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Outils de physique statistique revisités pour la caractérisation complexe et
temps-fréquence des signaux physiologiques

Résumé :
Un outil analytique pour l’observation de la dynamique des organismes vivants est développé dans
cette thèse, et appliqué à l’étude des interactions entre les systèmes cardiaque, respiratoire et nerveux
basée sur des enregistrements humains pendant le sommeil. Ces signaux physiologiques sont parti-
culiers et complexes : chaque enregistrement est unique, non stationnaire, et ne peux être reproduit
à l’identique. Pour répondre à cette difficulté, nous proposons une analyse temps-fréquence de ces
signaux physiologiques, basée sur des ondelettes analytiques aussi appelées « atomes temps-fréquences
». La première partie A de cette thèse introduit ce formalisme, souligne l’adéquation de l’ondelette
log-normale dans ce contexte, l’importance du facteur de qualité Q associé et sa correspondance avec le
principe d’incertitude d’Heisenberg. En étendant cette approche à l’estimation de la cohérence temps-
fréquence entre signaux physiologiques, nous découplons les résolutions temporelle et spectrale, afin
d’introduire des degrés de liberté statistiques dans l’analyse. Pour aider à l’observation d’interactions
physiologiques entre différentes sources, nous définissons une famille générique d’estimateurs de taux
complexes, capturant les modulations tant de la fréquence instantanée que de l’amplitude, dans une
bande spectrale d’intérêt. La seconde partie B illustre cette méthodologie sur des signaux physiologiques
issus de bases de données polysomnographiques. Les riches spécificités des rythmes fluctuants contenus
dans les électrocardiogrammes (ECG), signaux respiratoires et électroencéphalogrammes (EEG) sont
discutées en détail pour valider l’estimation générique de la cohérence temps-fréquence entre paires
d’enregistrements ou de leurs transformations en taux. Nous comparons l’efficacité des estimateurs, à
bande large ou étroite pour extraire les modulations du taux cardiaque, à une méthode d’extraction de
référence. Trois échelles d’interaction distinctes sont observées à partir des modulations cardiaques et
respiratoires cohérentes : une première rapide à la fréquence fondamentale de respiration (arythmie
sinusale respiratoire, RSA), une deuxième lente et moins rythmique et une troisième encore plus lente,
toutes œuvrant à la régulation des taux cardio-respiratoires. Dans le formalisme des ondelettes, nous
proposons une représentation originale de l’évolution du ratio entre fréquences cardiaque et respiratoire,
qui se trouve être efficace pour suivre les traces de l’apnée du sommeil, des phases de sommeil paradoxal
(REM) et de sommeil profond. Cette approche du couplage cardio-respiratoire offre également une
nouvelle perspective pour détecter ses épisodes de synchronisation et ses fluctuations temporelles.
L’activité nerveuse pendant le sommeil est introduite à travers l’analyse temps-fréquence des signaux
EEG, et leurs séquences caractéristiques de motifs de densité de puissance et de cohérence dans de
multiples bandes. Finalement, nous rassemblons les signaux de taux cardio-respiratoire et de magnitude
nerveuse et nous les comparons par paires en termes de cohérence temps-fréquence. À partir d’une
analyse extensive de 2650 enregistrements issus d’une large base de données polysomnographiques,
nous relevons une augmentation de l’amplitude et de la cohérence des modulations pendant l’apnée,
émergeant systématiquement comme un pique spectral comparé à une ligne de base sans apnée. Nous
montrons aussi que l’apnée du sommeil est concomitante d’une importante réduction de l’interaction
cardio-respiratoire rapide (RSA) et de l’interaction neuro-respiratoire très lente. Cette étude ouvre la
voie à de nouveaux développements, esquissés à la fin de cette thèse, tels que la détection des fuseaux
de sommeil à partir de la phase des oscillations dans la bande EEG sigma, et la cohérence de leur
amplitude avec les oscillations lentes delta pendant le sommeil profond.

Mots-clés : biophysique, temps-fréquence, multi-échelle, ondelette, cohérence, statistique, polysom-
nographie, traitement du signal
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Revisiting statistical physics tools for the complex time-frequency characterization of
physiological signals

Abstract:
An analytical tool for the observation of the dynamics of living organisms is developed in this thesis,
and applied to the study of interactions between the cardiac, respiratory and neural systems based on
human recordings during sleep. These physiological signals are peculiar and complex: each recording
is unique, non-stationary and cannot be reproduced. To solve this issue, a time-frequency analysis of
physiological signals, based on analytic wavelets also called “time-frequency atoms”, is proposed. The
first part A of this thesis introduces this formalism, highlighting the adequacy of the log-normal wavelet
in that context, the importance of the associated quality factor Q and its correspondence with the
Heisenberg uncertainty principle. Extending this approach to the estimation of the time-frequency
coherence of physiological signals, we separate temporal from spectral resolutions in order to introduce
statistical degrees of freedom in this analysis. To assist the observation of physiological interactions
between different sources, we define a generic family of complex rate estimators capturing both the
modulations of the instantaneous frequency and amplitude, in a spectral band of interest. The second
part B illustrates this methodology on physiological signals from polysomnography databases. The
rich specificities of fluctuating rhythms contained in electrocardiograms (ECG), breathing signals
and electroencephalograms (EEG) are thoroughly discussed to validate the generic estimation of the
time-frequency coherence between pairs of recordings or their rate transformations. We compare the
effectiveness of wide-band and narrow-band estimators in retrieving heart rate modulations, relative
to a reference extraction method. From coherent cardiac and respiratory modulations, we observe
three distinct scales of interaction: a fast one at the fundamental breathing frequency (RSA), a slow
and less rhythmic one and an even slower one, regulating cardio-respiratory rates. In the wavelet
framework, we propose an original time-dependent representation of the frequency ratios of cardiac
and breathing rhythms that turns out very effective for tracking signatures of sleep apnea, rapid eye
movement (REM) phases, and deep sleep stages. This approach of the cardio-respiratory coupling
also offers a new perspective to detect synchronization episodes of cardio-respiratory coupling and
their temporal fluctuations. The neural activity during sleep is introduced from the time-frequency
analysis of EEG signals, and their characteristic sequences of multi-band power density and coherence
patterns. Finally, we gather cardio-respiratory rates and neural magnitude signals and compare them in
pairs in terms of time-frequency coherence. From an extensive analysis of 2650 recordings from a large
polysomnography database, we point out the increased amplitude and coherence of slow modulations
during apnea, systematically emerging as a spectral peak as compared to a flat baseline without
apnea. We also show that apnea is concomitant with a strong coherence reduction of the fast RSA
cardio-respiratory interaction and the very slow neuro-respiratory interaction. This study paves the
way to new developments, outlined in the end of this thesis, such as the detection of sleep spindles from
the phase of the oscillations in the sigma EEG band, and the coherence of their amplitude with slow
delta oscillations during deep sleep.

Keywords: biophysics, time-frequency, multi-scale, wavelet, coherence, statistics, polysomnography,
signal processing

Laboratoire Ondes et Matière d’Aquitaine
UMR 5798 Université de Bordeaux, 33000 Bordeaux, France.
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Introduction

Le Vivant et ses mouvements sont des phénomènes naturels, faisant partie de la φύσις (phý-
sis, c’est-à-dire l’Écosystème naturel) ; pourtant, la nature physique des systèmes vivants reste
encore très élusive. Ils partagent, avec les systèmes hors équilibre et les systèmes dynamiques
non-linéaires, la présence de comportements pulsatiles et quasi-périodiques. Les rythmes physio-
logiques ayant lieu dans le cœur, la respiration, la locomotion, les signaux nerveux, les horloges
cellulaires ou moléculaires, les sécrétions hormonales, les cycles de vie, etc, couvrent plus de 10
décades à travers les échelles de temps. Les organismes vivants ont une existence complexe à de
nombreuses échelles d’espace et de temps interconnectées, et souvent peu séparées. En dehors
de ces caractéristiques multi-échelles, une autre propriété essentielle qui distingue la matière
vivante de la matière inerte est son activité instable et imprédictible.

Toutes ces caractéristiques sont autant de défis adressés aux biophysiciens pour trouver
un cadre cohérent de description des systèmes vivants. De nombreuses mesures répétées sont
nécessaires pour compenser leur forte variabilité, d’un système à l’autre, mais aussi au sein d’un
même système, pour lequel le comportement évolutif ne peut pas être reproduit sur demande
dans beaucoup de situations expérimentales. L’enregistrement continu sur le corps humain de
l’activité physiologique correspond à ce cas de figure, et se trouve au point focal de cette thèse.
Il s’agit d’une expérience à essai unique : chaque trajectoire mesurée est unique et changeante,
avec des oscillations régulières inextricablement mêlées à des fluctuations irrégulières aux ca-
ractéristiques intermittentes. Spécifique au système vivant durant l’observation, ce mélange de
comportements imprédictibles et organisés est le résultat de l’interaction entre les sous-systèmes
sous-jacents à de multiples échelles distinctes, des biomolécules, cellules, tissus, organes, à l’or-
ganisme complet et son environnement. Leur description réductionniste et intégrante à travers
les échelles, en un modèle biophysique unique, représente une tâche formidable, qui restera
peut-être au stade d’idée abstraite.

Reconnaître et examiner des rythmes est primordial en physiologie du cœur, de la respira-
tion, du métabolisme, du cerveau, de l’audition, de la voix et du langage, de la locomotion et la
proprioception... L’intérêt biomédical à déchiffrer leurs signaux complexes est une motivation
forte pour soutenir l’effort de modélisation en proposant une analyse approfondie des obser-
vations. Le corps humain a été décrit comme un ensemble de sous-systèmes physiologiques
distincts par les cliniciens, tels que les systèmes respiratoire, cardiaque et nerveux, finement
inter-régulés. Leurs interactions forment un réseau, dont la dynamique est particulièrement
complexe. Pour obtenir un meilleur aperçu de ces interactions, il est essentiel d’observer l’acti-
vité physiologique à travers différents enregistrements simultanés, par exemple une polysomno-
graphie, mesurée par différents capteurs sur le corps au repos. L’étude de ces enregistrements
concentre les efforts d’une large communauté de physiologistes, neuroscientifiques, cliniciens,
biologistes, physiciens et mathématiciens, œuvrant à l’amélioration de la santé des personnes
affectées par l’arythmie cardiaque, l’apnée du sommeil, l’insomnie, certains troubles psychiques,
ou simplement le vieillissement, ainsi qu’à l’approfondissement de la compréhension des phé-
nomènes associés au sommeil et à l’éveil, l’attention, les perceptions, les émotions, et peut-être
même la conscience.

Le contexte de la mesure biophysique peut être assez éloigné de celui de l’expérience clas-
sique de physique. Les méthodes d’enregistrement disponibles sont basées sur différentes tech-
niques physiques (électromagnétique, optique, thermique, barométrique), parfois redondantes
comme dans le cas du rythme cardiaque. Les méthodes non intrusives et passives ont un avan-
tage pratique comparées aux mesures plus directes et contrôlées précisément ; les premières sont
donc préférées pour des applications cliniques ou commerciales. Mais ce sont aussi celles qui
requièrent le plus de traitement pour en extraire les informations biophysiques d’intérêt, telles
que des taux ou modulations d’intensité. Une profusion d’algorithmes sophistiqués, conçus pour
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chacune des méthodes d’enregistrement, accompagnent la difficulté du processus de traitement
du signal ou de l’image. La forte spécificité de ces techniques tend à effacer la généricité des re-
lations mathématiques entre les observables biophysiques enregistrées et extraites. Ce manque
d’une base commune se fait d’autant plus sentir lorsqu’on essaie de déchiffrer le réseau des
interactions physiologiques les reliant. Ces considérations soulignent l’importance d’améliorer
les outils mathématiques existants et les techniques numériques d’observation, qui sont pour
certains explorés et développés dans cette thèse.

Une physique statistique de ces systèmes ne saurait être théorisée sans considérer à la fois
les caractéristiques temporelles et fréquentielles de leurs comportements fluctuants et oscillants.
Pour faire face à la complexité des enregistrements physiologiques, une nouvelle représentation
temps-fréquence du signal apparaît comme un ingrédient essentiel, pour déployer et diluer
en une carte à deux dimensions les riches informations initialement concentrées en une seule
(temps ou fréquence). Les caractéristiques multi-échelles des signaux sont dépeintes à chaque
instant dans la direction spectrale, et leurs caractéristiques évolutives à chaque fréquence dans
la direction temporelle. Une représentation temps-fréquence emploie une fonction test pour
scruter le contenu oscillatoire du signal analysé en différentes localisations : soit au moyen
de translations en temps et en fréquences (comme la fenêtre glissante de la transformée de
Fourier à court terme), ou par une translation et une dilatation du temps (comme dans la
transformée en ondelettes, utilisée tout au long de cette thèse). Ces deux méthodes mènent à
des interprétations apparemment distinctes, telles que les « fréquences » et les « échelles »,
diversifiées par les innombrables possibilités de fonctions test (incluant le signal lui-même) et
leur mise en œuvre pratique. D’un côté, cela constitue un gage de versatilité, qui s’est traduit
en de nombreuses applications scientifiques. De l’autre, cela implique une profusion de détails
techniques à gérer, cachant parfois des liens avec des intuitions ou concepts plus fondamentaux.

L’interprétation probabiliste des fluctuations dans les enregistrements naturels est le second
ingrédient. Les processus stochastiques prennent une place grandissante dans la modélisation
physique des trajectoires fluctuantes, pour les phénomènes micro et mésoscopiques, tandis que
les méthodes d’inférence statistique sont le plus souvent adaptées à la complexité des systèmes
macroscopiques. Ces approches partagent les mêmes idées issues de la théorie de l’information.
La définition d’ensembles statistiques, à la fois au sein de l’enregistrement et entre enregis-
trements physiologiques, est une tâche délicate, qui vise à extraire des observations robustes
de mesures uniques aux caractéristiques non stationnaires et multi-échelles. Ces conditions li-
mitent souvent les estimations au premier et second ordres statistiques, comme l’analyse des
corrélations, et l’évaluation de leur signifiance est primordiale. Bien qu’élémentaire, l’analyse
des corrélations est efficace pour évaluer la connectivité et les interactions entre les quantités
examinées, qui peuvent être de natures physiques très différentes.

La combinaison de l’approche statistique des corrélations et d’une perspective temps-
fréquence a permis d’aboutir à une méthode composite appelée la cohérence temps-fréquence.
Les données de deux enregistrements simultanés sont décomposées à différents temps et échelles
avant d’être analysées statistiquement. Cet outil d’investigation de dynamiques complexes, re-
lativement récent, s’est montré efficace et a de nombreuses applications dans des contextes
physiologique, écologique, géophysique, économiques entre autres. À nouveau, ce type d’ana-
lyse a été mis en œuvre dans des modalités variées, avec divers degrés de contrôle de la résolution
temps-fréquence et de la signifiance statistique. De plus, il dépend souvent de signaux systéma-
tiquement pré-traités, ayant subi diverses procédures de retrait de la tendance, blanchissement
et filtres, hors du cadre de l’analyse de la cohérence. Finalement, les quantités dynamiques
d’intérêt sont rarement celles directement mesurées. Par exemple, les signaux de taux car-
diaque et respiratoire ou les ondes cérébrales sont systématiquement extraits, par un moyen
algorithmique, des enregistrements physiologiques contenant l’information originelle.

La question centrale au fondement de cette thèse peut être exprimée comme suit : y a-t-il un
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langage commun utilisable pour les différentes tâches, allant du traitement des enregistrements
physiologiques bruts en de nouvelles observables biophysiques à l’étude de leurs interactions ?
Quels sont les paramètres pertinents pour parvenir à ce type d’analyse de manière générique ?
Dans un effort de synthèse, nous établissons un cadre générique basé sur une représentation
temps-fréquence de l’enregistrement utilisant des ondelettes, avec un intérêt particulier pour
l’interprétation physique. Cet outil est appliqué à l’étude des enregistrements polysomnogra-
phiques de l’activité cardiaque, respiratoire et nerveuse, et de leur riche phénoménologie.

La construction de ce cadre théorique est présentée dans la partie A de cette thèse, com-
posée des chapitres I, II et III, suivie par une application aux enregistrements physiologiques
dans la partie B, composée des chapitres IV et V. Leur bibliographie distincte est introduite
progressivement dans les chapitres concernés.

Dans le chapitre I, nous commençons par l’examen des représentations temporelles et spec-
trales des oscillations, pour un signal réel et son spectre. En élaborant sur les avantages de la
version analytique ou « en hélice » complexe du signal pour interpréter ses oscillations dans le
temps, nous montrons que l’idée de distinguer des contributions à de multiples échelles mène
naturellement à une transformée en ondelettes dont l’ondelette est analytique. L’analyse en
ondelettes revient à décomposer un signal en « atomes » temps-fréquence, appelés ondelettes,
choisis de manière adéquate pour accéder à l’information souhaitée. En particulier, nous ré-
cupérons l’intuition spectrale de la transformée de Fourier en examinant la forme du spectre
de l’ondelette. Nous revisitons la famille générale des ondelettes analytiques de Morse, de ma-
nière à rendre explicite et ajustable le seul paramètre pertinent : le facteur de qualité. À cet
égard, nous trouvons idéal la forme log-normale, cas limite dans la famille de Morse, avec une
symétrie, localisation et régularité exceptionnelles. Décrite par R.A. Altes, et proposée par A.
Grossmann au début de la théorie des ondelettes comme étant « particulièrement bonne », cette
forme demeure paradoxalement quasi-absente de la littérature qui en découle. Les propriétés
de l’ondelette log-normale sont détaillées, ainsi que la résolution dans le temps et les fréquences
de la représentation associée, caractérisée par un compromis entre incertitudes contrôlé expli-
citement par l’unique paramètre, le facteur de qualité.

Nous continuons dans le chapitre II avec une simplification de la notation pour la repré-
sentation en ondelettes de l’enregistrement, l’illustration de l’amplitude et de la phase des oscil-
lations dans le continuum temps-fréquence, et des considérations géométriques et numériques.
Nous mettons en évidence le rôle du facteur de qualité comme un curseur entre les approches
temporelle et spectrale, en détaillant les quantités linéaires et quadratiques qui peuvent être
récupérées à partir de cette représentation temps-fréquence. En passant des oscillations aux
fluctuations, nous discutons ensuite l’approche probabiliste, et nous interprétons les quantités
quadratiques comme des estimations statistiques à partir d’une réalisation unique d’une tra-
jectoire stochastique. En particulier, l’analyse des corrélations est détaillée dans le temps et
les fréquences, pour définir une cohérence temps-fréquence. La difficulté de définir un estima-
teur statistique temps-fréquence est exposé : abandonner de la résolution, en « relâchant »
le principe d’incertitude d’Heisenberg, est la condition pour gagner des degrés de liberté sta-
tistiques. Plusieurs atomes d’information de la décomposition temps-fréquence doivent être
recomposés pour constituer une estimation statistique signifiante. Dans le cadre des ondelettes
log-normales, le problème se résorbe, ainsi que la variété de techniques existantes, dès lors que
l’on réalise l’existence d’un estimateur canonique introduisant un second facteur de qualité. En
distinguant le contrôle des résolutions en temps et en fréquence, nous laissons la place pour
un nombre de degrés de liberté statistiques donné exactement par le rapport des facteurs de
qualité. Pour mettre en pratique ces deux paramètres essentiels, nous proposons une stratégie
d’approximation permettant une mise en œuvre numérique efficace.

Le chapitre II s’achève sur l’évaluation de la signifiance de l’estimateur de cohérence, à
partir de la distribution de sa valeur résiduelle, ou cohérence fausse, associée à deux bruits
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gaussiens indépendants. Nous argumentons et soutenons à partir de simulations le fait que
cette distribution est étroitement approximée par une distribution bêta avec un unique para-
mètre. Précisément identifié à ce paramètre, le nombre de degrés de liberté permet de construire
simplement des niveaux de signifiance pour la valeur observée de la cohérence entre deux enre-
gistrements naturels. Ces niveaux permettent de construire une visualisation synthétique de la
cohérence signifiante, à partir d’un codage couleur en teinte et en saturation pour les valeurs
complexes de cette image temps-fréquence. L’outil qui en résulte est illustré avec des enregis-
trements polysomnographiques : électroencéphalogramme (EEG), électrocardiogramme (ECG),
flux d’air (AF) et substitut.

Nous abordons dans le chapitre III la question de l’estimation des taux fluctuants pour des
oscillations rythmiques modulées. Les caractéristiques temporelle et spectrale de ces rythmes
sont d’abord détaillées à travers l’exemple de la voix. Sa structure horizontale en temps et ses
ordres harmoniques résolus en fréquence peuvent être précisément anticipés à partir du nombre
d’oscillations dans l’ondelette et sa bande passante, c’est-à-dire à partir de son facteur de qualité.
Après avoir introduit et discuté les crêtes et les méthodes de réallocation, nous définissons
une famille générique d’estimateurs de taux complexe, capturant à la fois les modulations de
l’amplitude et de la fréquence instantanée, dans un domaine de fréquence choisi. En accord
avec le cadre précédemment établi, les estimateurs basés sur des expressions quadratiques se
trouvent être plus stables, en rapport avec leur interprétation statistique. Ils sont illustrés dans
les limites d’une bande spectrale étroite et large pour un enregistrement vocal, achevant ainsi
la partie A.

Basée sur des sources existantes de données cliniques, en particulier 2.3 ans (en cumulé) de
polysomnographies obtenues à partir de 2650 enregistrements individuels, la partie B applique
le langage développé dans la partie A à l’étude des signaux physiologiques.

Consacré aux rythmes cardio-respiratoires, le chapitre IV commence avec l’activité car-
diaque. Nous analysons sa variabilité temporelle telle qu’enregistrée par les très différents élec-
trocardiogramme (ECG) et photopléthysmogramme (PPG). Nous montrons comment utiliser
les variables de localisation et les facteurs de qualité pour extraire la variabilité du taux car-
diaque à partir des estimateurs de taux basés sur les ondelettes, du plus simple et générique
(bande large) aux plus sophistiqués (bande étroite). De plus, nous remplaçons l’ECG par un
signal dérivé d’amplitude, toujours dans le cadre des ondelettes, permettant ainsi d’améliorer
l’estimation en exploitant une spécificité de l’ECG. Au moyen d’une analyse de la cohérence,
ces estimateurs des modulations de la fréquence cardiaque sont comparés à un algorithme d’ex-
traction du taux cardiaque conventionnel basé sur l’ECG.

Nous nous tournons ensuite vers le rythme respiratoire, enregistré comme un flux d’air avec
un capteur thermoélectrique. Il module le taux cardiaque en un réflexe appelé arythmie sinusale
respiratoire (RSA), fournissant le premier exemple d’interaction entre organes visible dans ces
fluctuations. Sur un enregistrement individuel, nous montrons comment la force et la variabi-
lité de cette interaction peut être décrite par les corrélations temporelles ou par la cohérence
spectrale, puis détaillée comme la cohérence temps-fréquence entre le taux cardiaque estimé
et l’enregistrement respiratoire. En plus de l’interaction RSA, une composante cohérente plus
lente apparait, confirmée par une statistique globale sur la plus large base de données polysom-
nographiques. En raison d’un filtre instrumental, la bande basse fréquence de l’enregistrement
respiratoire est limitée et la cohérence qui en résulte est dégradée. Les modulations de fré-
quence et d’amplitude portées par les oscillations respiratoires n’ont pas ces limitations à basse
fréquence et sont donc utilisées pour l’analyse de la cohérence. La statistique globale de la co-
hérence cardio-respiratoire entre les signaux de taux est calculée et une troisième composante
très lente est identifiée. La distribution de la phase entre modulations cardio-respiratoires est
aussi obtenue à partir de l’analyse de la cohérence.

À la fin du chapitre IV, nous mettons au point une approche quantitative de la synchroni-
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sation des rythmes cardiaque et respiratoire, prenant en compte la valeur de leur taux, au-delà
de l’analyse de la cohérence entre leurs modulations. Elle consiste en la construction d’une
distribution de leurs rapports de fréquences, à chaque instant, concentrée en un simple nombre
rationnel pendant la synchronisation, sinon fluctuant librement, voire oscillant durant l’apnée
du sommeil, comme illustré par la polysomnographie de deux sujets. Cette méthode constitue
un nouvel outil pour étudier le quotient entre les taux cardiaque et respiratoire.

Le chapitre V introduit l’activité nerveuse, enregistrée par EEG, et les phénomènes du
sommeil. D’habitude décomposée en un ensemble empirique de bandes spectrales, nous illus-
trons en un continuum l’intensité EEG, multi-échelle et évolutive. Les motifs provenant à la
fois de la densité de puissance et de la cohérence inter-EEG procurent un aperçu direct des
stades du sommeil et de l’éveil et peuvent simplifier la description de l’architecture globale du
sommeil. La structure fine temps-fréquence de l’EEG est aussi capturée à l’aide d’un choix
minutieux des facteurs de qualité, permettant l’extraction des modulations de la puissance ou
magnitude dans chaque bande.

En rassemblant les signaux de taux cardiaque et respiratoire extraits ainsi que les signaux
nerveux, nous étudions la modification de leur couplage lors de l’apnée du sommeil. L’analyse
de leur cohérence temps-fréquence signifiante est illustrée et calculée individuellement, puis leur
statistique collective est conditionnée à l’observation clinique d’apnée du sommeil obstructive ou
centrale, d’hypopnée ou d’absence d’apnée. En plus d’un couplage RSA plus faible dans la paire
cardio-respiratoire, nous rapportons l’omniprésence d’une lente modulation rythmique associée
à différents types d’apnée, augmentant la cohérence de chaque paire de signaux à la fréquence
correspondante. La phase des lentes modulations nerveuses est détaillée pour chaque groupe
apnéique sur le continuum des bandes EEG, mettant en évidence des spécificités à chaque bande,
telles qu’un chirp linéaire dans la bande δ. C’est une illustration claire de la manière étroite
dont s’entrecroisent les régulations nerveuse et cardio-respiratoire. Leur altération durant les
stades du sommeil et l’apnée est finalement esquissée dans une étude du couplage amplitude-
phase des fuseaux du sommeil et des ondes lentes. Ce couplage est décrit comme une cohérence
intra-EEG et comparé au quotient des taux cardiaque et respiratoire.

Dans la conclusion, nous détaillons des perspectives pour ce présent travail visant au dé-
veloppement d’une physique statistique des signaux physiologiques.

Dans une partie C en bonus, nous explorons la question musicale de la rationalité (ou
l’irrationalité) de la distribution des ratios mise au point au chapitre IV, en introduisant un
indice de synchronisation multi-fréquence que nous appelons la sonance, basée sur un ensemble
statistique défini sur les nombres rationnels.
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Conclusion
Un outil analytique pour aider à l’observation de la dynamique des organismes vivants a été
développé dans cette thèse, et appliqué à l’étude des interactions entre les systèmes respiratoire,
cardiaque et nerveux basée sur des enregistrements polysomnographiques. Le développement
de cette thèse est résumé ci-dessous et des perspectives sont ensuite esquissées.

Résumé
Partie A

Dans la première partie, nous avons exposé une manière de déchiffrer des enregistrements
naturels complexes par la caractérisation de leur contenu à la fois oscillant et fluctuant. Cela a
été réalisé en représentant les enregistrements dans le temps et les fréquences, avant d’effectuer
des estimations statistiques dans ces deux dimensions grâce à une combinaison de décomposition
et recomposition d’ondelettes.

Nous avons commencé avec l’approche oscillatoire des enregistrements, en particulier avec
l’intuition temporelle associée aux signaux oscillants : une onde évolue dans le temps avec une
certaine amplitude et une phase parcourant un cycle en une certaine période. La version ana-
lytique du signal, une représentation complexe « en hélice » très adaptée d’une oscillation avec
son rayon et son angle, est d’un usage limité lorsque des oscillations à de multiples échelles de
temps sont superposées. À partir du prolongement analytique du signal dans le plan complexe,
la séparation de composantes à des échelles distinctes mène naturellement à la transformée
continue en ondelettes basée sur une ondelette analytique, translatée et dilatée dans le temps.
Cette décomposition temps-échelle a la spécificité d’être indépendante d’une échelle de réfé-
rence, contrairement au paradigme alternatif de la transformée de Gabor ou de Fourier à court
terme. Cette propriété est particulièrement intéressante pour analyser de multiples événements
oscillants simultanément, chacun depuis sa propre échelle, possiblement séparée des autres par
plusieurs décades.

Pourtant, la description de Fourier des périodicités dans l’enregistrement, de par son
spectre, est indispensable ; la variable d’échelle de l’ondelette n’apparaît que comme le reflet du
domaine des fréquences. Pour retrouver cette intuition spectrale complémentaire, nous avons
revisité le choix de l’ondelette analytique. Une fois son spectre positif standardisé en une forme
sans dimension, la précision de la correspondance entre échelle et fréquence est réduite à un
paramètre essentiel, son facteur de qualité Q. Proportionnel au nombre d’oscillations de l’on-
delette et à l’inverse de la bande passante, il fixe un compromis sur les résolutions, qui partage
l’atome d’incertitude temps-fréquence. En d’autres termes, le facteur de qualité est un curseur
entre les interprétations temporelle et fréquentielle. Pour cette dernière, un contrôle plus fin de
la forme de l’ondelette est superflu tant que le facteur de qualité est assez élevé. La fonction
log-normale, un cas limite central dans la famille générale des ondelettes de Morse, se distingue
par sa régularité, avec une décroissance plus rapide que polynomiale dans les deux domaines,
et par sa symétrie, cristallisant ainsi l’idée d’une échelle logarithmique des fréquences.

Signal et spectre sont récupérés à partir de la transformée en ondelettes de deux manières
équivalentes : d’une part comme des marginales en temps et en fréquence, d’autre part comme
des asymptotes opposées du facteur de qualité. L’approche probabiliste des fluctuations est en-
suite introduite, en considérant l’enregistrement comme la réalisation d’un processus stochas-
tique. L’application d’une des opérations précédentes à une représentation quadratique revient
à une estimation statistique basée sur les ondelettes : pour une seule trajectoire, la variance
dépendante du temps et la densité spectrale, ou pour un produit de trajectoires, le coefficient
de corrélation décliné comme une cohérence soit temporelle, soit spectrale. Leur localisation à
la fois dans le temps et les fréquences requiert cependant un second paramètre pour estimer
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l’espérance statistique, lequel était identifié à un nombre effectif de « tapers » orthogonaux (ici
des ondelettes) interprétés comme des degrés de liberté statistiques. L’approche alternative,
mais tout aussi efficace, consiste à réduire la résolution temps-fréquence par une opération de
lissage.

Dans le cadre des ondelettes log-normales, ces points de vue probabiliste et temps-fréquence
se rencontrent en un estimateur statistique temps-fréquence que nous qualifions de canonique en
raison de son rôle très spécial. L’introduction de plusieurs degrés de liberté dans l’estimation
statistique coïncide avec la distinction de deux facteurs de qualité différents dans l’analyse
temps-fréquence : nd = Q+

Q−
, le plus élevé contrôlant la résolution temporelle, indépendamment

du moins élevé pour la résolution en log-fréquence. Cette correspondance est un pont entre
deux points de vue sur l’information, équilibrant signifiance et résolution. La première étape,
de décomposition des oscillations en atomes temps-fréquence, est suivie de la seconde étape, de
recomposition de nd atomes d’incertitude pour plus de stabilité contre les fluctuations.

Nous avons dû faire deux compromis, un de chaque côté de ce pont, pour mettre en pra-
tique ces deux paramètres essentiels. Le premier est la mise en œuvre numérique de l’estimateur
canonique grâce à un lissage temporel gaussien, que nous montrons être l’approximation de La-
place correcte au premier ordre. Le second est la prédiction simplifiée des niveaux de signifiance
statistique attendus pour l’estimateur canonique de cohérence. Nous motivons et vérifions, à
partir de la simulation de bruits gaussiens stationnaires et indépendants, que la distribution
de la fausse cohérence au carré est presque la loi bêta. La densité de puissance et la cohérence
sont respectivement une variance locale et un coefficient de corrélation, détaillés pour toute
translation et dilatation du temps. À partir des niveaux de signifiance de la cohérence, nous
construisons un codage couleur synthétique par la teinte et la saturation pour l’angle et le
module des régions temps-fréquence de cohérence signifiante.

Le problème de l’estimation des modulations d’un rythme fluctuant est finalement intro-
duit. La forme d’onde non-circulaire répétée est décomposée par la transformée en ondelettes
en structures horizontales et verticales, interprétées comme des harmoniques jusqu’à un certain
ordre ∼ Q√ p̃ et comme des battements au-delà. Les cycles de la phase (et l’amplitude variable)
des lignes harmoniques, en particulier ceux du premier ordre (fondamental), sont reliés au taux
recherché par une dérivée temporelle, qui se trouve être équivalente à une dilatation en fré-
quence. Une certaine flexibilité existe dans la sélection en fréquence des cycles de phase, en
relation aux concepts de crêtes horizontales stables et instables et de réallocation en fréquence,
de sorte que nous postulons l’existence d’une bande d’intérêt en fréquence. Les modulations
dans cette bande peuvent être extraites par une famille générique d’estimateurs de taux. En
particulier, une version quadratique est conforme à l’interprétation statistique : l’introduction
d’un second facteur de qualité (en relation avec la bande passante) assure la stabilité du taux
estimé. Pour un enregistrement vocal, les différents résultats, dans les limites à bande étroite
ou large, de ce troisième type d’estimateur basé sur les ondelettes, donnent une estimation de
la hauteur et du vibrato. L’incertitude sur l’estimation de la hauteur est exprimée en termes
de cohérence.

Partie B

La seconde partie est une application à l’analyse des activités cardiaque, respiratoire et nerveuse,
capturées par les signaux ECG ou PPG, AF et EEG. Les données physiologiques, polysomno-
graphiques pour la plupart, sont issues de bases de données existantes. Nous nous efforçons de
traduire leur traitement en observables biophysiques d’intérêt en utilisant le langage développé
dans la première partie.

Nous commençons avec la variabilité du taux cardiaque, extraite du rythme cardiaque
comme sa modulation en fréquence. Malgré les très différentes techniques d’enregistrement, le
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taux cardiaque peut être estimé précisément avec des estimateurs temps-fréquence génériques
du taux fluctuant, dans une bande en fréquence pertinente. Nous montrons que la version large
bande de l’estimateur de taux, qui ne nécessite qu’un unique paramètre, est suffisante pour
extraire les modulations de la fréquence cardiaque, même si elle est biaisée, particulièrement
pour les oscillations fortement non-circulaires de l’ECG. L’estimation de taux cardiaque la plus
précise est obtenue en utilisant l’estimateur de taux à bande étroite sur un nouveau signal
d’amplitude, dérivé de la transformée en ondelettes du signal ECG à 14 Hz (aECG14). Les
estimateurs sont appliqués aux signaux PPG, ECG et aECG14 de tous les sujets dans une base
de données. La précision des modulations de la fréquence cardiaque est évaluée en termes de co-
hérence avec un taux cardiaque de référence estimé à partir des intervalles R-R de l’ECG. Cette
cohérence est signifiante dans tous les cas et pour toutes les fréquences de modulation, et elle
augmente avec la circularité du signal cardiaque d’entrée et avec la spécificité de l’estimateur.

Signe de l’interaction cardio-respiratoire, la variabilité du taux cardiaque est corrélée à la
respiration, introduite avec le signal AF (flux d’air). En comparant ce dernier au taux cardiaque,
d’abord dans le domaine du temps ou des fréquences, ensuite dans le plan temps-fréquence, nous
observons deux composantes distinctes de la cohérence : l’une rapide à la fréquence fondamen-
tale du rythme respiratoire, connue comme l’arythmie sinusale respiratoire (RSA), et l’autre
plus lente et moins rythmique (avec une bande plus large). Ces interactions sont caractérisées
par leur phase et module de cohérence, à la fois individuellement et collectivement. La si-
gnifiance statistique est évaluée pour l’estimation temps-fréquence individuelle, et l’estimation
collective est calculée depuis un second niveau de statistique sur tout temps et pour tous les
sujets dans une large base de données. En particulier, l’étendue des fluctuations de la différence
de phase entre le taux cardiaque et les oscillations respiratoires est résumée en une densité an-
gulaire de cohérence. En reproduisant cette méthode avec un autre type de signal respiratoire
et en comparant les résultats, nous avons mis en évidence des difficultés d’interprétation liées
aux limitations instrumentales, visibles dans la réduction de la cohérence et l’incertitude de la
phase des oscillations lentes causées par un filtre passe-haut.

L’étude des basses fréquences est facilitée par l’usage de signaux de taux respiratoire, plutôt
que l’enregistrement brut, obtenus en extrayant l’activité lente contenue dans ses modulations
de fréquence (FM) et d’amplitude (AM). Suffisante à l’étude de la cohérence du rythme car-
diaque, l’estimateur de taux générique à bande large est particulièrement approprié pour les
oscillations plutôt circulaires de la respiration, dont la période peut beaucoup fluctuer. L’ana-
lyse de la cohérence souligne le fait que les FM et AM respiratoires lentes évoluent presque en
phase (corrélées positivement) avec les modulations du taux (FM) cardiaque, mais en opposi-
tion de phase (anti-corrélation) pour les FM respiratoires plus lentes que 0.01 Hz. Cela illustre
la présence d’un mode distinct de régulation cardio-respiratoire, très lent, antagoniste au mode
lent.

L’analyse de la cohérence temps-fréquence des FM cardiaques et respiratoires se limite à
dépeindre la similarité de leur coévolution. En particulier, elle ne peut pas tenir compte de leur
synchronisation à un rapport de fréquence entier, ou caractériser l’évolution du rapport des taux
cardiaque et respiratoire. Dans le cadre des ondelettes, nous construisons une distribution de ce
rapport de fréquence dépendant du temps, détaillée à une grande résolution dans le temps et
à une concentration spectrale précise grâce à une réallocation en fréquence et un faible facteur
de qualité. En l’appliquant à une polysomnographie, nous avons illustré individuellement sa
capacité à suivre les phénomènes du sommeil, tels que l’apnée sous la forme d’une oscillation
régulière du ratio, le stade REM avec ses fortes fluctuations et le sommeil profond avec son
ratio stable.

L’observation d’épisodes nets de synchronisation, aussi appelé couplage cardio-respiratoire,
et l’analogie musicale avec deux voix chantant un accord consonant ont motivé la formulation
d’un indice de synchronisation multi-fréquence. Appelé la sonance, il mesure la rationalité ou
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l’irrationalité dans la distribution des ratios. Son développement, actuellement limité à une
application musicale, est approfondi dans une partie bonus distincte.

Troisième membre important de l’orchestre physiologique, l’activité du système nerveux
est introduite telle qu’enregistrée par l’EEG dans une polysomnographie. Une représentation à
facteur de qualité constant est spécialement bien adaptée pour observer des structures multi-
échelles dans plusieurs bandes et les stades temporels d’éveil et de sommeil. En fonction du
phénomène investigué, la sélection d’un unique ou d’une paire de facteurs de qualité est discutée.
Q− = 5 est un minimum pour la distinction spectrale des ondes cérébrales, fixant ainsi une
résolution temporelle maximum qui peut être diminuée, soit légèrement (Q+ ≈ Q−) pour définir
un champ de magnitude nerveuse stable, soit radicalement pour obtenir une représentation
synthétique des motifs de la densité liés à l’éveil et au sommeil ou pour obtenir une estimation
très signifiante de la cohérence temps-fréquence. Pour Q+ = 500, nous illustrons des motifs de
cohérence inter-EEG, entre enregistrements contra-latéraux, avec un signe et un module qui
alternent (d’incohérent à très cohérent), variant indépendamment de la densité de puissance.
Les modulations des taux sont reliées aux modulations de la puissance et de la magnitude dans
chaque bande EEG ; ces dernières sont préférées comme observables nerveuses.

Pour évaluer les interactions physiologiques, nous rassemblons les taux cardio-respiratoires
et les signaux de magnitude nerveuse dans des bandes distinctes, et nous les comparons par
paires au moyen de la cohérence temps-fréquence. Celle-ci est appliquée au cas d’un sujet
affecté sévèrement par de l’apnée du sommeil obstructive ; nous identifions la signature de
l’apnée comme une composante très cohérente et à bande étroite présente dans toutes les paires
entre 0.01 et 0.04 Hz. Une analyse approfondie de la cohérence des modulations neuro-cardio-
respiratoires est réalisée individuellement pour chacun des 2650 sujets d’une large base de
données polysomnographiques. Ensuite, des spectres de cohérence typiques sont calculés par
des moyennes temporelles conditionnelles, sur 2.3 ans en cumulé d’enregistrement du sommeil,
en les divisant en une sélection d’intervalles et en sous-groupes sur la base des annotations
cliniques d’événements apnéiques des différents types : hypopnée, apnée obstructive ou centrale,
ou absence d’apnée. Les modulations apnéiques sont caractérisées par une amplitude et une
cohérence augmentée, apparaissant comme un pique spectral en comparaison à la ligne de base
plate sans apnée ou au profil intermédiaire de l’hypopnée. L’apnée est aussi concomitante à
une importante réduction de la cohérence, non seulement au niveau de l’interaction cardio-
respiratoire RSA rapide et à bande étroite, mais aussi pour la composante très lente et à bande
large (irrégulière) neuro-respiratoire et cardio-respiratoire.

La phase des modulations nerveuses est ensuite comparée à celle des modulations cardio-
respiratoires à travers les bandes EEG. Nous parvenons à une relation phase-fréquence spécifique
et en grande partie conservée, à une phase globale près, pour tous les profils (avec et sans
apnée), pour des modulations lentes ou très lentes et pour toutes les paires de cohérence neuro-
cardiaque et neuro-respiratoire. Cette interaction est composée d’un chirp linéaire dans la bande
δ, incohérente dans la bande θ, d’un écho du chirp dans la bande α-σ et d’une phase constante
dans la bande β-γ.

À l’aide d’une polysomnographie individuelle, nous illustrons finalement les couplages
phase-amplitude durant différents stades du sommeil, décrits comme une cohérence intra-EEG,
en particulier celui entre les oscillations δ lentes et les fuseaux du sommeil de la bande σ pendant
le sommeil profond. Nous présentons aussi une stratégie pour détecter les fuseaux du sommeil
à partir de la phase dans la bande σ. Le rapport des fréquences instantanées du cœur et de la
respiration complète le tableau nocturne de la séquence des stades du sommeil.
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Discussion et perspectives
Il est maintenant clair que la description de la dynamique des systèmes vivants doit pouvoir
faire la distinction entre une grande diversité de comportements. Le contenu du bruit physio-
logique spontané s’étend de fluctuations complètement stochastiques à des rythmes pulsatiles,
apériodiques, quasi-périodiques et des oscillations régulières, qui peuvent se côtoyer à des fré-
quences distinctes et évoluer en une séquence de périodes temporelles de durées variables. Cette
riche phénoménologie n’est pas seulement distribuée parmi les enregistrements simultanés, mais
aussi au sein de chacun d’entre eux sous la forme de modulations.

La pratique de la physique, dans ce thème interdisciplinaire, a consisté à assurer la visibi-
lité, le contrôle et la solidité des notions élémentaires de facteur de qualité, fréquence, temps,
phase et amplitude des oscillations. Pour construire une physique statistique de ces signaux
physiologiques, une perspective temps-fréquence est indispensable : ces phénomènes oscilla-
toires sont correctement décrits lorsque leur facteur de qualité intrinsèque correspond à celui
utilisé pour la représentation, permettant ainsi leur localisation. Le découplage du temps et
des fréquences revient à dissocier une description cohérente en deux points de vue extrêmes
et déformés. L’adoption du point de vue intermédiaire adéquat revient à choisir la forme de
l’atome d’incertitude, l’ondelette, dans la décomposition temps-fréquence.

L’outil probabiliste basique des corrélations par paires correspond à la recomposition des
atomes de deux signaux distincts en une moyenne locale. Le coefficient circulaire (pour ne pas
dire complexe) qui en résulte exprime leur cohérence. Cette information statistique est aussi
précise que le nombre d’atomes est important, au détriment de l’information de localisation,
qui est réduite d’autant. L’interprétation probabiliste est par conséquent permise par la sépara-
tion de longues échelles de temps d’évolution et de courtes échelles spectrales. Des paradigmes
différents sont disponibles pour équilibrer ces deux types d’information, chacun amenant une
géométrie particulière de la composition dans le plan temps-fréquence. Le formalisme de l’onde-
lette log-normale proposé dans cette thèse permet de suivre la forme et le nombre d’atomes dans
la composition par un rapport de deux facteurs de qualité, sans introduire d’échelle arbitraire
de référence.

Toutes les paires de signaux physiologiques forment un graphe complet, dont chaque lien est
une image de cohérence temps-fréquence, se résumant à un coefficient de corrélation (circulaire)
si l’information était purement statistique et non locale. La donnée de deux paramètres de
contrôle (les facteurs de qualité) est suffisante pour dériver de ces signaux un prototype du
réseau d’interactions physiologiques, dont la structure est en cours d’examen [Bartsch, Liu,
Bashan, et al. 2015; Ivanov, Liu, and Bartsch 2016]. Nos procédés de visualisation au code
couleur synthétique de ces relations temps-fréquence vont faciliter ces observations et peuvent
être convenablement réduites en composantes principales.

Nous attendons d’une approche physique pleinement développée que soit spécifié la direc-
tionnalité des interactions. Autrement dit, la causalité doit être mise à jour dans ce réseau
d’interactions, pour mettre en évidence la finesse des mécanismes d’inter-régulation entre les
fonctions physiologiques. Réduite en sa forme la plus simple, un pur délai ei p̃fτ , la causalité
est codée dans la direction spectrale comme des cycles de la phase. Il devient possible de
récupérer efficacement la causalité [Ephremidze, Saied, and Spitkovsky 2018] et son interpréta-
tion statistique est déjà bien étayée [Faes, Pernice, et al. 2021; Faes, Stramaglia, and Marinazzo
2017]. La caractérisation évolutive et multi-échelle des interactions causales dans l’orchestre
physiologique est bientôt atteinte.

La prochaine étape vers une physique statistique des signaux physiologiques est plus loin-
taine, mais la question de leur irréversibilité est en vue [Arneodo, Argoul, et al. 1993] et le
terrain est peut-être déjà en train d’être préparé [Sekimoto 2010].
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Introduction

Life and its motions are natural phenomena, hence part of the φύσις (phýsis, as the natural
Ecosystem); yet, the physical nature of living systems remains largely elusive. They share, with
out-of-equilibrium and non-linear dynamical systems, the ubiquitous appearance of pulsatile
and quasi-periodic behaviours. The physiological rhythms that occur in the heart, breathing,
locomotion, neural signals, cellular or molecular clocks, hormone secretion, life cycle, etc, are
spanning over 10 decades across temporal scales. Living organisms have a complex existence at
numerous interconnected spatial and temporal scales, often not clearly separated. Apart from
these multi-scale characteristics, a strongly unsteady and unpredictable activity, far from being
stationary, is another essential property that distinguishes living from inert matter.

All these features are as many challenges addressed to biophysicists for finding a sound
framework to describe living systems. Many repeated measurements are required to compen-
sate their strong variability, from one system to another, but also within the same system,
whose evolving behaviour cannot be reproduced on demand in many experimental situations.
The continuous recording of the physiological activity of the human body is one of them, at
the focus of this thesis. It is a single trial experiment: each measured trajectory is unique and
ever changing, with regular oscillations inextricably mingled with irregular fluctuations and
intermittent characteristics. Specific to the living system during the observation, this mixture
of unpredictable and organized behaviours results from the interplays between underlying sub-
systems at many different scales, from biomolecules, cells, tissues, organs, to the full organism
and its environment. Their reductionist and integrative description across scales into a single
biophysical model is a formidable task, that may, in the end, remain an abstract idea.

Recognizing and unfolding rhythms is paramount in the physiology of the heart, respira-
tion, metabolism, brain, hearing, voice and language, locomotion and proprioception... The
biomedical motivations to decipher their complex signals are a strong incentive to assist the
difficult modelling with an improved analysis of observations. The human body has been
partitioned by clinicians into distinct physiological subsystems; among them, the finely inter-
regulated respiratory, cardiac and nervous systems. Their interactions form a network, that is
the field of highly complex dynamics. To gain better insights into these interactions, a crucial
step is the observation of the physiological activity through simultaneous recordings, such as
a polysomnography measured by different sensors on the body during the resting state. Their
study concentrates the efforts of a large community of physiologists, neuroscientists, clinicians,
biologists, physicists and mathematicians, aiming at improving health for persons affected by
cardiac arrhythmia, sleep apnea, insomnia, certain psychic disorders, or simply aging, and pos-
sibly at getting a deeper understanding of phenomena associated to sleep and wake, attention,
perception, emotions, and perhaps even consciousness.

The context of biophysical measures can be quite different from the one of classical physics
experiments. Available recording methods are based on different physical techniques (electro-
magnetic, optical, thermal, barometric), which are sometimes redundant, for instance for the
cardiac rhythm. Non-intrusive and passive recording methods have a practical advantage over
more direct and precisely controlled measurements; the former are hence preferred for clinical
or commercial applications. But they are also the ones that require the most processing to
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extract the biophysical information of interest, such as rates or intensity modulations. The
difficulty of signal or image processing tasks results in a profusion of sophisticated algorithms,
engineered for each of the recording methods. The strong specificity of these techniques tends
to oppose the genericity of mathematical relations between recorded and extracted biophysical
observables. When trying to decipher the network of physiological interactions between them,
this lack of a common ground gets more prominent. These considerations stress the impor-
tance in improving existing mathematical tools and numerical techniques of observation, some
of which are explored and developed in this thesis.

Constructing a statistical physics’ theory of these systems cannot be achieved without
considering jointly time and frequency characteristics of their fluctuating and oscillating be-
haviours. To handle the complexity of physiological recordings, a new time-frequency represen-
tation of the signal appears as a crucial ingredient to expand and dilutes into a two-dimensional
map its rich information, that was initially concentrated along a single temporal (or spectral)
dimension. Multi-scale characteristics of the signals are depicted at each time in the spectral
direction, and its evolutionary characteristics are depicted at each frequency in the temporal
direction. A time-frequency representation employs a test function to scrutinize the oscillatory
content of the analysed signal at different locations: either from translations in time and fre-
quency (as the sliding window of the short-time Fourier transform), or from time translation
and dilation (as in the wavelet transform, employed throughout this entire thesis). These two
methods lead to apparently distinct interpretations, such as “frequency” and “scale”, further
diversified by the numerous possibilities for the test function (that include the signal itself) and
their implementation. On one hand, this is a token of versatility in practical situations, that has
been translated into numerous scientific applications. On the other hand, this is an additional
profusion of technicalities to be handled, sometimes hiding relations with more fundamental
concepts and intuitions.

The probabilistic interpretation of fluctuations in natural recordings is the second ingre-
dient. Stochastic processes take an increasingly important place in the physical modelling
of fluctuating trajectories in micro and mesoscopic phenomena, whereas statistical inference
methods are often more suited for the complexity of macroscopic systems. These approaches
share common information-theoretic ideas. The definition of statistical ensembles, both within
and among physiological recordings, is a delicate task, aiming at extracting robust observations
from these individual and single trial measurements with non-stationary and multi-scale char-
acteristics. These conditions often limit estimations to the first and second order statistics, such
as the analysis of correlations, and the evaluation of their significance is essential. Although
elementary, the correlation analysis is effective to assess connectivity and interactions between
quantities of interest, that may be of very different physical nature.

The statistical approach of correlations has been combined with a time-frequency per-
spective into a composite method called the time-frequency coherence. The data from two
simultaneous recordings is decomposed at different times and scales prior to their statistical
analysis. This relatively recent tool of investigation for complex dynamics proves efficient and
has found many applications in physiological, ecological, geophysical, economical contexts and
more. Here again, this analysis has been implemented in many flavours and refinements, with
varying degrees of control over the time-frequency resolution and the statistical significance.
Furthermore, it often relies on the outcome of systematically preprocessed signals, that have
undergone various filtering, whitening, detrending procedures, left out of the framework of the
coherence analysis. Eventually, the relevant dynamical quantities are rarely the one directly
measured. For instance, the heart and breathing rate signals or neural waves are systematically
extracted, by algorithmic means, from the physiological recordings that contain all the original
information.

The central issue underlying this thesis can be expressed as follows: is there a common
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Introduction

language able to handle the different tasks, from the processing of the bare physiological record-
ings into new biophysical observables, to the study of their interactions? What are the relevant
parameters to achieve this analysis in a generic way? In an effort of synthesis, we establish
a generic framework upon a wavelet-based time-frequency representation of the recordings,
with care for a physicist interpretation. This tool is applied to the study of polysomnographic
recordings of the cardiac, respiratory and neural activities, and their rich phenomenology.

The construction of this framework is presented in the part A of the thesis, composed
of chapters I, II and III, followed by an application to physiological recordings in the part B,
composed of chapters IV and V. Their distinct bibliography is introduced progressively in the
corresponding chapters.

In chapter I, we start examining the temporal and spectral representation of oscillations,
in a real signal and its spectrum. Elaborating upon the convenience of the analytic or complex
helical version of the signal to interpret oscillations in time, we show how the idea of distin-
guishing contributions at multiple scales naturally leads to wavelet transform with an analytic
wavelet. The wavelet analysis amount to decomposing a signal as time-scale “atoms”, called
wavelets, chosen adequately to access relevant information. In particular, we retrieve the spec-
tral intuition of the Fourier transform by examining the shape of the wavelet spectrum. We
revisit the general family of Morse analytic wavelets, so as to make the only relevant parameter
–the quality factor– explicit and adjustable. We find that the log-normal shape, limit case in
the Morse family, is ideal in this respect, with exceptional symmetry, localization and regularity.
Described by R.A. Altes, and proposed by A. Grossmann at the very beginning of the wavelet
theory as a “particularly good” one, this shape has remained paradoxically quasi-absent from
the downstream literature. The properties of the log-normal wavelet are detailed, together
with the resolution in time and frequency of the associated representation, characterized by an
uncertainty trade-off explicitly controlled by the unique parameter, the quality factor.

We continue in chapter II with a simplification of the notation of this wavelet representation
of the recording, the illustration of the amplitude and phase of oscillations in the time-frequency
continuum, geometrical and numerical considerations. We highlight the role of the quality
factor as a cursor between the time and the frequency approaches, by detailing the linear and
quadratic quantities that can be retrieved from this time-frequency representation. Sliding
from oscillations to fluctuations, the probabilist approach is then discussed, and the quadratic
quantities interpreted as statistical estimations on a single realization of a stochastic trajectory.
In particular, the analysis of correlations is detailed in time and in frequency, to define a time-
frequency coherence. The problem of defining statistical time-frequency estimators is exposed:
giving up some resolution by “relaxing” the Heisenberg uncertainty principle is the condition
to gain statistical degrees of freedom. Several atoms of information from the time-frequency
decomposition must be recomposed to constitute a significant statistical estimation. In the
log-normal wavelet framework, the problem resorbs itself, and the various existing techniques
with it, by realizing the existence of a canonical estimator that introduces a second quality
factor. By distinguishing the control of the time and frequency resolutions, we open room for
statistical degrees of freedom, counted exactly by the ratio of the quality factors. In order to
put these two essential parameters in practice, we propose an approximation strategy for an
efficient numerical implementation.

Chapter II ends on the evaluation of the significance of the coherence estimator, from the
distribution of its residual value, or spurious coherence, associated to independent Gaussian
noises. We argue and support from simulations that this distribution is closely approximated
by a single-parameter beta distribution. Accurately identified with this parameter, the number
of degrees of freedom allows a straightforward construction of significance levels for the observed
values of the coherence between two natural recordings. These levels allow to build a synthetic
visualization of the significant coherence, from a hue-saturation colour-coding of its complex-
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valued time-frequency map. The resulting tool is illustrated on polysomnography recordings:
electroencephalogram (EEG), electrocardiogram (ECG), airflow (AF) and surrogate.

We address in chapter III the question of estimating fluctuating rates for modulated rhyth-
mic oscillations. The temporal and spectral characteristics of these rhythms are first detailed
through the example of the voice. Its horizontal structure and resolved harmonic orders in time
and frequency can be precisely anticipated from the number of oscillations in the wavelet and
its bandwidth, i.e. from its quality factor. After introducing and discussing ridges and reas-
signment methods, we define a generic family of complex rate estimators, capturing both the
modulations of the instantaneous frequency and amplitude, in a frequency range of interest.
Consistent with the previously developed framework, estimators based on quadratic expres-
sions prove more stable, in relation to their statistical interpretation. They are illustrated in
the narrow-band and wide-band limits for a voice recording, ending part A.

Based on existing sources of clinical data, in particular 2.3 years of cumulated polysomnog-
raphy from 2650 individual recordings, Part B applies to the study of physiological signals the
language developed in part A.

Chapter IV, focusing on cardio-respiratory rhythms, starts with the cardiac one. We
analyse its temporal variability as recorded by the very different electrocardiograms (ECG)
and photoplethysmograms (PPG). We show how to utilize the localization variables and the
quality factors to extract the heart rate variability from the wavelet rate estimators, from the
most simple and generic (wide-band) to more refined ones (narrow-band). In addition, we show
how replacing the input ECG by a derived amplitude signal, still in the wavelet framework,
allows to improve the estimation by exploiting a specificity of the ECG. These estimators for the
cardiac frequency modulations are compared to a conventional ECG-based heart rate extraction
algorithm, by means of a coherence analysis.

The breathing rhythm follows, recorded as an airflow with a thermoelectric sensor. It
modulates the heart rate, in a reflex called respiratory sinus “arrhythmia” (RSA), providing
a first example of organs interaction visible in these fluctuations. We show on an individ-
ual recording how the strength and the variability of this interaction can be described from
temporal correlations and spectral coherence, and is eventually detailed as the time-frequency
coherence between the estimated heart rate and the respiratory recording. In addition to the
RSA interaction, a slower coherent component appears, confirmed from a global statistics on
the largest polysomnographic database. Due to instrumental filtering, the low frequency range
of the respiratory recording is limited, and the resulting coherence degraded. The frequency and
amplitude modulations, carried by the breathing oscillations, have not such limitation at low
frequency, hence used for the coherence analysis. The global statistics for the cardio-respiratory
coherence between rate signals is computed, and a third very slow coherent component is iden-
tified. The distribution of the phase between cardio-respiratory modulations is also obtained
from the coherence analysis.

In the end of Chapter IV, we devise a quantitative approach of synchronization between
the cardiac and respiratory rhythms, taking into account their actual rate values, beyond the
analysis of coherence between their modulations. It consists in constructing their instantaneous
distribution of frequency ratios, concentrated on a simple rational number during synchroniza-
tion, freely fluctuating otherwise or even oscillating during sleep apnea, as illustrated from the
polysomnography of two subjects. This method constitutes a new tool to study the pulse-
respiration quotient.

Chapter V introduces the neural activity, recorded from EEG, and sleep phenomena. Usu-
ally decomposed into an empirical set of spectral bands, we illustrate continuously the multi-
scale and time-evolving EEG intensity. Both the power density and the inter-EEG coherence
patterns provide a direct insight into the wake-sleep stages, and can simplify the description
of the global sleep architecture. The fine time-frequency structure of the EEG is also captured

4



Introduction

from a careful selection of quality factors, allowing the extraction of power and magnitude
modulations in each band.

Gathering the extracted cardiac and respiratory rate signals as well as neural signals, we
study the modification of their coupling when sleep apnea occurs. The analysis of their sig-
nificant time-frequency coherence is illustrated and computed individually, before conditioning
their collective statistics to the clinical observation of obstructive and centra sleep apnea, hy-
popnea or no apnea. In addition to a weaker RSA coupling in the cardio-respiratory pair, we
report the ubiquitous appearance of a slow rhythmic modulation associated to the different
types of apnea, enhancing coherence in all pairs at the corresponding frequency. The phase
of slow neural modulations is detailed for each apnea group on the continuum of EEG band
frequency, uncovering band-specific characteristics, such as a linear chirp in the δ band. This is
a clear illustration of the tight intertwining of neural and cardio-respiratory regulations. Their
alteration during sleep stages and apnea is finally outlined in a study of the amplitude-phase
coupling of sleep spindles and slow oscillations. It is described as an intra-EEG coherence and
compared to the pulse-respiration quotient.

In the conclusion, we finally detail perspectives for the present work towards the develop-
ment of a statistical physics of physiological signals.

In a bonus part C, we explore the musical question of quantifying the (ir)rationality of the
ratio distribution raised in chapter IV, by introducing a multi-frequency synchronization index
that we call sonance, based on the definition of a statistical ensemble over rational numbers.
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Part A

Oscillations and fluctuations
with one foot in time,

the other in frequency?
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Chapter I

Time-frequency representation:
the way of the analytic wavelet

Jumping back and forth between the time and frequency domains (or spatial position and
frequency), using a spectral (Fourier or Laplace) transform, is a fundamental skill in Physics
to describe and understand a huge diversity of phenomena.

Although the assumptions —of periodicity, localization, stationarity, etc— associated to
this tool can face strong difficulties when confronted to the complexity of living systems, most of
the intuition and concepts can still bring useful insights. In this chapter, we start by recalling the
terms and notions used in the context of the temporal evolution of an observable, before showing
how they have steered the physicist community to a certain use of the wavelet transform, in
order to capture both its multi-scale and time-dependent characteristics.

1 Anatomy of a real signal: spectrum and analytic ver-
sion

In general, natural recordings are real signals x(t), possibly multi-dimensional, evolving as
a function of time. Therefore, what we call signal is the time-domain representation of the
recording. We call its frequency-domain representation the spectrum, x̂(f), related to x(t) by
the Fourier transform and its inverse, defined here as:

x̂(f) =
∫
x(t)e−i p̃ftdt ; x(t) =

∫
x̂(f)ei p̃ftdf . (I.1)

The spectrum can be understood as a projection of the time-localized values of x onto a con-
tinuous basis of pure complex waves eiθ = cos(θ) + i sin(θ), whose sinusoidal oscillations have
the frequency f . The angle θ = p̃ft is the phase of the oscillation, where ft is a number of
cycles and

p̃ = 2π ≈ 6.283 ; ei p̃ = 1

is the natural angular unit [Harremoës 2012; Hartl 2010; Palais 2001; White 2015], measuring
the tour of a unit-radius circle (π is half of it). In general, the spectrum takes complex values,
that can be decomposed as a modulus, given by the absolute value |x̂(f)|, and an angle, the
complex argument arg x̂(f) = ℑ{log x̂(f)}, so that x̂(f) = |x̂(f)|ei arg x̂(f).

1.1 Time and frequency: similar variables, different treatments
In spite of the formally symmetric situation between the time variable t ∈ R and the frequency
one f ∈ R, they often have a very different physical nature. Both the time and the frequency
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CH. I. Time-frequency representation: the way of the analytic wavelet

are counted as multiples of a unit scale. Their physical dimensions are inversely related, for
instance the second (s) is the standard time unit and the Hertz (Hz = s−1) the corresponding
frequency unit. However, the time variable is also counted starting from an initial time t0, a
reference often arbitrarily set to zero: t0 + t = t, so that the time variable is a relative quantity.
In contrast, the frequency variable is an absolute quantity (the reference f = 0 is absolute) since
f unambiguously relates to the duration τ = f−1 spent between two oscillations, the period.
This is an example of a temporal quantity which is absolute (as the difference between two
relative times) and can be used to characterize a system (its periodicity, delay, growth or decay
time, etc); we use a distinct notation τ for these characteristic times, or timescales, often taken
as natural units when they appear in a physical system.

1.2 Real or analytic signal, same spectrum
Although the spectrum is a function of an absolute quantity, the possibility to shift the initial
time of the signal translates into an arbitrary angle: x̂(f) → x̂(f)ei p̃ft0 ; the modulus is not
affected. The real value of the signal corresponds to the (Hermitian) symmetry of its spectrum,
x̂(−f) = x̂(f), where the bar denotes the complex conjugation. This means that the informa-
tion in the spectrum is redundant, due to complex values holding twice as much information as
real ones. Therefore, the negative support of the frequencies can be safely discarded without
loss of information, yielding in the time domain a complex helical version of the signal, called
the analytic signal:

x+(t) =
∫

Θ(f)x̂(f)ei p̃ftdf =
∫ ∞

0
x̂(f)ei p̃ftdf , (I.2)

where the (Heaviside) step function Θ filters out negative frequency components and halves the
constant one:

Θ(f) =


0 , f < 0
1
2 , f = 0
1 , f > 0

This restriction to positive frequencies essentially turns the Fourier transform into a Laplace
transform of imaginary parameter (second equality, with special care at f = 0). Why bother
with this complex version while we could stay simple and real? This complex signal in its polar
form is actually most convenient to study modulated waves, and can be returned to the real
territory by dropping the imaginary part, i.e. adding the conjugate of x+, x−:

x(t) = x−(t) + x+(t) = 2ℜ{x+(t)} . (I.3)

The relation between the real and imaginary parts of x+(t) is called the Hilbert transform, also
known as the Kramers-Kronig relations.

For a complex signal the complex helical terms in the decomposition x−(t) + x+(t) are no
more complex conjugates; x− is called the anti-analytic signal defined from negative frequencies
using Θ(−f) in Eq.(I.2).

1.3 Example of the complex wave model
For instance, the real wave of amplitude A and frequency f , x(t) = A cos( p̃ft) = A

2 (ei p̃ft+e−i p̃ft)
has for analytic version the complex wave x+(t) = A

2 e
i p̃ft, from which the phase at each time and

the amplitude are conveniently obtained as the angle and twice the modulus. In general, the so-
called canonical amplitude and phase A(t) = 2|x+(t)| and ϕ(t) = arg x+(t) are useful to bring a
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inverse Fourier transform

Fourier transform

product w
ith step function

Figure I.1: Equivalent representations for a 1D recording x. This signal is defined from
Eq.(I.5) with f0, r1, f1, r2, f2 equal to 1, 0.3, 0.05, 0.2 and 0.15 respectively, and normalized
by its maximum value. (A) Analytic signal x+(t). (B) One-sided spectrum Θ(f)x̂(t). (C)
Real signal x(t). (D) Hermitian symmetric spectrum x̂(f) = x̂(−f). The complex values are
represented in (A,B,D) as follows: the modulus is plotted as a function of time and the angle
(complex argument θ in eiθ) is colour-coded with the hues of the chromatic circle (periodic
colour bar). Arrows indicate the mapping relating the different representations and form a
commutative diagram.

physical insight into time-varying or transient oscillations. Their correspondence with the true
amplitude and phase that has generated the signal x(t) = A0(t) cos(ϕ0(t)) is only correct under
specific assumptions that have been long studied [Bedrosian 1963; Picinbono 1997], namely the
separation of scales of the phase and amplitude modulations, the latter being much slower. For
this reason, the analytic version of the signal is an important tool for the study of a harmonic
wave carrying slow modulations, also called asymptotic signals.

One such oscillatory signal is presented in Fig.I.1, both in the time and frequency domains,
and in its real and analytic versions, with a colour-coding of the angles. This signal has been
generated from a complex exponent, in particular from their time-derivative (denoted with a
dot), as:

x+(t) = em(t)+iϕ(t) ; rx(t) = ṁ(t) ; fx(t) = ϕ̇(t)
p̃ , (I.4)

where we call m(t) = log |x+(t)| the magnitude (a logarithm, as the one of astronomy), rx(t) the
instantaneous rate of magnitude change (whose modulus is also interpreted as an instantaneous
bandwidth [Cohen and Lee 1990]) and fx(t) the instantaneous frequency of the signal. In Fig.I.1,
we have chosen a modulation fx(t) around the mean frequency f0 and the same modulation for
the rate rx(t):

rx(t) = fx(t)− f0 = r1 sin( p̃f1t) + r2 cos( p̃f2t) ⇒ x+(t) = e
∫ t

0 rx(t′)+i p̃fx(t′)dt′ . (I.5)
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CH. I. Time-frequency representation: the way of the analytic wavelet

The usefulness of the analytic signal finds its limit when its contains distinct oscillatory
activities at multiple scales, requiring their separation with time-frequency methods [Delprat
et al. 1992; Le and Argoul 2004; Lilly and Olhede 2010].

1.4 Note on causality: swapping frequency and delay
The Kramers-Kronig relations in physics are often applied to real and imaginary parts of a spec-
trum rather than a signal. For instance in linear response theory, the fluctuation-dissipation
theorem allows to characterize a dynamical system close to equilibrium from its thermal fluctu-
ations [Kubo 1966]. This is achieved assuming that the response function (or susceptibility) of
the physical system χ(τ) is a function of positive delays only, i.e. it is causal: χ(τ) = Θ(τ)χ(τ).
Since the spectrum of this susceptibility χ̂(f) is analytic, we wish here to emphasize the sym-
metry with the previously exposed situation, which accounts to switching the labels “spectrum”
and “frequency” with the ones “signal” and “time” in Fig.I.1.

Note that we cannot define an analytic signal whose spectrum is also analytic (and non-
zero). However, a causal and real signal (or a one-sided and real spectrum) can be extended
into an analytical one without loss of information; only the imaginary part is non-causal.

2 Introducing the wavelet transform
Time-frequency analyses were first based on time and frequency-translated windowing of the
Fourier transform; this is the Gabor or short-time Fourier transform, defined in the Ap-
pendix 1 [Gabor 1946]. A method based on time translation and scaling (frequency dilation),
namely the wavelet transform, was then introduced in the end of the twentieth century [Car-
mona, Hwang, and Torrésani 1997; Carmona, Hwang, and Torrésani 1995; Combes, Grossmann,
and Tchamitchian 1989; Delprat et al. 1992; Grossmann and Morlet 1984; Kronland-Martinet,
Morlet, and Grossmann 1987]. It has since been applied to many scientific domains for analysing
and modelling non-stationary and multi-scale objects.

Both methods constitute two paradigms for transforming complex recordings in a two-
dimensional representation, that aims at facilitating the reading and the manipulation of its
rich content. They share many common characteristics, and have been classified in a broad
theory of the time-frequency representations [Carmona, Hwang, and Torrésani 1998; Flandrin
1998b; Papandreou-Suppappola, Hlawatsch, and Boudreaux-Bartels 1998]. The former is often
presented as closer to the spectral intuition inherited from the Fourier analysis, and the latter
is the most suited to a multi-scale analysis, hence called a time-scale representation. We agree
with the second argument, justifying our choice of the wavelet paradigm to study natural
recordings, and we show that a certain use of the wavelet transform inherits the oscillatory
intuition associated to analytic signals.

2.1 Definition of the wavelet transform
The wavelet transform of a finite energy signal x(t) ∈ L2(R) is defined as its inner product
with the shifted and scaled copies of an analysing absolute integrable and finite energy wavelet
: ψ(t) ∈ L1(R) ∩ L2(R) [Chui 1992; Torrésani 1995]:

Wψ[x](a, b; p) =
∫
x(t)ψ

(
t− b
a

)
|a|−

1
pdt , (I.6)

b and a are real shift and scale variables. It quantifies the matching of local features of the signal
with the shape of wavelet, used as a macro-to-microscope scanning the signal along time and
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across timescales [Arneodo, Grasseau, and Holschneider 1988]. Often hidden, p is a parameter
that can be interpreted as the exponent of the norm which is conserved across scales for the
dilated wavelet |a|−

1
pψ(t/a): the conventions p = 1 and p = 2 are usually found in the literature

and this choice varies with the application and the preference of the authors. As will be made
clear in the course of this chapter, p should not matter in the theory of wavelets, but p = 1
suits best the ideas of scaling and of analytic signal’s amplitude, while p = 2 is helpful to match
the intuition of Fourier’s frequency domain.

In the following, p = 1 is preferred and omitted in Wψ[x](a, b), so that the occasional
use of the convention p = 2 will be denoted

√
aWψ[x](a, b). While it is quite straightforward

to use the shift parameter b as a time variable, the interpretation of Wψ[x](a, b) as a time-
frequency representation of x relies on the key properties of time and frequency localization of
the analysing wavelet (see section 3.2).

The computation of the wavelet transform from the frequency domain highlights the in-
terpretation of the wavelet as a signal processing filter:

Wψ[x](a, b) =
∫
x̂(f)ψ̂(af)ei p̃fbdf . (I.7)

Of very practical interest, this expression takes the form of an inverse Fourier transform and
operates a band-pass filtering of the signal, whose typical frequency fa scales inversely with the
scale variable a. Therefore, the correct relation between fa and a gives a correspondence from
wavelet scale to frequency, and the collection of wavelet filters indexed by a determines a new
frequency sampling.

Contrary to the time-shift variable b, the physical dimension of the scale a is left free of
interpretation in the definition of the wavelet transform: it can either be a dimensionless factor
if the wavelet ψ has the same physical nature as the signal x, or it can be used as an explicit and
adjustable time unit, turning the wavelet into a function of a dimensionless variable. Although
of physical importance, this aspect of the wavelet is often implicit, with a physical unit set to
1 when appropriate. In the following, the use of parametric functions for the wavelet rapidly
leads us to adopt the second interpretation. Together with the convention p = 1, it also means
that the wavelet coefficients Wψ[x](a, b) have the same physical dimension as the signal x.

As a localized version of the pure complex wave in the Fourier transform, a complex
helical shape is a great choice of wavelet to complete the spectral intuition associated to the
scale parameter. We support this idea with a general argument and a useful property favouring
the choice of an analytic wavelet, before discussing its localization in time and frequency.

2.2 From analytic continuation to analytic wavelet transform: a nat-
ural derivation

For the same reasons as discussed previously with the analytic signals, using a real wavelet to
analyse real signals accounts to computing only the real part of a corresponding analytic wavelet
transform. We show below how a basic application of complex analysis to the separation of
scales in a signal naturally leads to the analytic wavelet transform.

The analytic signal x+(t) is called so because its expression Eq.(I.2) can extend to an
analytic function of the upper-half complex plane H = {z = t+ iτ | τ > 0 ; t, τ ∈ R}:

x+(z) =
∫ ∞

0
x̂(f)ei p̃f ′zdf ′ =

∫ +∞

−∞
x(t′) 1

i p̃(t′ − z)dt′ . (I.8)

Form the time domain, it takes the form of a Cauchy integral with a contour following the
real axis, whose meaning for z = t (real) is made precise using the principal value (see also
the Sokhotski-Plemelj theorem [Plemelj 1964]). As a remark, the study of causal filters is in
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CH. I. Time-frequency representation: the way of the analytic wavelet

Figure I.2: Two copies of the same analytic wavelet, one centred, the other dilated and shifted.
They are plotted (A) ψ

(
t−b
a

)
1

|a| in the time domain, and (B) ψ̂(af)e−i p̃fb in the frequency
domain. In both panels, the thick lines represent their modulus with colour-coded angle, while
the thin grey lines represent their real part only, in darker grey for the centred wavelet (a = 1,
b = 0) and lighter for the dilated and shifted wavelet (a = 1

2 , b = 3). The wavelet is the most
used one in this thesis, ψQ with Q = 5, as defined later in Eq.(I.33).

the exact symmetric situation: instead of the signal, the spectrum (of the filter) is analytically
continued: x(t), t and x̂(f), f are swapped in Eq.(I.8), see the note 1.4.

The imaginary coordinate τ = ℑ{z} introduced in this analytical continuation of the
signal has everything of a scale parameter, while the real part t = ℜ{z} is a shift parameter in
a proto-wavelet ψ0, put into evidence with the change to dimensionless variables u = t′−t

p̃τ and
v = p̃f ′τ :

ψ0(u) = 1
1− i p̃u ; ψ̂0(v) = Θ(v)e−v

x+(t+ iτ) =Wψ0 [x]( p̃τ, t) . (I.9)

From this viewpoint, the identified scale variable a = p̃τ has the same physical dimension as the
shift variable b = t, and ψ0 is a pure mathematical shape which makes coincide analytic con-
tinuation and wavelet transform of the signal. In the frequency domain, this particular wavelet
sets an exponential cut-off at the frequency f = ( p̃τ)−1, so that x+(t+ iτ) is a smoothed version
of the analytic signal, cumulating the influence of lower frequencies. The precise decaying shape
of this low-pass filter has no influence on the high resolution limit x+(t).

In contrast to this cumulated representation of scales, the idea of the wavelet transform
is to separate each scale’s contributions to the signal. A rudimentary way to do it is to derive
with respect to the cut-off scale τ , equivalent to an imaginary time derivative from the Cauchy-
Riemann property of analytic functions:

∂τx
+(t+ iτ) = i∂tx

+(t+ iτ) . (I.10)

Rewritten as a derivative with respect to the cut-off frequency f , the proto-wavelet in Eq.(I.9)
turns into a Cauchy wavelet:

f∂fx
+(t+ i/ p̃f) = 1

i p̃f ∂tx
+(t+ i/ p̃f) =Wψ1 [x](f−1, t) (I.11)

ψn(u) = 1
(1− i p̃u)n+1 ; ψ̂n(v) = Θ(v)vne−v , (I.12)

where the time unit brought by the frequency derivative is compensated by the frequency
factor, that keeps the wavelet dimensionless and the wavelet coefficient with the dimension of
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2. Introducing the wavelet transform

Figure I.3: Comparison of analytic continuation and analytic wavelet transform for the sig-
nal x of Fig.I.1. (A,B) Time-frequency representation of the analytic continuation x+(t + iτ),
Eq.(I.9), whose modulus (A) and angle (B) are colour-coded for each cut-off frequency f =
( p̃τ)−1 (on a log-scale), and time t. (C,D) Same representation for the analytic wavelet trans-
form Wψ1 [x](f−1, t), with the first Cauchy wavelet ψ1 defined in Eq.(I.11).

x. Notice how the logarithm of the cut-off frequency appears in f∂f = ∂log f , consistent with the
multiplicative behaviour of the scale variable. The differences between these representations of
a signal x are illustrated in Fig.I.3. A wavelet transform that relates to an analytic function of
the complex plane is necessarily based on a Cauchy wavelet, slightly generalized in [Holighaus
et al. 2019].

This yields the simplest example of analytic wavelet (and its transform), ψ1, member of the
Cauchy family Eq.(I.12), of which the proto-wavelet can be considered the order zero. Notice
here how the analyticity of the signal, enforced by the Heaviside step function in Eqs.(I.2, I.8),
is absorbed into the construction of an analytic wavelet in Eq.(I.12).

By construction of this wavelet transform as a derivative with respect to scale in Eq.(I.11),
the analytic signal is recovered from the cumulation of the scale contributions:∫ ∞

0
Wψ1 [x](a, t)d log a = −

(
x+(t+ i∞)− x+(t+ i0)

)
= x+(t) , (I.13)

with a = f−1 = p̃τ .

2.3 Signal reconstruction and synthesis wavelets
The real part Eq.(I.3) of the expression Eq.(I.13) is a remarkably simple inversion formula for
the wavelet transform of a real signal, which applies quite generally to any analytic wavelets ψ
(of positive frequency support), providing the existence of a finite correction factor Cψ:

x+(t) = C−1
ψ

∫ ∞

0
Wψ[x](a, t)d log a ; Cψ =

∫ ∞

0
ψ̂(v)d log v . (I.14)
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In practice, the signal is thus reconstructed via its analytic version by summing the wavelet
transform coefficients over geometrically sampled positive scales (evenly spaced on a log-scale).

This reconstruction formula is amply sufficient for the needs of this thesis. Nevertheless,
we mention here for the completeness of the presentation a more flexible and general recon-
struction formula since it involves the choice of a second synthesis wavelet φ [Daubechies 1992;
Holschneider and Tchamitchian 1990]:

x(t) = C−1
φψ

∫∫
Wψ[x](a, b)φ

(
t− b
a

)
1
|a|

dadb
|a|

; Cφψ =
∫
φ̂(v)ψ̂(v)dv

|v|
, (I.15)

for any pair of analysis and synthesis wavelets, ψ and φ (not necessarily analytic), satisfying the
admissibility condition of a finite non-zero factor Cφψ. A common choice is φ = ψ, for which
Cψψ is referred to as the admissibility coefficient of the wavelet. The complex exponential wave
is also common, and Eq.(I.14) corresponds to yet another possibility: φ = δ the Dirac delta.

In Eq.(I.15), the integral over positive and negative scales,
∫ da

|a| does not only apply to real
(or analytic) signal: the analytic wavelet transform can be used for a general complex signal.
In this case, however, we cannot overlook the computation of the wavelet transform at negative
scales (i.e. negative frequencies). A change of the convention p = 1 only changes the exponent
on the scale integrator that becomes

∫ da
|a|2− 1

p
.

These reconstruction formulas are in practice restricted to a subspace of the values (a, b),
leading to a partial reconstruction of the signal in the time-scale domain of interest. Finally,
applying another wavelet transform to these reconstruction formulas provides us with ways of
changing of wavelet (continuous basis or frame). This more general formula is the one proved
in Appendix 3; in particular, it leads to the reproducing kernel formula when the new wavelet
is identical to the former (allowing a Hilbert space approach of the wavelet transform), and the
reconstruction formulas are recovered.

Summary of sections 1 and 2

The oscillatory interpretation of a real signal x(t) benefits from its analytic versions
x+(t). Without loss of information, the phase and amplitude of these oscillations are
straightforwardly obtained from the angle (complex argument) and radius (modulus) of
the complex helical signal x+(t).
The complex analysis associated to the concept of analytic signal introduces a timescale
variable. The distinction of the contributions to the signal at each scale naturally leads to
a wavelet transform defined with an analytic wavelet. This natural derivation identifies
the translation variable b with time, while the scale variable a is a timescale, conferring
to the analytic wavelet the role of a mathematical function with a dimensionless variable.
The use of an analytic wavelet brings several advantages and simplification to the wavelet
analysis.
There is a complete correspondence between positive and negative values of the scale
variable and positive and negative frequency components of the signal, which are well
separated. This simplifies the computation of the wavelet transform and the reconstruc-
tion of the signal when it is real. The natural scale decomposition of the signal from the
analytic wavelet confers to the transform the same oscillatory interpretation of the angle
and modulus as phase and amplitude. As a complex helical function, the wavelet gets
closer to the pure complex wave of the Fourier transform.
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3 Wavelet shape: time-frequency localization and un-
certainty atom

The time-frequency interpretation of the wavelet transform relies on the localization properties
of the chosen wavelet. For a general family of analytic wavelets, we present in this section
how these properties relate to their shape. We select a one-parameter wavelet that has ideal
properties in many aspects, and will be used in the following parts.

To focus on their mathematical shapes, we pursue the approach introduced in the sec-
tion 2.2 that consists in using the variables:

u = t− b
a

; v = af , (I.16)

dimensionless time and frequency respectively, by considering a as a reference timescale (or
unit).

3.1 Introducing the Morse family of analytic wavelets
Most (if not all) analytic wavelets defined as a real band-pass filter can be expressed in terms of
(or approximated by) a very general parametric family called the Morse wavelets [Daubechies
1988; Lilly and Olhede 2012]. Their Fourier spectra is the following real function of a positive
dimensionless frequency v > 0:

ψ̂
(k)
β,γ(v) = vβe−vγL

(α−1)
k (2vγ) , α = 2β + 1

γ
, L

(α′)
k (x) =

k∑
ℓ=0

(
k + α′

k − ℓ

)
xℓ

ℓ! . (I.17)

The parameter k fixes a polynomial order in the (generalized) Laguerre orthogonal family L(α′)
k ,

where the binomial coefficient extends to non-integer parameters via the Gamma function Γ.
The exponents β, γ, usually positive, control the shape of this band-pass filter: while β

sets a polynomial filtering at low frequencies (high-pass), γ sets a stretched exponential filtering
at high frequencies (low-pass); in-between stands a characteristic frequency. Decays of different
nature at high and low frequencies can be switched by choosing negatives exponents, for which
the wavelet has an inversion property:

ψ̂
(k)
−β,−γ(v) = ψ̂

(k)
β−1,γ(v−1)v−1 . (I.18)

In the case of exponents of different signs, βγ < 0, the Morse wavelet diverges and cannot be
considered as a band-pass filter any more.

The case γ = 1 of this shape was introduced in the context of quantum mechanics as
the eigenstates in the Morse potential [Morse 1929]; the order k > 0 generalizes the Cauchy
wavelets: ψn = ψ

(0)
n,1. It has been extended to any γ for the partial reconstruction of a signal

(with ϕ = ψ), restricted to a time-scale disc region of the upper-half plane H [Daubechies 1988].
The corresponding (squared) eigenvalues with respect to this partial reconstruction operator
was shown to quantify the time-frequency (energy) concentration of the Morse wavelets [Bayram
and Baraniuk 1996; Olhede and Walden 2002]. Their property of orthogonality in both time
and frequency domains writes:

∫ ∞

0
ψ̂

(m)
β,γ (v)ψ̂(n)

β,γ(v)dv = Γ(n+ α)
n!2αγ δm,n =

∫
ψ

(m)
β,γ (u)ψ(n)

β,γ(u)du , (I.19)

with δm,n the Kronecker delta, preceded by the energy (norm 2) of the wavelet.
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The study of this shape (characteristic frequency, bandwidth, symmetry) can be restricted
to the case k = 0 [Lilly and Olhede 2009; Lilly and Olhede 2012], positive and non-oscillating in
the frequency domain, simply because ψ(k)

β,γ is a linear combination of ψ(0)
β+ℓγ,γ, ℓ ≤ k. Further-

more, the time-frequency concentration decreases with the order k [Olhede and Walden 2002],
making k = 0 a first choice in many practical situations. For this reason, the Morse wavelet
term will simply refer to ψβ,γ = ψ

(0)
β,γ in the following, while the notation ψ

(k)
β,γ will be reserved

to particular applications where the full orthogonal family is needed.
In general, the Morse wavelet lacks of a simple expression in the time domain (except for

simple integer values of γ). Nevertheless, its time derivative to an arbitrary (possibly fractional)
order n has the interesting property of being another Morse wavelet:

∂nuψβ,γ(u) = (i p̃)nψβ+n,γ(u) . (I.20)

3.2 Time-frequency localization
The wavelet transform of a signal can be given a time-frequency interpretation when the wavelet
is well localized both in the time and frequency domains. Therefore, it is essential to understand
and carefully select the shape of the wavelet, determining the time-frequency localization.

It is common, when working both in time and frequency, to approach the localizing kernel
(here the wavelet, but also its counterpart the Gabor window) as a “wave function”, whose
time-domain and frequency-domain moduli raised to a certain power, |ψ(u)|p, |ψ̂(v)|q, are
considered as (unnormalized) density functions. For instance, the spectrum of the Morse wavelet
corresponds to the generalized gamma distribution in a probabilistic context, for which all
moments can be computed. Treating similarly time and frequency, we may define a time-
frequency position (up, vq) and width (∆up, ∆vq) from the mean and standard deviation of
these densities. Along with alternative definitions, their expressions can be found later in
Table I.1. They provide the essential information regarding time-frequency localization and
uncertainty. Higher order moments or cumulants contain more precise information about the
shape, that can be considered secondary.

3.2.1 Morse position: easy in time, not so much in frequency

For Morse wavelets, the exponent p does not influence the time position, since a real wavelet
spectrum ψ̂ ∈ R results in a Hermitian time symmetry ψ(u) = ψ(−u), implying:

up = 0 . (I.21)

However, the central frequencies vq of analytic wavelets, see Eq.(I.23), have both different
values and interpretations. For instance, v∞ selects the maximal value of ψ̂ so that f∞ = v∞/a
is called the peak frequency of the wavelet at scale a. Similarly, when the wavelet spectrum is
real and non-negative, such as ψβ,γ, the centre instantaneous frequency (in the sense of Eq.(I.4))
coincides with the norm 1:

ℑ
{
∂uψ(0)
p̃ψ(0)

}
= ℑ


∫∞

0 i p̃vψ̂(v)dv
p̃ ∫∞

0 ψ̂(v)dv

 =
∫∞

0 v|ψ̂(v)|dv∫∞
0 |ψ̂(v)|dv

= v1 , (I.22)

where the first equality is the definition of the instantaneous frequency at time 0, expressed
from the spectrum, and its non-negativity is used in the second one.

In addition, alternative approaches are available for defining a characteristic scale of an
analytic wavelet. While the first moment corresponds to an (integral) arithmetic average of
the frequency, the harmonic average (first moment of negative order) has also proved useful in
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3. Wavelet shape: time-frequency localization and uncertainty atom

geophysics [Claerbout 1985] (p. 68 for q = 2) since it averages a characteristic time (inverse
frequency). Let us denote it v′

q; it takes the specific form of a ratio between the wavelet norm
and admissibility coefficient, here compared to vp:

vq =
∫∞

0 v|ψ̂(v)|qdv∫∞
0 |ψ̂(v)|qdv

; v′
q =

∫∞
0 |ψ̂(v)|qdv∫∞

0 |ψ̂(v)|qd log v
. (I.23)

Mitigating the choice between an average time or frequency scale, the geometric average (from
the first logarithmic moment) gives an intermediary value. The relevance of logarithmic scales
to the wavelet could be taken into account even more radically by interpreting the wavelet
spectrum as a density with respects to d log v as in Eqs.(I.14, I.15), yielding yet another class
of expressions.

The following observation saves us from these numerous possible choices: from its maximiz-
ing property, the limit q → +∞ always agrees on the peak frequency for all these alternatives,
defining our preference for the wavelet characteristic scale. For Morse wavelets, it relates to
the parameters β and γ as follows:

v∞ = v′
∞ =

(
β

γ

) 1
γ

. (I.24)

reaching the maximum value ψ̂β,γ(v∞) =
(
β
eγ

)β
γ of this parametric band-pass filter. This ap-

proach is consistent with the definition of the characteristic time since it can be proved that
the modulus of Morse wavelets is maximized at time zero.

For an easier comparison of the Morse wavelet shapes, it is convenient to standardize it to
the same peak frequency and corresponding maximum value [Lilly and Olhede 2009]:

φ̂β,γ(v) = ψ̂β,γ(v∞v)
ψ̂β,γ(v∞)

=
(
v e

1−vγ
γ

)β
, (I.25)

where the dilation that centres the wavelet at the new peak frequency φ̂β,γ(1) = 1 can be
considered as a change of the scale variable. By extension, we call standardized a wavelet
that has a unit dimensionless peak frequency: v∞ = 1. Causing no loss of generality, this
requirement is helpful to interpret the scale variable directly as an inverse frequency f∞ = 1/a,
and to select the Morse parameters β, γ (see Fig.I.4).

3.2.2 Widths for Morse wavelets? Introducing the quality factor

At first sight, the question of defining the widths of the Morse wavelet, which determines the
time and frequency resolutions of the corresponding transform, seems cluttered by the same
difficulties as the one of the characteristic frequency, namely a profusion of possibilities de-
pending on the norm we consider, the linear, inverse or logarithmic frequency scale, etc. The
lack of simple wavelet expressions in the time domain appears to restrain us to the energy
approach p = 2 = q of the second cumulants, which remains computationally tractable for gen-
eral parameters β, γ. The resulting widths are cumbersome expressions involving the Gamma
function.

Pursuing the idea of characterizing the Morse wavelet from its properties at its peak, the
use of its curvature has been proposed in [Lilly and Olhede 2009], expressed for a wavelet ψ̂
from its peak frequency v∞:

Q =

√√√√−v2
∞∂

2
v ψ̂(v∞)

ψ̂(v∞)
. (I.26)

18



CH. I. Time-frequency representation: the way of the analytic wavelet

Also known to specify a width in a different parametrization of the general Gamma distribution,
this quantity simplifies greatly the interpretation of the Morse parameters:

Q =
√
−∂2

v φ̂β,γ(1) =
√
βγ , (I.27)

advantageously expressed from the standardized Morse wavelet Eq.(I.25). We interpret this
positive number as a quality factor, usually defined as the inverse of a relative bandwidth,
v2

2∆v2
, that represents the prominence of the peak. Conversely, the wavelet φ̂β,γ(af) of peak

frequency a−1 can be given a bandwidth (aQ)−1. The particular definition Eq.(I.26) has
several advantages. It is unchanged by the logarithmic approach of scales and frequencies:
∂2

log vφ̂β,γ(1) = ∂vφ̂β,γ(1) + ∂2
v φ̂β,γ(1) = ∂2

v φ̂β,γ(1), since ∂vφ̂β,γ(1) = 0 from the unit peak fre-
quency of standardized wavelets, so that this quality factor also expresses to log-frequency
bandwidth:

∆ log v = 1
Q

. (I.28)

In addition, Eq.(I.26) provides a time-domain interpretation from the following “variance” ∆u2

of the wavelet demodulated by its peak frequency [Lilly and Olhede 2009]:

( p̃v∞∆u)2 =
∫
( p̃v∞u)2ψ(u)e−i p̃uv∞du∫

ψ(u)e−i p̃uv∞du = Q2 . (I.29)

The use of the demodulated wavelet ψ(u)e−i p̃uv∞ is a complex approximation of the positive
time-domain envelop |ψ(u)| (p = 1), and is expected to slightly underestimate ∆u1 without
requiring an explicit temporal expression for its computation; it is developed further in [Lilly
and Olhede 2010]. As a result, the duration of the dilated wavelet φβ,γ( t−ba ) is proportional to
the quality factor and scales with a: ∆t = aQ

p̃ .

3.2.3 Uncertainty and wavelet widths

Although the previous approach does not yield distinct expressions for the time and frequency
widths, it manages to provide a simple control on the localization trade-off between time and
frequency

∆u∆v = ∆u∆ log v = 1
p̃ , (I.30)

which is compatible with the Heisenberg uncertainty relation:

∆u2∆v2 ≥
1
2 p̃ . (I.31)

We thus have a simple expression for the “uncertainty” on the Morse wavelet position. Al-
though its simplicity is charming, we should keep in mind that the uncertainties defined above
are about local properties around the peak, relying on the regularity of the Morse wavelet spec-
trum (single smooth bump). Therefore, it might be very different from the standard deviation
used in the common uncertainty relation, especially in the case of very asymmetric profiles.

A more precise and general approach of time and frequency uncertainty is based on the full
wavelet shapes |ψ(u)|p, |ψ̂(v)|q. For conjugated exponents 1

p
+ 1

q
= 1, the framework of Lp spaces

provides an entropic uncertainty relation [Beckner 1975; Hirschman 1957] (see Appendix 4).
Giving a lower bound to the concentration in time from the known concentration in frequency,
and vice versa, it is expressed in terms of Rényi entropies:

e
H p

2
[|ψ|2]+H q

2
[|ψ̂|2] ≥ p

1
p−2 q

1
q−2 ; Hα[ρ] = 1

1− α log
∫
ρ(u)αdu

(
∫
ρ(u)du)α . (I.32)
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3. Wavelet shape: time-frequency localization and uncertainty atom

Figure I.4: Comparison of standardized Morse wavelets: (A, C) |φβ,γ| in time, and (B, D)
|φ̂β,γ| in frequency, with different parameters β, γ but the same quality factors: Q =

√
βγ = 3

in (A, B), and Q = 12 in (C, D). The modulus is represented in black continuous lines for
γ = +2, dashed lines for γ = −1 and dotted lines for γ = −3.

The central case of the energy (p = 2 = q) implies the Heisenberg inequality Eq.(I.31) through
its relation to the standard deviation: e

H p
2

[|ψ|2] ≤
√ p̃e∆u2 (idem for ∆v2). Therefore, ex-

ponential entropies are also good candidates to measure the extent of the wavelet dispersion,
whatever its shape.

3.2.4 Time-frequency interpretation of the wavelet transform

Once the Morse wavelet is standardized, Eq.(I.25), and the quality factor Q =
√
βγ is fixed

(requiring βγ > 0), we have a good control on its time-frequency localization, i.e. on the
time-frequency interpretation of the associated wavelet transform.

For instance, the exponential wave ei p̃f0t is the (analytic) signal that is fully localized at
the frequency f0 and delocalized in time t. Its wavelet transform is given by Wψ[ei p̃f0t](a, b) =
ψ̂(af0)ei p̃f0b, whose modulus is maximal at a = f−1

0 for a standardized wavelet. The frequency
width of ψ̂ provides a natural frequency resolution Eq.(I.29). The phase of the wave at time t
is also recovered from the angle at b = t.

Conversely, a strong impulse signal localized at time t0 (delocalized in frequency) can be
modelled by the Dirac function δ(t− t0), whose wavelet transform isWψ[δt0 ](a, b) = ψ

(
t0−b
a

)
1

|a| .
The time of the pulse is easily recovered for a symmetric wavelet, of maximal modulus at the
time b = t0, with the duration of the wavelet as a natural time resolution.

Therefore, for an analytic wavelet ψ that is symmetric, Eq.(I.21) (i.e. of real spectrum),
and standardized, Eq.(I.25), the wavelet transformWψ[x](f−1, t) can be used directly as a time-
frequency representation of x. Its resolution is determined by the choice of a quality factor Q,
fixing a constant log-frequency resolution ∆ log f = Q−1 and a time resolution that adapts to
the frequency, f∆t = Q

p̃ , i.e. a constant number of oscillations whatever their period. Low
quality factors are most suited to distinguish time-localized singular (or few oscillating) events
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CH. I. Time-frequency representation: the way of the analytic wavelet

Figure I.5: Comparison of the asymmetry in the frequency domain of standardized Morse
wavelets φ̂β,γ for different parameters but the same fixed quality factors Q =

√
βγ = 5: (A)

in linear axes, and (B) in logarithmic axes. Morse wavelets of parameter γ = ±1,±3,±∞ are
respectively in blue, green and red lines, lighter when γ is negative, and Grossmann’s log-normal
wavelet corresponds to γ → 0, in black.

in the analysed signal, whereas high quality factors can discriminate simultaneous oscillating
components of well localized frequencies.

In the examples above, the perfect frequency localization of the pure wave can only be
fully resolved from an infinite quality factor, whereas the time localization of the pulse is fully
resolved for a vanishing quality factor. The resolution in the other dimension is lost for both
limit cases, so that we only obtain a time or a frequency representation: the analytic signal or
the Fourier spectrum in certain conditions (see Appendix 6). The intermediary situation of a
finite quality factor is the one of interest in multi-scale and time-dependent situations, bridging
the gap between the time and frequency representations. For Morse wavelets parametrized by
the pair (β, γ), we are still left with a second degree of freedom once Q =

√
βγ is fixed. Less

relevant than the quality factor for a time-frequency interpretation, we show in the following
how to discard it.

3.3 Grossmann’s log-normal wavelet, like the nose on Morse’s face

Here we introduce the analytic wavelet that is used throughout all practical applications in this
thesis. It has a single parameter Q, that determines the quality factor of the wavelet, whose
spectrum is log-normal:

ψ̂Q(v) = e− 1
2 (Q log v)2

. (I.33)

Described by [Altes 1976], and introduced by A. Grossmann as a “particularly good” wavelet
shape in one of the most cited early paper in the theory of wavelets [Grossmann and Mor-
let 1984], it remained paradoxically anecdotal (not to say forgotten) since then, eclipsed by
the non-analytic but famous Morlet wavelet, defined the same year in another important pa-
per [Goupillaud, Grossmann, and Morlet 1984].

We show below its central role in the Morse family of analytic wavelets (although it does
not seem to count among its members). We also discuss various criteria that lead us to select
this shape among the continuum of Morse parameters, along with its remarkable properties
and related quantities.
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3. Wavelet shape: time-frequency localization and uncertainty atom

3.3.1 Symmetry of the wavelet across scales

A first criterion of choice consists in selecting the most symmetric Morse wavelet, in some sense,
for a fixed quality factor Q =

√
βγ. The symmetry in the time domain being satisfied for the

full Morse family, we look for a similarly convenient symmetry around the peak frequency. This
question has been treated in [Lilly and Olhede 2012], where the parameter γ = 3, called the
Airy wavelet, was found the most Gaussian and concentrated in Heisenberg sense Eq.(I.31). A
key to this observation lies in the following Taylor expansion of the standardized Morse wavelet
φ̂β,γ(v) Eq.(I.25) near its peak at v = 1:

log φ̂β,γ(v) = −βγ (v − 1)2

2! + βγ(3− γ)(v − 1)3

3! +O
(

(v − 1)4

4!

)
, (I.34)

in which the term of order 3 vanishes for γ = 3. This expansion relies on an additive view of
either the signal frequency f or the timescale variable a that composes the variable v = af
of φ̂β,γ(v). We could argue that the local symmetry of the wavelet near its peak should be
considered, in a time-frequency perspective, with respect to the wavelet transform frequency
variable fa = a−1. The Taylor expansion that corresponds to an additive perturbation near
fa = a−1 shares the same leading second order term, but the third order would vanish for
γ = −3. Only, pairs of negative parameters (β, γ) were not considered in [Lilly and Olhede
2012].

In our opinion, neither of these symmetry arguments appears valuable for the wavelet trans-
form, that intrinsically treat scales and frequencies in a multiplicative way, so that we should
consider perturbing log f or log a. An application that would require an additive approach of
the frequency domain may rather use the Gabor transform (see Appendix 1). Surprisingly, the
log-frequency expansion was also considered in [Lilly and Olhede 2012], as a corner case:

log φ̂β,γ(v) = −βγ (log v)2

2! − β γ2 (log v)3

3! − ...− β

γ

(γ log v)n
n! ... (I.35)

All terms but the leading one vanish in the following scaling limit: γ → ±0 and β → ±∞ so
that their product is fixed to a finite positive number. This explains the appearance of the
log-normal wavelet in the Morse family, as the limit case:

ψQ = lim
γ→0
β→∞

φγ,β , 0 < βγ = Q2 < +∞ , (I.36)

that is fully symmetric with respect to multiplicative scales a. An illustration of its central
place in the Morse family is given in Fig.I.5 for variable γ and fixed quality factor.

The converse of this symmetric case are the fully asymmetric ones, γ → ±∞ and β → ±0
with Q2 = βγ > 0, yielding sharp analytic low-pass and high-pass filters, equal to 1 for v ∈ (0, 1]
when γ → +∞ or for v ∈ [1,∞) when γ → −∞, and vanishing anywhere else. We can notice
in Fig.I.5 that the interpretation of Q as a quality factor totally collapses in these asymmetric
limit cases.

3.3.2 Power law measurement and wavelet independence to trends

The order of any wavelet ψ is defined as the largest integer number nψ that satisfies either of
the time or frequency equivalent properties:∫

umψ(u)du = 0 = ∂mv ψ̂(0), ∀m, 0 ≤ m < nψ . (I.37)

Such a wavelet is orthogonal to polynomial trends in the analysed signal up to the order
nψ − 1. This property, that quantifies an order of independence to slow (vanishing frequency)
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CH. I. Time-frequency representation: the way of the analytic wavelet

components in the analysed signal, is important when measuring power laws from the wavelet
transform. For instance the regularity exponent h(t) (such as the Hölder exponent h, or the
Hurst exponent H in a stochastic context) of the signal x near time t depends on a vanishing
scale variable a→ 0 as follows

x(at) ∼ ah(t)x(t) (I.38)
Wψ[x](a, t) ∼ amin{h(t),nψ}, a −→ 0 , (I.39)

which means that the wavelet order nψ has to be large enough to measure all possible h(t) [Venu-
gopal et al. 2006]. Also note the importance of the norm convention p = 1 here (see the definition
Eq.(I.6) of the wavelet transform). The higher the exponent h(t), the more regular the signal
around t. The white noise has a Hurst exponent H = −1

2 , the pink noise H = 0 and the brown
noise H = 1

2 .
Morse wavelets have a finite order nψ = β > 0 for all β, γ > 0, from their polynomial be-

haviour at zero frequency, but an infinite order for all β, γ ≤ 0, from their stretched exponential
(or log-normal) behaviour. Therefore,

nψQ = +∞ (I.40)

for the log-normal wavelets (γ = 0). This kind of application usually employ wavelets with
few oscillations (i.e. a small quality factor); we conclude that the quality factor can be chosen
arbitrarily without raising any concern about the unknown order of regularity of the singular
events in the signal.

In the time domain, the order of the wavelet is related to the asymptotic decay of its
envelope at large times, which is |ψ(u)| ∼ |u|−(β+1) for Morse wavelet of parameter β, γ >
0 [Lilly and Olhede 2009]. This means that the log-normal wavelet ψQ decays faster than
polynomially in time, in frequency and in log-frequency, on both sides, making it especially
well-localized and regular.

3.3.3 A close look at the widths of the log-normal wavelet

Numerous strategies are possible to define wavelet widths in time and frequency. All those that
can be computed exactly for the log-normal wavelet, essentially from Gaussian integrals, are
compared in Table I.1 with their meaning and dimensionless variables Eq.(I.16).

How to choose among all these possibilities? We can notice that they are all proportional,
at least asymptotically for a large enough Q, to the following quantities:

δu = fδt = Q√
p p̃ ; δ log v = δ log f =

√ p̃√
qQ

, (I.41)

where both p and q refers to norm applied to the wavelet, and by extension, to the exponent
at which the considered wavelet transform modulus is raised (1 in the linear case, 2 in the
quadratic case). We call them the practical time and frequency resolutions for the log-normal
wavelet. They are reduced versions of the Morse widths Eqs.(I.28, I.29), by a factor

√ p̃ ≈ 2.5
so that their product, the time-frequency uncertainty atom, is 1.

Apart from a constant coefficient, these widths can also differ by a factor:

λ = e
1
Q2 , (I.42)

related to the different conventions to define a central frequency. This factor is very close to 1
whenever the quality factor is not too small (Q > 4), hence omitted in the practical resolutions.
We give it the symbol λ because it is a recurring dilation parameter the following.
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symbol time frequency norm value meaning
weight

ψ(0)
∫
ψ̂(v)dv 1

√ p̃
Q
λ

1
2 max time-modulus

Eψψ
∫
|ψ(u)|2du

∫
|ψ̂(v)|2dv 2

√
π
Q
λ

1
4 energy∫

|ψ̂(v)|qdv q
√ p̃√
qQ
λ

1
2q freq q-norm

Cψ
∫
ψ̂(v)d log v 1

√ p̃
Q

reconstruction coef
Cψψ

∫
|ψ̂(v)|2d log v 2

√
π
Q

admissibility coef∫
|ψ̂(v)|qd log v q

√ p̃√
qQ

log-freq q-norm
position

up

∫
u|ψ(u)|pdu∫
|ψ(u)|pdu p 0 any mean time

vq

∫
v|ψ̂(v)|qdv∫
|ψ̂(v)|qdv q λ

3
2q arithmetic freq

exp
∫

log v |ψ̂(v)|qdv∫
|ψ̂(v)|qdv q λ

1
q geometric freq

v′
q

∫
|ψ̂(v)|qdv∫

v−1|ψ̂(v)|qdv q λ
1

2q harmonic freq
v∞ = v′

∞ argmax |ψ̂(v)| ∞ 1 peak freq∫
log v|ψ̂(v)|qd log v∫

|ψ̂(v)|qd log v q 0 any mean log-freq
width

∆u2

(∫
u2|ψ(u)|2du∫

|ψ(u)|2du

) 1
2

(∫
|∂vψ̂(v)|2dv∫
|ψ̂(v)|2dv

) 1
2

2

√
1+2Q2

2 p̃
∼ Q√

2 p̃
time std

∆vq
(∫

v2|ψ̂(v)|qdv∫
|ψ̂(v)|qdv − v

2
p

) 1
2

q

√
λ

4
q − λ

3
q

∼ 1√
qQ

freq std

|ψ̂(v±)| = 1
2 v+ − v− q

2 sinh
√

log 2√
qQ

∼ 2
√

log 2√
qQ

freq FWHM

|ψ̂(v±)| = 1
2 log v+

v−
q 2

√
log 2√
qQ

log-freq FWHM

∆u = f∆t
(∫

u2ψ(u)e−i p̃udu∫
ψ(u)e−i p̃udu

) 1
2

(
− ∂2

v ψ̂(1)
p̃2 ψ̂(1)

) 1
2

1 Q
p̃ time demod std

∆v = ∆f
f

∆log v = ∆log f

(
−∂2

v ψ̂(1)
ψ̂(1)

)− 1
2

1 1
Q

freq peak curvature
log-freq std

Nψ
ℑ{
∫
∂uψ(u)ψ(u)du}
p̃ |ψ(0)|2

∫
v|ψ̂(v)|2dv

|
∫
ψ̂(v)dv|2 2 Q√

2 p̃
equivalent nb

full oscillations
e
H1

2
[|ψ̂|2] =e−H∞[|ψ|2] |ψ(0)|2∫

|ψ(u)|2du
|
∫
ψ̂(v)dv|2∫

|ψ̂(v)|2dv 2
√

2 p̃
Q
λ

3
4 exp Rényi entropy

δu = fδt p Q√
p p̃ practical time resol

δ log v = δ log f q
√ p̃√
qQ

practical freq resol

Table I.1: Comparison of strategies to define the time-frequency localization of a standard-
ized analytic wavelet, applied to the log-normal wavelet ψ = ψQ. Only quantities that have a
frequency-domain expression (third column), hence that are computationally tractable (as Gaus-
sian integrals), are presented. Expressions are simplified using λ = e

1
Q2 , and the large quality

factor asymptotics (preceded by ∼) is provided to facilitate the comparison when Q is large
enough. Abbreviations: standard deviation (std), full width at half maximum (FWHM).
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CH. I. Time-frequency representation: the way of the analytic wavelet

Figure I.6: Comparison of the widths from the Heisenberg uncertainty relation ∆u2,∆v2
(red), the full width at half maximum (FWHM, yellow), and the practical resolutions fδt =
(δ log f)−1 = Q√ p̃ (blue) for the log-normal wavelet ψQ with quality factor Q = 5. (A) Wavelet
modulus in the time domain. (B) Wavelet modulus in the frequency domain.

In Fig.I.6, these practical widths (blue segment) are compared with other common defini-
tions, as wavelet radii and diameters of the log-normal wavelet (its norm p = 1 = q). For the
quality factor Q = 5, intensively used in later applications, practical resolutions turn out to be
very close to the full widths at half maximum (FWHM). In comparison, the Heisenberg widths
appear impractical to represent the wavelet widths in the norm 1.

3.3.4 Time derivative: quarter of turn and small scaling

As for Morse wavelets in Eq.(I.20), successive time-derivatives of the log-normal wavelet yield a
new log-normal wavelet. But contrary to Morse wavelet, its only parameter Q does not change!
Instead, it is simply scaled so that the new peak is at λn, where n is the order of the derivative:

vnψ̂Q(v) = λ
n
2 ψ̂Q(λ−nv) ⇔ ∂nuψQ(u) =

(
i p̃λ 3

2
)n
ψQ(λnu) . (I.43)

The factor in changes the phase of the wavelet (by a quarter of turn for n = 1), as for a
pure wave. Note that the scaling of the wavelet is “small” compared to the wavelet resolution:
log λ = 1

Q2 ≪ δ log f =
√ p̃
Q

, for Q not too low.
This property is very practical because the wavelet transform of signal derivatives:

Wψ[∂nt x](a, b) = ∂nbWψ[x](a, b) = a−nW(−∂)nψ[x](a, b) , (I.44)

is proportional to the rescaled original wavelet transform and needs not be recomputed:

WψQ [∂nt x](a, b) =
i p̃λ 1

2

a

nWψQ [x](λ−na, b) . (I.45)

Before the formulation of wavelet theory, this fact was already known in signal processing with
constant bandwidth filters. The invariance to time differentiation of the signal of log-normal
spectrum, together with its good locality, makes it an exceptional choice of impulse signal to
design a sonar [Altes 1976]. So that this wavelet is observed in animal echo-location, up to
a certain chirp modulation: n can be complex in vnψ̂Q(v), without changing the log-normal
modulus.
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3. Wavelet shape: time-frequency localization and uncertainty atom

3.3.5 Recovering the orthogonal family

The scaling limit in which the log-normal is obtained from the standardized Morse wavelet of
order k = 0, see Eq.(I.35), can also be applied to the full family of orthogonal Morse wavelets
k ≥ 0. In this limit, Laguerre polynomials turn into Hermite polynomials of the log-frequency:

φ̂
(k)
Q (v) = e− 1

2 (Q log v)2
Hk( 1

2Q −Q log v) , Hk(x) =
⌊k/2⌋∑
ℓ=0

k!
(k − 2ℓ)!ℓ! (2x)k−2ℓ . (I.46)

This is proven in Appendix 5, using the generating function of both families of orthogonal
polynomials.

There are in fact two distinct limits, confounded for k = 0 and hidden in the above result,
depending on the sign of the Morse parameters, see the inversion property Eq.(I.18): the
positive case (β, γ > 0), and the negative case (β, γ < 0). We get the latter case replacing Q
by −Q in the above expression (hence denoted φ̂(k)

−Q), which can be understood as the negative
square root of Q2 = βγ in Eq.(I.27).

The shift 1
2Q , that corresponds to the frequency scaling λ− 1

2 , arises to enforce the orthog-
onality in additive time and frequency:

∫ ∞

0
φ̂

(m)
±Q(v)φ̂(n)

±Q(v)dv = n!2n
√
π

Q
e

1
4Q2 δm,n =

∫
φ

(m)
±Q(u)φ̂(n)

±Q(u)du . (I.47)

This simplifies when we are interested instead in the orthogonality with respect to log-scales
or log-frequencies:

∫ ∞

0
e−(Q log v)2

Hm(∓Q log v)Hn(∓Q log v)d log v = n!2n
√
π

Q
δm,n , (I.48)

leading to the slightly simpler and alternative definition of “log-Hermite wavelets ψ(k)
±Q:

ψ̂
(k)
Q (v) = e− 1

2 (Q log v)2
Hk(−Q log v) . (I.49)

These 4 lines of orthogonal families (2 for the positive and negative limits, and 2 with
respect to linear or logarithmic frequencies) all agree on the order zero: ψQ = φ

(0)
±Q = ψ

(0)
±Q.

3.3.6 Final thoughts on log-normal wavelets: before Morse, after Morlet, near
Cauchy

There is a widespread idea in the literature, that the Morse wavelet and its generalized Laguerre
orthogonal family are to the wavelet transform what the Gaussian window and its Hermite
orthogonal “tapers” are to the Gabor (short-time Fourier) transform [Bayram and Baraniuk
1996; Daubechies and Paul 1988; Flandrin 1988]. We think that the log-normal wavelet of
Altes and Grossmann alone should enter this analogy. Introducing a secondary “asymmetry”
parameter to the more important quality factor parameter, generalized Laguerre polynomials
are a sophistication, that could as well be mapped in the context of the Gabor transform using
exponential frequencies, inverse of the mapping of Hermite polynomials in the logarithmic scales
in Eq.(I.48).

There are different reasons to the curious absence of popularity of Grossmann’s log-normal
wavelet, the first of which is the lack of simple expression in the time domain, contrary to
the Morlet wavelet: a complex wave modulated by a Gaussian window. Thus, the Morlet
wavelet inherited the intuition of the Gabor window in the wavelet domain, even though it is
not analytic. This conceptual limitation gave room to the Cauchy wavelets (γ = 1), and their
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CH. I. Time-frequency representation: the way of the analytic wavelet

beautifully simple expressions both in time and frequency domains, then generalized to all
Morse wavelets. Their faster (exponential) decay at high frequency may have been perceived as
an advantage over the log-normal shape for certain reconstruction applications, although this is
mitigated by a slower polynomial decay in the time domain. Of different analytical properties,
the closeness of the Cauchy and log-normal wavelets can be noticed in Fig.I.5, which translates
in practice into indistinguishable wavelet transforms as soon as Q is large enough (more than
4 or 5).

Devoted to a logarithmic (i.e. multiplicative) view of scales (and to their Fourier-conjugated
domain called the Mellin domain), the log-normal wavelet reflects in the time domain in a still
mysterious way. It has been described in the original paper [Grossmann and Morlet 1984] as a
special function generalizing Gamma function and Gaussian integrals with nice algebraic prop-
erties. In a probabilistic context, it is known as the characteristic function of the log-normal
distribution. Bridging multiplicative frequencies and additive times, an approximation involv-
ing the Lambert W function is known [Asmussen, Jensen, and Rojas-Nandayapa 2016], derived
from a stationary phase or Laplace’s method (also used in Appendix 8) for a large enough
—but in fact rather small— quality factor. In any case, all its numerical implementations use
the definition of the wavelet transform Eq.(I.7) from the frequency domain.

Summary of section 3

In spite of the complex helical shape of the wavelet in the time domain, the time-frequency
interpretation of the wavelet transform is uneasy. While the time variable is clearly
identified as the translation variable b, the correspondence between the inverse scale
variable and the frequency domain heavily relies on the shape of the wavelet spectrum.
The Morse wavelet is a general family of parametric shapes for the spectrum of analytic
wavelets, φβ,γ, with two shape parameters. In the frequency domain, this shape is a
positive band-pass filter, more or less broad and asymmetric. It can be further expanded
into a series of orthogonal variations, indexed by an integer order. The order zero has a
unique maximum, whose frequency can be standardized to 1 Hz. This standardization of
the wavelet, i.e. its rescaling, ensures an approximate correspondence between the scale
variable a of the wavelet transform and an inverse frequency f−1.
The precision of this approximate scale-to-frequency relation increases with the alterna-
tive parameter Q =

√
βγ. Interpreted as a quality factor, the parameter Q is sufficient to

specify the time and frequency widths of the Morse wavelet. It fixes a trade-off between
time and frequency localization, i.e. a relation between the time-domain and frequency-
domain uncertainties. The remaining degree of freedom controls symmetry and regular-
ity properties of the wavelet shape, which are especially convenient in a particular limit:
γ → 0 and β →∞, while Q is fixed. This leads us to select the resulting one-parameter
wavelet ψQ, that has a log-normal spectrum, symmetric in the log-frequency domain with
respect to log 1 = 0.
Therefore, we fix the scale-to-frequency relation to a = f−1, that differs by a small
factor λα = e

α
Q2 from alternative definitions of the wavelet frequency, together with

practical time and frequency widths. These widths are the time-frequency resolution of
the wavelet transform: fδt, δ log f fixed to Q√ p̃ and its inverse respectively. This results
into a precise and explicit control of the time-frequency interpretation for the selected
wavelet transform, from the specification of the quality factor Q.
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Chapter II

Oscillations and fluctuations in
complex natural recordings

In chapter I, we have carefully selected a single-parameter analytic wavelet to transform complex
recordings and represent them into the time-frequency plane. These two dimensions serve to
dilute the complexity, i.e. non-stationary and multi-scale characteristics of natural signals such
as a voice recording or an electroencephalography (EEG), into a suitable representation.

It is now time to simplify the notations and summarize important properties of this wavelet
transform in the first section and to revisit quadratic expressions in the next sections, with a
particular emphasis on the role of the quality factor. This covers essential time-frequency
properties [Carmona, Hwang, and Torrésani 1998; Flandrin 1998b; Torrésani 1995], applied to
the log-normal wavelet framework. In particular, their probabilistic interpretation as statistical
estimators is developed in the third section and the fourth is dedicated to the analysis of
correlation and coherence. This development culminates in the last section with the general
problem of controlling both the significance of statistical estimators and their time-frequency
resolution; problem that beautifully simplifies into the introduction of a second quality factor.
This exact result constitutes a bridge between the undulatory and stochastic descriptions of
complex natural signals, either oscillating or fluctuating.

The collection of properties and relations in this second chapter are the basic blocks of the
wavelet framework, that will serve as a dictionary for the following chapters.

1 Time-frequency recording: properties and illustrations
First, we denote the time-frequency representation of a recording x, possibly multidimensional,
based on the log-normal analytic wavelet ψQ introduced in Eq.(I.33), as follows:

X(t, f ;Q) =WψQ [x](f−1, t) , ψ̂Q(v) = Θ(v)e− 1
2 (Q log v)2

, (II.1)

where (t, f) ∈ R2, Q ∈ R+ and we use the convention p = 1 in the definition Eq.(I.6) of
the wavelet transform. We will loosely refer to it as the wavelet transform of x, importantly
but sometimes implicitly, with quality factor Q. If needed, this time-frequency notation may
also be extended to any other standardized analytic wavelet ψ as Xψ(t, f), or by giving its
explicit parameters such as X(t, f ;±Q, k) for the log-Hermite orthogonal family φ

(k)
±Q defined

in Eq.(I.46).

1.1 Representations of the wavelet transform
We illustrate the time-frequency representation X(t, f ;Q) for a pedagogical signal in Fig.II.1
and for natural recording in Fig.II.2.
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CH. II. Oscillations and fluctuations in complex natural recordings

1.1.1 Chirp and pink noise

The signal represented in Fig.II.1(A) is the sum x(t) = s(t)+ ξ0(t) of a deterministic oscillation
s(t) with increasing frequency (a chirp) and decreasing amplitude, and a pink noise ξ0(t) of
lower amplitude (the “1/f” noise, in reference to the scaling of its power spectral density). Since
X(t, f ;Q) = 1

2A(t, f)eiϕ(t,f) takes complex values, it is represented by the amplitude A (or its
square) and the phase ϕ. The factor 2 can be computed from a simple wave A cos( p̃f0t) for
which the modulus of the wavelet transform is A

2 ψ̂Q(f), i.e. at most A
2 for f = f0.

Figure II.1: Graphical representations of the wavelet transform for a pedagogical signal x(t).
The signal x(t) is represented in (A), and its wavelet transform, Eq.(II.1), of quality factor
Q = 5 is computed. The modulus is colour-coded in a logarithmic scale in (B), and the angle
(complex argument) with the chromatic circle in (C). Note that we represented twice the modulus
of the wavelet transform in (B) so that it is directly comparable to the amplitude of the signal
(A). Both dimensions of the complex values taken by the wavelet transform are combined in (D)
with a two-dimensional colour coding: the angle is still associated to a hue in the chromatic
circle but the modulus is now coded by the saturation of the colour.

The image in Fig.II.1 (B) is the modulus of the wavelet transform, that is maximum at
or very close to the time-dependent frequencies of the chirp, for t > 0. The amplitude of
the chirp decreases while its local frequency increases in time. With a perceptually uniform
colour-coding [Kovesi 2015] of A(t, f) = 2|X(t, f ;Q)| we observe that the maximum amplitude
of the chirp in Fig.II.1 (B) matches closely the amplitude of the oscillation in Fig.II.1 (A). Since
we code the amplitude on a logarithmic scale, the image of its square, called the scalogram,
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1. Time-frequency recording: properties and illustrations

is identical. Regions of lower amplitude fluctuate around a constant value at any time and
frequency, that corresponds to the amplitude of the pink noise ξ0(t). This is a specificity
of the pink noise: it has a constant power density per decade or per octave and has a strong
physiological interest since it has been proposed to describe the scale invariance of many natural
stochastic signals, such as EEG [Allegrini et al. 2009; He 2014; He et al. 2010; Lee et al. 2002].
We refer to section 3.3.2 and Fig.II.3 for more details.

The next image in Fig.II.1 (C) represents the angle of X(t, f ;Q), i.e. the complex argument
ϕ(t, f) = ℑ{logX(t, f ;Q)}, which is conveniently represented with the hues in the chromatic
circle since it is a circular quantity. At the maximum amplitude of the chirp, this angle corre-
sponds to the phase of the signal. In this work, the angle 0 is represented in green, ±π = ±1

2 p̃ is
in magenta and the interval from −π to +π follows the progression of the colours in the visible
light spectrum (apart from the magenta, which is not in the physical spectrum since it closes
the circle). The angle in time and frequency has a particular behaviour: it always increases
continuously and monotonically in time, at a rate that is consistent with the frequency f :
∂
∂t
ϕ(t, f) ≈ p̃f . To satisfy this condition both at low and high frequencies, the lines of constant

phase have a tree structure, branching towards higher frequencies. The condition fails near the
branching singular points or phase defects (vortices of unit charge), for which the amplitude
vanishes. No such singular point is observed in the high amplitude region associated to the
chirp, where the angular progression directly represents the phase of its oscillation.

The last image in Fig.II.1 (D) combines both the modulus and the angle of the complex
value X(t, f ;Q) in a two-dimensional colour map. This type of colour coding, possible because
the colour space is at least two-dimensional (three-dimensional for at least 96% of human
beings), could be represented in polar coordinates (in C) as a chromatic disc where the angle is
the hue and the radius (modulus) is the saturation of the colour (there is no defined hue/angle if
the saturation/modulus is vanishing). Here the colour of vanishing modulus is set to white, the
low amplitude of the noisy regions indeed appears with very faint and pastel colours, whereas
the chirp has a more intense colour. Freely inspired from the domain colouring techniques in
complex analysis, this colour coding is a synthetic way of representing a map of complex values
at the scale of few oscillations (otherwise the colours would hardly be distinguishable).

1.1.2 Skin temperature signal

As a first example of complex natural recording, we chose a non-contact measure of the skin
temperature fluctuations. This type of signal is obtained from a dynamic infrared thermogram
of the chest of volunteers, studied to improve the early diagnostic of breast cancer in [Gerasimova
et al. 2014; Gerasimova-Chechkina et al. 2016]. The spatial information is reduced by averaging
each frame of the thermogram (sampled at 50 Hz) inside a region of interest, here the entire left
breast of subject 8, see Appendix 1. The temperature signal is shown in Fig.II.2 (A). The origin
of its fluctuations is complex to interpret, as they result not only from the actual variations of
the global skin temperature, but also from the unsteady geometric projection of the body in
the infrared camera.

Physiological rhythms are visible as horizontal lines in the scalogram (or amplitude) Fig.II.2
(B), scattered but with a high amplitude for breathing (at low frequencies), and with a low
amplitude but a precise and constant higher frequency for the heart beat. The higher quality
factor Q = 10 helps to visualize rhythmic lines. A sudden drop in the temperature signal around
470 s is marked by a vertical line. This is an artefact, possibly associated to an important motion
of the subject.

All these features are reflected more subtly into the phase patterns, Fig.II.2 (C), which
are harder to interpret. The fast progression of the phase at a high frequency f blurs its
visualization at large timescales compared to the period f−1, and generates moiré patterns.
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CH. II. Oscillations and fluctuations in complex natural recordings

Figure II.2: Evolution of the skin temperature, as derived from a dynamic infrared thermo-
gram. (A) Mean temperature signal (in °C), and its wavelet transform of quality factor Q = 10
is computed: (B) amplitude, (C) angle (complex argument), and (D) both, colour-coded as in
Fig.II.1. Singularities (amplitude zeros, phase vortices) are represented in (D) as black spots,
with a constant size with respect to the time resolution.

This representation of the phase is not suitable at the scale of numerous oscillations.

1.1.3 Between wavelets, vortices: a hyperbolic sea

We propose in Fig.II.2 (D) to locate the singularities or phase vortices, in order to summarize
the behaviour of the phase: they are repelled from time-frequency features of the signal. A
clear horizontal channel, without singularities, is present at a constant frequency, about 2.5
Hz, associated to the double heart beat. Although the corresponding amplitude is very weak
compared to the breathing oscillation, no clear channel is observed at lower frequencies, except
intermittently. The time-localized artefact also gives rise to a repulsion of the phase defects
out of its vertical region.

The global density of these singular points appear to correspond to one per time-frequency
atoms of uncertainty. This is a topological constraint of the phase branching, that creates a
singular point per Hz and per s. It is also verified quite locally, even in regions with time-
frequency “features” (chirp, rhythmic lines) that are depleted but surrounded by accumulated
vortices. This depletion is as strong as the signal-to-noise ratio of these features is important,
so that it can be used to differentiate the “signal” from the “noise” [Flandrin 2015]. In the case
of a Gaussian stochastic process, these “particles” has been shown repel each other, following
the random distribution of a determinantal point process in [Bardenet, Flamant, and Chainais
2020; Bardenet and Hardy 2021] for some time-frequency representations (based on the Cauchy
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wavelet and the Gaussian Gabor window).
For the log-normal wavelet, we simulated numerically this density, which is not exactly 1,

as could be anticipated from the alternative definitions of the frequency variable f , that vary
by a small factor λα = e

α
Q2 , see Table I.1. As test signals x(t), we used self-similar Gaussian

noises of Hurst exponent H (see discussion in section 3.3). Their numbering N from numerical
contour integration of the phase of X(t, f ;Q), enclosing a large time-frequency region Ω of
area ∥Ω∥ =

∫∫
Ω dtdf , yields N

∥Ω∥ = λ
1
6 −H . It depends on both the noise colour H and quality

factor Q, with few percent of uncertainty on the exponent for large regions Ω. The fraction 1
6

is surprising since it has no corresponding exponent in Table I.1, and no relation to a similar
critical density (of sampling for wavelet frames) conjectured to be Eψψ

Cψψ
[Seip 1989; Seip 1993] i.e.

equal to λ 1
4 for ψQ, and recently proved correct for Cauchy wavelets [Abreu and Speckbacher

2020].
A single difference in this “gas” of singularities between the Gabor and the wavelet trans-

forms has been highlighted in [Bardenet, Flamant, and Chainais 2020]: it consists in the ge-
ometry associated to the time-frequency plane, Euclidean (flat) in the first case and hyperbolic
in the second. The negative curvature of the hyperbolic case has the specificity of introducing
a natural unit of area, that can be identified with the time-frequency atom of uncertainty and
the inverse density of singular points. We can be convinced of these geometrical facts from two
interpretations of the surface element dtdf . While its Euclidean interpretation is immediate,
its hyperbolic interpretation can be reached considering the wavelet resolutions fδt and δ log f
Eq.(I.41): i.e. rewriting it fdtdf

f
(f > 0). The use of a timescale variable τ ∝ f−1 leads to the

Poincaré half-plane model of hyperbolic geometry, with the metric ds2 = dt2+dτ2

τ2 .
The choice of the log-frequency axis in the time-frequency representation flips and stretches

the Poincaré model, without changing the hyperbolic nature of the geometry. It is consistent
with the resolution δ log f , but compresses fδt at increasing frequencies, so that it gives the
illusion of an increasing density of vortices. Like the spherical geometry on a planisphere, this
deformation cannot be avoided in any flat illustration. To alleviate this graphical difficulty,
we adapted the markers of the singular points, black spots in Fig.II.2 (D), so that their size
remains constant with respect to fδt. As when looking at a boat: near the coast or far in the
sea. The hyperbolic geometry of the wavelet perspective on time and frequency is the key for
a truly multi-scale representation.

1.1.4 A note on the numerical implementation of the continuum

The hyperbolic geometry is also the key for an efficient numerical implementation: the discrete
counterpart of the hyperbolic plane is indeed the binary tree structure, or dyadic grid, central
to minimize the redundancy of wavelet transforms defined on an orthogonal wavelet basis.
We refer to [Selesnick 2001, 2002; Selesnick, Baraniuk, and Kingsbury 2005] for the closest
realization of an analytic wavelet transform in the world of discrete wavelet bases. The quality
factor associated to these discrete wavelet transforms is fixed, as can be estimated from the
size of the time-frequency atom in the associated dyadic grid: the scale sampling is once per
octave δ log f ∼ log 2, and the time-step is the scale parameter, i.e. fδt ∼ 1, which yields the
estimate Q ∈ [2.5, 3.6].

In applications, we consider greater and adjustable values of the quality factor Q, we care
about the time-frequency continuum of physics and the oscillatory interpretation associated to
the analytic wavelet. In agreement with Eq. (I.41), we sample in log-frequency every fraction
of the resolution δ log f (small for smoothness, close to 1 for speed), but linearly in time for
the computational convenience of numerical matrices. However, when the frequency range of
interest is far greater than few octaves, a time sampling that is sufficient at high frequency
is a waste of computational resources (especially memory) at low frequency. It is much more
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CH. II. Oscillations and fluctuations in complex natural recordings

efficient to adjust the time resolution proportionally to the frequency, as a fraction of δt to
conserve smoothness.

For resource intensive applications, this has led us to divide the time-frequency plane in
horizontal bands wide of an octave and discretize them on a log-frequency-linear-time grid.
Then, we downsample the linear-time grid by a factor 2 each time we change to the octave
below, as for a discrete wavelet basis. The wavelet transform is then evaluated numerically as
series of complex matrices, one for each band, applying the wavelet filter to the recording x
between two fast Fourier transforms (one to get the spectrum x̂(f), the other for the transform
Eq.(I.7)).

1.2 Useful properties
We sum up here the elementary properties of the wavelet transform outlined in Eq.(II.1). Let
us recall explicitly how it is computed from Fourier transform of the signal x(t) Eq.(I.1), i.e.
from the spectrum x̂(f ′):

X(t, f ;Q) =
∫
x̂(f ′)Θ(f ′/f)ei p̃f ′t− 1

2 (Q log f ′
f

)2df ′ . (II.2)

Here, the step function Θ allows selecting positive spectral components for f > 0. Negative
ones, f < 0, are useful to describe general complex signals. In the following, all integrals are
over R, unless specified otherwise with integration bounds.

1.2.1 Linearity, shift, scaling and physical unit

The wavelet transform is a linear transformation, it behaves just as the signal and the spectrum
when they contain superimposed components:

ax(t) + by(t) ←→ aX(t, f ;Q) + bY (t, f ;Q) ←→ ax̂(f) + bŷ(f) , (II.3)

for any constants a, b.
Now consider the common situation of a translated and dilated recording. For instance,

an experiment is recorded as a signal x(t). The recording starts at time t0 and is sampled at
frequency fs, hence it is a discrete time series xn of time step dt = f−1

s . The signal x(t) that
represents the physical experiment is obtained from the time series as x(dt n + t0) = xn. For
any real scale and shift parameters c, d, the wavelet transform behaves just like the signal:

x(ct+ d) ←→ X(ct+ d, f/c;Q) ←→ x̂(f/c)ei p̃fd/c . (II.4)

The frequency variable is also scaled, inversely to the time variable in agreement with their in-
verse physical units. But, there is no supplementary phase and scale factor as for the spectrum.

This correspondence of the wavelet transform with the signal, especially for the scaling, is
a consequence of the convention p = 1 in the definition Eq.(I.6). This is a physical choice which
enforces a direct agreement between the modulus of the wavelet transform and the amplitude
of the signal (more specifically of its analytical version, see section 1), and gives them the same
physical unit. In contrast, the spectrum (Fourier transform) is a time integral that departs
from the original signal’s unit. The linear view of the frequency domain commonly attached to
it is reassessed in this thesis.

With any other convention p, the wavelet transform at location (ct+ d, f/c) would corre-
spond to x(ct)c1− 1

p ↔ x̂(f/c)c− 1
p .
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1.2.2 Complex conjugation and Hermitian symmetry

In the general complex case (x ∈ C), complex conjugation behaves as the signal and the
spectrum:

x(t) ←→ X(t,−f ;Q) ←→ x̂(−f) . (II.5)

This property results from the realness of the wavelet spectrum (otherwise the wavelet is
changed by the conjugation).

Therefore, the Hermitian symmetry of the spectrum x̂(−f) = x̂(f) in the real case (x ∈ R)
is transmitted to the wavelet transform:

X(t,−f ;Q) = X(t, f ;Q) . (II.6)

This symmetry of the wavelet transform means that its computation for negative frequencies
is not necessary in the real case, i.e. for most recordings, so that the symbol

∫
Θ(f ′/f) can be

replaced by
∫∞

0 in the definition Eq.(II.2), and we can restrict frequencies to positive values.

1.2.3 Relations to the analytic signal and its spectrum

The spectrum of the signal can be recovered in two ways, either from a Fourier transform of
the time or for a diverging quality factor:∫

X(t, f ;Q)e−i p̃ftdt = x̂(f) (II.7)

lim
Q→∞

X(t, f ;Q) Q√ p̃ = x̂(f)ei p̃ft|f | . (II.8)

The factor in the second line corresponds to the inverse of CψQ =
√ p̃
Q

.
Similarly, the analytic signal can be recovered in two ways, either from an integral over

log-frequencies or a vanishing quality factor:

∫ ∞

0
X(t, f ;Q)d log f = x+(t)

√ p̃
Q

(II.9)

lim
Q→0

X(t, f ;Q) = x+(t) . (II.10)

The second line is valid only for f > 0, otherwise f < 0 gives the anti-analytic signal x−(t): this
asymptotic limit only depends on the sign of f .

Unless we assume a centred signal, x̂(0) = 0, note that these reconstruction formulas are
ambiguous at f = 0. In practice, f = 0 is not part of a geometric frequency sampling and
must be treated separately from the wavelet transform. This ambiguity is resolved when we
also take into account negative frequencies:

x(t) =
∫
X(t, f ;Q)df

|f |
Q√ p̃ = x−(t) + x+(t) , (II.11)

where the anti-analytic signal x−(t), just x+(t) in the real case, is relevant for general complex
signals.

Considering the wavelet as a band-pass filter, the asymptotic formulas Eqs.(II.8, II.10)
correspond to narrow-band and wide-band limits, detailed in Appendix 6.
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CH. II. Oscillations and fluctuations in complex natural recordings

1.2.4 Change of quality factor

We may need to change the quality factor after the computation of the wavelet transform.
This operation changes of wavelet by integrating over both times and frequencies. For analytic
wavelets, this is equivalent to reconstructing the signal and then compute the new wavelet
transform.

However, there are single-integral short-cuts for log-normal wavelets, different whether we
want to increase or decrease the quality factor Q (to Q− < Q < Q+):

X(t, f ;Q−) =
∫
X(t, f ′;Q)ψ̂ϵ−(f ′/f)df ′

|f ′|

√√√√ϵ2
− +Q2

p̃ , ϵ−2
− = Q−2

− −Q−2 (II.12)

X(t, f ;Q+) =
∫
X(t′, f ;Q)ψϵ+(f(t′ − t))fdt′ , ϵ2

+ = Q2
+ −Q2 . (II.13)

These are convolution (or cross-correlation) integrals with respect to log-frequency and time
respectively, which are computed efficiently from the convolution theorem for each fixed second
variable. In practice, this is precisely how the wavelet transform is obtained from the original
signal, so that we cannot expect much numerical advantage in changing the quality factor in
this way rather than from a new wavelet transform. These relations will bring conceptual
simplifications, and they have a pivotal role at this end of this chapter.

1.2.5 Derivatives

The time derivative to any order n of the signal, ∂nt x(t), has the spectrum (i p̃f)nx̂(f) and the
wavelet transform:

∂nt X(t, f ;Q) =
(
i p̃λ 1

2f
)n
X(t, λnf ;Q) , λ = e

1
Q2 , (II.14)

where the order n can in fact be any real number. This property means that a time derivative
not only changes the angle (in = ein

π
2 ) and the slope in scales, but due to the finite quality

factor, it also causes a slight dilation in frequency, scaled up by the factor λ > 1. The frequency√
λf is the intermediate one between the initial and final frequencies (f before and λf after

a derivative). In practice, it also means that we need not recompute the wavelet transform of
the signal time derivative when we already have it for the signal.

For n = 1, this property is both connected to the spectrum of the signal derivative, with
the factor i p̃f , and to the Cauchy-Riemann relation Eq.(I.11), which cannot be exact for the
log-normal wavelet, hence the presence of λ. X(t, λf ;Q) looks like the first term of a finite
difference with respect to log f , that would reproduce the derivative in the imaginary direction
of the analytic function of the complex plane. There is no differentiation because the analytic
wavelet transform is already a frequency-differentiated version of the analytical continuation
(see chapter I, section 2.2).

For the completeness of the discussion, we could also ask what are the derivatives with
respect to log f of X(t, f ;Q). They produce wavelet transforms of the same signal x with
respect to new wavelets, very similar to the orthogonal family Eq.(I.49). It is indeed the case
for the first order, up to a factor Q2

2 , but not for higher orders because the Hermite polynomials
Hk(−Q log v) are obtained via log v-derivatives of ψ̂√

2Q(v) = ψ̂Q(v)2 (instead of ψ̂Q(v)).
The time derivative is applied to study oscillatory signals in chapter III, while the log-

frequency derivative would be more suited to characterize singular events across scales.
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2 Quadratic representations: from energy to temporal
and spectral densities

There exists a great diversity of processing techniques for natural recordings, most of which
can be recast into operations on time-frequency representations. These representations can
be linear, as the wavelet transform Eq.(II.2), or quadratic [Hlawatsch and Boudreaux-Bartels
1992] as introduced in this section. This section serves to introduce notations for quadratic
wavelet-based expressions; we collect their properties and relations, emphasizing the role of the
quality factor.

2.1 Energy of a pair of signals
We saw in the previous section how the signal and its spectrum are recovered from log-frequency
and time integration of the wavelet transform respectively, Eqs.(II.9, II.7). More precisely,
the spectrum is recovered from a time integral of the wavelet transform demodulated by its
frequency: X(t, f ;Q)e−i p̃ft. Otherwise, the time integral of X(t, f ;Q) vanishes for any non-zero
frequency f , since it oscillates circularly around zero. For this reason, wavelet-based integral
estimators often involve a conjugated product such as the squared modulus |X(t, f ;Q)|2, which
does not oscillate circularly, the simplest of which is the energy of the signal:

Ex =
∫
|x(t)|2dt =

∫
|x̂(f)|2df (II.15)

=
∫∫
|X(t, f ;Q)|2 df

|f |
dt Q√

π
, (II.16)

where the first line is known as the Plancherel-Parseval equality. The correction factor cor-
responds to the inverse of the admissibility coefficient CψQψQ =

√
π
Q

, Eq.(I.15), ubiquitous in
quadratic estimators.

This quantity, which cumulates the intensity of the signal at all times and scales, extends
to a pair of signals:

Exy =
∫
x(t)y(t)dt =

∫
x̂(f)ŷ(f)df (II.17)

=
∫∫

X(t, f ;Q)Y (t, f ;Q)df
|f |

dt Q√
π

, (II.18)

that can be called the cross-energy of the signals, or their inner product. Note that the wavelet
transform is already the inner product of the signal x with the wavelet ψQ dilated and shifted.

For a multidimensional signal x⃗(t) = [xi(t)]i=1,2,3,..., we can define its energy as a full matrix
E where each entry Eij compares a pair of signals xi, xj as in Eq.(II.17). Diagonal entries Eii
correspond to Eq.(II.15), the energy of each signal xi. Since Eyx = Exy, E is a Hermitian
symmetric matrix (and positive definite).

Since the cross-energy Exy serves to express both the multidimensional case E (each of
its entries) and the simple energy case (Ex = Exx), it is sufficient in the following, without
loss of generality, to discuss only the comparison of a pair of signals x and y through related
cross-quantities (where we will not specify the “cross-” each time).

2.2 Energy densities: power and power spectral density
In many cases, the intensity of the signals (their conjugated product) at infinite times or scales
is still significant, so that the energy diverges. For instance, the pure wave ei p̃ft is periodic
of intensity 1 at any time. Like its counterpart the pulse δ(t), of spectrum equal to 1 at any
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frequency, they have an infinite energy. In practice, this energy is limited by the total duration
T of the recording and the bandwidth of the measuring apparatus. When it does not have
low frequency limitations, the slowest measurable oscillation has frequency of the order T−1.
A high frequency limit which constrains all digitalized measurements comes from the Nyquist
sampling theorem, which states that in a recording sampled at the frequency fs, the fastest
resolved oscillations have a frequency at most equal to fs

2 .
The recorded energy is time-limited and band-limited in practice, corresponding to a

bounded time-frequency domain of integration in Eq.(II.18). It is therefore useful to consider
instead energy densities in time and frequency.

2.2.1 Power

In particular, the power refers to the average energy density per unit of time during the full
recording, which reads in the limit of an infinite duration:

Pxy = lim
T→∞

1
T

∫ +T
2

−T
2

x(t)y(t)dt = lim
T→∞

1
T

∫
x̂T (f)ŷT (f)df , (II.19)

where x̂T (f) refers to the spectrum of the signal xT (t), the version of x(t) restricted to the
interval of duration T (zero outside).

For more clarity, let us rewrite the time average as ⟨ ⟩t, so that the energy from a time
and frequency integration in Eq.(II.18) turns into a power:

Pxy =
〈
x(t)y(t)

〉
t

=
∫ 〈

X(t, f ;Q)Y (t, f ;Q)
〉
t

df
|f |

Q√
π

. (II.20)

2.2.2 Time-dependent power or temporal energy density

The wavelet transform naturally yields a time-dependent power, or energy temporal density,
when we omit the time average:

Pxy(t;Q) =
∫
X(t, f ;Q)Y (t, f ;Q)df

|f |
Q√
π

, (II.21)

of mean value Pxy and integrating to Exy. Note that this time-dependent power is free of any
timescale, but still has a notion of time localization through the quality factor Q. It is most
localized in the limit of a vanishing quality factor Q → 0, that is called the instantaneous
power:

Pxy(t) = x+(t)y+(t) + x−(t)y−(t) . (II.22)

The analytic and anti-analytic signals appear from the contribution of positive and negative
frequencies, which are conjugated in the real case.

2.2.3 Power log-frequency and spectral densities

Similarly, we obtain a power log-frequency density when we omit the integral over log-frequencies
in Eq.(II.20):

Sxy(f ;Q)|f | =
〈
X(t, f ;Q)Y (t, f ;Q)

〉
t

Q√
π

, (II.23)
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where Sxy(f ;Q) has already the common interpretation of a power spectral density Sxy(f) =
Sxy(f ;∞) in the limit of an infinite quality factor Q→∞:

Sxy(f) =
∫
Rxy(τ)e−i p̃fτdτ , Rxy(τ) =

〈
x(t+ τ)y(t)

〉
t

=
∫
Sxy(τ)ei p̃fτdτ (II.24)

= lim
T→∞

x̂T (f)ŷT (f)
T

. (II.25)

where the last expression with duration restriction and limit, required in the frequency domain,
can be considered as a practical shortcut to the computation of the delayed correlation Rxy(τ)
in the time domain. Without the normalization by the duration T , we would respectively obtain
the energy spectral density x̂(f)ŷ(f) and the cross-correlation integral, suitable for recordings
of time-localized energy.

Notice the necessity of the factor |f | in Eq.(II.23): it recalls that a power log-frequency
density integrates to the power with respect to the integrator df

|f | , i.e. with respect to d log f
for positive frequencies, contrary to a power spectral density, integrated with respect to df . In
other words, the power is directly read from the area under the density curves, either Sx(f)|f |
on a log-frequency axis or Sx(f) on a linear one. The logarithmic sampling is indeed natural for
the wavelet transform because of its constant quality factor at all scales. To match the power
spectral density, the factor |f | is commonly absorbed in the definition Eq.(I.6) of the wavelet
transform by choosing the other convention p = 2; this hides the log-frequency interpretation
that we find important.

The power log-frequency density can in fact be computed directly from Sxy(f) (i.e. from
the product of Fourier spectra) as its log-frequency smoothing with a wavelet kernel:

Sxy(f ;Q)|f | =
∫
Sxy(f ′)|ψ̂Q(f ′/f)|2df ′ Q√

π
. (II.26)

2.3 Wigner-Ville distribution: a glimpse out of the wavelet frame-
work

We could try to go farther into the temporal and spectral localization of energy or power
densities. If we omit both the time and log-frequency integrations, the bare intensity prod-
uct X(t, f ;Q)Y (t, f ;Q) Q√

π
remains; sometimes called the cross-wavelet transform or (cross-)

scalogram. But we cannot take both the instantaneous limit Q → 0, as in Eq.(II.22), and the
converse one Q→∞, as in Eq.(II.24), without getting rid of the wavelet ψQ. Nevertheless, this
seems possible from Eq.(II.24) by omitting the time average, which is called (when centring the
time with respect to the delay) the Wigner-Ville distribution [Ville 1948; Wigner 1932]:

Wxy(t, f) =
∫
x(t+ τ

2 )y(t− τ
2 )e−i p̃fτdτ =

∫
x̂(f + η

2)ŷ(f − η
2)ei p̃ηtdη . (II.27)

Notice the strangeness of the second equality from the wavelet’s scaling point of view over
frequencies.

This quadratic time-frequency representation is the first attempt to define an instanta-
neous power spectral density for a signal x = y, that has found many applications in signal
processing and in quantum mechanics (as a phase-space distribution). This transform has many
mathematical properties, like the possibility to achieve a perfect time-frequency localization of
oscillating modes [Flandrin 1998b], or the recovery, as marginal distributions, of the power
spectral density Eq.(II.24) and the product x(t)y(t), notably different from the instantaneous
power Eq.(II.21) (due to a mixing of negative and positive frequencies). However, it also lacks
some practical ones, like the positivity of Wxx(t, f), only guaranteed for Gaussian signals [Flan-
drin 1998a], and the presence of interferences (cross-terms) between components at different
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time-frequency localizations, that complicate its interpretation. These difficulties have moti-
vated their regularization by various filtering techniques, and may be interpreted as different
manifestations of the uncertainty principle.

One of them yields the product of wavelet transforms (see proof in Appendix 2):

X(t, f ;Q)Y (t, f ;Q) =
∫∫

Wxy(t′, f ′)WψQψQ(f(t′ − t), f ′/f)|f |dt′df ′ , (II.28)

the filtering kernel being the Wigner-Ville distribution of the wavelet ψQ, introducing an ex-
plicit extent for the time-frequency uncertainty. In fact, the Wigner-Ville is like a bare frame
for quadratic time-frequency expressions, that is “dressed” by such kernel, conferring it more
regularity and particularity. Another such “dressing” produces the Gabor transforms product,
that treats time and frequency alike, as shown in Appendix 2.

In conclusion, X(t, f ;Q)Y (t, f ;Q) Q√
π

is the most localized quadratic expression (intensity)
within the wavelet approach. The Wigner-Ville distribution is an external viewpoint, suitable
for a comparison with the Gabor approach. It underlies quadratic time-frequency represen-
tations in both case, “dressed” (convolved) with a kernel that constitutes an explicit atom of
time-frequency uncertainty, WψQψQ(u, v) for the wavelet approach.

Summary of sections 1 and 2

The time-frequency representation of a recording x, based on the wavelet transform with
quality factor Q, is given a simplified notation X(t, f ;Q), illustrated and commented
for a model signal and a natural recording. The associated time-frequency plane has a
hyperbolic geometry, conditioning from the behaviour of phase vortices to its efficient
numerical implementation. The temporal and spectral intuitions associated the record-
ing signal x(t) or spectrum x̂(f) are transferred to the time and frequency variables of
this linear representation. Both the signal and the spectrum can be retrieved by inte-
grating over frequency or time respectively, and the spectral (respectively the temporal)
interpretation can be favoured by choosing a high (respectively low) value of the quality
factor: Q→ 0,∞.
This time-frequency intuition extends to quadratic quantities, involving two possibly
different recordings, x, y. The integration of the intensity X(t, f ;Q)Y (t, f ;Q) over the
time and/or the frequency variable(s) leads to the notions of energy of the signals, its
temporal density and its log-frequency density. Again, the low and high quality factor
limits step in to identify the energy temporal density to the power Pxy(t), while the
log-frequency density is related to the power spectral density Sxy(f) by a factor |f |.
These limits of maximal time or frequency localization cannot be achieved simultaneously,
without breaching the wavelet framework: the Wigner-Ville distribution appears as the
“skeleton” of quadratic representation, “dressed” into the wavelet intensity product from
a wavelet-kernel convolution in time and frequency.

3 Quadratic wavelet-estimators for stochastic processes
Irregular fluctuations in data are classically approached in a probabilistic way, so that con-
tinuous recorded signals are often modelled as a combination of deterministic and stochastic
processes. Therefore, statistical aspects of the recorded fluctuations are important, such as ex-
pectations, and ideally their probability distribution. In the context of empirical measurements
(in finite number), the main difficulty of the probabilistic approach consists in defining a suit-
able statistical ensemble, especially when the properties of the underlying physical system are
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yet unknown. A collection of realizations of the same stochastic process is needed to estimate
empirically its properties. Fixing a statistical ensemble thus consists in specifying, from physi-
cal assumptions, which parts of the recorded data will be considered as distinct realizations of
the process.

This question is crucial in two aspects: first in order to reduce the complexity of the data,
or to the contrary, to explore it at its full extent, and second to control the significance of the
observations we can make of it. This polarity is a balance: the finite amount of information
in the data is shared between depicting more (or less) of its complexity, and acquiring less (or
more) certainty over its statistical properties.

In the absence of prior information on the recorded signals, we follow the development of
the previous section in a bottom-up approach: we start with the strongest and least realistic
assumptions, reducing radically the complexity, to the weakest and most parsimonious ones
allowing to uncover it. We introduce below the minimum required material and notations to
interpret the previous section in a statistical manner.

3.1 Assumptions of stationarity and ergodicity: expectation and
distribution

Let the signal x(t) be the recorded activity of the system under measurement, modelled as a
stochastic process. Consider that the statistical variability of the signal has no dependence on
the time parameter t, which measures the recording time relative to an arbitrary initial time:
thus, we assume its stationarity. Its ensemble average E (or expectation) and its probability
density function p(x), related for any function h(x) of the signal by

E [h(x)] =
∫
h(x)p(x)dx , (II.29)

may be estimated from the average over the recorded duration introduced in Eqs.(II.19, II.20):

⟨h(x(t))⟩t =
∫
h(x)p̃(x)dx , p̃(x) = ⟨δ(x− x(t))⟩t . (II.30)

The empirical probability distribution p̃(x) is a normalized histogram, where the binning func-
tion is taken infinitely thin (a Dirac delta) in the limit of an infinite duration. A process x(t)
for which the following equality holds for any h:

E [h(x)] = ⟨h(x(t))⟩t , (II.31)

is said to be ergodic. Equivalently, the normalized histogram equals to the probability density
function, p̃(x) = p(x). Ergodicity is an abstract and strong additional hypothesis, which can be
weakened by assuming it only for the first moments: for instance for the mean E [x] = ⟨x(t)⟩t.

In practice, the duration of the recording is finite as well as the sampling frequency, so that,
even when the assumptions are correct, an equality such as Eq.(II.31) turns into a statistical
estimation: E [h(x)] ≈ ⟨h(x(t))⟩t for a duration T <∞.

A certain aspect of stationarity, namely the possibility of correlation in the process between
different times, is not visible is this simplified introduction, and is approached from the second
order statistics in the following.

3.2 Statistical variability
Now, we discuss the assumption of stationarity for a stochastic process, extending it to corre-
lations between different times, and we show how the quadratic representations of the signal,
exposed in the previous section 2, directly constitute estimators of the second order statistics
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for the stochastic process. Following section 2, a pair of signals x(t) and y(t) is sufficient to
treat quadratic estimator in the case of multi-dimensional recordings; for the sake of simplicity,
we keep once more the one-dimensional terminology.

Eventually, we also assume that the signal has zero mean, i.e. we consider the centred
process x(t)−E[x(t)]. In practice, this is equivalent to ignoring its global trend, or its constant
component (vanishing frequency) for a stationary process.

3.2.1 Variance

The variance between the pair x(t) and y(t) of zero-mean stochastic processes (then a kind of
covariance) is defined as:

σ2
xy(t) = E[x(t)y(t)] , (II.32)

which depends on time in the general non-stationarity case. The conjugation is important for
complex signals, which additionally have a distinct pseudo-variance E[x(t)y(t)].

The (jointly) stationary case is independent on the time variable, so that the power Pxy
in Eq.(II.19) is a natural estimator of the stationary variance σ2

xy. By extension, Pxy(t;Q)
defined in Eq.(II.21) appears as a natural wavelet-estimator for the non-stationary variance
σ2
xy(t), parametrized by the quality factor and distinct from an averaging over a short interval

of time.
Let us stick to the assumption of stationarity for the moment and examine the more general

covariance, here referring to the signals compared at different times:

σ2
xy(t′, t) = E[x(t′)y(t)] . (II.33)

For this quantity to be stationary, it must not depend on a relative time variable, but it can
depend on an absolute time such as the delay τ = t′ − t. Therefore, a stationary covariance
satisfies at any time t:

σ2
xy(t+ τ, t) = σ2

xy(τ, 0) , (II.34)

estimated by the delayed correlation Rxy(τ) in Eq.(II.24).

3.2.2 Power densities again

Under the stationary and ergodic hypothesis, the covariance and the power spectral density are
related by a Fourier transform:

Sxy(f) =
∫
σ2
xy(τ, 0)ei p̃fτdτ . (II.35)

This result is known as the Wiener-Khinchin theorem, that establishes Eq.(II.24) in a rigorous
stochastic setting. In particular, the variance is the integral of the power spectral density:
σ2
xy =

∫
Sxy(f)df . Since x̂(f)ŷ(f) is stochastic, the definition of the power spectral density

directly from the spectrum of a single trajectory of the process, as in Eq.(II.25), must be
adapted with an ensemble average:

Sxy(f) = lim
T→∞

1
T

E
[
x̂T (f)ŷT (f)

]
. (II.36)

The wavelet-estimator Sxy(f ;Q) Eq.(II.23) comes here into play: it averages over the time
variable of the wavelet transform, at the cost of introducing a certain frequency uncertainty,
explicit when expressed as a log-frequency smoothing in Eq.(II.26). In the wavelet framework,
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it constitutes a natural and scale-free alternative to the common estimations based on sliding
windows of fixed duration, such as Welch’s method. These yield a different spectral smoothing
with a constant linear frequency resolution (as in the Gabor approach), more resolved but more
variable for larger windows. In the wavelet approach the higher the quality factor, the better
the log-frequency resolution, but the higher the variability of the estimator. Here is the main
difference in the results: contrary to the wavelet approach, low frequencies are sacrificed in the
Welch-Gabor approach because of the windowing of the signal, but high frequencies are better
resolved than in the wavelet case at fixed total duration T . This is an advantage only if fast
components are very periodic with no slow component.

3.2.3 Non-stationary estimations, a first approach

Now how should we define and estimate a time-dependent power density? The room in
Eq.(II.35) for a non-stationary covariance Eq.(II.33) primarily leads to the following defini-
tion for the time-dependent power spectral density:

Sxy(t, f) =
∫
σ2
xy(t+ τ

2 , t−
τ
2 )ei p̃fτdτ = E[Wxy(t, f)] , (II.37)

which is the statistical expectation of the Wigner-Ville distribution of the process introduced
in Eq.(II.27). Among the difficulties associated to using the bare Wigner-Ville distribution as
an estimator, there is the possibility of negative values for Sxx(t, f) [Flandrin 1986] as well as
its infinite variance [Stanković and Stanković 1993]. Therefore, we turn towards its wavelet
filtering, and the corresponding time-dependent power log-frequency density:

Sxy(t, f ;Q)|f | = E
[
X(t, f ;Q)Y (t, f ;Q)

] Q√
π

, (II.38)

where no limit of the quality factor can lead to Eq.(II.37), as explained in chapter II, section 2.3.
The non-averaged but smooth quantity X(t, f ;Q)Y (t, f ;Q) Q√

π
could be interpreted as a

naive estimator of Sxy(t, f ;Q)|f |. However, it cannot be considered as a good estimator since
it is computed from a single realization of the process. We can anticipate that the single
atom of uncertainty covered by the wavelet is just enough to mitigate the lack of regularity of
Eq.(II.37), but still insufficient to reduce variability as a statistical estimator. This puzzle is
left for section 5, where it becomes crucial.

Instead, we discuss the not-less-puzzling issue of estimating the general covariance σ2
xy(t′, t).

Eq.(II.37) suggests using the inverse Fourier transform of with respect to f :
∫
Sxy(t, f ;Q)ei p̃fτdf .

We argue that the following estimator is more natural in a time-frequency perspective, that
does not require the Fourier transform any more, to jump from frequency to time delay:

Rxy(t′, t;Q) =
∫
X(t′, f ;Q)Y (t, f ;Q)df

|f |
Q√
π

. (II.39)

Although non-equivalent, both alternatives agree for a vanishing delay, that yields the power
Pxy(t;Q) = Rxy(t, t;Q), estimator of the variance. Here is the main reason for this choice:
while they have the same asymptotics at large quality factor Q → ∞ (which is stationary),
the instantaneous limit is ambiguous in the alternative Fourier definition but well-defined in
Eq.(II.39):

Rxy(t′, t;Q→ 0) = x+(t′)y+(t) + x−(t′)y−(t) , (II.40)
generalizing the instantaneous power Eq.(II.22). These observations are detailed in Appendix 7.

In the context of the ergodic hypothesis, the above integral across scales could be un-
derstood as assuming scale-invariance rather than stationarity. A logarithmic or exponential
change of variable (time and log-frequency) is indeed the only formal difference between these
assumptions; this correspondence is called the Lamperti transform [Borgnat, Flandrin, and
Amblard 2002; Flandrin, Borgnat, and Amblard 2003].
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3.3 Example of self-similar Gaussian processes: noises and their
colour

Consider a 1-dimensional, real and zero-mean stochastic process x(t). Assume that this process
has a Gaussian distribution, then it is unambiguously defined by specifying of the covariance,
σ2
xx(t′, t). In the stationary case, the power spectral density Sxx(f) is equivalently sufficient to

characterize the process from Eq.(II.35).

3.3.1 Fractional Brownian motion

The fractional Brownian motion is an example of Gaussian process, useful to model self-similar
noises x(t) = ξH(t), so that |a|−HξH(at) has the same distribution for any scaling a, with a
regularity parameter H called the Hurst exponent in this stochastic context. This process is
characterized by the covariance [Meyer, Sellan, and Taqqu 1999]:

σ2
xx(t′, t) = σ2

2H
(
|t′|2H + |t|2H − |t′ − t|2H

)
, (II.41)

for any exponent 0 < H < 1; notice our choice to normalize by H. The Brownian motion or
Wiener process is the intermediary case H = 1

2 , which can be rewritten σ2
xx(t′, t) = σ2 min(t′, t)

for t′, t′ > 0, where the usual diffusion coefficient in physics corresponds to D = σ2

2 . Because
of the two first terms, this process is not stationary, so that we cannot apparently define the
power spectral density. But the wavelet transform happens to be stationary for any f ̸= 0:

Sxx(t, f ;Q)|f | =
∫∫

E[ξH(t1)ξH(t2)]ψQ(f(t1 − t))ψQ(f(t2 − t))f 2dt1dt2

= σ2

2Hℜ
{∫
|t′|2HψQ(f(t′ − t))fdt′

∫
ψQ(u)du

}
− σ2

2H

∫∫
|t′ − t|2HψQ(f(t1 − t))ψQ(f(t2 − t))f 2dt1dt2

= − σ2

2H |f |
−2H

∫∫
|u1 − u2|2HψQ(u1)ψQ(u2)du1du2

= − σ2

2H |f |
−2H

∫∫
|u|2H |ψ̂Q(v)|2ei p̃uvdudv , (II.42)

since the non-stationary terms vanishes (
∫
ψQ(u)du = ψ̂Q(0) = 0).

Therefore, we can compute the following wavelet estimate for the power log-frequency
density at f ̸= 0:

Sxx(f ;Q)|f | = σ2 sin(Hπ)Γ(1 + 2H)
H p̃1+2H |f |−2He(H/Q)2

, (II.43)

where the factor e(H/Q)2 corresponds to the bias of the estimator and to a frequency dilation
λ−H

2 . It goes to 1 in the limit of an infinite quality factor Q → ∞, providing an expression
for the power density Sxx(f)|f |. The fact that we can define a power density for any non-zero
frequency can be understood as a sort of stationarity of the process, except for a “random
trend” (in the neighbourhood of f = 0). This trend is removed when we consider instead the
increment ξH(t+ τ)− ξH(t), which is really stationary.

Coloured noises with any Hurst exponent can be though of as successive integrations
(H → H + 1) or differentiations (H → H − 1) of the fractional Brownian motion of Hurst
exponent H. In particular, the white noise H = −1

2 , with correlation function
σxx(t, t′) = σ2δ(t− t′) , (II.44)

is the “derivative” of the Brownian motion with H = 1
2 . Although a general definition is delicate

in the time domain, any real value of H can be conceived in the log-frequency domain from the
power density Eq.(II.43) once f = 0 is excluded.
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3.3.2 Log-correlated noise: pink is the new white

Figure II.3: Comparison of the white (top) and pink (bottom) Gaussian noises. Signals
and their histogram (centre), wavelet transform’s amplitude (left) and estimated power den-
sity (right), with Q = 5. From the white noise spectrum x̂(f), the pink noise is obtained as
x̂(f)|f |− 1

2 . Their power log-frequency density scales as Sxx(f ;Q)|f | ∼ |f |−2H , with Hurst expo-
nents H = −1

2 and 0 respectively.

In Fig.II.3, the white noise is compared to the caseH = 0, called the pink noise x(t) = ξ0(t),
which is special to the wavelet approach [Abry, Gonçalvès, and Flandrin 1995], since it has a
constant power log-frequency density:

lim
H→0

Sxx(f ;Q)|f | = σ2

2 , (II.45)

well-defined for any f ̸= 0 in the limit H → 0, thanks to the normalization by H in Eq.(II.41).
It also holds for any quality factor: the estimator is unbiased in this case. Therefore, the power
per octave is constant and equal to σ2

2 log 2, where log 2 is the “per octave” unit (change of base
for the logarithm from e to 2).

Said otherwise, this models the “1/f noise”, named after the behaviour of its power spectral
density Sxx(f ;Q) = D|f |−1. The divergence for f → 0 in this linear view over the frequency
domain explains the difficulties in the time domain. For instance, the covariance Eq.(II.41) is
undefined in the limit H → 0. However, there is only one possible finite term, up to an additive
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constant, which is stationary (thus remaining in Eq.(II.42)):

lim
H→0

E[|X(t, f ;Q)|2] = σ2
∫∫

log T

|t1 − t2|
ψQ(ft1)ψQ(ft2)f 2dt1dt2 , (II.46)

which can be obtained from the limit: |τ |2H−1
2H → log |τ |, and T is an arbitrary timescale

(allowed because the wavelet has zero mean). For this reason, this noise is also called the log-
correlated Gaussian process, presented as a tempered distribution in [Duplantier et al. 2017],
where the zero-mean test function is the role played by the wavelet ψQ. This ideally self-similar
and log-correlated process is crucially involved in the description of continuous multiplicative
random cascades [Arneodo, Manneville, and Muzy 1998; Muzy, Baïle, and Bacry 2013]. In
these models, the diverging term or equivalently the reference timescale T in the covariance are
clearly interpreted as the largest timescale of the system: the duration of the signal.

Although this is not required in the wavelet formalism, this fact about the covariance
can be straightforwardly modelled from Eq.(II.45), stopping the integral bound f → 0 in its
computation at the smallest practical frequency T−1:

σ2
xx(τ, 0)
σ2 ≈ 1

2

(∫ −T−1

−∞
ei p̃fτ df

|f |
+
∫ +∞

T−1
ei p̃fτ df

|f |

)

=
∫ +∞

T−1
cos( p̃fτ)dlog f = −γ + log T

p̃ τ + Cin
(
p̃ τ
T

)
. (II.47)

Here, γ ≈ 0.5772 is the Euler-Mascheroni constant, that often appears when describing a
logarithmic divergence, and the cosine integral Cin is a special function that gives oscillating
polynomial corrections at a finite large scale T , see Eq.(A.59) in the Appendix. Since Cin(0) =
0, it can be neglected. Note that this derivation is stationary, because the only non-stationarity,
inherited from the definition Eq.(II.41), pertains to the limit f → 0. Finite frequencies are as
far from this vanishing limit than to the diverging one f →∞, as ensured by the fast decay of
the log-normal wavelet on both sides. Non-stationary (causal) versions of the pink noise can
be found in [Arneodo, Audit, et al. 1998; Muzy, Baïle, and Bacry 2013].

The pink (log-correlated) Gaussian noise is to log-frequency just what the white Gaussian
noise is to linear frequency: a constant power density over the domain. But its description
from the time domain (i.e. from the covariance) is cluttered by formal discrepancies between
the additive (time) and multiplicative (log-frequency) approaches, sometimes conferring an aura
of mystery to the “1/f noise”. We prefer to call it the pink noise, whose simplicity is clearer
from the wavelet multiplicative viewpoint Eq.(II.45), turning the white noise into an “f noise”
as we can see in Fig.II.3.

4 Correlation and Coherence
Elaborating upon the previously introduced covariance and the power densities, we show how
their normalized versions, the correlation and the coherence coefficients, characterize the simili-
tude between a pair of signals x(t) and y(t), independently of the intensity of their fluctuations.
We still model these signals as complex stochastic processes with zero mean.

4.1 Correlation coefficient
The covariance Eq.(II.33) normalized by the geometric average of the variances provides a
robust way to compare the fluctuations in a pair of signals, potentially of very different nature.
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Quantifying the strength of the linear relationship between x and y, it is called the (Pearson)
correlation coefficient, whose general definition (possibly delayed and time-dependent) is:

ρxy(t′, t) =
σ2
xy(t′, t)

σxx(t′, t′)σyy(t, t)
, (II.48)

equivalent to the covariance of signals standardized to a unit variance (e.g. x
σxx

). As previously,
the stationary case can be written ρxy(τ, 0), where τ = t′ − t is a delay between the signals.
The delay is set to zero in its simplest form.

4.1.1 Stationary case and interpretation

The natural ergodic estimator for ρxy(τ, 0) is

Γxy(τ) = Rxy(τ)√
PxxPyy

, (II.49)

assuming joint stationarity.
For real signals, this coefficient takes values in the interval [−1, 1]. A value of 1 (respec-

tively −1) indicates a full (anti-)correlation, while a zero value indicates the absence of (linear)
correlation. For complex signals, the correlation coefficient takes values in the unit disk: the
strength of the linear relationship is given by the modulus |Γxy| ∈ [0, 1], whereas the sign of
the correlation is extended to a continuum of angular phase (the complex argument of Γxy).
Positive correlation correspond to the phase 0, and anti-correlation to the phase ±π.

By definition, a perfect correlation is reached for x = y and τ = 0: Γxx(0) = 1. However,
a non-trivial correlation Γxx(0) is possible between a general complex signal and its conjugate.

In the real case, we argue that the correlation coefficient of the analytic signals ρx+y+(τ),
which is complex, is much more instructive than its real counterpart, although they contain
the same information. They are related as follows:

ρxy(τ) = ℜ{ρx+y+(τ)} , (II.50)

and the same goes for the complex estimator Γx+y+(τ). This comes from the Hermitian symmetry
of the power spectral density Sxy(−f) = Sxy(f), that relates to the correlation coefficient as:

ρxy(τ, 0) =
∫
Sxy(f)ei p̃fτdf√∫

Sxx(f)df
∫
Syy(f)df

, ρx+y+(τ, 0) =
∫∞

0 Sxy(f)ei p̃fτdf√∫∞
0 Sxx(f)df

∫∞
0 Syy(f)df

. (II.51)

Slightly anticipating the next sections, we may call these complex quantity in the case
τ = 0 the global coherence ρx+y+ = ρx+y+(0, 0), estimated as Γx+y+(0).

While the real interpretation remains straightforwardly available, the angular information
is useful to characterize phase quadrature (±π

2 ) phenomena such as the one between a com-
ponent and its derivative: x(t) = d

dty(t) ⇒ Sxy(f) = i p̃fSyy(f) ⇒ ρx+y+(0, 0) = i = ei
π
2 .

This extends the idea of full correlation to the extent of the modulus, maximal in this example:
|ρx+y+| = 1, while the angle indicates whether there is a positive correlation, an anti-correlation
(phase opposition ±π) a phase quadrature (±π

2 ) as in this example, or any intermediate case.

4.1.2 Estimation in the non-stationary case

The fully general correlation coefficient ρxy(t′, t) defined in Eq.(II.48) is estimated by:

Γxy(t′, t;Q) = Rxy(t′, t;Q)√
Pxx(t′;Q)Pyy(t;Q)

, (II.52)
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where the non-stationary covariance estimator Rxy(t′, t;Q) has been defined in Eq.(II.39) from
a log-frequency integral. See Appendix 7 for a discussion about its definition and properties.

In the real non-stationary case, the property Eq.(II.50) is also satisfied, and applies to the
estimator:

Γxy(t′, t;Q) = ℜ{Γx+y+(t′, t;Q)} , (II.53)

thanks to the Hermitian symmetry of the wavelet transform. In the case t′ = t, we call
the complex version Γx+y+(t, t;Q) the estimator for the temporal coherence ρx+y+(t, t), proposed
in [Gurley, Kijewski, and Kareem 2003] as a “scale-averaged” coherence.

The local stationarity is assumed relatively to each scale: in contrast to a supposed char-
acteristic duration of steadiness, we posit at each distinct scale a steady statistical behaviour
for a certain number fδt = Q√

2 p̃ of oscillations, see Eq.(I.41). The higher the quality factor, the
more we assume stationarity. Assuming no stationarity at all corresponds to the instantaneous
limit, for which the estimator of temporal coherence does not reduce the variability any more
in this single trial estimation. In particular, we always obtain:

|Γx+y+(t′, t;Q→ 0)| = 1 (II.54)

in this limit, even though |ρx+y+(t′, t)| ≠ 1 in general.
Overall, Eq.(II.53) constitutes a useful tool to scrutinize linear relationship in complex

fluctuating signals in a scale-free manner. Without fixing any arbitrary timescale in the way,
the quality factor Q advantageously controls the balance between the amounts of remaining
variability and assumed stationarity. Pursuing the distinction of positive and negative frequency
domains with analytic and anti-analytic signals x±(t), the contributions to the correlation at
different scales remain to be distinguished.

4.2 Coherence: distinguishing correlations at different scales
We introduce here the concept of coherence, well-documented [Gardner 1992] and with many
signal processing applications [Halliday et al. 1995]. In particular, it has been used as a way to
estimate delays [Carter 1987]. The reason for this is its close relation to the Fourier spectrum
of the stationary correlation coefficient:∫

ρxy(τ, 0)e−i p̃fτdτ = Sxy(f)√∫
Sxx(f)df

∫
Syy(f)df

, (II.55)

whose integral across frequencies is the usual (Pearson) correlation coefficient, see Eq.(II.51).
The contributions to correlation can thus be detailed at each scale, and their normalization
defines a continuum which takes the same values and has the same interpretation as a complex
correlation coefficient at each frequency.

4.2.1 Spectral coherence: the stationary case

This frequency-wise normalization leads to the spectral coherence:

γxy(f) = Sxy(f)√
Sxx(f)Syy(f)

, (II.56)

between two jointly stationary zero-mean random processes, a natural extension of the correla-
tion analysis for a pair of multi-scale or multi-component signals. It takes again complex values
in the unit disk, and its squared modulus |γxy(f)|2 ≤ 1 (original definition of the coherence)
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represents the proportion of the power density at frequency f of one signal that can be linearly
predicted from the other signal.

The presence of a delay or a global phase (as for anti-correlation or quadrature) is contained
in the angle ϕxy(f) of the spectral coherence: γxy(f) = |γxy(f)|eiϕxy(f). Indeed, consider that
the signals are shifted copy of each other, x(t) = y(t−τ), then their coherence is γxy(f) = e−i p̃fτ
so that ϕ(f) = p̃fτ : x is delayed by τ compared to y (i.e. y is early of τ as compared to x).
Such interpretation of ϕ(f) is as exact as the coherence modulus |γxy(f)| is close to 1. See
reference [Carter 1987] for an extended statistical analysis.

The properties of the coherence Eq.(II.56) crucially depend on the ensemble average, im-
plicit in Eq.(II.35) or explicit in Eq.(II.36). Indeed, for a single realization of the processes, the
wavelet-estimator is obtained from Eq.(II.23):

γxy(f ;Q) = Sxy(f ;Q)√
Sxx(f ;Q)Syy(f ;Q)

= ⟨X(t, f ;Q)Y (t, f ;Q)⟩t√
⟨|X(t, f ;Q)|2⟩t⟨|Y (t, f ;Q)|2⟩t

. (II.57)

As in Eq.(II.54) for the correlation coefficient, the most resolved version is the worst estimator:

|γxy(f ;Q→∞)| = 1 (II.58)

since the modulus is always 1, only the angle varies. But the converse limit is not any better
as the spectral distinction is lost and we obtain the global coherence:

γxy(f ;Q→ 0) = Γx+y+(0) , (II.59)

for f > 0, or Γx−y−(0) for f < 0.

4.2.2 Non-stationary case: outlook on the problem

The time-frequency coherence quantifies the strength of correlation between non-stationary
signals at different locations of the time-frequency plane. Its generic definition depends on
time-dependent power densities:

γxy(t, f) = Sxy(t, f)√
Sxx(t, f)Syy(t, f)

. (II.60)

The use of Wigner-Ville spectra Eq.(II.37) is in general excluded unless carefully filtered [Matz
and Hlawatsch 2000; Orini, Bailon, Mainardi, Minchole, et al. 2009; Orini, Bailon, Mainardi,
Laguna, et al. 2012; White and Boashash 1990]. Indeed, its interference terms must be managed
to keep a coherence value in the unit disk. Such filtering is achieved by the wavelet approach,
i.e. by using the power density Sxy(t, f ;Q)|f | defined in Eq.(II.38):

γxy(t, f ;Q) = E[X(t, f ;Q)Y (t, f ;Q)]√
E[|X(t, f ;Q)|2]E[|Y (t, f ;Q)|2]

. (II.61)

For a single realization of the processes, we could estimate it by omitting the ensemble averages,
as first done in [Liu 1994]. In spite of all the smoothness of the wavelet transform, this would
cause the same “worst estimator” phenomenon as in Eqs.(II.54, II.58): a modulus always equal
to one for any signals and values of the quality factor!

We are led back to the problem of finding a good statistical estimation of the ensemble
average in time and frequency, from single trajectories. In a non-stationary context, this issue
can only be circumvented when many samples of the same experiment are available or many
simultaneous equivalent but independent measurements are available, see e.g. [Le and Argoul
2016; Zhan et al. 2006].
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Summary of sections 3 and 4

The probabilistic interpretation of fluctuations in recordings is introduced, by treating
them as stochastic processes. This naturally confers to the quadratic expressions derived
from the wavelet transform to role of statistical estimator for average quantities of the
stochastic process: the (time-dependent) variance, covariance and power spectral density.
The mean of the process is associated to the non-oscillating part of the linear time-
frequency representation, corresponding to the limit f → 0. The spectral estimation
from a time average corresponds to an ergodic hypothesis, while the temporal estimation
can be associated to an analogous self-similarity hypothesis.
The self-similar Gaussian noise is taken as an example, both computational and illus-
trated. We emphasize the case of the pink noise, characterized by a constant power
log-frequency density, thus taking the role of the white noise in the multi-scale context
of the wavelet analysis.
The correlation coefficient ρxy is then introduced as the normalized covariance, describes
synthetically the strength and the sign of the linear similitude between two, possibly
delayed, fluctuating signals. This global quantity can be estimated locally in time with
the wavelet estimator, and extended to a complex coefficient through the use of the
analytic version of the signals, extending the interpretation of the sign of correlation to a
phase of global or temporal coherence. Its frequency counterpart, the spectral coherence
γxy, follows naturally as the normalized power spectral density.
The question of estimating statistical quantities in the time-frequency remains unclear,
although they can be properly defined from an ensemble average.

5 Wavelet-estimators in time and frequency: two paths,
one destination

The time-frequency uncertainty must increase in order to reduce the variance of a statistical
estimator [Pitton 2000], and to discriminate true coherence from spurious one. The statistics
of the spurious coherence is also essential to assess the significance of the estimation. Two
types of estimation exists: one involves orthogonal sequences called multi-tapers often linked
to the Gabor approach (spectrogram estimation), the other uses a local average, often chosen in
the wavelet approach. The first approach, discrete, directly provides the number of degrees of
freedom of the statistical estimator, while the second one, continuous, offers an explicit control
over its time-frequency localization. Neither of these strategies are limited to their favourite
time-frequency representation, as is apparent from their direct applications to the Wigner-
Ville distribution [Matz and Hlawatsch 2000; Orini, Bailon, Mainardi, Minchole, et al. 2009;
Orini, Bailon, Mainardi, Laguna, et al. 2012; White and Boashash 1990] (that underlies both
representations).

In the wavelet framework, we propose to harvest the best of both techniques in an explicit
manner, resuming and pursuing the work of [Cohen and Walden 2010a,b]. By doing so, we
reach the conclusion that a statistical estimation in time and frequency accounts for separating
the quality factor used in time and the one used in frequency: their ratio is the number of
degrees of freedom. This solves the puzzle of estimating a time-dependent spectral density and
the associated coherence from single stochastic trajectories, in a canonical and synthetic way
in the log-normal wavelet framework.

49



5. Wavelet-estimators in time and frequency: two paths, one destination

5.1 From multi-taper to multi-wavelet method
To improve the limitations of the practical estimation of the power spectral density Sxy(f),
also called the periodogram, multi-taper techniques have been introduced [Babadi and Brown
2014; Percival and Walden 1993]. The taper refers to the window function used to filter the
data before performing the spectral decomposition, such as the Gabor window. The shape
of the taper (sharp or smooth edges) may improve the spectral discrimination of relevant fre-
quency bands from background noise, and off-peak frequencies. However, analyses of shortened
segments increase the variance of the spectral estimators. Multi-taper spectral method was
shown to have better spectral separation power than the single taper method [Thomson 1982].
The multi-taper method mimics independent realizations of the process by averaging together
multiple spectra computed from multiple orthogonal taper functions applied to the same sig-
nal. Formalizing the optimization of the spectral concentration into an eigen-decomposition
problem lead to an optimal solution called discrete prolate spheroidal sequence [Slepian 1978],
resulting in an improved localization and reduced variance of the estimator. The number of
tapers used is involved in the statistical distribution of the estimator as its number of degrees
of freedom [Walden 2000], chosen smaller than the product of duration and bandwidth.

The multi-taper method can also be applied to time-dependent spectral estimations [Babadi
and Brown 2014; Prerau et al. 2017], so that multi-taper-based time-frequency coherence esti-
mator are available [Daly et al. 2004; Lovett and Ropella 1997; Yan Xu, Haykin, and Racine
1999]. Similarly, the variance of the wavelet-estimators could also be improved from the use
of orthogonal sequences of wavelets, called “multi-wavelet” method or “eigenscalogram”, im-
plemented from the Morse family of orthogonal wavelets [Bayram and Baraniuk 2000; Cohen
and Walden 2010b; Daubechies 1988]. This corresponds in our framework to the use of the
orthogonal wavelets φ(k)

Q Eq.(I.46), normalized to a unit energy in the definition of X(t, f ;Q, k).
Therefore, the time-dependent power spectral density defined in Eq.(II.38) can be estimated
by:

Sxy(t, f ;Q,K)|f | =
K−1∑
k=0

1
K
X(t, f ;Q, k)Y (t, f ;Q, k) , (II.62)

corresponding to a uniform average over the K first wavelets of the orthonormal basis.
While the variance of this estimator is reduced for a large number of degrees of freedom

nd = K, the time-frequency localization is necessarily degraded: the atom of uncertainty
spreads, with few control on it. Replacing 1

K
by positive weights wk in Eq.(II.62) could help to

tune it. The effective number of degrees of freedom is defined as nd = (∑k wk)2/
∑
k w

2
k [Walden

2000]. However, the first order is sufficient: indeed, wavelets are well-localized so that the
information aggregated to a certain location (t, f) by higher order wavelets is also available
near (t, f) at zero order (see the change of wavelet formula in Appendix 3). This motivates the
alternative strategy based on smoothing.

5.2 Degrees of freedom and uncertainty atoms with local averages
The reduction of the variance of the estimator can also be achieved from local average operations
of the spectrum. This smoothing strategy allows to control the loss of resolution, contrary to
the multi-taper approach. Many references can be found on wavelet-based coherence, see for
instance [Cazelles et al. 2008; Chang and Glover 2010; Grinsted, Moore, and Jevrejeva 2004;
Gurley, Kijewski, and Kareem 2003; Torrence and Compo 1998; Yaesoubi et al. 2015], but
the diverse forms of smoothing are scarcely discussed. The spread of the smoothing kernel
determines both the resolution of the analysis and the level of spurious coherence (variance of
the coherence estimator).
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We start by recalling the unique type of smoothing that is wavelet-compliant. Given
a stochastic intensity field S(t, f), its ensemble average can be estimated from the following
“affine” convolution:

⟨S(t, f)⟩K =
∫∫

S(t′, f ′)K(f(t′ − t), f ′/f)dt′df ′ , (II.63)

consistently with the wavelet time-frequency resolution, as in Eq.(II.28).

5.2.1 Smoothing in both domains

For estimating Sxy(t, f), a smoothing in both dimensions of the product of wavelet transforms
has been proposed [Torrence and Compo 1998]. This corresponds to using any positive kernel
K(u, v) = χ(u, v) of unit weight (⟨1⟩χ = 1) to smooth S(t, f) = X(t, f ;Q)Y (t, f ;Q) Q√

π|f | ,
providing alternative estimators to Eq.(II.63). Notice that such kernel generalizes all previous
global integrals over time or frequency: a free (non-integrated) variable corresponds to a fully
local kernel in this domain (a Dirac delta), while the kernel is fully global (constant) in the
integrated (or averaged) one.

This estimator can be simplified by smoothing along a single dimension. Unless there
is some need for averaging over a sophisticated time-frequency domain, we even argue that
smoothing in a second dimension is useless for most applications, since the same effect is
obtained by changing the quality factor of the wavelet beforehand. Smoothing in time assumes
more stationarity (thus a weaker localization), while more scale-invariance is assumed when
smoothing in frequency.

We can expect that the number of degrees of freedom has something to do with the number
of uncertainty atom covered by the kernel K. A constant kernel supported by a time-frequency
domain Ω, for instance of widths nfδt and mδlogf (using the practical wavelet resolution, see
Eq.(I.41)), covers an area ∥Ω∥ =

∫∫
Ω dtdf , of the order nm. In the one-dimensional case, the

kernel K does not spread over a surface but over a length, and we still expect it to cover about
n atoms for the time smoothing alone or m atoms for the frequency smoothing alone. Thus,
the wavelet is necessarily involved in the resulting estimator’s degree of freedom.

5.2.2 Number of degrees of freedom from multi-taper

The kernel of a spectral estimator is usually thought as an operator acting directly on the
signals or the spectra to produce the estimator:

xKy† =
∫∫

x(t1)y(t2)Ǩ(ft1, ft2)|f |dt1dt2 =
∫∫

x̂(f1)ŷ(f2)K̂(f1/f, f2/f)/|f |df1df2 , (II.64)

where K depends on a frequency variable f and the time variable has been set to t = 0 in
the stationary case. In the discrete and finite context of multi-taper estimators, the kernel is a
Hermitian symmetric positive-definite matrix, whose eigenvectors are the multiple tapers and
the effective number of degrees of freedom is readily computed from the eigenvalues [Walden
2000]. This computation is equivalently expressed directly from the kernel as a beautiful trace
formula:

nd = (TrK)2

TrKK† =

(∫
Ǩ(u, u)du

)2

∫∫
|Ǩ(u′, u)|2du′du

=

(∫
K̂(v, v)dv

)2

∫∫
|K̂(v′, v)|2dv′dv

, (II.65)

where the second and third equalities clarify the correspondence between the continuous inte-
grals and symmetry Ǩ(u, u′) = Ǩ(u′, u), and the linear algebraic trace Tr and product KK†
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with conjugated transposed matrix. Its consistency with the continuous multi-wavelet estimator
Eq.(II.62) is straightforward (nd is the number of orthonormal wavelets).

It remains to extend the computation of nd to the wavelet-estimators and to interpret it
as a number of time-frequency uncertainty atoms.

5.2.3 Entropic uncertainty from Wigner-Ville distribution

The inclusion of the wavelet into the kernel and the need for a rewriting in the form of time-
frequency integrals lead to use the Wigner-Ville distribution S(t, f) = Wxy(t, f) in Eq.(II.63).
By comparison with Eq.(II.64), we identify:

Ǩ(u′, u) =
∫
K(u′+u

2 , v)ei p̃v(u′−u)dv ; K̂(v′, v) =
∫
K(u, v′+v

2 )e−i p̃(v′−v)udu , (II.66)

whose Hermitian symmetry translates into a real kernel K(u, v) = K(u, v).
This leads to the following information theoretic perspective for the logarithm of the num-

ber of degrees of freedom when expressed in time and frequency:

log nd = − log

∫∫
K(u, v)2dudv(∫∫
K(u, v)dudv

)2 = H2[K] . (II.67)

This is the order 2 Rényi entropy, defined in Eq.(A.45) (extended to the bivariate case), of the
time-frequency kernel K. Since an exponential entropy counts an effective number of “states” in
the distribution K(u, v), we reach the following interpretation: to gain statistical significance,
nd atoms of time-frequency uncertainty are integrated in the smoothing operation, and their
distinction are lost to the time-frequency localization.

Note that the series of formulas Eqs.(II.64 - II.67) are “paradigm-agnostic”, i.e. independent
of the choice of the wavelet or Gabor approach. The case of the wavelet transform alone
corresponds to the kernel K(u, v) = WψQψQ(u, v), or equivalently K̂(v′, v) = ψ̂Q(v′)ψ̂Q(v), that
yields nd = 1: the smoothing of the wavelets (a separated kernel) covers a single uncertainty
atom. The same holds for the Gabor approach, whose atom was called a “logon” [Gabor 1946].
Using the bare Wigner-Ville distribution as an estimator corresponds to the degenerate case
nd = 0: no smoothing covers no uncertainty atom, directly related to its infinite variance [Pitton
2000; Stanković and Stanković 1993].

Although the time-frequency integral expression Eq.(II.67) for nd is in the reach of several
analyses on the topic [Cohen and Walden 2010a; Pitton 2000], it seems its usefulness remained
unrecognized and never put into practice. As far as the entropic interpretation is concerned,
similar expressions based on the Rényi entropy are used to measure the amount of information
in time-frequency representations of the full signal [Baraniuk et al. 2001; Flandrin, Baraniuk,
and Michel 1994; Jones and Parks 1990; Stanković 2001; Williams, Brown, and Hero III 1991],
instead of the one available through the kernel K.

5.2.4 Explicit control of locality: natural versus practical

Now that we know how to compute the degrees of freedom associated to an estimator of the
power density or the coherence, we come back to smoothing X(t, f ;Q)Y (t, f ;Q) Q√

π|f | with a
kernel χ, possibly the simplest (one-dimensional). After examining the form of the smooth-
ing in the wavelet-estimators Sxy(f ;Q) and Pxy(t;Q), we propose to transpose their wavelet-
smoothing into the kernel χ to define natural estimators for Sxy(t, f ;Q). We summarize our
findings in Table II.1.
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smoothing localization degrees of freedom nd approximation

Sxy(f ;Q) =
∫
x̂T (f ′)ŷT (f ′)|ψ̂Q(f ′/f)|2df ′ Q√

π|f |T

f Q ∞ T = tmax − tmin →∞

Sxy(f ;Q, T ) = ⟨X(t, f ;Q)Y (t, f ;Q)⟩t Q√
π|f |

f Q
√

λ
6
p̃fT
Q 1≪ Q ∼ fδt≪ |f |T

Pxy(t;Q) =
∫∫
x(t1)y(t2)

∫
ψQ(f(t1 − t))ψQ(f(t2 − t))|f |dfdt1dt2 Q√

π

t Q ∞ B = fmax/fmin →∞

Pxy(t;Q,B) =
∫ fmax
fmin X(t, f ;Q)Y (t, f ;Q)df

|f |
Q√
π

t Q ∼ Q√ p̃ logB guess

Sxy(t, f ;Q,Q) = X(t, f ;Q)Y (t, f ;Q) Q√
π|f |

Q 1 exact

Sxy(t, f ;Q+, Q−) =
∫∫
x̂(f1)ŷ(f2)

√
ψ̂Q+(f1/f2)ψ̂Q−(f1f2/f 2)ei p̃(f1−f2)tdf1df2

Q−√
π|f |

t, f Q+, Q− Q+/Q− exact

Sxy(t, f ;nQ,Q) =
∫
X(t′, f ;Q)Y (t′, f ;Q)e−( p̃f(t′−t)/nQ)2dt′ 2

n

t ∼ nQ
√

1 + n2λ (nQ)2λ≫ 1

Table II.1: Comparison of wavelet-estimators for the power spectral density Sxy(f), the vari-
ance σ2

xy(t) and the time-dependent power spectral density Sxy(t, f ;Q). The first column is the
domain of smoothing, followed by the resulting localization in this domain expressed as a qual-
ity factor, see Eq.(I.41). Next, the number of degrees of freedom nd is given, with its potential
approximation in the last column. When an integral in Eq.(II.65) is not tractable, it is approx-
imated from the Laplace’s method, see Appendix 8. We use the notation λ = e

1
Q2 .

The computation of Sxy(f ;Q) in Eq.(II.26) is a natural example of smoothing multiplica-
tively along frequency, with the squared wavelet spectrum |ψ̂Q(f ′/f)|2 in the role of the kernel.
We can choose a different parameter for the quality factor:

χϵ−(v) = |ψ̂ϵ−(v)|2 , ϵ−2
− = Q−2

− −Q−2 , (II.68)

as in the formula for changing of quality factor Eq.(II.12); the frequency resolution is decreased
to a quality factor Q− < Q, letting room for exactly

nd =
√

1 + (Q/ϵ−)2 = Q

Q−
(II.69)

statistical degrees of freedom, as computed from Gaussian integrals. The resulting estimator
may be denoted Sxy(t, f ;Q,Q−). Its numerical computation may, however, be complicated
by the fact that efficient implementations of the wavelet transform do not use the same time-
sampling at different scales.

In this respect, a time-smoothing with χ(f(t′− t))|f | is very convenient, and the statistical
properties of its discrete implementation has been studied in comparison to the multi-taper
approach [Cohen and Walden 2010a; Walden and Cohen 2012]. This is the strategy we apply
for most estimations of the time-frequency coherence. Unluckily, the computation of Pxy(t;Q)
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in Eq.(II.21) does not provide a wavelet expression corresponding to a one-dimensional kernel.
Furthermore, in the absence of simple expressions, neither for |ψQ(f(t′ − t))|2f (as may be
intuited), nor for its spectrum, we use a Gaussian window that best approximates it:

χn(u) =
√

2 p̃
nQ

e−( p̃u/nQ)2 (II.70)

Sxy(t, f ;nQ,Q) =
∫
X(t′, f ;Q)Y (t′, f ;Q)χn(f(t′ − t))dt′ Q√

π
, (II.71)

of time-width intended to be n resolution units, nfδt = nQ√
p p̃ , with p = 2 for a quadratic

expression. Although we cannot compute exactly the corresponding degrees of freedom, its
approximation from the Laplace’s method:

nd ≈
√

1 + n2λ , (II.72)

is indeed of the order n (for nQ large enough), see computation in Appendix 8.
Then, a natural (wavelet-based) time-smoothing seems missing at the place of its linear

counterpart Eq.(II.13), increasing the quality factor to Q+ > Q. This is clarified by examining
the form of the smoothing in the time-dependent power Pxy(t;Q). In fact, it is a two-dimensional
kernel, equivalent to wavelet-transforming separately in times t1 and t2 before integrating over
the resulting (equal) frequency variable. It can also be expressed in terms of the covariance
estimator Eq.(II.39):

Sxy(t, f ;Q+, Q) =
∫∫

X(t1, f ;Q)Y (t2, f ;Q)
∫
ψϵ+(f ′(t1 − t))ψϵ+(f ′(t2 − t))|f ′|df ′dt1dt2

Qϵ+

π|f |
(II.73)

=
∫∫

Rxy(t1, t2; ϵ+)ψQ(f(t1 − t))ψQ(f(t2 − t))|f |dt1dt2
Q√
π
, ϵ2

+ = Q2
+ −Q2 .

This is equivalent to binding the separated frequencies in the wavelet filters ψ̂Q(f1/f)ψ̂Q(f2/f)
with the factor

√
ψ̂ϵ+(f1/f2) = ψ̂ ϵ+√

2
(f1/f2) (from the integration over f ′ in the first line), indeed

increasing the quality factor in time to Q+ > Q. The resulting number of degrees of freedom
is simply and exactly:

nd =
√

1 + (ϵ+/Q)2 = Q+

Q
, (II.74)

which is precisely what we are looking for in Eqs.(II.70 - II.72).

5.2.5 Canonical kernel for the log-normal wavelet framework

The number of degrees of freedom for time or frequency smoothing Eqs.(II.69, II.74) are similar.
This is more than a coincidence, since Q = Q+ in Eq.(II.68) and Q = Q− in Eq.(II.73) yield
the exact same estimator Sxy(t, f ;Q+, Q−). The identification of the kernel K̂(f1/f, f2/f)
Eq.(II.64) in their definition Eqs.(II.68, II.73) confirms it:

K̂(v′, v) =
√
ψ̂Q+(v′/v)ψ̂Q−(v′v) Q−√

π
, nd = Q+

Q−
> 1 . (II.75)

As a result, there is a single natural estimator for Sxy(t, f ;Q): it requires two different quality
factors Q+ in time and Q− in frequency, and the associated number of degrees of freedom
is simply Q+

Q−
. We call Sxy(t, f ;Q+, Q−) the canonical wavelet-estimator in the log-normal
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framework, which controls analytically both the time-frequency resolution (contrary to multi-
wavelet estimators) and the statistical variability of the quadratic estimator (contrary to other
smoothing estimators).

Eventually, we temper on the practical side the analytic impact of this estimator when
confronted to its efficient implementation. Indeed, our current numerical estimation is based
on the common two-step strategy of computing the wavelet transforms first and then to
smooth their product. This is only compatible with the frequency smoothing computation
of Sxy(t, f ;Q+, Q−) from Eq.(II.68). However, the decrease of the time sampling at increasing
frequencies, which is a key for an efficient computation of the wavelet transforms in the first
step, complicates the smoothing in second step. This practical limitation of our implementa-
tion of the wavelet transform suggests possible room for algorithmic improvements. We tried
a one-step computation exploiting the sparsity of the kernel Eq.(II.75), with no gain in effi-
ciency. This improvement may come from the use of a discrete wavelet transform as a first
step, followed by a change to the log-normal wavelet in the second averaging step.

For lack of it, we mainly apply the practical time-smoothing Eq.(II.70), complying with
our current implementation with a good efficiency, yet very close to the canonical estimation,
with a precisely controlled localization, nQ ≈ Q+ and Q = Q−, and degrees of freedom, nd ≈ n
(for Q and n large enough).

5.3 Significance of the coherence wavelet-estimator
The variability of the estimator can be responsible for a misleading interpretation, especially
for the correlation and coherence estimators, whose square is as close to one as there are few
degrees of freedom in the estimation (equal to one for nd = 1), see Eqs.(II.54, II.58) and the
section 4.2.2. This phenomenon is called spurious correlation or spurious coherence.

While the significance of the coherence estimation is often assessed a posteriori, using well-
constructed surrogates (see [Chavez and Cazelles 2019] in the non-stationary case), it can be
estimated beforehand from the typical statistics associated to the estimator.

In the absence of information on the characteristics of the correlated signals and associated
noises, their estimated coherence can be compared to the one between two independent, jointly
stationary and Gaussian noises. We interpret it as giving the minimum expected level of
spurious coherence. Its statistics is very close to a single-parameter beta distribution, as verified
from numerical simulations, from which explicit levels of significance are straightforwardly
derived.

5.3.1 Distribution of the estimators

Beyond a number of degrees of freedom, the study of the bias and variance of an estimator, and
further, its statistical distribution is of great interest. If known, it allows assessing analytically
the significance of the estimation. In this context of inference, it is appropriate to study the
distribution of the estimator applied to Gaussian noises. Indeed, a Gaussian process is the
simplest one determined by the second moment that we are estimating (the power spectral
density and the coherence), and often the only one that provides analytic results.

The distribution of wavelet-estimators, both for the multi-wavelet and the time-smoothing
methods, has been investigated under the additional assumptions of stationarity of the Gaussian
processes in [Cohen and Walden 2010a,b]. This assumption is appropriate to describe the
influence of the ambient or instrumental noises present in the recordings. The result is as follows:
the estimator for the power spectral density matrix is distributed according to a Wishart
distribution (matrix χ2) and the squared coherence estimator is distributed according to a so-
called Goodman distribution [Goodman 1963]. They both depend on two parameters: the first
one is the number of degrees of freedom nd of the estimator, the second is the average of the
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estimator (for the power spectrum or squared spectral coherence). The condition of stationarity
can be weakened to a certain class of processes whose power spectra are modulated in time,
but their spectral coherence is time-independent [Walden and Cohen 2012].

We focus on the spurious coherence associated to the previously introduced power density
estimators, γsp = γxy(t, f ;Q+, Q−) = Sxy/

√
SxxSyy. A specificity of these wavelet-estimators is

their constant number of degrees of freedom, whatever the time or frequency, so that the spu-
rious coherence has a homogeneous distribution in the time-frequency plane that only depends
on nd = Q+

Q−
. In contrast, a smoothing kernel of constant duration at all frequencies would

have much higher spurious correlations at low frequencies than at higher ones, as described
in [Gurley, Kijewski, and Kareem 2003; Torrence and Compo 1998].

The wavelet-estimator only corresponds to the true spectral coherence of the stationary
Gaussian noises asymptotically, for 1 ≪ Q− ≪ Q+. We do not know how to compute the
expected spurious coherence E[|γsp|2] as a function of γxy(f), Q+ and Q−. In practice, the
background noises in each recording are arguably incoherent, so that we assume: γxy(f) = 0.
In this case, E[γsp] = 0, and the angle of the spurious coherence γsp is uniformly distributed.
We also know that E[|γsp|2], as the variance of the estimator γsp, vanishes in the limit nd →∞.

In this limit, the Goodman distribution for the spurious coherence |γsp|2 cannot be dis-
tinguished from the simpler beta distribution B(1, β) with a single parameter, of mean and
cumulative distribution:

E[|γsp|2] = 1
β + 1 (II.76)

Pr(|γsp|2 ≤ γ2) = 1− (1− γ2)β , (II.77)

where the parameter β takes the role of the number of degrees of freedom. In [Cohen and
Walden 2010b], β corresponds to nd−1. However, the one that best approximates the Goodman
distribution of the spurious coherence might be slightly different, since the second Goodman
parameter has been neglected (set to 0).

Assuming a beta distributed spurious coherence |γsp|2 between incoherent noises is verified
in practice for a certain parameter β, then we can build significance level for the estimated
coherence |γxy(t, f ;Q+, Q−)|2 between two natural recordings. Significance levels correspond
to p-values derived from the beta distribution Eq.(II.77):

p(γ2) ≡ Pr(|γsp|2 > γ2) = (1− γ2)β (II.78)
γ2(p) = 1− p

1
β . (II.79)

Thus, the threshold γ2(p) for observing a significant time-frequency coherence γxy between some
signals x(t), y(t) increases when β and the number of degrees of freedom nd = Q+

Q−
decreases.

This means that a low time-frequency resolution (Q− ≪ Q+) is required to observe small
coherences values reliably. Conversely, strong coherences can still be observed significantly
when the time-frequency resolution is high (and Q− < Q+).

The beta distribution was already proposed to evaluate the significance of the time-
frequency coherence in the context of a multi-wavelet estimator [Brittain et al. 2007], as an
extension of the significance for the spectral coherence. Indeed, the spectral coherence also fol-
lows the Goodman distribution [Carter 1987], hence the beta distribution [Gish and Cochran
1988] when no coherence is expected. Its origin lies in the characterization of the significance
for the sample estimator of the correlation coefficient; for two independent random Gaussian
vectors x, y of length N , we have the spurious correlation |ρsp|2 = |Γxy|2 ∼ B(1

2 ,
N
2 − 1), and

its complex extension |Γx+y+|2 ∼ B(1, N2 − 2), interpreting the random vectors as sampled signal
and using their analytic version.

The relevance of the beta distribution to evaluate the statistical significance and the cor-
respondence between nd and β is then assessed numerically.
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5.3.2 Numerical verification

To verify the relevance of the previous formulas and their robustness to the discretization of
continuous expressions in numerical computations, we simulate the spurious coherence to check
its statistical distribution in the time-frequency plane. We use the practical coherence estima-
tor γsp(t, f) = γxy(t, f ;nQ,Q) defined from a time-smoothing in Eq.(II.71), very close to the
canonical estimation with nQ ≈ Q+, Q = Q−, for which the number of degrees of freedom, close
to n, is approximated by Eq.(II.72): nd ≈

√
1 + n2λ. Obtained from the Laplace’s method, see

Appendix 8, the precision of this approximation is also examined from the numerical integration
of the problematic integral Eq.(A.65).

Figure II.4: Simulation of the spurious coherence from two independent pink (log-correlated
Gaussian) noises x, y: γsp(t, f) = γxy(t, f ;nQ,Q), with the quality factor Q = 5, and the time-
smoothing parameter n = 10. (A) Realization of the squared spurious coherence |γsp(t, f)|2. (B)
Zoom on a shorter timescale, showing the characteristics of the time-smoothing. The colour
scale for the squared coherence in (A) and (B) is aligned with the x-axes of (C) and (D).
(C) Density map that represents the distribution of |γsp|2 in time for each fixed frequency; a
horizontal slice thus corresponds to a histogram: red indicates a high density and blue a low
density. The black line indicates its mean for each frequency, the grey line is the quantile
at 0.9 and the white line is the quantile at 0.99. (D) Sample cumulative distribution of the
simulated squared spurious coherence (black line), and beta distribution B(1, β) Eq.(II.77) with
estimated parameter β = 9.6 (red dashed line). Quantile-quantile plot (inset) of the sample
versus estimated beta distributions (black circle for each percentile), indicating a close to ideal
alignment (red line).

The spurious coherence |γsp(t, f)|2 is simulated from two independent Gaussian noises
x(t), y(t) (real and stationary) of length 221, which lasts more than 1 hour when sampled at 500
Hz. We vary the colour of the noises (both pink or white), the quality factor (Q = 5, 10) and
the value of the time-smoothing parameter from n = 2 to 100. In order to avoid border effects,
that affect the value of the spurious coherence, we only retain the frequency range from 1 Hz to
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100 Hz and use periodic boundary conditions in time. The discretized time step is taken more
than 20 times smaller than the time resolution. Eq.(II.76) provides a simple relation between
the parameter β and the spurious coherence: β + 1 = E[|γsp|2]−1. Estimating the ensemble
average, we can compare the empirical distribution obtained from the simulation with the beta
distribution.

The case of the pink noise for Q = 5 and n = 10 is illustrated in Fig.II.4. An obvious
property of our time-frequency coherence estimator is its homogeneous level of spurious co-
herence everywhere in the time-frequency plane, see Fig.II.4 (A, B). In particular, it does not
change with frequency, as can be observed in the density map of Fig.II.4 (C) obtained from
histograms of |γsp(t, f)|2 for each frequency. This is due to the use of the wavelet-compliant
time-smoothing Eq.(II.63), adapted to each scale.

Exploiting this property, the data aggregated from all frequencies can be merged to esti-
mate β = β(Q, n) from the time-frequency average of |γsp(t, f)|2. A sufficient time resolution
(more than 10 per wavelet resolution δt) and suitable frequency integration depending on the
frequency sampling,

∫∫
dfdt =

∫∫
fdtd log f , are critical aspects of this estimation. We obtain

⟨|γsp|2⟩−1
t,f = β + 1 ≈ 10.6, which is intermediate to n + 1 = 11 and to n = 10 or nd ≈ 10.25.

The accuracy of the beta distribution is strikingly illustrated in Fig.II.4 (D), where the sample
cumulative distribution and the beta distribution with parameter β ≈ 9.6 are precisely super-
imposed. The quantile-quantile plot in the inset helps visualize the slight departure from a true
beta distribution in the last percentiles. This precision improves at higher n and degrades in
the limit n → 1. It means that the p-value p(γ2) associated to a strong coherence are slightly
overestimated (its high significance is slightly underestimated), which is unimportant compared
to the actual coherence value γ2. The coherence value loses its relevance at a low significance.

Figure II.5: Relation between the spurious level ⟨|γsp|2⟩ = 1
β+1 and the number of degrees of

freedom nd of the coherence estimator γxy(t, f ;nQ,Q), Eq.(II.71), when varying n, Q and the
colour of the noises x, y. (A) Spurious level of coherence, simulated (markers), estimated as 1

nd

from numerical integration (thin lines), or approximated by 1
n

(black dotted line) or 1
n+1 (black

dashed line). (B) Details of the result: n is subtracted from ⟨|γsp|2⟩−1 and nd. Markers and
error bars indicate the medians and dispersions from the 0.05 to 0.95 quantiles. The precise
estimation of nd from numerical integration of Eq.(II.65) is compared to its approximation from
the Laplace’s method,

√
1 + n2λ (thick lines). Quality factors: Q = 5 (blue) or Q = 10 (red).

Gaussian noises and Hurst exponents: white H = −1
2 (square) and pink H = 0 (circle).

The decreasing level of spurious coherence for increasing values of n is shown in Fig.II.5
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(A), with few variations when changing the colour of the noise or the quality factor. At small
numbers of statistical degrees of freedom, the level of spurious coherence is overestimated by 1

nd

(thin lines), where nd is precisely computed from numerical integration. Both estimates from
numerical simulation and integration appear bounded by 1

n+1 and 1
n
.

More details are visible in Fig.II.5 (B), where we plot the difference between nd or β+ 1 =
⟨|γsp|2⟩t,f and n. The simulations are reproduced 100 times for each marker, and the 0.05 and
0.95 quantiles are used to construct an error bar around the median. They show an increasing
dispersion caused by a decreasing number of effectively independent time steps (of duration
nδt). In spite of this dispersion, we can clearly observe an increasing discrepancy between
the simulations from pink noises and white noises, stronger for Q = 5 than for Q = 10. For
instance, for Q = 5 and n = 10 we have β = 9.82 ± 0.05 for the white noise (H = −1

2), while
β = 9.62 ± 0.05 for the pink noise (H = 0). While this effect is small, no such difference
between Gaussian processes was predicted, possibly pointing at limitations in our numerical
implementation.

In Fig.II.5 (B), the Laplace approximation of nd (thick lines) is also compared to its
estimates from numerical integration (thin lines): the Laplace’s method slightly underestimates
nd, especially at increasing degrees of freedom. A comparison of Q = 5 and Q = 10 suggests
that this underestimation amounts to a factor λ− 1

8 . The difference between nd and n is also
more important for a small quality factor since

√
1 + n2λ ∼ nλ

1
2 = ne

1
2Q2 .

Although they are close, no precise relation can be given between β and nd: β ≈ nd − 0.5
is acceptable for n < 10, and β ≈ nd − 1 is compatible with the simulations at higher n in
spite of an important dispersion (±1) for various quality factors and noise colours. This is a
limitation of approximating the Goodman distribution as a beta distribution. Nevertheless,
this precision is sufficient to evaluate the significance levels for our numerical implementation
of the coherence estimator.

For instance, consider a time-frequency coherence γxy between two recordings x(t), y(t)
with nd = 10 degrees of freedom, implemented as Q = 5 and n = 10. Using β = 9.7± 0.5, the
threshold for observing a significant coherence with p-value p = 0.1 (90% level of significance)
is |γxy|2 > 1− 0.1

1
β = 0.21∓ 0.01, which is precise enough. A coherence analysis with nd = 10

has a quite precise time-frequency resolution, but only detects significant coherence of modulus
|γxy| >

√
0.21 ≈ 0.46. In contrast, 5 times lower time-frequency resolution (nd = 50 ≈ β + 1)

would distinguish a coherence of modulus near 0.2 as significant (p < 0.1), and a coherence of
modulus 0.5 with a very high significance, p(0.52) < 10−6.

We conclude that the beta distribution B(1, β) is sufficient to evaluate a priori the signifi-
cance levels of the time-frequency coherence estimator in many practical situations. Although
the underlying assumptions of independent, jointly stationary and Gaussian noises can be diffi-
cult to test and even incorrect in many cases. In the absence of more information, this remains
an effective method that we can interpret as giving the minimum expected level of spurious
coherence. The relevance of this approach can be confirmed by comparing spurious coherence
results with the coherence of surrogates. The main limitation for this approach is the situa-
tion of a very small number of degrees of freedom, in which case the Goodman distribution
becomes very different from the beta distribution and concentrates near |γsp|2 = 1. Border
effects are another limitations, causing a local drop of the significance at numerical borders,
such as initial and final times (when periodic boundary condition does not hold), and the max-
imal (Nyquist) frequency (half of the sampling frequency fs of the signals) in the range of the
coherence resolutions nδt and δ log f .
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5.4 Cross-talk between physiological sensors
Here, we anticipate the applications in part B of the analytical tools described in part A of
this thesis, in order to illustrate the time-frequency coherence of natural recordings and their
significance. The recordings are an electroencephalogram (EEG), an electrocardiogram (ECG)
and an airflow sensor signal (AF), respectively measuring the neural, cardiac and respiratory
activities of a sleeping person during a full night. These clinical measures are commonly found in
a polysomnography, that contains many such simultaneous recordings. Their precise description
is left for part B. We show how the coherence puts into evidence cross-talks between these
physiological sensors.

Based on the evaluation the statistical significance, a synthetic representation for the time-
frequency coherence is constructed. The relevance of this approach can be confirmed by intro-
ducing a surrogate signal in the analysis.

5.4.1 Neural, cardiac and respiratory activity in time and frequency

Fig.II.6 (A, B, C) presents their amplitude in time and frequency from a wavelet transform,
X(t, f ;Q), first step to compute their time-frequency coherence. The cardiac and respiratory
rhythmic oscillations are represented as horizontal lines in the ECG and AF (B, C), of high
amplitude and fluctuating frequency (the heart and breathing rates), with vertical lines at
higher frequency for the ECG reflecting its short and intense pulses. In contrast, the EEG
(A) contains a mixture of horizontal and vertical lines, and a wide-band intensity similar to a
coloured noise, heterogeneously distributed in time and frequency. At the top, a hypnogram
indicates the wake and sleep stages of the person, impacting the physiological (especially the
EEG) activity. Fig.II.6 (D) shows the effect of shuffling uniformly the phase of the EEG
spectrum x̂(f): the initially non-stationary signal is “stationarized” while the global power
spectral density is conserved. This yields a phase-randomized surrogate for the EEG, that will
serve as an alternate method to assess the significance of coherence [Lancaster et al. 2018].

Computing the wavelet transform in such a large time-frequency domain is extensive in
memory, and managed by a careful time-frequency sampling that approximates its scale-free
resolution. The frequency domain is divided into frequency bands of an octave in which the
wavelet transform is estimated as distinct matrices. Each matrix is a time-frequency image
with a geometric frequency sampling and a linear time sampling, whose steps are a fraction
(for smoothness) of the practical resolutions δt and δ log f Eq.(I.41). Starting from the highest
octave: each time we compute the next matrix an octave below, we down-sample it in time by
a factor 2 (akin to the discrete orthogonal wavelet transform). This accounts for the frequency
dependence of the time resolution δt = Q

f
√ p̃ . In this way, no memory is wasted on unnecessary

precision in time or frequency, while controlling the degree of smoothness of the representation.
A sufficient time sampling (10 steps per δt or more) will be critical for a precise estimation of
the coherence from the time-smoothing method.

5.4.2 Time-frequency coherence between polysomnography recordings

In the time-frequency coherence computed between two recordings, regions of significant co-
herence provides a way to locate the oscillations or fluctuations that are jointly collected by
both measuring apparatus, regardless of their intensity in each recording. They indicate a
connectivity or “cross-talk” between the sensors, of physiological or instrumental origin, which
are preferably minimized for an optimal specificity of each measure. Such cross-talks can be
observed between the EEG, ECG and AF signals, even though they are very different.

The time-frequency coherence γxy(t, f ;nQ,Q) between pairs of recordings x, y, computed
from the practical time-smoothing estimator, is represented in Fig.II.7 (A, C, E, G), while the
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Figure II.6: Polysomnography recordings of subject 04 from the database slpdb, in time and
frequency. (A) neural activity from the EEG (C3-O1), (B) cardiac rhythm from the ECG, (C)
breathing rhythm from the AF, (D) phase-randomized EEG surrogate. The amplitude (twice the
modulus) of the wavelet transform is colour-coded on a logarithmic scale, and computed with the
quality factor Q = 5. The amplitudes have the physical unit of the signals: all are in millivolt
(mV), except for the airflow (AF) which is in litre per second (l·s−1). The lowest amplitude in
the colour bar corresponds to the resolution of the signals.

spectral coherence γxy(f ;Q) (colour-coded phase and plotted modulus) is shown in panels (B, D,
F, H). The coherence modulus of this wavelet estimator is compared to its Gabor counterpart,
for a simple window of 5 min (Welch’s method). Both coherence moduli are consistent, apart
from their different resolution, obvious at high frequencies.

For both the time-frequency and the spectral coherences, the phase difference measured
as its angle (complex argument) is, once again, colour-coded with the hues in the chromatic
circle. As is Fig.II.1 (D), the modulus of the coherence is coded into the colour saturation.
This hue-saturation coding is ideal for coherence maps, see [Yaesoubi et al. 2015] for a similar
use for fMRI signals. The modulus and its significance are difficult to read in such a synthetic
representation. We improved its interpretation by discretizing the levels of coherence and
associated saturation. In order to distinguish an important range of coherence values, we have
chosen n = 50, i.e. a relatively large number of degrees of freedom: nd ≈ 51 ≈ β + 1 according
to Fig.II.5 (B) for Q = 5. We use Eq.(II.78) to evaluate their significance. The first threshold of
significance is set to a p-value 10−1, i.e. a coherence modulus γ(10−1) ≈ 0.21, below which the
time-frequency region is coloured in white (considered incoherent). Up to the next threshold
γ(10−3) ≈ 0.36, the regions of small but significant coherence modulus have the least saturated
colour. For γxy > 0.36, the coherence is very significant and the saturation increases at each
threshold γ = 0.5, 0.7 (maximum above 0.7).

The most coherent region lies around the breathing frequency, 0.2 Hz, between ECG and
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Figure II.7: Time-frequency coherence γxy(t, f ;nQ,Q) (A, C, E, G) and spectral coherence
γxy(f ;Q) (B, D, F, H) computed between pairs of physiological recordings (see Fig.II.6), x
versus y, with parameters Q = 5 and n = 50. (A, B) EEG versus ECG, (C, D) EEG ver-
sus AF, (E, F) ECG versus AF, and (G, H) EEG versus its phase-randomized surrogate.
The phase of coherence is colour-coded with hues of the chromatic circle. In (A, C, E, G),
colour saturations code for ranges of coherence moduli |γxy|, delimited by the lower thresholds
γ(10−1) ≈ 0.21, γ(10−3) ≈ 0.36, 0.5, 0.7. Black lines materialize a distance nδt from the initial
and final times, beyond which border effects are possible. In (B, D, F, H) the modulus of the
spectral coherence, estimated from Welch’s method with 5 min windows (thin grey line), is pro-
vided for comparison with the wavelet estimator (coloured spots).

AF, Fig.II.7 (E, F). This strong coherence is the imprint of the breathing rhythm in the cardiac
recording, although of very weak amplitude in the ECG, see Fig.II.6 (B). The time-frequency
coherence Fig.II.7 (E) shows that this strong coherence (|γxy| > 0.7) is intermittent and its
phase varies close to opposition: ±π ± π

3 . This explains the smaller value of the spectral
coherence modulus in Fig.II.7 (F). This cardio-respiratory connectivity seems specific to the
sleep stage N2.

The same cross-talk appears with less coherence between EEG and AF, in Fig.II.7 (C),
especially in the second part of the night and again in phase opposition: the breathing rhythm
is also present in the neural recording, although hardly visible in the EEG, Fig.II.6 (A). Cor-
responding to even weaker EEG oscillations, another coherent region (|γxy| ∼ 0.5) in phase
opposition (magenta) can also be noticed below the breathing frequency, that will be linked to
the occurrence of sleep apnea in chapter V.

As a result, some coherence is also observed between EEG and ECG at the breathing
frequency, together with additional coherent regions, for instance when the person is awake
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(187 to 237 min), characterized by shorter duration, broader frequency range and various
phase. We interpret them as motions artefacts, sudden and intense events associated to body
motions, and visible as thin vertical structures in Fig.II.6 (A, B).

Contrary to other the pairs, EEG and ECG in Fig.II.7 (A) are also coherent at higher
frequencies, in a broad band ranging from 1 to 30 Hz, with low to high significance (up to
|γxy| ∼ 0.5). This is caused by the presence of the cardiac rhythm in the EEG, under the form
of a contaminating ECG activity. The coherence range from 6 to 30 Hz is due to the short
cardiac pulses. They must have a very low amplitude in the EEG, since they are invisible
from Fig.II.6 (A) or from a direct inspection of the EEG signal. In this particular range, the
coherence phase ϕxy = ϕEEG− ϕECG is close to quadrature −π

2 , and a dependence to frequency
is noticeable. The phase trend between 6 and 30 Hz can be more precisely described as:
ϕxy ≈ ϕ0 + p̃fτ , where τ ≈ 7 ms and ϕ0 ≈ −2π

3 . Therefore, the apparent phase quadrature,
between the ECG pulses and the corresponding ones in the EEG, is better modelled as a greater
phase shift ϕ0 compensated by a delay τ . This is a first example of delay analysis from the
coherence phase.

The level of spurious coherence is illustrated in Fig.II.7 (G), computed between the EEG
and its phase-randomized surrogate [Lancaster et al. 2018]. Thus, the estimation of the sig-
nificance for low coherence values can be controlled and visualized: the surrogate coherence
only exhibits scattered spots of significance 10−3 < p < 10−1 (consistent with a density of
false positives of about 10% in the time-frequency plane) with a random phase. The size of
these spots is representative of the resolution of the coherence analysis in the time-frequency
plane: their area is of the order of n = 50 time-frequency atoms. The same incoherence or
lack of significance is found in (C, E) at high frequency. The introduction of a surrogate signal
confirms the relevance of our approach, based on independent, jointly stationary and Gaussian
background noises, to predict the level of spurious coherence.

5.4.3 A note on linear correction and partial coherence

Eventually, the time-frequency coherence and power densities between two recordings can serve
to correct numerically their cross-talk, even when appearing with non-stationary and multi-
scale characteristics. This can be particularly useful if a cross-talk between sensors could not
be avoided instrumentally. A recording x corrected “linearly” from the influence of the recording
z, can be constructed from the time-frequency representation:

X/z(t, f ;Q) = X(t, f ;Q)− E[X(t, f ;Q)Z(t, f ;Q)]
E[|Z(t, f ;Q)|2] Z(t, f ;Q) (II.80)

= X(t, f ;Q)− γxz(t, f ;Q)Λxz(t, f ;Q)Z(t, f ;Q) ; Λxz =
√
Sxx
Szz

. (II.81)

The coherence γxz gives a weight and a phase shift to the correction term, and Λxz scales
it. The signal x/z(t) is retrieved by integrating over log-frequencies, see Eqs.(II.9, II.11). By
construction, it is incoherent with z(t). A similar correction operation could be achieved from
the spectral coherence (or the temporal coherence) only, but the resulting linear correction
would be insensitive to non-stationary (respectively multi-scale) characteristics. Thus, a linear
correction in time and frequency is much more precise than in one domain only. In practice,
we estimate the ensemble averages over a sufficient number of statistical degrees of freedom,
nd ≈ n in the following practical estimator:

X/z(t, f ;nQ,Q) = X(t, f ;Q)− Sxz(t, f ;nQ,Q)
Szz(t, f ;nQ,Q)Z(t, f ;Q) . (II.82)
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5. Wavelet-estimators in time and frequency: two paths, one destination

The influence of a recording can also be corrected from a coherence analysis, by comparing
two recordings both corrected for the influence of the third one, x/z, y/z. The result is a partial
coherence:

γxy/z = γxy − γxzγyz√
(1− |γxz|2)(1− |γyz|2)

, (II.83)

where the ideal terms are replaced by time-frequency estimators in practice. This is the first
step of a multivariate (multi-signal) extension for the statistical analysis of correlations, called
partial and multiple correlations [Dwyer 1940; Kendall, Stuart, and Ord 1987]. The time-
frequency coherence estimator is compliant with this theory, able to exploit these relations
between the matrix entries γxy, hence opening perspectives for a time-frequency analysis of
multiple complex recordings beyond both the stationary and the bivariate analysis [Aguiar-
Conraria, Soares, and Sousa 2018; Aguiar-Conraria and Soares 2014]. The principal axes of
maximum covariance have also been proposed to approach power patterns in multiple time
series, by applying a singular value decomposition to the wavelet cross-spectra Sxy [Rouyer
et al. 2008].

Summary of section 5

In the log-normal wavelet framework, there is a canonical time-frequency estimator for the
power density Sxy(t, f ;Q+, Q−), characterized by a simple and explicit relation between
statistical and time-frequency uncertainties. The number of statistical degrees of freedom:

nd = Q+

Q−
, (II.84)

is a ratio of quality factors, controlling respectively the time and the frequency resolutions.
In addition to the trade-off between the time and frequency resolutions controlled by a
single quality factor Q, this second balance between statistical significance and resolution
is the reason for distinguishing a higher quality factor Q+ for the time-resolution and a
lower one Q− for the frequency-resolution.
The canonical estimator can be approximated in practice from a time-smoothing opera-
tion over n wavelet units of duration, so that Q+ ≈ nQ, Q− = Q and nd ≈

√
1 + n2λ.

For the analysis of the time-frequency coherence γxy(t, f ;Q+, Q−), this means that the
higher nd, the more significantly we can distinguish low coherence values from the spu-
rious one expected in the background, but the lower is the time-frequency resolution.
Conversely, the lower nd, the better we can localize coherence between two recordings,
but the lower its statistical significance.
The time-frequency coherence estimated from a pair of independent and jointly stationary
Gaussian noises can be interpreted as the minimum expected level of spurious coherence.
The distribution of the squared spurious coherence is closely approximated by a beta
distribution of parameter β ≈ n, which allows to predict the significance of the time-
frequency coherence observed between two natural signals.
Coherence thresholds corresponding to levels of significance can thus be evaluated from
the pair of quality factors, helping to choose them accordingly. By calibrating the hue-
saturation colour coding of this complex-valued map, we construct a synthetic visualiza-
tion of the significant time-frequency coherence.
This framework makes a bridge between two different perspectives on complex recordings:
oscillations and fluctuations. It clarifies the relation between regular features, localized
in time or in frequency, and irregular ones relying on a statistical ensemble.
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Chapter III

Estimation of rates modulation
for a fluctuating harmony

In this chapter, we aim at constructing practical and generic wavelet estimators for the charac-
teristic and time-dependent frequency of an arbitrary signal that exhibits rhythmic oscillations.
Such signals, oscillating with a certain (but imprecise) regularity, are ubiquitous in nature. A
very familiar example is sound [Daubechies and Maes 1996; Kronland-Martinet, Morlet, and
Grossmann 1987], in particular the one of our voice that will serve as an illustration.

We first present existing concepts built on the time-derivative of the wavelet transform,
namely ridges [Carmona, Hwang, and Torrésani 1997] and frequency reassignment [Auger and
Flandrin 1995]. These ideas are very generic, but their practical use often requires additional
techniques to extract rhythmic features, such as frequency and amplitude modulations. We
introduce a set of rudimentary operations on the wavelet transform that achieve this goal for
the practical applications of the next chapters. With an increasing level of specificity and
associated control parameters, the resulting family of estimators is inferred from the formalism
of the previous chapters, spanning from the instantaneous frequency of the analytic signal at
the beginning of chapter I, to the time-frequency coherence at the end of chapter II.

1 Cyclic dynamics
Some notions associated to oscillatory systems are recalled in this section. A voice sample,
recorded from a female singer, serves to illustrate how the temporal and spectral intuitions are
conserved and combined in the wavelet representation, see Figs. III.1 and III.2.

1.1 Time-periodicity and harmonic spectrum
From a dynamical perspective, a system is oscillatory if its trajectory is cyclic in a certain state
space. In particular, a dynamical phase ϕ(t) ∈ [0, p̃) can be associated to it as a map from time
to the (angular) position in the cyclic orbit, that grows monotonically with time and steadily
within each cycle [Pikovsky, Rosenblum, and Kurths 2001]. Given a signal x(t) that measures
the state of the oscillatory system, the real and imaginary parts of its analytic version x+(t)
Eq.(I.2) can be used as state space coordinates [Kralemann, Cimponeriu, et al. 2008]. The
trajectory of the voice signal Fig.III.1 (A) in this state space is represented in (B). We can
observe a well-defined cyclic orbit, which is far from circular, so that the angular argument of
x+(t) does not coincide with the dynamical phase.

A periodic signal, x(t+τ) = x(t), with period τ , is the particular case where the rate of the
dynamical phase is constant: ϕ̇(t)/ p̃ = f1 = τ−1. The repeated pattern is called the waveform.
A slow modulation of the period, τ(t), does not affect the waveform but slightly dilates it in
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1. Cyclic dynamics

10 20 30 

-0.2
0

0.2
0.4

 A

-0.2

0.2

0.4

0 500 1000 1500
0

0.1

0.2
 B  C

Figure III.1: Voice recording: “A” vowel sung by a female singer, short selection. (A)
Recorded signal x(t). (B) Trajectory of the analytic signal x+(t) in the complex plane. To
be aligned with the real signal, x(t) = 2ℜ{x+(t)} is plotted on the Y-axis, while 2ℑ{x+(t)} is
on the X-axis. (C) Amplitude spectrum 2|x̂T (f)|/T from the Fourier transform x̂T (f) of the
selection of duration T = 35ms. All amplitudes have the signal’s (arbitrary) unit.

time. Similarly, a slow modulation of the oscillation amplitude A(t) dilates the waveform in
the signal’s space, and the addition of another term r(t) in the signal, such as a constant, a
trend or a noise, shifts the original waveform in a deterministic or random direction. This is
summarized by the following model:

x+(t) = A(t)H(eiϕ(t)) + r(t) , (III.1)

where the function H(z) represents the waveform. The simplest wave is called harmonic,
H(z) = z, and corresponds to the slowly modulated pure wave introduced in chapter I, sec-
tion 1.3, which has a circular orbit: z(t) = eiϕ(t). In general, H(z) is not a linear function; for
the voice signal shown in Fig.III.1, it encodes its timbre, here the vowel “A” that is sung. The
corresponding orbit, although non-circular, but it can be decomposed from a Taylor series as a
sum of harmonic (circular) components:

H(z) =
∞∑
n=1

cnz
n , (III.2)

also called harmonics of integer orders n, with frequency fn = nf1. The superposition of all
harmonic components, with complex coefficient cn, encodes the waveform that repeats at each
period τ = f−1

1 . As the period τ = τ(t), the waveform can also be slowly modulated, cn = cn(t).
The Taylor coefficients are precisely the ones of a Fourier series when the analytic signal

x+(t) is exactly periodic (with no modulation). Obtained from the Fourier transform defined in
Eq.(I.1), its one-sided spectrum (for positive frequency) is:

x̂(f) =
∞∑
n=1

cnδ(f − nf1) . (III.3)

Each spectral component is concentrated on a harmonic frequency, integer multiple of the
fundamental frequency f1 = τ−1. For instance, it is clear from the voice spectrum in Fig.III.1
(C), that the fundamental frequency (the voice pitch) is slightly above 250 Hz, and the 4th
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CH. III. Estimation of rates modulation for a fluctuating harmony

harmonics is the one with the highest amplitude. In practice, the harmonic peaks are not as
concentrated as the ideal Dirac deltas, since the signal is finite. They can also be broadened
by modulations of the oscillations, which are more difficult to recognize from the spectrum.

This combination of spectral and temporal information is put into evidence in a time-
frequency representation such as the Gabor and wavelet transforms.

1.2 Quality factor, a cursor separating waves from beats
As a continuum of band-limited analytic signals, the wavelet transform X(t, f ;Q) defined in
Eq.(II.1) naturally extends and combines the above spectral and temporal approaches. At any
fixed frequency, the signal is analytic and contained in a frequency band of width δ log f ; and
at any fixed time, the spectrum characterizes a temporal extent of fδt oscillations (whatever
the considered frequency).

Introduced in Eq.(I.41), the practical time and frequency resolutions of X(t, f ;Q) are
expressed in terms of the quality factor Q as:

fδt = Q√ p̃ ; δ log f =
√ p̃
Q

, (III.4)

for the norm 1 (amplitude). In Fig.III.2, we compare a small and a high value of the quality
factor Q. The frequency resolution is so low for Q = 5 (A, B) that we cannot distinguish
the harmonic structure of the spectrum, except for its fundamental component (f1 ≈ 256 Hz)
and perhaps the first harmonics, in contrast to Q = 25 (C, D) where harmonics are numerous.
Instead, the high time resolution at Q = 5 let us distinguish evenly spaced vertical structures
indicating the regular repetition of the waveform.

Based on the practical frequency resolution, the order n harmonics can be distinguished
from the higher orders for at most δ log f = log n+1

n
. Therefore, at least Q ∼

√ p̃
log 2 ≈ 3.6 is

required to separate the fundamental (n = 1) component from the harmonics n = 2, as observed
at Q = 5 in panels (A, B), but the second gets separated from the third from Q ∼

√ p̃
log 3/2 ≈ 6.2

onwards.
A similar reasoning from the time domain goes as follows: the wavelet should oscillate

at least fδt = n times to resolve the order n harmonics of the waveform, so that we start to
resolve the second harmonics at about Q ∼ 2

√ p̃ ≈ 5, and the tenth harmonics at Q ≈ 25.
Unresolved “harmonics” interfere, resulting in a regular beating at the fundamental frequency,
as confirmed in both illustrated cases (A, C).

These spectral and temporal perspectives are consistently interlaced from the following
harmonic ordering:

n <
(

log n+ 1
n

)−1
< n+ 1 , ∀n > 0 (III.5)

as verified by (log n+1
n

)−1 ∼ n+ 1
2−

1
12n + ... This relies on the fact that the practical resolutions

Eq.(III.4) are inverses of each other, so that they form a unit area of time-frequency uncertainty.
The relevance of the factor

√ p̃ is confirmed by observations, which discards any other option
in Table I.1 for this application. The number n = Q√ p̃ can be considered as an effective order
below which harmonic components are resolved as horizontal lines (waves) and above which they
interfere, forming vertical lines (beats). Put another way, for n < Q√ p̃ , two successive harmonic
components are considered additively, as in cos( p̃nft) + cos( p̃(n + 1)ft), while for n > Q√ p̃ ,
the beating phenomenon occurs and they are considered as a single modulated component,
2 cos(πft) cos( p̃(n+ 1

2)ft), in the wavelet transform.
It is useful to recall the key differences with the Gabor transform in this context of cyclic

dynamics. Any oscillation whose waveform is shorter than the Gabor window is decomposed by
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1. Cyclic dynamics

Figure III.2: Time-frequency representation of the voice recording: “A” vowel sung by a female
singer. (A, C) Wavelet transform for Q = 5 and Q = 25, the colour codes for the amplitude
(twice the modulus). (B, D) Amplitude wavelet spectra, for each time in the selected interval
(light grey lines) and root-mean-squared value (thick red line). The colour scale is aligned with
the amplitude of the spectra, in signal unit (arbitrary).

the transform into harmonic horizontal structures, without restriction on the harmonic order.
Only modulations that are slower than the window are resolved in time. When the Gabor
window does not last long enough to analyse the full waveform, then all harmonics are lost by
lack of frequency resolution, and the transform has rhythmic (beating or vertical) structures
only. Therefore, the form of the Gabor transform crucially depends on how the window’s
duration T compare to the oscillation period τ1 and modulation timescale τ2: the spectral
interpretation requires T ≫ τ1 and the temporal one T ≪ τ2.

With the wavelet transform, the harmonic and rhythmic behaviours are simultaneously
present for any oscillating signal, whatever its period: the transform is scale-invariant. The
time-frequency trade-off is controlled by the quality factor Q: the time-resolution improves with
the harmonic order, limited to about Q√ p̃ , beyond which the frequency resolution is insufficient
to separate harmonic lines, instead producing beats.
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CH. III. Estimation of rates modulation for a fluctuating harmony

Summary of section 1

Oscillations in a voice recording are slowly modulated, with a quite steady waveform.
This natural rhythmic oscillation has a cyclic dynamics, x+(t) has a time period τ = f−1

1 ,
and a harmonic structure of the spectrum x̂(f), with peaks at frequencies f1, 2f1, 3f1, ...
These features are transferred in the time-frequency representation as horizontal lines
—the fundamental and harmonic components— up to a certain order n. At frequencies
f > nf1, the wavelet duration δt is shorter than the period, and successive harmonics are
indistinguishable by the bandwidth δ log f , yielding a beating phenomenon with the same
period τ as the waveform. The definition of both practical time and frequency resolutions
proves consistent for the prediction of the threshold order: n = Q√ p̃ . The quality factor of
the wavelet analysis determines the number of distinct harmonic components that can be
observed for a rhythmic oscillation, as well as the time resolution of their modulations.

2 Time derivative, phase ridges, and oscillating compo-
nents

The wavelet transform with respect to the log-normal wavelet inherits the same exceptional
regularity properties as its wavelet, so that we can differentiate it almost everywhere, even
for a stochastic trajectory. In particular, the derivative of the phase can serve to characterize
precisely the instantaneous frequencies in the voice recording, see Fig.III.3 (A, B).

Furthermore, the log-normal wavelet has the very convenient property of being invariant
under time-differentiation [Altes 1976], whereby most other wavelets would change their shape.
As shown in Eq.(II.14), it takes the form:

Ẋ(t, f ;Q) = ∂tX(t, f ;Q) = i p̃f√λX(t, λf ;Q) , (III.6)

where the factor i p̃f is the Fourier representation of the time-derivative, and a small dilation
factor λ = e

1
Q2 appears.

2.1 Instantaneous rate and frequency
Starting with a real signal x(t), the concept of instantaneous rate arises from the interpretation
of its analytic version x+(t) as a modulated complex wave A(t)

2 eiϕ(t). This particular form is
an accurate model when the signal is a slowly modulated harmonic wave. Its instantaneous
frequency corresponds to ϕ̇(t)/ p̃, given by the real part of the following expression:

Fx(t) = ẋ+(t)
i p̃x+(t) . (III.7)

For the slowly modulated harmonic wave, Fx(t) is mostly real, with a small imaginary part
related to the rate of modulation of the magnitude m(t) = logA(t):

∂t log |x+(t)| = ℜ
{
ẋ+(t)
x+(t)

}
= −ℑ{ p̃Fx(t)} . (III.8)

In contrast, for a real signal (of instantaneous power Px(t) = 2|x+(t)|2) which is wide-band (such
as an irregular stochastic trajectory) or contains several components, Fx(t) can be much more
complex and difficult to interpret. In the general case of a complex signal, the instantaneous
rates from the analytic and anti-analytic signals x±(t) can be distinguished: F±

x (t).
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The expression of the instantaneous rate for the signal x(t) naturally extends, with its
wavelet transform, to:

Fx(t, f ;Q) = Ẋ(t, f ;Q)
i p̃X(t, f ;Q) , (III.9)

introducing, through the quality factor Q, a frequency localization f (scale variable). Thus,
the modulations of several oscillating components, or rhythms, at different scales can be distin-
guished in the time-frequency plane. The result is no more a signal Fx(t) but a time-frequency
field Fx(t, f ;Q) containing all rates associated to each component.

It is instructive to examine its asymptotic behaviour with respect to the quality factor Q,
obtained from the relations Eqs.(II.8, II.10):

Fx(t, f ;Q→ 0) = Fx(t) ; Fx(t, f ;Q→∞) = f . (III.10)

The fully temporal limit Eq.(III.7) is retrieved at a small quality factor (f -localization is lost)
and the fully spectral limit reduces to the scale variable f that is examined. This also means
that at a high enough quality factor, a noise x(t) examined at the scale f can be interpreted
as a slowly harmonic wave. We can verify that the instantaneous rate Fx(t, f ;Q) of the noise
is mostly real, even when the wavelet has a few oscillations.

In practice, the instantaneous frequency is conveniently computed from Eq.(III.6) as:

Fx(t, f ;Q) =
√
λf
X(t, λf ;Q)
X(t, f ;Q) . (III.11)

We can visualize it in comparison to f for the voice recording in Fig.III.3 (D). Near singular
points described in chapter II, section 1.1.3, its behaviour is deduced easily: let (t0, f0) denote
the location of such a phase vortex, characterized by a zero amplitude, X(t0, f0;Q) = 0. Since
the vortex is of unit charge, the amplitude vanishes linearly with the distance to (t0, f0). At
this location, Fx diverges because of its denominator, and it vanishes at (t0, f0/λ) because of
its numerator. Singular points are thus easily identified in Fig.III.3 (D) from their dipolar
behaviour with vertical polarity.

2.2 Oscillating components as horizontal time-frequency ridges
A first approach consists in focusing on time-frequency lines of interest, {tk(s), fk(s)}, as rep-
resentations of components in the signal (parametrized by s, indexed by k). These lines, called
ridges, can be defined in different ways from partial time and frequency derivatives of the Gabor
or the wavelet transforms [Carmona, Hwang, and Torrésani 1997; Delprat et al. 1992; Guille-
main and Kronland-Martinet 1996], depending on the nature of the analysed signal. Suitable
for the representation of an oscillating component, a horizontal ridge can be written f(t), while
a vertical ridge t(f) represents a singular event [Guillemain and Kronland-Martinet 1992]. We
present below elementary definitions of horizontal ridges as a way to characterize the instanta-
neous frequency of oscillating components in the signal from its wavelet transform.

One definition consists in considering only locations for which instantaneous frequency and
frequency scale agree by solving:

ℜ{Fx(t, f ;Q)} = f , (III.12)

as expected for a consistent description of oscillating components. The many lines that satisfy
this first condition are called phase ridges [Lilly and Olhede 2010], in contrast to amplitude
ridges, defined by an extremal modulus: ∂f |X(t, f ;Q)| = 0. These different approaches are
illustrated in Fig.III.3 (C, D).
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Figure III.3: Phase and amplitude in the time-frequency plane of the voice recording. (A)
Signal x(t), and (B) its wavelet transform X(t, f ;Q), of quality factor Q = 10. Both the phase
and the amplitude are represented, as the angle associated to a hue in the chromatic circle,
and the modulus coded by the saturation of the colour. (C) Amplitude only, 2|X(t, f ;Q)|, on
a logarithmic scale in signal’s unit (arbitrary). (D) Instantaneous frequency, ℜ{Fx(t, f ;Q)},
expressed in percentage above or below the frequency variable f . Stable ridges of the fundamental
voice component: amplitude ridges as dotted black lines in (C) and phase ridges as plain black
lines in (D), in two fragments.

A second condition is used to identify oscillating components among these lines. For
amplitude ridges, it consists in retaining only local maxima of the amplitude, ∂2

f |X(t, f ;Q)| < 0,
while for phase ridges, this corresponds to the condition:

∂fℜ{Fx(t, f ;Q)} < 1 . (III.13)

This relies on the observation of a pure wave, whose instantaneous frequency does not vary in
scales (near its ridge). For this reason, we refer to ridges satisfying the second condition as
stable ones, and others as unstable ridges. For instance, the fundamental component of the
voice corresponds to a stable ridge, plotted in Fig.III.3 in a black plain line from the phase
(D) and in black dotted line from the amplitude, with minor difference. All types of ridges are
shown in Fig.(III.4) (A), with unstable ridges in white.

Phase and amplitude ridges are observed to be quasi undistinguishable. That is explained
for stable ridges because the frequency variable f , equated to the instantaneous frequency for
phase ridges, Eq.(III.12), is the peak frequency of the wavelet, that maximizes the amplitude
of a pure wave of horizontal ridge. Both for the phase and the amplitude approaches, the
unstable ridges span phase vortices / zero of the amplitude, so that they are also very close. The
extraction of phase ridges is interrupted at the singular points because of phase indeterminacy,
while amplitude ridges are not. Apart from that, the only visible differences can be spotted
when these mostly horizontal lines are getting close to vertical, see details of Fig.(III.4) (A).

Physical recording such as the voice recording are subject to some background noise of
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2. Time derivative, phase ridges, and oscillating components

instrumental origin. Contrary to the pedagogical signal in Fig.I.1, these signals are not smooth,
at least because of this stochastic component of non-zero power density. For this reason, ridges
and singularities are observed everywhere in their time-frequency representation (contrary to
Fig.I.3). From Fig.(III.4) (A), we can make the following simple observations: ridges are
closed loops, or join borders of the time-frequency domain. Stable and unstable ridges meet at
vertical tangent points, out of which they can be parametrized by time, {t, fk(t)}. Singularities
are located on unstable ridges. At any time, a pair of stable ridges fk(t) < fl(t) are necessarily
separated by at least one simultaneous unstable ridge (and vice versa). Long stable ridges are
associated to well resolved regular oscillations, such as the fundamental component of the voice,
near 28 = 256 Hz in Fig.III.3 (C, D). Numerous in Fig.(III.4) (A), short ridges can be related to
interfering (non-separated) components, such as harmonics of high order, or to the low power
background noise, that remains when the voice stops after t = 4 s.

Stable ridges allow us to extract corresponding locally harmonic components which are
modulated, in phase and amplitude, slowly enough compared to the wavelet size. The oscillating
component associated to a stable ridge fk(t) can be reconstructed by evaluation of the wavelet
transform along the ridge [Delprat et al. 1992; Lilly and Olhede 2010]:

xk(t) = 2ℜ{X(t, fk(t);Q)} , (III.14)

so that x(t) ≈ ∑
k xk(t) up to a residue expected to be small or the signal’s trend [Chui and

Mhaskar 2016].
This idea of summarizing rhythms as time-frequency lines fk(t) gets complicated by the

presence of an important noise compared to the oscillation amplitude, causing singular points
to distorts or interrupts the ridge of the oscillatory component. In the illustration, this only
happens when the voice is evanescent near t = 4.1 s. In this context of a low signal-to-noise
ratio, the extraction and reconstruction of a single oscillatory component as a continuous ridge
has been achieved using a variational approach, by enforcing continuity and optimizing the
trade-off between the regularity of the ridge and the approximate ridge conditions [Carmona,
Hwang, and Torrésani 1997].

Fragmentation also occurs when oscillating components of close frequencies are not sep-
arated; its periodic occurrence is related to the beating phenomenon. For this reason, the
fragmentation of the ridge highly depends on the quality factor. This is illustrated by har-
monic components of order n > 4 of the voice recording in Fig.(III.4) (A), due to the quality
factor Q = 10, i.e. a wavelet duration fδt = Q√ p̃ ≈ 4.

2.3 Time-frequency concentration from reassignment

Closely related to the ridge approach, the reassignment procedure can also concentrate the
representation of oscillatory components along time-frequency lines. It consists in replacing the
original time and frequency variables of the representation for new ones [Auger, Flandrin, et al.
2013; Flandrin, Auger, and Chassande-Mottin 2018]. In particular, the frequency-reassignment
of the analytic wavelet transform changes the scale (frequency) variable for the instantaneous
frequency Eq.(III.9):

(t, f) ← (t,ℜ{Fx(t, f ;Q)}) . (III.15)

By definition, this procedure does not affect phase ridges Eq.(III.12). However, neighbour-
ing locations are attracted towards stable phase ridges and repelled from unstable ones during
the reassignment. Let us denote R the frequency-reassignment operator. Its actions upon the
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CH. III. Estimation of rates modulation for a fluctuating harmony

Figure III.4: Ridges and frequency reassignment of the voice signal. (A) Stable ridges (black
lines) and unstable ones (white lines), superimposed to the wavelet transform squared modulus
(scalogram) for Q = 10. Phase ridges (plain lines) are hardly distinguishable from ampli-
tude ridges (dotted lines). (B) Frequency-reassigned scalogram based on the change of variable
Eq.(III.15). The alternative reassignment Eq.(III.20) is almost identical.

wavelet transform and its square (the scalogram) can be expressed explicitly as:

R[X](t, f ;Q) =
∫
X(f ′, t;Q)δ(f −ℜ{Fx(t, f ′;Q)})|f |df

′

|f ′|
(III.16)

R[|X|2](t, f ;Q) =
∫
|X(f ′, t;Q)|2δ(f −ℜ{Fx(t, f ′;Q)})|f |df

′

|f ′|
, (III.17)

where the Dirac delta handles the change of evaluated variable. The first operation has been
called synchrosqueezing [Daubechies, Lu, and Wu 2011; Daubechies and Maes 1996]. In contrast
but not in contradiction with the original definitions [Auger and Flandrin 1994; Auger and
Flandrin 1995], notice the occurrence of |f | and df ′

|f ′| . This ensures consistency with the choice
of the convention p = 1, instead of p = 2, in the definition Eq.(I.6) of the wavelet transform,
i.e. the same behaviour under frequency integration:∫

R[X](t, f ;Q)df
|f |

=
∫
X(t, f ;Q)df

|f |
=
√ p̃
Q
x(t) , (III.18)

∫
R[|X|2](t, f ;Q)df

|f |
=
∫
|X(t, f ;Q)|2 df

|f |
=
√
π

Q
Px(t;Q) , (III.19)

to retrieve the signal or its time-dependent power Px(t;Q) = Pxx(t;Q) defined in Eq.(II.21).
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2. Time derivative, phase ridges, and oscillating components

The resulting reassigned representations are much more concentrated than the original
ones, since the time-frequency contributions accumulate near the stable phase ridges. This
is illustrated in Fig.III.4 (B). Visually, oscillating components are obtained as time-frequency
lines, ideally discrete for slowly modulated and distinct harmonic components, or spread into
a less local density under the influence of a strong noise level or a loss of regularity in the
oscillation.

Since ℜ{Fx} ≈ Fx ≈ |Fx| for the voice harmonics, or any other components when the
quality factor is high enough, this interpretation does not vary when reassigning as:

(t, f) ← (t, |Fx(t, f ;Q)|) , (III.20)

i.e. using δ(log f |Fx(t, f ′;Q)|−1) instead of δ(f−ℜ{Fx(t, f ′;Q)})|f | in Eqs.(III.16, III.17). When
applied to the voice recording with Q = 10, we cannot distinguish the result from Fig.III.4 (B).

Even though it helps to clarify the time-frequency representation of rhythmic signals, the
reassignment is not in itself a technique for extracting oscillatory components. It has been used
as a preliminary step to the extraction of ridges of maximal amplitude [Su and Wu 2017].

The phase in the wavelet transform seems to give access to sub-resolution information. The
precision in frequency of the reassigned representation would only be available to the wavelet
transform at a very high quality factor. We can wonder whether it bypasses the Heisenberg
uncertainty principle? In our understanding, the time-frequency uncertainty is not modified,
even though the frequency resolution appears entirely “squeezed”. Instead, the frequency un-
certainty is made implicit, rather than explicitly assimilated to the width of frequency peaks
in |X(t, f ;Q)|2. Indeed, the ability to distinguish continuously a pair of harmonic components
with close frequencies does not improve: it is still determined by the quality factor of the
wavelet, subject to uncertainty relations (see section 3.2.3 and Appendix 4).

2.4 Horizontal-vertical correspondence: from rhythms to fractals
All the above concepts still apply when swapping the time and frequency variables, with few
to no changes except their interpretation: regular oscillations forming the horizontal lines of a
rhythm turn into vertical lines pointing to singularities of a fractal.

Instead of obtaining an instantaneous frequency from the time derivative, we get a group
delay from the frequency derivative:

Tx(t, f ;Q) = ∂fX(t, f ;Q)
i p̃X(t, f ;Q) = 1

i p̃ ∂f logX(t, f ;Q) . (III.21)

Vertical phase ridges are obtained at the vanishing delay ℜ{Tx(t, f ;Q)} = 0, or alternatively,
amplitude ridges correspond to ∂t|X(t, f ;Q)| = 0 for each frequency. The stable ones are
∂tℜ{Tx(t, f ;Q)} > 0 for phase ridges, and ∂2

t |X(t, f ;Q)| < 0 (local maxima) for amplitude
ridges. Eventually, the delay can serve to reassign time: (t, f) ← (t−ℜ{Tx(t, f ;Q)}, f).

We recall that there is no simple relation between time and frequency partial derivatives in
the log-normal wavelet framework, as the frequency-derivative accounts for a change of wavelet,
see chapter II, section 1.2.5. We argue that a very close behaviour can be achieved with the
log-normal wavelet, by taking advantage of the small rescaling in the time derivative, Eq.(III.6),
to define a finite differentiation (instead of infinitesimal) in the log-frequency domain:

logX(t, λf ;Q)− logX(t, f ;Q)
log λ = Q2 log ∂tX(t, f ;Q)

i p̃λ 1
2fX(t, f ;Q)

(III.22)

= Q2 log(Fx(t, f ;Q)/f)− 1
2 ≈ i p̃fTx(t, f ;Q) ,
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CH. III. Estimation of rates modulation for a fluctuating harmony

where we have identified and replaced the complex rate Eq.(III.9). The approximate equality
in the last line, that can be written Fx ≈ fλ

1
2 +i p̃fTx , is as precise as λ = e

1
Q2 is close to 1, for

Q large enough. The vertical ridge condition ℜ{Tx(t, f ;Q)} = 0 translates into:

ℑ{logFx(t, f ;Q)} = 0 , (III.23)

providing an interpretation of the angle (complex argument) of Fx(t, f ;Q) as a delay.
Instead of oscillatory components, stable vertical ridges tk(f) focus on singular events

(indexed by k) across scales, and the time-reassignment can help to locate them in time. The
value of the wavelet transform on vertical ridges, called the wavelet skeleton [Muzy, Bacry, and
Arneodo 1994], allows to extract the scaling behaviours of these singularities: |X(tk(f), f ;Q)| ∼
|f |−hk . For the self-similar Gaussian processes introduced in chapter II, section 3.3, hk = H is
the Hurst regularity exponent. It can be directly estimated as minus the real part of Eq.(III.23),
although this estimator fluctuates a lot around the central value H when we vary the time-
frequency location (approaching singular points of zero amplitude).

These noise have a single regularity exponent and are called monofractal. However, inter-
mittent signals, such as turbulent velocity [Arneodo, Bacry, Manneville, et al. 1998] or rainfall
noise [Venugopal et al. 2006], may exhibit multiple scaling, hence called multifractal. They were
originally studied using real wavelets [Argoul, Arneodo, Elezgaray, et al. 1989], that broadly
applies to higher-dimensional fractal objects from dendritic aggregates [Argoul, Arneodo, Elez-
garay, et al. 1990; Argoul, Arneodo, Grasseau, et al. 1989] to galaxies (such as our Milky Way)
and breast tissues [Gerasimova et al. 2014; Gerasimova-Chechkina et al. 2016; Khalil et al.
2006].

The role of the wavelet skeleton, with vertical ridges from the maximum modulus, is twofold
in the context of fractals. First it reduces possibly high-dimensional data to a set of essential
lines of interest able to localize singularities. Then it allows to reliably apply the multifractal
formalism to their wavelet transform by avoiding its zeros, sources of instability. This formalism
has a thermodynamical interpretation [Arneodo, Audit, et al. 1997; Arneodo, Bacry, and Muzy
1995; Muzy, Bacry, and Arneodo 1991], whose partition function may be expressed with our
notations as:

Zx(f, q) = ⟨|Xψ(t, f)|q⟩t , (III.24)

where the order nψ of the wavelet ψ is sufficiently high (see chapter I, section 3.3.2), the q-norm
exponent plays the role of an “inverse temperature” and f →∞ corresponds to the macroscopic
limit in statistical mechanics. On zeros of the wavelet transform, numerical instabilities arise
when q < 0, turning into a mathematical divergence of the partition function when q ≤ −1. In
the thermodynamical limit, the “free energy” is proportional to a (generalized) fractal dimen-
sion, related through the Legendre transform to an “entropy” called the singularity spectrum.
It measures the set of locations in the signal with a given scaling or regularity exponent (“en-
ergy”); there is a single one for a monofractal or a broad continuum of scaling exponents for a
multifractal.

Nothing prevents from using analytic wavelets for a multifractal analysis, quite the opposite
as ψQ benefits from an infinite order Eq.(I.40). This would even be a natural development
beyond the quadratic and spectral analysis presented in chapter II.

We mention here an important difference between the analysis of a real signal with a real or
with a complex (analytic) wavelets: zeros of the wavelet transform are lines in the real case and
points in the second. These singularities are the phase vortices, at the intersection of vertical
and horizontal unstable ridges. For the white Gaussian noise, they form a point process of
repelling particles, that has been recently characterized [Bardenet, Flamant, and Chainais 2020;
Bardenet and Hardy 2021] for different transforms (with the Cauchy wavelet and the Gaussian
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3. Estimating rate signals

Gabor window). The analysis of this “time-frequency gas”, is a complementary viewpoint to
the one of stable ridges [Flandrin 2015; Koliander et al. 2019].

3 Estimating rate signals

When studying a rhythmic system whose characteristic frequency depends on time, we have just
highlighted how the dynamical quantity of interest, f(t), is embedded in the time-frequency
representation of the rhythmic signal. It is not clear yet how to extract it as a stand-alone
signal, whose dynamics could be analysed with the previously developed tools.

A direct ridge approach suggests to start with an exhaustive identification of time-frequency
locations (t, f) satisfying the ridge conditions, Eqs.(III.12, III.13) for the phase ridge. This re-
quires a sufficiently precise time-frequency sampling, improved to some extent by interpolation,
which can be computationally intensive for long signals. Then, contiguous locations (t, f) are
connected into times series, yielding a set of ridge signals fk(t), in particular stable ones, some
of which represent part or (hopefully) the totality of the oscillating component of interest.
Therefore, relevant fragments remain to be sorted, using various criteria about the amplitude
of the oscillation, its time support or its frequency range. While the interruption of the ridges
is expected when the oscillation is lost, the conditions for this interruption is not specified in
this approach.

The reassignment approach is not able in itself to extract the rate signal. But we learn
from it that the information on the modulations of an oscillating component is not only located
on its stable ridge f(t), but also contained in the surrounding region of attraction delimited by
phase vortices, i.e. by the nearest unstable horizontal ridges. The size of this band is determined
by the wavelet band-width, and widened when the signal-to-noise ratio increases.

In the following, let us assume we can specify an approximate frequency band, that contains
the oscillating component of interest. We present different rate signals, estimated by integrating
in this band either a linear or a quadratic expression. Applied to the voice signal, they are
represented in Fig.III.5 in comparison to the frequency-reassigned power density. The narrow-
band estimation centred on the fundamental voice component provides the pitch of the voice
(C, D). In contrast, the wide-band estimation (A, B) takes into account all harmonics, which
results in a voice modulation that is distinct from the pitch. This modulation is representative
of the relative change of amplitude among the voice harmonics, also called vibrato.

3.1 Narrow to wide band estimations

Based of Eqs.(III.7, III.9), we can define a variety of rate signals estimating the instantaneous
frequency of a rhythmic signal, whose oscillating component of interest is contained in a band
B = [fmin , fmax]. For simplicity, this band is kept fixed in time, which is sufficient for our
illustration. Based on an integration in this band, we first detail a “linear” approach (where
linear refers to the integrated expression). To improve its limitations, a second “quadratic”
approach is then introduced. Both agree on the narrow-band limit fB = fmin = fmax, which is
Eq.(III.9) with a fixed f , but their estimations in the wide-band limit differ.

3.1.1 Linear estimator

The first estimator is based on the signal’s instantaneous frequency Fx(t) from Eq.(III.7), but
utilizes the analytic signal partially reconstructed from the band B rather than the complete

76



CH. III. Estimation of rates modulation for a fluctuating harmony

Figure III.5: Wide and narrow band estimations of the time-dependent rate of the full voice
recording. The rate signals (coloured) are plotted above the frequency-reassigned power density
(grey scale in panels A and C). The band B of integration, wide in (A) and narrow in (C), is
the apparent frequency range. (B, D) Zoom of (A, C). The quadratic estimations Eq.(III.27)
(blue lines) are surrounded by the corresponding uncertainty ±∆Fx (light blue area). The linear
estimations Eq.(III.25) (red lines), much more oscillatory for a wide band, are shown in zooms
(B, C) only. The narrow band (C) focuses on the fundamental component of the voice (its
pitch). The wide band (A) averages over all harmonics: it is sensitive to relative variations of
their amplitude (such as a vibrato).

one. Therefore, the instantaneous frequency is estimated as the real part of:

f1(t;B) =
∫
B Ẋ(t, f ;Q)d log f

i p̃ ∫BX(t, f ;Q)d log f . (III.25)

Eq.(III.7) is recovered in the wide-band limit, Fx(t) = f1(t;R+), whereas the narrow-band limit
corresponds to Eq.(III.9): f1(t; {fB}) = Fx(t, fB;Q).

In fact, the case of an intermediary band is very similar, in practice, to choosing:

Fx(t, fB;Q−) ≈ f1(t;B) , (III.26)

where fB =
√
fmaxfmin is the central frequency of the band, and the quality factor Q− < Q has

been decreased so that the frequency resolution δ log f matches the width of B:
√ p̃
Q
≈ log fmax

fmin
.

Indeed, the band integration has the effect of increasing the wavelet band-width δ log f ; see
the change of quality factor in Eq.(II.12), where the kernel plays the role of the band B with
smooth borders instead of sharp ones.

This linear approach of a band-estimation boils down to adjusting the parameters f and
Q in Eq.(III.9), and the condition for a successful estimation has been described previously:
the fixed values f = fB should remain within the region of attraction near the actual phase
ridge f(t). The decrease of the quality factor Q can help to widen this region to a certain
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extent, limited by the influence of other simultaneous noisy or oscillating components in the
signal. Otherwise, the beating phenomenon occurs between these components, and the rate
signal oscillates accordingly. The estimation is inaccurate when the line fB leaves the region of
attraction of the ridge f(t), and unstable when it hits a phase vortex.

Some of these points can be observed in the example of the voice signal, in Fig.III.5 (C, D),
where the estimated rate signal Eq.(III.25) is plotted as a red line. The narrow-band estimation
(D), ∼ Fx(t, fB;Q), follows closely the fundamental voice component, which is well resolved
and separated from other components. It yields the pitch frequency. On the contrary, the
wide-band estimation, ∼ Fx(t;Q), oscillates wildly and at a much higher frequency, because of
the numerous harmonics. Their interference produces a beating at the pitch frequency.

3.1.2 Quadratic estimator

The second approach addresses this instability and beating issue. It consists in averaging
different values of Fx(t, f ;Q) in the band of interest, with respect to the weight |X(t, f ;Q)|2,
in order to favour regions of higher intensity associated to the oscillating component, and mute
unstable ones associated to the phase vortices of vanishing amplitude. The weighted average
formula in the band B simplifies to:

f2(t;B) =
∫
B Ẋ(t, f ;Q)X(t, f ;Q)d log f
i p̃ ∫B |X(t, f ;Q)|2d log f . (III.27)

The narrow-band (non-averaged) limit reduces again to f2(t; {f}) = Fx(t, f ;Q), while the
wide-band limit takes the distinct form f2(t;R+) = Fx(t;Q):

Fx(t;Q) =
∫∞

0 Ẋ(t, f ;Q)X(t, f ;Q)d log f
i p̃ ∫∞

0 |X(t, f ;Q)|2d log f . (III.28)

Less instantaneous as Fx(t) in Eq.(III.7) (except in the limit Fx(t;Q → 0) = Fx(t)), this
estimator has also the interpretation of a time-dependent frequency for its real part, in particular
it is the mean frequency of the reassigned power density (see derivation in Appendix 9), and
its imaginary part relates to ∂t logPx(t, Q), as in Eq.(III.8).

This formulation is especially generic since it does not require to specify a band of interest.
Whenever several simultaneous oscillating components can be distinguished in the signal x at
quality factor Q, the resulting rate estimation is the power-weighted average of their individual
rates. This wide-band rate signal Fx(t;Q) is represented as a blue line in Fig.III.5 (A, B) for
the voice: it is the average instantaneous frequency of the voice harmonic spectrum. We could
expect it to be proportional to the fundamental frequency and thus follow the pitch modulations,
as estimated by the narrow-band version, also a blue line in (C, D). Here, this is not the case,
because the voice timbre is subtly modulated by a vibrato, changing the relative amplitude
of harmonics. In the zoom of panel (B), we notice that it still oscillates at the fundamental
frequency, but at a much smaller extent than its linear counterpart (red line). Indeed, the 4 first
harmonics are distinct at Q = 10, while higher harmonics at not well separated and produce
beats. Therefore, Fx(t;Q) combines much information on the fundamental frequency (pitch)
and the non-circularity (timbre) of the oscillating signal (the voice).

Finally, the case of an intermediary band can be reformulated similarly to Eq.(III.26) in
the linear approach. The corresponding quadratic situation involves two distinct quality factors
Q− < Q+, as exposed in chapter II, section 5.2. Thus, Eq.(III.27) is practically equivalent to:

Fx(t, f ;Q+, Q−) = Sẋx(t, f ;Q+, Q−)
i p̃ Sxx(t, f ;Q+, Q−) ≈ f2(t;B) , (III.29)
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for f = fB fixed, Q− representative of the relative band-width fmax/fmin, and Q+ = Q. Both
limit cases, Q− = Q+ = Q for narrow band and Q− → 0, Q+ = Q for wide band, return to a
single quality factor Q. The only difference is a log-normal frequency weighting instead of the
band integration. As shown in Table II.1, a convenient approximation is provided by smoothing
time over n wavelet durations, with kernel Eq.(II.70). It only requires to compute the wavelet
transform X(t, f ;Q) at f = fB and λfB, see Eq.(III.6), with Q = Q− (Q+ ≈ nQ−).

The interpretation of the real part as a time-dependent frequency is conserved, and the
imaginary part relates to the spectral density rate:

∂t logSxx(t, f ;Q+, Q−) = −2ℑ{ p̃Fx(t, f ;Q+, Q−)} (III.30)

statistical estimator of ∂t logSxx(t, f ;Q), and generalizing Eq.(III.8).
Therefore, these quadratic estimation formulas for the rate of a rhythmic signal in a certain

time-frequency region can be understood as estimators for the following statistical quantities:

Fx(t;Q) ≈ E[ẋ+x+]
i p̃ E[|x+|2] = σ2

ẋ+x+(t)
i p̃ σ2

x+x+(t) (III.31)

Fx(t, f ;Q+, Q−) ≈ E[ẊX]
i p̃ E[|X|2] = Sẋx(t, f ;Q)

i p̃ Sxx(t, f ;Q) , (III.32)

As compared to their “linear” counterparts Fx(t) and Fx(t, f ;Q), they are associated to several
number of degrees of freedom, nd = Q+

Q−
> 1, that brings a statistical interpretation to their

increased stability.

3.2 How precise is the rate estimation?
A horizontal ridge that represents an oscillating component in the signal can be interrupted
from a lack of regularity or a low signal-to-noise ratio. However, the above analysis always
provides an estimation, even for irregular fluctuations. How reliable is the estimation Fx?
In the absence of an oscillating component, we expect it to have a large uncertainty, which
decreases with the regularity of the oscillation.

To express this uncertainty, we start with Eq.(III.28), in particular with the fact that
ℜ{Fx(t;Q)} is the mean instantaneous frequency of the reassigned scalogram, as shown in
Appendix 9. This time-dependent density function over instantaneous frequencies is highly
concentrated on the phase ridge f(t) whenever the signal contains a single slowly modulated
harmonic wave. From this probabilistic viewpoint, we can quantify whether it estimates a
single and well-defined ridge, or not, by computing the variance of this density. The resulting
expression is cumbersome, but luckily, we noticed it simplifies considerably shifting a little from
the original frequency-reassignment with the real part to the alternative one with the modulus
of Fx, see relations Eqs.(III.15, III.20).

For the voice signal, this modification is justified since it is composed of slowly modulated
harmonics, so that Fx(t, f ;Q) ≈ |Fx(t, f ;Q)| ≈ ℜ{Fx(t, f ;Q)}. Actually, this approximate
relation is even good for noisy components, because the quality factor, Q = 10, is sufficient
to impose a slow amplitude modulation compared to the phase. The variance associated to
Fx(t;Q) is therefore defined, in the same spirit as Fx(t;Q) in Eq.(III.28), as follows:

∆Fx(t;Q)2 =
∫∞

0 |Fx(t, f ;Q)− Fx(t;Q)|2|X(t, f ;Q)|2d log f∫∞
0 |X(t, f ;Q)|2d log f (III.33)

=
∫∞

0 |Ẋ(t, f ;Q)|2d log f
p̃2 ∫∞

0 |X(t, f ;Q)|2d log f − |Fx(t;Q)|2 (III.34)

= Pẋ+(t;Q)
p̃2Px+(t;Q) − |Fx(t;Q)|2 . (III.35)
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The integrals can be restricted to the band B of interest, and in both limits Q → 0,∞,
the results vanishes for any kind of signal. The relative uncertainty relates the coefficient of
variation of Fx to a correlation estimator:

∆Fx(t;Q)2

|Fx(t;Q)|2 = |Γẋ+x+(t, t;Q)|−2 − 1 , (III.36)

where the correlation coefficient estimator and its complex version are introduced in Eqs.(II.52,
II.53). This means that the relative uncertainty for the estimation Fx(t;Q) of the ridge fre-
quency f(t) is nothing but a rewriting of the correlation estimator between the signal x(t)
and its time-derivative ẋ(t). Note that we expect ρẋ+x+(t, t) = i for any signal x (harmonic or
stochastic), but its estimator does not reach i in general. It only happens for a pure wave, whose
derivative is obviously in phase quadrature: Γẋ+x+(t, t;Q) = i, the corresponding uncertainty of
its instantaneous frequency vanishes.

This result is straightforwardly extended to frequency localized rate estimations with the
time-frequency coherence:

∆Fx(t, f ;Q+, Q−)2

|Fx(t, f ;Q+, Q−)|2 = |γẋx(t, f ;Q+, Q−)|−2 − 1 . (III.37)

For the voice signal, the uncertainty is computed inside each band and plotted in all panels
of Fig.III.5 as a light blue area, materializing a distance ±∆Fx from the estimated rate signal
(blue line). In the selected time interval of panels (C, D), the wide-band estimate has an
average uncertainty of 40%, and 1% for the narrow-band estimate. It is the indication that
several components are contained in the wide band while only one of them is contained in the
narrow band. This uncertainty rises progressively to above 100% and 20% respectively when
the voice fades.
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Summary of sections 2 and 3

The fluctuating frequency of modulated harmonic components can be estimated at a
much greater precision than the wavelet bandwidth, using the time derivative of their
cycling phase or instantaneous frequency. For a single component oscillation x, this is
the real part of a complex rate signal Fx(t), while the multi-component case requires
extracting particular lines f = fk(t) in its time-frequency version Fx(t, f ;Q), horizontal
stable ridges. In addition to frequency modulations, the complex rate also captures
amplitude modulations in its imaginary part.
Defined from self-consistent conditions on the amplitude or the phase, the extraction
of ridges to produce new modulation signals has practical limitations, such that their
possible fragmentation. Frequency-reassignment, a change of variable from frequency f
to instantaneous frequency, is able to concentrates the amplitude or the intensity of the
time-frequency (linear or quadratic) representation on these stable ridges. While this
operation is insufficient to extract modulation signals, we observe basin of attractions
conferring a certain flexibility in the selection of frequency range of interest.
Assuming a band of interest, we define a generic family of complex rate signals able
to estimate the modulation of a rhythmic oscillation in this band. Compliant with the
previously developed framework for linear and quadratic time-frequency quantities, the
quadratic case has the specificity of a better stability, in relation with a statistical in-
terpretation. Denoted Fx(t, f ;Q+, Q−), it is both generic and sophisticated enough to
estimate a precise and stable rate signal in a certain frequency band, around f of width
controlled by Q−, at the time resolution corresponding to Q+. While the narrow-band
limit returns to a linear quantity, the wide-band limit provides a more naive but espe-
cially generic estimator Fx(t;Q), combining in a weighted average the contributions of
all resolved components and unresolved beats. The example of the voice recording dis-
tinguishes the outcome of the most generic wide-band estimator, capturing its vibrato,
from the more sophisticated one, isolating its pitch modulations. The precision of the
rate estimations relates to the estimated coherence between the signal and its derivative.
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Appendix A

1 Definition of the Gabor / short time Fourier transform
The Gabor transform is defined as follows:

Gw[x](t, f) =
∫
x(t′)w(t′ − t)e−i p̃ft′dt′ =

∫
x̂(f ′)ŵ(f ′ − f)ei p̃(f ′−f)tdf ′ (A.38)

also called short time Fourier transform because the (Gabor) window function w, the canonical
one being a Gaussian function, localizes in time and frequency the usual Fourier transform
(recovered for w(t) = 1). The time and frequency variables are here treated symmetrically, up
to a phase factor. Compared to the wavelet transform, the fundamental difference of this time-
frequency representation lies in the choice of a fixed scale, the time and frequency widths of the
function w. The Gabor window is shifted both in the time and frequency domains, contrary
to the wavelet window which is only shifted in time and dilated in both domains (making the
wavelet transform scale-free).

2 Wigner-Ville perspective on wavelet and Gabor trans-
forms

Let us recall here the definition Eq.(II.27) of the cross Wigner-Ville distribution:

Wxy(t, f) =
∫
x(t+ τ

2 )y(t− τ
2 )e−i p̃fτdτ =

∫
x̂(f + η

2)ŷ(f − η
2)ei p̃ηtdη . (A.39)

For a general wavelet transform (Eq.(I.6) with p = 1), we prove the relation between
Wigner-Ville distributions and the product of wavelet transforms Eq.(II.28):

∫∫
Wxy(t, f)Wψφ

(
t− b
a

, af

)
dtdf
|a|

=
∫∫∫∫

x(t+ τ
2 )y(t− τ

2 )ψ
(
t−b
a

+ ν
2

)
φ
(
t−b
a
− ν

2

)
e−i p̃fτ+i p̃afνdτdνdtdf

a

=
∫∫∫

x(t+ τ
2 )y(t− τ

2 )ψ
(
t−b
a

+ ν
2

)
φ
(
t−b
a
− ν

2

)
1
a2 δ(ν − τ

a
)dτdνdt

=
∫∫

x(t+ τ
2 )y(t− τ

2 )ψ
(
t+ τ

2 − b
a

)
φ

(
t− τ

2 − b
a

)
dτdt
a2

=
∫
x(t1)ψ

(
t1 − b
a

)
dt1
a

∫
y(t2)φ

(
t2 − b
|a|

)
dt2
|a|

=Wψ[x](a, b)Wφ[y](a, b) .

82



CH. III. Estimation of rates modulation for a fluctuating harmony

The analogous result for the Gabor transform, defined in Eq.(A.38) is as follows:∫∫
Wxy(t, f)Wvw(t′ − t, f ′ − f)dt′df ′

=
∫∫∫∫

x(t′ + τ
2 )y(t′ − τ

2 )w
(
t′ − t+ ν

2

)
v
(
t′ − t− ν

2

)
e−i p̃f ′τ+i p̃(f ′−f)νdτdνdt′df ′

=
∫∫∫

x(t′ + τ
2 )y(t′ − τ

2 )w
(
t′ − t+ ν

2

)
v
(
t′ − t− ν

2

)
δ(ν − τ)e−i p̃fνdτdνdt′

=
∫∫

x(t′ + τ
2 )y(t′ − τ

2 )w
(
t′ + τ

2 − t
)
v
(
t′ − τ

2 − t
)
e−i p̃fτdτdt

=
∫
x(t1)w(t1 − t)e−i p̃ft1dt1

∫
y(t1)v(t2 − t)ei p̃ft2dt2

= Gw[x](t, f)Gv[y](t, f) .

3 Change of wavelet formula
We prove here the formula for changing of wavelet:

Wr[s](a, b) = C−1
φψ

∫∫
Wψ[s](a′, b′)Wφ[r]

(
a′

a
,
b′ − b
a

)
da′db′

a|a′|
; Cφψ =

∫
φ̂(v)ψ̂(v)dv

|v|
,

(A.40)

which can be understood as a change of basis in a continuous and overcomplete context. The
reconstruction formulas Eq.(I.15) (r = δ) and Eq.(I.14) (r = δ = φ) and the reproducing kernel
formula r = ψ follow as special cases.

To demonstrate it, we prove first the simpler “Plancherel-Parseval theorem for wavelet
transform”:

C−1
φψ

∫∫
Wψ[s](a, b)Wφ[r](a, b)dadb

|a|
=
∫
ŝ(f)r̂(f)df =

∫
s(t)r(t)dt , (A.41)

where the usual theorem only refer to the second inequality. We use the definition of the
wavelet transform from the frequency domain, simplified using a property of the Dirac delta δ,∫∫
h(x)ei p̃z(y−x)dzdx =

∫
h(x)δ(y − x)dx = h(y), in the following:∫∫

Wψ[s](a, b)Wφ[r](a, b)dadb
|a|

=
∫∫ ∫

ŝ(f)ψ̂(af)ei p̃fbdf
∫
r̂(f ′)φ̂(af ′)e−i p̃f ′bdf ′ dadb

|a|

=
∫∫∫

ŝ(f)r̂(f ′)φ̂(af ′)ψ̂(af)
(∫

ψ̂(af ′)ei p̃(f−f ′)bdb
)

dfdf ′ da
|a|

=
∫∫

ŝ(f)r̂(f ′)
∫
φ̂(af ′)ψ̂(af)da

|a|
δ(f − f ′)dfdf ′

=
∫
ŝ(f)r̂(f)

(∫
φ̂(af)ψ̂(af)da

|a|

)
df

=
∫
ŝ(f)r̂(f)df

∫
φ̂(v)ψ̂(v)dv

|v|
.

Notice that the integral
∫ da

|a| is important to get the last equality. Indeed, among measures
dµ(a), it is the only one that is invariant with respect to varying f real: it is the Haar measure
of the group of real numbers with multiplication.

Next we introduce new variables (a, b), differentiating the integrated ones by a dash, that
turn r(t) into the scaled and shifted wavelet r( t−b

a
) 1
a
, i.e. r̂(af)e−i p̃fb, to obtain the wavelet

transform with respect to this new wavelet in Eq.(A.40). The correct arrangement of the
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original (dash) and new variables are identified inside the wavelet φ after a change of variable
af = f ′: ∫

r̂(af)e−i p̃fbφ̂(a′f)ei p̃fb′df =
∫
r̂(f ′)φ̂(a′f ′/a)ei p̃f b

′−b
a df/|a| , (A.42)

the scale is a′

a
and the time is b′−b

a
which ends the proof.

Eq.(A.40) can be written as the wavelet transform of a wavelet transform (as a signal)
with respect to another wavelet transform (as a wavelet), integrated over all scales:

Wr[s](a, b) = C−1
φ,ψ

∫
WWφ[r](a′/a,·)[Wψ[s](a′, ·)](a, b)da′

|a′|
,

where the dots indicate the transformed time variable b′.

4 Entropic uncertainty
The well known Heisenberg uncertainty relation of physics is a mathematical inequality that
limit the product of the spread of a function with the one of its Fourier transform, see def-
inition in Eq.(I.1), in our case the time-width and the frequency-width, see Eq.(I.31). The
bound is saturated by Gaussian functions. It can be deduced from the bounded sum of their
Shannon entropies. Originally based on the 2-norm, the uncertainty relation has been general-
ized [Babenko 1961; Beckner 1975; Hirschman 1957] to other norms, related to the notion of
Rényi entropies. This is called the entropic uncertainty, based on the sharp Hausdorff-Young
or Babenko-Beckner inequality:(√

p
∫
|x(t)|pdt

) 1
p

≥
(√

q
∫
|x̂(f)|qdf

) 1
q

(A.43)

holds whenever 1
p

+ 1
q

= 1 and 1 < p ≤ 2 ≤ q.
Further assuming that |x(t)|2 and |x̂(f)|2 have a unit energy:

Exx =
∫
|x(t)|2dt =

∫
|x̂(f)|2df = 1 , (A.44)

we can interpret them as normalized densities and compute their Rényi entropy, defined for
any probability density function ρ(u) as:

Hα[ρ] = 1
1− α log

(∫
ρ(u)αdu

)
, (A.45)

for α ̸= 1, and the case α→ 1 coincide with the Shannon entropy.

H1[ρ] = −
∫
ρ(u) log ρ(u)du . (A.46)

Eq.(A.43) can be turned into a bound for the sum of the Rényi entropies:

H p
2

[
|x|2

]
+H q

2

[
|x̂|2

]
≥

log p
2

p− 2 +
log q

2
q − 2 − log 2 , (A.47)

so that for p, q → 2:
H1

[
|x|2

]
+H1

[
|x̂|2

]
≥ 1− log 2 . (A.48)

The exponential Shannon entropy bounds the standard deviation ∆ρ by below:

eH1[ρ] ≤
√
p̃e∆ρ , ∆2

ρ =
∫
u2ρ(u)du−

(∫
uρ(u)du

)2
. (A.49)

This implies the usual Heisenberg uncertainty relation:

∆|x|2∆|x̂|2 p̃ ≥ eH1[|x|2]+H1[|x̂|2]−1 ≥ 1
2 . (A.50)
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5 Orthogonal analytic wavelets: from Morse to log-normal
Following Eq.(I.25), we consider the standardized version of the full Morse family of orthogonal
wavelets:

φ̂
(k)
β,γ =

(
ve

1−vγ
γ

)β
L

(α−1)
k

(
2βvγ
γ

)
, α = 2β + 1

γ
, (A.51)

where generalized Laguerre polynomials L(α′)
k are defined in Eq.(I.17).

We prove here their convergence to the Q-parameterized “log-Hermite” orthogonal family
of wavelet ψ̂(k)

Q (v) defined in Eq.(I.46), in the scaling limit γ → 0 and β → ∞ with Q =
√
βγ

fixed. We recall that this convergence is proved for the order k = 0 thanks to the series
Eq.(I.35).

In order to prove the high orders, we focus on the orthogonal polynomials. All of them
can be studied at once by introducing the generating functions of the (generalized) Laguerre
and (physicist’s) Hermite polynomials, simply given here:

∞∑
k=0

L
(α−1)
k (x)ϵk =

( 1
1− ϵ

)α
e−x ϵ

1−ϵ (A.52)

∞∑
k=0

Hk(y)ω
k

k! = e2yω−ω2
, (A.53)

from which any order k polynomial is recovered as their kth derivative with respect to ϵ, ω
evaluated at zero.

The choice of the variable ϵ is intentional since the parameters α, x in the Laguerre gen-
erating function diverges in the scaling limit: we will choose ϵ→ 0 vanishing at a suitable rate
to compensate for their divergence. From the following Taylor expansions at the second order:

ϵ

1− ϵ = ϵ+ ϵ2 +O(ϵ3) ; − log(1− ϵ) = ϵ+ ϵ2

2 +O(ϵ3) ,

we can rewrite the Laguerre generating function as:
∞∑
k=0

L
(α−1)
k (x)ϵk = eα(ϵ+ ϵ2

2 )−x(ϵ+ϵ2)+O(αϵ3, xϵ3) .

Now we replace, the parameters by their expression for the standardized Morse wavelets, :

log
∞∑
k=0

L
(α−1)
k (x)ϵk = (α− x)ϵ+

(
α

2 − x
)
ϵ2 +O(αϵ3, xϵ3)

= 2β + 1− 2βvγ
γ

ϵ+
β + 1

2 − 2βvγ

γ
ϵ2 +O

(
β

γ
ϵ3,

βvγ

γ
ϵ3
)

= 2β
(

1
2βγ + 1− vγ

γ

)
ϵ+ β

γ

(
1 + 1

2β − 2vγ
)
ϵ2 +O

(
β

γ
ϵ3,

βvγ

γ
ϵ3
)

∼ 2Q
√
β

γ

(
1

2Q2 − log v
)
ϵ− β

γ
ϵ2 +O

(
β

γ
ϵ3
)

−→ 2
(

1
2Q −Q log v

)
ω − ω2 , ω =

√
β

γ
ϵ ,

where we assume v finite and take the scaling limit in the last lines, with vγ−1
γ
→ log v, ϵ→ 0 so

that ω =
√

β
γ
ϵ is finite and β

γ
ϵ3 = ωϵ→ 0. We obtain the Hermite generating function with the

parameter y = 1
2Q −Q log v, which explains how Eq.(I.46) is obtained from the Morse wavelet

family.
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6. Asymptotic transforms for limiting quality factors

6 Asymptotic transforms for limiting quality factors
Consider a standardized and symmetric analytic wavelet ψ = φβ,γ, defined in Eq.(I.25). In
certain asymptotic conditions for the wavelet and its quality factor, the wavelet transform of
a centred signal x(t) (i.e. assuming x̂(0) = 0) can reach fully localized and well-known limits,
the analytic signal and the Fourier spectrum:

lim
Q→0

Wψ[x](f−1, t)
ψ̂(1)

= x+(t) (A.54)

lim
Q→∞

Wψ[x](f−1, t)
ψ(0)

= x̂(f)ei p̃ft|f | . (A.55)

Indeed, the wavelet spectrum φβ,γ with Q =
√
βγ tends to the Heaviside step function Θ(v)

at a vanishing quality factor, and to the Dirac delta δ(v − 1) at a diverging one [Lilly and
Olhede 2009], when suitably normalized. More precisely these are double limits on the Morse
parameters: the first case is reached when β = 0 = γ or when one of them is zero the other one
being finite, while the second case is valid when β → ±∞ with γ finite or diverging with the
same sign (but not when γ diverges alone). This subtlety disappears when using the log-normal
wavelet ψ = ψQ, Eq.(I.33).

While the symmetry of the Morse wavelet in the time domain is important to relate the
transform to the analytic signal, its standardization is essential to express the asymptotic
relation to the spectrum, otherwise complicated by cases of diverging characteristic wavelet
frequency. We present below proofs of these equalities.

For the first limit, we notice that any standardized Morse wavelet of finite exponents β, γ,
as well as the log-normal case, is positive and finite at all positive frequencies and zero anywhere
else (analytic), so that it tends to the Heaviside step function when raised to a vanishing power
limϵ→0 ψ̂(f)ϵ → Θ(f), except for the undefined zero frequency. This works with Q for the log-
normal wavelet ψ̂Q = (ψ̂1)Q

2 and with β for the standardized Morse φ̂β,γ = (φ̂1,γ)β. Therefore,
the associated wavelet transform of a signal tends in this limit to the definition of the analytic
signal, Eq.(I.2), where the assumption x̂(0) = 0 removes the ambiguity at f = 0. For a vanishing
parameter γ, the result is the same for a standardized Morse wavelet φ̂β,γ(v) = (ve

1−vγ
γ )β,

because the expression vγ−1
γ

is a deformed logarithm, the usual one corresponding to the limit
γ → 0 for which ve

1−vγ
γ → ve− log v = 1 for all positive v. The normalization by ψ̂(1) (where 1

is the standardized peak frequency) just ensures that the height of the peak is normalized to 1.
For the second limit, we rely on the interpretation of ψ̂ as a density function in the

frequencies (or in log-frequencies), normalized to a unit weight by its integral over frequencies∫∞
0 ψ̂(v)dv = ψ(0) (respectively by

∫
ψ̂(v)d log v = Cψ for log-frequencies). In the limit of a

diverging quality factor, this normalized density function is increasingly localized at the peak
frequency v∞ = 1 so that it approximate increasingly well the Dirac delta, sometimes called
a nascent delta function: lim

N→∞
ρ(Nx)Ndx = δ(x)dx. It is easy to show it for the log-normal

wavelet normalized by CψQ , where x = log v with the quality factor as the diverging parameter:

ψ̂Q(v)C−1
ψQ

d log v = e− 1
2 (Q log v)2Qd log v√ p̃ = ρ(Q log v)Qd log v ,

with ρ the standard Gaussian density function. In the definition Eq.(I.7) of the wavelet trans-
form from the frequency domain, v = af ′ = f ′

f
and the integrator is df ′ = f ′d log f ′ =

f ′d log v, so that ψ̂Q(f ′

f
)C−1

ψQ
df ′ = f ′ρ(Q log f ′

f
)Qd log f ′. In the limit Q → ∞, we replace it

by f ′δ(log f ′

f
)d log f ′ = f ′δ(f ′ − f)df ′, so that x̂(f)ei p̃ftf remains after the integration (the

86



CH. III. Estimation of rates modulation for a fluctuating harmony

Dirac delta evaluates the integrand at f ′ = f). When f < 0, then f ′ is also negative and we
use instead df ′ = |f ′|df ′

|f ′| , which explains the absolute value in x̂(f)ei p̃ft|f | The normalization
by ψ(0) instead of Cψ is equivalent in the limit of a diverging quality factor since the peak
frequency is one: δ(v − 1) = δ(log v).

7 Comparison of general covariance estimators
We provide details for the discussion around the definition of a wavelet-estimator Rxy(t′, t;Q)
Eq.(II.39) for the general covariance σ2

xy(t′, t) = E[x(t′)y(t)] of centred stochastic processes x(t)
and y(t). More precisely, we compare:

Rxy(t′, t;Q) =
∫
X(t′, f ;Q)Y (t, f ;Q)df

|f |
Q√
π

(A.56)

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q) =

∫
X(t, f ;Q)Y (t, f ;Q)ei p̃fτ df

|f |
Q√
π

. (A.57)

The first observation is their agreement for τ = t′−t = 0: Rxy(t, t;Q) = Ralt
xy (t, t;Q) = Pxy(t;Q).

Then, we examine the asymptotic behaviours for limiting quality factors, applying the
results computed in Appendix 6. In particular, Eq.(II.8) yields:

Rxy(t′, t;Q→∞) ∼ Q√
π

p̃
Q2

∫
x̂(f)ŷ(f)ei p̃f(t′−t)|f |2 df

|f |
∼
√

2 p̃
Q

∫
x̂(f)ŷ(f)ei p̃f(t′−t)|f |df

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q→∞) ∼

√
2 p̃
Q

∫
x̂(f)ŷ(f)ei p̃fτ |f |df .

Both approaches agree in this limit, which is not well-defined since the inverse of Q vanishes
for Q→∞.

Notice the asymptotic stationarity. The presence of the factor |f | in the integral is a major
difference with the stationary case Eq.(II.24):

Rxy(τ) =
∫
Sxy(f)ei p̃fτdf = lim

T→∞

∫ x̂T (f)ŷT (f)
T

ei p̃fτdf .

The role of the diverging duration T is played by the diverging quality factor.
We recognize in the prefactor

√
2 p̃
Q

the inverse of the dimensionless time-resolution for
quadratic expressions: fδt = Q√

2 p̃ , see Table I.1. In practice, the finite duration T must contain
at least one resolution unit, so that it constrains the choice of a maximum quality factor to
the one of a minimum frequency: Qmax√

2 p̃ ∼ fminT ; in particular, setting the minimum frequency
down to fmin = T−1 yields a maximum quality factor as low as Qmax ∼

√
2 p̃.

Similarly, applying Eq.(II.10) in the limit of a vanishing quality factor leads to:

Rxy(t′, t;Q→ 0) ∼ Q√
π

∫
xsgn(f)(t′)ysgn(f)(t)df

|f |

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q→ 0) ∼ Q√

π

∫
xsgn(f)(t′)ysgn(f)(t)ei p̃fτ df

|f |
,

where sgn(f) = ± is the sign of f . The integral diverges while the quality factor vanishes,
so that we need to disambiguate it. The ambiguity dissipates for the first definition, we use
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ψ̂Q(f1/f)ψ̂Q(f2/f) = ψ̂√
2Q

(√
f1f2/f

)
ψ̂Q/

√
2(f1/f2) to derive:

Rxy(t′, t;Q) =
∫∫

x̂(f1)ŷ(f2)
∫
ψ̂Q(f1/f)ψ̂Q(f2/f)df

|f |
ei p̃(f1t′−f2t)df1df2

Q√
π

=
∫∫

x̂(f1)ŷ(f2)
∫
ψ̂√

2Q

(√
f1f2/f

) df
|f |
ψ̂Q/

√
2(f1/f2)ei p̃(f1t′−f2t)df1df2

Q√
π

=
∫∫

x̂(f1)ŷ(f2)ψ̂Q/√
2(f1/f2)ei p̃(f1t′−f2t)df1df2

∫
ψ̂√

2Q(v)
√

2Q√ p̃ d log v

=
∫∫

x̂(f1)ŷ(f2)ψ̂Q/√
2(f1/f2)ei p̃(f1t′−f2t)df1df2

Rxy(t′, t;Q→ 0) =
∫∫

x̂(f1)ŷ(f2)θ(f1/f2)ei p̃(f1t′−f2t)df1df2

= x+(t′)y+(t) + x−(t′)y−(t)

replacing the limit wavelet spectrum by the Heaviside step function θ. This proves Eqs.(II.22,
II.40).

For the alternative definition, however, the ambiguity remains, as a sign of the discrepancy
between this instantaneous limit and the spectral approach:

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q) =

∫∫
x̂(f1)ŷ(f2)

∫
ψ̂Q(f1/f)ψ̂Q(f2/f)ei p̃fτ df

|f |
ei p̃(f1−f2)tdf1df2

Q√
π

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q→ 0) =

∫∫
x̂(f1)ŷ(f2)

∫
θ(f1/f)θ(f2/f)ei p̃fτ df

|f |
ei p̃(f1−f2)tdf1df2

Q√
π

=
∫∫

x̂(f1)ŷ(f2)θ(f1/f2)
∫ ∞

0
esgn(f1)i p̃fτdlog f ei p̃(f1−f2)tdf1df2

Q√
π

.

The integral with respect to f presents a logarithmic divergence, as in Eq.(II.47). Therefore,
we follow the same strategy of regularization by introducing a minimum frequency T−1:∫ ∞

T−1
ei p̃fτdlog f =

∫ ∞

T−1
cos( p̃fτ) + i sin( p̃fτ)dlog f

= γ + log T

p̃τ +
∫ ∞

T−1
1− cos( p̃fτ)dlog f + isgn(τ)π2 − i

∫ T−1

0
sin( p̃fτ)dlog f

= γ + log T

p̃τ + Cin
(
T

p̃τ
)

+ sgn(τ)iπ2 − iSi
(
T

p̃τ
)

, (A.58)

where we have introduced γ the Euler-Mascheroni constant and special functions called the
trigonometric integrals:

Cin(y) =
∫ ∞

y
1− cosx dlog x =

∞∑
n=1

(−1)n y2n

(2n)! 2n (A.59)

Si(y) =
∫ y

0
sin x dlog x =

∞∑
n=1

(−1)n y2n+1

(2n+ 1)! (2n+ 1) . (A.60)

They describe alternating polynomial corrections to this logarithmic divergence, related to the
Gibbs phenomenon, an oscillation that appears when truncating at a finite cut-off frequency.
Assuming τ ̸= 0 (i.e. not the special case of the variance or power), we can neglect them when
T →∞ since Cin(0) = Si(0) = 0. This gives a more precise view of the problem:

Ralt
xy (t+ τ

2 , t−
τ
2 ;Q→ 0) ∼

∫∫
x̂(f1)ŷ(f2)θ(f1/f2)

(
γ + log T

p̃τ + sgn(f1τ)iπ2

)
Q√
π
ei p̃(f1−f2)tdf1df2

∼ Q√
π

log T

p̃τ
(
x+(t)y+(t) + x−(t)y−(t)

)
,
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where constant terms have been neglected for Q small enough.
Once again, we recognize in the prefactor Q√

π
the inverse of the log-frequency resolution for

quadratic expressions: δ log f =
√ p̃√
2Q , see Table I.1. It should not exceed the ratio between the

largest and the smallest scale; in particular, the result Rxy(t′, t;Q → 0) can only be recovered
from the alternative Fourier definition for δ log f = log T

p̃τ and τ → 0. This explains our choice
Eq.(A.56) for a wavelet-estimator of the general covariance.

8 Laplace’s method applied to time-smoothing estima-
tor

The Laplace’s method aims at approximating certain integrals of a positive function by the
integral of a Gaussian which has the same global maximum up to second order (peak value and
curvature). Provided that the integrated function is indeed twice differentiable at its unique
maximum, the precision of the approximation relies on the existence of a large exponent α, en-
suring that essential contributions to the integral come from the neighbourhood of the maximum
value of the integrated function. We introduce the 2-dimensional form of this approximation
for a double integral of a bivariate function:

G(α) =
∫∫

eαg(x,y)dxdy (A.61)

≈ p̃
α

det[−∂x∂yg(x0, y0)]−
1
2 eαg(x0,y0) , (A.62)

where (x0, y0) is the position of the global maximum of the function g(x, y), ∂x∂yg(x0, y0) is its
Hessian matrix evaluated at the maximum, and det refers to its determinant.

We now apply it to the estimation of the significance of the practical time-smoothing
estimator defined in Eqs.(II.70, II.71). This estimator is characterized by a kernel that takes
the following form in the frequency domain:

K̂(v, v′) = ψ̂Q(v)ψ̂Q(v′)χ̂n(v − v′) Q√
π

= e−Q2
2 (log v)2−Q2

2 (log v′)2−(nQ2 )2(v−v′)2
. (A.63)

It is associated to a number of statistical degrees of freedom nd is defined in Eq.(II.65) from
the ratio of the integral expressions:

(∫
K̂(v, v)dv

)2
=
(∫
|ψ̂Q(v)|2dv Q√

π

)2

= E2
ψQψQ

Q2

π
= λ

1
2 (A.64)

∫∫
|K̂(v, v′)|2dvdv′ =

∫∫
e−(Q log v)2−(Q log v′)2− (nQ)2

2 (v−v′)2Θ(v)Θ(v′)dvdv′Q
2

π
, (A.65)

with λ = e
1
Q2 . We use the Laplace’s method to approximate the second double integration,

where we identify:

λ
1
2β2

∫∫
eαg(x,y)dxdy =

∫∫
e

1
2Q2 −(Q log v− 1

2Q )2−(Q log v′− 1
2Q )2− (nQ)2

2 (elog v−elog v′ )2
d log vd log v′

α = (nQ)2

2 λ (A.66)

(x, y) = (log v − 1
2Q2 , log v′ − 1

2Q2 )/β ; β = n√
2
λ

1
2 (A.67)

g(x, y; β) = −x2 − y2 − (eβx − eβy)2 . (A.68)
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9. Mean instantaneous frequency from the reassigned power density

The maximum is 0 at (x0, y0) = (0, 0) and the Hessian matrix at the maximum is

−∂x∂yg(x0, y0) =


2 + 2β2 −2β2

−2β2 2 + 2β2



with determinant 4 + 8β2. Therefore, we obtain Eq.(II.72):

∫∫
|K̂(v, v′)|2dvdv′ ≈ λ

1
2β2G(α; β) = λ

1
2 (1 + n2λ)− 1

2

nd ≈ (1 + n2λ) 1
2 , (A.69)

whenever (nQ)2

2 λ is large.

9 Mean instantaneous frequency from the reassigned power
density

Here we consider a real and oscillating signal x(t), and we relate the generic quadratic estima-
tion for its time-dependent rate, Fx(t;Q) defined in Eq.(III.28), with the frequency-reassigned
scalogram Eq.(III.17). In particular, the real part is its mean instantaneous frequency.

Since the signal is real, the scalogram is symmetric with respect to frequency: |X(t,−f ;Q)|2 =
|X(t, f ;Q)|2, as well as the frequency-reassigned scalogram. The mean frequency of the real
signal would always be zero, without restriction to positive frequency. For this reason, we con-
sider the frequency-reassigned scalogram of the analytic version of the signal x+(t), which only
reassign values of the half-plane (t, f > 0) to (t,ℜ{Fx(t, f ;Q)}.

For more clarity, let us normalized the frequency-reassigned power density Eq.(III.17) of
the analytic signal x+(t) as:

ρx+(f |t;Q) = R[|X|2](t, f ;Q) Q√
π
Px+(t;Q)−1 , (A.70)

so that it takes the form of a probability density function for the instantaneous frequency, at
each time. The normalization:

∫
ρx+(f |t;Q)df

|f |
= 1 , (A.71)

is given by Eq.(III.19), except that Px+(t;Q) = 1
2Px(t;Q).

This density function is highly concentrated on a phase ridge f(t) whenever the signal
contains a single slowly modulated harmonic component.

Now we use the definition of the frequency-reassignment and the wavelet-based instanta-
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neous frequency that underlies it, to prove that ℜ{Fx(t;Q)} is the arithmetic mean of ρx(f |t;Q):

⟨f | t;Q⟩x =
∫
f ρx(f |t;Q)df

|f |
(A.72)

=
∫
f
∫∞

0 δ(f −ℜ{Fx(t, f ′;Q)})|f ||X(t, f ′;Q)|2d log f ′ df
|f |∫∞

0 δ(f −ℜ{Fx(t, f ′;Q)})|f ||X(t, f ′;Q)|2d log f df
|f |

=
∫∞

0 ℜ{Fx(t, f ′;Q)}|X(t, f ′;Q)|2d log f ′∫∞
0 |X(t, f ′;Q)|2d log f ′

=
∫∞

0 ℜ{
Ẋ(t,f ′;Q)
i p̃X(t,f ′;Q) |X(t, f ′;Q)|2}d log f ′

1
2Px(t;Q)

= ℜ
{∫∞

0 Ẋ(t, f ′;Q)X(t, f ′;Q)d log f ′

i p̃ ∫∞
0 |X(t, f ′;Q)|2d log f ′

}
= ℜ{Fx(t;Q)} . (A.73)

We find back the generic quadratic estimation formula Eq.(III.28).
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Part B

Physiological rhythms:
from recordings to interactions
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Chapter IV

Cardio-respiratory rhythms and their
modulations

Physiology, in particular the one of the human body, is our biophysical system of interest in this
chapter and the following. What better way to observe the dynamics of a living organism than
by starting with its vital rhythms? Based on several existing datasets, detailed in Appendix 1,
the phenomenology of the cardiac and respiratory intertwined activities is revisited from a
wavelet perspective.

The breath and the heart beat forms a duo that is studied from the extraction of their
rates form the recording of their activity, followed by their comparison, first as a time-frequency
coherence of their modulations, then as a frequency ratio. In practice, these extraction and
comparison operations can take diverse forms and multiple steps, whose reconciliation into a
common and synthetic language seems a hopeless task; anyway, we endeavour to express them
with the log-normal wavelet framework as a syntax. Of course, there already exists numerous
methods to extract relevant biological observables from the physical measures, some of them
being readily available and optimized in specific situations, such as getting the heart rate from
an electrocardiogram. However, several limitations motivates their complete recasting into a
wavelet framework. The jump from physical measure to biological observable is processed al-
gorithmically, usually from a set of rules, highly specific to the measuring apparatus, and from
classical computational methods beyond their original hypothesis. From an analytic viewpoint,
this is a “black box” that obscures theoretical developments in Biophysics. From a practical
viewpoint, this constitutes a proliferation of context-dependent criteria and adjustable parame-
ters. We propose to translate these expert skills into the mathematical syntax developed in part
A, from the processing of raw recordings to their analysis. We focus on essential physical con-
trol parameters, such as time-frequency domains and quality factors, distinct from contingent
parameters of the numerical implementation, such as the sampling of the wavelet transform,
constrained by the physics and optimized for speed. This constitutes a progress towards a sound
and synthetic observational framework to decipher the complex dynamics of living systems.

The extraction of rhythmic modulations from generic estimators, developed in chapter III,
is applied in the first section to the estimation of the heart rate variability. Different levels of
sophistications are presented, with a single to multiple control parameters which are discussed,
and their precision is compared statistically to a conventional heart rate estimation from the
PhysioNet cardiovascular signal toolbox [Vest, Da Poian, et al. 2018; Vest, Poian, et al. 2019]
on a PPG and ECG database [Karlen et al. 2013].

In the next section, we study cardio-respiratory interactions as a coherence (see chapter II)
between modulations of the cardiac frequency and fluctuations of the respiratory rhythm [Faes,
Pinna, et al. 2004; Saul, Berger, Chen, et al. 1989; Thomas, Mietus, Peng, and Goldberger
2005]. Two kinds of respiratory signals are considered: either directly the recorded breathing
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oscillations, or its estimated frequency and amplitude modulations; the latter is shown to
circumvent important limitations of the former. The statistics over the large Sleep Heart Health
Study polysomnography database [Quan et al. 1997; Zhang et al. 2018] highlight three different
timescales of interaction with specific phase relations.

Finally, the coordination and possible synchronization between the cardiac and respira-
tory rhythms is reformulated in terms of ratios of their rate, also called “pulse respiration quo-
tient” [Scholkmann and Wolf 2019], that we measure from the recording as a time-dependent
distribution of the instantaneous frequency ratio. As described in [Bartsch, Liu, Ma, et al. 2014;
Bartsch, Schumann, et al. 2012], its variability undergoes sudden transitions between different
sleep states, illustrated on two individual polysomnographies.

1 The Heart beat
The heart has a central role in the circulatory system of vertebrate, pulsing blood in a rhythmic
way and irrigating all organs in the body. Among tetrapods, breathing orchestrate rhythmically
the exchange of gas between the blood and the environment. Therefore, the cardiac and
respiratory rhythms are intertwined, finely regulated and interacting together and with other
functions of the organism, in particular with the nervous system. While of quite well-defined
characteristic timescales, these quasi-periodic activities are fluctuating, in frequency and in
amplitude, in a non-stationary and multi-scale way. We examine the fluctuations of the cardiac
rhythm, especially the heart rate, before studying its interaction with the respiratory and neural
rhythms contained in physiological recordings.

We discuss its recording techniques, the importance of uncovering the variability of the
heart rate, the difficulty of a sound physical interpretation of the heart rate and its realization in
the wavelet formalism, followed by its concrete estimation compared to conventional techniques.

1.1 Recording the cardiac rhythm
Many techniques are available for recording the cardiac rhythm, relying on different types of
physical measurement. The shape of the recorded cardiac oscillations is highly dependent on
the choice of the recording method (see Fig.IV.4), and contains different information. While
an electrocardiography measures the electric activity of the heart, initiated in the pacemaker
cells of the sinoatrial node and conducted to muscular fibres, a photoplethysmography optically
measures the oxygenation of the blood, via the absorbance of haemoglobin affected by peripheral
blood pulses [Kranjec et al. 2014; Tamura 2019].

In the course of this thesis, we compared the following types of recording of the human
cardiac activity: (i) blood pressure (BP) monitoring, (ii) electrocardiography (ECG), (iii) pho-
toplethysmography (PPG), compared in Fig.IV.4, as well as (iv) IR thermography.

Among BP monitoring techniques, the intra-arterial one is the most direct measurement
of the state of the circulation, but it is also the most invasive method, requiring the placement
of a catheter, with all the implied limitations.

The ECG is the most common clinical technique: once amplified, the electric potential
between electrodes in contact with the skin on the chest and limbs provides a clear signal with
sharp oscillating pulses, despite various possible artefacts (due to patient motions, changing
skin-electrode contact, power-line interference, baseline wander...) [Bansal, Khan, and Salhan
2009; Cuiwei Li, Chongxun Zheng, and Changfeng Tai 1995; Saxena, Kumar, and Hamde 2002].

The PPG is another conventional clinical technique, based on a light emitter/receptor
(visible to near infrared) on various part of the body. Particularly inexpensive and portable,
the fingertip pulse oximeter gained recently a broad popularity for its ability to estimate the
blood oxygen saturation level at home. This type of recording is also being integrated into

95



1. The Heart beat

wearable devices (watch, smartphone, ...) for cardio-respiratory monitoring applications. Its
repeating pattern is a simpler and smoother pulse, making it potentially more vulnerable to
artefacts.

Infrared thermography is a non-contact technique collecting the thermal electromagnetic
radiations in the far infrared wavelengths. From the theory of the blackbody radiation, it
images the body surface temperature. In some regions of interest such as vascularized area,
the cardiac pulse can be detected as periodic variations in the thermal map. However, it is
more expensive and the temporal resolution is limited and more prone to noise. In addition to
purely thermal characteristics, a thermogram is also influenced by the spatial motions of the
body, whose analysis is left outside the scope of this thesis. Introduced for illustrative purpose
in Fig.II.2, a temperature signal derived from an IR thermogram and containing a tenuous
cardiac oscillation is also analysed in Appendix 2.

Both ECG and clinical PPG require contact, cables, which may not be adequate in every
situation. This was the reason for the development of non-contact techniques such as infrared
thermography. Alternative, such as RGB imaging (via a simple camera) or capacitively coupled
(distant) electrodes, that especially inexpensive but subject to strong artefacts and require a
more complex processing [Kranjec et al. 2014]. The possibility to handle the various forms of
recorded cardiac oscillations would extend to new experimental situations, less and less invasive,
more and more accessible.

1.2 Motivation: measuring the cardiac variability
Orchestrating the double circulation of the blood to oxygenate tissues, the contractile and
rhythmic cardiac activity is adjusting constantly to the needs of organs (e.g. during physical
activity), the breathing state (for an optimal gas exchange in lungs), the pressure in peripheral
vessels (themselves adjusting by vasoconstriction or vasodilation), etc. In particular, the heart
rate is finely regulated by the stimulatory (adrenergic / sympathetic) and inhibitory (cholin-
ergic / vagal or parasympathetic) branches of the autonomic nervous systems, respectively
increasing and decreasing it via a combination of electrical, chemical and mechanical signalling
pathways [Opie 2004].

The variability of the heart rate has been linked to healthiness, and the lack of it to higher
risk of diseases. Moreover, it provides precious insights into the activity of the autonomic
nervous system, whose reciprocal action through the sympatho-vagal balance only constitutes
a simplified description. In particular, a “fast” variability (at the breathing frequency or higher)
is associated to vagal modulations, while a slower variability, possibly coexisting with the faster
one, would rather be linked to sympathetic modulations (or both of them). The diversity of
these slow and fast modulations of the heart rate are shown in Fig.IV.1 for several subjects. A
long-standing interest into this variability produced various metric based on the estimation of
the heart rate or period, and their correct quantitative interpretation is still under extensive
investigation [de Geus et al. 2019].

While blood pressure (BP) or pulse oximetric (PPG) measurements are well-representative
of the peripheral circulation, an electrical recording (ECG) close to the heart provides a direct
monitoring of its activity. All these recording methods can serve for the estimation of the heart
rate. An ECG is typically found among multiple cardiac recordings, and it provides details on
the cyclic activity of the heart; for these reasons, we use it for illustration.

The cycle starts with the electrical depolarization of pacemaker cells of the sinoatrial
node, stimulated and inhibited respectively by the sympathetic and parasympathetic nerves.
The electrical impulse propagates, see Fig.IV.2 (A), and excites atrial myocytes, provoking the
contraction of the two atria. Its front is delayed in the atrioventricular node while the two
ventricles fill with blood (diastole). The depolarization wave then rapidly propagates across
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Figure IV.1: Heart rate variability for 4 different subjects (A, B, C, D) for the capnobase
dataset. Here, the cardiac frequency fc(t) is estimated from ECG recordings. A wavelet-
estimator (red line) is compared to the reference estimator from the PhysioNet Cardiovascular
Signal Toolbox based on the jqrs algorithm (black line), showing close agreement.

the ventricles, whose myocytes contract and eject blood out of the heart (systole). The repolar-
ization of cardiac muscle tissues complete the cycle [Opie 2004]. The resulting electromagnetic
field can be effectively modelled as the result of a moving dipole, see Fig.IV.2 (B), undergoing
a specific cycle both in strength and direction of the associated vector [Mohrman and Heller
2018]. It is measured at the surface of the skin as differences in the electric potential. The
particular recorded waveform varies with the placement of the electrodes on the chest, but
invariant features in the cardiac pulse allow to identify the phases of the heart cycle.

The extrema of these oscillating patterns are denoted by the letters P, Q, R, S and T,
see Fig.IV.3, as alternating local maxima and minima. The P oscillation marks the atrial
depolarization, whereas the strong Q-R-S pattern represents the ventricular depolarization,
followed by the repolarization during the T oscillation. The detection of the Q-R-S pattern,
which is very sharp, is the most common strategy to define the heart period τc(t) as the R-R time
interval. As a reference conventional method, we use the jqrs algorithm from the PhysioNet
Cardiovascular Signal Toolbox [Vest, Poian, et al. 2019], which first compute the Q-R-S intensity
using a matched filter (band-pass) and a sequence of signal processing operations [Behar et al.
2014; Johnson et al. 2014]. Then, maxima of the intensity are detected in the resulting positive
pulse train from a thresholding procedure. To validate the detection method or reject unreliable
intervals, a signal quality index (SQI) can be computed, for instance from a comparison with
another detector [Vest, Da Poian, et al. 2018]. An automated error correction, that interpolates
missing beats and removes false ones based on physiological assumptions, can improve the
estimation of the heart period (N-N intervals for “normal”), so that the adjustment of sufficient
detection parameters (such as thresholds) can yield satisfactory results without the need for
expert (but less reproducible) modifications.
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1. The Heart beat

Figure IV.2: Heart’s electrical activity. (A) Pacemaker cells of the sinoatrial node (SA) induce
the depolarization of cardiac cells, which initiates the contraction of the heart and generates a
net cardiac dipole. (B) Typical vectorcadiogram: this dipole, characterized as a vector, undergoes
a cyclic trajectory at each heart beat. Adapted from [Mohrman and Heller 2018].

Figure IV.3: Typical
waveform of an ECG
recorded on the chest: P,
Q, R, S and T patterns,
and R-R time interval.
Depending on the subject
and the position of elec-
trodes, the S pattern can
be more important than
R, the T pattern can be
more pronounced.

1.3 Heart rate: but what is it?

These signals of repeating cardiac patterns have in common a varying periodicity τc(t), the
heart period or inter-beat interval, equivalently expressed as its inverse the heart rate or car-
diac frequency fc(t) (c for cardiac). Although intuitive in practice, this apparently simple
characterization of the fluctuating cardiac activity can be quite paradoxical from a technical
perspective. Is the cardiac rhythm a wave or a pulse train? Frequency or time-localized? We
depict this most elementary biological quantity according to the dynamical approach intro-
duced in chapter III, section 1: the heart rate is related to the phase ϕc(t) of a cyclic dynamics
as ϕ̇c(t) = p̃fc(t). We recall how its physical interpretations, both temporal and spectral, are
preserved and captured in the wavelet formalism. Different estimators for the heart rate signal
are then compared, from the most generic version to the more sophisticated ones.

1.3.1 Cardiac harmony: beats or waves?

Looking at the BP, ECG and PPG recordings in Fig.IV.4, the signals (A, B, C) could be
modelled either as a modulated wave Eq.(III.1), with a steadily growing cardiac phase ϕc(t)
and waveform H, or as a pulse train whose beats h(t− tj) happen at each time of a sequence
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tj with amplitude aj:

x(t) = A(t)H(eiϕc(t)) + r(t) (IV.1)

x′(t) =
∞∑

j=−∞
ajh(t− tj) + r′(t) . (IV.2)

Because of its sharp QRS pattern, the ECG signal is often treated as a pulse train. The
smoother BP and PPG signals can be more easily associated to a modulated wave. Both
descriptions would only coincide for a very regular rhythm, when the signal is close to periodic:
tj+1 − tj ≈ τc(t) = p̃/ϕ̇c(t), aj ≈ A(t), h(t− tj) ≈ H(eiϕc(t)), tj < t < tj+1, which is unnatural
for the cardiac rhythm (unless with a pacemaker).

Figure IV.4: 10 seconds of cardiac activity recorded with different measuring techniques: (A,
D, G) intra-arterial blood pressure (BP in mmHg), (B, E, H) electrocardiogram (ECG in µV)
and (C, F, I) photoplethysmogram (PPG in arbitrary unit). Signals x(t) on selected intervals
for subjects 3 (A, B) and 2 (C). (D, E, F) Nearly cyclic trajectory of twice the analytic signals
2x+(t): its real part (x(t)) is plotted against its imaginary part (the Hilbert transform of x(t));
positive rotation is here clockwise. (G, H, I) Spectral amplitude on the selected intervals of
duration T = 10 s, computed in the signals’ unit as twice the modulus of the Fourier transform
2|x̂(f)|/T (thin black lines) and wavelet transform 2|X(t, f ;Q)| with Q = 30 (thick light grey
lines, stacked for each sample of t).

In spite of these different interpretations, the cardiac dynamics undergoes a cyclic trajec-
tory. The orbits are well visible, as represented in Fig.IV.4 (D, E, F) in the state space made of
the real and imaginary parts of the analytic signal x+(t), Eq.(I.2). Hence, a dynamical cardiac
phase ϕc(t) that parametrizes its cyclic orbit can also be associated to the ECG signal [Krale-
mann, Cimponeriu, et al. 2008], see also the discussion in chapter III, section 1.1. Sign of the
inexact periodicity of the physiological rhythms, the orbits do not collapse on a single closed
curve, due to amplitude modulations (clearly of respiratory origin for the ECG (B) and the
PPG (C)), and from the presence of a varying trend, see BP in (A, D).
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Note that a clean orbit can correspond to a rhythmic signal of slowly varying period but
with constant waveform. When the amplitude also varies slowly, the angle of x+(t) still coincides
with the genuine dynamical phase ϕc(t) in the case of a slowly modulated simple wave (sine
or complex exponential model of chapter I, section 1.3). As can be observed in (C, F), the
PPG signal is centred and approximately circular so that its angle effectively counts cycles.
Even though it differs from ϕc(t), the angle ℑ{log x+(t)} estimates it in a simple way, so that
it has been called a protophase [Kralemann, Cimponeriu, et al. 2008]. Similarly, a protophase
may be constructed from the analytic BP signal; however, it requires a preliminary detrending
(low-pass filtering) to centre the orbit.

Unluckily, the ECG signal, is too far from circular (E) / sinusoidal (B) to use its angle
directly as a protophase: it winds several times per cycle. Yet, its specific PQRST local extrema
each correspond to quite precise values of the dynamical phase, especially RS extrema which
are the sharpest, whose detections yield a time sequence tj such that ϕc(tj+1) = ϕc(tj). Since
the phase increases steadily within each cycle, it can be estimated by interpolation, and the
same for the heart period τc(t) estimated from the discrete inter-beat intervals tj+1 − tj. The
difficulty to estimate the cardiac phase ϕc(t) from a wave model of the ECG is commonly called
a “non-linearity” issue, abstractly referring to the waveform function H(z) (in fact non-circular
as z = eiϕc(t)), and calls for the spectral distinction of circular components zn of different orders
n.

On a time interval containing few cycles, a cardiac signal is periodic enough for its spectrum
to be harmonic, Eq.(III.3): it is decomposed into circular components, cycling with frequencies
nfc(t). The typical heart rate in this interval is found straightforwardly at the frequency of the
fundamental component, i.e. the first peak in the harmonic sequence. Each peak is associated
to a Fourier coefficient, encoding the pulse or the waveform. For all recordings, the discrete
harmonic structure with distinct orders n are easily recognizable in the amplitude spectra (G,
H, I) of Fig.IV.4, despite an important perturbation in the case of the BP (G) (partly due to
a missing beat (A) that compromises the periodicity). For the PPG (I) and the BP (G), the
amplitude of the harmonics is decaying fast at increasing orders n, reflecting the weak non-
circularity of these cardiac oscillations. In contrast, the second harmonic of the ECG (H) has
a higher amplitude than the fundamental (first) one and numerous orders are visible, sign of
the strong non-circularity of the ECG oscillation.

In the amplitude spectra (G, H, I), the amplitude of the wavelet transform matches the
one of the Fourier transform because the wavelet lasts as long as the selected interval (with
Q√ p̃ ≈ 12 oscillations). The factor 2 in their definition allows comparing directly their peak

value to the amplitude of the corresponding harmonic wave in the signal. For longer durations,
the Fourier amplitude gets more and more noisy, because of rhythmic fluctuations, so that
the estimation of the power spectrum is preferred. The amplitude spectrum is estimated from
the mean-squared modulus of the wavelet transform, similarly as the power spectral density
Sxx(f ;Q), see Eq.(II.23). Their explicit relation is given here, for a signal x(t) and with a
quality factor Q:

2⟨|X(t, f ;Q)|2⟩
1
2
t = 2

(√π
Q
Sxx(f ;Q)|f |

) 1
2 . (IV.3)

In the following, amplitude spectra are preferred to power spectra for their oscillatory interpre-
tation (instead of a stochastic one): the height of its frequency peaks directly provides a mean
amplitude (radius) of the corresponding harmonic oscillation in the signal. The time-dependent
amplitude is provided by twice the modulus of the (unaveraged) wavelet transform.
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1.3.2 Wavelet strategy and selection of the quality factor

The ability to discriminate slow and fast oscillatory contributions in the frequency domain
comes at the cost of losing the time dependence of the identified rate in the analysed portion of
recording. This can be recovered from a time-frequency approach, as hinted in Fig.IV.4 (G, H,
I), where the Fourier spectra restricted to a 10-second interval (thin black lines) superimposed to
the time-varying wavelet spectra at a high quality factor (Q = 30), stacked for each time sample
(thick light grey lines). The spread in frequency and amplitude of such a “persistence spectrum”
directly represents the temporal variability of the cardiac rhythm. This is shown later with
greater details on a longer 1-min ECG recording in Fig.IV.9 (C), together with the amplitude
of the wavelet transform X(t, f ;Q) (B) with Q = 8. At this lower quality factor, less harmonic
components are visible, whereas distinct sharp impulses are well represented. The choice of
the quality factor is crucial in the time and frequency interpretations of the wavelet transform,
through its relation to the time-frequency resolution fδt = (δ log f)−1 = Q√ p̃ , Eq.(I.41).

Consider Fig.IV.5 where the same cardiac activity, simultaneously recorded from a PPG
(A, B) and an ECG (C, D), is represented in the time-frequency domain using two different
quality factors. As a first remark: all panels contain the cardiac rhythm as high amplitude
(yellow) structures, that are mostly horizontal (waves) or vertical (pulses). An acceleration of
the heart beat is readily observable as an increase in pulses density or in wave frequency. These
slender regions of high amplitude repels zeros (dark blue singular points) that accumulates in
interstices, adopting the same horizontal or vertical alignment.

Figure IV.5: Time-frequency representation of a PPG (A, B) and an ECG (C, D), simultane-
ously recorded on subject 1, computed with different quality factors: Q = 2.5 (A, C) or Q = 10
(B, D). Colours code for the amplitude, which is twice the modulus of the wavelet transform,
of signals’ unit, arbitrary here.

To resolve the heart rate variability down to the scale of a single oscillation, the time
resolution should be fδt ∼ 1, so that the quality factor would be at most of the order of
Q ∼

√ p̃ ≈ 2.5. This is illustrated in panels (A, C) where the cardiac rhythm is essentially
composed of high amplitude time-localized pulses, joining at the cardiac frequency. Yet, it is
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insufficient to exhibits the harmonic structure of the spectrum: the order n harmonics can be
distinguished from the higher orders for at most δ log f = log n+1

n
, so that at leastQ ∼

√ p̃
log 2 ≈ 3.6

is required to separate the fundamental component from the next harmonics. In panels (B, D),
we can verify that the quality factor Q = 10 is sufficient to distinguish clearly the 3 first
harmonics from higher orders, in accordance with the spectral interpretation.

A similar reasoning from the time domain goes as follows: at least fδt = n wavelet
oscillations are required (fitted in a period of the rhythm) to resolve the order n harmonics, so
that we start to resolve the second harmonics at about Q ∼ 2

√ p̃ ≈ 5, and the fourth harmonics
atQ ≈ 10, see panels (B, D) of Fig.IV.5. Quick variations of the cardiac rhythm compared to the
resolution fδt ≈ 4 results in interferences in the harmonic lines. These spectral and temporal
perspectives are consistently interlaced from the harmonic ordering: n < (log n+1

n
)−1 < n + 1

Eq.(III.5).
Most of the rhythmic amplitude is found in the first harmonics for the PPG, whereas

it is concentrated in pulses in the ECG. The advantage of the wavelet representation is the
variety of approach that are available to study the cardiac rhythm: either temporal via the
phase or pulse extraction, or spectral via frequency peak detection depending on the quality
factor. Whether the cardiac rhythm is circular or pulsatile, a small quality factor (Q ≈ 5) is
beneficial compared to a higher one to resolve its fast temporal variability, see Fig.IV.6 (A, B).
The spectral perspective (C) is not adequate in this context to estimate the heart rate because
of the lack of frequency resolution, unless the frequency-reassignment Eq.(III.15) is used; based
on the time-derivative of the phase, this is equivalent to a temporal approach.
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Figure IV.6: ECG recording of subject 3 and cardiac frequency. (A) Signal on a selected in-
terval of high variability of the cardiac frequency. (B) Time-frequency representation of ECG,
computed with the quality factor Q = 5. Colours code for both the angle (hue) and the modulus
(saturation) of the wavelet transform (see Fig.II.1 of chapter II). (C) Amplitude spectra ob-
tained either from the Fourier transform (thin line) or from the wavelet transform (thick line)
Eq.(IV.3). The cardiac frequency fc(t) is represented in (B) as a thick black line, superimposed
to the fundamental cardiac component.

However, the spectral distinction of the fundamental component from higher harmonic
orders at each time opens the possibility to relate heart rate and cardiac recording in a very
elementary way: it is the time-derivative of the angle of the fundamental component. Thus,
the cardiac frequency fc(t) is identified with its stable ridge, defined in Eqs.(III.12, III.13) and
illustrated for the ECG in Fig.IV.6 (B). Compared to the instantaneous frequency of the analytic
signal Eq.(III.7), the spectral decomposition relieves the estimation of the cardiac phase from
the activities at faster or slower scales. While the separation from higher harmonics reduces
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Generic formula wide-band narrow-band approximation
⟨Ẋ⟩
i p̃⟨X⟩ Fx(t) Fx(t, f ;Q) f1(t;B)
⟨ẊX⟩
i p̃⟨|X|2⟩ Fx(t;Q) Fx(t, f ;Q+, Q−) f2(t;B) , Fx(t, f ;nQ,Q)

Equation III.7, III.28 III.9, III.29 III.25, III.27, IV.4

Table IV.1: Summary of wavelet-estimators for the complex rate Fx of a real signal x(t),
as developed in chapter III. The real part ℜ{Fx} is interpreted as the frequency modulation
and the imaginary part ℑ{Fx} is related to the amplitude modulation. The first row contains
linear estimators, which can be numerically unstable (divergent), and their quadratic and stable
counterpart are in the second row. Quadratic estimators reduce to linear ones in the limit cases
Q = 0 (wide-band) or Q+ = Q− = Q (narrow-band). Narrow-band estimators reduce to wide-
band ones in the limit Q,Q− → 0, losing their frequency localization. In the generic formula,
⟨⟩ refers to a band integration (wide or narrow) of the wavelet transform X(t, f ;Q).

non-circularity, slow perturbation of the cyclic orbit are also cleaned, such as the influence of
the breathing rhythm, that can be noticed around 0.25 Hz in the PPG for Q = 10, Fig.IV.5
(B).

This quite universal approach, however, finds practical limitations when most of the rhyth-
mic intensity settles out of the fundamental component, as is the case for some ECG recordings
where a tenuous fundamental component competes with a stronger second harmonics. The ex-
traction of the ridge for the fundamental component, can also be fragmented under the influence
of an important noise level, complicating further signal analysis. We address these difficulties
and their practical treatment in the next section.

1.4 Extracting the heart rate variability
There exists a huge number of processing method to estimate the heart rate, which are highly
dependent on the recording technique [Bansal, Khan, and Salhan 2009; Elgendi et al. 2016;
Kranjec et al. 2014], usually separated into temporal and spectral approaches. We have dis-
cussed above how these approaches meet in the time-frequency plane, and how the heart rate
is captured by the wavelet transform, whatever the recording technique. It remains to extract
from it a new signal that characterizes the fluctuations of the cardiac rhythm, essential to
further study the heart rate variability in relation to other physiological activities.

Therefore, we put into practice the wavelet framework for rate estimation developed in
chapter III section 3 to cardiac recordings. It contains a generic family of rate estimators,
summarized in Table IV.1, that are not specific to the waveform, yet letting room for a fine-
tuning through the selection of a quality factor and/or a band of interest. We apply them, from
the most simple to the most sophisticated version, on cardiac signals of the capnobase dataset,
for which both the ECG and PPG recording are available for each subject. We also extract
from the ECG a reference cardiac frequency using the conventional jqrs algorithm from the
PhysioNet Cardiovascular Signal Toolbox; it will serve to compare the outcome of the different
estimators and assess this generic wavelet approach.

1.4.1 Paradox of the frequency localization

In order to extract the cardiac frequency, we apply the temporal strategy to the wavelet trans-
form X(t, f ;Q) of a cardiac recording. It consists in computing the instantaneous frequency
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Fx(t, f ;Q), see Table IV.1, which is detailed at each location in the time-frequency plane. Con-
trary to the purely temporal approach, Fx(t), the frequency parameter allows separating fast
or slow perturbations, but also to break strong non-circularities into harmonics and pulsatile
contributions. That is beneficial for the estimation of the fundamental cardiac phase, but it
introduces the frequency variable f . To examine the fundamental cardiac component only, it
should be chosen equal to the cardiac frequency f = fc(t), that we try to estimate. Because of
this paradoxical situation, it is in general difficult to extract the time-dependent frequency of
the recorded rhythm without some assumptions about its frequency localization.

This is precisely what is done in the reference cardiac frequency estimation algorithm from
the PhysioNet toolbox, which assumes the existence of the rhythm in a physiologically likely
band (0.375 to 2 Hz by default), allowing to discard unlikely R-R intervals and interpolate
holes. Although not generic, this assumption is relevant to the cardiac rhythm and related to
the one of homeostasis.

Let us recall elementary time-frequency notions, and their limitations in estimating fc(t).
When we only need to plot (but not to extract) the heart rate signal fc(t), it might be sufficient
to construct the frequency-reassigned time-frequency power density Eq.(III.17), that concen-
trates the intensity near time-frequency lines f(t) —a single one of which is the heart rate
fc(t)— facilitating its visualization. These lines satisfy the phase ridge conditions, in partic-
ular ℜ{Fx(t, f(t);Q)} = f(t). When the extraction of fc(t) is required for further processing,
however, this self-consistent expression is hard to use for several reasons: the ridge of interest
can be fragmented into a set of non-connected lines {fk(t)}k=1,2,... (especially for a small quality
factor), simultaneous overlapping lines coexist at different frequencies that need to be sorted,
and off-ridge information is not exploited, which inefficiently requires a very precise f -sampling,
or iterative methods [Delprat et al. 1992].

1.4.2 Practical workarounds

This inspired us related wavelet-estimators for the cardiac frequency, that rely on the previous
knowledge of a frequency band B containing the cardiac frequency fluctuation around a typical
value fc, near 1 Hz for most subjects. From the rough frequency localization in this band,
a greater precision is retrieved taking advantage of the squeezing effect against ridges. This
effect can be observed in Fig.IV.7 (B): curves ℜ{Fx(t, f ;Q)} are plotted for fixed values of f
(regularly sampled) and concentrate around particular lines, such that the fundamental cardiac
frequency fc(t) near 1 Hz. The band B of attraction around it, and its typical frequency fc can
be anticipated from small values of ℑ{Fx(t, f ;Q)}, as shown in Fig.IV.7 (C).

The instantaneous frequency of the analytic signal reconstructed in this band B is the real
part of the linear estimator f1(t;B) (see Table IV.1), that can yield a very precise estimation
of fc(t). However, the resulting estimator is not different from (and approximately related to)
Fx(t, fc;Q−), where Q− < Q corresponds to the increased bandwidth of B. On long recordings,
this estimator suffers from occasional numerical divergences. An instability is caused by the
passage of the fixed lines f = fc close to a phase vortex (singular point), supposedly repelled
out of the rhythmic components, see Fig. IV.6.

Its quadratic counterpart f2(t;B), interpreted as an average of Fx(t, f ;Q) in the band B
weighted by the intensity |X(t, f ;Q)|2 (vanishing at singular points) is found to circumvent this
instability, due to its approximate relation to a canonical quadratic estimator Fx(t, f ;Q+, Q−).
Applied to the ECG and PPG recordings of Fig.IV.8 (A, C), it follows closely and smoothly
(red lines in B, D) the reference heart rate extracted from R-R intervals (black lines), up to
a small delay in panel (B) of physiological origin: there is a transit time from the electrical
impulse in the heart (ECG) to the oxygenation impulse in the fingertip (PPG).

Estimators in the wide-band limit are interesting when the band B of interest is unknown:
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Figure IV.7: Instantaneous frequency estimations from the ECG of subject 1, for Q = 5. (A)
Wide-band estimator ℜ{Fx(t;Q)}, which is the weighted average of (B) all curves ℜ{Fx(t, f ;Q)}
for fixed values of f , regularly sampled, each corresponding to a distinct colour. (C) Typical
value (root-mean-square) of ℑ{Fx(t, f ;Q)}/f . For an easier visualization, oscillations faster
than 1 Hz have been smoothed in (A, B).

with fewer parameters, they are the most generic. In particular, the quadratic wide-band
estimator Fx(t;Q) (blue lines) reproduces very well the cardiac frequency modulations from
both the PPG and ECG signals, up to an obvious bias. Caused by the weighted average
of all components, from fundamental to harmonics, the estimated rate signal is necessarily
an overestimation of the cardiac (fundamental) frequency. However, this bias is nothing but a
coefficient, that is approximately constant because of the high regularity of the cardiac waveform
(contrary to the voice vibrato in Fig.III.5). On a log-frequency scale, this proportionality is
visible as shift from the reference heart rate in panels (B, D), small for the quite circular PPG
and large for the strongly non-circular ECG.

For comparison, we also plot the even simpler (linear and wide-band) estimator Fx(t) (green
line): without any parameter, it can be directly computed from the analytic signal. Although
the outcome could be acceptable when applied to the PPG, the signal extracted from the ECG
are both biased and inaccurate, with clear instabilities. In comparison, Fx(t;Q) is much more
robust in estimating modulations of the cardiac frequency, in spite of a systematic bias. Note
that such constant coefficient is ignored in a correlation or coherence analysis.

1.4.3 Non-circular modulations and time-smoothing

An important feature of these estimators has been hidden in Figs.IV.7, IV.8: they all oscillate
at the cardiac frequency (∼ 1 Hz), sometimes tremendously, so that we have attenuated it (with
a smoothing) for an easier visualization and interpretation. Especially strong for small quality
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Figure IV.8: Modulations of the heart rate of subject 1, obtained either from the PPG signal
(A) or from the ECG signal (C), using different wavelet estimators for the cardiac frequency
(B, D). The estimators are the real part of Fx(t) (green lines), Fx(t;Q) for Q = 5 (blue lines)
and Fx(t, fc;Q+, Q−) for Q− = 2.5 and Q+ ≈ 3.5 (red lines). Sign of non-circularity, strong
oscillations shorter than 1 s are smoothed for a clearer comparison to the reference heart rate
(black lines in both panels B and D), estimated from R-R intervals of the ECG from the jqrs
algorithm. A short delay is visible between PPG and ECG estimations (B), this is the pulse
transit time.

factors or broad band, it is caused by the non-circularity of oscillations due to interfering and
beating harmonics. The frequency modulation estimator translates this effect as a very fast
modulation at the carrier cardiac frequency fc(t).

These very fast modulations induced by the non-circularity of the cardiac waveform (espe-
cially for the ECG and at low quality factor) are an important limitation when trying measuring
the precise value of the heart rate fc(t) at a certain time. However, it is superimposed to the
slower and legit cardiac modulations with an important separation of scales. From a time-
frequency perspective this repetition of the carrier wave inside the estimator enriches it beyond
the spectral range of the cardiac modulations.

The estimator that is the least affected by this effect is the quadratic and narrow-band esti-
mator Fx(t, f ;Q+, Q−), approximated from a short time-smoothing (instead of band-integration):

Fx(t, f ;nQ,Q) = Sẋx(t, f ;nQ,Q)
i p̃Sxx(t, f ;nQ,Q) , (IV.4)

from the practical power density estimator defined in Eq.(II.71). For important values of the
time-smoothing parameter n, the very fast modulations are perfectly removed, however, the
fast but legit time modulations of the heart rate are smoothed. A compromise is found taking
values as small as 1 < n ≤ 2, sufficient to avoid instabilities.
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The precision of the resulting estimator of the heart rate as fc(t) = Fx(t, f ;nQ,Q) is
quite lenient on the choice of a fixed value f = fc, as long as fc(t) fluctuates around it within a
bandwidth. This observation helps to choose the quality factor: on one hand the estimator with
a small values of Q is both more tolerant and better resolved in time. On the other hand, the
distinction of the fundamental component from the next harmonics value for Q >

√ p̃
log 2 ≈ 3.6

is useful to reduce very fast modulations induced by non-circularity, allowing a heart rate
fluctuations on about an octave, δ log f = log 2 (even more when the signal-to-noise ratio is
important).

In practice, we find that Q = 5 is a good compromise, and that a fixed value of f = fc ≈
1 Hz is sufficient in most cases for the cardiac rhythm. We can adapt fc for each subject from
a preliminary spectral estimation as the fundamental peak of Sxx(f), or from the minimum
of ⟨|ℑ{Fx(t, f ;Q)}|2/f⟩, as observed in Fig.IV.7 (C). For polysomnography signals, we have
not felt the need to adapt the frequency variable at different times as f = f(t) for the case
of important heart rate variation (e.g. from simple to triple). This can be achieved extracting
more specific information from the recording but also introducing additional sophistications.

Figure IV.9: 1 minute of ECG, recorded on subject 1, and its narrow-band amplitude at 14 Hz,
aECG14. (A) ECG signal x(t) (arbitrary unit) and its cyclic trajectory. (B) Wavelet transform
for Q = 8, the colour codes for the amplitude 2|X(t, f ;Q)|. (C) Amplitude profiles stacked for
each time sample in the selected interval (light grey lines) into a persistence spectrum, and
amplitude spectrum (thick red line) Eq.(IV.3). The colour scale is aligned with the amplitude
of the spectra, which are all in the signal unit. (D) aECG14 signal x′(t) = 2|X(t, f ;Q)| at
f = 14 Hz (red line in panel B) and its cyclic trajectory.

1.4.4 Change of input signal: strengthening the fundamental

Another type of sophistication has proved useful to the extraction of the heart rate from the
ECG and more generally the rate of a strongly non-circular rhythmic oscillation. It aims at
avoiding cases for which the fundamental component in the ECG recording has a weak or even
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vanishing amplitude, while harmonics contains most of the rhythmic intensity. This typically
happens when the R and S peaks, positive and negative, are comparable. The workaround
consists in analysing another signal x′(t) derived from the ECG recording x(t) for which the
fundamental component is important (i.e. more circular than the ECG), with the same method
otherwise. We considered several quantities, such as the power of the ECG, Pxx(t), or its
magnitude 1

2 logPxx(t).
Our best results have been achieved by reverse-engineering of the reference heart rate

estimation from the PhysioNet toolbox: the jqrs algorithm is indeed harvesting the cardiac
pulse intensity into a new (positive) signal, from which peak locations tn can be more easily
extracted [Behar et al. 2014; Vest, Poian, et al. 2019]. This preprocessing operation is made of
a band-pass filtering of the ECG, then turned into a positive signal that represents the envelope
of the Q-R-S complex. The filter is best matched by a log-normal wavelet centred at f = 14 Hz
and with quality factor Q = 8. This corresponds to considering the amplitude of the ECG
at f = 14 Hz, x′(t) = 2|X(t, f ;Q)|. Denoted aECG14, this signal is illustrated in Fig.IV.9.
The usefulness of the wavelet transform has been recognized in this particular task [Cuiwei Li,
Chongxun Zheng, and Changfeng Tai 1995; Saxena, Kumar, and Hamde 2002].

Compared to the power signal Pxx(t), that is wide-band, the narrow-band amplitude signal
x′(t) = 2|X(t, f ;Q)| focuses specifically on the fast Q-R-S oscillations, filtering out contributions
from other frequency bands. The fundamental component of the cardiac rhythm in this new
signal is indeed more reliable than the one of the raw ECG, as confirmed by its better circularity
(see panel C). This is verified statistically in Fig.IV.10, where we compare the error (in %),
relative to the reference heart rate, of the (narrow-band, quadratic) estimator Eq.(IV.4) applied
to the ECG, Fx(t, f ;nQ,Q), to the same estimator applied to the aECG14, Fx′(t, f ;nQ,Q).
Applied to all subjects in the capnobase dataset and all time-intervals in which the signal quality
index (hence the quality of the reference estimation) is maximal (SQI = 1), the error is smaller
than 0.3% half of the time (the interquartile range is 0.057%) with aECG14, while it is twice
higher and with a slight bias (the median is 0.08%) directly from the ECG.

Figure IV.10: Comparison of the preci-
sion of the heart rate, when estimated di-
rectly from the ECG or from its amplitude
signal at 14 Hz. Histogram of the error,
fest/fref − 1 (in %), between the narrow-
band quadratic estimator fest(t) based on
either the ECG (blue) or the aECG14 sig-
nal (red), and the jqrs reference fref(t),
over all subjects in the ppg dataset and
all times of maximal signal quality index.
Median and interquartile range (in %).
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In the following, we simply refer to this sophistication of the heart rate estimation as
the precise estimator, that allows to read the precise cardiac frequency at each time. This
precise estimator has been illustrated at the beginning of this chapter in Fig.IV.1 (red) against
the reference heart rate (black). We can observe that the slight remaining error consists in
insufficiently sharp extreme variations, related to the time-smoothing in Eq.(IV.4). The worst
estimation in Fig.IV.1 (B) is still closely following the reference, in spite of an important
oscillation at the cardiac frequency. This perturbation is caused by an especially prominent T
wave in the ECG, that induces a strong second harmonic, in competition with the fundamental
component, hence increasing non-circularity. In contrast, we observed subjects for which this
precise estimator is able to follow very sharp variations of the heart rate, while the estimation
from PhysioNet toolbox incorrectly judges it artefactual and interpolates through it.
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The change of input signal allows taking advantage of the pulsatile (vertical) nature of the
ECG. We have also applied this method in the low signal-to-noise context of a temperature
signal derived from IR thermography in Appendix 2, for comparison with a converse high
quality factor perspective called the cepstral approach. This alternative approach is based on
the detection of spectral periodicity between the (horizontal) harmonic lines, omnipresent in
the Gabor paradigm, and used in state-of-the-art heart rate extraction methods [Cicone and
Wu 2017; Li et al. 2019; Lin, Su, and Wu 2018; Su and Wu 2017].

1.4.5 Comparison of the estimators against the reference as a coherence

The comparison of the other generic estimators cannot be compared directly to the reference
heart rate signal as done in Fig.IV.10, either because of the delay between the PPG and the
ECG for PPG-based estimations, or because of their important non-circularity-induced fast
oscillations and/or important bias, see Fig.IV.8. For this reason, we do not refer to them as
heart rate estimators, but rather as heart rate modulation estimators. Indeed, they are able to
capture well its variability, as verified at each modulation frequency from a coherence analysis.
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Figure IV.11: Comparison of wavelet estimators x(t) = fest(t) with the reference cardiac fre-
quency y(t) = fref(t), in terms of the coherence γxy(t, f ;Q+, Q−), Q+ ≈ 5Q− and Q− = 5. For
all subjects in the PPG database for which the ECG recording is of good quality (SQI > 1

2 at all
times), the typical squared coherence value is obtained from the average over all cumulated times:
γ2
xy(f) = ⟨|γxy(t, f ;Q+, Q−)|2⟩t. The line styles refer to the wavelet estimators fest(t): wide-

band for Fx(t) (dotted line) and Fx(t;Q) (dashed line), and narrow-band for Fx(t, fc;Q+, Q−)
(plain line). The colours refer to the input signals x: PPG (yellow), ECG (blue), aECG14
(red), white Gaussian noise surrogate (grey). The thin black line is the expected level of spuri-
ous coherence.

Therefore, we evaluate the time-frequency coherence γxy(t, f ;Q+, Q−) of different wavelet-
estimators x and input signal (PPG, ECG, aECG14), with the reference heart rate signal y.
The phase of the coherence is very close to zero, except for PPG estimations (because of a small
delay) so that we consider the squared coherence only. We average it over all times and selected
subjects in the capnobase dataset to obtain a coherence profile γ2

xy(f) = ⟨|γxy(t, f ;Q+, Q−)|2⟩t
for each cardiac frequency modulation signal. Subjects are selected so that the quality of the
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reference estimation is sufficient (SQI > 1
2) during the entire recording. The significance of the

coherence is controlled against the expected spurious level and verified from a surrogate signal.
The result in Fig.IV.11 is the following: all estimators of the cardiac have a significant

coherence with the reference heart rate at modulation frequencies lower than the cardiac fre-
quency. The narrow-band estimator is the most coherent one for all input signal, and the most
coherent among them is based on the aECG14. The instantaneous frequency Fx(t) yields the
worst estimation when applied to the ECG, because of its strong non-circularity, while it is
satisfying for the other cardiac signals. For the wide-band estimator Fx(t;Q), its squared co-
herence reach about 0.5 for both the ECG and PPG recordings, which is quite good considering
it has a single control parameter. In the following, we refer to the wide-band estimator based
on the ECG as the generic estimator of the heart rate modulations, in contrast to the precise
estimator, narrow-band and based on aECG14.

Summary of section 1

The cardiac rhythm has been introduced, together with some of its numerous recording
techniques and the interest in extracting its key observable: the heart rate. Its variability
(HRV) provides an elementary insight into the sympathetic-vagal balance, implied in the
regulation of physiological functions.
Conceived as the modulated instantaneous frequency of the fundamental rhythmic com-
ponent, a generic approach of the heart rate is obtained by combining temporal and
spectral perspectives in the wavelet transform of the cardiac recording. In spite of its
various waveforms or pulse shapes depending on the measurement technique, the regular-
ity of the cardiac rhythm allows to isolate its fundamental component with a precise time
resolution and mostly within a wavelet bandwidth at a small quality factor Q = 5. A
generic extraction strategy is formulated based on a family of time-frequency estimators,
applied on PPG and ECG signals.
These estimators are either wide-band or narrow-band, and either linear or quadratic.
Quadratic estimators require an additional parameter but prove more robust, in relation
to their statistical interpretation. The narrow-band estimator is especially precise, but
the wide-band version only requires a single parameter. The latter is sufficient to ex-
tract modulations of the cardiac frequency, even though it is biased and contains fast
oscillations for non-circular waveforms. The ECG is particularly non-circular, so that
most of its intensity settles into impulses at higher frequencies. The precision of the rate
estimation is increased when taking into account its pulsatile nature, by defining a new
aECG14 signal derived from the wavelet transform at 14 Hz.
These estimations are compared with a reference heart rate, estimated from R-R intervals
in the ECG. The precision of the frequency modulations is evaluated in terms of coherence
at each frequency, retained for its insensitivity to various effects, such as the presence of
a bias, a small delay between ECG and PPG (the pulse transit time), or fast oscillations
at the cardiac (fundamental) frequency. Their coherence with the reference is significant,
and increases with the circularity of the input cardiac signal and with the specificity of
the band selection.

2 Cardio-respiratory interaction as a coherence
The heart and breathing activity are finely intertwined rhythms, forming the cardio-respiratory
system that balances ventilation and perfusion to ensure suitable gaseous transport between
the metabolism and the environment. We apply here the wavelet framework to the observation
of its rich living dynamics, from the comparison of a non-invasive respiratory recording, the
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airflow signal, to the heart rate signal estimated in the previous section.
We begin with the phenomenon of respiratory sinus arrhythmia (RSA), which actually is

a very rhythmic modulation of the heart rate at the breathing frequency, as can be observed
in Fig.IV.1 (A, D). Applying the coherence analysis, the RSA coupling can be characterized in
time at the breathing frequency in terms of fluctuating phase and strength of coherence between
the heart rate and the airflow recording. This provides a direct insight into the dynamics
of the parasympathetic activity, that conveys this interaction involved in the regulation of
ventilation. We also show that a significant but also intermittent coherence in the cardiac and
respiratory variability exists at other scales, in particular at slow and less precise frequencies.
The sympathetic system is an actor of this low frequency activity, that reflects the regulation of
perfusion [Moser, Fruhwirth, and Kenner 2008; Moser, Frühwirth, et al. 2006], and we suggest
it can be approached via bursts of slow coherence.

Then, we illustrate how the choice of the pair of cardio-respiratory signals, either direct
recording or extracted modulation signals, affects the observed cardio-respiratory coherence and
its interpretation. In particular, the use of breathing modulation rate signals, describing its
instantaneous frequency and its amplitude modulation, are shown to provide a complementary
perspective on the cardio-respiratory interaction. While they provide a less direct perspective
on the fast RSA component, they allow a more reliable interpretation of the coherence and
phase shift between slow cardio-respiratory modulations.

In short, the coherence analysis provides precise characteristics of the cardo-respiratory
inter-regulation. Limited to finding linear coevolution in standardized physiological fluctua-
tions, important information is left out: the actual values of these regulated biophysical quan-
tities. One of these physiologically relevant quantity is the ratio between the cardiac and the
respiratory frequencies, also called pulse-respiratory quotient (PRQ) [Scholkmann and Wolf
2019]. Sometimes, cardio-respiratory rhythms synchronize: the heart and breathing frequen-
cies are commensurable [Schäfer et al. 1998]. To determine this frequency ratio at each time,
we construct a ratio distribution from power densities of the cardiac and respiratory record-
ings, advantageously concentrated from frequency reassignment. We illustrate 3 situations,
of well-defined ratio without or with synchronization, or with unstable ratio related to sleep
apnea.

2.1 Respiratory recording
The breathing activity can be recorded by various means, from the most accurate but also
invasive such as spirometry (air volume and flow) and capnography (CO2 partial pressure), to
the less invasive measurements methods such as nasal-oral airflow sensors (thermistor, ther-
mocouple or pressure transducer), thoracic and abdominal effort belt (inductance plethysmog-
raphy or piezoelectric) or chest motion tracking (accelerometer, video). Respiratory signals
can also be derived from pulse oximetry (PPG). Less invasive methods are largely preferred
for long recordings because of their simplicity. Several techniques are usually combined in a
polysomnography, each with their specific artefacts: the resulting respiratory signals are only
semi-quantitative [Farre 2004].

In this section, we focus on the airflow signals, measured with a thermocouple in the
shhs2 database and with a thermistor for subject 3 from another database, see descriptions
in Appendix 1. The sum of the thoracic and abdominal effort signals from shhs2 will also be
used (as a volume signal from inductance plethysmography) to bring additional confirmation.
We have selected the airflow signal because we have observed fewer artefacts than the effort
respiratory signals in shhs2, occasionally occurring due to sleep position changes, affecting the
amplitude of the oscillations. In the following, the sum of the effort signals will actually prove
to be more accurate in tracking very slow variations of the lung’s volume.
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2. Cardio-respiratory interaction as a coherence

Exposed to temperature change of the nasal-oral airflow during inspiration (room temper-
ature) and expiration (37 °C), the electric property of these sensors (tension and resistance
respectively) varies. A correct calibration is assumed so that the signal’s unit is in litre per
second, and we invert the sign of the signal so that a positive value of the breathing oscillation
corresponds to an inspiratory flow, and a negative one to an expiratory flow. Its resolution is
about 10−3l·s−1 and sampled at 250 Hz in slpdb, 8 · 10−3l·s−1 in shhs2. However, these sensors
are known to provide an inaccurate measurement of airflow [Farré et al. 1998]: the waveform
is smoothed and delayed (of up to one second) and the amplitude variation is non-linear, but
these techniques are sufficient to capture the rate and modulations of breathing. In shhs2, an
instrumental high pass filter at 0.05 Hz is mentioned, and the sampling frequency is 8 or 10 Hz.

Figure IV.12: Respiratory recording of subject 3. (A) airflow signal (in l·s−1) on a selected
interval of high variability of the breathing rhythm. (B, D) Time-frequency representations,
computed with the quality factor Q = 5 in (B), and Q = 25 in (D). Colours code for both the
angle (hue) and the modulus (saturation) of the wavelet transform (see Fig.II.1 of chapter II).
(C, E) Amplitude spectra obtained either from the Fourier transform (thin black line) or from
the wavelet transform Eq.(IV.3) (thick grey line).

An airflow signal is illustrated in Fig.IV.12 (A) for a selected time interval, that starts
with a few steady breathing oscillations, followed by strongly modulated ones. The complete
representation (amplitude and phase) of its wavelet transform is given in panels (B) and (D)
for Q = 5 and Q = 25 respectively. Although they both contain the same information, the fast
modulations of the breathing rate are much more easily recognized at the smaller quality factor
Q = 5 (B), for which the fundamental breathing component is clearly present.

The effect of the quality factor in the frequency domain is summarized in the amplitude
spectra 2⟨X(t, f ;Q)|2⟩

1
2
t (root-mean-squared amplitude) obtained from the wavelet transform,

thick grey line in Fig.IV.12 (C, E). Although more resolved at Q = 25 (E), the amplitude of
the spectra is reduced compared to the one observed on the signal (A). This is due to breathing
rate variations that are both wider than the wavelet bandwidth and shorter than its duration,
causing a destructive interference between the signal and the wavelet. The amplitude is thus
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CH. IV. Cardio-respiratory rhythms and their modulations

more accurate at Q = 5 than at Q = 25. The wavelet amplitude spectrum approaches the
Fourier estimation 2|x̂(f)|/T (thin black lines, T duration of the selection) when the quality
factor increases, see Eq.(II.8); an accurate amplitude is only expected for a pure wave.

2.2 Respiratory sinus arrhythmia as a coherence between heart rate
and airflow

During inspiration, the intrathoracic pressure rises and affects the cardiac and circulatory ac-
tivity. In a reflex compensatory mechanism enabled by baroreceptors, the parasympathetic
activity is inhibited, causing an increase of the heart rate [Mohrman and Heller 2018]. The
expiration has the converse effect: the heart rate decreases, saving its energy when the oxygen
intake is low. This cardio-respiratory interaction is commonly observed as a fast variability of
the heart rate at the breathing frequency, called respiratory sinus arrhythmia (RSA), see for
instance panel (A, D) of Fig.IV.1.

The RSA is often characterized from the amplitude of the heart rate modulation, amplitude
that tends to decreases with the breathing rate and increases with the tidal volume [Hirsch and
Bishop 1981]. It is also strong for young or athletic subjects and decreases with aging, depend
on the position of the body, etc. Even in the rest state, the occurrence of RSA is subject to
an important temporal variability, sign of the complexity of the regulation mechanisms in the
cardio-respiratory interaction.

This cardio-respiratory interaction is measured as a coherence between the heart rate and
the breathing oscillation, in time and/or in frequency. Following the development of section 4
in chapter II, the significance of the RSA coherence [Faes, Pinna, et al. 2004] is also evaluated
individually.

2.2.1 Temporal and spectral perspectives on the interaction

The most simple way to characterize the strength of the interaction between the heart rate
x(t) = fc(t) and a respiratory signal y(t) is certainly to compute their correlation coefficient
ρxy. This can be done in a time-dependent manner thanks to its wavelet estimator Γxy(t, t;Q) =
ℜ{Γx+y+(t, t;Q)} (without delay), circumventing the stationarity hypothesis controlled by the
quality factor Q (see section 4.1 in chapter II). The complex version Γx+y+(t, t;Q) is further able
to enrich its interpretation with a continuous phase difference (the angular argument) instead
of a discrete sign.

This is presented in Fig.IV.13 (A, B, C): the heart rate (A, red line, best wavelet estimator)
is clearly oscillating with the airflow recording (B, blue line) during most of the time selection,
causing a quite high correlation modulus, with close to no phase difference (colour-coded in
green). This obvious manifestation of RSA is cluttered by sudden events (7 of them are visible),
where the heart rate transiently rises above a base value, but also the breathing rate seen as
faster oscillations in panel (B). Looking more closely to the airflow recording, these events are
associated to more frequent and ample inspirations, called hyperpnea, directly followed by a
reduced breathing activity, called hypopnea. These cardio-respiratory events affect the corre-
lation, with a phase difference that is dragged towards negative values (lag of the heart rate)
and a modulus either reduced or enhanced. Note that at phase quadrature, the complex corre-
lation coefficient is essentially imaginary so that its real part (the usual correlation coefficient)
vanishes.

This situation is clarified by examining the signals and their correlation in the frequency
domain, as shown in Fig.IV.13 (D, E). Amplitude spectra for the full 8 hour-signals are shown in
panel (D). As expected, they both exhibits a peak at the breathing frequency (about 0.22 Hz),
sign of the RSA phenomenon in the variability of the heart rate, also composed of a slower
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Figure IV.13: Correlation between heart rate (red lines) and airflow (blue lines), either in
time or in frequency, from the polysomnography of subject 4. (A) Heart rate signal x(t) = fc(t)
(in s−1), narrow-band wavelet estimation from the aECG14 signal. (B) airflow signal y(t)
(in l·s−1, positive for inspiratory flow). (C) Time-dependent complex correlation coefficient
(temporal coherence) Γx+y+(t;Q), and estimated spurious level. Only a selection time interval is
shown. (D) Amplitude spectra Eq.(IV.3) for the entire signals (8 h long) with the same unit.
(E) Spectral coherence γxy(f ;Q), with expected spurious level (thin black line) and simulated
one (thick grey line). Every wavelet estimator is obtained for Q = 5. In both the temporal (C)
and the spectral (E) cases, the coherence modulus is plotted, and its phase is colour coded with
the chromatic circle, see the colour wheel (bar).

wide-band component (peaked at about 0.033 Hz), precisely reflecting the strong variations of
the heart rate. The RSA rate amplitude is as low as ±0.02 s−1, i.e. ±1.2 beats per minute here.
Non-harmonic waves give some amplitude at frequency of higher harmonic orders, explaining
the right-skewed asymmetry of the peaks. Also notice the damping of the airflow amplitude
below 2−4 ≈ 0.06 Hz, caused by its instrumental high-pass filtering.

The panel (E) is the spectral coherence γxy(f ;Q) (its modulus with a colour-coded phase),
normalized version of the cross-spectrum Sxy(f ;Q) able to distinguishes correlations at different
scales. The two cardio-respiratory modulations are thus well separated, and their associated
phase is clarified: slightly above 0 for the fast RSA component, and about −π

2 for the slow one.
We can hypothesize that the intermediary phase values observed in time is a superposition
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CH. IV. Cardio-respiratory rhythms and their modulations

of both types of coherent modulations. As measured by the squared modulus of coherence
|γxy|2, the proportion of one spectral density linearly explained by the other one is at most
0.772 = 0.6 for the respiratory component. The remaining 0.4 proportion is a sign of the
temporal variability of the fast RSA modulations, even higher for the slower modulations. A
very weak amplitude can be sufficient to yield a significant coherence, as is the case for the
second order harmonics of breathing, clearly appearing with a phase shift +π

2 , as well as for
the slow (even very slow) airflow modulations that has been partially filtered. This can be
verified by comparing the modulus to the (much lower) level of spurious coherence, expected
from theory (thin black line, obtained from table II.1) or simulated (thick grey line, from a
white Gaussian noise surrogate).

2.2.2 Time-frequency view on the cardio-respiratory interaction
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Figure IV.14: Correlation between the heart rate and airflow of subject 4 in the time-frequency
plane. (A) Amplitude of the heart rate modulations, 2|X(t, f ;Q)| (in s−1), and (B) amplitude
of the airflow modulations, 2|Y (t, f ;Q)| (in l·s−1), with shared logarithmic colour-scale. (C)
Time-frequency coherence γxy(t, f ;nQ,Q) estimated for Q = 5 and n = 5, and cone of influence
(black line) delimiting regions with possible border effects. The hue-saturation colour coding for
phase and modulus is here discretized into 3 ranges of significance, with p-value above 10−3,
10−2 and 10−1 with decreasing colour saturation (white below), that corresponds to threshold
moduli |γxy| = 0.87, 0.78, 0.61 respectively. The time and frequency axis are identical for all
images.

These time and frequency perspectives are combined in Fig.IV.14: that represents the
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2. Cardio-respiratory interaction as a coherence

wavelet transform (the amplitude) of the heart rate (A), the airflow (B), and their time-
frequency coherence γxy(t, f ;nQ,Q) (C). These images disclose the extent of the temporal
variability and the spectral separation for these modulations during sleep, in terms of ampli-
tude, phase difference and coherence modulus. This level of details in the dynamics of the
cardio-respiratory interaction is obtained with Q = 5 and from a low number of statistical
degrees of freedom in the coherence analysis, close to n = 5 here: it corresponds to resolutions
of fδt ≈ 10 oscillations and relative bandwidth δ log f ≈ 0.5 (n is their product). Computed
from a time-smoothing over the 10 oscillations, the ensemble average estimator favours the rep-
resentation of the quite harmonic (horizontal) coherent component at the breathing frequency,
to the detriment of a precise time localization of the very pulsatile (vertical) slow components.
That few degrees of freedom come at another cost: it constrains the analysis of strong coherence
only, the spurious coherence level being as high as γsp ≈ (1 +n) 1

2 = 0.4 so that a true but weak
coherence cannot be distinguished from spurious coherence. To improve the readability of the
coherence image, its significance is directly encoded into the saturation of the colour, increasing
zero (white) to one (colourful) when the p-value gets lower than 10−1, 10−2 and 10−3. These
different coherence levels are reproduced in Fig.IV.15 (B).
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Figure IV.15: Temporal variability of the respiratory sinus arrhythmia of subject 4, measured
as γRSA(t) = γxy(t, f ;nQ,Q) from Fig.IV.14 for a fixed respiratory frequency f = 0.22 Hz
(maximizing γxy(f ;Q)). The phase and modulus of this complex signal are plotted in (A)
and (B) respectively, and repeated in the colour and size of the markers. Different significance
levels are represented in (B): the expected spurious coherence (thick grey line) and the increasing
significance thresholds (thin black lines) with p-values 10−1, 10−2 and 10−3.

To focus on the temporal variability of the fast RSA component, free from the influence
of the slower ones, we can extract the dynamics of the amplitude and coherence into new
signals. For simplicity, we exploit the fact that the breathing frequency here fluctuates within
one wavelet bandwidth (that should be increased if necessary), around the frequency f =
0.22 Hz. The phase and modulus of a coherence signal γRSA(t) = γxy(t, f ;nQ,Q) is presented
in Fig.IV.15, thus constructed by slicing the coherence image at this fixed frequency. The
resulting signal is similar to the complex correlation coefficient, except that it is narrow-band,
hence free from the influence of the strong but slower modulations.

It is clear from panel (A) of Fig.IV.15 that the phase of the respiratory modulation in
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the heart rate is most of the time early compared to the airflow phase, with a fluctuating
difference ranging from almost +π

2 to slightly below 0. Important deviations from these phase
shift are associated in panel (B) to a drop in coherence modulus (hence in its significance), that
otherwise frequently exceeds γxy = 0.95.

2.3 Statistics over shhs2 of the phase between heart rate and breath-
ing recordings

To know whether these observations are specific to the selected subject or a widespread char-
acteristic of RSA, we compute the time-frequency coherence between the heart rate signal and
respiratory recordings for all 2650 subjects in the shhs2 database, as in Fig.IV.14 (C). We are
interested in the phase ϕxy of the coherence γxy = |γxy|eiϕxy , more specifically in its typical
values and temporal variability during sleep, at different scales.

We start with the airflow recording, and we reproduce the computation for a lung volume
signal. This last signal was use in [Saul, Berger, Albrecht, et al. 1991] together with the heart
rate signal to obtain a phase response relation from 7 subjects and 13 min recordings. We
expect to extend their measure towards lower frequencies thanks to the long duration of the
polysomnography and the numerous subjects.

2.3.1 Phase distribution as an angular density of coherence

We propose to construct an angular density of coherence (at each frequency) as follows:

Gxy(ϕ ; f) = ⟨γxyδ(ϕ− ϕxy)⟩t , (IV.5)

where the coherence in the estimator γxy(t, f ;nQ,Q) and the time averages run over the 2.3
years of cumulated sleep time in the database. This resemble the normalized histogram (esti-
mated probability density function) of ϕxy, where δ(ϕ− ϕxy) is in practice a bin of finite width
around the phase value ϕ. The only difference with a histogram is the presence of a weight,
the coherence γxy, that favours significant phase values. This definition of the angular density
of coherence is related to the time-averaged coherence by an integral:

⟨γxy(t, f)⟩t =
∫ p̃

0
Gxy(ϕ ; f)dϕ , (IV.6)

whose phase is the mean value of ϕxy in the sense of circular (or directional) statistics [Mardia
and Jupp 2000].

The advantage of using such time average is two-fold. First, different subjects contribute
to the statistics proportionally to their sleep duration. Then, it will allow in the next chapter
to extract non-stationary characteristics by conditioning the time average to the observation of
a certain event, such as sleep stages or apnea occurrences annotated in the polysomnography.
It has the following limitations: it does not distinguish the intra-individual and inter-individual
variabilities, and it does not keep track of the distribution of the coherence modulus.

Note that the mean coherence uses two averages, one is local in time before normalization,
and the other after normalization. The interest of keeping the local time-averaging is not clear.
Without any time averaging before normalization, we obtain the so-called phase synchrony
measure [Aviyente, Bernat, et al. 2011], whose meaning is similar to the coherence. Conversely,
an infinite time-averaging before normalization yields the spectral coherence. On one hand,
the spectral coherence weights the phase proportionally to the power density, which vanishes
on disturbances causes by phase vortices. On the other hand the spectral coherence is much
more sensitive to intense artefacts that phase synchrony. The extent of the time-averaging n
limits the proportional averaging in time and interpolates between these two behaviours. It is
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observed to slightly affects the value of the angular density of coherence, without changing it
qualitatively.

The angular density |Gxy(ϕ ; f)| of this cardio-respiratory coherence is shown has a heat
map in Fig.IV.16. It is most dense at the breathing frequency at phase 0 with a typical spread
of ±π

3 . This constitutes a measure of the phase variability of RSA across time and subjects.
Although the coherence is weaker at lower frequency, its angular density is more spread

(sign of an important variability) but still polarized around a negative mean value. This mean
phase is materialized by a thick dashed line, made thinner when less defined, at scales where
the angular density is close to uniform. This is the case at very low and very high frequencies,
the latter being explained by the loss of significance of the modulations in the rate signal fc(t)
close to 1 Hz (see Fig.IV.11).

Figure IV.16: Angular density |Gxy(ϕ ; f)|
of coherence γxy between heart rate (x) and
airflow (y) over the 2.3 years of cumulated
sleep in the shhs2 database. The intense
coherent mode corresponds to the distribu-
tion of the phase between RSA modulations
and airflow oscillations, see Fig.IV.15. This
un-normalized density integrates to the time-
averaged coherence |⟨γxy⟩t| of Fig.IV.17,
whose phase (the circular mean) is plotted
against frequency (dashed line).

2 -8 2 -6 2 -4 2 -2 20
-

- /2

0

+ /2

+

 

0.1

 

0.2

 

2 -8 2 -6 2 -4 2 -2 20

-

- /2

0

+ /2

+
for 1 subject
for 2650 subjects

2 -8 2 -6 2 -4 2 -2 20
0

0.2

0.4

0.6

0.8

1

A B

Figure IV.17: Phase (A) and modulus (B) of the mean coherence ⟨γxy⟩t between the modula-
tions of the heart rate and the airflow. The phase and modulus are repeated in the colour and
size of the markers. Two coherence profiles, obtained from a time average ⟨γxy⟩t, are compared:
one over the 2.3 years of cumulated sleep recording for all 2650 subjects in the shhs2 database
(lower curves), the other over the 8 h sleep of the subject 4 (upper curves). A linear relation
is observed between coherence phase and log-frequency, and adjusted for the individual profile
(black dotted line) and the collective profile (black plain line) in (A), see text.

2.3.2 Trend of the mean phase across frequency

The phase of this collective mean coherence is reported in Fig.IV.17 (A) together with its
modulus (B), and compared to the individual mean coherence computed for the single recording
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of Fig.IV.14. From the panel (B), we observe that the collective cardio-respiratory coherence
profile (lower curves) has a smaller modulus than the individual one. In agreement with the
angular distribution in Fig.IV.16, this is either the sign of the important inter-individual phase
variability for the slow component (0.015 to 0.06 Hz), that produces a destructive interference
when averaged, or the sign of a weaker expected coherence for the fast component (0.25 Hz),
associated with a lower phase variability.

An intriguing observation is the sensibly linear relation between the mean coherence phase
and the log-frequency:

ϕxy(f)/ p̃ = α log f

f0
, (IV.7)

on both the collective and individual profiles up to a small phase shift. The slope α and the
reference frequency f0 were adjusted by linear regression over the 2 decades (0.009 to 0.9 Hz)
where the phase distribution is clearly non-uniform. For a greater precision, we weight the data
by the inverse of the circular variance, estimated as 1 − |⟨γxy⟩t|. The numerous data points
are very correlated, but we expect them to cover log 100

δ log f ≈ 9 distinct wavelet bandwidths. The
result is as follows for the collective (respectively the individual) cardio-respiratory coherence
profile: the goodness of the fit, expressed as a coefficient of determination, is R2 = 0.990
(0.980), and the model parameters are α = 0.166± 0.004 (0.16± 0.03) and f0 = 0.24± 0.01 Hz
(0.142 ± 0.003 Hz). Notice how the phase shift between the individual and collective profiles
gets absorbed into their different value of f0.

What is the physical interpretation of this model? Considering a signal x(t) = y(t −
τ) lagged of a time τ compared to another signal y(t), their coherence is γxy(f) = e−i p̃fτ .
Therefore, we expect a phase proportional to frequency (not log-frequency) in case of a pure
delay. However, we may have two distinct delays associated to each coherent components, which
is difficult to distinguish with only 9 effective data points. We can reconcile this interpretation
with Eq.(IV.7) considering that it interpolates different delays at different scales. This idea can
be expressed as a group delay (of x compared to y):

τxy(f) = −dϕxy(f)
p̃ df (IV.8)

= −α
f

, (IV.9)

that is inversely proportional to frequency. This has the following scale-invariant interpretation:
the group delay τxy(f) is a constant portion α = 0.17 of an oscillatory cycle of frequency f .

2.3.3 Verification from thoracic and abdominal respiratory effort signals

We now try to reproduce this observation when replacing the airflow recording with other
available respiratory signals, in particular the lung volume for comparison with the phase
responses in [Saul, Berger, Albrecht, et al. 1991].

The variations of the lung volume are estimated by summing the thoracic and abdominal
effort belt recordings, measured by inductance plethysmography. We use the convention of a
positive oscillation when lungs are filled. The airflow being the time-derivative of the volume,
we expect the slow volume oscillations to be enhanced and delayed by a constant phase shift −π

2
(that does not affect the group delay): x(t) = V̇ (t) ⇒ V̂ (f) = x̂(f)/(i p̃f). Surprisingly,
we did not observe such phase difference between the “airflow” and the “volume” signals (that
is close to zero). We hypothesize that the recording from the thermocouple is associated with
a delay of the order of 1 s compared to the actual airflow [Farré et al. 1998], that would
explain this observation. This imposes to be careful on the interpretation of these respiratory
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signals, which are indirect and semi-quantitative measurements of the corresponding physical
quantities. The associated imprecisions and uncertainties are is discussed in the next section.

We reproduce the computation over the complete shhs2 database of the coherence between
cardiac frequency modulations and respiratory oscillations. As in Fig.IV.16, their phase shift
is represented as a coherence-based angular distribution at each frequency in Fig.IV.18.

The previous result from the airflow signal is recalled in Fig.IV.18 (A), whereas the result
from the lung volume signal is shown is panel (B). First, the fast RSA component is slightly
more coherent with a similar phase variability but a slightly lower mean phase due to the change
of respiratory signal.
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Figure IV.18: Comparison of the phase distributions |Gxy(ϕ ; f)| in shhs2 between the heart
rate (x) and two different respiratory signals (y): either (A) the airflow measured by the ther-
mocouple (same as Fig.IV.16) or (B) the lung volume measured by the effort belts. The mean
phase (plain grey line) is plotted with its closest linear adjustment with log-frequency (plain black
line) in (A, B). The linear adjustment with frequency (dashed black line) of the slow coherent
component in plotted in (B).

Then, we observe a similar trend of the phase across log-frequency is observed in both
cases. This trend has a better angular concentration and a higher coherence at low frequency
for the volume signal. This suggests a more precise measurement of breathing from the effort
belts rather than from the thermistor, whose lower precision results in angular dispersion and
incoherence. We fit the same model Eq.(IV.7) as previously (plain line) to the mean phase
ϕxy(f) between cardiac frequency and breathing, from the volume signal. The slope is signif-
icantly smaller than before, α = 0.132 ± 0.006 (f0 = 0.35 ± 0.04 Hz), and the model appears
less suitable (R2 = 0.955) to explain the trend of the mean phase in spite of the increased
coherence compared the panel (A). We conclude that the description of both the slow and fast
components with the model Eq.(IV.7) may not be suitable.

Therefore, we take advantage of the lower angular dispersion in panel (B) of Fig.IV.18
to adjust the phase of the slow coherent mode only (f < 0.05 Hz). An affine relation to the
frequency, i.e. the model:

ϕxy(f)/ p̃ = fτ + β , (IV.10)

dashed line, better explains the trend (R2 = 0.983): we obtain a phase opposition β = −0.501±
0.004 and a delay τ = 3.6± 0.1 s (less than a breathing cycle) between slow cardiac frequency
modulations and slow lung volume variations.
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In [Saul, Berger, Albrecht, et al. 1991], the phase response of the cardiac frequency to the
variations of the lung volume (with a forced random breathing rate to increase its bandwidth)
were measured in controlled situations with either a dominant vagal or sympathetic regulation.
Our result from polysomnography is consistent with the phase response in the vagal situation,
expected during the sleeping state. They mainly observe the RSA fast component (with close
to zero phase shift), but the slow component is harder to observe due to their limited data
(7 recordings of 13 min): only the negative sign of its phase is visible on the measure but
neglected in the modelling. We have precisely characterized it as a phase opposition and a
delay: the slow modulations of the heart rate precede the slow variations of the lung volume by
about τ = 3.6 ± 0.1 s while they evolve in opposite ways (β p̃ = ±π). Even though it appears
counterintuitive, this is not incompatible with the fact that the phase of the slow heart rate
modulations is smaller (late) compared to the slow trend of the volume (ϕxy(f) ∈ [−π, 0] for
f < 0.05 Hz). The existence of the delay, visible in the phase-frequency relation, suggests a
causality directed from the heart rate to the slow trend of the lung volume.

2.3.4 Summary and instrumental limitations

From the individual example alone, we cannot doubt of the multi-scale and non-stationary
nature of the cardio-respiratory interaction, depicted as a coherence between the heart rate and
the airflow. We showed how to precisely locate the time and scale of very coherent oscillations in
both signals. In particular, the respiratory sinus arrhyhtmia is described as a fast and coherent
component at the breathing frequency, subject to some temporal fluctuations of its strength
and phase difference. We also observed that a second coherent component occur significantly
at the low frequencies supposed to be filtered out of the respiratory recordings. The modulus
of the coherence in indeed independent on the actual amplitude of the modulations, which
provides some robustness to instrumental non-linearity and filtering.

The proposed analysis of the coherence across the shhs2 database further provides a statis-
tically robust description of the coherence, in particular of its phase between the heart rate and
airflow signals at different scales. This methodology provides the typical strength of the RSA
coherence and the extent of its phase variability for different persons. The temporal variability
of the slower coherent component appears especially important with the airflow signal. A part
of this variability is of instrumental origin, explained by the progressive loss of the physiologi-
cal signal into the noise below the high-pass frequency 0.05 Hz. The slow coherence is indeed
stronger for the lung volume signal (hence even stronger for the true biophysical quantities),
also subject to the same instrumental filtering, but with stronger slow oscillations due to its
integral relation to the airflow.

A typical phase-frequency profile emerges, with a close to vanishing phase for the fast RSA
component and a negative phase decreasing with the frequency, interpreted as a delay of the
slow variations of the lung volume (i.e. the ones of its trend or running average) compared
to the cardiac frequency slow modulations. Already visible with the airflow signal, the phase
of coherence between these slow modulations has been characterized precisely as the result of
a delay τ = 3.6 ± 0.1 s of the slow lung volume variations compared to the slow heart rate
variations, evolving in phase opposition. These are physiological characteristics of the mainly
vagal inter-regulation of the cardio-respiratory rhythms during sleep.

However, these observations can be subject to several instrumental biases, especially the
value of the phase, which is very sensitive to the instrumental characteristics. The airflow
recording with a thermoelectric sensor is indeed problematic since it is delayed of about one
second compared to the actual airflow [Farré et al. 1998]. This can imply a bias of about −π

2
on the airflow phase at the breathing frequency, that makes the thermistor oscillation close to
the lung volume oscillation, so that the interpretation of the RSA phase difference extracted
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in Fig.IV.15 would flip from a phase-leading heart rate to a phase-leading airflow. The latter
is consistent with the close to zero (slightly negative) RSA phase between heart rate and lung
volume, assumed without a delay.

More concerning, the phase response of the instrumental high-pass filter at 0.05 Hz, men-
tioned for all respiratory signals, is not known. Apart from the damping of slow oscillations,
responsible for a loss of coherence at very low frequency, the filter can also introduce a phase
bias. The simplest such filter introduces a phase shift of the oscillations ramping from 0 at high
frequencies to π

2 at the filtered low frequencies. The true phase difference between the coherent
slow heart rate and respiratory modulations could then be smaller than measured, as well as
their delay.

The extraction of the heart rate signal from a recording (here the ECG) makes it less
bounded to the instrumental specificities of this recording. Although a delay can still exist
between different cardiac recording methods (for instance between the ECG and the PPG), the
resulting slow cardiac modulations are not subject to the instrumental high-pass filtering since
they are carried by faster oscillations.

Without a proper calibration, the airflow measurement from a thermoelectric sensor is
a semi-quantitative description of the actual airflow into the lungs. Heavily influenced by
instrumental characteristics that are not provided, it appears as a poor choice to describe
accurately the physiological regulation mechanisms from a phase-frequency relation. Its is
nevertheless rich in physiological information, that can be better exploited through its extracted
modulation rate signals.

2.4 Coherence: from recordings to rate signals
The previous discussion highlights the ambivalence of the coherence formalism: one hand, it
provides a very detailed analysis of correlated oscillations, at different times and scales, between
two correlated dynamics; on the other hand its precise interpretation (in particular the one of
the phase) highly depends on the selected fluctuating quantities, that can inextricably mix
experimental characteristics to physiologically relevant information.

We propose a comparison of the similarities and differences in the interpretation of the
cardio-respiratory coherence when we vary the nature of the input signals. We distinguish
3 of them: the recorded oscillations, their frequency modulations (FM) and their amplitude
modulations (AM).

Respiratory FM and AM can be estimated similarly as for the cardiac rhythm for the
respiratory recording x, here the airflow (AF). Due to its conveniently low non-circularity, but
its important variability, the wide-band estimator Fx(t;Q) is especially suited for the breathing
rhythm. Its real part, the mean instantaneous frequency, is superimposed to wavelet trans-
form in Fig.IV.19 (B). As for the cardiac signals in Fig.IV.8, the slight non-circularity yields
an overestimation of the breathing fundamental frequency when using a quadratic estimator.
Nevertheless, the coherence analysis is insensitive to the actual value of the rate signal (from
standardization), and the breathing rate modulations are effectively captured by this generic
wide-band estimator. Its imaginary part, related to the amplitude in Eqs.(III.8, III.30), is not
straightforward to interpret. Instead, we show the amplitude estimated by inverting their rela-
tion (exponential of the integral, with an integration constant set by hand) in thick red lines in
Fig.IV.19 (A), so that it directly compare to the envelope of the airflow recording (thin black
line).

In the following, we compare cardio-respiratory pairs of signals, among recordings and FM
or AM signals, in a time-frequency analysis. Notice that the “cardiac AM” is not considered,
because its does not contain cardiac information but respiratory one: it captures the periodic
changes in position of the ECG electrodes on the chest relative to the heart and impedance

122



CH. IV. Cardio-respiratory rhythms and their modulations

Figure IV.19: Respiratory recording of subject 3 and estimation of the breathing rate mod-
ulations. (A) Airflow signal (in l·s−1, thin black line) and (B) amplitude (same unit) from
the wavelet transform of quality factor Q = 5. (A) Breathing amplitude (thick red lines) and
(B) mean instantaneous frequency (thick black line), derived from the wide-band generic rate
estimator Fx(t;Q).

variations as the lungs fill and empty [Moody et al. 1986]. This ECG-derived respiration signal
could have been an interesting candidate to replace the airflow recording, as it is shielded from
its instrumental high-pass filter limitations.

2.4.1 Recording vs. recording

In Fig.IV.20, the first panel (A) is the direct comparison of the ECG and the airflow raw
recordings. Their coherence bears a heavily instrumental information: the cross-talk between
the sensors. A band of strongly significant coherence is found at high frequencies, in particular
at the breathing frequency and at its second harmonic order (one octave higher). It means that
a respiratory oscillation is present in the ECG, as a weak variation of the electric potential base-
line. The coherence in this band is intermittent with a varying phase. Compared to the airflow,
the reference respiratory signal, this ECG breathing oscillation is a mediocre representation of
the respiratory oscillation, that can be considered an “echo” in the ECG electric baseline of
the respiratory impedance modulation (clearer in the amplitude modulations of the ECG). The
change of coherence phase is certainly due to positional changes during sleep. No significantly
coherent event are observed at lower frequency, apart from isolated singular events associated
to shared motion artefacts. Other examples of cross-talk between recording are shown in the
Appendix 5.4, Fig.II.7.

2.4.2 Frequency modulation vs. recording

The next panels (B, C, D) of Fig.IV.20 involve at least one modulation rate signal. We showed
in chapter III how the frequency and amplitude modulations could be both captured into a
complex rate signal derived from the recording.

In the previous section, we used as a heart rate the sophisticated cardiac frequency narrow-
band estimator fc(t) = ℜ{Fx(t, f ;nQ,Q)} where x(t) is itself derived from the ECG (aECG14
signal, the amplitude at 14 Hz), that yields a very good estimate. We replace it by its most
generic and wide-band alternative, the mean instantaneous frequency ℜ{FECG(t;Q)}, compared
once again to the airflow (AF) recording in panel (B). The previously described coherent and
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Figure IV.20: Comparison of the time-frequency coherence γxy(t, f ;nQ,Q) associated to dif-
ferent pairs of cardio-respiratory signals (x vs. y) for subject 4 (Q = 5, n = 5). (A) ECG vs.
airflow (AF) bare recordings. (B) Cardiac frequency vs. AF recording. (C) Cardiac frequency
vs. respiratory frequency. (D) Cardiac frequency vs. respiratory magnitude rate. Mean instan-
taneous frequency and magnitude rate of a recording x (ECG or AF) refer here to the real and
imaginary parts of the wide-band rate signal estimator Fx(t;Q), for Q = 5.

fast RSA component is well reproduced, as well as the slow one. In fact, the resulting coherence
is hardly distinguishable from its counterpart of Fig.IV.14 (C) that uses the more precise heart
rate. The only difference between these input rate signals is a proportionality constant (due
to higher order harmonics), that does not affect the coherence analysis, and a repetition of the
cardiac oscillation at about 1 Hz, limited to the upper limit of the investigated frequency range.
See the different heart rate signals in Fig.IV.8 (D). This constitutes a strong methodological
simplification: the generic and the sophisticated heart rate estimators contain the same cardiac
FM information.

2.4.3 Frequency modulation vs. Frequency modulation

We carry on this approach for the breathing rhythm, by comparing in Fig.IV.20 (C) the heart
rate to the breathing rate obtained with the same generic wide-band estimator ℜ{FAF (t;Q)}
(plotted in Fig.IV.19 (B)). The horizontal line of the RSA component is also present with a
similar phase but weaker coherence than in panel (B). This is a beneficial effect of the repetition
of carrier (breathing) wave in the rate estimator. The study of the RSA coherence through this
indirect effect is certainly less reliable than using the airflow recording, but a useful echo. The
main advantage of this cardio-respiratory coherence is the possibility to interpret easily the
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CH. IV. Cardio-respiratory rhythms and their modulations

phase between of the slow rates modulations. Free from the instrumental high-pass filtering,
it unambiguously shows that there is close to no phase difference between a variation of the
heart rate and a variation of the breathing rate. The last concern is the global delay of the
airflow recording compared to the ground truth, and transmitted to the breathing rate signal.
Of the order of 1 second, such delay has a limited effect on the phase of the slow breathing
modulations since it represents no more than 1/16 of a cycle below 2−4 ≈ 0.06 Hz.

2.4.4 Frequency modulation vs. amplitude modulation

In the last panel (D) of Fig.IV.20 the heart rate is compared to ℑ{FAF (t;Q)}, the imaginary
part of the generic wide-band estimator. Its relation to the signal’s amplitude is not straight-
forward, so we recall it:

ℑ{ p̃Fy(t;Q)} = −∂t log
√
Py(t;Q) , (IV.11)

where
√
Py(t;Q), estimator of the time-dependent standard deviation, represents the (wide-

band) amplitude of the airflow (y = AF ). Slow coherent patterns are present in panel (D) but
distinct from the ones of panel (C): this allows to distinguish heart FM related to breathing
AM rather than FM (or to both of them). It remains to interpret observed phase, close to +π

2 ,
in relation to the actual amplitude modulation: the minus sign brings ±π, the time derivative
adds +π

2 (and a negligible log-frequency shift − 1
Q2 ), and the logarithmic function is a non-

linear transformation of the waveform that does not affect its phase. Therefore, oscillations
in ℑ{FAF (t;Q)} are shifted of −π

2 compared to the breathing amplitude, which means that
the heart FM has close to no phase difference with breathing AM. The horizontal line at
the breathing frequency is also present, which only reflects the carrier wave shared between
ℑ{FAF (t;Q)} and ℜ{FAF (t;Q)} (hence identical to panel (C) up to the phase quadrature).

2.4.5 Statistics over shhs2 of the phase between heart rate and breathing rates

Once again, we compute the coherence-based distribution of the cardio-respiratory phase as a
function of the modulation frequency over the 2.3 years of sleep recording in the shhs2 database.
We focus on the phase between heart rate and breathing rate in Fig.IV.21 (A) and the one
between heart rate and breathing amplitude (B). The individual cardio-respiratory coherence
are the one from Fig.IV.20 (C, D) based on the generic (wide-band) rate signals of the ECG,
x = ℜ{FECG(t;Q)}, and of the airflow recordings, FAF (t;Q) (real and imaginary parts). In
order to represent the correct phase of the breathing AM in panel (B), we shift the associated
rate signal by π

2 using y = iℑ{FAF (t;Q)}.
The use of rates signals improves the observation of the slow cardio-respiratory coherence.

In Fig.IV.21, the slow mode (2−6 to 2−4 Hz) appears more clearly, with a higher coherence
and smaller angular spread, when the modulations of the frequency or amplitude of the airflow
oscillation is used instead of the bare recording (Fig.IV.16). In this frequency range, the
respiratory frequency and amplitude modulations evolve (nearly) in phase synchrony with the
cardiac frequency.

We can further expand the observation to very slow frequencies (< 2−6 Hz), for which
respiratory frequency and amplitude modulations differ. While the phase difference between
very slow modulations of the heart rate and the breathing amplitude shifts only slightly from
zero, the very slow breathing rate modulations are in phase opposition with the corresponding
ones in the heart rate.

Finally, the fast coherent mode associated to RSA (at the breathing frequency 2−2 Hz) is
still visible. As discussed previously, the origin of this fast modulation in the breathing rate
signals is the non-circularity of the recorded breathing waveform. Here, we push the limit of
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Figure IV.21: Comparison of the phase distributions Gxy(ϕ ; f) in shhs2 between heart rate and
breathing rates modulations. (A) Cardiac frequency (ℜ{FECG(t;Q)}) vs. respiratory frequency
(FAF (t;Q)). (B) Cardiac frequency vs. respiratory amplitude (iℑ{FAF (t;Q)}).

its interpretation as a rate modulation by considering this non-circularity as a rate modulation
at the carrier (breathing) frequency. This allows to assess the presence of RSA. The behaviour
at higher frequency (> 2−2 Hz) cannot be interpreted easily.

Even though these results have been obtained from the generic estimators, the same com-
putation with more precise estimators only improves marginally the angular distributions (the
coherence is slightly increased). We show it in Fig.B.24 (Appendix 3.1), for which the precise
heart rate estimator is used instead of the generic one. Because of the suppression of the fast
cardiac oscillation in the precise estimator, the main difference concerns very high frequencies
(> 2−2 Hz), which are not relevant to breathing modulations.

A description of these two slow and very slow scales of cardio-respiratory interaction can
be found in [Thomas, Mietus, Peng, and Goldberger 2005], termed high-frequency and low-
frequency cardio-pulmonary coupling. It is quantified as a positive index, intermediary between
a cardio-respiratory coherence and their cross-spectral density (it is half-normalized), where the
respiratory signal has the particularity of being derived from the ECG amplitude modulations.
Our coherence approach allows putting into evidence the phase of between modulations, in
particular a positive and a negative sign of the slow and very slow FM-FM cardio-respiratory
coherence respectively. Their antagonist mechanism allows the regulation of the ratio of the
cardiac and respiratory frequencies, that is investigated in time in the next section.

3 Cardio-respiratory coordination as a frequency ratio
This section aims at approaching the topic of synchronization between the cardiac and respi-
ratory rhythms, that is not in the reach of the coherence analysis. This phenomenon consists
in the settlement of the cardiac and respiratory frequencies close to a simple rational num-
ber q = a

b
: it occurs when the heart beats a times while b breathing cycles are completed,

for a significant time duration. A strong cardiac FM versus breathing FM coherence with no
phase difference, as in Fig.IV.20 (C), is necessary for the observation of synchronization, be-
cause fc(t) = qfr(t). But this is not a sufficient condition, since the cardiac and respiratory
frequencies can vary together non-proportionally.
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Usually described as a phase locking phenomenon [Pikovsky, Rosenblum, and Kurths
2001], the synchronization process is described as the result of a dynamical interaction be-
tween phases [Kralemann, Cimponeriu, et al. 2008; Kralemann, Frühwirth, et al. 2013; Rosen-
blum et al. 2001]. Thus, the cardio-respiratory synchronization is commonly investigated from
their phase, with a stroboscopic representation (of the breathing phase at successive ECG
pulse) called synchrogram [Schäfer et al. 1998]; it facilitates the determination of the number
q = fc

fr
= a

b
when it is rational. This dimensionless number, called the pulse-respiration quotient

(PRQ) [Hildebrandt 1976; Moser, Lehofer, et al. 1995; Scholkmann and Wolf 2019], is a crucial
parameter for the cardio-respiratory system, biophysically more relevant than the breathing or
heart rates alone.

3.1 Distribution of frequency ratio
Ideally, the determination of the dynamics of this ratio results from the equally ideal deter-
mination of the breathing and heart rates. Although the time-frequency estimation of their
modulations is quite straightforward and sufficient for the coherence analysis, a quantitative
and stable estimation is more difficult to obtain, as illustrated for the heart rate. We propose
to use instead a distribution of this ratio, that concentrates on the desired line q(t) fc(t)

fr(t) in the
ideal case, and remains spread when the rhythmic oscillations lose their regularity. This hap-
pens occasionally for the breathing rhythm, more rarely for the heart rate (atrial fibrillation for
some subjects), and can have an instrumental origin when the signal is transiently lost during
a motion artefact for instance.

Given a cardiac recording x and a respiratory one y, their power densities appear as appro-
priate distributions for the frequency of their rhythm in the stationary case. The distribution
of the pulse-respiration ratio q can be defined from the following integral:

R(q) =
∫
Sxx(f)Syy(qf)|qf |df , (IV.12)

that is a multiplicative convolution (or cross-correlation), corresponding to the regular (addi-
tive) one when considering the variable log f (for f > 0). Notice that we are in fact comparing
power log-frequency density here, naturally associated to the scale-invariant (Haar) measure
df
|f | , so that it integrates to the power. Whenever the power of each recording is normalized,
Px = 1 = Py, the ratio distribution is also normalized

∫
R(q)dq

|q| = 1, and dimensionless.
This formalism extends to time-dependent distributions in the wavelet framework, the

simplest of which is obtained directly from the wavelet transforms as:

Rxy(t, q;Q) =
∫
|X(t, f ;Q)Y (t, qf ;Q)|2 df

|f |
Q2

π
. (IV.13)

The introduction of the quality factor Q explicitly fixes the time-ratio uncertainty trade-off of
this expression, where the ratio resolution is related to the frequency resolution as δ log q =√

2δ log f .
An illustration of Eq.(IV.13) is given in Fig.IV.22 (C), where X and Y originate from

the same signal. Based on a single PPG z(t) (A) and its wavelet transform Z(t, f ;Q) (B),
we notice that this recording contains both the cardiac and breathing rhythms. We thus split
the frequency domain above and below f0 = 1 Hz (red dashed line) to define the cardiac and
breathing frequency distributions from X(t, f ;Q) = Z(t, f ;Q)Θ(log f/f0) and Y (t, f ;Q) =
Z(t, f ;Q)Θ(log f0/f) (with Θ the Heaviside step function). Their ratio distribution Eq.(IV.12)
is then obtained in (C) from a cross-correlation with respect to log f (we only keep positive
frequencies). We used the quality factor Q = 15 to get a correct ratio concentration, but
we cannot increase it too much not to lose the time resolution. This results into numerous
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harmonics that are also participating in the ratio distribution as secondary lines of the form
m
n
q(t) for small integers m,n. These ratio lines are cross-terms that are also present when

comparing the entire PPG to itself (X = Y = Z), however, they are mixed with the always
dominant auto-terms with fundamental line q = 1, justifying the splitting of the frequency
range.

Figure IV.22: Distribution of the ratio between the heart and breathing rates of subject 2 from
a single PPG recording. (A) PPG signal. (B) Wavelet transform of the PPG with the quality
factor Q = 15 (squared modulus on a logarithmic colour scale). The horizontal red dashed line
at 1 Hz separates the respiratory rhythm form the cardiac one. (C) Ratio distribution computed
from the power densities obtained above and below 1 Hz in (B). (D) Frequency-reassigned power
density of the PPG. (E) Ratio distribution based on the frequency-reassigned power densities
(D) above and below 1 Hz.

3.2 Distribution of instantaneous frequency ratio
As discussed in the chapter III, the frequency uncertainty is a constraint on the smallest dis-
tinguishable interval between simultaneously oscillating components of the signal, rather than
a maximal achievable precision for the determination of their frequency. Indeed, the latter
one can be greatly improved from the frequency reassignment procedure Eq.(III.17), that ex-
ploits the time derivative of the phase or instantaneous frequency ℜ{Fx(t, f ;Q)} Eq.(III.9), see
Fig.IV.22 (D). We use this ultimate sophistication to achieve the goal of concentrating the ratio
distribution near the ideal line q(t), as represented in Fig.IV.22 (E). This operation is explicitly
expressed as:

R̃xy(t, q;Q) =
∫∫
|X(t, f ;Q)Y (t, f ′;Q)|2δ

(
q − ℜ{Fx(t, f ;Q)}
ℜ{Fy(t, f ′;Q)}

)
|q|dfdf ′

|ff ′|
Q2

π
, (IV.14)

where the tilde refers to the frequency ratio reassignment procedure. The concentration of the
resulting cardio-respiratory rate distribution is greatly improved, so that a much smaller quality
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factor can be used to retrieve a precise time resolution. For rhythmic signals, we do not observe
any noticeable difference using δ

(
log q|Fy |

|Fx|

)
, and we restrict frequency integrals to the positive

side. This could be considered as a marginal distribution for the more general distribution that
also considers the phase of Fy/Fx, interpreted from Eq.(III.23) as a delay related to vertical
features or strong modulations.
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Figure IV.23: Distribution of the ratio between the cardiac and respiratory instantaneous
frequencies, Rxy(t, q;Q), during the full 8 h night of sleep for subjects 4 (A) and 7 (B). The
recordings are respectively x = aECG14 and y = AF . The quality factor is Q = 4 and the ratio
distribution normalized at each time for clarity. The time-averaged ratio distribution is given
on the right.

A second example is given in Fig.IV.23 for 8 h of sleep of two different subjects (A,
B). Instead of the two-in-one PPG, we use two distinct recordings: the airflow signal for the
breathing rhythm, and the aECG14 signal for the cardiac one. We prefer it to the raw ECG
because its harmonics are more damped, thus clarifying the distribution. It is indeed convenient
to have a dominant fundamental component, so that the line of interest q(t) is the most weighted
one. The harmonic contributions are further limited by choosing a quality factor as low as
Q = 4, so that the fundamental component is still well-separated from harmonics, but harmonic
components are not distinct. The influence of second harmonics can still be noticed as echoes
an octave above or below q(t).The ratio distribution is also normalized at each time for a clearer
representation.

For the subject 4 of panel (A), which is the one of the coherence analysis, the PRQ wanders
between 4 and 6 during the night, without settling around a particular value, except perhaps
rare stops near 11

2 . We can further observe important differences in the fluctuations of the
PRQ: sometimes it remains concentrated with short fluctuations around a well-defined value,
whereas at other times, it fluctuates a lot more. These stable and unstable episodes are in direct
correspondence with episodes of respectively strong and weak RSA coherence in Figs.IV.14 and
IV.20. The observation of the slow coherence in Fig.IV.20 (C, D) tends to evolve in the opposite
manner, although this would require more confirmations.

This characterization of steady and unsteady episodes from the fluctuation of the PRQ is
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reminiscent of the time-delay stability analysis [Bashan et al. 2012]. Applied on the cardiac
and respiratory rates [Bartsch, Liu, Ma, et al. 2014], it bears a close relation with the phase
methods developed here (both the instantaneous frequency ratio and the temporal or time-
frequency coherence).

120 125 130 135

2 

3 

4 

5 

6 

7 

8 

9 

10

15

20

Figure IV.24: Distribution of the ratio between the cardiac and respiratory instantaneous
frequencies for subject 7. Zoom of Fig.IV.23 (B) on a selected time interval that contains a
transition from a state of repetitive obstructive sleep apnea to a state of 6:1 cardio-respiratory
synchronization.

In addition to the stable and unstable episodes, the distribution of the PRQ for the sub-
ject of panel (B) exhibits a third type of behaviour, that consists in a fast oscillation between
extreme values of the PRQ, about 3 to 20. This is the repetitive occurrence of obstructive sleep
apnea: the subject periodically stops breathing during about 20 heart beats, before recovering
from apnea and accelerating breath up to once every 3-5 heart beats. This oscillation is better
distinguished on Fig.IV.24, zoom of Fig.IV.23 (B) on a 15 min time selection that contains
a transition from obstructive sleep apnea to a steady episode. At this timescale, we can bet-
ter appreciate the precision of the time-ratio resolution for Q = 4. Contrary to the previous
subject, the stable episode here clearly fluctuates close to a stationary value that turns out
to be an integer number, this is a 6:1 cardio-respiratory synchronization. This corresponds to
the observation that episodes of cardio-respiratory coupling are more frequent for apneic sub-
jects [Riedl et al. 2014]. The rich phenomenology of the cardio-respiratory interaction [Bartsch,
Schumann, et al. 2012] is reflected into the important or weak fluctuations, locking to a simple
ratio or oscillating behaviour of the PRQ. These episodes are put in correspondence with REM
and non-REM sleep stages at the end of chapter V.

3.3 Sonance in a nutshell: towards a multi-frequency synchroniza-
tion index

The PRQ distribution is not perfectly concentrated on a line, even with a careful choice of
the quality factor and selection of the signals. This is an effect of the non-circularity of the
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oscillation, and the associated phenomenon of harmonics and beats. We notice that the inclu-
sion of these harmonics, as integer multiples of the fundamental frequency, does not affect the
rationality of the frequency ratio distribution in case of synchronization.

Can we define a synchronization index for the distribution of rational numbers? Although
we can not provide a simple and definitive answer on this question, we can propose a side-
trip around this question, that conveys an important musical meaning. Indeed, in the high
quality factor context of Music (Q > 12

log 2
√ p̃ ≈ 43), the non-circularity is a desirable timbre of

sounds, and their synchronization is called consonance. Harmonics participate in the sensation
of consonance or dissonance [Sethares 2005], and was already studied in details by pioneers of
biophysics [Helmholtz 1870]. The synchronization of the heart and breath resemble two voices
that sing at unison, except that these phenomena occurs with respectively very low and very
high intrinsic quality factors.

The extensive and slightly off track exploration of this question is compiled in an inde-
pendent “bonus” part C, that is self-consistent. We summarize here briefly our findings. A
singular measure of rationality or irrationality can be defined from the definition of a statistical
ensemble over (positive) rational numbers q = a

b
∈ Q+. This measure is based on an energy

(or “Hamiltonian”) of the form log ab, where a, b are relatively prime. Introducing an “in-
verse temperature” exponent, that we have denoted σ, we can introduce “Boltzmann weights”
e−σ log ab = (ab)−σ and a partition function:

Zσ =
∑
a
b

∈Q+

(ab)−σ , (IV.15)

associated to the sonance measure of a ratio distribution Rxy(q):

G
σ
[Rxy] = Z−1

σ

∑
a
b

∈Q+

Rxy

(
a

b

)
(ab)−σ (IV.16)

=
∫ ∞

0
Rxy(q)dG

σ
(q) . (IV.17)

Its definition is unambiguous for σ > 1, but σ ≤ 1 requires to specify an enumeration of rational
numbers, which can be obtained from successive rational approximations in binary trees [Calkin
and Wilf 2000]. In practice, we stop the series at a certain height in the tree.

The resulting measures are fractals, see Fig.2 in the bonus part C, and we can identify
special cases: σ → +∞ is concentrated on q = 1, the most rational number, σ → −∞ is
concentrated on ϕ =

√
5+1
2 and ϕ−1 =

√
5−1
2 the Golden —most irrational— numbers, σ → 1

seems to converge very slowly to an infinitely flat measure, and σ → 0 is an interestingly peculiar
measure called Minkowski’s question mark function [Alkauskas 2008; Minkowski 1910]. This
“infinite temperature” limit, i.e. with an equipartition among rational numbers, is in fact a
measure of irrationality (since rationals are dense in reals).

This measure can be implemented efficiently in the Fourier spectral domain conjugated
to log q, called its Mellin transform. The same strategy yields an efficient numerical imple-
mentation of the multiplicative convolution Eq.(IV.12). Although we obtained the expected
behaviour of a dissonant measure in the idealized situation of discrete distributions (for which
synchronization yields a vanishing value), its application to concrete situations is difficult to
interpret. We have just started to unfold the thermodynamic formalism, by considering the
first derivative with respect to σ, and another exponent (the norm p not necessarily equal to 2
in Eq.(IV.13)).
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Summary of sections 2 and 3

Computed from the ECG and airflow (AF) recordings and their rate signals, the cardio-
respiratory coherence and its significance is evaluated individually in time and frequency,
and the distribution of its phase is obtained from collective statistics over all times and
subjects in the shhs2 database. The comparison of different respiratory signals, either
the bare recordings or amplitude and frequency modulations (AM and FM), to the heart
rate variability (HRV, or cardiac FM) highlights different aspects of the cardio-respiratory
interaction. The generic wide-band estimator proves to be sufficient to estimate modu-
lations of the cardio-respiratory rates, not only from the airflow recording but also from
the ECG.
Overall, three different scales of coupling of cardio-respiratory rhythms as been observed.
The fast mode (2−2 Hz) is commonly known as respiratory sinus arrhythmia (RSA): the
heart rate increases during inspiration and decreases during expiration. Straightforwardly
observed by comparing HRV to a raw respiratory recording, RSA coherence is also visible
using respiratory AM and FM signals, thanks to an echo of the breathing carrier wave
that enriches the rate signals obtained from generic estimators.
Respiratory rate signals are crucial to investigate slow dynamics, circumventing the lim-
itations of the instrumental high-pass filtering in the airflow recording that damps slow
oscillations, dilutes the apparent slow coherence and potentially biases its phase. A slow
mode (2−6 to 2−4 Hz) indicates that both the breathing frequency and amplitude evolve
in-phase with the heart rate at this scale. For the breathing AM, this slow coherent com-
ponent extends to very slow frequencies (< 2−6 Hz) with a very slight phase shift, while
a distinct very slow mode in phase opposition appears between the heart and breathing
FM.
We may understand the difference of sign between these slow and very slow modes as
a regulatory mechanism made of a positive and a negative feedback loop between the
cardio-respiratory rates: at the scale of about 30 s, heart and breathing rhythms agrees
in their variations to adapt gaseous exchanges to the need of the metabolism; in contrast,
to the slow deceleration of one rhythm at the scale of a few minutes, the other rhythm
respond with an acceleration (and vice versa). These antagonist mechanisms are essential
to regulate the ratio between the heart and breathing rates.
This ratio, also called pulse-respiration quotient, can be estimated directly from the pair
of cardio-respiratory signals as a time-dependent distribution of their frequency ratio.
The use of frequency-reassignment is especially suited to concentrate this ratio on a
horizontal line, whose fluctuations can be precisely resolved in time using a small quality
factor. Distinct episodes of weak or important variability, locking to a simple rational
number or important oscillations can be identified in relation to sleep phenomena such
as stages and the occurrence of apnea.
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Chapter V

Sleep phenomena: wavelet perspectives
on polysomnography

In this last chapter, we focus on three types of recordings from polysomnography databases:
the electroencephalogram (EEG), the electrocardiogram (ECG), and the airflow (AF). Among
these, the EEG remains the most complex, because its spectral signature is a mixture of rhythms
of different natures: some of them have been recognized with a physiological origin, others which
are more volatile (unsteady) can be interpreted falsely from spectral decomposition [Jones 2016].
The correlations between these EEG “rhythms” and other physiological signals (such as the
heart and breathing rates) can help decipher this complexity; we propose a methodology to
assist this clarification.

The cardiovascular system is vital for feeding and clearing the whole body organs: its
failure in the brain or other neural tissues leads rapidly to irreversible issues, it must therefore
be finely regulated to keep a correct flux and filtration of blood. The cerebral blood flow has
been reported to increase during sleep, both in slow wave (NREM) sleep (4% to 25%) and in
REM sleep (25% to 80%) [Kryger, Roth, and Dement 2005]. Recently, it was also shown that
the brain rhythms can be placed in resonance with the HRV and respiration when modulating
the respiration frequency to lower bands [Hinterberger et al. 2019]. Continuous time-frequency
representation is reported in [Prerau et al. 2017] as a key to simplify the reading of EEG, both
globally and locally, and in [Aviyente, Bernat, et al. 2011; Aviyente and Mutlu 2011; Aviyente,
Tootell, and Bernat 2017] as a way to quantify functional integration in the brain as a phase
synchrony in EEG.

In Fig.V.1 (B, C, D) we illustrate simultaneous EEG, ECG and AF recordings from subject
3 (described in Appendix 1). As summarized by the hypnogram (panel A, from a clinician
annotation), a transition from NREM sleep to wake phase can be noticed on the three signals
as drastic changes in their behaviour near 51.5 min. The amplitude of these three recordings is
also represented in the time-frequency plane; these images are identical to scalograms (wavelet-
based spectrograms obtained as the squared modulus) because of their logarithmic colour scales.
We recognize the fundamental modes of ECG (∼ 20 = 1 Hz) and AF signals (∼ 2−2 = 0.25 Hz)
in Fig.V.1 (C, D), and some of their harmonics (first three, only visible before 51 min for the
AF).

The EEG in Fig.V.1 (B) is completely different, there is no clear fundamental mode: it
is a mixture of complex dynamics spread over a large frequency range (at least up to 125 Hz
and down to the instrumental cut-off visible near 2−4 Hz, illustrated in this example), but
also concentrated at specific frequencies. During the wake stage, α waves, which are typical
of the phase of wakefulness with closed eyes [Prerau et al. 2017], are visible in a very thin
frequency band near 10 Hz. A similar band, much more intermittent and less intense, can be
noticed near 12 Hz during the NREM sleep stage: it is the σ band composed of bursts of sleep
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Figure V.1: Comparison of three polysomnographic recordings of subject 3. (A) Hypnogram
of the person (black line), who is shifting from NREM sleep stage 2 (N2) to wake phase (W).
(B) EEG (C3-O1) in millivolt, (C) ECG in millivolt, and (D) nasal-oral airflow (AF) in litre
per second. For each recording, the signal (top) and the power density (right) are aligned with
the corresponding wavelet representation with quality factors Q = 10. Only its amplitude (twice
the modulus) is colour-coded, with logarithmic scales in signals’ unit. The power log-frequency
density Sxx(f)|f | (in signal’s unit squared) is estimated from either the squared Fourier (thin
grey line) or wavelet (thick black line) transforms on the selected time interval.
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CH. V. Sleep phenomena: wavelet perspectives on polysomnography

spindles. Below 4 Hz we observe localized bursts (with vertical cone rather than horizontal
band shape) corresponding to sharp and sudden events in the signals. This time-frequency
representation is very helpful to recognize different components; singular events are expressed
as vertical structures, whereas periodic components translate into horizontal bands. The latter
are summarized as a peak in the power log-frequency density Sxx(f)|f |, estimated either from
the wavelet or Fourier transforms as in Eqs.(II.23, II.25).

In this chapter, we further develop our discussion of the nervous system, previously limited
to the sympatho-vagal regulation of the cardio-respiratory activity, to the brain activity that
can be recorded from the scalp. In every polysomnography, it is recorded as a multi-channel
electroencephalography (EEG); the scale-free property of the wavelet transform appears espe-
cially well-suited to its multi-scale and non-stationary dynamics, as shown in Fig.V.1 (B). We
describe the global architecture of its sleep-wake patterns, structured in frequency-bands and
time-stages, both from the perspectives of power density and coherence. Then, we introduce
EEG band modulation signals, that we compare to other physiological modulations signals in
terms of coherence. In particular, we highlight the influence of sleep apnea, both through indi-
vidual examples and collective statistics. In the last section we approach the local phenomenon
of sleep spindles, made of short wave trains.

1 Neural activity from EEG
Shared among most animals, the nervous tissue is composed of a network of nerve cells, or
neurons, that convey chemical and electrical influxes across different parts of the body. The
central nervous system, in particular the brain, is a hub for this information flow made of a
dense connected network of neurons. Short electrical impulses, called action potentials, travel
along individual neurons as wavefronts of de- and re-polarization of their membrane, lasting
about 1 or 2 ms and followed by an equivalent or longer refractory period. Collective neural
behaviours effectively produce oscillating electrical dipoles, whose resulting electric field can be
recorded on the head.

1.1 Electroencephalogram
The brain activity can be measured with electrodes recording the fluctuating electric potential
(usually in microvolts, µV) between different standardized locations on the scalp. The result-
ing electroencephalogram (EEG) exhibits both erratic (noisy and/or scale-free) and rhythmic
behaviours in a very wide range of frequencies [Buzsáki and Draguhn 2004]. It represents the
integrated activity of a network of multiple neurons throughout the brain, in particular the one
of cortical neurons that is the least attenuated by conduction through layers of tissues and the
skull due to the proximity with the electrode.

1.1.1 Spatiotemporal characteristics

The duration of the action potential sets the fastest temporal scale (a maximum frequency
around up to 500 Hz) for the resulting neural activity, that spans multiple scales down to
the lifetime. The human brain signals found in a polysomnography (EEG) can only record
oscillations in a bandwidth of three decades (from about 0.1 to 100 Hz), during a full night of
sleep. These oscillations can be modulated at much slower scales, reflecting the activity of the
body (digestion, sleep-wake, etc), that are only limited by the duration of the recording.

The multiple channels of the EEG also constitute a discrete spatial measurement of the
electric field, positioned according to the 10-20 system as illustrated in Fig.V.2. The spatial
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Figure V.2: Standardized electrode placement for EEG, called the 10-20 system in reference to
the percentage of the distance on the skull that separates reference points (nasion to anion and
between ears). Cortical zones are labelled as follows: frontal pole (Fp), frontal (F), central (C),
parietal (P), temporal (T), occipital (O) and auricular (A). Odd (respectively even) numbers
refers to the left (right) side of the head, whereas z refers to the sagittal plane. Adapted from
the thesis of [Hoffmann 2007].

resolution increases with the density of electrode, up to a certain limit due to volume conduction.
However, only a few electrodes were recorded in the polysomnography databases we use.

In the polysomnography of subject 3, a single bipolar EEG is available, measured between
different pairs of locations depending on the subject (C4-A1, O2-A1 or C3-O1). Its resolution
is about 0.1 µV, sampled at 250 Hz, without specification of the instrumental filter. In shhs2
(subjects 4, 5, 6), the two bipolar EEG signals are recorded to the central left and right zones,
C3-A2 and C4-A1, where A refers to the mastoids, bones assumed to be electrically “quiet” and
commonly taken as contralateral reference electrodes. The resolution is 1 µV, sampled at 125
or 128 Hz with an instrumental high-pass filter at 0.15 Hz. The polysomnography of subject 7
contains a unipolar multi-channel EEG, from at least 11 electrodes (F3, F4, Fz, C3, C4, Cz, Pz,
O1, O2, A1, A1) with a reference electrode on the forehead (the sagittal plane is also assumed
“quiet” since above the corpus callosum). Its resolution is about 0.2 µV, sampled at 256 Hz,
without specification of the instrumental filter. A unipolar recording gives the possibility to re-
reference the EEG offline, for instance by taking the difference between two chosen electrodes,
xi(t)− xj(t).

1.1.2 The reference problem

Beyond pairs (bipolar EEG), several referencing methods can be applied to a unipolar EEG
for a greater spatial resolution and a better control of artefacts. We refer to this arbitrariness
as the reference problem. A first approach aims at approximating an ideal reference, the
electric potential at infinity, inexistent in practice because of electromagnetic interferences in
our environment. The simplest method consists in averaging all channels into an average
reference [Osselton 1969], based on the assumption of a globally neutral field. Weights can be
introduced in the construction of a more precise neutral reference, that can include corrections
from a realistic model of volume conduction in the human head [Hu et al. 2019; Yao et al. 2019].
A common reference has the drawback of introducing residual oscillations that are firmly non-
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local. The second approach consists in constructing local references for each electrode from
neighbours. This guaranties the spatial locality of the recording, which does not represent the
electric potential any more, but a discrete approximation of its surface Laplacian [Hjorth 1975],
proportional to the current source density (from Poisson equation and Ohm’s law [Gulrajani
Sept.-Oct. 1998]). The spherical geometry is sufficient to increase spatial resolution at a low
computational cost [Kayser and Tenke 2006b, 2015; Perrin et al. 1989], (further improved with
a realistic model of the skull [Babiloni et al. 2001]). The temporal distinction of successive
events at different locations is also improved [Burle et al. 2015].

In addition to bipolar EEG recording, we experimented the average reference, most straight-
forward to apply, and the spherical surface Laplacian, for which a simple implementation from
conversion matrices is available [Kayser and Tenke 2006b]. Although the latter method should
be preferred, its physical interpretation is rather rough from only 11 electrodes (30 is consid-
ered a minimum [Kayser and Tenke 2006a]). Eventually, our use of re-referencing essentially
aimed at the reduction of artefacts, rather than a better spatial resolution, that was not fully
exploited.

1.1.3 A note on grounding

Invisible in the EEG data, an electrode is used as a ground for the differential amplifier and the
shielding. This ground is isolated from the one of the power supply, for electrical safety reasons.
It is placed on the head, on Cz in shhs2, in order to reduce the capacitive coupling (antenna
effect) with external electromagnetic sources [Ferree et al. 2001], resulting in a reduction of
power line artefacts.

No grounding of the body itself is applied, even though a connection to earth can yield
physiological differences that are visible on the EEG [Chevalier, Mori, and Oschman 2006].
The degree of earthing of the subject may be a significant but hidden parameter that could be
controlled.

1.1.4 EEG artefacts

Different types of artefacts are commonly found in EEG signals, either of external or physio-
logical sources. The electromagnetic interference of the power supply produces an important
but precisely localized horizontal line at 50 Hz or 60 Hz (as well as less intense harmonic lines
at rationally related frequencies), that is removed by a notch (band-stop) filter. The rejection
of common modes in a bipolar or well-referenced EEG recording, is indeed incomplete, partly
due to unavoidable impedance mismatch between electrodes [Ferree et al. 2001]. Other narrow-
band spectral lines can be found at various frequencies (with a smaller amplitude) depending
on the surrounding electrical apparatus. A low-amplitude broad-band noise is also associated
to the EEG amplifier.

Physiological artefacts are broadly caused by any kind of motions of the body. The EEG
can directly record the electrical activity of eyes movements, facial muscles and heart beat
(EOG, EMG, ECG effects), characterized by time-localized events of strong amplitude. The
impedance of the skin-electrode junction (about or higher than 10 kΩ) can also be affected,
for instance by a mechanical tension on the cables and electrodes, sudden (time-local) during
postural changes, or subtle but regular (frequency-local) for breathing. A global drift in the
recording conditions can also be caused by transpiration or drying of the conductive gel.

When separate recordings are available, part of them can be identified as a significant
inter-recording coherence, or cross-talk, as showed in Fig.II.7 between EEG and ECG (A, B)
and between EEG and airflow (C, D), in which case this coherence can be used to construct
a corrected signal (incoherent with a chosen signal by construction). Otherwise, the removal
or the attenuation of these physiological artefacts is a difficult task that can be attempted
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with different algorithmic methods, see reviews [Jiang, Bian, and Tian 2019; Urigüen and
Garcia-Zapirain 2015], to produce “clean” EEG signals. We have tried to attenuate high-
amplitude time-events in a simple but imperfect way by standardizing the recording with its
time-dependent power. However, we decided not to apply any cleaning preprocessing to the
EEG signals for the applications shown in this chapter, that can either be considered as (i)
keeping this additional complex physiological information as part of the measurement, (ii) a way
to test the robustness of time-frequency methods, (iii) some room for improvement. The true
rationale behind this choice is the will to conserve a sound wavelet framework, applied to the
raw recordings, into which any processing operation can be expressed in a simple mathematical
form. We did not reach a clear expression for this cleaning operation, beyond the above-
mentioned partial attempts, and we found that the scale-adapted time-resolution of the wavelet
is able to confine these intense events to very short durations in high frequency regions. Their
possible influence on the results will thus be discussed case by case using the knowledge of their
localization in time or frequency.

1.2 Structure of EEG: bands and sleep stages
As shown in Fig.V.1 (B), the complexity of the EEG can be represented in the time-frequency
plane to distinguish both its non-stationary and multi-scale aspects. The traditional way of
dealing with this complexity consists in discretizing time into stages and frequency into bands.
Wake-sleep stages have been classified into the wake (W), rapid eye movement (REM) and
non-REM (or NREM) phases, and the NREM phase is further decomposed into the stages N1
(lightest), N2 and N3 (deepest sleep). This classification is based on a set of criteria about
the relative EEG power in each frequency band (possibly complemented by the EOG and
EMG), inside 30 seconds time epochs (R & K system and improvements [Grigg-Damberger
2012; Rechtschaffen 1968]). The succession of these stages, available in most polysomnographic
databases as a clinician annotation every 30 s, is a simplified representation of sleep called a
hypnogram, see Fig.V.1 (A). Aiming at the empirical distinction of neural waves, the frequency
bands are roughly defined in slices of 4 Hz and denoted with a Greek letter: δ up to 4 Hz, θ
from 4 to 8 Hz, α from 8 to 12 Hz, σ from 12 to 16 Hz, β from 16 to 20 Hz, and γ above 20 Hz.
For instance, the γ waves are intense in the wake state, while they vanish during NREM sleep,
characterized instead by intense δ waves (especially during N2 and N3 stages). In contrast, the
EEG power is low in all bands during REM sleep. We refer to Table 1 of the review [Prerau et al.
2017] for the proposed mechanism generating these neural waves. This practical discretization
of the time-frequency plane remains an approximation that cannot account for the continuous
dynamics and the micro-structures of sleep (such as sleep spindles and K-complexes).

1.2.1 Full night EEG in time and frequency

The time-frequency representation of an EEG can simplify considerably the scoring of the sleep
stages but also their reading at the global scale of sleep, while conserving the information
about micro-structures [Olbrich, Claussen, and Achermann 2011; Prerau et al. 2017]. In the
same spirit, we use the wavelet transform, that appears especially suited to represent the many
frequency decades that are spanned by neural oscillations [Buzsáki and Draguhn 2004]. The
EEG is presented in Figs.V.3 and V.4 as the amplitude of its wavelet transform (panels A) for
the entire night of sleep of two subjects, together with the corresponding hypnogram (panels B)
and amplitude spectrum (panels C). We can clearly observe the alternation in time of different
stages, characterized by specific frequency content in distinct bands.

For instance, the time interval from 17 to 51 min in Fig.V.3 corresponds to the person
falling in deep sleep and waking up again. Before 17 min, the α band (near 10 Hz) and the
presence of higher frequency, β-γ, means that the person is awake (with eyes closed), then
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Figure V.3: EEG (C3-O1) recorded during sleep on subject 3. (A) Amplitude of the wavelet
transform, 2|X(t, f ;Q)| with Q = 10 (divided in two panels). (B) Hypnogram. (C) Amplitude
spectrum (root-mean-square) aligned with the colour scale (in µV).
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Figure V.4: EEG (C4-A1) recorded during sleep on subject 5. Same as in Fig.V.3. Sleep
stages are here structured into regular cycles of 80 min (ultradian rhythm).
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disappearing completely after some last bursts at 20 min, corresponding to the N1 stage (non-
REM 1 or light sleep). Afterwards, we observe a continuous dynamics up to time 51 min: the
amplitude at low frequencies (θ and δ “bands”) increases, and discrete bursts appear in the
σ band (around 12 Hz, the sleep spindles), occasionally interrupted by short arousal events
characterized by the return of high frequencies. This has been scored as the stages N2 and N3
(deep sleep), with no obvious event at their transition. At 51 min, the succession of the burst of
higher frequencies and motion artefacts (vertical line rooted in low frequencies) followed by the
return of the α band marks a short wake stage. This sleep cycle is later described (in Fig.V.6)
as distinct band magnitude signals, and Fig.V.5 gives a closer look at the α band during wake
state.

For the rest of the night, the subject of Fig.V.3 is mainly in the N2 stage, with short
waking or light sleep, and interrupted by high frequency and strong α waves (awake with eyes
closed) from 187 to 237 min (motion artefacts can be observed in this interval). The deep
sleep stage (N3) is only scored again intermittently between 280 and 293 min, with a short
REM stage (rapid eye movement sleep) between 316 and 324 min, of equally low amplitude at
all frequencies. These observations are not representative of a typical night sleep: the subject
is indeed affected by a sever obstructive sleep apnea, responsible for the persistence of the
intermediate N2 stage. Sleep apnea is discussed later in a distinct section.

The EEG recording of the second subject, Fig.V.4, is representative of an “ideal” sleep
architecture: the night is here divided into 6 distinct and quite regular cycles. This repetition,
about every 80 min for this subject, is called the ultradian rhythm. It is rarely observed with
such regularity in practice, so that stochastic models are proposed as more realistic descriptions
of sleep stage transitions [Kemp and Kamphuisen 1986]. The probability for each first order
transition is estimated in the Appendix 4 and represented in Fig.B.26; although insufficient to
describe this complex dynamics [Kishi et al. 2018], it provides an illustration of the transition
network.

The idealized cycle is composed of a non-REM phase (strong slow δ waves, no amplitude at
high frequencies), followed by the REM phase (low amplitude at all frequencies). In a non-REM
phase, N1 is transient (very short), and alternating annotations of stages N2 and N3 (in the
hypnogram) are not associated to obvious changes in the EEG: the non-REM stages appear as
different degrees on a continuum, questioning their discreteness. Non-REM tends to be more
important (longer and deeper in N3) early in the night, while REM tends to increase at the end
of the night. Often concomitant with the wake state (W), motion artefacts are again visible as
vertical singularities.

Many instrumental specificities or limitations are noticeable by comparing the first EEG in
Fig.V.3 to the second one in Fig.V.4. Starting at high frequencies, they are damped (low pass
filtered) near the power line frequency 60 Hz for the second recording, whereas the frequency
range extends to 125 Hz in the first one. Instead, a notch filter at 60 Hz removes this major
source of electromagnetic pollution, letting a hole in the γ band. We can also notice a line of
constant frequency and low amplitude at 70 Hz caused by another unfiltered artificial source.
Then, α waves and the σ band are much more intense and distinct for the first subject. This
can be caused by difference in the montage, in particular the electrode locations, C3-O1 for the
first EEG and C4-A1 for the second: the occipital area favours their observation [Prerau et al.
2017].

At lower frequencies, the breathing rhythm is slightly but surely present at 0.2 Hz in
several time intervals of the first EEG, especially in the last part of the signal (after 250 min).
Commonly observed in EEG of the shhs2 database, the heart beat seems absent from this
EEG; in fact it is also present with a small amplitude, as put into evidence by its significant
coherence with the simultaneous ECG recording (used as an illustration of the time-frequency
coherence in Fig.II.7 (A, B)). No such incursions of cardio-respiratory rhythms are visible in
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the second EEG. Finally, both recordings are high pass filtered, at a lower frequency for the
first EEG (near 0.1 Hz) than for the second (near 0.3 Hz, see amplitude spectra in panels (C)).
Below this cut-off, only intense events such as motion artefacts are still visible.

Compared to the EEG spectrogram (i.e. the Gabor transform) used in [Olbrich, Claussen,
and Achermann 2011; Prerau et al. 2017], the most striking difference of the EEG scalogram
(i.e. the wavelet transform) is its logarithmic frequency axis (and measure d log f), consistent
with the constant quality factor (and relative frequency resolution) of the wavelet transform,
instead of a constant frequency resolution and a linear frequency axis (and measure df). The
log-frequency axis emphasizes multi-scale aspects and details much more the low frequencies
than the linear axis. This reveals that the δ band contains occasionally, in some recordings,
the cardio-respiratory rhythms. Moreover, the use of the log-frequency measure is suited to
represent the approximately constant EEG power per decade (see the root-mean-square am-
plitude in panels C): the trend of the EEG spectrum is much closer to the one of the pink
noise than the one of the white noise, see discussion in section 3.3.2 of chapter II. Hence, the
readability (the contrast) of the representation is improved at high and low frequencies with
the scalogram. Eventually, the use of a constant quality factor means that the time resolution
of an oscillating event is adjusted to its frequency, i.e. to the duration of a minimum number
of oscillations fδt = Q√ p̃ (the one of the wavelet). These arguments are clearly in favour of the
wavelet paradigm for analysing the EEG.

Contrary to EEG oscillations in the low frequency bands (δ and θ) or the high ones (β,
γ), which are more time-localized (vertical lines) or irregular and wide-band, the intermediary
bands α and σ (between 8 and 16 Hz) contain quite frequency-localized structures, i.e. of
many regular oscillations. These narrow-band activity are illustrated as intermittent horizontal
lines in Fig.V.1, σ waves (or sleep spindles) in the non-REM phase and α waves in the wake
phase. The waves in these intermediary bands benefit from the spectrogram representation,
that typically yields a more precise frequency resolution than the scalogram at high frequencies.

We argue that a well-chosen quality factor permits to distinguish these different types of
event conveniently. The distinction of the central frequencies of the α and σ bands, say 10
and 13 Hz, requires for the log-frequency resolution δ log f =

√ p̃
Q
< log 13

10 , i.e. a quality factor
Q > 9.5. Moreover, the optimal time localization of a micro-structure such as sleep spindles,
that seems to last more than 5 oscillations (fδt = Q√ p̃ ), requires a quality factor Q < 12.5. This
has led us to choose Q = 10 for convenient EEG scalograms in Figs.V.3 and V.4. This is a
compromise, however, since singular oscillations, like motion artefacts or K-complexes, are not
optimally localized in time, while the α waves could be much better localized in frequency.

Noticing that α waves are not concomitant with sleep spindles of the σ band, and that
these bands need not be separated; we call α-σ their union, from 8 to 16 Hz. This means that
the wavelet bandwidth can be as wide as δ log f < log 16

8 : a lower quality factor can be chosen
(Q > 3.6), improving a lot the time localization. We thus also use Q = 5 to study local EEG
structures, such as modulations, with a higher time resolution (see Fig.V.6 (C)), even though
the frequency resolution looks degraded.

In fact, the spectral information seemingly missing from the amplitude is contained in the
phase, see Fig.V.5 (B) for α waves. Spectral lines associated to regular neural rhythms are re-
trieved precisely from their instantaneous frequency, as visualized with frequency-reassignement
(C). Even at Q = 5, the power density (D) estimated with frequency-reassignment (thick black
line) has the same spectral width as from the raw Fourier transform (thin grey line), directly
caused by the temporal variability of the instantaneous frequency; the bandwidth associated
to the wavelet (thick red line) has been squeezed.

In summary, the wavelet representation for the EEG is not only suitable to represent the
global structure of sleep, but also to its micro-structures, at a temporal resolution that would
be unreachable otherwise: a quarter of a second for the α waves with Q = 5.
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Figure V.5: EEG with an α wave when subject 3 wakes up (with eyes closed). (A) Signal
(mV). (B) Wavelet transform (Q = 5) with the hue-saturation colour coding of the phase and
amplitude (see Fig.II.1). (C) Frequency-reassigned power density Eq.(III.17). (D) Power log-
frequency density Eq.(II.23) (in mV2), estimated from the wavelet transform without and with
frequency-reassignment (thick red and black lines), or directly form the Fourier transform (thin
grey line).

1.2.2 EEG modulations as band power, rate or magnitude signals

Like the cardiac and respiratory rhythms, the neural activity is modulated, and we may want
to estimate these modulations for further analysis of polysomnography. This suggests using
the same complex rate estimator Fx as previously for the EEG recording x. The presence
of many neural “rhythms” in different bands, however, is an important difference between an
EEG and ECG or AF recordings, that mostly contain a single one. We present below how the
common approach of estimating the power variations in each EEG bands can be reproduced in
the wavelet framework, and how it is related to Fx.

In Fig.V.6, we select the time interval for which the subject of Fig.V.3 falls asleep (around
20 min) and wakes up (around 50 min). These transitions are well visible in Fig.V.6 (C) from
the changes of amplitude at high and low frequency at these times, as well as in the average
instantaneous frequency ℜ{Fx(t;Q)} (E), that summarizes this behaviour in a surprisingly
close way to the hypnogram (A). Notice that we can access much more information from the
wavelet transform (C) than from the hypnogram, such as micro-states of arousal during sleep
at 40 and 46 min, yielding transient high amplitudes at the high frequencies. A conventional
way to deal with the complexity of an EEG is to divide it into band-limited signals, computed
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Figure V.6: Extraction of modulations in the EEG. (A) Hypnogram: subject 3 falls asleep
around 20 min and wakes up around 50 min. (B) EEG signal x (C3-O1). (C) Amplitude from
the wavelet transform (twice the modulus) with quality factor Q = 5, colour scale in microvolt.
(D) Natural logarithm of the EEG band magnitudes, Eq.(V.2): mδ

x in blue, mθ
x in red, mα-σ

x in
orange, mβ-γ

x in purple. The black line is the magnitude mx in the full frequency range (from
0.04 to 125 Hz). (E) Average instantaneous frequency ℜ{Fx} on the full frequency range (grey
line, and its 8 s moving average, black line). (F) Magnitude rate ℑ{F ω

x } computed in the same
frequency bands as in (D). In (D) and (F), the signals have an arbitrary scale, and a mean
value aligned to the position in (C) and (E) of the central band frequency.

straightforwardly from its wavelet transform as a band power P ω
x , or as a band magnitude

signals mω
x :

P ω
x (t) =

∫
Bω
|X(t, f ;Q)|2d logf Q√

π
(V.1)

mω
x(t) = 1

2 logP ω
x (t) . (V.2)

Note that the width of these bandsBω = [f−
ω , f

+
ω ] is effectively limited by the wavelet bandwidth

δ log f . The conventional bands ω = δ, θ, α, σ, β, γ are placed rather evenly on the linear
frequency scale (with a width of about 4 Hz), not at all on a logarithmic one. This choice was
probably contingent on the linearity of the frequency axis; we take the liberty to slightly adapt
the bands as follows: δ from 0.25 to 4 Hz, θ from 4 to 8 Hz, α-σ from 8 to 16 Hz (as discussed
previously) and β-γ above 16 Hz (up to the Nyquist frequency limit), see Fig.V.6 (D).

Eq.(IV.11) relates precisely band power or magnitude to a band-limited version of the
complex rate estimator:

ℑ{F ω
x (t;Q)} = −∂tmω

x(t)/ p̃ . (V.3)

The instantaneous frequency (real part of the complex rate) in most band is not used in the
following and hence omitted in Fig.V.6. It serves nonetheless to distinguish α waves from sleep
spindles in our custom α-σ band. The band signals is Fig.V.6 (D) and (F) contain the same
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1. Neural activity from EEG

information on the EEG modulations: they essentially differ by a phase shift in a coherence
analysis. Therefore, both kinds of signals (magnitude and its rate) can be used to study
the modulation of the amplitude in the EEG bands. We prefer the magnitude, that is more
straightforward to interpret.

An average is required to define magnitude signals without divergences (otherwise occurring
at phase vortices of the wavelet transform). When multiple EEG channels are available, their
average may be used at the cost of losing the spatial information. Here, the variability of the
average estimator from the band integration depends on its relative bandwidth compared to
the one of the wavelet; the α-σ band signal is more variable than the δ one. However, a small
averaging is sufficient to avoid divergences. A continuous and homogeneous approach consists in
using the time-dependent log-frequency power density estimator Sxx(t, fω;Q+, Q−)|fω|, locally-
averaged version of the scalogram |X(t, f ;Q)|2, from which we can define the magnitude field
as:

mx(t, fω;Q+, Q−) = 1
2 log (Sxx(t, fω;Q+, Q−)|fω|) , (V.4)

with a continuous band frequency parameter fω, a bandwidth controlled by Q− and a time
resolution by Q+ > Q−. A practical estimator for this quantity is obtained from a time
smoothing over n wavelet durations of the scalogram: Sxx(t, f ;nQ,Q)|f | (f = fω, Q = Q−).
At this point, we reach an agreement with the proposal in [Prerau et al. 2017] to use a proper
statistical estimation of the EEG power density in the time-frequency plane. For more detail
on the correspondence between their multi-taper spectrogram and our wavelet estimator, we
refer to chapter II, section 5.

Before comparing the neural magnitude signals to the cardio-respiratory ones, we explore
in the next section the possibility to compare two EEG recordings by extending this quadratic
approach to cross power density and coherence.

1.3 Wake-sleep patterns in the magnitude and coherence of an EEG
pair

In this section, we illustrate the time-frequency coherence between two channels of an EEG
recording, and we recall the steps to achieve its computation and graphical representation. For
an illustrative purpose, we selected a pair of clean EEG signals, recorded on both sides of the
head of subject 6: x is measured between points C3-A2 and y is measured between points C4-A1
(left-right symmetric to C3-A2). One would expect that these recordings from contra-lateral
locations would produce a very strong coherence, with little temporal evolution.

Their global coherence (complex correlation coefficient), estimated over the full overnight
record (9 hours), is as low as ρx+y+ = 0.061 + i0.029, the real part of which is the usual Pearson
correlation coefficient ρxy = 0.061. In regard to the non-stationary and multi-scale charac-
teristics of EEG, this absence of global linear similitude can be explained. Actually coherent
time-frequency subdomains could occur, with different phases that interfere and globally cancel
out. Therefore, we propose to localize the correlation analysis in different frequency bands and
at different times by applying the time-frequency coherence formalism.

The succession of computations performed on these signals leading to γxy is represented in
Fig.V.7. We show in Fig.V.7(B, C) the signal x(t) and the amplitude of the wavelet transform
2|X(t, f ;Q)|; the second EEG has a very similar aspect, hence not represented. The chosen
quality factor Q = 10 is sufficient to identify the EEG bands (simultaneous modes of frequency
ratio exp(δ log f) ≈ 1.3 can be distinguished). The wavelet transforms need to be paired,
multiplied and smoothed for the preliminary estimation of the power spectral densities. To keep
the full frequency resolution offered by the wavelet analysis, we smooth in time only a Gaussian
kernel of width nδt that lasts n = 50 wavelet durations, see Eqs.(II.70, II.71), to estimate the
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CH. V. Sleep phenomena: wavelet perspectives on polysomnography

power log-frequency densities Sxy(t, f, nQ,Q)|f |. Their geometric mean,
√
SxxSyy |f | in panel

(D), gives a clear illustration of sleep stage patterns, summarized in the hypnogram (A) from
the original annotations. The use of a large time-smoothing regime sets a low level of the
spurious coherence (γsp ∼ 0.14), allowing to discriminate strong and weak correlations. It
has the side effect of a poor time resolution, especially below 0.5 Hz (a quarter of an hour at
f = 0.2 Hz), where scattered coherent spots of varying phase are most likely due to isolated
intense and coherent events such as motion artefacts.

Since the cross power density Sxy|f | is a complex-valued map, we employ in Fig.V.7 (E)
the amplitude-phase colour coding. Its phase (i.e. the one of the coherence) is an interesting
piece of information which we do not discard. It represents the phase difference between the
signals: the zero phase shift is coded in green, the phase opposition (±π) is coded in ma-
genta, and the phase quadrature is coded in orange (−π

2 ) or light blue (+π
2 ), as indicated in

the colour bar. The strength of local correlations are finally obtained in Fig.V.7 (F) from the
time-frequency coherence estimator γxy = γxy(t, f ;nQ,Q), ratio of (E) and (D). The regions
of high in-phase coherence (green) during the REM stage (of low power), illustrates well the
insensitivity of γxy to the power density. The phase of the cross-spectrum remains, but its
modulus is normalized so that a loss of coherence is only due to destructive phase interference.
For a better readability, the saturation of colours is discretized into 5 ranges of coherence mod-
ulus |γxy|. The low coherence values that cannot be distinguished from the spurious coherence
(p-value > 10−1) are in white (no saturation). The range represented with the faintest colour
saturation is made of low but significant coherence values, with p-values 10−3 < p < 10−1:
|γxy| ∈ [γ(10−1), γ(10−3)] ≈ [0.21, 0.36]. The high coherence ranges are delimited by the co-
herence values |γ| = γ(10−3), 0.5, 0.7 and 1, with increasingly saturated colours.

The expected spurious coherence level is illustrated in Fig.V.7 (G), computed between
incoherent signals, here the EEG and its phase-randomized surrogate signal [Lancaster et al.
2018]. Thus, the estimation of the significance for low coherence values can be controlled and
visualized: the surrogate coherence only exhibits scattered spots of significance 10−3 < p < 10−1

(consistent with a density of false positives of about 10% in the time-frequency plane) with a
random phase. The size of these spots is representative of the resolution of the coherence
analysis in the time-frequency plane: their area is of the order of n time-frequency atoms. Its
comparison to γxy of Fig.V.7 (F) confirms that both EEG activities are strongly correlated,
with various phase shifts, in many time-frequency regions.

Fig.V.8 provides in (A) and (B) a zoom of the EEG power density and inter-EEG coherence
of Fig.V.7 (D, F). The selected time-frequency domain contains the three main EEG patterns,
structured both in scales (frequency bands) and in time stages: as indicated in the hypnogram,
it starts with the end of NREM, then REM, wake (W) and back to another NREM state. In
addition to the commonly scrutinized power density in each frequency band, provided in (A)
as a continuum, a particularly rich information is found in the coherence and its phase.

The phase-frequency relation in all regions of significant coherence γxy = |γxy|eiϕxy is well
described by ϕxy = ϕ± + p̃fτ , responsible for the vertical rainbows (phase gradients) at high
frequencies in Figs.V.7 (E, F) and Fig.V.8 (B). Remarkably, the first term of this linear relation
can only take two angular values, ϕ+ = 0 (in-phase, green) and ϕ− = ±π (phase opposition,
magenta), and τ ≈ 10 ms is a constant delay. Therefore, the left-right symmetry of the
correlated EEG activity (that would write ϕyx = ϕxy) is only spoiled by a short delay: x is
10ms early compared to y. This delay only corresponds to the third highest local maximum of
the global correlation function ρxy(τ) (that does not increase much: ρx+y+(τ) = 0.085 + i0.019),
confirming the irrelevance of stationary methods. Of the order of one time-step (sampled at
125 Hz), we suspect an instrumental origin for this delay.

The map γxy(t, f ;nQ,Q)e−i p̃fτ in Fig.V.8 (C) provides a visual support to the detailed
description of these patterns in Table V.1. It consists in compensating the linear trend of the
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1. Neural activity from EEG

Figure V.7: Time-frequency coherence analysis of two EEG recordings of subject 6: x cor-
responding to C3-A2 and y to C4-A1. (A) Hypnogram. (B) Signal y (in µV). (C) Am-
plitude 2|Y (t, f ;Q)|. (D) Geometric mean of the (time-varying) log-frequency power densi-
ties

√
SxxSyy |f |. (E) Cross power log-frequency density Sxy(t, f ;nQ,Q)|f |. (F) Coherence

γxy(t, f ;nQ,Q) (ratio of (E) and (D)). (G) Coherence with a surrogate EEG, to illustrate the
spurious coherence level in (F). The ranges of coherence moduli |γxy| for the colour saturation
coding are delimited by the lower thresholds γ(10−1) ≈ 0.21, γ(10−3) ≈ 0.36, 0.5, 0.7. The
quality factor Q = 10 is used for the computations, together with the Gaussian smoothing win-
dow χn of temporal width n = 50 units of wavelet duration.

phase-frequency relation, caused by the global delay between the EEG recordings. For such a
small delay, we notice that γxy(t, f ;nQ,Q)e−i p̃fτ is a very good approximation of the generalized
delayed time-frequency coherence γxy(f, t− τ, t), between x(t− τ) and y(t).

In the light of this specific phase relation, the description of the coherence patterns boils
down to: (i) the sign of the correlation, (+) for in-phase regions (ϕ+ = 0) and (−) for the
ones in phase opposition (ϕ− = ±π), and (ii) its strength (insignificant to high) everywhere
is the time-frequency plane. The time-frequency map of ϕ± is obtained by compensating the
delay: γxy(t, f ;nQ,Q)e−i p̃fτ , illustrated in Fig.V.8 (C). A synthetic description of the inter-
EEG coherence in distinct time-frequency regions (EEG bands and sleep stages) for subject 6
is constructed in Table V.1. This confirms the strong capability of the time-frequency coherence
method to bring to sleep study otherwise unnoticed inter-EEG correlations.

We recall that this particular phase relation is specific to the compared pair of bipolar EEG
(C3-A2 versus C4-A1). In the context of a unipolar multi-channel EEG, the possible pairing
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CH. V. Sleep phenomena: wavelet perspectives on polysomnography

Figure V.8: Details of the three main sleep-wake patterns in the EEG power density and co-
herence from Fig.V.7 (D, F). (A) Power density

√
SxxSyy |f | (geometric mean). (B) Coherence

γxy. (C) Coherence with delay compensation, γxy(t, f ;nQ,Q)e−i p̃fτ , where τ ≈ 10 ms.

band
(Hz) W NREM REM

γ 60 ++P −p +p

β 20 −−P −−p
σ 16 bursts 0 + ++

0p

α 12 ++P − 0 0p liminal
θ 8 0 liminal 0
δ+ 4 +P 0p + ++p

δ− 1
1/4

bursts 0P +P

Table V.1: Summary of coherence pat-
terns observed for subject 6, organized by
band (row) and stage (column). Positive
and negative coherences are denoted by ±,
doubled when strong, 0 when incoherent,
and P/p for especially high/low power den-
sity. When heterogeneous, we qualify the
fine structure: several symbols for alternat-
ing or intermittent, “bursts” for singular
events, “liminal” or interstitial when influ-
enced by neighbouring bands.

of channels are numerous. Sxy is only one entry of the corresponding power density matrix S,
indexed by the electrode locations. The introduction of these two spatial variables increases
the dimensionality of the EEG description, and the difficulty of its practical interpretation.
The exhaustive computation of the matrix S for an 11-channel EEG yields 55 independent
entries, each being a time-frequency image. These images and their sleep-patterns are largely
redundant, with an important diversity of phase values depending on the pair of electrodes.

Furthermore, a single-channel EEG is already a difference of potentials at distinct spatial
locations; this fact appears as a more fundamental issue, this is the reference problem. For
instance, the re-referencing of two channels x and y into x′ = x − z and y′ = y − z (with the
common reference signal z) changes the power density from Sxy to Sx′y′ = Sxy−Sxz−Syz +Szz,
as well as its associated coherence. We could assume that the difference introduced between
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2. Sleep apnea: a slow and ubiquitous rhythm

candidate references is negligible (Sx′y′ ≈ Sxy). Preliminary observations suggest that this
assumption does not hold: referencing either at Cz or with the spatial average changes entirely
the phase value for most pairs of locations. Improving the spatial localization of unipolar
EEG, the Laplacian method might help to circumvent this reference problem that clutters the
interpretation of the inter-EEG phase.

Summary of section 1

Essential component of a polysomnography, EEG recordings of the neural activity have
been introduced, and their main instrumental and time-frequency characteristics have
been discussed and illustrated. A constant quality factor representation is especially well
suited to observe their multi-scale architecture along time, globally described in terms
of wake-sleep temporal stages, and spectral bands spanning over 3 decades. The wavelet
transform X(t, f ;Q) with quality factor Q = 5 is proposed to study EEG phenomena in
the finest details, allowing a very high time resolution of the transient modulations of
the neural activity, while its phase can be used to retrieve precisely the instantaneous
frequency of more regular oscillations. If using an amplitude representation only, for
instance the power density Sxx(t, f ;Q+, Q−) without frequency reassignment, Q− = 10 is
advised for a better distinction in the narrow intermediary band (θ, α, σ). In correspon-
dence with multi-taper spectrogram representation, the EEG reading from the power
density is particularly clarified using a time-smoothing (from Q+ > Q−), that can be as
important as Q+ = 500. Beyond the power density, sleep patterns can also be observed
from the inter-EEG time-frequency coherence γxy(t, f ;Q+, Q−), illustrated for individual
contra-lateral recordings. Phase patterns with alternating signs and significance (incoher-
ent to very coherent), varying independently from the power density, bring novel insights
into the neural activity in different stages and bands. The magnitude of neural activity
can be extracted either from frequency integration of the EEG intensity in each dis-
crete band of interest, or continuously across scales from the amplitude or power density
with small quality factors. These neural modulations are compared to cardio-respiratory
modulations in the next section.

2 Sleep apnea: a slow and ubiquitous rhythm
In this section, we focus on the impact of sleep apnea on neural (EEG), cardiac (ECG) and
respiratory (AF) rhythms recorded during sleep. Their altered dynamics is studied from the
extracted physiological modulation estimators, and from their coherence. The significance of
our coherence estimator is discussed in relation to the chosen quality factors. This original
method, based on a two-step time-frequency decomposition, can be used to capture the rhythm
modulations of any physiological signal and requires no signal-specific adjustment, other than
the possibility to restrict the spectral range. Applied on the polysomnography of the subject 3,
affected by obstructive sleep apnea, this method shows how repeated apnea events during the
NREM sleep stage N2 are associated to very coherent slow modulations (∼0.035 Hz) across all
possible pairs of physiological signals.

The robustness of this observations is assessed by performing a statistical survey of the
large shhs2 database. Based on the clinician annotations of apneic events, we reconstruct
typical HRV power density and coherence spectra for subpopulations of patients with sleep
apnea disorders. These spectra not only confirm the statistical validity of the first observation
on the selected subject, but also draw our attention to other key elements: (i) the coherence
spectra around the slow mode of apnea modulation, in the band [0.01, 0.08] Hz, is made of a
fundamental and a harmonic mode, restricting the apneic fundamental frequency to the range
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[0.01, 0.04] Hz; (ii) the fast coherent cardio-respiratory modulation (1/4 Hz), associated to
respiratory sinus arrhythmia (RSA), almost vanishes for more severe (obstructive or central)
sleep apnea; (iii) the very slow coherent mode is also present in neural modulations, in phase
with the heart rate and in phase opposition with the breathing rate.

These statistical results are completed by the distribution of the phase shift of slow neural
modulations, continuously across EEG band frequencies, compared to a cardiac or respiratory
reference modulation. We put into evidence the existence of slow and very slow EEG activity,
coherent with cardio-respiratory modulations, both in presence and absence of apnea. These
neuro-respiratory and neuro-cardiac interactions are characterized in the continuum of EEG
band frequencies, and exhibits a typical phase pattern. We interpret it as the observation of
the multi-band phase relation between the cardio-respiratory activity and cyclic alternating
patterns [Terzano et al. 2001] that corresponds to slow recurrent patterns of cortical activity.

Eventually, we illustrate preliminary investigations on the detection of sleep spindles from
the phase information in the σ band, and the coupling of their amplitude to the phase of slow
oscillations during deep sleep (N3 stage) [Purcell et al. 2017]. We motivate the possibility to
measure phase-amplitude couplings as the coherence between EEG amplitude signals and the
EEG recording itself. We finish on a complete picture of wake-sleep and apnea stages in this
individual polysomnography by including the previously computed pulse-respiration quotient.

2.1 Neuro-cardio-respiratory coherence of an apneic subject

The modulations of physiological rhythms are extracted from the EEG, ECG and AF recordings
from subject 3 in order to explore their correlations below the frequency of the instrumental
high-pass filter. The cardiac and respiratory modulations are estimated with the complex rate
signal Fx, and the neural modulations with the previously introduced magnitude signals mω

x in
the bands ω.

For the sake of simplicity, we use the most generic wide-band estimator Fx(t;Q) for the
cardiac and respiratory recordings. The coherence analysis applied to them in the chapter
IV suggests that further insights from more sophisticated estimators are limited; we recall
arguments for this simplification.

Although these physiological fluctuation rate signals do not compare directly to the ideal-
ized cardiac and respiration rates, their spectral richness capture all the modulations that are
resolved by the wavelet in the considered frequency range. There are two main quantitative
differences, both related to the non-circularity of the rhythmic oscillations. The first one is the
echo of the carrier wave oscillation in the estimated rate signal, strong for the ECG, reduced
for the aECG14 signal and weaker for the airflow recording. Instead of perturbing the analysis
of modulations, the carrier frequency enriches it beyond the spectral range for the frequency
and amplitude modulations (FM and AM).

The second difference is a dilation factor between the ideal and the estimated rates, that
is caused by the contributions of harmonic components to the waveform. Weak for the airflow
rate signal (see Fig.IV.19), this effect is strong for the ECG rate signal. In the case of an
invariant waveform, the analysis of the rate modulations is not affected since the resulting
factor is constant. To the contrary, modulations of the waveform can be confused with FM
by the wide-band estimator Fx(t;Q), as for the voice vibrato in Fig.III.5. For this reason, we
can only consider it a proxy for the heart rate, sufficient for a coherence analysis because the
cardiac waveform does not change dramatically during the recordings, at least at the scale of
few minutes. We verified it in Fig.IV.11, where its coherence with the reference heart rate
signal is significant, although decreased compared to more sophisticated estimators.
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2.1.1 Physiological modulations in time and frequency

The modulation estimators are computed for the full overnight records of subject 3. In par-
ticular, we discuss the modulations of the cardiac frequency, respiratory frequency, and EEG
magnitude in the δ and β-γ bands. The contributions from multiple scales, superimposed in
these modulation estimators, are revealed by their wavelet transform, which is the preliminary
step to the time-frequency coherence analysis.
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Figure V.9: Physiological modulations of subject 3. (A) Phase-randomized surrogate of (B)
mθ

EEG, the magnitude in the θ band, (C) magnitude in the β-γ band mβ-γ
EEG, (D) cardiac frequency

modulation ℜ{FECG}, (E) respiratory frequency modulation ℜ{FAF}. The colour codes for the
amplitude (twice the modulus) of the wavelet transform, with the quality factor Q = 5. The
amplitude has the unit of the estimator: no dimension in (A, B, C), in radian per second in (D,
E). At the top row, the hypnogram is marked with red dots corresponding to annotated events
of obstructive apnea with arousal.

The wavelet transform is performed on two distinct levels to obtain the time-frequency
representations shown in Fig.V.9: a first transform of each recording is required to compute
the modulation signals, and a second transform is applied on these new signals. Even though
the choices of the parameters could be distinct in these two rounds of wavelet transform, we
use for both the quality factor Q = 5, appearing as a good compromise between a precise time
localization and a sufficient frequency resolution. This fixes the wavelet widths to fδt = Q√ p̃ ≈ 2
oscillations and δ log f =

√ p̃
Q
≈ log 1.65 (1.65 being the least distinguishable frequency ratio).

In addition to these modulations, represented in Fig.V.9 (B - E), we construct a control signal,
the phase-randomized surrogate of the neural modulation in the θ band (mθ

EEG) shown in panel
(A) for comparison. This is a stationarized version of the original modulation signals obtained
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by shuffling uniformly the phase of its Fourier coefficient, operation that leaves the spectral
density unchanged.

At this stage of the analysis, mθ
EEG is hardly distinguishable from its surrogate signal,

Fig.V.9 (B) and (A) respectively; they both exhibit a quite homogeneous distribution of the
modulation’s amplitude in the time-frequency plane. In the heart rate generic estimator,
ℜ{FECG}, Fig.V.9 (D), the most intense oscillations are localized at the cardiac frequency
(and its harmonics): this is the carrier frequency of the cardiac modulations in the strongly
non-circular ECG signal. In spite of this dominant component, the information about the
HRV is nonetheless present at lower frequencies: a mode of varying amplitude at the breath-
ing frequency 0.2 Hz confirms the presence of RSA. Breathing modulations intensify, become
unsteady and extend towards low modulation frequencies in the time interval between 50 and
180 min (stage N2). Apart from the respiration mode due to the non-circular carrier wave
frequency, the breathing rate estimator ℜ{FAF}, Fig.V.9 (E), exhibits in this time-frequency
region an intense mode at about 0.035 Hz. The subject 3 is severely affected by sleep apnea,
and this time interval corresponds to an uninterrupted sequence of such events; “obstructive
apnea with arousal” are marked with red dots in the hypnogram. The presence of a clear mode
at ∼0.035 Hz means that the corresponding apneic events occur with a quite regular period:
approximately every 30 s. For this reason, we refer to this phenomenon as the “apneic rhythm”.

In complement, we show in Fig.V.10 the time-frequency content of neural modulations in
the EEG band magnitudes.
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Figure V.10: Neural modulations only, for subject 3 as in Fig.V.9. EEG magnitude mω
EEG

in the band ω = β-γ (A) 125 to 16 Hz, α-σ (B) 16 to 8 Hz, θ (C) 8 to 4 Hz, and δ (E) 4 to
1/4 Hz.

The neural modulations vanish at high frequencies, beyond a cut-off that can be antici-
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pated. Indeed, the time resolution is δt ≈ 2/f s for the wavelet transform with Q = 5, so that
no modulation is expected above f+

ω /2 in each EEG band ω, as we can observe. The apneic
rhythm is seen in all EEG bands, but appears weaker in the α-σ and θ bands than in the β-γ
band, and strongest in the δ bands. Although strong δ waves (and associated modulations)
are expected during the N2 stage, β-γ waves are much weaker, see Fig.V.3. This illustrates
an important characteristic of the magnitude: related to the power by a logarithm, the extent
of its modulation does not depend on its high or low mean value. It only needs to be more
important than the background noise, that can be of physiological or instrumental origin.

So far, we can anticipate that this apneic rhythm causes correlations between the neural,
cardiac and respiratory activities, since it is noticeable in all physiological modulations.

2.1.2 Neuro-cardio-respiratory coherence in time and frequency

Next, we estimate the power densities Sxy(t, f ;Q+, Q−) (cross and auto) from the wavelet
transforms to obtain the time-frequency coherence. Two distinct quality factors are required
for a statistically significant estimator: Q− controls the frequency resolution and Q+ the time
resolution, for a number of statistical degrees of freedom nd = Q+

Q−
. We use the practical

estimator based on the Gaussian time-smoothing kernel χn, Eq.(II.70), denoted Sxy(t, f ;nQ,Q),
that approximates the canonical estimator Sxy(t, f ;Q+, Q−). The time-smoothing is over of
n = 10 wavelet durations, decreasing the resolution to 10δt ≈ 20/f s, sufficient to identify
the breathing rate at a resolution of 1 or 2 min and to resolve the variability of the apneic
rhythm. However, for only nd ≈ n degrees of freedom, the spurious coherence at a 90% level
of significance (p < 10−1) associated to this quite local estimator is as high as γ(10−1) ≈ 0.46,
see Eq.(II.78). This time-frequency coherence analysis is therefore limited to rather strong
correlations. The resulting time-frequency coherence of different pairs of modulation signals for
the subject 3 are represented in Fig.V.11.

The most striking observation in Fig.V.11 is a strong coherence in the frequency band near
0.035 Hz, between 50 and 180 min, in all pairs of physiological rate signals (C - H) (which can
extend to 200 min, and also visible around 340 min). This coherent component is significant
only intermittently in pairs involving the θ modulations (C, F, H). By comparing the time
intervals in which this apneic rhythm appears with the annotations of the hypnogram (A), we
notice that it only occurs during the N2 stage and that the coherence decreases or disappears
when the person wakes up (W). The different colours of this region indicate different phase
shifts between modulations. For instance, in panel (C) of Fig.V.11, the EEG β-γ band is −2π

3
to −5π

6 radians delayed (late) compared to the EEG θ band. This means that not only these
two EEG frequency bands behave coherently, but also that they are quite in phase opposition;
while the EEG signal in the θ band reaches its maximum, the EEG signal in the β-γ band
increases progressively from its lowest value. In Fig.V.11 (D), the small phase shift between
cardiac and respiratory modulations indicates that the decreases and increases of the heart and
breathing rates occur quasi in-phase at each cycle of apnea (or the cardio-apneic rate variation
slightly precedes the respiratory one). The light green colour of the apneic coherent region in
the next panels (E-H) indicates that the cardiac and respiratory modulations evolve nearly in
phase with the neural ones in the β − γ band, while it is rather in phase opposition with the θ
band EEG modulations (purple blue colour).

We can also observe in Fig.V.11 (G) a region of strong coherence (|γ| ∼ 0.8−0.9) in phase
opposition (magenta), from 250 to 340 min at very low frequencies (below 2−6 ∼ 0.02 Hz, i.e.
at the scale of a few minutes). This region corresponds to isolated events of apnea (at times
250, 265, 292, 303, 306, 324 min), with relatively quick drops and restoration of the respiration
frequency and simultaneous rise and disappearance of β-γ magnitude in the EEG. This can
be checked in the ECG and AF time-frequency representation Fig.II.6 (A, C). These kinds of
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Figure V.11: Time-frequency coherence γxy(t, f ;nQ,Q) between pairs of physiological modu-
lations (x versus y, from Fig.V.9) for subject 3. (A) Hypnogram; the red dots corresponds to
annotated events of obstructive apnea with arousal. (B) Band θ surrogate (phase-randomized
signal) versus θ. This control coherence illustrates the level of significance of the spurious
coherence. (C) β-γ versus θ band, (D) cardiac versus respiratory rate, (E) β-γ band versus
cardiac rate, (F) θ band versus cardiac rate. (G) β-γ band versus respiratory rate. (H) θ band
versus respiratory rate. The ranges of coherence moduli |γxy| for the colour saturation coding
are delimited by the lower thresholds γ(10−1) ≈ 0.46, γ(10−3) ≈ 0.71, 0.8, 0.9. The parameters
are Q = 5 and n = 10. A black line materializes a distance nδt from the initial and final times,
beyond which border effects are possible.

micro wake states may constitute a distinct recovery mechanism, slower than the apneic rhythm
around 0.035 Hz.

Other regions of highly significant coherence can be observed. In Fig.V.11 (D), the mod-
ulation of the cardiac rate by the respiration (RSA, at the breathing frequency near 0.2 Hz) is
also observed in some time intervals (from 30 to 40 min and from 270 to 320 min). During the
sleep apnea episodes, the significance of the coherence is lower, even though the corresponding
cardiac modulations are stronger, see Fig.V.11 (D).

In Fig.V.11 (E), in-phase coherent lines at the cardiac fundamental and harmonic frequen-
cies highlight the presence of cardiac impulses in the β-γ band of the EEG (also visible but less
significant in the θ band). Interestingly, a slight coherence of phase shift π

3 , at the respiratory
frequency from 100 to 150 min, also appears between the cardiac rate and the β-γ amplitude.

We can also examine the inter-band EEG coherence, in Fig.V.12. Again, the very coherent
apneic mode is ubiquitous in all pairs of band magnitude neural signals, each with a particular
phase shift.

The wake state is characterized by more intense modulations in the α-σ band, Fig.V.10
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Figure V.12: EEG inter-band time-frequency coherence for subject 3, between EEG band
magnitude modulations shown in Fig.V.10. Same as in Fig.V.11.

(B), and a strong in-phase coherence (green) between the θ and α-σ bands, Fig.V.12 (C). Such
coherence increase is also observed between θ and β-γ, while the δ versus θ pair shows a drop
of the inter-band coherence. These wake-related coherent or incoherent events concern a wide
range of modulation frequency from 2 to 2−8 Hz, that can be partly related to the subject
motions.

This inter-band EEG coherence contains a rich phenomenology able to characterize the
connectivity between EEG bands, as recently observed using the correlation coefficient ρxy [Lin,
Liu, et al. 2020]. However, it constitutes a high dimensional object to manipulate, considering
that both bands should rather be considered as two distinct frequency parameters, in addition
to the time and frequency variables of the coherence analysis. The dimensionality of this
situation is reduced in the next section to study the evolution of the phase shift of the apneic
modulation between the EEG bands.

2.2 Statistical properties of the apneic rhythm in the shhs2 database
We complete this individual study of the coherence between physiological modulations with a
statistical analysis of a large selection of subjects from the shhs2 database, distributed in five
groups corresponding to sleep apnea profiles.

Before selection, an individual analysis of the rates’ coherence (Fig.V.11) is performed
from all the subjects of the shhs2 database. The statistics is computed in each group by
averaging in time, over the selected and cumulated intervals, the time-frequency coherence
γxy(t, f ;nQ,Q) and squared coherence. This reduces the huge amount of generated individual
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data to the typical correlations between the physiological modulations, across frequencies and
apnea groups.

Note that the squared coherence prevents interferences between distant times, when the
value of the coherence phase varies, as would be the case when estimating the (global) spectral
coherence. It is thus interpreted as an average strength of local coherence. The average phase
is studied separately through the simple average coherence, and its full distribution is obtained
from the angular density of coherence.

2.2.1 Apnea groups and time selection from annotations

The statistical analysis is obtained from all subjects from the shhs2 polysomnography database
(cf. Appendix 1), 2650 subjects in total. This represents 2.3 years of cumulated sleep time, de-
fined as the duration between the first and the last sleep stage for each subject. The statistical
results consist in averaging the produced individual time-frequency analysis over selected time
intervals, that correspond to specific apnea profiles. These conditional time averages are inter-
preted as ergodic estimations in different statistical ensembles.

The selection of typical apneic subjects was based on respiratory events scored by clinicians
when the amplitude of the airflow drops for more than 10 seconds, below 70% of the baseline for
hypopnea (H) or below 25% of the baseline for obstructive and central sleep apnea. Obstructive
sleep apnea (O) is distinguished from central sleep apnea (C) by a greater amplitude in the
thoracic or the abdominal effort signal. 469264 of these three types of respiratory events are
scored in total. The proportion of annotated apnea time interval in sleep time are as follows:
12.1% of hypopnea, 2.3% of obstructive apnea and 0.4% of central apnea.

We could have stopped there the selection of apneic time intervals of each type, regardless
of the subjects. Instead, we refine it retaining only time intervals from subjects mainly affected
by the type of apnea of interest. This has the effect of enhancing the specificity of the profiles,
thus helping their interpretation.

Apnea
group

Selection
criteria

Number
of subjects

Selected / total
durations (h)

Number of
apnea events

H pH > 0.2
pO + pC < 0.01 87 161 / 647 25277

O pO > 0.1 153 217 / 1152 25627

C pC > 0.01
pO < 0.1 189 61 / 1463 10480

control pH + pO + pC < 0.03 129 938 / 957 0
all none 2650 20114 469264

Table V.2: Composition of the statistical ensembles, constructed from selected time intervals
in distinct apnea groups of subjects in the shhs2 polysomnography database.

For each person, we compute the proportion of the cumulated duration of sleep apnea in
the total sleep duration, pap, ap = H, O, C. The groups are constructed as selection among
the 2650 persons in the shhs2 database using criteria on these apnea proportions. Group H
corresponds to the 87 subjects affected by hypopnea more than 20% of their sleep time while the
other apneas last less than 1%. Group O corresponds to the 153 subjects affected by obstructive
apnea more than 10% of their sleep time. Group C corresponds to the 189 subjects affected by
central apnea more than 1% of their sleep time and obstructive apnea less than 10%. These
three groups have comparable sizes: group H contains 25277 hypopneas lasting 161 h out of
647 h of total sleep time, group O contains 25627 obstructive apnea lasting 217 h out of 1152
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h of total sleep time, and group C contains 10480 central apnea lasting 61 h out of 1463 h of
total sleep time.

Two other groups are defined. A fourth control group (no apnea) of is made of 129 subjects
which are very little affected by any type of apnea: less than 3% of sleep time (3851 events
lasting 19 h over a total of 957 h), and we retain only time intervals without apnea. We ensured
that there is no subject in the intersection of any pair of these groups (that is not clear from the
criteria alone). The fifth group (all) includes the whole shhs2 database without any selection,
and cumulates the 20114 h of sleep time over 2650 subjects. The table V.2 summarizes the
characteristics of the five resulting time ensembles: Tap, ap = H, O, C, control, all.

2.2.2 HRV power density profiles as a point of comparison

Before applying the statistical analysis over time to the coherence between physiological signals,
we apply it first on the simpler power density of the heart rate. Starting from the conventional
heart rate estimator from the ECG’s R-R intervals, x(t) = fc(t), the power spectral density
Sxx is indeed a common metric for the heart rate variability (HRV). We use it as a point of
comparison for the analysis that follows.

As in chapter IV, we use the PhysioNet cardiovascular signal toolbox [Vest, Da Poian, et al.
2018] to compute the HRV signals from the ECG’s R-R intervals (jqrs algorithm), corrected
automatically for ectopic and non-normal beats (also called N-N intervals). We then compute
the typical power density, corresponding to each apnea profile, as the time averaged scalogram
Eq.(II.23) conditioned to all selected time intervals, t ∈ Tap, in this apnea group (ap):

Sap
xx(f ;Q)|f | = ⟨|X(t, f ;Q)|2 | Tap⟩t

Q√ p̃ . (V.5)

Not to complicate too much the notations, we write it here as a single time average, as if
we compiled each individual recording X(t, f ;Q) one after the other in time, which is the
meaning of the time ensembles Tap. Notice these are power log-frequency densities, represented
in Fig.V.13 (A).
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Figure V.13: Comparison of typical heart rate variabilities (HRV) for different apnea profiles
(ap): hypopnea (H), obstructive apnea (O), central apnea (C), no apnea (control) or total (all),
see Table V.2. (A) power log-frequency density Sap

xx(f ;Q)|f | (Q = 5) of the heart rate, in
bpm2 (min−2), conditioned to selected time intervals in each apnea groups. (B) same time-
averaged spectra, normalized for each subject prior to the group average (weighted by individual
durations). The heart rate signals are estimated for each subject’s ECG from the corrected R-R
interval.

In practice, the computation goes as follows: (i) we obtain the scalogram as the squared
modulus of the wavelet transform (Q = 5) of the heart rate signal for each subject in shhs2, (ii)
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we select the subjects for each group and the time intervals with sleep apnea of interest, (iii)
we perform the (conditional or unconditional) time averages of the scalogram for each subject.
The power density profiles Fig.V.13 (A) are then obtained by averaging individual spectra in
each group, weighted by the duration of each individual time selection, whereas in Fig.V.13 (B)
the individual power spectra are normalized (by the power) prior to the group average (also
weighted by individual duration). As a result, the profiles in (A) give mean absolute values for
these HRV spectra, whereas (B) shows the mean profiles relative to the strength of the HRV
(by normalizing out strong or weak individual HRV).

In fact, we have also excluded from the time ensembles described in Table V.2 all 10
seconds epochs of non-physiological R-R intervals (outside 0.375 to 2 s during more than 15%
of the duration, before correction). This mask, specific to this heart rate estimator, reduces
the total durations in each group by about 5 to 10%. The mean normalized HRV spectra in
Fig.V.13 (B) are nearly insensitive to this procedure compared the ones obtained without any
data exclusion or with a stricter selection criterion (signal quality index sqi > 0.9, excluding
25 to 30% of the heart rate duration that does not coincide to the alternative estimation from
the sqrs algorithm). These selections, supposedly affected by detection artefacts, tend to have
strong amplitudes, so that their exclusion leads to a global decrease of the values of the mean
HRV spectra in Fig.V.13 (A).

The presence of a peak at low frequencies in Fig.V.13, especially prominent in the case of
obstructive and central sleep apnea (groups O and C) but much flatter in case of hypopnea
(H) and without apnea (control), confirms the existence of the apneic rhythm in the heart
rate [Penzel et al. 2016]. The apneic frequency at maximum intensity, near 0.02 Hz (most com-
mon value), is lower than previously observed on subject 3 (0.035 Hz). A much less prominent
peak is observed at the faster respiratory frequency, sign of the RSA modulation of the heart
rate. Its low intensity is comparable between apneic and non-apneic groups, see Fig.V.13 (A).
The normalized HRV spectra in Fig.V.13 (B) suggests that RSA is a typically higher proportion
of the total HRV power for non-apneic subjects compared to apneic ones.

We comment below the asymmetric shape of the apneic component. First, the bandwidth
of the wavelet δ log f ≈ log 1.65 covers less than an octave (from the quality factor Q = 5),
and imposes a log-normal (Gaussian) shape and a minimum width for an isolated peak. Then,
the quality factor Q = 5 allows to distinguish the fundamental mode of the rhythm from its
harmonics (of order 2) one octave higher. Finally, the variability of the apneic frequency over
times and subjects in each group is likely to spread the averaged peaks on larger widths (more
than one octave). These remarks explain the asymmetry of the apneic peak for the profiles O
and C: the harmonics has a lower intensity and the inter-individual variability makes it merge
with the fundamental component. This bimodal shape is simply a sign of non-circularity of the
apneic modulation in the heart rate (it is not sinusoidal).

2.2.3 Several averages for the cardio-respiratory coherences

We now introduce again the respiratory signals and compare them to the heart rate with a
coherence analysis, as in section 2.4, except that we distinguish the apneic profiles. We also
use wavelet estimators only, for the modulations of the cardiac frequency, and the respiratory
frequency and amplitude (FM and AM).

Instead of displaying all phase distributions as in Figs.IV.16 and IV.21 (all subjects and
sleep times) for each apneic group, we focus here on the averaged coherence profiles. Two types
of average coherence can be defined, the simple one (of complex value), or the squared one
(positive):

γap
xy(f ;Q, n) = ⟨γxy(t, f ;nQ,Q) | Tap⟩t (V.6)

γ2 ap
xy (f ;Q, n) = ⟨|γxy(t, f ;nQ,Q)|2 | Tap⟩t . (V.7)
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Little information is lost in the case of cardio-respiratory coherences, since we have shown that
their phase distributions are essentially unimodal, hence the mean phase is retrieved as the one
of γap

xy . The quantity γ2 ap
xy averages local coherence intensities, regardless of their phase. This

complementary information is valuable because it is not subject to destructive interference in
case of broad phase distribution across times and subjects, contrary to γap

xy , so that it can detect
locally significant coherence. The overall significance is straightforwardly determined from the
number of statistical degrees of freedom nd ≈ (1 + n2e

1
Q2 ) 1

2 ∼ n; in particular, the spurious
coherence is γ2

sp ≈ 1
n+1 .

Alternatively, an average coherence could be computed from the cross spectrum Sap
xy with

a conditional time average (t ∈ Tap) as in Eq.(V.5) and normalized by the corresponding auto
spectra. The result is expected to be similar to γap

xy and γ2 ap
xy , but the significance of the latter is

not controlled any more with this approach. artefacts, often sudden, intense and incoherent, are
also better handled in Eqs.(V.6, V.7), that normalize before the average: pollution from intense
artefacts thus only propagates over the short time resolution nδt, rather than dominating the
averaged spectra before computing coherence.
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Figure V.14: Average profiles of the coherence (top) and squared coherence (bottom) be-
tween the heart rate and different respiratory signals. Cardiac frequency (precise estimator)
versus: (A) airflow recording AF , (B) breathing frequency ℜ{FAF} and (C) amplitude mod-
ulation iℑ{FAF}, generic estimators. Each profile corresponds to a conditional time average
among subjects strongly affected by hypopnea “H”, obstructive “O” or central “C” sleep apnea,
without conditioning “all” or in the “control” group (without sleep apnea). See legends and text
for details. The grey thick dashed line traces the expected level of spurious squared coherence
γ2

sp ≈ 1
n+1 , where n = 5.

In Fig.V.14, the heart rate modulation (FM), precise wavelet estimator, is compared to
the airflow recording (A) and to the generic wavelet estimators for the respiratory FM (B) and
AM (C). The smoothing parameter has been chosen as small as possible, here n = 5, to capture
transient episodes of coherence at a time resolution nδt = nQ√ p̃f ≈ 10f−1 s. The duration rises
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to 40 min at the slowest frequency, so that we excluded the first and last nδt-long time interval
in each recording to avoid border effects. The total durations of the averaging time domains
Tap are much longer, making these profiles very robust. The expected spurious level for the
squared coherence is γ2

sp ≈ 0.17, grey thick dashed line in Fig.V.14.
There is a clear correspondence between these coherence profiles and the ones for the HRV

spectrum at low frequencies: the peak of the apneic rhythm is prominent in the groups O and
C (also asymmetric due to harmonics), inexistent in the control group and intermediary in the
H group in all panels of Fig.V.14. However, the coherence approach brings novel insights in the
respiratory frequency band: the RSA mode, very coherent both in the control and H group,
is severely decreased in the O and C groups, even though the amplitude of this modulation
remains (see Fig.V.13 (A)). This is best observed between the heart rate and the airflow in
Fig.V.14 (A) where their mean coherence gets halved and their mean squared coherence drops
from 0.35 to 0.1 above the spurious level. The peak of RSA coherence in Fig.V.14 (B, C)
is nothing but a mere reflect of the one in panel (A), since the breathing modulation at the
breathing frequency is in fact the breathing carrier wave (raw recording) itself, incidentally
present in the rate estimators.

Therefore, a clear inversion occurs from the fast coherence without apnea to the slow
coherence of apnea, the hypopnea being the pivotal state in between. Based on all O and C
profiles, we have estimated the localization of the fundamental apneic (low frequency) mode:
the global maximum lies at 0.019±0.002 Hz (i.e. a period of 12 to 15 breathing cycles), and the
widths suggests a variability of this rhythm among subjects ranging from 0.011 Hz to 0.038 Hz
(i.e. 1.8 octave). There is close to no phase shift between apneic modulations of the heart
rate (FM) and the ones of the breathing FM and AM, while they appear in-between phase
quadrature (group O) and opposition (control group) for the airflow.

A slow cardio-respiratory coherence still exists in the control and hypopnea groups, with
an increasing significance towards the lowest frequencies. We know from Fig.IV.21 that the
coherence between cardiac and respiratory FM in Fig.V.14 (B) switches sign around 0.015 Hz,
while its phase only slightly drifts between cardiac FM and respiratory AM (C). The cardio-
respiratory coherence settles much more in the FM-AM pair (C) than in the FM-FM pair (B)
during apnea (O and C groups).

All these observations can be formulated from the most generic (wide-band) estimator for
the cardiac FM, based directly on the ECG, instead of the precise one (narrow-band) based
on the amplitude of the ECG amplitude at 14 Hz (aECG14). This is shown in Fig.B.25 of
Appendix 3.2, together with the effect of increasing the smoothing parameter and approximate
degrees of freedom to n = 10 (as done in the next section). Although the coherence is slightly
diminished, the profiles are essentially unchanged by these choices.

2.2.4 Average neuro-respiratory and neuro-cardiac coherences

Now, we introduce the neural magnitude signals mω
EEG, as extracted in Fig.V.6, that represent

modulations in the EEG bands ω = δ, θ, α-σ and β-γ. We compute the statistics in different
apnea groups, for their coherence both with the breathing FM and cardiac FM, see Eqs.(V.6,
V.7). These are performed with the generic FM estimators to reduce computational cost.
The choice of the smoothing parameter n = 10 lowers the expected level of spurious squared
coherence to γ2

sp ≈ 0.09.
Starting with the squared coherence γ2 ap

xy (f ;Q, n) in Fig.V.15, we confirm the ubiquitous
appearance of the apneic coherent mode near 0.02 Hz in both neuro-respiratory and neuro-
cardiac pairs of modulation signals. The most prominent peaks are obtained for obstructive
apnea (O), then central apnea (C), and finally hypopnea (H), as different degrees of the same
phenomenon. Again, the group without apnea (control) group exhibits a flat but significant
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Figure V.15: Average profiles of the squared coherence between neural band magnitude and
respiratory (resp) or cardiac (card) frequency modulations (generic estimators). The neural
band signals are denoted β-γ above 16 Hz, α-σ from 16 to 8 Hz, θ from 8 to 4 Hz, and δ from
4 to 1/4 Hz. Each profile correspond to a conditional time average among subjects strongly
affected by hypopnea “H” (blue line), obstructive “O” (red line) or central “C” sleep apnea
(green line), without conditioning “all” (black dotted line) or in the “control” group (without
sleep apnea, black line). The expected level of spurious squared coherence is γ2

sp ≈ 1
n+1 , where

n = 10 (thick grey line). See non-averaged individual coherences in Fig.V.11.

coherence profile at low frequency, increasing towards very low frequency, and decreasing to
the spurious level at high frequency. The result obtained for the full shhs2 database (all) is
intermediate between control and hypopnea (most common respiratory event).

In neural modulations, no coherent mode appears at the breathing frequency: the RSA
modulation of the parasympathetic activity does not involve cortical neurons (but neurons in
the medulla). However, a cardiac mode is visible at 1 Hz in all neuro-cardiac coherence profiles.
This is a cross-talk between EEG and ECG, i.e. the occurrence of cardiac pulses in the EEG
which is widespread in the shhs2 database and of instrumental origin. A neural response to
the cardiac activity also exists, called the heart-beat evoked response or potential [Park and
Blanke 2019].

Neural modulations at very low frequencies, thus at long timescales (about 2 to 5 min),
are possibly associated to changes of sleep-wake stages or micro states such as arousal. Their
coherence with the heart and breathing rate vary with the EEG band, for instance it is especially
important in the β-γ band but less significant in the θ band. We can notice that the very slow
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Figure V.16: Average profiles of the coherence between neural band magnitude and respiratory
(resp) or cardiac (card) frequency modulations (generic estimators). The neural band signals
are denoted β-γ above 16 Hz, α-σ from 16 to 8 Hz, θ from 8 to 4 Hz, and δ from 4 to 1/4 Hz.
Each profile correspond to a conditional time average among subjects strongly affected by hy-
popnea “H” (square), obstructive “O” (circle) or central “C” sleep apnea (triangle), without
conditioning “all” (dot) or in the “control” group (plus). See non-averaged individual coher-
ences in Fig.V.11.

neuro-respiratory coherence is significantly lower, in all EEG bands, in the O and C apnea
groups compared to the H and control groups, whereas no such difference is observed in the
very slow neuro-cardiac coherence. For apneic subjects, their lack of correlation with breathing
rate modulations may reflects the persistence in the N2 stage observed in Figs.V.3 during severe
obstructive sleep apnea.

Examining the mean coherence in Fig.V.16, it is clear that very slow neuro-respiratory
modulations constitute a distinct coherent component in phase opposition, as for the very slow
cardio-respiratory FM modulations. It is stronger in the control and hypopnea groups than in
the apnea groups, that coexist with the faster modulations in the slow range which are in-phase.
In contrast, the same phase is observed for the slow and very slow neuro-cardiac modulations,
thus appearing as a single and broader coherent component.

Finally, the phase shifts between neural modulations and cardio-respiratory ones clearly
varies with the EEG band. This could also be observed on a single subject in Figs.V.11 and V.12.
This dependence on the EEG band frequency is studied in the following.
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2.2.5 Restoring the EEG band frequency continuum

In order to investigate the evolution of the phase between neural and cardio-respiratory mod-
ulations across bands ω of the EEG x(t), we introduce again the continuum of scales from the
time-frequency representation of the EEG intensity X(t, f1;Q1), with band frequency f1 = fω
and resolution δ log f1 =

√ p̃
Q1

, where the index 1 distinguishes the EEG band frequency contin-
uum from the modulation frequencies (f2 = f) of the subsequent coherence analysis.

The input signal representing neural modulations is the magnitude fieldmx(t, f1;n1Q1, Q1),
defined in Eq.(V.4) from the EEG power density. We use for this a short time-smoothing oper-
ation, n1 = 2, that is sufficient to avoid instabilities while conserving a precise time resolution.
For a coherence analysis, this field is then wavelet-transformed along time, with respect to
a second quality factor Q2. This yields the second frequency variable f2 = f , that selects a
scale for neural modulations in each band, as previously. We consider that Q2 = 5 is suf-
ficiently high to observe potential rhythms in physiological modulations. It may be denoted
Mx(t, f1, f2;n1Q1, Q1, Q2), where the successive quality factors controls the resolutions of the
time-frequency variables (t, f1, f2). Neural modulations are necessarily slower than the time
resolution, so that the range of scales for modulations is bounded by a high frequency cut-off:

f2 <

√ p̃
n1Q1

f1 , (V.8)

i.e. essentially by the EEG band frequency f1 = fω, as confirmed in Fig.V.10. The quality
factor Q1 = 5, putting the stress on a precise time resolution, leads to f2 < f1/4. A more
precise band frequency resolution with Q1 = 15 yields f2 < f1/12; it requires a more important
scale separation between carrier frequency f1 and modulation frequency f2. Therefore, to study
the apneic rhythm f2 ≈ 0.02 Hz in a very low EEG band f1 = 0.1 Hz, Q1 = 5 is suitable while
Q1 = 15 is not: Eq.(V.8) can also be understood as a limitation on the resolution of neural
modulations that can be achieved, controlled by the scale separation f1/f2.

The time-frequency coherence as in Fig.V.12, for a pair EEG magnitude fields with distinct
continuous band frequencies, contains a lot of information about inter-scale neural dynamics.
However, its practical computation is cumbersome, because of its high dimensionality (1 time,
3 frequencies). We compute instead the time-frequency coherence as in Fig.V.11, between the
EEG magnitude field mx and a reference cardiac or respiratory modulation signal y, that focuses
on neuro-cardio and neuro-respiratory modulations. Computed once again from the practical
time-smoothing operator, it may be written explicitly as γmxy(t, f1, f2;n1Q1, Q1;n2Q2, Q2), but
we denote this coherence more simply as γxy in the following (where x is now the neural
magnitude field). Some time resolution is given up in the way (in exchange for coherence
significance), with a final duration δt greater than δtj = njQj√ p̃fj for both j = 1, 2: δt =

√
δt21 + δt22.

Therefore, the duration of the polysomnography T (in average 455 min in the shhs2
database) constrains the slowest scales for both the carrier waves and the modulations. How-
ever, the EEG frequency f1 = fω cannot be extended much below the cut-off of the instrumental
low-pass filter at 0.15 Hz. Therefore, we get the lowest modulation frequency in the coherence
analysis:

f2 >
n2Q2√ p̃ T−1 . (V.9)

The time-smoothing parameter is fixed to a small value, n2 = 5, for the coherence analysis, so
that we could —at the very best— reach ultra-slow scales with cycles lasting f−1

2 = 90 min
(such as the ultradian rhythm), using a quality factor as low as Q = 2.5.

The resulting coherence is finally studied statistically over time for the full shhs2 database,
divided into temporal ensembles for each apnea profile (ap) as explained in section 2.2.1. In

162



CH. V. Sleep phenomena: wavelet perspectives on polysomnography

particular, the conditional time average Eq.(V.6) yields the coherence profile γap
xy(f1, f2;Q1, Q2),

where the time-smoothing parameters n1, n2 are omitted for the sake of simplicity. Indeed, they
are only important to predict the range of f2 and the level of spurious coherence before the
time average, or after the time average for the squared coherence γ2 ap

xy Eq.(V.7).

2.2.6 Phase relation between neural and cardio-respiratory modulations

The phase ϕxy = ϕx − ϕy between neural modulations x (the magnitude field mEEG) and
cardio-respiratory modulations y (derived from the complex rate estimator FECG or FAF) is
the angle (complex argument) of the coherence, so that the average phase is the angle of
γap
xy(f1, f2;Q1, Q2), detailed for apnea each profile ap = H, O, C, control, all.

This phase depends on the continuum of EEG band frequency f1 = fω, and the scale
of the modulations f2 = fmod. Based on previous observations, we simplify the investigation
by considering only two types of modulations: slow modulations and very slow modulations.
The latter is found in a wide band around the frequency f2 = fvs = 0.005 Hz (very slow),
so that we choose a low quality factor Qvs = 2.5. The former one corresponds to apnea
modulations, 0.01 < fapnea < 0.04 Hz (slow) depending on the subject, that can be quite
rhythmic (narrow-band), so that we choose a higher quality factor Qapnea = 5. To take into
account the inter-individual variability of the apnea frequency, we select the value f2 = fapnea
in the range [0.01, 0.04] Hz that maximizes the coherence for each subject and at each EEG
band f1 = fω. When the apnea rhythm is not present, this procedure may sometimes pick the
broad-band very slow modulation instead.

At the apnea frequency fapnea, the statistics of ϕxy is illustrated in Fig.V.17 as a function
of fω, for all subjects and over all times (ap = all), and for different cardio-respiratory modula-
tions y (panels A to D). The average phase is plotted as a grey line when it represents a unique
component, i.e. when its distribution is unimodal. We know it from the coherence-based dis-
tribution of the phase Gxy(ϕ ; fω, fmod) Eq.(IV.5), also represented, and providing much more
details on the spread of the phase and the associated density of coherence, generalizing the
modulus of coherence, see Eq.(IV.6). To unambiguously differentiate this new situation, where
the modulation frequency f1 = fapnea is fixed and the continuum is f2 = fω, we change the
colour coding for the angular density of coherence compared to previous figures.

These distributions show a non-trivial evolution of the coherence (and its phase) between
slow modulations (potentially linked to apnea) from the slowest neural waves (denoted δ− in
Table V.1) to the fastest (γ). In Fig.V.17 (A, B), the phase between neural magnitude and
cardiac FM has a well-defined value; its distribution is unimodal with little dispersion. The
phase is close to zero and the coherence most intense above 8 Hz (α-σ and β-γ bands), and
the neural modulation in the slow band, below 2 Hz, has a slight advance and an important
coherence with cardiac FM. This coherence drops significantly and the mean phase (grey line)
shifts almost to quadrature (π2 ) in between (partly δ+ and θ). This behaviour is unchanged from
the generic (A) to the precise (B) cardiac FM estimation, apart from a global enhancement
of the contrast in the phase distribution. Overall, this shows that the neural magnitude are
mainly positively correlated with the slow heart rate variations, up to some specificities in some
EEG bands.

Similar features are observed in Fig.V.17 (D) where the neural magnitude is compared to
respiratory AM. The coherence is twice weaker (see colour scale), but its angular density is
also unimodal. The phase delay of respiratory AM with neural modulations is greater than the
cardiac FM, increasing almost to phase opposition (π) near 3 Hz. A variation of the phase can
also be noticed in the α-σ band (8 to 16 Hz).

Eventually a similar mode of the phase distribution is observed between neural modulations
and respiratory FM in Fig.V.17 (C), with an even weaker coherence, together with a second
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Figure V.17: Coherence-based distribution (rad−1) of the phase ϕxy = ϕx − ϕy between the
neural modulations (x) and the cardio-respiratory modulations (y) in the slow range (0.01 to
0.04 Hz, that contains a potential apneic rhythm), as a function of the EEG band frequency
(s−1), over the full database shhs2. The modulation estimators for the cardiac frequency, generic
in (A), precise in (B), and for the respiratory frequency (C) and amplitude (D), both generic,
are compared to the EEG band magnitude with a continuous band frequency and a constant
relative bandwidth controlled by Q = 5. Same colour scale in (A, B), and in (C, D). The mean
phase is marked with black plus signs when the distribution is unimodal (dots when it is not).

mode in phase opposition, clearly visible in the very low and very high EEG band. Based
on the previous observations of a slow and a very slow components in the respiratory FM,
we interpret this second component as the very slow one, wide-band, that leaks into the slow
range [0.01, 0.04] Hz, especially in the absence of apnea. We recall that this component of
the respiratory FM is in phase opposition with the (very) slow neural modulations, cardiac
FM and respiratory AM. The first one is likely to be the slow modulation that is enhanced
during apnea. This suggests to characterize the interaction between neural magnitude field and
breathing rate, Fig.V.17 (D), in the different apnea groups.

This is done in Fig.V.18 by conditioning the time average in Eq.(IV.5) to the selected time
ensembles for each apnea profile. The two coherent modes are indeed separated between control
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Figure V.18: Comparison for different apneic profiles of the distribution (rad−1) of the phase
ϕxy between the neural modulations x and the respiratory frequency modulations y at the apnea
frequency ∼ 0.02 Hz, as a function of the EEG band frequency fω (s−1). (A) Control group
without sleep apnea. Group with (B) hypopnea, (C) obstructive or (D) central sleep apnea.
Same colour scale in (A, B), and in (C, D). The phase-frequency relation ϕxy(fω)/ p̃ = τδfω +β
(dashed black line), materializes a clear delay τδ = 0.10±0.02 s and a phase shift β = 0.08±0.08
of breathing compared to neural modulations (mainly in the δ band) during sleep apnea (C, D).
See Fig.V.17 (C) for the unconditional distribution over shhs2.

without apnea, and apnea groups. Without apnea (A), the coherence of the dominant mode
in phase opposition also vanishes between 2 and 8 Hz, and a residual in-phase mode remains.
We interpret it as an effect of undetected hypopnea episodes, that are missing in the available
respiratory annotations (on which the time ensemble without apnea is built). Indeed, during
hypopnea (B) this “in-phase” mode is dominant with a higher coherence, with again a specific
alteration near the θ band, and the mode in phase opposition is residual in very low and high
bands.

During more severe obstructive or central apnea, Fig.V.18 (C, D), the apneic mode is
the only that remains with an intense coherence and a precise phase. It can no longer be
described as “in-phase”, only true in the γ band. The important progression of the phase

165



2. Sleep apnea: a slow and ubiquitous rhythm

towards opposition in the δ (below 4 Hz) has a clear trend:

ϕxy(fω)/ p̃ = τδfω + β , (V.10)

where τδ = 0.10± 0.02 s and β = 0.08± 0.08. The uncertainty on this affine relation between
phase and EEG band frequency is represented with black dashed lines, folded into a second
branches when crossing ±π. Surprisingly, the second branch also explains quite well the specific
phase distribution in the α-σ band (8 to 16 Hz), that alters the precisely in-phase γ modulations
at high frequencies. The θ band (4 to 8 Hz) constitutes a “hole” in this phase relation: almost
no coherence density is observed at the expected phase. Instead, there is some leakage of the
coherence from the neighbouring bands that we interpret as an effect of the small quality factor
for the EEG bands, Q1 = 5 (the bandwidth is 3/4 of an octave). This interpretation seems
in contradiction with the observation in Fig.V.16 of a clear apneic rhythm in the θ band; this
points to an important limitation of the discrete neural band signals whose leakage in frequency
is even worse due to the band integration. Note that apnea is often associated to a non-REM
phase (N2), during which the θ band contains very incoherent EEG oscillations, see Table V.1.
Although observed directly between two EEG contra-lateral recordings, it may support this
interpretation of a θ “hole” of coherence.

What is the interpretation of the phase-frequency relation and its characteristic time τδ =
0.10 s?

We could first think of a kind of delay between the signals, either of instrumental origin
(airflow signal), or as an event-related EEG potential (P100), evoked by apnea. This is a
misconception, because such delay would be associated to a similar phase relation with respect
to the (fixed) modulation frequency fapnea: no delay can be observed between neural and
breathing signals in Fig.V.18. Assuming a delay of 1 s exists between the recordings, it would
only explain a small phase shift in Eq.(V.10), β′ ≈ β + 0.02, without influencing the value of
the characteristic time τδ.

Let us expand its meaning: consider a typical subject of the O group, severely affected
by an obstructive sleep apnea every 50 s (0.02 Hz). When the breath stops completely, this
translates into a minimum of the respiratory frequency. At this time (and scale), the neural
activity in the EEG band f+

δ = 4 Hz reaches its maximum magnitude, that we can call apnea
impulse. The apnea impulse then propagates towards lower EEG frequencies in the δ band
down to 1/4 Hz. At this phase of the apnea cycle, the apnea impulse also appears in the α-σ
band. Shortly later, the subject has totally recovered from the breathing obstruction, reaching
a maximum of the respiratory frequency but also a maximum magnitude in the high β-γ EEG
band (arousal, opposing deep sleep). Apnea impulses are indeed observed in the EEG as vertical
high amplitude events during the long N2 stage in Fig.V.3, see also Fig.12 in [Prerau et al.
2017].

Therefore, the characteristic time τδ = 0.10 s in Eq.(V.10) describes the propagation “rate”
of the apnea impulse from high δ+ (4 Hz) to low δ− (1/4 Hz), 4 octaves: it takes 10% of an
apneic cycle for the δ impulse to propagate 1 Hz below. In other words, the neural response
in the δ band of the EEG that is coherent with each apnea impulse is a linear chirp of rate
τ−1
δ = 10 Hz per apneic cycle (or rather 5 Hz in half a cycle).

This particular coherence phase between modulations of the neural activity and the breath-
ing rate is in fact not specific to apnea. This is verified by reproducing the same study for the
very slow modulations at fvs = 0.005 Hz, coherent without apnea with the same characteristics
and incoherent with severe apnea. In the control group (no apnea), neural modulations appear
in coherence with the very slow breathing rate modulations, with the same linear evolution
of the phase in the frequency range of the δ band, and constant in the β-γ band. The only
difference is a constant phase shift ±π compared to the modulation as the apneic frequency,
as observed previously in Figs.IV.21 (A) and V.16 (left column). Finally, the neural phase
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response curve across EEG band frequencies is similar for all heart and breathing rate (FM and
AM) modulation signals, as show in Fig.V.17 for all subjects.

Figure V.19: Average phase difference ϕxy(fω, fmod) between the neural modulations x, across
EEG bands fω, and 3 cardio-respiratory modulations signals y: (A) cardiac FM (precise estima-
tor of the heart rate), (B) respiratory FM and (C) AM (both from the generic estimator). Very
slow modulations (circle) correspond to fmod = 0.005 Hz, and to fmod = fapnea ∈ [0.01, 0.04] Hz
for slow modulations (plus). The typical phase-frequency pattern in highlighted (light grey).
The size of the marker is proportional to the modulus of the average coherence γap

xy (not shown
below 0.05 for very slow modulations and below 0.15 for slow ones); colours refer to the apnea
profiles.

All these observations are summarized in Fig.V.19, that represents only the mean phase
ϕxy(fω) from the average coherence γap

xy(fω, fmod;Q1, Q2) between the neural modulations (x)
and different cardio-respiratory modulations (y, different in each panel A, B, C), for the each
apnea profile and for both slow and very slow modulations fmod = fapnea, fvs. The main
difference is a global phase shift, together with slight variations in the chirp rate τ−1

δ .
Some difference specific to apnea can be spotted. In panel (A), the chirp rate τ−1

δ (or
chirpyness) is clearly lower without any apnea or hypopnea, for both slow and very slow neuro-
cardiac modulations in the δ band. Interestingly, the central apnea is similar to no apnea and
distinct from both hypopnea and obstructive apnea for very slow modulations in the α-σ band.
Panel (B) corresponds to the observations of Fig.V.18. In panel (C) without apnea (black),
no coherence is found between neural modulations and respiratory AM, except for very slow
modulations in the higher EEG bands. In these bands, the neuro-cardiac phase for the different
apnea profiles are subtly but clearly distinct when varying both fω and fmod.

We have essentially observed the typical phase response at multiple bands of the neural
activity to any kind of slow cardio-respiratory modulations (apnea or not), characterized by
a chirping δ modulation, a θ incoherence, an α-σ “echo” of the δ chirp, and a β-γ coherent
modulation. We expect modulations of the oxygen saturation recorded from pulse oximetry to
exhibit this same phase relation to neural modulations. Sleep apnea does affect the scale of
modulations and the intensity of their coherence, the phase structure is essentially preserved.

We hypothesize that the slow broad-band neural modulations that are described from this
coherence analysis corresponds to cyclic alternating patterns [Terzano et al. 2001], a cortical
activity at multiple bands during NREM sleep composed of two “on/off” states alternating
more or less irregularity in the slow range. Sleep stages and episodes with and without cyclic
alternating pattern has been related to the dynamics of slow and very slow cardio-respiratory
coupling [Thomas, Mietus, Peng, and Goldberger 2005]. These stages have not been studied yet
in the present analysis, that could be readily extended based on the hypnogram. The power in
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the δ band is known to correlate to the cardio-respiratory coupling, considered as an observable
in [Thomas, Mietus, Peng, Guo, et al. 2014]. Although our approach is slightly different, these
previous observations are completed extensively, although globally in time, from the pairwise
characterization of the coherence with cardio-respiratory modulations in each EEG band, also
uncovered the structure of their phase.

2.3 Sleep spindles, phase-amplitude coupling and stages
In this section, we choose an individual polysomnography to discuss investigations of differ-
ent aspects of the EEG analysis that remains on a preliminary stage of development: phase-
amplitude coupling, spindle detection, influence of sleep stages, EEG high-pass filtering and
referencing. Only few individual observations have been collected, their statistical confirmation
over a database have not been realized yet. The polysomnography has been selected for its rich
phenomenology, with balanced sleep stages, the intermittent occurrence of sleep apnea, and for
its clean multi-channel EEG recording.

The first aspect is the interaction that exists between the amplitude or the magnitude
in some EEG bands, and the oscillation in a lower band: a certain phase of the slow EEG
oscillation can trigger the intensity in the higher band. This phenomenon is known as phase-
amplitude coupling, that can be implemented from different time-frequency perspectives able
to distinguish the phase and the amplitude in different frequency bands [Munia and Aviyente
2019]. We describe it below as yet another type of intra-EEG coherence, between the amplitude
in a band and the EEG recording itself. It can happen between slow δ waves (∼1 Hz) and sleep
spindles [Purcell et al. 2017], that are short and intermittent wave trains made of up to a dozen
regular oscillations, precisely located in the σ band (between 12 and 16 Hz). This is illustrated
in Fig.V.20, where the EEG (Pz) is shown in panel (A), and the slow oscillations and sleep
spindles are isolated and compared in panel (B). For sleep spindles, we choose the quality factor
Q1 = 5 to cover the full σ band (around fσ = 13) with a good time resolution; slow oscillations
have a broader band (they are arrhythmic) around fσ = 0.9, so that we choose Q2 = 2. Sleep
spindles appear preferentially in the rising front of the slow oscillation, maximum near the
phase −π

2 .
In Fig.V.20 (C), we recall that we can measure precisely the instantaneous frequency of the

sleep spindle from a rate estimator, here restricted in the σ band, together with the associated
uncertainty ∆Fx, see Eq.(III.37). Notice that the instantaneous frequency of the spindles can
vary a lot, even though they are short-lived: they chirp. The uncertainty is important at times
without spindles and vanishes when there is a spindle, so that we can use it as an indicator
to detect their presence. For that purpose, we compare in panel (D) the (root-mean-square)
amplitude in this band to the inverse of the relative uncertainty:

|Fx|
∆Fx

= |γẋx|√
1− |γẋx|2

, (V.11)

that we call the certainty of the oscillations. It may be interpreted as the number of cycles
that can be distinguished unambiguously (before doubting of one cycle). The global coherence
between certainty (x) and amplitude (y) signals is about ρx+y+ = 0.64ei0.04: they are strongly
correlated positively (the phase is negligible), but not perfectly correlated, hence substantially
different.

For detecting and isolating spindles, we suggest using the certainty signal rather than an
amplitude signal, because it is not expected to be affected by the electrode impedance, nor suffer
from a baseline wander (as is the amplitude): applied in a narrow band, the certainty directly
represents the degree of regularity of the wave, between circular oscillation and stochastic
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Figure V.20: Sleep spindles and slow oscillations during deep sleep (N3) for subject 7. (A)
EEG signal x(t) from the electrode Pz against the average reference (in µV). (B) Band-limited
oscillations (µV), computed as 2X(t, f ;Q), with Q = 2 and fδ = 0.88 Hz for slow oscillations
(thick blue line), with Q = 5 and fσ = 13.2 Hz for sleep spindles (thin red line) and their
amplitude (aEEG13, thick magenta line). (C) Instantaneous frequency in the σ band (12 to 16
Hz), ℜ{Fx} (black line), and its uncertainty ∆Fx (green area) reported in (D) as a “certainty”
ratio |Fx|

∆Fx (thick green line) compared to the amplitude of the spindles (thick magenta line, in
µV) computed under the same conditions.

fluctuation, whatever its amplitude. As a proof of concept, we compute the certainty in the α-
σ band, and we use it to segment the EEG band signal into oscillations that exceed a threshold
certainty of 9. In order to alleviate the thresholding effects, we merge close but fragmented
segments whenever their overall certainty is above the threshold, and we discard segments that
last less than 5 oscillations. The threshold should be adjusted depending on the choice of
the quality factors (here Q+ = 7 and Q− ≈ 3). The result during a full polysomnography
is represented as a scatter plot in Fig.V.21 (A), where each marker represents an isolated
oscillatory event, with its mean instantaneous frequency and number of oscillations (size). Two
alternating populations, spindles of the σ band and α waves, appear with densities that depend
on the sleep stages: spindles are dense during deep sleep (N3), less during N2, while α are dense
during wake, less during REM, so that the EEG activity in this octave (between 8 and 16 Hz)
reflects the characteristics of the whole polysomnography.

In the next panels of Fig.V.21, we describe the phase-amplitude coupling between not only
sleep spindles but also θ waves slow EEG oscillations: while the modulus of coherence measures
the strength of the interaction, the angle of coherence provides the phase of the slow oscillation
at which the amplitude in the higher band is maximum. Several types of signals can be used
as the “amplitude” of the sleep spindles, from the sophisticated certainty signal to magnitude
and power estimators or simply the amplitude of the wavelet transform. We notice that they
provide quite similar results (except the magnitude, that amplifies the noisy background), so
that we simply choose the aEEG13 signal (EEG amplitude at 13.2 Hz for Q1 = 5) as in
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Figure V.21: Neural σ, α, θ waves, their coupling to slow δ waves and PRQ, during the
full polysomnography of subject 7. (A) Neural activity in the α-σ band, segmented as waves
with certainty > 9 and more than 5 oscillations. (B, C, D) Power log-frequency density
Sxx(t, f ;Q+ = 100, Q− = 2)|f | (µV ) in the range f ∈ [0.016, 8] Hz, where x is: (B) the
amplitude of sleep spindles around 13.2 Hz (aEEG13), (C) the amplitude of θ waves around
6 Hz (aEEG6), and (D) the slow oscillations from the EEG signal. The hypnogram is su-
perimposed to the EEG power density. (E, F) Amplitude-phase coupling (x vs y) from their
time-frequency coherence γxy(t, f ;Q+, Q−): (E) aEEG13 versus EEG, (F) aEEG6 versus EEG.
The 4 thresholds of colour saturation, at |γxy| = 0.21, 0.30, 0.36, 0.41 correspond to increasing
significance levels, with p-values 10−1, 10−2, 10−3 and 10−4 respectively. (G) Pulse-respiration
quotient as the distribution of the cardio-respiratory rates ratio from Fig.IV.23.
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Fig.V.20 and the aEEG6 signal for θ waves. The phase for the slow oscillation, is the one of the
wavelet transform of the EEG at the relevant low frequency (Q = 2). The amplitude signals
are decomposed in the same way, with Q = 2 to focus on singular bursts. Their power densities
are presented in Fig.V.21 (B, C, D), followed by the time-frequency coherence analysis of the
amplitude modulations (AM) versus the EEG recording, for the spindles (E) and the θ waves
(F).

The amplitude-phase coupling appears as very distinct spots of very significant (p < 10−4)
but intermittent coherence (vertical bursts), around 1 Hz and systematically during the N3 stage
for sleep spindles, that indeed arrive with a phase advance of π

2 compared to slow oscillations,
and around 3 Hz during REM stage for θ waves with a phase 2π

3 , that seems to switch to −π
3

during N3 (less significantly, p > 10−2). Note that the scale separation is only one octave
between θ waves and δ+ oscillations.

We can also notice a slight but systematic phase gradients of less significant coherence
below these spots, clearly positive in panel (F), sign of a delay (rather than simply a phase)
between θ amplitude and δ+ oscillations. This gradient seems negative for sleep spindles (they
would be late) from the angle π near 0.2 Hz (E); however, we must interpret it carefully, since
the EEG is typically high-pass filtered around this scale.

In spite of the instrumental filtering, strong coherence regions are visible a decade below
(around 0.03 Hz), in relation to the occurrence of sleep apnea during the N2 stage. This apneic
modulation is especially important in the σ band, as can be guessed from low horizontal lines
in the aEEG13 power density, in Fig.V.21 (B). This is confirmed from the pulse-respiration
quotient (PRQ) represented in the last panel (G), that oscillates repetitively between 3 or 4 to
about 20 heart beats per breathing cycle, sign of obstructive sleep apnea. Out of these apneic
phases, the PRQ is steadily locked to 6 during N3 and fluctuates more broadly during REM.

From these observations, we can summarize the sequence of main sleep patterns of subject
7 as wSRASARSARSwARA, where w stands for wake (and sleep onset), S for spindles-slow
waves coupling / synchronous heart-breath / deep sleep (N3 stage), R for rêve (REM, dreaming)
/ θ-δ+ coupling / heart-breath fluctuations, and A for apnea oscillations of heart-breath / N2
stage.

Eventually, we discuss the dependence of this individual observation to the choice of the
EEG electrodes locations, here Pz (parietal on the sagittal plane) and referenced against the
average of all 11 available channels. The quality of the detection of sleep spindles can degrade
when varying its location, and the observation of the amplitude-phase coupling can simply dis-
appear. These observations can be done exclusively from electrodes C3, Cz and Pz, against A1,
A2 and the average reference. When the polarity is respected (the former minus the latter),
their inclusion into a rough surface Laplacian (linear combination between neighbours) also
leads to the same observations, stressing the spatial localization of the phenomenon. Inter-
estingly, minus the average reference alone also works: the (unlabelled) ground electrode has
certainly been placed near Pz.
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Summary of section 2

This last section starts and finishes with the study of coherence in the polysomnography
of two subjects, severely affected by obstructive sleep apnea for the former, with a lighter
apnea for the latter. In-between, an extensive statistical analysis of coherence in neuro-
cardio-respiratory modulations has been performed over the 2650 subjects and 2.3 years
or cumulated sleep recordings in the large shhs2 database. The time-frequency power
density and coherence is first computed individually between pairs of physiological observ-
ables: cardiac FM, respiratory FM and AM (from rate estimators) and neural band AM
(magnitude signals), as illustrated for the first subject. Then, typical coherence profiles
are computed from conditional time averages over subgroups and selected intervals, based
on the clinician annotations of apnea events of the different types: hypopnea, obstructive
and central apnea, or their absence. The presence of apnea, especially obstructive and
central, results in the ubiquitous appearance of slow narrow-band coherent modulations
in all pairs of observables, localized between 0.01 and 0.04 Hz depending on the subjects.
This rhythm corresponds to the repetitive occurrence of apnea and recovery cycles in a
particularly regular manner, increasing both the amplitude and coherence of correspond-
ing modulations, appearing as spectral peaks compared the flat baseline without apnea
and the intermediary hypopnea profile. This slow apneic component in the physiological
variability is shown to be concomitant with an important coherence reduction, not only
in the fast and narrow-band RSA cardio-respiratory interaction, but also for the very
slow and broad-band (irregular) neuro-respiratory and cardio-respiratory component in
phase opposition.
The phase between neural modulations associated to apnea are observed to vary with the
considered EEG band, as well as their coherence with other modulations. By retrieving
the continuum of EEG bands, we observe how the coherence and its phase evolves with
the band frequency. Although the coherence varies with the apnea profiles, the phase-
frequency relation is shown to be essentially conserved, up to a global phase shift, for
all apnea profiles, slow and very slow components and for all pairs of neuro-cardiac and
neuro-respiratory coherence. It is composed of a chirp in the δ band, a hole in the θ band,
an echo of the chirp in the α-σ band and a constant phase in the β-γ band. The chirp has
a linear rate of about 10 Hz, that starts at high δ+ during apnea (or equivalent cardio-
respiratory slow-down) to low δ− during recovery. This neural activity is hypothesized
to be cyclic alternating patterns of the cortical activity, whose multi-band phase relation
to cardio-respiratory modulations has been uncovered.
Eventually, the last individual polysomnography illustrates the specific relation that ex-
ists between slow δ oscillations and sleep spindles of the σ band during NREM sleep,
together with other stage-specific phenomena. The discussion comprises the detection of
sleep spindles and α waves from the phase information in the α-σ band, the coupling of
their amplitude to the phase of slow oscillations during deep sleep (N3 stage), and the
possibility to describe this phase-amplitude coupling as the coherence between EEG am-
plitude signals and the EEG recording itself. We show that a similar phenomenon exists
for θ waves during REM sleep. The inclusion of the stage-dependent variations of the
heart-breath ratio (or pulse-respiration quotient), completes the picture of the sequence
of wake-sleep and apnea stages in this individual polysomnography.
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Appendix B

1 Sources of biophysical recordings: description of the
databases

The human physiological recordings that are analysed in part B are sourced in existing databases.
In the results presented in this thesis, these polysomnography databases have been used in two
ways: either as a source of individual recordings to study the dynamics of single trajectories,
or as a pool of numerous recordings for collective statistics over time.

We detail here the sources of the selected individual recordings, and the databases that
have served for collective statistics.

1.1 Polysomnography ensemble for collective statistics

Collective statistics have been obtained from two datasets: 5.6 hours of recording from the 42
subjects of capnobase, and more than 2.3 years of recording from 2650 subjects of shhs2.

The CapnoBase TBME R-R benchmark dataset (capnobase.org) contains 42 cases of 8-min
recordings obtained on children and adults aged 0 to 75, from anaesthesia monitors during
elective surgery. For each subject, they are composed of CO2 waveforms (capnograms), pho-
toplethysmograms from pulse oximetry (PPG) and electrocardiograms (ECG), together with
expert annotations. Although it was intended to assess the characterization of the breathing
rhythm from the cardiac recordings [Charlton et al. 2018; Karlen et al. 2013], we only used
the simultaneous PPG and ECG recordings to vary the input cardiac recording for heart rate
estimation.

The Sleep Heart Health Study is a multi-cohort study focused on sleep-disordered breath-
ing and cardiovascular outcomes, that compiles polysomnographic signals from 5804 partici-
pants aged 40 and older, recruited from existing studies with pre-collection of cardiovascular
risk factors [Lind et al. 2003; Quan et al. 1997; Zhang et al. 2018]. Available from the National
Sleep Research Resource (sleepdata.org), all the samples were annotated with sleep events such
as sleep stage, arousal and apnea. We used the entire dataset of the visit 2 (shhs2 ) com-
posed of polysomnography from 2651 subjects, but one polysomnography (the 687th), that has
been excluded because its annotation file has been lost. Polysomnograms were obtained in an
unattended setting, usually in the homes of the participants, by trained and certified techni-
cians. The recording montage consisted of two bipolar electroencephalograms (EEG), right and
left electrooculograms (EOG), an electromyogram (EMG), thoracic and abdominal excursions
(THOR and ABDO) recorded by inductive plethysmography bands, “airflow” (AF) detected
by a nasal-oral thermocouple, fingertip pulse oximetry, ECG from a bipolar lead and derived
heart rate (PR), body position and ambient light.
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1.2 Selected polysomnography for individual dynamics
A manual screening of individual recordings has been an essential first step to learn from ob-
servation the important aspects of both polysomnography and wavelet representations. The
individual examples that are reproduced in this thesis aim at giving a taste of this exploration.
They have been selected based on different considerations, including the quality of the measure-
ment, the richness of the phenomena they contain, and their representativity of the considerable
amount of raw images that has been computed.

Subjects 1 and 2 correspond respectively to the recording 0331_8min (32 years old, 60 kg),
and 0009_8min (10 years old, 46 kg), from capnobase.

Subject 3 (male, 40 years old, 108 kg) corresponds to the recording slp04 from the MIT-
BIH polysomnographic dataset [Goldberger et al. 2000; Ichimaru and Moody 1999], available
from the PhysioNet Research Resource for Complex Physiological Signals (physionet.org). It
includes 16 male subjects, aged 32 to 56 (mean age 43), with weights ranging from 89 to 152
kg (mean weight 119 kg), and most of them were affected by a severe obstructive sleep apnea.
Subject 3 has an apnea-hypopnea index (AHI) of 59.8 (among the most severe sleep apnea),
and its polysomnography is composed of an ECG, an EEG, an invasive blood pressure signal
(BP measured using a catheter in the radial artery), and an “airflow” signal (AF) from a nasal
thermistor.

Subjects 4, 5 and 6 correspond respectively to recordings shhs2-200079 (female, 56 years
old), shhs2-200901 (female, 54 years old) and shhs2-205136 (female, 61 years old) from the
second visit of the Sleep Heart Health Study (shhs2 ).

Subject 7 is an elderly adult that participated in the ongoing FUSO project, that aims at
developing an automatic sleep spindle analyser, see a previous work that includes sleep spindles
detection [Taillard et al. 2019].

Subject 8, 9 and 10 correspond respectively to patients p33, p20 and control n14 in a
study of dynamic IR thermograms to assist in early breast cancer diagnosis from a multifractal
analysis [Gerasimova et al. 2014; Gerasimova-Chechkina et al. 2016], and propose an alternative
to the more invasive X-ray mammography. These were the first dataset examined in this thesis,
but also the most difficult to process from their spatiotemporal nature. Signals are extracted
from spatial average and standard deviation in a region of interest, represented of Fig.B.22.
We have partially decoupled thermal fluctuations from geometric fluctuations of the body, by
correcting small body deformations with an affine transformation. The use of spatial wavelets
is expected to improve this analysis.

2 Cepstral approach, a high quality factor perspective
on the heart rate

We present the case of a physiological signal, derived from the infrared thermograms of subject
9. These recordings were studied under the angle of the multifractal analysis, i.e. at a small
quality factor to localized vertical structures. Here, we take the high quality factor perspective
to put into evidence the presence of physiological rhythms, characterized by horizontal harmonic
structures.
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Figure B.22: Temperature map (°C) of the
chest of subject 9 corresponding to a single
frame of the dynamic infrared thermogram.
Colder squared marks placed on the warmer
skin constitute references to track motions and
geometry. Elliptical regions of interest are
enclosing each breast: the higher temperature
and apparent vascularization of the right one
(plotted on the left) is related to the presence
of a tumour, whereas the left (colder) one in
healthy.

The signal x(t) in Fig.B.23 (A) is the standard deviation of the skin temperature, obtained
as a spatial average over the right breast of a subject. The panel (B) represents its power density
Sxx(t, f ;Q+, Q−)|f | with a quality factor as high as Q− = 20 ≈ Q+. This allows to put into
evidence any regular rhythm as a harmonic spectrum up to the 8th order. Among fluctuations,
this signal is influenced by the breathing rhythm, visible as a slight oscillation in the signal and
a horizontal structure at low frequency, that can be identified as the fundamental respiratory
component. Some fragments at below 1 Hz might be interpreted as a slight non-circularity
(order 2 and 3 harmonics).

The observation of interest here is the clear but tenuous harmonic lines observed above 2
Hz. They are separated by about 1 Hz, sign of the presence of the cardiac rhythm. Similarly to
the ECG, many harmonic lines are presents, except for the fundamental line. The strategy of
the ECG consists in choosing a small quality factor to detect beats in a band-limited amplitude
signal (like the aECG14 signal). In this case, we choose the band frequency f = 4 Hz and a
broad band with a quality factor as small as Q = 2, to cover all available harmonic intensity.
The generic narrow-band quadratic rate estimator is then applied near 1 Hz, for Q− = 5
and Q+ ≈ 10. Apart from occasional perturbations from vertical singularities, the heart rate
extraction works in this low signal-to-noise situation, as shown as a black dotted line in Fig.B.23
(C).

The rate signal estimated from the low quality factor perspective is superimposed in
Fig.B.23 (C) to the outcome of an alternative high quality factor perspective on the tempera-
ture signal, starting with Q = 20 instead of Q = 2, and based on the cepstral analysis [Randall
2017].

It consists in detecting periodicities in linear frequency, sign of the harmonic series, from
a Fourier analysis of the magnitude of the spectrum. The (real) cepstrum may be define
generically from a positive spectrum of x(t) as:

Cx(τ) =
∫ ∞

0
log(Sx(f)) cos( p̃fτ)df , (B.12)

where τ is called the quefrency and its value at a peak represents the period of a rhythm in the
signal, equivalently τ−1 is its fundamental frequency. A time-dependent power spectral density
as in Fig.B.23 (B) turns it into a time-quefrency object. However, its direct application does
not achieve the detection of the heart period τc, due to the strong amplitude decay at high
frequency.

We propose to adapt it in a way that is insensitive to this spectral trend ∼ f−α, that
consists in looking for the harmonic spectral periodicity in ∂log f logSx(f) instead. It also
requires adapting cos into− sin due to the derivative. Finally, we prefer a log-frequency integral,
more compliant with the wavelet transform, yielding the following dimensionless time-quefrency
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Figure B.23: Heart rate detection at high quality factor from a cepstral strategy. (A) Temper-
ature signal x(t) (°C) derived from the dynamic infrared thermogram of subject 10. (B) Power
log-frequency density Sxx(t, f ;Q+, Q−) estimated at high quality factor (Q− = 20) and from a
short time smoothing (Q+ ≈ Q−). (C) Wavelet-based cepstrum defined in Eq.(B.13), where the
inverse of the quefrency has been identified with a frequency f = τ−1. The resulting cardiac
line is compared to a narrow-band wavelet estimator applied to broad-band amplitude signal,
2|X(t, f ;Q)| for f = 4 Hz and Q = 2, that collects heart beats.

quantity:

Cx(t, τ) = −
∫ ∞

0

∂ log(Sxx(f, t;Q+, Q−)|f |)
∂ log f sin( p̃fτ)d log f , (B.13)

The use of the power log-frequency density instead of the power spectral density does not
matter, due to the derivation. However, the additional smoothing from Q+ > Q− is important
to avoid divergences (Q+ only needs to be slightly larger than Q−, in order not to lose too
much time resolution).

The result Cx(t, τ) is represented in Fig.B.23 (C), where we have set f = τ−1 for a time-
frequency interpretation. Although insufficient to extract a cardiac FM signal, the heart rate
can be read at any time as the fundamental line of the cardiac rhythm. In particular, we
observe a sudden drop of the heart rate at 4 min. The heart rate estimator obtained from the
low quality factor approach follows quite well this line of fundamental cardiac frequency. An
additional step would be required to extract the heart rate signal from the cepstrum.

Even though a time-quefrency analysis is here satisfyingly adapted to the wavelet trans-
form, the Gabor paradigm has many characteristics that makes it preferable to the wavelet
paradigm: its homogeneous resolution in linear frequency is a clear advantage to detect the
harmonic series, whose order is unlimited, even at a rather small time resolution. This is
confirmed by recent applications to physiological signals combining Gabor transform and cep-
strum [Li et al. 2019; Lin, Su, and Wu 2018; Su and Wu 2017].

Finally, notice that the rate estimator not only extracts a heart rate signal, but can also
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be given an uncertainty from the formalism described in Eq.(III.37).

3 Cardio-respiratory coherence

We give here further details on the estimated cardio-respiratory coherence. In particular, the
figures below illustrate the alternative result when varying the choice for the heart rate esti-
mator. The results are very similar, up to a slight decrease or increase in estimated coherence,
showing that the most generic (wide-band) estimator is sufficient for a coherence analysis.

3.1 Phase distribution: verification with a precise heart rate detec-
tion

We show here that a more precise estimation of the physiological rates does not improve much
the measure of the cardio-respiratory coherence. More specifically, the coherence-based distri-
bution of the phase Gxy(ϕ ; f) between heart rate (x) and breathing rates (y) shown in Fig.B.24
is computed with the precise wavelet estimator of the heart rate ℜ{FaECG14(t, fc;Q)}, as in the
first section of chapter IV.
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Figure B.24: Comparison of the phase distributions Gxy(ϕ ; f) in shhs2 between heart rate
and breathing rates modulations. (A) Cardiac frequency (ℜ{FaECG14(t, fc;Q)}) vs. respiratory
frequency (FAF (t;Q)). (B) Cardiac frequency vs. respiratory amplitude (iℑ{FAF (t;Q)}).

Compared to Fig.IV.21, that is computed from generic estimators, the coherence in Fig.B.24
is enhanced in both panels (of up to 30% at the density peaks), while the angular spread re-
mains identical. This does not affect the previous identification of the fast, slow and very slow
coherent components.

Since the precise heart rate estimators attenuates the oscillations at the cardiac fre-
quency (strong for the generic estimator), the only important difference in the resulting cardio-
respiratory coherence lies near the heart frequency (1 Hz). We do not interpret breathing
modulations in this frequency range since it exceeds the respiratory frequency (0.25 Hz).
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3.2 Apnea profiles: comparison with a generic heart rate estimator
In Fig.B.25, we show the statistical analysis in the shhs2 of the cardio-respiratory coherence for
different apnea profiles for a generic cardiac frequency modulation estimator, ℜ{FECG(t, Q)},
instead of the precise and sophisticated narrow-band estimator ℜ{FaECG14(t, fc;Q+, Q−)}, as
in Fig.V.14.

Figure B.25: Average profiles of the coherence (top) and squared coherence (bottom) between
the heart rate and different respiratory signals. Cardiac frequency (generic estimator) ℜ{FECG}
versus: (A) airflow recording AF , (B) breathing frequency ℜ{FAF} and (C) amplitude mod-
ulation iℑ{FAF}, generic estimators. Each profile correspond to a conditional time average
among subjects strongly affected by hypopnea “H”, obstructive “O” or central “C” sleep apnea,
without conditioning “all” or in the “control” group (without sleep apnea). See legends and text
for details. The grey thick dashed line traces the expected level of spurious squared coherence
γ2

sp ≈ 1
n+1 , where n = 10 in (A) and n = 5 in (B, C).

Apart from the slight decrease in coherence caused by the lower precision of the cardiac
FM, the only important difference lies near the heart frequency (1 Hz) that are not interpreted
as breathing modulations. As previously, this reflects the intense cardiac modulation that
remains in the generic cardiac FM estimator due to the strong non-circularity of the ECG.
The depletion of the coherence below the spurious level is caused by the accumulation of phase
vortices (and amplitude zeros) in the neighbourhood of any intense mode.

4 Wake-sleep stage durations and transitions
We use the clinician scoring of wake-sleep stages for the 2650 subjects in the shhs2 database to
provide basic characteristics of sleep dynamics. The average sleep duration (from falling asleep
to last waking) is 455 min, composed of wake (W) at 18%, REM at 17%, N1 at 5%, N2 at 48%
and N3 at 13%. Their typical durations, between The important proportion of wake is certainly
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representative of the sleep perturbation caused by the polysomnography apparatus. Denoting
Xn ∈ {W,REM,N1, N2, N3} the stage at step n and neglecting timings t(n − 1 → n), we
already can get an idea of the network of transitions between states by estimating transition
probabilities. In Fig.B.26, we represent matrices for the probability of the previous stage
knowing the current one Pr(Xn−1|Xn) (left), and the probability of the next stage knowing the
current one Pr(Xn+1|Xn) (right). The distribution of the previous and next stages on a line of
the matrices is normalized.

Figure B.26: First order transition probabilities Pr(Xn−1|Xn) (left) and Pr(Xn+1|Xn) (right)
between wake-sleep stages estimated form annotations in the shhs2 database. The proportion of
each stage in the total sleep duration is also reported (middle).

For instance, we know from the line associated to the N1 stage (light sleep), that it is
essentially preceded by the wake stage (left), and most probably followed by the N2 stage, or
less probably by wake (sometimes by REM), but it constitutes only 5% of the sleep duration
(middle). We also observe that the N3 stage (deep sleep) is almost only connected to N2,
compatible with our observations that N3 is a deeper degree of non-REM sleep, not clearly
separated from N2.
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Conclusion
An analytical tool to assist the observation of the dynamics of living organisms has been
developed in this thesis, and applied to the study of interactions between the respiratory,
cardiac and neural systems based on polysomnographic recordings. The development of this
thesis is summarized below and perspectives are then outlined.

Summary
Part A

In the first part, we have exposed how to decipher complex natural recordings via the char-
acterization of both their oscillating and fluctuating content. This is achieved by representing
recordings in time and frequency, before performing statistical estimations in these two dimen-
sions, via a combination of wavelet decomposition and recomposition.

We have started with the oscillatory approach of recordings, in particular with the temporal
intuition associated to oscillating signals: a wave evolves in time with a certain amplitude and
a phase cycling with a certain time period. The analytic version of the signal, a very suitable
complex helical representation of an oscillation with its radius and angle, is of limited use
when oscillations at multiple timescales are superimposed. From the analytic continuation
of the signal in the complex plane, the separation of components at distinct scales naturally
leads to the continuous wavelet transform with respect to an analytic wavelet, shifted and
dilated in time. This time-scale decomposition has the specificity of being independent of
any arbitrary reference scale, contrary to the alternative paradigm of the Gabor or short-time
Fourier transform. This property is particularly interesting to analyse multiple simultaneous
oscillatory events, each from its own scale, possibly separated from others by several decades.

Yet, the Fourier description of periodicity in the recording, from its spectrum, is indis-
pensable; the wavelet scale variable only appears as a reminiscence of the frequency domain.
In order to recover this complementary spectral intuition, we have revisited the choice of the
analytic wavelet. Once its positive spectrum is standardized into a dimensionless shape, the
precision of the scale-to-frequency correspondence narrows down to one essential parameter, its
quality factor Q. Proportional to the number of wavelet oscillations and to the inverse of its
bandwidth, it fixes a resolution trade-off, that shares the atom of time-frequency uncertainty.
In other words, the quality factor is a cursor between the time and frequency interpretations.
For the latter one, a finer control of the wavelet shape is superfluous, as long as the quality
factor is high enough. The log-normal function, a central limit case in the general family of
Morse wavelets, stands out as especially convenient for its regularity, with a faster than poly-
nomial decay in both domains, and for its symmetry, crystallizing the idea of the logarithmic
frequency scale.

Signal and spectrum are retrieved from the wavelet transform in two equivalent ways: on
one hand as time and frequency marginals, on the other hand as opposite asymptotics for the
quality factor. The probabilistic approach of fluctuations is then introduced, by considering
the recording as a realization of a stochastic process. Applying the above operations to a
quadratic representation results in wavelet-based statistical estimations: for a single trajectory,
the time-dependent variance and spectral density, or for a product of trajectories, the correlation
coefficient declined as a temporal and a spectral coherence. Their localization both in time
and frequency, however, requires a second parameter to estimate the statistical average, that
was identified with an effective number of orthogonal “tapers” (here wavelets), interpreted
as statistical degrees of freedom. The alternative but equally effective approach consists in
reducing the time-frequency resolution from a smoothing operation.

In the log-normal wavelet framework, these probabilistic and time-frequency perspectives
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connect into a time-frequency statistical estimator that we qualify as canonical from its very
special role. The introduction of several degrees of freedom in the statistical estimation coincides
with the distinction of two different quality factors in the time-frequency analysis: nd = Q+

Q−
,

the higher one controlling the time resolution, independently from the lower one for the log-
frequency resolution. This correspondence is a bridge between two viewpoints on information,
balancing significance and resolution. Following the first decomposition step of oscillations
into single time-frequency atoms, the second step recomposes nd uncertainty atoms for more
stability against fluctuations.

We had to make two compromises, one on each side of the bridge, to make practical
applications of these two essential parameters. The first one is the numerical implementation
of the canonical estimator by a Gaussian time-smoothing, that is shown to be a correct Laplace
approximation at first order. The second one is the simplified prediction of expected levels of
statistical significance for the canonical coherence estimation. We motivate and verify form the
simulation of stationary and independent Gaussian noises that the squared spurious coherence
is nearly beta-distributed. The resulting power density and coherence are respectively a local
variance and correlation coefficient detailed for all time shifts and scales. From the estimated
levels of coherence significance, we construct a synthetic colour-coding from hue and saturation
for the angle and modulus of significant time-frequency coherence regions.

The problem of estimating the modulations of a fluctuating rhythm is finally introduced.
The repeated non-circular waveform is decomposed by the wavelet transform into horizontal
and vertical time-frequency structures, consistently interpreted as harmonics up to a certain
order ∼ Q√ p̃ and beats above them. The cycling phase (and varying amplitude) of harmonic
lines, in particular the one of the first (fundamental) order, is related to the relevant rate by
a time-derivative, which happens to be equivalent to a frequency scaling. A certain flexibility
exists in the spectral selection of the cycling phase, in relation to the concepts of stable and
unstable horizontal ridges and frequency-reassignment, so that we posit a relevant frequency
band. Modulations in this band can be extracted from a generic family of rate estimators. In
particular, a quadratic version is compliant with the statistical interpretation: the introduction
of a second quality factor (in relation to the bandwidth) ensures the stability of the estimated
rate. For a voice recording, the different outcomes, in the narrow and wide-band limits, of this
wavelet-estimator of a third type, are estimating the pitch and the vibrato. The uncertainty
on the pitch estimation is expressed in terms of coherence.

Part B

The second part is applied to the analysis of the cardiac, respiratory and neural activities, as
recorded by the ECG or PPG, AF and EEG signals. Physiological data, polysomnography for
most of them, originate from existing databases. We endeavour to translate their processing
into biophysical observables of interest using the language developed in the first part.

We start with the heart rate variability, extracted from the cardiac rhythm as its frequency
modulation. In spite of the very different recording techniques, the heart rate can be estimated
precisely with generic time-frequency estimators of the fluctuating rate in a relevant frequency
band. We show that the wide-band version of the rate estimator, that only requires a single
parameter, is sufficient to extract modulations of the cardiac frequency, even though it is biased,
especially for strongly non-circular ECG oscillations. The most precise heart rate estimation
is obtained by applying the narrow-band rate estimator to a new amplitude signal, derived
from the wavelet transform of the ECG signal at 14 Hz (aECG14). Estimators are applied
to the PPG, ECG and aECG14 signals of all subjects in a database. The precision of the
cardiac frequency modulations is evaluated in terms of coherence with a reference heart rate
estimated from R-R intervals in the ECG. This coherence is significant in all cases and at each
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modulation frequency, and it increases with the circularity of the input cardiac signal and with
the specificity of the estimator.

Sign of the cardio-respiratory interaction, the heart rate variability is correlated to breath-
ing, introduced as the AF (airflow) signal. Comparing it to the heart rate, first in the time
or frequency domains separately, then in the time-frequency plane, we observe two distinct
components of coherence: a fast one at the fundamental frequency of the breathing rhythm,
known as the respiratory sinus arrhythmia (RSA), and a slower and less rhythmic one (with a
broader band). These interactions are characterized by their phase and modulus of coherence,
both individually and collectively. The statistical significance is assessed for the individual
time-frequency estimation, and the collective estimation is computed from a second level of
statistics over all times and for all subjects of a large database. In particular, the extent of
fluctuations in the phase difference between heart rate and breathing oscillations is summarized
into an angular density of coherence. Reproducing this method with another type of respiratory
signal and comparing the results, we have highlighted difficulties of interpretation related to
instrumental limitations, visible in the reduction of coherence and the uncertainty on the phase
of slow oscillations caused by high-pass filtering.

The study of the low frequency range is facilitated with breathing rate signals, instead
of a raw recording, by extracting the slow activity from its frequency modulations (FM) and
amplitude modulations (AM). Proved sufficient to study coherence for the cardiac rhythm, the
generic wide-band rate estimator is particularly appropriate for the rather circular oscillations
of breathing, whose period can fluctuate greatly. The coherence analysis highlights the fact
that slow breathing FM and AM evolve nearly in-phase (positively correlated) with the heart
rate modulations (FM); coherence extends to very slow frequencies with a slight phase shift
for breathing AM, but with a phase switch to opposition (anti-correlation) for breathing FM
below 0.01 Hz. This illustrates the presence of a distinct very slow mode of cardio-respiratory
regulation, antagonist to the slow one.

The time-frequency coherence analysis of cardiac and respiratory FM is limited to depicting
the similarity of their coevolution. In particular, it cannot account for their synchronization
at an integer frequency ratio, nor characterize the evolution of this so-called pulse respira-
tion quotient. In the wavelet framework, we construct a time-dependent distribution of this
frequency ratio, enhanced to a very high time resolution and precise spectral concentration
with frequency-reassignment and a low quality factor. Applied to polysomnography, we have
illustrated individually its ability to track sleep phenomena such as apnea as regular ratio
oscillations, REM with its strong fluctuations, and deep sleep with a steady ratio.

The observation of clear synchronizations episodes, also called cardio-respiratory coupling,
and the musical analogy with two voices singing a consonant chord have motivated the formu-
lation of a multi-frequency synchronization index. Called the sonance, it measures rationality
or irrationality in the ratio distribution. Its development, currently limited to a musical appli-
cation, is detailed more extensively in a distinct bonus part.

Important third member of the physiological orchestra, the activity of the neural system is
introduced as recorded from EEG in a polysomnography. A constant quality factor represen-
tation is especially well suited to observe its multi-scale band structure and temporal stages in
relation to wake and sleep. The selection of the unique or the pair of quality factors is discussed
depending on the investigated phenomenon. Q− = 5 is a minimum for spectral distinction of
neural waves, fixing a maximum time-resolution, that can be reduced, either slightly (Q+ ≈ Q−)
to define a stable neural magnitude field, or drastically to obtain a synthetic representation of
the sleep-wake density patterns, or a very significant estimation of the time-frequency coherence.
For Q+ = 500, we illustrate inter-EEG coherence patterns, between contra-lateral recordings,
with alternating sign and modulus (incoherent to very coherent), varying independently from
the power density. Rates modulations relate to power and magnitude modulations in each EEG
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band; the latter are preferred as neural observables.
In order to evaluate physiological interactions, we gather cardio-respiratory rates and neu-

ral magnitude signals in distinct bands, and we compare them in pairs as a time-frequency
coherence. Applied in the case of a subject affected by a severe obstructive sleep apnea, we
identify the signature of apnea as a narrow-band and very coherent component present in
all pairs of modulations between 0.01 and 0.04 Hz. An extensive coherence analysis of neuro-
cardio-respiratory modulations is performed individually for each of the 2650 subjects in a large
polysomnography database. Then, typical coherence spectra are computed from conditional
time averages over the 2.3 years or cumulated sleep recordings, by dividing it into selected in-
tervals and subgroups, based on the clinician annotations of apnea events of the different types:
hypopnea, obstructive or central apnea, or their absence. The apneic modulations are charac-
terized by an increased amplitude and coherence, appearing as spectral peaks compared to the
flat baseline without apnea and the intermediary hypopnea profile. Apnea is also concomitant
with an important coherence reduction, not only in the fast and narrow-band RSA cardio-
respiratory interaction, but also for the very slow and broad-band (irregular) neuro-respiratory
and cardio-respiratory component.

The phase of neural modulations compared to cardio-respiratory ones is then investigated
across EEG bands. We stumble upon a specific phase-frequency relation that is essentially
conserved, up to a global phase shift, for all profiles (with and without apnea), slow and
very slow modulations and for all neuro-cardiac and neuro-respiratory coherence pairs. This
interaction is composed of a linear chirp in the δ band, incoherence in the θ band, an echo of
the chirp in the α-σ band and a constant phase in the β-γ band.

With an individual polysomnography, we eventually illustrate phase-amplitude couplings
in different sleep stages, described as an intra-EEG coherence, in particular the one between
slow δ oscillations and sleep spindles of the σ band during deep sleep. We also present a strategy
to detect sleep spindles from the phase in the σ band. The instantaneous heart-breath ratio
(or pulse-respiration quotient) completes the nocturnal picture of the sequence of sleep stages.

Discussion and perspectives
It is now clear that a description of the dynamics of living systems must be able to discriminate
a great diversity of behaviours. The composition of the spontaneous physiological noise ranges
from completely stochastic fluctuations, to pulsatile, aperiodic, quasi-periodic rhythms and
regular oscillations, that can be concomitant at distinct frequencies, and evolve in a sequence
of temporal stages of varying duration. This rich phenomenology is not only distributed among
simultaneous recordings, but also within each of them in the form of modulations.

The practice of physics, in this interdisciplinary subject, has consisted in ensuring the visi-
bility, control and soundness of the elementary notions of quality factor, frequency, time, phase
and amplitude of the oscillations. In order to build a statistical physics of these physiological
signals, a time-frequency perspective is indispensable: these natural oscillating phenomena are
correctly described when their intrinsic quality factor is matched by the one of the representa-
tion, achieving their localization. Decoupling time from frequency corresponds to dissociating
their consistent description into two distorted corner views. The adoption of the adequate
middle view amounts to choosing the shape of the uncertainty atom, or wavelet, in the time-
frequency decomposition.

The basic probabilistic tool of pair-wise correlations corresponds to the recomposition of
atoms from two distinct signals in a local average. The resulting circular (not to say complex)
coefficient expresses their coherence. This statistical information is as precise as the atoms are
numerous, to the detriment of the localization information, that is reduced accordingly. The
probabilistic interpretation is therefore enabled by the separation of slow evolutionary scales and
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fast spectral scales. Different paradigms are available to balance these two types of information,
each leading to a specific geometry of the composition in the time-frequency plane. Without
introducing any arbitrary reference scales, the formalism of the log-normal wavelet proposed in
this thesis keeps track of the shape and number of atoms in the composition as a ratio of two
quality factors.

All pairs of physiological signals form a complete graph, whose links are time-frequency
coherence maps; they would reduce to (circular) correlation coefficients when the information
is purely statistical and non-local. The specification of two control parameters (the quality
factors) is sufficient to derive from these signals a prototype of the network of physiological
interactions, whose structure is being investigated [Bartsch, Liu, Bashan, et al. 2015; Ivanov,
Liu, and Bartsch 2016]. Our synthetic colour-coded visualization processes for these time-
frequency relations will assist observations, and may be appropriately reduced into principal
components.

We expect a fully developed physical approach to specify a directionality in the interactions.
Namely, causality must be excavated from this network of interactions, to bring to light the
sharpness of the inter-regulation mechanisms between physiological functions. Reduced to its
simplest form as a pure delay ei p̃fτ , causality is contained in the spectral direction as a cycling
phase. An efficient spectral retrieval of causality becomes possible [Ephremidze, Saied, and
Spitkovsky 2018] and its statistical interpretation is well-supported [Faes, Pernice, et al. 2021;
Faes, Stramaglia, and Marinazzo 2017]. The time-evolving and multi-scale characterization of
causal interactions in the physiological orchestra is close to be achieved.

The next step towards a statistical physics of physiological signals is farther away, but the
question of their irreversibility is in sight [Arneodo, Argoul, et al. 1993] and the ground may
already be in preparation [Sekimoto 2010].
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1. Introduction

Pulsatile and quasi-periodic behaviors are ubiquitous in non-linear out-of-equilibrium systems,
in particular in living organisms. The synchronization of two rhythms at nearby characteristic
frequencies has been well documented in physics, both in experimental systems and theoret-
ical models. The nature and origin of synchronization in physiological systems has recently
attracted much interest in a broad scientific community. One essential property that distin-
guishes living organisms from inert matter is their strong temporal variability. Interestingly,
fluctuations arising from physiological networks and their rich spectral content could even fa-
cilitate the occurrence of synchronization. While synchronization is usually considered between
two rhythms of single and often close frequencies, we propose to extend it to a multifrequency
synchronization that results from all possible ratios a : b between frequencies of the compared
physiological fluctuations. For exemple, the ratios a = 3, 4, 5, 6 and b = 1 between the heart
and breathing fundamental frequencies are most likely for mammals. Thanks to a continuous
complex wavelet transform analysis of physiological signals, we reveal the temporal evolution
of their frequency ratios, even for arbitrarily rich spectral contents. Then we introduce a mea-
sure that quantifies the (ir)rationality of the frequency ratios, tightly related to the theory of
continued fractions and rational numbers enumeration. We call it “sonance”, or musical mea-
sure, in reference to concepts of consonance and dissonance in musical harmony. The temporal
evolution of the frequency ratio content and its sonance are computed for different pairs of
physiological signals, such as photoplethismograms, thermograms and polysomnograms, giv-
ing new insights into the fluctuations of physiological rhythms and inter-regulations between
organs.

1.1. Generalizing synchronization from single modes of close frequencies
to arbitrarily rich spectral content

The simplest example of synchronization is a 1 : 1 ratio between the characteristic frequencies
of the considered rhythms. However, synchronizations of ratios 1 : n are not rare and ratios of
integers m : n appears to be the most general form of synchronization. Therefore, synchroniza-
tion has something to do with rational relation between frequencies. Our strategy is as follows.
First we define, from the amplitude of two frequency spectra, the frequency ratio content be-
tween these spectra. Then, the non-stationarity of real signals is considered by extending the
method to time-frequency representations. In particular, the use of analytic wavelets appears
to be very appropriate. Finally, we define a new quantity that quantifies how rational the
frequency ratios are, i.e. how synchronized the rhythms are.

1.2. Interpretation in terms of musical harmony

The musical term for synchronization in a multi-frequency sense is the consonance. Indeed, the
1 : 1 synchronization is called unison, 1 : 2 the octave, 2 : 3 the fifth, 3 : 4 the fourth, etc.
The dissonances imply more complicated ratio or irrationals far from these simple ratios. The
discrepancy between these musical terms and the rational number notation comes from the fact
that a musician thinks of these relations in an additive way, i.e. in the log-frequency domain,
where the base of the logarithm is one twelfth of octave: log(2)/12. The reason happens to
be related to a measure, that we call sonance because it places consonance and dissonance
on a continuum. It quantifies how (ir)rational is a distribution of ratios, obtained from the
frequencies present in two signals. In agreement with this musical intuition, we introduce a
time-frequency representation of the signals and a log-frequency sampling to express easily the
frequency ratio content as cross-correlation of the spectra.

200



1.3. Conventions: Fourier transform and analytic wavelet transform

Let us set p̃ = 2π.
The Fourier transform of x(t), denoted with a tilde, is defined here as:

x̃(f) = F [x](f) =

∫ +∞

−∞
x(t)e−i p̃ ftdt

so that its inverse is

x(t) = F−1[x̃](t) =

∫ +∞

−∞
x̃(f)ei p̃ ftdf .

x(t) and x̃(f) will be referred to as the time-domain and frequency-domain representations
respectively.
Also, let us define the power spectral density:

PSD[x](f) = lim
T→∞

1

T

∣∣∣∣
∫ T

0

x(t)e−i p̃ ftdt

∣∣∣∣
2

,

which can be understood as the squared modulus of the Fourier spectrum scaled by the signal
duration |x̃(f)|2/T .
Let us define the wavelet transform of a signal s(t) in the form of a time-frequency represen-

tation:

Wψ[s](f, t) =

∫
s(t)ψ

(
f

f0
(t′ − t)

)
f

f0
dt′ , (1)

where ψ is the complex conjugate of the wavelet, f is the frequency parameter and t is the
time translation parameter. The usual scale parameter of the wavelet transform here would be
a = f0

f
where f0 is a reference frequency, characteristic of the wavelet. The norm of the wavelet

which is conserved through scales is here chosen to be p = 1. The relation for other conventions
(especially p = 2) is:

Wψ[s](f, t; p) =

(
f

f0

) 1−p
p

Wψ[s](f, t) . (2)

In the frequency domain, the wavelet transform reads as a parametrized band-pass filtering
of the signal:

Wψ[s](f, t) =

∫
s̃(f ′)ψ̃

(
f ′

f
f0

)
ei p̃ f

′tdf ′ . (3)

This relation is extensively used in the following. In order to interpret it as a time-frequency
representation, we consider analytic wavelets, i.e. with no negative frequency, so that the in-
tegral Eq. (3) is over R+. The analytic property of the wavelet allows a direct measurement
of the phase of oscillating components, by completing the real signal by its Hilbert transform
pair as its imaginary part. Moreover, we choose the wavelet so that its characteristic frequency
f0 (peak frequency in the Fourier domain) is also the unit frequency, f0 = 1. By means of a
slight shift of paradigm regarding the dimensionality of the wavelet variable, this allows to omit
f0 while ensuring a direct correspondence between frequencies of the Fourier and continuous
wavelet transforms. Eventually, Wψ[s](f, t) represents at any time a local frequency spectrum
of the signal s, whose amplitude and phase for any time-frequency component is contained into
the modulus and the complex argument of the transform.
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Figure 1: Spectra of relations R[S, S](q) in the case S1 = S2 = S for a piano sound (blue)
and a clarinet sound (orange), both played staccato. Only q > 1 is represented
because R[S, S](q) is symmetric under q → q−1. The convention for the spectra is
µ = 1, ν = 0 with the normalization by the norm 2. We observe clear differences in
the ratios distribution ; for instance the clarinet as much more odd integers than even
ones, due to acoustic impedance constraints. The spectrum is much less peaked in
the piano case, possibly due to the presence of numerous harmonic frequencies.

The shape of the wavelet provides a time-frequency uncertainty relation for this representa-
tion: according to the uncertainty principle, the product of the widths ∆t of ψ and ∆f of ψ̃ is
some constant, bounded by below by 1

2 p̃ . For a wavelet dilated at frequency f , the time width

is proportional to f−1 whereas the frequency width is proportional to f so that their product is
the same constant. Therefore, the uncertainty of the time-frequency representation at any (f, t)
is well described by the dimensionaless constants f∆t and ∆f/f (relative frequency resolution).
As an illustration, the time-integrated squared modulus of the wavelet transform is a fre-

quency smoothing of the squared Fourier spectrum of the signal by the wavelet squared spec-
trum:

∫ +∞

−∞
|Wψ[s](f, t)|2dt =

∫ ∞

0

|s̃(f ′)|2|ψ̃(f ′/f)|2df ′ , (4)

from which we can deduce the following scaling between a time average of the wavelet transform
and the power spectral density in the case of a stationary signal:

〈
|Wψ[s](f, t)|2

〉
t
∼ f PSD[s](f)

1

2

∫ ∞

0

|ψ̃(f ′)|2df ′/f ′ . (5)

2. The spectrum of relations or ratios distribution

2.1. Definition of the spectrum of relations

In this section, we introduce what we call a spectrum of relations between two positive spectra
S1, S2, that we interpret as a distribution of the frequency ratios. We define it to be the
multiplicative cross-correlation of these spectra:

R[S1, S2](q) =

∫ ∞

0

S1(f)S2(qf)df/f , (6)
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so that the value of the spectrum of relations is high whenever peaks at frequencies related by
the ratio q from one spectrum to the other are present. Note that the integral in carried over
positive frequencies with the measure d log f , so that the change of variable v = log f would
yield the usual additive cross-correlation integral of shift parameter log q. The spectrum of
relations has the following symmetry:

R[S1, S2](q) = R[S2, S1](q
−1) . (7)

Consider the specific case where the spectrum S1(f) is compared to S2(f) = S1(αf), α > 0,
which is a good model for comparing two different tones of the same instrument. This yields
the spectrum of relations R[S1, S2](q) = R[S1, S1](αq), which is just the spectrum of relations
of S1 dilated by α.

2.2. Possible definitions for the frequency spectra

The spectra Si(f) (i = 1, 2) can be defined in different ways from frequency or time-frequency
representations of the signals. First, we impose the spectra to be positive, which removes
the information of the phase difference between components of different frequencies, that is
considered irrelevant. This is important to make the spectra invariant with respect to time
translation of the signals, as well as all quantities computed from these spectra. As a result,
the positive frequency spectrum S(f) is proportional to |s̃(f)|µ (where µ = 2 corresponds to
the PSD) or |Wψ[s](f, t)|µ in the non-stationary case (from the time-frequency interpretation of
the analytic wavelet transform introduced above). However, the phase of the wavelet transform
can be used in a specific way (frequency reassignment / synchrosqueezing technics), as evoked
in the appendix, to refine the definition of the spectra bypassing the frequency (and/or time)
uncertainty.
Next, |Wψ[s](f, t)|2 scales as |s̃(f)|2f (up to a constant) from Eq. (5). This is related to

the choice of the norm p = 1 of the wavelet transform, coherent in a certain way with the
measure d log f in the spectrum of relations, but not consistent with the Fourier domain usually
conceived as linear in f . To take into account the different possible choice of p, we introduce a
factor f ν , leading to S being proportional to |s̃(f)√f |µf ν or |Wψ[s](f, t)|µf ν = |Wψ[s](f, t; p =
µ

µ+ν
)|µ.

But what should be ν? We could consider all these points of view:

• Amplitude density: |s̃(f)|df = S(f)d log f ⇒ µ = 1 and ν = 1
2

• Energy or power density: PSD[s](f)df = S(f)d log f ⇒ µ = 2 and ν = 0

• Total power:
∫∞
0
PSD[s](f)df = R[S, S](1) ⇒ µ = 1 and ν = 0

• we could even consider a duality between squared Fourier spectrum and cross-correlation
C(τ) =

∫ +∞
−∞ s(t)s(t+ τ)dt,

∫ ∞

0

|s̃1(f)|2|s̃2(qf)|2df
√
q =

∫ ∞

0

C1(τ)C2(τ/q)dτ/
√
q , (8)

to get a definition either from the frequency spectrum or from the cross-correlation:

R[S1, S2](q) = R[C1, C2](q
−1) = R[C2, C1](q) ⇒ µ = 2 and ν = −1

2
. (9)

Finally, it remains to normalize the frequency spectra S1, S2 or the spectrum of relation
R[S1, S2] so that the result is independent on an amplitude or a time scaling (change of am-
plitude or time unit) of the initial signals (and possibly of the wavelet). For instance, it could
be:
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• the norm 1 (probability density) normalization

∫ ∞

0

R[S1, S2](q)dq/q = 1 ⇔
∫ ∞

0

S(f)df/f = ∥S∥1 = 1

• or normalizing by
√
R[S1, S1](1)R[S2, S2](1), i.e. a norm 2

R[S, S](1) = 1 ⇔
(∫ ∞

0

S(f)2df/f

) 1
2

= ∥S∥2 = 1

Here we can observe that these correspond to standardized signals (unit energy) for µ = 2, ν = 0
in the first case, for µ = 1, ν = 0 in the second case.

3. How (ir)rational is a ratio distribution?

The spectrum of relations between two signals gives the distribution of the ratio of their re-
spective frequencies. It remains to quantify how (ir)rational is this distribution. We propose
here such measure, that we call the sonance, which maps the spectrum of relations to a single
number.

3.1. Introduction as a comparison to ideally synchronized signals

The construction of the sonance measure can be viewed as a comparison with (a projection on)
the spectrum of self-relations of an ideal periodic signal made of a fundamental (here the unit
frequency) and its harmonic frequencies of decaying amplitudes:

|s̃0(f)| =
∑

n≥1

n−αδ(f − n) =
∑

n≥1

n−α−1δ(log f − log n) . (10)

Note that the general form of the frequency spectrum of this signal does not change this
polynomial decay of the amplitudes:

S0(f) ∝ |s̃0(f)
√
f |µf ν (11)

∝
∑

n≥1

n−σδ(log f − log n) , (12)

where σ = µ(α+ 1
2
)+ν. Note that the frequency spectrum is here defined up to a normalization

constant (which allows us to include cases where µ ̸= 1 such as PSD[s0](f) ∝ |s̃0(f)|2, even
though the power of a Dirac delta is not well-defined).
When we compare this periodic signal to itself, we obtain a spectrum of self-relationsR0(q;σ) =

R[S0, S0](q) which represent all the ratios between the harmonic and fundamental frequencies
that can be expected between two synchronized periodic signals.

R0(q;σ) ∝
∑

m,n≥1

(mn)−σδ(log q − log m
n
) (13)

∝ ζ(2σ)
∑
a
b
∈Q+

(ab)−σδ(log q − log a
b
) , (14)

where we have rewritten m = ka, n = kb so that a and b are mutually prime and we have
introduced the Riemann zeta function for the sum over k, ζ(σ) =

∑
k≥1 k

−σ. We can normalize
it as a probability density function by the norm 1 ζ(σ)2, or by the norm 2 ζ(2σ).

204



Let us pick the first option so that we obtain a probability measure. We denote it

dG
σ
(q) = R0(q;σ)dq/q

in reference to the musical intuition that led us there and to its properties relevant to music
that will be evoked. We use this measure to quantify how similar or dissimilar to R0(q;σ) a
spectrum of relation R1,2(q) = R[S1, S2](q) is. We call this quantity the sonance:

G
σ
[R1,2] =

∫ ∞

0

R1,2(q)dG
σ
(q) =

∫ ∞

0

R1,2(q)R0(q;σ)dq/q (15)

=
ζ(2σ)

ζ(σ)2

∑
a
b
∈Q+

(ab)−σR1,2

(
a
b

)
=

∑
q∈Q+ e−σH(q)R1,2(q)∑

q∈Q+ e−σH(q)
, (16)

where we have denoted λ[R] =
∫
R(q)dλ(q) the λ-measure of a function R, and H(a

b
) = log(ab).

Under this last form, we can appreciate what it does in statistical physics terms: the real
spectrum of relations R1,2 is averaged over a Boltzmann distribution of ratios given by the ideal
spectrum of relations. H(a

b
) = log ab in the Boltzmann weights of the measure assigns an energy

to each ratio, whereas the inverse temperature parameter σ gives more or less importance to
low energy states, i.e. simple ratios. Eventually, the normalization is a partition function over
all the irreducible fractions q = a

b
with Hamiltonian H(a

b
) = log ab and inverse temperature σ.

But for the moment, this expression is formal and the issue of convergence needs to be
addressed.

3.2. Precise definition from a rational numbers enumeration

The formal expression

∑
a
b
∈Q+

(ab)−σ =
ζ(σ)2

ζ(2σ)
, (17)

derived in the appendix, converges as long as the inverse temperature parameter is more than
one, σ > 1 but it diverges otherwise. Even though the divergence in the numerator and in the
denominator of Eq. (16) could compensate when taking a limit, different orders of summation
could lead to different results because of the lack of absolute convergence.
To disambiguate the definition of the sonance when σ ≤ 1, we need to specify an enumeration

of the rational numbers to fix an order of summation in Eq. (16). A simple enumeration could
consist in making a list of rational numbers of numerator and denominator smaller than a
certain increasing threshold: a, b < n. However, the algorithm that would write this list would
have to deal with a lot of redundancy. Another strategy could consist in using the prime number
factorization to build them without redundancy, but this requires both a threshold on prime
numbers and on their integer exponents.
Actually, all rational numbers are enumerated without redundancies in reduced form in two

related binary trees: Stern-Brocot tree and Calkin-Wilf tree. Stern-Brocot tree grows vertically
while conserving the ordering of the rational number from left to right. Each new stage is
generated from the previous one by computing the “mediant” number between two “parents”:
a
b
< a+c

b+d
< c

d
, starting from the stage 0: {0

1
, 1
0
}. In Calkin-Wilf tree, each rational number

generates two new rational numbers in the next growth stage: a
b
→ { a

a+b
; a+b

b
}, starting from

the stage 1: {1
1
}. These trees have many interesting properties, among which we select the ones

that serve for the purpose of this paper: in each stage they have the same rational numbers
permuted in a different order ; there exist an algorithm (see numerical implementation) that
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Figure 2: (a) Cumulative distribution function of the measure G
σ
(q) for the parameters σ =

−∞, 0, 2,+∞. (b) Probability density function G′

σ
(q) (derivative with respect to

log q) for σ = 0, and (c) for σ = 2. Note that the probability distribution functions
are singular, which makes this representation less suitable since it varies a lot with
the numerical resolution, especially for σ = 0. The measures are better represented
by their cumulative distribution functions. The case σ ≈ 1 converges very slowly,
therefore it is not shown.
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enumerates at each iteration the next rational numbers in a stage, and stage by stage in both
trees ; a trajectory in the Stern-Brocot tree is a graphical representation for the continued
fraction of a real number, in particular the depth in the tree of a rational number is the sum of
the coefficient of its continued fraction sequence. Let us call the depth of the stage in the tree
the harmonic depth h(q), finite for each rational number
Introducing a threshold, we define the set of rational numbers of harmonic depth at most h:

Qh = {q ∈ Q+ | h(q) ≤ h} , (18)

which yields a precise definition of the sonance using this order of summation in the limit of a
high harmonic depth:

G
σ
[R1,2] =

∫ ∞

0

R1,2(q)dG
σ
(q) = lim

h→∞

∑
q∈Qh

e−σH(q)R1,2(q)∑
q∈Qh

e−σH(q)
. (19)

3.3. Influence of σ: a continuum between rationality and irrationality

In the“low temperature limit”, σ → +∞, the amplitude of all the harmonic frequencies
vanishes and the sonance measure just evaluates the measured function to q = 1:

dG
+∞

(q) = δ(log q)dq/q = δ(q − 1)dq .

This means that in this limit, only the strength of the 1 : 1 synchronization is measured.
Conversely, higher temperature i.e. lower σ would also measure a : b synchronization of

higher and higher complexity.

In the “high temperature limit”, σ = 0, there is an equiprobability between all the rational
numbers, among which the simple ratios are extremely rare. This can be understood as giving
all weight of the probability density to irrational numbers. The sonance measure defined with
this enumeration is already known in number theory from more than a century ago. The
cumulative distribution function of this singular probability measure restricted to the interval
[0, 1] is called Minkowski’s question mark function ?(x) (in fact half of it):

G
0
(x) =

∫ x

0

dG
0
(q) =

?(x)

2
, 0 ≤ x ≤ 1 . (20)

First defined by Minkowski as a map from quadratic irrational to rational numbers based on
their periodic continued fraction behavior, this function has been investigated more recently
as a measure by Linas Vepstas (“Minkowski’s measure”) and most extensively by Giedrius
Alkauskas during his PhD thesis (that also extended it to R+).
Although its density function is difficult to represent because of its singular nature, the

cumulative distribution function has a fractal structure that contains stairs around each rational
number, meaning that the probability density gives all its weight to irrational numbers. This is
confirmed in the work of Giedrius Alkauskas where the measure can be defined from the same
kind of limit but only over the rational numbers in the last stage of the tree (in other word,
this is the limiting distribution of the rational numbers in the deep stages of the Stern-Brocot
tree Qh \Qh−1).

Transition and negative temperatures: Therefore, the sonance measures gives weight to
rational numbers for high σ, and to irrational numbers for low σ. We can expect σ = 1 to be a

transition. We observe from numerical simulations that it behaves as dG
σ
(q) ∼σ→1+

2
ζ(σ)

dq/q.
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We also observe that the limit σ → −∞ is also a simple evaluation to the “most irrational
numbers”, the golden number φ =

√
5+1
2

and its inverse:

dG
−∞

(q) =
1

2

(
δ(log(qφ)) + δ(log(qφ−1))

)
dq/q =

1

2

(
δ(q − φ−1) + δ(q − φ)

)
dq .

This last observation means that (and is equivalent to) the maximum product ab in the tree of
rational numbers a

b
up to any stage h occurs for the best rational approximation of the golden

numbers in this tree. This is proved using Calkin-Wilf tree: to maximize the product of the
numerator and the denominator at each growth stage, we have to choose a+b

b
= 1 + a

b
when

b > a and a
a+b

= 1
1+ b

a

when a > b, i.e. we have to use them alternatively. The successive and

alternative applications of these generators from the root 1
1
yields, in the limit, the continued

fraction of the golden numbers φ = 1 + 1
1+ 1

1+ 1
1+...

and φ−1 = 1
1+ 1

1+ 1
1+...

.

4. Numerical implementation from the Mellin domain

4.1. From a linear to a geometric frequency sampling

The numerical computation of the spectrum of relations R1,2(q) defined in Eq. (6), i.e. of a
multiplicative cross-correlation, is complicated by the fact that, contrary to the usual “additive”
one, the sampling frequency of the spectrum S2(qf) is dilated by q and does not match anymore
the sampling of S1(f). There is an incompatibility between the linear sampling in time and
frequency domains and the multiplicative behavior in the integral that would require a geometric
sampling in the frequency domain. Actually, the continuous wavelet transform does provide
this possibility because the frequency (scaling parameter) sampling is arbitrary in its numerical
implementation:

Wψ[s](f, t) = F−1[F [s] · ψ̃f ](t) (21)

where ψ̃f (f
′) = ψ̃(f ′/f) is the dilated analytic wavelet of characteristic frequency f , and the

fast Fourier transform algorithm (FFT) is used instead of the Fourier transform. The geometric
sampling is even natural since the frequency resolution is proportional to the frequency. Note
that the power spectral density can be estimated from the continuous wavelet transform by
averaging its squared modulus over time, as in Eq. (5), hence keeping the geometric frequency
sampling. This geometric frequency sampling can be viewed as a linear sampling in the log-
frequencies. Note that there is no negative frequency because the wavelet is analytic.

4.2. Mellin transform and convolution theorem

The Mellin transform of a function S(f) is defined by

M[S](z) =

∫ ∞

0

S(f)f z−1df . (22)

The spectrum of relations: Thanks to the geometric frequency sampling, a FFT in the
log-frequency domain is used for a fast computation of the multiplicative cross-correlation:

R[S1, S2](q) = F−1
[
F [S1 ◦ exp] · F [S2 ◦ exp]

]
(log q) , (23)

where the change of variable is here expressed with a composition of functions denoted by
g ◦ h(x) = g(h(x)). When using the FFT, we should care avoiding artifacts from periodic
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Figure 3: Mellin transform of the measures Ĝ′

σ
(u), which correspond to the characteristic func-

tions of the probability distribution, for the case σ = 0, 2.

boundary conditions in the the log-frequency domain. This can be achieved by windowing or
zero-padding the spectrum in the log-frequency direction so its length is at least doubled.
Taking the Fourier transform with respect to the log-frequency corresponds to a Mellin

transform:

F [S ◦ exp](u) =
∫ ∞

0

S(f)f−i p̃udf/f = M[S](−i p̃u) , (24)

for which the convolution (and cross-correlation) theorem works in the multiplicative case:

M [R[S1, S2]] = M[S1]M[S2] . (25)

Since we are especially interested in the frequency-like parameter u (let us call it Mellin
frequency), we simply denote it

Ŝ(u) ≡ F [S ◦ exp](u) = M[S](−i p̃u) , (26)

similarly to the Fourier transform notation.
By replacing the frequency spectra by the general forms in the stationary and non-stationary

case proposed above, we get the following expression in the Mellin domain:

S(f) = |s̃(f)
√
f |µf ν ⇔ Ŝ(u) = M[|s̃(f)|µ](µ/2 + ν − i p̃u) (27)

S(f, t) = |Wψ[s](f, t)|µf ν ⇔ Ŝ(u, t) = M [|Wψ[s](·, t)|µ] (ν − i p̃u) . (28)

The Mellin transform of a power of a certain function |X(f)|µ can only be computed explicitly
in the case of µ even (in order to avoid dealing with the absolute values), see a calculation for
the case µ = 2 in the appendix.

The measure: The Mellin transform can also serve to accelerate a lot the computation of the
sonance measure. Indeed, its definition currently require to interpolate the spectrum of relation
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R1,2(q) at the enumerated q = a
b
and sum the values. Instead, we can use the Mellin transform

of the measure:

Ĝ′

σ
(u) ≡

∫ ∞

0

q−i p̃udG
σ
(q) =

∫ ∞

0

cos( p̃u log q)dG
σ
(q) , (29)

where the dash denotes a derivative with respect to log q. Even though the probability density

function G′

σ
(q) = dG

σ
(q)/d log q is not well defined, it has a well defined Mellin transform that

can be interpreted as the associated characteristic function. The symmetry dG
σ
(q−1) = dG

σ
(q)

implies that Ĝ′

σ
(u) is real and can be written as the above cosine transform. Note that the

cases σ > 1 can be computed analytically (see appendix):

Ĝ′

σ
(u) =

|ζ(σ + i p̃u)|2
ζ(σ)2

, (30)

as well as the limit cases:

Ĝ′

−∞
(u) = cos( p̃u logφ) ; Ĝ′

1
(u) = δu,0 ; Ĝ′

+∞
(u) = 1 . (31)

In the other cases, the Mellin transform of the measure is estimated as:

Ĝ′

σ
(u) =

∑
q∈Qh

e−σH(q) cos( p̃u log q)∑
q∈Qh

e−σH(q)
, H(q = a

b
) = log ab (32)

Qh defined as in (18) for a high enough harmonic depth h, except for σ close to 1 because the
convergence is very slow.

The sonance: As a result, the sonance is expressed in a convenient way with the Plancherel-
Parseval theorem from the Mellin domain:

G
σ
[R1,2] =

∫ ∞

0

R1,2(q)dG
σ
(q) =

∫ +∞

−∞
R̂1,2(u)Ĝ′

σ
(u)du , (33)

so that it can be computed directly from the spectra in the Mellin domain:

G
σ
[S1, S2] =

∫ +∞

−∞
Ŝ1(u)Ŝ2(u)Ĝ′

σ
(u)du . (34)

We use equivalently G
σ
[R1,2] or G

σ
[S1, S2] as a short notation for G

σ
[R[S1, S2]].

Finally, this result is generalized to the sonances of R1,2(qq
′), that is the spectrum of relations

between S1(f) and S2(qf) where S2 is scaled by any coefficient q > 0:

G
σ
[R1,2](q) ≡

∫ ∞

0

R1,2(qq
′)dG

σ
(q′) =

∫ +∞

−∞
R̂1,2(u)q

i p̃uĜ′

σ
(u)du (35)

G
σ
[S1, S2](q) ≡

∫ ∞

0

∫ ∞

0

S1(f)S2(q
′qf)df/f dG

σ
(q′) =

∫ +∞

−∞
Ŝ1(u)Ŝ2(u)q

i p̃uĜ′

σ
(u)du (36)

where the notation of the sonance has been extended to incorporate this additional scaling
parameter. The particular value at q = 1 of the sonance function is the original sonance valueG
σ
[S1, S2](1) = G

σ
[S1, S2].

Acoustically, this can be interpreted as the comparison of two tones of fundamental frequency
separated by the ratio q, each with the timbre of a certain instrument, modeled by the spectra
S1, S2. In this model, an invariance of the spectral shape for lower or higher tones is assumed.
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Sonances and spectrum of relation, a single object: In the limit σ → +∞, we notice that
the measure is just one so that

G
+∞

[R1,2](q) = R1,2(q) , (37)

i.e. the spectrum of relation is the sonances function in the low temperature limit. Also note
that the sonances for σ ≥ 2 are very close to R(q) (cf. Fig. 4) because the ratio q = 1 has a
great weight. Conversely, all sonances functions are Mellin-filtering of the spectrum of relations.

4.3. Sonance in Mellin domain in terms of musical scales

The Mellin transform of the sonance measure Ĝ′

σ
(u) has a strong musical significance that

justifies the choice of the treble key symbol. Indeed, it measures the periodicity in log q of
the sonance of two pure tones separated by any ratio q, for which the spectrum of relations
is just R1,2(q

′) = δ(log q′ − log q). When the tones have an ideal timbre as in Eq. (12), this

function is just multiplied by a positive quantity, which make the sign of Ĝ′

σ
(u) very important.

When expressing the Mellin frequency in per octave unit, we obtain a number of oscillations
n = u log 2 per octave. When choosing a musical scale, i.e. a more or less regularly spaced set
of frequencies, we would like the musical intervals (i.e. the frequency ratios) in this set to be as
consonant as possible. Given that the sonance is high for dissonant musical intervals and low

for consonant ones for σ = 0 (in fact σ < 1), the negative peaks in Ĝ′

0
( n
log 2

) is of great help for

this task since it indicates the cardinality of musical scales that provides consonance. Negative
peaks are observed at n = 5, 7, 12 (per octave), in agreement with the widespread use of the
pentatonic, heptatonic and dodecaphonic musical scales all over the world ; they confirm the
tight link with musical harmony. More explanation are given in another manuscript.

4.4. Summary on the use of the fast Fourier transform

Given that the wavelet transform is computed in practice from FFT+IFFT, that the wavelet
is defined in the frequency domain and that the Mellin transform of the measure is estimated
just once as Eq.(32), the computation of the sonance in time requires:

• 1 FFT+wavelet Fourier filter+IFFT on the linearly sampled signals per frequency value,

• 1 FFT+sonance Mellin filter+IFFT on the geometrically sampled spectra per time step.

4.5. Sonance and inequalities: a suggestion for the normalization?

Consider positive non-normalized frequency spectra S1(f) and S2(qf).
The sonance of this pair can be written in the Mellin domain:

G
σ
[S1, S2](q) =

∫ +∞

−∞
Ŝ1(u)Ŝ2(u)Ĝ′

σ
(u)qi p̃udu (38)

As long as σ ≥ 1, we can apply the Cauchy-Schwarz inequality as follows:

(G
σ
[S1, S2](q)

)2
≤
∫ +∞

−∞

∣∣∣∣∣Ŝ1(u)

√
Ĝ′

σ
(u)

∣∣∣∣∣

2

du

∫ +∞

−∞

∣∣∣∣∣Ŝ2(u)q
i p̃u

√
Ĝ′

σ
(u)

∣∣∣∣∣

2

du (39)

G
σ
[S1, S2](q) ≤

√G
σ
[S1, S1]G

σ
[S2, S2] , (40)
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Figure 4: Stationary G-analysis for piano and clarinet sounds: (a) Signal. (b) Frequency spec-

trum normalized as a probability density function in the convention µ = 2, ν = 0.
(c) Square of the Mellin transform of the frequency spectrum (blue line) and Mellin

transforms Ĝ′

σ
of the measures for σ = 2 (red) and σ = 0 (yellow), with respect to the

variable n = u log 2 in per octave unit. (d) Spectrum of relations, i.e. distribution of
frequency ratios (blue line), sonances for all ratios for σ = 2 (red) and σ = 0 (yellow).
Note that the spectrum of relations is also the sonances for all ratios for σ = +∞.
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Figure 5: Non-stationary G-analysis of an electrocardiogram (ECG): (a) Wavelet transform

modulus of the ECG with quality factor Q = f
∆f

= 16. (b) Spectrum of relations
normalized with the norm 2 of the frequency spectra in the convention µ = 1, ν = 0.
(c) Zoom on the ECG signal around a perturbation. (d) Sonance value (σ = 0) in
time. We observe clear sonance peaks at perturbations.

since Ĝ′

σ
(u) = |ζ(σ+i p̃u)|2

ζ(σ)2
≥ 0, ∀σ ≥ 1. Note that the Cauchy-Schwarz inequality would always

apply for a measure defined by |ζ(σ+i p̃u)|2
ζ(σ)2

for all σ, but Ĝ′

σ
(u) is different from it as soon as

σ < 1.
We could use this inequality to compare the sonance of a pair of signals and the sonances of

each signal with itself,

G
σ
[S1, S2](q)

√G
σ
[S1, S1]G

σ
[S2, S2]

, (41)

like a correlation coefficient. Even though this quantity can be greater than one in the important
case of σ = 0, this can remain a way of comparing signals with very different sonances.
The Young’s convolution inequality also applies very well to the definition of the sonance

from the log-frequency domain:

G
σ
[S1, S2](q) =

∫ ∞

0

∫ ∞

0

S1(f)S2(qf)df/f dG
σ
(q) (42)

≤
(∫ ∞

0

S1(f)
2df/f

∫ ∞

0

S2(f)
2df/f

) 1
2
∫ ∞

0

dG
σ
(q) . (43)

This inequality applies for any σ, which strongly suggests to normalize the spectra by their
norm 2 (and to use the musical measure as a probability measure) so that:

G
σ
[S1, S2](q) ∈ [0, 1] (44)

− logG
σ
[S1, S2](q) ∈ R+ . (45)
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Figure 6: Sonance (σ = 0 and ratio q = 1) for the previous piano and clarinet sounds as a
function of the quality factor Q (that determines the frequency resolution as ∆ log f =
Q−1). The sonance has a clear saturation value for the clarinet sound, which may
also be the case for the piano sound at very high Q.

Depending on ones tastes, we can choose to reverse the sonance continuum as in Eq. (45) so
that a dissonance between S1 and S2 goes to zero whereas a consonance goes to infinity for
σ = 0. The norm 2 normalization favors the convention µ = 1, ν = 0 since it corresponds to
the normalization of the signal by its energy.

4.6. Generalization to multi-dimensional signals

The generalization of the definitions Eq. (6,16,35) is straightforward: for instance let the spec-
trum be

S⃗(f) =

(
S1(f)
S2(f)

)
, (46)

then, its spectrum of relations writes

R[S⃗](q) =

∫ ∞

0

S⃗(f)S⃗(qf)Tdf/f =

(
R[S1, S1](q) R[S1, S2](q)
R[S2, S1](q) R[S2, S2](q)

)
, (47)

and satisfies the symmetry R[S⃗](q−1) = R[S⃗](q)T (where RT is the transpose of R). The
sonance

G
σ
[R] =

∫ ∞

0

R(q)dG
σ
(q) =

(G
σ
[S1, S1] G

σ
[S1, S2]G

σ
[S2, S1] G

σ
[S2, S2]

)
, (48)

is a symmetric matrix, and the sonance function inherits the symmetryG
σ
[R](q−1) = G

σ
[R](q)T .
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Figure 7: Sonance function (σ = 0) for the clarinet sound for different quality factor Q =
10, 100, 1000 in blue, orange and yellow respectively. The convention in (a) is µ =
2, ν = 0 and the normalization uses the norm 1, whereas (b) shows the same result for
µ = 1, ν = 0 and the norm 2. The smoothing of the sonance function as in Eq. (53)
holds exactly in (a) only, but the behavior is qualitatively the same in (b).

5. Sonance dependences

5.1. Wavelet influence

Suppose a frequency spectrum S(f) is a smoothed version of S0(f) with the positive kernel
ϕ(q):

S(f) =

∫ ∞

0

S0(f
′)ϕ(f/f ′)df ′/f ′ (49)

Ŝ(u) = Ŝ0(u)ϕ̂(u) (50)

R̂(u) = |Ŝ0(u)|2|ϕ̂(u)|2 ≡ R̂0(u)Φ̂(u) (51)

Ĝ
σ
[S, S](u) = Ĝ

σ
[S0, S0](u)|ϕ̂(u)|2 (52)

G
σ
[S, S](q) =

∫ ∞

0

G
σ
[S0, S0](q

′)Φ(q′/q)dq′/q′ where Φ(q) =

∫ ∞

0

ϕ(q′)ϕ(q/q′)dq′/q′ (53)

G
σ
[S, S] =

∫ ∞

0

G
σ
[S0, S0](q)Φ(q)dq/q , (54)

then, the sonance of S(f) is a smoothed version of the sonance of S0(f) with the positive kernel
Φ(q). This calculation holds for the normalization with the norm 1 of the functions S, S0, ϕ. In
particular, it is adapted to the convention µ = 2, ν = 0 with a stationary signal and a wavelet
such that ϕ = |ψ̃|2 (cf. Eq. (53)). It does not hold for other norms p, but we expect a similar
behavior (cf. Fig. 7). Note that the sonances of a spectrum with itself is symmetric about
log q = 0.
Denoting the frequency resolution of the wavelet by the inverse quality factor Q−1 = ∆f

f
, we

expect the sonance to saturate as in the Fig. 6 when the quality factor is high enough for the
wavelet to fit the intrinsic frequency width of the underlying spectrum S0.
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A. Refined frequency spectrum using the phase of the
wavelet transform

The previous approach uses the fact that the wavelet has a unit characteristic frequency to
directly interpret the scaling parameter (or its inverse) as the frequency variable of the spectrum.
Note that for a well-defined frequency mode in the signal, the scaling parameter that maximizes
the amplitude yields the unique characteristic frequency of this mode. The extraction of such
maxima lines is used to study singularities (WTMM) or rhythms evolution (amplitude ridges,
ref. Lilly). It is known that the phase alone can serve to extract the frequency of the modes when
the wavelet used is analytic (phase ridges, Lilly). Instead of extracting some time-frequency
lines, the phase in the full time-frequency plane can be used to obtain a spectrum with more
contrast.
This leads to the refined definition of the frequency as the rate of variation of the phase of

the wavelet transform:

F (f, t) =
1

p̃
ℑ
{
∂

∂t
logWψ[s](f, t)

}

This is made possible by the fact that the wavelet is analytic and the transform is continuous,
but it is numerically expensive.
Then, the histogram of the phase-based frequencies F (for all f at a fixed time t) would

provide another definition of a frequency spectrum. In the case of a histogram weighted by the
amplitude |Wψ[s](f, t)|, the result is known as the synchrosqueezed (Daubechies) or frequency-
reassigned scalogram (?). The weight can otherwise take the general form described before
S(f, t) = |Wψ[s](f, t)|µf ν :

Ŝ(f, t) =

∫ ∞

0

S(f ′, t)δ(log f − logF (f ′, t))df ′/f ′

The spectrum of relations is then obtained or computed directly as the histogram of frequency
ratio over all pairs of frequency parameters:

R[Ŝ1, Ŝ2](q, t) =

∫ ∞

0

S1(f
′, t)S2(f

′′, t)δ(logF1(f
′, t)− log qF2(f

′′, t))df ′/f ′df ′′/f ′′

These operation can be conceived as a refinement of the spectra in the sense that the effect
of the frequency uncertainty, i.e. the frequency width of the wavelet is reduced (“squeezed”)
in this procedure. A similar procedure could be applied for a time reassignment to reduce the
time width of the wavelet.
Also note that this use of the phase echos various methods in the analysis of synchronization

that is based on the estimation of an unwrapped phase of the beating phenomenon.
As a last remark, since the frequency uncertainty is neglected, the use of this squeezing can

be questionable.
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B. Zeta function and sum over rational numbers

For σ > 1:

|ζ(σ + i p̃u)|2 =
(

+∞∑

m=1

m−σ+i p̃u
)(

+∞∑

n=1

n−σ−i p̃u
)

(55)

=
+∞∑

m,n=1

(mn)−σ
(m
n

)i p̃u
(56)

=
∑
a
b
∈Q+

∞∑

k=1

(abk2)−σ
(a
b

)i p̃u
(57)

= ζ(2σ)
∑
a
b
∈Q+

(ab)−σ
(a
b

)i p̃u
(58)

⇒ |ζ(σ + i p̃u)|2
ζ(2σ)

=
∑
a
b
∈Q+

(ab)−σ
(a
b

)i p̃u
. (59)

C. Young’s convolution inequality

In general, the Young’s convolution inequality reads:

∫ ∫
f(x)g(x− y)h(y)dxdy ≤ Cp,q,r

(∫
f(x)pdx

) 1
p
(∫

g(x)qdx

) 1
q
(∫

h(x)rdx

) 1
r

(60)

∀p, q, r ≥ 1, 1
p
+ 1

q
+ 1

r
= 2, Cp,q,r = ApAqAr and Ap = p

2−p
2p (p− 1)

p−1
2p .

Note that G′

σ
(q)r ∝ G′

rσ
(q) and Cp,q,1 = 1. Does

∫∞
0

G′

σ
(q)rdq/q converge? We have at least

the slightly more general inequality:

G
σ
[S1, S2](q) =

∫ ∞

0

∫ ∞

0

S1(f)S2(qf)df/f dG
σ
(q) (61)

≤
(∫ ∞

0

S1(f)
pdf/f

) 1
p
(∫ ∞

0

S2(f)
qdf/f

) 1
q
∫ ∞

0

dG
σ
(q) (62)

∀p, q ≥ 1, 1
p
+ 1

q
= 1 .

D. Long calculations

D.1. Fourier-Mellin relation

In the following, we will need the following formula for the (inverse) Fourier transform of
θ(f)f z−1 (where θ is the Heaviside step function) which is also the Mellin transform of e±i p̃ ft:

∫ ∞

0

e±i p̃ ftf zdf/f = (∓i p̃ t)−zΓ(z), 0 < ℜ(z) < 1 . (63)

From this, we can for instance relate the Mellin transform of the wavelet in time and frequency
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domains:

M[ψ(±)](1− z) =

∫ ∞

0

ψ(±v)v−zdv (64)

=

∫ ∞

0

∫ +∞

−∞
ψ̃(u)e∓i p̃uvduv−zdv (65)

=

∫ +∞

−∞
ψ̃(u)

∫ ∞

0

e∓i p̃uvv−zdvdu (66)

=

∫ +∞

−∞
ψ̃(u)(±i p̃u)z−1Γ(1− z)du, 0 < ℜ(z) < 1 (67)

= Γ(1− z)(±i p̃ )z−1

∫ +∞

−∞
ψ̃(u)

du

u1−z
, 0 < ℜ(z) < 1 (68)

= Γ(1− z)

(
(±i p̃ )z−1

∫ ∞

0

ψ̃(u)
du

u1−z
+ (∓i p̃ )z−1

∫ ∞

0

ψ̃(−u) du

u1−z

)
, 0 < ℜ(z) < 1

(69)

= Γ(1− z)
(
(±i p̃ )z−1M[ψ̃(+)](z) + (∓i p̃ )z−1M[ψ̃(−)](z)

)
, 0 < ℜ(z) < 1 .

(70)

And the converse:

M[ψ̃(±)](z) =

∫ ∞

0

∫ +∞

−∞
ψ(v)e±i p̃uvdv uzdu/u (71)

= Γ(z)(∓i p̃ )−z
∫ +∞

−∞
ψ(v)v−zdv, 0 < ℜ(−z) < 1 (72)

= Γ(z)
(
(∓i p̃ )−zM[ψ(+)](1− z) + (±i p̃ )−zM[ψ(−)](1− z)

)
, 0 < ℜ(z) < 1 .

(73)

Consistency?

M[ψ(±)](1− z)

Γ(1− z)
= (±i p̃ )z−1M[ψ̃(+)](z) + (∓i p̃ )z−1M[ψ̃(−)](z) (74)

= (±i p̃ )z−1Γ(z)
(
(−i p̃ )−zM[ψ(+)](1− z) + (i p̃ )−zM[ψ(−)](1− z)

)
(75)

+ (∓i p̃ )z−1Γ(z)
(
(i p̃ )−zM[ψ(+)](1− z) + (−i p̃ )−zM[ψ(−)](1− z)

)
(76)

M[ψ(±)](1− z) p̃
Γ(1− z)Γ(z)

= (±i)z−1
(
(−i)−zM[ψ(+)](1− z) + (+i)−zM[ψ(−)](1− z)

)
(77)

+ (∓i)z−1
(
(+i)−zM[ψ(+)](1− z) + (−i)−zM[ψ(−)](1− z)

)
(78)

= 2 sin(πz)M[ψ(±)](1− z) (79)

In other words, does this holds?

Γ(1− z)Γ(z) sin(πz) = π (80)

True! This is called Euler’s reflection formula.
For an analytic wavelet, M[ψ̃(−)] = 0 and when 0 < ℜ(z) < 1, we have the relations:

M[ψ̃(+)](z) = Γ(z)
(
(−i p̃ )−zM[ψ(+)](1− z) + (i p̃ )−zM[ψ(−)](1− z)

)
, (81)

M[ψ(±)](1− z) = Γ(1− z)(±i p̃ )z−1M[ψ̃(+)](z) . (82)
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For a causal wavelet, M[ψ(+)] = 0 and when 0 < ℜ(z) < 1, we have the relations:

M[ψ(−)](1− z) = Γ(1− z)
(
(±i p̃ )z−1M[ψ̃(+)](z) + (∓i p̃ )z−1M[ψ̃(−)](z)

)
, (83)

M[ψ̃(±)](z) = Γ(z)(±i p̃ )−zM[ψ(−)](1− z) . (84)

We notice here that we can not have a wavelet both analytic and causal.

D.2. Explicit Mellin transforms for µ = 2?

The Mellin transform of a power of a certain function |Q(f)|µ can only be computed analytically
in the case µ = 2 by using the Fourier transform:

M[|Q(f)|2](−i p̃u) =
∫ +∞

−∞
M[Q](−i p̃u′)M[Q](−i p̃ (u′ + u))du′ (85)

=

∫ +∞

−∞
M[Q](i p̃u′)M[Q](−i p̃ (u′ + u))du′ , (86)

therefore:

M[|s̃(f)|2f 1+ν ](−i p̃u) =
∫ +∞

−∞
M[s̃](1+ν

2
+ i p̃u′)M[s̃](1+ν

2
− i p̃ (u′ + u))du′ , (87)

M[|Wψ[s](f, t)|2f ν ](−i p̃u) =
∫ +∞

−∞
M[Wψ[s](·, t)](ν2 + i p̃u′)M[Wψ[s](·, t)](ν2 − i p̃ (u′ + u))du′ .

(88)

By using Eq (63), we can write in the time domain:

M[|s̃(f)|2f 1+ν ](−i p̃u) =
∫ +∞

−∞

∫ +∞

−∞
s(t)s(t′)

Γ(1 + ν − i p̃u)
(i p̃ (t′ − t))1+ν−i p̃u

dtdt′, −1 < ν < 0 , (89)

= Γ(1 + ν − i p̃u)
∫ +∞

−∞
s(t)

∫ +∞

−∞
s(t+ τ)

dτ

(i p̃ τ)1+ν−i p̃u
dt, −1 < ν < 0 ,

(90)

which is also, interestingly, a Mellin transform from the time domain. Note that the condition
on the real part of z, here 1 + ν, gives the range −1 < ν < 0, which means that this formula
only holds for the case µ = 2, ν = −1

2
previously proposed. The translation invariance is clear

under this form.
For the non-stationary case (with an analytic wavelet):

M[Wψ[s](·, t)](z) =
∫ ∞

0

∫ ∞

0

s̃(f ′)ψ̃(f ′/f)ei p̃ f
′tdf ′f zdf/f (91)

=

∫ ∞

0

s̃(f ′)ei p̃ f
′tf ′zdf ′

∫ ∞

0

ψ̃(v)v−zdv/v (92)

= M[s̃(f)ei p̃ ft](1 + z)M[ψ̃](−z) (93)

=

∫ +∞

−∞
s(t′)

∫ ∞

0

ei p̃ f
′(t−t′)f ′zdf ′dt′M[ψ̃](−z), 0 < ℜ(1 + z) < 1 (94)

=

∫ +∞

−∞
s(t′)

Γ(1 + z)

(i p̃ (t′ − t))1+z
dt′M[ψ̃](−z), −1 < ℜ(z) < 0 (95)

= Γ(1 + z)

∫ +∞

−∞
s(t+ τ)

dτ

(i p̃ τ)1+z
M[ψ̃](−z), −1 < ℜ(z) < 0 . (96)
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An important comment here is the following: the Mellin transform factorizes the wavelet trans-
form as the product of transforms of the signal (centered at time t) and the wavelet. This
transform combines the Fourier and Mellin successive transforms, hence we could call it Fourier-
Mellin transform and write it with the symbol MF :

M[Wψ[s](·, t)](z) = MF [s(t+ ·)](1 + z)MF [ψ](−z), −1 < ℜ(z) < 0 (97)

= MF [s(t+ ·)](1 + z)MF [ψ(−)](−z), −1 < ℜ(z) < 0 . (98)

As computed previously, we have for −1 < ℜ(z) < 0:

MF [s(t+ ·)](1 + z) =

∫ ∞

0

∫ +∞

−∞
s(t+ τ)e−i p̃ fτdτ f 1+zdf/f (99)

= Γ(1 + z)

∫ +∞

−∞
s(t+ τ)

dτ

(i p̃ τ)1+z
, 0 < ℜ(1 + z) < 1 (100)

= Γ(1 + z)
(
(i p̃ )−1−zM[s(t+ ·)](−z) + (−i p̃ )−1−zM[s(t− ·)](−z)

)
.

(101)

As before, we can try to rewrite in the time domain:

M[|Wψ[s](f, t)|2f ν ](−i p̃u) =
∫ ∞

0

∫ ∞

0

s̃(f1)s̃(f2)K̃(f1, f2, ν − i p̃u)ei p̃ (f2−f1)tdf1df2 (102)

=

∫ +∞

−∞

∫ +∞

−∞
s(t+ τ1)s(t+ τ2)K(τ1, τ2, ν − i p̃u)dτ1dτ2 (103)

where K(τ1, τ2, z) =

∫ ∞

0

ψ(fτ1)ψ(fτ2)f
1+zdf , (104)

K̃(f1, f2, z) =

∫ ∞

0

ψ̃(f1/f)ψ̃(f2/f)f
zdf/f . (105)

D.3. Analytic wavelets in the Mellin domain

Define the log-normal wavelet in the Fourier domain, parametrized by the quality factor Q:

ψ̃Q(f
′/f) = e−

1
2
(Q log f ′/f)2 , (106)

then it take the form

ΨQ(u) = M[ψ̃Q](−i p̃u) =
√

p̃
Q
e−

1
2
( p̃u
Q

)2 (107)

M[ψ̃Q](z) =

√
p̃

Q
e

1
2
( z
Q
)2 . (108)

We see that the wavelet acts as a low-pass filter of cut-off Q in the Mellin domain.
When we choose the more general Morse wavelet parametrized by (n, γ), we obtain the

following Mellin domain filter:

ϕ̃n,γ(f
′/f) = (f ′/f)ne−(f ′/f)γ (109)

Φn,γ(u) = M[ϕ̃n,γ](−i p̃u) =
1

γ
Γ

(
n− i p̃u

γ

)
(110)

M[ϕ̃n,γ](z) =
1

γ
Γ

(
n+ z

γ

)
. (111)
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If we impose the characteristic frequency of the Morse wavelet to be the unit one, and

imposing ψ̃n,γ(1) = 1 as the log-normal wavelet, the rescaled version ψ̃n,γ(f) =
(
e

1−fγ

γ f
)n

yields:

Ψn,γ(u) = M[ψ̃n,γ](−i p̃u) =
e

n
γ

γ

(
n

γ

)n−i p̃u
γ

Γ

(
n− i p̃u

γ

)
(112)

M[ψ̃n,γ](z) =
e

n
γ

γ

(
n

γ

)n+z
γ

Γ

(
n+ z

γ

)
. (113)

Note that ψ̃n,γ −→ ψ̃Q in the scaling limit n −→ ∞, γ −→ 0, nγ = Q2.
From these expressions, we can compute the kernel K of the previous section:

K̃(f1, f2, z) =

∫ ∞

0

ψ̃(f1/f)ψ̃(f2/f)f
zdf/f (114)

=

√
π

Q
e

1
4

(
−(Q log f1/f2)2+

z2

Q2+2z log(f1f2)
)

for ψ̃Q (115)
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