
HAL Id: tel-03813677
https://theses.hal.science/tel-03813677

Submitted on 13 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of Multigrid Sequential Data Assimilation
Strategies for Complex Unsteady Flows

Gabriel Ionut Moldovan

To cite this version:
Gabriel Ionut Moldovan. Development of Multigrid Sequential Data Assimilation Strategies for
Complex Unsteady Flows. Other. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et
d’Aérotechique - Poitiers, 2022. English. �NNT : 2022ESMA0013�. �tel-03813677�

https://theses.hal.science/tel-03813677
https://hal.archives-ouvertes.fr


THÈSE

DEVELOPMENT OF MULTIGRID SEQUENTIAL

DATA ASSIMILATION STRATEGIES FOR

COMPLEX UNSTEADY FLOWS

Presentée par

Gabriel Ionut MOLDOVAN

Pour l’obtention du grade de

DOCTEUR DE L’ÉCOLE NATIONALE
SUPÉRIEURE DE MÉCANIQUE ET

D’AÉROTECHNIQUE
(Diplôme National - Arrêté du 25 Mai 2016)

École Doctorale

Sciences et Ingenierie des Matériaux, Mécanique, Énergétique

Secteur de Recherche : Mécanique des milieux fluides

Sous la direction de M. Marcello MELDI

Co-encadrée par M. Guillaume LEHNASCH

- JURY -

RAPPORTEURS

Mme. Ivette Maria RODRÍGUEZ PÉREZ - Professeur, UPC

M. Etienne MEMIN - Directeur de Recherche, INRIA

MEMBRES

M. Marcello MELDI - Professeur, LMFL-ENSAM

M. Guillaume LEHNASCH - Maître de Conférence, Institut Pprime, ENSMA

M. Laurent CORDIER - Directeur de recherche, Institut Pprime, CNRS

Mme. Maria Vittoria SALVETTI - Professeur, Università di Pisa

INVITÉS

M. Frank HERVY - Docteur, DGA



2



Abstract

The analysis and control of complex high-Reynolds-number flows of industrial and
practical interest is one of the most distinctive open challenges that the scientific com-
munity must face for fluid mechanics applications in the coming decades. Modelling
bias and uncertainty may strongly affect the predictive capabilities of both numeri-
cal simulations and experimental measurements. Under this perspective, data-driven
tools from Data Assimilation, and, in particular, sequential tools such as the ensemble
Kalman filter (EnKF), have been recently used to obtain a precise estimation of the
physical flow state accounting for bias or uncertainty coming from real conditions in
the performance of the investigative tool.

A newly developed sequential Data Assimilation algorithm, combining multi-grid
aspects and the ensemble Kalman Filter, is presented in this PhD-study. The so-
called MGEnKF algorithm (Multi-Grid Ensemble Kalman Filter) exploits physical
states obtained on multiple grids of different resolution to perform state and parame-
ter estimation procedures using the EnKF. More precisely, an ensemble of low-fidelity
simulations of the flow is run on a coarse grid level together with a single higher-
resolution simulation on the finest mesh level. The state estimation obtained at the
coarse level and the associated ensemble statistics are used to filter the finest mesh
solution and to optimize a set of parameters describing the model (boundary condi-
tions, model parameters. . . ). This procedure allows to i) reduce the computational
costs of the EnKF and ii) ensure the conservativity and the smoothness of the final
solution.

The assessment of the method is performed via the analysis of one-dimensional,
two-dimensional and three-dimensional test cases, using different models of increasing
complexity. The results show that the MGEnKF can successfully update the state
of a system with the available observations to increase the global accuracy of the
model. In addition, the parametric description of the numerical problem (in terms of
prescribed boundary conditions, turbulence closures. . . ) can be adequately optimized
taking into account the different mesh resolutions employed in the algorithm. The
MGEnKF opens interesting perspectives for potential application to in-streaming
Data Assimilation techniques.
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Résumé

La simulation fidèle d’écoulements à nombre de Reynolds élevé, en configuration
complexe d’intérêt industriel, reste un défi majeur à relever par la communauté de
la mécanique des fluides. Les biais et incertitudes de modélisation peuvent d’une
part fortement altérer les capacités de prévision des simulations numériques. Les
mesures expérimentales sont d’autre part toujours incomplètes et affectées par du
bruit provenant des systèmes de mesure. Les outils d’assimilation de données, et
en particulier les outils séquentiels tels que le filtre de Kalman d’ensemble (EnKF),
ont ainsi récemment été introduits afin d’améliorer l’estimation de l’état physique
d’écoulements. Ils permettent de combiner les données provenant à la fois des simu-
lations et des mesures expérimentales en prenant en compte l’incertitude associée à
chaque source, mais leur coût de mise en œuvre reste généralement très important.

Un nouvel algorithme séquentiel d’assimilation de données, combinant approches
multigrilles et filtre de Kalman d’ensemble, est proposé dans ce travail de thèse.
L’algorithme MGEnKF (Multi-Grid Ensemble Kalman Filter) exploite des simula-
tions numériques effectuées sur plusieurs grilles de différentes résolutions sur lesquelles
l’estimation d’état et l’optimisation paramétrique sont effectuées par des procédures
EnKF. Plus précisément, un ensemble de simulations basse-fidélité est exécuté sur un
niveau de grille déraffiné tandis qu’une unique simulation à plus haute résolution est
considérée sur la grille la plus fine. L’estimation d’état obtenue au niveau grossier et
les statistiques d’ensemble associées sont utilisées pour filtrer la solution sur maille
fine et optimiser un ensemble de paramètres décrivant le modèle (conditions aux lim-
ites, paramètres du modèle...). Cette procédure permet à la fois de réduire les coûts
de calcul de la méthode EnKF et d’assurer la conservativité et la régularité de la
solution finale.

L’évaluation de la méthode est réalisée via l’analyse de cas tests de complexité
croissante, allant de l’advection linéaire monodimensionnelle à l’application des équa-
tions de Navier Stokes en configuration tridimensionnelle. Les résultats montrent
que l’algorithme MGEnKF permet d’effectuer des estimations d’état à coût très ré-
duit avec des observations disponibles pour augmenter la précision globale du modèle.
Par ailleurs, il est montré que la description paramétrique du problème numérique (en
termes de conditions aux limites prescrites, de fermetures de turbulence...) peut être
optimisée de manière adéquate en tenant compte des différentes résolutions de mail-
lage employées dans l’algorithme. La méthode MGEnKF ouvre ainsi des perspectives
intéressantes d’applications « in-streaming » de l’assimilation de données.
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Développement de stratégies d’assimilation de don-

nées séquentielles multigrilles pour les écoulements in-

stationnaires complexes

Résumé :La simulation fidèle d’écoulements à nombre de Reynolds élevé en configu-
ration complexe d’intérêt industriel, reste un défi majeur à relever par la communauté
de la mécanique des fluides. Les biais et incertitudes de modélisation peuvent d’une
part fortement altérer les capacités de prévision des simulations numériques. Les
mesures expérimentales sont d’autre part toujours incomplètes et affectées par du
bruit provenant des systèmes de mesure. Les outils d’assimilation de données, et
en particulier les outils séquentiels tels que le filtre de Kalman d’ensemble (EnKF),
ont ainsi récemment été introduits afin d’améliorer l’estimation de l’état physique
d’écoulements. Ils permettent de combiner les données provenant à la fois des simu-
lations et des mesures expérimentales en prenant en compte l’incertitude associée à
chaque source, mais leur coût de mise en œuvre reste généralement très important.

Un nouvel algorithme séquentiel d’assimilation de données, combinant approches
multigrilles et filtre de Kalman d’ensemble, est proposé dans ce travail de thèse.
L’algorithme MGEnKF (MultiGrid Ensemble Kalman Filter) exploite des simula-
tions numériques effectuées sur plusieurs grilles de différentes résolutions sur lesquelles
l’estimation d’état et l’optimisation paramétrique sont effectuées par des procédures
EnKF. Plus précisément, un ensemble de simulations basse-fidélité est exécuté sur un
niveau de grille déraffiné tandis qu’une unique simulation à plus haute résolution est
considérée sur la grille la plus fine. L’estimation d’état obtenue au niveau grossier et
les statistiques d’ensemble associées sont utilisées pour filtrer la solution sur maille
fine et optimiser un ensemble de paramètres décrivant le modèle (conditions aux lim-
ites, paramètres du modèle...). Cette procédure permet à la fois de réduire les coûts
de calcul de la méthode EnKF et d’assurer la conservativité de la solution finale.

L’évaluation de la méthode est réalisée via l’analyse de cas tests de complexité
croissante, allant de l’advection linéaire monodimensionnelle à l’application des équa-
tions de Navier Stokes en configuration 3D. Les résultats montrent que l’algorithme
MGEnKF permet d’effectuer des estimations d’état à coût très réduit avec des obser-
vations disponibles pour augmenter la précision globale du modèle. Par ailleurs, il est
montré que la description paramétrique du problème numérique (en termes de con-
ditions aux limites prescrites, de fermetures de turbulence...) peut être optimisée de
manière adéquate en tenant compte des différentes résolutions de maillage employées
dans l’algorithme. La méthode MGEnKF ouvre ainsi des perspectives intéressantes
d’applications « in-streaming » de l’assimilation de données.

Mots clés : Écoulement instationnaire (dynamique des fluides), Kalman, Filtrage de,
Méthodes multigrilles (analyse numérique), Modélisation CFD, Navier-Stokes, Équa-
tions de–Solutions numériques, Assimilation de données, Filtre de Kalman d’ensemble,
Algorithme MGEnKF (Multi-Grid Ensemble Kalman Filter)
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Development of multigrid sequential Data Assimila-

tion strategies for complex unsteady flows

Abstract:The analysis and control of complex high-Reynolds-number flows of in-
dustrial and practical interest is one of the most distinctive open challenges that the
scientific community must face for fluid mechanics applications in the coming decades.
Modelling bias and uncertainty may strongly affect the predictive capabilities of both
numerical simulations and experimental measurements. Under this perspective, data-
driven tools from Data Assimilation, and, in particular, sequential tools such as the
ensemble Kalman filter (EnKF), have been recently used to obtain a precise estima-
tion of the physical flow state accounting for bias or uncertainty coming from real
conditions in the performance of the investigative tool.

A newly developed sequential Data Assimilation algorithm, combining multi-grid
aspects and the ensemble Kalman Filter, is presented in this PhD-study. The so-
called MGEnKF algorithm (Multi-Grid Ensemble Kalman Filter) exploits physical
states obtained on multiple grids of different resolution to perform the state estimation
and parametric optimization using EnKF procedures. More precisely, an ensemble of
low-fidelity simulations of the flow is run on a coarse grid level together with a single
higher-resolution simulation on the finest mesh level. The state estimation obtained at
the coarse level and the associated ensemble statistics are used to filter the finest mesh
solution and optimise a set of parameters describing the model (boundary conditions,
model parameters. . . ). This procedure allows to i) reduce the computational costs of
the EnKF and ii) ensure the conservativity and the smoothness of the final solution.

The assessment of the method is performed via the analysis of one-dimensional,
two-dimensional and three-dimensional test cases, using different models of increasing
complexity. The results show that the MGEnKF can successfully update the state
of a system with the available observations to increase the global accuracy of the
model. In addition, the parametric description of the numerical problem (in terms
of prescribed boundary conditions, turbulence closures...) can be adequately opti-
mized taking into account the different mesh resolutions employed in the algorithm.
The MGEnKF opens interesting perspectives for potential application to in-streaming
Data Assimilation techniques.

Keywords: Unsteady flow (Fluid dynamics), Kalman filtering, Multigrid methods,
Computational Fluid Dynamics, Navier-Stokes equations–Numerical solutions, Data
Assimilation, Ensemble Kalman Filter, Multigrid Ensemble Kalman Filter (MGENKF)
algorithm
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Résume etendu

Introduction

Les simulations numériques en mécanique des fluides sont affectées par l’incertitude,

et plus spécifiquement, par des erreurs systématiques provenant de simplifications de

la géométrie, d’hypothèses de modélisation et d’erreurs de discrétisation numérique.

De plus, les conditions aux limites peuvent difficilement reproduire les conditions

réelles, car celles-ci ne peuvent pas être connues avec une précision parfaite. D’autre

part, les mesures d’écoulement fournissent des informations de l’écoulement réel, mais

elles sont généralement bruyantes et limitées dans le temps et l’espace. Les données

numériques et les données expérimentales sont donc affectées par des biais et des incer-

titudes, ce qui entrave leur capacité à prédire/répliquer avec précision des écoulements

complexes.

Dans ce contexte, l’assimilation de données peut être utilisée pour combiner les

deux sources d’information et fournir une estimation de l’état qui minimise l’incertitude

des outils conventionnels. Les simulations pourraient intégrer des données expérimen-

tales afin de corriger les erreurs systématiques présentes dans les modèles numériques

utilisés. Ce type de procédure a été employé et perfectionné pendant des décennies

dans le milieu de la météorologie. Nous nous intéressons plus particulièrement aux

outils d’assimilation séquentielle de données issus de la théorie d’estimation (ET) tels

que le filtre de Kalman (KF), qui sont spécifiquement conçus pour mettre à jour

progressivement un modèle en intégrant les données dès qu’elles sont disponibles.

La présente thèse s’attaque au problème de l’estimation séquentielle de l’état et

des paramètres en mécanique des fluides. Dans ce domaine, il y a des défis partic-

uliers auxquels on doit faire face lorsqu’on applique des algorithmes d’assimilation de

données séquentielle pour combiner les données de modèle et d’observation :

1. Des problèmes de haute dimension qui aboutissent à des algorithmes impossibles

à traiter.

2. Modèles hautement non linéaires (Navier-Stokes)
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3. Grande sensibilité aux corrections brutes du modèle qui rompent la conserva-

tivité du modèle.

L’objectif de cette thèse est de développer un algorithme séquentiel d’assimilation

de données qui peut être utilisé pour les écoulements instationnaires et avec un coût

de calcul acceptable. Le filtre de Kalman d’ensemble (EnKF) est utilisé comme base

pour l’algorithme d’estimation que nous voulons développer. Les deux principaux

atouts du EnKF sont les suivants: il permet de traiter des problèmes non-linéaires et

sa formulation conceptuelle simple assure une relative facilitée d’implémentation dans

des codes déjà existants. L’EnKF est donc un candidat parfait pour l’assimilation des

écoulements instationnaires. Il reste cependant deux obstacles importants : le coût

de calcul et la conservativité. Nous tentons de surmonter ces deux problèmes à l’aide

de la méthode multigrille.

Modèles numériques pour la mécanique des fluides

Cette thèse traite des problèmes de mécanique des fluides. Les équations qui régissent

ce type de problèmes découlent des principes de conservation de la masse, de la

quantité de mouvement et de l’énergie totale. On peut donc écrire un système fermé

d’équations différentielles partielles pour modéliser le comportement des fluides :

1. Équation de continuité
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌U) = 0,

2. Équation de Navier-Stokes

𝜕 (𝜌U)

𝜕𝑡
+ ∇. (𝜌UU) = 𝜌g −∇

(︂
𝑃 +

2

3
𝜇∇.U

)︂

+∇.
[︁
𝜇
(︁
∇U + (∇U)𝑇

)︁]︁
,
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3. Équation de l’energie

𝜕 (𝜌𝐸)

𝜕𝑡
+ ∇. (𝜌𝐸U) = 𝜌g.U−∇. (𝑃U)−∇.

(︂
2

3
𝜇 (∇.U)U

)︂

+∇.
[︁
𝜇
(︁
∇U + (∇U)𝑇

)︁
.U

]︁
+ ∇. (𝜆∇𝑇 ) + 𝜌𝑆,

La simulation d’écoulements turbulents s’avère particulièrement complexe. Quand

le nombre de Reynolds est élevé, la représentation précise des phénomènes physiques

doit prendre en compte des interactions complexes à plusieurs échelles en raison du

fort comportement non linéaire de l’écoulement. De plus, avec l’augmentation du

nombre de Reynolds, des éléments de maillage plus fins et des pas de temps plus

petits sont nécessaires pour capturer ces dynamiques, ce qui conduit rapidement à

des problèmes difficilement calculables. Pour réduire le coût de calcul, la turbulence

peut être modélisée. On peut distinguer trois techniques de simulation :

� Simulation numérique directe (DNS). Les équations de Navier-Stokes sont di-

rectement résolues pour déterminer le champ de vitesse instantané à un in-

stant donné U (x, 𝑡). Comme toutes les échelles de longueur et de temps de

l’écoulement sont résolues, le coût de calcul augmente avec Re3. Les DNS né-

cessitent des résolutions de maillage et des échelles de temps très fines, ce qui

restreint cette méthode aux écoulements à faible nombre de Reynolds.

� Simulation des grandes échelles (LES). Les équations N-S sont résolues pour

un champ de vitesse filtré U* (x, 𝑡) représentatif des plus grands tourbillons de

l’écoulement turbulent. Les différentes échelles de l’écoulement sont séparées

en considérant un filtre spectral. Les structures à grande échelle sont directe-

ment résolues, tandis que l’influence des petites échelles sur les plus grandes

est modélisée (modélisation sous-maille) ; ce modèle, qui doit être intégré dans

l’équation de la quantité de mouvement, est généralement dérivé en supposant

que les petites échelles filtrées présentent des caractéristiques universelles. Le

LES est moins exigeant en termes de calcul que le DNS, même s’il représente

naturellement des écoulements tridimensionnels non stationnaires.
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� Simulation Navier-Stokes à la moyenne de Reynolds (RANS). En utilisant une

décomposition de Reynolds aux équations de Navier Stokes, on peut séparer

la valeur moyenne de l’écoulement des fluctuations et dériver les équations de

transport à partir de l’équation de quantité de mouvement pour les champs

moyens U. Cette équation doit cependant être fermée en utilisant un modèle

de turbulence.

Pour résoudre numériquement la forme complète ou fermée des équations de

Navier-Stokes, une méthode de discrétisation est utilisée pour approximer les équa-

tions différentielles partielles par un système d’équations algébriques. Cette méthode

décrit le processus par lequel les équations continues de Navier-Stokes sont transférées

en contreparties discrètes. Au lieu de fournir une solution numérique continue, les

différentes techniques de la dynamique des fluides numérique (CFD) fournissent des

résultats à des endroits discrets dans le temps et l’espace.

La méthode de discrétisation utilisée est de la plus haute importance pour la qual-

ité et la précision de la solution numérique obtenue. Il existe différentes approches,

mais les plus utilisées sont : la méthode des différences finies (FD), des volumes finis

(FV), des éléments finis (FE) et des éléments spectraux (SE). Chacune de ces méth-

odes donne la même solution avec des grilles très fines ; cependant, certaines méthodes

sont plus appropriées que d’autres (en termes de précision par rapport aux exigences

de calcul), selon le type de problème que l’on essaie d’approcher numériquement.

Pour la simulation d’écoulements instationnaires, la méthode de discrétisation en

temps et en espace génère un système d’équations de la forme suivante :

Φuk = Ψuk-1 + Bbk-1,

où uk représente le vecteur d’état inconnu à un instant 𝑡k, uk-1 représente le vecteur

d’état connu à un instant 𝑡k-1, Φ et Ψ sont des matrices obtenues via le processus

de discrétisation, et les conditions aux limites sont représentées par le vecteur bk-1

et par B, qui est le modèle appliqué sur bk-1. Cette équation peut être résolue

en utilisant des méthodes itératives. La vitesse de convergence de ces méthodes
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est faible. Pour accélérer les processus de convergence, la stratégie multigrille peut

être utilisée. La base de cette classe de méthodes provient d’une observation sur le

taux de convergence des méthodes itératives. En général, les composantes à basse

fréquence du spectre d’erreur sont les plus lentes à être amorties dans la procédure

itérative, tandis que les fréquences plus élevées sont rapidement lissées. La méthode

multigrille exploite cette propriété : en quelques itérations dans un maillage initial

donné, la partie haute fréquence du spectre d’erreur sera considérablement amortie.

Les basses fréquences restantes peuvent être transférées vers des grilles successives

plus grossières, où cette erreur devient automatiquement une partie de la gamme des

hautes fréquences, en raison du changement de résolution spatiale. Cette stratégie

permet d’amortir progressivement l’erreur à basse fréquence dans le spectre d’erreur

en utilisant une hiérarchie de grilles.

Dans cette thèse, les idées derrière la méthode multigrille sont utilisés pour dévelop-

per un algorithme de d’assimilation de données séquentielle à bas coût et qui permette

de respecter la conservativité des équations.

Assimilation de données : Un aperçu général et un focus sur

les algorithmes séquentiels

L’objectif de cette thèse est de développer un algorithme séquentiel d’assimilation

de données. Les méthodes d’assimilation de données permettent de combiner des

mesures/observations expérimentales avec des réalisations de modèles (CFD) dans

le but d’améliorer la prédiction d’état fournie par ces derniers. Plus précisément,

l’assimilation de données fournit un cadre mathématique solide et élégant pour cette

entreprise. Les observations fournissent des informations sur l’écoulement "réel".

Cependant, elles sont généralement bruyantes et limitées dans le temps et l’espace.

On pourrait penser à simplement interpoler/extrapoler les données, mais cela ne

fonctionne pas puisque les phénomènes analysés dans le domaine de la mécanique des

fluides sont fortement non linéaires. En revanche, avec la CFD, on peut obtenir des

représentations cartographiques complètes et sans bruit des phénomènes d’écoulement.
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De plus, les modèles peuvent être utilisés pour effectuer des prédictions sur les états

futurs. Cependant, il est bien connu qu’en raison de l’incertitude épistémique in-

hérente (erreurs systématiques), les prédictions des modèles sont sujettes à la dérive.

Il est également important de noter que même si le modèle ne contenait aucune er-

reur systématique, les conditions initiales et les conditions aux limites ne peuvent être

connues avec une précision parfaite. Le comportement à long terme des écoulements

est imprévisible en raison de la grande sensibilité des équations de Navier Stokes aux

conditions initiales et aux conditions aux limites, en particulier pour les régimes de

Reynolds élevés. Pour résoudre ce problème, les prédictions du modèle doivent être

corrigées par la réalité et l’assimilation de données fournit les outils mathématiques

nécessaires à l’ajustement optimal de la sortie du modèle avec les observations.

Le problème d’assimilation de données est formulé comme une procédure d’optimisation

dont l’objectif est de trouver la correspondance optimale entre la sortie du modèle et

l’observation. Cette procédure d’optimisation peut être réalisée en utilisant au moins

deux stratégies différentes :

� Assimilation variationnelle de données. Ces procédures d’optimisation clas-

siques impliquent la minimisation d’une fonction de coût positive et quadratique

qui exprime l’inadéquation entre les mesures et le modèle. Ceci est généralement

défini comme un problème de minimisation de l’erreur par les moindres carrés.

La formulation du problème variationnel d’assimilation de données repose sur

deux éléments clés : le calcul des variations et la méthode d’adjoint. En bref, les

équations d’Euler-Lagrange aux dérivées partielles issues du champ mathéma-

tique du calcul des variations fournissent un cadre général pour la minimisation

des fonctionnelles, et la méthode adjointe rend ce problème de minimisation

calculable. Les deux méthodes variationnelles les plus connues sont la 3D-VAR

et la 4D-VAR.

� Assimilation séquentielle de données. Lorsque l’assimilation de données est

abordée d’un point de vue statistique, on est naturellement attiré vers le cadre

bayésien qui permet de combiner rigoureusement les deux sources d’information
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disponibles et de fournir une loi de probabilité postérieure. En pratique, l’application

directe du cadre bayésien s’avère très couteux. Par conséquent, il faut introduire

une hypothèse forte qui permet de simplifier le problème d’estimation de la fonc-

tion de densité de probabilité (PDF) à l’estimation de ses premiers moments

statistiques : toutes les PDF qui interviennent dans le problème d’estimation

sont considérées comme étant distribuées de manière Gaussienne. Dans ce con-

texte, le problème d’estimation est réduit à la détermination de la moyenne et

de la variance de l’état postérieur. Cela peut être fait en utilisant la méthode

d’estimation de variance minimale, qui conduit naturellement au célèbre filtre

de Kalman (KF) et ses variantes. Notamment, le filtre de Kalman d’ensemble

(EnKF) est plus adapté pour les problèmes de très grande dimension et la méth-

ode séquentielle d’assimilation la plus utilisée.

Multigrid Ensemble Kalman Filter (MGEnKF)

Malgré l’avantage que les EnKF offrent pour l’analyse des systèmes dynamiques à

grande échelle, l’utilisation d’un ensemble suffisamment grand (60 à 100 membres sont

généralement nécessaires) peut encore être prohibitive pour les applications avancées.

Nous avons développé une stratégie EnKF qui repose sur la génération des membres

de l’ensemble sur un sous-espace (maille plus grossière) du modèle original. Pour

ce faire, nous exploitons les multiples niveaux de résolution naturellement utilisés

par la procédure multigrille pour l’avancement temporel de l’écoulement. Dans une

configuration à deux grilles, les membres de l’ensemble calculés sur le niveau de maille

grossier accompagnent une seule simulation à haut raffinement, qui est mise à jour à

l’aide des résultats de l’assimilation de la maille grossière. Pour cette raison, les coûts

de calcul et le stockage en mémoire des variables physiques sont considérablement

réduits.

L’algorithme d’estimation développé combine le EnKF classique avec les carac-

téristiques de la stratégie multigrille. Il est donc appelé Multigrid Ensemble Kalman

Filter (MGEnKF). Deux procédures distinctes sont exécutées sur la grille grossière

de l’algorithme MGEnKF : une boucle extérieure, où les observations utilisées sont
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obtenues à partir d’une source d’information externe, et une boucle intérieure, où les

solutions de la grille fine projetées sur la grille grossière sont utilisées comme observa-

tions de substitution. L’algorithme général complet de MGEnKF est structuré selon

les opérations suivantes :

� Prédiction. La solution initiale sur la grille fine
(︀
xF

𝑘−1

)︀a
est utilisée pour

calculer un état de prévision (xF

𝑘)
f

(xF

𝑘)
f =ℳF

𝑘:𝑘−1

(︁(︀
xF

𝑘−1

)︀a
, 𝜃f𝑘

)︁
(1)

où ℳF

𝑘:𝑘−1 est le modèle utilisé sur la grille fine et 𝜃f𝑘 est un ensemble de

paramètres libres décrivant la configuration du modèle sur la grille fine. Chaque

membre 𝑖 de l’ensemble calculé sur la grille grossière est également avancé dans

le temps

(xC

𝑘)f,(i) =ℳC

𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜃

f,(i)
𝑘

)︁
+ 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
, (2)

oùℳC

𝑘:𝑘−1 est le modèle à grille grossière paramétré par 𝜃f,(i)𝑘 , tandis que 𝒞𝑘:𝑘−1

est un terme de correction supplémentaire inclus pour compenser la perte de

précision due aux calculs effectués sur la grille grossière (similaire à la stratégie

utilisée par Brajard et al., 2021). Ce modèle supplémentaire, dont la structure

doit être déterminée, est piloté par l’ensemble des paramètres libres 𝜓f,(i)
𝑘 .

� Projection sur la grille grossière et boucle interne. On projette (xF

𝑘)
f sur

l’espace de la grille grossière via un opérateur de projection ΠC, de manière à

obtenir (xC

𝑘)* :

(xC

𝑘)* = ΠC

(︁
(xF

𝑘)
f
)︁
. (3)

Dans cette étape, l’observation de substitution, (yC

𝑘 )SO, est extraite de (xC

𝑘)*

avec un opérateur d’observation (ℋC

𝑘 )SO : (yC

𝑘 )SO = (ℋC

𝑘 )SO (xC

𝑘)*. L’opérateur

d’observation, (ℋC

𝑘 )SO, détermine la région de la solution obtenue sur la grille

fine qui est observée. Ensuite, l’observation de substitution est utilisée dans

la boucle interne. Ici, l’EnKF est utilisé comme une méthode d’estimation des
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paramètres seulement, c’est-à-dire, les états d’ensemble, (xC

𝑘)f,(i) ne sont pas

modifiés, mais les paramètres libres 𝜓f,(i)
𝑘 sont mis à jour 𝜓a,(i)

𝑘 . Cette optimi-

sation vise une amélioration de la prédiction des membres de l’ensemble simulé

sur la grille grossière via une mise à jour du terme 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
.

� Boucle extérieure. Si une observation externe (yC

𝑘 )O est disponible, la prévi-

sion d’ensemble (xC

𝑘)f,(𝑖) est corrigée avec la méthode EnKF pour obtenir (xC

𝑘)a,(𝑖)

ainsi qu’une mise à jour des paramètres 𝜃a,(𝑖)𝑘 .

� Détermination des variables d’état sur la grille grossière. Dans cette

étape, l’état physique de la simulation principale (sur la grille fine) est mis à jour

sur la grille grossière. Cette solution, que l’on appellera (xC

𝑘)
′
, est obtenue en

utilisant la matrice de gain de Kalman (KC

𝑘)𝑥,e obtenue dans la boucle extérieure

(EnKF) :

(xC

𝑘)
′
= (xC

𝑘)* + (KC

𝑘)𝑥,e
[︀
(yC

𝑘 )O − (ℋC

𝑘 )O ((xC

𝑘)*)
]︀
.

� Itération finale sur la grille fine. La solution d’état de la grille fine (xF

𝑘)
′

est déterminée en utilisant les résultats obtenus sur l’espace grossier : (xF

𝑘)
′

=

(xF

𝑘)
f + ΠF

(︁
(xC

𝑘)
′ − (xC

𝑘)*
)︁
. L’état (xF

𝑘)
a est obtenu par une procédure itérative

finale partant de (xF

𝑘)
′
, suivant l’approche multigrille.

Validation de l’algorithme MGEnKF

Dans ce chapitre, le filtre multigrille MGEnKF est systématiquement évalué et étudié

sur un panel d’exemples de complexité croissante. Les cas étudiés concernent une

équation d’advection en 1D linéaire, une équation de Burger avec un terme de vis-

cosité, un modèle en 1D, des équations d’Euler, des équations de Navier-Stokes en

2D compressibles pour une configuration de type couche de mélange.

Tous les cas de test réalisés pour évaluer les performances de l’estimateur sont des

expériences jumelles d’assimilation de données dont la structure est très similaire :
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� Un modèle d’écoulement est utilisé avec une condition d’entrée paramétrée spé-

cifique pour générer une solution de référence. Une observation synthétique est

générée à partir de cette référence en ajoutant du bruit artificiel.

� Dans l’expérience d’assimilation de données, l’écoulement est initialisé à un état

qui n’est pas l’état réel. Nous supposons en outre que certains paramètres de

la condition d’entrée sont inconnus. L’objectif de l’estimateur est alors double

: assimiler les observations synthétiques pour corriger l’état de l’écoulement

instationnaire et d’estimer les paramètres inconnus.

Advection 1D linéaire

Dans cette expérience, l’équation d’advection 1D est considérée. Une condition de

Dirichlet variable dans le temps est imposée à l’entrée :

𝑢(𝑥 = 0, 𝑡) = 𝑐 (1 + 𝜃 sin (2𝜋𝑡)) ,

où 𝜃 représente l’amplitude d’une perturbation sinusoïdale de période ∆𝑇 = 1 et est

fixée à 𝜃 = 0.015. Dans l’expérience numérique effectuée, 𝜃 est considérée inconnue.

L’algorithme MGEnKF est ici utilisé pour estimer 𝜃 et pour améliorer l’estimation

d’état de la variable 𝑢 avec l’observation synthétique. La précision de l’algorithme

est analysé avec et sans la boucle interne du MGEnKF.

Les résultats obtenus (Fig. 0-1 et Fig. 0-2) montrent une nette amélioration de la

précision de l’estimation de 𝜃 quand la boucle interne est utilisée.

Équation de Burgers non-linéaire en 1D

De manière similaire à ce qui a été fait dans l’expérience précédente, la performance

du MGEnKF est ici étudiée pour ce cas test. Une condition de Dirichlet variable dans

le temps est imposée à l’entrée :

𝑢(𝑥 = 0, 𝑡) = 𝑢0 (1 + 𝜃 sin (2𝜋𝑡)) ,
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Figure 0-1: Estimation du paramètre
𝜃 sans la boucle interne.
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Figure 0-2: Estimation du paramètre
𝜃 avec la boucle interne.
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Figure 0-3: Estimation du paramètre 𝜃 avec et sans la boucle interne.

où 𝑢0 est la vitesse caractéristique moyenne de l’écoulement et est fixée à 𝑢0 = 1. Le

paramètre 𝜃 représente l’amplitude d’un signal sinusoïdal dont la période est ∆𝑇 = 1.

Le paramètre d’amplitude a été fixé à 𝜃 = 0.2. La précision de l’algorithme est analysé

avec et sans la boucle interne du MGEnKF.

Les résultats présentés dans la Fig. 0-3 montrent que l’algorithme MGEnKF est

beaucoup plus précis quand la boucle interne est activée. Comme dans le cas test

précédent, un modèle de correction 𝒞 a été conçu en analysant l’erreur de discrétisa-

tion liée à l’utilisation de maillages plus grossiers.
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Équation d’Euler en 1D

Dans cette section, le modèle choisi pour l’expérience jumelle est celui des équations

d’Euler en 1D. Contrairement aux équations de Burgers, dans les équations d’Euler,

l’écoulement est considéré comme inviscide. Cependant, il existe des complexités sup-

plémentaires liées aux effets du gradient de pression. Contrairement aux expériences

jumelles réalisées dans les deux sections précédentes, dans cette section, nous essayons

d’estimer un paramètre variant dans le temps lié à la condition limite d’entrée. Dans

ce cas test, la boucle interne est désactivée. Le modèle d’Euler est beaucoup plus com-

plexe que les deux modèles utilisés dans les expériences précédentes et la conception

du modèle de correction, 𝒞, est un vrai défi.

Une condition de vitesse de Dirichlet variant dans le temps est imposée à l’entrée

:

𝑢(𝑥 = 0, 𝑡) = 𝑢0 (1 + 𝜃(𝑡) sin(2𝜋𝑓𝑐𝑡)) (4)

L’amplitude de l’onde sinusoïdale est déterminée par un paramètre variable dans

le temps 𝜃(𝑡) = 𝜃0

(︂
1 + sin

(︂
2𝜋
𝑓𝑐
10
𝑡

)︂)︂
, où 𝜃0 est une constante. Dans l’expérience

jumelle d’assimilation de données, l’algorithme MGEnKF est utilisé pour estimer la

valeur de 𝜃(𝑡) et pour corriger la variable d’état 𝑢 avec l’observation synthétique.
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Figure 0-4: Estimation du parametre 𝜃(𝑡).

Concernant l’estimation du paramètre 𝜃(𝑡), les résultats obtenus (Fig. 0-4) mon-
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trent que l’algorithme MGEnKF est capable d’estimer de manière précise un paramètre

qui varie dans le temps.

Couche de mélange compressible en 2D

La couche de mélange bidimensionnelle évoluant dans l’espace à Re = 100 est étudiée

ici en utilisant les équations compressibles de Navier Stokes. Comme dans le cas test

précédent, la boucle internet est désactivée. Une condition de vitesse de Dirichlet

variant dans le temps est imposée à l’entrée :

𝑈in(𝑦, 𝑡) =
𝑈1 + 𝑈2

2
+
𝑈1 − 𝑈2

2
tanh

(︂
2𝑦

𝛿0

)︂
+ 𝑈Pert(𝑦, 𝑡), −3 < 𝑦 < 3

où

𝑈Pert(𝑦, 𝑡) =

𝑁in∑︁

𝑖=1

𝜖𝑖(𝑡)
𝑈1 + 𝑈2

2
[𝑓𝑖(𝑦) sin(𝜔𝑖𝑡)].

Dans ce cas test, 𝑁 = 1. Le paramètre 𝜖1 varie dans le temps selon une forme

sinusoïdale : 𝜖1(𝑡) = 𝜖(1 + sin(𝜔𝜖𝑡)). Les valeurs des paramètres numériques car-

actérisant la perturbation sont 𝜖 = 0.15 et 𝜔𝜖 = 0.62𝜔1. Dans l’expérience jumelle

d’assimilation de données, l’algorithme MGEnKF est utilisé pour estimer la valeur de

𝜖1(𝑡) et pour corriger la prédiction d’état avec l’observation synthétique.

Les résultats obtenus pour l’estimation de 𝜖1(𝑡) (Fig. 0-5) montrent que la ten-

dance générale sinusoïdale est généralement respectée, bien qu’un décalage de phase

relativement faible soit visible. Ces résultats pourraient être sensiblement améliorés

avec l’implémentation de la boucle interne. Concernant l’estimation d’état effectuée,

l’évolution de l’erreur quadratique moyennée (RMSE) de la variable 𝜌𝑣 montre que

l’algorithme réduit l’erreur totale du système en estimant 𝜖1(𝑡) mais aussi en effectu-

ant des corrections d’état sur la grille fine (Fig. 0-6).
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Figure 0-5: Estimation de 𝜖1(𝑡).
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Figure 0-6: Erreur quadratique moyennée (RMSE) de la variable 𝜌𝑣. Comparaison
être un test effectué avec estimation de paramètre seulement (P.E) et estimation de
paramètre et d’état (MGEnKF).

36



Application de l’algorithme MGEnKF à un problème complexe

: BARC

Dans ce chapitre, l’algorithme MGEnKF est testé sur une LES 3D d’un écoulement

incompressible autour d’un cylindre rectangulaire à nombre Reynolds 40.000. Le

domaine de calcul est présenté dans la Fig. 0-7.
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Figure 0-7: Domaine de calcul

Les données d’observation sont obtenues d’une simulation de référence effectuée

sur un maillage très fin. Une zone d’observation 3D réduite au-dessus du cylin-

dre a été sélectionnée avec des observations 3D de vitesse volumique. L’objectif est

d’augmenter la capacité prédictive d’une LES à une résolution intermédiaire (réduc-

tion d’un facteur 2 en x, y, z) avec des observations synthétiques. Une seule simulation

à résolution intermédiaire est lancée en parallèle avec une simulation d’ensemble sur

une grille grossière (réduction d’un facteur 4 en x, y, z par rapport à la simulation

de référence). En se basant sur la méthode MGEnKF, l’assimilation est effectuée

vis-à-vis d’un paramètre de contrôle attaché au filtrage fréquentiel régissant la LES

et en effectuant des procédures d’estimation d’état. Ce filtre est caractérisé par une

fonction de transfert quadratique, qui agit du mode 𝑁−𝑘𝑐 (𝑘𝑐 = 3 ici) jusqu’au mode

le plus élevé 𝑁 . La fonction de transfert s’écrit comme suit :
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Figure 0-8: Estimation du parametre 𝑤.

⎧
⎪⎨
⎪⎩
𝜎𝑘 = 1 𝑘 < 𝑘𝑐

𝜎𝑘 = 1− 𝑤
(︁
𝑘−𝑘𝑐
𝑁−𝑘𝑐

)︁2

𝑘𝑐 ≤ 𝑘 ≤ 𝑁,

et, une fois que le mode de coupure (𝑘𝑐) est fixé, le filtrage ne peut être réglé que

par un paramètre de pondération 𝑤. Ce paramètre est optimisé avec l’algorithme

MGEnKF.

Les résultats numériques permettent de valider sur cet exemple difficile la procé-

dure d’assimilation multigrille proposée dans cette thèse. Les résultats montrent que

le paramètre 𝑤 converge vers une valeur environ trois fois plus petite que la valeur

de base (Fig. 0-8). Les résultats indiquent que la valeur antérieure de 𝑤, lorsqu’elle

est utilisée en combinaison avec la grille intermédiaire, produit une dissipation ex-

cessive. On pourrait dire que le processus d’optimisation dans le MGEnKF réduit la

dissipation interne de la LES, en réduisant la valeur de 𝑤, afin de compenser l’erreur

numérique associée à l’utilisation d’un maillage moins raffiné. Une amélioration de

la prédiction de la variance de la pression et de la pression moyenne à la surface

supérieure du cylindre est observée (Fig. 0-9).

La taille de la région de recirculation est également améliorée et plus proche de la

simulation de référence en comparaison avec des simulations de résolution équivalente

et calibrées a priori (Fig. 0-10).
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Figure 0-9: (a) Coefficient de pression moyenné dans le temps, sur surface du cylindre
⟨𝐶𝑝⟩, et (b) son écart-type, 𝜎(𝐶𝑝). Comparaison entre les résultats obtenus pour la
LES de référence, la LES de base, et la LES améliorée avec l’algorithme MGEnKF.
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Figure 0-10: Lignes de courant de l’écoulement moyenné dans le temps pour (a) la
LES de référence, (b) la LES améliorée avec MGEnKF, (c) la LES optimisée et (d)
la LES de base.
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Conclusions

La prédiction précise des écoulements turbulents reste un défi ouvert pour la recherche

en mécanique des fluides. Les barrières technologiques concernant la puissance de

calcul limitent l’utilisation d’outils de simulation numérique directe aux cas de faible

Reynolds, et une révolution dans la modélisation de la turbulence n’est pas attendue

dans un avenir proche.

Malgré ses limites, la CFD a été largement adoptée par les constructeurs d’avions

et d’automobiles dans leurs procédures de conception ; cependant, les conditions hors

conception, nécessitent des outils plus sophistiqués.

Les outils issus de la théorie de l’estimation commencent à être utilisés par les

chercheurs en CFD dans le but d’augmenter la précision de prédiction des codes déjà

existants. L’idée derrière cette classe de techniques est de combiner des données

numériques avec des données expérimentales pour améliorer l’estimation d’état. Cela

relève d’un domaine mathématique plus large, qui a été développé depuis des décen-

nies et est largement utilisé dans les prévisions météorologiques : L’assimilation des

données. Les techniques d’assimilation de données séquentielles, dont l’algorithme

du filtre de Kalman est l’outil le plus connu, sont particulièrement adaptées aux

écoulements instationnaires ; cependant, la résolution d’un problème d’assimilation

de données avec une approche séquentielle s’avère très chère en termes de coût de

calcul.

L’objectif de cette étude de doctorat était de développer un estimateur séquentiel

qui pourrait être intégré dans des codes CFD largement utilisés. Nous avons développé

un algorithme d’estimation combinant le Filtre de Kalman d’Ensemble et la stratégie

multigrille pour assimiler les écoulements instationnaires.

L’algorithme dit MGEnKF (Multi-Grid Ensemble Kalman Filter) exploite les

états physiques obtenus sur plusieurs grilles de résolutions différentes pour effectuer

l’estimation d’état et l’optimisation paramétrique en utilisant des procédures EnKF.

Plus précisément, lorsque seulement deux grilles sont utilisées, un ensemble de simu-

lations basse-fidélité de l’écoulement est exécuté sur un niveau de grille grossier ainsi
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qu’une seule simulation sur le niveau de maille le plus fin. L’estimation d’état obtenue

au niveau grossier et les statistiques d’ensemble associées sont utilisées pour filtrer

la solution à maille fine et optimiser un ensemble de paramètres décrivant le modèle

(conditions aux limites, paramètres du modèle, etc). Cette procédure permet i) de

réduire les coûts de calcul de l’EnKF et ii) d’assurer la conservativité de la solution

finale.

D’une manière générale, cette méthode s’inscrit dans la classe des techniques mul-

tiniveau qui visent à améliorer l’estimation des statistiques de simulations numériques

coûteuses en considérant différents niveaux de résolution.

L’évaluation de la méthode a été réalisée par l’analyse de cas de test unidimen-

sionnels, bidimensionnels et tridimensionnels, en utilisant différents modèles de com-

plexité croissante. Les résultats montrent que le MGEnKF peut mettre à jour avec

succès l’état d’un système avec les observations disponibles pour augmenter la pré-

cision globale de la prédiction d’état fournie par le modèle. En outre, la description

paramétrique du problème numérique (en termes de conditions aux limites prescrites,

de fermetures de turbulence, etc) peut être optimisée de manière adéquate en tenant

compte des différentes résolutions de maillage employées dans l’algorithme.

Le MGEnKF ouvre des perspectives intéressantes pour une application potentielle

au contrôle actif des écoulements et au design industriel.
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Chapter 1

Introduction

Context

Global economies and societies are preparing for an ecological transition that aims

to revolutionize energy consumption. A change is needed in the energy paradigm by

shifting from fossil-fuel-based economies to clean and renewable models. The pace

at which this ongoing revolution will unfold will largely depend on the geopolitical

context and the technological advancements that might help hasten this transition.

Most experts agree that this process will take decades to unfold, and in this transitory

period energy efficiency is more important than ever.

Road transport, civil aviation and navigation represent almost a third of the to-

tal energy consumption and greenhouse gas emissions in Europe (Eurostat, 2022).

The regulations fixed by the European Union concerning CO2 emissions on newly

manufactured vehicles are more stringent every year and the transport industry is

compelled to continue the research and development efforts that have already been

made in designing energy efficient solutions for mobility. The research efforts made in

shape optimization over the last decades have been substantial, and aerodynamicists

are reaching the limit to the lowest achievable drag.

The main challenge that aerodynamicists face when tackling the design optimiza-

tion of vehicles is the high variability of flow regimes in operative conditions. However,

technological advancement in flow control techniques and the advent of data-driven
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methods could revolutionize the sector.

Inherent unsteady nature of flows

Transport vehicles encounter off-design conditions that are intrinsically unsteady.

Dynamic phenomena such as flow separation and laminar-turbulent transition pose a

real scientific challenge (see Rizzi and Luckring, 2021and Olson et al., 2013 for flow

separation and Fedorov, 2011 for laminar-turbulent transition). They have a crucial

influence on the loads, both steady and unsteady, acting on the vehicles. Taking

ground vehicles as an example, massive separation happens at the trailing edges

which forms the near wake. This gives birth to various instabilities evolving with very

different length and time scales, such as the recently discovered bi-modal dynamics

(Grandemange et al., 2013), which dominates the near wake. These instabilities, in a

time-averaged context, set the pressure drag acting on the rear surface of the vehicles

(Balachandarb et al., 1997).

To account for off-design conditions in the aerodynamic development, car manu-

facturers are showing increasing interest in active flow control techniques, which have

the potential of reducing the aerodynamic drag by up to 25% (Brunton & Noack,

2015b; Choi et al., 2008; Choi et al., 2014). Successful open-loop or feed-back control

systems tackling the near wake have been reported in the literature (Barros et al.,

2016; Haffner et al., 2020; Li et al., 2016), with impressive accounts of drag decrease.

Limits of the traditional tools

In a flow control problem, having accurate information about the state of the system

is essential for designing successful control strategies. Surface sensors can provide

valuable information about the state of the flow at a given instant, which can be

fed to a closed-loop control system. However, this information is usually insufficient

for the design of robust control strategies. Complete maps of flow behaviour as the

input to a control system is the ideal objective, but experimental techniques alone

44



cannot provide this type of data from local measurements; the noise associated to

observations interacts in a spurious manner with the highly non-linear behaviour of

the (normally) turbulent flows that have to be controlled, hindering the capabilities

of existing flow estimation algorithms.

In the case of aerodynamic design, wind-tunnel experiments have been the classi-

cal aerodynamic development tool. However, since the 1980s, Computational Fluid

Dynamics (CFD) has become essential in the design and analysis of transport ve-

hicles. Numerical analysis tools tackling average properties of the flow have proven

to be efficient for design optimization purposes. In nowadays engineering problems,

Reynolds Averaged Navier Stokes (RANS) solvers remain the predominant tool used

for the analysis and prediction of turbulent flow simulation, despite their well known

limitations (Wilcox, 1994). The main issue with turbulence modelling is that there

is no model that applies to all kinds of flows. Instead, there are several turbulence

models, each one tailored for a specific application.

In a near future, CFD could be a valuable tool for active flow control, since it would

allow obtaining more complete information about the state of the flow at a given

instant. Furthermore, there is a vast potential for CFD to be more widely integrated

in the aerodynamic design process of vehicles. For this to happen, most experts agree

that flows presenting strong dynamic phenomena require resolution methods where

the unsteady features are tackled explicitly. RANS or URANS (unsteady RANS)

methods are not accurate in these cases and new resolution methods have to be

envisaged. In the aerospace industry, for example, certain areas such as the high-lift

wing design and wing control, where strong unsteady features are present, do not

incorporate CFD tools in their aerodynamic development due to lack of accuracy in

the traditional RANS approach (Spalart & Venkatakrishnan, 2016).

In the last decades, there has been an ongoing shift from RANS turbulence models

to Large Eddy Simulation (LES). Over the years and with the experience acquired

from RANS-type simulation, researchers have recognized that Direct Numerical Simu-

lation (DNS)/LES methods are required to accurately reproduce complex flows. DNS

is, however, computationally untreatable for flows with moderate to high Reynolds
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numbers. LES is less expensive than DNS, but the cost associated with wall resolution

(which may result in LES computations as expensive as DNS ones) does not allow

for applications to very complex cases, unless wall modelling is used. Sub-grid scale

modelling is also necessary for the scales that are smaller than the grid size. Wall and

sub-grid scale modelling introduce, however, systematic errors in the simulations.

It appears that research in pure CFD methods has hit a ceiling. There has not

been a revolutionary change in turbulence modelling over the past years and this

trend does not seem to change in the near future (Spalart & Venkatakrishnan, 2016).

Moreover, Moore’s law shows signs of slowing down since beginning of the 2010𝑠. This

will delay the application of pure LES/DNS simulation strategies for high-Reynolds

number turbulent flows of industrial interest. The rather recent introduction of hybrid

RANS/LES approaches has enabled to consider more complex geometries at higher

Reynolds numbers. It essentially consists in using RANS models in attached boundary

layers while switching in LES-like mode resolution in separated regions. However,

such approaches still require very fine-tuning of both numerical parameters and grid

resolution, quite systematically case dependant, to avoid numerical artefacts such as

transition delay, grid induced separation, etc.

In conclusion, to continue the increase in energy efficiency of transport vehicles,

innovative active flow control techniques as well as improved aerodynamic design

procedures are required. For this, new prediction tools that are able to accurately

characterize complex flows have to be developed.

New tools coming from Estimation Theory

CFD is affected by uncertainty, and more specifically, by systematic errors coming

from simplifications in geometry, modelling hypothesis and numerical discretization

errors. Moreover, boundary conditions can hardly reproduce real conditions since

these cannot be known with perfect precision. Flow measurements provide informa-

tion of the real flow, but are usually noisy and limited in time and space. Both CFD

and experimental data are thus affected by bias and uncertainty, which hinders their
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capability to accurately predict/replicate complex flows.

In this context, Data Assimilation can be used to combine both sources of infor-

mation and provide a state estimate that minimizes the uncertainty in conventional

tools. In an ideal flow control situation, CFD and measurement could be used in a

synergistic way: the complete but systematically biased flow maps provided by CFD

could be corrected in streaming by external noisy observation as it becomes available.

Data Assimilation can also improve the analysis of flows around complex geometries.

Simulations could integrate experimental data in order to correct the systematic er-

rors present in the numerical models used. Meteorological researchers specializing

in Data Assimilation techniques have perfected this type of procedures for decades.

Notably, sequential Data Assimilation tools coming from Estimation Theory (ET)

such as the Kalman Filter (KF) are specifically tailored for progressively updating a

model by integrating data as soon as it becomes available. As we will later see in

this manuscript, the numerical methods used to simulate unsteady flow are highly

compatible with this type of procedure.

This PhD study tackles the sequential state & parameter estimation problem in

fluid mechanics. In this field, there are particular challenges that one has to face

when applying sequential DA algorithms to combine model and observation data:

� High dimensional problems (𝒪 (109)) which results in untreatable algorithms

� Highly non-linear models (Navier-Stokes)

� High sensitivity to brute model corrections that break conservativity in the

model.

The objective of this PhD is to develop a sequential Data Assimilation algorithm

that can be used for unsteady flows and with an acceptable computational cost. The

Ensemble Kalman Filter (EnKF) is used as foundation for the estimation algorithm

we want to develop. The two main assets of the EnKF is that it allows to treat fully

non-linear problems, and its simple conceptual formulation ensures a relative ease of

implementation to already existing codes. The EnKF is thus a perfect candidate for
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assimilation of unsteady flows. There remain however two significant obstacles to the

implementation of EnKF techniques to unsteady problems: computational cost and

conservativity. We attempt to overcome these two issues with the aid of the multigrid

method.

Thesis Outline

In this research work, we present a newly developed sequential Data Assimilation

algorithm, combining multi-grid aspects and the ensemble Kalman Filter. The so-

called Multi-Grid Ensemble Kalman Filter (MGEnKF) algorithm exploits physical

states obtained on multiple grids of different resolution to perform state estimation

and parametric optimization using EnKF procedures. More precisely, an ensemble

of low-fidelity simulations of the flow is run on a coarse grid level together with a

single, high-fidelity simulation run on the finest mesh level. The state estimation

obtained at the coarse level and the associated ensemble statistics are used to filter

the finest mesh solution and to optimize a set of parameters describing the model

(boundary conditions, model parameters, . . . ). This procedure allows to i) reduce the

computational costs of the EnKF and ii) ensure the conservativity and the smoothness

of the final solution.

We start by introducing the classical numerical models used for the simulation of

unsteady flows, and we treat Data Assimilation techniques. The method is thereafter

presented together with some validation test cases. The manuscript is thus organized

as follows:

� In Chapter 2, we present the numerical models used in fluid mechanics, and

we provide a short introduction to the numerical techniques used to numeri-

cally approximate unsteady flow problems, with a special emphasis on multigrid

methods.

� In Chapter 3, Data Assimilation methodologies are treated. The two families

of Data Assimilation techniques, i.e., sequential and variational methods are
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presented, with a literature review of the relatively recent usage of these class

of methods in fluid mechanics research.

� In Chapter 4 the Multigrid Ensemble Kalman Filter is presented in detail.

� In Chapter 5, the MGEnKF is applied to the analysis of different test cases.

Several dynamical systems of increasing complexity have been chosen in order

to highlight different properties of the algorithm.

� In Chapter 6, the MGEnKF is used to improve the prediction accuracy of a

intermediate resolution Large Eddy Simulation with synthetic observation data.

The experiment is carried out on the flow around a 5:1 rectangular cylinder at

high Reynolds number (𝑅𝑒 = 40000).

� In Chapter 7, the main findings of this PhD study are summarized with recom-

mendations for future research.
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Chapter 2

Numerical Models in Fluid Mechanics

2.1 Continuum Mechanics: Governing Equations

This PhD study deals with problems of fluid mechanics. The equations that govern

these type of problems derive from the conservation principles of mass, momentum

and total energy. Throughout this chapter, the notation introduced by Jasak, 1996

for describing the governing equations is used. Let us recall the rate of change in time

of an intensive property of the system, 𝜃, through the material derivative

𝑑

𝑑𝑡

∫︁

𝒱(𝑡)
𝜌𝜃 (x, 𝑡) 𝑑𝒱 =

𝜕

𝜕𝑡

∫︁

𝒱(𝑡)
𝜌𝜃𝑑𝒱 +

∮︁

𝜕𝒱(𝑡)
𝑑S. (𝜌𝜃U) , (2.1)

where 𝜌 is the density, 𝒱 (𝑡) is the time-dependent control volume, 𝜕𝒱 (𝑡) is the surface

of the control volume, U represents the velocity vector, and 𝑑S is the unit of surface

times the vector pointing in the outward direction of 𝜕𝒱 (𝑡). The rate of change of 𝜃

within the control volume, 𝒱 , is thus equal to the sum of the constraints applied on

the surface, F𝑆, and the volume sources 𝑆𝒱 .

𝜕

𝜕𝑡

∫︁

𝒱(𝑡)
𝜌𝜃𝑑𝒱 +

∮︁

𝜕𝒱(𝑡)
𝑑S. (𝜌𝜃U) =

∫︁

𝒱(𝑡)
𝑆𝒱𝑑𝒱 +

∮︁

𝜕𝒱(𝑡)
𝑑S.F𝑆 (𝜃) (2.2)
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Equation (2.2) can also be written in the differential form

𝜕 (𝜌𝜃)

𝜕𝑡
+ ∇. (𝜌𝜃U) = 𝑆𝒱 (𝜃) + ∇.F𝑆 (𝜃) . (2.3)

Starting from the general form provided in (2.3), the conservation principles of

continuum mechanics can be written in the differential form (Aris, 1990):

1. Mass conservation
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌U) = 0, (2.4)

2. Momentum conservation

𝜕 (𝜌U)

𝜕𝑡
+ ∇. (𝜌UU) = 𝜌g + ∇.𝜎, (2.5)

3. Energy conservation

𝜕 (𝜌𝐸)

𝜕𝑡
+ ∇. (𝜌𝐸U) = 𝜌g.U + ∇. (𝜎.U)−∇.q + 𝜌𝑆, (2.6)

where 𝜎 is the stress tensor, 𝐸 is the total energy per unit volume, 𝑆 is the volume

energy source, g represents a general volume source term and is usually considered

to model gravity effects, and q is the heat flux. The mass conservation equation (2.4)

does not include source terms, since mass cannot be created nor destroyed. The total

energy of the system, 𝐸, is calculated as the sum of the kinetic energy, 𝐸𝐾 , and the

internal energy 𝑒. In fluid mechanics studies, chemical, nuclear and other forms of

energy are considered only on configurations that explicitly need them. Therefore, 𝐸

can be written as

𝐸 = 𝐸𝐾 + 𝑒 (𝑃, 𝑇 ) =
1

2
U.U + 𝑒 (𝑃, 𝑇 ) , (2.7)

where the internal energy, 𝑒, is defined as a function of temperature, 𝑇 , and pressure

𝑃

𝑒 = 𝑒 (𝑃, 𝑇 ) . (2.8)
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These equations are valid for any system modelled as a continuous medium. How-

ever, the number of unknown variables is larger than the number of equations in the

system. In order to “close” the system, it is necessary to define additional constitutive

relations between the unknown physical quantities. These relations are specific to the

considered continuum system. For Newtonian fluids, the constitutive relations used

are:

1. Equation of state. For ideal gases:

𝜌 = 𝑃𝑟𝑇, (2.9)

where 𝑟 is the ideal gas constant.

2. Fourier’s law of heat conduction

q = −𝜆∇𝑇, (2.10)

where 𝜆 is the heat conductivity.

3. Newton’s law for describing stress tensor components

𝜎 = −
(︂
𝑃 +

2

3
𝜇∇.U

)︂
I + 𝜇

[︁
∇U + (∇U)𝑇

]︁
, (2.11)

where 𝜇 is the dynamic viscosity.

4. Sutherland’s Law for expressing the dynamic viscosity, 𝜇 as a function of 𝑇

𝜇 = 𝜇ref +

(︂
𝑇

𝑇ref

)︂ 3
2 𝑇ref + 𝒮
𝑇 + 𝒮 (2.12)

where the variables with the subscript ref indicate reference values and 𝒮 is the

Sutherland temperature.

5. Constitutive relation for heat conductivity 𝜆. The dynamic viscosity of a fluid,

𝜇 is correlated with its heat conductivity, 𝜆 through the Prandtl number, 𝑃𝑟 =
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𝑐𝑝𝜇

𝜆
, where 𝑐𝑝 is the specific heat of the fluid. A constitutive relation for 𝜆 can

be obtained by considering a constant Prandtl number.

The conservation laws in continuum mediums together with these constitutive laws

produce a closed system of partial differential equations:

1. Continuity equation
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌U) = 0, (2.13)

2. Navier-Stokes equation (also Momentum equation)

𝜕 (𝜌U)

𝜕𝑡
+ ∇. (𝜌UU) = 𝜌g −∇

(︂
𝑃 +

2

3
𝜇∇.U

)︂

+∇.
[︁
𝜇
(︁
∇U + (∇U)𝑇

)︁]︁
, (2.14)

3. Energy equation

𝜕 (𝜌𝐸)

𝜕𝑡
+ ∇. (𝜌𝐸U) = 𝜌g.U−∇. (𝑃U)−∇.

(︂
2

3
𝜇 (∇.U)U

)︂

+∇.
[︁
𝜇
(︁
∇U + (∇U)𝑇

)︁
.U

]︁
+ ∇. (𝜆∇𝑇 ) + 𝜌𝑆, (2.15)

Equations (2.13), (2.14) and (2.15) constitute the so-called compressible Navier-

Stokes equations. For many flows of engineering interest, this set of equations can

be further simplified assuming incompressible and isothermal flow, i.e 𝜌 = const.,

𝜆 =∞. The so-called incompressible Navier-Stokes system of equations can thus be

written in the following form:

∇.U = 0 (2.16)
𝜕U

𝜕𝑡
+ ∇. (UU) = g −∇𝑝+ ∇. (𝜈∇U) , (2.17)

where 𝑝 = 𝑃/𝜌 is the kinematic pressure, g the acceleration of gravity and 𝜈 = 𝜇/𝜌

the kinematic viscosity.
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2.2 Turbulence Modelling

The discussion in the previous section indicates that every flow configuration can be

studied numerically once the discretization method of the partial differential equa-

tions, the constitutive relations and the boundary/initial conditions are set. However,

for high Reynolds numbers regimes, the accurate representation of the physical phe-

nomena must take into account complex multiscale interactions due to the strong

non-linear behaviour of the flow. In addition, with increasing Reynolds numbers,

finer mesh elements and smaller time steps are needed to capture these dynamics,

which rapidly leads to computationally intractable problems.

In terms of energy, the largest eddies present in the turbulent flow contain most

of the kinetic energy. This energy is transferred through a non-linear process to

the lower scale eddies, down to the Kolmogorov scale, where viscous dissipation is

predominant. The energy spectrum of turbulence, 𝐸 (𝑘), represents the contribution

of turbulent kinetic energy by wavenumber 𝑘 . It follows that 𝐸 (𝑘) is related to the

mean turbulent kinetic energy in the flow as:

∫︁ ∞

0

𝐸 (𝑘) d𝑘 =
1

2

3∑︁

𝑖=1

𝑈 ′
𝑖𝑈

′
𝑖 , (2.18)

where 𝑈
′
𝑖 represents the 𝑖

𝑡ℎ fluctuating velocity component (3 different components

in 3D). The overbar on the variable represents the ensemble average.

The simulation of turbulent flows can be approached in three different forms,

depending on the wavenumber range that is either calculated or modelled with the

set of equations (see Fig. 2-1):

- Direct numerical simulation (DNS) (Eswaran & Pope, 1988, 1988; Rogallo &

Moin, 1984; Rogers & Moin, 1987). The N-S equations ((2.16) and (2.17)

or (2.13), (2.14) and (2.15)) are directly solved to determine the instantaneous

velocity field at a given instantU (x, 𝑡). Since all the lengthscales and timescales

of the flow are resolved, the computational cost increases as Re3 (Pope, 2000).

DNS require very fine mesh resolutions and time-step sizes, restricting this
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Figure 2-1: Schematic illustration of the distribution of turbulent kinetic energy by
wavenumber and the different strategies available for simulation of turbulent flows.

method to flows with low Reynolds number.

- Large eddy simulation (LES) (Deardorff, 1970; Moin & Kim, 1982; Sagaut,

2006). The N-S equations are solved for a filtered velocity field U* (x, 𝑡) repre-

sentative of the larger eddies of the turbulent flow. The different scales of the

flow are separated by considering a spectral filter. Large scale structures are

directly resolved, while the influence of the smaller scales on the larger ones is

modelled (sub-grid modelling); this model, which must be integrated in the mo-

mentum equation, is usually derived on the assumption that the small filtered

scales exhibit universal features. LES is less computationally demanding than

DNS, even though it naturally represents unstationary, three-dimensional flows.

- Reynolds-Averaged Navier-Stokes simulation (RANS) (Pope, 2000; Wilcox, 1994).

Using a Reynolds decomposition to the N-S equations, one can separate the

mean value of the flow from the fluctuations and derive transport equations

from the momentum equation for the average fields U. This equation must be

however closed using a turbulence model.
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A general formulation for the momentum equation which is valid for most of the

numerous RANS and LES models presented in the literature is the following:

𝜕U

𝜕𝑡
+ ∇.

(︀
UU

)︀
= g −∇𝑝+ ∇.

(︀
𝜈∇U

)︀
+ 𝜏𝑇 (2.19)

where U and 𝑝 are reduced-order representations (filtered for LES, averaged for

RANS) of the flow field and 𝜏𝑇 is a tensor representing the effects of turbulence. In

this equation, the last term represents either the turbulent stress (RANS approach)

or the subgrid stress (LES approach) contributions. The closure of this last term

has been at the core of intense research in the turbulence community for decades,

without leading to a satisfactory universal model. Data assimilation strategies are

likely to overcome partially the drawback of such turbulence closures by correcting in

a more optimal way and on a case-specific basis the parameters that affect turbulence

models.

2.3 Discretisation method

To computationally solve the complete or closed form of the Navier-Stokes equations,

a discretization method is used to approximate the partial differential equations by a

system of algebraic equations. This method describes the process by which the con-

tinuous Navier-Stokes equations are transferred into discrete counterparts. Instead

of providing a continuous approximate numerical solution, Computational Fluid Dy-

namics (CFD) provides results at discrete locations in time and space.

The discretization method used is of utmost importance to the quality and ac-

curacy of the numerical solution obtained. There are different approaches but the

most used are (Ferziger & Peric, 1996): finite difference (FD), finite volume (FV),

finite element (FE) and spectral element (SE) methods. Each one of these methods

yields the same solution with very fine grids; however, some methods are more suit-

able than others (in terms of accuracy vs computational requirements), depending on

the type of problem one is trying to numerically approximate. Interested readers are

referred to Ferziger and Peric, 1996 and (Hirsch, 2007) for a comprehensive review on
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these discretization techniques. Below, we briefly describe the finite difference, finite

volume and spectral element methods:

1. Finite Difference. The starting point is the generic conservation law written

in the differential form

𝜕 (𝜌𝜃)

𝜕𝑡
+ ∇. (𝜌𝜃U) = 𝑆𝒱 (𝜃) + ∇.F𝑆 (𝜃) . (2.20)

The objective is to obtain a numerical solution of this equation given initial and

boundary conditions. In FD methods, the numerical grid must be structured.

Each grid node is identified by a set of indices that represent the lines that

intersect at this point, (𝑖, 𝑗, 𝑘) in 3D.

At each node, there is an unknown variable and an algebraic equation express-

ing the relation between the information at the node and its neighbours. This

relation is obtained by approximating each term of the PDE with a finite differ-

ence approximation. These approximations can be obtained, at different order

of accuracy, by combining Taylor’s expansion of values at each point of the

stencil. By comparison with other methods, FD offers an ideal framework to

characterize the numerical error (of diffusive or dispersive nature) and possibly

reduce it through coefficient optimization. In Sec. 5.2.1, the approximation er-

ror on coarse grids is more particularly characterized through the introduction

of the numerical gain of schemes. The use of an inner loop of optimization is

introduced in our MGEnKF algorithm to calibrate coefficients of diffusive and

dispersive correction terms. The FD method has been used in almost all the

numerical tests performed in this PhD study.

2. Finite Volume The starting point now is the generic conservation law in the

integral form

𝜕

𝜕𝑡

∫︁

𝒱 𝑡

𝜌𝜃𝑑𝒱 +

∮︁

𝜕𝒱 𝑡

𝑑S. (𝜌𝜃U) =

∫︁

𝒱 𝑡

𝑆𝒱𝑑𝒱 +

∮︁

𝜕𝒱 𝑡

𝑑F.S𝑆 (𝜃) . (2.21)

The computational domain is subdivided into smaller control volumes (CVs) by
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a grid which defines the CVs’ boundaries or central points, depending on the

strategy used. The generic conservation law in the integral form (2.21) applies

to each CV, and to the whole control volume defined by the computational

domain. Volume integrals containing divergence terms are then converted to

surface integrals using the divergence theorem. Thereafter, these terms are

evaluated as fluxes at the surface of each CV.

If the conservation equations for all CVs are summed, the global conservation

equation over the whole domain is obtained, since surface integrals over the

boundaries and over the inner CV faces cancel out. Global conservation is thus

intrinsic to the method and constitutes one of the main advantages over FD,

where conservation is more difficult to enforce. Algebraic equations are obtained

for each CV by approximating volume and surface integrals using quadrature

formulae.

3. Spectral element method. The spectral element method (Patera, 1984) is

a high-order weighted residual technique that can be viewed as an extension

of the finite element method. In this method, the computational domain is

split into 𝑁𝑒 deformable hexahedral elements. The solution on each element is

represented in terms of 𝑁th order tensor-product polynomials. Spectral element

methods exhibit reduced numerical dispersion and dissipation. A well-known

spectral-element-based CFD code which has been used in the context of this

PhD study (see Chapter 6) is Nek5000 (Fischer et al., 2008).

2.4 Methods for Unsteady flows

This PhD study tackles the state and parameter estimation problem for unsteady

flows. It is therefore necessary to introduce the key numerical ingredients of the

discretization methods used in this type of problems. More specifically, in this section

we focus on the available time discretization methods for partial differential equations.

Considering the nature of time, all solution methods to unsteady flows follow a time-
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marching structure, where the unsteady solution of the system is obtained in a step-

by-step manner.

Let us consider the 1D linear advection equation of a scalar quantity 𝑢 advected

with the constant velocity 𝑐:
𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0. (2.22)

Advection is usually the main driving force in flows of engineering interest, and the

linear advection equation represents the simplest flow model prototype. It describes

the linear transport of a quantity by motion of a fluid.

We choose to describe time advancing in the frame of FD method for the discretiza-

tion of this equation. The simplest solution method one could use to solve (2.22) is

the first-order Euler method, which is actually derived via a first-order Taylor series

development:

𝑢kj = 𝑢k-1j + ∆𝑡 𝑓, (2.23)

where the spatial discretization is performed on a Cartesian mesh with a constant size

∆𝑥, ∆𝑡 is the time step, 𝑢kj represents the discrete numerical solution at the spatial

location 𝑥j = (𝑗 − 1)∆𝑥 at time 𝑡k = 𝑘∆𝑡, and 𝑓 represents the discretization of the

spatial derivative term 𝑐𝜕𝑢
𝜕𝑥
. At this point, one has two options for the evaluation of

𝑓 :

- The function 𝑓 is evaluated at an instant 𝑡k-1. In this case, one retrieves the

forward first-order Euler method

𝑢kj = 𝑢k-1j + ∆𝑡 𝑓 (𝑢k-1) . (2.24)

- The function 𝑓 is evaluated at an instant 𝑡k. In this case, one retrieves the

backward, first-order Euler method

𝑢kj = 𝑢k-1j + ∆𝑡 𝑓 (𝑢k) . (2.25)
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Figure 2-2: Schematic illustration of forward and backward Euler method for time
integration.

The backward and forward Euler method are also illustrated in Fig. 2-2. This ex-

ample allows introducing two different class of methods for resolving unsteady prob-

lems: explicit and implicit methods. In explicit methods, the system of equations

obtained when applying (2.24) can be written as

Φuk = Ψuk-1 + Bbk-1, (2.26)

where uk represents the unknown state vector at an instant 𝑡k, uk-1 represents the

known state vector at an instant 𝑡k-1, Φ and Ψ are matrices obtained via the dis-

cretization process, and boundary conditions are represented by the control vector

bk-1 and by B, which is the control input model applied on bk-1. In the framework of

Data Assimilation, it is more common to use the linear or non-linear model operator

ℳ, which includes the terms Φ, Ψ and B and allows writing the time advancement in

a simplified manner: uk =ℳ
(︀
uk-1

)︀
. In the explicit case, the matrix of the unknown

variables, Φ, is diagonal. The right-hand side of (2.26) can be straightforwardly eval-

uated, since the state of the system at the time 𝑡k-1 is available. The inversion of Φ is

straightforward. In practical applications of explicit time-marching solution methods,

the matrix form is not even used, since a node-by-node resolution of the system is

much more efficient.

In implicit methods, the resulting system of equations obtained from the appli-
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cation of (2.25) to each node can be written in the exact same form. However, the

matrix Φ is no longer diagonal, since the spatial discretization terms present in 𝑓

are evaluated at an instant where the flow variables are unknown. The inversion of

Φ is much more complex. When Φ has a simple structure, such as block bidiagonal

or block tridiagonal, one can use state-of-the art algorithms to perform the inversion

efficiently (Ferziger & Peric, 1996).

The number of operations per time-step required for implicit methods is signifi-

cantly higher when compared to explicit methods. This is compensated when numer-

ical stability is taken into consideration. In general, implicit methods are much more

stable than explicit ones, allowing for significantly larger time-steps ∆𝑡.

There is no clear “better” method for a given application (Ferziger & Peric, 1996;

Hirsch, 2007). With very small ∆𝑡, both methods should provide the same solution.

Depending on the particularities of the flow that is being simulated, there might be sig-

nificant computational time gains if one chooses to implement implicit time-marching

schemes. Implicit schemes are also more widely used in steady flow simulation. In

this type of problems, the flow is started from an initial state and is advanced in

time in a pseudo time-marching fashion until a steady or converged state is found.

The objective is to evacuate the initial transient as fast as possible. The higher CFL

numbers (the Courant–Friedrichs–Lewy number is defined as 𝐶𝐹𝐿 = 𝑢Δ𝑡
Δ𝑥

) that can

be used with implicit methods allow dissipating the initial transient more efficiently

than when equivalent explicit methods are used.

In setting up high-fidelity unsteady LES or DNS, the prime requirement is accu-

racy, since the simulation has to be able to precisely capture the different lengthscales

and timescales present in the flow. In this case, techniques designed for steady prob-

lems (high CFL numbers) are not suitable. Even if numerical stability with high CFL

numbers can be reached via implicit methods, the accuracy of the simulation can be

severely penalized. Since accuracy requirements limit the size of the time-step, ex-

plicit methods can be efficient and the extra expense associated with implicit methods

is not justified; most DNS and LES reported in the literature have used explicit time

advancement methods.
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There is, however, a notable exception: in the case of wall-bounded flow simula-

tion, the regions of the flow where boundary layers are attached contain very small

characteristic near-wall structures. The viscous terms involving normal derivatives

to the wall may thus be sources of numerical instability, and therefore an implicit

treatment of these terms might be necessary for stabilizing the simulation (Ferziger

& Peric, 1996). Moreover, in simulation of flows around complex geometries, more

terms might have to be treated implicitly. In general, some specific physical aspects

are better represented in an implicit way, among which several problems related with

immersed bodies – confined spaces.

2.5 On the sensitivity of compressible/incompressible

solvers to state-estimation procedures

The implementation of data assimilation strategies to numerical flow solvers is partic-

ularly challenging. The numerical strategies used for solving compressible or incom-

pressible flows are fundamentally different, and the sensitivity of numerical solvers to

state-estimation procedures can vary depending on the type of flow.

The particular feature of the incompressible form of Navier Stokes equation is

that pressure and velocity fields are implicitly coupled. If temperature gradients are

sufficiently low, the energy equation is decoupled from the other conservation laws

and the temperature can be considered just as a passive scalar. Segregated solvers are

the most widely used approaches to solve such systems. Amongst the most used algo-

rithms in LES are the Pressure Implicit with Splitting of Operators (PISO) method

(Ferziger & Peric, 1996; Jasak, 1996) and the Pressure Implicit Method for Pressure

Linked Equations (PIMPLE) (Holzmann, 2017) methods. The PIMPLE algorithm

is actually a combination of the PISO and the Semi Implicit Method for Pressure

Linked Equations (SIMPLE) (Ferziger & Peric, 1996; Jasak, 1996) algorithms.

Let us consider the basic structure of the segregated PISO solver used for in-

compressible flow. The starting point is the incompressible Navier-Stokes equations
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(2.14). Using an implicit time discretization and a linearization of the non-linear term

about the previous time-step, one obtains the following discretized system:

𝑎𝑝u𝑝 = −
∑︁

𝑁

𝑎𝑁u𝑁 + Φ0 (u0)−∇𝑃 = Φ (u)−∇𝑃 (2.27)

where 𝑎𝑝 and 𝑎𝑁 are coefficients coming from the discretization of the momentum

equation, u is the velocity vector and 𝑃 is the pressure. The subscripts 𝑝 and 𝑁 are

coefficients coming from the discretization process at a given mesh element and its

neighbours, respectively. Φ0 represents an operator applied on a known velocity from

the previous time step.

The PISO algorithm operates in the following steps:

1. A predicted velocity field u* is obtained from (2.27) by evaluating ∇𝑃 with the

pressure solution obtained on the previous time step.

2. u* does not usually comply with the zero-divergent condition:

∇ · u =
∑︁

𝑓

𝑆 × u𝑓 = 0 (2.28)

u𝑓 =

(︂
Φ (u)

𝑎𝑝

)︂

𝑓

−
(︂∇𝑃
𝑎𝑝

)︂

𝑓

(2.29)

where the subscript 𝑓 indicates that the terms to which it applies are inter-

polated on the face centres of the mesh elements and 𝑆 is the corresponding

surface area. Combining (2.28) and (2.29), one can obtain a Poisson equation

for 𝑃 :

∇ ·
(︂∇𝑃
𝑎𝑝

)︂
= ∇ ·

(︂
Φ (u)

𝑎𝑝

)︂
=

∑︁

𝑓

𝑆 ×
(︂

Φ (u)

𝑎𝑝

)︂

𝑓

. (2.30)

The first pressure guess used to obtain u* in step 1 is updated using (2.30).

3. The pressure field obtained in step 2 does not satisfy (2.27). The velocity field

is then updated with the new pressure field to obtain u** and the procedure is

repeated until convergence.
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The PISO algorithm has a predictor/corrector structure, where a first prediction is

then corrected to satisfy the divergence-free condition. This can be exploited in state

estimation procedures. Meldi and Poux, 2017 have adapted the PISO algorithm

to perform Kalman filtering and demonstrated the feasibility of the approach for

Data Assimilation purposes. In the assimilation strategy they devised, the predicted

velocity obtained in step 1 of the PISO algorithm, 𝑢*, is updated with observation.

Thereafter, the divergence-free condition is imposed on the estimated field via the

PISO loop. The intrinsic structure of such algorithms thus appear to be better suited

to the application of state-estimation procedures, in so far as the velocity field can

be assimilated without any pressure field knowledge. Pressure and velocity will just

adapt to each-other via the PISO loop.

This has an important physical consequence: the flow information carried by the

estimate, which is a consequence of combining model and observation, is propagated

in the entire domain in a single time-step. This constitutes a very powerful regulari-

sation technique natural to the PISO algorithm. From another perspective, one could

also conceive the state-estimate obtained in step 1 as a disturbance to the original

predicted flow. This disturbance tends to propagate to the entire domain as the flow

adapts to it. Its characteristic propagation speed is necessarily linked to the speed

of the sound in the flow. However, in the incompressible flow context, the speed of

sound is infinity, thus the flow is regularized in a single time-step.

Data assimilation techniques are more complex to apply to the compressible form

of Navier Stokes equations, since all variables become strongly coupled and the time

integration used needs to update the whole vector of conservative variables. DA

algorithms introduce optimized state estimation based on probabilistic considerations,

but do not naturally include any physical constraint enforcing the conservativity of

state corrections. The direct application of state correction on variables (the velocity

for example) considered individually, is thus likely to lead to the continuous generation

of artificial waves. Iterative solvers with implicit time-marching schemes might be

beneficial in this kind of situation, since they can provide a natural regularization of

the flow. This issue is partially addressed through the algorithm proposed in this
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work.

2.6 Iterative methods for flow calculation

Let us focus on the resolution methods available for implicit time integration of partial

differential equations. This type of time discretization strategies can be convenient

for state-estimation problems due to the iterative nature of the resolution methods

used to solve the system.

We have seen that, for both implicit and explicit methods for time integration,

the discretization process produces an algebraic system of equations for the unknown

flow variables at each node. This system of equations might be huge in realistic CFD

applications. For explicit methods, the resolution of the system is straightforward;

however, in the case of implicit methods, a full algebraic system has to be solved,

i.e., a matrix has to be inverted at each time step. In this section, we focus on the

existing strategies to efficiently solve the type of algebraic system of equations that

one encounters when using implicit time-discretisation schemes. In particular, we

focus on the multigrid method, which is a key ingredient of the algorithm proposed

in this work.

There are two large families of methods available for resolving linear algebraic

systems: direct methods and iterative methods. In direct methods, the objective

is to develop algorithms capable of efficiently inverting Φ with the least number of

operations and thus to obtain the exact solution of the system. In iterative methods,

one starts from an approximated solution, which is progressively corrected towards the

exact solution. In practice, direct methods are seldom used in CFD, since they cannot

be used directly with non-linear systems and computational costs do not scale well

with increasing mesh size. The resolution methods used for implicit time integration

are thus almost exclusively iterative.

Iterative and direct methods for resolving algebraic systems of equations have

been treated extensively in the literature. The interested reader is referred to Barrett

et al., 1994 and Saad, 2003 (among others) for a comprehensive review. In this PhD
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study, we focus on the Multigrid Method, which is an efficient iterative technique,

with the highest convergence rate observed amongst all the other iterative methods.

The iterative nature of multigrid strategies together with their multilevel structure

could be exploited in applications of DA algorithms to unsteady flow to i) ensure

numerical stability and ii) reduce the computational costs.

2.6.1 Multigrid Methods

Let us consider a linear system of equations of the form

𝐴u = f (2.31)

Note that (2.31) can be linked with (2.26), since 𝐴 = Φ and f = Ψuk-1 + Bbk-1. A

classical iterative scheme will be used for the resolution of this system. To this end,

a fixed point iteration strategy can be employed. Let us start by decomposing the

matrix

𝐴 = 𝑀 −𝑁, (2.32)

where M is a non-singular matrix. The fixed point system can thus be written as

u = 𝐹u +𝑀−1f , (2.33)

where 𝐹 = 𝑀−1𝑁 . Given an initial guess u0, a fixed point iteration can be applied

to (2.33)

ul+1 = 𝐹ul +𝑀−1f , 𝑙 = 0, 1, 2, 3, ..., (2.34)

where 𝑙 is the iteration step. The error at an iteration step is given by

el = u− ul, (2.35)

and the residual by

rl = f − 𝐴ul. (2.36)
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Since (2.31) can be written as

𝐴
(︀
ul + el

)︀
= f , (2.37)

it follows that

𝐴el = f − 𝐴ul = rl, (2.38)

and the residual correction equation can be written as u = ul + el.

In multigrid methods, one can use (2.38) for updating ul. An approximation of the

error ẽl is computed from (2.38), and an update for ul is calculated as ul+1 = ul + ẽl.

This iterative procedure is performed on a hierarchy of grids.

The basis for this class of methods comes from an observation on the rate of

convergence of iterative methods, which is controlled by the eigenvalues of the method-

dependant iteration matrix. On a general basis, low-frequency components in the

error spectrum are the slowest to be damped in the iterative procedure, while higher

frequencies are rapidly smoothed. The multigrid method exploits this property: with

a few iteration sweeps through a given initial mesh, the high frequency part of the

error spectrum will be significantly damped. The remaining low frequencies could be

transferred to successive coarser grids, where this error automatically becomes part

of the high frequency range, due to the change in spatial resolution. This strategy

allows to progressively damp the low-frequency error in the error spectrum using a

hierarchy of coarser grids.

The last necessary ingredient to formalize this method is the definition of a transfer

function (or projection operator Π) enabling the communication between different

grids. For this, the simplest option is linear interpolation. A schematic representation

of a three-level multigrid strategy in a V-cycle arrangement is presented in Fig. 2-3

as an example.

It should be noted that the interpolation of a flow solution from a coarse grid

to a fine grid or vice-versa may not guarantee conservativity, i.e., the total energy

of the flow might not necessarily be conserved thus introducing a systematic error

in the transformation. This is not necessarily an issue in the multigrid strategy,
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Figure 2-3: Schematic illustration of a three-level multigrid V-cycle.

since the final iterative sweeps are always performed on the fine grid, thus ensuring

the highest possible level of accuracy. Therefore, the multigrid strategy acts as an

“accelerator” of the classical iterative procedure, where a single grid is used. In the

context of the sequential algorithm that we will present in the next chapters, state

updates on the finest level of the multigrid approach will be obtained from statistics

calculated on a coarser, lower-fidelity model. In this situation, projection operators

have to be used and “conservativity” is broken twice: the statistical state update

does not respect the original model and the interpolators used disrupt even more the

total energy of the flow. However, the projection term is used to extend a correction

term calculated on the coarse grid to the fine grid. This correction term is normally

orders of magnitude lower than the actual magnitude of the variables of the flow, thus

interpolation errors can be neglected. One could also consider interpolation errors as

an intrinsic modelling uncertainty, degrading the overall confidence in the forecast.

Multigrid approaches are extensively used in CFD applications (Ferziger & Peric,

1996; Hackbusch, 1985). The solution is found on the computational grid by updating

an initial guess via multiple estimations obtained on a hierarchy of discretizations.

Two well-known families of multigrid approaches exist, namely the algebraic multigrid

method and the geometric multigrid method. With algebraic multigrid methods (see

Falgout, 2006 and references therein), a hierarchy of operators is directly constructed
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from the state transition model (represented by Ψ and Φ). The geometric multigrid

methods provide the solution via a set of operations performed in two (or more)

meshes. In this PhD study, we focus on the latter technique, and we consider the

simplified case of two grids. Thereafter, the variables defined on the fine grid will be

denoted with the superscript F (uF for instance), and those defined on the coarse grid

will be denoted with the superscript C (uC for instance).

The coarse-level representation uC is usually obtained suppressing multiple mesh

elements from the initial fine-level one uF or by linear interpolation. This operation

may be defined by a coarsening ratio parameter 𝑟C, which indicates the total number

of elements on the fine grid over the number of elements conserved in the coarse grid.

Among the numerous algorithms proposed for geometric multigrid, we use the Full

Approximation Scheme (FAS), which is a well-documented strategy (Brandt, 1977;

Wesseling & Oosterlee, 2001).

Let us recall the general two-time levels implicit discretization of a non-linear set

of partial differential equations:

Φ
(︀
uk

)︀
= Ψ

(︀
uk

)︀
+ B

(︀
bk-1

)︀
:= c. (2.39)

The general formulation of two-grid algorithm that is followed in the present work is

described hereafter. The time subscript 𝑘 is excluded for clarity. The superscript 𝑙

represents the iteration step of the procedure.

1. Starting from an initial solution on the fine grid (u0)
F, an iterative loop (or

smoothing operation which can be linear or non-linear) is used on (2.39) to

obtain a first solution (u1)
F. A residual (𝛿1)

F

= cF − ΨF (u1)
F is calculated,

where the high-frequency error components in the error spectrum are smoothed.

2. (u1)
F and (𝛿1)

F are projected from the fine grid to the coarse grid space via

a projection operator ΠC, so that (u1)
C and (𝛿1)

C are obtained. Similarly, the

state transition model ΨF is projected on the coarse grid (i.e., re-estimated

based on the projection of the solution of the fine grid onto the coarse grid) to

obtain ΨC. Finally, we evaluate cC = ΨC (u1)
C

+ (𝛿1)
C.
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3. A few iterative sweeps are performed on (2.39) to obtain (u2)
C on the coarse

grid using as initial solution (u1)
C.

4. The updated variable on the fine grid is obtained as (u2)
F

= (u1)
F

+ΠF

(︀
(u2)

C − (u1)
C
)︀

where ΠF is a projection operator from the coarse grid to the fine grid.

5. At last, the final solution (u3)
F is obtained with an iterative loop applied to

(2.39) on the fine grid, starting from the intermediate solution (u2)
F.

This procedure can be repeated multiple times imposing (x0)
F

= (x3)
F at the

beginning of each cycle. When the convergence is reached, the fine grid solution at

time instant 𝑘 is equal to (x3)
F. The strategy used when more than two discretization

levels are employed is similar. In this work, the two projection operators (ΠF and ΠC)

are chosen to be 4-th order Lagrange interpolators.

The inherent algorithmic structure of the multigrid strategy could be exploited

in state-estimation problems where flows are directly updated using observation and

error statistics. The idea is to let the flow “adapt” to the imposed correction through

the iterative loops of the multigrid algorithm. But a compromise is needed between

regularization and state correction: the updated state is naturally closer to the true

state of the flow, but the stability of the numerical simulation needs to be assured

and thus the need of “regularization”.
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Chapter 3

Data assimilation: A general overview

and a focus on sequential algorithms

3.1 Introduction

The key ingredients of the numerical resolution methods of unsteady flows have been

presented in the previous chapter. In a flow simulation, the discretization strategy

employed together with the imposed boundary conditions constitute the state tran-

sition model, or model of the system. State predictions obtained from models are

necessarily affected by uncertainty Nonetheless, these predictions can be corrected

by observation. Data assimilation provides the mathematical tools necessary for this

venture.

What does Data Assimilation (DA) mean? The simplest explanation one could

give is that it is a method for combining experimental measurements/observations

with model realizations (CFD) with the objective of improving the state prediction

provided by the latter. More specifically, DA provides a sound and elegant mathe-

matical framework for this endeavour. Observations supply information of the “real”

flow. However, they are usually noisy and limited in time and space. One could think

of simply interpolating/extrapolating the data, but this does not work since the phe-

nomena analysed in the domain of fluid mechanics are strongly non-linear. On the

other hand, with CFD one can obtain complete noise-free map representations of
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flow phenomena. Moreover, models can be used to perform predictions about future

states. However, it is well known that due to inherent epistemic uncertainty (system-

atic errors), model predictions are prone to drifting. It is also important to note that

even if the model contained no systematic errors, initial and boundary conditions can-

not be known with perfect precision. Long term behaviour of flows is unpredictable

due to the high sensitivity of the N-S equations to initial and boundary conditions, in

particular for high Reynolds regimes. To address this issue, model predictions have

to be corrected by reality and DA provides the mathematical tools necessary for the

optimal fitting of the model output with observations.

The DA problem is formulated as an optimization procedure where the objective is

to find the optimal match between model output and measurement. This optimization

procedure can be performed using at least two different strategies:

1. Classical optimization procedures involving the minimization of a positive, quadratic

cost function that expresses the mismatch between measurements and model.

This is usually defined as a least-squares error minimization problem.

2. Statistical optimization involving the minimization of the uncertainty of the

model output with observation data.

3.2 Uncertainty in model and observation

Model and observations are the two sources of information that allow to analyse

physical systems, but the data gathered from them is imperfect and limited. Before

establishing the optimal mathematical framework for combining them, a method to

rigorously quantify the uncertainty in models and observations is required. The field of

uncertainty quantification (UQ) provides the tools necessary to replace the subjective

concept of confidence in the data by a rigorous and mathematical quantification of

the uncertainty in a system.

There are two main types of uncertainty: epistemic and aleatory. On the one

hand, epistemic uncertainty is related to the imperfect knowledge of the system and
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it can be reduced; however, its sources are not usually known a priori. On the other

hand, some systems are inherently noisy with a built-in randomness (or stochasticity).

This aleatory uncertainty is irreducible.

Let us take a closer look at the uncertainty present in models (CFD in our case)

and the errors related to experimental measurements. Model assumptions, discretiza-

tion and imperfect knowledge of boundary/initial conditions distort the output that

one can obtain from numerical simulation. While most of the uncertainty present in

CFD is of epistemic nature, i.e., it can be reduced by using more accurate models

and better discretization strategies, boundary and initial conditions in realistic sim-

ulations exhibit aleatory uncertainty since they cannot be known perfectly. In the

case of experimental measurements, there is epistemic uncertainty related to the im-

perfect characterization of the set-up and miss-calibration, as well as random errors

caused by inherently unpredictable fluctuations in the readings of the measurement

apparatus.

The uncertainty in both model and observation can be represented via probability

density functions (PDF), as shown in Fig. 3-1. To make predictions about future

states, one can forecast a prior distribution using UQ tools, to obtain a probabilistic

description (PDF) of future states. If observation is available, the obtained model

prediction can be corrected with DA tools. An accurate quantification of the uncer-

tainty is crucial in data assimilation methods, since it allows to meaningfully weight

the different ingredients of the assimilation process.

UQ is a wide domain, covering many problems in the natural sciences. A detailed

description of UQ methods, although important to DA, is out of the scope of this

present research work. Interested readers are referred to Owhadi et al., 2013 and Le

Maître and Knio, 2010 for a complete, mathematical overview of UQ.

3.3 Notation in DA problems

The necessary ingredients to formalize the DA problem have been presented. Two

sources of information are available, and their uncertainty is quantified via PDFs. In
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CFD Observation

Figure 3-1: Schematic representation of the uncertainty in model (CFD) and obser-
vation, both depicted via probability density functions (PDF).

this section, we introduce the notation for DA problems used throughout this research

work. Our notation is identical (when possible) to the one formalized by Ide et al.,

1999 and used in other DA books (Asch et al., 2016). We consider the evolution of a

system from time 𝑡k-1 to time 𝑡k obtained with a discrete physical model:

xk =ℳk:k-1 (xk-1,𝜃k) + 𝜂k, (3.1)

where xk represents the state vector of dimension 𝑁𝑥 at an instant 𝑡k,ℳk:k-1 is the

non-linear model operator, and 𝜃k contains the parameters that affect the model. The

term 𝜂k is associated with uncertainties in the model prediction which, as discussed

before, could emerge, for example, from incomplete knowledge of initial/boundary

conditions. These uncertainties are modelled by a zero-mean Gaussian distribution

characterized by a covariance Qk, i.e. 𝜂k ∼ 𝒩 (0,Qk). An error covariance matrix,

Pk = E
[︂
(xk − E(xk))

(︁
xk − E(x

f/a
k )

)︁⊤
]︂
, associated to xk characterizes the total un-

certainty in the system at a time 𝑡k. As we will see later in the manuscript, even

though the real distributions might not be Gaussian, this assumption is very advan-

tageous from a mathematical point of view.

Throughout this manuscript, we used the standard notations employed in data

assimilation studies. We will therefore make the difference betweenℳk:k-1, which is

the non-linear dynamical model, and Mk:k-1, which is its linearized version. In this
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last case, (3.1) can be written as

xk = Mk:k-1xk-1 + 𝜂k, (3.2)

Indirect observations of xk are available in the components of the observation

vector yo
k. These two variables are related by:

yo
k = ℋk(xk) + 𝜖ok. (3.3)

where ℋk is the non-linear observation operator which maps the model state space

to the observed space. The available measurements are also affected by uncertain-

ties which are assumed to follow a zero-mean Gaussian distribution characterized

by a covariance Rk, i.e. 𝜖ok ∼ 𝒩 (0,Rk). The so-called observation error covariance

matrix, R, describes instrument (aleatory uncertainty) and calibration (epistemic un-

certainty) errors in the available measurement data. The dimension of the observation

vector yo
k, 𝑁𝑦, is usually order of magnitudes smaller than the dimension of the state

𝑁𝑦 ≪ 𝑁𝑥. The linearized version of (3.3) can be written as

yo
k = Hkxk + 𝜖ok, (3.4)

where Hk is the linearized observation operator.

In the standard DA notation, subscripts are used to denote time/space indexes;

superscripts refer to the nature of the DA variables: “a” for analysis (the estimate

obtained with the DA procedure), “b” for initial guess or background, “f” for forecast,

“o” for observation and “t” for the real or true state of the system (usually unknown).

3.4 Variational DA

Two sources of information for describing fluid flow have been identified. The notation

used to describe them has been defined in the previous section. We are now ready

to introduce the first class of DA methods that aim at combining experimental and
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numerical data: variational DA.

How do we combine observation and model in this framework? In variational

DA, one can introduce a cost function describing the mismatch between observation

and model with the objective of minimizing it. These methods are based on optimal

control theory and require numerical optimization techniques. In the minimization

procedure, the gradient of the cost function is sought with the aid of the adjoint

method.

In this section, the basic ingredients required for the formulation of the variational

DA problem are presented. Thereafter, 3D-VAR and 4D-VAR methods are briefly

introduced. A literature review of the applications of variational methods to fluid

mechanics problems is also provided, with a focused view on the strong points and

the difficulties that one faces when applying these class of methods to the analysis of

fluid flows.

Variational DA methods have been extensively studied in the context of weather

forecast for decades. Solution methods for variational DA problems involve the com-

bination of skills from different mathematical domains: functional analysis, numerical

optimization, partial differential equations, variational calculus, . . . The interested

reader is referred to the following bibliographic references for an exhaustive guide to

these different fields: Courant and Hilbert, 1989 for variational calculus; Kreyszig,

1978 and Reed and Simon, 1981 for functional analysis; and Nocedal and Wright, 2006

for numerical optimization techniques. Furthermore, we recommend the book written

by Asch et al., 2016 and the thesis by M. Rochoux, 2014, which cover comprehensively

both statistical and variational approaches to DA.

3.4.1 Formulation of the 3D-VAR and 4D-VAR methods

The formulation of the variational DA problem is based on two key ingredients: cal-

culus of variations and the adjoint method. Considering that variational methods

were not used in this PhD study, these two key elements are not treated in detail in

this manuscript. In short, the partial differential Euler-Lagrange equations coming

from the calculus of variations mathematical field provide a general framework for
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minimizing functionals, and the adjoint method makes this minimization problem

computationally tractable. Let us review the key points in the formulation of the

two well-known variational DA methods: 3D-VAR and 4D-VAR (Asch et al., 2016;

Talagrand, 2014).

The 3D-VAR and 4D-VAR methods are presented in the discrete context. Con-

sider the following cost function where the time subscript is dropped for simplicity:

𝒥 (x) =
1

2

(︀
x− xb

)︀T
B-1

(︀
x− xb

)︀
+

1

2
(H (x)− yo)TR-1 (H (x)− yo) (3.5)

where x,xb and yo represent the target, background and observed state, respectively;

H represents the observation matrix (linearized version of ℋ) and B and R are

the background and observation error covariance matrices, respectively. This cost

function attempts to combine an a priori knowledge about the state of the system

(background) with an actual observation of the state. The target state, xa, should

minimize the deviation to the background state,
(︀
x− xb

)︀
, and the deviation to the

observed state, (H (x)− yo), taking into account observation and background errors

(R and B, respectively).

3.4.1.1 3D-VAR

Consider the state of the system at a time 𝑡k. If a background state, xb = xt + 𝜖b,

is available as well as an observation of the form yo = Hxt + 𝜖o, the minimization of

the cost function (3.5) produces an estimate at the discrete time 𝑡k. This procedure

is known as three-dimensional variational analysis (3D-VAR).

It is interesting to note that there is a very well known analytical solution for the

minimization of the cost function in (3.5). One can take the gradient of 𝒥 and apply

the optimality condition

∇𝒥 (xa) = B-1
(︀
xa − xb

)︀
+ HTR-1 (yo −Hxa) = 0, (3.6)
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where xa is the target analysis state

xa = argmin𝒥 (x) (3.7)

The well-known solution of this equation is

xa = xb + K
(︀
yo −Hxb

)︀
, (3.8)

where K represents the gain matrix,

K = BHT
(︀
R + HBHT

)︀−1
. (3.9)

The step-by-step resolution of (3.6) is not reported here for simplicity. A detailed

resolution of this equation can be found in any DA books (see Asch et al., 2016).

The solution obtained for (3.7) shows that the cost function 𝒥 presented in (3.5) is

minimized when xa is constructed as a linear combination between a background state

and a vector expressing the difference between measurement and background, usually

denominated as innovation vector d = yo−Hxb. The innovation vector is multiplied

by a gain matrix that depends strongly on the error statistics of background and

measured state. A closer look at the calculation of K shows that, in the scalar case,

the denominator term, R+HBHT, represents the sum of background and observation

error covariances in the observation space, while the numerator, BHT, expresses only

the background error. This is analogous to a variance ratio

𝜎b

𝜎b + 𝜎o
, (3.10)

where 𝜎b and 𝜎o represent the background and the observation error variances,

respectively. This shows that the optimization of the cost function in (3.6) produces

a result with a strong statistical tie.

In real situations, the dimensions of the error covariance matrices can be so large

that their storage/manipulation can be problematic. The direct calculation of the
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gain K with (3.9) is thus usually infeasible.

To avoid this issue, the cost function defined in (3.5) can be minimized in an

iterative fashion by combining an adjoint approach for the computation of the gradient

with a descent algorithm for obtaining the direction where minima can be found.

State-of-the-art numerical optimization techniques allow performing this task in a

computationally efficient manner (Nocedal and Wright, 2006).

3.4.1.2 4D-VAR

Consider a situation where multiple observations over a time interval are available.

These observations are available at a succession of instants, 𝑡k, 𝑘 = 0, 1, ..., 𝐾, and

can be expressed via (3.4).

Model dynamics during the time interval analysed can be represented using (3.2).

However, the model is considered to be deterministic, i.e. 𝜂k = 0. With known

background initial state, xb
0, and associated covariance matrix, Pb

0, one can slightly

modify the cost function presented in (3.5) and express it as

𝒥 (x0) =
1

2

(︀
x0 − xb

)︀T (︀
Pb

0

)︀-1 (︀
x0 − xb

)︀

+
K∑︁

k=0

1

2
(Hkxk − yo

k)
T (Rk)

-1 (Hkxk − yo
k) . (3.11)

The state sought with the minimization of 𝒥 is the initial state x0 of the system

that best fits the available observation. When the model is considered to be error-free

(deterministic approach), the analysis performed to find x0 is denominated strong

constraint 4D-VAR. This means that the sequence of states obtained through the

optimization approach, starting from x1 to xK, have to strictly respect the model

equation (3.2). In Fig. 3-2, the differences between 3D and 4DVar are depicted.

While 3DVar performs an analysis at a specific time instant, 4DVar performs an

optimization procedure over a defined assimilation time window.

If model uncertainty is considered in (3.2), and if it is assumed that model errors

81



Figure 3-2: 3DVar vs 4DVar. While 3DVar is performed at a specific time instant
with a single observation, a 4DVar analysis is performed over a time window including
multiple observations.

are uncorrelated in time and uncorrelated with the background and observation errors,

the objective function becomes

𝒥 (x0,x1, ...,xK) =
1

2

(︀
x0 − xb

)︀T (︀
Pb

0

)︀-1 (︀
x0 − xb

)︀

+
1

2

K∑︁

k=0

(Hkxk − yo
k)

T (Rk)
-1 (Hkxk − yo

k)

+
1

2

K∑︁

k=1

(xk −Mk:k-1xk-1)
T (Qk)

-1 (xk −Mk:k-1xk-1) .(3.12)

Note that the cost function is now dependent on all the successive states and not

only on the initial state. This analysis is denominated weak constraint 4D-VAR.

As discussed before, for the optimization procedure to be computationally feasible,

one has to resort to the adjoint method. The details of this procedure are not reported

here. The interested reader is referred to Talagrand, 2014 and Asch et al., 2016 for a

detailed description of the usage of the adjoint methods in variational DA.
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3.4.2 Applications of Variational DA algorithms for fluid me-

chanics problems: a critical review

We proceed now with a review of the usage of variational methods in DA problems for

fluid mechanics applications. We will see that starting from the late 2000s, researchers

in fluid mechanics have shown increasing interest in variational DA algorithms. Today,

this is a hot topic of research in the community. Variational DA methods can be

applied to a wide range of problems such as reconstruction of instantaneous/mean

flows, estimation of realistic boundary conditions and data-driven models.

→˓Flow reconstruction

Variational DA tools have been extensively used for flow reconstruction problems,

where the target function is defined in terms of the deviation of a model (e.g., steady

state solution of the Navier Stokes equations) to available observation. Examples

of the usage of this approach in fluid mechanics are vast. At first, these methods

were aimed at improving particle image velocimetry (PIV) techniques. Classical PIV

algorithms had relied on correlation methods to obtain the velocity fields. In Ruhnau

et al., 2005, the authors extracted the velocity fields from PIV measurements with

a variational approach, where the velocity field obtained through minimization of a

cost function also satisfies additional physical constraints (model embedded in this

cost function). Different physical regularization techniques were investigated, such as

imposing the Stokes equations (Ruhnau & Schnörr, 2006) or the unstationary vorticity

transport equations (Ruhnau et al., 2007) to the reconstruction of the velocity fields.

Later, other authors have used the full Reynolds-Averaged Navier-Stokes operator

to constrain the minimization of the cost function in the flow reconstruction proce-

dure. Foures et al., 2014 attempted to reconstruct the time-averaged velocity fields

from a succession of PIV snapshots of the flow around a cylinder at low Reynolds

number using a variational approach. Similarly, Symon et al., 2017, reconstructed

the average flow around an idealized airfoil from 2D PIV measurements under high-

Reynolds conditions, and more recently, Symon et al., 2020 combined a variational
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DA approach with resolvent analysis for reconstructing mean and unsteady flows.

→˓Improvement of reduced-order models

The improvement of reduced-order models for fluid mechanics with variational

DA techniques has also been explored. D’adamo et al., 2007 used a variational ap-

proach together with PIV measurements to estimate the dynamic coefficients of a

POD Galerkin model. Artana et al., 2012 investigated strong and weak constraint

variational methods to estimate the initial state of the POD modes as well as the

reduced-order model coefficients in an attempt to reduce the stability issues inherent

to standard POD Galerkin methods. Tissot, 2014 used the 4D variational method to

derive POD and DMD reduced-order models for the turbulent wake behind a cylinder

from PIV measurements.

→˓Estimation of realistic boundary conditions and sensitivity of flow to

changes in initial/boundary conditions

The determination of realistic boundary conditions in fluid mechanics situations

is a problem that can also be tackled with variational DA algorithms. Gronskis et al.,

2013 generated realistic inflow boundary conditions for DNS simulations from noisy

data using a variational approach. Theoretical analysis in turbulence, tackling the

sensitivity of the flow with respect to initial conditions, have been performed using

a variational approach in Mons et al., 2014. Using a similar approach, Mons et al.,

2017 and Mons and Marquet, 2021 investigated the use of variational methods to

develop an optimal sensor placement technique which consisted in identifying flow

regions that have the greatest sensitivity to changes in initial/boundary conditions

or model parameters.

→˓Hybrid methods

One of the major drawbacks of variational DA methods is the need of adjoint and

tangent linear operators, which can be very cumbersome to derive and to maintain. To

avoid this issue, fluid mechanics researchers are starting to resort to hybrid ensemble
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variational methods (usually called EnVAR methods) where the sensitivity of the

cost function is no longer evaluated with the adjoint method but via an ensemble of

realizations. Yang et al., 2015 compared the performance of the traditional 4D-VAR

method to the performance of the hybrid ensemble-based 4D-VAR for reconstructing

flow fields from incomplete noisy data. Similarly, Mons et al., 2016 compared the

estimation capabilities of variational (4D-VAR), sequential (EnKS) and ensemble-

variational (4DEnVAR) data assimilation techniques in the context of unsteady CFD.

It was demonstrated that the three techniques can be used to accurately reconstruct

the initial and boundary conditions of an unsteady 2D flow from noisy observations.

Other authors have also reported successful application of the 4DEnVAR method

to fluid mechanics problems. In Yang and Mémin, 2017, the authors used this data

assimilation technique to infer both the initial conditions and the inhomogeneous

time-varying parameters of a stochastic subgrid model. Mons et al., 2019 reported

successful reconstruction of the spatial distribution of a scalar source in a turbulent

channel flow from remote measurements of concentration using ensemble variational

techniques. In a very recent work of the same author (Mons et al., 2021), corrections

to LES-subgrid models were developed through variational assimilation of measured

statistical quantities.

→˓Weak-constraint 4D-VAR applications

Finally, an important aspect, which is yet to be fully explored, is the consideration

of modelling errors in the optimization of the cost function. 4D-VAR applications in

fluid mechanics are usually strongly constrained, i.e., the model is considered to be

deterministic. Weak constraint 4D-VAR applications are less common due to their

increased computational cost. Moreover, when modelling uncertainty is taken into

account, both modelling and observation errors are usually considered in terms of

additive Gaussian noise (diagonal covariance matrices Q and R). It is also common

to assume that model and observation errors are uncorrelated, but in real applications

this might not be realistic (Tandeo et al., 2020).

Chandramouli et al., 2020 have partially tackled this issue by considering a stochas-
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tic subgrid model to the 3D Navier-Stokes equations that accounts for unresolved

turbulent scales of motion. This stochastic subgrid model was parametrized, and the

associated coefficients were optimized with a 4D variational approach. The assimila-

tion strategy proposed is a compromise between strong and weak variational methods,

where the model error is not considered from the pure non-informative Gaussian point

of view but rather through a parametrized stochastic model.

→˓Conclusions

In conclusion, applications of variational DA methods in fluid mechanics problems

have been extensively used in the last years. These methods provide a robust strategy

for combining experimental and numerical data, an endeavour still at an early stage

in fluid mechanics research. Here are some of the strong points of variational DA

strategies applied to fluid mechanics:

1. The 4DVar method has proven to be an excellent tool for flow reconstruction

from limited observation data.

2. Full non-linear analysis can be performed with variational DA. Non-linear model

and observation operators do not pose an intrinsic challenge to the existing

state-of-the-art numerical optimization techniques.

3. Variational methods do not require the explicit propagation of the error co-

variance matrices, as it is the case in statistical estimation techniques (KF).

This procedure is implicit within the optimization of the cost function, which

significantly reduces the computational costs of the assimilation and makes the

4D-VAR an attractive operational solution (as it is the case in numerical weather

forecast).

However, there are significant challenges that one faces when applying variational

DA methods to fluid mechanics problems:

1. Variational DA methods require the implementation of an adjoint code to com-

pute the gradient of 𝒥 . This can be highly code-intrusive and extremely cum-
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bersome to develop. Ensemble-variational methods allow avoiding this issue,

providing an interesting alternative to classical variational approaches.

2. In variational DA methods, the analysed state is obtained through the mini-

mization of a cost function. The propagation of the error covariances is im-

plicit within this optimization procedure. The advantage of this is a significant

computational cost reduction. At the same time, this represents an important

drawback since, depending on the application, accurate knowledge of the error

statistics at a given instant can be important.

3. In 4DVar methods, the gradient of 𝒥 with respect to the control vector is ef-

ficiently evaluated with the adjoint method. However, depending on the size

of the state vector, computational costs can increase significantly. This is es-

pecially the case in 3D unsteady flow, since the forward solution needs to be

stored in memory for the back propagation via the adjoint code.

3.5 Sequential data assimilation in fluid dynamics

We have introduced variational DA strategies and reviewed multiple examples of flow

analysis performed with the tools that this class of methods provides. In this section,

we will introduce a second approach to DA directly based on the Bayes’ theorem:

sequential Data Assimilation. It should be noted that even though variational DA

algorithms are usually presented in the optimal control theory framework, they can

also be derived with the Bayesian approach.

3.5.1 Introduction

From the beginning of times, scientists have tried to predict future events, whether

it be in the field of astronomy, agriculture, or meteorology. With the discovery of the

natural laws, there have been passionate debates on whether the laws of physics can or

cannot provide perfect predictions (determinism vs indeterminism). In numerous ap-

plications, deterministic approaches can provide highly accurate forecasts. However,
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sometimes our numerical models for forecasting events just don’t work. The causes for

this can be related to various reasons, among which are erroneous model assumptions,

discretization techniques used, or imperfect knowledge of initial/boundary conditions

(Asch et al., 2016).

The type of models used in fluid mechanics tend to be strongly non-linear. Direct

numerical simulations of turbulence attempt to simulate turbulence itself, which has

an inherent unpredictable nature. It is obvious that the forecasts that one can perform

with CFD can be affected by the lack of accuracy in the initial/boundary conditions

of the model. Moreover, CFD researchers and engineers are usually forced to resort to

reduced-order modelling (e.g., turbulence modelling), artificially increasing thus the

uncertainty in the forecast. For all these reasons, purely deterministic predictions are

doomed to drift from reality. Accurate forecasts require formal consideration of the

uncertainty present in the system. This can be done with a stochastic/probabilistic

approach.

3.5.2 Bayes’ Theorem

How to condition numerical forecasts? The best way to approach this problem is by

taking a probabilistic approach. Luckily, an elegant mathematical framework can be

used for that. Bayes’ theorem is a mathematical formula for evaluating conditional

probability and it is stated as following:

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
. (3.13)

This formula provides an updated predicted probability or posterior (an updated

knowledge of the system), 𝑃 (𝐴|𝐵), that combines the prior knowledge of the system,

𝑃 (𝐴), with new observation, 𝑃 (𝐵), given the conditional probability 𝑃 (𝐵|𝐴), which

can be interpreted as the likelihood. This is at the core of what we are trying to

do with DA. Our final objective is to improve the output of our numerical models

by assimilating more and more evidence (observation) of the system as it becomes

available.
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3.5.3 Formulation of the estimation problem in the Bayesian

framework

Now that we have a very promising candidate in the form of the Bayes’ theorem

for combining data and model, how do we formulate Bayes’ rule in the context of

fluid mechanics analysis? For that, we need a dynamical model (3.1) to describe the

evolution in time of the system xk. Available observation data, yo
k, can be defined

using (3.3).

Model and observation data are affected by uncertainty. To reflect this, both

sources of information are represented as random variables described in terms of

probability density functions (PDFs). The objective is to determine the real state

of a system by “fusing” model and observation. This combination procedure is also

known as state estimation. From a Bayesian point of view, the estimator should

provide the posterior distribution 𝑃 (x|yo) of the random variable x conditioned on

the observation yo. This can be obtained by directly applying Bayes’ theorem

𝑃 (x|yo ) =
𝑃 (yo|x)𝑃 (x)

𝑃 (yo)
. (3.14)

In (3.14), three key components are found: 𝑃 (x) is the PDF describing the most

accurate knowledge of the system prior to assimilation of observation, 𝑃 (yo|x) is the

likelihood or joint probability of the observation conditioned on the true state of the

system (the observation one would obtain if the true state of the system was known),

and 𝑃 (yo) represents the marginal distribution or total probability of yo

𝑃 (yo) =

∫︁ ∞

−∞
𝑃 (yo|x)𝑃 (x) dx, (3.15)

and acts as a normalization factor.

Let us now focus on the sequence in time of model and measurement errors during

the time interval where DA is performed. Consider that the random error variables,

𝜂k (model (3.1)) and 𝜖ok (observation (3.3)), where 𝑘 = 1, ..., 𝐾, are not correlated and

their corresponding PDFs, 𝑃𝜂 and 𝑃𝜖 , characterize their distribution. The different
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terms in Bayes’ equation (3.14) can be rewritten in function of these PDFs as follows:

𝑃 (xk|xk-1) = 𝑃𝜂 [xk −ℳk:k-1 (xk-1)] (3.16)

𝑃 (yo
k|xk) = 𝑃𝜖 [yo

k −ℋk (xk)] (3.17)

Let us now evaluate the likelihood of the observation data within the observation

window [𝑡0, 𝑡K]. This is calculated as a function of the sequences of states and observa-

tions, which can be defined as xK:0 = {xK,xK-1, ...,x0} and yo
K:1 = {yo

K,y
o
K-1, ...,y

o
1},

respectively. Assuming uncorrelated observational errors in time, the mutual likeli-

hood of all the measurements can be written as the product of the joint probabilities

at each instant 𝑡k

𝑃 (yo
K:1|xK:0) =

K∏︁

k=1

𝑃 (yo
k|xk) =

K∏︁

k=1

𝑃𝜖 [yo
k −ℋk (xk)] . (3.18)

Furthermore, assuming a Markovian process, i.e., the probability of xk conditioned

on the entire history of x only depends on the most recent known state xk-1, the prior

PDF can also be written as the product of the individual probabilities at each instant

𝑃 (xK:0) = 𝑃 (x0)
K∏︁

k=1

𝑃 (xk|xk-1) = 𝑃 (x0)
K∏︁

k=1

𝑃𝜂 [xk −ℳk:k-1 (xk-1)] . (3.19)

Finally, with Bayes’s theorem (3.14) and combining (3.18) and (3.19) one can obtain

the posterior distribution of the state as follows

𝑃 (xK:0|yo
K:1) ∝ 𝑃 (x0)

K∏︁

k=1

𝑃 (yo
k|xk)𝑃 (xk|xk-1) =

𝑃 (x0)
K∏︁

k=1

𝑃𝜖 [yo
k −ℋk (xk)]𝑃𝜂 [xk −ℳk:k-1 (xk-1)] . (3.20)

This equation represents a hidden Markov chain. Essentially, this means that the

current probabilistic state of the system only depends on the most recently known

state. Therefore, new data can be integrated through Bayes’ rule as soon as it becomes
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available. This very powerful result comes from the strong assumptions that were

considered concerning model and observation errors. These errors were assumed to

be uncorrelated in time, which is advantageous from a mathematical point of view

but, seldom valid in realistic applications. There is, however, a notable exception;

high-Reynolds turbulent flows show eminent Markovian characteristics (Pedrizzetti

& Novikov, 1994).

One can differentiate three different state-estimation problems depending on the

time interval where this estimation is actually performed (see Wiener, 1949 and Car-

rassi et al., 2018 for a comprehensive review):

1. Prediction problem: In this type of problems, one estimates 𝑃 (xw|yo
k:1) with

w > 𝑘. Basically, one can rely on the model to predict the probability of future

phenomena from the last available posterior distribution 𝑃 (xk|yo
k:1). This prob-

lem is formally addressed by integrating (3.16) (Chapman-Kolmogorov equa-

tion)

𝑃 (xw|yo
k:1) =

∫︁ ∞

−∞
𝑃𝜂 [xw −ℳw:k (xk)]𝑃 (xk|yo

k:1) dxk (3.21)

2. Filtering problem: The objective is now the estimation of the conditional dis-

tribution of the state 𝑃 (xk|yo
k:1) at a given time 𝑡k. In this type of problems,

new data is integrated sequentially as soon as it becomes available (Jazwinski,

1970). Solution to filtering problems involves a two-step procedure where at

first, a given conditional PDF is forwarded in time until a new observation is

provided. At this specific point, an analysis step based on Bayes’ theorem is

performed to update the state

𝑃 (xk|yo
k:1) =

𝑃𝜖 [yo
k −ℋk (xk)]𝑃 (xk|yo

k-1:1)∫︀∞
−∞ 𝑃𝜖 [yo

k −ℋk (xk)]𝑃 (xk|yo
k-1:1) dxk

. (3.22)

This procedure is repeated in time alternating forward and analysis phases,

sequentially updating the propagated PDFs with available data.

3. Smoothing problem: In this type of state-estimation problems, the target condi-
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tional PDF at a given time 𝑡k is based on past, present and future observations.

Clearly, this type of analysis provides more accurate estimates when compared

to the estimates one would obtain through filtering. Smoothed estimates can be

obtained via a recursive forward/backward application of the Bayes’s rule to-

gether with the propagation of the PDFs with the Chapman-Kolmogorov equa-

tion.

3.5.4 Gaussian distributions

We have formulated the estimation problem in the Bayesian framework and defined

three different types of estimation problems. The expressions obtained for the con-

ditional PDFs allow a complete probabilistic description of all the possible states

of a system. However, in practice it is hard to evaluate the complete probability

densities. Therefore, it is more judicious to target particular characteristics of these

PDFs. The statistical DA problem is thus formulated as an optimization involving

the minimization of the uncertainty in the posterior with observation data:

1. Conditional mode estimation: These type of methods target the mode of the

distribution, i.e., the most probable state, and are also referred to as maximum

a posteriori (MAP) estimators.

2. Conditional mean estimation: Contrary to conditional mode estimation meth-

ods, in these type of estimators, the target is the mean of the distribution, and

since the mean always provides the minimum squared error estimate (Jazwinski,

1970), they are usually called minimum squared error estimators.

Bayes’ rule provides an elegant and logical framework for combining model and

observation. However, the extremely large dimensions of the state vectors we usually

deal with in fluid mechanics impedes the usage of the Bayesian approach in its entirety.

Notably, it is extremely difficult to advance the PDFs in time. One way to reduce

the computational burden is to assume that model and observation uncertainties

follow Gaussian distributions. This strong hypothesis leads to a very convenient

92



mathematical simplification: Gaussian PDFs are fully described by their first and

second statistical moments, i.e., by the mean of the distribution and a covariance

matrix.

Let us formalize the definition of the state in the Gaussian framework. Consider

the state of the system as a random vector x ∈ Rn with a Gaussian distribution,

whose joint PDF can be written as

𝑃x (x;𝜇,Σ) =
1√︀

(2𝜋)n det (Σ)
exp

(︂
−1

2
(x− 𝜇)TΣ-1 (x− 𝜇)

)︂
. (3.23)

The mean 𝜇 ∈ Rn, which is defined as

𝜇 = E (x) , (3.24)

and the covariance matrix Σ, an n× n symmetric and positive definite matrix

Σ = cov (x) , (3.25)

completely define the Gaussian distribution of the random state variable

x ∼ 𝒩 (𝜇,Σ) . (3.26)

3.5.5 Sequential DA Filters

We have seen that, when DA is addressed from a statistical point of view, we are

naturally drawn towards the Bayesian framework which allows to rigorously combine

the two sources of information available and provide a posterior probability law. One

could use particle filters (Doucet & Johansen, 2011); however, it is computationally

infeasible for most realistic applications to estimate the full PDF distribution. There-

fore, one has to introduce a strong hypothesis that allows to simplify the estimation

of the PDF problem to the estimation of its first statistical moments: all the PDFs

that intervene in the estimation problem are considered to be Gaussian distributed.
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In this context, the estimation problem is reduced to the determination of the

mean and the variance of the posterior state. There exist proven and mature sta-

tistical methods for determining the optimal estimate (Anderson and Moore, 1979,

Garthwaite et al., 2002, Ross, 2014). Conditional mean and conditional mode estima-

tion methods have been introduced above. Conditional mean or minimum variance

(MV) estimation naturally leads to the well-known Kalman Filter, while conditional

mode or maximum a posteriori (MAP) estimators are intrinsically related to 3D-VAR

methods. This draws an elegant connection between optimal control based variational

methods and statistical sequential methods.

In the previous section, it was shown that variational methods are based on the

minimization of a cost function that expresses the difference between model and

observations within a given assimilation time window. In other words, multiple ob-

servations are integrated at the same time and the optimization procedure accounts

for all the data at once in a numerical process that is strongly stationary. This

is interesting from a reanalysis point of view (similar to the previously introduced

smoothing problem) but, certain phenomena encountered in fluid mechanics present

strong unstationary and non-linear features. In this type of scenario, it would be

highly beneficial to be able to just update the previous estimate as new observations

become available, without having to consider all the previous history of the state.

This is in the core of the sequential Kalman filter (KF), which constitutes the main

foundation of this PhD thesis.

3.5.5.1 Kalman Filter

In 1960, Rudolph E. Kalman published a paper introducing a new approach to linear

filtering and prediction problems (Kalman, 1960). In this work, a new solution method

to the filtering problem is described, which will later be known as the Kalman Filter

(KF). The derivation of the method is not given here for simplicity. It is based on

the minimization of the variance in the posterior distribution. The interested reader

can find numerous works treating this issue (Jazwinski, 1970, Talagrand, 1997, Bain

and Crisan, 2009, Asch et al., 2016).
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The classical KF provides an estimate of the state of a physical system at time

𝑘 (xk), given the initial estimate x0, a set of observations, yo
k, that can be described

using (3.4), and the information of a linear dynamical model (3.2). Following the

notation generally used in DA literature, the forecast/analysis states and error co-

variances are indicated as xf/a
k and P

f/a
k , respectively.

We recall that the notation used is introduced in Sec. 3.3. The estimated state is

obtained via a recursive procedure:

1. A predictor (forecast) phase, where the analysed state of the system at a previ-

ous time-step is used to obtain an a priori estimation of the state at the current

instant. This prediction, which is obtained relying on the model only, is not

conditioned by observation at time 𝑘:

xf
k = Mk:k-1x

a
k-1 (3.27)

Pf
k = Mk:k-1P

a
k-1M

⊤
k:k-1 + Qk (3.28)

2. An update (analysis) step, where the state-estimation is updated accounting for

observation at the time 𝑘:

Kk = Pf
kH

⊤
k

(︀
HkP

f
kH

⊤
k + Rk

)︀−1
(3.29)

xa
k = xf

k + Kk

(︀
yo
k −Hkx

f
k

)︀
(3.30)

Pa
k = (𝐼 −KkHk)P

f
k (3.31)

A complete filtering phase from an instant 𝑡k-1 to an instant 𝑡k is illustrated in

Fig. 3-3. The optimal prediction of the state (xa
k) is obtained via the addition to the

predictor estimation (xf
k) of a correction term determined via the so-called Kalman

gain Kk. The classical KF algorithm is not suited for direct application to the anal-

ysis of complex flows, since the classical KF formulation is developed for linear sys-

tems. Moreover, the knowledge of the error covariances Qk and Rk is usually limited.

One simple, classical simplification is to consider that errors for each component are

completely uncorrelated in space and from other components, i.e. Qk and Rk are
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Figure 3-3: Schematic representation of the classical Kalman Filter.

considered to be diagonal (Brunton and Noack, 2015a; Stonebridge, 2017).

Furthermore, KF relies on the transport of a very large error covariance matrix

Pk. Matrix inversion operations (see (3.29)) are also required. Depending on the size

of the observation vector, this might be computationally intractable.

3.5.5.2 Ensemble Kalman Filter

In practical fluid mechanics applications, we are usually confronted with strongly

non-linear models and depending on the type of experimental observation available,

we might also have to deal with non-linear measurement operators. In this context,

we have to consider the full non-linear form of the equations (3.1) and (3.3), with the

non-linear operators ℋ andℳ, respectively. The classical KF is not tailored for this

type of situations. Extensions to the KF capable of dealing with these non-linearities

have been developed, such as the Extended Kalman Filter (EKF)(Jazwinski, 1970),

where the mean and the covariance are linearized about the current state. However,

this method is hardly affordable in high dimensional systems and is accurate only

when the degree of non-linearity remains low (Asch et al., 2016).

An alternative approach to deal with non-linearities and even non-Gaussian statis-
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tics is the Ensemble Kalman Filter (EnKF), where the PDF of the state is described

by an ensemble of possible model realizations. This method is extremely easy to

implement and very intuitive. Consider a forecast with uncertainty on the initial

conditions. If one considers multiple statistically probable initial states, each one of

them will produce a slightly different trajectory as they are evolved in time with the

model. Thereafter, the variance in the ensemble can be used to approximate error

statistics.

The Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2009) relies on the esti-

mation of Pk by means of an ensemble. More precisely, the error covariance matrix

is approximated using a finite ensemble of model states of size 𝑁e. If the ensemble

members are generated using stochastic Monte-Carlo sampling, the error in the ap-

proximation decreases with a rate of
1√
𝑁e

. We provide here a general description

of the method. The interested reader should know that there are a number of coun-

termeasures that one must put in place (localization, inflation) to make this method

work in realistic cases, and should find detailed description of such measures in the

works of Carrassi et al., 2018 and Asch et al., 2016.

Given an ensemble of forecast/analysed states at a certain instant 𝑘, the ensemble

matrix is defined as

EEE f/a
k =

[︁
x
f/a,(1)
k , · · · ,xf/a,(𝑁e)

k

]︁
∈ R𝑁𝑥×𝑁e . (3.32)

To reduce the numerical cost of implementation, the normalised ensemble anomaly

matrix is then specified as

X
f/a
k =

[︁
x
f/a,(1)
k − x

f/a
k , · · · ,xf/a,(𝑁e)

k − x
f/a
k

]︁

√
𝑁e − 1

∈ R𝑁𝑥×𝑁e , (3.33)

where the ensemble mean x
f/a
k is obtained as

x
f/a
k =

1

𝑁e

𝑁e∑︁

𝑖=1

x
f/a,(i)
k . (3.34)
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The error covariance matrixPf/a
k can thus be estimated via the information derived

from the ensemble. This estimation, hereafter denoted with the superscript 𝑒, can be

factorized into:

P
f/a,e
k = X

f/a
k

(︁
X

f/a
k

)︁⊤
∈ R𝑁𝑥×𝑁𝑥 . (3.35)

The goal of the EnKF is to mimic the BLUE (Best Linear Unbiased Estimator)

analysis of the Kalman filter. For this, Burgers et al., 1998 showed that the observa-

tion must be considered as a random variable with an average corresponding to the

observed value and a covariance Rk (the so-called data randomization trick). There-

fore, given the discrete observation vector yo
k ∈ R𝑁𝑦 at an instant 𝑘, the ensemble of

perturbed observations is defined as

y
o,(i)
k = yo

k + 𝜖
o,(i)
k , with 𝑖 = 1, · · · , 𝑁e and 𝜖

o,(i)
k ∼ 𝒩 (0,Rk). (3.36)

A normalized anomaly matrix of the observations errors is defined as

Eo
k =

1√
𝑁e − 1

[︁
𝜖
o,(1)
k − 𝜖o, 𝜖o,(2)k − 𝜖o, · · · , 𝜖o,(𝑁e)

k − 𝜖o,
]︁
∈ R𝑁𝑦×𝑁e , (3.37)

where 𝜖o =
1

𝑁e

𝑁e∑︁

𝑖=1

𝜖
o,(i)
k .

The covariance matrix of the measurement error can then be estimated as

Re
k = Eo

k (Eo
k)

⊤ ∈ R𝑁𝑦×𝑁𝑦 . (3.38)

By combining the previous results, we obtain (see Asch et al., 2016) the standard

stochastic EnKF algorithm. The corresponding analysis step consists of updates

performed on each of the ensemble members, as given by

x
a,(i)
k = x

f,(i)
k + Ke

k

(︁
y
o,(i)
k −ℋk

(︁
x
f,(i)
k

)︁)︁
, (3.39)
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where the Kalman Gain can be calculated as

Ke
k = Xf

k

(︀
Yf

k

)︀⊤ (︁
Yf

k

(︀
Yf

k

)︀⊤
+ Eo

k (Eo
k)

⊤
)︁−1

, (3.40)

and where Yf
k = HkX

f
k.

A schematic representation of the functioning of the EnKF is given in Fig. 3-4. A

version of the Ensemble Kalman filter algorithm using the previously defined anomaly

matrices is given in Sec. A.2. This is the version we use in our applications.

Figure 3-4: Schematic representation of the Ensemble Kalman Filter (EnKF).

State-of-the-art approaches based on the EnKF are arguably the most advanced

forms of state-estimation available in the field of DA methods. These techniques have

been extensively applied in the last decade in meteorology and geoscience (see Asch

et al., 2016 and references therein).

3.5.5.3 Dual Ensemble Kalman filter

In this section, we extend the classical EnKF framework presented in Sec. 3.5.5.2

by considering the case of a parametrized model such as (3.1). The objective is to

enable the model to generate accurate forecasts. For this, we need to determine good
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estimates of both model state variables, xk, and parameters, 𝜃k, given noisy observa-

tions yo
k. One approach is provided by joint estimation, where state and parameter

vectors are concatenated into a single joint state vector (state augmentation). After

Moradkhani et al., 2005, the drawback of such strategy is that, by increasing the

number of unknown model states and parameters, the degree of freedom in the sys-

tem increases and makes the estimation unstable and intractable, especially in the

non-linear dynamical model. An alternative approach is provided by Moradkhani et

al., 2005, called dual estimation. Two interactive filters are used, the former for the

estimation of the parameters from a guessed state solution, the latter for the update

of the state variables from the estimated previous parameters.

In the first step of the algorithm, the ensemble of the analysed parameters is

updated following the classical KF equation:

𝜃
a,(i)
k = 𝜃

f,(i)
k + K𝜃,e

k

(︁
y
o,(i)
k − y

f,(i)
k

)︁
with 𝑖 = 1, · · · , 𝑁𝑒 (3.41)

where y
f,(i)
k = ℋk

(︁
x
f,(i)
k

)︁
.

The Kalman gain responsible for correcting the parameter trajectories in the en-

semble is obtained as follows:

K𝜃,e
k = Θf

k

(︀
Yf

k

)︀⊤ (︁
Yf

k

(︀
Yf

k

)︀⊤
+ Eo

k (Eo
k)

⊤
)︁−1

, (3.42)

where the matrix Θf
k plays the same role for the parameters as the matrix Xf

k defined

in (3.33) for the states. We then have:

Θ
f/a
k =

[︁
𝜃
f/a,(1)
k − 𝜃f/ak , · · · ,𝜃f/a,(𝑁e)

k − 𝜃f/ak

]︁

√
𝑁e − 1

∈ R𝑁𝜃×𝑁e (3.43)

with

𝜃
f/a
k =

1

𝑁e

𝑁e∑︁

𝑖=1

𝜃
f/a,(i)
k (3.44)

Once new values of the model’s parameters are inferred, we can update the state

by EnKF (see Sec. 3.5.5.2). The Dual Ensemble Kalman filter allows performing a
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recursive parametric inference/state-estimation using the information from the en-

semble members. The algorithm that we use is given in Sec. A.3. The Dual EnKF

was recently employed to combine data assimilation with machine learning to obtain

data-driven flow models (Kumar, 2021).

3.5.6 Applications of Sequential DA algorithms for fluid me-

chanics problems: a critical review

The KF algorithm has been introduced and special emphasis has been placed on

its characteristics. We have seen that the canonical form of the KF is seldom used

in realistic flow problems due to its high computational cost. Moreover, the KF is

tailored for linear systems. Extensions adapted to non-linear applications exist, e.g.,

the extended Kalman Filter, but their computational cost remains too high.

On the other hand, ensemble Kalman filters offer an interesting alternative to the

classical filters. They are particularly well suited for non-linear multiscale systems.

In this version of the Kalman filter, the error statistics are no longer propagated via a

covariance matrix, but instead approximated through several perturbed trajectories.

In other words, the error in the estimate is obtained from a finite ensemble of possible

model realizations. On many problems, an ensemble size of roughly 100 members

is enough to accurately capture error propagation characteristics, which makes this

estimation strategy extremely tractable for high-dimensional problems. Below, we

review some applications of the Kalman Filter (and its multiple versions) in the

analysis of flows.

→˓Flow control

In a flow control problem, having accurate information about the state of the flow

is essential for designing a successful control strategy. Bewley and Liu, 1998 and

Bewley et al., 2001 explored the application of modern linear control theory to fluid

mechanics problems. They showed that estimator-based control strategies outperform

classical (proportional) control approaches. Högberg et al., 2003 investigated the
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ability of constant-gain linear control strategies to delay transition to turbulence in

channel flows. They introduced a state estimator in the form of an extended Kalman

Filter which was combined with the controller to obtain a wall-information-based

linear compensator. The fundamental idea behind their approach was to express the

incompressible Navier-Stokes equations as a dynamical system where linear state-

space control theory can be applied.

Linear model-feedback control problems based on limited and noisy measurements

involve two independent sub-problems: (i) the state feedback control problem; (ii)

the state-estimation problem. Hœpffner et al., 2005 focused on developing effective

state-estimation strategies for flow control. Starting from the linearized version of

the Navier-Stokes equations, they used the Kalman filter and its extended version to

estimate the state of a laminar wall-bounded flow from noisy skin-friction and pres-

sure measurements. Building on this research work, Chevalier et al., 2006 extended

the estimation method to the turbulent channel flow problem, with the objective to

develop an estimator capable of providing an accurate complete representation of the

flow from wall measurements. Finally, Colburn et al., 2011 investigated the use of

the ensemble version of the Kalman filter (EnKF) for state-estimation purposes.

→˓Hybrid Simulation

In the 2000s, there was an interest in the development of hybrid simulation tech-

niques (see Nisugi et al., 2004; Suzuki, Ji, et al., 2009, 2010; Suzuki, Sanse, et al.,

2009 for example), which attempted to combine wind-tunnel data (PIV) with CFD

simulation. In short, experimental and CFD data were fused through a weighted

averaged between the two sources of information. The capability of this technique

was demonstrated for low-Reynolds flows but, its applicability to high-Reynolds flows

was shown to be problematic due to the lack of temporal and spatial resolution of

the PIV and the noise in the observation. The combination strategies used in the

early hybrid simulation efforts are not so far from the actual framework of the KF.

The only difference lies on the calculation of the weights, which in the first case is

obtained heuristically, while in the second case is calculated in a rigorous probabilistic
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fashion, accounting for the stochastic nature of both sources of information. Suzuki,

2012 explored the possibility of using the KF to calculate the optimal weight. The au-

thors were inspired by the state-estimation framework introduced by Bewley’s group

in flow control but, adopted a reduced-order strategy to reduce the costs related to

the forecasting of the error covariance matrix.

→˓Parameter estimation

Other authors explored the parameter estimation capabilities of the EnKF. Kato

and Obayashi, 2013, used this method to optimize the coefficients of the Spalart-

Allmaras turbulence model in the case of a flow over a flat plate. In a later study, Kato

et al., 2015 used the EnKF to estimate Mach number, angle of attack and turbulent

viscosity wind-tunnel corrections for transonic flows around different airfoils.

In recent years, some research groups have started to tackle turbulence modelling

optimization through DA. Xiao et al., 2016 introduced a novel Bayesian framework

for uncertainty quantification and reduction in RANS simulation. More specifically,

a compact form of the Reynolds stress tensor is adopted, achieving a parametrized

reduced-order representation of the term. Uncertainty is thereafter injected in the co-

efficients of the reduced-order model, and an iterative ensemble Kalman filter (IEnKF)

is used to update these coefficients with available observation. The approach adopted

is completely non-intrusive in the sense that, the uncertainty in the Reynolds Stress

tensor is propagated to the state of the system through the model. However, no

actual direct correction of the state is performed. The uncertainty of the global sys-

tem can then be tracked solely through the distributions of the reduced-order model

coefficients and their impact on the state.

→˓Adding additional physical constraints to the filtering procedure: Reg-
ularized EnKF

The application of the KF techniques to inverse problems is usually not an easy

task due to the issue of ill-posedness. In variational methods, this can be solved

straightforwardly by imposing additional constraints to the cost function. This is
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more problematic for KF-based methods. X.-L. Zhang et al., 2020 derived a version

of the ensemble Kalman filter where additional constraints (regularization) can be

embedded in the calculation of the Kalman update. An improvement in the capabil-

ities of the estimator to infer parameters was observed when the regularized version

of the estimator was compared to the traditional one. Later, X.-L. Zhang et al., 2021

explored the capabilities of the regularized ensemble Kalman filter to reconstruct

turbulent mean flows from disparate data.

→˓Kalman Filter applications to unsteady 3D flows

Sequential filtering applications to 3D flows are scarce due to the extremely high

computational costs. Most of the research efforts put into sequential data assimila-

tion methods are focused on developing strategies that allow to reduce the cost of the

estimator. In this sense, Meldi and Poux, 2017 developed a sequential assimilation

strategy integrating a reduced-order KF in the PISO algorithm of a segregated solver

for incompressible flows. This technique allows to sequentially estimate the state of

the flow accounting for the prescribed level of confidence in the model and the exper-

imental data. Flow velocities are directly corrected with the Kalman filter. However,

the authors exploit the intrinsic structure of the PISO algorithm and integrate the

Kalman update just before the resolution of the Poisson equation. Local corrections

are then propagated everywhere in the domain through instantaneous redistribution

of pressure. With these reduced-order approach, the authors managed to achieve

state-estimation of a 3D mixing-layer flow. Later, Meldi, 2018, performed a detailed

analysis of the sensitivity of the performance of the previously developed reduced-

order KF estimator to the time density of available observation. The results obtained

showed that the minimum update frequency necessary to reach state-estimation con-

vergence is related to the characteristic advection time.

Other EnKF applications in related fields such as combustion and wildfire prop-

agation have also been explored (Labahn et al., 2019; Rochoux et al., 2015). The

usage of the EnKF in the geosciences is vast, but we do not treat the applications

in this domain in detail. The interested reader is referred to Carrassi et al., 2018;
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Houtekamer and Zhang, 2016 for a complete overview on the subject.

→˓Conclusion

Sequential assimilation methods are far less explored than variational strategies

in the fluid mechanics community. The computational power required for the propa-

gation of the uncertainty can easily limit their application for complex flow problems.

However, sequential methods are much easier to implement than their variational

equivalents. They also allow for assessing the uncertainty in the estimate, which is

crucial in any attempt to predict future states. The ensemble version of the KF is

clearly the most appropriate approach for practical applications, since it allows the

analysis of non-linear systems and can be computationally tractable for very large

problems. However, there is still a long way to go before achieving fully operational

ensemble-based estimators:

� As seen in the literature review, filtering applications to 3D flow are extremely

scarce. EnKF approaches are less computationally expensive than classical KF

ones, but sample-size associated costs can still be limiting. EnKF applications

to high-fidelity simulations (unsteady phenomena, for example) are nowadays

untreatable.

� The Kalman state update can be problematic in terms of conservativity (re-

spect of the Navier-Stokes equation) and smoothness of the solution. When

observation is integrated in a system through the Kalman filter, the estimate

usually does not comply with the original equations. In the context of high-

fidelity Navier-Stokes simulation, this can produce spurious effects that might

destabilize the numerical solution.

Sequential data assimilation methods are particularly well-appropriated for un-

steady flow phenomena. The only needed information to update the state of a

flow with new available information is its previous analysis state (the previous

instant where observation was used to update the state). This constitutes a sig-

nificant advantage over variational approaches from an operational and storage
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point of view.

For the reasons mentioned above, this research work is focused entirely on the

development of sequential data assimilation methods for unsteady flow. More

specifically, a new version of the ensemble Kalman filter is presented, where we

tackle computational cost issues and smoothness of the solution.
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Chapter 4

Multigrid Ensemble Kalman Filter

Despite the game-changing advantage that EnKF offers for the analysis of large-

scale dynamical systems, the use of a sufficiently large ensemble (usually 60 to 100

members are required for convergence (Asch et al., 2016)) may still be prohibitive for

advanced applications. In the following, we present an EnKF strategy which relies

on the generation of the ensemble members on a subspace (i.e., coarser mesh) of the

original model. To do so, we exploit the multiple levels of resolution naturally used

by the multigrid procedure (introduced in Sec. 2.6.1) for the time advancement of the

flow. For the classical case of the FAS two-grid multigrid algorithm, which employs

two levels of resolution (coarse and fine), the ensemble members calculated on the

coarse mesh level are run with a single high-refinement simulation, which is updated

using the coarse mesh assimilation results. For this reason, the computational costs

and the memory storage of the physical variables are dramatically reduced. For

sake of simplicity, the procedure is here detailed just for the FAS two-grid multigrid

algorithm.

The developed estimation algorithm combines the classical EnKF with features

of the multigrid strategy. It is thus called the Multigrid Ensemble Kalman Filter

(MGEnKF). A first simplified sketch of the algorithm is presented in Fig. 4-1, where

the different operations run on the fine grid and the coarse grid are illustrated. There

are two distinct procedures that are run on the coarse grid of the MGEnKF algorithm:

an outer loop, where the observations used are obtained from an external source of
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FINE GRID

COARSE GRID

SURROGATE OBSERVATION

Figure 4-1: Schematic representation of the Multigrid Ensemble Kalman Filter
(MGEnKF). Two different levels of representation (fine and coarse grids) are used
to obtain an estimation for the main simulation running on the fine grid. The in-
ner loop and outer loop procedures (see below for description) are performed on the
coarse grid.
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information, and an inner loop, where fine grid solutions projected onto the coarse

grid are used as surrogate observations. The complete general algorithm for MGEnKF

is structured in the following operations:

State
Correction

Parameter
Correction

Kalman
Gain

Parameter
Correction

INNER LOOP

OUTER LOOP

Kalman
Gain

Figure 4-2: Schematic representation of the box Dual EnKF in Fig. 4-1. Two op-
timization procedures, referred to as inner loop and outer loop, are sequentially per-
formed. Essentially, the outer loop corresponds to the classical Dual EnKF algorithm,
while the inner loop is a classical EnKF procedure where only parameter estimation
is performed.

1. Predictor step. The initial solution on the fine grid
(︀
xF

𝑘−1

)︀a
is used to calculate

a forecast state (xF

𝑘)
f

(xF

𝑘)
f =ℳF

𝑘:𝑘−1

(︁(︀
xF

𝑘−1

)︀a
, 𝜃f𝑘

)︁
(4.1)

whereℳF

𝑘:𝑘−1 is the model used on the fine grid and 𝜃f𝑘 is a set of free parameters

describing the setup of the model on the fine grid. Each member 𝑖 of the
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ensemble calculated on the coarse grid is also advanced in time

(xC

𝑘)f,(i) =ℳC

𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜃

f,(i)
𝑘

)︁
+ 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
, (4.2)

whereℳC

𝑘:𝑘−1 is the coarse grid model parameterized by 𝜃f,(i)𝑘 , while 𝒞𝑘:𝑘−1 is an

additional correction term included to compensate the loss of resolution due to

calculations on the coarse grid (similar to the strategy used by Brajard et al.,

2021). This additional model, whose structure has to be determined, is driven

by the set of free parameters 𝜓f,(i)
𝑘 .

2. Projection on the coarse grid & inner loop. (xF

𝑘)
f is projected on the

coarse grid space via a projection operator ΠC, so that (xC

𝑘)* is obtained, i.e.,

(xC

𝑘)* = ΠC

(︁
(xF

𝑘)
f
)︁
. (4.3)

In this step, surrogate observation, (yC

𝑘 )SO, is extracted from (xC

𝑘)*, with an

observation operator (ℋC

𝑘 )SO: (yC

𝑘 )SO = (ℋC

𝑘 )SO (xC

𝑘)*. The observation operator,

(ℋC

𝑘 )SO, determines the region of the solution obtained on the fine grid that is

observed. Thereafter, the surrogate observation is used in the inner loop. Here,

the EnKF is used as a parameter estimation only scheme, i.e., the ensemble

states (xC

𝑘)f,(i) are not modified, but the free parameters 𝜓f,(i)
𝑘 are optimized to

obtain values 𝜓a,(i)
𝑘 . This optimization targets an improvement of the prediction

of the ensemble members simulated on the coarse grid via an update of the term

𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
.

3. Outer loop. If external observation (yC

𝑘 )O is available, the ensemble forecast

(xC

𝑘)f,(𝑖) is corrected with the standard Dual EnKF procedure to obtain (xC

𝑘)a,(𝑖)

as well as an update for the parameters 𝜃a,(𝑖)𝑘 .

4. Determination of the state variables on the coarse grid. In this step,

the physical state of the main simulation is updated on the coarse grid. This

solution, which will be referred to as (xC

𝑘)
′
, is obtained by classical iterative
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procedures on the coarse grid using the initial solution (xC

𝑘)* if observations are

not available. On the other hand, if observations are available, the Kalman

gain matrix, (KC

𝑘)𝑥,e, determined in the framework of EnKF for the ensemble

members is used to determine the coarse grid solution (xC

𝑘)
′
through a KF

operation, i.e.,

(xC

𝑘)
′
= (xC

𝑘)* + (KC

𝑘)𝑥,e
[︀
(yC

𝑘 )O − (ℋC

𝑘 )O ((xC

𝑘)*)
]︀
. (4.4)

5. Final iteration on the fine grid. The fine grid state solution (xF

𝑘)
′
is

determined using the results obtained on the coarse space: (xF

𝑘)
′

= (xF

𝑘)
f +

ΠF

(︁
(xC

𝑘)
′ − (xC

𝑘)*
)︁
. The state (xF

𝑘)
a is obtained from a final iterative procedure

starting from (xF

𝑘)
′
, following the multigrid approach.

A detailed representation of the Dual EnKF box shown in Fig. 4-1 is provided in

Fig. 4-2. The functioning of the MGEnKF is illustrated in Fig. 4-3. At the beginning

of the assimilation procedure, a significant mismatch between coarse grid ensemble

and main fine grid simulation is expected. In the first phases of the assimilation pro-

cess, the algorithm may not perform accurately, since the analysis phase is penalized

by the high numerical errors present in the coarse grid ensemble realizations. As the

assimilation progresses and the model correction parameters, 𝜓, are optimized, the

mismatch between fine grid and coarse grid models is expected to be reduced, giving

rise to an increased global accuracy of the estimator.

This algorithm has been specifically conceived to reduce the computational costs

associated with the classical EnKF approach for large scale problems. For this, we

combine a multigrid framework, frequently encountered in flow solvers, and a Dual

Ensemble Kalman filter. This method falls into the class of multilevel techniques

that aim to improve the estimation of statistics of expensive numerical simulations

by considering different levels of resolution – in time or in space – of the same set

of equations. In multilevel Monte Carlo applications, a few high-resolved solutions

are combined with a larger number of low-resolution data (see Fossum et al., 2020;

Hoel et al., 2016; Law et al., 2020; Siripatana et al., 2019, for some applications).
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Instead of considering additional simulation models for the same set of equations

and several resolutions, it is also possible to reduce the variance of Monte Carlo

methods by considering different sets of equations (surrogate models at different levels

of accuracy). This approach, called multifidelity, has recently been used with POD

Galerkin reduced-order models (Popov et al., 2021) and for uncertainty quantification

(Gorodetsky et al., 2020).

Figure 4-3: Schematic representation of the MGEnKF in a DA problem.

Two important features must be discussed:

- The recursive structure of the algorithm allows for integration of iterative cor-

rections for non-linear systems (Sakov et al., 2011) as well as hard constraints

(see the discussion in the introduction of (Nachi, 2007; Simon & Chia, 2002;

X. Zhang et al., 2020)) to respect the conservativity of the model equations.

However, these corrections may result in an increase of the computational re-

sources required. Here, the multigrid algorithm itself is used for regularization

(i.e., for smoothing the discontinuities in the physical variables produced by the

update via Kalman Filter) of the flow. If an intentionally reduced tolerance is

imposed in the iterative steps 4 and 5, the final solution will keep memory of the

112



features of the state estimation produced in step 3. The iterative resolution will

smooth the estimation via the state transition modelℳ, which will perform a

natural regularization of the flow. Clearly, if a reduced tolerance is imposed,

the final solution will not necessarily respect the conservativity constraints of

the model equations. However, one can argue that complete conservativity is

not an optimal objective in this case if the model state at the beginning of the

time step is not accurate.

- The state obtained on the fine grid is used to improve the accuracy of the cal-

culation of the ensemble members via a second nested EnKF application. This

nested cycle uses as observation the sampled data from the fine grid level predic-

tion (variable (xC

𝑘)*) to infer the parametric behaviour of an ad-hoc modelling

term, 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
, included in the time advancing model for the

ensemble members (4.2). This second, internal EnKF procedure called inner

loop is used only to infer the parametric description of the coefficients 𝜓f,(i)
𝑘 , and

no modification to the state is performed, in order to avoid the collapse of the

solutions of the ensemble members. A similar procedure, although not in the

framework of multigrid applications, has been very recently proposed byBrajard

et al., 2021. In their work, the correction model, 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝜓

f,(i)
𝑘

)︁
, at-

tempts to reduce the difference between the state obtained using two models

with different accuracy. For application to turbulent flows, one could envision

for example to run a Large Eddy Simulation (LES) ensemble on the coarse grid

level and to use DNS results on the fine grid level to infer the behaviour of

subgrid scale modelling for the LES.

The advantages of our strategy with respect to classical approaches based on

EnKF may be summarized in the following points:

- The RAM requirement necessary to store the 𝑁e ensemble members during

the assimilation is usually moderate. The reduction in computational costs is

driven by 𝑁e and by the size of the coarse variables. To illustrate this, let

us consider the case of a simple two-level geometric multigrid approach for a
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3D test case with a constant coarsening ratio, 𝑟C = 4, and a sample size of

𝑁e = 100. Each ensemble member is then described by 43 = 64 times less

mesh elements than the single simulation on the fine grid. If one considers that

one main simulation and 100 ensemble members are run simultaneously, and if

the RAM requirement is normalized over the main simulation, this implies that

𝑅RAM, the non-dimensional RAM requirement, is equal to 1 + 100/64 = 2.56.

In other words, the total cost in RAM is increased to just 2.56 times the cost

of the simulation without EnKF. For 𝑟C = 8, the normalized RAM requirement

is 𝑅RAM = 1 + 100/83 = 1.195, thus, just a 20% increase in RAM requirements.

This is clearly orders of magnitude more advantageous than a fine-grid classical

EnKF application with 𝑁e = 100, since in this case 𝑅RAM = 𝑁e = 100.

- The computational cost relative to the ensemble forecast on the coarse grid can

typically become less important than the cost of the single simulation retained

on the fine grid, depending on the 𝑟𝑐 value. Considering that the ensemble

members in the coarse grid and the simulation over the fine grid are running

simultaneously, communication times are optimized.

- Owing to the iterative procedures of steps 4 and 5, regularization of the final

solution is naturally obtained.

- The algorithm is here described and tested in the framework of geometric multi-

grid, but it can actually be integrated within other algorithmic structures, such

as the algebraic multigrid. It can also be used with conventional solvers on mul-

tiple grids; however, in this case regularization is not obtained unless specific

state corrections are included.

The specificity of MGEnKF is that it is tailored for the simulation of compressible

flows, for which spurious oscillations produced by the KF procedure may be respon-

sible for irreversible numerical instabilities. Fig. 4-4 illustrates the kind of unwanted

effects that the brute correction of the fine grid could produce. The potential spurious

oscillations can be smoothed through the multigrid strategy.
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Figure 4-4: The updated solution on the fine grid of the MGEnKF approach does
not respect the original model equations, thus breaking conservativity. The objective
is to smooth this state correction through the multigrid approach.

This general algorithm may be easily tailored accounting for the complexity of the

test case investigated, in particular for the requirements of iterative loops on both

the coarse grid level and the fine grid level. The algorithm that we used to validate

our approach is described in A.4.
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Chapter 5

Validation of the MGEnKF

5.1 Introduction

In the previous chapter, we have presented the multigrid ensemble Kalman filter

(MGEnKF). This strategy manipulates data using several meshes with different reso-

lutions, exploiting the natural multilevel structure of multigrid solvers. In this chap-

ter, we show that the main advantage of this MGEnKF is that a good level of accuracy

of the DA procedure (comparable to classical application of the EnKF) is conserved

with a significant reduction of the computational resources required. In the case of

the classical FAS two-level multigrid algorithm, the sources of information operating

in the MGEnKF are the following:

� One main simulation whose final solution at each time step is provided on the

fine level of the grid.

� An ensemble of low-resolution simulations, which are performed at the coarse

level of the grid.

� Some observation which is provided locally in space and time in the physical

domain.

The MGEnKF is applied to the analysis of different test cases. Several dynamical

systems of increasing complexity were chosen in order to highlight different properties
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of the algorithm. All the test cases performed to assess the performance of the

estimator are twin DA experiments with a very similar structure:

� A flow model is used with a specific parametrized inlet condition to generate

a true state. Synthetic observation is generated from this true state by adding

random Gaussian perturbations.

� In the actual DA experiment, the flow is initialized at a state which is not the

true one. We further assume that some parameters of the inlet condition are

unknown. The objective of the estimator is then twofold: to assimilate the

synthetic observations to correct the state of the flow and to infer the unknown

inlet parameters.

This chapter is organized as follows:

� In Sec. 5.2, a 1D twin-experiment is performed with the advection equation as a

model for the time-evolution of the system. This simplified flow model allows to

comprehensively analyse the performance of the estimator in different scenarios.

The reader may also find this section very instructive for understanding how

the MGEnKF works.

� In Sec. 5.3, the model used is the 1D Burgers’ equation. This prototype model is

fundamental in numerical fluid mechanics research, since, in 1D, it is equivalent

to the Navier-Stokes equation but without the pressure gradient. It contains

thus the full convective non-linearity of the equations, as well as viscosity effects.

Moreover, analytical solutions for this equation can be obtained for some cases,

and these are essential for validating numerical approaches.

� In Sec. 5.4, the model chosen for the twin-experiment is the 1D Euler equa-

tions. In contrast to the Burgers’ equations, in the Euler equations the flow is

considered to be inviscid. However, there are additional complexities related to

the effects of the pressure gradient. In contrast to the twin-experiments per-

formed in the previous two sections, in this section we attempt to estimate a

time-varying parameter related to the inlet boundary condition.
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� Finally, in Sec. 5.5, a twin experiment is performed where the model is the 2D

compressible Navier-Stokes equations. Similarly to the test performed in the

previous section, a time-varying inlet forcing parameter is estimated from noisy

observations.

In the Sec. 5.2 and Sec. 5.3, an extensive analysis is performed on two different

test cases to assess the effects of the inner loop over the global accuracy obtained

via the MGEnKF. While the accuracy of the numerical model employed to obtain

the predicted states for the ensemble members is directly affected by the outer loop,

further significant improvement is expected with the application of the inner loop

for two main reasons. The first one is that the usage of surrogate observation from

the main simulation is consistent with the numerical model used for time advance-

ment on the different refinement levels of the computational grids. Therefore, biases

that can affect data assimilation using very different sources of information (such as

experiments and numerical results) are naturally excluded. One can also expect a

faster rate of convergence owing to this property. The second valuable feature of the

inner loop is that, as the whole physical state of the main simulation is known on the

fine grid level, the surrogate observation can be sampled everywhere in the physical

domain. One of the main problematic aspects when assimilating experimental results

in numerical models is that, often, the placement of sensors is affected by physical

limitations which can preclude the sampling in highly sensitive locations. This prob-

lem is completely bypassed in the inner loop, where the user can arbitrarily select the

number and the location of sensors.

5.2 One-dimensional advection equation

The estimator is assessed in a 1D test case where the time evolution of the flow

is modelled using the advection equation. The sensitivity of the MGEnKF to the

performance of the inner loop introduced in Chapter 4 is analysed. More precisely,

the inner loop is here used to optimize the behaviour of the numerical model when

used on a coarse grid, as discussed in Sec. 5.2.1. The optimization is performed over
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an ensemble of parameters that characterize a spatially variable model correction

term.

5.2.1 Optimization of numerical integration schemes on a coarse

mesh

An original feature of the MGEnKF algorithm presented in Chapter 4 is that the

solution advanced at the most refined level of the grid can also be used as surrogate

observation to optimize the parameters of the numerical schemes. In this section,

we present the principles guiding the choice of the numerical scheme and associated

parametrization retained to control the numerical errors on coarse meshes (shape of

𝒞 in the MGEnKF algorithm). Let us consider the prototype 1D linear advection

equation of a scalar quantity 𝑢 advected with the constant velocity 𝑐:

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
= 0 (5.1)

For simplicity of presentation, we restrict ourselves to using an explicit finite

difference scheme on four-point stencils (second or third order accurate) for the case

𝑐 > 0. The spatial discretization is performed on a Cartesian mesh with a constant

size ∆𝑥. ∆𝑡 is the time step and 𝜎 = 𝑐∆𝑡/∆𝑥 the CFL number. 𝑢kj represents the

discrete numerical solution at the spatial location 𝑥j = (𝑗 − 1)∆𝑥 at time 𝑡 = 𝑘∆𝑡.

The following considerations can be extended quite easily to non-linear systems with

time and space varying advection velocity, irregular mesh or higher-order schemes.

A general one-parameter family of second order accurate schemes (see for example

Hirsch, 2007 p. 364) may be defined on a backward upwind stencil (𝑗−2, 𝑗−1, 𝑗, 𝑗+1)

as:

𝑢kj = 𝑢k-1j −
𝜎

2

(︀
𝑢k-1j+1 − 𝑢k-1j-1

)︀
+
𝜎2

2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀

+𝛿
(︀
−𝑢k-1j-2 + 3𝑢k-1j-1 − 3𝑢k-1j + 𝑢k-1j+1

)︀ (5.2)

The first line of (5.2) corresponds to the standard centred Lax Wendroff scheme.

The second line can be interpreted as the discretization of an additional dispersion
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term of the form 𝛿∆𝑥3 𝜕
3𝑢
𝜕𝑥3

. The expression (5.2) is compatible with the linear advec-

tion equation (5.1) discretized at precision order proportional to (∆𝑥2,∆𝑡2). If one

retains the two first dominant error terms in the combination of Taylor expansions

corresponding to these discrete terms forming scheme (5.2), the following equivalent

differential equation is obtained:

𝜕𝑢

𝜕𝑡
+ 𝑐

𝜕𝑢

𝜕𝑥
=

𝑐

6

[︀
6𝛿 − 𝜎

(︀
1− 𝜎2

)︀]︀
∆2
𝑥

𝜕3𝑢

𝜕𝑥3

− 𝑐
8

[︂
𝛿 (1− 2𝜎) +

𝜎2

4

(︀
1− 𝜎2

)︀]︂
∆3
𝑥

𝜕4𝑢

𝜕𝑥4
+𝒪

(︀
∆4
𝑥

)︀ (5.3)

Equation (5.3) reveals that the dominant numerical error of (5.2) is dispersive

with an error proportional to ∆𝑥2 and that a less dominant (third-order) diffusive

error term occurs. The expressions of these errors show that their relative level varies

both as a function of 𝜎 and 𝛿. In order to keep the MGEnKF algorithm sufficiently

flexible and general, we will not search to optimize the parameter 𝜎. Therefore, it is

chosen to target only an optimization for 𝛿 with a strategy suitable for any value of 𝜎.

This choice allows the user to set the value of 𝜎 based on practical constraints, such

as for synchronizing simulations with available observation data. The level of the

dominant error can be controlled through the parameter 𝛿. By setting in particular

𝛿 = 𝜎(1− 𝜎2)/6, the dominant error term cancels out, and the scheme becomes third

order accurate in space with now a diffusive dominant error term proportional to

∆𝑥3. Other values of 𝛿 maintain the formal second order accuracy, but can induce

significantly different effective evolution of the numerical errors. An illustration of this

is shown in Fig. 5-1 where the diffusion and dispersion errors are represented. These

errors are quantified through a classical Fourier analysis, through which the expression

of the complex gain factor 𝐺 = Re(𝐺)+𝚥 Im(𝐺) is extracted as a function of the phase

angle 𝜑 = 𝑚∆𝑥 with 𝑚 corresponding to a spatial wavenumber. It is worth recalling

that the phase angle 𝜑 = 𝑚∆𝑥 = 2𝜋/𝜆, where 𝜆 is the spatial wavelength, can also be

written as 𝜑 = 2𝜋/(𝑁−1), where N represents the number of points used to discretize

the signal over 𝜆. To ensure stability, the modulus of the gain factor |𝐺| should remain

less than 1 for the whole range of 𝜑 present in the signal being advected. However,
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Figure 5-1: Comparison of diffusive (𝜖𝐷 = |𝐺|, top) and dispersive (𝜖𝜑, bottom) errors
for two different a priori parametrisations of 𝛿. 𝛿 = 0 (left column) corresponds to
the Lax Wendroff scheme and 𝛿 = 𝜎 (1− 𝜎) /4 (right column) to Fromm’s scheme.

122



1− |𝐺| represents the level of numerical diffusion. This quantity might be minimized

to avoid artificial decrease of wave amplitude components. The dispersive error is here

characterized by 𝜖𝜑 = arctan(−Im(𝐺)/Re(𝐺))/𝜎𝜑, which corresponds to the spurious

multiplicative factor affecting the expected phase velocity of wave components. A

good numerical scheme should keep the value of 𝜖𝜑 as close as possible to unity to

limit phase advance or delay observed for 𝜖𝜑 > 1 or 𝜖𝜑 < 1, respectively. Figure 5-1

clearly shows the role played by 𝛿 on the diffusion and dispersion errors. The case

𝛿 = 0 (Lax Wendroff scheme) is characterized by a dominant phase lag within the

stability bounds 0 < 𝜎 < 1. The choice 𝛿 = 𝜎(1 − 𝜎)/2 (not shown) corresponds

to the Beam and Warming scheme, which yields a dominant phase advance error for

0 < 𝜎 < 1. The case 𝛿 = 𝜎(1 − 𝜎)/4 corresponds to the famous Fromm’s scheme,

which compensates to some extent the phase errors of the two aforementioned schemes

for a wide range of 𝜎. Indeed, we notice in Fig. 5-1 that isolines of 𝜖𝜑 lower than unity

are significantly shifted towards the higher values of 𝜑, indicating that dispersive error

levels can be a priori significantly reduced in the intermediate range of 𝜑 corresponding

to practical simulation cases. However, the reduction of diffusive errors, as illustrated

with |𝐺| is far less efficient, in particular for high values of 𝜎. The diffusive errors are

even seen to increase for lower values of 𝜎 and high values of 𝜑.

We have to keep in mind that the MGEnKF algorithm employs ensemble mem-

bers which have to be generated using relatively coarse grids (thus high values of 𝜑)

for which both the dispersive and diffusive errors are likely to be important. The

aforementioned observations of the non-monotonic and uncorrelated evolutions of |𝐺|
and 𝜖𝜑 suggest that adjusting only 𝛿 is not sufficient to allow a satisfactory control

of both kind of errors at the same time. An optimization of 𝛿 made for reducing the

dispersive error could undesirably deteriorate the diffusive behaviour of the scheme.

This justifies that in the optimization strategy that we consider in Sec. 5.2, we add

to (5.2) an additional correction of the same order as the dispersive correction term

in factor of 𝛿. This correction is chosen as being consistent with 𝛼∆𝑥2
𝜎2

2

𝜕2𝑢

𝜕𝑥2
. With

negative values of 𝛼, this term will be expected to add an anti-diffusive behaviour,

counteracting the diffusion error intrinsically associated with the scheme (5.2). The
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combined use of both correction terms is thus expected to allow a more relevant

separated control of both dispersion and diffusion errors.

As previously observed in Fig. 5-1, the properties of the numerical scheme signif-

icantly vary as function of 𝜑. It is therefore far from being evident that considering

𝛿 and 𝛼 as constant optimization parameters is sufficient to reduce the numerical

error over a wide range of 𝜑 scales. In view of considering complex (spectrally richer)

solutions and extending the use of this scheme to non-linear models, possibly leading

to spatially evolving frequency content, it is thus also chosen to consider spatially

varying functions for 𝛿 and 𝛼 instead of constant values. This variability, which will

be represented by expressing these parameters via spatial expansions of polynomials,

will allow for local numerical optimization on coarse meshes.

Summary: numerical scheme retained to perform coarse-grid simulations

Following the a priori analysis given all along this section, the following numerical

scheme is finally retained:

𝑢kj = 𝑢k-1j −
𝜎

2

(︀
𝑢k-1j+1 − 𝑢k-1j-1

)︀
+ (1 + 𝛼)

𝜎2

2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀

+ (𝛿 + 𝛾)
(︀
−𝑢k-1j-2 + 3𝑢k-1j-1 − 3𝑢k-1j + 𝑢k-1j+1

)︀

= ℳ𝑘:𝑘−1 (𝑢;𝜎, 𝛿) + 𝒞𝑘:𝑘−1 (𝑢;𝜎, 𝛼, 𝛾)

(5.4)

Here, one can see that the optimization of 𝛿 is not performed directly, but via a

parameter 𝛾 which measures the deviation of the optimized dispersion coefficient

from the constant value 𝛿 = 𝜎(1 − 𝜎2)/4 proposed by Fromm. This choice has been

performed to provide a clear separation between the dynamical model ℳ and the

correction model 𝒞 when comparing (5.2) and (5.4). The variability in space of the

coefficients 𝛾 and 𝛼 is obtained expressing them in terms of Legendre Polynomial

expansions truncated to the order 𝑛:

𝛾 (𝑥) = 𝛾0𝑃0 (𝑥) + 𝛾1𝑃1 (𝑥) + · · ·+ 𝛾n𝑃n (𝑥) , (5.5)
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and

𝛼 (𝑥) = 𝛼0𝑃0 (𝑥) + 𝛼1𝑃1 (𝑥) + · · ·+ 𝛼n𝑃n (𝑥) . (5.6)

Preliminary tests showed that 4-th order representation (𝑛 = 4) is satisfactory

for the cases considered in this study. The inner loop will be used to optimize the

expansion coefficients for a total of 10 parameters (five expansion coefficients 𝛾𝑖 and

five expansion coefficients 𝛼𝑖). The values for these parameters could possibly be

constrained during the inner loop optimization in order to accept only values leading

to stable solutions. In particular, the extended stability constraint for the present

scheme in absence of additional anti-diffusive correction is imposed, which reads as:

𝛾(1− 2𝜎) +
1

4
𝜎2(1− 𝜎2) ≥ 0 (5.7)

5.2.2 Set-up of test case and test solutions on coarse meshes

The set-up of the test case representing the one-dimensional linear advection equation

(see Eq. (5.1) in Sec. 5.2.1) is now presented. The constant advection velocity is

set to 𝑐 = 1. Preliminary numerical tests are carried out with the scheme presented

in Eq. (5.4) and by setting a priori 𝛼 = 0 and 𝛾 = 0 (Fromm scheme). The initial

condition is set to 𝑢(𝑥, 𝑡 = 0) = 𝑐 everywhere in the physical domain. A Dirichlet

time-varying condition is imposed at the inlet:

𝑢(𝑥 = 0, 𝑡) = 𝑐 (1 + 𝜃 sin (2𝜋𝑡)) , (5.8)

where 𝜃 represents the amplitude of a sinusoidal perturbation of period ∆𝑇 = 1 and

is set to 𝜃 = 0.015. The outlet boundary condition is extrapolated from the last

points of the domain using 4-th order Lagrange polynomials. The simulations are

performed over a computational domain of size 0 ≤ 𝑥 ≤ 10 in 𝐿0 = 𝑐∆𝑇 units.

Three different levels of mesh refinement (moderate to low) are chosen for these

tests. The resolution is chosen to be of practical interest for usage for the ensemble

members in the MGEnKF algorithm. The mesh size is set with constant values of
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∆𝑥 = 0.0625, 0.1 and 0.125, respectively. This corresponds to 16, 10 and 8 discrete

nodes per characteristic length 𝐿0 or equivalently, phase angles around 𝜑 = 0.4, 0.6

and 0.8. According to Fig. 5-1, relatively moderate error levels can be observed

with these resolution levels, and their accumulation during the signal advection is

expected to become significant. Preliminary simulations are also performed using

different CFL numbers 𝜎. The results, which are shown in Fig. 5-2, are compared

with the true (exact) known solution. One can see that, with the exception of the finer

mesh resolution and higher values of 𝜎, the numerical solutions are rapidly affected

by the accumulation of diffusive and dispersive errors. In particular, a significant

amplitude reduction and phase advance can be observed. It is worth recalling that

these errors could be naturally eliminated in the present case for the specific choice

of 𝜎 = 1. However, this constraint is not necessarily compatible with practical needs

associated with the numerical simulations running within the MGEnKF algorithm

(reduced 𝜎 required to ensure stability with more complex boundary conditions, signal

synchronization with observation, and so on).
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Figure 5-2: Preliminary simulations for the 1D advection equation. Solutions at
𝑡 = 10 for different grid refinement and 𝜎 values are compared with the true state.

5.2.3 Performance of the MGEnKF algorithm without the in-

ner loop

The performance of the MGEnKF algorithm without the inner loop may be severely

degraded by the numerical errors induced by the use of coarse grids for the ensemble

members. This can be shown with a simple twin-experiment where observation is

accessible relatively far from the inlet and the DA tool attempts to estimate the inlet

parameter 𝜃. Data assimilation is performed with the following conditions:

- Observations are generated from the analytical solution with 𝜃 = 0.015 on the

space domain [3, 4] and on the time window [0, 390]. The sampling frequency is
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set so that approximately 15 observation updates per characteristic evolution

time 𝐿0/𝑐 are obtained, for a total of ≈ 6000 DA analysis phases. Also, the time

origin for the sampling is shifted of ten characteristic times so that the state

for 𝑡 = 0 is fully developed, i.e., the initial condition 𝑢(𝑥, 0) = 𝑐 is completely

advected outside the computational domain. For simplicity, we assume that the

observations and the coarse-grid ensemble are represented on the same space.

Therefore, ℋO

k ≡ ℋO is a subsampling operator independent of time, retaining

only the points comprised in the coarse space domain [3, 4]. The observations

are artificially perturbed using a constant in time Gaussian noise of diagonal

covariance RO

k ≡ RO = 2.25 · 10−6I. This choice has been performed for every

test case following the recommendations of Tandeo et al., 2020, which exten-

sively investigated the sensitivity of the EnKF to the noise/uncertainty in the

model and in the observation.

- Themodel used in the MGEnKF approach is represented by i) a main simulation

with a resolution of ∆𝑥 = 0.0125 (i.e., 80 mesh elements per 𝐿0) and ii) ensemble

simulations performed on coarse grids. Three different runs of the MGEnKF

are performed using three different mesh resolutions (∆𝑥 equal to 0.125, 0.1 and

0.0625) for the ensemble members and also imposing different values for 𝜎. The

model employs fixed parameters 𝛼 = 0 and 𝛾 = 0 (Fromm scheme) for all cases

(the inner loop is deactivated and 𝒞𝑘:𝑘−1 (𝑢;𝛼, 𝛾) = 0). The size of the ensemble

is set to 𝑁e = 100. The amplitude of the sinusoidal inlet perturbation 𝜃 for

the ensemble simulations is considered to be unknown. It is initially assumed

to be described by Gaussian distribution 𝜃 ∼ 𝒩 (0.025,Q𝜃), with Q𝜃(𝑡 = 0) =

2.5 · 10−7I. For the main simulation run on the fine grid, the mean value of

the Gaussian distribution, i.e., 𝜃 = 0.025 is initially imposed. These values are

significantly far from 𝜃 = 0.015 used with the analytical solution. This choice

allows analysing the rate of convergence of the optimization procedure. The

initial condition 𝑢(𝑥, 𝑡 = 0) = 𝑐 is used for the main simulation on the fine-grid

as well as for the coarse ensemble simulations. It is worth recalling that, in such
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a case, at 𝑡 = 0, the true state exhibits a very different solution. This choice

allows checking the robustness of the algorithm during the transient solution

and ascertain the correct evolution of the first state estimation stages when the

solution of the model may be very different from the observations.

The time-evolution of the estimation of 𝜃 is shown in Fig. 5-3. First, one can

see that the estimation procedure starts for 𝑡 = 10. This choice is consistent with

the positioning of the sensors for observation, which are located in the middle of the

computational domain ([3, 4]).

0 50 100 150 200 250 300 350

0.015

0.020

0.025

x = 0.0625

Truth
O. L.  = 0.75

O. L.  = 0.5
O. L.  = 0.125

0 50 100 150 200 250 300 350

0.015

0.020

0.025

x = 0.1000

0 50 100 150 200 250 300 350
t

0.015

0.020

0.025

x = 0.1250

Figure 5-3: Estimation history of the inlet parameter 𝜃 using the MGEnKF without
the inner loop. The DA method is performed using three different mesh resolutions
for the ensemble members and varying the parameter 𝜎.

The estimation of 𝜃 is progressively degraded as the refinement is decreased, with

the most accurate results obtained with the finest mesh refinement ∆𝑥 = 0.0625 for

any given 𝜎. Concerning the influence of the CFL number 𝜎, the model prediction is
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generally more accurate as 𝜎 → 1. One can also see that progressively larger devia-

tions are observed varying 𝜎 for coarser meshes. Therefore, the increased dispersive

and diffusive errors associated with lower CFL numbers are the cause for the large

deviations observed when 𝜎 = 0.125. 𝜃 is naturally over-predicted in this case as the

calculations of the model in the sampling region are dominated by numerical errors;

the amplitude of the sinusoidal wave imposed at the inlet is numerically diffused and

dispersed between 0 ≤ 𝑥 ≤ 3 and the MGEnKF estimator obtains the optimized value

for 𝜃 which compensates for the mismatch between model and reference in the sam-

pling region. This can be clearly observed in Fig. 5-4, where the ensemble coarse-grid

estimation is shown.
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Figure 5-4: State estimation obtained for the ensemble members via MGEnKF with-
out the inner loop for the linear advection equation test case. Comparisons with the
exact solution are shown for 𝑡 = 300 for different grid refinement levels and 𝜎 values.
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5.2.4 Performance of the MGEnKF with the inner loop

In this section, the complete MGEnKF scheme is used to study the same DA problem

investigated in Sec. 5.2.3. This analysis allows to unambiguously identify the contri-

bution of the inner loop for the optimization of the ensemble members running on

the coarse grid level.

The main modification when compared with the previous analysis is that now the

parameters 𝛾(𝑥) and 𝛼(𝑥) in Eq. 5.4 are considered to be unknown space varying

model parameters which will be optimized using the inner loop. The additional term

related to the correction model 𝒞𝑘:𝑘−1 can be explicitly written as 𝛼𝜎
2

2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀
+

𝛾
(︀
−𝑢k-1j-2 + 3𝑢k-1j-1 − 3𝑢k-1j + 𝑢k-1j+1

)︀
. In particular, the optimization will target the val-

ues of the Legendre polynomial expansion coefficients 𝛾𝑖 and 𝛼𝑖 introduced in Eq. 5.5

and Eq. 5.6 using the fine-grid state as surrogate observation.

The MGEnKF thus performs two optimization procedures within the analysis

phase, one in the inner loop and a second one in the outer loop:

1. In the inner loop, optimization of the polynomial expansion coefficients 𝛼𝑖 and

𝛾𝑖 to reduce the discrepancy between the low-fidelity (ensemble members) and

high-fidelity (main simulation) models.

2. In the outer loop, optimization of the amplitude of the inlet perturbation 𝜃.

The coefficients 𝛼𝑖 and 𝛾𝑖 are initially described by Gaussian distributions 𝛼i ∼
𝒩 (0,Q), 𝛾i ∼ 𝒩 (0,Q) with Q(𝑡 = 0) = 9 ·10−8I and 𝑖 = 0, 1, 2, 3, 4. The information

from the entire fine-grid domain is available. Therefore, ℋSO

k ≡ ℋSO is a subsampling

operator independent of time retaining all the points comprised in the coarse space

domain [0, 10]. Preliminary tests showed that, in order to improve the performance

of the inner loop, the surrogate observation from the fine grid should be perturbed

using a constant in time Gaussian noise of covariance RSO

k ≡ RSO = 1 · 10−8I. The

value here used for RSO is orders of magnitude lower than the observation covariance

matrix RO. Therefore, one can consider the surrogate observation as a quasi-exact

observation. It should be noted that the EnKF procedure in the inner loop only op-

131



timizes the parameters affecting the model term 𝒞 included in the low-fidelity model,

and no state estimation is performed on the coarse ensemble within this phase.
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Figure 5-5: Estimation history of the inlet parameter 𝜃 using the complete MGEnKF.
The DA method is performed using three different mesh resolutions for the ensemble
members and varying the parameter 𝜎.

The estimation of the parameter 𝜃 using the complete MGEnKF is shown in Fig.

5-5. As in Sec. 5.2.2, runs have been performed using three levels of mesh refinement

for the ensemble members. The first ten characteristic times of the experiment are

used to initialize the tuning of the parameters 𝛼 and 𝛾 (i.e., outer loop initially

deactivated). For 𝑡 > 10, both optimization procedures are performed. During the

very first phases of the assimilation process (10 < 𝑡 < 20) the estimated value of

𝜃 gets within the 5% error margin when compared to the truth and no degradation

is observed for every mesh refinement/𝜎 combination investigated. The convergence

is noticeably slower when 𝜎 = 0.125 for ∆𝑥 = 0.100 and ∆𝑥 = 0.125, where the

numerical errors in the initial phase are the largest. For the worst case scenario
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(𝜎 = 0.125, ∆𝑥 = 0.125) an initial phase of 40 characteristic times was required

to obtain converged results for the inner loop, which delayed the start of the outer

loop. Overall, the complete MGEnKF outperforms the version without the inner loop.

This result highlights the complementary features of the two optimization strategies

to obtain an accurate representation of the flow.

The optimization performed in the inner loop is now analysed in detail. The

parameter 𝛼(𝑥) is shown in Fig. 5-6 for 𝑡 = 300. As expected, one can see that 𝛼

exhibits negative values, which approach zero with increasing mesh resolution and

higher 𝜎 values. The numerical diffusion observed in the model when computed on

coarser meshes increases, thus the optimization procedure provides an anti-diffusive

contribution.
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Figure 5-6: Values of the parameter 𝛼 obtained via the inner loop. Results are shown
for different grids and 𝜎 values for a simulation time 𝑡 = 300.
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The spatial distribution of the sum of the parameters 𝛾+ 𝛿, representing the total

dispersion of the scheme (Eq. (5.4)) is presented in Fig. 5-7 for 𝑡 = 300. For every

case analysed, one can remark that 𝛾+𝛿 tend to converge towards the value for which

the scheme in Eq. (5.4) becomes third order accurate, that is 𝛿 + 𝛾 = 𝜎 (1− 𝜎2) /6

(0.0547, 0.0625 and 0.0205 for 𝜎 equal to 0.75, 0.5 and 0.125 respectively). This result

is expected since this particular value cancels out the dominant dispersive error in

the schemes, as shown in (5.3).
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Figure 5-7: Values of the parameter 𝛾 + 𝛿 obtained via the inner loop. Results are
shown for different grids and 𝜎 values for a simulation time 𝑡 = 300.

Finally, results for the ensemble members are shown in Fig. 5-8 for 𝑡 = 300. One

can see a marked improvement when these results are compared to the ones shown

in Fig. 5-4. The estimation of the parameter 𝜃 is clearly much more accurate (5%
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error) and there is virtually no difference in prediction between the truth and model

used on the coarse grids. This result has been obtained owing to the suppression

of the numerical diffusion and dispersion errors via inner loop, which proved to be

efficient for every configuration analysed (wide range of phase angle/CFL numbers).

DA analyses considering more complex inlet conditions (multiple frequencies 𝜃𝑖) have

been performed to assess the method. The results, which are not presented here for

the sake of brevity, show similar accuracy.
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Figure 5-8: Solutions provided by the ensemble members in the complete MGEnKF.
Results, which are obtained for different meshes and values for 𝜎, are compared with
the true state for 𝑡 = 300.
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5.3 Application: one-dimensional viscous Burgers’

equation

Let us now consider the non-linear and viscous 1D Burgers equation:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
(5.9)

where 𝑥 is the spatial coordinate, 𝑢 the velocity and 𝜈 the kinematic viscosity. Con-

sidering a centred difference scheme for both the convection and the diffusion term

over a uniform grid with mesh size ∆𝑥, and an explicit forward first order scheme for

the time derivative, one obtains:

𝑢kj =𝑢k-1j − 𝑢k-1j

∆𝑡

2∆𝑥

(︀
𝑢k-1j+1 − 𝑢k-1j-1

)︀
+ 𝜈

∆𝑡

∆𝑥
2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀
(5.10)

where ∆𝑡 represents the time step.

Similarly to what was done in Sec. 5.2, the performance of the MGEnKF is here

studied for this test case. However, owing to the non-linear behaviour of this flow

configuration, a model of the numerical error associated with the discretization process

cannot be derived from the dynamic equation. Thus, for this case, the optimization

by the inner loop is performed using the same model, 𝒞, employed in Sec. 5.2. While

this model has not been derived for the dynamic equations (5.9)-(5.10), one can assess

the degree of precision attained in reducing amplitude and phase errors.

A numerical experiment for this test case is first performed using a high-resolution

mesh to obtain a reference solution and to generate observation for the MGEnKF

application. A Dirichlet time-varying condition is imposed at the inlet:

𝑢(𝑥 = 0, 𝑡) = 𝑢0 (1 + 𝜃 sin (2𝜋𝑡)) , (5.11)

where 𝑢0 is the mean characteristic velocity of the flow and is set to 𝑢0 = 1. 𝜃

represents the amplitude of a sinusoidal signal whose period is ∆𝑇 = 1. The am-
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plitude parameter has been set to 𝜃 = 0.2 in order to observe significant non-linear

effects with the Reynolds number chosen for this application, which will be discussed

in the following. The outlet boundary condition is extrapolated from the nearest

points to the outlet using 4-th order Lagrange polynomials. The initial condition is

𝑢(𝑥, 𝑡 = 0) = 𝑢0 everywhere in the physical domain. The Reynolds number is set to

𝑅𝑒 = 𝑢0 𝐿0

𝜈
= 200, where 𝐿0 = 𝑢0 ∆𝑇 is the mean wave-length of the signal and the

characteristic length of the system. All physical lengths characterizing the system are

normalized by 𝐿0. The simulation is performed over a computational domain of size

10 length units, and the origin of the system is set so that 0 ≤ 𝑥 ≤ 10. The mesh

resolution is set to 64 discrete nodes per 𝐿0, for a total of 640 mesh elements. A

constant time step ∆𝑡 is set so that the mean CFL number is 𝐶𝐹𝐿 = 𝑢0Δ𝑡

Δ𝑥
= 0.025,

which is small enough to guarantee a stable numerical evolution of the system.

The predicted solution using this model is referred to as the true state of the

system. This state is first compared with the prediction obtained via a low-fidelity

model, which is identical to the reference simulation but uses only 8 nodes per length

𝐿0, for a total of 80 mesh elements. The comparison of the two solutions, which is

shown in Fig. 5-9, clearly indicates that the lack of mesh resolution is responsible

for important errors in the amplitude and in the phase of the velocity signal. In
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Figure 5-9: Instantaneous solution of the 1D Burgers’ equation at 𝑡 = 100. Solutions
obtained via a very refined simulation (Truth, black line) and using a coarse grid
(Low-Fidelity Model, gray line) are compared.
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particular, the main source of numerical error appears to be of dispersive nature.

More specifically, the time period of a full oscillation of the velocity field is significantly

shorter when compared with the reference simulation. Diffusion errors are also visible,

although their magnitude is smaller. The combination of these two sources of error

severely affects the representation of the non-linear phenomena at play. In fact, in

the reference simulation, one can see that non-linear dynamics are strong enough to

sensibly deform the sinusoidal profiles imposed at the inlet. On the other hand, the

state predicted via the low-fidelity model does not show marked deformations of the

velocity profile, suggesting that non-linear effects are poorly represented.

In order to perform an extensive test of the performance of the MGEnKF strategy,

two different runs are performed. The first one includes an outer loop only, while the

second one performs the complete inner loop and outer loop scheme. This comparison

allows assessing the impact of the inner loop performance over the optimization of the

global coefficients of the simulation. Similarly to what was proposed in Section 5.2,

the numerical scheme presented in (5.10) is modified to introduce model correction

terms:

𝑢kj =𝑢k-1j − 𝑢k-1j

∆𝑡

2∆𝑥

(︀
𝑢k-1j+1 − 𝑢k-1j-1

)︀
+ 𝜈

∆𝑡

∆𝑥
2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀
+ 𝒞𝑘:𝑘−1(𝑢, 𝛼, 𝛾)

=𝑢k-1j − 𝑢k-1j

∆𝑡

2∆𝑥

(︀
𝑢k-1j+1 − 𝑢k-1j-1

)︀
+ (1 + 𝛼) 𝜈

∆𝑡

∆𝑥
2

(︀
𝑢k-1j+1 − 2𝑢k-1j + 𝑢k-1j-1

)︀

+ 𝛾
(︀
−𝑢k-1j-2 + 3𝑢k-1j-1 − 3𝑢k-1j + 𝑢k-1j+1

)︀
. (5.12)

The model 𝒞 here introduced is composed by two correction terms, which are driven by

the parameters 𝛾(𝑥, 𝑡) and 𝛼(𝑥, 𝑡). 𝛾 and 𝛼 are identically zero in the main simulation

of the MGEnKF, while they are optimized in the inner loop for the ensemble members.

First, the 𝛼 parameter controls a diffusive effect/numerical viscosity term. For this

reason, local values are bounded to respect the condition, 𝛼(𝑥, 𝑡) ≥ −1 i.e., non-

physical solutions with negative global viscosity are excluded. Fig. 5-9 shows that

grid coarsening is responsible for an over estimation of diffusive effects. Therefore,
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one should expect to observe a convergence of the parameter 𝛼(𝑥, 𝑡) towards negative

values. The second model term 𝛾
(︀
−𝑢k-1j-2 + 3𝑢k-1j-1 − 3𝑢k-1j + 𝑢k-1j+1

)︀
mimics the effects of

a dispersion term of the form
(︀
𝛾∆𝑥

3𝑢𝑥𝑥𝑥
)︀
(Hirsch, 2007). This term was used in the

previous section to correct the dispersive errors observed in the advection equation.

The time evolution of 𝛼(𝑥, 𝑡) and 𝛾(𝑥, 𝑡) is taken into account by the MGEnKF

itself, as the parameters are updated at each inner analysis phase. On the other

hand, the space variability of the two parameters is obtained by expressing them in

terms of a Legendre Polynomial expansion. Similarly to what was done for the linear

advection case presented in Section 5.2, the expansion is truncated to 𝑛 = 4, i.e.,

a 4-th polynomial order. This implies that the optimization performed in the inner

loop targets the value for the ten model coefficients 𝛾i and 𝛼i.

The performance of the estimators (inner and outer loop, outer loop only) is

assessed via the following data-assimilation experiment:

- The observations are sampled each 160 time steps of the reference simulation

run on the space domain [3, 4] (64 sensors) and on the time window [0, 240].

Considering the value of the time step ∆𝑡 employed for the investigation, this

implies that approximately 20 analysis phases per characteristic time evolu-

tion ∆𝑇 are performed. The sampling of the reference simulation is performed

starting from a fully developed state for 𝑡 = 0. This is easily done owing to

the periodic characteristics of the inlet. For the sake of simplicity, we assume

that the observations and the coarse-grid ensemble are represented on the same

space. Therefore, ℋO

k ≡ ℋO is a sub-sampling operator independent of time

retaining only the points comprised in the coarse space domain [3, 4]. The ob-

servations are artificially perturbed by adding a constant in time Gaussian noise

of diagonal covariance RO

k ≡ R = 4 · 10−4IO.

- The model realizations consist of a main simulation (run on the same mesh used

for the reference simulation) and an ensemble of 𝑁e = 100 coarse simulations (8

mesh elements per wavelength 𝐿0) which are run using the numerical scheme in

equation (5.12). The initial condition 𝑢(𝑥, 𝑡 = 0) = 𝑢0 is imposed for each sim-
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ulation. The outer loop provides an optimization for the value of the parameter

𝜃 driving the inlet condition. The initial condition for this parameter for each

simulation is provided in the form of a Gaussian distribution 𝜃 ∼ 𝒩 (0.15,Q𝜃),

with Q𝜃(𝑡 = 0) = 6.25 · 10−4I. As previously stated, the inner loop of the

MGEnKF optimizes the polynomial expansion coefficients 𝛼i and 𝛾i control-

ling the behaviour of the model terms introduced in the dynamic equations.

Here, the physical state predicted by the main simulation is used as surrogate

observation for this step. Initial values of the coefficients are described by Gaus-

sian distributions 𝛼i ∼ 𝒩 (0,Q), 𝛾i ∼ 𝒩 (0,Q) with Q(𝑡 = 0) = 9 · 10−8I and

𝑖 = 0, 1, 2, 3, 4. The surrogate observation is here represented by the projection

of the complete state predicted on the fine-grid by the main simulation over the

coarse grid. Therefore, ℋSO

k ≡ ℋSO is a subsampling operator independent of

time retaining all the points comprised in the coarse space domain [0, 10]. The

surrogate observation sampled from the fine-grid is further randomized using a

constant in time Gaussian noise of covariance RO
k ≡ RO = 1 · 10−8I in order

to improve the convergence of the inner loop optimization procedure. As in

Sec. 5.2, one can see that RO is orders of magnitude smaller than the observa-

tion covariance matrix R. The inner loop only optimizes values for 𝛼i and 𝛾i

and no update of the state estimation is here performed. Also, the inner loop

is not performed at each outer loop analysis phase, but it is instead performed

around twice per characteristic time (i.e., once every ten outer loop analyses).

The time-evolution of the estimation for the parameter 𝜃 is shown in Fig. 5-10.

The accuracy of the complete MGEnKF scheme is excellent, while a significant error

(𝜃 = −0.2) is observed for the simplified MGEnKF using the outer loop only. The

phase error due to grid coarsening observed in Fig. 5-9 for the model is responsible for

this important mismatch, and the reason is clear when analysing the instantaneous

physical state in Fig. 5-11. In fact, the cumulative loss of phase of the model in the

region 3 ≤ 𝑥 ≤ 4, which includes the observation, is approximately 𝜋. Thus, this

error induces a bias in the estimation of the inlet parameter 𝜃, which compensates

the error in the observation region but provides massive errors outside of it.
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Figure 5-10: Evolution in time of the parameter 𝜃 during the outer loop optimiza-
tion via MGEnKF. Results obtained from the DA complete model (outer plus inner
loop, dot-dashed line) and the simplified DA model (outer loop only, dotted line) are
compared with the exact result (black line).

On the other hand, the optimization via inner loop of the coefficients 𝛼i and

𝛾i allows obtaining a precise representation of the flow field in the whole physical

domain and not only in the observation region. The physical state obtained in Fig. 5-

11 by the complete MGEnKF scheme is in better agreement with the truth, and the

non-linearity of the flow is adequately captured despite the significant difference in

resolution between the reference simulation and the ensemble members.

The performance of the inner loop is now investigated via the analysis of the

model parameters 𝛼 and 𝛾. In figure 5-12 and 5-13 spatial distributions for the two

parameters at 𝑡 = 240 are shown. It will also be shown later that time variations

are weak for these quantities, so the results presented can be considered as mean

values for 𝛼 and 𝛾 as well. As expected, 𝛼 exhibits negative values to compensate the

higher numerical diffusion due to the coarser grid. However, the condition 𝛼 > −1 is

strictly respected in the whole physical domain. The spatial distribution for 𝛾 is quasi

constant and equal to ≈ 0.004. For the linear advection equation, if 𝛾 = 𝜎 (1− 𝜎2) /6,

one obtains a third-order accurate scheme on the support 𝑗− 2, 𝑗− 1, 𝑗, 𝑗+ 1, namely

the Warming, Kutler, Lomax scheme (Hirsch, 2007). Considering the values for 𝑢0,

∆𝑥 and ∆𝑡 used for this analysis, 𝛾 = 0.025 (1− 0.0252) /6 ≈ 0.004. Thus, the

optimized value for 𝛾 obtained via the inner loop is close to the value that provides

maximum accuracy in the linear advection case.
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Figure 5-11: State estimation results for the 1D Burger’s test case, projected on the
coarse grid for 𝑡 = 240. The projected true state (black line) is compared with results
obtained via the MGEnKF complete model (outer plus inner loop, gray dotted line)
and the simplified MGEnKF model (outer loop only, gray line).
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Figure 5-12: Instantaneous space distribution of the model parameter 𝛼 determined
via inner loop optimization. The results shown correspond to a simulation time of
𝑡 = 240.
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Figure 5-13: Instantaneous space distribution of the model parameter 𝛾 determined
via inner loop optimization. The results shown correspond to a simulation time of
𝑡 = 240.
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Figure 5-14: Estimation history of the Legendre Polynomial coefficients 𝛼i.
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Figure 5-15: Estimation history of the Legendre Polynomial coefficients 𝛾i.
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More information about the numerical models can be drawn by the analysis of

the time evolution of the coefficients 𝛼i and 𝛾i in Fig. 5-14 and 5-15. First, one can

see that the zero-order contributions 𝛼0 and 𝛾0 are the most important in terms of

magnitude. In addition, one can also see a small but non-zero evolution in time of

such coefficients. This observation is tied to the interactions between the optimization

procedures performed in the inner loop and in the outer loop, whose results interact

for non-linear phenomena. This is also the reason the rate of convergence of 𝛼, which

is strictly connected to 𝜃, is slower.

Multiple strategies for the complete MGEnKF scheme have been tested, varying

the starting time of the inner and outer loop. It has been observed that the global

optimization converges faster, and it is more robust if a first phase using the inner loop

only is followed by a second phase where both inner loop and outer loop are applied.

This procedure allows to train the model used for the ensemble members to perform

similarly to the model employed on the fine grid for the main simulation. Therefore,

the following classical DA optimization represented by the outer loop converges more

rapidly to the targeted behaviour provided by the observation. This initial phase of

training, which has been here performed for 𝑡 ∈ [0, 40], is particularly important if the

values of the parameters driving the correction model used for the ensemble members

are unknown, like for the present analysis.

5.4 Acoustic propagation of sinusoidal wave

The MGEnKF strategy is now applied to a more complex physical system, namely

the inviscid one-dimensional Euler equations:

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0 (5.13)

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕((𝜌𝑢)𝑢)

𝜕𝑥
+
𝜕𝑝

𝜕𝑥
= 0 (5.14)

𝜕 (𝜌𝐸)

𝜕𝑡
+
𝜕((𝜌𝐸)𝑢)

𝜕𝑥
+
𝜕(𝑝𝑢)

𝜕𝑥
= 0 (5.15)
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where 𝜌 is the density, 𝑢 is the velocity, 𝑝 is the pressure and 𝐸 is the total energy

per unit mass. In this case, viscous effects are absent, but acoustic propagation

affects the evolution of the flow. The equations are discretized in space using a

second-order finite difference centred scheme. A first-order explicit Euler scheme is

used for the time integration method. After discretization, a representation similar

to (2.39) is obtained. A centred sixth-order numerical filter is included to damp

numerical spurious oscillations (Bogey & Bailly, 2004). We specifically analyse the

acoustic propagation of a sinusoidal wave with a time-varying amplitude. To do so,

a Dirichlet time-varying velocity condition is imposed at the inlet:

𝑢(𝑥 = 0, 𝑡) = 𝑢0 (1 + 𝜃(𝑡) sin(2𝜋𝑓𝑐𝑡)) (5.16)

The value of 𝑢0 is set in order to impose an inlet Mach number𝑀 = 𝑢0
𝑎

= 0.4, where 𝑎

is the speed of the sound. The amplitude of variation in 𝜃 is sufficiently low to allow a

flow evolution mainly driven by acoustic phenomena. The inlet velocity perturbation

creates an acoustic wave that is transported along the domain with a speed equal to

𝑢0 + 𝑎. The characteristic velocity and length scales are 𝑢𝑐 = 𝑢0 + 𝑎 and 𝐿𝑐, which

is the wavelength of the signal imposed at the inlet. The characteristic time of the

system is defined as 𝑡𝑐 = 𝐿𝑐/𝑢𝑐.

The sinusoidal behaviour of the velocity at the inlet is characterized by a constant

frequency 𝑓𝑐 = 1/𝑡𝑐. However, the amplitude of the sinusoidal wave is driven by

the time-varying parameter 𝜃(𝑡) = 𝜃0

(︂
1 + sin

(︂
2𝜋
𝑓𝑐
10
𝑡

)︂)︂
, where 𝜃0 is a constant.

At the inlet, we set 𝜌(𝑥 = 0, 𝑡) = 𝜌0 and 𝐸(𝑥 = 0, 𝑡) = 𝐸0 = 𝑒 + 0.5𝑢20, where

𝑒 is the internal energy per unit of mass. By definition, 𝑒 = 𝐶𝑣𝑇0 where 𝐶𝑣 is

the heat capacity at constant volume and 𝑇0 the initial temperature of the flow.

The outlet boundary condition is extrapolated from the nearest points to the outlet

using 4-th order Lagrange polynomials. The initial condition imposed at 𝑡 = 0 is

𝑢(𝑥, 𝑡 = 0) = 𝑢0, 𝜌(𝑥, 𝑡 = 0) = 𝜌0 and 𝐸(𝑥, 𝑡 = 0) = 𝐸0 everywhere in the physical

domain and for all the simulations (fine-grid and coarse-grid ensemble members). The

fluid is considered an ideal gas with 𝐶𝑣 = 0.7171, 𝛾 = 1.4, 𝜌0 = 1.17 and 𝑇0 = 300 in
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S.I. units.

The computational domain has been set to a size of 𝐿𝑥 = 10. A uniform mesh

distribution is used for every calculation. 80 mesh elements are used to discretize the

characteristic length 𝐿𝑐 for a total of 𝑁𝑥 = 800 elements in the domain. Finally, the

normalized value of ∆𝑡 is set to ∆𝑡 = 0.0006.

A preliminary simulation is performed for 𝜃0 = 0.015 (true state). A flow visualiza-

tion of the wave patterns is shown in Fig. 5-16 at 𝑡 = 17.3. The fully developed state

obtained at 𝑡 = 10 is used to initialize a new simulation from 𝑡 = 0. This simulation is

run for a total time of 𝑇DA = 110. The fine grid data are projected on the coarse grid

and sampled to obtain observations of 𝜌𝑢 in the space region 𝑥 ∈ [0, 1]. These obser-

vations are artificially perturbed using a Gaussian noise of variance RO = 0.09I. The

observation operator ℋO selects the points in the coarse grid where 𝜌𝑢 is available.
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Figure 5-16: Solution 𝜌𝑢 of the inviscid one-dimensional Euler equations at 𝑡 = 17.3
for 𝜃0 = 0.015 (true state)

.

In contrast to the DA experiment undertaken in Sec. 5.2 and Sec. 5.3, in Sec. 5.4

and Sec. 5.5 the analysis is focused on the performance of the outer loop. This

choice was performed due to the central contribution of this loop to the global data

assimilation strategy. For this reason, the inner loop was suppressed in order to obtain

an unambiguous assessment of this element of the MGEnKF. Moreover, the models

used in these last two sections are significantly more complex than the prototype

Burgers and advection equations used in the first DA experiments performed; they

include a coupling between velocity and pressure which complicates the determination
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of the model correction term 𝒞. This aspect is still under research.
The assimilation is composed of the main simulation, which is run on the fine grid,

and 𝑁e = 100 simulations on the coarse-grid level. In this section, a coarsening ratio

(𝑟C = ∆𝑥F/∆𝑥C) of 𝑟C = 4 is considered. The estimator is used to dynamically track

the value of the parameter 𝜃, which evolves in time. No a priori knowledge about

the behaviour of the parameter is used. A similar analysis using a classical Kalman

smoother was recently proposed by Mons et al., 2016.

For each coarse grid simulation of the estimator, 𝜃 is initially assumed to be a

random Gaussian phenomenon 𝜃 ∼ 𝒩 (0,Q𝜃). The initial value of the covariance

is Q𝜃(𝑡 = 0) = 6.4 × 10−5. The value initially imposed at the inlet of the fine-grid

simulation is 𝜃 = 0, while random values are selected for each ensemble member on the

coarse grid level following the normal distribution introduced above. The variance of

the parameter 𝜃 for the ensemble members is artificially increased, as in the classical

Dual EnKF algorithm. As described in A.3, we add to the estimated parameter of

each member of the ensemble a Gaussian noise of covariance Σ𝜃
𝑘 = 10−10I, which is

reminiscent of the strategy used by Moradkhani et al., 2005. Extensive numerical

tests have been performed and a sensitivity of the results to Σ𝜃
𝑘 has been observed.

The value chosen for Σ𝜃
𝑘 has been set to avoid the collapse of the ensemble members

over the state estimation while keeping the noise level for 𝜃 moderately low.

Let 𝑓𝑎 be the number of analysis phases per characteristic time of simulation

𝑡𝑐, i.e. 𝑓𝑎 = 𝑡𝑐/𝑡𝑎. In the following, three different values of 𝑓𝑎 are investigated:

𝑓𝑎 = 2, 10, 55.

The estimator is run for a total simulation time 𝑇DA = 110, which encompasses

220 to 6000 DA analysis phases, depending on the value of 𝑓𝑎. At the end of each

analysis, the mean value and the variance of the amplitude 𝜃 are updated following

the Dual EnKF technique.

The results for the estimation of the time-varying parameter 𝜃 are reported in

Fig. 5-17. For clarity, only the results for the assimilation window 𝑡 ∈ [40, 70] are

shown. The precision of the parametric inference is measured via the relative error

𝜂 defined as 𝜂𝑘 =
𝜃𝑎𝑘 − 𝜃true𝑘

max𝑘 |𝜃True𝑘 | , where 𝜃
𝑎
𝑘 is the average (first central moment) of the
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Gaussian random value 𝜃 and 𝜃True𝑘 is the true value of 𝜃.

The time evolution of 𝜃 is correctly estimated for the three values of 𝑓𝑎. This is

an important result, considering that no a priori information was provided for the

evolution of this parameter. A more detailed analysis reveals a lag in the parameter

estimation. The application of a simple Kalman filter seems to be responsible for

this result, while a Kalman Smoother (KS) should have been used to obtain a better

synchronization. However, considering that the implementation of a KS is straight-

forward in this case and that observation is always provided close to the inlet, we

considered that the increase in computational resources required by the KS was not

needed. We find that the lag increases when a relatively small number of DA anal-

yses is done. One can see that the prediction is significantly degraded for 𝑓𝑎 = 2,

while similar results are obtained for 𝑓𝑎 = 10, 55. This observation is quantified by

the time evolution of the relative error 𝜂, which is significantly large for 𝑓𝑎 = 2. In

addition, 𝜃 tends to be generally underestimated (around 10− 20%) when it reaches

its maximum value. This result is arguably associated with the under-resolution of

the coarse level of the grid, where the gradients of physical variables are calculated

with lower accuracy.

Now, results dealing with the state estimation are discussed. The predicted phys-

ical variable 𝜌𝑢, normalized over the initial value 𝜌0𝑢0, is shown in Fig. 5-18, 5-19

and 5-20 for 𝑓𝑎 = 2, 10 and 55, respectively. For 𝑓𝑎 = 2, the state estimation is sig-

nificantly distant from the truth. It appears that the field correction applied via the

Kalman gain is not able to compensate the poor estimation of 𝜃. However, accurate

results are observed for 𝑓𝑎 = 10 and 55. Even though the value of the parameter 𝜃

is not exact, the state estimation including the correction via Kalman gain is very

precise. For the case 𝑓𝑎 = 55, almost no discernible difference is observed between

the state estimation and the truth.
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Figure 5-17: Time estimation of the parameter 𝜃 driving the amplitude of the si-
nusoidal acoustic wave for the assimilation window 𝑡 ∈ [40, 70] . In the top image,
results are shown for 𝑓𝑎 = 2, 10, 55 and compared to the true value of 𝜃. In the
bottom image, the relative error 𝜂 quantifying the parametric inference is shown.
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(a) 𝑡 = 1.23
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(b) 𝑡 = 8.32
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(c) 𝑡 = 16.30

Figure 5-18: Estimations by MGEnKF of the momentum 𝜌𝑢 normalized by 𝜌0𝑢0 for
𝑓𝑎 = 2 at 𝑡 = 1.23 (a), 𝑡 = 8.32 (b) and 𝑡 = 16.30 (c). Times are given in 𝑡𝑐 units.
The grey shaded area corresponds to the observation window.
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(a) 𝑡 = 1.23
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(b) 𝑡 = 8.32
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Figure 5-19: Estimations by MGEnKF of the momentum 𝜌𝑢 normalised by 𝜌0𝑢0 for
𝑓𝑎 = 10 at 𝑡 = 1.23 (a), 𝑡 = 8.32 (b) and 𝑡 = 16.30 (c). Times are given in 𝑡𝑐 units.
The grey shaded area corresponds to the observation window.
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(a) 𝑡 = 1.23
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Figure 5-20: Estimations by MGEnKF of the momentum 𝜌𝑢 normalized by 𝜌0𝑢0 for
𝑓𝑎 = 55 at 𝑡 = 1.23 (a), 𝑡 = 8.32 (b) and 𝑡 = 16.30 (c). Times are given in 𝑡𝑐 units.
The grey shaded area corresponds to the observation window.
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At last, the relative Root Mean Square Error (RMSE) defined as

RMSE(𝑘) =

⎯⎸⎸⎸⎸⎸⎷

∫︁

𝑥

[︁(︀
(𝜌𝑢)F𝑘

)︀a
(𝑥)−

(︀
(𝜌𝑢)F𝑘

)︀True
(𝑥)

]︁2
d𝑥

∫︁

𝑥

[︁(︀
(𝜌𝑢)F𝑘

)︀True
(𝑥)

]︁2
d𝑥

(5.17)

is shown in Fig. 5-21. The error achieves a quasi-constant asymptotic behaviour after

a complete propagation of the signal in the physical domain (𝑡 ≈ 10𝑡𝑐). As expected,

a low global error is obtained for the cases 𝑓𝑎 = 10 and 𝑓𝑎 = 55. On the other

hand, the error for the 𝑓𝑎 = 2 case is around 2 − 3 times larger. The very small

difference in performance between the cases 𝑓𝑎 = 10 and 𝑓𝑎 = 55 can be interpreted

as a sign of convergence of the procedure. Another interpretation may be that the

leading contribution of the error corresponds to the statistical error from using only

100 ensemble members in the estimation. We can however note that similar results

were previously observed in three-dimensional simulations Meldi, 2018.

0 20 40 60 80 100
t

10 4

10 3

R
M

SE
 

u

fa = 55
fa = 10
fa = 2

Figure 5-21: Time evolution of the RMS error of 𝜌𝑢 for 𝑓𝑎 = 2, 10, 55.
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5.5 Spatially evolving compressible mixing layer

In this section, we consider the compressible Navier-Stokes equations in a two-dimensional

physical domain:

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌u) = 0 (5.18)

𝜕 (𝜌u)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌u⊗ u) = −grad 𝑝+ div 𝜏 (5.19)

𝜕 (𝜌𝐸)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝐸u) = −𝑑𝑖𝑣(𝑝u) + 𝑑𝑖𝑣(𝜏u) + 𝑑𝑖𝑣 (𝜆(𝑇 )grad𝑇 ) (5.20)

where 𝜌 is the density, u is the velocity (components 𝑢 in the streamwise direction and

𝑣 in the normal direction), 𝑝 is the pressure, 𝐸 is the total energy per unit of mass,

𝜏 is the tensor of the viscous constraints and 𝑇 is the temperature. To obtain the

representation given by (2.39), the equations are discretized using the finite difference

method. Second-order centred schemes are used for the derivatives in space and a

first-order scheme for the time integration. A centred sixth-order numerical filter is

included to damp numerical spurious oscillations (Bogey & Bailly, 2004).

The two-dimensional spatially evolving mixing layer at Re = 100 is here investi-

gated. For this value of Reynolds number, the flow exhibits unsteady features. It can

be shown (Ko et al., 2008; Meldi et al., 2012) that the characteristics of the mixing

layer are strongly affected by the inlet and, in particular, by imposed ad hoc time

perturbations. The computational domain has been set to a size of 14𝐿𝑐× 6𝐿𝑐 in the

streamwise direction 𝑥 and normal direction 𝑦, respectively. The characteristic length

𝐿𝑐, which is taken as reference length from now on, is given by 𝐿𝑐 = 𝐴𝛿0, where 𝛿0 is

the initial vorticity thickness imposed at the inlet. The value of the parameter 𝐴 is

set in order to represent the most unstable wavelength determined by Linear Stabil-

ity Theory (LST). At Re = 100, we have 𝐴 = 14.132 (McMullan et al., 2007). The

mesh resolution in the horizontal direction is constant for 𝑥 ∈ [0; 10]. The size of the

elements is ∆𝑥 = 𝛿0
8
. For 𝑥 ≥ 10, a sponge zone is established with a coarsening ratio

between successive elements which increases from 1.025 to 1.04. The resolution in the

normal direction is constant and equal to ∆𝑦 = 𝛿0
20

for −0.18 ≤ 𝑦 ≤ 0.18. Outside
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this zone, the mesh elements increase in size moving away from the centreline with a

constant coarsening ratio of 1.01.

The Reynolds number of the flow is calculated as Re = (𝑈1−𝑈2)𝛿0/𝜈 = 100 with

asymptotic velocities set to 𝑈1 = 173.61 and 𝑈2 = 104.17. These values correspond to

a Mach number Ma = 0.5 and Ma = 0.3, for each stream, respectively. The kinematic

viscosity and thermal diffusivity of the flow are considered to be constant, and their

value is fixed to 𝜈 = 1.568×10−5 and 𝛼 = 22.07×10−7, respectively. Finally, the flow

is considered to be a perfect gas with 𝛾 = 1.4 and 𝐶𝑣 = 0.7171. All these quantities

are expressed in S.I. units. The inlet boundary condition is taken from Ko et al.,

2008. For the velocity field, one has:

𝑈in(𝑦, 𝑡) =
𝑈1 + 𝑈2

2
+
𝑈1 − 𝑈2

2
tanh

(︂
2𝑦

𝛿0

)︂
+ 𝑈Pert(𝑦, 𝑡) − 3 < 𝑦 < 3 (5.21)

𝑉in(𝑦, 𝑡) = 0 (5.22)

where 𝑈in is the streamwise velocity at the inlet and 𝑉in is the normal velocity. 𝑈in is

estimated as a classical hyperbolic tangent profile plus a time-varying perturbation

component:

𝑈Pert(𝑦, 𝑡) =

𝑁in∑︁

𝑖=1

𝜖𝑖(𝑡)
𝑈1 + 𝑈2

2
[𝑓𝑖(𝑦) sin(𝜔𝑖𝑡)], (5.23)

where 𝑁in is the total number of perturbation modes and 𝜖𝑖 quantifies the magni-

tude of each mode. The function 𝑓𝑖(𝑦) = cos

(︂
4𝑛𝑖

𝑦

𝛿0

)︂
ℎ(𝑦) controls the shape of

the perturbation of the inlet velocity profile in the normal direction. The role of

ℎ(𝑦) = 1 − tanh2

(︂
2𝑦

𝛿0

)︂
is to damp the perturbation component moving away from

the centreline. The wavelength parameters 𝑛𝑖 are tuned according to the LST re-

sults. In the following, we consider 𝑁in = 1, i.e., the inlet perturbation consists of

a single mode. In the numerical tests, we follow Ko et al., 2008 and set 𝑛1 = 0.4𝜋

and 𝜔1 = 1/𝑡𝑐, where 𝑡𝑐 = 2𝐿𝑐/(𝑈1 + 𝑈2) is the average advection time. The in-

let density is set to be constant so that 𝜌in = 1.177, as well as the temperature

𝑇in = 300 in S.I. units. The inlet total energy per unit mass 𝐸in is calculated as

𝐸in = 𝑒 + 0.5 (𝑈2
in + 𝑉 2

in), where the internal energy 𝑒 is defined as 𝑒 = 𝐶𝑣𝑇in. The
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outlet boundary conditions for all the variables present in the state vector are extrap-

olated from the nearest points to the outlet using 4-th order Lagrange polynomials.

The zero gradient boundary condition is imposed on the transverse sides of the domain

(at 𝑦 = −3 and 𝑦 = 3).

In this section, the parameter 𝜃 of the model corresponds to the single parameter

𝜖1, which is the time-dependent variable governing the amplitude of the perturbation.

A reference simulation is run where 𝜖1 varies in time following a sinusoidal form:

𝜖1(𝑡) = 𝜖(1 + sin(𝜔𝜖𝑡)). The values of the numerical parameters characterizing the

perturbation are 𝜖 = 0.15 and 𝜔𝜖 = 0.62𝜔1. At 𝑡 = 0, the variables of the fine

grid and the coarse grid ensemble are initialized in the physical domain using the

values imposed at the inlet. This implies that the physical quantities can exhibit

initial variations in the 𝑦 direction, while their value in the streamwise 𝑥 direction is

constant. For the case of the streamwise velocity, the velocity perturbation 𝑈Pert = 0

at 𝑡 = 0, see (5.23). A flow visualization of 𝜌𝑣 at 𝑡 = 10 is shown in Fig. 5-22 for this

reference simulation. One can clearly observe the emergence of coherent structures

with complex pairing patterns.
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Figure 5-22: Visualization of the normal momentum 𝜌𝑣 (S.I. units) for the 2D com-
pressible Navier-Stokes equation. Reference simulation at 𝑡 = 10 for a time-varying
value of 𝜖1.

The DA procedure is performed using the following elements:

- The observation is sampled from the reference simulation shown in Fig. 5-22,

which is run for a total simulation time of 𝑇DA = 40 in 𝑡𝑐 units. This value

corresponds to four complete advections in the whole physical domain. A fully
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developed state obtained from a prior simulation at 𝑡 = 10 is used to initialize

the simulations at 𝑡 = 0. Data are projected on the coarse grid and sampled

every 30 time steps in the region 𝑥 ∈ [0, 0.55] and 𝑦 ∈ [−0.16, 0.16]. Considering

the results obtained in Sec. 5.4, the number of analysis phases per character-

istic time of simulation (𝑓𝑎 = 75) is chosen sufficiently high to assure a good

estimation. The observations are made from the instantaneous fields 𝜌𝑢 and

𝜌𝑣. The data used as observation are artificially perturbed using a Gaussian

noise of covariance RO = I. The observation operator ℋO acts as described in

Sec. 5.4.

- The model is the discretized version of the system given by (5.18) - (5.20).

The features of the fine mesh level were previously introduced. For the coarse

grid level, a homogeneous coarsening ratio 𝑟C = 4 is employed. The initializa-

tion strategy used for the coarse ensemble simulations is identical to the one

described above for the fine-grid reference case. We consider that no prior in-

formation is available on the time evolution of 𝜖1. At 𝑡 = 0, this coefficient is

fixed to be a random Gaussian value 𝜖1 ∼ 𝒩 (0,Q𝑎) where the initial value of

Q𝑎(𝑡 = 0) = 0.0625. The value imposed on the main fine-grid simulation at

𝑡 = 0 is 𝜖1 = 0, while random values are imposed for each ensemble member on

the coarse grid level. The size of the ensemble is 𝑁e = 100.

The estimation algorithm is run over a time window equal to 𝑇DA = 40 which

encompass roughly 3200 DA analysis phases. At the end of each analysis, the mean

value and the variance of the coefficient 𝜖1 are updated following the Dual EnKF

technique (Moradkhani et al., 2005), similarly to what was done in Sec. 5.4.

The time evolution of the estimated value of 𝜖1 is reported in Fig. 5-23. The

overall sinusoidal trend is generally respected, although a relatively small phase lag

is visible. This lag does not appear to be larger than the one previously observed for

the one-dimensional case based on the Euler equation. This lag is due to the usage

of a Kalman Filter approach instead of a Kalman Smoother, as discussed in Sec. 5.4.

However, in this case, some overprediction of the parameter is locally observed in
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time, which was not obtained for the wave propagation test case.
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Figure 5-23: Time evolution of the inferred values of 𝜖1 for the time-varying reference
case. (a) Large time window. (b) Zoomed region. The shaded area represents the
95% credible interval for the estimated parameter.

The results obtained for the prediction of the normal momentum 𝜌𝑣 are shown

in Fig. 5-24. One can see that the combination of parameter and state estimations

produces an accurate prediction of the flow. Minor discrepancies are observed when

comparing the state estimation with the true state. In particular, the momentum

𝜌𝑣 does not exhibit spurious oscillations which could stem from the field correction

determined via the Kalman gain. In order to evaluate the respective influence of the

parameter estimation step and state estimation phase, a test case is run in which only

the parameter estimation is performed. That is, the state estimation obtained on the
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coarse-grid level is not included in the steps 4 and 5 of the algorithm presented in

Chapter 4. While the results of the parameter estimation are the same for the two

cases, one can see in Fig. 5-25 that the prediction is sensibly deteriorated.

This observation is quantified by the evaluation of the relative Root Mean Square

Error (RMSE), defined as:

RMSE(𝑘) =

⎯⎸⎸⎸⎸⎸⎷

∫︁

𝑥

[︁(︀
(𝜌𝑣)F𝑘

)︀a
(𝑥)−

(︀
(𝜌𝑣)F𝑘

)︀true
(𝑥)

]︁2
d𝑥

∫︁

𝑥

[︁(︀
(𝜌𝑣)F𝑘

)︀true
(𝑥)

]︁2
d𝑥

(5.24)

The results, which are shown in Fig. 5-26, indicate that the accuracy of the com-

plete algorithm is higher when compared to the case in which only the parameter

estimation is performed. Therefore, the two operations concurrently provide an im-

provement in the prediction of the flow.

At last, an analysis of the conservativity of the algorithm is performed. As previ-

ously discussed, the state estimation obtained via EnKF does not necessarily comply

with the dynamical equations of the model. This drawback can be responsible for

discontinuities in the physical field, which can significantly affect the accuracy and

stability of the global algorithm. The analysis is performed considering an indicator

ΓF

𝑘 which measures the conservation of the transversal momentum equation (5.19) in

discretized form:

(︀
(𝜌𝑣)F𝑘

)︀a −
(︀
(𝜌𝑣)F𝑘−1

)︀a

∆𝑡
−ℱ𝜌𝑣

(︀
𝜌𝑘,u𝑘, 𝑝𝑘, 𝜏 𝑘

)︀
:= ΓF

𝑘(𝑥, 𝑦), (5.25)

where ℱ𝜌𝑣 represents the spatial discretization terms in the transversal momentum

equation. In the forecast step performed via the model, ΓF

𝑘 = 0 down to a convergence

rate 𝛿 which is prescribed. However, the value of ΓF

𝑘, at the end of a time step

where a forecast-analysis is performed, is strictly connected with the computational

strategy employed. Here, three scenarios are considered for a simplified case where

the amplitude of the inlet-perturbation is assumed to be constant (𝜖1 = ct = 0.15):

- 𝑆1: A classical Dual EnKF is performed on the coarse grid and a fine-grid correction
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Figure 5-24: Estimations obtained by MGEnKF of the momentum 𝜌𝑣 (S.I. units) at
the centreline 𝑦 = 0 of the mixing layer. Results at 𝑡 = 1 (a), 𝑡 = 5 (b) and 𝑡 = 30
(c) for the time-varying 𝜖1.
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Figure 5-25: Estimations obtained by MGEnKF of the momentum 𝜌𝑣 (S.I. units) at
the centreline 𝑦 = 0 of the mixing layer. Here, MGEnKF is only used to provide the
estimation of 𝜖1. Results at 𝑡 = 1 (a), 𝑡 = 5 (b) and 𝑡 = 30 (c) for the time-varying
𝜖1.
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Figure 5-26: Time evolution of the RMS error of 𝜌𝑣 for the case of a time-varying
inlet parameter 𝜖1. The symbol P.E. corresponds to the case where MGEnKF is only
used for the estimation of 𝜖1. The notation MGEnKF corresponds to the standard
version of the algorithm, including parameter estimation and physical state correction
via Kalman gain.

is obtained through the ensemble statistics. In this scenario, the state estimation

obtained in the step 4 of the MGEnKF algorithm presented in Chapter 4

is directly projected in the fine mesh space and used as final solution, thus

(xF

k)a = (xF

k)’

- 𝑆2: A standard MGEnKF algorithm, as described in Chapter 4

- 𝑆3: A MGEnKF algorithm where the ensemble prediction is just used to estimate

the unknown parameter of the system. No update of the physical solution is

performed using the correction via Kalman gain.

The results are shown in Fig. 5-27 after the first forecast/analysis step. For

clarity, we introduce a normalized criterion, (ΓF

𝑘)
* =

ΓF𝑘
Γ𝐶
, where Γ𝐶 is defined as

max𝑘

⃒⃒
⃒⃒((𝜌𝑣)F𝑘)

a

−((𝜌𝑣)F𝑘−1)
a

Δ𝑡

⃒⃒
⃒⃒. As expected, ΓF

𝑘 = 0 everywhere when MGEnKF is only

used for the parameter estimation (scenario 𝑆3). In this case, the time advancement

of the solution is performed using the model only, which exactly complies with the

discretized equation and respects conservativity (up to a convergence error which is

negligible). On the other hand, results in Fig. 5-27 (a) show some lack of conser-

vativity in the physical domain for the first scenario. This is also expected, since
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(a) Standard Dual EnKF on the coarse mesh.
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(b) Standard MGEnKF.
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(c) MGEnKF used only for parameter estimation.

Figure 5-27: Analysis of the conservativity of the dynamical model via the normalized
quantity (ΓF

𝑘)
*. Results are shown for three scenarios: (a) the classical Dual EnKF,

(b) the classical MGEnKF algorithm and (c) the MGEnKF only used for parameter
estimation. The observation region is represented by the rectangle in black lines.
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no constraint is imposed to force the Kalman gain correction to comply with the

dynamical equations. Finally, results for the MGEnKF are shown in Fig. 5-27 (b).

The evolution of (ΓF

𝑘)
* is very similar to the results observed for the first scenario.

However, one can clearly see that this field appears to be sensibly smoothed out

by the multigrid iterative procedures in step 4 and 5 of the MGEnKF algorithm.

As previously discussed, complete conservativity starting from an erroneous state at

𝑘 − 1 is possibly not an optimal objective, while one wants a regularized solution

to avoid affecting the precision of the global calculation. On this last objective, the

MGEnKF appears to provide a better result when compared with the classical Dual

EnKF, described in the first scenario. Considering also that the MGEnKF showed

better accuracy than the algorithm relying on parameter estimation only, one can

conclude that the MGEnKF provides an efficient compromise between global accu-

racy and regularization of the solution. In order to draw more information about

this important aspect, the MGEnKF algorithm needs to be tested for the simulation

of three-dimensional compressible flows, where the Kalman gain correction may be

responsible for important acoustic phenomena which are not observable in 2D and

1D dynamical systems.

5.6 Concluding remarks

The MGEnKF has been assessed for four different test cases using models of increasing

complexity. In Sec. 5.2 and Sec. 5.3, the performance of the estimator was assessed

using low-complexity flow models. In the DA experiments performed, the influence of

the inner loop was demonstrated. Using coarser grids for the ensemble simulation can

significantly reduce the computational cost of the estimator; however, an important

decrease in the accuracy of the ensemble prediction system may be expected. The

inner loop of the algorithm can be used to counter this unwanted effect by directly

acting on the model used on the coarse grid via model correction terms. The basic idea

behind this correction procedure is to construct parametrized model correction terms

and to optimize its coefficients using the main simulation as surrogate observation.
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The effectiveness of this strategy was proven for test cases where the observation

window was situated in the middle of the computational domain. The models used,

artificially diffuse and disperse the signal imposed at the inlet as it is propagated

downstream. Using the EnKF to estimate the true amplitude of this signal from

observation can be challenging in this situation and when the inner loop was deacti-

vated, the estimator showed poor accuracy, with a general tendency to overestimate

the amplitude of the inlet condition. The model correction terms proposed, designed

to artificially modify the diffusion and the dispersion of the signal, were successfully

optimized with the inner loop, achieving a substantial global accuracy gain in the

estimation of the inlet amplitude.

The models used in Sec. 5.4 and in Sec. 5.5, introduce additional layers of com-

plexity to the DA experiments performed:

� In Sec. 5.4, the model used is the compressible Euler system of equations. Apart

from the non-linear convective transport in the momentum equation, which

is already present in Burgers’ equation (Sec. 5.3), in the Euler equations the

velocity of the flow is coupled with the thermodynamic state of the flow (density

and pressure).

� In Sec. 5.5, the flow model used is the fully compressible 2D Navier-Stokes

equations, introducing 2D non-linear convective transport and viscosity effects.

The determination of the form of the model correction term 𝒞 in this situation is

much more challenging, and is currently under research in our research group. For this

two test cases, two simplifications have been performed: the inner loop is deactivated,

i.e., 𝒞 = 0 and the observation zone is placed close to the inlet of the computational

domain. This allows to reduce the loss of prediction accuracy in the ensemble. The

tests performed on the last two sections, mainly concerned state-estimation and time-

varying parameter estimation, allowing to assess the performance of the outer loop

without the inner loop. The analysis performed represents the minimum estimation

accuracy that one can expect from to achieve from the MGEnKF, and the inner loop

should only improve the global accuracy of the estimator.
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Chapter 6

Application of the MGEnKF to a

complex problem: BARC

6.1 Introduction

In Chapter 5 the MGEnKF was validated against 1D and 2D simple flow configura-

tions. The MGEnKF is now used to investigate a complex flow using scale-resolving

3D LES numerical simulation.

Large Eddy Simulation (LES) (Pope, 2000; Sagaut, 2006) is currently one of the

most diffused methods for the numerical prediction of turbulent flows, and it is avail-

able in both licensed and open-source codes. LES is based on a filtering of the scales

of the flow, and it can intrinsically represent unstationary and three-dimensional flows

via a time-and-space resolved approach, but with fewer computational resources when

compared with DNS. Moreover, it can be easily coupled with RANS methods or wall-

functions to alleviate even further the computational needs for near-wall turbulence.

These favourable features have extensively promoted its diffusion in the academic

community and, more recently, for industrial applications.

However, the main limitation of this technique is that the theoretical framework

for which the approach is developed can only be rigorously reproduced for academic

test cases (i.e., simple geometries and uniform grids). Approximations may be im-

plemented in more complex cases, which may however lead to unexpected results,
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such as lower accuracy of the results with mesh refinement. Numerous works in the

literature (Meldi et al., 2012; Meyers & Sagaut, 2006) indicate that these unexpected

observations are tied with non-linear interactions between different sources of error,

such as explicit and implicit filtering, discretization procedures, quality of the mesh,

general set-up of the test case and subgrid scale modelling. These elements are usually

governed by numerous free parameters that must be chosen by the user. Extensive

analyses using classical trial-and-error approaches are in most cases not feasible due

to the large costs of each LES.

Recently, new models for the unresolved stresses in LES have been proposed that

aim to overcome the uncertainty issues related to this type of simulation technique.

One of such new techniques is the integral length-scale approximation model (ILSA),

proposed by Piomelli et al., 2015 and Rouhi et al., 2016. This model aims to provide

a grid independent subgrid-scale model. Lehmkuhl et al., 2019 tested the ILSA model

for complex geometries. Although the results are promising, the model depends on a

parameter that has to be set by the user. The optimal determination of this coefficient

requires previous calculations and there is naturally some uncertainty attached to the

procedure.

In this chapter, the MGEnKF is used in a practical application of engineering

interest, namely the high-Reynolds-number flow around a rectangular cylinder of

aspect ratio 5:1, which is the object of an international benchmark (BARC, Bruno et

al., 2014). Despite the simple body geometry, the flow dynamics is complex, including

flow separation at the upstream edges, mean-flow reattachment on the cylinder side

and vortex shedding in the wake.

As shown in the first review work (Bruno et al., 2014), the LES predictions of

some flow features and quantities are affected by a significant dispersion and by a high

sensitivity to modelling and numerical parameters, such as subgrid scale modelling

(Mariotti et al., 2017) and grid refinement (Bruno et al., 2012; Mariotti et al., 2017).

More recently, (Rocchio et al., 2020) showed that the introduction of a very small

rounding of the upstream edges, such as those due to manufacturing tolerances, has

a strong impact on LES predictions.
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For all these reasons, this kind of flow is well adapted and challenging for the

appraisal of DA procedures. The MGEnKF algorithm is used herein to (i) improve

the predictive capabilities of LES carried out on a rather coarse grid, by integrating

reference data from a high-fidelity LES, run on a highly refined grid, (ii) to calibrate

a parameter which regulates the dissipation introduced by a modal filter that can be

considered as a subgrid scale dissipation.

6.2 Numerical and modelling ingredients

We consider the incompressible flow around an elongated rectangular cylinder, whose

chord-to-depth ratio is 𝐵/𝐷 = 5, at zero angle of attack. The cylinder upstream

edges are rounded with a curvature radius 𝑟/𝐷 = 0.0037, which is the smallest one

considered in Rocchio et al., 2020 and corresponds to a value that falls within possible

manufacturing tolerances. The numerical simulations are performed using Nek5000,

an open-source code based on a high-order spectral element method (Fischer et al.,

2008). Each spectral element is rectangular or a suitable coordinate mapping of a

rectangle. The basis functions inside the elements are Legendre polynomials of order

𝑁 for velocity and 𝑁 − 2 for pressure in each direction; 𝑁 = 6 has been used in this

work, as in the previous works by Lunghi et al., 2022; Mariotti et al., 2017; Rocchio

et al., 2020. Based on the high-order splitting method developed in Maday et al.,

1990, a third-order backward finite-difference scheme is used for time advancing. The

viscous terms are treated implicitly while the convective terms are explicit, with a

third-order forward extrapolation in time.

In Nek5000, when dealing with high Reynolds numbers, the spectral element

method can be stabilized by applying a filtering method in the modal space: a low

pass filter is employed here as in Mariotti et al., 2017 and Rocchio et al., 2020. At the

end of each step of the time integration, the low-pass explicit filter is applied to the

velocity field in the modal space. This filter is characterized by a quadratic transfer

function, which acts from the mode 𝑁 − 𝑘𝑐 (𝑘𝑐 = 3 herein) up to the highest mode
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𝑁 . The transfer function is written as follows:

⎧
⎪⎨
⎪⎩
𝜎𝑘 = 1 𝑘 < 𝑘𝑐

𝜎𝑘 = 1− 𝑤
(︁
𝑘−𝑘𝑐
𝑁−𝑘𝑐

)︁2

𝑘𝑐 ≤ 𝑘 ≤ 𝑁

(6.1)

and, once the cut-off mode (𝑘𝑐) is set, it can only be tuned through a weighting

parameter 𝑤. Since the filter acts only at the highest resolved modes, it may be

interpreted as a SGS dissipation (Domarazdki, 2010; Mathew et al., 2003). Clearly,

by changing the cut-off mode, the behaviour of the stabilizing filter changes as well.

However, to limit the number of tunable parameters and to be consistent with the

analogous study carried out in Mariotti et al., 2017 for perfectly sharp upstream

edges, it is kept constant in this work.

The computational domain is sketched in Fig. 6-1, where 𝑥/𝐷, 𝑦/𝐷 and 𝑧/𝐷

denote the streamwise, vertical and spanwise directions respectively. The domain is

rectangular and it has the same dimensions as the ones used in other LES contribu-

tions to the benchmark (Bruno et al., 2012; Bruno et al., 2014; Mariotti et al., 2017;

Rocchio et al., 2020). In particular, the cylinder centre is located at 𝑥/𝐷 = 𝑦/𝐷 = 0

and we have −15.5 ≤ 𝑥/𝐷 ≤ 25.5, −15.1 ≤ 𝑦/𝐷 ≤ 15.1 and 0 ≤ 𝑧/𝐷 ≤ 𝐵. A uni-

form velocity profile with no turbulence is imposed at the inlet, no-slip is imposed at

the body surface and traction-free boundary conditions are used for the outflow and

for the upper and lower boundaries of the domain. Finally, periodicity is imposed in

the spanwise direction. The Reynolds number, 𝑅𝑒, based on the free-stream velocity

and on the cylinder height is 4 · 104.

The spectral discretization is the same used in Mariotti et al., 2017, for the BARC

simulations having perfectly sharp upstream edges. In order to represent the curvature

radius, the computational grid has been modified in the regions where the upstream

edges are placed. To this aim, a transition box, which allows switching from a Carte-

sian grid to a Cylindrical one, is used to transform each spectral element containing

the upstream rounding edges.
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Figure 6-1: Sketch of the computational domain.

6.3 Data-driven enhancement of LES using the MGEnKF

6.3.1 Description of the DA experiment

The MGEnKF method is now used to augment the predictive capabilities of an LES

simulation run on a intermediate-level grid (baseline grid) with synthetic observation

obtained from a reference LES run on a refined grid (see Table 6.1 for detailed informa-

tion on the meshing). The reference simulation, which has been run with 𝑤 = 0.018,

is considered to be the true state of the flow. The main objective of the MGEnKF

is to reduce mismatch between the flow predictions obtained with the baseline grids

and reference simulation obtained on the refined grid. Details are now provided for

each ingredient needed for the application of the Data Assimilation algorithm. Obser-

vation is obtained sampling the three components of the instantaneous velocity field

of the reference simulation, which is run for a total time of 𝑇 = 200𝑡𝑐 in advection

time units. A cloud of sensors is embedded in the region −2.25 ≤ 𝑥/𝐷 ≤ −1.75,

0.75 ≤ 𝑦/𝐷 ≤ 1, 1 ≤ 𝑧/𝐷 ≤ 4 (see Fig. 6-2) and data is sampled every 0.1𝑡𝑐, for

a total of 2000 local snapshots of the instantaneous flow which are captured by the

sensors. In order to provide a higher degree of randomization to the sampled data,

artificial Gaussian noise of covariance RO = 𝜎2
𝑜𝐼 is applied to the observation, where
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Figure 6-2: Sketch of the computational domain with the localized assimilation region
and the observed space.

Grid ∆𝑥/𝐷 ∆𝑦/𝐷 ∆𝑧/𝐷 Size
Refined 0.0625 0.0625 0.275 ≈100M
Baseline 0.125 0.125 0.558 ≈10M
Coarse 0.25 0.25 1 ≈2M

Table 6.1: Details of the numerical grids used for computation. The total number of
elements and the near wall resolution is indicated.

𝐼 is the identity matrix. In this test case, 𝜎𝑜 is set to 𝜎𝑜 = 0.02, and the artificial noise

added is considered to be uncorrelated in time, therefore RO is diagonal. This noise

improves the rate of convergence of EnKF-based tools, as shown in several research

works (Moldovan et al., 2021; Tandeo et al., 2020). The reference simulation, whose

results will be used to assess the precision of the DA procedure, will be also referred

to as the true state.

The code providing a numerical model for the flow, Nek5000, is embedded within

the MGEnKF algorithm with the help of an open-source coupler OpenPALM (Buis

et al., 2006; Duchaine et al., 2015). Nek5000 is thus used in a multilevel approach

where the main simulation is run on the baseline grid, while the ensemble members

are run on the coarse grid. A sketch of the application of the MGEnKF to this specific
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test case is shown in Fig. 6-3.
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Figure 6-3: Application of the MGEnKF algorithm to the BARC test case.

The main features of the numerical grids used for computation are summarized in

Tab. 6.1. One can see that the grid used for the calculations of the ensemble members

is around 2 times coarser than the baseline mesh and 4 times coarser than the refined

mesh.

The DA experiment, which will be referred to in the following as DA augmented

LES, is performed in the following conditions:

� The initial condition imposed to the main and ensemble simulations is obtained

from the reference simulation. More specifically, the first time step in the refer-

ence simulation where observation data is sampled is interpolated on the base-

line grid and the coarse grid, and it is used as initial solution for every simulation

running within the MGEnKF. This is performed in order to avoid phase syn-

chronization issues.

� Considering that the outer loop of the MGEnKF works exclusively using the
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ensemble members, the observation sampled from the reference simulation is

directly interpolated on the collocation points of the coarse grid for sake of

simplicity. For this case, the observation is interpolated on a total of 6 spectral

elements. The size of the observation vector is thus ≈ 4 · 103.

� An ensemble of size 𝑁𝑒 = 30 is used in the MGEnKF. Initial values of 𝑤 for each

member of the ensemble 𝑤(𝑖) , 𝑖 = 1, 2, 3..., 𝑁𝑒 are sampled from the Gaussian

distribution 𝒩 (𝑤0, 𝑅𝑤), where 𝑤0 is the prior value and is set to 𝑤0 = 0.018,

and 𝑅𝑤 = 𝜎2
𝑤𝐼 with 𝜎𝑤 = 0.0001.

� Observation is sequentially integrated into the system to: i) optimize 𝑤, ii)

correct the physical state of each member of the ensemble. The DA state update

is extended towards the main simulation owing to interpolation functions which

connect the coarse and baseline grids. In addition, the parametric description

of main simulation is also optimized updating the parameter value with E [𝑤],

i.e. 𝑤(𝑖).

6.3.2 Simplifications applied to the MGEnKF

A few simplifications have been applied to the classical MGEnKF algorithm to make

it more suitable to this HPC application. First, the state vector includes the three

components of the velocity field but not the pressure, which is updated via a Poisson

equation at the beginning of the following time step. The nature of the Poisson

equation allows to rapidly propagate information provided in the DA update (Meldi

& Poux, 2017). Therefore, the MGEnKF does not grant conservativity at the end of

the analysis phase, but the momentum and mass conservation are respected at the

following time step. This simplification allows reducing sensibly the size of the state

vector without producing numerical instabilities in the analysis phase, owing to the

effect of the Poisson equation. In addition, the effect of the Kalman gain has been

localized. In practice, a correlation matrix 𝛽 is introduced in (3.39) as follows (Soares

et al., 2018):
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a,(𝑖)
𝑘 = x

f,(𝑖)
𝑘 + 𝛽 ∘Ke

𝑘

(︁
𝑦
O,(𝑖)
𝑘 −ℋ𝑘

(︁
x
f,(𝑖)
𝑘

)︁)︁
, (6.2)

where ∘ is the Schur product (element-wise product between 𝛽 and Ke
𝑘). 𝛽 repre-

sents thus a distance-dependent correlation matrix that can be constructed as (Gas-

pari & Cohn, 1999):

𝛽 = exp

[︃
−𝑑 (𝑖, 𝑗)2

2𝐿2

]︃
, (6.3)

where 𝑑 (𝑖, 𝑗) represents the euclidean distance between a point where observation

is available, 𝑖, and a model grid point 𝑗, and 𝐿 is the correlation distance that was

set to 𝐿 = 0.4𝐷 in this case. This implies that the matrix Ke
𝑘 is transformed using a

spatial Gaussian filter. The product between the correlation matrix 𝛽 and the Kalman

Gain erases any spurious long-range statistical correlations (beyond a length 𝐿) that

might appear. In addition, all the velocity updates via Kalman filter have been set

to zero outside a prescribed domain defined by the coordinates: −2.5 ≤ 𝑥/𝐷 ≤ −1,

0.5 ≤ 𝑦/𝐷 ≤ 1.25, 0 ≤ 𝑧/𝐷 ≤ 5. This strategy is used to avoid spurious correlation

to affect the precision of the results, as well as to further reduce the computational

costs. Using this strategy, the size of the localized state vector updated via data

assimilation is ≈ 6 · 104, around 30 times less than the complete state vector on the

coarse grid.

The inner loop of the MGEnKF has been deactivated for sake of simplicity.

6.3.3 Results

Starting from the initial solution, coarse grid ensemble and main simulation are se-

quentially augmented at each analysis phase. This implies an optimization of the

parameters 𝑤(𝑖) as well as an update for every simulation (main and ensemble mem-

bers) are performed.

The results obtained via MGEnKF are now analysed. Fig. 6-4 shows the time

evolution of 𝑤, which is sequentially optimized during the analysis phases. One can
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Figure 6-4: Convergence of the MGEnKF optimization of the explicit LES coefficient
filter applied to the resolved equations. The coefficient is initialized with the baseline
value (𝑤 = 0.018). The shaded area represents the 95% credible interval.

see that the value of 𝑤 rapidly moves from the prior and it then exhibits some fluc-

tuations before converging to 𝑤 = 0.00624 in approximately 𝑡 = 25𝑡𝑐. A progressive

reduction of the variance in the estimation (shaded area) is also observed, which

is a good indicator of convergence. The optimized value exhibits a large difference

when compared with the prior (𝑤 = 0.018 vs 𝑤 = 0.00623). In order to provide a

complete picture of the effectiveness of the method, four LES are compared in the

following: the reference LES (𝑤 = 0.018), the data augmented LES, the optimized

LES (𝑤 = 0.00623), which is an independent simulation run with the optimal value

obtained for 𝑤 from the DA experiment (data augmented LES), and a baseline LES

which is identical to the reference simulation but run on a different grid. The reference

simulation is run on the refined grid while the three other LES are run on the baseline

grid. The MGEnKF is used only on the data-augmented LES, while the optimized

LES simulation is just fed with 𝑤 = 0.00623. This allows to compare a simulation

where state and parametric estimation is performed with a simulation where only the

latter is performed.

The time-averaged flow streamlines provided for the four simulations in Fig. 6-5

seem to indicate that the size of the recirculation regions for the data-augmented LES

and the optimized LES is significantly improved when compared with the baseline

LES. Similar conclusions can be drawn by the analysis of Fig. 6-6 (a), where results for

the mean pressure coefficient, ⟨𝐶𝑝⟩, on the upper surface of the cylinder are provided.

The predicted profile for both the DA augmented LES and the optimized LES is
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Figure 6-5: Streamlines of the time-averaged flow for (a) the reference LES, (b) the
data-augmented LES, (c) the optimized LES and (d) the baseline LES.

significantly closer to the reference solution when compared with the baseline LES.

In addition, Fig. 6-6 (b) also shows an improvement for the prediction of the vari-

ance of the pressure coefficient 𝜎(𝐶𝑝). The maximum of this parameter is a measure

of the mean point of reattachment of the flow. Despite the observable differences

in magnitude, results for the data-augmented LES and the optimized simulation are

aligned with the reference results, exhibiting a significant improvement from the base-

line LES. One can also see that results from the DA augmented simulation appear

to be marginally better than the ones from the optimized simulation, on average.

Despite the localization procedures applied to the Kalman gain, it appears that a

positive effect of the DA state estimation in terms of improvement of accuracy can

be observed on the statistics of the flow.

The results indicate that the prior value of 𝑤, when used in combination with the

baseline grid, produces excessive dissipation. One could argue that the optimization

process within the MGEnKF, reduces the internal dissipation of the LES, by reducing

the value of 𝑤, in order to compensate the different numerical error associated to the

coarsened mesh elements of the baseline grid, when compared with the refined grid
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Figure 6-6: (a) Pressure coefficient averaged in time, spanwise direction and between
the upper and the lower surfaces, ⟨𝐶𝑝⟩, and (b) its standard deviation, 𝜎(𝐶𝑝), eval-
uated on the body. Comparison between the results obtained for the reference LES,
the data-augmented LES, optimized LES, and baseline LES.
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used for the reference simulation.

6.4 Conclusions

The MGEnKF was tested and validated against the international benchmark referred

to as BARC (Benchmark of the Aerodynamics of a Rectangular 5:1 Cylinder). This

configuration is a simplified model of problems of interest in civil engineering. In the

LES setup of this test case, there are numerous free parameters that must be chosen

by the user that might have significant impact on the accuracy of the simulation.

Extensive analyses using classical trial-and-error approaches are in most cases not

feasible due to the large costs of each LES.

A Data Assimilation experiment was performed where the MGEnKF algorithm is

used to improve the predictive capabilities of an intermediate-fidelity by noisy data

(synthetic observation) from a high-fidelity LES. The ensemble of simulations that are

responsible for the estimation process were run on a rather coarse grid. The devised

assimilation strategy tackled the optimization of a parameter, 𝑤 that regulates the

numerical dissipation introduced by a modal filter. The working hypothesis was that

the additional numerical errors (additional numerical dissipation) that appear on LES

run on coarser grids can be reduced by calibrating the artificial dissipation introduced

by the solver. Additionally, the statistics obtained from the coarse grid ensemble are

used to update the intermediate-fidelity LES with a KF correction.

The performance of the MGEnKF estimator has been assessed by evaluating first

and second order statistics. More specifically, pressure distribution on the surface of

the body as well as the streamlines of the time-averaged velocity have been compared

for four different LES runs: reference LES, data augmented LES, optimized LES, and

baseline LES. The optimized and baseline LES simulations are standard runs where

the only parameter that changes is 𝑤; 𝑤 = 0.00623 in the first case while 𝑤 = 0.018

in the second. The data-augmented LES is the run where the MGEnKF is applied.

This estimation strategy allows performing an in-streaming calibration of 𝑤 together

with a state estimation on the intermediate grid, with the synthetic, noisy observation
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obtained from reference LES. The estimated flow field obtained with the MGEnKF

were the ones where the best agreement with the reference simulation was observed.

180



Chapter 7

Conclusions and future research

→˓Context and main objectives

The accurate prediction of turbulent flows is still an open challenge for research in

fluid mechanics. Technological barriers concerning computational power restrict the

usage of direct numerical simulation tools to low-Reynolds cases, and a revolution in

turbulence modelling is not expected in the near future.

In spite of its limitations, CFD has been widely adopted by aircraft and car manu-

facturers in their design procedures; however, off-design conditions which are usually

related to the inherent unstationary features of the flow require more sophisticated

tools to either improve the design process or to conceive robust active control tech-

niques.

Tools coming from Estimation Theory are starting to be used by CFD researchers

in an attempt to increase the prediction accuracy of already existing codes. The idea

behind this class of techniques is to combine numerical data with experimental one

to improve the estimation. This falls into a broader mathematical domain, which has

been developed for decades and is widely used in weather forecast: Data Assimilation.

Sequential Data Assimilation techniques, with the Kalman Filter algorithm being

the most well known tool, are particularly appropriated for unsteady flows; however,

solving a data assimilation problem with a sequential approach is strongly constrained

in realistic configurations by the excessive computational costs of the methods based
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on the Kalman filter.

The objective of this PhD study was to develop a sequential DA estimator that

could be integrated in widely used CFD codes.

→˓An advanced estimation algorithm for assimilation of unsteady flow

We have developed an estimation algorithm combining the Ensemble Kalman

Filter and the multigrid strategy for assimilating unsteady flows. The so-called

MGEnKF algorithm (Multi-Grid Ensemble Kalman Filter) exploits physical states

obtained on multiple grids of different resolution to perform the state estimation and

parametric optimization using EnKF procedures. More precisely, when only two grids

are used an ensemble of low-fidelity simulations of the flow is run on a coarse grid

level together with a single higher-resolution simulation on the finest mesh level. The

state estimation obtained at the coarse level and the associated ensemble statistics

are used to filter the finest mesh solution and optimize a set of parameters describing

the model (boundary conditions, model parameters, . . . ). This procedure allows to

i) reduce the computational costs of the EnKF and ii) ensure the conservativity and

the smoothness of the final solution.

Generally speaking, this method falls into the class of multilevel techniques that

aim to improve the estimation of statistics of expensive numerical simulations by con-

sidering different levels of resolution of the same set of equations.

→˓Validation

The assessment of the method was performed via the analysis of one-dimensional,

two-dimensional and three-dimensional test cases, using different models of increasing

complexity. The results show that the MGEnKF can successfully update the state of

a system with the available observations to increase the global accuracy of the state

prediction provided by the model. In addition, the parametric description of the

numerical problem (in terms of prescribed boundary conditions, turbulence closures,
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. . . ) can be adequately optimized taking into account the different mesh resolutions

employed in the algorithm. Here is a summary of the test cases investigated, with

the key findings:

� In Sec. 5.2, the performance of the MGEnKF was assessed in a 1D state/parameter

estimation problem. The model chosen was the linear 1D advection equation,

and the synthetic observation was generated from a previously run simulation

with a known set of parameters. The estimator was used to correct the state

and to infer the amplitude of the sinusoidal inlet condition. The analysis fo-

cused on the improvement in global performance due to the inner loop. This

step of the DA strategy targets a systematic improvement of the accuracy of the

ensemble members using surrogate information from the main simulation run

on the fine grid level. The results indicate the importance of the inner loop in

improving the performance of the Data Assimilation algorithm. The proposed

model correction term, 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(i)
, 𝛾

f,(i)
𝑘

)︁
, has been derived from the ex-

act equation in order to compensate dispersive and diffusive numerical errors.

The tests performed showed that this approach can fully correct the numerical

errors associated with the coarse grid level where ensemble members are run.

� In Sec. 5.3, the test case reported is similar to the experiment performed in

Sec. 5.2, however, the model considered now is the 1D Burgers’ equation, which

incorporates non-linear convection transport and viscous effects. The dispersive

errors observed in the coarse grid ensemble are corrected with part of the model

correction terms derived in Sec. 5.2 (dispersive correction term). An additional

diffusion term parametrized by a parameter, 𝛼, was introduced to control the

loss of amplitude of the solution. The improvement in the estimation accuracy

due to the use of the inner loop is remarkable. However, contrarily to what was

observed in the linear advection case, the model correction term here is not able

to fully correct the discrepancies due to the numerical error.

� In Sec. 5.4, the MGEnKF is used to track the time evolution of a free param-

eter for the case of a wave propagation, using a one-dimensional Euler model.
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More specifically, a time-varying parameter concerning the inlet condition was

inferred from synthetic noisy observation. Three cases are here investigated,

varying the time window between successive assimilations. The estimator can

efficiently represent the evolution in time of the parameter, as well as to provide

an accurate state estimation. However, the global prediction is significantly de-

graded if the update frequency is lower than a threshold value, which is arguably

connected to the physical features of the flow.

� In Sec. 5.5, a DA-experiment was performed on the two-dimensional spatially

evolving mixing layer at Re = 100. As in the test case performed in Sec. 5.4, a

time-varying parameter concerning the inlet condition is inferred from synthetic

noisy observation. The parameter estimation obtained with the algorithm is

not perfectly accurate; however, the general evolution trend is captured. More-

over, the algorithm was successful in accurately updating the state of the main

simulation on the fine grid. This is proven when evolution over time of the

root-mean-square error (RMSE) is analysed; the error is more significantly re-

duced when both state-estimation on the fine grid and parameter estimation are

performed than when only the parameter estimation procedure is considered.

� In Chapter 6, the MGEnKF was tested and validated against the international

benchmark referred to as BARC. Despite the relatively simple geometry, the

flow around the cylinder presents complex features. The simulation of the flow

around such geometries with LES techniques is extremely sensitive to the dis-

cretization strategy used, to explicit/implicit filters that one might apply, and

to small changes in the actual geometry. Taking the results obtained from a

highly-resolved LES of the flow around the body as reference data, we aim to

improve the accuracy of a lower-fidelity simulation run on a grid of interme-

diate refinement level with the MGEnKF. The synthetic observation used was

generated from the reference simulation. In addition to the state estimation

performed with the MGEnKF, we also tackled the optimization of a parameter

𝑤 that regulates the numerical dissipation introduced by an explicit modal filter.
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Pressure distribution on the surface of the body as well as the streamlines of the

time-averaged velocity show that, when compared to a baseline case, the data-

augmented LES (LES improved in streaming with the MGEnKF) is in better

agreement with the reference data. The analysis of the results obtained for this

DA experiment is still in progress. An in-depth investigation of the dynamical

features of the flows obtained for each different test case performed would allow

comparing the data-augmented LES with the optimized LES. In this test case,

the parameter 𝑤 obtained from the data-augmented LES is imposed throughout

the entire simulation. This comparison would allow identifying more precisely

the effects of state-estimation on the data-augmented LES.

The models used in Sec. 5.4, Sec. 5.5, introduce additional layers of complexity to

the DA experiments performed:

� In Sec. 5.4, the model used is the compressible Euler system of equations. Apart

from the non-linear convective transport in the momentum equation, which

is already present in Burgers’ equation (Sec. 5.3), in the Euler equations the

velocity of the flow is coupled with the thermodynamic state of the flow (density

and pressure).

� In Sec. 5.5, the flow model used is the fully compressible 2D Navier-Stokes

equations, introducing 2D non-linear convective transport and viscosity effects.

The determination of the form of the model correction term 𝒞 in this situation

is much more challenging, and is currently under research. For this two cases, two

simplifications have been performed: the inner loop is deactivated, i.e., 𝒞 = 0 and

the observation zone is placed close to the inlet of the computational domain. This

allows to reduce the loss of prediction accuracy in the ensemble. With the inner loop

deactivated, the tests performed on the last two sections, mainly concerning state-

estimation and time-varying parameter estimation, allow assessing the performance

of the outer loop. The analysis performed represent the minimum estimation accuracy

that one can expect from to achieve from the MGEnKF, and the inner loop should
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only improve the global accuracy of the estimator.

→˓Perspectives

The MGEnKF opens interesting perspectives for potential application to active

flow control and industrial design:

� Flow Control. Linear model-feedback control problems based on limited and

noisy measurements involve two independent sub-problems: (i) the state feed-

back control problem; (ii) the state estimation problem. The estimator devel-

oped can be used as state-estimation tool, since its capabilities to accurately

reproduce unsteady flow phenomena have been proven.

� Design and analysis. In the case of aerospace design, for example, mea-

surements and CFD have rarely been used together. CFD is at a relatively

matured state in the design process of certain parts of the aeroplane, with the

high-speed wing being a particular success-story. There remain, however, areas

where CFD faces important limitations. The MGEnKF can be used in this sce-

nario to improve the overall accuracy of the simulations carried out for analysis

by integrating experimental data.

The MGEnKF estimator has been tested on simplified flow models, with the ex-

ception of the data assimilation experiment performed on the 3D BARC case. In

this test case, we have shown that the MGEnKF can be used with a matured solver,

namely Nek5000. However, the inner loop of the algorithm was deactivated, since

it has been validated only on simple 1D test cases. Further research work is needed

for this specific part of the algorithm, but the 1D experiments reported in Sec. 5.2

and Sec. 5.3 set the foundations for the application of the inner loop to 2D and 3D

cases. More specifically, the proven capability of the inner loop to improve the ac-

curacy of the low-fidelity low-cost ensemble simulation opens exciting perspectives

of application to grid-dependent reduced-order models extensively used in fluid me-

chanics applications for complex flows, such as Large Eddy Simulation (LES). An
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accurate model reconstruction via the inner loop may alleviate or even prevent one

of the major issues associated with multilevel applications in fluid mechanics, that is,

the sensitivity of the parametric description of the model (in the form of the set of

parameters 𝜃) to different mesh resolution. In this scenario, one may just tune the

reduced-order model for the most refined grid resolution using the outer loop, and

compensate the emerging differences from progressively coarser grids using the inner

loop to optimize the additional model. Of course, the additional model provided

for the coarse grids must be suitable for this task, as seen for the one-dimensional

Burgers’ equation, and difficulties are expected for applications with scale-resolved

turbulent flows. Combined applications of EnKF with machine learning tools, which

have been recently explored for simplified test cases, may provide success in deriving

precise model structures when included in the formalism of the MGEnKF model for

the inner loop.
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Appendix A

Data Assimilation algorithms

A.1 Kalman filter algorithm

The Kalman filter algorithm given in Sec. 3.5.5.1 corresponds to Fig. A-1.

k = 0

xa
k

Pa
k

Initialization

xf
k+1 = Mk+1:kx

a
k

Pf
k+1 = Mk+1:kP

a
kM
>
k+1:k +Qk+1
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k ← k+1

Kk = Pf
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f
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Figure A-1: Kalman Filter algorithm. The initialization is made with the analysed
state.
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A.2 Ensemble Kalman filter algorithm

An efficient implementation of the EnKF relying on anomaly matrices is given in

Algo. 1. We have used the secant method described in Asch et al., 2016 to change

the definition of the variable Yf
𝑘.
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Algorithm 1: Stochastic Ensemble Kalman Filter (slightly adapted from
Asch et al., 2016). Use of anomaly matrices with Yf

𝑘 = H𝑘X
f
𝑘.

Input: For 𝑘 = 0, . . . , 𝐾: the forward modelsℳ𝑘:𝑘−1, the observation
models ℋ𝑘, the observation error covariance matrices R𝑘

Output: {xa,(𝑖)
𝑘 } ; 𝑘 = 0, · · · , 𝐾 ; 𝑖 = 1, · · · , 𝑁e

begin

1: Initialize the ensemble of forecasts {xf,(𝑖)
0 } ; 𝑖 = 1, · · · , 𝑁e

for 𝑘 = 0, . . . , 𝐾 do
2: Draw a statistically consistent observation set ; 𝑖 = 1, · · · , 𝑁e

y
o,(𝑖)
𝑘 = yo

𝑘 + 𝜖
o,(𝑖)
𝑘 with 𝜖

o,(𝑖)
𝑘 ∼ 𝒩 (0,R𝑘)

3: Compute the model counterparts of the observation set ; 𝑖 = 1, · · · , 𝑁e

y
f,(𝑖)
𝑘 = ℋ𝑘

(︁
x
f,(𝑖)
𝑘

)︁

4: Compute the ensemble means

xf
𝑘 =

1

𝑁e

𝑁e∑︁

𝑖=1

x
f,(𝑖)
𝑘 ; yf

𝑘 =
1

𝑁e

𝑁e∑︁

𝑖=1

y
f,(𝑖)
𝑘 ; 𝜖o𝑘 =

1

𝑁e

𝑁e∑︁

𝑖=1

𝜖
o,(𝑖)
𝑘

5: Compute the normalized anomalies ; 𝑖 = 1, · · · , 𝑁e

[︀
Xf
𝑘

]︀
:,𝑖

=
x
f,(𝑖)
𝑘 − xf

𝑘√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
y
f,(𝑖)
𝑘 − yf

𝑘√
𝑁e − 1

; [Eo
𝑘]:,𝑖 =

𝜖
o,(𝑖)
𝑘 − 𝜖o𝑘√
𝑁e − 1

6: Compute the Kalman gain

Ke
𝑘 = Xf

𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ Eo

𝑘 (Eo
𝑘)

⊤
)︁−1

7: Update the ensemble ; 𝑖 = 1, · · · , 𝑁e

x
a,(𝑖)
𝑘 = x

f,(𝑖)
𝑘 + Ke

𝑘

(︁
y
o,(𝑖)
𝑘 − y

f,(𝑖)
𝑘

)︁

8: Compute the ensemble forecast ; 𝑖 = 1, · · · , 𝑁e

x
f,(𝑖)
𝑘+1 =ℳ𝑘+1:𝑘(x

a,(𝑖)
𝑘 )

A.3 Dual Ensemble Kalman filter algorithm

An efficient implementation of the Dual EnKF relying on anomaly matrices is given

in Algo. 2. We have slightly adapted this algorithm from Moradkhani et al., 2005.
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Algorithm 2: Dual Ensemble Kalman Filter (slightly adapted from Morad-
khani et al., 2005). Use of anomaly matrices with Yf

𝑘 = H𝑘X
f
𝑘. We have

𝑖 = 1, · · · , 𝑁e.
Input: For 𝑘 = 1, . . . , 𝐾: the forward modelsℳ𝑘:𝑘−1, the observation

models ℋ𝑘, the observation error covariance matrices R𝑘

Output: {𝜃a,(𝑖)𝑘 } and {xa,(𝑖)
𝑘 } ; 𝑘 = 0, · · · , 𝐾

begin

1: Initialize {𝜃a,(𝑖)0 } and {xa,(𝑖)
0 }

for 𝑘 = 1, . . . , 𝐾 do
2: Observation ensemble:

y
o,(𝑖)
𝑘 = yo

𝑘 + 𝜖
o,(𝑖)
𝑘 with 𝜖

o,(𝑖)
𝑘 ∼ 𝒩 (0,R𝑘)

Re
𝑘 =

1

𝑁e − 1

𝑁e∑︁

𝑖=1

𝜖
o,(𝑖)
𝑘

(︁
𝜖
o,(𝑖)
𝑘

)︁⊤

3: Parameter forecast:

𝜃
f,(𝑖)
𝑘 = 𝜃

a,(𝑖)
𝑘−1 + 𝜏

(𝑖)
𝑘 with 𝜏

(𝑖)
𝑘 ∼ 𝒩 (0,Σ𝜃

𝑘)

x
f,(𝑖)
𝑘 =ℳ𝑘:𝑘−1(x

a,(𝑖)
𝑘−1 , 𝜃

f,(𝑖)
𝑘 )

y
f,(𝑖)
𝑘 = ℋ𝑘

(︁
x
f,(𝑖)
𝑘

)︁

4: Compute the normalized anomalies
[︀
Θf
𝑘

]︀
:,𝑖

=
𝜃
f,(𝑖)
𝑘 − 𝜃f𝑘√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
y
f,(𝑖)
𝑘 − yf

𝑘√
𝑁e − 1

; [Eo
𝑘]:,𝑖 =

𝜖
o,(𝑖)
𝑘 − 𝜖o𝑘√
𝑁e − 1

5: Parameter update:

K𝜃,e
𝑘 = Θf

𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ Eo

𝑘 (Eo
𝑘)

⊤
)︁−1

𝜃
a,(𝑖)
𝑘 = 𝜃

f,(𝑖)
𝑘 + K𝜃,e

𝑘

(︁
y
o,(𝑖)
𝑘 − y

f,(𝑖)
𝑘

)︁

6: State forecast:

x
f,(𝑖)
𝑘 =ℳ𝑘:𝑘−1(x

a,(𝑖)
𝑘−1 , 𝜃

a,(𝑖)
𝑘 )

y
f,(𝑖)
𝑘 = ℋ𝑘

(︁
x
f,(𝑖)
𝑘

)︁

7: Compute the normalized anomalies
[︀
Xf
𝑘

]︀
:,𝑖

=
x
f,(𝑖)
𝑘 − xf

𝑘√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
y
f,(𝑖)
𝑘 − yf

𝑘√
𝑁e − 1

; [Eo
𝑘]:,𝑖 =

𝜖
o,(𝑖)
𝑘 − 𝜖o𝑘√
𝑁e − 1

8: State update:

K𝑥,e
𝑘 = Xf

𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ Eo

𝑘 (Eo
𝑘)

⊤
)︁−1

x
a,(𝑖)
𝑘 = x

f,(𝑖)
𝑘 + K𝑥,e

𝑘

(︁
y
o,(𝑖)
𝑘 − y

f,(𝑖)
𝑘

)︁
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Algorithm 3: Multigrid EnKF algorithm. We have 𝑖 = 1, · · · , 𝑁e.

begin

1: Initialize
{︁

(xF

0)a ,𝜃a0,𝜃
a,(𝑖)
0 ,𝜓a

0,𝜓
a,(𝑖)
0 (xC

0 )a,(𝑖)
}︁

for 𝑘 = 1, . . . , 𝐾 do
2: Fine grid forecast:

(xF

𝑘)
f =ℳF

𝑘:𝑘−1

(︀(︀
xF

𝑘−1

)︀a
,𝜃a𝑘

)︀

3: Apply Inner/Outer loop on the coarse grid( Algo. 4)
if Observation available then

4: Projection on the coarse grid

(xC

𝑘)* = ΠC

(︁
(xF

𝑘)
f
)︁

5: Fine grid state correction using the ensemble statistics:

(xC

𝑘)
′
= (xC

𝑘)* + (KC

𝑘)𝑥,e [(yC

𝑘 )o −ℋC

𝑘 ((xC

𝑘)*)]

(xF

𝑘)
′
= (xF

𝑘)
f + ΠF

(︁
(xC

𝑘)
′ − (xC

𝑘)*
)︁

6: (xF

𝑘)
a is obtained through a matrix-splitting iterative procedure

starting from (xF

𝑘)
′
.
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Algorithm 4: Outer/Inner loop of the MGEnKF applied on the coarse grid.
Inspired from Algo. 2. We have 𝑖 = 1, · · · , 𝑁e.

Input: For 𝑘 = 1, . . . , 𝐾:
(︀
xC

𝑘−1

)︀a,(𝑖)
, 𝜃a,(𝑖)𝑘−1 , 𝜓

a,(𝑖)
𝑘−1 , (yC

𝑘 )o, (xC

𝑘)*,ℳC

𝑘:𝑘−1,
𝒞𝑘:𝑘−1, (ℋC

𝑘 )O, (ℋC

𝑘 )SO, (RC

𝑘)O, (RC

𝑘)SO

Output: 𝜃a,(𝑖)𝑘 , 𝜓a,(𝑖)
𝑘 , (xC

𝑘)a,(𝑖) ; 𝑘 = 0, · · · , 𝐾
begin

1: Forecast:

𝜃
f,(𝑖)
𝑘 = 𝜃

a,(𝑖)
𝑘−1 + 𝜏

𝜃,(𝑖)
𝑘 with 𝜏

𝜃,(𝑖)
𝑘 ∼ 𝒩 (0,Σ𝜃

𝑘)

(xC

𝑘)f,(𝑖) =ℳC

𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(𝑖)
,𝜃

f,(𝑖)
𝑘

)︁
+ 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(𝑖)
,𝜓

a,(𝑖)
𝑘−1

)︁

Apply Inner loop (Algo. 5)

if Observation available then

(yC

𝑘 )f,(𝑖) = (ℋC

𝑘 )O
(︁

(xC

𝑘)f,(𝑖)
)︁

2: Observation ensemble:
(yC

𝑘 )O,(𝑖) = (yC

𝑘 )O + (𝜖C𝑘)O,(𝑖) with (𝜖C𝑘)O,(𝑖) ∼ 𝒩 (0, (RC

𝑘)O)

3: Compute the normalized anomalies

[︀
Θf
𝑘

]︀
:,𝑖

=
𝜃
f,(𝑖)
𝑘 − 𝜃f𝑘√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
(yC

𝑘 )f,(𝑖) − (yC

𝑘 )f√
𝑁e − 1

4: Parameter update:

(KC

𝑘)𝜃,e = Θf
𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ (RC

𝑘)O
)︁−1

𝜃
a,(𝑖)
𝑘 = 𝜃

f,(𝑖)
𝑘 + (KC

𝑘)𝜃,e
(︁

(yC

𝑘 )O,(𝑖) − (yC

𝑘 )f,(𝑖)
)︁

5: State re-forecast (only if pure dual formulation is retained, otherwise

the state update can be evaluated with the first forecast (xC

𝑘)f,(𝑖)) :

(xC

𝑘)f,(𝑖) =ℳC

𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(𝑖)
,𝜃

a,(𝑖)
𝑘

)︁
+ 𝒞𝑘:𝑘−1

(︁(︀
xC

𝑘−1

)︀a,(𝑖)
,𝜓

a,(𝑖)
𝑘−1

)︁

(yC

𝑘 )f,(𝑖) = (ℋC

𝑘 )O
(︁

(xC

𝑘)f,(𝑖)
)︁

6: Compute the normalized anomalies
[︀
Xf
𝑘

]︀
:,𝑖

=
(xC

𝑘)f,(𝑖) − (xC

𝑘)f√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
(yC

𝑘 )f,(𝑖) − (yC

𝑘 )f√
𝑁e − 1

7: State update:

(KC

𝑘)𝑥,e = Xf
𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ Eo

𝑘 (Eo
𝑘)

⊤
)︁−1

(xC

𝑘)a,(𝑖) = (xC

𝑘)f,(𝑖) + (KC

𝑘)𝑥,e
(︁

(yC

𝑘 )O,(𝑖) − (yC

𝑘 )f,(𝑖)
)︁
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Algorithm 5: Inner loop of the MGEnKF algorithm applied on the coarse
mesh. We have 𝑖 = 1, · · · , 𝑁e.
Input: For 𝑘 = 1, . . . , 𝐾: the ensemble of parameters related to the model

correction term 𝜓
a,(i)
𝑘−1 , the ensemble coarse grid forecast (xC

𝑘)f,(𝑖), the
surrogate observation (xC

𝑘)*, the surrogate observation operator
(ℋC

𝑘 )SO, the surrogate observation error covariance matrix (RC

𝑘)SO

Output: 𝜓a,(i)
𝑘 ; 𝑘 = 0, · · · , 𝐾

begin
1: Parameter forecast:

𝜓
f,(𝑖)
𝑘 = 𝜓

a,(𝑖)
𝑘−1 + 𝜏

𝜓,(𝑖)
𝑘 with 𝜏

𝜓,(𝑖)
𝑘 ∼ 𝒩 (0,Σ𝜓

𝑘 )

if Surrogate observation available then

(yC

𝑘 )f,(𝑖) = (ℋC

𝑘 )SO
(︁

(xC

𝑘)f,(𝑖)
)︁

2: Observation ensemble:
(yC

𝑘 )SO,(𝑖) = (yC

𝑘 )SO + (𝜖C𝑘)SO,(𝑖) with (𝜖C𝑘)SO,(𝑖) ∼ 𝒩 (0, (RC

𝑘)SO)

3: Compute the normalized anomalies

[︀
Ψf
𝑘

]︀
:,𝑖

=
𝜓

f,(𝑖)
𝑘 −𝜓f

𝑘√
𝑁e − 1

;
[︀
Yf
𝑘

]︀
:,𝑖

=
(yC

𝑘 )f,(𝑖) − (yC

𝑘 )f√
𝑁e − 1

4: Parameter update:

(KC

𝑘)𝜓,e = Ψf
𝑘

(︀
Yf
𝑘

)︀⊤ (︁
Yf
𝑘

(︀
Yf
𝑘

)︀⊤
+ (RC

𝑘)SO
)︁−1

𝜓
a,(𝑖)
𝑘 = 𝜓

f,(𝑖)
𝑘 + (KC

𝑘)𝜓,e
(︁

(yC

𝑘 )SO,(𝑖) − (yC

𝑘 )f,(𝑖)
)︁
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A.4 Multigrid Ensemble Kalman filter algorithm

The algorithm 3 represents a simplified, ready-to-use application of the conceptual

methodology presented in Chapter 4.

First, when observation is not available, the two main forecast operations (fine

grid forecast and ensemble coarse forecast) are performed using explicit time ad-

vancement schemes. This choice allows reducing the computational costs. However,

when observation is available, the following strategies are employed:

1. The two forecast operations (main simulation and ensemble members) are per-

formed using an implicit matrix-splitting iterative procedure, using a single

iteration.

2. The number of iterative solutions for the main simulation on the coarse-grid

level is equal to zero. That is, the solution from the first forecast is projected

on the coarse grid, and the difference between the KF state estimation and this

forecast is re-projected over the fine grid.

3. In the final iteration on the fine grid, an implicit matrix-splitting iterative pro-

cedure is employed, using a single iteration and a relaxation coefficient 𝛼 = 0.5.

This is a general recommendation, but the value of the relaxation coefficient

will depend on the test case and on the stability of the simulation.
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