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Résume Motivation

Le verre est l'un des matériaux les plus anciens connus de l'homme. Par exemple, à l'âge de pierre, l'obsidienne (le verre naturel, formé par la solidification rapide de la lave sans cristallisation) était utilisée pour fabriquer les premières armes et traiter les outils de coupe. Une autre réalisation étonnante a été la découverte de vitraux colorés en ajoutant des sels métalliques, des oxydes et des nanoparticules métalliques.

Quand le liquide vitrifiable est refroidi et forme un verre, il devient dur et fragile, comme un cristal solide. Une compréhension approfondie des processus se produisant lors de la vitrification, est nécessaire afin d'affiner les propriétés des matériaux vitreux pour les besoins pratiques. La présente étude des corrélations dynamiques et statiques dans des liquides vitrifiables est motivée par cet objectif.

Objectifs

Lorsqu'un liquide visqueux est refroidi suffisamment rapidement pour éviter la cristallisation, le système peut atteindre un état métastable appelé liquide surfondu. Aux températures élevées, le temps de relaxation à l'équilibre est d'environ τ ≈ 10 -13 -10 -9 s et la viscosité est η ≈ 10 -3 -10 2 Poise. Dès que l'état vitreux est atteint, le temps de relaxation et la viscosité augmentent considérablement τ ≈ 10 2 -10 3 s and η ≈ 10 12 -10 13 Poise [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF][START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

La température à laquelle ces valeurs sont observables s'appelle -la température de transition vitreuse T g . L'une des propriétés principales des liquides surfondus est leur comportement viscoélastique, comme par exemple la réponse en fonction du temps du matériau à une contrainte de dilatation ou de déformation.

C ¸a peut être illustré à l'aide de différents modèles mécaniques tels que le modèle Maxwell. Une caractéristique rhéologique importante est le module de relaxation des v contraintes de cisaillement ou la fonction de réponse G (t) qui définit la contrainte de cisaillement au temps t après une petite marche de déformation de cisaillement. La réponse instantanée du système s'appelle module de cisaillement affine µ A :

G (t = 0) = µ A . vi R ÉSUME
En revanche, le module de cisaillement statique µ définit la réponse de contrainte à long terme. Sa dépendance en T est une caractéristique dynamique de la transition vitreuse [START_REF] Li | Glass transition of two-dimensional 80-20 Kob-Andersen model at constant pressure[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF][START_REF] Barrat | Elastic response of a simple amorphous binary alloy near the glass transition[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. Dans le cadre de mon projet de doctorat, la dépendance du module de cisaillement de la température a été étudiée et simulée en utilisant la méthode de la Dynamique Moléculaire (MD). De nombreuses propriétés mécaniques (viscoélastiques, rhéologiques) des liquides vitrifiables peuvent être obtenues en analysant les fluctuations des contraintes. (M = 768, N = 4) et système plus grand similaire (M = 3072, N = 4) (cercles bleus) [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF].

La ligne rouge correspond à µ = 0. On peut voir que pour les deux systèmes δµ montre un pic près de la région de la transition vitreuse, T g ≈ 0.38.

En particulier, la fonction de corrélation temporelle de la contrainte de cisaillement C (t) est étroitement liée au module de relaxation de cisaillement G (t). Il a été montré récemment que de telles relations dans différents ensembles statistiques peuvent être utilisées dans la modélisation moléculaire pour une détermination précise du module de cisaillement près de la transition vitreuse [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF].

Cependant, une caractérisation beaucoup plus précise de la rhéologie et de la microrhéologie des systèmes vitrifiables peut être obtenue en étudiant la dépendance en longueur d'onde de leurs corrélations des contraintes [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]. La fonction complète de la corrélation vii des contraintes de cisaillement est définie comme :

C αβγδ (q, t) = 1 V σ αβ (q, t) σ γδ (q, 0) , (1) 
où σ αβ est le tenseur des contraintes. Cette fonction ne dépend pas seulement du module (q) mais également de l'orientation du vecteur d'onde q. Donc, C αβγδ (q, t) est présentée comme un outil idéal pour étudier la viscoélasticité anisotrope des systèmes vitrifiables. Cependant, la dépendance anisotrope du vecteur d'onde de C αβγδ (q, t) n'a pas été étudiée jusqu'à présent, et cette lacune suggère clairement une telle étude.

Description du projet

Dans ce projet, nous avons étudié et analysé comment les propriétés viscoélastiques et des fonctions de corrélations structurales et dynamiques des oligomères tridimensionnels et des liquides simples bidimensionnels évoluent lorsque la température T est diminue en utilisant les simulations de MD.

Au cours de la première partie du projet, le système d'oligomères, similaire à celui étudié dans les travaux précédents [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF], a été étudié. pas reliées par des liaisons interagissent avec un potentiel de Lennard-Jones (LJ), u LJ (r).

Les particules reliées par des liaisons interagissent par le potentiel quadratique, u b (r).

Nous avons étudié la dépendance de la température et les effets de la taille du système ix R ÉSUME pour le module de cisaillement statique µ, le module de cisaillement affine µ A , le module de relaxation de cisaillement G (t), le module de fluctuation µ F et leurs fluctuations, δµ F , etc.

Figure 7: Fonction de diffusion intermédiaire cohérente pour le système bidimensionnel polydisperse φ q (t) = S(q, t)/S(q, 0) à q = q min = 2π/L. Les lignes pointillées montrent la prédiction théorique (cf. l'article soumis) pour la relaxation finale de φ q (t). Pour les courbes du bas en haut les températures sont T = 0.5, 0.4, 0.35, 0.325.

Au cours de la deuxième partie du projet, le système bidimensionnel de particules sphériques polydisperses (de type LJ) a été étudié par des simulations de dynamique moléculaire. Le système contient N = 10 4 particules différentes au total. Nous avons étudié le comportement en température du facteur de structure dynamique S (q, t) et de la capacité calorique dynamique C V (t). Pour analyser la corrélation des contraintes locales dans des liquides complexes et surfondus en nous concentrant sur les dépendances temporelles et spatiales de la fonction-tenseur de corrélation des contraintes C (r, t) nous avons développé une théorie [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF], qui prévoit que les corrélations des contraintes de cisaillement sont à longue portée au voisinage de la transition vitreuse.

L'étude du comportement de C (q, t) est un objectif important car cette fonction montre si les corrélations ont un caractère à longue ou à courte portée. Notre théorie x R ÉSUME est en accord avec le travail de simulation effectué par Lemaître [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] pour le calcul de la fonction de corrélation des contraintes de cisaillement dans les structures inhérentes uniquement, et avec la théorie de Fuchs et al. [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF].

Résultats et perspectives:

1. Système d'oligomères tridimensionnel (i) Il a été constaté que le module de cisaillement µ est presque indépendant de la taille du système [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] mais son écart-type montre une dépendance considérable de la taille du système en dessous de T g . Pour le régime liquide (T T g ) le module de cisaillement s'annulle, µ = 0 (Fig. 3). Lorsque la température est abaissée vers T g , le module de cisaillement augmente fortement. La comparaison entre notre nouveau système (M = 768 et la longueur de chaîne N = 4) et un système plus grand similaire obtenu lors des travaux antérieurs [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] (M = 3072, N = 4) est présentée sur la Fig. 3.

Sur la Fig. 4 on peut voir que des quantités telles que G (t) présentent un comportement similaire par rapport aux travaux antérieurs [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]. La principale différence entre les deux systèmes est que le système M = 768 montre un temps de relaxation structurale un peu plus long dans le régime de basse température, T T g [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF].

(ii) Nous avons développé une technique [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] qui permet de diminuer les fluctuations de µ A en faisant la moyenne sur toutes les orientations possibles (en supposant que notre système est isotrope, nous pouvons faire la moyenne sur les rotations du système des coordonnées). L'effet de la pré-moyenne complète a une signification simple : les fluctuations de µ A sont principalement dues à des variations d'orientation des liaisons. De plus, nous avons constaté que l'écart-type de µ A , δµ A , est presque indépendant de la température. Les résultats obtenus sont présentés sur les Fig. 1 et Fig. 2 (où la nouvelle façon de calcul est notée avec un exposant "(2)" et l'ancienne avec un exposant "(1)").

(iii) Nous avons développé une théorie quantitative [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] prédisant δµ F en termes du module de relaxation G (t) qui est en excellent accord avec les résultats de simulation en régime liquide. L'approche théorique est basée sur l'approximation Gaussienne des fluctuations de la contrainte, qui est asymptotiquement exacte pour les grands systèmes, V → ∞.

xi

R ÉSUME

De plus, il a été montré que le plateau de δµ F , observé à basse température, diminue fortement à mesure que le système s'agrandit. Cet effet est attribué à une structure amorphe très hétérogène des liquides vitreux surfondus conduisant à une variance nettement non-Gaussienne des modules de cisaillement, var (µ F ) nG ≈ var (µ) nG , qui diminue avec la taille de système comme 1/V α où α < 1 (α ≈ 0.7 ± 0.1).

2. Système de liquides simples bidimensionnels (ii) Bien au-dessus de T g nous avons constaté que la relation entre la compressibilité et le facteur de structure statique S (q) est fortement violée et que la chaleur spécificque dépendante du temps, c v (t) = C V (t)/N , présente une queue en loi de puissance pour des temps longs, ce qui est montré sur la Fig. 4.7. En outre, dans le régime liquide, le facteur de structure dynamique S (q, t) montre une relaxation en deux étapes à faibles vecteurs d'onde, comme le montre la Fig. 7.

(iii) Pour étudier plus directement la relaxation des contraintes de cisaillement, nous avons analysé C αβγδ (q, t) à différents vecteurs d'onde q. Les données numériques de la MD montrent un excellent accord quantitatif avec les résultats théoriques obtenus avant [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] à la fois au-dessus et en dessous de la T g .

Les résultats pour C 2 (t) = C 2222 (q, t) (de l'équation 1) pour q = 2π/L (où L ≈ 100 est la dimension linéaire de la boîte de simulation) sont présentés sur la Fig. 5: ils se superposent presque exactement dans les deux régimes de température. Nos nouvelles données indiquent également que la corrélation des contraintes décroît en 1/r 2 avec la distance r en accord avec les résultats de simulation précédents [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] et les prédictions théoriques [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]. Chapter 1

Introduction

Glass is one of the most ancient materials known to human. For example, in Stone Age, obsidian (natural glass, formed by the rapid solidification of lava without crystallization)

was used for making first weapons and processing cutting tools.

The history of first glassy objects made by mankind dates back to ancient time. The earliest known glass objects, of the mid third millennium B.C., were found in Egypt (green beads, well known as Egyptian faience) and Easter Mesopotamia (Mesopotamian cylindrical glass seal). Glass had been produced by melting sand, sea shells and natron from dry saline lake beds [START_REF] Bensaude | Book Review: The Substance of Civilization: Materials and Human History from the Stone Age to the Age of Silicon Stephen L. Sass[END_REF].

Since that period, glassy products became more and more expensive during time.

Another amazing achievement was the discovery of stained glass which is colored by adding metallic salts, oxides and metal nanoparticles. In the XV century A.D. Venice became one of the monopolists in glass production, and the whole world became familiar with Venetian glass [START_REF] Bensaude | Book Review: The Substance of Civilization: Materials and Human History from the Stone Age to the Age of Silicon Stephen L. Sass[END_REF][START_REF] Macfarlane | Glass: A world history[END_REF]. Now it is hard to imagine our lives without glassy products. We use glass to make screens for such devices as smartphones or tablets, people buy perfumes in glassy bottles and drink from glassy cups.

But not only price and rarity were among the main reasons of taking an interest in glass-forming studies. From physical point of view, glass has also very interesting dynamical and mechanical properties. One of the popular examples is "Prince Rupert's drops" [START_REF] Aben | On the extraordinary strength of Prince Rupert's drops[END_REF][START_REF] Guillemin | The forces of nature: a popular introduction to the study of physical phenomena[END_REF].

Let us briefly describe the main idea of this phenomenon. After a drop of a molten glass falls into a cold water, it solidifies into a tadpole with a thin tail. If someone tries to smash the head of such construction with a hammer, the glass does not break. But if
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the point of the impact is shifted to the tail then the tadpole will break into small pieces.

That happens because the outer layer of the tadpole is cooled so fast that it hardens immediately and forms some kind of a shell with hot glass inside (where the head or the core of the tadpole is located). As the inner part is still cooling, the core is exposed to the tensile stress on its inner surface unlike the outer layer where compressive residual stress is acting. After a crack enters the interior tension zone, it multiplies, all stresses are released and the tadpole explodes. This example shows that preparation techniques can have an important influence on the behavior of the resulting glassy material. Modern technology exploits this avenue, for instance for glasses with extraordinary scratch resistance ("Gorilla glasses") used for smartphones.

Looking at the structure of glass we can see that it is disordered as a liquid, in spite of having a very high viscosity like a solid. When a glass-forming liquid is cooled down it becomes hard and brittle, like a solid crystal.

A deep understanding of the processes occurring when a liquid is cooled down into a glass is required in order to fine-tune the properties of glassy materials for practical needs. The present study of dynamical and static correlations in liquids on approach to the glassy state and of their other properties is related to this goal. This attracts our interest to work on this topic.

1.1 Review of important physical properties of glasses 1.1.1 What is a glass and its distinctions from liquids and solids

When a viscous liquid is cooled fast enough so that crystallization is avoided, the system can reach a metastable state known as supercooled liquid. At high temperatures the equilibrium relaxation time is roughly τ ≈ 10 -13 -10 -9 s and a viscosity is η ≈ 10 -3 -10 2 Poise. As soon as the glassy state is reached the relaxation time and the viscosity drastically increase τ ≈ 10 2 -10 3 s and η ≈ 10 12 -10 13 Poise [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF][START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF]. The temperature at which such values are observable is called the glass transition temperature T g . As T g is not a precisely defined quantity it can be empirically determined in different ways based on the methods which will be discussed in subsection 1.1.2.

In the metastable phase the supercooled liquid is structurally disordered and a number of the slow structural relaxation processes can be observed. Such processes are related to the dynamic glass transition and are not observed as precursors of the first-order phase CHAPTER 1. INTRODUCTION transition to the crystal. As the time needed for a glassy system to reach the equilibrium is higher than the experimental time scale for T < T g , glasses are often considered as non-equilibrium systems. Based on that, observable properties will change very slowly and depend on the time that passed from the moment when the system was cooled below T g . This process is known as aging [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF].

One of the ways to avoid crystallization in a glass-forming liquid is continuous and fast enough cooling. For this reason it is necessary to define a parameter which represents the speed of cooling. Such quantity is known as the cooling rate Γ [START_REF] Kob | Computer simulations of supercooled liquids and structural glasses[END_REF][START_REF] Vollmayr | How do the properties of a glass depend on the cooling rate? A computer simulation study of a Lennard-Jones system[END_REF][START_REF] Buchholz | Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study[END_REF] and has the dimension [Temperature/time]. Let us define it more precisely. Supposing that an experiment starts at the initial temperature T i , which is well above T g , we continuously cool the liquid with some speed

T (t) = T i -Γt to a final temperature T f at time t = t f , which is below T g : Γ = T i -T f t f (1.1)
Temperatures T i and T f should be sufficiently close to each other so that such quantities as volume V at constant pressure p and number of particles N for liquid vary essentially linear with temperature in the chosen interval [START_REF] Buchholz | Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study[END_REF].

Single component systems where crystallization can be avoided and thus a glassy state achieved are polymer or oligomer systems on cooling [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF], hard-sphere (HS) colloidal systems on pressure increase, polydisperse HS systems on cooling or pressure rise.

Glass can be formed from different elements and chemical compounds [START_REF] Bragg | Chapter 2 -the glassy state[END_REF]: oxides like SiO 2 , metallic alloys like Au 75 Si 25 [START_REF] Klement | Non-crystalline structure in solidified gold-silicon alloys[END_REF] and from the polymeric organic compounds like To understand the nature of the glass transition it is common to use a concept of potential energy landscape which will be discussed in more detail in subsection 1.2.2.

According to the energy landscape theory, at high temperatures a system is able to explore CHAPTER 1. INTRODUCTION all possible configurations. In other words it means that at high temperatures the system is ergodic. When the system is cooled towards T g , experimental time scales become smaller than a time which system needs for exploring phase space. That leads to the fact that the system is confined to a group of local energy minima in the phase space, i.e. the system becomes non-ergodic since it cannot explore the whole phase space [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. 

G (t) = G ∞ exp -t τα
where G ∞ is the zero time shear modulus and τ α is the structural relaxation time. This equation and its derivation will be discussed in subsection 1.2. At high temperatures an exponential decay is expected as it is shown in Fig. 1.1 (for simple liquids and times longer than the regime of microscopic dynamics). With lowering temperature the relaxation time τ α rapidly increases, the decay of G (t) gets slower and becomes non-Maxwellian.

From Fig. 1.1 it can be seen that in the glass transition region (middle curve) the relaxation modulus G (t) shows a shoulder which gets longer and gradually transforms into a plateau as temperature T decreases towards T g . In the glass G (t) does not decay on experimental time scales (top curve). So the (long-time) decay of the relaxation modulus becomes entirely non-exponential [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF] in the regime of the supercooled liquid.

Investigation of the behavior of the shear relaxation function G (t) for different tem- peratures is one of the main goals of the current thesis. More detailed explanation of such dependence for different systems will be given in Chapters 3 and 4.

The values of the relaxation time and viscoelastic properties are not the only differences between glass and liquid or solid (crystalline) phases. It is also important to analyze the difference of the states based on their structure.

A schematic representation of a system for 3 states -crystalline solid, liquid and glass -is shown in Fig. 1.2. There T m is the melting temperature, at which the first-order phase transition between liquid and crystal occurs, and T g is the dynamic glass transition temperature, at which the relaxation time exceeds the experimental time of 10 3 s [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. The quantity t 0 is the time which a particle needs to move across its own size. It is hard to distinguish between a liquid and a glass because of a disordering in the structure of both phases. On the other hand in the case of a crystal the particles show ordering and the difference is obvious.

Before starting to discover how the relaxation occurs in all 3 cases, let us define basic mechanical properties of each system. For solids the elastic shear modulus µ is defined as the ratio of the shear stress σ xy to the shear strain γ. As for a liquid µ = 0 the ratio of shear stress σ xy to shear strain rate γ, γ → 0, is its viscosity η l . For an ideal crystal a steady shearing is impossible, γ = 0 and that gives an infinite value for the viscosity.

If an observation time t is long enough, t t 0 , the structure of the three states will show significant differences. In the solid phase atoms still show ordering and vibrate around their regular equilibrium positions while in the liquid state the structure does not show any ordering anymore. On the other hand in glasses atoms exhibit similar behavior to that one of the solid state (they vibrate around their equilibrium position) despite Here T m is the melting point and T g is the dynamic glass transition temperature. Viscosity for the solid, liquid and glass is noted as η, η l and η g respectively and the elastic shear modulus is µ for all cases. t 0 is the time which a particle needs to move across its own size. When a liquid is cooled towards T g , the values for the shear modulus µ and the viscosity η g start to increase and the liquid-glass transition occurs.

For the glass η g is not infinite as it is for an ideal crystal but it is still much larger than in the case of the liquid, η g η l . Let us wait long enough so that the measurement time t is much larger than the time t 0 , and look at the structure of each state again. For crystals one can see that atoms show ordering and vibrate around their regular equilibrium positions. In liquids atoms are able to move far. However, for glasses despite the similar disordered structure atoms are not able to move far.

having the same disordered structure as liquids.

When a liquid is cooled towards T g , its viscosity η l strongly increases and an intermediate time windows open where G (t) is close to a plateau and thus shows solid-like ("elastic") features. Therefore, viscoelasticity emerges upon cooling towards the glass transition. On the other hand, for a glass η g is not infinite as it is for a crystalline solid but much larger than in the case of the liquid, η g η l . This combination of such different features is what makes glasses an interesting and important object to explore. Here a key question is whether G (t) and µ can be related and what their respective T dependence is [START_REF] Li | Glass transition of two-dimensional 80-20 Kob-Andersen model at constant pressure[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF][START_REF] Barrat | Elastic response of a simple amorphous binary alloy near the glass transition[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. Within the PhD thesis framework the temperature dependence of the shear modulus was studied, simulated by using Molecular Dynamics (MD) method and analyzed as will be discussed in more detail in Chapters 3 and 4.

Determination of the glass transition temperature

As was mentioned in the previous subsection, T g is the temperature at which system reaches state when its viscosity is η ∼ 10 13 Poise or where the structural relaxation time drastically increases to τ α ∼ 10 3 s [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF][START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF].

First of all it is necessary to mention that the dynamical glass transition temperature T g does not correspond to a thermodynamic phase transition. The T g is not a precise point and can be defined in different ways.

The temperature of glass transition T g also depends on how fast the system is being cooled down. In further subsection 1.2 it is shown in detail that T g has a weak logarithmic dependence on the cooling rate and slower cooling produces a lower value for T g .

One way for the empirical definition of T g is to record values of the volume during cooling and plot the obtained data versus temperature [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Ediger | Supercooled liquids and glasses[END_REF]. Let us start from the schematic representation of the dependence of the specific volume v = V N on temperature for the liquid-crystal transition which is shown in Fig. 1.3. One can see a sharp change of volume at the melting temperature T m . Such "jump" occurs due to the first-order phase transition, when a discontinuity appears in a first derivative of the Gibbs energy

G: ∂G ∂p | T = V .
Because of the similarity of structure of the glassy system to that of the liquid, the volume V changes continuously during cooling and such sharp change does not occur. The glass transition temperature can be defined from the intersection of the tangent lines on the plot of specific volume v vs. temperature T . As glass 1 was formed due to the faster cooling than glass 2 and according to the statements from subsection 1.2.1, the intersection of the tangent lines (blue lines) on Fig. 1.3 defines two glass transition temperatures T g1 and T g2 .

Another way to empirically define T g is to determine it from a specific heat c p measurement [START_REF] Ediger | Supercooled liquids and glasses[END_REF][START_REF] Hutchinson | Determination of the glass transition temperature[END_REF]. The specific heat is the heat capacity per unit mass c p = Cp m . The heat capacity is related to the entropy as C p = T ∂S ∂T | p . Let us describe such observation in more detail based on the schematic representation of c p (T ) dependencies which is shown in Fig. 1.4.

Based on the statements above the glass is a non-equilibrium and non-ergodic system.

That means that experimental time is smaller than the time which a glassy system actually needs for exploring the phase space. The system becomes confined to the local energy minima in the phase space with a reduced number of degrees of freedom as compared to those which are accessible to the system at equilibrium and provide a contribution to ) at constant pressure. Glass 1 was formed due to the faster cooling than glass 2. As will be discussed in subsection 1.2.1, the glass transition temperature T g depends on the cooling rate Γ, so for glass 1 and glass 2 two different temperatures T g1 and T g2 are obtained. The intersection point of the tangent lines (blue lines) of the glassy state back to the supercooled liquid line defines the temperature of glass transition. This plot was copied from ref. [START_REF] Ediger | Supercooled liquids and glasses[END_REF]. the specific heat. This explains why c p is drastically decreasing on cooling near T g (and reaches approximately the same value as it has in the crystal phase). So a sharp drop is observed in the glass transition region. Thus T g can be defined as the temperature, at which the specific heat c p has accomplished the sharp drop. The schematic representation of the behavior of c p (T ) for 2 glasses is shown in Fig. 1.4. The difference between the two samples is only in the speed of cooling. As glass 1 was formed due to the faster cooling than glass 2, the temperature T g1 at which the system starts to exhibit the glass transition (dashed curve) is higher than T g2 for the second glass. One more feature which can be seen from the Fig. 1.4 and from the statement above is that due to the structure properties at low temperatures the specific heat for glass is very close to that of the crystal [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27]. It is also important to note, that c p (T ) at the melting temperature T m shows a discontinuous behavior due to the fact that at T m the system exhibits the first-order phase transition and by analogy with volume the entropy shows a sharp change. shows up when the specific heat drops at the T g1 for the first sample and at T g2 for the second one. When the liquid is cooled towards T g , the specific heat c p for the glass shows a sharp drop in a region near T g . It happens because below T g the system is not ergodic anymore, which means that the system does not have enough time to explore the phase space and the configurational degrees of freedom which gave a significant contribution to the specific heat in the liquid regime are not accessible anymore [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27]. The temperature of the glass transition T g is defined as the temperature, at which specific heat has the sharp drop. This plot was copied from ref. [START_REF] Ediger | Supercooled liquids and glasses[END_REF].

Colloidal glasses

Colloidal dispersions are indispensable for many technologically important applications [START_REF] Napper | Polymeric stabilization of colloidal dispersions[END_REF][START_REF] Lekkerkerker | Colloids and the depletion interaction[END_REF]. However, the main problem is that the colloidal particles tend to aggregate due to van-der-Waals attraction, hence stabilization is required. It is known [START_REF] Napper | Polymeric stabilization of colloidal dispersions[END_REF] that a certain amount of free polymer added to a colloidal system may enhance its stability (so-called "depletion stabilization"). This effect is opposite to the well understood depletion attraction which was intensively studied in the context of arrest scenarios (attractive glass versus gel transitions) [START_REF] Sciortino | Glassy colloidal systems[END_REF]. Recent theoretical studies [START_REF] Shvets | Effective interactions between solid particles mediated by free polymer in solution[END_REF][START_REF] Semenov | Theory of colloid depletion stabilization by unattached and adsorbed polymers[END_REF][START_REF] Semenov | Theory of long-range interactions in polymer systems[END_REF][START_REF] Semenov | Theory of colloid stabilization in semidilute polymer solutions[END_REF] show that the depletion stabilization effect could open new ways to control colloid stability.

Numerous applications of colloidal systems (as paints, gels, glues, etc.) hinge on their dynamical properties, in particular, their rheological behavior [START_REF] Goodwin | Colloids and Interfaces with Surfactants and Polymers[END_REF][START_REF] Larson | The structure and rheology of complex fluids[END_REF]. The most important and fundamental dynamical effect is related to the ability of colloidal dispersions to vitrify rather than crystallize at high enough volume concentration (or on cooling below the glass transition temperature T g ). In the concentration or temperature regime preced-CHAPTER 1. INTRODUCTION ing the glass transition, these systems exhibit a dramatic increase of the shear viscosity and relaxation times, unusually slow and strongly nonlinear viscoelastic response (for shear rates faster than the relaxation time), and other remarkable rheological properties in the glassy phase (including aging and prehistory-dependent structure and relaxation dynamics). All of this behavior is also typical of supercooled liquids. Much progress had been done recently in quantitative description of nonlinear rheology of certain colloidal systems [START_REF] Mansard | Local and non local rheology of concentrated particles[END_REF][START_REF] Siebenbürger | Core-shell microgels as model colloids for rheological studies[END_REF][START_REF] Koumakis | Direct comparison of the rheology of hard and soft particle glasses[END_REF][START_REF] Voigtmann | Schematic mode coupling theory of glass rheology: single and double step strains[END_REF].

One of the important parameters for investigation of colloidal glass transition is the mean-square displacement (MSD) and diffusion coefficient D. The colloidal particles execute Brownian motion due to random and frequent collisions with solvent molecules.

Because collisions are random in orientation and magnitude the average particle displacement in a given direction is zero [START_REF] Hunter | The physics of the colloidal glass transition[END_REF]. But the motion during time t is well described by the mean-square displacement:

MSD (t) = 1 N N i=1 (r i (t + t 0 ) -r i (t 0 )) 2 , (1.2) 
where r is the position of a colloidal particle, N is the number of colloidal particles, t 0 is an initial time, and brackets ... correspond to an average over the initial time t 0 .

For times t longer compared to the relaxation time, MSD increases linearly with time for a liquid. In this case the slope of MSD is proportional to the diffusion coefficient D such as:

MSD (t) = 2dDt, (1.3) 
where d is the dimension of the system.

For a spherical particle the diffusion coefficient is given by the Stokes-Einstein relation:

D = k B T 3πη s σ , (1.4) 
where η s is the viscosity of the solvent, σ is a diameter of the particle. Eq. 1.3 and 1.4 are applicable only for a diffusing sphere much larger than the molecules comprising the fluid [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. The time which particle needs to diffuse over a distance comparable to its own radius is:

τ d = 3πη s σ 3 2k B T (1.5) CHAPTER 1. INTRODUCTION
The volume fraction φ can be found from relation φ = N V πσ 3 6 , where V is the volume of a system. Volume fraction is a dimensionless analogue of a particle number density [START_REF] Hunter | The physics of the colloidal glass transition[END_REF].

Below φ = 0.494 [START_REF] Hunter | The physics of the colloidal glass transition[END_REF][START_REF] Poon | Colloidal glasses[END_REF] the sample is in a liquid phase. Colloidal samples with low polydispersity can crystallize for φ < φ g , where φ g ∼ 0.58 [START_REF] Hunter | The physics of the colloidal glass transition[END_REF][START_REF] Poon | Colloidal glasses[END_REF][START_REF] Berthier | Dynamical Heterogeneities in Glasses, Colloids and Granular Media[END_REF] is the glass transition volume fraction. For colloids the long time self diffusion coefficient D = lim t→∞ MSD 2dt goes to 0 when φ → φ g and such behavior can be used as the way to define the glass transition. A lot of progress has been made in the studying of the glass transition phenomena of colloids based on the comparison between experimental, theoretical and simulation works [START_REF] Semenov | Theory of colloid depletion stabilization by unattached and adsorbed polymers[END_REF][START_REF] Poon | Colloidal glasses[END_REF][START_REF] Bartsch | The glass transition dynamics of polymer micronetwork colloids. A mode coupling analysis[END_REF][START_REF] Fuchs | Nonlinear rheological properties of dense colloidal dispersions close to a glass transition under steady shear[END_REF][START_REF] Courtland | Direct visualization of aging in colloidal glasses[END_REF][START_REF] Gleim | How does the relaxation of a supercooled liquid depend on its microscopic dynamics?[END_REF]. For example, by using the confocal or video microscopy it became possible to directly visualize the dynamics of the colloidal particles. All these results are very important for further investigations.

1.2 Basic phenomenological laws and some theoretical concepts in glass dynamics

Strong and fragile glasses

It is known that not only macromolecular systems and biological objects such as muscles, blood vessels, human skin combine viscous and elastic properties but so do glass-forming and supercooled liquids. Viscoelasticity theory is the key to understanding the mechanical and viscous properties of a molecular system. These properties can be modeled by the Maxwell model, a schematic representation of which is shown in Fig. 1.5. It is a series of connected elastic and viscous elements: Hookean spring with a strain γ e and a stress σ e and Newtonian dashpot with a strain γ v and a stress σ v . For the Maxwell model the total strain of the system is additive γ = γ e + γ v and the total stress of the system is uniform σ = σ e = σ v . Also in this model stresses can be expressed via the viscosity and shear modulus with such equations: σ e = G ∞ γ e and σ v = η γv . After rearranging those expressions and using the idea that Maxwell model is
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subjected to a constant strain γ 0 at time t = 0, for which the initial value of σ = σ 0 and the shear modulus G ∞ (at time t = 0) is G ∞ , the stress response can be obtained by:

γ = σ/G + σ/η = 0, σ (t) = σ 0 exp - G ∞ η t , G (t) = σ(t)/γ 0 (1.6)
From eq. 1.6 for Maxwell liquids, we can define an intimate relation between viscosity and (local but collective) α relaxation time τ α :

τ α = η G ∞ (1.7)
For the glassy system, upon cooling towards T g , the structural relaxation time shows a drastic increase over 14 orders of magnitude [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF]. The relaxation time τ α can be determined by dielectric spectroscopy, monitoring the reorientational dynamics of electrical dipoles associated to the particles, or by the dynamical structure factor S (q, t) at the first peak of S (q) related to the local packing in the system.

For the characterization of the glass transition phenomenon it is important to know how the viscosity η, which is proportional to the the structural relaxation time, changes with temperature T .

Let us introduce the temperature dependence (scaled over T g ) of the viscosity η for glass-former liquids such as SiO 2 , glycerol and o-Terphenyl which is represented in Fig. 1.6.

One can gather from Fig. 1.6 that some liquids like SiO 2 show approximate linear dependence or Arrhenius behavior, which can be expressed by:

τ α (T ) = τ ∞ exp E a k B T , (1.8) 
where E a is an activation energy, τ ∞ is the pre-exponential relaxation time, which depends on the material and is roughly temperature independent, and k B is the Boltzmann constant.

The similar expression can be applied for the determination of a viscosity:

η (T ) = η ∞ exp E a k B T , (1.9) 
where η (T ) is the viscosity and η ∞ is a roughly temperature independent constant.

From Fig. 1.6 it can be seen that some liquids (glycerol and o-Terphenyl) exhibit super-Arrhenius behavior, which is not linear at all. In this case the T -dependence of the was copied from ref. [START_REF] Ediger | Supercooled liquids and glasses[END_REF].

relaxation time can be fitted by the Vogel-Fulcher-Tammann (VFT) equation:

τ α (T ) = τ ∞ exp B T -T 0 , (1.10) 
where τ ∞ is the asymptotic relaxation time at high T , B is the material characteristic temperature scale, T 0 is the "Vogel-Fulcher" temperature at which the relaxation time appears to diverge [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Donth | The Glass Transition[END_REF][START_REF] Berthier | Theoretical perspective on the glass transition and amorphous materials[END_REF].

Moreover, eq. 1.10 can be re-expressed in terms of viscosity [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF]: .11) To distinguish between these cases Angell [START_REF] Angell | Formation of glasses from liquids and biopolymers[END_REF][START_REF] Angell | Relaxation in glassforming liquids and amorphous solids[END_REF] proposed to label liquids with Arrhenius behavior as strong , and those with super-Arrhenius behavior as fragile.

η (T ) = η ∞ exp B T -T 0 , ( 1 
A fragility parameter m characterizes the slope of the viscosity (or a structural relaxation time [START_REF] Huang | New insights into the fragility dilemma in liquids[END_REF] and dτα dT = -1 Γ one can see that Ĉ is proportional to B [START_REF] Bartenev | A contribution to the theory of the structural glass transition[END_REF]. The equation which gives the dependence of temperature of T g on cooling rate Γ will be [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF][START_REF] Vollmayr | Cooling-rate effects in amorphous silica: A computer-simulation study[END_REF]:

T g = T 0 + B ln Ĉ Γτ∞ , (1.13) 
where T 0 is the "Vogel-Fulcher" temperature. As eq. 1.13 shows, T g has a weak logarithmic dependence on cooling rate and slower cooling produces a lower value for T g .

By varying the parameter T 0 in eq. 1.10, we can describe the typical behaviors of liquids: from strong (T 0 ≈ 0) to a more fragile-like with higher T 0 [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

Thermodynamic aspects

To understand the complex dynamics of a supercooled liquid it is important to consider the influence of the system's energy landscape on the relaxation processes it displays [START_REF] Sastry | Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid[END_REF].

Let us consider a system of N structureless particles, without internal orientational and vibrational degrees of freedom. A potential energy of the system as a function of particle coordinates is called the energy landscape and it is a (3N + 1)-dimensional object. The topographical view of the energy landscape is represented in Fig. 1.7.
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The innumerous potential minima are called "basins". From the energy landscape, quantities of interest are the number of inherent structures (or potential minima) of a

given depth and the nature of the saddle points separating neighbouring minima [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF][START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Stillinger | A topographic view of supercooled liquids and glass formation[END_REF]. nates. This plot was copied from ref. [START_REF] Stillinger | A topographic view of supercooled liquids and glass formation[END_REF].

The potential energy landscape involves a set of minima and in order to visit different minima in the attempt of being ergodic the system has to cross the barriers separating these minima [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. For high temperatures T , an access to most basins is possible due to kinetic energy. But, for low T, the sampling shifts to lower energies and transitions among basins become subject to considerable activation [START_REF] Sastry | Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid[END_REF].

According to the potential energy landscape scenario that was briefly discussed in section. 1.1 and defined in ref. [START_REF] Stillinger | A topographic view of supercooled liquids and glass formation[END_REF], we can say that the processes which occur due to the elementary relaxation between neighboring minima (or basins) are called β relaxation processes and the processes due to transitions from one profound basin (or "metabasin") to another are α relaxation processes. The schematic representation of such processes near T g is shown in Fig. 1.8.

Entropy crisis

Let us remind the general formula to define the entropy nates near T g . The elementary transitions between neighboring minima correspond to the β relaxation process and the transitions between deep minima correspond to α relaxation process. This plot was copied from ref. [START_REF] Stillinger | A topographic view of supercooled liquids and glass formation[END_REF].

S = -k B ln (p (x)) , (1.14) 
where p (x) is the probability (density) to find the microstate x and ... is the thermal average pertaining to the ensemble. According to the interpretation from the microcanonical ensemble, the entropy S is interpreted as the logarithm of the number of microstates W [START_REF] Landau | Statistical Physics[END_REF] compatible with the external constraints, e.g. N = T = p = constant. As W > 1, the entropy cannot be negative.

The entropy of a liquid decreases much more rapidly on cooling than that of a crystal.

This feature is related to the fact that the heat capacity (for a given pressure p) for a liquid c l p (T ) is larger than c c p (T ) for a crystal and can be seen in Fig. 1.4 as well. Such difference occurs due to the reason that in the liquid regime configurational and vibrational degrees of freedom are active compared to the solid state where basically only vibrational contributions are significant [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. For example for normal pressure, for water at T = 300K c l p (T ) = 4.18 kJ kgK and for ice at T = 273K c c p (T ) = 2.11 kJ kgK [27]. The rate of change of entropy with T at constant pressure is:

∂S ∂T | p = c p (T ) T (1.15)
The excess entropy is the difference between the entropy of liquid S l and crystal S c :

∆S (T ) = S l (T ) -S c (T ) (1.16)
∆S (T ) is decreasing when the temperature T decreases. The dependence ∆S (T ) vs.

T for some samples normalized by their melting point T m with a low-T extrapolation is shown in Fig. 1.9 (Kauzmann plot [27]). T Tm proposed by Kauzmann. This plot was copied from ref. [27].

Kauzmann also showed that for some materials the extrapolated excess entropy could vanish at finite temperature [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27].This temperature is called Kauzmann temperature T K : ∆S (T K ) = 0 (1.17)

For T < T K , the entropy of the supercooled liquid S l (T ) could become lower than the entropy of the crystal S c (T ). This phenomenon is called the entropy crisis or Kauzmann's paradox because it hints at a negative entropy S l (0).

The entropy crisis does not violate the second law of thermodynamics due to the positive difference in chemical potentials ∆µ between the supercooled liquid and the stable crystal at T K [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF]. It also does not violate the third law. This statement is described in more detail below.

Third law and configurational entropy

The third law was postulated by Walther Nernst and states that entropy of the system at absolute zero is a constant, which can be taken as zero.

Based on that, it is hard to say right away that Kauzmann's paradox really does not violate the third law, because the statement above does not allow for possibility of CHAPTER 1. INTRODUCTION negative value for excess entropy ∆S at T = 0.

Kauzmann introduced a way to eliminate the problems related to T K . He postulated that each extrapolated equilibrium curve of the supercooled liquid is always interrupted by a kinetic spinodal at a temperature T sp > T K [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27]. Below T sp the supercooled liquid is equilibrated into a crystalline phase and the extrapolated entropy of the liquid becomes irrelevant. Based on that, T K must be a good estimation for how far a liquid can be supercooled before the glass transition occurs.

Within the framework of the potential energy landscape, the entropy S l can be split into two terms [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]:

• S v -vibrational contribution due to the short-time vibrational dynamics in the minima. It shows the amount of configurations within each minima. The vibration component of the amorphous minima is quite similar (but not identical) to the entropy of the crystal S c , S v ≈ S c ;

• S conf = 1 N ln (n) -configurational contribution per particle [START_REF] Gibbs | Nature of the glass transition and the glassy state[END_REF], which is related to the number of different configurations (spatial arrangements of the particles). Here n is the number of amorphous minima visited by the system at equilibrium. Eq. 1.16 can be rewritten in new terms:

S l = S v + S conf ≈ S c + S conf , ∆S (T ) = S l (T ) -S c (T ) ≈ S conf (1.18)
The excess entropy ∆S is roughly equal to the configurational entropy S conf . Based on the eq. 1.17, T K is the temperature, at which the configurational entropy becomes negligible. One of the ways to avoid the Kauzmann's paradox is to assume a thermodynamic phase transition from the supercooled liquid to a new amorphous phase at T K [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. This new amorphous phase is called "ideal glass" [START_REF] Gibbs | Nature of the glass transition and the glassy state[END_REF][START_REF] Hansen | Theory of Simple Liquids[END_REF]. As the glass transition occurs earlier than the system reaches the Kauzmann's temperature T g > T K , the entropy crisis is avoided [START_REF] Stillinger | The Kauzmann paradox revisited[END_REF][START_REF] Berthier | Configurational entropy of glass-forming liquids[END_REF] so that there is no contradiction with the third law of thermodynamics.

Link between kinetics and thermodynamics of glasses

Let us consider a system that is finite and has N particles with short-range interactions.

In order for the system to get relaxed, a finite number of particles w have to locally rearrange in the space. This number of particles is temperature dependent w = w (T ) and with decreasing temperature the number of such rearranging particles increases and the value for the energy barrier increases as well. In addition, the size of the region being rearranged becomes larger. This size can be associated with the static correlation length ξ s [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

Adam and Gibbs provided a concept of cooperative rearranging regions (CRR) [65].

CRR is the smallest region of the correlated particles, which can be rearranged independently from its surrounding. At low temperatures T , the relaxation process proceeds because of the rearrangement of the cooperative rearranging regions [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

Each CRR has a typical number of particles w which are connected with its linear size ξ s by a power law w ∼ ξ d s , where d is the space dimension. The total number of CRR can be found from ref. [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]65]:

M CRR = N w (1.19)
According to the Adam-Gibbs theory, a typical CRR can be found in a number of locally stable states Ξ, where Ξ ≥ 2. The number of global states n is connected with Ξ via a relation n = Ξ M CRR and the configurational entropy per particle then can be expressed as [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]:

S conf (T ) = ln (Ξ) w (T ) (1.20) 
From eq. 1.20 it can be seen that with decreasing temperature w (T ) increases since the configurational entropy S conf (T ) decreases. A formula from Adam and Gibbs provides connection between relaxation time and configurational entropy using Arrhenius eq. from ref. [65]:

τ α = τ ∞ exp C T S conf , (1.21) 
where C is some constant [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF][START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]65].

For finding a relation between the configurational entropy and the difference of the specific heat ∆c p between liquid and crystal let us rewrite the eq. 1.18 and 1.15 and integrate them from T K to T [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]:

dS conf (T ) dT = ∆c p T S conf (T ) -S conf (T K ) = T T K ∆c p T dT , (1.22) 
where T K is the Kauzmann temperature. The Adam-Gibbs theory implies that the ∆c p is weakly dependent on temperature and S conf (T K ) = 0, then the equation above takes

CHAPTER 1. INTRODUCTION form: S conf (T ) = ∆c p ln T T K (1.23)
Applying a Taylor expansion up to the first order, the eq. 1.23 will take form:

S conf (T ) ≈ ∆c p T -T K T K (1.24)
By combining eq. 1.24 and 1.21, the relaxation time can be obtained as:

τ α = τ ∞ exp T K ∆c p T (T -T K ) , (1.25) 
or

τ α = τ ∞ exp à T -T K , (1.26) 
where à = T K ∆cpT . Comparing eq. 1.10 and 1.26, the approximate value for T K is T 0 . This correspondence gives us a quantitative relation between dynamic and thermodynamic glass transition parameters [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

Correlation properties of glasses

The nature of the structural glass transitions remains a mystery in spite of enormous and long-lasting efforts for its theoretical elucidation [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. Some theories consider vitrification of liquids as a purely dynamical phenomenon associated with rapidly increasing structural relaxation time and viscosity on approaching T g .

Other approaches invoke the idea of an equilibrium phase transition underlying the vitrification. Indeed, it was shown that glass transition is normally accompanied by an abrupt change in measured thermodynamic quantities like specific heat, thermal expansion coefficient or isothermal compressibility [27,[START_REF] Angell | Formation of glasses from liquids and biopolymers[END_REF], pointing to a second-order phase transition.

On the other hand, a first-order transition is hinted at by the discontinuous behavior of the shear elastic modulus near T g . All experimental data seem to show that glassy systems are characterized by a disordered molecular arrangement [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. Yet, the very idea that vitrification in liquids is accompanied by a qualitative structural change (reflected in static, equilibrium properties) proved to be very appealing theoretically [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27]. However, currently there is no definitive evidence, either experimental, or theoretical, or coming from computer simulations, on the existence of such a transition. There are, however, indications that as a liquid approaches its glass transition, it shows a growth of some dynamical [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Bennemann | Growing range of correlated motion in a polymer melt on cooling towards the glass transition[END_REF] or structural [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Tanaka | Critical-like behaviour of glass-forming liquids[END_REF][START_REF] Semenov | Thermodynamic nature of vitrification in a 1d model of a structural glass former[END_REF] length-scales. The origin of the glass transition thus remains a challenging problem and a subject of an active debate in soft-matter physics.

Vitrification in colloidal and supercooled-liquid systems can be viewed as a transition from liquid to amorphous solid state. Many mechanical (viscoelastic, rheological) properties of vitrifying liquids can be obtained by analyzing stress fluctuations in these systems. In particular, the time-correlation function of shear stress C (t) is closely related to the shear relaxation modulus G (t). It was shown recently that such relations in different statistical ensembles can be employed by computer simulations for an accurate determination of shear modulus near the glass transition [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF]. However, much more precise characterization of the rheology and micro-rheology of vitrifying systems can be obtained by studying the wave-length dependence of their stress correlations [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]. In addition, the full stress correlation function C αβγδ (q, t) = 1

V σ αβ (q, t) σ γδ (q, 0) , where σ αβ is the stress tensor. This function depends not only on the wave-length but also on the orientation of the wave-vector q. The full stress correlation function appears therefore an ideal tool to study anisotropic viscoelasticity of vitrifying systems and has therefore attracted a lot of attention recently [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF].

It is important that stress fluctuations show qualitatively different length-scale dependencies in the liquid and solid states: correlations are long-range in crystals but shortrange in liquids. A similar difference is expected between a liquid and an amorphous solid on the two sides of the glass transition. In particular, it is anticipated that a vitrified liquid at T = 0 may show stress correlations of infinite range. The emergence of such long-range correlation effects in glass-forming systems have been indicated in several theoretical works on 4-point structure factor [START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF]; this concept is also supported by analytical calculations [START_REF] Semenov | Thermodynamic nature of vitrification in a 1d model of a structural glass former[END_REF] and the Gardner transition theory [START_REF] Berthier | Growing timescales and lengthscales characterizing vibrations of amorphous solids[END_REF][START_REF] Charbonneau | Fractal free energy landscapes in structural glasses[END_REF][START_REF] Charbonneau | Numerical detection of the gardner transition in a mean-field glass former[END_REF] pointing to an amorphous phase exhibiting long-range correlations of elastic properties. The last point also supports our idea that the local tensor of the frozen residual stress is the appropriate variable to probe long-range structural effects. Therefore, an investigation of the stress correlation effects may prove to become a step forward towards a universal description of structural glasses.

To analyze the local stress correlation in complex and supercooled liquids focusing on the time and distance dependencies of the shear stress correlation function C (r, t) we developed a theory [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF], which shows that the stress correlations are long-range in viscoelastic and glass-forming fluids. The theory is based on the general relationship CHAPTER 1. INTRODUCTION between the stress correlation function and the memory function from the fluctuationdissipation theorem (FDT) and will be discussed in more detail below. The results based on our theory are applicable to simulation studies which concern finite box systems (with box-size L) with periodic boundary conditions (PBC).

For the 2-dimensional (2d) case the shear stress correlation function C (r, t) connects with wave-vector and time dependent correlation function C (q, t) as:

C (r, t) = 1 L 2 q C (q, t) exp (iqr) , (1.27) 
where q = 2π L n and n is the vector which components take independently all integer values.

Studying the behavior of C (q, t) is an important goal because this function shows if the correlations have long-or short-range character. This function is easier to obtain from the simulation than experimentally. Our theory agrees with the simulation work performed by Lemaître [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] for calculation of the correlation function for the inherent stress only, and with the theory by Fuchs et al. [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF].

Outline of the manuscript

Description of the project. Within the framework of this thesis we studied and analyzed how the viscoelastic properties and the range of structural and dynamical correlations in glass-forming 3-dimensional oligomer and 2-dimensional simple liquid systems are changing as they vitrify with decreasing T using Molecular Dynamics (MD) simulations. The quantities which we studied and all the theoretical approaches which we have developed will be discussed in more detail below. Lennard-Jones (LJ) units are used throughout the manuscript.

During the first part of the thesis the glass-forming oligomer system which is similar to that studied in the earlier work [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF] was studied. This is a 3-dimensional system which consists of M = 768 oligomer chains with 4 beads connected by bonds. The particles have the same mass and properties. The beads that are not connected by bonds interact with a Lennard-Jones potential u LJ (r). The particles which are connected by bonds interact via quadratic potential u b (r). We studied the temperature dependence and the system size effects for the static shear modulus µ, the affine shear modulus µ A , the shear relaxation modulus G (t), the fluctuation modulus µ F and their fluctuations. Detailed description of the protocols, simulation aspects, results, conclusions are provided in Chapter 3.
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During the second part of the PhD thesis a 2-dimensional system of polydisperse (pLJ) spherical particles was studied. The system was equilibrated by the swap Monte-Carlo method by Dr. Joachim Wittmer and Molecular Dynamics simulations were performed afterwards. The system contains N = 10 4 different particles in total. Each pair of atoms is interacting with a Lennard-Jones potential energy which was normalized by their half sum of diameters. In the same way as for the glass-forming oligomer system the temperature dependencies of such moduli as µ, µ A , G (t) and their fluctuations were studied. We also investigated temperature behavior of the dynamical structure factor S (q, t), the dynamical heat capacity at constant volume C V (t) and the total stress correlation function C αβγδ (q, t). Detailed description of the protocols, simulation aspects, results, conclusions is provided in Chapter 4.

The manuscript is organized as follows:

• In Chapter 2 we have provided a brief introduction to the basic simulation and theoretical aspects invoked during our thesis. We have provided briefly introduction to the Molecular Dynamics (MD) method, explained why and which thermostats we applied to our system and how they work. In section 2.2 the theoretical aspects for our analysis are displayed;

• In Chapter 3 we have presented the glass-forming 3-dimensional oligomer model.

Our thesis has started from studying this system. We have presented all possible results and comparisons with data obtained by a former PhD student [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] from our group, including new ways and approaches for analysis of well known quantities [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] such as µ, µ A , G (t). It was found that µ A and µ are roughly independent of the system size but their standard deviations show significant system size dependence below T g . I describe a new method which allows to decrease fluctuations in µ A by averaging over all possible orientations (assuming that our system is isotropic we can do averaging over rotations of the system coordinates) proposed in ref. [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]. It was shown that such quantities as the shear modulus µ or the response function G (t) exhibit similar behavior with respect to the earlier works [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF];

• In Chapter 4 we have presented new results on the glass-forming 2-dimensional simple liquid system. In this chapter we have also done a comparison between already existing results, obtained using Monte Carlo (MC) method and have performed an analysis of the data from new MD simulations using swap equilibrated configurations from Dr. Joachim Wittmer;
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• In Chapter 5 we have provided main conclusions, discussions and summaries for both systems:

1. For the glass-forming 3-dimensional oligomer model a new way to describe the fluctuations of the shear modulus µ [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] is discussed. The nature and range of stress correlations in this system are inferred on this basis. The temperature and system size dependencies of µ, µ A and G (t) are summarized.

We developed a quantitative theory predicting the fluctuations δµ F of µ F in terms of the relaxation modulus G (t) which is in excellent agreement with the simulation results in the liquid regime. The theoretical approach is based on the Gaussian approximation for stress fluctuations, which is asymptotically exact for large systems, V → ∞. Moreover, it is shown that the low T plateau of δµ F strongly decreases as the system gets larger. This effect is attributed to a highly heterogeneous amorphous structure of the supercooled glassy liquids leading to markedly non-Gaussian part of the variance of shear moduli, var (µ F ) nG ≈ var (µ) nG , which decreases with the system size as 1 V α with α < 1 (α ≈ 0.7 ± 0.1).

2.

For the glass-forming 2-dimensional polydisperse liquid system a number of interesting features for the glassy state are discovered. For the liquid regime (well above T g ) we found that the relation between the compressibility and the static structure factor S (q) is strongly violated and the time-dependent heat capacity c v (t) involves a long-time power-law tail. Furthermore, at low wave-vectors q the dynamical structure factor S (q, t) shows a two-step relaxation well above the vitrification temperature.

To study the spatial range of stress correlations for that system more directly we analyzed the correlation function C αβγδ (q, t) of the stress tensor at different wave-vectors q using Molecular Dynamics (MD) simulations. It is important to note that the MD simulations data show excellent quantitative agreement with the theoretical results derived before [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] both above and below T g . Our new data also indicate that the stress correlation decays as 1 r 2 with distance r in agreement with the previous simulation results [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] and theoretical predictions [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]. In addition, the temperature dependencies of the moduli µ, µ A , µ F , their fluctuations and the dynamical quantities such as G (t), C (t) were studied as well. It was shown that they exhibit a rather similar behavior as for 

Papers in preparation:

• G. George, L. Klochko, A. N. Semenov J. Baschnagel, and J. P. Wittmer, "Variances of non-ergodic stochastic processes".

Chapter 2 Computer simulation techniques and fluctuation relations for glass-forming systems

At present time it is hard to imagine life without computers. Any field in science nowadays, starting from the natural sciences, such as chemistry and physics, and to human sciences, such as psychology and sociology, is subject to rapid modernization of research methods. For example, computer simulation methods became usual routine for such areas as physics, mathematical modeling, biology and chemistry. Theoretical models combined with computer science can be used to discover new predictions about studied system or to estimate the behavior of that system under the extreme conditions which cannot be or hard to achieve in real life experiments.

For condensed matter physics computer simulations play an important role and have a significant impact on both theory and experimental work. We use the Molecular Dynamics (MD) technique for reaching our goals. Basically the main idea of MD is to integrate the classical Newton's equations of motion for a many-body system. Thereby it allows us to determine thermodynamic, structural and dynamic properties of a given system [START_REF] Baschnagel | Computer simulation of supercooled polymer melts in the bulk and in confined geometry[END_REF]. Concluding the above information it is obvious that computer simulations are an important tool in modern research. In this thesis an optimized code, the LAMMPS (Largescale Atomic/Molecular Massively Parallel Simulator) code [START_REF]Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[END_REF], was used to access static and transport features of the studied systems, which will be discussed later.
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RELATIONS FOR GLASS-FORMING SYSTEMS

Classical molecular dynamics (MD) simulation

Consider a classical system in the microcanonical ensemble, which consists of N particles, has some fixed volume V and total energy E. Each particle i, (i = 1..N ), has a velocity v i and a position r i . For simplicity we assume that all particles have equal mass m

(m 1 = m 2 = ... = m N = m).
Based on the positions (r 1 (t) , ..., r N (t)) and the velocities (v 1 (t) , ..., v N (t)) of all particles at a certain time t, the evolution of the microscopic configuration of the system can be determined. For this we have to integrate Newton's second law of motion for all particles:

               d 2 r 1 (t) dt 2 = 1 m F 1 (t) d 2 r 2 (t) dt 2 = 1 m F 2 (t) ... d 2 r N (t) dt 2 = 1 m F N (t) , (2.1) 
where F i (t) is the total force on particle i, which can be defined as:

F i (t) = - ∂u N (r 1 (t) , ..., r N (t)) ∂r i (t) , (2.2) 
where u N (r 1 (t) , ..., r N (t)) = u r N is the potential energy.

Periodic boundary conditions (PBC).

It is common in computer simulations to apply periodic boundary conditions to minimize surface effects. PBC represent a system as periodically replicated in the all spatial directions (creating images of all particles confined in the box). A representation of the PBC is shown in Fig. 2.1.

To calculate the distance between particles in the system and to distinguish which atoms are placed within the interaction radius r cut with PBCs, the minimum image convention (MIC) is used [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]. The idea of MIC is to find the minimum distance between two particles or their images in the neighboring replicas. If the distance between particles i and j, r ij = |r i -r j |, is larger than the cutoff distance of the interaction potential (which is smaller than half of the box size, L/2), the interaction between particles i and j vanishes.

However, the interaction between a particle i and the nearest image of the particle j, j , must be considered (cf. Fig. 2.1) [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF].

Integration of the equations of motion. Consider time increment δt, which corresponds to the "time-step" in MD simulations. The force on each particle F i (t) can be calculated using the information about its position r i (t) at time t. Next, using Taylor expansion, one can get an estimation of the new position and velocity at time t + δt [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF]:

r i (t + δt) ≈ r i (t) + v i (t) δt + F i (t) 2m δt 2 (2.3) 
and

v i (t + δt) ≈ v i (t) + F i (t) m δt + Ḟi (t) 2m δt 2 , (2.4) 
where Ḟi (t) = d dt F i (t), and i = 1..N . Iteration of this procedure therefore leads to a discretized trajectory of the system, x (t k = kδt), with k = 0, 1, 2, .., N max , starting from the initial configuration (k = 0) up to the final configuration for the maximum number N max of time steps simulated.

The problem that arises when using eqs. 2.3 -2.4 is that the equations are not timereversible while the initial eq. 2.1 is. Time-reversibility defines the symmetry in time, t → -t. As the eqs. 2.3 -2.4 are not time-reversible, they are generally not satisfied for the reverse motion, t → -t. To fix this issue, an improved and most commonly used algorithm for integration -the "velocity-Verlet" algorithm -is used [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Verlet | Computer "experiments" on classical fluids. ii. equilibrium correlation functions[END_REF]:

r i (t + δt) ≈ r i (t) + v i (t) δt + F i (t) 2m δt 2 , (2.5) 
v i (t + δt) ≈ v i (t) + F i (t) 2m δt + F i (t + δt) 2m δt, (2.6) 
where

F i (t + δt) is calculated for r i = r i (t + δt), i = 1.
.N , defined in eq. 2.5.
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One can see that the time-step parameter δt is an important quantity. The main problem which occurs while using that algorithm is its stability and accuracy. It is obvious that taking δt as large as possible would allow us to extend the longest simulation time at the fixed computational effort N max as ∆t max = δtN max [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF]. But the Taylor expansions in eqs. 2.5 and 2.6 are appropriate only for a small δt. The main advantage of using the velocity-Verlet method is that this algorithm conserves a quantity that is close to the exact Hamiltonian [START_REF] Tadmor | Modeling Materials: Continuum, Atomistic and Multiscale Techniques[END_REF] and the volume in the phase space even over very long periods of time [START_REF] Hansen | Theory of Simple Liquids[END_REF][START_REF] Tuckerman | Reversible multiple time scale molecular dynamics[END_REF]. Which value of δt should be used? To answer this question one should consider the interaction potential between particles in the system [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF].

Let us begin the discussion with an introduction of the system, where particles interact via the Lennard-Jones (LJ) potential which was introduced by Lennard-Jones in 1924 [START_REF] Jones | On the determination of molecular fields: From the variation of the viscosity of a gas with temperature[END_REF]. This potential consists of two parts -a repulsive term and an attractive term, representing the London dispersion forces. The LJ potential is given by:

u LJ (r) = 4 LJ σ LJ r 12 - σ LJ r 6 , (2.7) 
where LJ is the depth of the potential minimum, σ LJ is the particle diameter or distance, at which the intermolecular potential between the two particles is zero (these 2 constants set a scale for the energy and the length), and r is the distance between the centers of interacting particles [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF].

The LJ potential also leads to a scale for the time in the simulation, the "Lennard-Jones time":

τ LJ = mσ 2 LJ LJ (2.8) 
In this thesis δt = 0.005τ LJ was chosen [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF]. After introducing dimensionless quantities such as u * LJ = u LJ / LJ and r * = r/σ LJ one can show that the Taylor expansion in eqs. 2.5 -2.6 will be a good approximation to the exact classical trajectory, if ω int δt 1, where ω int is the highest frequency of physical oscillations in the system, leading to δt/τ LJ 0.1 [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF].

The previous equations describe the classical MD technique, which can be used only for the N V E ensemble. To perform simulations using different ensembles such as N P T or N V T , the original MD method has to be extended [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF]. Such methods will be discussed in sections 2.1.1 and 2.1.2.
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Simulation in the N V T ensemble

To make simulations in the canonical ensemble the temperature of the system has to be fixed at a prescribed level and controlled. In the N V E ensemble temperature can be calculated but cannot be controlled. To fix this issue a thermostat is introduced. Nowadays, several ways to control temperature applying different algorithms for thermostats exist [START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF][START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]:

• Nosé-Hoover thermostat;

• Berendsen thermostat;

• Anderson thermostat;

• Langevin thermostat.

As in this thesis the Nosé-Hoover thermostat was chosen, it is important to discuss its properties in more detail. The idea of the Nosé-Hoover algorithm is to include the additional degree of freedom for the heat bath, s, in the system's Hamiltonian. This method is called the extended system method (ES). The original idea of fixing temperature or pressure during simulation comes from H. Andersen in ref. [START_REF] Andersen | Molecular dynamics simulations at constant pressure and/or temperature[END_REF] and was then improved by Nosé and Hoover in ref. [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF][START_REF] Hoover | Canonical dynamics: Equilibrium phase-space distributions[END_REF].

The major difference between the ES and the real dynamics is that in the ES a very small system is considered as an external system instead of a macroscopic reservoir [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF].

The total energy of the physical system is allowed to fluctuate because of a thermal contact with a heat bath. As a result one expects that there exist real variables such as particle momenta p i , coordinates q i (corresponding to realistic motions) and virtual variables p i , q i (introduced to control the temperature). The relation between the real and virtual variables comes from the noncanonical transformation [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

q i = q i , p i = p i /s, dt = dt s , q i = s qi (2.9)
where t is a real time, t is a virtual time.
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The Hamiltonian of the ES of the particles and the variable s in terms of the virtual variables postulated by Nosé reads:

H Nosé = i p 2 i 2m i s 2 + u q N + p 2 s /2Q + gk B T ln (s) , (2.10) 
where m i is the mass of particle i, p s is the conjugate momentum of s, Q is the thermal inertia coefficient, which behaves as a mass for the motion of s, u q N is the potential energy of the system, and g is the number of degrees of freedom of the physical system, g = dN [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF], where d is the space dimension. A term for a potential energy for s, gk B T ln (s) is chosen in such a way that the canonical ensemble is reproduced [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF].

Let us take a look at the equations of motion for the virtual variables proposed by Nosé [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF]:

qi = ∂H Nosé ∂p i = p i m i s 2 , ṗi = - ∂H Nosé ∂q i = - ∂u q N ∂q i , ṡ = ∂H Nosé ∂p s = p s Q , ṗs = - ∂H Nosé ∂s = i p 2 i m i s 3 - gk B T s , (2.11) 
where qi and ṗi correspond to the first derivative with respect to time t of the virtual coordinate and momentum of a particle i.

For applications in simulation it is important to transform eqs. 2.11 to eqs. with real variables using relations from eq. 2.9 [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

q i = p i m i , ṗ i = - ∂u q N ∂q i - 1 s ds dt p i , ds dt = s 2 p s /Q, ṗ s = i p 2 i m i -gk B T s - 1 s ds dt p s , (2.12) 
where p s = p s /s, q i , ṗ i , and ṗ s are the first derivatives over real time.

It is important to note that eqs. 2.12 are no longer canonical since the quantities ṗ i and ṗ s have additional force terms. The Nosé Hamiltonian in terms of real variables CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS reads [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF] (cf. page 513, eq. 2.23):

H Nosé = i p 2 i 2m i + u q N + s 2 p 2 s /2Q + gk B T ln (s) (2.13)
Note that eq. 2.13 is not a proper Hamiltonian anymore, but it is still conserved, Ḣ Nosé = 0 [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF].

Hoover proposed an improvement and simplification [START_REF] Hoover | Canonical dynamics: Equilibrium phase-space distributions[END_REF] to the above algorithm by choosing a new variable, the thermodynamic friction coefficient ξ, which can be defined

as ξ = 1 s ds dt = sp s /Q = p s /Q [88]
. Now, eq. 2.12 becomes:

q i = p i m i , ṗ i = - ∂u q N ∂q i -ξp i , ṡ = s 2 p s Q , ṗ s = i p 2 i m i -gk B T s -ξp s (2.14)
The first derivative of the thermodynamic friction coefficient, ξ, can be found based on the eq. 2.11 [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

ξ = s p s Q , dξ dt = 1 Q d (sp s ) dt = s Q ṗs , ṗs = i p 2 i m i s 3 - gk B T s = i p 2 i m i -gk B T s, dξ dt = 1 Q i p 2 i m i -gk B T , (2.15) 
where g = dN . Combining eqs. 2.12, 2.14 and 2.15 one can get the equations of the Nosé-Hoover thermostat for controlling temperature in the system [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

q i = p i m i , ṗ i = - ∂u q N ∂q i -ξp i , dξ dt = 1 Q i p 2 i m i -gk B T (2.16) CHAPTER 2.
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The choice of the mass parameter Q is very important. Setting a very large value for Q → ∞ corresponds to the microcanonical ensemble. Moreover, choosing the large value of Q will be inefficient due to the very slow energy exchange with the heat bath [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF][START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]. On the other hand, very small value of Q leads to a sequence of problems, for example the heat bath variable s will be an isolated mode and will continue an oscillation independently. In such a system the distribution of the total kinetic energy driven by this oscillation deviates significantly from the Gaussian distribution, and during the simulation this system will not reach the equilibrium state [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]. The statements above lead to the conclusion that the choice of the mass parameter Q is a crucial task. An assessment of the Q-effect can be done in two ways. The first one is to take the second derivative of ξ using eqs. 2.16 as in ref. [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]:

d 2 ξ dt 2 = 1 Q i d dt (p i ) 2 m i = 1 Q i 2p i ṗ i m i = 2 Q i p i m i   - ∂u q N ∂q i -ξp i   ≈ - 2 Q ξ i p 2 i m i ≈ - 2gk B T Q ξ (2.17)
Due to the fact that positions q i and momenta p i of particles are uncorrelated at the thermal equilibrium, the average value of the product p i ∂u(q N ) ∂q i must vanish and it is possible to neglect this term in eq. 2.17. The kinetic contribution i p 2 i m i is almost constant and can be approximately replaced with gk B T (cf. Fig. 4.1 from ref. [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]). It can be seen that eq. 2.17 is equivalent to the harmonic oscillator equation with frequency [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF][START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

ω T = 2gk B T Q 1 2
(2.18)

The second way to obtain the proper value of the mass parameter Q is to use the criteria introduced by Nosé [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]. As was mentioned at the beginning of this section, Nosé proposed the idea of the virtual variables in order to control the temperature in the system.

So, let us switch again to the virtual variables by applying the time-transformation p i = p i /s in the last eq. 2.16 in order to follow his steps. The fluctuation δs of the variable s around its average value s can be defined as δs = s (t) -s . In the small-Q limit the fluctuations of s are much faster than those of the original system and the constant temperature is maintained by s, 

s d 2 s dt 2 = 1 Q i p 2 i m i s 2 -gk B T , δs = s (t) -s ⇒ i p 2 i m i ( s + δs) 2 = i p 2 i m i s 2 1 + δs s 2 = = i p 2 i m i s 2 1 + δs s -2 = i p 2 i m i s 2 1 -2 δs s s Q d 2 (δs) dt 2 = i p 2 i m i s 2 1 -2 δs s -gk B T = -2 gk B T s (δs) s 2 d 2 (δs) dt 2 d 2 (δs) dt 2 d 2 (δs) dt 2 = -2 gk B T Q (δs) (2.19)
The above relation is similar to a harmonic oscillator equation [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF][START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF] with frequency (in real time) which is equivalent to eq. 2.18:

ω s = 2gk B T Q 1 2 (2.20) 
In eq. 2.16 the variable ξ is not constant and can be either positive or negative. If the kinetic energy of the system is larger than (g/2)k B T , the time derivative of ξ, ξ, is positive, and then ξ increases and will become positive. That means that in a case of positive friction coefficient ξ the equations become similar to those for the system with a friction force. The kinetic energy decreases due to the fact that the velocity of particle is decreasing by the friction. On the contrary, in a situation of kinetic energy lower than (g/2)k B T , ξ decreases, and in the negative ξ region, the system is heated up [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF].

Obviously the kinetic energy is fluctuating around its average value (g/2)k B T , which leads to vanishing time average of the time derivative variable. This also guarantees that the average of kinetic energy coincides with the results of the equipartition theorem [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF][START_REF] Tolman | A general theory of energy partition with applications to quantum theory[END_REF]:

x i ∂H ∂x j = δ ij k B T, (2.21) 
where H is the Hamiltonian of a system, δ ij is the Kronecker symbol, x i,j are the generalized coordinates, and ... is the canonical ensemble average.

Due to the non-canonical nature of equations 2.16, they do not conserve the volume in phase space (p, q, ξ) where the density function f NVT p N , q N , ξ is defined. The
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Liouville's theorem, ḟ = 0, is not applicable in this case [START_REF] Hoover | Canonical dynamics: Equilibrium phase-space distributions[END_REF][START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]. However, the volume fluctuations are very small for large systems, typically ∼ 1/ √ g. It was also shown that the density function has a canonical distribution and is expressed as [START_REF] Nosé | A unified formulation of the constant temperature molecular dynamics methods[END_REF]:

f NVT q N , p N , ξ = C exp -H T p N , q N , ξ /k B T (2.22)
where

H T = i p 2 i /2m i + u q N + Qξ 2 /2 [88]
, and p, q are now real momenta and coordinates.

Simulation in the N P T ensemble

A year after deriving eq. 2.16, Hoover extended those equations to the N P T case [START_REF] Hoover | Constant-pressure equations of motion[END_REF].

In this section the procedure of applying Nosé-Hoover algorithm for the simulations in isobaric-isothermal ensemble, known as the N P T ensemble will be briefly discussed.

To extend the idea from previous section to the isobaric-isothermal ensemble reduced coordinates from eqs. 2.9 by a length of a simulation unit cell are introduced [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]:

q i = V 1/d q i , p i = V -1/d p i , q i = V 1/d qi (2.23)
where q i is the velocity of particle i, V is the volume of the simulation unit cell, d is the dimension of the system. As in the previous section, the variables with a prime are the real variables corresponding to the real physical system and the scaled variables are represented without the prime [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF].

To describe the change of the volume V with the time, V , the expansion rate ζ = V dV is introduced [START_REF] Hoover | Constant-pressure equations of motion[END_REF], where d is the space dimension. The equations of motion for scaled variables [START_REF] Hoover | Constant-pressure equations of motion[END_REF]:

qi = p i m i + ζq i , ṗi = - ∂u q N ∂q i -(ξ + ζ) p i , ξ = 1 Q i p 2 i m i -gk B T , ζ = V dV , ζ = V W (P (t) -P ) , (2.24) 
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where P is a fixed "external pressure" (which is imposed), ζ is the first derivative over time of the expansion rate, W is the mass parameter for the volume changes, which determines frequency of the volume fluctuations, and P (t) is an instantaneous (or internal) pressure of the system, defined as:

P (t) = 1 dV i p 2 i m i + i<j r ij • F ij , (2.25) 
where r ij = r j -r i is the distance vector, and F ij is the force of particle i on particle j. The balance between an internal P (t) and an external pressure P governs the change of the volume [START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF], V = ζV d.

It was shown in ref. [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF][START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF][START_REF] Hoover | Constant-pressure equations of motion[END_REF] that eq. 2.24 is compatible with the equilibrium solution for the density function

f NPT p N , q N , ξ, ζ = const • exp -H * p N , q N , ξ, ζ k B T , (2.26) 
where

H * = i p 2 i /2m i + u q N + Qξ 2 /2 + dζ 2 W/2 + P V ,
and N is the total number of particles in the system, i = 1..N .

To perform the simulations in LAMMPS [START_REF]Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[END_REF] one can adjust the parameters P damp and T damp . Those parameters determine how rapidly the temperature or pressure is relaxed and have dimension of time. They are related to the mass parameter for the volume changes W and the thermal inertia coefficient Q which were implemented in LAMMPS as [START_REF]Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[END_REF]:

W = dN k B T × P 2 damp , Q = dN k B T × T 2 damp (2.27)
The parameter T damp is related to the frequency ω T defined in eq. 2.18 as [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]:

T damp = √ 2 ω T (2.28)
The parameter P damp is related to the frequency ω v obtained below (cf. eq. 2.31)

as [START_REF]Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[END_REF]:

P damp = 1 ω v K b cT , (2.29) 
where c = N/V is the density of the system, and K b is the bulk compression modulus.

To define ω v let us investigate the time-evolution of the volume fluctuations δV (t) = V (t) -V and the instantaneous pressure δP (t) = P (t) -P , where ... corresponds
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to the ensemble averaging. One can see from eq. 2.24, δ V = V = ζdV [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]. The second derivative of the latter above takes form:

V = ζdV + ζd V = = V W dV δP + (ζd) 2 V = dV 2 W δP δV δV + δ V V 2 V = = - dV 2 W K b V δV + δ V V 2 V = - dV W K b δV (2.30) It is possible to neglect the term " δ V V 2
V " in eq. 2.30 taking into account that δV and δ V are the same order of magnitude, and δV /V 1. From eq. 2.30 one can introduce the frequency ω v which is connected with W via [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF]:

ω v = dV W K b 1/2 , (2.31) 
where K b is the bulk compression modulus and V is the volume of the system.

Fluctuation-dissipation theorem 2.2.1 Shear stress

As was discussed in Chapter 1, the shear-stress relaxation modulus G (t) can be obtained in a simple-shear experiment recording a shear-stress increment δσ (t) generated by a small prescribed steplike shear deformation γ 1 at t = 0:

G (t) = lim γ-→0 δσ (t) /γ (2.32)
Based on the fluctuation-dissipation theorem (FDT) [START_REF] Landau | Statistical Physics[END_REF][START_REF] Hansen | Theory of Simple Liquids[END_REF], which is exact for equilibrium systems, G (t) is closely related to the shear stress correlation function C (t) via the stress-fluctuation equation [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF][START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] (relating the relaxation modulus in the linear response regime to fluctuations of the shear stress):

C (t) = σ (t + t ) σ (t ) (2.33)
where σ (t) = σ xy (t) is the instant shear stress, averaged over the system volume V , and ... means the ensemble-averaging.
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The FDT relation is:

G (t) = V T C (t) + CONST, (2.34) 
The constant term CONST from eq. 2.34 depends on the boundary conditions applied to obtain C (t). For example, CONST=0 with free boundary (in this case, eq. 2.34 is exact only for V → ∞) or when the boundary is coupled to a highly damping external medium [START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF]. The effect of such overdamped force was implemented in computations with PBC using a hybrid MD-Monte Carlo (MC) scheme [START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF] involving canonical-affine shear deformations as MC moves. This scheme (the shear barostat) implies that the PBC are generally nonrectangular thus allowing for shearing of the simulation cell. The nonphysical MC steps are chosen to be very small in order to sufficiently slowdown a backflow (shear reversal) after an imposed shear strain. However, the constant CONST from eq. 2.34 is generally nonzero in standard simulations with fixed PBC in the canonical ensemble.

While eq. 2.34 is strictly valid for equilibrium systems (in particular, in the liquid state), it is also valid for glassy (supercooled) systems as argued below: In this latter case, the system stays virtually trapped for a long time in a particular metabasin, MB (is a group of inherent structures, IS, of the potential energy landscape in the configurational space [START_REF] Debenedetti | Supercooled liquids and the glass transition[END_REF]), so it becomes equilibrated within each MB. Hence, the FDT can be applied individually to each MB provided that transfer rates f ∼ 1/τ α between the glassy states (MBs) are very low, and therefore, it must also be valid on the average (for ensemble-averaged quantities) with any (generally, non-equilibrium) probability distribution between the glassy states (the MBs). The general condition for the FDT relation 2.34 to be valid is that the system must be equilibrated (prior to the measurements) during a long time strongly exceeding the time shift t in C (t). Let us define a "sampling time" ∆t as a time, which takes to simulate one configuration. For t ∼ ∆t the latter condition ensures that aging is negligible within the relevant time window ∆t, as was verified in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF].

The constant term CONST can be represented for 2 regimes -liquid and glassbelow:

CONST =    0, liquid G (0) -V T C (0) , glass (2.35) 
On using both eq. 2.34 and eq. 2.35, the final formula connecting G (t) and C (t) becomes: 

G (t) = V T C (t) +    0, liquid G (0) -V T C (0) ,
G (t) = V T C (t) + G (0) -µ 0 , (2.37) 
with µ 0 measuring the ensemble-and time-averaged square of the shear stress:

µ 0 = V T C (0) = V T σ 2 , (2.38) 
where

σ 2 = 1 ∆t ∆t 0 σ (t) 2 dt (2.39)
The time-averaged stress is defined for each system of the ensemble as

σ = 1 ∆t ∆t 0 σ (t) dt (2.40) 
As follows directly from the definition of C (t), eq. 2.33,

σ 2 = 1 ∆t 2 ∆t 0 C (t -t ) dtdt (2.41) 
Eq. 2.41 can be considered as an average of C (t) over the time scale ∆t. A similar average of G (t) reads:

µ = 1 ∆t 2 ∆t 0 G (|t -t |) dtdt (2.42)
Eqs. 2.36 and 2.37 now can be represented as follow:

G (t) = V T C (t) +    0, liquid µ A -V T C (0) , glass (2.43) 
and

G (t) = V T C (t) + µ A -µ 0 (2.44)
Using eqs. 2.41, 2.42, and 2.44, µ can be rewritten in terms of µ A and time-averaged shear-stress fluctuations µ F :

µ = µ A -µ F , (2.45) 
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where

µ F = µ 0 -µ 1 , µ 1 = V T σ 2 .
(2.46)

The fluctuation modulus µ F measures the mean-square fluctuation of σ over the sampling time ∆t:

µ F = V T (σ -σ) 2 (2.47)
Also, µ F can be considered as an effective drop of G (t) during the time ∆t:

µ F (∆t) = G (0) -µ (∆t) (2.48)
and can be treated as the average for individual moduli μF defined for each independent dynamical trajectory of a system from the ensemble:

µ F = μF , (2.49) with μF = V T σ 2 -σ 2 ≡ μ0 -μ1 (2.50) 
Apart from the factor V /T , μ0 is the mean-squared shear stress of the trajectory and μ1 is the square of the mean stress σ. The latter equation can be rewritten as: 

μF = V 2T (∆t) -2 ∆t 0 [σ (t 1 ) -σ (t 2 )]
µ F = 2 ∆t 2 ∆t 0 (∆t -t) h (t) dt, (2.52) 
where

h (t) = V 2T [σ (t + t ) -σ (t )] 2 = V T [C (0) -C (t)] = G (0) -G (t) (2.53)
is proportional to the mean-square shear stress increment. Thus, the functions µ F (∆t), h (t) and G (t) are closely related defining each other with eq. 2.52 or with the inverse equation:

h (t) = 1 2 d 2 dt 2 t 2 µ F (t) . (2.54)

Impulsive correction

Let us consider an infinitesimal canonical affine transformation of positions and velocities of all particles. The affine shear modulus µ A is defined by the stress response on such transformation. For example, if we consider shear in the xy plane, then such transformation can be expressed as:

x → x + γy, v y → v y -γv x , (2.55) 
where x, y are coordinates and v x , v y are velocity components of a particle. Then eq. 2.32 at t = 0 can be rewritten in terms of µ A :

δσ ∼ = γµ A (2.56)
As was shown in refs. [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF][START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF], the modulus µ A can be also defined by the following general expression:

μA = 1 V N i=1 m i v 2 i,x + 1 V l n 2 y r 2 u l (r) n 2 x + ru l (r) 1 -n 2 x , (2.57) 
where µ A = μA , "tilde" indicates that the modulus is calculated for an instantaneous micro-state of the system, m i ,v i,x correspond to the mass and the velocity component along

x direction of the ith particle, N is the total number of particles in the system. The first sum runs over all particles in the system and the second sum runs over all different pairs of the interacting particles, where index l labels the interaction between the particles i and j with i < j. The term u l (r) is the interaction potential for the l-pair, u l (r) and u l (r) are its first and second derivatives with respect to r = |r|, respectively, where r = r l is the distance vector and n = r l /r l is the normalized distance vector between interacting particles i and j.

The first term in eq. 2.57 is the kinetic (ideal-gas) contribution, while the second (excess) term is due to particle interactions. In practice, the kinetic term can always be ensemble-averaged giving just cT , where c = N/V is the particle concentration and T is the temperature in energy units (T = k B T abs , with T abs being the absolute temperature).

Potential truncation at r cut , with r being the distance between two particles i and j, allows to reduce the number of interactions computed for an energy and a force. The shifting of the potential leading to u (r cut ) = 0 allows to avoid its discontinuous behavior at r = r cut . After those procedures the interaction energy goes smoothly to zero at r = r cut , CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS without any numerical instability in the equations of motion and without problems in energy conversation.

While the chosen LJ potential is continuous:

u LJ (r) =      4 LJ σ LJ r 12 -σ LJ r 6 -4 LJ σ LJ rcut 12 -σ LJ rcut 6 , if r < r cut 0, otherwise (2.58)
its derivative is not, giving rise to a singular contribution to µ A known as an impulsive correction ∆µ A [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF].

One can obtain the impulsive correction ∆µ A for monodisperse systems using equation 2.59 which is shown in ref. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. Our glass-forming 3-dimensional oligomer model is the good example of such a monodisperse system. Detailed explanations about this model and the resulting ∆µ A are provided in Chapter 3, section 3.4. Based on the equations from ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF] and section 3.4 the impulsive correction for monodisperse systems can be defined as:

∆µ A = - 2π 15 c 2 u LJ (r cut ) r 4 cut g nb (r cut ) , (2.59) 
where c is the monomer concentration c = N m /V , N m is the total number of monomers in the system, and g nb is the radial distribution function (RDF) for nonbonded monomer pairs. Here by nonbonded monomers we mean monomers that are not connected by permanent bonds: only those monomer pairs are interacting with the LJ potential according to the model of Chapter 3. Eq. 2.59 was derived in ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF] taking into account the Born term C αβγδ B :

C αβγδ B = 1 V l (s 2 l u s (s l ) -s l u s (s l ))n α l n β l n γ l n δ l , (2.60) 
where s l = r l /σ LJ is the reduced dimensionless distance between interacting particles i and j, n α l is the corresponding component of the normalized distance vector [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF], and u s (s l ) = u LJ (r l ) is the truncated and shifted potential. Now setting for C αβγδ B α = γ = 1 and β = δ = 2, the impulsive correction ∆µ A is simply obtained using ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]:

∆µ A = -lim s→scut 1 d(d + 2)V l s 2 l u s (s l ) δ (s l -s) , (2.61) 
where s cut = r cut /σ LJ is the reduced dimensionless cutoff distance. However, it is not possible to calculate the impulsive correction for the polydisperse system (Chapter 4) using eq. 2.59: eq. 2.59 is not correct for such systems. In this case
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the radial distribution function should be obtained by linear superposition of eq. 2.59 for different sizes of particles i and j [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]. Following ref. [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF][START_REF] Tanguy | Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations[END_REF], the pair potential u LJ (r) scales as u LJ (r) ≡ u s (r/σ ij ), where σ i and σ j are diameters of interacting particles,

σ ij = (σ i + σ j ) /2
is their half-sum. To simplify notations, r/σ ij can be replaced by a reduced dimensionless distance s, such as s = r/σ ij . Now, eq. 2.58 can be written in the following way:

u LJ (s) =    4 LJ (s) -12 -(s) -6 -4 LJ (s cut ) -12 -(s cut ) -6 , if s < s cut 0, otherwise (2.62)
where s cut is the reduced cutoff radius and is the same for all interaction pairs, s cut =

r cut /σ ij = 2 7/6 .
We developed a method which allows us to calculate µ A without an additional calculation of the impulsive correction ∆µ A . Focusing on the virial contribution to the µ A , eq. 2.57, we have modified the second derivative of the potential energy, u LJ (s), by adding the additional contribution:

ũ LJ (s) = u LJ (s) + C • F (s) , (2.63) 
where the constant C = -1 ∆ • u LJ (s cut ) and the function F (s) can be expressed as:

F (s) =    4 -6 (s cut -s) /∆, if 0 < (s cut -s) < ∆ 0, otherwise (2.64) 
where ∆ s cut . As was shown in ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF], the second derivative of truncated and 

shifted potential is u s (s) = u (s) H(s cut -s) -u (s)δ(s cut -s),

Pressure correlations

Let us start with explaining the further notations. We assume that at each temperature T we kept the data for m independent configurations obtained by the N P T tempering (the protocol of the equilibration is discussed in Chapters 3 and 4). This set of independent configurations k = 1, 2, ..., m is called ensemble.

In the same way as in eq. 2.33, the total pressure autocorrelation function, C b (t), can be defined as:

C b (t) = δP (t + t ) δP (t ) (2.65)
where Let us introduce a quantity which characterizes the elastic response with respect to a volumetric (dilatational) strain [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] and is called "bulk compression modulus" K b . It has a similar physical meaning as the static compression modulus η (which is analogous to µ but concerns the total pressure rather than shear stress):

P (t) = -(σ xx (t) + σ yy (t)) /2,
η = -V ∂P ∂V V = ρ ∂P ∂ρ V (2.66)
and K b also could be time dependent in analogy with G (t). An expression derived by

Rowlinson [START_REF] Rowlinson | Liquids and Liquid Mixtures[END_REF] allows us to compute [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]:

K * b = K b (t → ∞) = η as
K * b ≡ η A -η F , (2.67) 
where η A is the "affine dilatational elasticity" (corresponding to µ A ) and η F (corresponding to µ F ) [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] is the total pressure fluctuation modulus. The first term can be defined as

η A ≡ K b (0).
Introducing C b from eq. 2.65 allows us to find the time-dependent bulk compression modulus K b (t) using the same FDT approach [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF][START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] leading to eq. 2.36:

K b (t) = K b (0) + C b (t) -C b (0) V T (2.68) or K b (t) = η A + C b (t) -C b (0) V T (2.69) CHAPTER 2.
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To calculate the fluctuation modulus η F the same procedure as that resulted in eq. 2.50, by analogy with the fluctuation modulus µ F , was used. One can split η F into two parts η 0 and η 1 (analogous to µ 0 and µ 1 ):

η F = η 0 -η 1 (2.70)
with:

η 0 = (V /T ) (δP (t)) 2 , (2.71) 
Using δP (t) = P (t) -P k instead of P (t) allows us to reduce the numerical error for calculation of η F , note that:

η 1 = (V /T ) δP (t) 2 = 0 (2.72)
The longitudinal modulus K (t) is the coefficient between the stress increment σ xx due to a small uniaxial extension along x-axis (the strain xx ) with no transverse strain (see eqs. 2.118 and 2.119) [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]. The time-dependent compression modulus K b provides a connection with the longitudinal modulus K (t) [START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF][START_REF] Balucani | Dynamics of the Liquid State[END_REF]:

K (t) = K b (t) + 2 d -1 d G (t) (2.73)
Let us now consider solid glassy systems which we consider to be equilibrated in the sense discussed before eq. 2.35. The free energy of such systems must change due to an imposed small pure shear strain γ in, for example, xy-plane in the N V γT ensemble (with fixed number of particles N , volume V and temperature T ). For a plain shear strain with fixed volume V the excess part of the free energy contribution [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] is defined as:

F ex (T, γ) = -k B T ln (Z ex (γ)) , (2.74) 
where γ is an imposed extremely small pure shear strain, T is the temperature, and Z ex (γ) is the excess partition function. Based on the derivation of the compression modulus by Rowlinson [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF], the function Z ex (γ) can be expressed as:

Z ex (γ) = s exp (-βU s (γ)) , (2.75) 
where the sum is done over all the microstates s of the undeformed system, U s (γ) = i<j u (r ij (γ)) is the total interaction energy, r (γ) = (x + γy) 2 + y 2 1/2 , and β = 1 k B T .
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Thus, s in eq. 2.75 is equivalent to the integral over all coordinates (x, y, ...) of all particles before the deformation. The excess partition function Z ex (γ) of the unperturbed solid system at γ = 0, Z ex (0), is the Boltzmann-weighted sum over all states s of the system which are accessible within the measurement time t (note that Z ex (γ) does not depend on t). For ideal gas Z ex (0) = V d 3N r exp (-βU s (0)), where U s (0) = 0, because there is no interaction between particles of ideal gas. This leads to

Z ex (0) = V d 3N r = V N
, where V is the volume of the system.

It was shown [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] that the derivatives of the excess partition function:

∂ ln (Z ex (γ)) ∂γ = Z ex (γ) Z ex (γ) (2.76) ∂ 2 ln (Z ex (γ)) ∂γ 2 = Z ex (γ) Z ex (γ) - Z ex (γ) Z ex (γ) 2 (2.77)
where

Z ex (γ) = ∂Z ex (γ) ∂γ = - s βU s (γ) exp (-βU s (γ)) , Z ex (γ) = ∂ 2 Z ex (γ) ∂γ 2 = s (βU s (γ)) 2 exp (-βU s (γ)) - s βU s (γ) exp (-βU s (γ)) , U s (γ) = ∂ ∂γ i<j u (r ij (γ)) = i<j u (r ij (γ)) ∂r ij (γ) ∂γ , U s (γ) = i<j u (r ij (γ)) ∂r ij (γ) ∂γ 2 + i<j u (r ij (γ)) ∂ 2 r ij (γ) ∂γ 2 (2.78)
Based on the latter expressions is it possible to define the static shear modulus µ and the shear stress tensor σ xy in terms of γ [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]:

µ ≡ ∂σ xy (γ) ∂γ | γ=0 (2.79)
where σ xy (γ) is:

σ xy (γ) ≡ 1 V U s (γ) | γ=0 (2.80)
where the averaging ... is defined as [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]:

... = 1 Z ex (γ) s ... exp (-βU s (γ)) (2.81) CHAPTER 2.
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The above equations lead to:

σ xy (γ) = 1 V ∂F ex (T, γ) ∂γ (2.82)
The eqs. 2.76 -2.78 stated for γ are still valid after replacing γ by relative volume change ε:

ε ≡ V (ε) /V (0) -1, (2.83) 
where V (0) is the volume of the unperturbed simulation box. It was derived in ref. [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] that the excess contribution P ex to the total pressure P and the excess contribution K ex to the total bulk compression modulus K b are valid for an arbitrary conservative potential.

One can define the instantaneous excess pressure Pex using eq. 2.78 [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]:

Pex (0) ≡ - 1 V (0) ∂U s (ε) ∂ε | ε=0 , (2.84) 
where

∂ ∂ε U s (ε) = ∂ ∂ε i<j u (r ij (ε)) = i<j u (r ij (ε)) ∂r ij (ε) ∂ε , where r(ε) = r(0)(1 + ε) 1/d , d is the dimension, ∂r(ε) ∂ε = r(0)(1+ε) 1/d d(1+ε) , ∂ 2 r(ε) ∂ε 2 = r(0)(1-d)(1+ε) (1-2d)/d d 2
. The latter equation is related to the excess pressure P ex such as P ex = Pex , where P ex is defined as:

P ex (ε) = - 1 V (0) ∂F ex (ε) ∂ε (2.85)
and the averaging ... is analogous to that defined in eq. 2.81 with γ replaced by ε.

It is possible to obtain the excess part of the static compression bulk modulus K * b,ex = K b,ex (t → ∞) by taking the lim ε → 0 in eqs. 2.77, 2.78 [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF], 2.85 and taking into account the first relation from eq. 2.66:

K * b,ex = V ∂ 2 F ex (V ) ∂V 2 = - ∂P ex (ε) ∂ε = 1 V (0) ∂ 2 F ex (ε) ∂ε 2 = U s (ε) /V -βV δ P 2 ex , (2.86) where ε → 0, U s (ε) = i<j u (r ij (ε)) ∂r ij (ε) ∂ε 2 + i<j u (r ij (ε)) ∂ 2 r ij (ε) ∂ε 2 , δ P 2 ex
is the variance of the excess part of the total pressure (the excess part of the total pressure is defined in eq. 2.92). The first term is called the excess contribution η A,ex = U s (ε = 0) /V to the affine dilatational elasticity η A . The second term corresponds to the excess contribution η F,ex .
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The total pressure variance η F can be written as:

η F = η F,id + η F,ex , (2.87) 
where η F,id is the ideal part of pressure fluctuations, and η F,ex is the excess contribution due to the interactions between the particles. The relation 2.67 now becomes K * b ≡ η = η id + η ex with:

η ex ≡ K * b,ex = η A,ex -η F,ex , η id = η A,id -η F,id (2.88)
The affine dilatational elasticity can be also defined as [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]:

η A = d + 2 d cT + η A,ex , (2.89) 
where c = N/V is the concentration of the system at the temperature T , d is the dimension of the system, and η A,ex is the excess part of the total η A . The first term in eq. 2.89 corresponds to η A,id . In a similar way we find: η F,id = (2/d) cT . This leads to the result: η id = cT . The last term in eq. 2.89 can be re-expressed as:

η A,ex = η B + P ex , (2.90) 
where η B [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] is:

η B = 1 d 2 V l r 2 l u (r l ) + r l u (r l ) , (2.91) 
and P ex means the excess part of the total pressure and can be written as:

P ex = - 1 dV l r l u (r l ) (2.92)
For the total pressure P tot one can introduce the following formula:

P ex = P tot -cT (2.93)
Combining eqs. 2.91, 2.92 and 2.93, eq. 2.90 can be written as:

η A,ex = - 1 dV l r l u (r l ) + 1 d 2 V l r 2 l u (r l ) + r l u (r l ) (2.94)
Based on that, eq. 2.89 can be expressed in a new way:

η A = - 1 dV l r l u (r l ) + 1 d 2 V l r 2 l u (r l ) + r l u (r l ) + d + 2 d cT (2.
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To calculate η A,ex in the simulations we proceeded as follows. The affine modulus µ A was calculated using the general eqs. 2.57 and 2.59 [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]. Recalling the macroscopic isotropy of the system, we tried a different approach to obtain instant μA using preaveraging over all possible shear planes. The resultant expression for the preaveraged instant µ A does not involve bond orientations and can be conveniently written as:

µ or A = 1 d(d + 2) 1 V l r 2 l u (r l ) + (d + 1) • r l • u (r l ) + cT, (2.96) 
where d is the space dimension.

As was shown and discussed in ref. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] the orientational-averaged formula for µ or A allows us to decrease fluctuations of µ A . It is then possible to express η A in terms of µ or A :

η A = d + 2 d cT + 1 + 2 d (µ or A + P tot -2cT ) - 2 d (P tot -cT ) + P tot -cT (2.97)
After simplification of eq. 2.97, the new form of η A is:

η A = 1 + 2 d µ or A + 2P tot -2cT (2.98)

Stress correlations in q-space

Let us start with the definition of the space-resolved microscopic stress at point r, [START_REF] Tadmor | Modeling Materials: Continuum, Atomistic and Multiscale Techniques[END_REF][START_REF] Varnik | Molecular dynamics results on the pressure tensor of polymer films[END_REF]:

σ micro αβ (r, t)
σ micro αβ (r, t) = - 1 2 N j =i F α ij (t) r β ij (t) 1 0 dα • δ (r i -r -αr ij ) - N j=1 m j v α j (t) v β j (t) δ (r j -r) (2.99)
where F α ij is the interaction force applied along direction α by particle j on particle i, r β ij is the vector connecting particles i and j along β direction (a schematic representation for 2 particles is shown in Fig. 2.2), r is a point on the lattice, v β j and v α j are velocities along the β and α direction respectively, r j and r i are positions of particles j and i, r ij = r i -r j , and δ (r i -r) is the Dirac's delta-function.

Based on eq. 2.99 one can define microscopic stress tensor (in terms of particle coor- dinates and interaction potentials) of the mean stress σ αβ (t) [START_REF] Tadmor | Modeling Materials: Continuum, Atomistic and Multiscale Techniques[END_REF]:

σ αβ (t) = 1 V d d r • σ micro αβ (r, t) = = 1 V d d r - 1 2 N j =i F α ij (t) r β ij (t) 1 0 dα • δ (r i -r -αr ij ) - N j=1 m j v α j (t) v β j (t) δ (r j -r) = - 1 2 1 V N j =i F α ij (t) r β ij (t) d d r 1 0 dα • δ (r i -r -αr ij ) - 1 V N j=1 m j v α j (t) v β j (t) d d rδ (r j -r) = - 1 2 1 V N j =i F α ij (t) r β ij (t) - 1 V N j=1 m j v α j (t) v β j (t) (2.100) 
The key to the spatial averaging is the weight function φ (r). To obtain the coarsegrained local stress tensor at point r, one can use the Goldhirsch and Goldenberg approach [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Goldhirsch | On the microscopic foundations of elasticity[END_REF] using a smooth function φ instead of the delta-function:

σ αβ (r, t) = - 1 2 N j =i F α ij (t) r β ij (t) 1 s=0 dsφ (r i -r + sr ij ) - N j=1 m j v α j (t) v β j (t) φ (r j -r) , (2.101) 
where the function φ > 0 and vanishes beyond r c (not to be confused with r cut 

(q) = - N j =i F α ij (t) r β ij (t) exp (-iq • r ij ) sin (q • r ij /2) /(q • r ij ) - N j=1 m j v α j (t) v β j (t) exp (-iq • r j ) , (2.102) 
where r ij = (r i + r j )/2 is the mid point of each pair. The Fourier transform of the local stress tensor in q-space with weighted function now becomes [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Goldhirsch | On the microscopic foundations of elasticity[END_REF]:

σ αβ (q) = φ (q) - N j =i F α ij (t) r β ij (t) exp (-iq • r ij ) sin (q • r ij /2) /(q • r ij ) - N j=1 m j v α j (t) v β j (t) exp (-iq • r j ) = φ (q) σmicro αβ (q) (2.103)
where φ (q) is the Fourier transform of the weight function φ (r). To prove consistency between eqs. 2.103 and 2.100 let us find a q → 0 limit:

1 V lim q→0 σ αβ (q) = 1 V lim q→0 φ (q) - N j =i F α ij (t) r β ij (t) exp (-iq • r ij ) sin (q • r ij /2) /(q • r ij ) - N j=1 m j v α j (t) v β j (t) exp (-iq • r j ) = - 1 2V N j =i F α ij (t) r β ij (t) - 1 V N j=1 m j v α j (t) v β j (t) = σ αβ (t) (2.104) 
Let us turn to the space-resolved correlations of the local shear stress σ xy (r, t):

C (r, t) = σ xy (r , t ) σ xy (r + r, t + t) (2.105)
This generalized shear stress correlation function is also related to rheological characteristics of the fluid (see the sections below). The distance-dependent stress correlations have been considered in recent simulation studies [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] as well as theoretically [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF]. These studies show that the stress correlation function is both nonlocal and anisotropic.

The stress correlation function is defined in the general case as a tensor: 

C αβα β (r, t) = σα β (r , t ) σαβ (r + r, t + t) , (2.106 
C αβα β (r, t) = C α β αβ (-r, -t) [9].
The time reversibility and uniformity demand that:

C αβα β (r, t) = C α β αβ (-r, t) = C αβα β (r, -t) (2.107)
In addition, all even-dimensional systems and all achiral systems obey:

C αβα β (r, t) = C αβα β (-r, t) (2.108) hence C αβα β (r, t) = C α β αβ (r, t) (2.109) 
The general fluctuation-dissipation theorem (FDT) relates the function C with the linear response of stress to a small instant deformation of the system at t = -0 like:

r → r + u (r) , (2.110) 
where u (r) is an infinitesimal particle-displacement field (the particle momenta p are also changed to render the whole transformation canonical in the Hamiltonian phase-space of the system: p α → p α -u β,α p β , where u β,α = ∂u β /∂r α ). Then, according to the FDT the mean stress increment σαβ induced by the infinitesimal strain field:

γ αβ (r) = u β,α + u α,β (2.111) 
can be written as:

σ αβ (r, t) = 1 2T d d r C αβα β (r -r , t) γ α β (r ) , (2.112) 
where d is the space dimension and the "tilde" over σ is omitted here and below, and summation over repeated indices is implied. Note that σ αβ means an out-of-equilibrium CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS average stress increment due to an applied field here and below. Summation over α and β is essential in eq. 2.112. Doing Fourier transformation of the last equation we get:

σ αβ (q, t) = 1 2T C αβα β (q, t) γ α β (q) , (2.113) 
where C αβα β (q, t) = 1 V σ αβ (q, t) σ * α β (q, 0) . Note that the Fourier transforms of C and γ are indicated by the wave-vector argument q, while the functions are not changed for notation simplicity. Note that eqs. 2.107 and 2.108 imply that C αβα β (q, t) is real and does not depend on the sign of t:

C αβα β (q, t) = C αβα β (q, -t) = C * αβα β (q, t) (2.114) 
Let us try to obtain the stress correlation function C using the FDT relation 2.113 and based on the known relaxation moduli. To this end we first find the stress response to the deformation of the system using an independent approach outlined in ref. [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF].

In the linear response approximation the mean stress must be a linear function of the flow velocity field. For a Newtonian fluid the local stress is just proportional to the local rate-of-strain γαβ (r) = v α,β + v β,α (here v α = v α (r, t) is the flow velocity), while in the general case of a complex fluid with memory effects the relation is:

σ αβ (q, t) = 1 2 t -∞ E αβα β (q, t -t ) γα β (q, t ) dt (2.115)
Note that E is symmetric with respect to α , β permutations and eq. 2.115 can be used to predict the stress field if the flow field is known (is imposed or prescribed). Using

Laplace transformation the latter equation can be written as (in what follows we assume no flow at t < 0):

σ αβ (q, s) = E αβα β (q, s) γα β (q, s) /2, (2.116) 
where σ αβ (q, s) = ∞ 0 σ αβ (q, t) e -st dt, etc. (A special case of the above relation was employed before [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]). Taking into account the space isotropy and that:

γαβ (q, s) = i (q α v β (q, s) + q β v α (q, s)) , (2.117) 
the stress response to the flow can be written as:

σ αβ (q, s) = G (q, s) γαβ (q, s) + ε M (q, s) δ αβ + (K -2G -M ) q α q β q 2 , (2.118) 
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where ε = ε (q, s) = 1 2 Tr γ, and G (q, s), K = K (q, s), M = M (q, s) are Laplace transforms of the following 3 material functions (the generalized time-dependent relaxation moduli): the shear modulus G (q, t), the longitudinal modulus K (q, t) (not to be confused with the bulk modulus) and the mixed modulus M (q, t) which all depend on magnitude |q| of the wave-vector (but do not depend on its direction). The physical meaning of these material functions is clear: G (q, t) defines the shear stress response to a shear strain, while K (q, t) and M (q, t) define, respectively, the longitudinal and transverse stress generated by a longitudinal strain (by transverse stress we mean the normal stress in a direction perpendicular to q). More formally, these definitions can be presented using the natural coordinate frame with the first axis (e 1 ) parallel to q. The response to an instant deformation v (t) = uδ (t) with u = (u 1 , u 2 , 0) then reads (here δ (t) is the Dirac's delta): 

σ 11 (q, t) = K (q, t) ε, σ 22 (q, t) = M (q, t) ε, σ 12 (q, t) = G (q, t) γ, (2.119 
∂ ∂t J α = σ αβ,β , t > 0 (2.120)
where J α = ρv α is the momentum density and ρ is the fluid mass per unit volume.

Within the linear approximation we can treat ρ as a constant (the mean density of the fluid) and rewrite the above equation in terms of the ensemble-averaged quantities:

ρ ∂ ∂t v α = iq β σ αβ , t > 0 (2.121)
Solving eqs. 2.121 and 2.118 for the stress σ αβ (q, t) and comparing the results with eqs. 2.113 we get (using again a natural coordinate frame related to a given q = 0):

C T (q, s) ≡ C 1212 (q, s) = T ρsG (q, s) ρs + q 2 G (q, s) (2.122) C || (q, s) ≡ C 1111 (q, s) = T ρsK (q, s) ρs + q 2 K (q, s) (2.123) CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS C ⊥ (q, s) ≡ C 2211 (q, s) = T ρsM (q, s) ρs + q 2 K (q, s) , (2.124) 
where C αβα β (q, s) = ∞ 0 C αβα β (q, t) exp (-st) dt. Eq. 2.122 is well-established [START_REF] Balucani | Dynamics of the Liquid State[END_REF][START_REF] Evans | Statistical Mechanics of Nonequilibrium Liquids[END_REF]; its FDT-based derivation is given in ref. [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF].

The second relation of eq. 2.123 is mentioned in ref. [START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF].

It is worth stressing again that the above results are valid for q = 0. The situation for q = 0 is more subtle [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF][START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF]: in this case the fluctuations of mean stress averaged over the whole system are involved; their dynamics and statistics depend on the boundary conditions. If the total volume and shape of the system are not allowed to fluctuate (which is often the most convenient option for computer simulations), then C || (0, t) and C T (0, t) may not coincide with lim q→0 C || (q, t) and lim q→0 C T (q, t) [START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF], As a result, the FDT relations for q = 0 in the general case become [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF][START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF]:

C (0, t) = T [K (t) -K e ] , C T (0, t) = T [G (t) -G e ] (2.125)
where G (t) = G (q = 0, t), K (t) = K (q = 0, t), and K e and G e are the equilibrium longitudinal and shear moduli (for infinitesimal strain), respectively (G e > 0 for crosslinked polymer systems or crystalline solids, but G e = 0 for uncrosslinked systems like liquids and amorphous systems considered herein). We do not consider here non-ergodic amorphous systems below the putative ideal glass transition temperature T K which may exhibit G e > 0 [START_REF] Chaudhuri | Onset of flow in a confined colloidal glass under an imposed shear stress[END_REF][START_REF] Barrat | Heterogeneities in amorphous systems under shear[END_REF]. In our view the finite rigidity in this regime is due to some (hidden) long-range static structural correlations. To avoid fictitious problems (arriving at G e = 0 even for crystalline solids [START_REF] Yoshino | Replica theory of the rigidity of structural glasses[END_REF]) we define the moduli taking first the limit of infinitesimal strain, γ → 0, and then the thermodynamic limit, the number of particles

N → ∞.
As for the 3 rd correlation function C ⊥ (0, t), it is not independent for q = 0:

C ⊥ (0, t) = C (0, t) -2C T (0, t) (since M (0, t) = K (0, t) -2G (0, t)) (2.126)
It is important that the stress correlation function C αβα β (q, t) is discontinuous at q = 0. For example, lim q-→0 C (q, t) = C (q = 0, t) in the general case [START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF]. Moreover, C αβα β (q = 0, t) is also known to be notoriously ensemble-dependent [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Ruscher | Anomalous sound attenuation in voronoi liquid[END_REF]. By contrast, the correlation function C αβα β (q, t) for a finite q is independent of the statistical ensemble in the thermodynamic limit, N → ∞. That is why in what follows we focus on the q = 0 regime for the stress correlation function.
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The FDT-based relations 2.122, 2.123 and 2.124 provide 3 independent components of the stress correlation tensor C αβα β . However, the whole tensor function C remains yet unknown as it generally involves 4 or 5 independent components in total (including C 2222 for 2-dimensional systems, and, in addition, C 2233 in 3 dimensions). These extra components cannot be derived from any FDT relation, nor can they be directly expressed in terms of a material function like those considered above. (Note that the number of independent material functions (= 3) is defined mathematically by the most general linear relationship (as given in eq. 2.118) between the tensor σ and the vector v, compatible with the system isotropy and involving the second vector q.) Fortunately, however, all the stress-correlation components can be calculated in the hydrodynamic regime as will be discussed below.

Hydrodynamic fluctuations

In what follows we focus on the dynamics at long length-scales and therefore small wavevectors q, qa m 1, where a m is the molecular size. The details of the short-scale structure (at length scale ∼ a m ) and the short-time processes (like molecular collisions with the time-scale τ m ) are disregarded (wiped-out) within the adopted hydrodynamic approach. Of course, thermal fluctuations drive the fluid motion also at large scales.

Such slow motions are explicitly taken into account in the model considered below.

According to this approach the local stress field can be generally represented as a sum of 2 contributions (the treatment given here is close in spirit to the classical fluctuation theories [105]):

σ αβ (q, t) = σ D αβ (q, t) + σ n αβ (q, t) , (2.127) 
where the first term σ D is the "regular" flow-generated stress defined by the current strain and strain rate or, more generally, by the whole flow (deformation) history; σ D depends on the flow in the linear-response fashion reflected in eq. 2.115. The linear response is valid since the flow is weak at long length-scales, qa m 1. The second term σ n is the random stress due to structural (packing) irregularities and thermal fluctuations of particle velocities (thermal noise) which is independent of the macroscopic flow for the same reason: weak flow does not affect much the local fluid structure defining the noise

σ n .
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To obtain the noise correlation function: these correlations is unlikely to be a suitable candidate for ξ s . Recent suggestions involve point-to-set correlations which increase more strongly, but typically do not exceed a few a m over the range of temperatures accessible to computer simulations [START_REF] Yaida | Point-to-set lengths, local structure, and glassiness[END_REF]. However, even for temperatures approaching the laboratory T g , ξ s would not need to exceed more than ∼ 10a m in order to explain the super-Arrhenius behavior of the relaxation time [START_REF] Yaida | Point-to-set lengths, local structure, and glassiness[END_REF].

C n αβα β (q, t) = 1 V σ n αβ (q, t + t ) σ n * αβ (q, t) (2 
So, the growth of ξ s in glass-forming liquids is expected to be rather limited [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Huth | Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: Two post-adam-gibbs variants[END_REF][START_REF] Mosayebi | Probing a critical length scale at the glass transition[END_REF].

Therefore, the q-dependence of C n must be weak for qξ s 1. Hence, C n can be approximated by setting q = 0. Conveniently, for q = 0 the fixed boundary conditions also eliminate the flow (i.e., σ D = 0), so the random stress σ n coincides with the total stress in this case. The correlation function C n can then be obtained using eq. 2.125:

1 T C n αβα β (q, t) 1 T C n αβα β (0, t) = [G (t) -G e ] (δ αα δ ββ + δ αβ δ α β )+[M (t) -M e ] δ αβ δ α β , (2.129) 
where M (t) = K (t) -2G (t), M e = K e -2G e and it is taken into account that at q = 0 the stress correlation tensor must be isotropic. For liquids therefore:

C n αβα β (q, t) → 0 at t → ∞, (2.130) 
as is should be since the mean random stress must vanish due to its fluctuation nature in the liquid state lim

tmax→∞ 1 t max tmax 0 σ n (t) dt = 0 .
The correlation function C of the total stress can then be obtained by solving the general momentum eq. 2.120 with the total stress defined in eq. 2.127, where σ D can be calculated using eqs. 2.115 and 2.118, while the σ n contribution can be considered as an independent driving force whose statistics are defined in eqs. 2.128 and 2.129. The 57 CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS independence of σ n permits one to formally consider it as weak "external force" applied to the fluid particles and generating their slow motion.

It is important that the relaxation moduli involved in eq. 2.118 are analytical functions of q since the deformation-generated stress is defined by the local structure of the system (local correlations of the neighboring interacting particles). Hence the q-dependence of the material function must be weak for length-scales exceeding the structural correlation length ξ s comparable with the molecular size (and interaction length), a m . In particular, we can neglect the q-dependence of the generalized viscosity η (q) = ∞ 0 G (q, t) dt . This dependence was studied in detail by simulations of a model glass-former [START_REF] Furukawa | Nonlocal nature of the viscous transport in supercooled liquids: Complex fluid approach to supercooled liquids[END_REF] showing that while η (q) is significantly lower than the macroscopic viscosity η = η (0) for qξ η 1, the q-dependence of the generalized viscosity can be neglected for qξ η 1, where the characteristic viscosity-based length ξ η grows up to ∼4 particle diameters (∼ 4a m ) in a highly supercooled state. It appears therefore that ξ η is similar to the static correlation length ξ s which typically increases up to ∼5 particle diameters near T g [START_REF] Huth | Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: Two post-adam-gibbs variants[END_REF][START_REF] Mosayebi | Probing a critical length scale at the glass transition[END_REF][START_REF] Biroli | Thermodynamic signature of growing amorphous order in glass-forming liquids[END_REF].

Accordingly, the condition qξ s 1 is applied in what follows to specify the region where the material functions are nearly independent of q.

It is also noteworthy that in some systems (like, polymer fluids) the molecules are large, so there is a significant range between the atomic size and a m where the relaxation modulus G (q, t) are the generalized viscosity η (q) may significantly depend on q; this dependence has been calculated in ref. [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]. In what follows, however, we consider a more universal regime of longer length-scales, 1/q a m , ξ s , where the material functions can be approximated by the q = 0 limit, G (t) = G (0, t), etc. (since the relaxation moduli are continuous at q = 0):

G (q, t) G (t) , K (q, t) K (t) , M (q, t) K (t) -2G (t) (2.131)
The last equation follows merely from the fact that at q = 0 the stress (in eq. 2.118)

must not depend on the orientation of q, so K -2G -M = 0. Thus, only two functions, G (t) anf K (t), are involved in the regime of interest. These functions can be directly measured in rheological and acoustic experiments [START_REF] Hansen | Theory of Simple Liquids[END_REF]105,[START_REF] Bird | Fluid Mechanics. Dynamics of Polymeric Liquids[END_REF].

In what follows we shall restrict the consideration to achiral 2-dimensional systems which are invariant with respect to reflection of the second axis e 2 (the unit vector e 2 is perpendicular to the wave-vector q). Therefore, for example, C 1112 must vanish, and the only non-vanishing independent components (apart from permutations of subscripts) are C 1212 , C 1111 , C 2211 and C 2222 . The Laplace transforms of the first 3 functions calculated RELATIONS FOR GLASS-FORMING SYSTEMS as described above coincide with expressions given in eqs. 2.122 -2.124 once the latter are simplified by replacing G (q, s) with G (s), K (q, s) with K (s), and M (q, s) with M (s) = K (s) -2G (s). The last function, C 2222 , which cannot be deduced from a FDT relation, takes the form:

C 2222 (q, s) ≡ C 2 (q, s) T K (s) - q 2 M (s) 2 ρs + q 2 K (s) , 0 < q 1/ξ s (2.132)
We first obtain the Fourier transform of C 2222 (q, t) with respect to time, and then the Laplace transform on this function. It is obvious that while C 2222 (t) generally differs from C 1111 (t), they tend to the same limit (= T K (t)) as q → 0 at a fixed time.

Using the results at hand and the space isotropy, the correlation tensor function can be written in the following general form (valid for any coordinate frame):

C αβα β (q, s) = (C 2 -2C T ) δ αβ δ α β + (C ⊥ -C 2 + 2C T ) (q α q β δ α β + q α q β δ αβ ) /q 2 +C T (δ αα δ ββ + δ αβ δ βα ) + C + C 2 -2C ⊥ -4C T q α q β q α q β /q 4 , (2.133) 
where C 2 = C 2 (q, s) is defined in eq. 2.132, and the functions C T = C T (q, s), and C = C (q, s) and C ⊥ = C ⊥ (q, s) are defined in eqs. 2.122 -2.124.

In particular, for the correlations of the shear-stress (σ xy , where x, y are fixed-frame coordinates) we get the following general expression:

C xyxy (q, s) = C T + C + C 2 -2C ⊥ -4C T q 2 x q 2 y /q 4 T ρsG (s) ρs + q 2 G (s) + 4T q 2 G 2 (s) 1 ρs + q 2 G (s) - 1 ρs + q 2 K (s) q 2 x q 2 y q 4 , (2.134) 
which is valid for qξ s 1. The above equation is valid for compressible 2-dimensional (2d) systems, and in this respect it generalizes eq. 2 of ref. [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF]. The latter equation formally agrees with eq. 2.134 if we suppress the term involving K (s) there (thus assuming the incompressibility limit, K → ∞) and take into account that q 2 = q 2 x + q 2 y in 2d. The correlation function defined in eq. 2.134 is analyzed in different time-distance regimes in the next section.

CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION

RELATIONS FOR GLASS-FORMING SYSTEMS

Stress correlations in real space

The spatial and temporal correlations of local shear stress in infinite 2d systems are analyzed in this section based on eq. 2.134. Formally the problem is to obtain the inverse Fourier/Laplace transform of the C (q, s) (we omit the subscripts xyxy here and below for simplicity). The latter function as defined in eq. 2.134 consists of two terms:

C = C is + C s .
The first term C is is isotropic; the second term C s is anisotropic and singular at q = 0, s = 0 reflecting its long-range and long-time behavior (in the asymptotic sense as clarified below).

We first turn to the isotropic part:

C is (q, s) = T ρsG (s) ρs + q 2 G (s) (2.135)
The only unknown function involved here is

G (s) = ∞ 0 G (t) exp (-st) dt
, where G (t) is the shear relaxation modulus. Below we assume that G (t) develops a plateau in the time-range between τ min and τ pl (in the case of supercooled fluids τ min is the characteristic time of fast vibrational relaxation); by contrast, at longer times exceeding some τ max > τ pl the relaxation modulus is assumed to decay significantly, either exponentially or, at least, faster than 1/t. Such behavior is typical of entangled polymer systems and of supercooled liquids near T g (note that τ max can become practically infinite below T g ). We thus focus on two main regimes of stress relaxation: (i) the plateau regime τ min t τ pl , where

G (t)
G pl is nearly constant, and (ii) the long-time regime, t τ max , where G (t) is small (G (t) G pl ). In the first regime G (s) G pl /s, hence:

C is (q, s) T sG pl s 2 + q 2 c 2 T , s 1/τ pl (2.136)
where c T = (G pl /ρ) 1/2 is the transverse (shear) sound velocity. The correlation function in real space-time reads (for t τ pl ; here and below we have in mind but do not mention explicitly another condition t τ min ):

C is (r, t) T G pl cos (qc T t) exp (iqr) d 2 q/ (2π) 2 (2.137)
For t = 0 the r.h.s of the above equation formally gives T G pl δ (r) pointing to local stress correlations. Doing the integral for t > 0 we get:

C is (r, t) T ρ 2πt 2 φ r c T t , t τ pl (2.138) CHAPTER 2.
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where:

φ (x) = -1 -x 2 -3/2 + (2.139)
Here the subscript "+" means truncation of the negative part: (y) v + = y v if y > 0, and (y) v + = 0 if y < 0; y is a real expression and the exponent v is a parameter. Thus C is is negative (anticorrelation of shear stress) for r < l 1 = c T t, and it vanishes at large distances: C is = 0 at r > l 1 . The "isotropic" stress correlations therefore decay in time as t -2 , while their range l 1 = c T t is defined by the transverse sound.

Eq. 2.135 implies that:

C is (r, t) d 2 r = T G (t) , (2.140) 
for any t, hence it must be nearly equal to T G pl in the short-time regime we consider.

On the other hand, using eq. 2.138 we find:

C is (r, t) d 2 r T G pl I, (2.141) 
where

I = φ (x) d 2 x/ (2π) (2.142)
Therefore it must be expected that I = 1, which may seem to contradict the above definition of φ (x) implying that it is either negative or zero. Moreover, the integral I seems to be divergent. Fortunately, both this contradiction and the divergence are actually fictitious. In fact, the formally diverging integral, eq. 2.142, can be redefined in terms of the analytical continuation replacing the exponent (-3/2) in eq. 2.139 by a parameter. Alternatively the whole function φ can be defined as:

φ (x) = -lim →0 1 + i -x 2 -3/2 , (2.143) 
with the idea that the limit must be taken after the integration. The latter equation agrees with eq. 2.139 and can be used to calculate any integral involving φ (x) by first taking the integral and then setting → 0. Both ways give I = 1 as it should be.

Let us turn to the long-time regime, t τ max , roughly corresponding to s 1/τ max .

Here G (s) = ∞ 0 G (t) exp (-st) dt is nearly independent of s: G (s) η, where:

η = ∞ 0 G (t) dt (2.144) CHAPTER 2.
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is the shear viscosity. So:

C is (q, s) /T sη s + q 2 η/ρ = η 1 - q 2 D s + q 2 D (2.145)
where D = η/ρ is the vorticity (transverse momentum) diffusion constant (also known as the kinematic viscosity of the fluid [START_REF] Bird | Fluid Mechanics. Dynamics of Polymeric Liquids[END_REF]). The inverse Fourier-Laplace transforms of C is (q, s) then give:

C is (r, t) T ρ 4πt 2 φ 2 r 2l 2 (t) , t τ max , (2.146) 
where

l 2 (t) = √ Dt, φ 2 (x) = x 2 -1 exp -x 2 (2.147)
Thus in both time-regimes (short-time and long-time) C is (r, t) behaves qualitatively in the same way: C is ∼ T ρ/t 2 for r l (t), while the isotropic stress correlations are strongly suppressed, C is → 0, for r l (t), where the propagation length l (t) can be generally defined as [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]:

l (t) ∼ η (t) t/ρ (2.

148)

Here:

η = t 0 G (t) dt ∼ G (s = 1/t) (2.149)
is the effective time-dependent viscosity [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF]. In the two-regimes considered above this length is:

l (t) ∼    l 1 = c T t, t τ pl l 2 = ηt/ρ, t τ max (2.150)
Therefore, the propagation length l (t) is elasto-inertial (acoustic) in nature in the short-time regime, and visco-inertial (diffusive momentum spreading) at long times.

Let us now turn to the singular part of stress correlations:

C s (q, s) = 4T q 2 x q 2 y q 2 G 2 (s) 1 ρs + q 2 G (s) - 1 ρs + q 2 K (s) (2.151) CHAPTER 2.
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At short times, t τ pl , the relaxation moduli can be approximated as (the condition τ min t is also assumed here and below):

G (s) G pl /s, K (s) K pl /s (2.152)
Doing then the inverse Laplace transformation of eq. 2.151, we get:

C s (q, s) 4T G 2 pl ρ q 2 x q 2 y q 4 1 -cos (qc T t) c 2 T - 1 -cos (qc L t) c 2 L , t τ pl (2.153)
where c L = K pl /ρ is the longitudinal sound velocity. Transforming it to the real space correlation function yields:

C s (r, t) T G 2 pl 2πρt 2 c -4 T ψ r c T t , θ -c -4 L ψ r c L t , θ , (2.154) 
where θ is the polar angle between r and the x-axis, and the new nondimensional function ψ is:

ψ (x, θ) = sin 2 (2θ) 4δ x 2 + 1 -x 2 -3/2 + + 4 cos (4θ) x 4 [-3 + φ (x)] (2.155) 
Here x is the reduced radius, δ (y) is the symmetric (even) Dirac's delta-function:

∞ 0 δ (y) dy = 1/2, and:

φ (x) = 3 -2x 2 1 -x 2 -1/2 + (2.156)
(the meaning of the "+" symbol is explained below eq. 2.139).

The full stress correlation function C = C is + C s for τ min t τ pl is defined in eqs. 2.154 and 2.138. It is useful to write it in a more explicit way:

C (r, t) /T G pl 2 1 - c T c L 2 δ (r) - ρ 2πt 2 cos 2 (2θ) 1 - r c T t 2 -3/2 + + + sin 2 (2θ) c T c L 4 1 - r c L t 2 -3/2 + + 2 π G pl (c T t) 2 r 4 cos (4θ) φ r c T t -φ r c L t (2.157)
Thus, there are 3 contributions to the correlation function here: (ii) The second term is due to acoustic waves; it decays rather fast as 1/t 2 , and its range is characterized by two finite length scales, l c T t and l c L t, which both increase in time. Note that this correlation contribution strongly decreases at r ≈ l:

it is typically much lower for r > l than for r < l since normally (c T /c L ) 4 1.

This term is anisotropic: it depends on the r-direction given by θ and includes both isotropic and quadrupolar (cos (4θ)) parts. Further, being proportional to ρ/t 2 this contribution can be considered as "internal" in nature. Noteworthily, it is negative (corresponding to anti-correlation of the shear stress) for any θ and distances in the transverse wave-zone, r < c T t (that is, away from the wave fronts where the correlation function changes its sign).

(iii) The last term is of major interest: it is long-range (with correlation lengths l c T t and l c L t) and it does not decay in time in the regime τ min t τ pl we consider. This term is not relevant for simple liquids well above the glass transition temperature T g (due to short relaxation time τ max ), and it is not present in crystalline solids. The reason is that in crystals the correlation function C(r, t) decays rather fast with the characteristic time ∼ r/c T (since the relevant stress fluctuations are due to thermal acoustic waves with wave-vector k ∼ 1/r and frequency ∼ kc T ).

For t r/c T the decay of C due to destructive interference follows the 1/t 2 power law (in 2d) which is actually given by the second term in eq. 2.157 in the case of isotropic crystals. However, the last term becomes dominant in viscoelastic liquids for t r/c T . It implies the existence of significant transient (but persistent) stress fluctuations in such liquids (in particular, in supercooled liquids close to the glass transition). In the most important regime t r/c T (note that in supercooled liquids the latter condition is compatible with long r a m since typically c T τ pl a m in these systems near or below T g ) the dominant contribution to the stress correlation function, eq. 2.157, can be approximated as: Eq. 2.158 qualitatively agrees with MD simulation results of a 2d binary glass former [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF].

C (r, t) - T π G pl cos (4θ) 1 - G pl K pl r -2 ,
So far we have considered the short-time regime t τ pl . The latter condition is rather restrictive for viscoelastic liquids which normally show a very broad spectrum of relaxation times with a large gap between τ min and τ max . Nevertheless, the detailed analysis of the short-time regime given above is useful to show how the long-range character of stress correlations emerges and develops as illustrated in Figs. 2.3 -2.6 and Fig. 2.9 (adopted from ref. Below we lift the short-time restriction, leaving essentially the only condition r c T t, which is likely to be valid in viscoelastic liquids (generally due to rather high sound velocity and long relaxation times in these systems). The singular terms dominate in eq. 2.134 in this case, hence:

C (q, s) 4T q 2 x q 2 y q 4 G (s) , G (s) ≡ G (s) - G 2 (s) K (s) (2.159)
The inverse Laplace transform of G (s) gives the effective relaxation modulus G (t) which behaves similarly to the standard shear modulus G (t): in the liquid state G → 0 for t τ max , while in the glassy state it tends to a finite level G∞ = G ∞ -G 2 ∞ K∞ for t ∼ t lab , where t lab = ∆t is the sampling time. RELATIONS FOR GLASS-FORMING SYSTEMS 

C (r, t) - T π cos (4θ) G (t) r -2 , r l (t) (2.160)
where the propagation length l (t) is defined in eq. 2.148. This result agrees with eq. 2.158 generalizing it. Thus, the LR stress correlations gradually decay in time and vanish for t τ max in the liquid state, or tend to a plateau (proportional to G∞ ) for vitrified systems. The latter conclusion qualitatively agrees with theoretical results [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF] obtained for 3-dimensional systems.

Note that while the results for C (q, t) obtained in this section are valid for 2d systems, they are also fully applicable in 3 (and higher) dimensions if q belongs to the xy plane.

Note also that the stress correlations at exactly t = 0 (rather than for t τ min ) can be deduced directly from the general eq. 2.134. The general result is:

C (r, 0) = C is (r, 0) = T G (0) δ (r) , (2.161) 
pointing to localized static (structural) stress correlations in agreement with our assumption of short ξ s .

Chapter 3

Glass-forming 3-dimensional oligomer system

Polymer model

We studied a glass-forming polymer model in the 3 dimensional space [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF][START_REF] Peter | Modeling dielectric relaxation in polymer glass simulations: Dynamics in the bulk and in supported polymer films[END_REF]. The system contains M = 768 oligomer chains with N = 4 monomers connected by permanent bonds. Particles, which are connected by such bonds, interact with a harmonic (bond) potential:

u b (l b ) = 1 2 k b (l b -l 0 ) 2 , (3.1) 
where l b is the bond length, k b = 1110 is the spring constant, and l 0 = 0.967 is the equilibrium bond length. The constants k b and l 0 are chosen so that the probability for bond crossing is virtually null (the bond length cannot exceed r cut for the same reason).

All unconnected monomers interact with a Lennard-Jones (LJ) potential, which is truncated and shifted at r = r cut = 2.3 (r cut ≈ 2r min is roughly twice the distance of the distance where potential has a minimum [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]) so that u LJ (r) = 0 for r r cut :

u LJ (r) =    4 LJ σ LJ r 12 -σ LJ r 6 -4 σ LJ rcut 12 -σ LJ rcut 6 , r < r cut 0, else, (3.2) 
where σ LJ is the particle diameter and LJ is the depth of the potential minimum. The constants LJ and σ LJ are set respectively as a scale for the energy and the length. The truncation of the potential at r = r cut is needed to increase the numerical efficiency of calculation and its shifting resulted in u LJ (r cut ) = 0 is needed to avoid its discontinuous behavior at r = r cut .

Simulation protocol

We performed Molecular Dynamics (MD) simulation using a velocity-Verlet scheme [START_REF] Verlet | Computer "experiments" on classical fluids. ii. equilibrium correlation functions[END_REF] with time step δt = 0.005τ LJ in a cubic box with periodic boundary conditions. The simulations are performed in the N P T and the N V T ensembles. The temperature T and the pressure P = 0 are imposed using the Nosé-Hoover-Andersen algorithm [START_REF] Hoover | Constant-pressure equations of motion[END_REF] (cf.

Chapter 2).

As it can be seen from eqs. 2.27 -2.31, choice of parameters P damp and T damp is an interesting task. The investigation of the applicable values of Q and W in ref. [START_REF] Varnik | Molecular Dynamics Simulations on the Glass Transition in Macromolecular Films[END_REF] (cf.

Figs. 4.1 and 4.3) was shown. Our former students [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF] in their works continued to develop relevant values for Q and W in order to get good temperature and pressure control in the N V T and N P T simulations. Obviously, as can be seen from eqs. 2.27 -2.31, the relevant values P damp and T damp are different and correlate with the system properties (volume, number of particles, etc.) and the dimension. In order to get reproducible results as in refs. [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF], we chose the same damping parameter for pressure, P damp = 75, and for the temperature, T damp = 1.

Sample preparation

We start a protocol with N P T equilibration (for ∆t = 2•10 4 τ LJ ) at the initial temperature T i = 0.6 which is well above the temperature of the glass transition T g . In this liquid regime we perform a new N P T run (for ∆t = 10 5 τ LJ ) to generate m = 100 independent configurations (saving independent configurations every 10 3 τ LJ steps. The criteria to prove that independent configurations are really independent is the plot of the orientational correlation function of the end-to-end vector φ e (t) vs. t at the initial temperature T i .

In the earlier works [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF] it was shown that even for much bigger systems [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF] the φ e (t) decorrelates during times less than 10 3 τ LJ [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF]). All the configurations are slowly cooled down to T f = 0.05 with a cooling rate Γ = -∂T /∂t = 10 -5 (at P = 0).

During cooling, we were keeping the initial configurations for n T = 19 temperatures T = 0.55, 0.5, ..., 0.05.

For each T and for each system from the m-ensemble, we did: The criteria to prove that independent configurations are really independent is the plot of the orientational correlation function of the end-to-end vector φ e (t) vs. t at the initial temperature T i . In the earlier works [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF] it was shown that even for much bigger systems [START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF] the φ e (t) decorrelates during times less The two systems have nearly the same density (the smaller system being a little bit less dense at low temperatures). The standard dilatometric criterion gives the glass transition at T g ≈ 0.38 for both systems (cf. ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF], note that the dilatometric T g is a reference estimate: generally T g depends on the cooling rate Γ, T g is lower for a longer relaxation time scale).

The radial distribution function (RDF) g nb (r) for nonbonded monomer pairs is shown in Fig. 3.3 for both systems at two temperatures (above and below T g ). One can observe that the RDFs for the two systems are almost identical (the difference is not visible). The Thus, we established that both systems are characterized by virtually the same density and the same pair correlation functions (including g nb (r) and the standard Kirkwood RDF, g (r)). This fact means that all related static properties such as energy, pressure, the affine shear modulus µ A etc., must also be nearly identical for both systems. Below we verify this statement for µ A .

Affine shear modulus µ A

One of the main goals of this work was to investigate the dynamical and static behavior of glassy polymer systems based on an analysis of different physical quantities. The ensemble-averaged affine shear modulus µ A [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF] was described in section. 2.2 and can be calculated using eqs. 2.57 and 2.59. While the chosen LJ potential is continuous, its derivative is not, giving rise to a singular contribution to µ A known as an impulsive correction (cf. subsection 2.2.2 and ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]):

∆µ A = - 2π 15 c 2 u LJ (r cut ) r 4 cut g nb (r cut ) (3.3)
where c is the monomer concentration c = N/V , g nb is the RDF for nonbonded monomer pairs.

The obtained temperature dependencies of the time-and ensemble-averaged affine shear modulus for both system sizes are shown in Fig. 3.4. (If not specified otherwise, an ensemble-averaging is taken over m = 100 independent configurations and 3 shear planes, xy, yz, and xz). It is clear that µ A is virtually the same for the two system sizes at all temperatures; it increases at low T reflecting an increase of the system density.

Relaxation modulus G (t) and stress correlation function C (t)

This topic was discussed in section 2.2.1. The eqs. 2.43, 2.44 presented there were employed to find the relaxation modulus G (t) for both systems at different temperatures.

We obtained the correlation function C (t) by averaging the r.h.s. of eq. 2.33 over t (for the time interval ≈ ∆t), over the ensemble of m = 100 independent systems, and over the 3 shear planes. The results for G (t) are shown in Fig. 3.5 (the data for the larger system have been presented in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]). At short times, t 3, G (t) shows oscillations. These oscillations are not just a thermal noise, nor are they due to numerical errors: the oscillation pattern is reproducible and coincides for two systems. It reflects vibrations of the molecular chain bonds [START_REF] Vladkov | Linear and nonlinear viscoelasticity of a model unentangled polymer melt: Molecular dynamics and rouse modes analysis[END_REF][START_REF] Likhtman | Linear viscoelasticity from molecular dynamics simulation of entangled polymers[END_REF].

It is, moreover, obvious that the whole G (t) relaxation is independent of the system size in liquid regime (T > T g ). Below T g , the relaxation modulus shows a shoulder at t 3 which gets larger and gradually transforms into a plateau as T is further decreased.

It is remarkable that the G (t) relaxation function is identical for both systems at all temperatures T > 0.25 (both above and below T g ) not only at short times, but also for a wider time-range, t 10 3 , including most of the plateau regime. At longer times (t 10 4 ) in the glassy regime (T 0.36), the relaxation of the smaller system (768 × 4) becomes retarded with respect to the larger one. For example, the apparent "terminal" relaxation time is about twice longer for the smaller system at T = 0.25. To define the apparent terminal relaxation time τ α , we applied several procedures. First of all, we define a time, where we do not have oscillations t min . Next, we found the terminal relaxation time from

the relation G (τ α ) /G (t min ) ≈ 20%.
What is the meaning of these results? The G (t) relaxation at short times must reflect the identical local structure of the two systems (in agreement with the RDF data). A slower long-time relaxation (longer τ α ) for smaller system below T g may seem counterintuitive (also in view of a slightly lower density of this system). Still, this feature agrees with the previous simulation results and theoretical views on the glassy dynamics [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Berthier | Finite-size effects in the dynamics of glass-forming liquids[END_REF][START_REF] Karmakar | Growing length and time scales in glassforming liquids[END_REF] (in particular, it was shown [START_REF] Berthier | Finite-size effects in the dynamics of glass-forming liquids[END_REF][START_REF] Karmakar | Growing length and time scales in glassforming liquids[END_REF] that τ α for binary LJ mixtures increases as the system size decreases at T below the onset of the glassy dynamics). This effect shows that the terminal α-relaxation is not a local property but rather is a collective process involving transformations of large parts of the system. The corresponding correlation length (the size of the optimal CRR) may thus exceed the size of the smaller system (L ≈ 14) leading to its slower relaxation (as the optimal relaxation pathway gets prohibited due to the system size). Such reasoning is also similar in spirit to the Adam-Gibbs-DiMarzio theory [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF] (cf. their argument based on the size dependence of the configurational entropy [START_REF] Karmakar | Growing length and time scales in glassforming liquids[END_REF]). It is remarkable that at very low T 0.25, the relaxation modulus G (t) is a bit higher for the smaller system in the plateau regime. This effect is not due to a difference of the affine shear modulus µ A = G (0), which is negligible between the two systems; rather, it must be due to long-range relaxation modes which are effective for the larger system, but not for the smaller one.

Noteworthily, there is actually no contradiction between a lower density and a longer relaxation in the 768 × 4 system. The latter feature means that the 768 × 4 system must be a bit farther from equilibrium than the larger system at low T in the glassy state. For the density, this means a stronger downward shift (cf. Fig. 3.2) from the equilibrium line, hence a lower density as compared with the 3072 × 4 system. in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]). The LJ time unit is τ LJ = σ LJ m/ LJ (eq. 2.8), where σ LJ is the monomer diameter (the distance between monomer centers corresponding to the first knot of the original LJ potential), m is the monomer mass, and LJ is the depth of the LJ potential well.

The glassy modulus µ nearly vanishes at high T 's (in the liquid state), while it sharply increases (and µ F = µ A -µ decreases) as the temperature is lowered near T g . Below T g (in the glassy state), µ continues to grow, in a linear fashion. The moduli µ F and µ are nearly the same for both systems at all temperatures apart from the low-T region (T 0.3) where the smaller system shows a bit lower µ F and therefore a bit higher µ.

The latter low-T effect is consistent with two features of stress relaxations discussed in the previous section (recall that µ F and µ are directly related to G (t), cf. eq. 2.42 and 2.52): (i) G (t) in the "plateau" regime is a bit higher for the smaller system;

(ii) the stress relaxation time τ α is longer for this system below T g (note that a lower ∆t/τ α always leads to a higher effective modulus µ).

Let us turn to the sampling time effect for the moduli. The T -dependence of µ and µ F for both systems at different ∆t is depicted in Figs. 3.7, 3.8 and 3.9.

It is obvious that µ decreases (µ F increases) with increasing ∆t at a given T as it should be (longer relaxation leads to a lower terminal modulus µ). It is also clear that, as expected, the glass transition shifts to lower temperatures as ∆t is increased. However, the steepness of the transition (of the growth of µ near T g ) does not increase with ∆t being apparently nearly constant (more precisely, the transition becomes sharper as ∆t increases from 500 to 10 4 LJ units, but a further increase of ∆t makes it a bit less sharp).

An increase of the transition sharpness reported in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] for the larger 3072 × 4 system concerns short sampling times, ∆t 10 4 .

This feature seems to be a curiosity of the system: at long ∆t, we expect the glass transition to become progressively sharper (see section 3.9). Apparently, much longer sampling times are required to test this expectations. We attempted to perform the time-temperature superposition (TTS) to collapse the µ (T ) curves for different ∆t times. The natural idea is that the glass transition occurs when the sampling time ∆t gets comparable to the characteristic time of stress relaxation τ α = τ α (T ). This concept implies that the relevant variable is τ α (T ) /∆t. Assuming an Arrhenius (activation) behavior for the relaxation time,

τ α (T ) = CONST • exp (E/T ),
where E is the activation energy, we arrive at the relevant time-temperature variable

x = 1 T + 1 E ln ∆t ref ∆t
, where ∆t ref is an arbitrary reference time. A reasonable collapse of µ vs. x is achieved for E ≈ 18 (see Fig. 3.9). The same activation energy can be deduced from the temperature behavior of the shear viscosity η near T g (in the range of 0.37 T 0.41) for the larger 3072 × 4 system (cf. Fig. 13 of ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]). The validity of the TTS verified in Fig. 3.9 is important as it supports the smooth dependence of G (t) on time upon cooling through the glass transition. In fact, a continuous dependence of T g on ∆t (which is implied in the TTS) is incompatible with a discontinuous dependence of shear modulus µ (T ) as defined in eq. 2.42, at a finite ∆t. (solid black), 5 × 10 4 (dashed black), 10 4 (dotted black), 5 × 10 3 (solid red), 10 3 (dashed blue), and 500 (green).

Fluctuations and correlations of µ A

The modulus µ A provides an instant response to a small instant shear. It is therefore a static, structural property of the system. The deviations of µ A discussed in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] refer to the dispersion of the mean µ A values time-averaged along a trajectory. More precisely, the instant affine moduli were calculated using eq. 2.57 at regular times separated by ∆t A = 500 LJ units, so the mean µ A is based on n A = ∆t/∆t A = 200 configurations for the time-window ∆t = 10 5 LJ. Note, that the so-called impulsive correction to µ A , which is proportional to g nb (r cut ), cf. eq 2.59 was taken into account as described in ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF].

For better comparison, µ A and its standard deviation, δµ A , were calculated in a similar way for 768 × 4 system:

(δµ A ) 2 = (μ A -µ A ) 2 , (3.4)
where μA is the mean affine modulus of a trajectory and µ A = μA is the ensembleaveraged modulus.
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strongly depends on T . This feature may be due to a small difference in the effective glass transition temperature between the 2 systems.

Therefore, µ A appears to be a self-averaging quantity whose variance decreases with the total volume as 1/V . This conclusion is in line with simulation studies of self-assembling networks [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF]. In view of this property, it may be tempering to relate the variance of µ A with some microscopic correlation volume V c , (δµ

A ) 2 (V c /V ) µ 2 A .
What is the nature of V c ? Does an increase of δµ A at low T signify an increase of a structural correlation volume? These and other questions related to the statistics of µ A are discussed below in this section.

Figure 3.12: The affine modulus and its dispersion for the 768 × 4 system. The standard deviations of the instantaneous affine modulus, δ 1 µ A (black curve), and of its parts: δ 1 µ Ab due to bonds (green curve), theoretical δ 1 µ Ab (red curve), and δ 1 µ Alj due to LJ-interactions (blue curve). The bond and LJ contributions to µ A are generally rather weakly correlated, so the following rule of additive variances works with good accuracy (relative error 1%:

δ 1 µ A = δ 1 µ 2 Ab + δ 1 µ 2 Alj ).
It is worth stressing that the statistics of the time-averaged µ A involve time-correlations between instant µ A along the trajectory. These correlations are dynamical (rather than solely structural) in nature and therefore are strongly dependent on the temperature. To avoid the dynamical aspect, one has to consider directly the statistics of the instant moduli μA (n A m values in total for m = 100 independent trajectories). The corresponding standard deviation is denoted here as δ 1 µ A ; it was calculated based on 100 independent We obtained and compared contributions to the dispersion of the instant µ A due to the thermal fluctuations along the trajectory, var F (µ A ), and due to permanent variations between independently cooled configurations (metabasins), (δµ A ) 2 = var MB (µ A ).

As we already mentioned above, δµ A is approximately the same as δ 1 µ A for T 0.36.

The connection between var F (µ A ), var MB (µ A ), and δ 1 µ A can be written as (δ

1 µ A ) 2 = var MB (µ A ) + var F (µ A ).
As expected, we found that the MB-contribution dominates well below T g (at T 0.3), while both contributions are comparable near T g (and, of course, the fluctuation contribution dominates above T g ). 

µ Ab ≈ 1 20 ρk b l 2 b , δ 1 µ Ab ≈ 1 5 2 21 ρk b l 2 b / N m , δ 1 µ Ab µ Ab ≈ 4 2 21N m (3.6)
These theoretical results are also shown in Figs. It is clear that the predictions are generally in good agreement with our simulation data: the theory just slightly overestimated µ Ab and underestimates δ 1 µ Ab . Given that δ 1 µ A ≈ δ 1 µ Ab (cf. Fig. 3.12), we conclude that structural correlations cannot be resolved based on fluctuations of instant µ A for the model we consider. In other words, µ A does not seem to be an appropriate variable to probe the correlation length ξ s . As for the effective correlation volume V c , it always corresponds to about 1 particle (monomer) independent of temperature and the system size (cf. eq. 3.6).

The revealed T -independence of δ 1 µ A invites the question: why the deviations δµ A of the time-averaged µ A depend on T so strongly (they increase by a factor of ∼ 20 between T = 0.55 and 0.05)? The reason is that while µ A is always averaged over n A = 200 transient configurations along each trajectory, these instant states are independent at T = 0.55 (where relaxation time τ α is much shorter than the time interval ∆t A between the configurations), but they are strongly correlated for T = 0.05 (τ α ∆t A ). As a result, δµ A is smaller than δ 1 µ A by a factor of 1/ √ n A at high T 's, but this reduction is not applicable at low T , where δµ A ∼ δ 1 µ A (cf. Figs. 3.14 and 3.16).

So far, the instant (and time-averaged) µ A were calculated for a given fixed shear plane (say, xy). The instant µ A was thus calculated using the general eqs. 2.57 and 2.59 CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM (cf. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]). Recalling the macroscopic isotropy of the system, we tried a different approach to obtain instant µ A using preaveraging over all possible shear planes. The resultant expression for the preaveraged instant µ A does not involve bond orientations and can be conveniently written in terms of pair correlation functions like g (r), the Kirkwood radial distribution function:

µ A = µ Alj + µ Ab + ρT, (3.7) 
where

µ Alj = A d ρ 2 rcut 0 (ru LJ (r) + (d + 1) u LJ (r)) g nb (r) r d dr -r d+1 u LJ (r) g nb (r) r=rcut , and 
µ Ab = A d ρ 2 rcut 0 [ru b (r) + (d + 1) u b (r)] g b (r) r d dr (3.8)
Here, d = 3 is the space dimension,

A d = π d/2 4Γ(d/2+2) d=3 = 2π 15 , u b (r) = 0.5k b (r -l 0
) 2 is the interaction potential for bonded monomers, u LJ (r) = 4 (r -12 -r -6 ) is the LJ potential in LJ units, g b (r) is the pair correlation function for bonded monomers (analogous to the Kirkwood function), and g nb = g (r) -g b (r). Note that:

g b d d r = 2 (N -1) N ρ = 3 2ρ
, with N = 4 (3.9)

In practice, the two integrals in eqs. 3.8 are replaced by sums according to the rule:

A d ρ 2 rcut 0 X (r) g α (r) r d dr → 1 d (d + 2) 1 V l(α) r l X (r l ) , (3.10) 
where α is either "b" (polymer bond) or "nb" (LJ interaction), l (α) runs over all (disordered) monomer pairs of type α, and X (r) is any function.

We found that the orientation-averaging dramatically reduces the variance of µ A : both standard deviations δµ A and δ 1 µ A (of time-averaged and instant µ A values, respectively) decrease as a result by a factor changing from ∼ 6 to ∼ 20 as T is lowered from 0.55 to 0.05 (see Figs. 3.17 and 3.18). 

δ 1 µ Ab(or) ≈ 0.2ρl b 3T k b N m (3.11)
This standard deviation of instant but orientation-averaged µ Ab is thus expected to decrease as √ T at low temperatures (following the amplitude of bond-length fluctuations).

This prediction is in very good agreement with simulation results for δ 1 µ Ab(or) in the whole studied T -range (cf. dashed black and magenta curves in Fig. 3.17).
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Comparing eq. 3.11 and eq. 3.6, we observe that the standard deviation of µ Ab is now significantly reduced by a large factor:

δ 1 µ Ab δ 1 µ Ab(or) = l b 3 2k b 7T ≈ 5.74 √ T (3.12)
in quantitative agreement with simulation results and in qualitative agreement with a similar reduction of δ 1 µ A and δµ A (deviations of instant and time-averaged µ A , cf.

Fig. 3.18).

Note that a fast increase of the ratio of the time-averaged deviations, δµ A /δµ A(or) near T g (cf. Fig. 3.18), is due to an increase of the orientational relaxation time (leading to a poorer self-averaging of µ A over the sampling time at T < T g , hence to an increase of δµ A ), while a decrease of the same ratio at lower T < 0.3 is due to a slowdown (partial freezing) of bond-length fluctuations leading to a poorer self-averaging of µ A(or) , hence an increase of the denominator, δµ A(or) , on further cooling.

To conclude, eqs. 3. 

Dispersion of µ F

The fluctuation modulus μF (cf. eq. 2.51) is a random variable changing across the mensemble; its standard deviation δµ F (with a large ensemble, m 1) is defined in analogy with δµ A :

(δµ F ) 2 = (μ F -µ F ) 2 , (3.13)
where µ F is the mean value defined in eq. 2.49. The simulation results for the deviations δµ F at different temperatures are shown for both systems (at ∆t = 10 5 ) in Fig. 3.20.

The data for the 3072×4 system have been discussed in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]. It was reported there that both δµ F and δµ ≈ δµ F (this equation comes from eq. 2.45 and the fact that the variance of µ A can be neglected with respect to the variance of µ F , cf. section 3.7 and ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]) show CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM a peak near the apparent glass transition temperature T g . This feature is confirmed here for the new 768 × 4 system. The peaks are located at the same temperature T ≈ 0.36. It is interesting that the peak height is nearly independent of the system volume (the peak is just a bit higher for the smaller system) and that the deviations, δµ F , are identical for both systems in the liquid regime (T > T g ). On the other hand, at low-T , δµ F is significantly larger for the smaller system (as compared to the large one).

The sampling time effect on δµ F is illustrated in Fig. 3.19. In the liquid regime, δµ F significantly increases as ∆t is shortened (this behaviour is in accord with an increase of effective T g for shorter ∆t, cf. the end of section 3.6). A different conclusion was drawn in the previous work [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]. By contrast, δµ F decreases (albeit rather moderately) for shorter ∆t in the peak region and below the transition. This tendency (an increase of δµ F with ∆t) seems to weaken at low T and disappears at the lowest T = 0.05.

The discovered peak of δµ F near T g is a remarkable feature demanding an explanation.

A qualitative argument elucidating this behavior is presented in section 3.9. Below, instead, we describe a quantitative approach predicting δµ F based on the known relaxation modulus G (t).

The fluctuation modulus for a given trajectory, μF , is directly related to the stress function σ (t), cf. eq. 2.51, which is stochastic process characterized by some stationary probability distribution enveloping all systems of the statistical ensemble we consider.

The basic assumption adopted here is that this distribution in nearly Gaussian (i.e., σ (t) is a Gaussian process). Its validity is discussed in section 3.9. It is instructive to consider a discrete version of the theory involving arrays σ i ≡ σ (t i ) of stress recorded at times

t i = iδt,
where δt is the time interval between successive stress calculations (δt = 0.05 in our simulations) and i as an integer changing from 1 to I = ∆t/δt. Then:

μF = V T I -1 i σ 2 i -I -2 i,j σ i σ j , (3.14) 
where j is also changing from 1 to I. The mean value of μF can be obtained nothing that:

V T σ i σ j = G i-j + const, (3.15) 
with

G i-j ≡ G (|t i -t j |), µ F = G 0 1 -I -1 -2I -2 I-1 s=1 (I -s) G s (3.16) CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM
The latter equation can be considered as the discrete version of eq. 2.52. The variance of µ F is:

(δµ F ) 2 = (μ F ) 2 -µ 2 F (3.17)
The r.h.s. of the above equation involves terms such as σ i σ j σ i σ j (emerging on recalling eq. 3.14). For a Gaussian σ (t), such quartic correlations are reduced to pair correlators:

σ i σ j σ i σ j = σ i σ j σ i σ j + ..., (3.18) 
which are related to G (t) via eq. 3.15. As a result, we get:

δµ (G) F 2 = 2 I 4 i,j G i-j 2 + I 2 i,j G 2 i-j -2I i,j,s G s-i G s-j (3.19) 
The superscript "G" here means that eq. 3.19 gives the variance of µ F using the Gaussian approximation.

The "Gaussian" standard deviations, δµ

F , were calculated for both systems and different T 's and sampling times ∆t. (In practice, all the multiple sums in eq. 3.19 were reduced to single sums using recursive relations between the sums for different I's1 .) The obtained results are compared with simulation data for δµ F in Fig. 3.21.

Noteworthily, the T -dependence of the "Gaussian" deviations δµ at T > T g for both systems. Moreover, the Gaussian approximation correctly reproduces the simulation data also in the peak region (for T 0.3) for the larger system, while for 768 × 4 system, the peak height is somewhat underestimated by the theory. At low temperatures, T < 0.3, the predicted δµ

(G)
F strongly decreases, while δµ F seems to saturate at a finite level.

The above conclusions are supported with Fig. increases with ∆t, while the opposite tendency works at lower temperatures (T 0.15). (Note that δµ F seems to exhibit a qualitatively similar behavior, albeit with a crossover at a lower T ∼ 0.05, cf. 

δµ (G) F 2 = 1 2I 4 iji j (G i-j + G i -j -G i-j -G j-i ) 2 (3.20) 
At low T 's, the lion's share of time points falls into the plateau regime, where G is nearly constant (cf. Fig. 3.5), hence the summand is small: its typical value is (G (∆t) -G (∆t/2)) 2 ∼ g 2 , where g = (∂G/∂ ln t) t∼∆t . The long-time contribution to the variance, δµ

(G) F 2
, is therefore ∼ g 2 with small g = g (T, ∆t) (g 1 for T < 0.3).
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When 2 time points (say, i and j) get close to each other, the summand can take a much larger value (∼ (µ A -µ) 2 = µ 2 F ), but the "probability" of such an event is low, ∼ τ min /∆t. Taking into account both contributions, we write:

δµ (G) F 2 ∼ g (T, ∆t) 2 + µ 2 F τ 0 /∆t, ∆t > τ 0 , (3.21) 
where τ 0 = τ min is the time scale of initial fast stress relaxation (before the plateau regime). The g-factor here increases with ∆t, but this increase becomes extremely weak at low T (cf. Fig. 3.5). By contrast, the second term decreases with ∆t (for ∆t > τ 0 ) and is nearly independent of temperature. It wins at very low T 's where the g-variation can be neglected thus leading to a decrease of the whole variance δµ To sum up, it appears that the Gaussian theory works well above T g and in the transition (peak) region but fails at low T 's. In section 3.9, we explain this behavior and deduce some important information stemming from it.

3.9 Discussion

Solidification transition

Our analysis shows (cf. section 3.6) that the transition from liquid to amorphous solid behavior (a nearly steplike increase of the static shear modulus µ) occurs in the T -region where the terminal relaxation time is comparable with the sampling time, τ α (T ) ∼ ∆t (for long enough ∆t, this regime involves a long-time plateau in the shear relaxation modulus G (t)). The latter condition defines the apparent glass transition temperature T g = T g (∆t) which depends on the explored time-window ∆t and corresponds to both the steepest increase of µ = µ (T ) (cf. Fig. 3.8) and the maximum of its standard deviation δµ ≈ δµ F (cf. Fig. 3.

19).

In terms of relaxation functions like G (t), the vitrification can be considered as a transition from the glassy plateau regime to the liquid regime with vanishing G (t). This transition occurs at t ∼ τ α (T ), more precisely, in the region where G (t) /G (τ α ) ∼ 1.

Assuming the KWW stretched exponential relaxation law [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF] for G (t), it leads to the time-region whose width in log-scale is defined by δ (ln (t/τ α (T ))) ∼ 1/β, where β is the stretching exponent. Therefore, the temperature width, δT g , of the glass transition region (for a given time-window ∆t) can be roughly defined by the condition δ (ln (τ α (T ) /∆t)) ∼ 1/β leading to δT g |∂ ln τ α /∂T | T =Tg ∼ 1/β. The latter estimate can be rewritten as:

δT g /T g ∼ 1/ (βm f ) , (3.22) 
where m f = -∂ ln τ α /∂ ln T | T =Tg is the fragility index (a similar dependence of δT g on m f was predicted in the review [START_REF] Götze | Relaxation processes in supercooled liquids[END_REF]). An Arrhenius increase of the relaxation time CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM below T g , τ α ∼ τ 0 exp (E/T ) (τ 0 is the time scale of particle collisions), leads to m f ∼ ln (τ α /τ 0 ) ∼ ln (∆t/τ 0 ). Hence, the transition width δT g /T g is expected to logarithmically decrease with the sampling time ∆t:

δT g /T g ∝ 1/ ln (∆t/τ 0 ) (3.23)
This decrease is very slow, and perhaps this is the reason why it is not apparent in the simulation data (cf. Fig. 3.8). Note that in the case of super-Arrhenius increase of τ α , τ α ∼ τ 0 exp (E/ (T -T 0 )) (the VFT law), the fragility index shows a faster, but still logarithmic dependence on τ α . Theoretically, there is no doubt that the transition width must vanish in the limit ∆t → ∞ as long as the glassy plateau [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF] persists at however low temperatures (and we are not aware of any data pointing to the contrary). In this case, the glass transition becomes asymptotically discontinuous as ∆t → ∞, but the main question here is whether the amorphous state is possibly stable at the transition temperature T g (∆t) in this limit.

Dispersion of µ A

In section 3.7, we analyzed separately the LJ and chemical bond contributions to the affine shear modulus µ A . It was shown that orientational preaveraging leads to a strong decrease of δµ A , the standard deviation of µ A . This effect elucidates an important role of bond orientational fluctuations for δµ A .

It is also remarkable that while the fluctuations of the total instant orientationaveraged µ A get weaker at low T roughly in parallel with those for the chemical bond contribution (µ Ab ), the analogous fluctuations of the LJ-contribution, µ Alj(or) , show a stronger decay right below T g (see Fig. 3.17: the green curve for δ 1 µ Alj(or) shows a downward cusp at T g ). What is the physical meaning of this feature? The modulus µ Alj(or)

is sensitive to distances between the neighboring particles, so behavior of δ 1 µ Alj(or) (note that this quantity is a static property) indicates that the amorphous glassy structures below T g involve progressively weaker dispersion of interparticle distances as T is decreased (a similar structural effect for chemical bonds is much less pronounced due to their high rigidity k b ).

Another interesting feature concerns the behavior of δµ A and δµ A(or) shown in Fig. 3.17

(cf. black and red curves): both deviations show a sharp increase as T is lowered in the glass transition region; however, the increase of δµ A (by a factor of 10) is much stronger than that for δµ A(or) (roughly by a factor of √ 10). This difference can be explained as follows: µ A fluctuations are mainly due to rotations of chemical bonds, which get virtually frozen below T g leading to a poorer self-averaging of µ A (hence, to a significant increase of δµ A ). By contrast, µ A(or) is insensitive to bond orientations: rather its fluctuations are defined be the bond-length dynamics which become only partially constrained right below T g (leading to a weaker increase of δµ A(or) ). It is also likely that bond-length fluctuations get progressively more restricted at lower T leading to a further increase of δµ A(or) (and, hence, to a decrease of the ratio δµ A /δµ A(or) , cf. Fig. 3.18). The same effect also results in finite levels of both δµ Ab(or) and δ 1 µ Ab(or) (and, of course, of δµ A(or) and δ 1 µ A(or) ) at T → 0 since not only bond orientational heterogeneities but also bond-length fluctuations must be arrested in this limit.

Peaks of µ F and δµ F

The fluctuation modulus µ F shows a peak near T g (cf. Figs. 3.4 and 3.7). This behavior can be clarified in a simple way. At high T (above T g ), the terminal shear modulus µ is close to zero, so µ F ≈ µ A by virtue of eq. 2.45. As T decreases at constant pressure, the instantaneous modulus µ A increases due to a stronger interactions between particles: the density (monomer concentration ρ) of the system increases, hence the mean interparticle distance decreases leading to a higher interaction energy at lower T ; this interaction contribution to µ A typically overwhelms the momentum contribution which is equal to ρT . By contrast, at low T T g , the modulus µ starts to grow rapidly (the solidification transition). This increase is stronger than the moderate increase of µ A , hence µ F = µ A -µ decreases as the system is cooled below T g (this tendency also comes from a simple observation that the system's dynamics slow down at low T , hence the drop of G (t) during the same time t ∼ ∆t becomes weaker). As a result, µ F as a function of T (at a constant sampling time ∆t and pressure) develops a peak near T g .

Let us turn to the variance of µ F , defined in eq. 3.13, which is nearly equal to the variance of µ (cf. section 3.6) and shows a sharp peak near T g (cf. Fig. 3.20). A qualitative explanation of this behavior is given below: at high temperatures (T > T g ), in the liquid regime, the fluctuation modulus μF is dominated by the term μ0 in eq. 2.50 (since σ is strongly suppressed by self-averaging to 0):

μF ≈ μ0 = const ∆t 0 σ (t) 2 dt (3.24)
The stresses σ (t 1 ) and σ (t 2 ) are virtually uncorrelated if |t 1 -t 2 | τ α , where τ α is the thermal (longest) stress relaxation time. Above T g , the time τ α is short, τ α ∆t, hence the integral in eq. 3.24 can be considered as a sum of many (K) uncorrelated similar contributions, K = ∆t/τ α 1. As a result, μF efficiently self-averages in this regime: its variance is small being inversely proportional to K:

(δµ F ) 2 /µ 2 F ∼ 1/K = τ α /∆t (3.25) 
As a matter of fact, that sort of argument (to get eq. 3.25) is well-known in the simulation literature (cf. section 4.2.4 of ref. [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] showing that finite sampling time effects may lead to statistical and systematic errors of numerical results). Note that eq. 3.25 resembles eq. 3.21 where τ 0 is replaced by τ α and the first term is omitted (being negligible) as there is no plateau in the liquid regime. Therefore, here δµ F ∝ √ τ α , and so the standard deviation δµ F increases significantly as the system is cooled towards T g , following the behavior of the relaxation time τ α = τ α (T ). Quantitatively, δµ F in the liquid regime (where τ α ∆t) is accurately predicted with the Gaussian approximation (cf. eqs. 3.19 and 3.20) giving:

(δµ F ) 2 4η 2 /∆t, (3.26) 
where

η 2 = ∞ 0 G (t) 2 dt (3.27)
Turning in passing to the terminal modulus µ, recall that µ 2η/∆t for ∆t τ α (cf. eq. 2.42 and [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]), where η = ∞ 0 G (t) dt is the shear viscosity. Therefrom, we find the relative variance of µ (also recalling that δµ δµ F ):

(δµ/µ) 2 η 2 /η 2 ∆t ∼ ∆t/τ α , (3.28) 
which is increasing with the time-window ∆t in the liquid regime.

At T < T g , the system enters the glassy regime where the terminal relaxation time is very long, τ α ∆t. As a result, the time τ α becomes irrelevant for δµ F . Close to T g (but below it), the standard deviation δµ F is still well-described by the Gaussian approximation (cf. Figs. 3.21 and 3.23), so we can make use of eq. 3.21. The second term in this equation is nearly constant below T g (for a given ∆t and τ 0 ∆t), while the first term involving CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM g (T, ∆t) = (∂G/∂ ln t) t∼∆t strongly decreases as the system is further cooled below T g (cf. Fig. 3.5).

To sum up, the arguments presented above show that δµ F must strongly diminish as T deviates from T g getting either cooler or warmer, thus producing a sharp peak near T g .

The dependencies of δµ ≈ δµ F and µ on T are depicted in Fig. 3.24. for the two systems (768 × 4 red, and 3072 × 4, black). The δµ data for the 2 systems (768 × 4 and 3072 × 4) are indicated with "red pluses" and "black crosses", respectively.

It is obvious that δµ ∼ µ near the peak of δµ (T ): the fluctuations of the longtime shear modulus across the ensemble are of the same order as its average over all the independent configurations, so the mean µ is not necessarily a good reporter of the typical system behavior near the glass transition. This important finding was mentioned in the previous paper [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] for the 3072 × 4 system. It is now clear that this feature is general. It is also supported by the Gaussian theory: eq. 3.20 shows that δµ F is roughly equal to the typical change of G (t) in the region t ∼ ∆t (say, between t 1 ∼ ∆t/2 and t 2 ∼ ∆t); this change is comparable to µ for ∆t ∼ τ α (that is, near the glass transition, at the peak).

Noteworthily, the relation δµ ∼ µ also comes from eq. 3.28 with ∆t ∼ τ α .

Gaussian approximation

We developed a theory of µ F fluctuations assuming the Gaussian statistics for the instant stress σ (t) (cf. section 3.8). This approach can be applied to analyze fluctuations of other properties. As an example, let us consider the mean-square of the time-averaged stress,

µ 1 = V T σ 2
, which is equal to µ for well equilibrated systems (at T ≥ 0.3). The Gaussian theory predicts the following universal relation:

δµ 1 = √ 2µ 1 (3.29)
This prediction is verified by our simulation data as presented in Fig. 3.25. It shows that in this case the Gaussian approximation works also at low T 's: its failure to correctly predict δµ F at T 0.3 is related to the fact that the Gaussian variance of µ F strongly decreases at low T 's, while the normally subdominant correction stays finite. does not explicitly depend on the system size (cf. eqs. 3.19 and 3.20): it is directly defined by the stress relaxation function G (t) which is system-size independent for T T g (cf. Fig. 3.5).

By contrast, at low temperatures (T 0.3), the Gaussian deviation is significantly lower than the total δµ F (for both systems). To characterize this discrepancy, we introduce a non-Gaussian contribution to the variance of µ F postulating that:

(δµ F ) 2 = δµ (nG) F 2 + δµ (G) F 2 (3.30)
The non-Gaussian term, δµ What is the reason for such system size dependence of the standard deviations δµ F and δµ at low T 's (recall that δµ ≈ δµ F , cf. section 3.6)? Before turning to this question, let us further clarify why the stress fluctuations are nearly Gaussian above T g . The general point is that σ (t) is never exactly a Gaussian process. However, its statistics are close to Gaussian for large volume V since σ (t) = (1/V ) V σ (r, t) d d r can be considered as a sum of many quasi-independent contributions. Assuming that spatial correlations of σ (r, t) are short-range, one can easily deduce that the non-Gaussian (nG) correction must scale as the inverse volume, var (µ F ) nG ≡ δµ

(nG) F 2 ∝ 1/V [123]
. This conclusion is based on the standard behavior of "finite-size" deviations from the central-limit theorem for random variables with symmetric distribution. Alternatively, it can be deduced from the cumulant theory [START_REF] Lukacs | Characteristic functions[END_REF] taking into account that var(µ F ) involves only second-and 4th-order moments of σ and that σ = 0. Above T g , this is a small correction, var (µ

F ) nG / (δµ F ) 2 ∼ V c /V ,
where V c is the stress correlation volume, V c V . This estimate has emerged in analogy with the analysis of standard deviations, δµ A , of the affine modulus (cf. section 3.7).

Below T g , the situation is different: here the Gaussian contribution is small as µ

(G)
F strongly decreases for long ∆t at low T (cf. the end of section 3.8). By contrast, the overall δµ F does not vanish (remains finite) for however low T and long ∆t due to quenched structural correlations (in particular stress correlations) characterizing the amorphous solidlike state of the system. As a result, for a finite V , low T , and long ∆t, the variance of µ F becomes dominated by the volume-dependent non-Gaussian term:

(δµ F ) 2 ≈ var (µ F ) nG ∝ V c /V, at T 0.3 (3.31)
The ideas described above are qualitatively supported with the data shown in Figs. is significantly weaker than that implied by eq. 3.31.

Based on our simulation data for the 3 lowest temperatures (T = 0.05, 0.10, 0.15) and different sampling times ∆t = 10 5 , 10 4 , we find var(µ F ) nG ≈ 1.22 ± 0.1 for the 3072 × 4 system and var(µ F ) nG ≈ 3.34 ± 0.3 for the 768 × 4 system. These data are compatible with the power law var(µ F ) nG ∝ 1/V α with α ≈ 0.7 ± 0.1.

As mentioned above, at low T 's, the standard deviation of the terminal modulus δµ ≈ δµ F , and δµ F is dominated by the non-Gaussian contribution, δµ

(nG) F
, so the obtained V -dependence is applicable to δµ as well: in this regime (δµ) 2 ∝ 1/V α . A similar behavior for the variance of the elastic modulus with α ≈ 0.68±0.08 was obtained by studying more system sizes than we do in a simulation study of a 2D binary LJ mixture [START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF]. This and a related study [START_REF] Hentschel | Do athermal amorphous solids exist?[END_REF] also report an anomalous behavior of nonlinear elastic coefficients for model glass-forming systems at T < T g . The fact that α < 1 means that the basic physical assumption of just local (short-range) structural stress correlations underlying eq. 3.31 is not valid. We are thus driven to conclude that spatial correlations of local stress and of local structure (including local rigidity) in the studied amorphous systems are likely to be long-ranged (in addition to being persistent in time). Two main possibilities can be anticipated (i) that the relevant structural correlation length ξ s (characterizing the amorphous inherent structure) is finite, but is larger than (or comparable with) the system size, ξ s L ∼ 20, and (ii) that ξ s is practically infinite and stress correlations follow a power-law decay with the distance r. The latter scenario is in harmony with recent theoretical results reveling long-range correlations of the shear-stress frozen in the inherent structure showing a universal decay law, 1/r d (here d is the space dimension) [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF].

Interestingly, a large dynamical correlation length is also hinted at by a difference of the long-time behavior of the relaxation modulus G (t) for the two systems (cf. section 3.5).

We believe that further studies (perhaps, on larger systems) are required to clarify this issue.

Stress fluctuations in the 3-dimensional oligomer system

The glass transition region around T g is characterized by a number of anomalies including a jump of the heat capacity, or an emergence of elasticity (of a finite shear modulus µ) in a nearly discontinuous manner. However, the solidification is not accompanied by a significant change of the static structure which remains disordered. In particular, the static structure factor S (q) changes very little near T g [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Angell | Relaxation in glassforming liquids and amorphous solids[END_REF].

This common view implies that structural correlations in glass-forming systems must remain short-ranged near and below T g . There is however a growing opinion that (at least for fragile glass-formers) the glassy structure is characterized by some (perhaps hidden and subtle) long-range correlations that are not visible in S (q). We showed that investigations of stress fluctuations provide a powerful tool to study both the emergence of shear rigidity µ at the glass transition and the long-range structural correlations in supercooled liquids [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF].

Using the relation 2.43, G (t) was obtained in the range 0 ≤ t ≤ 10 5 , and the quasiequilibrium shear modulus µ was calculated as a time-average of G (t) (cf. ref. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]):

µ = G (t i -t j ) , (3.32) 
where ... here means the simple arithmetic average over i and j (cf. eq. 2.33). The modulus µ defined above is close to G (t) for t ∼ ∆t both above and below T g . for the larger one (reported in ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]). The main difference is that the 768 × 4 system shows a somewhat longer τ α in the low-temperature regime (T T g ).

2. The effective shear modulus of the system, µ (obtained using the stress-fluctuation relations, eqs. 2.45 and 2.46: µ = µ A -µ F , where the fluctuation modulus µ F , eq. 2.47, depends on the sampling time ∆t) shows a strong increase as the system is cooled below the glass transition temperature T g . The steplike function µ (T ) is almost independent of the system size, but it gets shifted to lower temperatures as the sampling time ∆t is increased. The rise of µ near T g is always sharp but continuous. The transition is narrow, its relative width, δT /T g ∼ 0.15, is the same for both systems, and it does not show a visible tendency to decrease as ∆t gets longer for ∆t > 10 4 (cf. section 3.6).

There might be 2 reasons for such behavior: (i) the statistics somewhat deteriorate in the time averages as the sampling time reaches the upper limit ∆t = ∆t max = 10 5 and (ii) during a long production run, ∆t ∼ ∆t max , the system gets slightly more equilibrated, which may lead to a weak drift of its glass transition temperature (in the course of simulation), resulting in some widening of the transition.

Here, we define: δT = -µ/max (∂µ/∂T ), where µ is taken right below the transition.

Theoretically, we anticipate a logarithmic increase of the transition steepness at longer ∆t, T g /δT g ∝ ln (∆t) (as argued in subsection 3.9.1). Curiously, at low temperatures below the transition zone, the shear modulus µ is a bit higher for the smaller system despite its slightly lower density.

3. Analyzing the instantaneous affine shear modulus µ A , we revealed that it is dominated by the contribution of bonds connecting the monomers in chains. A moderate increase of µ A at low T 's is mainly due to an enhancement of LJ interactions as the density gets slightly higher. The affine modulus does not depend on the system size. By contrast, var(µ A ) depends on the system volume as V c /V , where V c is the effective correlation volume corresponding to just one particle (V c ∼ 1) suggesting that local contributions to the modulus are virtually independent. Noteworwhily, the volume V c does not increase as the temperature is lowered (cf. eq. 3.6).

Moreover, we found that the standard deviation of instantaneous µ A , δ 1 (µ A ), is roughly independent of temperature. Therefore, the observed strong increase of the variance of the time averaged µ A at low T 's is solely due to an increase of the relevant relaxation time worsening the statistics of µ A .

Remarkably, we also found that orientational preaveraging of µ A (by rotations of the coordinate frame) leads to a drastic improvement of its statistics: the variance 4. To characterize the heterogeneous nature of the glass-forming systems, we obtained the standard deviations of µ and µ F among different independent configurations and found that they are always nearly equal, δµ ≈ δµ F . For both systems, these deviations show a pronounced peak near T g in agreement with results of ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] for the larger system. For the smaller system, the peak gets a bit higher and broader.

Its height also slightly increases for longer sampling time ∆t. The peak of δµ reflects a sharp transition from liquidlike to solidlike behavior; its emergence is correlated with a strong variation of µ near T g (a high slope -∂µ/∂T ).

5. We developed a quantitative theory predicting δµ F in terms of the relaxation modulus G (t). The theory is in excellent agreement with the simulation results in the liquid regime (cf. Figs. 3.21 and 3.23). In this regime, δµ F can be predicted based on the function µ F (∆t) which is directly related to the relaxation modulus (cf. eqs. 2.52 and 2.54). The peak region is also quantitatively reproduced by the theory (which works better for the larger system). The theoretical approach is based on the Gaussian approximation for stress fluctuations, which is asymptotically exact for large systems, V → ∞ (note, however, that the convergence is not uniform: the finite "Gaussian" limit is approached for L l (T ), where the length-scale l (T ) strongly increases at low T ). In this limit, it is valid both in the equilibrium (liquid) state and in the glassy state falling out of the equilibrium. The theory thus generally proves that fluctuations of µ F and µ do not vanish for large V , rather they tend to a T -dependent finite level.

The theoretical Gaussian deviations δµ (G)

F strongly decrease at low temperatures, in contrast to simulation data pointing to saturation of δµ F at a significant level at low T for the studied systems. Moreover, the low-T plateau of δµ F strongly decreases CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM as the system gets larger. This effect is attributed to a highly heterogeneous amorphous structure of the super-cooled glassy liquids leading to markedly non-Gaussian stress fluctuations coupled to the quenched structural disorder. Our analysis shows that the non-Gaussian part of the variance of shear moduli, var(µ F ) nG ≈ var (µ) nG , decreases with the system size as 1/V α with α < 1 (α ≈ 0.7 ± 0.1). This result indicates that the local elastic (structural) properties in the studied amorphous systems must show long-range spatial correlations (since a structure with uncorrelated elements would lead to a 1/V dependence of the variance). Such behavior is reminiscent of the so-called Gardner transition [START_REF] Charbonneau | Fractal free energy landscapes in structural glasses[END_REF] possibly associated with a diverging length-scale of static heterogeneity below T g [START_REF] Charbonneau | Numerical detection of the gardner transition in a mean-field glass former[END_REF]. A long dynamical length-scale comparable with the system size is also suggested by the revealed size-dependence (at low temperatures) of the terminal decay rate of the shear relaxation modulus which is slower for the smaller system (cf. sec 3.5).

Chapter 4

Glass-forming 2-dimensional simple liquid system

Polydisperse Lennard-Jones (pLJ) model

We studied a glass-forming system of N = 10 4 polydisperse Lennard-Jones (pLJ) particles with equal mass (m i = 1) but different sizes [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF][START_REF] Tanguy | Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations[END_REF] in the 2-dimensional (2d) space.

Similar models, including Kob-Andersen binary mixtures [START_REF] Kob | Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: The van Hove correlation function[END_REF][START_REF] Kob | Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: Intermediate scattering function and dynamic susceptibility[END_REF], are widely used in simulations of (2d and 3d) glass-forming liquids [START_REF] Ninarello | Models and algorithms for the next generation of glass transition studies[END_REF]. Following ref. [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF][START_REF] Tanguy | Continuum limit of amorphous elastic bodies: A finite-size study of low-frequency harmonic vibrations[END_REF], each pair of particles (of diameters σ i and σ j ) interact with energy u LJ (r/σ ij ), where σ ij = (σ i + σ j ) /2.

To simplify equations, r/σ ij can be replaced by a reduced dimensionless distance s, such as s = r/σ ij . Now, eq. 2.58 can be written in following way:

u LJ (s) =    4 LJ (s) -12 -(s) -6 -4 LJ (s cut ) -12 -(s cut ) -6 , if s < s cut 0, otherwise (4.1) 
where s cut is the reduced cutoff radius which is the same for all interaction pairs , s cut = r cut /σ ij = 2 7/6 . The diameter σ i of a particle i (i = 1..N ) is uniformly distributed between (1 -∆) σ and (1 + ∆) σ with ∆ = 0.2. The mean-square particle size can be calculated as follows:

σ 2 = 1 + ∆ 2 /3 σ 2 , (4.2) 
leading to the polydispersity index of particle sizes (PDI), 

δ p = σ 2 /σ 2 -1 = ∆ 2 /

Simulation protocol

The same way as for the 3-dimensional oligomer model (Chapter 3), we performed Molecular Dynamics (MD) simulation using a velocity-Verlet scheme [START_REF] Verlet | Computer "experiments" on classical fluids. ii. equilibrium correlation functions[END_REF] The main task of this part of the thesis was the implementation of the calculation of σ (q) using eq. 2.102 [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] in LAMMPS [START_REF]Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[END_REF]. The technical details of the implementation are shown on our group code source storage1 .

Sample preparation

The system was kept at constant external pressure P = 2.0 and equlibrated by the swap Monte Carlo (MC) technique [START_REF] Ninarello | Models and algorithms for the next generation of glass transition studies[END_REF] by Dr. Joachim Wittmer. The resulting configurations m T (different temperatures had different sets of configurations) for n T = 26 temperatures (T = 0.100, 0.120, ..., 0.500) served as starting points for MD simulations in the N P T ensemble to equilibrate the particle velocities. Production runs were done in the canonical (N V T ) ensemble where the volume V was fixed at the average volume corresponding to P = 2.0.

To summarize the statements above, for each T and for each system from the m Tensemble, we did: (a) σ xx (q), σ yy (q), σ xy (q) (both real and imaginary parts) every δτ σ(q) = 20τ LJ for simulation length ∆t = 10 5 τ LJ ;

(b) σ xx (q), σ yy (q), σ xy (q) (both real and imaginary parts) every δτ σ(q) = 0.2τ LJ for the rest simulation time (from ∆t = 10 5 τ LJ to ∆t = 11 • 10 4 τ LJ ). To define the glass transition temperature T g for our system, doing it in parallel to the main protocol (cf. subsection 4.2.1), we performed cooling runs using MD only. The cooling runs consisted of two steps: continuous cooling from the initial temperature T = 1

with rate Γ = 10 -5 followed by N P T and N V T tempering as described above. These cooling runs allowed us to determine the glass transition temperature T g . T g depends on the total time spent during cooling and tempering. For the times in the order of ∆t = 10 5 τ LJ used in this study we obtained T g ≈ 0.26 defining T g as the onset of a quasi-static elasticity (when the long-time shear modulus µ exceeds 1% of the instantaneous affine shear modulus µ A ). Nearly the same T g was obtained previously from MC simulations using a similar continuous cooling protocol and a dilatometric criterion [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF] 2 .

Looking at Figs. 4.1 -4.2 one can see that the system is liquid-like above T g and amorphous for T g T > T c , while crystallization is suspected at T < T c ≈ 0.15 [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF].

Violation of the relation between the compressibility and the structure factor

One of the most interesting features of the glass transition is the emergence of nonequilibrium effects for T ≤ T g . One example is the drop of the specific heat (c p or c v ) on cooling through T g (cf. subsection 1.1.2). In the liquid phase, this effect is supplemented by a significant frequency dependence of the dynamic heat capacity implying its slow increase towards the equilibrium value on the long-time scales [START_REF] Scheidler | Frequency-dependent specific heat of viscous silica[END_REF]. Another example is the violation of the relation between the compressibility and the static structure factor S (0) ≡ S (q → 0) for vanishing wave vector q in the glass. The latter relation -the so-called compressibility equation (CE) -is given by ref. [START_REF] Hansen | Theory of Simple Liquids[END_REF]130]:

S (0) = c 0 T K T , (4.4) 
where K T is the static isothermal bulk compression modulus and c 0 = N/V is the mean concentration of particles (note that S (0) is related to fluctuations of the total number N of particles in the grand-canonical ensemble: S (0) = (δN ) 2 / N , where (δN ) 2 ≡ N 2 -N 2 is the variance of N . This relation remains valid also for polydisperse systems). This fluctuation-dissipation relation is valid in the equilibrium liquid, but is not satisfied below T g [START_REF] Donth | The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials[END_REF][START_REF] Stillinger | Resolving vibrational and structural contributions to isothermal compressibility[END_REF][START_REF] Haxton | Ratio of effective temperature to pressure controls the mobility of sheared hard spheres[END_REF], where the concept of an effective "compressibility temperature" T χ defined via eq. 4.4 was introduced (T χ is higher than the actual temperature T for T < T g ) [START_REF] Haxton | Ratio of effective temperature to pressure controls the mobility of sheared hard spheres[END_REF].

Many glass-forming systems have multiple components to suppress the tendency for structural ordering [START_REF] Ninarello | Models and algorithms for the next generation of glass transition studies[END_REF][START_REF] Ingebrigtsen | Crystallization instability in glass-forming mixtures[END_REF][START_REF] Van Megen | Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition[END_REF]. For systems with n components it is known since the work by Kirkwood and Buff that the CE must be modified even under equilibrium conditions [START_REF] Hansen | Theory of Simple Liquids[END_REF][START_REF] Rasaiah | Molecular theory of solutions by arieh ben-naim (the hebrew university, jerusalem, israel)[END_REF][START_REF] Kirkwood | The statistical mechanical theory of solutions. i[END_REF]. The Kirkwood-Buff theory expresses the compressibility in terms of the inverse matrix of partial structure factors S ij (q → 0) where i, j = 1, ..., n. For the thermodynamic factor [START_REF] Thorneywork | Structure factors in a two-dimensional binary colloidal hard sphere system[END_REF]. This expression can be utilized to analyze experimental data [START_REF] Thorneywork | Structure factors in a two-dimensional binary colloidal hard sphere system[END_REF]. However, if n is large, the matrix inversion becomes "conceptually and computationally difficult" [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF], in particular in the limit of continuous distributions of particle sizes. To cope with this problem, a systematic expansion of the Kirkwood-Buff theory in terms of the size deviation from the mean particle diameter was suggested [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF]. This method is powerful if structural information about partial pair correlations is available, as demonstrated by applications to jammed packings of size-disperse spheres [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF] and random-close packed colloidal dispersions [START_REF] Kurita | Incompressibility of polydisperse random-close-packed colloidal particles[END_REF]. We proposed another approach that does not require partial pair correlations, but combines thermodynamic (K T ) and simple compositional information (like polydispersity index of particle sizes (PDI) δ p ) to predict the polydispersity contribution (S pl ) to static, S (q), and dynamical, S (q, t), structure factors for low q. Our approach is valid in any spacial dimension (d) and explains why the monodisperse CE (eq. 4.4) can be violated strongly even for systems with very low PDI (δ p ∼ 1%).

We compare our theory to results from MD simulations of a 2d system of polydisperse particles and show that polydispersity gives rise to glass-like effects already for T well above T g : S (q, t) at low q decays in 2 steps with an intermediate plateau (at S ≈ S pl ), and the time-dependent specific heat increases slowly (as a power-law) towards its static equilibrium value. There relaxation features persist upon cooling towards T g and are expected to interplay with the glassy dynamics [START_REF] Weysser | Structural relaxation of polydisperse hard spheres: Comparison of the mode-coupling theory to a langevin dynamics simulation[END_REF][START_REF] Fuchs | α-relaxation in a supercooled binary mixture[END_REF][START_REF] Kuhn | Diffusion and interdiffusion in binary metallic melts[END_REF]. Fig. 4.4 represents φ q (t) = S (q, t) /S (q) for the lowest q = q min at different T > T g .

A pronounced long-time shoulder is visible at T = 0. the N V T ensemble [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]; both methods gave the same results). Note that S 0 = S(q min , 0) is nearly equal to S (0) obtained by extrapolation of S (q) to q = 0.

One can observe that δ always exceeds 70% meaning that eq. 4.4 is not satisfied.

A significant difference between S (0) / (c 0 T ) and the compressibility 1/K T was also discussed for jammed packings of size-dispersed hard disks and spheres [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF], and in dynamic light scattering of colloidal dispersions [START_REF] Pusey | Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres[END_REF]. In both cases the difference was shown to originate from polydispersity effects. These findings support the idea that the anomalous behavior reported in Figs. 4.4 and 4.5 is also related to polydipersity.

We pursue this idea below and discuss a theoretical approach to explain our simulation results. We start with the dynamical structure factor:

S (q, t) = V c 0 c q (t) c * q (0) , (4.5) 
where averaging is taken over the equilibrium ensemble, V is d-dimensional system volume, d = 2, c q (t) = c (r, t) exp (-iqr) d d r/V , and c (r, t) is the local concentration.

According to the standard FDT [START_REF] Landau | Statistical Physics[END_REF] the dynamical factor:

S (q, t) = c -1 0 [R (q, ∞) -R (q, t)] , (4.6) 
is related to the response function R (q, t) defining the concentration wave c q (t) in- duced by a weak external potential field U (r, t) = U 0 exp (iqr) applied to the system at t > 0:

c q (t) = -R (q, t) U 0 /T (4.7) 
Obviously R (q, 0) = 0. We now focus on the low-q regime (qσ 1). The field U produces the volume force -c∇U which generates a hydrodynamic flow leading to the pressure (δp) and concentration waves. The mechanical balance for t τ α then demands δp -cU with δp K T δc/c 0 , hence R (q, t)

T c 2 0 K T leading to the classical result for monodisperse systems, S 0 ≡ S (q, 0) T c 0 /K T (for qσ 1). In the general (polydisperse) case the considered mechanism implies that the colloidal composition stays unchanged for each element of the system. This is valid for the first (fast) stage of concentration relaxation which serves to establish the local mechanical balance (∇p + c∇U = 0).

However, later on the concentration wave amplitude (and R (q, t)) can still increase due to an exchange between small and large particles by their slow mutual diffusion ("slow" stage). The amplitude of this increase can be deduced from a simple model assuming that the free energy of interactions between the particles depends primarily on the local volume concentration, φ (r) = i v i c i (r), where v i = σ d i . Here all the particles are separated in groups according to their size σ: particles with σ σ i belong to group i, i = 1, 2, .., n.

The number of components n is such that n 1, but n N . Thus, the number of particles in each group, N i , is large.

Then, the total free energy density is (position r is omitted for φ (r) and c i (r), v = σ d ):

f = 1 v f * (φ, T ) + T n i=1 c i ln (c i ) , (4.8) 
where the second term in the r.h.s. accounts for the entropy of mixing. The assumption to express the excess part f * in terms of φ is backed by the success of similar approximate expressions employed to explore phase equilibria in polydisperse systems [START_REF] Sollich | Predicting phase equilibria in polydisperse systems[END_REF]. The crucial role of the local volume fraction for jammed polydisperse systems was also highlighted in ref. [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF]. As we focus here on the linear response, we may expand f for small deviations

δc i = c i -c (0) i
from the equilibrium state, and keep only the quadratic term (the linear term is irrelevant as its volume integral is const = 0):

δf /T v * δφ 2 / 2v 2 + i (δc i ) 2 / (2c i ) , (4.9) 
where δφ = i v i δc i and the volume v * is defined by

T v * /v = ∂ 2 f * /∂φ 2 at φ = φ 0 = i v i c 0 i .
During the fast mechanical stage a fluid element deforms as a whole, keeping the same composition: δc i /c i = δc/c 0 . Using eq. 4.9 with this condition leads to:

δf /T K T (δc) 2 / 2c 2 0 , K T = T c 0 (c 0 v * + 1) , (4.10) 
so the plateau response (for t τ α right after the fast mechanical relaxation stage) is

R pl = R (q → 0, t) T c 2 0 K T . To get the terminal amplitude R ∞ = lim q→0 lim t→∞ R (q, t) = c 0 S (0) 
(recall that R (q, 0) = 0) we have to allow for composition variations and hence minimize f , eq. 4.9, with respect to δc i with the only side condition i δc i = δc. The result is

δf = K * (δc) 2 / (2c 2 
0 ), so the terminal response is given by R ∞ = T c 2 0 /K * :

K * = T c 0 [Z (1 -S K ) + 1] / [Z (1 -S K ) + S K ] , (4.11) 
where S K = c 0 T /K T and

Z = i N i N (1 -v i /v) 2 = v 2 /v 2 -1 d=2 = 4δ p (1 + δ p /5) / (1 + δ p ) 2 (4.12)
eq. 4.11 remains valid in any dimension d with v i = σ d i . So S (0) = R ∞ /c 0 = S K * , where S K * ≡ c 0 T /K * . It is thus predicted that S (q, t) relaxes from the initial value (which is close to the static structure factor S (0)) S 0 S K * to the intermediate plateau

at S pl = (R ∞ -R pl ) /c 0 : S pl = S K * -S K = Z (1 -S K ) 2 1 + Z (1 -S K ) (4.13)
This result resonates with the Kirkwood-Buff theory [START_REF] Thorneywork | Structure factors in a two-dimensional binary colloidal hard sphere system[END_REF][START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF]: For a polydisperse system S (0) can be expressed as a sum of a compressibility contribution S K and a term related to composition fluctuations S pl . Here, however, S pl is defined as a dynamic quantity (rather than a combination of partial structure factors). Our approach is akin to the analysis of DLS (dynamical light scattering) of polydisperse colloidal suspensions in ref. [START_REF] Pusey | Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres[END_REF]. A very good agreement is obvious. The proposed simple model thus fully accounts for the composition fluctuation effects. It shows that the "polydispersity" contribution to S 0 tends to S pl Z Z+1 in the "incompressible" limit K T → ∞, so S pl (which is roughly proportional to the size PDI, δ p ) can strongly exceed the compressibility term S K for however low δ p . Furthermore, we find that the terminal relaxation of S (q, t) from S pl to 0 can be described by a single diffusion constant equal to the mean self-diffusion coefficient D s deduced from the mean-square displacements averaged over all particles [START_REF] Klochko | Composition fluctuations in polydisperse liquids: Glasslike effects well above the glass transition[END_REF]:

S (q, t) (S 0 -S K ) exp -q 2 D s t , t τ α , (4.14) 
where S 0 = S (q, 0) and qσ 1, as noted before. The theoretical curves (dashed) are shown in Fig. 4.4 for t > 10 2 . A very good agreement with MD data is obvious.

Thus, for t τ α the collective interdiffusion coefficient governing the relaxation is close to the average self-diffusion coefficient, which means that the so-called Vineyard approximation [START_REF] Hansen | Theory of Simple Liquids[END_REF] works very well here. The importance of interdiffusion processes for glassforming systems with size polydispersity was discussed qualitatively in refs. [START_REF] Weysser | Structural relaxation of polydisperse hard spheres: Comparison of the mode-coupling theory to a langevin dynamics simulation[END_REF][START_REF] Pusey | Mode amplitudes in dynamic light scattering by concentrated liquid suspensions of polydisperse hard spheres[END_REF] and for binary mixtures in the framework of mode-coupling theory in ref. [START_REF] Fuchs | α-relaxation in a supercooled binary mixture[END_REF]. The theory for binary mixtures yields an expression analogous to eq. 4.14 with an amplitude given by the Kirkwood-Buff result for S 0 -S K [START_REF] Thorneywork | Structure factors in a two-dimensional binary colloidal hard sphere system[END_REF] and a relaxation rate determined by the interdiffusion coefficient (cf. eq. 10b of ref. [START_REF] Fuchs | α-relaxation in a supercooled binary mixture[END_REF]).

Anomalous behavior of time-dependent heat capacity well above the T g in polydisperse liquids

Turning to the simulation results, we first consider the specific heat per particle,

c v = 1 N ∂E ∂T | V,N .
Its time-dependent generalization can be defined via the energy (E) response to a small instant T -jump (from T -δT to T at t = 0):

c v (t) = E (t) -E (0) N δT , (4.15) 
where the static (equilibrium) c v equals to c v (∞). By virtue of the fluctuationdissipation theorem (FDT, section 2.2) the response function c v (t) is related to the energy At short times, t τ α the behavior for ∆c v (t) is qualitatively consistent with the frequency dependence of c v above T g revealed in a simulation study of viscous silica [START_REF] Scheidler | Frequency-dependent specific heat of viscous silica[END_REF].

c v (t) = 1 N T 2 [C E (0) -C E (t)] ( 4 
The temperature dependence of heat capacity c V (t) at short time t 2 is represented in Fig. 4.7. One can observe however a new feature: a weak long-time tail already at T = 0.5 (Fig. 4.6). It appears that the tail follows a power-law scaling as ∼ 1/t (cf. the dashed lines in Fig. 4.6). The power-law tail gets much stronger as T decreases down to T = 0.325 (which is significantly above T g ≈ 0.26 [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary conditions, temperature, and sampling time[END_REF]).

Remarkably, the terminal time-scale of the tail is much longer (by a factor ∼ 100)

than the structural relaxation time τ α defined as the relaxation time of the shear stress (cf. Fig. 4.8) or of φ q (t) = S (q, t) /S (q) at the peak of S (q) (cf. Fig. 4.3). The heat To study the stress correlation range for the 2-dimensional system more directly we analyzed the correlation function of the stress tensor σ αβ at different wave-vectors q (in addition to the space-averaged stress corresponding to q = 0). For each q we define the natural coordinate system with axis 1 along the wave-vector and axis 2 perpendicular to it.

Let us remind from section 2.2.4 the definition of the generalized correlation functions:

C αβγδ (q, t) = 1 V σ αβ (q, t + t ) σ * γδ (q, t ) , (4.18) 
where α, β, γ, δ = 1 or 2.

In sections 2. where σ R αβ (q), σ I αβ (q) are real and imaginary parts of the stress tensor, n x = qx |q| , n y = qy |q| , m x = n y , and m y = -n x . To study the stress correlation range for the glass forming 2-dimensional polydisperse simple liquid system more directly we analyzed the correlation functions C T (t), C 2 (t), C (t), C ⊥ (t) based on the MD simulation data obtained by following the protocol from section 4.2 at different wave-vectors q. Those correlation functions for the minimum wave-vector q min = 2π/L (where L ≈ 100 is the system size) at different temperatures To get the numerical data for the theoretical curves one has to use eqs. 2.122 -2.124, and 2.132. First of all, the Laplace transform of the shear-stress relaxation modulus G (t), G (s), should be applied. The longitudinal modulus K(q, s) can be obtained from K(q, t) in a similar way. Note that K(q, t) is different from K(t) (cf. eq. 2.73) due to finite heat conductivity (see end of ref. [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]) and composition fluctuations (cf. ref. [START_REF] Klochko | Composition fluctuations in polydisperse liquids: Glasslike effects well above the glass transition[END_REF]). Then, it is possible to obtain the C T (s), C 2 (s), C (s), C ⊥ (s). Note, that the notations are simplified by replacing C ⊥ (q, s) = C ⊥ (s), C T (q, s) = C T (s), C 2 (q, s) = C 2 (s), and C (q, s) = C (s). The last stage is to apply the inverse Laplace transform to get the time-dependent functions C T (t), C 2 (t), C (t), C ⊥ (t) which will be compared with the correlation functions calculated based on the MD simulation data.

As it can be seen from Figs. 

t) and M (t) define, respectively, the longitudinal and transverse stress generated by a longitudinal strain (by transverse strain we mean the normal stress in a direction perpendicular to q). The transverse modulus, M (t), can be found from the equation:

M (t) = K b (t) - 2 d G (t) = K(t) -2G(t), (4.22) 
where K b (t) was obtained using eq. 2.68. A similar equation is valid for small q, The dashed red lines define the theoretical prediction obtained by the inverse Laplace transform of eq. 2.122.

qσ 1: M (q, t) K(q, t) -2G(q, t). The time and temperature dependence of those material functions are shown in Figs. 4.18 -4.20. Based on the elasticity theory [148],

in the limit of low q, one can find the Poisson's ratio ν which characterizes the elastic properties of an isotropic material as:

ν = M * (d -2) • M * + K * , (4.23) 
where the moduli K * , M * are the long-time levels of the time-dependent moduli K (t) and M (t), which can be obtained taking into account eqs. 2.67, 2.73, and 4.22:

K * = K (t ∼ ∆t) = η + 2 - 2 d µ, M * = M (t ∼ ∆t) = η - 2 d µ, (4.24) 
Note, that G * = G (t ∼ ∆t) = µ [6, 7, 93] (cf. Chapters 2 and 3). The range for ν in

d-dimensional case is -1 < ν ≤ 1/ (d - 1 
). The temperature dependence of ν vs. T is shown in Fig. 4.17.

It is instructive to coarse-grain the time-dependence of C αβγδ to remove the shorttime oscillations with the period ∼ 2π/ (qc L ) ∼ 10τ LJ , where c L is the longitudinal sound velocity defined in ref. [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] and below eq. 2.153. Such smoothed correlation functions C 2∼ (t) (with coarsening time-scale t c ∼ 20τ LJ ∼ 4π (qc L ) ) are also shown in Fig. 4.12. The ensemble of simulation data supports the theoretical prediction [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] that the only correlation function surviving coarse-graining at t t c is C 2222 . The smoothed version of this function C 2∼ (t), just weakly depends on q for q q peak ∼ 5. This leads to the following distance dependence of the time-smoothed correlation function of the local shear stress σ xy (r, t):

σ xy (r + r , t + t ) σ xy (r , t ) 1 π C 2∼ (t) 1 r 2 - 8x 2 y 2 r 6 , (4.25) 
where r = (x, y). The above equation is valid for t t c and σ r L. It means that the stress correlation decay as 1/r 2 in agreement with the previous simulation results [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] and theoretical predictions [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] (Chapter 2). hypothesizing that the particles cannot exit the "cage" formed by their neighbors [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF].

Therefore, the plateau corresponds to vibrations of the tagged particle i within the cage.

Such vibrations within the local cage should not be mixed with the β-relaxation process.

The time which a tagged particle i needs to get out from the cage corresponds to the α-relaxation time [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. At long times, the diffusive motion is dominated: for times t longer compared to the relaxation time τ α , MSD increases linearly with time as for a liquid, MSD ∝ t.

Noteworthily, at longer times, the slope of MSD is proportional to the diffusion coefficient D as was shown in eq. 1.3. The temperature dependence of the diffusion coefficient is shown in Fig. 4.22.

Discussion

Local stress tensor correlations in the studied system

In Chapter 2 we analyzed the local stress tensor correlations in complex and supercooled liquids focusing on the time and distance dependencies of the shear stress correlation The fluids we consider are characterized by slowly fading memory and long structural relaxations including the stress relaxation with the long terminal time τ max (or τ α ). Such fluids are viscoelastic by definition: for t τ max they show quasi-elastic behavior (with considerable transient elastic moduli), while for t τ max they behave as highly viscous media. This property is equally applicable to macromolecular solutions or melts and to glass-forming simple liquids, the major difference being that polymer systems are normally highly elastic, while glasses are typically brittle. This difference however is not important for the present analysis since we consider weak fluctuations near the equilibrium state rather than non-linear flow effects.

The present theory assumes that structural correlations (due to irregularities of molecular packing) are local (short-range) in liquid systems we consider. This is true for all equilibrium viscoelastic liquids known so far (including glass-forming systems): the static structural correlation length ξ s can increase as the system is cooled down close to the vitrification temperature [65,[START_REF] Charbonneau | Fractal free energy landscapes in structural glasses[END_REF][START_REF] Charbonneau | Numerical detection of the gardner transition in a mean-field glass former[END_REF][START_REF] Kirkpatrick | Scaling concepts for the dynamics of viscous liquids near an ideal glassy state[END_REF][START_REF] Berthier | Growing timescales and lengthscales characterizing vibrations of amorphous solids[END_REF], but this increase is typically limited by a few (at most ∼ 10) molecular sizes [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Tanaka | Critical-like behaviour of glass-forming liquids[END_REF][START_REF] Semenov | Thermodynamic nature of vitrification in a 1d model of a structural glass former[END_REF][START_REF] Biroli | Thermodynamic signature of growing amorphous order in glass-forming liquids[END_REF][START_REF] Donth | Characteristic length of the glass transition[END_REF][START_REF] Binder | Anomalous diffusion of polymers in supercooled melts near the glass transition[END_REF][START_REF] Mosayebi | Probing a critical length scale at the glass transition[END_REF]. It is for this reason that we can neglect the q-dependence of the generalized relaxation moduli G, K and M in isothermal and isocompositional conditions as such dependence is essentially of structural origin. However, in the general case eq. 2.132 must be amended by replacing K(s) and M (s) with K(q, s) and M (q, s), respectively.

Note that the q = 0 approximation for material functions (cf. eq. 2.131) is equivalent to stating that these functions (relaxation moduli) reflect a localized in space response. Noteworthily, the stress correlations do not decay exponentially for r > l: in the distal region l < r < l ≈ c L t they still follow a power law, but with a significantly faster decrease with r, C (r, t) ∝ r -4 (cf. Figs. 2.3 -2.6). Here l is the longest correlation length defined by the longitudinal sound velocity c L . Interestingly, in the plateau time-regime (τ min < t < τ pl ) the correlation function increases with time in the distal region l < r < l :

it is proportional there to t 2 G 2 pl r -4 (cf. the second part of the last term in eq. 2.157). Thus, the developed theory allows us to see how the long-range stress correlations gradually emerge as a function of time-shift (t) starting from purely local simultaneous stress correlations (see eq. 2.157). We also predict how the magnitude of the long-range stress correlations gradually decreases in time according to the relaxation law reflecting both shear and longitudinal memory functions, G(t) and K(t) (cf. eqs. 2.159 -2.160).

To further clarify the main results obtained here let us first recall what is known about the stress correlations in ordered (crystalline) solids. The fluctuations of stress there are essentially due to thermally excited acoustic waves. The correlation function of simultaneous fluctuations (with time-shift t = 0) is long-range (more precisely, infinite range) and anisotropic as follows from the classical elasticity theory [START_REF] Landau | Statistical Physics[END_REF]. However, the stress fluctuations in solids decay rather fast with characteristic time t ∼ r/c corresponding to the frequency of acoustic waves with wave-length ∼ r (c is the sound velocity). Thus, the stress fluctuations become uncorrelated at t r/c. Similar high-frequency stress fluctuations (σ f ) are also present in viscoelastic (glass-forming) fluids which behave as solids at short times, but this fluctuation field is superimposed with a quasi-permanent (virtually frozen) heterogeneous random stress pattern. The "frozen" (inherent) stress σ i does not cause directly any fluid motion; being compatible with mechanical equilibrium it does not generate any internal force, σ i αβ,β = 0. However, it is important to emphasize that the inherent (transiently frozen) stress is necessarily present in viscoelastic fluids; it serves to restore the short-range character of the total stress correlations at t = 0 (recall that these correlations are structural in nature). Thus, the correlation function of the total stress, σ = σ f + σ i , is C (r, 0) = C f (r, 0) + C i (r, 0) 0 for r ξ s . Hence, the correlation function of the inherent stress, C i , must be nearly opposite to the function C f due to acoustic stress fluctuations. Therefore, C i must also show infinite-range and anisotropic correlations. As the fluctuation part decays rather fast, the stress correlations at longer times (t r/c) must be mostly due to the inherent (frozen) stress, hence they must be also long-range and stay for a long time ∼ τ max . Some evidence for such a distinction between the inherent structure dynamics and the overall liquid dynamics can be found in simulation studies (see Fig. 5,6 in ref. [START_REF] Abraham | The origin of persistent shear stress in supercooled liquids[END_REF] and Fig. 1 in SM of ref. [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF]).

Such long-range (and nearly frozen) "elastic" stress fields have be considered in the framework of elasto-plastic models [START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF][START_REF] Ferrero | Relaxation in yield systems through elastically interacting activated events[END_REF][START_REF] Nicolas | Spatiotemporal correlations between plastic events in the shear flow of athermal amorphous solids[END_REF]. It is worth mentioning that the anisotropic character of the frozen stress correlations directly follows from the condition of mechanical equilibrium (σ i αβ,β = 0) which demands that shear stress must vanish for certain directions of the wave-vector q. For example, σ i xy = 0 if q = 0 is parallel to either the x or the y axis. The latter example also explains why the second ("singular") term in the stress correlation function (cf. eq. 2.134) shows knots for q x = 0 or q y = 0.

It is worth emphasizing again that the predicted long-range spatial and temporal stress correlations are essentially viscoelastic in nature. The long-range character of C (r, t) is not exactly an inertial effect (in contrast to fast fluctuations due to acoustic waves): in fact, the correlation function is independent of the fluid density ρ for r l (t) (in this regime C is defined in eq. 2.160). Moreover, C is well-defined in the formal limit ρ → 0 where the infinite range character of stress correlations emerges instantly.

As explained above, the revealed LR stress correlations are dynamical in nature and are not directly related to the static correlation length ξ s . However, this does not imply that the LR stress correlations are completely unrelated to the static glass correlation length ξ s . Since l (t) ∼ ηt/ρ (cf. eq. 2.148) at long times, l and ξ s would be related if ξ s indeed determines the increase of the viscosity at low T as η/η 0 ∼ exp (E A (T ) /T ) with the putative equation E A (T ) ∝ ξ s (T ) ψ [START_REF] Yaida | Point-to-set lengths, local structure, and glassiness[END_REF] and ψ ≤ d (d being the spatial dimension).

Let us recall that supercooled liquids are often characterized by a dynamical correlation length ξ d which depends-as l (t)-on the time scale [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF][START_REF] Karmakar | Length scales in glass-forming liquids and related systems: A review[END_REF][START_REF] Karmakar | Growing length and time scales in glassforming liquids[END_REF]. Can we associate the stress correlation range with ξ d ? The point is that ξ d depends on the nature of variables whose correlations are studied, so many dynamical lengths ξ d can be defined at the same time scale [START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Berthier | Overview of different characterizations of dynamic heterogeneity[END_REF]. Typically, ξ d is associated with the emergence of dynamical heterogeneities in glass-forming fluids and refers to the cluster size of an increasing number of particles with correlated motion at low T (e.g. the span of one-dimensional stringlike motion or the length scale associated with dynamic fluctuations as measured by dynamic susceptibilities [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Bennemann | Growing range of correlated motion in a polymer melt on cooling towards the glass transition[END_REF][START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF] or a length-scale characterizing the distance between localized excitations of high mobility [START_REF] Keys | Excitations are localized and relaxation is hierachical in glass-forming liquids[END_REF]). While stress fluctuations certainly affect the cooperative motion of fluid particles, the usually defined ξ d is expected to be much shorter than l, l [START_REF] Karmakar | Length scales in glass-forming liquids and related systems: A review[END_REF].

It is remarkable that the r, θ dependencies of the LR part of the stress correlation function, eq. 2.160, completely agree with the far field stress response to a localized plastic strain event [START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF][START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF] which, in turn, was shown to be equivalent to the stress field generated by a pair of "force dipoles" [START_REF] Picard | Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids[END_REF]. The corresponding characteristic quadrupolar (eight-lobe) LR stress pattern was also observed in simulation and experimental studies of the local rearrangement effects in 2d foams [START_REF] Kabla | Local stress relaxation and shear banding in a dry foam under shear[END_REF] 2d glass systems [START_REF] Tanguy | Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local arrangements at very low strain rate[END_REF] and quasi-2d emulsions [START_REF] Desmond | Measurement of stress redistribution in flowing emulsions[END_REF].

Long-range dynamical correlation effects have been reported in several other recent studies [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF][START_REF] Illing | Strain pattern in supercooled liquids[END_REF]. Computer simulations of ref. [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] reveal LR correlations between plastic events in deeply supercooled 2d liquids, which have been attributed to 1/r 2 correlations of the local inherent stresses a distance r apart, in agreement with our result given in eq. 2.160. The simulation studies [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] also revealed that the amplitude of power-law stress correlations first grows, then shows a transient plateau and finally decays. That sort of behavior is in harmony with our results (cf. eq. 2.157 and eq. 2.160) showing the early time increase of the correlation amplitude (due to the factor t 2 in the last term of eq. 2.157) and then its gradual decrease defined by the G (t) factor in eq. 2.160 (the slow decrease is also visible in Figs. 4.12b, 4.14). The LR dynamical correlations between particle displacements and related functions have been demonstrated in refs. [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF].

Remarkably, the studies [START_REF] Flenner | Long-range correlations in glasses and glassy fluids[END_REF][START_REF] Flenner | Long-range spatial correlations of particle displacements and the emergence of elasticity[END_REF] show that the corresponding dynamical correlation length ξ 4 grows linearly in time in glasses, while ξ 4 ∝ √ ηt in the long-time regime in liquids, in obvious agreement with the momentum propagation length l(t) defining the range of stress correlations considered in the present paper (cf. eq. 2.150). Similar results are also found in ref. [START_REF] Illing | Strain pattern in supercooled liquids[END_REF]. It is worth noting that generally the length l(t) (cf. eq. 2.148 and 2.150 ) can be also considered as the range of viscoelastic hydrodynamic interactions in the liquid [START_REF] Semenov | Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids[END_REF].

It is worth noting that all the results obtained in this paper are valid for equilibrium systems, either ergodic liquids or equilibrium ensembles of amorphous solids (glasses). In practice the glassy systems are normally out of equilibrium; the effect of their nonergodicity on stress correlations will be considered separately.

It is stress fluctuations in an infinite system that are considered in this paper. Simulation studies concern finite box systems, normally with periodic boundary conditions (PBC). The results obtained below for an infinite space are still applicable in the PBC case with box-size L if l(t) L. In the general case C (r, t) with PBC is defined (in 2d) where q = (2π/L)n, n is the vector whose components take independently all integer values between -∞ and ∞. In the opposite regime L l(t) only one term above (with q = 0) matters for the isotropic part of the stress correlation function, C is , thus giving: 

C is (r, t, L) T [G (t) -G e ] /L

Summary of Chapter 4

In this chapter we have investigated the 2-dimensional polydisperse LJ model with N = 10 4 particles in it. We found that: (ii) The monodisperse CE, eq. 4.4, is strongly violated.

(iii) The dynamical structure factor S (q, t) shows a two-step relaxation at low q, from S 0 to S pl on the time scale τ α and then from S pl to 0 with a much longer relaxation time (cf. with the Kirkwood-Buff theory [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF]. However, instead of determining S pl from the matrix of static partial structure factors [START_REF] Berthier | Suppressed compressibility at large scale in jammed packings of size-disperse spheres[END_REF], we show that S pl can be obtained from the relaxation of collective density fluctuations. Moreover, we established that the terminal decay of S (q, t) (for t τ α and qσ 1) is exponential for weak polydispersity, with a rate defined by the self-diffusion constant D s averaged over all particles. All effects discussed above can be measured experimentally and are quite generic. They must be present in all polydisperse systems, including binary mixtures. Therefore, our work raises intriguing questions on the impact of composition fluctuations (which are important also because of growing awareness that they may trigger instability to crystallization [START_REF] Ingebrigtsen | Crystallization instability in glass-forming mixtures[END_REF]) and their interplay with the glassy dynamics [START_REF] Weysser | Structural relaxation of polydisperse hard spheres: Comparison of the mode-coupling theory to a langevin dynamics simulation[END_REF][START_REF] Fuchs | α-relaxation in a supercooled binary mixture[END_REF][START_REF] Kuhn | Diffusion and interdiffusion in binary metallic melts[END_REF].

(v) The MD results for tensorial stress correlations in the 2-dimenional pLJ system we studied show an excellent quantitative agreement with the theory developed in ref. [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] (Chaper 2) both above and below T g .

(vi) Based on the MD results for tensorial stress correlations in the 2-dimenional pLJ system it was indicated that below T g the time-smoothed local stress exhibits longrange spatial correlations decaying as 1/r 2 with distance r. In other words, the (i) It was found that static shear modulus µ is roughly independent of the system size [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] but its standard deviation shows significant system size dependence below T g . For liquid regime T T g the shear modulus µ = 0 (Fig. 3.6). Vitrifying liquids cooled below the T g form amorphous solids, whose shear modulus µ > 0 increases in a sharp way on cooling near T g . One can see in Fig. 3.6 that for our new system (M = 768 oligomer chains, N = 4 monomers) and a similar larger system studied earlier [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] (M = 3072, N = 4), µ (T ) indeed strongly increases as the system is cooled near T g . Moreover, based on Figs. 3.5 -3.6, it can be seen that such quantities as the shear-relaxation modulus G (t) and µ (T ) exhibit similar behavior for both systems [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]. The main difference between the two systems is that the M = 768 system shows somewhat longer structural relaxation time τ α in the low-T regime T < 2 3 T g [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF].

(ii) We developed a technique [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] which allows to decrease fluctuations of the affine shear modulus µ A by averaging over all possible orientations (assuming that our system is isotropic we can do averaging over rotations of the system coordinates frame). The strong effect of full pre-averaging (cf. Fig. 3.16) has a simple meaning: fluctuations of µ A are mainly due to variations of bond orientations.

(iii) Moreover, we found that the statistics of the time-averaged µ A involve time-correlations between instant µ A along the trajectory, which are dynamical in nature [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF], and therefore strongly depend on temperature T . To avoid this correlation aspect one has to calculate the instant moduli μA (n A m T values in total, where m T is the number of independent trajectories and n A = ∆t/∆t A , where ∆t A is the frequency of saving the positions of all particles). The corresponding standard deviation is denoted as This can be explained as follows: while µ A is always averaged over some transient configurations n A along each trajectory, these instant states are independent at temperatures where the relaxation time τ α is much shorter than the time-interval ∆t A between the configurations (for instance, at T = 0.55), but they are strongly correlated for lower temperatures where τ α ∆t A . As a result, δµ A is smaller than δ 1 µ A by a factor of 1/ √ n A at high T 's, but this reduction is not applicable at low T 's, where δµ A ∼ δ 1 µ A .

δ 1 µ A ,
(iv) We developed a quantitative theory [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] predicting the standard deviation δµ (v) Moreover, we showed that the low-T plateau of δµ F strongly decreases as the system gets larger (see Figs. 3.20 -3.21). This effect is attributed to a highly heterogeneous amorphous structure of the super-cooled glassy liquids leading to markedly non-Gaussian stress fluctuations coupled to the quenched structural disorder. Our analysis shows that the non-Gaussian part of the variance of shear moduli (which is defined above eq. 3.30), var(µ F ) nG ≈ var (µ) nG , decreases with the system size as 1/V α with α < 1 (α ≈ 0.7 ± 0.1). This result indicates that the local elastic (structural) properties in the studied amorphous systems must show long-range spatial correlations (since a structure with uncorrelated elements would lead to a 1/V dependence of the variance). [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]) and well below T g the simulated δµ is much higher than the theoretically predicted δµ (G) . This discrepancy indicates that stress fluctuations must be strongly non-Gaussian at low T 's. Recalling that the Gaussian character of random variables averaged over a large system volume V naturally comes from their short-range correlations, the latter result also means that correlations of stress fluctuations must become long-range well below T g (for more detailed explanation see section 3.8).

(ii) We performed MD simulations of a 2d polydisperse LJ system well above T g and found that (i) the monodisperse compressibility equation (CE), eq. 4.4, is strongly violated; (ii) the dynamical structure factor S(q, t) shows a two-step relaxation at low q, from S 0 to S pl on the time scale ∼ 100 (LJ units) and then from S pl to 0 with a relaxation time much longer than τ α (cf. (iii) The long-time effects for S(q, t) are quantitatively explained with a general theory developed for a low polydispersity degree. The theory attributes the effects to slowly relaxing composition fluctuations. The polydispersity contribution S pl to S 0 is obtained in quantitative agreement with our simulation data (cf. Fig. 4.5)

and exceeds 70% of S 0 . Such a large deviation from eq. 4.4, even for very low PDI (δ p ∼ 1%), comes as a result of a competition between polydispersity and compressibility.

(iv) Moreover, we established that the terminal decay of S(q, t) (for t τ α and qσ 1)

is exponential for weak polydispersity, with a rate defined by the self-diffusion constant D s averaged over all particles. We therefore established that the long-time plateau of the coherent scattering function is due to a coupling between concentration and the slowly-relaxing composition fluctuations. Our idea is that the longtime tails in ∆c v (t) and the energy correlation function C E (t) result from a similar coupling between the total energy and composition fluctuations. Both effects are therefore generally due to the polydispersity.

(v) To study the stress correlation range more directly we analyzed the correlation function C αβγδ (q, t) of the stress tensor at different wave-vectors q using MD simulations. The MD simulations data show excellent quantitative agreement with the theoretical results derived before [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] both above and below T g . The results for C 2 (t) = C 2222 (q, t) (from eq. 4.18) for q = 2π L (where L ≈ 100 is the system box size) are represented in Figs. 4.12, 4.14 and superimpose almost exactly in both temperature regimes. Besides we established that the long time shoulder of C 2 (t) is nearly independent of q for small q 1. Our data thus indicate that the stress correlations decay as 1 r 2 with distance r in agreement with the previous simulation results [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF] and theoretical predictions [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF].

Simulation improvements

(i) We have done LAMMPS implementation for calculation of the affine shear modulus for 2-dimensional simple liquid system, µ A and µ A(or) , based on eq. 2.63. With this improvement the data analysis is easier and the corresponding result does not need to be corrected with the "impulsive correction" term. Also, we have integrated in LAMMPS the program for calculation of the static structure factor, which decreases Fonction de diffusion intermédiaire cohérente pour le système bidimensionnel polydisperse φ q (t) = S(q, t)/S(q, 0) à q = q min = 2π/L. Les lignes pointillées montrent la prédiction théorique (cf. l'article soumis) pour la relaxation finale de φ q (t). Pour les courbes du bas en haut les températures sont T = 0.5, 0. t 0 is the time which a particle needs to move across its own size. When a liquid is cooled towards T g , the values for the shear modulus µ and the viscosity η g start to increase and the liquid-glass transition occurs. For the glass η g is not infinite as it is for an ideal crystal but it is still much larger than in the case of the liquid, η g η l . Let us wait long enough so that the measurement time t is much larger than the time t 0 , and look at the structure of each state again. For crystals one can see that atoms show ordering and vibrate around their regular equilibrium positions. In liquids atoms are able to move far. However, for glasses despite the similar disordered structure atoms are not able to move far. . . . . . . . . . . . . . 6

1.3 The schematic representation of the temperature dependence of the specific volume v (volume per particle v = V N ) at constant pressure. Glass 1 was formed due to the faster cooling than glass 2. As will be discussed in subsection 1.2.1, the glass transition temperature T g depends on the cooling rate Γ, so for glass 1 and glass 2 two different temperatures T g1 and T g2 are obtained. The intersection point of the tangent lines (blue lines) of the glassy state back to the supercooled liquid line defines the temperature of glass transition. This plot was copied from ref. [START_REF] Ediger | Supercooled liquids and glasses[END_REF]. . . . . . . . . . . . . . 8

Figure 1 :

 1 Figure 1: Dépendance de la température de module de cisaillement affine µ A pour le système M = 768 et N = 4.

Figure 2 :

 2 Figure 2: Dépendance de la température de l'écart-type du module de cisaillement affine δµ A pour le système M = 768 et N = 4. Toutes les données sont présentées en unités de LJ.

Figure 3 :

 3 Figure 3: Module de cisaillement statique µ et son écart-type δµ en fonction de la température pour deux systèmes différents : nouveau système (diamants marrons)

Figure 4 :

 4 Figure 4: Le module de cisaillement G (t) en fonction de T pour les deux systèmes. Toutes les données sont présentées en unités de LJ.

Figure 5 :

 5 Figure 5: Dépendance temporelle de la fonction de corrélation des contraintes C 2 (t) /T pour le système polydisperse bidimensionnel à q = 2π/L à: (a) T = 0.24 (en dessous de T g ); (b) T = 0.30 (au-dessus de T g ). La courbe pleine mince correspond aux données de la MD et la courbe en pointillés épaisse correspond aux prédictions théoriques [9]. La courbe solide épaisse est la fonction de corrélation lissée C 2∼ (t) /T sans oscillations. Toutes les données sont présentées en unités de LJ.

Figure 6 :

 6 Figure 6: Incrément de la chaleur spécifique ∆c v (t) = c v (∞)-c v (t) en fonction du temps t dans les unités de LJ à différentes T . Lignes pointillées : ajustement avec la dépendance théorique 1/t, car c v (∞) -c v (t) ∝ t -d/2 avec d = 2.

( i )

 i Nous avons fait une comparaison entre les résultats déjà existants, obtenus en utilisant la méthode de Monte Carlo (MC), et avons effectué une analyse des données des nouvelles simulations MD en utilisant des configurations équilibrées par MC (obtenues par le Dr. Wittmer dans notre équipe). Les modules µ, µ A , leurs fluctuations δµ, δµ A , et la fonction de réponse G (t) ont été obtenus, analysés et résumés. Il a été montré qu'ils présentent un comportement assez similaire à celui du système d'oligomères étudié auparavant.
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  The potential energy landscape includes a set of energy minima which are called "basins". Within this framework two relaxation processes occur -fast or β relaxation and slow or α relaxation processes. The first corresponds to local transitions between neighboring minima and the second one to the cooperative transitions between distant minima providing structural relaxation. A schematic representation of the relaxation processes is shown in Fig. 1.8. One of the main keys for investigating the properties of the supercooled liquid is understanding its viscoelastic behavior. Constraints which are commonly used in such studies are small strains γ and stresses σ. Viscoelastic behavior is represented as a timedependent response of a material to a stress or a strain. It can be illustrated using various mechanical models. One of the commonly used representations is one spring and one dashpot arranged in series known as the Maxwell model. In this model a spring represents Hookean or elastic behavior and a dashpot represents viscous or Newtonian behavior. An important rheological characteristic is the shear stress relaxation modulus or response function G (t) which defines the relaxation of shear stress at time t after a small step of shear strain and it can be measured for liquids, solids and glasses. A schematic representation of the behavior of G (t) for glass, liquid and glass transition region is represented in Fig. 1.1. From the Maxwell model it is known that

Figure 1 . 1 :

 11 Figure 1.1: The schematic presentation of G (t) as a function of measurement time in log (t): the glass region T T g (top curve), the region of the glass-liquid transition (middle curve) and in the liquid state T T g (bottom curve).

Figure 1 . 2 :

 12 Figure 1.2: Schematic representation of a system in the 3 states: crystalline solid, liquid and glassy phase. Here T m is the melting point and T g is the dynamic glass transition

Figure 1 . 3 :

 13 Figure 1.3: The schematic representation of the temperature dependence of the specific volume v (volume per particle v = V N ) at constant pressure. Glass 1 was formed due to the faster cooling than glass 2. As will be discussed in subsection 1.2.1, the glass transition

Figure 1 . 4 :

 14 Figure 1.4: Temperature dependence of the specific heat c p at a given pressure p. Glass 1 was formed due to the faster cooling than glass 2. Such difference in the speed of cooling

Figure 1 . 5 :

 15 Figure 1.5: The schematic representation of a serial connection of a Hookean spring and a Newtonian dashpot.

Figure 1 . 6 :

 16 Figure 1.6: Temperature dependence (scaled by T g ) of the logarithm of viscosity for SiO 2 , glycerol and o-Terphenyl above T g . Strong liquids like SiO 2 show approximate linear dependence (or Arrhenius behavior) and fragile liquids (glycerol and o-Terphenyl) exhibit super-Arrhenius behavior, which is not linear at all. The plot for viscosity (in Poise or P)

Figure 1 . 7 :

 17 Figure 1.7: Schematic representation of an energy landscape as a function of all coordi-

Figure 1 . 8 :

 18 Figure 1.8: Schematic representation of an energy landscape as a function of all coordi-

Figure 1 . 9 :

 19 Figure 1.9: The low-T extrapolation of the excess entropy ∆S for various materials normalized by their value at melting point ∆S ∆Sm vs.T Tm proposed by Kauzmann. This plot was copied from ref.[27].
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 1 INTRODUCTION the 3-dimensional glass-forming olygomer system. During my PhD thesis we have published and submitted several papers, which were mostly represented in Chapter 3 and Chapter 4. Published papers: • L. Klochko, J. Baschnagel, J. P. Wittmer, and A. N. Semenov, "Long-range stress correlations in viscoelastic and glass-forming fluids," Soft Matter, vol. 14, pp. 6835-6848, 2018. • L. Klochko, J. Baschnagel, J. P. Wittmer, and A. N. Semenov, "Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations," The Journal of Chemical Physics, vol. 151, no. 5, p. 054504, 2019. • L. Klochko, J. Baschnagel, J. P. Wittmer, O.Benzerara, C. Ruscher, A. N. Semenov, "Composition fluctuations in polydisperse liquids: Glass-like effects well above the glass transition", Phys. Rev. E, vol. 102, p. 042611, 2020. Submitted papers: • G. George, L. Klochko, A. N. Semenov J. Baschnagel, and J. P. Wittmer, "Ensemble fluctuations matter for variances of macroscopic variables", European Physical Journal E.

CHAPTER 2 .Figure 2 . 1 :

 221 Figure 2.1: Illustration of the periodic boundary conditions. The unit cell (marked by gray color filling) is our simulation box and spheres with different colors represent particles in our system, L is the box size of the unit cell, and r cut is the maximum interaction distance, which should not exceed L/2.
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 22 gk B T[START_REF] Nosé | Constant Temperature Molecular Dynamics Methods[END_REF]. Linearization can be done as CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS follows:

Figure 2 . 2 :

 22 Figure 2.2: The schematic presentation of the interacting force F ij applied along direction α by particle j on particle i.

) where ε = iqu 1 ,

 1 and γ = iqu 2 (all other components of the induced stress, except σ 11 , σ 22 and σ 21 = σ 12 , are equal zero). The moduli G, K, M are related to the components of the tensor E αβα β : G = E 1212 , K = E 1111 and M = E 2211 . Eqs. 2.119 are valid if an external time-dependent force is applied to the fluid in order to keep it still (no flow, v = 0) at t > 0. Otherwise, if no external force is applied, the fluid motion is defined by the momentum equation:

. 128 )

 128 we recall that σ n reflects thermal fluctuations of the fluid structure. Such structural correlations are always short-range in a fluid, their range ξ s is comparable to a m . Fragile glass-forming liquids are characterized by a super-Arrhenius increase of the relaxation time on cooling towards T g . An actively debated question is whether the associated increase of the activation energy is caused by the growth of an underlying static glass correlation length ξ s[START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF][START_REF] Berthier | Theoretical perspective on the glass transition and amorphous materials[END_REF][START_REF] Yaida | Point-to-set lengths, local structure, and glassiness[END_REF][START_REF] Karmakar | Length scales in glass-forming liquids and related systems: A review[END_REF]. Since static pair correlations (as measured by the static structure factor) do not change much with decreasing temperature, a length scale extracted from

CHAPTER 2 .

 2 COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS (i) The first δ (r)-term reflects the local structural correlations; it is nearly constant for τ min t τ pl due to little change of the memory function G (t) in this regime.

  [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF]) ( C is calculated for c L /c T = K pl /G pl ≈ 2.45 corresponding to K pl /G pl = 6 using eq. 2.157 without the δ (r) term). The dotted vertical lines show the wave fronts (r = l = c T t) and (r = l = c L t). Note that C for θ = π/4 changes its sign at r ≈ 0.84, r = 1 and r ≈ 2.26.

Figure 2 . 3 :

 23 Figure 2.3: The reduced correlation function | C|, C ≡ Ct 2 / (T ρ) vs. r = r/ (c T t) on a log-log scale for θ = 0.

Figure 2 . 4 :

 24 Figure 2.4: The reduced correlation function | C|, C ≡ Ct 2 / (T ρ) vs. r = r/ (c T t) on a log-log scale for θ = π/4.

Figure 2 . 5 :

 25 Figure 2.5: The reduced correlation function | C|, C ≡ Ct 2 / (T ρ) vs. r = r/ (c T t) on a log-log scale for θ = π/8.

Figure 2 . 6 :

 26 Figure 2.6: The reduced correlation function | C|, C ≡ Ct 2 / (T ρ) vs. r = r/ (c T t) on a log-log scale for θ = 0, π/4.

Figure 2 . 7 :

 27 Figure 2.7: Two-dimensional plots C = Ct 2 / (T ρ) in polar coordinates (r, θ) using eq. 2.157 with the same c L /c T ; x = r cos (θ) , ỹ = r sin (θ). C for short r 0.02 showing regions of negative (blue to green) and positive (red to green) correlations; black lines separating these regions correspond to C = 0.
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 122 N P T tempering run for time ∆t NPT = 10 5 τ LJ , P = 0; Determination of the time-, and ensemble-average volume V and switching to the N V T ensemble, short run for time ∆t V = 10 3 τ LJ ; CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM 3. N V T relaxation run for time ∆t NVT = 10 5 τ LJ ; 4. N V T production run for time ∆t NVT = 10 5 τ LJ ; The schematic representation of the simulation procedure is represented in Fig. 3.1. During the N P T tempering run, we recorded the values for instantaneous volume Ṽ every δt Ṽ = 0.05τ LJ . Next, we found the time-(over the last second part of the run interval ∆t NPT ∆t NPT ) and the ensemble-(over m independent configuration) volume V = V for a given T and performed a short deformation run to set the same volume for all the systems of the ensemble before switching to the N V T relaxation run. During the N V T production run, we were recording data for the instantaneous stress components such as σ xx , σ yy , σ zz , σ xy , σ yz , and σ xz every δt σ = 0.05τ LJ and the positions of all particles every δt pos = 500τ LJ .

Figure 3 . 1 :

 31 Figure 3.1: The schematic representation of the simulation protocol. (a) The green square corresponds to the already equilibrated (N P T ensemble, ∆t = 2•10 4 τ LJ ) initial configuration at T i = 0.6 (liquid regime). Using the initial configuration we performed simulation in the N P T ensemble for ∆t = 10 5 τ LJ , saving independent configurations (on the sketch they are shown as red circles) every 10 3 τ LJ . The criteria to prove that independent config-

than 10 3 τ

 3 LJ[START_REF] Frey | Viscoelastic Properties of Glass-Forming Polymer Melts[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscolélastiques des polymères vitrifiables en volume et en films minces : études par dynamique moléculaire de systemes modeles[END_REF]. T g is the glass transition temperature, i is the configuration index in the set of m = 100 configurations. (b) The schematic representation of the cooling procedure which was applied to each independent configuration at T i = 0.60. The red circle is the initial independent configuration. The gradient line from red to light blue represents the linear cooling procedure with speed Γ = 10 -5 . During cooling we recorded the whole configuration for a number of working temperatures, n T = 19. Such saved configurations are shown as yellow circles in the figure. T f = 0.05 is the final temperature. (c) The schematic representation of the simulation protocol for each T and for each system from the m-ensemble. By deformation (2 nd stage) we mean the volume adjustment for each system.

3. 3 Figure 3 . 2 :

 332 Figure 3.2: The volume per monomer at P = 0 vs. T for the two systems: N m = 3072 × 4 (black) and N m = 768 × 4 (red). Vertical line: T g = 0.38.

CHAPTER 3 .

 3 GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEMmain peak just weakly depends on T : it is only slightly more pronounced well below T g (at T = 0.25). In all the cases, the obtained RDFs show no sign of crystallization being typical of liquids and disordered amorphous systems.

Figure 3 . 3 :

 33 Figure 3.3: The radial distribution functions for nonbonded monomers, g nb (r), for two systems, 3072 × 4 and 768 × 4 at T = 0.43 (blue and black curves) and at T = 0.25 (green and red curves). The curves for different systems superimpose perfectly on one another.

Figure 3 . 4 :

 34 Figure 3.4: Temperature dependence of the affine shear modulus µ A (blue and green curves) and fluctuation modulus µ F (black and red curves) for ∆t = 10 5 for the two systems (3072 × 4 and 768 × 4, respectively).

Figure 3 . 5 :

 35 Figure 3.5: Comparison of the shear relaxation moduli G (t) vs. log (t) for the systems 3072 × 4 (black curves) and 768 × 4 (red curves) at T = 0.40, 0.38, 0.36,0.30,0.25, and 0.15 (from bottom to top). Note that the dilatometric T g is close to 0.38.

3. 6 Figure 3 . 6 :

 636 Figure 3.6: Temperature dependence of the quasistatic modulus µ for ∆t = 10 5 for the 3072 × 4 (black curve) and 768 × 4 (red curve). The long-time quasi-static modulus µ was obtained as a function of temperature using the FDT relation, eq. 2.45, for both systems, 768 × 4 and 3072 × 4. The temperature behavior of the moduli µ F = V T σ 2 -σ 2 and µ for the sampling time ∆t = 10 5 in LJ units is shown in Fig. 3.4 and Fig. 3.6 (the data for the larger system have been obtained
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 3374 Figure 3.7: Temperature dependence of µ F for different sampling times ∆t = 10 5 , 5 × 10 4 , and 10 4 for the 2 systems: 3072 × 4 (black curves from top to bottom) and 768 × 4 (red curves).

Figure 3 . 8 :

 38 Figure 3.8: Temperature dependence of µ for different sampling times ∆t for the 2 systems: 768 × 4 (3 red curves and 3 magenta curves, from bottom to top for ∆t = 10 5 , 5 × 10 4 , 10 4 , 5 × 10 3 , 10 3 , and 500) and 3072 × 4 (black from bottom to top for ∆t = 10 5 , 5 × 10 4 , 10 4 ).
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 3 Figure 3.9: Time-temperature superposition for the effective shear modulus µ for the 768 × 4 system: µ is plotted vs. x = 1 T + 1 E ln ∆tmax ∆t , where the activation energy E = 18 LJ units and ∆t max = 10 5 . The curves correspond to different sampling times: ∆t = 10 5

CHAPTER 3 .

 3 GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEMRemarkably, however, the standard deviations (across the mn A ensemble) of the instant values of the µ A -moduli are nearly independent of T (cf. Fig.3.12) in drastic constant with a strong increase of δµ A (deviations of the time-averaged µ A ) near and below T g (cf. Fig.3.14). Note that δ 1 µ A ≈ δµ A for T 0.36, but δ 1 µ a δµ A for T 0.4. It means that the amorphous structure stays largely frozen at low T (so, in particular, bond-orientational fluctuations are suppressed), and therefore the fluctuations of µ A along the time-trajectory become negligible in this regime (as the system rests in a virtually single inherent structure within a metabasin). We also observe that generally µ A is dominated by the bond contribution, µ Ab . A similar statement is even more true for the standard deviations: the total deviation δ 1 µ A is nearly equal to that for bonds, δ 1 µ Ab .

Figure 3 . 14 :

 314 Figure 3.14: The affine modulus and its dispersion for the 768 × 4 system. Comparison of T -dependence of instant deviations [δ 1 µ A for the total modulus (black curve), its theoretical bond contribution δ 1 µ Ab (red curve)] and standard deviations of the total timeaveraged modulus, δµ A (blue curve). Note that δ 1 µ A ≈ δµ A for T < 0.36. This means that the inherent structure of the system is frozen in this regime: fluctuations of µ A along the time-trajectory are negligible.

Figure 3 . 15 :

 315 Figure 3.15: The affine modulus and its dispersion for the 768 × 4 system. The relative standard deviations of instantaneous moduli: δ 1 µ A /µ A (black), δ 1 µ Ab /µ Ab (green), δ 1 µ Alj /µ Alj (blue).
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 313314 The relative instant deviations of µ Ab are thus predicted to be T -independent, δ 1 µ Ab /µ Ab ≈ 0.0223 for N m = 768 × 4, while simulations point to ≈ 0.025 for this ratio (cf. Figs.3.15 and 3.16).

Figure 3 . 16 :

 316 Figure 3.16: Temperature dependence of the affine modulus µ A , its standard deviation δµ A , the theoretical prediction for its bond part µ Ab , and the theoretical deviation of the instant bond contribution to the modulus, δ 1 µ Ab (respectively black, blue, red, and green curves) for the 768 × 4 system. The vertical blue curve corresponds to the T g = 0.38.

Figure 3 . 17 :

 317 Figure3.17: The affine modulus and its dispersion for the 768 × 4 system. The Tdependencies for standard deviations of the time-averaged µ A : δµ A for a fixed shear plane (black curve) and δµ A(or) for the orientation-averaged modulus (red curve). Deviations of the instant but orientation-averaged affine modulus and its parts (due to bonds and LJ interactions): total δ 1 µ A(or) (blue curve), bond contribution δ 1 µ Ab(or) (magenta), theoretical deviation due to bonds (dashed black), and LJ contribution δ 1 µ Alj(or) (green).

Figure 3 . 18 :

 318 Figure 3.18: The affine modulus and its dispersion for the 768 × 4 system. The Tdependencies of the ratio δµ A /δµ A(or) (black curve); δ 1 µ A /δ 1 µ A(or) (red), δ 1 µ Ab /δ 1 µ Ab(or)(blue), and theory for the latter (green).

  7 and 3.8 are useful to obtain more precise instantaneous affine shear modulus µ A . With the standard definition of µ A (without orientational pre-averaging), the standard deviation δµ A becomes comparable to δµ F at low T (in particular, for the smaller 768 × 4 system, cf. Figs. 3.17 and 3.20), so the standard deviation of µ = µ A -µ F gets somewhat larger than δµ F . Using µ A obtained with eqs. 3.7 and 3.8, we arrive at less fluctuating µ with δµ ≈ δµ F at all T 's since fluctuations of µ A in this case are always totally negligible.

  same for both systems. One can observe an excellent agreement between δµ (G) F and δµ F in the liquid regime, δµ F ≈ δµ (G) F

  3.23 illustrating the T -dependence of δµ F and δµ (G) F at different sampling times ∆t. At low T < T g , the effect of ∆t is complicated: at T 0.2, the theoretical deviation δµ (G) F

Fig. 3 .Figure 3 . 19 :

 3319 Fig. 3.19). Where such behavior could originate from? It is relatively easy to clarify it

Figure 3 . 20 :

 320 Figure 3.20: Standard deviations of the fluctuation modulus for ∆t = 10 5 : δµ F vs. T for 768 × 4 (red curve) and 3072 × 4 (black curve). Vertical line is the reference for T g = 0.38.

Figure 3 . 22 :

 322 Figure 3.22: Standard deviations of the fluctuation modulus for ∆t = 10 5 : non-Gaussian deviation δµ (nG) F vs. T for 768 × 4 and 3072 × 4 systems (red and black curves).

Figure 3 . 23 :

 323 Figure 3.23: Standard deviations of the fluctuation modulus for 768×4 system: δµ F (black boxes, red rhombuses, and blue crosses) and its Gaussian contribution δµ(G) F (black, red,

Figure 3 . 24 :

 324 Figure 3.24: The dependence of µ (solid curves) and δµ (dotted curves) on T for ∆t = 10 5

Figure 3 . 25 :

 325 Figure 3.25: The dependence of the ratio δµ 1 /µ 1 for 768 × 4 system (black curve) and the prediction, eq. 3.29 (red line).
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 95 Finite size effects and dispersion of µ F and µThe results shown in Fig.3.21 indicate that (i) the dispersion of µ F at T T g (in the liquid regime and near the glass transition) is well described by the Gaussian approximation and CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM (ii) δµ F nearly does not depend on the system size in this regime. The first observation means that the statistics of stress fluctuations is likely to be nearly Gaussian at T 0.35, which is quite natural for the liquid regime. The second point simply follows from the first one (that δµ F ≈ δµ (G) F ) and the fact that δµ (G) F

  (nG) F , is plotted against T in Figs. 3.22, 3.26, and 3.27 for both systems. It is obviously significant at temperatures well below T g : δµ (nG) F is close to the total δµ F at T 0.3. On the other hand, δµ (nG) F rapidly decreases near T g and becomes negligible at higher temperatures for both systems. It is furthermore apparent that δµ (nG) F at low T 's is significantly higher for the smaller system (cf. Fig. 3.22).
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 326 Figure 3.26: The dependence δµ (nG) F vs. T for different sampling times, ∆t = 10 5 , 5 × 10 4 , and 10 4 (black, red, and blue curves, respectively) for the 3072 × 4 system.
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 327 Figure 3.27: The dependence δµ (nG) F vs. T for different sampling times, ∆t = 10 5 , 5 × 10 4 , and 10 4 (black, red, and blue curves, respectively) for the 768 × 4 system.

Figure 3 .

 3 Figure 3.28: (a) Temperature dependence of the quasi-equilibrium shear modulus µ (thick solid line shows µ/4), its standard deviation δµ (thin solid line), and δµ (G) , the theoretical Gaussian approximation of δµ (dashed curve) for the 3D 4-mer system with 12288 beads, with dilatometric T g = 0.38.

  of µ A decreases by a factor between 40 and 600 as a result (with the most dramatic increase at the lowest temperature). By contrast, averaging over just 3 fixed shear planes (xy, yz and xz) leads to a reduction factor of ∼ 3. The effect of full preaveraging has a simple meaning: fluctuations of µ A are generally due to variations of bond orientation and bond length. As shown is section 3.7, the bond orientation fluctuations are dominant but are completely wiped out by the orientational averaging.

  with time step δt = 0.005τ LJ in a cubic box with periodic boundary conditions. The simulations are performed in the N P T and the N V T ensembles. The temperature T and the pressure P = 2.0 are imposed using the Nosé-Hoover-Andersen algorithm. The damping parameter for pressure, P damp = 100 and for the temperature, T damp = 0.01291 (see section 2.1.2 for their definition). The relations between these parameters and mass parameter for the volume changes W , and the thermal inertia coefficient, Q, are given in eq. 2.27. The new values for Q are defined by the relation Q = (10/3)T , imposed to get T -independent frequency ω T (see eq. 2.18).

1 .

 1 N P T tempering run for time ∆t NPT = 2 • 10 5 τ LJ , P = 2.0; 2. N V T relaxation run for time ∆t NVT = 2 • 10 5 τ LJ ; 3. N V T production run for time ∆t NVT = 11 • 10 4 τ LJ ; CHAPTER 4. GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEM
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 22 Determination of the glass transition temperature T g Let us remind the definition of the glass transition temperature T g from section 1.1.2. Some liquids can be easily supercooled avoiding crystallization. Such supercooled liquids show dramatic slowdown of their dynamics (reflected in a strong increase of the α-relaxation time τ α ) as temperature T is cooled towards the vitrification point T g where the system becomes kinetically arrested and forms an amorphous solid. Below T g the relaxation time τ α exceeds the time-scale ∆t accessible experimentally (or in a computer simulation). The glass transition region around T g is characterized by a number of anomalies including an emergence of elasticity with a finite quasi-static shear modulus (see Fig.4.10) whose standard deviations (see Fig.4.11) change in a nearly discontinuous manner. However, this solidification is not accompanied by a significant change of the liquid structure which remains disordered. In particular, the static structure factor S(q) changes very little near T g . The latter feature can be seen from Fig.4.1 where the temperature dependence of the static structure factor S(q) is shown. Its Fourier transform, the radial distribution function g (r), is represented in Fig.4.2 at different T .

  binary systems, the resulting expression for S (0) takes a compact form: S (0) is given as a sum of c 0 T /K T and a term related to composition fluctuations and their coupling to number fluctuations[START_REF] Thorneywork | Structure factors in a two-dimensional binary colloidal hard sphere system[END_REF],S (0) = c 0 T /K T + δ 2 c l c s /Φ, where δ = c 0 (v l -v s ) is the dilatation factor, v l,s are the partial molecular volumes (where the partial molecular volume is the change in solution volume after adding one molecule of a substance at constant pressure), c l,s are the number fractions of the l and s components (c l + c s = 1), and Φ is CHAPTER 4. GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEM

Figure 4 . 1 :

 41 Figure 4.1:The temperature dependence of the static structure factor S (q) for 2dimensional pLJ system. The values for S (q) were determined from the equilibrated configurations (see protocol in section 4.2).

Figure 4 . 2 :

 42 Figure 4.2: The temperature dependence of the radial distribution function g (r) for 2dimensional pLJ system. The values for g (r) were determined from the equilibrated configurations (see protocol in section 4.2).

  5; it develops into a quasi-plateau persisting for t 10 3 τ α in the T -range between T = 0.4 and 0.3. Finally, Fig. 4.5 shows the relative deviation from the CE, eq. 4.4, defined as δ = 1-S K /S 0 , where S K ≡ c 0 T /K T (the compression modulus K T was determined by two methods: (i) by volume fluctuations in the N P T ensemble, K T = T V / (∆V ) 2 ), and (ii) by the stress-fluctuation formalism in

Figure 4 . 3 :

 43 Figure 4.3: Coherent intermediate scattering function φ q (t) at different temperatures T = 0.5, 0.4, 0.35, 0.325 (solid curves from bottom to top) at q ≈ q max ≈ 6.35 corresponding to the maximum of S (q).

Figure 4 . 4 :

 44 Figure 4.4: Coherent intermediate scattering function φ q (t) at q ≈ q min = 2π/L (L is the linear dimension of the simulation box). Dashed lines show theoretical prediction, eq. 4.14, for the slow stage. T = 0.5, 0.4, 0.35, 0.325, 0.3 (solid curves from bottom to top).

Figure 4 . 5 :

 45 Figure 4.5: T -dependence of δ = S pl /S 0 with (i) simulation data for S 0 and S pl = S 0 -S K (black crosses "x"), (ii) theory with S 0 = S K * = cT /K * and S pl defined in eq. 4.13 (dashed blue curve). In all the cases S K = c 0 T /K T with K T obtained by simulations. The vertical dotted line indicates T g = 0.26.
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 1234 GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEMThe theoretical function δ = S pl /S K * is compared with the simulation data in Fig.4.5.

Figure 4 . 6 :

 46 Figure 4.6: Heat capacity increment ∆c v (t) = c v (∞) -c v (t) vs. time in LJ units at different temperatures T = 0.5, 0.4, 0.35, 0.325 (solid curves from bottom to top). Dashed lines: fits with theoretical 1/t dependence [147].

. 16 )

 16 At t → ∞ the function C E (t) → 0, so eq. 4.16 turns into the classical relation c v (∞) = (∆E) 2 / (N T 2 ). The time-dependent heat capacity c v (t) is thus defined by C E (t) (for the total energy E) which was recorded at different T 's for m T = 50 -100 independent trajectories. The results for ∆c v (t) = c v (∞) -c v (t) at T > T g are shown in Figs. 4.6, 4.7.

Figure 4 . 8 :

 48 Figure 4.8: The shear relaxation modulus G (t) at different temperatures T = 0.5, 0.4, 0.35, 0.325 (solid curves from bottom to top). Dots on the curves correspond to the different values of the structural relaxation time τ α for each temperature T (from 0.5 to 0.325): 0.55, 1.25, 2.2, and 3.75 respectively. To obtain the values for τ α one can use the criteria G (τ α ) /G (0) ≈ 10% (cf. Chapter 2).

Figure 4 . 9 :

 49 Figure 4.9: Temperature dependence of the quasi-equilibrium shear modulus standard deviation δµ (thin solid line), and δµ (G) F , the theoretical Gaussian approximation of δµ F ≈ δµ (dashed curve) for the 2d pLJ system with N = 10 4 particles, with dilatometric T g = 0.26 (dotted vertical line). The sampling time is ∆t = 10 5 τ LJ .

Figure 4 . 10 :

 410 Figure 4.10: Temperature dependence of the quasi-equilibrium shear modulus µ and the fluctuation modulus µ F for 2-dimensional pLJ system with N = 10 4 particles. The blue line corresponds to T g = 0.26 and the orange line corresponds to 0. The sampling time is ∆t = 10 5 τ LJ .

Figure 4 . 11 :

 411 Figure 4.11: Temperature dependence of the standard deviations of the fluctuation modulus δµ F and the quasi-equilibrium shear modulus δµ for 2-dimensional pLJ system with N = 10 4 particles. The blue line corresponds to T g = 0.26. The sampling time is ∆t = 10 5 τ LJ .

(

  both above and below T g ≈ 0.26) are shown in Figs. 4.12 -4.16 as solid curves. For each correlation function we obtained the theoretical predictions based on ref. [9], which are shown in the Figs. 4.13 -4.16 as red dashed lines.

Figure 4 .

 4 Figure 4.12: (a) Time-dependence of the stress correlation function C 2 (t) /T at wavevector q = 2π/L for the 2d pLJ system at T = 0.3 (above T g ): direct simulation data (thin solid curve), theoretical predictions (thick dashed curve). Note that the two curves superimpose almost exactly. Thick solid curve corresponds to the smoothed correlation function C 2∼ (t) /T with no oscillations; t is the time in LJ units, 0 < t < 10 5 . (b) Similar data for T = 0.24 (below T g ).

Figure 4 . 13 :

 413 Figure 4.13: Time-dependencies of the stress correlation function C T (t) /T at wave-vector q = 2π/L for the 2d pLJ system at different T , t is time in LJ units, 0 < t < 10 5 .

Figure 4 . 14 :

 414 Figure 4.14: Time-dependencies of the stress correlation function C 2 (t) /T at wave-vector q = 2π/L for the 2d pLJ system at different T , t is time in LJ units, 0 < t < 10 5 . The dashed red lines define the theoretical prediction obtained by the inverse Laplace transform of eq. 2.132.

Figure 4 . 15 :

 415 Figure 4.15: Time-dependencies of the stress correlation function C (t) /T at wave-vector q = 2π/L for the 2d pLJ system at different T , t is time in LJ units, 0 < t < 10 5 . The dashed red lines define the theoretical prediction obtained by the inverse Laplace transform of eq. 2.123.

Figure 4 . 17 :

 417 Figure 4.17: Temperature dependence of the Poisson's ratio ν for the 2d pLJ system. The green line corresponds to the glass transition temperature T g = 0.260. As you can see, the upper bound is expected in the liquid regime where µ = 0.

Figure 4 . 18 :

 418 Figure 4.18: Time-dependencies of the relaxation modulus G (t) for the 2d pLJ system for different T (t is the time in LJ units, 0 < t < 10 5 ). The black solid lines highlight the values of the long-time limit of G * (text below eqs. 4.24).

Figure 4 . 19 :

 419 Figure 4.19: Time-dependencies of the longitudinal modulus K (t) for the 2d pLJ system for different T (t is the time in LJ units, 0 < t < 10 5 ). The black solid lines highlight the values of the long-time limit of K * (eqs. 4.24).

Figure 4 . 21 :

 421 Figure 4.21: Temperature dependence of the mean-square displacement for 2-dimensional pLJ system with N = 10 4 particles. The sampling time is ∆t = 10 5 τ LJ .

Figure 4 . 22 :

 422 Figure 4.22: The diffusion coefficient D vs. the inverse temperature 1/T in double logarithmic scale for 2-dimensional pLJ system with N = 10 4 particles. The sampling time is ∆t = 10 5 τ LJ .
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 4 GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEMas:C(r, t, L) = L -2 q C(q, t) • exp (iq • r) ,(4.26)

( i )

 i Temperature dependence of the static shear modulus is represented in Fig.4.10. It was found that for the liquid regime µ = 0, and on cooling the shear modulus µ > 0 increases in a sharp way. Moreover, we have analyzed the standard deviations of µ, δµ (see Figs. 4.9 and 4.11), over the sampling time ∆t = 10 5 τ LJ . In addition, the temperature dependence of the moduli µ A , µ F , their fluctuations and the dynamical quantities such as G (t), C (t) were studied as well. It was shown that they exhibit a rather similar behavior as for the 3-dimensional glass-forming olygomer system. Moreover, δµ(T ) for both systems exhibit the similar behavior and has a peak near the glass transition region. Based on the obtained temperature dependencies for the CHAPTER 4. GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEM 2-dimensional polydisperse LJ model we estimated the glass-transition temperature T g for studied system (cf. sections 1.1.2 and 4.2.2), which is roughly T g = 0.26.

Fig. 4 .

 4 [START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF]).(iv) The time-dependent heat capacity c v (t) and the related energy correlation function C E (t) show long-time power-law tails. All these effects are reproduced with a simple model assuming the excess free energy density to depend only on local volume concentration. The model attributes the effects to slowly relaxing composition fluctuations. The polydispersity contribution (S pl ) to S 0 is obtained in quantitative agreement with our data (cf. Fig.4.5) and exceeds 70% of S 0 . Such a large deviation from eq. 4.4, even for very low PDI (δ p ∼ 1%), comes as a result of a competition between polydispersity and compressibility. The monodisperse CE can still be used once S 0 is replaced with S 0 -S pl = cT /K T , a result that resonates
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 551 Glass-forming 3-dimensional oligomer system

  and it is roughly independent of temperature. The temperature behaviors of µ A , δµ A , and δ 1 µ A are shown in Fig. 3.4 and Fig. 3.16. The T -independence of δ 1 µ A invites the question about the much stronger dependence of δµ A on T .

  F of the fluctuation modulus µ F (which is approximately equal to the deviation of the static shear modulus δµ) in terms of the relaxation modulus G (t) which is in excellent agreement with the simulation results in the liquid regime. The theoretical approach is based on the Gaussian approximation for stress fluctuations, which is asymptotically exact for large systems, V → ∞. It was shown that strong decrease of δµ F at low T comes as a natural behavior of δµ (G) F .

5. 2

 2 Glass-forming 2-dimensional simple liquid system (i) The moduli µ, µ A , their fluctuations δµ, δµ A , and the response function G (t) were obtained, analyzed, and summarized. It was shown that they exhibit a qualitatively similar behavior as for the 3-dimensional glass-forming oligomer system. Based on the Figs. 4.9 and 3.28 one can detect similar behavior of deviation of the quasiequilibrium shear modulus µ, δµ, for 2 different systems. The peak region of those standard deviations can be considered as a good signature to define the glass transition temperature T g .Based on the Figs. 3.28 and 4.9 one can see that for 2-dimensional simple liquid system the peak region for δµ (T ) (Fig.4.9) is much sharper than the one for the 3dimensional oligomer system (Fig. 3.28) which is broader. The obtained temperature dependence of δµ for both systems exhibit similar behaviors at different T regimes: sharp transition from a liquidlike to a solidlike behavior, and weak T -dependence at low T 's. The peak of δµ near T g can be explained by the assumption that the stress fluctuations are Gaussian [6]. The theoretical results are shown as dashed curve in Figs. 3.28 and 4.9. The agreement is good around T g and above it. At low T 's, δµ ≈ δµ F (cf. Fig. 4.11 and ref.

Fig. 4 .

 4 4); (iii) the time-dependent heat capacity c v (t) and the related energy correlation function C E (t) show long-time power-law tails.

5 1. 2

 52 4, 0.35, 0.325. . . . . . . . . . . . . . . . . . . . . . . . . . . x 1.1 The schematic presentation of G (t) as a function of measurement time in log (t): the glass region T T g (top curve), the region of the glass-liquid transition (middle curve) and in the liquid state T T g (bottom curve).. Schematic representation of a system in the 3 states: crystalline solid, liquid and glassy phase. Here T m is the melting point and T g is the dynamic glass transition temperature. Viscosity for the solid, liquid and glass is noted as η, η l and η g respectively and the elastic shear modulus is µ for all cases.

  

  

  

  

  

  

  

  ], τ α ) vs. temperature above T g . It can be used to classify glass-forming After rewriting eq. 1.10 for T = T g and using the criterion τ α (T g ) ≈ t * , where t is the time of cooling through the region around T g where τ α increases by a factor of 2, t ≈ ĈΓ -1[START_REF] Baschnagel | Glass Transition and Relaxation Behavior of Supercooled Polymer Melts: An Introduction to Modeling Approaches by Molecular Dynamics Simulations[END_REF][START_REF] Buchholz | Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study[END_REF][START_REF] Vollmayr | Cooling-rate effects in amorphous silica: A computer-simulation study[END_REF][START_REF] Sanditov | The Bartenev and Williams-Landel-Ferry equations in the relaxation theory of the glass transition and the model of delocalized atoms[END_REF][START_REF] Sanditov | On the nature of the liquid-to-glass transition equation[END_REF], where Ĉ is an empirical constant which has the dimension of temperature and is related to the E a (B = E a /k B ), k B and T g . From equations Ĉ = Γτ α
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	liquids and is expressed as:			
	m =	d ln (η) T d Tg	| T =Tg	(1.12)
	The fragility parameter m is large for most liquids, but it takes the highest values
	for fragile liquids. For example, the typical values for the fragility parameter m [53] are
	m o-Terphenyl = 76 (fragile liquid), m glycerol = 53 (moderately fragile liquid) and m SiO 2 = 20
	(strong liquid). Moreover, the "moderately fragile liquids" are commonly referred to as
	"intermediate liquids".			
	Such names as strong and fragile do not have anything in common with mechanical
	properties of the material. For example, fragility has no direct relationship with the
	brittleness of a material.			

  Considering that ∆t is our laboratory time-scale (the longest accessible time for experiment or simulation) one can define the long-time shear modulus as µ ≈ G (∆t). The instantaneous response is given by G (0) = µ A . More detailed discussion about µ A is provided in subsection 2.2.2. Furthermore, the function C (t) can be obtained using the FDT relation, eq. 2.36, which takes the form:
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	RELATIONS FOR GLASS-FORMING SYSTEMS
	(2.36)
	glass

  ). It follows from the definition of the weight function that d d rφ(r) = 1. It is easy to see that relation between σ αβ (r, t) and σ micro

	CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION
	RELATIONS FOR GLASS-FORMING SYSTEMS
	62] to eqs. 2.99 and 2.101:	
	σmicro αβ	
	αβ	(r, t) still holds when in replacing delta-function
	δ(r) from eq. 2.101 with the weight function φ (r) from eq. 2.100.

To calculate the local stress tensor in q-space, one can apply the Fourier transform

[11, 

)

  CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATION RELATIONS FOR GLASS-FORMING SYSTEMS where ... means averaging over an equilibrium ensemble, σαβ (r, t) = σ αβ (r, t)-σ αβ is the tensor of local stress increments, α, β, ... are Cartesian components, and σ αβ = σ αβ (r, t) is the stress tensor averaged over the equilibrium ensemble (the system is assumed to be translational-invariant and stationary). The function C has obvious symmetries: it is invariant with respect to exchanges αβ → βα, α β → β α , and

  CHAPTER 2. COMPUTER SIMULATION TECHNIQUES AND FLUCTUATIONRELATIONS FOR GLASS-FORMING SYSTEMS magnitude of the long-range correlations depends on both elastic moduli, G pl and K pl .

	r	c T t, τ min	t	τ pl	(2.158)
	In this regime the correlation function C (r, t) is thus nearly independent of time and

is long-range (LR) in space showing an algebraic decay as 1/r 2 . It is noteworthy that the

  CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM sides, it weakly depends on the sampling time ∆t). It is remarkable, however, that the system volume dependence of δµ

	(nG)
	F
	3.22,
	3.26, and 3.27 showing that δµ

(nG) F is indeed almost T -independent for T 0.3 (and, be-

  3 ≈ 0.013. In what follows, all quantities are given in LJ units, i.e., LJ , particle mass m, the CHAPTER 4. GLASS-FORMING 2-DIMENSIONAL SIMPLE LIQUID SYSTEM mean particle diameter σ and Boltzmann constant k B are set to unity.

  2.4 -2.3 we obtained theoretical relations defining the correlation func-

tions C 2 (eq. 2.132), C T , C , and C ⊥ in terms of material functions (eqs. 2.122 -2.124).

  2 , l (t) L (4.27) Therefore, C is turns out to be nearly independent of r in the regime l(t) L relevant in most simulation studies due to relatively small box-size L. Note that strictly speaking the above equation provides the correlation function C is (r, t) which is coarse-grained over a time-interval ∆t tL/l(t). This interval is relatively short, ∆t/t 1 at long times; the coarse-graining is necessary due to a singular behavior of C is (r, t) at the wave front (cf. eq. 2.138). Note also that G e in eq. 4.27 is the equilibrium shear modulus (cf. eq. 2.125), and that G e = 0 for the systems we consider (ergodic liquids or glassy systems which are fully equilibrated thermodynamically). Turning to the singular part of the correlation function, C s , and the full function C = C is + C s in the regime l(t) L, the infinite space results (cf. eqs. 2.154, 2.157 and 2.160) remain applicable provided that r L.
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The ratio is close to 2 for T < 0.35 (below T g ) indicating that δµ A follows the classical 1/ √ V law (self-averaging of µ A ).

This fact points to the standard power-law dependence of δµ A on the system volume, δµ A ∝ 1/ √ V (note that the system volume is proportional to the number of particles).

The ratio δµ A (768) /δµ A (3072) is close to 1 in the glass transition region, where δµ A CHAPTER 3. GLASS-FORMING 3-DIMENSIONAL OLIGOMER SYSTEM trajectories for each T . We analysed separately the two nonideal (excess) contributions to µ A , one due to interactions between bonded monomers (µ Ab ) and another due to LJinteractions (µ Alj ).

They can be written as (cf. eq. 2.59):

where u b and u lj are the bond and LJ interaction potentials. The overall µ A is a sum of the above terms and the ideal-gas term ρT (ρ = N m /V ; the ideal term contributes only ∼ 1% to µ A ; its fluctuations are totally negligible). The results for the 768 × 4 system are shown in Fig. 3.13. One can observe that the mean µ A , µ Ab , and µ Alj all increase weakly as T is lowered (cf. While the agreement is good around T g and above it, it is obvious that well below T g the simulated δµ is much higher than the theoretically predicted δµ (G) . This discrepancy indicates that stress fluctuations must be strongly non-Gaussian at low T 's. Recalling that the Gaussian character of random variables averaged over a large system volume V naturally comes from their short-range correlations, the latter result also means that correlations of stress fluctuations must become long-ranged well below T g . This conclusion is also supported by the revealed system size dependence of the non-Gaussian part (δµ (nG) )

of δµ: our data show that at low temperatures δµ (nG) decreases with V slower than 1/V suggesting that the 4-point correlations of local stress decay with distance r more slowly than 1/r d , where d = 3 is the dimension of our system [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF].

Summary of Chapter 3

In this chapter we have investigated an LJ oligomeric glass-former system with 768 × 4 particles. We presented results and comparisons with data obtained by a former PhD student [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] from our group, including new ways and approaches for analysis of well known quantities [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] such as µ, µ A , G (t). Let us briefly summarize the main achievements of the work, ref. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF], below:

1. Analyzing a model LJ oligomeric glassformer using MD simulations, we established its static and dynamical parameters as a function of temperature and system size To obtain the stress correlations in the q-space (section 2.2.4), we performed simulations for different values of wave-vector q:

and similarly for q y , where q x , q y are Cartesian components of vector q, L is the size of the simulation box (for our 2d system L x = L y = L). The number n q defines the maximum magnitude of q, q max = √ 2 2π L n q . Turning back to the N V T production run (∆t = 11 • 10 4 τ LJ ), for different values of n q we used:

1. n q = 2, for simulation length ∆t = 10 5 τ LJ , recording:

(a) σ xx (q), σ yy (q), σ xy (q) using eq. 2.102 (both real and imaginary parts) every δτ σ(q) = 0.2τ LJ (b) c (q) = N j=1 exp (iq • r j ), where N is the total number of particles, r j is the position of j particle;

(c) c h (q) = N j=1 mv 2 j /2 -T exp (iq • r j ), T is the prescribed temperature, v j is the velocity of j particle; 2. n q = 30:

(a) σ xx (q), σ yy (q), σ xy (q) (both real and imaginary parts) every δτ σ(q) = 20τ LJ for simulation length ∆t = 10 5 τ LJ ;

(b) σ xx (q), σ yy (q), σ xy (q) (both real and imaginary parts) every δτ σ(q) = 0.2τ LJ for the rest simulation time (from ∆t = 10 5 τ LJ to ∆t = 11 • 10 4 τ LJ ).

n q = 120:

Here the difference with the previous step concerns the period of the grid of all wave-vectors q. In order to have the same time for the calculation with a larger value of q max , we performed a new run, computing the quantities for n x ,n y = 0, ±4, ±8, ..., ±120: 

Elastic response and the long-range correlations

Viscoelastic properties of a liquid can be characterized by shear relaxation modulus G (t) which is a central rheological function of a material. To obtain G (t) in the range 0 ≤ t ≤ 10 5 we used the generalized relation coming from FDT (eq. 2.43) and the quasi-equilibrium shear modulus µ was calculated as a time-average of G (t) (cf. ref. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF]):

where ... here means the simple arithmetic average over i and j (cf. eq. 2.42):

From simulation results they can be obtained based on eq. 4.18 as:

and:

q = 2π/L for the 2d pLJ system at different T , t is time in LJ units, 0 < t < 10 5 .

The dashed red lines define the theoretical prediction obtained by the inverse Laplace transform of eq. 2.124.

Mean-square displacement (MSD) and the diffusion coefficient

The cooperative dynamical properties of the system are closely related to the mean-square displacement (MSD) of particles (cf. eq. 1.

2). The temperature dependence of the MSD for 2-dimensional pLJ system is represented in Fig. 4.21.

At short time scale, the MSD is expected to have an early regime where MSD (t) ∝ t 2 , when particles move ballistically without many collisions [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]. At longer time scales one can observe the slowing down of the dynamics with decreasing the temperature T , leading to emergence of an intermediate plateau regime. The "plateau" of MSD separates the ballistic and diffusive regime. Its length increases at low T 's. For the time region where the plateau is observable the MSD increases very little. This fact can be explained by The argument concerning their locality (around eq. 2.131) is based on the assumption that the local stress is defined by the local momentum and the local deformation history of a fluid element (by "local" we mean short-range in terms of the structural length ξ s ). Now, it is the deformation history (and, therefore, the momentum field) that is controlled by the definition of the material functions (cf. the constitutive relation in eq. 2.118 providing the stress response to a prescribed deformation field). The locality of the relaxation moduli then comes merely from the fact that a small deformation of a fluid element 1 (of size somewhat exceeding ξ s ) does not affect much the local stress in a distant fluid element 2 if the latter is kept undeformed.

By contrast, the deformation and momentum field are not prescribed in eq. 2.112

(which is equivalent to eq. 2.113) apart from the instant initial deformation at t = 0: at any later time, t > 0, the liquid is being deformed further due to the generated internal stresses. This effect gives rise to a fast momentum propagation and, as a result, to significant non-locality of the stress response. So, the distinction of eq. 2.113 (implying a non-local response) from the constitutive relation, eq. 2.118, (reflecting the local response)

is that the former corresponds to the process in which neither the deformation history, nor the momentum field are prescribed.

To summarize, eq. 2.113 allows for internal flow (momentum field) as a consequence of the external perturbation, whereas the constitutive relation, eq. 2.118, defines the material functions solely in response to the prescribed external deformation (no "internal" flow on top of it). With no extra flow due to internal forces the information about a perturbation at one point cannot be transmitted to a distant point, so the response is local.

The effects we consider in this paper correspond to length-scales ξ s . It is demonstrated here that non-simultaneous stress correlations (with finite time-shift t) are longrange (LR) in viscoelastic liquids in agreement with the results of ref. [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF]. As a major result we show that the stress correlations decay algebraically (rather than exponentially) with distance r, as r -2 for r < l (t) in 2d systems, and that they decay in time only slowly for t τ max . Such behavior is of course very different from what is known about classical simple liquids [105]. Moreover, in the glassy state the shear-stress correlation function is predicted to show a finite plateau level in the long-time regime where the liquid is characterized by a nearly constant shear modulus, G (t) = G ∞ . Similar conclusions have been drawn in ref. [START_REF] Maier | Emergence of long-ranged stress correlations at the liquid to glass transition[END_REF][START_REF] Maier | Stress auto-correlation tensor in glassforming isothermal fluids: From viscous to elastic response[END_REF] based on a different theoretical approach. The relevant correlation length l (t) (defining the region of validity of the 1/r 2 correlation law) turns out to be the time-dependent momentum propagation length given in eq. 2.148 and 2.150.

Thus, the correlation length l (t) corresponds to sound propagation at short times and to vorticity diffusion at long times. Both processes are fast in highly viscous (viscoelastic or glass-forming) liquids leading to a long length-scale l (t) for the characteristic time range coming from the relaxation spectrum of the liquid.

Note that transverse sound waves (with wavelength λ l (t)) are not significantly damped in the time regime τ min t τ pl corresponding to the plateau of the shear relaxation modulus G(t): the liquid shows an elastic response in this time range, so the propagation length here is proportional to the sound velocity, l (t) c T t. By contrast, the sound waves get damped for t τ pl : the liquid response then becomes viscoelastic with the propagation length defined by the generalized time-dependent viscosity η (t) : 148). In this regime l increases with t in a sublinear fashion.

Thus, we show that very long-range and anisotropic correlations of stress must develop in the transient regime t τ max with the characteristic correlation range (for t ∼ τ max ) being l max ∼ (ητ max /ρ) 1/2 , where η is the zero-shear viscosity of the liquid. In viscoelastic (glass-forming) liquids η is high (it is roughly proportional to the relaxation time τ max ), inherent structures of this system are characterized by pronounced correlations of the anisotropic stress [START_REF] Klochko | Long-range stress correlations in viscoelastic and glass-forming fluids[END_REF] with almost infinite range, in agreement with the behavior reported for 2d and 3d Kob-Andersen (binary LJ) models [START_REF] Lemaître | Structural relaxation is a scale-free process[END_REF][START_REF] Lemaître | Tensorial analysis of eshelby stresses in 3d supercooled liquids[END_REF].

CHAPTER 5. CONCLUSION the calculation time for the user.

(ii) In order to reduce unphysical oscillations (related to temperature oscillations inherent in the Nosé-Hoover thermostat) in the longitudinal modulus K (t) and the energy correlation functions C E (t), the value of thermal inertia coefficient Q was decreased for the pLJ system by a factor ∼ 6000 vs. Q for the polymer model.

(iii) We developed and implemented in LAMMPS a new algorithm, which allows to efficiently calculate anisotropic stress tensor σ (q) for different sets of wave-vectors q. Moreover, at q = 0, the user will receive the values for the mean stress σ rather than an error notice. The new LAMMPS method is suitable for the MPI (Message Passing Interface) parallel computing. This means that our program can be used with different amounts of computer cores. The average time of calculation of one trajectory for 24 cores machine takes roughly 90 min (including the calculation of σ xx (q), σ yy (q), σ xy (q) for n q = 30, every δτ σ(q) = 20τ LJ for simulation length ∆t = 10 5 τ LJ ).

(iv) We developed a computing method in LAMMPS, which allows to calculate dynamical structure factor S (q, t) on the fly during the production run.

(v) We developed post-simulation analysis tools, which allow to calculate different types of correlations (for instance, shear-stress correlation function C (t), normal pressure correlation function C b (t)) and tools to obtain the correlation functions such as C T (q, t), C 2 (q, t), C (q, t), and C ⊥ (q, t) (see Chapter 4). Those tools include unique block-averaging methods and the methods in C++ to read input files, which makes the calculation more efficient and faster. happens because below T g the system is not ergodic anymore, which means that the system does not have enough time to explore the phase space and the configurational degrees of freedom which gave a significant contribution to the specific heat in the liquid regime are not accessible anymore [START_REF] Cavagna | Supercooled liquids for pedestrians[END_REF]27].
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3.12 The affine modulus and its dispersion for the 768 × 4 system. The standard deviations of the instantaneous affine modulus, δ 1 µ A (black curve), and of its parts: δ 1 µ Ab due to bonds (green curve), theoretical δ 1 µ Ab (red curve), and δ 1 µ Alj due to LJ-interactions (blue curve). The bond and LJ contributions to µ A are generally rather weakly correlated, so the following rule of additive variances works with good accuracy (relative error 1%: