<
22 T1, T2,
23 std::make_integer_sequence<
24 std::size_t, std::tuple_size<T1>::value> > {};
25

26 // Helper
27 template<class T1, class T2>
28 inline constexpr bool is_included_v = is_included<T1, T2>::value;

is_included tests in sequence if each type (thanks to std::integer_sequence
that enumerates the indexes) of the Node input types (tuple InputsN) bound to
parameter T1 is contained in the graph input types (tuple InputsG) bound to T2
(lines 8-16). The result of the trait is the logical OR (disjunction_v) of these tests
(lines 12-15).
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In order to check if a type T of T1 is in the set T2, we call the trait Contains
(line 14 of Code 5.4) defined in Code 5.5 that checks sequentially if the type T (bound
to a type of T1) is the same as the type contained in Ts (bound to T2). The result is
the disjunction of these tests.

Source Code 5.5: Metafunction checking if type T is part of set Ts

1 // Primary version: the set is parameter pack "Ts"
2 template<class T, class... Ts>
3 struct Contains {
4 constexpr static bool value =
5 std::disjunction_v<std::is_same<T, Ts>...>;
6 };
7

8 // Specialized version: the set is "tuple<Ts...>"
9 template<class T, class... Ts>

10 struct Contains<T, std::tuple<Ts...> > : Contains<T, Ts...> {};

Some IDEs like CLion are capable of exploiting these statics tests and can
show during the development, directly in the code, that the method is not defined
(Figure 5.2, result of compilation with Clang).

Figure 5.2: CLion IDE hint of Hedgehog v.1 static checking (failure of enable_if)

In this example, the graph accepts int or float as input and the task accepts
only double, which is an error because double is neither a int or a float.

This could be difficult to debug for an end-user, he or she needs to read the
comments and figure out what the problem is. That is why we propose in the
following section to use concepts to constrain template parameters, instead of using
the enable_if construct, and sometimes static assertions to provide clearer output
error messages from the compiler.

Implementation with concepts

As shown in Section 2.3.8, concepts are a C++ 20 addition that is an alternative to
the enable_if construct to constrain template parameters, first with a syntax that
is easier and clearer to use, and second with much more expressiveness that allows
defining classes of types by specifying a set of requirements.
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As a first implementation, we propose to define several concepts (Code 5.6) to
express requirements that Hedgehog nodes must satisfy to use the connection API.
First, concept HedgehogNode (lines 2-4) requires that a type DynamicHedgehogNode
inherits from Node class. Then, the two concepts of (1) a node sending data
(concept HedgehogSender, lines 18-24) and (2) a node receiving data of multiple
types (concept HedgehogMultiReceiver, lines 7-15) are defined. Finally, we define
the HedgehogConnectableNode concept (lines 27-30) as the conjunction of the three
previous concepts to define the requirements of a Hedgehog node that can receive
and send data.

Source Code 5.6: Definition of concepts for Hedgehog nodes.

1 // Concept "HedgehogNode"
2 template<typename DynamicHedgehogNode>
3 concept HedgehogNode =
4 std::is_base_of_v<hh::behavior::Node, DynamicHedgehogNode>;
5

6 // Concept "HedgehogMultiReceiver"
7 template<typename DynamicHedgehogNode>
8 concept HedgehogMultiReceiver =
9 HedgehogNode<DynamicHedgehogNode>

10 && std::is_base_of_v<
11 typename hh::helper::HelperMultiReceiversType<
12 typename DynamicHedgehogNode::inputs_t
13 >::type,
14 DynamicHedgehogNode
15 >;
16

17 // Concept "HedgehogSender"
18 template<typename DynamicHedgehogNode>
19 concept HedgehogSender = HedgehogNode<DynamicHedgehogNode>
20 && std::is_base_of_v<
21 hh::behavior::Sender<
22 typename DynamicHedgehogNode::output_t>,
23 DynamicHedgehogNode
24 >;
25

26 // Concept "HedgehogConnectableNode"
27 template<typename DynamicHedgehogNode>
28 concept HedgehogConnectableNode = HedgehogNode<DynamicHedgehogNode>
29 && HedgehogMultiReceiver<DynamicHedgehogNode>
30 && HedgehogSender<DynamicHedgehogNode>;

HedgehogMultiReceiver is used to constrain the template parameter of method
input of class Graph, as shown in Code 5.7, providing an alternative to the enable_if
construct of Code 5.2. Notice that in this new version of the input method and
when the concepts defined here are used in the following sections, that, a tighter
constraint is put on the Node template parameter, compared to the primary version
of the previous section.

In this function definition, we use the concept to filter the types and static
assertion (line 4) to check the compatibility with the graph reusing the same trait.

When developing the same code as Figure 5.2, we have an output from the
compiler that could be exposed by an IDE (cf. Figure 5.3) that is clearer than
previously. Here, t1 has a type that satisfies concept HedgehogMultiReceiver, but
fails the static assertion of line 10 in Code 5.7.
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Source Code 5.7: Static checking of graph input method, using concepts and static
assertion

1 template<class GraphOutput, class... GraphInputs>
2 class Graph {
3 //...
4 template<HedgehogMultiReceiver Node>
5 void input(std::shared_ptr<Node> input) {
6 using InputsN = typename Node::inputs_t;
7 using InputsG = typename

behavior::MultiReceivers<GraphInputs...>::inputs_t;↪→
8

9 static_assert(
10 traits::is_included_v<InputsN, InputsG>,
11 "The input node should share at least one input type with

the graph.");↪→

12 //...
13 }
14 //...
15 };

Figure 5.3: CLion IDE hint of Hedgehog v.2 static checking (failure of static assertion)

We can go one step further with concepts and define a concept that requires what
has been statically asserted in the previous code (let us call it the connectivity require-
ment here). As shown in Code 5.8, concept HedgehogInputGraphNode with two tem-
plate parameters is defined as the conjunction of concept HedgehogConnectableNode
and the connectivity requirement (that checks if one of the inputs of template parame-
ter DynamicHedgehogNode is one of the inputs of template parameter GraphInputs).

In this version, we define the concept with an additional template parameter that
represents the input types of the graph (it is assumed to be a tuple), allowing us
to embed the trait requirement directly into the concept. With the same code as
Figure 5.2, the message of the compiler exposed by an IDE (cf. Figure 5.4) is not
fully clear (compared to the previous version with the static assertion), but compilers
give a link in their message to the traits in the code, and the user can read the
comments to solve the problem.
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Source Code 5.8: Static checking of graph input method, using concepts only

1 // Concept "HedgehogInputGraphNode"
2 template<typename DynamicHedgehogNode, class GraphInputs>
3 concept HedgehogInputGraphNode =
4 HedgehogConnectableNode<DynamicHedgehogNode>
5 // The node must share at least one input type with the graph.
6 && traits::is_included_v<typename DynamicHedgehogNode::inputs_t,

GraphInputs>;↪→
7

8 // Method "input"
9 template<class GraphOutput, class... GraphInputs>

10 class Graph {
11 template<HedgehogInputGraphNode<
12 typename behavior::MultiReceivers<GraphInputs...>::inputs_t>

Node>↪→

13 void input(std::shared_ptr<Node> input) { /*...*/ }
14 };

Figure 5.4: CLion IDE hint of Hedgehog v.2 static checking (full concept)

We chose the implementation in Code 5.6 for our library, as it presents a simpler
definition of the checking and the method, compared to the template metaprogram-
ming one (Code 5.2), and a clearer output message at compilation for the end-user
than the versions in Code 5.2 and Code 5.8.

5.1.3 Output node connection

In this section, we present the static checking needed to connect an output node to a
graph. The rule is that a node x can be connected as output of a graph g, achieved
by calling g.output(x), if (1) x is a sender and (2) it has the same output type
as the graph. As seen in Figure 5.5, if we consider g of type Graph<O1,I1,I2,I3>,
node x of type Node<O1,I4,I5> is compatible (left case of the figure), whereas of
type Node<O2,I4,I5> is not (right case).

Implementation with template metaprogramming

Similarly to input conformity in the previous section, we implement the check for
output in Hedgehog v.1 using template metaprogramming techniques, as shown in
Code 5.9.

Source Code 5.9: Static checking of graph output method, using template metapro-
gramming
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Figure 5.5: Output conformity check between a node and a graph

1 template<class GraphOutput, class... GraphInputs>
2 class Graph{
3 //...
4 template<
5 class Node,
6 class IsSender = std::enable_if_t<
7 std::is_base_of_v<behavior::Sender<GraphOutput>, Node>>
8 >
9 void output(std::shared_ptr<Node> output) { /*...*/ }

10 };

The code here is simpler than the one to check the input node connection, because
we get directly the output type information needed from the graph definition. We
only need to check if the type of the object sent by the user is a sender with the
graph output type GraphOutput (line 7). This is done with a call to a trait defined
in the standard library called is_base_of that tests the inheritance between the
type Node and class behavior::Sender<GraphOutput> of our library.

Implementation with concepts

The same checking can be achieved with concepts and a static assertion, similarly to
what has been done for input connection. In Hedgehog v.2, concept HedgehogSender
previously defined in Code 5.6 is used to constrain method output as shown
in Code 5.6, with the static assertion defined in the previous section to test the
compatibility of the output types of the node and the graph.

Source Code 5.10: Static checking of graph output method, using concepts and
static assertion

1 template<class GraphOutput, class... GraphInputs>
2 class Graph {
3 //...
4 template<HedgehogSender Node>
5 void output(std::shared_ptr<Node> output) {
6 static_assert(
7 std::is_base_of_v<behavior::Sender<GraphOutput>, Node>,
8 "The output node should have the same output type as the

graph.");↪→

9 //...
10 }
11 //...
12 };
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5.1.4 Edge connection

The last conformity check is the edge connection. To connect two nodes x and y
in a graph g, an edge must be added between them by calling g.addEdge(x,y).
The rule to allow connection is the following: (1) the antecedent node x needs to
be a Hedgehog sender, (2) the successor node y needs to be a Hedgehog receiver,
and (3) the output type of the antecedent node x needs to be part of the input
types of the successor node y. As shown in Figure 5.6, if we consider a node of type
Node<I2,I5,I6>, this node is compatible with a node of type Node<01,I1,I2,I3>
(left case of figure) but not with a node of type Node<O1,I1,I4,I3> is not (right
case).
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Figure 5.6: Edge conformity check between two nodes

Implementation with template metaprogramming

For the implementation with template metaprogramming, we follow the same logic
as previously described and we reuse the traits defined earlier, as shown in Code 5.2.

Source Code 5.11: Static checking of graph addEdge method, using template metapro-
gramming

1 template<class GraphOutput, class... GraphInputs>
2 class Graph {
3 //...
4 template<
5 class Sender, class Receiver,
6 class Output = typename Sender::output_t,
7 class Inputs = typename Receiver::inputs_t,
8 class isSender = std::enable_if_t<
9 std::is_base_of_v<behavior::Sender<Output>,Sender>

10 >,
11 class isMultiReceiver = std::enable_if_t<
12 std::is_base_of_v<
13 typename helper::HelperMultiReceiversType<Inputs>::type,
14 Receiver
15 >
16 >
17 >
18 void addEdge(std::shared_ptr<Sender> from,

std::shared_ptr<Receiver> to) {↪→

19 static_assert(traits::Contains_v<Output, Inputs>,
20 "The given io cannot be linked to this io: No common types.");
21 //...
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22 }
23 };

However, we have chosen to locate the compatibility check of sender’s output with
receiver’s inputs in a static assertion, while the node first filtering step (inheritance
check) is made in the template definition. That way in case of failure because of
the type compatibility between the sender and the receiver, the output of compilers
produces an explicit error message, as show in Figure 5.7

Figure 5.7: CLion IDE hint of Hedgehog static checking of edge connection

Implementation with concepts

In Hedgehog v.2, we achieve a similar checking using concepts previously defined in
Code 5.6. The types of the sender and receiver nodes of the attempted connection are
constrained with HedgehogMultiReceiver and HedgehogSender, and the sender’s
output and receiver’s inputs compatibility is done with the static assertion described
in previous section, as shown in Code 5.12.

Source Code 5.12: Static checking of graph addEdge method, using concepts and
static assertion

1 template<class GraphOutput, class... GraphInputs>
2 class Graph {
3 //...
4 template<
5 HedgehogSender Sender,
6 HedgehogMultiReceiver Receiver>
7 void addEdge(std::shared_ptr<Sender> from,

std::shared_ptr<Receiver> to) {↪→
8 using output_t = typename Sender::output_t;
9 using inputs_t = typename Receiver::inputs_t;

10

11 static_assert(traits::Contains_v<output_t, inputs_t>,
12 "The given io cannot be linked to this io: No common types.");
13 //...
14 }
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15 //...
16 };

5.1.5 Conclusion

In this section, we presented the main conformity checks that are performed at
compile-time by our library when building the graph. They provide some guarantee
on the coherence of the resulting graph structure. With them, we are able to secure
the use of our library by accepting only types already defined in the library, or
specialized by the end-user, and correctly used in a given context.

We also presented different ways of implementing these static checks, that have
lead to two versions of the library. It appears that with usual template metaprogram-
ming techniques, the code seems more complicated and the output less helpful for
an end-user. At the opposite, with concepts, constraints on types can be expressed
more easily, and filtering types is much straightforward. However, we show that
for some checking, it is still better to use static assertions, in order to provide a
customized error message to the end-user, instead of the one emitted automatically
by the compiler.

In Section 5.3, we propose a comparative study about the compilation performance
of both approaches (template metaprogramming and concepts).

5.2 Static analysis of data-flow graph

In the previous section, we presented template metaprogramming techniques to
secure the use of the library, and guarantee some coherence of the graph structure
built by the end-user. These checks are performed at compile-time, when the API
is used to construct the graph. In this section, we propose an additional library
called HedgehogCX, whose goal is to add a mechanism to analyze a Hedgehog graph
structure and give insight on potential errors at compile-time.

For this purpose, constant expressions are used. However, because of the limita-
tions explained in Section 2.4, it was not possible just to add constexpr in front of
every method of the API. Building the graph is therefore split in two steps, while
keeping the API of HedgehogCX as close as possible to the one of Hedgehog. More
precisely, two graph representations will coexist, one static and the other one dynamic.
The end-user will first specify the data-flow with placeholder nodes (i.e., without
knowing their true type). As such, HedgehogCX holds a simple representation with
basic information about the graph structure (mainly connections and input/output
types).

With this representation, we also propose an extensible mechanism to define and
apply complex algorithms to analyze and check for valid and well-formed graphs.
Then, if the graph is valid against the series of tests chosen by the end-user, true nodes
will be created and associated with the placeholders that will initiate a conversion to
generate automatically the final Hedgehog graph, that can be used with the original
Hedgehog API.

The class structure added by HedgehogCX is presented in the simplified UML
diagram in Figure 5.8. In Section 5.2.1, we briefly discuss the limitations of our
approach based on constant expressions. In Section 5.2.2, we present elements of
HedgehogCX’s architecture that are used to build the first Hedgehog graph (the
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hh::cx::behavior::AbstractNode

- name_ = string_view

+ constexpr AbstractNode(string_view const & name)
+ constexpr name() : string_view
+ constexpr isOutputConst() : bool
+ constexpr isCanTerminatedOverloaded() : bool

CXNode

+ ro_type_t = tuple<InputTypesRO...>
+ dynamic_node_t = Node
+ inputs_t = typename Node::inputs_t
+ output_t = typename Node::output_t

+ constexpr CXNode (string_view const &name)
+ constexpr isOutputConst() final : bool
+ constexpr isCanTerminatedOverloaded() final : bool

HedgehogConnectableNode Node, class ... InputTypesRO

CXGraph

- registeredNodes_ : vector_cx<AbstractNode const *, NNodes>
- inputNodes_ : vector_cx<AbstractNode const *, NNodes>
- outputNodes_ : vector_cx<AbstractNode const *, NNodes>
- adjacencyMatrix_ : array<array<bool, NNodes>, NNodes>
- ROEdges_ : array<array<bool, NNodes>, NNodes>
- tests_ : vector_cx<CXAbstractTest<Graph, NNodes, LError> *, 255>

+ constexpr CXGraph (string_view const &name)
+ constexpr input<T> (T const &inputNode) : void
+ constexpr output<T> (T const &outputNode) : void
+ constexpr addEdge<T,U> (T const &sender, U const &receiver) : void
+ constexpr addTest<T> (T &test) : void
+ constexpr isLinked<T,U> (T *sender, U *receiver) const : bool
+ constexpr nodeId (Node *node) const : size_t
+ constexpr node (size_t id) const : AbstractNode const *
+ constexpr adjacentNodes (AbstractNode const *origin) const : vector_cx<AbstractNode const *, NNodes>
+ constexpr adjacentNodesId (size_t const originId) const : vector_cx<size_t, NNodes>

ConceptGraph Graph, size_t NNodes, size_t LError

CXAbstractTest

# errorMessage_ : vector_cx<string_view, LengthErrorMessage>
- testName_ : string_view
- isGraphValid_ : bool

+ constexpr CXAbstractTest (string_view const &testName)
+ constexpr test (CXGraph<...> const *graph) : void
+ constexpr isGraphValid (bool isGraphValid) : void
+ constexpr isGraphValid () : bool

ConceptGraph Graph, size_t NNodes, size_t LengthErrorMessage

PropertyMap

- ids_ : vector_cx<string_view, NNodes>
- properties_ : vector_cx<PropertyType, NNodes>

+ constexpr insert(string_view const &staticNodeName, PropertyType const &property) : void
+ constexpr contains(string_view const &staticNodeName) const : bool
+ constexpr property(string_view const &staticNodeName) const : PropertyType const

class PropertyType, size_t NNodes

Defroster

- isValid_ : bool
- errorMessages_ : vector_cx<pair<string_view, vector_cx<string_view, LengthErrorMessage> >, 255>
- registeredNodesName_ : vector_cx<string_view, NNodes>
- inputNodesName_ : vector_cx<string_view, NNodes>
- outputNodesName_ : vector_cx<string_view, NNodes>
- adjacencyMatrix_ : array<array<bool, NNodes>, NNodes>

+ constexpr Defroster (CXGraph<...> const &g)
+ constexpr isGraphValid () const : bool
+ report () const : string
+ constexpr convert (Args const &... args) const : auto

ConceptGraph Graph, size_t NNodes, size_t LengthErrorMessage

Figure 5.8: Simplified UML class diagram of HedgehogCX

158



5.2. STATIC ANALYSIS OF DATA-FLOW GRAPH

static one), and in Section 5.2.3, those necessary to define and apply tests on the
graph. We close in Section 5.2.4 by overviewing the conversion step, from the static
graph structure to the full-fledged Hedgehog graph.

5.2.1 Limitations of constexpr

To implement the static part of the library, we chose to heavily use constant expres-
sions to express the graph representation and the computation of analysis upon it.
The reason is that we do not only handle types, but we wanted to develop and use
complex algorithms at compile-time as a user would have written classically in C++

for runtime purpose.
We would have preferred to simply add keyword constexpr everywhere it seems

necessary in the library, to keep the original Hedgehog API and to enable the
execution of any method or function at compile-time. However, this is not possible.
In Section 3.6.1, we presented our heavy usage of smart pointers in the Hedgehog
API to secure memory. Smart pointers can not be used as constexpr function
parameters because they are not literal types (cf. Section 2.4).

So, instead of modifying the base library and diminishing its overall safety, we
preferred to make another library on the side, that respects the limitations of the
language and that can be used at will by the end-user, while keeping the original
Hedgehog API: two representations of graph will coexist, one with an API for static
manipulation close to the original Hedgehog API, and the other with the original
Hedgehog API. Notice that this new static step is not mandatory, and an end-user
can still build and execute a Hedgehog graph without it.

The other reason that made us choose to use constant expressions is that, even
with some limitations, they come up with many capabilities that we need to create
our extensible library: virtuality, containers, etc. Notably, it is possible to create
constexpr std::array, and it is announced in C++ 20 that dynamic containers
such as vectors should be available for constant evaluation. The constexpr vector
would be pretty useful in our case, because it could adapt itself to the number of
elements that are added into it, such as the number of nodes in a graph or the
number of tests in a graph.

At the time of writing, the constexpr vector from the standard library was
not available. We chose to reuse an implementation from Jason Turner in his
presentation "constexpr ALL the Things!" [Deane and Turner, 2017], which was
an inspiration for this work. The drawback of this implementation is to be only
a wrapper around a std::array with a static size. To have an adaptable library,
we added template parameter artefacts such as NNodes and LError used in classes
CXGraph, CXAbstractTest, Defroster, and PropertyMap (cf. Figure 5.8). These
parameters are used to fix the "vector" size with reasonable default values. When
the constexpr vector from the standard library will be available, we will be able
to remove these parameters quite easily, and simplify even further the API and the
usage of the library.

5.2.2 Compile-time representation

The first step is to represent statically a Hedgehog graph, using objects of classes
CXNode and CXGraph (cf. Figure 5.8) to construct the graph. By inheritance, a
CXGraph is a CXNode which is an AbstractNode. AbstractNode is a class used (1)
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to allow abstraction and hence composability, which enables storing graph elements
of different kinds in the same container (cf. design pattern composite [Gamma et al.,
1994]); and (2) to set a name for each node, which allows the end-user to identify
the nodes in the test reports.

Class CXNode is the compile-time counterpart representation of the Hedgehog
nodes. It has two template parameters, Node that is the type of node it represents (in
the original Hedgehog API), and InputTypesRO that lists the input types read-only
accessed by the node (to allow implementing the data race test for instance). Class
CXGraph is the compile-time counterpart representation of the Hedgehog graph. It
has three template parameters: (1) Graph the type of graph it represents (in the
original Hedgehog API), and two parameter artefacts, (2) NNodes that sets the
maximum number of nodes the graph can hold (default is 20), and (3) LError that
sets the length of error messages (default is 255).

An example of definition of CXNode and CXGraph objects is shown in Code 5.13.

Source Code 5.13: Definition of static node and graph

1 class TaskIntInt : public hh::AbstractTask<int, int> {
2 //...
3 };
4

5 class GraphIntInt : public hh::Graph<int, int> {
6 public:
7 explicit GraphIntInt(std::string_view const &name)
8 : Graph(name) {}
9 };

10

11 constexpr hh::cx::CXNode<TaskIntInt> node("Task1");
12 hh::cx::CXGraph<GraphIntInt> g("Graph without cycle");

Two classes are first defined from the original Hedgehog API to represent user-
defined Hedgehog nodes (TaskIntInt, lines 1-3) and graphs (GraphIntInt, lines
5-9). Then, static nodes and graph - representing respectively TaskIntInt and
GraphIntInt objects - are built.

An internal graph can be represented by a CXNode or a CXGraph object. In the
static representation, internal graphs are black boxes. Inner CXGraphs are considered
as simple nodes, they are not expanded for the compile-time analysis. Only the
inside graph inputs and output are used to check the compatibility when connecting
nodes. This choice has been made because when a Hedgehog Graph is shared, the
internals are not necessarily exposed to the user.

Even if we are not able to use directly the original Hedgehog library for static
representation, we have thrived to have the same API to build a graph: CXGraph
proposes input, output, and addEdge methods. We propose to build the graph
presented in Figure 5.9. This graph is interesting because it presents multiple directed
cycles and possible data races.

There are three cycles that need to be taken care of between: (1) node 1, node 2,
node 3, and node 4; (2) node 2, node 3, node 5, and node 6; and (3) node 2, node 5,
and node 6. There are data races possible between: (1) node 3 and node 5, because
they receive the same data from node 2; (2) node 4 and node 5, receiving the same
data from node 3; and (3) node 7 and node 1, receiving the same data from node 4.
For the sake of simplicity, all of the nodes are of type TaskIntInt in our example,
and the graph of type GraphIntInt, as defined in Code 5.13.
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Figure 5.9: Graph example for compile-time analysis

To create this graph, we can write the code presented in Code 5.14.

Source Code 5.14: Graph construction at compile-time

1 // Static nodes
2 constexpr hh::cx::CXNode<TaskIntInt> node1("Task1");
3 constexpr hh::cx::CXNode<TaskIntInt> node2("Task2");
4 constexpr hh::cx::CXNode<TaskIntInt> node3("Task3");
5 constexpr hh::cx::CXNode<TaskIntInt> node4("Task4");
6 constexpr hh::cx::CXNode<TaskIntInt> node5("Task5");
7 constexpr hh::cx::CXNode<TaskIntInt> node6("Task6");
8 constexpr hh::cx::CXNode<TaskIntInt> node7("Task7");
9

10 // "constexpr" context
11 constexpr auto defroster = [&]() {
12 hh::cx::CXGraph<GraphIntInt> g(
13 "Graph with multiple cycles and data races");
14 // Graph connections
15 g.input(node1);
16 g.addEdge(node1, node2); g.addEdge(node2, node3);
17 g.addEdge(node3, node4); g.addEdge(node4, node7);
18 g.addEdge(node4, node1); g.addEdge(node3, node5);
19 g.addEdge(node5, node6); g.addEdge(node6, node2);
20 g.addEdge(node2, node5); g.output(node7);
21 //...
22 }();

In this code, the definition of each CXNode object is specified with constexpr,
allowing them to be used at compile-time (lines 2-8). But, we cannot do the same
for the graph object. constexpr implies const. So if we specify constexpr for the
graph definition, we are not able to call non constant methods of this instance, and
thus not able to connect nodes.

To be able to build the graph, we need to encapsulate the graph definition and
its construction (and later the tests attached to it) in a "constexpr context": a
constexpr lambda here (lines 11-27). A lambda tagged with constexpr can be
evaluated at compile-time only if its arguments and the computation inside can also
be evaluated at compile-time. All CXGraph methods used for the construction are
marked with constexpr, which is why we can build our graph at compile-time that
way. Notice that the nodes could have been defined inside this constexpr context,
but we will see later that they need to be used from outside.
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5.2.3 Compile-time tests

Once the graph is built, we can analyze its structure. Two tests are proposed by
the library: to detect directed cycles and to detect possible data races in the graph.
A test is represented by a class, and Code 5.15 shows how to use the two tests of
classes CycleTest and DataRaceTest provided by the library.

Source Code 5.15: Tests addition for compile-time analysis

1 // Static nodes
2 //...
3

4 constexpr auto defroster = [&]() {
5 hh::cx::CXGraph<GraphIntInt> g("Graph with multiple cycles and

data races");↪→
6

7 // Graph connections
8 //...
9

10 auto cycle = hh::cx::test::CycleTest<GraphIntInt>{};
11 auto datarace = hh::cx::test::DataRaceTest<GraphIntInt>{};
12

13 g.addTest(cycle);
14 g.addTest(datarace);
15 //...
16 }();

The graph tests are first instantiated at lines 10-11. Their class needs the type
of the dynamic graph as the template parameter, like class CXGraph does. The test
objects are then added to the static graph at lines 13-14 to be later executed (at
compile-time).

Built-in tests

For CycleTest, a deadlock can occur in a Hedgehog graph if there is a directed cycle
in the graph. To fix the deadlock due to a cycle, the canTerminate method needs
to be overridden in a node of the cycle (cf. Section 3.5.1). To detect this kind of
deadlock, the test searches for connected components (Tarjan’s Algorithm [Tarjan,
1972]), finds simple directed cycles (Johnson’s Algorithm [Johnson, 1975]), and
removes the cycles in which a Hedgehog node overrides the canTerminate method
(checked by template metaprogramming). This test is not enough to prevent any
deadlock, as we would need to understand the computation, the flow of data, and
the termination condition in the canTerminate method. This test only checks for
the found cycles if at least a node has the canTerminate method redefined, showing
that the end-user has taken some action to break the cycle and hence the deadlock.

For DataRaceTest, a data race can occur if mutable data are broadcast to more
than one node. There are two ways to prevent such data races: (1) broadcast
const data (e.g., class TaskCIntCInt : public hh::AbstractTask<int const,
int const>) or (2) declare an input type as read-only. That is why our CXNode
has a template parameter pack (InputTypesRO) as second parameter. This pack
lists the input types that are declared read-only. For instance, in definition constexpr
hh::cx::CXNode<TaskIntInt, int> node1("Task1"), node1 represents a task with
int as input and int as output (TaskIntInt), and declares that data of type int it
receives are only used in a read-only fashion. Therefore, to detect data races, the test
traverses the graph to find the broadcast cases, keeps the ones with non-constant

162



5.2. STATIC ANALYSIS OF DATA-FLOW GRAPH

output, and removes the remaining ones in which all receiver nodes declare this type
as read-only.

User-defined tests

Our API allows end-users to create their own tests. As shown in Figure 5.8, we have
an abstract class CXAbstractTest that represents a static test on a graph structure
(both CycleTest and DataRaceTest inherit from it) and a PropertyMap class to
associate a property with each node if the algorithm requires it.

With this design, any developer can create a new test by defining a subclass of
CXAbstractTest and implementing the abstract method test with the algorithm, as
shown in Code 5.16 that finds the critical path of a graph. The code in test needs to
indicate whether the graph passes the test (by calling method isGraphValid of the
graph with the answer, cf. line 17), and the error message if not passed (by feeding
the attribute errorMessage_, cf. lines 19-25) of the graph. The problem of creating
the error message can be summed up as string manipulation in a constexpr function.
std::string objects are not available in a constexpr function yet, so we built the
error message by adding to a vector (attribute errorMessage_ of class CXGraph)
different std::string_view objects that can be manipulated in a constexpr context.
Once the constexpr std::string becomes available, it shall replace this vector of
std::string_view.

This test does not only count the number of nodes in a path to determine its
length, but uses some weight of each node, which could for instance represent its
estimated execution time. This weight does not exist in class CXNode, and we cannot
anticipate the needs of any algorithm. This is why we added class PropertyMap
to associate at will any information with a node, as seen in lines 34-43. One just
needs to declare a new property for nodes, by defining a PropertyMap object, and
then associate a value for this property with each node. The property map is then
provided to the CriticalPathTest object at construction, to allow it to access the
properties (line 45). The graph is provided as a parameter to the test method where
the algorithm is implemented. For searching the critical path, each node is visited
(lines 13-15). In any way, the graph will not pass the test because there is always a
critical path (line 17), and the error message is composed with the path found (lines
19-23).

Source Code 5.16: Partial code of the critical path test

1 // Definition of the test
2 template<class Graph, size_t NNodes = 20>
3 class CriticalPathTest
4 : public hh::cx::CXAbstractTest<Graph, NNodes> {
5 public:
6 constexpr explicit CriticalPathTest(PropertyMap<double, NNodes>

const &propertyMap)↪→

7 : hh::cx::CXAbstractTest<Graph, NNodes>("Critical Path"),
8 propertyMap_(propertyMap) {}
9

10 constexpr ~CriticalPathTest() override = default;
11

12 constexpr void test(hh::cx::CXGraph<Graph, NNodes> const *graph)
override {↪→

13 for (auto inputNode : graph->inputNodes()) {
14 visitNode(inputNode);
15 }
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16

17 this->isGraphValid(false);
18

19 this->errorMessage_.push_back("The critical path is:\n\t");
20 for (auto node : criticalVector_) {
21 this->errorMessage_.push_back(node->name());
22 this->errorMessage_.push_back(" -> ");
23 }
24

25 this->errorMessage_.pop_back();
26 }
27 //...
28 };
29

30 // Usage of the test
31 int main (){
32 //...
33 constexpr auto defroster = [&]() {
34 PropertyMap<double> propertyMap;
35

36 propertyMap.insert("Task0", 4.9);
37 propertyMap.insert("Task1", 17.3);
38 propertyMap.insert("Task2", 49);
39 propertyMap.insert("Task3", 47);
40 propertyMap.insert("Task4", 9.5);
41 propertyMap.insert("Task5", 1);
42 propertyMap.insert("Task6", 12.4);
43 propertyMap.insert("Task7", 1);
44

45 auto criticalPath = CriticalPathTest<GraphIntInt>(propertyMap);
46 //...
47 }();
48 //...
49 }

Tests execution

Once the tests are defined and added to the graph in the constexpr context, they
are executed at the construction of the defroster, the object that will help pass
from the static graph structure to the dynamic Hedgehog one, as shown in Code 5.17
at line 16.

Source Code 5.17: Tests execution and "defrosting"

1 // Static nodes
2 //...
3

4 constexpr auto defroster = [&]() {
5 hh::cx::CXGraph<GraphIntInt> g("Graph with multiple cycles and

data races");↪→
6

7 // Graph connections
8 //...
9

10 auto cycle = hh::cx::test::CycleTest<GraphIntInt>{};
11 auto datarace = hh::cx::test::DataRaceTest<GraphIntInt>{};
12

13 g.addTest(cycle);
14 g.addTest(datarace);
15

16 return hh::cx::Defroster(g);
17 }();
18

19 static_assert(defroster.isGraphValid(), "The Graph is not valid.");
20

21 // OR
22
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23 if constexpr(!defroster.isGraphValid())
24 std::cout << defroster.report() << "\n";
25 else {/*...*/ }

During construction, the Defroster object extracts the graph structure and runs
the tests. The static graph holds pointers to its internal nodes. The address space
at compile-time (i.e., used to execute constant expressions) is not the same as the
one used at runtime. It is not possible to use the same pointer at compile-time and
runtime. As such, an intermediate graph representation, free of pointers, is necessary.
For this purpose, we need an identifier for each node, the name_ attribute defined in
AbstractNode class. The Defroster object contains an internal representation of
the graph where nodes are referenced by their name only in the data structures, as
shown in Figure 5.8.

At construction, the Defroster instance also runs the tests, and can provide
then information about whether the graph passed all the tests or not (call to method
isGraphValid at lines 19 and 23), and a full report which is the concatenation in a
std::string of all the test reports (call to method report() at line 24).

We can determine at compile-time if the graph passes its tests, and so, with a
static_assert stop the compilation with an error message, or with a constexpr
if change the execution depending on the test result. Then, if the graph is not valid,
we can print at runtime the full report instead of building the ultimate Hedgehog
graph and starting its execution. For example, for the graph presented in Figure 5.9,
with the two tests provided by the library, the report contains:

In graph Graph with multiple cycles:
Johnson: Cycles found, the canTerminate() method needs to be defined
for each of these cycles.
Task1 -> Task2 -> Task3 -> Task4 -> Task1
Task2 -> Task3 -> Task5 -> Task6 -> Task2
Task2 -> Task5 -> Task6 -> Task2

Data races test: Potential data races found between these nodes:
Task2 -> Task3 / Task5
Task3 -> Task4 / Task5
Task4 -> Task1 / Task7

5.2.4 From compile-time to runtime

The final purpose of a Defroster object is to construct the Hedgehog graph that will
ultimately be executed from its internal representation. This is achieved with the
convert method that needs pairs of static and runtime nodes as shown in Code 5.18.
The runtime nodes are first instantiated (lines 2-9), and then are mapped to the
static ones (lines 13-20). Once created (line 12), the graph can be used as any usual
Hedgehog graph (lines 24-26).

Source Code 5.18: Conversion from static to runtime graph

1 // Runtime nodes
2 auto task0 = std::make_shared<TaskIntInt>("Task0");
3 auto task1 = std::make_shared<TaskIntInt>("Task1");
4 auto task2 = std::make_shared<TaskIntInt>("Task2");
5 auto task3 = std::make_shared<TaskIntInt>("Task3");
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6 auto task4 = std::make_shared<TaskIntInt>("Task4");
7 auto task5 = std::make_shared<TaskIntInt>("Task5");
8 auto task6 = std::make_shared<TaskIntInt>("Task6");
9 auto task7 = std::make_shared<TaskIntInt>("Task7");

10

11 // Runtime graph generation
12 auto graph = defroster.convert(
13 node0, task0, // Pair #1
14 node1, task1, // Pair #2
15 node2, task2, // Pair #3
16 node3, task3, // Pair #4
17 node4, task4, // Pair #5
18 node5, task5, // Pair #6
19 node6, task6, // Pair #7
20 node7, task7 // Pair #8
21 );
22

23 // Graph execution
24 graph->executeGraph();
25 graph->finishPushingData();
26 graph->waitForTermination();

The convert method internally first validates each pair of nodes (x,y), by
checking if the node type that the static node x represents is the same as the
Hedgehog node y. Once validated, the list of nodes is then split into two tuples, one
with the static nodes and the other with the runtime ones. The graph is generated;
for this purpose, the tuples need to be transformed into vectors of std::variant.
We have one vector per tuple and each variant holds one node (a variant can hold a
data of one of its alternative types, here all the types provided to method convert).
This enables storing in a dynamic data structure all the nodes.

To create the dynamic graph we need to parse the graph structure (more precisely
the adjacency matrix and the vectors of input and output nodes) held in the
Defroster object, and each time a connection is necessary, to find the associated
runtime nodes that can be identified by their names only. This requires us to parse
the tuple of static nodes with an index, but there is no dynamic way of accessing the
element at position I in such a structure, the only possible way is the std::get<I>
function, where I is a static information.

Once the vectors are constructed, the defroster visits (using std::visit) its
data structures containing the graph structure (vectors of input and output nodes,
adjacency matrix), and searches the node(s) concerned by the connection (using the
last generated vectors); we apply this connection into the Hedgehog graph.

5.3 Experiments and results

As we heavily use metaprogramming techniques that operate at compile-time, we
propose various experiments to study the performance of the compilation phase of
our system. All the presented results are statistics obtained from 20 repetitions of
the same execution (that is just compilation). They were conducted on an Intel
Core i7-10700 with 8 cores at 2.90GHz (with turbo boost activated, up to 4.6GHz1)
and 2× 8GB of DDR4 RAM at 2666MHz, using compilers GCC v.10.3 and Clang
v.10.0, libraries OpenBLAS v.0.3.8 and LAPACK v.3.9.0, and Ubuntu 20.04 LTS
(GNU/Linux 5.8.0-63-generic x86_64).

1Compilation done with affinity set to one core only, so maximum frequency was triggered.
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The tests concern the compilation of matrix multiplication and LU decomposition
(without partial pivoting) algorithms to measure the performance of Hedgehog, and
some fictitious data-flow graphs, which structure is described later, to measure the
performance of HedgehogCX. Hedgehog matrix multiplication is from Hedgehog
tutorial 3 2. Hedgehog LU decomposition is from HMBLib (cf. Section 4.4.1). HTGS
matrix multiplication is a custom implementation that is as close as possible to the
Hedgehog version. HTGS LU decomposition is from HTGS tutorial 6 3. They are all
CPU-only to ease the requirements on the target environment we use for running the
tests. There is no difference in the implementation of the tests between Hedgehog
v.1 (with template metaprogramming) and v.2 (with constant expressions). When
not stipulated, the additional HedgehogCX library is not used.

We first study in Section 5.3.1 the compilation time of HTGS, Hedgehog v.1,
and Hedgehog v.2 for both matrix multiplication and LU decomposition. Then, in
Section 5.3.2, we measure the cost of the Hedgehog conformity checks for the same
algorithms. Finally, in Section 5.3.3, we delimit the possibility of our HedgehogCX
implementation and its performance.

5.3.1 Compilation performance

Figure 5.10 shows the compilation times for the matrix multiplication and LU
decomposition algorithms, using GCC and Clang, and with HTGS and both versions
of Hedgehog. The full compilation process has been measured here.
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Figure 5.10: Compilation times of HTGS and both Hedgehog versions, for matrix
multiplication and LU decomposition

We observe that compilation with Hedgehog is around 3 times slower than with
HTGS for both algorithms using GCC, and around 2 times slower using Clang. The
compilation times between Hedgehog v.1 and v.2 are approximately the same, so we
do not see any impact of using concepts instead of usual template metaprogramming
techniques.

2https://pages.nist.gov/hedgehog-Tutorials/tutorials/tutorial3.html
3https://github.com/usnistgov/HTGS-Tutorials/tree/master/tutorial6
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We propose to investigate further the compilations times by using the profiling
statistics provided by the compiler. A detailed report can be output by GCC by
adding the -ftime-report flag when invoking the compiler. We only show the
report of GCC even if Clang has the same option, because GCC proposes an output
simpler to parse and understand. More notably, it provides a first macroscopic view
of the compilations stages, that we refer to as phases here. There are 9 phases, but
we only show here the three that present significant times. Reports also offer a view
with more detailed stages, that we refer to as steps here. There are more than 60
steps, some of them being achieved concurrently, but we choose to show only the
most significant ones (those that, together, contribute to most of the compilation
time). Notably, we will focus on step template instantiation first, and later on step
constant expression evaluation. Unfortunately, to our knowledge, these is no precise
documentation on what the phases and steps precisely refer to, however we think
that the reports can provide us some insight.

From the profiling statistics of GCC on the same experiments, Figures 5.11
and 5.12 presents the time spent by the compiler is some phases and steps respectively.
The first figure show that mainly phases "lang. deferred" and "opt and generate" are
impacted, suggesting that the call graph used by the compiler is longer to generate
and to analyze, more template functions specializations need to be instantiated,
and/or a larger virtual table need to be created.

The second figure shows that all the presented steps (that have the most significant
times here) are equally impacted, and not only the template instantiation step as
we could have expected. Notice that steps overload resolution and name lockup are
concurrent steps.
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Figure 5.11: Phase compilation times of HTGS and both Hedgehog versions, for
matrix multiplication and LU decomposition
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Figure 5.12: Step compilation times of HTGS and both Hedgehog versions, for matrix
multiplication and LU decomposition

5.3.2 Overhead of conformity checking

In this section, we measure the impact of the conformity checking that is done at
compile-time, when building the graph structure. For this purpose, we measure the
performance of Hedgehog with static checking removed from methods input, output,
and addEdge of class Graph that are the only methods used in our tests to build
the graphs. This version of Hedgehog is referred to as "w/o check". The results
are shown in Figure 5.13. We see that there are no benefits or penalties in terms of
compilation duration between the runs with and without compile-time conformity
checking.
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Figure 5.13: Impact of static conformity checking in both Hedgehog versions, for
matrix multiplication and LU decomposition
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5.3.3 Overhead of graph analysis

In this section, we study how the use of HedgehogCX to achieve the construction of
a static graph and its analysis at compile-time impacts the overall compilation times.
We consider the same algorithms, matrix multiplication and LU decomposition, and
compare the compilation times when (1) a Hedgehog graph is directly built and run,
and (2) a static graph is first built, then the two built-in static tests for data races
and deadlocks detection are performed, and the conversion from the static graph to
the final Hedgehog graph is done and the graph run (because tests will pass). The
second configuration is referred to as "w/ static". Only Hedgehog v.2 is concerned
by this experiment, because it is the only version compatible with HedgehogCX. The
results are presented in Figure 5.14.
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Figure 5.14: Impact of the static analysis library on the compilation duration, for
matrix multiplication and LU decomposition

Between 25% to 35% increase of the compilation duration can be seen with the
static analysis of the graph. To understand more precisely what happens, we propose
to profile the compilation. Figures 5.15 and 5.16 show, for matrix multiplication
and LU decomposition, the time GCC passes on each of its phases and steps for
executing the static analysis.
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Figure 5.15: Phase compilation times of the static analysis, for matrix multiplication
and LU decomposition
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Figure 5.16: Step compilation times of the static analysis, for matrix multiplication
and LU decomposition

Similarly to Figure 5.11, we observe that phases lang. deferred and opt and
generate are impacted, ≈ +45% and ≈ +22% respectively, conducting to the same
analysis. The parsing phase also shows a compilation time increase of ≈ 24%,
indicating that the base code parsed by the compiler is bigger.

For compilation steps, the overload resolution has the largest increase (≈ +50%),
followed by the template instantiation (≈ +41%). We also noticed an increase of
garbage collection (≈ +45%) for LU decomposition. These numbers indicate that
the compiler uses more time to perform name lookup because of our heavy usage of
templates in HedgehogCX (confirmed by the increase in the template instantiation
step).

In addition to the tests with matrix multiplication and LU decomposition, we
propose to study the impact of the compile-time analysis of graph structures of
different kinds and sizes. The first kind of graphs are path graphs, having n nodes,
each connected to the next one by an edge, and with an extra edge between the last
node and the first one, which results in n edges as shown in Figure 5.17, forming a
simple directed cycle implicating all the nodes.

1 2 3 ... n-1 nSrc

Figure 5.17: Path graph structure

The second kind of graphs are random connected (i.e., each node is connected at
least with another node) graphs with n nodes and 2× n+1 edges, and with possibly
directed cycles, produced by a graph random generator 4.

We first experiment with the two kinds of graphs with different sizes for two
built-in test algorithms (data races and directed cycles detection) and measure the
number of constant expression operations needed to perform the compile-time tests.
Compilers have an option to limit the number of constant expression operations

4Build Graph module of B++ Library: https://perso.isima.fr/bachelet/build_graph
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allowed to be performed by a constant expression context at compile-time. With
a dichotomic search that repeats experiments by changing the limit, we were able
to find the lowest value for this limit, which is the value presented in the following
figures.

We use constexpr-ops-limit and constexpr-steps flags for the GCC and Clang
compilers respectively. These compilers have different definitions of what a constant
expression operation is. The flag of GCC is defined as: "Set the maximum number of
operations during a single constexpr evaluation. Even when number of iterations of a
single loop is limited with the above limit, if there are several nested loops and each
of them has many iterations but still smaller than the above limit, or if in a body of
some loop or even outside of a loop too many expressions need to be evaluated, the
resulting constexpr evaluation might take too long" 5. The second (constexpr-steps)
is defined by Clang as: "Sets the limit for the number of full-expressions evaluated in
a single constant expression evaluation" 6.

Figures 5.18 and 5.19 present the number of constant expression operations
performed by both compilers for path and random graphs respectively. As the
definition is different, we propose relative values vn where each measure mn (that is
the number of operations of a compiler for a graph of size n) is divided by the first
measure for a graph of size 2: vn = mn/m2.
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Figure 5.18: Relative number of constant expression operations, depending on the
path graph size
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Figure 5.19: Relative number of constant expression operations, depending on the
random graph size

5https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Dialect-Options.html
6https://clang.llvm.org/docs/UsersManual.html
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In the figures, the theoretical number of operations is also shown. It is computed
from the complexity of both test algorithms. The data race test has a complexity of
O(|V | × |E|). The directed cycles detection is a three steps algorithm: (1) Tarjan’s
algorithm (O(|V |+ |E|)), (2) Johnson’s algorithm (O((V + E)(C + 1))), and (3) a
filtering (O(V )). V is the number of vertices, E is the number of edges, and C the
number of cycles in the graph.

In the path graph case, C = 1 and E = V + 2. The global complexity of running
both tests is O(V 2 + 9V + 6) = O(V 2). In the random graph case, V = 2× E + 1
and we have used the results of the library to determine C. The global complexity
of running both tests for a random graph is O(2V 2 + 3CV + 8V + C + 2) = O(V 2).

Note here that the number of constant expression operations measured by the
compilers includes the graph construction, the tests, the report constructions, and
the creation and use of the defroster. In Figures 5.20 and 5.21, we see the time GCC
passes on each of its phases for executing the static analysis of graphs of different
sizes, for path and random graphs respectively.
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Figure 5.20: Phase compilation times for analyzing path graphs of different sizes
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Figure 5.21: Phase compilation times for analyzing random graphs of different sizes
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Among the different phases, only one grows in comparison of the others depending
on the graph size: the parsing phase. Because only the number of constant expression
operations increases significantly in function of the number of graph nodes, either
the constant expressions are evaluated during this phase or the constant expressions
lead to more parsing.

The compiler’s report gives us a more precise view on what is happening. The
five most significant steps are presented in Figures 5.22 and 5.23. GCC reports a
step for the evaluation of constant expressions that follows the same trend as the
number of constant expression operations presented in Figures 5.18 and Figure 5.19.
The other steps are stable showing that there is no other impact on compilation
when increasing the number of nodes in the graph.
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Figure 5.22: Step compilation times for analyzing path graphs of different sizes
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5.4 Conclusion
In this section, we presented two ways of using metaprogramming techniques in
Hedgehog. We chose to use compile-time language features to give hints to the
developer about design problems while he or she is developing (while writing code if
the IDE is advanced enough) and during the compilation process.

The first way is the usage of template metaprogramming techniques or concepts
(depending on the library version) inside the runtime API to secure its use, mainly
to only accept the rightful types when the user extends classes from the API or
while building the data-flow graph by connecting nodes. The concept version allows
having a more straightforward code with clearer error messages served to the user in
conjunction with static assertions.

The second way is the usage of constant expressions to build a full compile-time
library that provides an API to build a simplified data structure of the data-flow
graph, to test properties of the graph, to change the compilation outcome or the final
dynamic code produced depending on the test results, and to automatically convert
this static graph representation into a full-fledged dynamic Hedgehog graph. This
new C++ feature allows creating compile-time code that is easily extensible by any
end-user through the use of only inheritance and virtuality. This property combined
with our explicit abstraction makes compile-time computation more accessible to
people than with template metaprogramming techniques.

Our experiments show first that there is a negative impact (2 to 3×) of using
Hedgehog over HTGS when considering compilation duration. From the analysis
made from the compilations profiling, we have determined that this increase is due to
a longer time to generate and analyze the call graph, to instantiate more templates,
and/or to create a larger virtual table. This overhead seems acceptable compared to
the advantages offered by Hedgehog, extensibility and static checking mainly.

Second, the experiments reveal no impact in terms of compilation performance
by adding conformity checking, using either concepts or template metaprogramming
(they show equivalent performance). Third, using our compilation-time library to
check the data-flow graph structure statically, we have seen a 25% to 35% increase of
the compilation time for graphs up to 64 nodes, while only impacting the constant
expression evaluation step of the compilation process. This increase seems to follow
the complexity of the checking algorithms used, and again, the advantage of being able
to execute complex analysis algorithms at compile-time should worth the overhead.
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In this manuscript, we presented the design of the Hedgehog parallel library, the next
iteration of the HTGS library developed at NIST. We proposed a general-purpose
solution offering an explicit and accessible model with intrinsic parallelism and
advanced composability options. We did not find all these properties in the existing
approaches we examined, from domain-specific parallel libraries to general-purpose
parallel models or languages. We target coarse-grained parallel implementation of
algorithms on an heterogeneous single powerful computational node using a task-
based approach with a graph representation. It allows one to simply represent the
steps of a complex algorithm with nodes and the flow of data between them with
edges. Our runtime strategy is different from the usual task graph solutions as it
relies exclusively on the operating system to schedule the threads, which are bound
to the same graph nodes from start to finish of the algorithm execution. This leads
to a simpler library as there is no need for an extra scheduler or an extra balancing
algorithm.

To get performance, Hedgehog relies on the data pipelining inherent in the model
to overlap communication delays between the different devices. However, we also
rely on the developer to adapt the data decomposition strategy feeding the graph
specifically for the hardware. For this purpose, we give the developer the keys to
clearly assess the performance of all parts of his/her algorithm. First, the same model
is used from the early design to the execution, and we propose different visual tools
to help him/her debug, understand how the computation is exactly conducted, and
then discern where the critical path is to improve the overall algorithm performance.
Our feedback solution appeared to be statistically costless by collecting measures
at the node level. We have also integrated the NVIDIA tagging library NVTX to
propose a time-series graph presenting the life cycle of each graph node.

Hedgehog is also amenable to create libraries. We have been able to create
FastLoader and HMBLib, image processing and linear algebra libraries. With a
latency between 1µs and 10µs, we were able to achieve > 85% of theoretical peak
performance on an heterogeneous node with 4 GPUs for an implementation of the
multiplication of matrices with 64k×64k elements. For our CPU-only implementation
of the LU decomposition with partial pivoting, we have shown the importance of
data decomposition to get performance on par with other parallel libraries. Moreover,
Hedgehog presents a streaming aspect allowing, in the case of chained graphs (for
example LU decomposition or matrix multiplication pushing data to a second graph),
to start the next graph’s computation more than 40 times faster than waiting the
complete result of the first graph to start the second one.

This library is made possible thanks to compile-time capabilities available in
the C++ language. Using template metaprogramming techniques combined with
concepts (a recent addition to the language), we were able to secure our library by
only accepting user-defined objects (necessary for extensibility) that correspond to
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what we are expecting at compilation, and node connections that conform to their
respective inputs and outputs. This checking is meant to detect issues at an early
stage and avoid failures when at executing of the task graph. Some IDEs are capable of
analyzing the compiler’s output to offer feedbacks during development. Experiments
reveal that this static checking brings no significant overhead at compile-time.

Even with this safety that ensures some coherence of the graph structure, other
issues remain possible. Hedgehog accepts directed cycles and proposes by default for
each of its nodes to broadcast their output. These features can lead to deadlocks
or data races. Even if the developer has possibilities with the library to solve these
problems, there is no guarantee that he/she will always use them, as deadlocks
and data races can be hard to detect. Therefore, we have proposed a side library,
HedgehogCX, that is based on constant expressions, another recent feature of the
C++ language that allows manipulating complex data structures and algorithms at
compile-time as easily, and with the same language, as usual code for runtime. This
library allows the analysis of a graph structure at compile-time to detect potential
issues. In case of problems, the compilation can be stopped and/or a report can be
produced. The developer can create his/her own tests for compile-time using a fully
extensible API. Experiments with data race and deadlock detection show that the
compilation times follow the complexity of the checking algorithms used and seem
acceptable compared with the benefit of more safety.

Future work

Several improvements are currently under investigation to bring new capabilities to
Hedgehog. Some are motivated by increasing the expressiveness of the library, others
focus on targeting new hardware configurations, or adding algorithms for analyzing
or transforming the data-flow graph.

First, we are considering multiple output capabilities to the nodes. This new
feature should greatly increase the expressiveness of the library. It allows one to
do some branching depending on the type of output produced. With the current
implementation, we can choose to which nodes a piece of data is sent with multiple
layers of state managers. The problem is that we can not express this new feature
with the same logic as the current library, notably due to limitations of the variadic
template features of C++.

Moreover, we want to add a cleaning step to reinitialize automatically the whole
graph and its nodes’ instances. This can be helpful to reuse a graph for multiple
different data (for example: different pairs of matrices to multiply). Between
each piece of data, the cleaning would reset the state of each node to prepare the
computation for the next piece of data. The current design is to create a new
graph for each input data. We need to study the consequences on the general graph
workflow of this addition before implementing it.

In the same vein, we would like to lower the compilation duration, a way would
be to use tools external to compilers such as Templight 7 for Clang to understand
more precisely the cost of each compilation step, and ultimately to identify where to
focus our improvement/optimization effort.

Second, there are current efforts surrounding Hedgehog. Experiments are con-

7https://github.com/mikael-s-persson/templight
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ducted by researchers from the University of Utah to port Hedgehog to a cluster
with the Uintah library. Cluster computing presents its own challenges, especially
for inter-node communication, computation management, and memory distribution.
The main idea is to use Uintah to take care of these aspects and use one Hedgehog
graph on each node. We also assist the University of Maryland College Park to study
the impact of a specialized scheduler on the library’s performance. Their idea is to
analyze a data-flow graph and to propose as a preprocessing step an improved version
of the graph without cycles and with a specialized scheduler. They have created
their own task (core and API) which embeds all the information needed to follow
their supervised computation led by their own scheduler. They have previously made
this kind of study on HTGS [Wu et al., 2021].

Third, the libraries FastLoader and HMBLib based on Hedgehog are currently
under development to bring Hedgehog parallel capabilities to specific domains. We
plan to add Python or Java library bindings to Hedgehog, and bridges to established
libraries like OpenCV or TensorRT, or even using Hedgehog-based calls to the
libraries. These additions allow users reluctant to use C++ to take advantage of the
library’s performance with other languages. The bridge from FastLoader to OpenCV
or TensorRT could help researchers to easily exploit and manipulate large 2D or 3D
microscopic images and develop deep learning inference workflows for such images.
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Appendix A

Pi approximation

Source Code A.1: Monte Carlo simulation to estimate π with std::async
1 #include <iostream>
2 #include <vector>
3 #include <random>
4 #include <future>
5 #include <numbers>
6 #include <chrono>
7 #include <numeric>
8

9 class ExperimentPI{
10 unsigned long long int const
11 numberSamples_,
12 samplesPerWorker_;
13

14 int const numberWorkers_;
15

16 std::vector<std::chrono::duration<double>> durations_;
17

18 public:
19 // Creates the experiment for a specific number of samples and

number of workers↪→

20 ExperimentPI(unsigned long long int const numberSamples, int const
numberOfWorkers)↪→

21 : numberSamples_(numberSamples),
samplesPerWorker_(numberSamples / numberOfWorkers),
numberWorkers_(numberOfWorkers) {

↪→
↪→

22 durations_.reserve(numberOfWorkers);
23 }
24

25 // Runs the experiment
26 double approximatePi(){
27 durations_.clear();
28 // Creates a vector of futures to gather the number of inside

points↪→
29 std::vector<std::future<unsigned long long int>> futures;
30 futures.reserve(numberWorkers_);
31 durations_.reserve(numberWorkers_);
32

33 // Runs the different workers asynchronously
34 for(int t = 0; t < numberWorkers_; ++t){
35 futures.emplace_back(std::async(std::launch::async,

&ExperimentPI::piMonteCarlo, this));↪→

36 }
37

38 unsigned long long int numberPointsInside = 0;
39 // Gathers the results of each workers when they are done
40 for(std::future<unsigned long long int>& f : futures){
41 numberPointsInside += f.get();
42 }
43

44 // Computes the estimate value of pi
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45 double pi = 4.0 * (double)((long double) numberPointsInside /
(long double)numberSamples_);↪→

46 return pi;
47 }
48

49 // Accessor to get the mean duration per workers
50 std::chrono::duration<double> meanDurationPerWorker(){
51 return std::accumulate(durations_.cbegin(), durations_.cend(),

std::chrono::duration<double>::zero()) / durations_.size();↪→

52 }
53

54 // Accessor to get the duration per workers standard deviation
55 double stdvDurationPerWorker(){
56 std::chrono::duration<double> mean = meanDurationPerWorker();
57 std::vector<double> diff(durations_.size());
58 std::transform(durations_.cbegin(), durations_.cend(),

diff.begin(), [mean](std::chrono::duration<double>const & x)
{ return x.count() - mean.count(); });

↪→
↪→

59 double sq_sum = std::inner_product(diff.begin(), diff.end(),
diff.begin(), 0.);↪→

60 return std::sqrt(sq_sum / durations_.size());
61 }
62

63 private:
64 // Monte Carlo simulation to estimate pi used by every workers
65 [[nodiscard]] unsigned long long int piMonteCarlo(){
66 std::random_device rd;
67 std::mt19937 gen(rd());
68 std::uniform_real_distribution<double> dis(0.0, 1.0);
69 double x, y;
70 unsigned long long int points_inside = 0;
71 std::chrono::steady_clock::time_point start =

std::chrono::steady_clock::now();↪→

72 for(unsigned long long int i = 0; i < samplesPerWorker_; ++i){
73 // Generates the points
74 x = dis(gen);
75 y = dis(gen);
76 // Counts the number of inside points
77 if(x*x + y*y <= 1.0){ ++points_inside; }
78 }
79 std::chrono::steady_clock::time_point end =

std::chrono::steady_clock::now();↪→

80 // Computes the duration of the algorithm
81 auto duration = duration_cast<std::chrono::duration<double>>(end

- start);↪→

82 // Stores the duration
83 registerDuration(duration);
84 return points_inside;
85 }
86

87 // Thread safe duration storage
88 void registerDuration(std::chrono::duration<double> const &

duration){↪→

89 // Creates a shared mutex to protect the duration storage
90 static std::mutex m;
91 m.lock(); // Locks the mutex, only one thread can lock it at a

time↪→

92 durations_.push_back(duration);
93 m.unlock(); // Unlocks the mutex, another thread can lock it

again↪→

94 }
95 };
96

97 int main() {
98 std::cout.precision(std::numeric_limits<double>::max_digits10);
99 double const pi = std::numbers::pi_v<double>;

100
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101 unsigned long long int numberSamples = 100000000;
102 int numberWorkers = 12;
103

104 // Creates the experiment
105 ExperimentPI experiment(numberSamples, numberWorkers);
106

107 std::chrono::steady_clock::time_point start =
std::chrono::steady_clock::now();↪→

108 double piApproximation = experiment.approximatePi(); // Runs the
experiment↪→

109 std::chrono::steady_clock::time_point end =
std::chrono::steady_clock::now();↪→

110 std::cout << "PI: " << pi << "\n";
111 std::cout << "Approximation PI: " << piApproximation << "\n";
112 std::cout << "Difference PI: " << abs(pi - piApproximation) <<

"\n";↪→
113 std::cout << "TimePerWorker: " <<

experiment.meanDurationPerWorker().count() << " s +- " <<
experiment.stdvDurationPerWorker() << "\n";

↪→
↪→

114 std::cout << "End to end computation: " <<
duration_cast<std::chrono::duration<double>>(end -
start).count() << "s\n";

↪→
↪→

115

116 return 0;
117 }
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Appendix B

Hedgehog latency measurement

The following code has been used to measure the latency of Hedgehog library. Results
are presented in Chapter 4.

Source Code B.1: C++ code to measure Hedgehog latency

1 #include <iostream>
2 #include <hedgehog/hedgehog.h>
3

4 struct A {};
5 struct B {};
6 struct C {};
7 struct D {};
8 struct E {};
9 struct F {};

10 struct G {};
11 struct H {};
12 struct I {};
13 struct J {};
14 struct R {};
15

16 class Task1 : public AbstractTask<R, A> {
17 size_t c =0;
18 public:
19 Task1(size_t numberThreads) : AbstractTask("T1", numberThreads) {}
20 void execute([[maybe_unused]]std::shared_ptr<A> ptr) override { }
21 std::shared_ptr<AbstractTask<R, A>> copy() override { return

std::make_shared<Task1>(this->numberThreads()); }↪→

22 };
23

24 class Task5 : public AbstractTask<R, A, B, C, D, E> {
25 public:
26 Task5(size_t numberThreads) : AbstractTask("T5", numberThreads) {}
27 void execute([[maybe_unused]]std::shared_ptr<A> ptr) override {}
28 void execute([[maybe_unused]]std::shared_ptr<B> ptr) override {}
29 void execute([[maybe_unused]]std::shared_ptr<C> ptr) override {}
30 void execute([[maybe_unused]]std::shared_ptr<D> ptr) override {}
31 void execute([[maybe_unused]]std::shared_ptr<E> ptr) override {}
32 std::shared_ptr<AbstractTask<R, A, B, C, D, E>> copy() override {
33 return std::make_shared<Task5>(this->numberThreads());
34 }
35 };
36

37 class Task10 : public AbstractTask<R, A, B, C, D, E, F, G, H, I, J>
{↪→

38 public:
39 Task10(size_t numberThreads) : AbstractTask("T10", numberThreads)

{}↪→

40 void execute([[maybe_unused]]std::shared_ptr<A> ptr) override {}
41 void execute([[maybe_unused]]std::shared_ptr<B> ptr) override {}
42 void execute([[maybe_unused]]std::shared_ptr<C> ptr) override {}
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43 void execute([[maybe_unused]]std::shared_ptr<D> ptr) override {}
44 void execute([[maybe_unused]]std::shared_ptr<E> ptr) override {}
45 void execute([[maybe_unused]]std::shared_ptr<F> ptr) override {}
46 void execute([[maybe_unused]]std::shared_ptr<G> ptr) override {}
47 void execute([[maybe_unused]]std::shared_ptr<H> ptr) override {}
48 void execute([[maybe_unused]]std::shared_ptr<I> ptr) override {}
49 void execute([[maybe_unused]]std::shared_ptr<J> ptr) override {}
50 std::shared_ptr<AbstractTask<R, A, B, C, D, E, F, G, H, I, J>>

copy() override {↪→

51 return std::make_shared<Task10>(this->numberThreads());
52 }
53 };
54

55 template<class TASK, class ...T>
56 void runExperiment(size_t &numberElements, std::shared_ptr<TASK>

&task) {↪→
57 std::chrono::time_point<std::chrono::high_resolution_clock>
58 start,
59 finish;
60

61 auto g = Graph<R, T...>();
62 auto t = std::static_pointer_cast<AbstractTask<R, T...>>(task);
63

64 g.input(t);
65 g.output(t);
66 g.executeGraph();
67

68 start = std::chrono::high_resolution_clock::now();
69 for (size_t element = 0; element < numberElements; ++element) {
70 (g.pushData(std::make_shared<T>()), ...);
71 }
72 g.finishPushingData();
73 g.waitForTermination();
74 finish = std::chrono::high_resolution_clock::now();
75

76 auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(finish -
start).count();

↪→
↪→

77 std::cout << (duration * 1.) / (numberElements * sizeof...(T)) <<
",";↪→

78 }
79

80 int main() {
81

82 size_t numberElements = 1000000;
83

84 std::cout << "ClusterSize,1InputType,5InputTypes,10InputTypes" <<
std::endl;↪→

85

86 for (size_t clusterSize = 1; clusterSize <=
std::thread::hardware_concurrency(); clusterSize *= 2) {↪→

87 std::cout << clusterSize << ",";
88 { auto t1 = std::make_shared<Task1>(clusterSize);
89 runExperiment<Task1, A>(numberElements, t1);
90 }
91 { auto t5 = std::make_shared<Task5>(clusterSize);
92 runExperiment<Task5, A, B, C, D, E>(numberElements, t5);
93 }
94 { auto t10 = std::make_shared<Task10>(clusterSize);
95 runExperiment<Task10, A, B, C, D, E, F, G, H, I,

J>(numberElements, t10);↪→

96 }
97 std::cout << std::endl;
98 }
99 }
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Appendix C

HTGS latency measurement

The following code has been used to measure the latency of HTGS library. Results
are presented in Chapter 4.

Source Code C.1: C++ code to measure HTGS latency

1 #include <htgs/api/TaskGraphConf.hpp>
2 #include "../HTGS/src/htgs/api/ITask.hpp"
3

4 struct A : public htgs::IData {};
5 struct B : public htgs::IData {};
6 struct C : public htgs::IData {};
7 struct D : public htgs::IData {};
8 struct E : public htgs::IData {};
9 struct F : public htgs::IData {};

10 struct G : public htgs::IData {};
11 struct H : public htgs::IData {};
12 struct I : public htgs::IData {};
13 struct J : public htgs::IData {};
14 struct R : public htgs::IData {};
15

16 enum class Type {A, B, C, D, E, F, G, H, I, J};
17 struct Container : public htgs::IData {
18 Container(A a) : a(a), type(Type::A) {}
19 Container(B b) : b(b), type(Type::B) {}
20 Container(C c) : c(c), type(Type::C) {}
21 Container(D d) : d(d), type(Type::D) {}
22 Container(E e) : e(e), type(Type::E) {}
23 Container(F f) : f(f), type(Type::F) {}
24 Container(G g) : g(g), type(Type::G) {}
25 Container(H h) : h(h), type(Type::H) {}
26 Container(I i) : i(i), type(Type::I) {}
27 Container(J j) : j(j), type(Type::J) {}
28

29 Type getType() const { return type; }
30 const A &getA() const { return a; }
31 const B &getB() const { return b; }
32 const C &getC() const { return c; }
33 const D &getD() const { return d; }
34 const E &getE() const { return e; }
35 const F &getF() const { return f; }
36 const G &getG() const { return g; }
37 const H &getH() const { return h; }
38 const I &getI() const { return i; }
39 const J &getJ() const { return j; }
40

41 private:
42 Type type;
43 A a;
44 B b;
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45 C c;
46 D d;
47 E e;
48 F f;
49 G g;
50 H h;
51 I i;
52 J j;
53 };
54

55 class Task1 : public htgs::ITask<A, R> {
56 size_t c;
57 public:
58 Task1(size_t numberThreads) : ITask(numberThreads) {}
59

60 void executeTask(std::shared_ptr<A> data) override {}
61

62 std::string getName() override {
63 return "T1";
64 }
65

66 ITask <A, R> *copy() override {
67 return new Task1(this->getNumThreads());
68 }
69 };
70

71 class Task5 : public htgs::ITask<Container, R> {
72 public:
73 Task5(size_t numThreads) : ITask(numThreads) {}
74

75 void executeTask(std::shared_ptr<Container> data) override {
76 switch(data->getType()) {
77 case Type::A:break;
78 case Type::B:break;
79 case Type::C:break;
80 case Type::D:break;
81 case Type::E:break;
82 case Type::F:break;
83 case Type::G:break;
84 case Type::H:break;
85 case Type::I:break;
86 case Type::J:break;
87 }
88 }
89

90 std::string getName() override {
91 return "T5";
92 }
93

94 ITask <Container, R> *copy() override {
95 return new Task5(this->getNumThreads());
96 }
97 };
98

99 class Task10 : public htgs::ITask<Container, R> {
100 public:
101 Task10(size_t numThreads) : ITask(numThreads) {
102

103 }
104

105 void executeTask(std::shared_ptr<Container> data) override {
106 switch(data->getType()) {
107 case Type::A:break;
108 case Type::B:break;
109 case Type::C:break;
110 case Type::D:break;
111 case Type::E:break;
112 case Type::F:break;
113 case Type::G:break;
114 case Type::H:break;
115 case Type::I:break;
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116 case Type::J:break;
117 }
118 }
119

120 std::string getName() override {
121 return "Task10";
122 }
123

124 ITask <Container, R> *copy() override {
125 return new Task10(this->getNumThreads());
126 }
127 };
128
129

130 void runExperimentOne(size_t &numberElements, Task1 *task) {
131 std::chrono::time_point<std::chrono::high_resolution_clock>
132 start,
133 finish;
134

135 auto graph = new htgs::TaskGraphConf<A, R>();
136 graph->setGraphConsumerTask(task);
137 graph->addGraphProducerTask(task);
138

139 auto executor = new htgs::TaskGraphRuntime(graph);
140 executor->executeRuntime();
141

142 start = std::chrono::high_resolution_clock::now();
143 for (size_t element = 0; element < numberElements; ++element) {
144 graph->produceData(new A());
145 }
146 graph->finishedProducingData();
147 executor->waitForRuntime();
148 finish = std::chrono::high_resolution_clock::now();
149 auto duration =

std::chrono::duration_cast<std::chrono::microseconds>(finish -
start).count();

↪→
↪→

150 std::cout << (duration * 1.) / (numberElements) << ",";
151

152 delete executor;
153 }
154

155 void runExperimentFive(size_t &numberElements, Task5 *task) {
156 std::chrono::time_point<std::chrono::high_resolution_clock>
157 start,
158 finish;
159

160 auto graph = new htgs::TaskGraphConf<Container, R>();
161 graph->setGraphConsumerTask(task);
162 graph->addGraphProducerTask(task);
163

164 auto executor = new htgs::TaskGraphRuntime(graph);
165 executor->executeRuntime();
166

167 start = std::chrono::high_resolution_clock::now();
168 for (size_t element = 0; element < numberElements; ++element) {
169 graph->produceData(new Container(A()));
170 graph->produceData(new Container(B()));
171 graph->produceData(new Container(C()));
172 graph->produceData(new Container(D()));
173 graph->produceData(new Container(E()));
174 }
175 graph->finishedProducingData();
176 executor->waitForRuntime();
177 finish = std::chrono::high_resolution_clock::now();
178 auto duration =

std::chrono::duration_cast<std::chrono::microseconds>(finish -
start).count();

↪→
↪→

179 std::cout << (duration * 1.) / (numberElements * 5) << ",";
180

181 delete executor;
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182 }
183

184 void runExperimentTen(size_t &numberElements, Task10 *task) {
185 std::chrono::time_point<std::chrono::high_resolution_clock>
186 start,
187 finish;
188

189 auto graph = new htgs::TaskGraphConf<Container, R>();
190 graph->setGraphConsumerTask(task);
191 graph->addGraphProducerTask(task);
192

193 auto executor = new htgs::TaskGraphRuntime(graph);
194 executor->executeRuntime();
195

196 start = std::chrono::high_resolution_clock::now();
197 for (size_t element = 0; element < numberElements; ++element) {
198 graph->produceData(new Container(A()));
199 graph->produceData(new Container(B()));
200 graph->produceData(new Container(C()));
201 graph->produceData(new Container(D()));
202 graph->produceData(new Container(E()));
203 graph->produceData(new Container(F()));
204 graph->produceData(new Container(G()));
205 graph->produceData(new Container(H()));
206 graph->produceData(new Container(I()));
207 graph->produceData(new Container(J()));
208 }
209 graph->finishedProducingData();
210 executor->waitForRuntime();
211 finish = std::chrono::high_resolution_clock::now();
212 auto duration =

std::chrono::duration_cast<std::chrono::microseconds>(finish -
start).count();

↪→
↪→

213 std::cout << (duration * 1.) / (numberElements * 10) << ",";
214

215 delete executor;
216 }
217

218 int main() {
219 size_t numberElements = 1000000;
220

221 std::cout << "ClusterSize,1InputType,5InputTypes,10InputTypes" <<
std::endl;↪→

222

223 for (size_t clusterSize = 1; clusterSize <=
std::thread::hardware_concurrency(); clusterSize *= 2) {↪→

224 std::cout << clusterSize << ",";
225 {
226 auto t1 = new Task1(clusterSize);
227 runExperimentOne(numberElements, t1);
228 }
229 {
230 auto t5 = new Task5(clusterSize);
231 runExperimentFive(numberElements, t5);
232 }
233 {
234 auto t10 = new Task10(clusterSize);
235 runExperimentTen(numberElements, t10);
236 }
237 std::cout << std::endl;
238 }
239 }
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Appendix D

Accuracy matrix multiplication

In order to validate our matrix multiplication computation with Hedgehog, we decided
to estimate the accuracy of our results. The matrix multiplication computation is
defined as, C = A ·B + C with:

• A an n×m matrix,

• B an m× p matrix,

• C an n× p matrix.

The values of A, B, and C are real random values taken between [0, 1). Because
we are using limited size floating point numbers, the matrices are defined as:

A =
[
aij + αij

]
{i ∈ N|0 ≤ i < n} {j ∈ N|0 ≤ j < m} {α ∈ R|α� 0}

B =
[
bjk + βjk

]
{j ∈ N|0 ≤ j < m} {k ∈ N|0 ≤ k < p} {β ∈ R|β � 0}

C =
[
cik + γik

]
{i ∈ N|0 ≤ i < n} {k ∈ N|0 ≤ k < p} {γ ∈ R|γ � 0}

α, β, γ model the errors due to the finite representation of real values. The
representation is the same in a machine, so these errors are all upper bounded by a
value ε, so we will use:

∀i,∀j,∀k, |αij| = |βjk| = |γik| = ε.

So:

∀i,∀k, (A ·B)ij =
∑
j

(aij + ε) · (bjk + ε)

=
∑
j

aij · bjk + ε · (aij + bjk)

We do not consider ε2, because ε is defined as the representation limit, and we
know:

0 < ε << 1

0 < ε2 << ε
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So ε2 cannot be represented.
And:

∀i,∀k, (A ·B + C)ik = cik + ε+
∑
j

aij · bjk + ε · (aij + bjk)

=
∑
j

aij · bjk + cik +
∑
j

ε · (aij + bjk) + ε

Let’s define the n×pmatrix R, which is the true result of the matrix multiplication
A ·B + C as:

∀i,∀k,Rik =
∑
j

aij · bjk + cik

So we have the following results with our finite representation of floating point
numbers:

∀i, ∀k, (A ·B + C)ik = Rik + ε · (1 +
∑
j

(aij + bjk)) (D.1)

To compute the accuracy of our algorithm, we first do the matrix multiplication
computation with a given library (OpenBLAS), which gives a result T . Then,
we do the computation with our library, that gives a result M . With a perfect
representation of numbers T −M = 0. Because of D.1, T and M are affected by the
same representation problem, so the same error applies:

∀i,∀k, Tik = RT
ik + εT · (1 +

∑
j

(aTij + bTjk))

∀i, ∀k,Mik = RM
ik + εM · (1 +

∑
j

(aMij + bMjk))

The threshold used to test our accuracy is:

∀i,∀j,∀k,

|Tij −Mij| =

∣∣∣∣∣RT
ik + εT · (1 +

∑
j

(aTij + bTjk))− (RM
ik + εM · (1 +

∑
j

(aMij + bMjk)))

∣∣∣∣∣
Or,

∀i, ∀j,∀k, aMij = aTij, b
M
jk = bTjk, c

M
ik = cTik

So,

RT = RM∑
j

(aTij + bTjk) =
∑
j

(aMij + bMjk) = Sik

We also consider that εT = −εM to represent the worst-case scenario that no error
compensates. We have:

|Tik −Mik| = |2 · ε · (1 + Sik)|

Taking the absolute value will add an ε, and |Sik| = Sik because the values of A, B,
and C are real random values taken between [0, 1).
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APPENDIX D. ACCURACY MATRIX MULTIPLICATION

Finally we have:

∀i,∀k,Errorik = 2 · ε · (1 + Sik) + ε (D.2)

We can have a lower bound as:

∀i, ∀k,ApproximateErrorik = 3 · ε (D.3)
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Appendix E

Execution of CPU-only matrix
multiplication

The following figure shows the data-flow graph with performance measures of the
CPU-only matrix multiplication Hedgehog implementation presented in Section 4.3.
It exposes the results of an execution on a Mac Book Pro Mid 2015, for 10000×10000
float matrices divided into blocks of 2048× 2048 elements, and with 3 threads for
the addition and multiplication tasks.
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APPENDIX E. EXECUTION OF CPU-ONLY MATRIX MULTIPLICATION

Matrix Multiplication Graph
Execution time:9.349s
Creation time:503us

Source

RowTraversal
Number of Elements Received Per Task: 1

Wait Time: 195us
Dequeue + Execution Time:  19us
Execution Time Per Element:  16us

MatrixData<float, 'a', Order::Column>

ColumnTraversal
Number of Elements Received Per Task: 1

Wait Time: 209us
Dequeue + Execution Time:  31us
Execution Time Per Element:  27us

MatrixData<float, 'b', Order::Column>

RowTraversal
Number of Elements Received Per Task: 1

Wait Time: 225us
Dequeue + Execution Time:  39us
Execution Time Per Element:  37us

MatrixData<float, 'c', Order::Column>

Input State Manager
Number Elements Received: 50

Wait Time:  61us
Dequeue + Execution Time: 155us
Execution Time Per Element: 1.94us

MatrixBlockData<float, 'a', Order::Column> MatrixBlockData<float, 'b', Order::Column>

Partial Computation State Manager
Number Elements Received: 274

Wait Time: 9.341s
Dequeue + Execution Time: 2.207ms
Execution Time Per Element: 6.14964us

MatrixBlockData<float, 'c', Order::Column>

Product Task x 3
Number of Elements Received Per Task: 

  Min: 41
  Avg: 41.6667 +-   1

  Max:  42
Wait Time: 
  Min: 250us

  Avg: 271us +-  20us
  Max: 290us

Dequeue + Execution Time: 
  Min: 9.215s

  Avg: 9.281s +- 64.280ms
  Max: 9.344s

Execution Time Per Element: 
  Min: 221.046ms

  Avg: 222.762ms +- 1.877ms
  Max: 224.767ms

MatrixBlockData<float, 'p', Order::Column>

Addition Task x 3
Number of Elements Received Per Task: 

  Min: 41
  Avg: 41.6667 +-   1

  Max:  42
Wait Time: 

  Min: 9.152s
  Avg: 9.154s +- 2.296ms

  Max: 9.156s
Dequeue + Execution Time: 

  Min: 188.820ms
  Avg: 191.191ms +- 2.077ms

  Max: 192.688ms
Execution Time Per Element: 

  Min: 4.568ms
  Avg: 4.584ms +-  16us

  Max: 4.601ms

MatrixBlockData<float, 'c', Order::Column>

Output State Manager
Number Elements Received: 125

Wait Time: 9.348s
Dequeue + Execution Time: 839us
Execution Time Per Element: 2.64us

MatrixBlockData<float, 'c', Order::Column>

std::__1::pair<std::__1::shared_ptr<MatrixBlockData<float, 'a', Order::Column> >, std::__1::shared_ptr<MatrixBlockData<float, 'b', Order::Column> > >

std::__1::pair<std::__1::shared_ptr<MatrixBlockData<float, 'c', Order::Column> >, std::__1::shared_ptr<MatrixBlockData<float, 'p', Order::Column> > >

MatrixBlockData<float, 'c', Order::Column>

Figure E.1: Performance of the CPU-only matrix multiplication algorithm imple-
mented with Hedgehog
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