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Abstract

With the advances of 3D content generation and capture, and the recent
popularity of immersive virtual environments, producing realistic anima-
tions of 3D virtual characters has seen an increasing demand. More specif-
ically, automatically applying existing animations on new characters with
different body shapes would represent a significant gain of both time and re-
sources for animators. Traditional methods transfer the pose in each frame
of the animation to the new character. However, this implies being able to
define what makes two poses equivalent. This is not straightforward as poses
tend to change depending on the morphology of the character performing
them, and as their meaning is highly contextual. In this manuscript, we
propose new approaches that transform the identity of a character into a
new identity without modifying the character’s pose, which does not require
defining pose equivalences. When changing the identity of a character, some
artifacts may appear, such as interpenetration or loss of self-contacts be-
tween body surfaces, e.g. the hands touching in a clapping pose. We study
how to adapt our methods to correct these artifacts.

We first propose a method that iteratively morphs the identity of a
source character in a specific pose to match the identity of a target charac-
ter. This method allows to naturally mimic the pose of the source character
in our results, as the optimization directly starts from the wanted pose. In
this method we only apply simple pose corrections in order to preserve self-
contacts present in the source and avoid interpenetrations, which allows the
method to adapt the results to extreme morphologies.

We then present a deep encoder-decoder architecture that learns from
data to predict the identity deformation of a character to match a target
character’s identity, without changing the pose. We propose self-supervised
identity losses, that allow an inference time fine tuning step enabling trans-
fer to identities far from the training set, such as casually clothed humans.
Our model generalizes well to complex unseen poses.

Finally, we study the impact of self-contacts between body surfaces on
perceived pose equivalences. Indeed, we observed that some self-contacts
were only present because of the morphology of the character and were not
important to the pose. Preserving all self-contacts in our first method could
therefore create artifacts in some cases where unnecessary self-contacts were
preserved, significantly modifying the pose. We conduct a study where we
present to observers two models of a character mimicking the pose of a
source character, one with the same self-contacts as the source, and one
with one self-contact removed. We ask observers to select which model best
mimics the source pose. We show that poses with different self-contacts
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are considered different by observers in most cases, and that this effect is
stronger for self-contacts involving the hand than for those involving the
arms.
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Résumé

Avec les progrès de la génération et de la capture de contenu 3D, et la
popularité récente des environnements virtuels immersifs, la production
d’animations réalistes de personnages virtuels 3D a connu une demande
croissante. En particulier, l’application automatique d’animations exis-
tantes sur de nouveaux personnages aux morphologies différentes représenterait
un gain de temps et de ressources important pour les animateurs. Les
méthodes traditionnelles transfèrent la pose de chaque image de l’animation
au nouveau personnage. Toutefois, cela implique de pouvoir définir ce
qui rend deux poses équivalentes. Ceci n’est pas simple car les poses ont
tendance à changer en fonction de la morphologie du personnage qui les
exécute, et leur signification est hautement contextuelle. Dans ce manuscrit,
nous proposons de nouvelles approches qui transforment l’identité d’un per-
sonnage vers une nouvelle identité sans modifier la pose du personnage, ce
qui ne nécessite pas de définir des équivalences de pose. Lors du changement
d’identité d’un personnage, certains artefacts peuvent apparâıtre, comme
des collisions ou la perte d’auto-contacts entre les surfaces du corps, comme
les mains se touchant dans une pose d’applaudissement. Nous étudions
comment adapter nos méthodes pour corriger ces artefacts.

Nous proposons d’abord une méthode qui transforme de manière itérative
l’identité d’un personnage source dans une pose spécifique pour la faire cor-
respondre à l’identité d’un personnage cible. Cette méthode permet d’imiter
naturellement la pose du personnage source dans nos résultats, puisque
l’optimisation part directement de la pose voulue. Dans cette méthode,
nous n’appliquons que des corrections de pose simples afin de préserver les
auto-contacts présents dans la source et d’éviter les collisions, ce qui permet
à la méthode d’adapter les résultats à des morphologies extrêmes.

Nous présentons ensuite une architecture d’encodeur-décodeur profonds
qui apprend à partir de données à prédire la déformation de l’identité
d’un personnage pour correspondre à l’identité d’un personnage cible, sans
changer la pose. Nous proposons des fonctions de pertes sur l’identité auto-
supervisées, qui permettent une étape de précision des poids du modèle au
moment de l’inférence, permettant le transfert à des identités éloignées de
la base de données d’apprentissage, telles que des humains habillés simple-
ment. Notre modèle généralise bien aux poses complexes non vues durant
l’entrainement.

Enfin, nous étudions l’impact des auto-contacts entre les surfaces du
corps sur la perception des équivalences de pose. En effet, nous avons
observé que certains auto-contacts n’étaient présents qu’en raison de la
morphologie du personnage et n’étaient pas importants pour la pose. La
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préservation de tous les auto-contacts dans notre première méthode peut
donc créer des artefacts dans certains cas où des auto-contacts inutiles ont
été préservés, modifiant significativement la pose. Nous réalisons une étude
dans laquelle nous présentons aux observateurs deux modèles d’un person-
nage imitant la pose d’un personnage source, l’un avec les mêmes auto-
contacts que la source, et l’autre avec un auto-contact en moins. Nous
demandons aux observateurs de choisir le modèle qui imite le mieux la pose
de la source. Nous montrons que les poses avec différents auto-contacts sont
considérées comme différentes par les observateurs dans la plupart des cas,
et que cet effet est plus fort pour les auto-contacts impliquant les mains que
pour ceux impliquant les bras.
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Chapter 1

Introduction

1.1 Motivation

Computer graphics aim to numerically and automatically model the 3D
world. In the past few decades, creative medias such as animation movies
or video games have made 3D content widely available to audiences. Specifi-
cally, modeling and animating 3D characters is central to these applications,
as these characters are often important elements of 3D contents. More re-
cently, immersive medias have seen fast technical improvements and popu-
larization. These medias concern either Augmented Reality (AR), i.e. the
introduction of virtual elements in the real world, such as e.g. Hololens
or Google Glass, and Virtual Reality (VR), i.e. the immersion in a fully
virtual environment, such as HTC Vive or Oculus Quest Head Mounted
Displays. A valuable application of these new tools is the ability to virtu-
ally recreate an environment and inter-person interactions. Telepresence in
such an environment could for example allow virtual tourism such as vis-
its of monuments, or virtual meetings, such as scientific conferences. This
application could help preserve fragile monuments or natural habitats by
reducing attendance. It would also greatly reduce the need for plane travel,
making tourism and international meetings more accessible and significantly
reducing their carbon footprint. In telepresence, users are immersed in the
virtual environment through an Avatar that represents them in this world,
e.g. Figure 1.1. Similarly to traditional medias such as movies or video
games, the Avatar and its motion must look realistic, but must also imitate
as well as possible the motion of the user in order to preserve the user’s
immersion.

While realistic animations are thus a cornerstone of virtual 3D contents,
they require skilled artists to create, and are expensive both in terms of time

17
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(a) A student learning Tai Chi with a
virtual teacher. Figure extracted from
[Chua et al., 2003]

(b) Two persons interacting in VR
through Avatars. Figure extracted
from [Fribourg et al., 2018]

Figure 1.1: Example of users and their Avatar in immersive virtual envi-
ronments

and money. A lot of interest has been given to automating parts or all of
the animations’ tedious steps. This helps reduce the overall price of the
animation process, and gives more artistic liberty to animators by simplify-
ing repetitive tasks. In particular, being able to apply an already existing
animation to a new character with a different body shape (e.g. Figure 1.2)
is of great interest. This problem is known in Computer Graphics as mo-
tion retargeting. This would save a lot of time to artists in designing highly
populated environments, where a lot of different characters perform similar
motions, or applying existing animations to new user designed characters
e.g. in the context of a video game. Automatically animating a character
would also allow interactive Avatar control, where a virtual character is
animated to mimic the motion of an user in real time, which is obviously
impossible for an animator.

A popular and simple way to represent a 3D character’s motion is to
use an intermediary skeleton that approximates the character’s body. This
skeleton can be deformed by e.g. modifying the angles between the different
body segments. Applying an existing animation to a new character can thus
be done by applying the deformations of the source character’s skeleton to
the new character’s. However, the skeleton does not represent the surface of
the character, and thus can not model important information on the motion
of characters. For example, contacts between body surfaces or between the
body and the environment can be lost, and collisions can appear. In this
thesis, we are thus interested in automatically animating a new character
to mimic an existing motion, while adapting the motion to the new body
shape, and taking into account surface information.
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Figure 1.2: Example of an animation (top row) being applied to new char-
acters (middle and bottom rows). Figure extracted from [Villegas et al.,
2018]

1.2 Problem Statement

In this manuscript, we explore motion retargeting, i.e. how to make a new
character mimic an existing animation, such as an Avatar mimicking the
motion of a user. To do so, we represent the motion as a succession of static
poses, and separately make the new character mimic each pose in order to
recreate the full animation. For each pose, we take as input a source and
a target 3D characters, and the deformed source character performing a
specific pose. Our goal is to generate the target character performing a pose
that is similar to the pose of the deformed source character. This approach
is known as Deformation Transfer, and is illustrated in Figure 1.3.

The first approach to deformation transfer is to deform the pose of the
target character to match the source character’s pose, while preserving its
identity. This is the Pose Transfer strategy (Figure 1.3, right column).
This approach has been widely explored in the literature, and naturally
corresponds to how humans imitate poses: when a person tries to mimic
the pose of an another, for example a student following the motion of a
yoga instructor, they move their body as similarly as possible in order to
get in the correct pose.

This strategy relies on the assumption that poses are defined consistently
across different characters. However, the pose of a character is subjective,
and depends on contextual information. For example, the characters in
Figure 1.4, extracted from a dataset of captures of human actors [Bogo
et al., 2014], are considered to be performing similar poses. However, small
variations exist between them, such as the exact angle of the arms or the
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Figure 1.3: Illustration of the deformation transfer problem. Given as input
a source and target character, and a deformed source character, we aim to
generate the target character performing the deformed source’s pose. Two
orthogonal approaches can be applied: transferring the pose of the source to
the target (Pose Transfer), or transferring the identity of the target to the
deformed source (Identity Transfer). Deformation transfer result obtained
with the method described in Chapter 4

contact point between the leg and the foot. These poses could thus be
considered different in another context, depending on the application. Dif-
ferent approaches have been explored to define more precisely equivalences
between poses. A popular approach is to identify constraints that the pose
must satisfy in order to be similar to another. These constraints can be e.g.
angles between body segments, spatial relationships between body parts,
contacts with the ground, the environment or the character’s own body.
When transferring the pose of a character to a new one with a different
morphology, respecting the combination of these constraints can result in
a complex optimization problem. Moreover, it is not always obvious which
constraints give meaning to a specific pose in a given context. For example,
while the distance between the hands of a clapping character should be
important, it is not obvious whether the distance between the hands and
the torso of the character has any importance.

Another orthogonal strategy is to start from the source deformed pose,
and to deform the surface of the character in order to match its identity to
the target, while preserving its pose. We call this strategy Identity Transfer
(see Figure 1.3 bottom row). Contrarily to the pose, identity of a character
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Figure 1.4: Characters with the same pose label extracted from the
FAUST [Bogo et al., 2014] dataset

is an objective parameter: it is obvious whether two characters have the
same identity. It should thus be possible to parameterize the identity of a
character in order to apply it to another character in a different pose.

With this approach, as the optimisation starts from the source character
in the correct pose, the pose constraints (e.g. body part orientations or
contacts) are naturally satisfied at the initial step. This strategy should thus
be easier to apply on complex poses as the task of selecting constraints that
define the pose is greatly simplified. When deforming the surface to a new
identity with a different morphology, artifacts can appear, such as collisions
or loss of contact constraints when the body parts inflate or deflate. Small
pose corrections should thus be applied to avoid these artifacts. We assume
that other constraints, such as general orientation of the body segments or
spatial relationships between body parts should not be significantly affected
by these corrections. Identity transfer thus requires satisfying significantly
fewer constraints than pose transfer.

In this work, we thus focus on identity transfer while preserving impor-
tant self-contacts between body surfaces, and avoiding collisions. However,
while collisions are an obvious problem that must be solved in order to
obtain a realistic pose, some contacts may or may not be an important
constraint to the meaning of the pose. Indeed, we argue that while some
contacts give meaning to the pose, such as the hands touching for a char-
acter clapping, others are only present as an effect of the morphology of
the character, such as the thighs touching for a character with a wider
morphology. We thus also explore in this manuscript how to select which
self-contacts are important to the meaning of the pose and which are not.
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1.3 Outline and Contributions

In Chapter 2, we present an overview of works that explored how to trans-
fer existing animations to new characters. We briefly discuss methods that
solved this problem between 2D characters and between 3D skeletons, and
focus the rest of the chapter on 3D surface deformation transfer approaches.
We also briefly review existing datasets of 3D human characters that are
commonly used in research on this subject. In Chapter 3, we give back-
ground information and preliminary discussions on the approaches explored
in this thesis. More specifically, we further discuss the identity transfer
strategy, and the importance of self-contacts. In the following chapters, we
present the main contributions of this thesis.

In Chapter 4, we propose Contact Preserving Identity Transfer, an opti-
mization based identity transfer method that iteratively deforms the surface
of a character to match its identity to a target. The method applies small
pose corrections in order to avoid interpenetrations of body parts, and to
preserve self-contacts present in the source pose. This method shows that
the identity transfer strategy gives good results across different categories
of characters. This method is able to adapt the pose to the identity of the
new character, by allowing distances between body parts to change and new
contacts to appear to accommodate to the different morphology. However,
several limitations remain. First, the method is slower than state of the
art approaches, which limits possible applications. Some artifacts can still
appear in the results, such as unnatural surface deformations around the
joint for extreme poses or morphologies. Finally, this method naively pre-
serves all self-contacts present in the source pose, which can lead to artifacts
as discussed in the previous section. As designing a fast and robust iden-
tity transfer approach, and exploring the importance of self-contacts to the
meaning of the pose are two difficult problems, we treated them separately
in the subsequent chapters.

In Chapter 5, we presented an adaptation of the Identity Transfer strat-
egy to the deep learning framework. Deep learning approaches display
several interesting advantages; while the training step can be long, the in-
ference time transfers are close to real time. Moreover, learning from data
how human characters deform should give more realistic results and avoid
unnatural deformations observed in the previous contribution. Our method,
Neural Identity Transfer, is able to generalize to poses unseen at training
time better than the state of the art, and is faster than our previous opti-
mization based method.

Finally, in Chapter 6, we explore the importance of self-contacts for
pose equivalences. We assume that human observers should be able to de-
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termine if two characters are performing the same pose. We thus designed a
perceptive study in which we presented observers with different characters
performing a similar pose, with differences in the self-contacts preserved.
The subjects are asked to select which pose better imitates a target pose.
This study shown a tendency of users to give more importance to certain
contacts, specifically those implying hands. This study is a first step to-
wards a better understanding of the importance of self-contacts to the pose,
and will be extended to a wider panel in a future work.

We give a general conclusion of this manuscript in Chapter 7.
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Chapter 2

Related Works

In this chapter, we review state-of-the-art works that are relevant to the
problem of motion retargeting, and more specifically to the deformation
transfer approach defined in Section 1.2. We first briefly present works
that explore how to edit videos or images of 2D characters, in order to cre-
ate new 2D content from a source 2D character. While we are interested
in animating 3D characters, these 2D methods helped introduce interest-
ing concepts and research directions to the motion retargeting literature.
We then discuss skeleton based methods, that explore how to transfer the
motion of a 3D skeleton to a new one with different bone lengths and/or
topology. We then give a more in-depth review of 3D surface deformation
transfer methods, that are closer to our contributions. Finally, we briefly
present the main datasets of 3D human shapes and poses that are used for
deformation transfer or deep learning works.

2.1 2D Motion Retargeting

Video and image editing has received a lot of interest in the last two
decades. In this section, we briefly review approaches that have explored
how to create new 2D content by transferring parameters of 2D human
characters. [Efros et al., 2003] propose to match poses of characters in
videos using optical flow. This allows them to match a character to a
2D skeleton that can be used to transfer his motion to a new character.
Similarly, [Kemelmacher-Shlizerman et al., 2010] propose to puppeteer 2D
images of human faces by retrieving the closest neighbour to the source
pose+expression face in a database of faces of the target character. Some
works use multiple views of a character performing a motion in order to fit
it to a 3D model, which is then manipulated to generate new motions from
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a given point of view [Cheung et al., 2004, Xu et al., 2011]. The idea of
using 3D data to constrain the 2D motion was also used by [Hornung et al.,
2007], who transfer the animation of a motion captured 3D skeleton to the
2D character. Similarly, some works use statistical analysis of 3D datasets
to model human body parameters, and use it to modify the appearance and
morphology of 2D characters [Zhou et al., 2010b,Jain et al., 2010].

The recent advances of deep learning allowed to drastically improve the
performance of 2D motion retargeting methods. With the massive amount
of 2D images and videos available, an important branch of works have
explored how to learn from data how to deform 2D characters. These ap-
proaches are based on various deep learning architectures such as Recurrent
Neural Networks (RNNs) [Kappel et al., 2021] Generative Adversarial Net-
works (GANs) [Chan et al., 2019, Liu et al., 2019] and Variational Auto
Encoders (VAEs) [Esser et al., 2018]. Related to the deformation transfer
problem, some works have explored how to perform style transfer between
images [Gatys et al., 2016,Huang and Belongie, 2017,Huang et al., 2018].
These methods transfer style properties of images to generate new ones,
and can be applied to 2D pose transfer [Isola et al., 2017]. [Aberman et al.,
2020b] successfully apply the Adaptive Instance Normalization (AdaIN)
layer traditionally used in image generation to motion style transfer. This
allows them to transfer the style of a motion in a captured 2D video to a
3D skeleton.

While these methods are applied to 2D videos or images, they are still
interesting to our 3D deformation transfer problem, as they helped develop
important building blocks of deep neural networks and inspired works that
solved the same problem in 3D.

2.2 Skeletal Motion Retargeting

With the popularization of marker-based motion capture systems and of
3D content creation in the early 90’s, the ability to reuse existing 3D data,
such as motion captured on a user or designed by an artist, rapidly gained
success. 3D Motion retargeting first appeared as the task of mimicking an
animation performed by a skeleton to a new one, with different bone lengths
or topology.

The first approaches performed this by solving kinematic constraints on
joint positions and ensuring continuity using space time constraints [Gle-
icher, 1998, Lee and Shin, 1999, Popović and Witkin, 1999, Choi and Ko,
2000]. Another approach consists in defining a morphology-independent
representation of the movement, that can be then applied to different new
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skeletons. This can be done for example by encoding the movement and the
associated constraints on a normalized skeleton [Kulpa et al., 2005,Kulpa
and Multon, 2005]. Morphology-independent representations can also allow
to retarget to characters with different topology, e.g. by using an interme-
diate skeleton [Monzani et al., 2000] or semantic labels [Hecker et al., 2008].

All these methods generally use predefined kinematic constraints that
must be manually tuned. This implies the intervention of an animator or
of the user, and can be a heavy step in the animation process. Automatic
kinematic constraint detection in the source motion has been proposed to
automate the constraint editing problem, with e.g. the work of [Le Callennec
and Boulic, 2006]. Most of these constraints consist in spatial relationships
between body segments, which can be modeled as distance constraints [Al-
Asqhar et al., 2013, Bernardin et al., 2017] or as more generalized spatial
relationship between joints [Baciu and Iu, 2006]. These methods aim at
transferring the topology between body segments of the source motion to
the target character, while using generalized inverse kinematics to solve all
the corresponding constraints. This idea of modeling the topology between
body segments has been extended by introducing an interaction mesh [Ho
et al., 2010,Ho et al., 2014]. The interaction mesh connects joints of the
skeleton by edges. During retargeting, the authors aim to minimize the
local deformations of this mesh, therefore preserving spatial relationships
between skeleton joints.

Following the traditional skeletal animation techniques, some works have
explored how to transfer the animation of a skeleton to a new different one
using tools from deep learning.

A common strategy in the state-of-art is to include a differentiable for-
ward kinematic layer in a deep neural network [Zhou et al., 2016,Villegas
et al., 2018,Shi et al., 2020], to predict the final joint positions of the skele-
tons. This kinematic layer allows to capture the parameters of an input
skeleton’s motion, and to transfer them to a new skeleton with the same
topology and different bone lengths.

[Aberman et al., 2020a] explore how to perform retargeting between
skeletons with different topologies, by reducing the skeletons of their inputs
to a primal skeleton similar for all characters. They also introduce a skeleton
convolution operator. Their method allows to retarget motions between
skeletons with similar global structure (e.g. same number and position of
limbs), but different topologies.

As these methods retarget the motion at the skeleton level, they do not
account for interactions between body surfaces. This can result in inter-
penetrations or loss of important self-contacts when animating a skinned
character using the skeleton animation. [Villegas et al., 2021] propose a RNN
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architecture that retarget the motion between skeletons, while solving con-
straints on the resulting skinned surface motion to preserve self-contacts
and avoid interpenetrations.

2.3 Surface Mesh Deformation Transfer

Skeleton-based approaches have difficulties dealing with pose features that
concern the surface of a character. This can result in artifacts, such as
interpenetrations between body surfaces. Moreover, applying the motion
of a skeleton to a surface character can be a tedious task, implying several
intermediary steps such as rigging and skinning of the target character.
Closer to our method, a lot of interest has been given to transferring directly
the deformation of the 3D surface of the characters, generally in the form
of 3D meshes.

2.3.1 Optimization Based Deformation Transfer

An important category of 3D mesh deformation transfer methods encode
the pose of the source character as a deformation of the source surface
mesh, and transfer this deformation to the target surface mesh, using an
optimization framework.

[Sumner and Popović, 2004] propose to compute the transformation of
each triangle in the deformed source mesh, and to apply these transforma-
tions to the triangles of the target mesh through a correspondence map.
This method was extended to multi-component objects by [Zhou et al.,
2010a]. Other methods similarly proposed to encode deformations of the
source character’s surface to transfer it to the target character using corre-
spondence maps [Zayer et al., 2005,Zhao et al., 2011]. A different approach
is to encode the deformation of the space in which the source character is
embedded, and apply a similar space deformation to the target character.
This can be done using e.g. coarse tetrahedral control meshes [Zhao et al.,
2009], cage structures [Chen et al., 2010] or harmonic maps [Ben-Chen
et al., 2009]. These methods only needs global landmark correspondences
between the source and the target, and as such can be applied to transfer
between shapes with different topologies and geometries.

Similarly to skeleton based approaches, some surface deformation trans-
fer methods have focused on automatically detecting and preserving con-
straints on the poses of the characters, such as contacts or distances between
body segments. For instance [Liu et al., 2018] introduced the context graph,
an extension of the interaction mesh proposed for skeleton joint centers [Ho
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et al., 2010] to body surfaces. The edges of this context graph link nodes on
the body surface of the characters. By minimizing the deformation of the
context graph, the method preserves the distances between body surfaces
during deformation transfer. Using distance constraints to preserve con-
text was also explored by [Jin et al., 2018], who proposed the Aura mesh,
a volumetric mesh enclosing the body surface with a fixed offset. Spatial
relationships are then detected as the interpenetration of this Aura mesh,
and preserved in the deformation transfer result.

Some works focus on generating more realistic animations by taking into
account physics-based constraints, such as balance [Lyard and Magnenat-
Thalmann, 2008]. In their work, [Al Borno et al., 2018] propose to apply
physics-based forces on the characters. As a result, the pose adapts to the
morphology of the target character, e.g. the extent of a kick motion depends
on the corpulence.

2.3.1.1 Hybrid Approaches Combining Skeleton and Surface

In order to benefit from both worlds, a body of work combines skeleton and
surface constraints in the pose transfer. [Molla et al., 2018] use a skeleton
to model the pose with joint angles, and combines it with a simple surface
representation with bounding volumes. They introduce egocentric planes
to ensure that the topology between body parts is preserved in the result
character. Other methods use a complete surface mesh together with a
skeleton [Huang et al., 2013, Le Naour et al., 2019] to control the surface
mesh deformation while preserving the coherence with the skeleton topol-
ogy. By satisfying both skeletal and surface constraints, natural animations
and poses can be generated. [Shi et al., 2007] combine constraints on the
skeleton (e.g. limb lengths and joint limits) and on the surface of the body
(e.g. self-collisions) to generate plausible new poses.

2.3.1.2 Spectral Style Transfer

Spectral Geometry has been a widely explored field in computer graphics,
and proposed numerous applications to 3D meshes [Zhang et al., 2010].
Some works from this field explored how to use spectral information, such
as the eigendecomposition of the Laplacian operator, in order to deform 3D
shapes [Rong et al., 2008]. These works build from the well know observa-
tion that eigenvectors of the spectrum associated with small (respectively
large) eigenvalues encode low (respectively high) frequency details [Dey
et al., 2012]. In the case of 3D shapes, low frequencies correspond to the
general pose of the shape, and high frequencies correspond to the surface
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details. It is thus possible to deform these different levels of details by
acting on the corresponding frequencies of the spectrum.

From this observation, spectral mesh deformation has naturally been ap-
plied to the deformation transfer problem. [Lévy, 2006] compute the eigen-
decomposition of the Laplacian operator for the source pose and the target
identity characters, and project their geometry on the resulting eigenfunc-
tion bases. They then reconstruct a 3D shape using the low frequency
projections (i.e. the pose information) of the source pose character and the
high frequency projections (i.e. the surface details) of the target identity
character. This method is able to perform deformation transfer between
near isometric shapes, that have relatively similar Laplacian eigendecom-
positions, but tends to fail for non isometric shapes where the eigenfunctions
are inconsistent. Several works have explored how to improve this applica-
tion of spectral mesh processing. [Kovnatsky et al., 2013] propose to use an
approximate common eigenbasis of the Laplacian of the two models, to avoid
inconsistent eigenfunctions. [Yin et al., 2015] use the low frequencies of the
source pose character spectrum as handles for a classical deformation prob-
lem, and preserves the surface details of the target identity using Laplacian
coordinates. More recently, [Cosmo et al., 2019] introduced Isospectraliza-
tion, where they deform a mesh in order to align its Laplacian spectrum to
a target one, using modern differentiable programming tools. The authors
show several applications of their method, such as shape matching and style
transfer.

Most of these methods can be adapted to perform deformation trans-
fer between meshes with different connectivity, widening the possible ap-
plications. However, the Laplacian spectrum is known to be sensitive to
noise. Moreover, it struggles to encode the fine details of the shapes, result-
ing in either over-smoothed transfer results [Lévy, 2006,Kovnatsky et al.,
2013,Cosmo et al., 2019] or requiring additional elements to transfer these
fine details [Yin et al., 2015].

2.3.2 Data Driven Approaches without Deep
Learning

With the availability of 3D characters datasets, approaches have leveraged
existing 3D data to understand how to animate characters and perform
applications such as deformation transfer.
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2.3.2.1 Semantic Deformation Transfer

Semantic deformation transfer was first explored by [Baran et al., 2009].
This approach allows to perform deformation transfer between very different
classes of shapes, e.g. human to animal characters, by focusing on semantic
properties of the shapes and not their literal deformation. The key idea is
to select a number of previously existing poses of the characters, and label
them with similar semantic information, e.g. ”raising a leg”. A shape space
of each character is then created, and a linear map between the shape
spaces is computed using the labelled examples. Deformation transfer is
then performed by encoding a new pose of the source in its shape space,
and mapping it to the shape space of the target before reconstructing it.

[Boukhayma et al., 2017] use this approach to map motions between
subjects, using sparse correspondences of key poses for each motions. The
authors use Gaussian Process regression for the motion mapping step of
their method, which improves the accuracy and generalization capability of
their model. [Rhodin et al., 2014] use predefined correspondences between
surfaces and sparse point clouds to create a mapping between the two.
This allows the user to interactively control a 3D character’s mesh using
input from consumer devices, e.g. skeleton approximation from a Microsoft
Kinect. The authors extend this approach by mapping user motions to mo-
tions of the 3D characters to be animated, and leveraging wave properties of
the motions (amplitude frequency and phase) for animation control [Rhodin
et al., 2015]. Other works use a similar approach and propose blendshapes,
i.e. base expressions of a target face, and estimate from captured user
video weights associated with each blendshape on the source to create the
resulting target expression [Bouaziz et al., 2013].

All these methods neither require skeletons nor point-to-point correspon-
dences between sources and targets. They can thus be applied between very
different classes of shapes, and used to control animations from consumer
capture systems. However, they require heavy preprocessing to define cor-
respondences between source and target characters, and the quality of their
results is highly dependent on the quality of this initial step.

2.3.2.2 Statistical Shape Models

To make use of the large amount of 3D data available, an important line of
works have focused on using statistical analysis of large datasets in order to
derive parameters that control the shape of 3D characters. Early works in
this field model body shape deformations of human characters and are able
to morph the shapes to generate new characters [Allen et al., 2003,Seo et al.,
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2003]. By animating a model with standard animation techniques, and
modifying its body shape, these methods are able to perform deformation
transfer.

Following this strategy, several works have focused on modeling sepa-
rately shape and pose parameters of 3D characters. These methods nat-
urally allow deformation transfer by combining the shape parameter of a
character with the pose parameter of another. SCAPE [Anguelov et al.,
2005] is the first model to do this. In this model, pose and shape defor-
mations are modeled using deformations of triangles. Several works have
based their models on SCAPE and aimed to improve it, e.g. by taking into
account the interaction between shape and pose parameters in generated
deformations [Hasler et al., 2009,Chen et al., 2013], or by modeling dynamic
deformations of the bodies [Pons-Moll et al., 2015]. Other approaches en-
code the shape of the human models using Principal Component Analysis
(PCA), and use Linear Blend Skinning (LBS) to deform their pose [Neophy-
tou and Hilton, 2013,Pishchulin et al., 2017]. The popular work of [Loper
et al., 2015], SMPL, use a similar approach combining PCA and LBS equa-
tions, in a skeleton driven way. Their model is more accurate than SCAPE,
easy to use, and is compatible with existing rendering engines. Several
works have extended the SMPL model, e.g. to include fully articulated
hands and facial expressions [Pavlakos et al., 2019], or to model the impact
of body shape on pose deformations [Osman et al., 2020]. [Zuffi et al., 2017]
use a similar approach than SMPL to create a shape and pose model for
3D animal models, SMAL.

These methods generate realistic human shapes and poses, and can be
naturally applied to deformation transfer between characters encoded in
their models by exchanging shape and pose parameters. However, transfer-
ring between arbitrary characters is more complex and requires the prepro-
cessing step of fitting the characters to the model. Moreover, these methods
usually do not encode surface constraints, which can result in collision ar-
tifacts for complex poses and/or extreme shapes.

2.3.3 Deep Learning Approaches

2.3.3.1 Learning From 3D Data

Deep learning methods have naturally been applied to learn from data how
3D shapes deform. A lot of works have explored how to use 3D data to train
generative deep learning architectures, and reviewing all of them is beyond
the scope of this work. In this section we review the main categories of
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these approaches that have been applied to learn deep deformation transfer
models.

[Jiang et al., 2020] represent 3D data by encoding the vertices of their
meshes in a lower dimensional feature, based on an anatomical hierarchi-
cal segmentation, and train their model on those features. Similarly, [Tan
et al., 2018] represent meshes with rotation invariant features and train a
variational encoder with fully connected layers on these features.

Convolutional Neural Networks (CNNs) have showed impressive gener-
ative capacity for 2D images, thanks to their hierarchical structure that
allows them to exploit different scales of details of the images. However,
they are difficult to adapt to 3D data, as they can not be directly applied to
irregular graph-like structures with no ordering, such as 3D meshes. A lot of
works have explored how to adapt CNNs to the 3D domain. A first approach
is to map the 3D data to a 2D representation, e.g. a rendered image [Su
et al., 2015] or a height map [Abrevaya et al., 2018a], for which classical
CNNs can be applied. This intermediate step however adds complexity to
the architectures, and can be a source of error if the 3D to 2D mapping is
not perfect. [Defferrard et al., 2016] define convolution layers in the spectral
domain of the input meshes. Their approach has been successfully applied
to learning face [Ranjan et al., 2018] and human body [Tretschk et al., 2020]
models. Ranjan et al. also introduce down and up sampling layers adapted
to 3D mesh data based on quadratic edge collapse. These methods also re-
quire an intermediary representation, and other approaches have explored
how to adapt the convolution layers directly to the graph structure of the
meshes. [Bouritsas et al., 2019,Gong et al., 2019] use a spiral ordering of the
neighbourhood of each vertex to apply convolutions to 3D meshes. [Verma
et al., 2018] propose a new graph convolution operator, that dynamically
determines from the learned features correspondences between filter weights
and local graph neighbourhood.

Other approaches have explored architectures that can be applied di-
rectly to point clouds independently from vertex ordering [Klokov and Lem-
pitsky, 2017]. An important contribution in this direction is the PointNet
architecture proposed by [Qi et al., 2017]. This architecture uses shared
weights Multi Linear Perceptrons (MLP) to learn per-point spatial encod-
ing and max pooling layers to obtain a global feature. PointNet has rapidly
been used in a wide variety of state of the art approaches, such as classi-
fication, segmentation, or generative models predicting deformations of 3D
shapes [Cosmo et al., 2020,Wang et al., 2020].

More recently, a lot of interest has been given to methods that learn
implicit functions of the 3D surfaces. These methods can be applied in-
dependently from topology of the input 3D models. They are based on
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different implicit representations of the 3D surface, such as Signed Distance
Functions (SDF) [Park et al., 2019], occupancy [Mescheder et al., 2019,Mi-
hajlovic et al., 2021,Deng et al., 2020] or implicit fields [Chen and Zhang,
2019].

2.3.3.2 Deep Deformation Transfer

Based on the advances of deep learning, and its adaptations to the 3D
domain, a lot of works have explored how to perform deformation transfer
between 3D characters using Deep Neural Networks.

Deep learning approaches have taken inspiration from the deformation
transfer literature. [Gao et al., 2018] adapted the semantic deformation
transfer approach described in Section 2.3.2.1. They trained two autoen-
coders for the source and the target shapes, and used a GAN to map the
latent code of a deformed source to the latent code of the deformed tar-
get. Similarly to semantic deformation transfer, this leads to satisfying re-
sults, but the model needs to be retrained for each new shape pair. [Marin
et al., 2020] extend the spectral style transfer approach described in Sec-
tion 2.3.1.2 to a deep learning architecture by the mapping latent space of
an autoencoder to eigenvectors of the spectrum of a shape. The Neural
Pose Transfer (NPT) approach [Wang et al., 2020] takes inspirations from
2D deep style transfer techniques and uses spatially adaptive instance nor-
malisation [Huang and Belongie, 2017] to perform pose transfer between
human characters. Their architecture is based on PointNet, making their
method applicable to unordered meshes. Recently, [Lombardi et al., 2021]
proposed to learn a disentangled representation of human shape and pose
using implicit SDF. Their model is able to perform deformation transfer by
exchanging shape and pose parameters of two different characters.

A lot of interest has recently been given to autoencoders to disentangle
shape and pose parameters [Jiang et al., 2020, Tretschk et al., 2020], or
identity and expression parameters in the case of 3D faces [Ranjan et al.,
2018,Abrevaya et al., 2018a]. Similarly to statistical models presented in
Section 2.3.2.2, these methods naturally allow deformation transfer by re-
constructing a character from the shape and pose parameters of two differ-
ent characters. A common problem these methods encounter is the lack
of large real-world datasets with pose labels. To remedy this, [Cosmo
et al., 2020] present LIMP, a supervised model that allows to train from
small-scale datasets. LIMP is built on the hypothesis that human pose
deformations are near-isometric, and thus propose to preserve geodesic dis-
tances on the characters’ surfaces. The computational cost of their met-
rics makes LIMP unscalable to large datasets. Other methods explored
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unsupervised approaches to avoid this limitation. [Aumentado-Armstrong
et al., 2019, Aumentado-Armstrong et al., 2021] use the LBO spectrum
to define intrinsic shapes in a way invariant to isometric pose deforma-
tion. [Zhou et al., 2020] create pseudo ground truth for the pose transfer
between two characters, by applying on the fly As Rigid As Possible defor-
mations [Sorkine and Alexa, 2007] during training.

2.4 Datasets

With the development of 3D acquisition techniques and synthetic data cre-
ation, a wide variety of datasets of 3D human characters has been made
available for research purposes over the past two decades, and it is beyond
the scope of this work to list all of them. In this section we simply review
some of the main datasets of 3D human body models that are widely used
in the state-of-the-art to understand how human characters deform, and
train deep deformation transfer models.

One of the first consequent datasets of 3D scans of full human bodies
is the CAESAR dataset [Robinette et al., 1999]. This project aimed at
gathering anthropometric data of populations of NATO countries in north
America, Netherlands and Italy, and resulted in a large number of full body
scans of participants in a few key poses. The resulting dataset was widely
used in human statistical analysis, and was used to train models such as
SMPL and SCAPE. Other more recent datasets aim at providing scans
of real human characters. These works use multi-view videos of actors
to reconstruct 3D human characters with good precision [Gkalelis et al.,
2009,Sigal et al., 2010,Yang et al., 2016]. [Ionescu et al., 2013] propose the
Human3.6M dataset, containing 3.6 millions of 3D human poses captured
on actors. This significant size increase compared to previous datasets al-
lows an important gain of performance for their accompanying statistical
model. FAUST [Bogo et al., 2014] contains scans from 10 actors perform-
ing a variety of poses, and is used as benchmark for shape registration.
This dataset has been extended to contain dynamic data by [Bogo et al.,
2017]. [von Marcard et al., 2018] provide the 3D Poses in the Wild (3DPW)
datasets, which contains 2D frames of in the wild clothed characters, as-
sociated with 3D meshes reconstructed with their state-of-the-art video to
3D method.

Using recent animation techniques or models of human shape and pose,
other works create synthetic datasets of 3D human characters. In order to
help gather and unify a large dataset in a single representation, [Mahmood
et al., 2019] present the AMASS dataset. They gather 15 popular motion



36 CHAPTER 2. RELATED WORKS

capture dataset, and convert the data to 3D human meshes that they pa-
rameterize to fit the SMPL model. [Müller et al., 2021] propose to associate
3D models with 2D images, focusing on poses with self-contacts between
body surfaces. They do this by selecting 3D models from AMASS or from
refined 3D scans with self-contacts. They then associate a 2D image to
each model by asking subjects to take pictures of themselves imitating the
pose of a 3D model. As these datasets use pose information from motion
capture and shape information from human body models such as SMPL,
they can be considered semi-synthetic. [Pumarola et al., 2019] present a
large dataset of 3D synthetic clothed humans, and use it to generate anno-
tated 2D videos. Adobe have publicly shared the Mixamo [mix, ] dataset,
which contains a wide variety of artist designed skeletal motions, and 3D
characters. The motions can be applied to any character in the dataset and
to user created characters.



Chapter 3

Preliminary

In this chapter, we present background information relevant to the remain-
der of this manuscript. In Section 3.1, we present our choice for 3D virtual
human representation. In Section 3.2 we give more details on the identity
transfer strategy presented in the introduction (Section 1.2) and propose
geometrical parameters encoding the identity of a character. Finally, in
Section 3.3, we present how self-contacts can help to define equivalences
between poses.

3.1 3D Shape Representation

Automatically animating 3D characters requires representations of the 3D
shapes that allow numerical computations. To this end, several representa-
tions have been used by state-of-the-art works.

A simple representation is to use an approximation of a character’s skele-
ton. This skeleton is composed of a hierarchy nodes, called ”joints”, linked
by edges, called ”bones” (see Figure 3.1a, left). A skeleton can be ani-
mated by acting on the angle between joints, and moving accordingly all
joints lower down the hierarchy. Skeleton animations can preserve con-
straints, such as contacts between joints and the environment, with the
inverse kinematics method. In this method, the animator first places the
constraints (such as a contact), and then uses optimisation to determine
joint parameters that poses the skeleton while preserving the constraints.
This representation has been widely used as a basis to retarget motions
between simple 3D characters (see Section 2.2).

However representing 3D characters with a skeleton poses several lim-
itations. The first and obvious one is that a skeleton is a very simple
approximation of the character’s body. In most applications of 3D anima-
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(a) Left to right: 3D skele-
ton, skinned character, exam-
ple skeleton pose. Figure ex-
tracted from [Pons-Moll and
Rosenhahn, 2011]

(b) Surface mesh of a 3D character,
and close-up with visible mesh edges

Figure 3.1: Example of classical 3D character representations

tions (e.g. movies, games or VR), we are interested in animating a more
detailed 3D character, with a textured surface outside its skeleton. Skele-
tons can be used to control the animation of a character’s body surface.
This is traditionally done by associating a skeleton to a 3D mesh (i.e. a col-
lection of vertices linked by edges, see Figure 3.1b) representing the surface
of the character, with the process known as rigging [Magnenat-Thalmann
et al., 1988,Baran and Popović, 2007] (see Figure 3.1a). Rigging determines
the parameters of the deformation of the mesh depending on the skeleton
pose. In particular, the skinning step associates each vertex of the mesh
to one or several bones of the skeletons, and sets corresponding weights.
This process is known to be long and tedious for animators, and anima-
tions obtained with it are still prone to artifacts. In particular, skinning
weights are difficult to optimize, which often leads to unnatural deforma-
tions of the body surface. Moreover, as the skeleton itself does not encode
surface information, collisions can appear when using it to control a surface
animation.

To avoid these limitations, a lot of works have explored how to deform
directly the surface of the 3D characters in order to create new poses or
animations (see Section 2.3). In this work, we aim to generate realistic
body surface animations, that take into account self-contacts and prevent
collisions. Therefore, for the contributions presented in this document, we
represent 3D shapes using triangular surface meshes. Input meshes are
defined as V = (V, E, F ), where E is the set of edges of the mesh, F is
the set of triangular faces, and V = (v1, ..., vn) is the set of mesh vertices
with vi the 3D coordinates of vertex i (see Figure 3.1b). Note that other
representations can be used for 3D shapes, however meshes are a relatively
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simple and intuitive representation, and are compatible with most recent
animations tools.

3.2 Identity Transfer

As defined earlier in this document, deformation transfer takes as input
a source character in a deformed pose and a target character, and aims
to generate the target character performing the source character’s pose.
To do so, one strategy is to deform the pose of the target character to
make it mimic the source pose. Another is to deform the surface of the
source character in the deformed source to make its identity match that of
the target character, while preserving its pose. We refer to the former as
pose transfer and to the latter as identity transfer. They are illustrated in
figure 1.3.

While both solutions should give the same result, in practice literature
on the subject mostly explore the pose transfer strategy. In this section,
we give a formal definition of the pose and identity transfer approaches.
We discuss advantages of identity transfer, and propose an approach for
applying this strategy in practice.

3.2.1 Pose Transfer vs Identity Transfer

Pose transfer assumes that pose is identifiable consistently across different
characters. Under this assumption, pose can be parameterized by geometric
properties of the 3D shape, such as the deformation of the source’s mesh
triangles [Sumner and Popović, 2004]. Deformation transfer then boils down
to transferring the deformed pose using these parameters. However the
assumption that pose can be defined consistently across different characters
is arguable. Exact correspondences between body poses are subjective and
contextual; small variations of the pose can or not have an effect on its
semantic meaning, as discussed in Section 1.2.

Symmetrically, we can make the assumption that the shape of a human
character can be defined independently from the pose, i.e. by its identity.
Identity of a character is an objective information: it is clear that a same
person at different time stamps of an animation should have the same iden-
tity. In this case, deformation transfer can be done by transferring the
identity of a new character to a character already in a deformed pose.

It is important to note that both approach are approximations, and
that pose and identity of a character are intrinsically entangled notions.
However, when transferring identity, we avoid the difficult task of defining
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equivalences between poses. By directly considering the correct pose and
just modifying identity properties, identity transfer should allow to better
adapt to any pose.

3.2.2 Identity Parameters

Identity transfer requires being able to parameterize the identity indepen-
dently from the pose, using geometrical information. In this work, we pro-
pose to leverage common hypotheses on human deformations to identify
such parameters.

3.2.2.1 Near-Isometry

A common assumption is that pose deformations of a human character are
near-isometric [Elad and Kimmel, 2001,Aubry et al., 2011]. This means that
distances on the surface of the body (geodesics distances) are preserved. For
example, the distance on the surface of the body between a point on the
hip of a character and a point on his arm stays roughly the same if the
character raises its arm. However, the distance between the same points on
a bigger character will be different than the distance on the first character,
due to the wider body surface. This hypothesis has been successfully used
to encode identity in works such as LIMP [Cosmo et al., 2020].

Building on this observation, we assume that geometric features of a
3D human mesh V that are isometry invariant encode the identity of the
character independently of the pose. We refer this hypothesis as ”near-
isometry” in the remainder of this document. It is noteworthy to mention
that this hypothesis is an approximation; folds around the joints and soft
tissue deformations due to e.g. muscles contracting or breathing can create
local variations of the isometry for the same character in two different poses.

We propose to use local Laplacian coordinates as an isometry invariant
feature. The goal of this representation is to encode, for each vertex, its
offset w.r.t. its neighbours in a local coordinate frame. This representation
was first presented by [Wuhrer et al., 2012], who used it to represent the
identity of characters in a pose independent manner. It was also successfully
used to reconstruct the geometry of human bodies [Yin et al., 2015,Lifkooee
et al., 2019].

First, the uniform Laplacian matrix L of the mesh V is computed as

Lij =


−1 if i = j

1
deg(vi)

if vj ∈ N1(vi)

0 otherwise

(3.1)
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Figure 3.2: Local coordinate system (red) of ∆i (green) at vi

with vi ∈ V the vertices of mesh V , N1(vi) the one ring neighbourhood
of vertex vi (i.e. the vertices directly neighbours to vi), and deg(vi) the
number of vertices in N1(vi).

This matrix is used to compute the Laplacian offsets ∆i of each vertex
vi, as:

 ∆1
...

∆n

 = L

 v1
...
vn

 =


∑

vj∈N1(v1)

1
deg(v1)

vj − v1

...∑
vj∈N1(vn)

1
deg(vn)

vj − vn

 , (3.2)

These offsets are then made isometry invariant (and thus pose invari-
ant) by expressing them in a local coordinate system for each vertex. This
coordinate system is composed of the normal vector of the surface at vertex
vi (called f1(vi)), a projection of a fixed vertex neighbour of vi in the or-
thogonal plane of the normal (called f2(vi)), and their cross product (called
f3(vi)). The three vectors are normalized to create the local coordinate
system at vertex vi (see Figure 3.2).

This coordinate system is invariant to translation and rotation of the
neighbourhood of vi. The resulting local offsets are therefore invariant to
isometric deformations. The local Laplacian offsets are thus geometrical
properties of the mesh that are isometry invariant. Following the near
isometry hypothesis, they can thus be used as a parameter of the identity.

3.2.2.2 Body Part Rigidity

Using the representation described in the previous section, we are able to
encode and transfer local identity properties of the characters. However,
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Figure 3.3: Two isometric 3D shapes with drastically different volumes.
Figure extracted from [Cosmo et al., 2019]

local isometry does not encode the global volume of the shape, and two iso-
metric shapes can have drastically different volumes (see Figure 3.3). Local
isometry is therefore not sufficient to encode the identity of a character.

The human body volume is not equally distributed among its body
parts. Moreover, a same body part can have a proportionally very different
volume between two different characters. For example, the thighs of a
cyclist will be significantly bigger than the average person’s, in proportion
to the rest of the body. Global preservation of the body volume is thus an
under-constrained problem, and can lead to unnatural distribution of the
volume.

Another approach is to make the hypothesis that body parts of the
human body deform near rigidly for a same character in different poses.
By preserving the rigidity of each body part separately, one can enforce
their volume to be consistent, while allowing for non-rigid deformation of
the global body. While the volume of a body part does not stay perfectly
constant during pose deformations, due to e.g. breathing or muscle defor-
mations, these changes can be neglected and this approximation led to good
result in the literature [Sorkine and Alexa, 2007, Jiang et al., 2020] and in
our experiments (see Chapters 4 and 5).

In the remainder of this document, we refer to ”body parts” as the seg-
mentation of rigidly deforming body segments. We segmented our template
in 17 body parts corresponding to the rigidly deforming parts of the hu-
man body(see Figure 3.4a). Some applications of this segmentation, such
as volume computation, require a closed mesh. We thus close our body
segments by computing the centroid of the seam between two segments
and generating new triangles as shown in Figure 3.4b. This segmentation
lead to convincing results in our experiments (see Chapters 4 and 5). Note
however that this segmentation could be further refined depending on the
detail level needed for specific applications. For instance, for an applica-
tion involving precise hand movements, the hands could be segmented into
smaller rigid parts, for each phalanx of the fingers.
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(a) Body part segmentation

−→
(b) The seam is closed by computing its
centroid C and generating new triangles
between C and the vertices located on
the seam.

Figure 3.4: Body part segmentation on the template and close up of a seam.

3.2.2.3 Hypotheses Validation

In this section we use the FAUST dataset [Bogo et al., 2014] to test the
hypotheses presented above. This dataset contains 100 models of 10 iden-
tities performing the same 10 poses. This allows testing which geometric
properties stays consistent across changes in identity or pose.

In order to test the hypotheses, we compute specific geometric prop-
erties for each 3D models of the FAUST dataset. We then apply the T-
distributed Stochastic Neighbor Embedding (T-SNE) dimension reduction
algorithm [Van der Maaten and Hinton, 2008] to these properties in order
to express them in a two dimensional space. The T-SNE algorithm aims to
preserve proximity between points: points that were close in the high input
dimension of the algorithm should stay close in the output lower dimension.

We present the result of the T-SNE algorithm in figure 3.5. In this
figure, we embed geometrical properties of the 100 models from FAUST in
a two dimensional space. Points with the same color correspond to models
with the same identity, and points with the same symbol correspond to
models performing the same pose.

In Figure 3.5a we test the near-isometry hypothesis presented in Sec-
tion 3.2.2.1. For each model, we compute the local Laplacian offsets of each
vertex and store them in a (n× 3) length list, with n = 6890 the number of
vertices of the FAUST models. We apply T-SNE to this list. We observe
that resulting points are clearly grouped by color, thus by identity of the
corresponding 3D model. This implies that 3D models of a human charac-
ter with a specific identity have similar local Laplacian offsets. Therefore,
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(a) Local laplacian coordinates

(b) Distances between vertices belonging to the same body part

Figure 3.5: T-SNE dimensionality reduction applied to local Lapla-
cian (3.5a) and intra body part distances (3.5b). All parameters are com-
puted on the FAUST dataset, containing 10 identities performing 10 poses.
In each figure, marker colors indicate identities, and marker shapes indicate
poses.

this tends to validate the near-isometry hypothesis.

In Figure 3.5b we explore the body part rigidity hypothesis. For each
model, we use the segmentation of body parts presented in Figure 3.4. For
each body part, we encode the Euclidean distance between each pair of
vertices belonging to the body part. These distances should stay similar
if the body part deforms rigidly. We apply T-SNE on the list of all these
distances for each model. We observe that points corresponding to models
with the same identity are roughly grouped by the T-SNE algorithm. This
tends to validate the rigidity hypothesis.
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It is important mentioning that while these hypotheses are reasonable,
as demonstrated by the T-SNE results, they are approximations. As al-
ready discussed, joints of the human body can deform non-isometrically
with changes in pose, and body parts can deform non-rigidly due to e.g.
muscles contracting or breathing. However, these hypotheses lead to good
results in our experiments, as can be seen in Chapters 4 and 5. They are
therefore a promising first step in defining a more robust identity parameter,
that is fully pose independent.

3.3 Self-contacts

As stated in Section 3.2.1, defining equivalences between poses is a difficult
task. State-of-the-art methods rely on heuristic to define equivalences. A
simple skeleton retargeting approach can for example consider that two
skeletons with similar joint angles have the same pose, as the Euclidean
distance between the joints of the two would be as low as possible. However,
studies on human perception of pose similarity showed that a low Euclidean
distance does not necessarily imply pose equivalence [Tang et al., 2008,
Durupinar, 2021]. Moreover, as skeletons do not directly encode surface
information, simply preserving joint angles can cause interpenetrations and
loss of constraints such as foot/ground contacts.

Another popular constraint explored by methods that aim to adapt
poses to the morphology of new characters is to encode and preserve relative
positions of body parts. This approach is well illustrated by the interaction
mesh proposed by [Ho et al., 2010]. In this representation, all joints of the
skeleton of characters are linked by edges, and their relative positions are
preserved by minimizing changes in the Laplacian coordinates of this inter-
action mesh. Similar approaches were applied to 3D meshes, by considering
vertices on the surface of the characters instead of skeleton joints [Liu et al.,
2018,Jin et al., 2018]. However, this approach tends to preserve exactly dis-
tances between body surfaces. This is efficient to avoid collisions and to
preserve some important constraints such as contact, but can induce arti-
facts when transferring between very different morphologies. For example,
when transferring a pose with close body surface interactions to a wider
characters, some distances between surfaces must be reduced in order to
adapt the pose to the new morphology.

With the identity transfer strategy, this problem is simplified; as the
initial step of the algorithm is the source character already in the de-
formed pose, the general relative distances between body part is naturally
respected. Deforming the surface of the body to transfer a new identity
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Figure 3.6: Characters with very different morphology performing a similar
pose with different self-contacts, viewed from front and from top. Meshes
generated by an artist, courtesy of [Liu et al., 2018]

should not significantly change these global spatial relationships. However,
collisions might appear, and contacts between surfaces be lost, because of
the body parts inflating or deflating with the new morphology. Even with
identity transfer, it is thus necessary to apply slight pose corrections in or-
der to avoid artifacts. We argue that simply correcting interpenetrations
and preserving self-contacts that were present in the source is enough to
preserve the pose of the source character in the result.

However, while this approach gives satisfying results, limitations remain.
Indeed, preserving all contacts present in the source pose is not always
pertinent. This is illustrated in Figure 3.6: In this figure, we present two
characters with very different morphology performing the same pose. This
pose contains several self-contacts. Some of them seem obviously important
to the meaning of the pose, such as the contacts between the hands or
between the foot and the leg. However, in the top view we can observe that
the contact between the arms and the torso is only present in the right,
wider character. We argue that this contact simply appears to adapt to the
morphology of this character and does not bring meaning to the pose; we
consider that the left character is in the same pose even though this contact
disappeared. This example illustrates that while some self-contacts must
be preserved in order to correctly mimic the pose, some do not have this
importance. Preserving all self-contacts present in the source pose can thus
create artifacts and significantly alter the pose.



Chapter 4

Contact Preserving Identity
Transfer

4.1 Introduction

In Chapter 3 we compared two orthogonal strategies for the deformation
transfer problem; the pose and identity transfer directions (see Section 3.2).
We argued that identity transfer should result in simpler deformations than
its counterpart, and should thus be able to generalize to complex poses.
Identity transfer also allows to avoid the task of defining equivalences be-
tween poses, by considering the pose of the source character and simply
adapting it to the new morphology. We argue that this adaptation only
needs to preserve simple constraints, such as self-contacts (see Section 3.3)
in order to preserve the contextual meaning of the pose. In this chapter,
we inquire these assumptions by proposing an optimization-based identity
transfer method with a simple pose adaptation step, that aims to preserve
self-contacts and avoid interpenetrations.

Existing works on optimization-based deformation transfer can be sorted
broadly in two main categories. First, skeletal deformation transfer aims
to adapt the joint angles of the character in order to satisfy kinematic
constraints either edited manually [Gleicher, 1998, Kulpa et al., 2005] or
automatically built based on geometric constraints between body parts [Ho
et al., 2010]. With these approaches, since only the skeleton of the character
is animated, and not its body surface, it is difficult to prevent collisions or
more generally respect distance constraints of the body surface. Second,
surface-based deformation transfer considers surface deformations, typically
mesh deformations, when transferring the pose of a source character to a
target one [Sumner and Popović, 2004].
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As we focus in this work on the handling of surface-to-surface con-
tacts, we chose to apply our method directly at the surface level. Some
works following this approach also explore how to detect and preserve dis-
tance constraints between body surfaces [Jin et al., 2018,Liu et al., 2018].
These methods make the assumption that distances between body segments
should be preserved exactly during deformation transfer. While this suc-
cessfully avoids interpenetrations and helps preserving the pose’s meaning,
this can result in artifacts. Indeed, these distances do not necessarily relate
to the contextual meaning of the pose, but can result from intrinsic shape
constraints, such as surface contacts due to corpulence. By simplifying this
assumption and only preserving existing contacts, we aim to preserve the
contextual meaning while allowing adaptations due to the morphology.

Given as input a source character in both a standard and a deformed
pose and a target character in a standard pose, we propose to morph the
surface of the source character to match its identity to the target character.
During the deformation we avoid changes of the pose, simply correcting
interpenetration artifacts and preserving contacts already present in the
source. By starting from the correct pose and modifying it as little as
possible, we consider that important constraints of the pose are naturally
preserved in the result character. As a consequence, surface contacts due to
shape differences in body sizes can be handled by design with our approach,
as we demonstrate in our results (see Section 4.4). To allow for motion
retargeting, continuity between subsequent poses of a motion sequence is
encouraged in a post-process. We show experimentally that our approach
can be used to transfer identities between a wide range of characters, in any
class of shape, e.g. human or animal characters.

4.2 Related Work

In this section, we briefly review works that aim to detect and preserve
contacts involving the body surface of characters. A complete review of
these methods is beyond the scope of this chapter, and we simply aim to
build intuition on contact aware 3D character modeling. For more details
on methods specifically applied to the deformation transfer problem, such
as [Liu et al., 2018,Jin et al., 2018,Villegas et al., 2021], we refer the reader
to Chapter 2.

Humans mainly interact with their environment using their hands. Re-
constructing and animating accurate 3D models of hands is thus an im-
portant step of 3D animation. A lot of works have specifically explored
how to take into account (self-)contacts and collisions in 3D hand models.
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For example, [Ballan et al., 2012] reconstruct interacting 3D hand models
from 2D images, and focus on avoiding surface interpenetrations. They
detect contacts with bounding volumes hierarchy [Teschner et al., 2005],
and propose contact terms that penalizes interpenetrations. Other works
aim to reconstruct a hand grabbing an object [Tzionas et al., 2016,Sridhar
et al., 2016,Hasson et al., 2019]. These works propose to combine attraction
and repulsion terms in their optimization in order to avoid collisions while
preserving the contact between the object and the hand.

Closer to our work, interest has been given to reconstructing full body
human 3D models that take (self-)contacts into account. [Pavlakos et al.,
2019] propose SMPL-X. This work aims to include expressive faces and
hand models in the statistical body model SMPL [Loper et al., 2015], and to
avoid collisions between body surfaces. Similarly to previously cited works
on hand models, they use bounding volumes hierarchy and penalize detected
interpenetrations. Several works have built on SMPL-X for contact aware
applications: POSA [Hassan et al., 2021] extends this model by encoding the
contacts between the body surface and the environment, and [Müller et al.,
2021] use SMPL-X to learn to reconstruct meshes from 2D images of poses
with self-contacts. Other works have explored how to account for contacts
and collisions in animations of physics-based skinned characters [McAdams
et al., 2011,Kadleček et al., 2016], but are computationally expensive. More
recently, [Komaritzan and Botsch, 2019] proposed a similar method using
efficient contact detection approach [Teschner et al., 2003] and obtained
real time performances.

In the method presented in this chapter, we use tools from these works
to detect and handle contacts during identity transfer. We use the efficient
collision detection from [Teschner et al., 2003], and a contact energy based
on repulsion and attraction terms inspired by [Hasson et al., 2019].

4.3 Method

4.3.1 Overview

Our goal is to make a target character reproduce the motion of a source
character. To this aim we consider as inputs: the source character mesh in
a standard pose (e.g. A-pose), the same source character in a flow of de-
formed poses we wish to duplicate with a target character, and the target
character mesh in the standard pose. In this chapter, we consider the mo-
tion as a continuous sequence of static poses. Consequently, for each pose of
the source character, the deformation transfer process should compute a de-
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formed pose adapted to the target character, while preserving continuity in
the resulting sequence. All the source and target meshes are assumed to be
in correspondence through a single mesh graph. We segment this common
mesh topology in a number of body parts, as discussed in Section 3.2.2.2
and Figure 3.4. Note that our method does not require a rigged skeleton.

We proceed by first transferring the target identity to each deformed
input pose independently, and by subsequently smoothing the resulting an-
imation to encourage continuity in a post-process. For each static frame,
starting from the source character in the deformed pose, our approach
morphs its surface until its identity fits the target character identity, while
preserving the surface contacts present in the source deformed pose, and
correcting interpenetration artifacts. This way, we transfer identities at the
desired poses instead of transferring poses to the desired identities, as is
traditionally done in the existing works.

Input meshes are defined as V = (V, E, F ) (see Section 3.1). We define
the rigid body part transformations Θ = {RP}P∈BP , where RP is the ro-
tation associated with the body part P ∈ BP and BP is the set of body
parts. To perform identity transfer, we cast the problem as an optimization
over the vertex positions V and the rigid transformations Θ, and with re-
spect to three energy terms that account for local and more global identity
properties as well as surface contacts:

argmin
V,Θ

[γisoEiso(V) + γvolEvol(V) + γCEC(Θ)]. (4.1)

The terms Eiso and Evol penalize the discrepancy in isometry and volume
with the target character, and are minimized w.r.t. V. This creates non-
isometric deformations that change the identity of the character to the
target identity. The term EC penalizes collisions of surfaces and loss of
contacts present in the source pose, and is minimized w.r.t. Θ. This term
induces near-isometric and rigid deformations of the body parts, and thus
should deform the pose of the character without impacting its identity. The
weights γiso, γvol, and γC modulate the influence of each energy term.

To facilitate the identity transfer, before optimizing Expression 4.1, we
compute the height of the source and target characters using their provided
standard poses, and pre-scale the deformed source mesh to the height of
the target mesh.



4.3. METHOD 51

4.3.2 Identity and Pose Optimization

4.3.2.1 Local Isometry

Our first energy term Eiso decreases if the input and target mesh are near-
isometric. We build it on the isometry invariant feature inspired by [Wuhrer
et al., 2012] and presented in Section 3.2.2.1, the local Laplacian coordinates
∆i (see Equation 3.2).

In a preliminary step of the algorithm, we compute the target shape
representation ΩT = {ωT

1 (v
T
i ), ω

T
2 (v

T
i ), ω

T
3 (v

T
i )}vTi ∈V T at each vertex vi of

the target character in the standard pose, where ωT
k (v

T
i ) are the target’s

Laplacian coordinates ∆T
i expressed in the their local coordinate system

(fT
1 , f

T
2 , f

T
3 ) (see Figure 3.2).

During optimization, we express back ΩT in canonical coordinates using
the local coordinate systems of the source mesh V. We obtain the target
Laplacian offsets ∆T ′. Our isometry energy is then expressed as:

Eiso(V) =
∑
vi∈V

(
∆i −∆T

i
′)2, (4.2)

with ∆T
i
′ = ωT

1 (v
T
i )f1(vi) + ωT

2 (v
T
i )f2(vi) + ωT

3 (v
T
i )f3(vi).

A direct minimization of the above term results in a non-linear and
complex optimization. In practice, given a fixed local configuration, i.e.
(f1(vi), f2(vi), f3(vi), vj ∈ N1(vi)), around vi, Expression 4.2 is minimized
by moving vi towards the optimal position v̂i:

v̂i =
∑

vj∈N1(vi)

vj
deg(vi)

−
(
ωT
1 (v

T
i )f1(vi) + ωT

2 (v
T
i )f2(vi)

+ ωT
3 (v

T
i )f3(vi)

)
.

(4.3)

Hence, we proceed iteratively in two steps: (i) vertices are moved in the
optimal direction v̂i − vi; (ii) local configurations are re-estimated. Details
on the iterative solving are given in section 4.3.3.

4.3.2.2 Body Part Volume

With the energy presented in the previous section, we enforce our result
and the target identity to be locally near-isometric. However, as stated in
section 3.2.2.2, local isometry is not enough to encode the identity since the
global volume of the shape is not preserved. In order to remedy this issue,
we add an energy term to our optimization, that constrain corresponding
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body parts between our result and the target character to have a similar
volume.

We make use of the body part segmentation presented in Figure 3.4. For
each body part, computing its volume requires it to be a closed mesh. To
this purpose, body parts are closed by computing the centroid of the seam
between two neighboring body parts, and by generating triangles between
this centroid and the vertices on the seam (see Figure 3.4b).

With closed body part meshes, their volume can be computed as the
sum of the signed volumes of the tetrahedrons formed by the body part’s
triangle faces and the origin O [Zhang and Chen, 2001]. Let {vi, vj, vk} be
an oriented triangle and O the origin, the signed volume of the tetrahedron
{O, vi, vj, vk} writes:

VOijk =
1

6
(−xkyjzi + xjykzi + xkyizj

− xiykzj − xjyizk + xiyjzk),
(4.4)

where (xi, yi, zi) are the 3D coordinates of vi. The volume of a body part P
is then VP =

∑
T∈P

VO,T , where T ∈ P denotes the triangles composing body

part P .
Given the body part segmentation, the volume energy term measures

the discrepancy between body part volumes on the deformed source shape
and on the target shape:

EV ol(V) =
∑

P∈BP

(VP − V T
P )2. (4.5)

with BP the set of body parts of the meshes, VP (respectively V T
P ) the

volume of body part P for the input mesh (respectively the target mesh).

4.3.2.3 Contacts

The isometry and volume terms previously presented help to accurately de-
form the source character to match its identity to the target. However, as
discussed in Section 3.3, differences in morphology can make it difficult for
the target character to correctly reproduce the source pose. Only transform-
ing the identity of a character while maintaining the pose strictly similar
is likely to create artifacts such as interpenetrations or loss of contextually
important contacts.

To address this issue, our method includes a contact energy term. This
term aims to maintain all contacts present in the source pose, while not
introducing interpenetrations. Our contact term is built on the contact loss
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presented in [Hasson et al., 2019]. It is composed of a repulsion term that
increases when surface inter-penetrations occur, and an attraction term that
increases when a contact present in the source pose is lost:

EC(V) = γrEr(V) + γaEa(V), (4.6)

where Er and Ea are the repulsion and attraction term respectively, with
associated weights γr and γa.

(a) Left to right: source pose, transfer result without the contribution of a re-
pulsion term, and with such a contribution (target from Figure 4.3c). Notice on
the right the arms that do not penetrate the torso anymore, and the wider gap
between legs to avoid thighs colliding

(b) Left to right: source pose, transfer result without the contribution of an
attraction term, and with such a contribution (target from Figure 4.4b). Notice
on the right the foot that does not penetrate the leg thanks to the repulsion term,
but still remains in contact thanks to the attraction term

Figure 4.1: Contribution of the contact energy terms.

Repulsion Term Our body part segmentation (see Section 3.2.2.2) en-
ables us to follow the rigid members of the human body during the defor-
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mation. As such, if the source and target characters have correct poses,
no interpenetration should appear inside a given body part. We thus test
only interpenetrations between a vertex and all body parts but the one it
belongs to. The repulsion term also considers collisions with the ground
and is defined as

Er(V) = γr
∑

P∈BP

∑
vi∈V\P
vi∈Int(P )

d(vi, P )2 + γrg
∑
vi∈V

vi∈Int(G)

d(vi, G)2, (4.7)

where BP is the body part set, G is the ground, Int(X) is the interior of
object X, and d(v,X) is the minimum distance between the vertex v and
the object X; d(v,X) = infw∈X∥v − w∥2. The effect of the repulsion term
is illustrated in Figure 4.1a.

Detecting interpenetrations in a mesh is a computationally heavy task.
In this work, we use the point-tetrahedron collision test with spatial hashing
method described in [Teschner et al., 2003]. Given a tetrahedral mesh,
this method defines a hash-function that maps every object (vertices and
tetrahedrons) to a 1D index. The function is designed such that objects
mapped to the same index are the ones located in the same region in 3D
space, and must be tested for collision. This allows to significantly reduce
the number of collision tests to be performed, and has been applied in
real-time animation pipelines [Komaritzan and Botsch, 2019].

Employing this collision test requires a tetrahedral mesh. We use the
method presented in Section 4.3.2.2 to close the body parts’ meshes. This
method requires convex objects, which is the case for most of our segmented
body parts. However, hands and feet are not convex, due to fingers and
toes, and our approximation could consequently lead to important errors.
In our experiments, we mostly use poses from SMPL that do not encode
the movement of the fingers or toes, so the approximation did not generate
artifacts. If more detailed finger or toe poses are required, it is possible to
add each phalanx of the fingers and toes to the body part segmentation to
make the approximation more robust, as stated in Section 3.2.2.2.

Attraction Term As stated in Section 3.3, interactions between body
segments, such as contacts, can be important to define the meaning of
the pose. In the work presented in this chapter, we choose to preserve all
contacts present in the source pose in our result, in order to avoid losing
meaningful information about the pose.

In a preliminary step, we encode those contacts in the source. We define
a contact threshold proportional to the height of the character. Vertices
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that are under this threshold distance from a surface are considered in
contact with the surface. Similarly to interpenetrations, we consider that
no important contacts should appear inside a given body part, and thus
only encode contacts between different body parts. For each vertex under
the contact threshold distance of a surface, we encode the contact as the
couple of the vertex and its closest vertex on the surface. The attraction
term also forces the vertices at ground level to stay at ground level in the
result. However, we don’t enforce a precise position on the ground as long
as the vertex is at ground level; this allows for example moving the legs of
the character to adapt to a new morphology.

The attraction term increases when the distance between vertices in
contact in the source exceeds the fixed contact threshold as:

Ea(V) =γa
∑

(vi,vj)∈C

max[(d(vi, vj)− T ), 0]2

+γag
∑
vi∈CG

max[(d(vi, G)− T ), 0]2,
(4.8)

where C is the set of pairs of vertices in contact, CG are the vertices in
contact with the ground, and T is the contact threshold. The effect of the
attraction term is illustrated in Figure 4.1b.

Rigid Formulation The goal of the contact energy (Equation 4.6) is
to adapt the source pose to the morphology of the target character. As
such, it must slightly deform the pose, while keeping the identity constant.
As discussed in Section 3.2.2.2, rigid deformations of the body parts of the
character change the pose but not the identity. Hence, we want to minimize
Equation 4.6 w.r.t. rigid body part deformations, in order to preserve the
identity.

To do so, we use the same body part segmentation as in previous sec-
tions. Body parts are ordered in a tree hierarchy, with the crotch as the
root. We then define a rotation for each body part Θ = {RP}P∈BP . These
rotations are applied to a body part and its children, around a ”joint” de-
fined as the centroid of the seam between the body part and its parent.
The root body part rotates around its centroid.

By minimizing the contact energy w.r.t. these rotations, each body part
deforms rigidly. The contact energy becomes:

EC(V(Θ)) = γrEr(V(Θ)) + γaEa(V(Θ)), (4.9)

using the mesh vertex positions V as functions of the rotations Θ.
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4.3.3 Iterative Solving

Optimizing the full sum of energies in Expression 4.1 appears difficult in
practice since the isometry term Eiso(V) (see Expression 4.2) is non-linear.
This results from the fact that the differential coordinates ωi that encode the
identity are expressed in a local coordinate system, which depends on the
position of the vertices of the mesh. Hence moving a vertex also transforms
its local frame. We therefore minimize Expression 4.1 iteratively. In a first
step vertices V are moved with respect to the target identity information,
then the pose is optimized using the rotations Θ in order to satisfy the
contact constraints and finally local frames are re-estimated. This is iterated
until the absolute difference in the sum of energies between two successive
iterations is below a threshold. The first two steps are detailed below.

The first step aims to optimize the isometry term Eiso(V) and the vol-
ume preservation term Evol(V), Expressions 4.2 and 4.5 respectively. To
this purpose vertices are moved in a direction that accounts for both terms:

v′i = vi + ϵ(γidi(vi) + γvdv(vi)), (4.10)

with v′i the new position of vi, γi and γv the weights associated to the
directions di and dv, respectively, and ϵ a displacement offset function. The
isometry direction di is the direction towards the optimal position as defined
in Equation 4.3. The volume direction dv is computed based on the Stokes’
Theorem and its resulting divergence theorem. That is, dv is the direction
of the normal ni of the surface at vertex vi, and the offset by which we move
vi is the difference in volume of the body part containing vi between the
target and the current shape. This leads to dv(vi) = (V T

P − VP ) ni.
The second step of the iterative framework aims to minimize the contact

energy defined in Expression 4.9. Auto-differentiation is used to obtain the
gradient of the contact energy EC w.r.t. rotations of the body parts Θ.
We then apply a gradient descent iteration to the rotations. Since the
deformation at each iteration is relatively small, this slight correction is
enough.

4.3.4 Adaptation to Motion Sequences

The approach presented in the previous sections enables to transfer the
identity of a target character to a source character in a given static pose.
When considering motion sequences, we apply a per-frame strategy and
transfer the target identity to each frame of the sequence independently.

This strategy has proven to result in realistic animations when no pose
corrections are necessary during the identity transfer for any frame of the se-
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quence. However, when pose corrections are necessary, artifacts can appear
in the resulting animation, such as foot-skating and jitter. In this section,
we describe these artifacts, and present solutions to adapt our method to
tackle this issue.

4.3.4.1 Temporally Consistent Ground Contact

The pose correction applied to shapes can give rise to inconsistent ground
contacts. For example, when transferring motion from a skinny character to
a corpulent one, the gap between the legs can be widened to avoid potential
collisions between the thighs. When such a correction occurs, the feet
positions can deviate in consecutive frames, leading to the so-called ”foot-
skating” artifacts in the resulting animation.

To fix this problem, we modify the attraction term in Equation 4.8.
For static data, ground contacts are enforced by constraining the concerned
vertex heights to be at the ground level. Although this avoids collision
or loss of contact between the foot and the ground, it does not guarantee
the foot to remain at a fixed position, hence yielding foot-skating artifacts.
For a continuous sequence of poses, we store the ground contact position
of the source pose at each frame and compare it with the previous frame.
When detecting a ground contact that was already a ground contact in the
previous frame, we consider that the associated vertex should remain at
the same position. Therefore, the ground contact term for such a vertex vi
becomes: max[(d(vti , v

t−1
i )− T ), 0]2 where t denotes the current frame time

within the motion sequence, and vti (respectively vt−1
i ) corresponds to the

vertex vi at the frame time t (respectively t− 1).

4.3.4.2 Animation Smoothing

Independent pose corrections on consecutive frames can result in large and
irregular movement of body parts, resulting in jittery and unrealistic anima-
tions. In the remainder of this section, we describe several post-processing
strategies that we applied to smooth the resulting animation. We compare
the effectiveness of each approach in Section 4.4.5.

Low Pass Filtering The first solution we explored is to remove the high-
frequency displacements of each vertex of the 3D models, by applying a sim-
ple low pass filter to the animation. As the irregular and rapid movements
that cause the jitter are contained in these high frequencies, this filtering
should help smooth the animations.
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In practice, we apply the filter using a five-frame rolling average to each
vertex of the model.

Discrete Cosine Transform [Akhter et al., 2010] show that the PCA
basis learned from human motion sequences converges towards the basis of
the Discrete Cosine Transform (DCT). This property was used to combine
a DCT basis for temporal data with a spatial shape basis computed us-
ing PCA to create a model encoding spatiotemporal data [Akhter et al.,
2012]. This model allows to globally smooth motion sequences by removing
first the high-frequencies of the temporal DCT basis, and second the basis
vectors of the PCA shape space corresponding to small eigenvalues. This
approach has been successfully applied to smoothing of point trajectories,
e.g. facial mesh animations [Abrevaya et al., 2018b].

In our experiments, we apply this approach to retargeted animation
sequences. Since the sequences we consider are relatively short, we only
project over the DCT basis and remove high frequencies.

De Boor Spline Approximation The last approach we explored smooths
locally the retargeted animation by post-processing the trajectory of each
mesh vertex independently. To this end, each trajectory is approximated
by a spline [Craven and Wahba, 1978], that have shown to be effective in
trajectory smoothing [Egerstedt and Martin, 2001]. We use the original de
Boor algorithm [De Boor, 1978] to approximate vertex trajectories with a
regularization term based on the curve’s second derivatives.

4.3.5 Implementation Details

We implemented our algorithm in Julia, and use a Python implementa-
tion [Prilepin, 2020] of de Boor’s smoothing algorithm to post-process the
trajectory of each mesh vertex.

4.3.5.1 Parameter Settings

Our method has a number of parameters that need to be adjusted. The
weights of the different energy terms in Equation 4.1 are set to γShape =
γV ol = γC = 1, the parameters weighing the influence of the contact and
repulsion terms in the contact energy of Equation 4.6 are set to γr = γa = 1,
and the weights handling ground contact in Equations 4.7 and 4.8, respec-
tively, are set to γrg = γag = 0.1. The offset weight ϵ in Equation 4.10 is
set to 0.3, and the parameter p employed during spline smoothing to 0.1.
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4.3.5.2 Computation Times

The computation times of our method are highly dependent on the surface
interactions present in the pose transfer, i.e. contacts and possibly colliding
surfaces. This is due to the high computational cost of the contact energy.

The computation times reported in this section correspond to the method
ran for static poses, on a PC with an Intel Xeon E5-2623 v3s and 32GB
of RAM. When the deformed pose is free of any body-to-body interac-
tions, the method requires around 5 minutes. In the example shown in
Figure 4.3, some corrections are needed due to body-to-body surface col-
lisions, and our method takes around 15 minutes to run. In the example
shown in Figure 4.10b, contacts in the deformed pose of the source need to
be maintained, and our method takes around 20 minutes to run. Finally,
when the method needs to both maintain contacts in the deformed pose and
avoid surface collision, such as in Figure 4.10c, it runs in about 24 minutes.
All experiments applied on static animals models based on SMAL take less
than 5 minutes for the transfer, due to the lower resolution of the meshes.

These computation times are approximate, and can change depending
on the hardware running the method, and on the resolution of the input
meshes.

4.4 Evaluation

In this section, we present results of our method. We discuss its strengths
and limitations, and give an overview of interesting future improvements.
We first introduce the data used in our evaluations (Section 4.4.1) and
give the implementation details (Section 4.3.5). We illustrate results of our
method and its generality by applying it to different categories of shapes,
such as minimally and casually dressed humans, and wild animals (Sec-
tions 4.4.2, 4.4.3 and 4.4.4). We present result of our adaptation to motion
sequences in Section 4.4.5. We then qualitatively compare our results to
state-of-the-art works in Section 4.4.6.

4.4.1 Data

To demonstrate the generality of our approach, we evaluate our method
on two different shape classes. First, human characters, both in a mini-
mally dressed scenario and in a casually dressed one. This class is the most
commonly considered in retargeting applications, and the minimally dressed
scenario allows in particular comparisons to the state of the art. The second
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class of shapes we consider are wild animals. Wild animal shapes are inter-
esting as they can exhibit very different morphologies while still respecting
our assumption of near-isometric deformations during motion.

As input, we require source and target character meshes in correspon-
dence. For humans, the correspondence is established using the SMPL
template (6890 vertices and 13776 faces) [Loper et al., 2015]. This tem-
plate is segmented into the 17 body parts shown in Figure 3.4. For animal
models, the correspondence is established using the SMAL template (3889
vertices and 7774 faces) [Zuffi et al., 2017]. We segment this template into
24 body parts as shown in Figure 4.2.

Figure 4.2: Body part segmentation of the SMAL animal body tem-
plate [Zuffi et al., 2017]

For minimally dressed human characters, we use the example anima-
tions provided with SMPL, Faust [Bogo et al., 2014], Dyna [Pons-Moll
et al., 2015], and models from Liu et al. [Liu et al., 2018] fitted to the
SMPL template. For dressed humans we use meshes from 3D Poses in the
Wild [von Marcard et al., 2018] that are already fitted to the SMPL tem-
plate. For animal models, we create different poses and shapes using the
statistical model SMAL.

4.4.2 Minimally Dressed Humans

This section discusses the convergence behaviour of our method, and shows
qualitative results for minimally dressed human models.

Figure 4.3 illustrates the iterative process of our method and shows
intermediate results (4.3d). The identity and volume evolve quickly to
match those of the target, while the contact term avoids interpenetration
here by widening the gap between the legs and raising the arms. Figure
4.3b shows the evolution of each energy term during this transfer. Note
that the identity fidelity (Eq. 4.2) and volume preservation (Eq. 4.5) terms
decrease rapidly in the first iterations. The initial spike of the repulsion
term (Eq. 4.7) is due to interpenetrations that appear as the morphology
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(a) standard
source

(b) Evolution of the energy terms during the iterative
minimization

(c) standard
target

(d) Left to right: source pose, result after 5, 40, 150 and 400
iterations, final result (500 iterations)

Figure 4.3: Evolution of the identity transfer from a thin to a larger char-
acter through the iterations.

changes. The correction of interpenetrations causes loss of contacts around
the armpits, explaining the slight increase in the attraction term (Eq. 4.8).
Our iterative process efficiently minimizes the identity and volume energies,
while maintaining the contact energy at a reasonable level.

Figure 4.4 shows results of identity transfer from the source of Figure
4.8 (left) to characters with varying morphology. Notice the evolution of
the space between the arms and the torso depending on the morphology
of the target; while this gap is marked for skinny characters, it is much
narrower or even non-existent for larger bodies. Our method thus adapts
the pose to the different morphologies of the target characters.

4.4.3 Casually Dressed Humans

In this section, we show results of our method applied to human charac-
ters with casual clothing. Figure 4.5 shows three frames obtained when
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(a) Target 1 (b) Target 2 (c) Target 3

(d) Result 1 (e) Result 2 (f) Result 3

Figure 4.4: Identity transfer results on several characters of the deformed
source pose shown in Figure 4.8 (left)

transferring the identity of clothed characters from the 3DPW dataset to
new poses. In all three results, the cloth details, including wrinkles present
in the standard pose of the target, are transferred to the deformed pose.
Furthermore, the method can transfer hair, shown in Figures 4.5g and 4.5h,
and even accessories such as the backpack and baseball cap in Figure 4.5i.

4.4.4 Animals

This section further illustrate the generalisation capacity of our method,
by applying it to a new complex category of shapes; wild animals (see Fig-
ure 4.6). Figure 4.6f shows results of transferring the identity of a lion and
a hippopotamus to the pose of a fox. Despite important differences in the
morphology and volume distributions among body parts for the different
animals, the resulting models are plausible overall. Note that the charac-
teristics of the heads, trunk and legs are maintained in the resulting model
for the lion and the hippopotamus. However, some artifacts occur for body
parts with smaller volume, such as the tail of the hippopotamus, which is
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(a) Source pose 1 (b) Source pose 2 (c) Source pose 3

(d) Target shape
1

(e) Target shape
2

(f) Target shape 3

(g) Result 1 (h) Result 2 (i) Result 3

Figure 4.5: Results of the method from sample poses of SMPL to clothed
characters of 3DPW.

elongated after the transfer. The reason for this is that we match the vol-
ume of the body parts to the target, but not their lengths: the tail of the
fox has its volume shrunk to match that of the hippopotamus, but keeps
roughly the same length.

Figure 4.6k shows results of transferring the identities of a lion, a fox and
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(a) Source

(b) Target 1 (c) Target 2

(d) Result 1 (e) Result 2

(f) Results of identity transfer to a
running fox pose

(g) Source pose (h) Result for the
target shown in
Figure 4.6b

(i) Result for the
target shown in
Figure 4.6a

(j) Result for the
target shown in
Figure 4.6c

(k) Results of identity transfer paw
licking feline pose

Figure 4.6: Identity transfer results on animal models taken from SMAL

a hippopotamus to a pose with contacts from a feline. The results show
that the method is able to preserve contact constraints even for animals
with significantly different morphologies.

This experiment shows that our method can be applied to transfer iden-
tity between very different shapes, such as animals of different species. It
only needs the source and target models to have the same general morphol-
ogy; number and length of the limbs.

4.4.5 Animations

This section compares the different strategies to adapt our method to con-
tinuous motion sequences, as introduced in Section 4.3.4.2, and shows some
qualitative results.
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head displacement (cm) arm volume (dm3)
mean std. mean std.

source animation 0.345 0.220 / /
target character / / 2.315 /

no post-process 1.094 0.900 2.221 0.101
simple post-process 0.616 0.398 2.166 0.150

50% DCT 0.835 0.605 2.220 0.104
25% DCT 0.718 0.458 2.215 0.123
10% DCT 0.410 0.260 2.147 0.440
5% DCT 0.237 0.148 1.913 0.551

spline smoothing 0.553 0.343 2.175 0.176

Table 4.1: Comparisons between different smoothing approaches. Mean
and standard deviation of the displacement of a vertex on the middle of the
forehead between two consecutive frames, and of the volume of the right
forearm, evaluated for the motion sequence in Figure 4.7.

Table 4.1 provides quantitative measurements over the motion sequence
obtained with the input from Figure 4.7. We measured (1) the displacement
of a vertex located in the middle of the forehead between two consecutive
frames (mean and standard deviation), and (2) the volume of the right fore-
arm during the animation (mean and standard deviation). For a correct
retargeting, we expect the mean and standard deviation of the displacement
of the vertex on the forehead to be similar to the ones in the source anima-
tion. A higher standard deviation indicates large irregular displacements,
and thus jitter. A lower standard deviation indicates that the animation
has been over-smoothed and lost movements present in the source. The
volume of the forearm should be close to its volume in the target character.
It should also stay relatively constant during the animation, which should
be shown by a low standard deviation of this measure.

We computed these measures for the resulting animation before post-
processing, and with the smoothing approaches described in Section 4.3.4.2:
the low-pass filter, the DCT smoothing method, with different percentages
of low frequencies retained, and the spline smoothing method.

Without post-processing, the vertex on the forehead performs large mo-
tions that lead to jittering artifacts. While the low pass filter reduces the jit-
ter, it is still perceptible on the resulting animation. When smoothing with
DCT, keeping a high percentage of components does not remove the jitter
on the head. When keeping a low percentage of components, however, arti-
facts such as volume shrinking on the arm appear, as can be seen by the in-
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creasing standard deviation of the arm volume. In contrast, the spline-based
smoothing leads to a result without apparent jitter while preserving the arm
volume. Figure 4.7 shows the corresponding motion retargeting result. We
thus chose to smooth our animation results using the splined-based method.
We refer the reader to the supplementary material found at this address for
better visualization of these results: https://hal.archives-ouvertes.

fr/hal-02613783/file/ContactPreservingShapeTransfer_supplementary.

mp4.

(a) Source animation

(b) Result with spline smoothing in post-
processing

Figure 4.7: Result of transferring a punching animation to the target in
Figure 4.3c, using the spline smoothing in post-processing

4.4.6 Comparisons

In this section, we compare results of our method with previous works
from the literature. First, our results are compared to those of a skeleton-
based approach where joint angles are directly applied to a new character.
Second, we applied our method to character meshes used in previous surface
mesh retargeting methods, namely context graphs [Liu et al., 2018] and
AuraMesh [Jin et al., 2018], and compare our results to those obtained in
these previous works.

https://hal.archives-ouvertes.fr/hal-02613783/file/ContactPreservingShapeTransfer_supplementary.mp4
https://hal.archives-ouvertes.fr/hal-02613783/file/ContactPreservingShapeTransfer_supplementary.mp4
https://hal.archives-ouvertes.fr/hal-02613783/file/ContactPreservingShapeTransfer_supplementary.mp4
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Figure 4.8: Comparison to a skeleton retargeting baseline. Left: The source
deformed pose generated by manually tuning SMPL shape and pose pa-
rameters. Center: The same SMPL pose parameters applied to new shape
parameters. Right: The result with our method

Figure 4.8 compares our method to a skeleton retargeting baseline. The
source pose (left) was generated by hand-tuning SMPL pose and shape
parameters. Applying the same pose parameters to a character with differ-
ent morphology leads the result of the baseline shown in the center. This
straightforward approach leads to artifacts: the left hand enters the belly,
and the contact between the right hand and the hip is incorrect. The result
of our method is presented in the right of the figure. The artifacts reported
with the baseline do not occur. Moreover, notice that the space between
the arms and the body shrinks during the transfer. This demonstrates that
the method was able to find a solution without artificially spreading the
arms far from the torso to preserve the distances associated with the thin
source character.

Figure 4.9 depicts results obtained with our method when applied to
3D models used in [Liu et al., 2018]. Our results are compared to those
obtained by an artist (artist performance initially reported in [Liu et al.,
2018, Figure 6]). Note that even with a relatively large change in morphol-
ogy, our result is close to the solution proposed by an artist. In particular,
when viewed from above, one can see that the artist created new contacts
between the arms and the body. These additional contacts did not change
the contextual meaning of the pose, but have been introduced to adapt
to the morphology of the target character. These additional contacts have
also been mostly recovered by our method, compared to the context graph
method, which aims to preserve distances observed with the source charac-
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(a) Source (b) Target (c) Identity transfer result
viewed from top and front.
Left: source’s deformed pose.
Center: Our result with target
4.9b. Right: The result by an
artist.

Figure 4.9: Comparison to an artist performance (courtesy of [Liu et al.,
2018]). The results consists in retargetting a source character (a) to a target
character (b). (c) front view of our result and a performance of an artist.
(d) top view of the same results.

ter.

Figure 4.10 applies our method on a shoulder rubbing pose that is simi-
lar to the one used in AuraMesh [Jin et al., 2018, Figure 8]. We see that our
method preserves the hand/shoulder contact, even with important changes
of morphology. Notice that for a close morphology (Figure 4.10b), the
distance between the elbow and the torso does not significantly change in
the result. However, for drastically larger target characters (Figures 4.10c
and 4.10d) this distance shrinks or even disappears to create new contacts.
These pose changes do not alter the contextual meaning but are required to
keep the morphology consistent. For the same kind of example, AuraMesh
aims at preserving the initial distances observed with the source charac-
ter, which might result in unnatural positions of the arms to preserve the
distance with the torso.
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(a) Source pose (b) Our result for target
in figure 4.4a

(c) Our result for target
in figure 4.4b

(d) Our result for target
in figure 4.3c

Figure 4.10: Comparison to the AuraMesh method [Jin et al., 2018] on a
shoulder rubbing pose.

4.5 Conclusion

In this chapter we explore the strategy of identity transfer, as an alterna-
tive to the widely adopted pose transfer strategy, to address retargeting
problems. We focus on preserving self-contacts in the result character in
order to preserve the contextual meaning of the pose. Our approach shows
that identity transfer allows us to transfer very different morphologies while
naturally preserving constraints and adapting the pose. Our method only
needs a pre-defined body part segmentation in order to generalize to dif-
ferent shape classes, such as humans or animal models, without changes in
the parameters. Finally, our method can be adapted to animations, giving
smooth and realistic new motion sequences.

While our experiments validate the identity transfer approach, our method
could be further improved to alleviate some limitations, and some interest-
ing questions remain open.

First, our method needs a post-processing step in order to be applied to
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animations. This could be alleviated by computing the result of our method
at key frames of the animations, and using a space-time constraint solver
inspired by [Gleicher, 1998] to generate the missing frames. This would also
greatly speed up the computations for animations by limiting the number
of frames for which the method needs to be applied. Another limitation is
that our method is slow compared to recent methods that can be close to
real-time.

The long computation time needed by our method is due to the com-
plexity of our body deformation model. Moreover, this model is imperfect
and can lead to artefacts, such as the incorrect body part lengths discussed
in Section 4.4.4 or unnatural joint deformations for complex poses and/or
morphologies (e.g. the shoulders in Figure 4.9). To avoid the difficult task
of defining a simpler and more robust body deformation model, a promising
direction is to use a deep learning framework in order to learn from real
world data how human characters deform. This would greatly speed up our
method at inference time, and would allow us to predict more realistic body
deformations. We explore this direction in Chapter 5 where we propose a
data-driven adaptation of our identity transfer method.

(a) Source pose (b) Transfer result to tar-
get in Figure 4.9a

(c) Result from an artist

Figure 4.11: Identity transfer from a large to a thin character. Our method
preserves all contacts present in the source pose, even if they are not mean-
ingful to the pose, such as the contact between the arms and the torso

An interesting question explored in this chapter is how to preserve the
contextual meaning of a pose when transferring it to a new morphology,
following our assumption that self-contacts are important to the meaning
of the pose (see Section 3.3). In this chapter, we focused on preserving
contacts in the source pose as well as preventing interpenetrations. Our
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results show that this genuinely preserves part of the posture context. In
particular, it enables to introduce new contacts that are induced by the
target shape, especially when retargeting from a skinny to a large character
(see Figure 4.9). However, in some cases contacts should not be preserved
as they may not bring any semantic information to the pose. For example
in Figure 4.11, the contact between the arms and the torso of the source
character is present only because of the larger morphology. When transfer-
ring a thinner identity to this pose, preserving this contact in our method
resulted in unnatural deformations. Conversely, the artist chose to remove
it, which did not change the meaning of the pose in the resulting character.
Our method could be adapted to ignore certain contacts specified by the
artist to avoid this problem, but it requires an additional manual step to
the method. This raises the question of which contacts should be preserved
in a transfer between characters and more generally on how to automati-
cally model the contextual meaning of a human posture. We explore this
question in Chapter 6, by using human perception to disambiguate cases
where contacts are important or not to the meaning of the pose.





Chapter 5

Neural Identity Transfer

5.1 Introduction

In this chapter, we investigate the identity transfer strategy explored in
Chapter 4 with a data driven approach. Deep neural networks have been
widely applied recently to solve complex nonlinear problems. Particularly,
recent works have proposed deep learning architectures to learn how human
characters deform, and perform deformation transfer (e.g. [Zhou et al.,
2020,Wang et al., 2020,Cosmo et al., 2020]). As stated in Section 4.5, this
approach greatly alleviates the problem of defining a human body deforma-
tion model.

Recent methods cited above usually predict the full deformation of the
characters’ bodies, making it difficult to correctly generalize to unseen data,
such as complex poses far away from the training set. With the identity
transfer approach, we propose a deep learning architecture that predicts
the identity deformation of a source model already in the correct pose,
so that its identity matches that of a target model. This way we predict
simpler deformations, and are able to generalize better to unseen poses.
The method presented in this chapter thus further validates the advantages
of the identity transfer strategy. It also opens interesting future directions,
such as using a similar deep learning architecture in order to learn how
characters adapt their pose to their morphology.

The architecture of our model consists of an encoder that encodes the
identity of the target model into a low-dimensional feature vector, and a de-
coder that consumes the identity feature vector along with the source model
and predicts offsets from the source model that transfer the identity. To
encode identity information, we base our losses on the hypotheses discussed
in Section 3.2, namely that two characters with the same identity should

73
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be near-isometric, and that body part of a character deform near-rigidly
with changes in pose. To structure the latent space, we use a loss that aims
to map feature vectors of the same identity to the same location in latent
space.

As our identity losses are based on pose independent parameters, we
only require identity labels to compute them, which facilitates using real-
world datasets. Indeed, 3D models with different characters performing
the exact same pose are rare in existing real-world datasets; for a captured
motion, different characters will never perform the motion in the exact same
way and timing. We thus train our architecture in a weakly supervised way:
while we rely on the presence of identity labels for all training data, we only
require pose labels for a small subset. To have access to high-quality labelled
data, we propose an extension of the FAUST dataset [Bogo et al., 2014]
that includes additional poses and identities with full label information.
To create this extension, we use the method presented in Chapter 4 to
transfer new poses and identities to the FAUST dataset. We then manually
curate this dataset to remove failure cases with unnatural deformation. We
demonstrate experimentally that having access to full label information,
and hence a reconstruction loss, on a small proportion of the training data
is sufficient to train our architecture.

Our self supervised losses also allow inference time refinement of our
model. Inspired by the few-shot learning of generative models literature
(e.g. [Zakharov et al., 2019,Arik et al., 2018,Jia et al., 2018]), we observe
that fine-tuning our feed forward network at inference time improves the
results. This is achieved with a few extra training steps on the inputs using
our self-supervised losses. In this strategy, the initial network training can
be seen as a meta-learning stage, and the fine-tuning can be interpreted as
one-shot learning from a single reference pose/target identity pair, which
adapts the network weights further to that specific case. To the best of our
knowledge, this idea was not explored by learning-based deformation trans-
fer works until recently, with the simultaneous publication of the method
described in this chapter and of the work of [Lombardi et al., 2021]. Not
only does the fine-tuning improve our performance quantitatively, but it
also allows us to successfully transfer identity for out of training distribu-
tion shapes, such as a shape of a simply clothed person with a hat and
a backpack, while the training consists merely of minimally dressed body
shapes.

We compare our method to deformation transfer results by the recent
deep learning approaches Unsupervised Shape and Pose Disentanglement
(USPD) [Zhou et al., 2020] and Neural Pose Transfer (NPT) [Wang et al.,
2020], and show that geometric detail is better preserved with our method
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when applied to poses not observed during training.
In summary, our contributions are:

• our method better generalises to poses not seen during training than
the state-of-the-art, achieved by transferring the identity of the target
shape to the deformed pose within a deep learning framework;

• our method allows to preserve fine-scale detail linked to the identity
of the character and generalizes to characters wearing simple clothing
thanks to test time identity transfer refinement with fine-tuning;

• we extend the FAUST dataset [Bogo et al., 2014] to contain more
identities and poses with full label information, which can be leveraged
for training.

5.2 Method

This section describes our method to adapt the identity transfer strategy to
a deep learning framework. We address the problem of deformation transfer
between 3D shapes described by triangle meshes with the same topology, i.e.
all meshes have the same connectivity and vertex to vertex correspondence.
We assume a dataset of such shapes i.e. meshes {M} where some have
ground-truth identity and/or pose labels, and denote them byMid

p , id being
the identity label and p the pose label.

5.2.1 Overview

Figure 5.1 provides a visual overview of our approach. Given two meshes,
Mp with an input source pose and Mid with an input target identity, our
goal is to generate a third mesh M̃id

p representing the shape of the target
identity id in the source pose p. We formulate this problem using a deep
learning framework and an encoder-decoder architecture.

Our neural architecture implements the identity transfer by predicting
the deformation of the source model Mp so that its identity matches that
of the target model Mid. This does not require to encode explicitly pose
information as the pose is naturally preserved by predicting identity defor-
mations only.

The encoder Enc takes Mid as input and encodes its identity informa-
tion into a low-dimensional feature vector zid as

zid = Enc(Mid). (5.1)
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Figure 5.1: Overview of the proposed approach. The encoder (green) gen-
erates an identity code for the target identity. We feed this code to the
decoder (red) along with the source pose, which is concatenated with the
decoder features at all resolution stages. The decoder finally outputs per
vertex offsets from the source pose towards the identity transfer result

The decoder Dec takes as input a latent code zid along with Mp and
outputs offsets from Mp to M̃id

p as

M̃id
p = Dec(zid,Mp) +Mp. (5.2)

The architectures of both Enc and Dec are based on spiral convolutions
at gradually decreasing/increasing mesh resolutions through pooling/un-
pooling layers as proposed by [Bouritsas et al., 2019]. Note that while the
pose information is not explicitly encoded, Dec is anyway conditioned on
the pose Mp. This is achieved in practice by concatenating channel-wise
at every convolution and unpooling layer of Dec the current vertex features
and the 3D coordinates of Mp at the corresponding mesh resolution.

The two main differences in terms of architecture compared to state-of-
the-art encoder-decoder based deformation transfer methods, (e.g. [Cosmo
et al., 2020, Zhou et al., 2020]) result from the identity transfer strategy.
First, rather than encoding pose information, our decoder is conditioned
on the input model Mp that has the desired pose. Second, rather than
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predicting 3D vertex information directly, our decoder predicts offsets from
Mp. These offsets correspond to the identity deformation applied to the
source pose in order to obtain our result.

At inference time, we fine-tune our feed-forward network to improve
the results. This strategy, where network training can be seen as a meta-
learning stage and fine-tuning as one-shot learning from a single Mp,Mid

pair, is inspired by the few-shots learning of generative models literature
(e.g. [Zakharov et al., 2019,Arik et al., 2018,Jia et al., 2018]).

5.2.2 Training

The model is trained in a weakly supervised way because labeled 3D models
of different characters performing the exact same poses are rare in exist-
ing real-world datasets. In particular, while each model is equipped with
an identity label, only a small subset of all models is equipped with a
pose label. For training, we sample triplets of distinct meshes of the form
(Mid1

p1
,Mid2

p2
,Mid1

p2
) for fully labeled data, and of the form (Mid1

p1
,Mid2

p2
,Mid1

p3
)

for data with only identity labels (with unknown pose labels p1, p2, p3). Note
that while fully labeled data contains the ground truth of the deformation
transfer result Mid1

p2
, this information is not available for data with identity

labels only.

These triplets are used to train the network based on the following losses

lsup = αlatllat + αreclrec,

lweaksup = αlatllat + αlapllap + αriglrig, (5.3)

where lsup is the supervised loss used when full label information is available
and lweaksup is the weakly supervised loss used when merely identity labels
are known. Let M̃id1

p2
denote the transfer result predicted by our method

for inputs Mid1
p1

as target identity and Mid2
p2

as source pose.

We use three types of losses to train the network. First, a latent loss
llat, which helps structuring the latent space, is used during both full and
weak supervision. Second, in case of full supervision, a standard L2 penalty
reconstruction loss lrec is employed. Finally, in case of weak supervision,
two self supervised identity losses llap and lrig are used that measure identity
distances based on the identity parameters identified in section 3.2. These
losses are weighted using the weights αlat, αrec, αlap, and αrig. Details on
these losses follow.
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5.2.2.1 Latent Loss

This loss uses the identity label present in our data. Its purpose is to con-
strain the identity latent space by enforcing models with the same identity
label to have a similar latent representation. We define this loss as

llat(Mid1
p1
,Mid1

p2
) = ∥Enc(Mid1

p1
)− Enc(Mid1

p2
)∥22. (5.4)

This loss is evaluated for the two meshes of the input triplet that share the
same identity code, namelyMid1

p1
,Mid1

p2
for fully labeled data andMid1

p1
,Mid1

p3

for data with identity labels only.

5.2.2.2 Reconstruction Loss

When pose labels are available, we use a standard reconstruction loss that
measures the vertex-to-vertex L2 distance between the ground truth Mid1

p2

and the predicted result M̃id1
p2

as

lrec(M̃id1
p2
,Mid1

p2
) = ∥M̃id1

p2
−Mid1

p2
∥22. (5.5)

This strong constraint, that is effective for training, is only required for a
small subset of our training data.

5.2.2.3 Identity Losses

When only identity labels are available, we design self supervised losses
based on the hypotheses on the identity of 3D human characters introduced
in Section 3.2.

The first hypothesis states that two characters with the same identity
should be near-isometric. We design a loss that enforces this property, by
penalizing differences between isometry descriptors of models with the same
identity label. We compute isometry descriptors as the local Laplacian co-
ordinates ∆loc of the vertices of each model, as described in Section 3.2.2.1.
Finally, our loss between two meshes Mid

p1
and Mid

p2
of the same identity is

llap(Mid
p1
,Mid

p2
) = ∥∆loc

id
p1
−∆loc

id
p2
∥22. (5.6)

We use this loss between our prediction M̃id1
p2

and the input target identity
model Mid1

p1
during training.

The second hypothesis is that body parts of a same identity deform
near-rigidly between different poses. We use the body part segmentation
presented in Section 3.2.2.2, Figure 3.4a. With this hypothesis, we build a
loss that penalizes distances between vertices belonging to the same body
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part being inconsistent between our prediction and the target identity. The
unsupervised rigidity loss between two models Mid

p1
and Mid

p2
of the same

identity is then

lrig(Mid
p1
,Mid

p2
) =

∑
P∈P

∑
i,j∈P

∥d(vi,1,vj,1)− d(vi,2,vj,2)∥22, (5.7)

where P is the set of mesh body parts, {vi,k} are the vertices of Mid
pk

and d(., .) is the Euclidean distance. We use this loss between our prediction
M̃id1

p2
and the input target identity model Mid1

p1
during training.

Note that the two identity losses are evaluated between our prediction
and the target identity used for the prediction, and are thus fully unsuper-
vised.

5.2.3 Fine Tuning

We introduce a fine-tuning step that is performed systematically at infer-
ence time. At a small additional computational cost, this step allows to
improve results, and enables identity transfer to new shapes considerably
different from those seen during training, as demonstrated experimentally.

This step acts as an additional adaptation of the weights of our pre-
trained network to a specific input. Given a target identity Mid and a
source pose Mp, we first generate our result M̃id

p using the trained model
as described in Eq. 5.2. This result is used as initialisation for further
optimisation. We fine-tune our model for a few more iterations, using as
input identity the target identity Mid, and as input pose the initial infer-
ence result M̃id

p . For these extra training steps, we use a self-supervised
loss, combining the Laplacian and the rigidity losses to maintain the tar-
get identity, in addition to a regularization loss lreg in the form of a L2

penalty between the vertices of the initial result M̃id
p and those of the final

fine-tuned mesh.

lft = αlapllap + αriglrig + αreglreg. (5.8)

5.2.4 Implementation Details

For the main model training, we generate training triplets as follows: a
triplet (M1,M2,M3) is created for each mesh sample M1 in the training
data. The second and third meshes of the triplet M2 and M3 are then
randomly sampled within models with a different identity as the first mesh,
and a similar identity, respectively. If M1 comes from the portion of our
data with pose labels, we restrict the choice of M2 to meshes with pose
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labels too, in order to be able to select M3 with the identity label of M1

and the pose label of M2. In this case M3 acts as ground-truth for the
transfer of M1’s identity to M2’s pose. Every five epochs, we re-sample a
tenth of our training triplets chosen at random. This way, while each triplet
is likely to be seen multiple times by the model, which helps lowering the
loss values for these specific triplets, the re-sampling allows the model to
see new triplets, which helps to better capture the variety of the training
set.

Our network takes as input a list of 3D points that correspond to the ver-
tices of the input meshes. We preprocess all meshes by aligning them rigidly
and down-sampling them to 2297 vertices using a quadratic error criterion
following [Ranjan et al., 2018]. This down-sampling balances the computing
cost of our losses, while keeping a reasonable level of precision. We propose
a simple two step up-sampling for better qualitative visualization. First, we
up-sample the meshes to 6890 vertices, by placing the new vertices at the
centroid of their neighbours [Ranjan et al., 2018]. Then, we move the new
vertices to the local Laplacian coordinates (see Section 5.2.2.3) computed
on the unprocessed target identity, while preserving the coordinates of the
2297 vertices predicted by our model.

We use the ADAM optimiser. For the main training, we use a learning
rate of 0.001 and a learning rate decay of 0.99 per epoch, and train for 500
epochs. We use batches of size 32. We set the loss weights in Equation 5.3
as αrec = 10, αlap = 1000, αrig = 1 and αlat = 1000. For the fine-tuning,
we use a learning rate of 0.0001, and fine-tune for 50 iterations. We set the
loss weights in Equation 5.8 as αlap = 10, αrig = 1 and αreg = 0.1.

5.3 Evaluation

In this section we evaluate our model’s ability to achieve deformation trans-
fer both quantitatively and qualitatively. We perform an ablation study to
evaluate the effects of supervising and fine-tuning our model, and compare
our method quantitatively to state-of-the-art deformation transfer meth-
ods. In particular, we choose to compare to the supervised NPT [Wang
et al., 2020] and the unsupervised USPD [Zhou et al., 2020] as they achieve
the best results in the literature. While a comparison with [Cosmo et al.,
2020] would be interesting, since this method builds on a similar isometry
hypothesis, such a comparison appears intractable in practice as a result of
the computational cost of their method. We also compare our results to our
previous optimization based identity transfer method, presented in Chap-
ter 4. We then present qualitative results of deformation transfer using our



5.3. EVALUATION 81

method. We present results of transferring the identity of minimally dressed
human characters, extreme morphologies and characters with simple cloth-
ing. We apply our method to animations on a frame-by-frame basis, and
to an identity morphing scenario, where the pose stays constant while the
identity changes.

To evaluate the results numerically, we use input pairs of shapesMp and
Mid for which the ground truth of the deformation transfer Mid

p is known.
As our meshes are in point-to-point correspondences, the error is measured
using the mean of the L2 distances between corresponding vertices of the
ground truth Mid

p and the result M̃id
p after Procrustes alignment.

5.3.1 Data

5.3.1.1 DFAUST

We train our method using 3D human models from the Dynamic FAUST
(DFAUST) dataset [Bogo et al., 2017]. This dataset contains 10 identities
performing between 11 and 14 motions, each of them containing a few
hundred frames. It is straightforward to label models from this dataset
w.r.t. identity, since the identity of a character does not change during a
specific motion sequence. However, even if the motions are semantically
equivalent across subjects, the poses differ in timing and style, and thus
no pose labels are available. We use 41220 models from this dataset for
training.

5.3.1.2 ExtFAUST

To obtain labelled data for supervision, we create a new dataset with full
identity and pose labels by augmenting the FAUST dataset [Bogo et al.,
2014] with additional pseudo-ground-truth. FAUST contains 10 identities
performing the same 10 poses each, providing us with 100 meshes with full
identity and pose labels. We extend this data by adding meshes with new
poses and identities from other datasets, and then applying our deformation
transfer method presented in Chapter 4 to transfer every new identity and
pose to all pre-existing poses and identities in FAUST. For the new poses
and identities added to FAUST, we choose meshes from DFAUST [Bogo
et al., 2017], SMPL [Loper et al., 2015], and Adobe’s Mixamo [mix, ].
We add 11 identities and 17 poses to the original FAUST data, yielding 540
meshes with pose and identity labels after manually removing a few outliers.
We refer to the resulting dataset as Extended FAUST (ExtFAUST) in the
remainder of this paper. We created a test split by removing all occurrences
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Figure 5.2: Result of identity transfer with our model before and after the
fine tuning step

of 4 poses and 4 identities from this dataset. This leaves 369 shapes for
training and 171 for testing.

5.3.1.3 Test Sets

We use three different test sets in our evaluations. The ExtFAUST pose
test set consists of 4 identities in 4 poses, all of which were unseen during
training. This allows to evaluate the method’s ability to generalize to both
new identities and poses. When combining all possible triplets of target
identity, source pose, and transfer ground truth, 240 triplets are available
for testing. The ExtFAUST id test set consists of 4 identities unseen during
training in 4 poses that were seen during training. This allows to evaluate
the method’s ability to generalize to identities on poses that it has been
trained on. Similarly, A total of 240 ground truth triplets are available
for testing. The AMASS test set is used for evaluation w.r.t. the state-of-
the-art. It contains 100 triplets generated from motion capture data used
in AMASS [Mahmood et al., 2019] combined with random SMPL [Loper
et al., 2015] shape parameters.

5.3.2 Ablation Study

To evaluate the influence of the fine-tuning at inference time, we run our
method with and without fine-tuning on the ExtFAUST pose test set. While
the average per vertex error without fine-tuning is 31.51mm, it decreases
significantly to 20.19mm when fine-tuning is used.

We further illustrate the impact of fine tuning in Figure 5.2. We observe
that before fine tuning, the result of our method has the correct general
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Supervision None FAUST ExtFAUST
Mean error (mm) 29.19 24.83 20.19

Table 5.1: Ablation study on supervision.

Figure 5.3: Left to right: target identity, source pose, identity transfer
result with all ExtFaust used as supervision during training, result with no
pose supervision during training

body shape and morphology, but lacks fine scale identity details. However,
after the fine tuning step, our result is more precise, and our method is even
able to transfer details such as simple clothing and accessories, even though
it was trained solely on minimally dressed humans (see Section 5.3.4).

Given the good results obtained using our fine-tuning step, all results
discussed in the following are obtained with this refinement unless specified
otherwise.

To evaluate the necessity and effectiveness of our supervision scheme
(Equation 5.3), we train our model without any full supervision, with only
the FAUST data as full supervision (approximately 0.2% of the training
data is labeled), and with all the ExtFAUST data as full supervision (ap-
proximately 1% of the training data is labeled). Tab. 5.1 reports the errors
in mm on the ExtFAUST pose test set. Note that a small percentage of la-
beled training data allows to improve our results by almost 1cm in average
per vertex error.

In Figure 5.3, we present a qualitative example of transferring an identity
to an unseen pose, using the model without supervision and the model
with supervision from ExtFAUST. Notice that without supervision, while
the identity of our result is correct, the pose of the source character was
not preserved. This is due to the fact that our identity losses are not
perfectly disentangled from pose information. Without pose supervision,
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pose information from the target identity is therefore also transferred at
inference, resulting in e.g. the straight right leg of the unsupervised result
in the figure.

5.3.3 Comparison to State-of-the-art

To the best of our knowledge none of the existing deformation transfer
methods operate in a weakly supervised way and we compare therefore
our method to the state-of-the-art supervised method NPT [Wang et al.,
2020] and unsupervised method USPD [Zhou et al., 2020]. This results in
three methods that make different assumptions on their training supervi-
sion. Moreover, while our method and USPD assume full correspondence of
the 3D input models, NPT is more general and can handle 3D models with-
out correspondence or fixed topology. These differences make a completely
fair comparison difficult. To make the comparison as fair as possible, we
train each method in its optimal supervision setting, with the training data
presented in the original papers.

We evaluate the errors on our three test sets: one that requires pose gen-
eralization from all methods, and two that require pose generalization from
some of the methods. For the ExtFAUST pose test set, none of the methods
have seen during training any of the poses or identities presented at test
time. This test set therefore evaluates all method’s abilities to generalize to
new poses and new identities, and can be considered the hardest test set for
all methods. For the ExtFAUST identity test set, none of the methods have
seen any of the identities presented at test time. However, our method has
seen the poses, coupled with other identities, during training. This test set
therefore requires NPT and USPD to generalize to new poses, while this is
not the case for our method. For the AMASS test set, none of the methods
have seen any of the identities presented at test time, as we randomly sam-
pled these identities’ SMPL parameters. However, NPT and USPD have
seen the poses, coupled with other identities, during training. This test set
therefore requires our method to generalize to new poses, while this is not
the case for NPT and USPD.

Figure 5.4 shows cumulative error plots for each method on each val-
idation set. Note that our method and USPD obtain significantly better
results for the first two validation sets, that require a generalization ability
to new poses from NPT. This is because NPT does not use correspondence
information, and treats points on the 3D human model that are close-by
as neighbors and aims to deform them using similar deformations. In cases
where different body parts are close-by or in contact in one input pose but
not the other, this creates stretching artifacts that explain the high errors.
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Figure 5.4: Cumulative errors for our method, USPD and NPT on 3 val-
idation sets. The x-axis shows per-vertex errors (m). The y-axis is the
proportion of all error values below the corresponding error value

For the AMASS test set, where NPT does not need to generalize to new
poses and the results provide a meaningful measure for NPT’s performance,
their result is better, but our method still outperforms NPT on average and
in the fine details.

Figure 5.5: Qualitative comparison to USPD.

Our method and USPD perform respectively better than the other when
one method has seen the poses during training and not the other. For the
ExtFAUST pose test set with poses unseen by all methods, both methods
have similar performances, but our method gives slightly better results for
the low error range, showing that details are better preserved. This can
be observed in Figure 5.5, where USPD’s result has the correct overall
body shape, but the details of the identity are overly smooth, whereas our
method better transfers the fine-scale geometric details of the identity. It
is also noteworthy to mention that USPD uses approximately 3 times more
training data than we do.
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Figure 5.6: Cumulative errors for on the AMASS test set for our optimiza-
tion based method described in Chapter 4, Contact Preserving Identity
Transfer, and the Neural Identity Transfer method. The x-axis shows per-
vertex errors (m). The y-axis is the proportion of all error values below the
corresponding error value

We also compared our method to our previous optimization based ap-
proach described in Chapter 4, Contact Preserving Identity Transfer (CPIT).
Figure 5.6 shows the cumulative error plot for these two methods, on the
AMASS test set where the Neural Identity Transfer (NIT) method didn’t
see any pose or identity during training. We observe that the NIT method
has a slightly better precision in this evaluation set. Note that the NIT
method is partially trained on motion retargeting results from CPIT, with
the Extended FAUST dataset. However, this concerns a very small subset
of the training data, which is simply used for pose supervision. We argue
that our method could be also trained with retargeting results from another
state of the art method and obtain similar precision. Moreover, the CPIT
method needed about 2 minutes of computation per transfer, while the NIT
method took 5 seconds per transfer with the fine-tuning step. This vali-
dates the advantage of our extension of the identity transfer strategy with
a data driven approach.

5.3.4 Qualitative Evaluation

Figures 5.7a, 5.7b, 5.9, 5.8 and 5.12 present results upsampled with the
method described in Section 5.2.4, for visualization purposes.

Figure 5.7a shows results of transferring an unrealistic identity, unseen
at training, to new poses. This figure demonstrates that our method is able
to transfer extreme identities, while our method only saw realistic identities
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(a) Transferring the identity of an unrealistic char-
acter to new poses.

(b) Transferring the identity of a clothed character
to new poses.

Figure 5.7: Qualitative results of our method applied to identities far away
from the training data

during training. Figure 5.7b shows results of transferring a character with
simple clothing and accessories to new poses. Note that during training, no
clothed characters or accessories are seen. These results show our method’s
ability to generalize to data that is far from the distribution of the training
data while preserving geometric detail. This property is achieved in large
part by the fine-tuning at inference.
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Figure 5.8: Left to right: target identity, source pose, identity transfer
result

Since our model is trained with real-world data, it naturally learned
to avoid interpenetrations in its results. In Figure 5.8, we show that even
when transferring a very large character to an unseen pose with body part
in close vicinity, no or limited interpenetrations appear.

To demonstrate the potential of our method, we apply it to two problems
arising in automatic content creation.

Figure 5.9: Transferring a new identity to an animation

First, Figure 5.9 shows our method applied to solve the motion retar-
geting problem. Given an input animation and a new identity, we apply
our method to the animation on a frame-by-frame basis. In this scenario,
our fine tuning step is done by taking as input the full source motion se-
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Figure 5.10: Isometry error (Equation 5.6) computed between each frame
of the animation in Figure 5.9 and the corresponding identity. Note that
our result has a similar identity jitter than the source animation

quence. At each fine-tuning iteration, we thus compute the loss described
in Equation 5.8 with the target identity, and with each frame of the source
animation treated as source pose successively. Note that although no tem-
poral information is used by our method, the resulting animations are con-
sistent and do not suffer from significant jitter. This is further confirmed
by Figure 5.10. In this figure, we observe that the identity jitter com-
puted using Equation 5.6 present in the result animation is well within the
bounds of the identity jitter of the source animation. We refer the reader
to the supplementary material found at this address for better visualization
of these results: https://hal.archives-ouvertes.fr/hal-03440562/file/Neural
Human Deformation Transfer.mp4.

Second, Figure 5.11 shows our method applied to solve the morphing
problem. For this result, the identity code of two input characters is linearly
interpolated in the latent space before being passed to the decoder. As no
target identity exists for the interpolated identities, we do not apply the fine-
tuning step for this experiment. Our method is able to interpolate smoothly
between identity codes while keeping the pose consistent. In addition to
being an interesting application, this result shows that the latent space
learned by our method is well structured.

https://hal.archives-ouvertes.fr/hal-03440562/file/Neural Human Deformation Transfer.mp4
https://hal.archives-ouvertes.fr/hal-03440562/file/Neural Human Deformation Transfer.mp4
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Figure 5.11: Interpolating the identity latent code between the leftmost and
rightmost models

5.4 Conclusion

In this chapter, we introduced a neural deformation transfer method that
predicts the identity deformation from a source character to a character
with the same pose and a new identity. We used geometric properties
of meshes to describe identity in a pose invariant way. We introduced a
large dataset of human models with full identity and pose labels, which
we use in addition to a larger unlabeled dataset to supervise our training.
Experiments demonstrate our model’s ability to generalize to unseen poses
when using around 1% of supervision at training time. A fine tuning step,
inspired by the few-shot learning methods, is shown to allow for the transfer
of fine-scale geometric details of the identity. The method generalizes well to
new identities, and even allows to transfer simple clothing and accessories.

This work successfully adapts the identity transfer strategy explored in
Chapter 4 to a deep learning framework. Our experiments showed that this
approach better generalizes to unseen poses, which validates the interest
of the identity transfer strategy. While the fine-tuning step of the method
blocks real-time computations, the method at inference is still much faster
than our previous optimization based approach, widening the range of pos-
sible applications.

A limitation of our method is the need for supervision, as training our
network without supervision results in deformed poses. This is due to the
fact that our hypotheses on human characters identity are approximations,
as discussed in Section 3.2.2.3. The identity parameters that we derive
from these hypotheses are therefore not entirely disentangled from pose.
As such, pose information from the target identity is also transferred by
our method if no supervision is used to alleviate this limitation. This can
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Figure 5.12: Left to right: target identity, source pose, identity transfer
result

be seen qualitatively in Figure 5.3, where we can observe that the limbs of
the results of unsupervised models tend to deform toward the pose of the
target identity. An interesting direction for future work is to explore other
identity losses, based on parameters of the identity completely independent
from the pose.

While our method is able to naturally handle interpenetrations, as
shown in Figure 5.8, it was not explicitly trained to preserve self-contacts
such as what was done in Chapter 4. In some cases, this results in im-
portant contacts disappearing in the result of the transfer, which changes
the meaning of the pose (see Figure 5.12). An interesting future direction
would be to adapt our method to make it preserve the contextual meaning
of the pose. This would require a better definition of which constraints,
such as self-contacts, are important to this contextual meaning. Indeed,
while simple hypotheses such as preserving all existing self contacts can
give satisfying results such as demonstrated in Chapter 4, failure cases can
happen such as the one showed in Figure 4.11. In this goal, we explore
which self-contacts are important to the meaning of pose in Chapter 6.
This information could then be used in a similar architecture as described
in this chapter.





Chapter 6

Impact of Self-Contacts on
Perceived Pose Equivalences

6.1 Introduction

In the previous chapters, we presented the identity transfer strategy, an
approach to the deformation transfer problem where the source pose is
preserved while modifying the identity of the character. An important ad-
vantage of this strategy is that since the pose is simply preserved, the result
should have an equivalent pose with no significant change. However, small
pose adaptations can be necessary to avoid collisions or loss of important
constraints. In Section 3.3, we argue that self-contacts, i.e. contacts be-
tween body surfaces of the same character, are one of these constraints: for
example, a pose of a character clapping will be considered incorrect if the
hands do not touch. Moreover, we argue that with the identity transfer ap-
proach, other constraints such as general orientation and spatial positions
of body parts are naturally respected, as the correct pose is considered at
the initialization of the algorithm.

However, as illustrated in Figure 3.6, some self-contacts only appear as a
consequence of the morphology of the character performing the pose, and do
not bring semantic information to the pose. Systematically preserving them
during deformation transfer can thus cause artifacts as preserving these
unimportant contacts might significantly change the pose (see Figure 4.11).

An interesting question left open by our approach of the previous chap-
ters is therefore how to automatically select which self-contacts must be
preserved and which should be ignored. The solution to this problem is
not obvious as the importance of these contacts does not follow any pre-
cise mathematical rule, and therefore can not be extracted solely from the
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given pose. In this Chapter, we make the hypothesis that human observers
should be able to determine if two poses are equivalent or not [Harada
et al., 2004]. Therefore, we propose the design of a perceptive study aim-
ing to leverage human perception to better understand which contacts are
important characteristics of the pose and which are not.

In our study, we first aim to validate our assumption that self-contacts
are in general important to the meaning of the pose. Our hypothesis is that
observers presented with two similar poses, one with a missing self-contact
present in the other, would consider the two poses to be visually different in
most cases. We also argue that the importance of self-contacts depends on
the body parts involved. Indeed, the studies on pose similarities presented
in [Harada et al., 2004,Marinoiu et al., 2016] suggest that different body
parts have different impacts for the perceived pose meaning. Those works
also highlight that observers tend to give more attention to the positions
of the head, wrists and fingertips when evaluating or imitating a pose.
Moreover, we observe that self-contacts involving hands are often the goal
of the pose, e.g. clapping, grabbing an object, or the example in Figure 3.6.
Therefore, we make the hypothesis that self-contacts involving the hands
are more important to the meaning of the pose than others.

To perform the study, we first selected a variety of poses of human char-
acters presenting self-contacts. We then applied the method of Chapter 4
to transfer several different identities to these poses. For each of these
transfers, we generated a first result where all the contacts present in the
source were preserved, and variations were each individual self-contact in
the source was successively removed by changing the parameters of the
method. We then presented human observers with examples composed of
the source pose, the target identity, the transfer result with all contacts
preserved, and one variation with a contact removed. Observers were asked
to select which transfer result best imitated the source pose.

To limit the number combinations of parameters to test, we focused our
study to self-contacts between the arms or the hands and the upper part of
the characters’ body. The results of our study show that observers tend to
consider that the pose with the same contacts than the source pose was the
best imitation of the source pose in most cases. This tendency appears to
be more important for contacts involving hands than contacts involving the
arms of the characters. Finally, the results show that the release distance of
the contacts, i.e. the distance between the body surfaces that were originally
in contact in the source, have an impact on perceived pose equivalences;
the tendency to chose the pose with the same contacts than the source is
stronger when the presented variation has a more important contact release
distance. This study thus confirmed our intuition that self-contacts do not
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all have the same impact on the pose, and highlighted possible parameters
to select important contact.

This study was designed and conducted in collaboration with Badr
Ouannas, intern at the Inria Grenoble Morpheo team, Ludovic Hoyet, re-
searcher at the Inria Rennes Mimetic team, Stefanie Wuhrer, Franck Multon
and Edmond Boyer.

6.2 Related Work

The Computer Graphics literature has widely investigated human percep-
tion of virtual characters. Human observers have proved to be able to recog-
nize the identity of actors in stylized or simplified virtual characters. A lot
of interest has been given to which factors impacted the recognition of an
actor in a deformed face [Tanaka and Farah, 1993,Zhao et al., 2003,Olivier
et al., 2020]. Closer to our problem, recognizing the identity or style of an
actor from its body pose and motion was also explored. [Johansson, 1973]
represented human motions with a limited number (∼ 10) of bright points,
and showed that this representation was enough to evoke different kind of
motions to observers, such as walking or running, and even to recognize
the style of the motion (e.g. tired or ”wavy”). More recently, [Hoyet et al.,
2013] animated two realistic characters (one male one female) from actors’
captured motion, and explored which motions better allowed to recognize
the actor.

Some works have more specifically explored perception of pose or motion
similarity. [Hodgins et al., 1998] showed that observers were better at per-
ceiving pose differences in more realistic models than stick figures. [Harada
et al., 2004] designed a quantitative pose similarity metric, and optimized it
by comparing their results to pose similarity perceived by observers. They
highlighted several parameters that impact perceived pose equivalences,
such as weights describing the impact of each body part on the perception
of the pose. In particular, they showed that the position of the fingertips
has a strong impact on the perception of the pose. [Chen et al., 2009] use
this approach to design a similarity metric that accounts for relative simi-
larity, e.g. which among a set of examples is more similar to a target. [Tang
et al., 2008,Pražák et al., 2009] propose a similar approach applied to human
motion similarity. [Tang et al., 2008] also illustrate that simple similarity
metrics such as Euclidean distance between joints does not always correlate
with human perception of similarity. More recently, Laban Dance Nota-
tion [Laban, 1928] has been applied to the study of human poses. Laban
Notation serves as a language to evaluate and record human poses and mo-
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tion based on qualitative parameters. This notation has been applied to
motion generation [Durupinar et al., 2016], and closer to our work percep-
tion based pose similarity metrics [Durupinar, 2021]. The latter further
confirms that simple similarity metrics do not correlate with human per-
ception.

[Marinoiu et al., 2016] evaluated the capacity of human subjects to imi-
tate the pose of a target character. The subjects were equipped with motion
capture markers and an eye tracker. The study showed that subjects gave
more attentions to certain joints of the target before imitating the pose,
such as the head and the wrists. More recently, [Müller et al., 2021] used a
similar approach to annotate a dataset of 2D images of human characters in
the wild. They presented 3D models of human characters to subjects tasked
to take pictures of themselves imitating the character’s pose. Their dataset
focuses on poses containing self-contacts, which illustrates that human sub-
jects are able to understand and imitate poses containing self-contacts with
acceptable precision.

6.3 Data

In this section, we present the data generation method used to create the
human body poses presented to the observers. Our goal is to create de-
formation transfer examples on poses with self-contacts, and to generate
variations of the transfer result with each contact being alternately removed
from the result.

6.3.1 Data Generation Method

To create the data used in this study, we first selected a set of poses pre-
senting self-contacts. There is a wide variety of possible surface-to-surface
contacts in the human body, and evaluating all possible configurations in a
study would require a very large amount of data and number of subjects.
To simplify this problem, we chose to focus on poses presenting self-contacts
between the hands or the arms and the upper portion of the body (above
the thighs, thighs included). We consider that these configurations are the
most common in the space of human poses and are therefore the most in-
teresting to study. We selected poses from the FAUST [Bogo et al., 2014]
dataset, from Adobe’s Mixamo [mix, ], and from hand-tuned SMPL pa-
rameters [Loper et al., 2015]. We transferred a standard identity, generated
with SMPL using the mean shape parameters, to these poses using the
method from Chapter 4 (see Figure 6.1).



6.3. DATA 97

Figure 6.1: Examples of source poses with self-contacts used in the study,
applied on the average SMPL identity parameters

Figure 6.2: Target identities used in the study

For the target identities, we arbitrarily chose to focus our study on male
human characters, once again in order to limit the number of examples and
subjects needed to perform the study. We consider that conclusions drawn
on the importance of self-contacts on this panel should translate on female
and neutral body shapes. We generate target identities by sampling models
at ±2 standard deviations of the mean for the two first shape parameters
of the SMPL model, height and body weight. We obtain 4 target identities
with the following parameters; tall thin, tall big, short thin and short big
(see Figure 6.2).

To generate our transfer examples, we transferred each identity to each
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Figure 6.3: Example of generated pose variations. The first model is the
source pose. The second is the transfer result to the last identity of Fig-
ure 6.2 with the same self-contacts as the source pose (the original pose).
The last two models are the pose variations, i.e. the same transfer result
with respectively one of the two self-contacts present in the source released

pose using the method described in Chapter 4. We first generated the ”cor-
rect” transfer result by using the method with its original parameters. We
then generated the pose variations by alternately selecting each interesting
contact to be ignored by the method during the transfer (see Figure 6.3).

6.3.2 Stimuli - Pose Variation Dataset

With the generation method presented in the previous section, we obtained
a dataset containing 17 different poses with self-contacts. For each pose we
created one transfer result with all contacts preserved, and one variation
for each self-contact to be removed while the others are preserved. Each
pose had one or two variations in addition to the ”correct” transfer result,
for a total of 30 variations of poses. We transferred each target identity to
all pose variations and obtained a total of 120 examples of transfer with a
pose variation to be evaluated in our study.

We annotated each pose variation depending on whether the self-contact
removed involved the arm or the hand of the character. Our dataset con-
tains 68 pose variations in the category arm and 52 in the category hand.
We also measured the contact release distance for each pose variation gener-
ated with our method, i.e. the mean distance between all vertices that were
involved in the self-contact removed from the original pose. Our pose vari-
ations had a mean release distance of 4.98cm and a standard deviation of
3.42cm. For the hand (respectively arm) category, the release distances had
a mean of 5.23cm (respectively 4.80cm) and standard deviation of 2.99cm
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Figure 6.4: Number of pose variations in total and per category, depending
on the contact release distance

(respectively 3.70cm). The distribution of release contact distances on our
pose variations across categories is illustrated in Figure 6.4.

6.4 Study

The goal of our perceptive study is to better understand in which conditions
a self-contact will be important to the meaning of the pose. More specifi-
cally, we explore the impact of the involved body parts on the importance of
self-contacts. We first aim to validate the assumption that self-contacts are
generally an important constraint defining the pose. Based on observations
and state-of-the-art studies [Harada et al., 2004,Marinoiu et al., 2016], we
make the hypothesis that self-contacts involving the hands are more im-
portant to the meaning of the pose than others. Finally, the hypotheses
explored in this study are:

H1 Pose variations with released self-contacts will be perceived as differ-
ent from the source pose in most cases.

H2 A pose variation of the category hand (i.e. hand self-contact removed)
will be perceived as different from the source pose more often than
for the category arm.
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Figure 6.5: Interface presented to users during the study

6.4.1 Population

The study was designed to be shared online to subjects. We shared the
study to laboratory staff, and using academic mailing lists. The study was
validated by the Inria ethics evaluation comity. Participants gave written
and informed consent before starting the study. Eighty-one (52 male, 26
female, and 3 who chose not to specify gender) subjects answered the study,
with ages ranging from 19 to 61 years old, with an average of 31 years old.
Forty-four participants reported having prior experience with 3D anima-
tion. Participants did the study on computer screens, with an average and
standard deviation screen size of 21.5± 5.8 inches.

6.4.2 Protocol

Before the study, participants were presented with instructions illustrated
with an example of question. They were asked to sign an informed consent
form before proceeding to the study. They then filled a short demographic
questionnaire to gather information on age, gender, experience with 3D
animation and screen size.

3D models from the pose dataset presented in Section 6.3.2 were used
in this study. We randomly split our variation dataset in 4 subsets of 30
questions. Each participant was presented with only one of these subsets.
For each question, observers were tasked to select which of two characters
best imitated the pose of a source character displayed in the upper left of
the screen. The choices were deformation transfer results of a new identity



6.4. STUDY 101

(displayed in the screen lower left) to the source pose. One displayed similar
self-contacts as the source, and the other had one self-contact released,
presented randomly left or right. In the remainder of this chapter, we
call these choices the ”original pose” and the ”pose variation” respectively.
The display is illustrated in Figure 6.5. Characters were displayed with
no surrounding environment, in a short video (5 seconds) rendered using
Blender, rotating around the 3D model in order to present different angles
of the pose to the observers. The video could be controlled with a slider
and paused, in order to observe a chosen angle.

For each question, observers were asked to report their confidence in
their response on a scale from 1 (not confident at all) to 5 (very confident).

6.4.3 Results

In this section, we present descriptive statistics on the results of this study.
We also test for statistical significance of the effects of our different stimuli.
We tested for potential main effect of a specific factor on our results using
one-way Analysis of Variance (ANOVA), and interactions between several
factors using n-way ANOVA. When an effect is found for a factor, we explore
it further using Tukey post-hoc test to compare pair-wise means. We chose a
statistical significance threshold of 5%, meaning that we consider an effect
significant if the probability that the difference between means is due to
chance is under 5%.

Pose Variation Selection Rate. We first study the rate of pose varia-
tion selection, i.e. the proportion of observers choosing the pose variation
with a contact present in the source pose released. As a reminder, if partici-
pants could always detect a difference between the original and the variation
poses this rate would be 0%, while in the opposite case if participants could
always differentiate them the rate would be close to 50%, (chance level).
Observers chose the pose variation in 27.16% of answers. We averaged for
each observer the number of cases they chose the pose variation, obtaining
an independent pose variation selection rate per observer. We conducted a
one-sample t-test in order to determine if the observed selection rate was
significantly lower than a random decision that would give a 50% selec-
tion rate. The result of this test showed that this difference was indeed
significant (p = 3.159× 10−29).

For each question, we gathered between 17 and 24 answers (mean 20).
We averaged these answers to obtain a selection rate for each pose variation.
We found a significant main effect of category of self-contacts (i.e. hand or
arm) on variation selection (p = 0.00006). This effect was confirmed by the
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Figure 6.6: Rate at which observers selected the pose variation with a
contact present in the source released, depending on the contact release
distance. 50% corresponds to the chance level

post-hoc test (p = 0.0001). These tests show that observers chose the pose
variation significantly less often for the category hand (18.00% of answers)
than for the category arm (34.05% of answers). We also found a main effect
of contact release distance, when grouping the questions by intervals of 2cm
of release distance as shown in Figure 6.6 (p = 0.0066). Post-hoc Tukey
test showed that this effect was only significant between release distances
inferior to 2cm and superior to 10cm, and between distances in the 4 to
6cm interval and distances superior to 10cm. We found no significant effect
of the target identity in the pose variation selection rate (p = 0.6220), and
no interaction between factors.

Confidence Level. On average for all questions, the average confidence
score reported is 3.42± 1.29. Similarly to the previous paragraph, we aver-
age the confidence score for all answers given to one question, and obtain
a mean confidence score per question. We found a significant main effect
of category on the average confidence score (p = 0.0019). For the category
hand, observers reported a significantly higher confidence in their answers
(3.66 ± 1.29) than for category arm (3.24 ± 1.26). This result was vali-
dated by the post-hoc Tukey test (p = 0.019). We also found a significant
main effect of release distance on confidence scores (p = 8.45 × 10−11).
The results of the Tukey test showed that the confidence score significantly
increased between groups of release distance separated by at least 2cm, ex-
cept between distances in the 4 to 6cm interval and the 8 to 10cm interval,
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Figure 6.7: Average confidence level reported by observers, depending on
the contact release distance

Choice
Confidence score 1 2 3 4 5

Pose Variation 105 132 161 186 56
Original Pose 165 185 303 574 489

Table 6.1: Number of observers reporting a given confidence score after
choosing the original pose (same self-contacts as the source pose) or the
pose variation (one self-contact released)

and between distances in the 6 to 8cm interval and distances superior to
10cm (see Figure 6.7). We found no significant effect of the target identity
(p = 0.2797), and no interaction between factors.

We also observed that participants reported different confidence lev-
els depending on their choice. We observe an average confidence score of
2.93 ± 1.22 when the observer chose the pose variation, and 3.60 ± 1.27
when the observer chose the original pose with similar contacts than the
source pose. We show in details reported confidence levels of observers de-
pending on their choice in Table 6.1. We observe that observers tend to
report higher confidence levels when choosing the original pose over the pose
variation. This observation is shown to be significant by a chi-square inde-
pendence test between the confidence scores and the choice of the observers
(p = 8.95× 10−31). For questions in the category hand, when choosing the
pose variation (respectively the original pose), observers reported an aver-
age confidence of 2.81 ± 1.30 (respectively 3.84 ± 1.21). For the category
arm, observers reported when choosing the pose variation (respectively the
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Figure 6.8: Average answer time, depending on the contact release distance

original pose) a confidence level of 2.97± 1.19 (respectively 3.37± 1.27). In
both categories, these higher confidence scores when choosing the original
pose are significant (chi-square for category hand : p = 4.58 × 10−20, arm:
p = 7.38×10−9). However, we observed that the increase in reported confi-
dence is significantly higher (p = 0.0002) for the category hand (1.03) than
for the category arm (0.4).

Time Spent. Participants required on average 15 minutes to finish the
study. For each question, the average answer time was 30.16 seconds. We
found a main effect of the category on answer time (p = 0.0158), confirmed
by the post-hoc Tukey test (p = 0.0158). Observers thus answered signifi-
cantly faster for questions in the category hand (26.51s) than for questions
in the category arm (32.92s). We also found a main effect of contact release
distance on answer time (p = 0.0014). Tukey post-hoc test showed that ob-
servers took longer to answers for questions with release distance between 0
and 2cm than for questions in the intervals 2 to 4cm, 4 to 6cm, 8 to 10cm,
and > 10cm (see Figure 6.8). We found no effect of the target identity on
answer time, and no interaction between factors.

Demographic Data. We found no significant effect of the demographic
data collected in the study on the choice of transfer result, or on the confi-
dence level reported.
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6.5 Discussion

In this study, we investigated the impact of self-contacts on the perception
of pose similarity. We presented observers with characters with a source
pose and a target identity, and proposed two new characters with the target
identity performing a pose similar to the source pose. One of these transfer
results had similar self-contacts than the source pose, while the other had
one self-contact released. Observers were tasked to choose which transfer
result best imitated the source pose, and to report their confidence in their
response on a 1 to 5 scale.

When presented with two possible transfer results, observers chose the
variation with a self-contact present in the source pose released in only
27.16% of cases. This selection rate was shown to be significantly lower
than a random 50% choice. This tends to confirm our hypothesis H1:
Pose variations with released self-contacts were perceived as different from
the source pose in most cases. Moreover, observers were significantly more
confident in their response when choosing the original pose with the same
self-contacts than the source pose (average confidence level: 3.60) than when
choosing the pose variation (average confidence level: 2.93). Choosing the
pose with the same contacts was thus perceived as the right choice with
more confidence, further validating our hypothesis.

The category of self-contact of the questions, i.e. whether the self-
contact removed in the pose variation involved the hand or the arm, had a
clear effect on responses. Observers chose significantly less often the pose
variation in the category hand (18.00%) than in the category arm (34.05%).
Observers were also more confident in their answer in the category hand (av-
erage confidence level 3.66) than in the category arm (3.24). This suggests
that observers were more confident in their choice, and perceived more eas-
ily when there was a difference in the hand contacts than when there was
a difference in the arm contacts. Moreover, while observers are in general
more confident when choosing the original pose over the pose variation, this
confidence increase is significantly higher for the category hand (1.03) than
for the category arm (0.4). This suggests that observers felt the pose with
similar contacts was the right choice with more confidence when the contact
involved the hand over the arm. Observers were also significantly faster in
their response when the question was in the category hand (26.5s) than for
the category arm (32.92s). This suggests that observers found it easier to
chose when there was a difference in hand contacts. These results confirm
our hypothesis H2; pose variations of the category hand were perceived as
different from the source pose more often than for the category arm.

We also found an effect on our results of the contact release distance,
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i.e. the average distance between vertices involved in the self-contact in the
pose variation with released self-contact. Observers tended to choose the
pose variation less often when the release distance was very high. They re-
ported increasing confidence levels when the release distance augmented by
several centimeters, and took significantly longer to answer when the release
distance was very low. All these results suggest that observers considered
a high release distance as a different pose, and had trouble choosing which
proposition best imitated the source pose when the release distance was low.
An interesting question would thus be to determine a threshold above which
self-contacts are perceived as released by the observers. However as we did
not control exactly the release distance in our generated examples, our data
is not suitable for this exploration. An interesting future direction would
be to duplicate our pose variations by applying increasing release distances
to each. By presenting observers with similar poses with a self-contact re-
leased at 1, 2, 3, 4, etc. centimeters, we should be able to determine the
threshold above which the self-contact is perceived as released, depending
on the body parts involved in the contact.

We found no effect of the identity of the target character on our results.
As we focused in this study on the effect of the body parts involved in the
contact, our study only tested 4 target identities, and only explored trans-
fers from a source pose with an average identity. Another study design
focusing on the impact of identity would be necessary to understand which
self-contacts are important for a given morphology. As discussed in Sec-
tion 3.3 and illustrated in Figure 3.6, we argue that some contacts are only
present to adapt to the morphology of the characters. To test this hypothe-
sis, an interesting future direction would be to design a similar study where
observers are presented with transfer results from an extreme morphology
to another, and not only from an average to an extreme morphology. Pre-
sented pose variation should also contain new self-contacts absent in the
pose in addition to released self-contacts, e.g. new contacts between the
elbows and the torso for character with a larger torso. Following the ob-
servations of Section 3.3, we expect that new self-contacts absent in the
source would be more acceptable to observers for bigger morphologies, and
conversely that released self-contacts would be more acceptable for thinner
morphologies.

6.6 Conclusion

In this Chapter, we explored the importance of self-contacts to the meaning
of the pose. We designed a perceptive study to measure the perception of
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pose similarity between a target and two poses with different self-contacts.
We found that poses with different self-contacts were considered different
in the majority of cases. Moreover, we found that the body parts involved
in the self-contact had an impact on its importance. Poses with a difference
in contacts involving the hands were perceived as different more often than
poses with a difference in contacts involving the arms. In deformation
transfer applications preserving constraints, such as Chapter 4, preserving
all self-contacts involving the hands while allowing contacts involving the
arms to change should thus give results that better preserve the meaning
of the poses.

Our results confirm that self-contacts are a meaningful property of the
pose, and highlight parameters that impact the importance of a specific
self-contact. However, further exploration must be conducted to be able to
robustly choose which contacts to preserve in a deformation transfer appli-
cation. An interesting direction for future work is to study the importance
of the morphology of characters in self-contact preservation. Another in-
teresting direction that was not explored in our study is the second body
part involved in the contact; while we compared self-contacts involving the
hand or the arm and another body part, we did not compare the relative
importance of contacts involving e.g. the torso, the head or the thighs of
the characters.

As shown in related studies on perception of pose equivalences, simple
similarity metrics often do not correlate with human perception [Tang et al.,
2008,Durupinar, 2021]. Moreover, very few studies explored pose equiva-
lences between characters with very different morphologies. Our results
combined with further studies would provide tools to build a pose sim-
ilarity metric between characters with varying morphologies. This metric
would greatly help evaluating or designing deformation transfer approaches.
It could in particular be used to select constraints to be preserved during
transfer in methods such as the ones presented in Chapters 4 and 5.





Chapter 7

Conclusion

7.1 Summary

Automatically creating animations of new virtual characters from existing
animations has become an important step of 3D content creation in medias
such as video games, animation movies or virtual reality. In this thesis, we
proposed new approaches to the deformation transfer problem. We specifi-
cally focused on adapting poses to new morphologies, while preserving con-
straints that define the meaning of the pose. For this purpose, we explored
the Identity Transfer strategy, i.e. the idea of changing the identity of a
character while preserving its pose instead of reposing a character with a
new identity. We showed that this strategy can be applied to obtain state-
of-the-art transfer results. Moreover, we demonstrated that this approach
helps alleviate the difficult problem of preserving pose equivalence in the
transfer result, as the method directly considers the source character’s pose.
In order to better understand pose equivalences, we focused on the impact
of self-contacts for the meaning of the pose. We showed that preserving
self-contacts present in the source pose during transfer resulted in realistic
and similar poses adapted to the new morphology in most cases. We further
demonstrated that this was coherent with human perception, as observers
considered removing a self-contact from a pose a significant difference in
most cases.

In Chapter 4 we proposed an implementation of the Identity Transfer
strategy in an optimization-based framework. Our method iteratively de-
forms the surface of a character in a specific pose in order to match its
identity to a target character, while applying minor corrections to the pose
in order to avoid collisions and preserve existing self-contacts. We proposed
new energy functions based on parameters describing the identity of char-
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acters: near-isometry and body part near-rigidity. We showed that this
method is able to adapt complex poses to extreme identities. Moreover,
this method can be applied with minimal adaptation to a wide variety of
shape classes, such as minimally or casually dressed humans, or animals.

In Chapter 5 we presented a data-driven strategy for identity transfer.
We proposed a deep encoder-decoder based architecture that predicts the
identity deformation between the source character already in the correct
pose and the result with the same pose and a new identity. We leveraged
identity parameters used in the previous chapter to create self-supervised
identity losses. Our architecture can thus be trained in a weakly supervised
setting, with as little as 1% pose supervision needed. The self-supervised
losses also allowed for inference time fine tuning, which greatly improves the
results. We showed that this approach better generalizes to poses unseen
at training time than the state-of-the-art, and is able to transfer complex
identities far from the training set, such as casually dressed humans.

Finally, in Chapter 6 we explored the impact of self-contacts on pose
equivalences perceived by human observers. We designed a perceptive study
in which observers were presented with several characters performing similar
poses up to a specific self-contacts, and were asked to select which pose best
imitated a target pose. Our study showed that observers consider poses
with different self-contacts as not equivalent in most cases. Moreover, we
showed that the body part involved in the contact had an impact on this
effect: self-contacts involving the hands of the characters were considered
more important to pose equivalences than others. This study is a first step
towards automatically selecting which self-contacts must be preserved for
pose equivalences between characters with different morphologies.

7.2 Limitations and Future Works

The deformation transfer methods presented in this thesis (Chapter 4 and
5) require inputs to be meshes in vertex-to-vertex correspondence. In our
experiments, we tackled this problem by using inputs from databases fitted
to a common template, and fitting this template to the meshes with dif-
ferent topologies. This pre-processing is light and only needs to be applied
once per mesh. Moreover it could be made automatic, using some compat-
ible re-meshing methods such as [Kraevoy and Sheffer, 2004, Yang et al.,
2018]. This is hence simpler and faster than standard rigging processes
traditionally used in computer animation. However, this condition on the
input limits the possible applications of our methods. While an additional
template fitting step can be used, it is not ideal as it adds complexity and
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a new source of errors to the methods. Recently, a lot of state-of-the-art
methods have moved past the need for common templates in their inputs, in
particular for deformation transfer applications [Wang et al., 2020,Cosmo
et al., 2020,Lombardi et al., 2021]. Therefore, an important future direction
for our work is to adapt the methods to inputs with arbitrary resolution.
The need for the common template in our approaches stems from different
constraints that could be solved in this future work:

• Vertex based architecture. The first constraint is that our meth-
ods compute features at the vertex level. In the optimization based
approach of Chapter 4, the deformation is computed for each vertex,
which are then moved in the direction of their normal. The mesh
fitting problem aims to approximate the geometry of an input mesh
to another with a different topology [Yeh et al., 2010]. A similar
approach could be applied in our method to compute the deforma-
tion of the source that would best approximate the local geometry
of the target with no vertex correspondences. In the deep-learning
method described in Chapter 5, we compute the network’s features
at the vertex level using spiral convolutions [Bouritsas et al., 2019].
Other feature computation methods that do not depend on vertices
number and ordering could be used in a similar encoder-decoder ar-
chitecture. [Wang et al., 2020, Cosmo et al., 2020] for example use
PointNet [Qi et al., 2017] and can thus theoretically take as inputs
point clouds of arbitrary size. Another recent and promising approach
is the use of implicit functions describing 3D surfaces. This approach
has been used to train deep learning networks with inputs of varying
topologies (e.g. [Park et al., 2019,Mescheder et al., 2019]), and has
already been applied successfully to the deformation transfer prob-
lem [Lombardi et al., 2021].

• Identity parameters defined at vertex level The second con-
straint is that losses based on the identity parameters proposed in
Section 3.2.2 require the evaluated mesh and the target identity to be
in vertex-to-vertex correspondence, e.g. same ordering of the neigh-
bours of each vertex for the near-isometry. This problem could be
alleviated by using other isometry and body part rigidity descriptors
that do not need a common template, such as e.g. geodesic distances
for the isometry [Cosmo et al., 2020].

In addition to a common template, our methods of Chapters 4 and
5 require inputs to be segmented in rigidly deforming body parts. The
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segmentation used in both methods (see Figure 3.4a) was done by hand
before applying the method, which is a heavy pre-processing step. However,
as it must be done only once for the chosen template, this can be considered
as negligible in the long term. In future works removing the need for a
common template, automatic body part segmentation methods could be
applied such as e.g. [Cuzzolin et al., 2007,Varol et al., 2018].

The identity transfer strategy explored in this thesis requires being able
to parameterize the identity independently from the pose. We argue that
identity should be recognizable across different poses in Section 3.2.1, and
propose to use near-isometry and body part rigidity as identity descriptors.
However, while these parameters give satisfying results in our methods,
they are not perfectly disentangled from the pose of the characters: surface
deformations such as muscle contractions or breathing cause non-rigid de-
formation of body parts, and the near-isometry assumption does not hold
close to the joints. This can cause artifacts such as the unrealistic surface
deformations discussed in Section 4.5, and is the reason for the need for
pose supervision in our deep learning method (Chapter 5). An interest-
ing future direction is thus designing a new identity parameter completely
disentangled from pose information, through e.g. statistical analysis of hu-
man shapes or observers identity recognition. This would allow us to train
our neural identity transfer method in a completely self-supervised setting,
which would further improve our results on complex poses unseen at train-
ing.

Finally, a limitation that our methods share with the state-of-the-art
on deformation transfer is the lack of a clear definition of pose equivalences
between characters with different morphologies. This results in imperfect
heuristics to preserve the meaning of the pose during transfer, such as e.g.
preserving all self-contacts (Chapter 4) or preserving distances between
body parts [Liu et al., 2018, Jin et al., 2018]. This also makes quanti-
tative evaluation of deformation transfer methods difficult. Indeed, these
methods are usually evaluated by computing a distance between their result
and a ground-truth (e.g. Chapter 5, [Zhou et al., 2020,Cosmo et al., 2020]).
These ground-truths are either captures of real characters performing the
pose (e.g. FAUST [Bogo et al., 2014] for [Cosmo et al., 2020]), which can
present inter-personal and contextual variations (see Figure 1.4), or result
of other deformation transfer approaches (e.g. As-Rigid-As-Possible defor-
mations for [Zhou et al., 2020]), which can thus present limitations from
these methods. Moreover, measuring equivalence to this ground truth with
metrics such as Euclidean distances was shown to be uncorrelated with hu-
man perception of pose equivalences [Tang et al., 2008,Durupinar, 2021].
An important future direction for the field of deformation transfer is thus
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the exploration of pose equivalences for characters with different morpholo-
gies. In Section 3.2.1, we argued that poses with small variations can still
be considered as similar (see Figure 1.4). Therefore, instead of trying to
determine if two poses are strictly equivalent or not, an interesting direc-
tion would be to determine how similar the poses are. In Chapter 6, we
proposed a first step towards understanding equivalences between poses of
different characters, focusing on the importance of self-contacts. Further
studies, focusing on self-contacts (see Section 6.6) and other pose equiva-
lence parameters, could be conducted in order to define and evaluate such
a pose distance metric.
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Gonçalves, D., and Multon, F. (2017). Normalized euclidean distance
matrices for human motion retargeting. In Proceedings of the Tenth In-
ternational Conference on Motion in Games, pages 1–6.

[Bogo et al., 2014] Bogo, F., Romero, J., Loper, M., and Black, M. J.
(2014). FAUST: Dataset and evaluation for 3D mesh registration. In
Proceedings IEEE Conf. on Computer Vision and Pattern Recognition,
Piscataway, NJ, USA. IEEE.

[Bogo et al., 2017] Bogo, F., Romero, J., Pons-Moll, G., and Black, M. J.
(2017). Dynamic faust: Registering human bodies in motion. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recogni-
tion, pages 6233–6242.

[Bouaziz et al., 2013] Bouaziz, S., Wang, Y., and Pauly, M. (2013). Online
modeling for realtime facial animation. ACM Transactions on Graphics,
32(4):1–10.

[Boukhayma et al., 2017] Boukhayma, A., Franco, J.-S., and Boyer, E.
(2017). Surface motion capture transfer with gaussian process regres-
sion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 184–192.

[Bouritsas et al., 2019] Bouritsas, G., Bokhnyak, S., Ploumpis, S., Bron-
stein, M., and Zafeiriou, S. (2019). Neural 3d morphable models: Spiral
convolutional networks for 3d shape representation learning and gener-
ation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7213–7222.

[Chan et al., 2019] Chan, C., Ginosar, S., Zhou, T., and Efros, A. A.
(2019). Everybody dance now. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 5933–5942.

[Chen et al., 2009] Chen, C., Zhuang, Y., Xiao, J., and Liang, Z. (2009).
Perceptual 3d pose distance estimation by boosting relational geometric
features. Computer Animation and Virtual Worlds, 20(2-3):267–277.



118 BIBLIOGRAPHY

[Chen et al., 2010] Chen, L., Huang, J., Sun, H., and Bao, H. (2010). Cage-
based deformation transfer. Computers & Graphics, 34(2):107–118.

[Chen et al., 2013] Chen, Y., Liu, Z., and Zhang, Z. (2013). Tensor-based
human body modeling. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 105–112.

[Chen and Zhang, 2019] Chen, Z. and Zhang, H. (2019). Learning implicit
fields for generative shape modeling. In Conference on Computer Vision
and Pattern Recognition, pages 5939–5948.

[Cheung et al., 2004] Cheung, G. K., Baker, S., Hodgins, J., and Kanade,
T. (2004). Markerless human motion transfer. In Proceedings. 2nd In-
ternational Symposium on 3D Data Processing, Visualization and Trans-
mission, 2004. 3DPVT 2004., pages 373–378. IEEE.

[Choi and Ko, 2000] Choi, K.-J. and Ko, H.-S. (2000). Online motion
retargetting. The Journal of Visualization and Computer Animation,
11(5):223–235.

[Chua et al., 2003] Chua, P. T., Crivella, R., Daly, B., Hu, N., Schaaf, R.,
Ventura, D., Camill, T., Hodgins, J., and Pausch, R. (2003). Training for
physical tasks in virtual environments: Tai chi. In IEEE Virtual Reality,
2003. Proceedings., pages 87–94. IEEE.

[Cosmo et al., 2020] Cosmo, L., Norelli, A., Halimi, O., Kimmel, R., and
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