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INTRODUCTION

Le groupe de Baumslag-Solitar BS(p, q), où p, q sont deux entiers non nuls, est le
groupe défini par la présentation suivante :

BS(p, q) := 〈a, t|tapt−1 = aq〉.

C’est une extension HNN de Z au-dessus Z. Selon le choix des paramètres p et q, les
groupes obtenus peuvent avoir des propriétés variées. Ils ont été introduits par Baumslag
et Solitar dans [BS62] en tant qu’exemples de groupes non hopfiens, c’est-à-dire possédant
des endomorphismes surjectifs non injectifs. Par exemple BS(2, 3) n’est pas hopfien, mais
BS(2, 4) l’est, bien qu’il ne soit pas résiduellement fini ([CL83]).

On appelle groupes de Baumslag-Solitar généralisés (GBS) les groupes isomorphes au
groupe fondamental d’un graphe de groupes fini dont tous les groupes de sommets et
d’arêtes sont cycliques infinis. La notion de graphes de groupes, développée par Serre
dans [Ser77], est une manière d’encoder les groupes fondamentaux de certains espaces :
la définition de leur groupe fondamental est une variante du groupe fondamental usuel.

Les groupes de Baumslag-Solitar appartiennent à cette famille, BS(p, q) étant le groupe
fondamental du graphe de la figure 1. La même figure présente également l’arbre de
Bass-Serre associé ou revêtement universel du graphe de groupes, qui est l’analogue du
revêtement universel usuel : il admet une action du groupe fondamental du graphe de
groupes, mais au lieu d’être libre, cette action admet des stabilisateurs de sommets ou
d’arêtes qui sont donnés à conjugaison près par les étiquettes du graphe de groupes.

Prenons l’exemple de BS(p, q), illustré par la figure 2. On prend un cercle S1 et un
anneau S1 × [0, 1]. On recolle l’un des deux bords de l’anneau sur le cercle en faisant p
tours. On recolle l’autre bord en faisant q tours avec la même orientation. L’espace obtenu
a pour groupe fondamental BS(p, q).

Pour un graphe de groupes cycliques plus compliqué Γ, on prend un cercle par sommet
et un anneau par arête. On recolle de la même manière les anneaux sur les cercles avec un
nombre de tours non nul correspondant à l’indice de l’inclusion du groupe d’arête dans le
groupe de sommet. On obtient ainsi un espace dont le groupe fondamental est π1(Γ). Un
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Introduction

Figure 1 – Un graphe de groupes dont BS(p, q) est le groupe fondamental, arbre de
Bass-Serre associé.

•Z ←↩
×q

↪→×
p

Z

×p
×
q

Figure 2 – Recollement d’anneaux et de cercles et graphe de groupes associé

groupe de Baumslag-Solitar généralisé est le groupe fondamental d’un espace construit
par un tel recollement d’anneaux sur des cercles.

Dans les graphes de groupes à groupes de sommets et d’arêtes cycliques infinis, on
choisit un générateur pour chaque groupe de sommet et d’arête. L’inclusion d’un groupe
d’arête dans un groupe de sommet est donnée par un entier signé non nul. Ainsi on
peut encoder ces graphes de groupes par des graphes étiquetés, qui sont des graphes
dans lesquels chaque arête est munie de deux étiquettes, une à chaque extrémité, portant
chacune un entier non nul représentant l’inclusion.

L’écriture d’un groupe GBS comme groupe fondamental d’un graphe de groupes n’est
pas unique en général : une infinité de graphes de groupes différents peuvent avoir des
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Introduction

groupes fondamentaux isomorphes. Le problème d’isomorphisme consiste à décider si deux
graphes étiquetés Γ1, Γ2 ont des groupes fondamentaux isomorphes. On ne connaît pas de
solution générale à ce problème. Il existe des solutions dans certains cas particuliers : si le
premier nombre de Betti de Γ1 et Γ2 est 1, Clay et Forester prouvent dans [CF08a] qu’on
peut décider si π1(Γ1) ' π1(Γ2). Dans [Lev07] Levitt définit un critère sur les graphes
étiquetés qui permet d’identifier les groupes GBS dont le groupe d’automorphismes ne
contient pas F2, et est donc, dans un sens, assez petit. Pour ces groupes GBS, il montre
que le problème d’isomorphisme a une solution.

D’après la théorie de Bass-Serre, il existe une équivalence entre

— les groupes fondamentaux de graphes de groupes dont tous les groupes de sommets
et d’arêtes sont Z

— les groupes qui agissent sur un arbre simplicial avec stabilisateurs de sommets et
d’arêtes isomorphes à Z

Ici, plus particulièrement, on s’intéresse au groupe des automorphismes extérieurs des
groupes de Baumslag-Solitar (généralisés). Le groupe des automorphismes extérieurs d’un
groupe G est

Out(G) := Aut(G)/ Inn(G)

où Aut(G) est le groupe des automorphismes de G et Inn(G) := {cg : x 7→ gxg−1, g ∈ G}
est le sous-groupe distingué des automorphismes intérieurs.

Selon G, les groupes d’automorphismes extérieurs peuvent être très différents. Par
exemple, Out(BS(2, 3)) est fini. Au contraire Out(BS(2, 4)) n’est pas de type fini et
contient un groupe libre non abélien. Collins donne une présentation finie de Aut(BS(p, q))
lorsque p et q sont premiers entre eux dans [Col78]. Dans [Gil+00], Gilbert, Howie, Me-
taftsis et Raptis en donnent une présentation lorsque p et q ne sont pas multiples l’un
de l’autre ; le groupe Out(BS(p, q)) est alors dihédral d’ordre 2|p − q|. Dès que q est un
multiple de p et |p| > 1 en revanche, le groupe Out(BS(p, q)) n’est même pas de type fini.
Collins et Levin ont montré ce résultat de manière algébrique et trouvé une présentation du
groupe d’automorphismes dans [CL83]. Plus tard, Clay dans [Cla09] a également montré
ce résultat en utilisant des méthodes géométriques, en utilisant un espace de déformation
que nous définirons plus tard.

On peut s’attendre à ce que les groupes d’automorphismes des groupes GBS soient
également très variés. Dans cette thèse l’approche utilisée pour les étudier est une approche
géométrique. À l’instar des groupes libres, les groupes GBS ont beaucoup d’actions sur
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Introduction

des arbres, et notre étude de Out(G) sera basée sur un espace dont les points sont des
actions de G sur des arbres avec certaines restriction sur les stabilisateurs de sommets et
d’arêtes. C’est ce qu’on appelle l’espace de déformation. C’est un espace contractile muni
d’une action naturelle de Out(G).

Enfin, un moyen d’en apprendre davantage sur Out(G) est de trouver une action in-
téressante de Out(G) sur un espace hyperbolique au sens de Gromov. L’analogie avec
l’étude de Out(FN) est une motivation. En effet, Out(FN) admet une action sur le com-
plexe des facteurs libres, défini dans [HV98] et dont l’hyperbolicité a été prouvée dans
[BF14]. Dans cette action, les automorphismes qui agissent de façon hyperbolique sont les
automorphismes complètement irréductibles. Il existe par ailleurs d’autres complexes hy-
perboliques intéressants sur lesquels Out(FN) agit. Cette action de Out(FN) est également
à rapprocher de l’action du groupe modulaire d’une surface Mod(Sg) sur le complexe des
courbes, qui en est l’inspiration. L’hyperbolicité du complexe des courbes a été montrée
dans [MM99], et les éléments qui agissent dessus de façon loxodromique sont les éléments
dits pseudo-Anosov de Mod(Sg).

Espace de déformation, un analogue de l’outre-espace

Un groupe GBS G agit sur des arbres et il existe généralement beaucoup d’actions de
G sur des arbres. L’espace de déformation est un espace dont les points correspondent à
certaines de ces actions.

Une action sur un arbre peut se représenter par un graphe de groupes, qui a l’avantage
d’être fini. D’après la théorie de Bass-Serre ([Ser77]), le groupe π1(Γ) où Γ est un graphe de
groupes agit sur un arbre (appelé le revêtement universel de Γ) avec des stabilisateurs de
sommets et d’arêtes cycliques infinis. Réciproquement, la donnée de l’action d’un groupe
G sur un arbre avec des stabilisateurs cycliques infinis permet de retrouver le graphe de
groupes, dont le groupe fondamental est isomorphe à G. Un graphe de groupes marqué,
c’est-à-dire un graphe Γ muni d’une identification entre π1(Γ) et G, ou un graphe étiqueté
marqué, contient la même information que l’action de G sur le revêtement universel de Γ.

Partant d’une action ρ de G sur un arbre T , il existe plusieurs moyens de la modifier
pour en faire une nouvelle action. On peut tordre l’action ρ par un automorphisme φ ∈
Aut(G) pour obtenir une nouvelle action ρφ = ρ ◦ φ sur T . En outre, il existe en général
une infinité de graphes de groupes ayant un groupe fondamental isomorphe à G.

Plus généralement, on peut effectuer des pliages (de Stallings) pour construire de
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Figure 3 – Glissement de l’arête e sur l’arête f et illustration en termes de cercles et
d’anneaux. Les cercles de même couleur sont recollés ensemble.

nouvelles actions. Donnons un exemple d’une telle construction.

Exemples A. Soit G := BS(2, 4) = 〈a, t|ta2t−1 = a4〉. Le graphe en haut à gauche de la
figure 3 représente le groupe G (bien qu’il soit différent du graphe de la figure 1). On peut
faire glisser l’arête e le long de la boucle f , c’est-à-dire qu’on déplace son point d’attache le
long de f . Le dessin du bas représente l’opération dans l’espace fait d’anneaux et cercles :
on fait glisser le cercle d’attache de l’anneau du haut le long de l’anneau de la boucle (en
rouge). Comme le nombre de tours à chacun des bouts de l’anneau est différent, après le
glissement, le cercle d’attache fait deux fois le tour du cercle d’attache initial.

Les espaces de déformations ont été introduits par Forester ([For06]). Ils regroupent
l’ensemble des actions de G sur des arbres avec certains stabilisateurs. Pour des groupes
GBS, on peut les définir de la façon suivante.

Définition B. [For02, Corollaire 6.10] Soit G un groupe GBS non élémentaire, c’est-à-
dire non isomorphe à Z, Z2 ou le groupe fondamental d’une bouteille de Klein. Soit T
l’ensemble des actions minimales par isométries de G sur des arbres métriques simpliciaux
T à stabilisateurs de points cycliques infinis. Soit ∼ la relation d’équivalence sur T mini-
male telle que T ∼ T ′ s’il existe une homothétie G-équivariante qui envoie T sur T ′. On
appelle espace de déformation (cyclique) l’ensemble D := T / ∼.
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On munit D d’une topologie. L’espace des actions minimales de G sur des arbres
métriques simpliciaux a une structure naturelle d’espace simplicial, à laquelle est associée
la topologie faible. Comme D s’identifie à la réunion d’une partie des simplexes, il hérite
de la topologie faible. L’espace D hérite également de la topologie des fonctions longueur
(ou topologie des axes) : pour un arbre T , une fonction longueur est lT : G→ R, g 7→ ‖g‖T
[MS84]. Cette topologie est équivalente à la topologie de Gromov équivariante [Pau89]. La
topologie faible et la topologie des axes sont équivalentes sur D, ce qui est une conséquence
du fait que les arbres de D sont localement finis [GL07, Proposition 5.4].

L’espace D admet une action de Aut(G) par précomposition de l’action telle que
Inn(G) agit trivialement sur D. Ainsi la précomposition définit bien une action de Out(G)
sur D.

On peut considérer D comme un analogue de l’outre-espace CVN pour le groupe
d’automorphismes du groupe libre Out(FN), ou encore comme un analogue de l’espace de
Teichmüller pour un groupe modulaire de surface.

L’espace D est essentiellement un complexe simplicial contractile ([GL07]).

Automorphismes irréductibles, facteurs cycliques

Une question qui s’est révélée cruciale pour l’étude des automorphismes de groupes
libres est l’existence de facteurs libres préservés par un automorphisme.

Définition C. Soit F un groupe. On dit qu’un sous-groupe A ≤ F est un facteur libre
de F s’il existe un sous-groupe B tel que F est le produit libre A ∗B.

Remarque D. Prenons un isomorphisme FN ' π1(Γ) où Γ est un graphe. Si Γ′ est un sous-
graphe connexe non vide de Γ, on a une inclusion π1(Γ′) ↪→ π1(Γ) qui dépend d’un choix
de point base (voir la figure 4). Par le théorème de Van Kampen, on peut montrer que le
sous-groupe de FN correspondant est un facteur libre. Réciproquement, tout facteur libre
peut être obtenu de cette manière.

Il existe une manière de voir les facteurs libres au revêtement universel. Lorsqu’on
relève Γ′ dans le revêtement universel de Γ, qui est un arbre, on obtient un sous-arbre.
Tous les translatés de ce sous-arbre sous l’action de π1(Γ) sont disjoints deux à deux. On
peut les écraser, c’est-à-dire remplacer chaque sous-arbre par un sommet sur lequel on
rattache les arêtes. On obtient une nouvelle action de FN sur un arbre et le stabilisateur
de chacun des nouveaux sommets créés est un conjugué de π1(Γ′). Réciproquement, le
stabilisateur d’un sous-arbre disjoint de tous ses translatés est un facteur libre.
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Γ′

Γ′

Figure 4 – Un facteur libre vu comme sous-graphe d’un graphe de groupe fondamental
FN

Définition E. Soit φ ∈ Out(FN). On dit que φ est complètement irréductible si aucune
puissance de φ ne préserve la classe de conjugaison d’un facteur libre différent de {1} ou
FN .

Les automorphismes complètement irréductibles sont un analogue des éléments pseudo-
Anosov pour les groupes modulaires. Ils agissent de façon loxodromique sur l’outre-espace
et possèdent ce qu’on appelle des représentants train track, qui constituent un axe de
translation. Les représentants train track sont un outil indispensable à l’étude de ces
automorphismes.

Dans le cas des groupes GBS, les facteurs libres ne sont pas la bonne notion. Une
notion analogue qui convient dans ce cas est la notion de facteur cyclique (voir définition
1.2.2).

Définition F. Soit G un GBS. On dit que A est un facteur cyclique de G s’il existe un
graphe de groupes cycliques Γ avec une identification G ' π1(Γ) (au sens des graphes de
groupes) et un sous-graphe connexe Γ′ ⊂ Γ tel que A s’identifie au sous-groupe π1(Γ′) ⊂
π1(Γ) (défini à conjugaison près).

Remarques G. — De façon équivalente, A est un facteur cyclique de G s’il existe un
arbre T ∈ D et un écrasement T → T ′ tel que A est un stabilisateur de sommet de
T ′.

— On peut définir un raffinement de la notion de facteur cyclique, qui consiste à im-
poser une condition supplémentaire sur les groupes d’arêtes du graphe de groupes

13



Introduction

Γ. Nous appelons cela un facteur spécial. Un facteur spécial est toujours un facteur
cyclique.

On peut alors définir des automorphismes complètement irréductibles en remplaçant
« facteur libre »par « facteur cyclique »(voire « facteur spécial », ce qui donne une notion
un peu différente).

Lorsqu’on étudie un automorphisme φ ∈ Out(G), on peut considérer un représentant
qui est une application f : T → T vérifiant f(gt) = φ(g)f(t) pour tout t ∈ T et tout g ∈ G.
Il peut arriver que ce représentant laisse invariante une sous-forêt G-invariante propre
F ⊂ T . En écrasant cette forêt, c’est-à-dire en identifiant les points de T qui appartiennent
à une même composante connexe de la forêt, on obtient un nouvel arbre. Si la forêt possède
une composante non bornée alors le stabilisateur de cette composante est un facteur
cyclique et c’est un stabilisateur de sommet dans l’arbre écrasé. Sa classe de conjugaison
est alors périodique par l’automorphisme : l’automorphisme est alors réductible.

Des représentants train track existent dans certains cas particuliers. Pour les groupes
de Baumslag-Solitar par exemple, Bouette montre dans [Bou16] que tout automorphisme
est réductible. En revanche, quitte à changer d’espace de déformation en autorisant des
stabilisateurs de sommets plus gros, il existe des automorphismes irréductibles et ceux-ci
admettent des train tracks dans le nouvel espace de déformation. Un autre exemple est
celui des groupes GBS sans module entier non trivial. Pour ceux-ci, il existe une borne
sur le nombre d’orbites d’arêtes pour tous les éléments de D ([For06]), ce qui permet
de prouver l’existence de train tracks pour tout automorphisme irréductible. L’existence
d’automorphismes irréductibles en revanche n’est pas systématique !

Dans le cas général, on ne sait pas si l’existence de représentants train track pour les
automorphismes complètement irréductibles est toujours vraie.

Comprendre les facteurs cycliques

Dans le cas des groupes libres, il existe un algorithme qui permet de décider, étant
donné un élément g ∈ FN , s’il existe un facteur libre qui le contient, et le cas échéant, de
trouver un tel facteur libre.

La question se reformule en termes de facteurs spéciaux pour les groupes de Baumslag-
Solitar et nous y répondons positivement :

Théorème H. Il existe un algorithme qui prend en entrée un groupe GBS sous forme
de graphe de groupes et un élément loxodromique g ∈ G sous forme d’un chemin dans
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le graphe de groupes, et qui retourne soit une preuve qu’aucun facteur cyclique propre ne
contient g, soit un facteur cyclique propre qui contient g sous forme d’un sous-graphe du
graphe de groupes.

Un élément contenu dans un facteur cyclique propre est appelé un élément simple.
Nous montrons en fait une version plus forte de ce résultat (théorème 1.3.3). Un sys-

tème de facteurs cycliques se définit comme un sous-graphe éventuellement non connexe
d’un graphe de groupes Γ ; c’est l’ensemble des sous-groupes de G qui s’identifient au
groupe fondamental d’une des composantes connexes. On peut y penser comme un en-
semble de facteurs cycliques « compatibles entre eux ». Le théorème ci-dessus peut s’ap-
pliquer à une famille finie g1, . . . , gn d’éléments loxodromiques de G, et permet alors de
décider s’il existe un système de facteurs cycliques tel que chaque gi est contenu dans un
membre du système de facteurs cycliques.

Notons que le graphe de groupes retourné par l’algorithme n’est en général pas un sous-
graphe du graphe de groupes initial. En effet, il existe en général une infinité de définitions
de G comme groupe fondamental d’un graphe de groupes et il n’est pas évident de savoir
si l’on peut en trouver une dans laquelle les gi sont dans un sous-graphe. Le principe de
l’algorithme est de trouver un graphe de groupes particulier pour G dans lequel on peut
voir le facteur cyclique recherché (ou le système de facteurs cycliques) comme sous-graphe,
ou bien de montrer qu’un tel graphe de groupes n’existe pas.

Les motivations pour un tel algorithme sont diverses. On peut rapprocher la question
ci-dessus du problème de conjugaison par exemple : étant donnés g et h dans G, existe-t-il
a ∈ G tel que g = aha−1 ? Ce dernier problème a été résolu par Beeker dans [Bee15]. On
peut également la rapprocher du problème de Whitehead consistant à décider si deux
éléments du groupe sont dans la même orbite sous l’action du groupe d’automorphismes :
étant donnés g et h, existe-t-il φ ∈ Aut(G) tel que φ(g) = h ? Ce problème est actuellement
ouvert.

Le théorème s’appuie sur un critère très facile à mettre en œuvre pour garantir qu’un
élément g ∈ G n’est pas simple, ce que nous utiliserons plus tard.

D’autre part, les méthodes utilisées peuvent s’adapter dans une certaine mesure à
d’autres contextes. Pour étudier les automorphismes irréductibles, nous utiliserons une
variante de cet algorithme concernant les laminations, par exemple.

La méthode utilisée pour l’algorithme est basée sur les graphes de Whitehead. Étant
donné g ∈ G loxodromique, un arbre T ∈ D et un sommet v ∈ T , le graphe de Whitehead
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WhT (g, v) est le graphe défini ainsi :

— les sommets sont les arêtes de T avec sommet initial v

— on relie e et e′ s’il existe un conjugué de g dont l’axe contient e et e′.

Les graphes de Whitehead sont une manière d’encoder le trajet des axes des conjugués de
g dans l’arbre. Ils permettent de savoir quelles modifications de l’arbre on peut effectuer
sans changer la longueur de translation de g. L’algorithme est basé sur des dépliages
et éclatements, qui sont des modifications de l’arbre qui augmentent son covolume mais
préservent la longueur de translation de g ; la description de l’algorithme figure à la fin
de la section 1.3 du chapitre 1.

Un facteur cyclique d’un groupe GBS est lui-même un groupe GBS. L’algorithme du
théorème H peut être itéré pour trouver une suite de facteurs cycliques de plus en plus
petits qui contiennent un élément g. Une telle suite est en fait nécessairement stationnaire.
On a de plus :

Théorème I. Soit g ∈ G un élément loxodromique. Il existe un unique facteur cyclique
minimal qui contient g.

Si g1, . . . , gn est une collection finie d’éléments loxodromiques de G alors il existe un
unique système de facteurs cycliques minimal qui contient g1, . . . , gn.

On en déduit le corollaire suivant :

Corollaire J. Il existe un algorithme qui prend en entrée un groupe GBS G sous forme de
graphe de groupes et une collection finie G d’éléments loxodromiques de G, et qui trouve le
plus petit système de facteurs cycliques contenant G sous la forme d’un sous-graphe d’un
graphe de groupes pour G.

Détection des automorphismes complètement irréduc-
tibles

La deuxième partie de ce travail est consacrée au problème suivant :

Problème K. Existe-t-il un algorithme qui, étant donné un groupe GBS G et un au-
tomorphisme φ ∈ Out(G) (ou φ ∈ Aut(G)), permet de décider si φ est complètement
irréductible ?
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L’analogue pour les groupes libres existe. Kapovich en donne un dans [Kap14]. L’al-
gorithme repose sur la recherche d’éléments périodiques pour l’automorphisme ainsi que
sur le calcul des graphes de Whitehead de la lamination stable dans un représentant train
track.

Un représentant de l’automorphisme φ ∈ Aut(G) est une application f : T → T telle
que pour tous g ∈ G, t ∈ T on ait f(gt) = φ(g)f(t). Un représentant train track est un
représentant tel que pour toute arête e ∈ T , pour tout n ∈ N l’image fn(e) soit une géo-
désique, c’est-à-dire ne présente pas de « demi-tour ». Les représentants train track ont
été introduits par Bestvina et Handel dans [BH92]. Dans [FM15] Francaviglia et Martino
étendent la notion aux automorphismes de produits libres et montrent l’existence de train
tracks pour les automorphismes irréductibles. Dans [Mei15], Meinert montre également
l’existence de train tracks pour le cas des groupes dont l’espace de déformation contient
un nombre fini d’orbites de simplexes. Cela s’applique à quelques groupes GBS, mais
pas à tous. Pour les groupes de Baumslag-Solitar BS(p, pn) Bouette montre l’existence
de représentants train track dans un espace de déformation autre que l’espace de défor-
mation cyclique. Dans ce cas, il n’y a pas d’automorphisme irréductible dans l’espace de
déformation cyclique.

Les représentants train track sont des représentants privilégiés. D’une part, la propriété
sur les itérés des arêtes est très puissante. D’autre part, ce sont des représentants qui
minimisent dLip(T, T ·φ) où dLip est la métrique de Lipschitz sur D, que nous introduirons
un peu plus loin.

La lamination stable est une famille de géodésiques bi-infinies de l’arbre obtenue en
itérant f sur les arêtes, ce qui produit des segments de plus en plus longs et jamais
« pliés »par f . Elle est stable par f .

Un résultat clé est le suivant :

Théorème L (Kapovich). Soit φ ∈ Out(FN) admettant un représentant train track irré-
ductible f : T → T sans élément périodique simple. Alors φ est complètement irréductible
si et seulement si tous les graphes de Whitehead de la lamination stable dans T sont
connexes.

Notons que si φ n’admet pas de représentant train track irréductible ou bien si φ
possède un élément périodique simple, φ est réductible.

On a un énoncé analogue pour les groupes GBS, avec une nuance. La notion d’élément
périodique est remplacée par celle d’élément pseudo-périodique, que nous détaillerons juste
après :
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Théorème M. Soit G un groupe GBS. Soit φ ∈ G admettant un représentant train track
irréductible f : T → T sans élément pseudo-périodique simple. Alors φ est complètement
irréductible si et seulement si tous les graphes de Whitehead de la lamination stable dans
T sont connexes.

Un élément g ∈ G est pseudo-périodique si ‖φn(g)‖T est borné pour n ∈ N. Il existe
une caractérisation des éléments pseudo-périodiques en termes de chemins de Nielsen qui
sont une forme de chemins périodiques dans le représentant train track. En général, la
classe de conjugaison d’un élément pseudo-périodique n’est pas périodique, mais la classe
du facteur cyclique minimal le contenant est périodique (voir la proposition 2.3.11). C’est
pourquoi l’existence d’éléments pseudo-périodiques simples implique la réductibilité de φ.

Alors que l’algorithme de Kapovich implique d’utiliser un algorithme pour calculer un
représentant train track, par exemple celui de [BH92], on ne peut pas faire cela pour les
groupes GBS car l’existence d’un représentant train track n’est pas connue.

On peut toutefois noter que les étapes de l’algorithme de Bestvina et Handel se trans-
posent sans problème aux groupes GBS, bien que ce ne soit pas le cas des arguments qui
permettent de prouver que l’algorithme termine. S’il termine toutefois, il donne bien un
train track. Notre algorithme ne fonctionne pas sans la donnée d’un train track.

Pour appliquer le théorème M, il faut savoir faire plusieurs choses. Il faut pouvoir
tester le fait que f est un représentant train track irréductible, ce qui est algorithmique.
Plus complexe, il faut être capable de décider s’il existe des éléments pseudo-périodiques
simples. On verra qu’on sait résoudre les deux problèmes suivants :

— Trouver les sous-groupes d’éléments pseudo-périodiques (proposition 2.4.4)

— Décider si un élément donné est simple (théorème 1.3.3)

mais on ne sait pas décider si un sous-groupe contient un élément simple. Enfin, il faut
être capable de calculer les graphes de Whitehead de la lamination stable de manière
algorithmique, ce qui est possible car l’arbre possède un nombre fini d’orbites de tournants
et la lamination stable est quasi-périodique (lemme 2.1.21).

Ainsi on a le résultat suivant :

Théorème N. Il existe un algorithme qui prend en entrée un groupe GBS G, un auto-
morphisme φ ∈ Aut(G) admettant un représentant train track f : T → T , qui décide si
φ admet des éléments dont la classe de conjugaison est pseudo-périodiques, et dans le cas
contraire, il décide si la classe de φ dans Out(G) est complètement irréductible.
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Alors que les automorphismes de groupes de Baumslag-Solitar BS(p, pn) admettent
des représentants train track dans un espace de déformation différent de l’espace de dé-
formation cyclique (voir [Bou16]), il n’est malheureusement pas possible de leur appliquer
l’algorithme ci-dessus. En effet, les démonstrations utilisent à plusieurs reprises le fait que
les arbres de l’espace de déformation soient localement finis, ce qui n’est pas le cas dans
l’espace de déformation modifié pour BS(p, pn).

Axes fortement contractants pour les automorphismes
de groupes GBS

La dernière partie de cette thèse vise à montrer que D admet une certaine propriété
de courbure négative, à savoir que les axes de certains automorphismes complètement
irréductibles sont fortement contractants. Une telle propriété est montrée par Algom-Kfir
dans [Alg11] pour l’outre-espace.

Commençons par définir sur D la métrique de Lipschitz. Soit T, T ′ ∈ D et f : T → T ′

une application lipschitzienne G-équivariante. On note Lip(f) la constante de Lipschitz
de f .

On pose Lip(T, T ′) = inff :T→T ′ Lip(f). On définit la métrique de Lipschitz par

dLip(T, T ′) = log
(

covol(T )
covol(T ′) Lip(T, T ′)

)

C’est une pseudométrique asymétrique sur D (voir la figure 5 pour des exemples) : l’in-
égalité triangulaire est vraie, mais il existe T 6= T ′ tel que dLip(T, T ′) = 0, et il existe T, T ′

tel que dLip(T, T ′) 6= dLip(T ′, T ).
Lorsqu’un automorphisme φ ∈ Out(G) admet un représentant train track irréductible

f : T → T ·φ, celui-ci vérifie dLip(T, T ·φ) = log(Lip(T, T ·φ)). Mieux, on a dLip(T, T ·φn) =
n log(Lip(T, T ·φ)) et les points (T ·φn)n∈Z sont alignés le long d’une géodésique bi-infinie
de D. Remarquons que comme dLip est asymétrique, un chemin peut être une géodésique
lorsqu’on la parcourt dans un sens mais pas dans l’autre sens.

Ainsi un automorphisme irréductible qui admet un représentant train track agit de
façon loxodromique sur l’espace de déformation D, et il admet un axe de translation,
c’est-à-dire une géodésique bi-infinie invariante de D sur laquelle φ agit par translation.

Dans l’outre-espace, les automorphismes complètement irréductibles, qui admettent
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•2•12
1

Pliage de e avec les arêtes
de la même orbite k fois

Lip(T, T ′) = 1

Lip(T ′, T ) ∼ kα

•2•2k2
1

Figure 5 – La métrique de Lipschitz est une pseudo-métrique

toujours un train track, ont également un axe de translation. Algom-Kfir a montré dans
[Alg11] que l’on peut définir une projection sur un tel axe et que cette projection est
fortement contractante : soit πL : CVN → L la projection sur l’axe L qui à un point
X ∈ CVN associe le point πL(X) ∈ L qui minimise la distance dLip(X, πL(X)). Il existe
une borne D > 0 telle que si B est une boule sortante qui n’intersecte pas L alors
diam πL(B) < D.

Cette propriété permet entre autres de définir la projection d’un axe sur un autre et de
montrer une version de l’inégalité de Behrstock pour cette projection. Cela permet d’ap-
pliquer la construction de Bestvina-Bromberg-Fujiwara ([BBF15]) pour construire une
action de Out(FN) sur un quasi-arbre qui est, à plus forte raison, un espace hyperbolique
au sens de Gromov. Cette application constitue une motivation forte pour trouver un
analogue pour les groupes GBS, d’autant plus qu’on ne connaît pas d’action intéressante
des groupes d’automorphismes de groupes GBS sur des espaces hyperboliques.

Nous montrons la propriété de forte contraction pour un axe d’automorphisme de
groupe de Baumslag-Solitar généralisé :

Théorème O. Soit G un groupe GBS défini par un graphe Γ avec b1(Γ) ≥ 3. Soit φ ∈
Out(G) un automorphisme complètement irréductible sans élément pseudo-périodique et
f : T → T un représentant train track pour φ, et f ′ : T ′ → T ′ un représentant train track
pour φ−1. L’automorphisme φ admet un axe Lf ⊂ D. Alors on peut définir une projection
au point le plus proche πf : D → Lf tel qu’il existe une constante D > 0 telle que toute
boule sortante B→(x, r) qui n’intersecte pas Lf vérifie

diam πf (B→(x, r)) ≤ D

L’automorphisme φ−1 admet également un axe, qui est généralement différent, mais
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les deux axes sont à distance bornée l’un de l’autre.
En revanche, la question d’étendre la propriété aux projections d’un axe sur un autre

est encore ouverte. La principale raison à cela est la différence entre la métrique de Lip-
schitz dans l’outre-espace et dans D. La preuve d’Algom-Kfir utilise une propriété de
quasi-symétrie de la métrique de Lipschitz sur la partie épaisse de l’outre-espace. Il n’y
a pas de propriété analogue dans D, notamment lorsque l’espace de déformation est de
dimension infinie. Il est même parfois possible de trouver T, T ′ tels que dLip(T, T ′) = 0 et
dLip(T ′, T ) soit arbitrairement grand.

Soit X ∈ D. On veut définir la projection de Y sur Lf , qui est une géodésique qui
relie les points . . . T · φ−1, T, T · φ, T · φ2 . . .

Définition P. Un candidat dans X est un élément g ∈ G tel que l’application π :
AxeX(g)/〈g〉 → X/G prend l’une des formes suivantes, illustrées par la figure 6 :

— une boucle

— un huit : deux cercles plongés qui s’intersectent en exactement un point

— un haltère : deux cercles plongés disjoints reliés par un segment

— un haltère simplement dégénéré : l’un des deux cercles de l’haltère est réduit à un
point

— un haltère doublement dégénéré : les deux cercles sont réduits à des points.

Un candidat traverse chaque arête au plus deux fois.

Lemme Q. Soit X, Y dans D. Il existe un candidat gX de X tel que

Lip(X, Y ) = ‖gX‖Y
‖gX‖X

L’approche pour calculer dLip(X,Lf ) consiste donc à évaluer ‖gX‖T ·φn‖gX‖X
en faisant varier

n pour tous les candidats, ces derniers existant en nombre fini.
Étant donné un élément simple g ∈ G, on peut considérer son axe dans chacun des

T · φn pour n ∈ Z (et chacun des T ′ · φn également). L’axe de g n’est pas forcément légal
et se découpe en segments légaux maximaux. On définit Legf (g) comme la proportion de
l’axe de g constituée de segments légaux de longueur supérieure à une certaine constante
κf . Un fait essentiel est qu’à partir d’un certain rang pour n croissant, Legf (g) dépasse un
certain seuil et on a alors ‖φn(g)‖T → ∞ avec une croissance exponentielle et contrôlée
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Boucle Huit Haltère

•

Haltère simplement dégénéré

• •

Haltère doublement dégénéré

Figure 6 – Les cinq formes possibles de candidats

(Lemme 3.5.1). L’idée est que les longs segments légaux prennent de plus en plus de place
dans l’axe de g.

On peut définir de même Legf ′(g). On a le résultat suivant lorsque φ n’a pas d’élément
pseudo-périodique :

Lemme R. Il existe une constante ε0 > 0 et N ∈ N tels que pour tout élément loxodro-
mique g ∈ G on ait

Legf (φN(g)) > ε0 ou Legf ′(φ−N(g)) > ε0

Ce lemme, prouvé dans [BFH97] pour les groupes libres, permet de montrer que {n ∈
Z|‖g‖T ·φn minimal} est de diamètre borné indépendamment de g.

On peut ainsi définir un sous-segment de l’axe de diamètre borné indépendamment de
X, que nous appelons πf (X).

Cette projection admet des propriétés de courbure négative, telles que :

Lemme S. Il existe s, c > 0 telles que pour tout Y ∈ D, pour tout S ∈ Lf , si d(πf (Y ), S) >
s alors d(Y, S) ≥ d(Y, πf (Y )) + d(πf (Y ), S)− c.

Un ingrédient important de la preuve est donné par la proposition suivante. On dit
qu’une paire d’éléments α, β ∈ G est simple s’il existe un système de facteurs cycliques
qui les contient tous les deux. Étant donné L > 0, on dit que α contient un L-morceau
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de la lamination stable Λ+(φ) si l’axe de α contient un segment de feuille de Λ+(φ) de
longueur au moins L. On a :

Proposition T. Il existe L > 0 tel que pour tout S ∈ Lf on ait :

— Si β ∈ G contient à la fois un L-morceau de Λ+(φ) et un L-morceau de Λ−(φ) alors
β n’est pas contenu dans un facteur cyclique

— Si α ∈ G contient un L-morceau de Λ+(φ) et β ∈ G contient un L-morceau de
Λ−(φ) alors la paire {α, β} n’est pas simple.

La preuve de ce résultat utilise les graphes de Whitehead des laminations stable et
instable pour donner des informations sur ceux de α et β. Le théorème 1.3.3 permet alors
de conclure.
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Chapitre 1

WHITEHEAD ALGORITHM FOR

AUTOMORPHISMS OF GENERALIZED

BAUMSLAG-SOLITAR GROUPS

Baumslag-Solitar groups, defined by BS(p, q) = 〈a, t|tapt−1 = aq〉, are a family of one-
relator groups which were introduced to give examples of non-hopfian groups in [BS62].
Generalized Baumslag-Solitar (GBS) groups are a wider family composed of all funda-
mental groups of finite graphs of infinite cyclic groups. The isomorphism problem between
GBS groups (i.e. determining if two graphs of groups define the same GBS group) is not
known apart from a few special cases. Clay and Forester showed in [CF08a] that it is solv-
able when first Betti number is at most one. Levitt ([Lev07]) defined a particular class of
GBS groups with nice outer automorphism group for which the isomorphism problem is
also solvable.

In fact, the automorphism group of a GBS group G can be very complicated in general
and depends a lot on G. For example, Out(BS(2, 3)) is finite but Out(BS(p, pn)) for
p, n ∈ Z is not finitely generated. This was shown by Collins and Levin in [CL83] with
algebraic methods and later by Clay in [Cla09] using geometric methods.

By Bass-Serre theory GBS groups have a natural action on trees which is a motivation
for using geometric methods. The study of automorphisms of free groups and outer space
give some inspiration. Given a GBS group G, there is an analogue for outer space, which
is called deformation space ([For06]). It can be defined as the set of all minimal actions of
G on trees with infinite cyclic stabilizers, up to G-equivariant isometry and Out(G) acts
on it by precomposition of the action.

An automorphism of the free group FN is called fully irreducible if it does not have any
periodic conjugacy class of free factor of FN . Such an automorphism φ admits a train track
representative: there exists a free minimal action of FN on a simplicial metric tree, which
defines a translation axis for the action of φ on outer space. Train tracks representatives
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Chapitre 1 – Whitehead algorithm for automorphisms of generalized Baumslag-Solitar groups

are a powerful tool to study automorphisms of FN .
In some sense one can define fully irreducible automorphisms of a GBS group G: they

are the automorphisms whose powers do not preserve any conjugacy class of special factors,
the analogue of free factors in this context. Margot Bouette showed in [Bou16] that all
automorphisms of BS(p, pn) are reducible, which is surprising: one would have suspected
that a generic automorphism would not preserve any special factor. However, she proved
that there is a different deformation space invariant under Out(G) on which irreducible
automorphisms exist, always admit train tracks and act on the modified deformation
space with positive translation length. In more general GBS groups it is not known if
train tracks always exist for fully irreducible automorphisms. Under some restrictions on
the GBS group though (ex: no nontrivial integer modulus, [For06]), we can assume that
the dimension of the deformation space is finite. Then [Mei15, Theorem 50] applies and
proves the existence of train tracks.

This sort of problem is a motivation to understand special factors. Here is a way to
define them. Identifying the free group FN with the fundamental group of some graph Γ,
the fundamental group of any subgraph of Γ is a free factor of FN . Moreover, allowing
to vary the graph and identification, any free factor of FN can be obtained this way.
Similarly, a special factor of a GBS group G is the fundamental group of some subgraph
of a graph of groups Γ where Γ is a graph of cyclic groups with fundamental group G. To
avoid degenerate cases, we do not consider cyclic subgroups as special factors. A noticeable
difference is the fact that many different graphs of groups may appear and give distinct
special factors, while all free factors of free groups may be seen in roses. Therefore, while
free factors of same rank in a free group FN are isomorphic and in the same orbit under
Aut(FN), special factors of a GBS group may be a lot more diverse and there may be
infinitely many orbits of special factors under Aut(G). This is the case for G ' BS(2, 4).

The Whitehead algorithm in the free group solves the following problem: given g, h ∈
FN , is there φ ∈ Aut(FN) such that φ(g) = h ? A weaker form of this algorithm can decide,
given g ∈ FN , if g is simple, i.e. whether there exists a proper free factor containing g.
The first problem seems difficult for GBS groups since the automorphism group is a lot
more complicated and may not be finitely generated. Here we solve the analogue of the
second problem in a GBS group G by giving an algorithm deciding if an element g ∈ G
is contained in a special factor. We also prove that there exists a unique minimal special
factor containing g and give a further algorithm which finds this minimal factor.

Before stating the results, let us give some useful background. Let G be a GBS group.
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It admits an action on a locally finite tree T with cyclic edge and vertex stabilizers. Unless
G is isomorphic to Z,Z2 or the fundamental group of a Klein bottle, all trees with cyclic
stabilizers have the same elliptic subgroups. Let D be the set of G-trees with cyclic edge
and vertex stabilizers. We call it the cyclic deformation space.

In the main part of the paper we will consider restricted deformation spaces, where
we impose an extra condition on the edge groups of the trees. In this introduction we
present the result for D the cyclic deformation space for simplicity but we actually prove
a slightly stronger version.

A loxodromic element in a tree T inD is an element acting on a tree with no fixed point.
This property does not depend on the choice of T ∈ D, so we may refer to loxodromic
elements of the group G. A loxodromic element of G is simple if there exists a proper
special factor containing it. In order to understand whether an element is simple, we
use Whitehead graphs. The Whitehead graph WhT (g, v), where v is a vertex, has vertices
corresponding to the edges of T with origin v. Two vertices are linked by an edge whenever
a translate of the axis of g in T takes the turn between the two edges corresponding to
the vertices. We say that the graph has an admissible cut when it is disconnected or has
a cut vertex.

Whitehead’s lemma was originally published in [Whi36] for free groups. We have the
following result, adapted from a version of Whitehead’s lemma from [GH19].

Theorem A. Let g ∈ G a loxodromic element. If g is simple then for all T ∈ D there
exists a vertex v ∈ T such that WhT (g, v) has an admissible cut.

Let us take an element g ∈ G and a tree T ∈ D. We consider T as a marked graph
of groups Γ = T/G. In case WhT (g, v) has an admissible cut, either g is represented in
the fundamental group of some proper subgraph of Γ, so it is simple, or we can perform
some transformation of Γ in order to obtain a new tree. We can apply the theorem above
to the result of the transformation. The point is that this process will eventually stop, so
we deduce an algorithm to determine whether g is simple:

Corollary B. There is an algorithm taking as input

— a GBS group G given as a graph of groups

— a loxodromic element g ∈ G

which decides whether g is simple, and if it is, returns a proper special factor containing
g.
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Figure 1.1 – Unfolding of type II (i.e. the unfolded edges belong to the same orbit) as
seen in the graph of groups

The point of the algorithm will be to transform the graph until one of its proper
subgraphs contains the axis of g. Note that Whitehead’s version for free groups (see [LS01,
Chapter I, section 4]) has the same goal but uses specific automorphisms to transform a
rose. Here we prefer to use the approach given in [GH19] instead. It consists in unfolding
the tree associated to the graph, that is to say, perform the inverse of folds. While in
Whitehead’s approach the word length decreases and the graph keeps the same volume,
here the word length remains constant while the volume of the graph increases, eventually
reaching a point where g avoids some edge in the graph.

The main reason for which we choose this approach is that there is no preferred graph
of groups in general, and the graph of group showing the special factor containing g might
be very different from the initial graph of groups used to define G. There might be no
automorphism between the factor containing g and a subgraph of the initial graph.

We prove a stronger version of Theorem A and Corollary B which applies to a finite
collection of elements of G rather than a single element. Actually the version for collections
decides whether the elements of a collection belong to a system of special factors, which
are special factors which are either conjugate or disjoint in some sense.

In the process of showing that the algorithm stops, we need to show that the volume
of the graph increases. It does not increase at each step and in fact, if the transformation
performed is an unfolding of edges in the same orbit (see Figure 1.1), the volume remains
constant. The following result prevents the graph from being transformed indefinitely
without increasing its volume.

A sequence of unfoldings of type II is a finite or infinite sequence Tn → · · · → T1 → T0

where the Ti are trees in D and Ti+1 → Ti is a type II fold, that is, a fold of edges in the
same orbit, with origin and endpoint in different orbits. Then no such sequence can be
infinite:
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Lemma C. Suppose that G is not a solvable Baumslag-Solitar group. Any sequence of
unfoldings of type II is finite.

Whitehead graphs, which are useful for the algorithm, can be computed algorithmi-
cally. In [Bee15] methods for algorithmic computations in GBS groups are given. In section
1.3 we explain the algorithm in detail.

As a special factor is itself a GBS group, we may want to iterate the algorithm in
the following way. Given g ∈ G belonging to a special factor H ∈ G, we can apply the
algorithm to H in order to find a smaller special factor, again and again. In the case of
free groups, the rank of the free factor decreases, so eventually we find a free factor which
does not have any smaller free factor containing the element. In the case of GBS groups
the rank does not always decrease, but we do have a complexity C which decreases strictly
when passing to a proper special factor. Note that in some GBS groups including BS(2, 4)
there exist arbitrary long chains of decreasing special factors (see Figure 1.2). For the
definition of C, see section 1.4.

Proposition D. Let G be a GBS group and H a special factor of G. Then C(H) < C(G).

From this we deduce the existence of a minimal special factor containing g, which is
in fact unique:

Theorem E. The set of special factors relative to D which contain a given loxodromic
element g admits a smallest element for inclusion.

Using the previous algorithm repeatedly we get the following:

Theorem F. There exists an algorithm taking as input a GBS group G as a marked graph
of groups and a hyperbolic element g, and which outputs the minimal factor containing g
as a subgraph of a marked graph of groups for G.

Just like Theorem A, Theorem F also applies to finite collections of elements of G. In
that case it outputs the minimal system of special factors containing the collection.

The paper is structured as follows. In section 1.1 we introduce basic notions about
GBS groups and prove that no sequence of unfoldings of type II can be infinite. In section
1.2 we prove Theorem A. Section 1.3 proves Theorem F: it gives of an algorithm to
determine whether there exists a special factor containing a particular group element.
Most of it consists in proving why all steps needed to check that an element is simple are
algorithmic. Since it is more technical, the proof of the algorithm may be skipped at first
reading. Finally we prove theorem E in section 1.4.
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Expansions

•2
1
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Figure 1.2 – A construction of arbitrary long special factor sequences in BS(2, 4). The
upper graph represents BS(2, 4) with the presentation 〈a, b, t|tbt−1 = b2, a2 = b2k〉. Ex-
pansions from this graph lead to the graph below, which has many edges. The rectangles
show some special factors which can be read in the graph below. Here we can construct
a sequence of k nested special factors.

1.1 Definitions

1.1.1 Trees, elliptic groups, deformation spaces

We refer to [Ser77] for basic notions on graphs of groups. A graph is a set of vertices,
along with a set of oriented edges. An edge comes with applications o and t which associate
its initial and terminal vertex to an edge, respectively. There is a fixed-point-free involution
e 7→ ē with t(ē) = o(e).

A graph of groups is a graph Γ such that every vertex v is labelled with a group Gv,
every edge e is labelled with a group Ge = Gē and for every oriented edge e of Γ, there is
a given monomorphism φe : Ge → Gt(e).

Definition 1.1.1. A generalized Baumslag-Solitar group (GBS group) is the fundamental
group of some finite graph of groups of which each edge or vertex group is infinite cyclic.

A GBS group is non-elementary if it is not isomorphic to one of the following: Z, Z2

or the fundamental group of the Klein bottle 〈a, t|tat−1 = a−1〉 = 〈a, b|a2 = b2〉.

Remarks 1.1.2. — Generally the graph of (cyclic) groups for a GBS group is not unique,
in fact there may be infinitely many such graphs.

— From a graph of groups one can deduce a presentation for the group. Since vertex
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groups are cyclic, GBS groups are finitely presented. See [Lev07] for some detail on
GBS groups.

Definition 1.1.3. A labelled graph is a graph of which each oriented edge e carries a label
λ(e) ∈ Z \ {0} at its origin.

In graphs of cyclic groups, choosing a generator av for each vertex group and ae for
each edge group gives an identification with Z and each inclusion Ge → Gv is given by a
multiplication by a nonzero integer. Therefore any such graph of groups can be described
by a labelled graph.

Definition 1.1.4. An edge in a graph is a loop if its endpoints are equal.

Let G be a non-elementary GBS group.

Definition 1.1.5. A G-tree is a simplicial tree endowed with a minimal action of G by
simplicial isomorphisms without inversion of edges.

We endow all trees with the combinatorial metric, that is, all edges have length 1.

Remark 1.1.6. Let T be a G-tree and let g be a loxodromic element in T , that is, an
element acting on T with no fixed point. The translation length of g is

‖g‖T := min
x∈T

d(x, gx)

and it is equal to of edges in a fundamental domain of the axis of g in T .

Let T be a G-tree. Let e be an edge of T . We denote the stabilizer of e by Ge (and
this subgroup fixes both endpoints of e since the action is without inversion). Similarly
we denote by Gv the stabilizer of a vertex v.

Definition 1.1.7. Let T be a G-tree and H a subgroup of G. The subgroup H is elliptic
(resp. bi-elliptic) in T if it fixes a vertex (resp. an edge).

Definition 1.1.8. Two trees T, T ′ are in the same deformation space if they share the
same elliptic subgroups. If a subgroup H < G fixes a point in T , it must then fix a point
in T ′, and conversely.

Remark 1.1.9. Equivalently, T and T ′ belong to the same deformation space if there exists
G-equivariant applications T → T ′ and T ′ → T (see [GL07] for detail).
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Apart from Z,Z2 and the fundamental group of the Klein bottle, all actions on trees
dual to descriptions of G as graphs of cyclic groups belong to the same deformation space
([For06]).

Definition 1.1.10. For a non-elementary GBS group G, the cyclic deformation space D
is the space of all G-trees with infinite cyclic vertex and edge stabilizers.

We define a restricted deformation space of the cyclic deformation space, which is
smaller than D, like in [GL07]:

Definition 1.1.11. Let A be a family of subgroups of G, stable by conjugation and by
taking subgroups. The restricted deformation space DA is the set of G-trees in D whose
bi-elliptic subgroups all belong to A.

We refer to subgroups which belong to A as allowed edge groups in DA.

Remark 1.1.12. For a subgroup of G, being elliptic is a property which depends only on
the deformation space of the tree studied. However in general this does not hold for bi-
elliptic subgroups: two trees in the same deformation space may have different bi-elliptic
subgroups. This applies to D and DA.

Definition 1.1.13. Let be T a G-tree. Let F be a G-invariant subforest of T . We define
the equivalence relation ∼F on T as the smallest G-invariant equivalence relation such
that x ∼F y whenever there exists some connected component of F containing both x

and y.
The quotient T → T/ ∼F is a tree, called the collapse of F in T .
The G-equivariant application T → T/ ∼F is called the collapse map.
When F is the G-equivariant subforest spanned by an edge e, we speak of the collapse

of e instead of the collapse of F , and denote it by T → T/ ∼e

Definition 1.1.14. Let T be a G-tree. An edge of T is called collapsible if T/ ∼e is a
tree in the same deformation space as T . An edge e with endpoints u and v is collapsible
if u and v are in different orbits and either Ge = Gu or Ge = Gv.

Remark 1.1.15. If there is a G-equivariant application f : T → S where T, S ∈ D such
that the image of e is a single point in S, then e is collapsible. Indeed f factorizes through
T/ ∼e. Thus there exists a G-equivariant application T/ ∼e→ T (and vice-versa) so T/ ∼e
is in D.

Definition 1.1.16. A G-tree T is reduced if no edge in T is collapsible.
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Remarks 1.1.17. 1. This notion can be expressed of in terms graphs of groups, which
are more convenient for a computational use. Denote by Γ the graph of groups
associated to the quotient T/G, then T is reduced if whenever an edge morphism
in Γ into a vertex group is surjective then the edge is a loop.

2. Reduced trees in a deformation space share the same bi-elliptic subgroups. Any bi-
elliptic subgroup in some reduced tree T ∈ D is also bi-elliptic in any tree in D,
reduced or not.

Definition 1.1.18. We call Amin the family of subgroups which are bi-elliptic in reduced
trees. The reduced deformation space Dred is the restricted deformation space DAmin .

Definition 1.1.19. We call an elliptic subgroup in some tree T ∈ D big with respect to
A if it is not in A.

Remark 1.1.20. In order to check whether an elliptic subgroup is big for Amin, it suffices
to check that it fixes no edge in some arbitrary tree in D.

In a graph of cyclic groups viewed as a labelled graph, vertex groups such that no
label at the vertex is ±1 are maximal big groups. If the graph of groups is reduced, then
maximal big groups are exactly vertex stabilizers with all labels different from ±1.

The number of conjugacy classes of maximal big groups is finite (bounded by the
number of vertex orbits of some tree in D) and depends only on G and D (see [GL07]).

1.1.2 Folds, expansions

In this section we define folds and expansions, and give a construction for a certain
type of expansion.

Definition 1.1.21. A G-tree S is a refinement of another G-tree T if there exists a
collapse π : S → T , i.e. T is equivariantly isomorphic do S/ ∼F for some G-invariant
forest F ⊂ S.

We say that S is an expansion if additionnally S and T belong to the same deformation
space.

Lemma 1.1.22 (Construction of an expansion TH,S). Let T be a G-tree and v a vertex of
T . Let Ev be the set of edges with origin v. Let H be a subgroup of Gv and S a non-empty
proper subset of Ev which satisfy:

— HS = S
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— ∀g ∈ Gv \H, gS ∩ S = ∅.

Consider the partition Ev = ⊔
g∈Gv/H gS t E ′ where E ′ = Ev \Gv · S.

We construct TH,S from T as follows. First we replace v by the star on Gv/H and for
each g ∈ Gv and each edge e ∈ S, we attach g · e to gH. Then we attach E ′ on the centre
of the star. Finally we extend this by equivariance to all translates of v.

The obtained tree TH,S is minimal, is a refinement of T and belongs to the same
deformation space (without restriction on edge groups). Moreover, if H ∈ A and T ∈ DA

then TH,S ∈ DA.

Proof. Let us prove that TH,S is minimal. The tree TH,S has no valence 1 vertex: since
S ( Ev and S 6= ∅ then either Gv/H has two or more elements, or E ′ is non-empty. In
both cases no vertex has valence 1.

If TH,S were not minimal, it would have a valence 1 vertex: suppose TH,S is not minimal
and call TH,Smin the minimal invariant subtree. By cocompacity of the action there exists
v ∈ T such that the distance d(v, Tmin) is maximal and positive. Then v has valence 1,
which gives the contradiction needed.

Note that collapsing the stars involved in the construction of TH,S allows to recover
the original tree T , so TH,S is a refinement of T . This implies that all elliptic subgroups of
TH,S are elliptic in T . Conversely, let G0 be a subgroup fixing a vertex w in T . If w /∈ G ·v
then its pre-image by the collapse map is a single point so it must be fixed by G0. If
w = v, its pre-image is the closure of the star. The star is invariant by Gv so its center
is a fixed point for Gv which contains G0. This proves that T and TH,S have the same
elliptic subgroups.

Thus TH,S is in the same deformation space as T . Note that the second condition
implies that the stabilizer of any edge of the star is conjugate to H, hence the last
statement.

To define folds, we rely on [BF91]. Folds are a classical operation on trees and were
first defined by Stallings ([Sta91]). The idea behind a fold is to identify two edges of a
G-tree in an equivariant way to create a new tree.

Definition 1.1.23 (Fold). Let T be a G-tree. Let V be a vertex of T and e1, e2 two edges
with origin v such that e2 /∈ G · ē1. We define the fold of e1 together with e2 as follows.

We define the equivalence relation ∼ on T as the smallest G-invariant equivalence
relation satisfying e1 ∼ e2 and t(e1) ∼ t(e2).

The result of the fold of e1 with e2 is T/ ∼ and it is a tree.
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Up to subdividing some edges, any fold boils down to a sequence of folds of the three
types illustrated by Figure 1.3 (see [BF91] for more details on fold types), which presents
folds as seen in the quotient graph, depending on whether the edges an their terminal
vertices are in the same orbit or not.

A•

B1•E1

B2•

E2
A•

〈B1, B2〉•
〈E1, E2〉

Type I

A•
B•

E
A•

〈B, g〉
•

〈E, g〉
Type II

A• •B

E1

E2
A•

〈B, g〉
•

〈E1, E2〉
Type III

Figure 1.3 – The three basic types of folds

Denote by A = Gv, Bi = Gt(ei), Ei = Gei . The result of a fold is in the same deforma-
tion space as the original tree if and only if one of the following conditions 1 is true (see
figure 1.4):

— the fold is of type I with B1 = E1 and B2 = E2, which we call type A (not referring
to subtypes of [BF91])

— the fold is of type I and B2 ⊂ B1 or B1 ⊂ B2 which we call type B

— the fold is of type II and E1 = B1 which we call type C.

Remark 1.1.24. The pre-image of any edge by a fold which does not change the deforma-
tion space is star-shaped, i.e. it consists in a collection of edges which share a common
endpoint. In fact

1. If we work with restricted deformations spaces DA, we must ensure when folding that the new edge
groups belong to A. However in this article we will work backwards: starting with the folded tree, we will
unfold it, and we do not need to worry since the new groups will be smaller.
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Figure 1.4 – The three types of folds which preserve the deformation space, as seen in
labelled graphs.

— π−1π(ε) = ε if ε /∈ G · e1, e2

— π−1π(e1) = Gπ(e1) · {e1 ∪ e2} and Gπ(e1) fixes o(e1) = o(e2) in case A, B and C.

An unfolding of type C is the inverse of a fold of type C, i.e. given a tree T0, it consists
in finding a tree T1 such that T1 → T0 is a fold of type C. We will need the following
result about sequences of unfoldings. A sequence of unfoldings of type C is a sequence
· · · → Tn → · · · → T1 → T0 such that every Ti+1 → Ti is a fold of type C.

Lemma 1.1.25. Suppose that G is not a solvable Baumslag-Solitar group. Let T be a
GBS tree for G. Any sequence of unfoldings of type C (see Figure 1.3) of T is finite.

Proof. We will show that it is impossible to construct an infinite sequence of unfoldings
of type C. We consider the quotient Γ = T/G. Unfoldings of type C do not change the
edges of Γ: only labels vary. Therefore in the rest of the proof edges will keep the same
name after unfolding. Consider the product

∏
e∈T/G

|λ(e)| of all labels in Γ (see Figure 1.5).

It is a positive integer.
An unfolding of type C can be performed on an edge e ∈ Γ if and only if λ(ē) = ±1

and there exists an integer q such that |q| > 1 and q divides all other labels at t(e).
During the unfolding, the labels at only two vertices may change : λ(e′), e′ ∈ Et(e) \{e}

are divided by q whereas λ(e) is multiplied by q. Let k be the valence of the vertex t(e),
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Figure 1.5 – The product decreases when doing unfoldings of type C.

where k ≥ 2 by minimality. The product
∏

e∈T/G
|λ(e)| is multiplied by q2−k. If the valence

of t(e) in Γ is at least 3 (i.e. k ≥ 3) then the product of labels decreases. An unfolding
at a valence 2 vertex does not change the product. To conclude we need to show that
one cannot produce an infinite sequence of unfoldings of type C on edges whose terminal
vertex has valence 2.

In the rest of this proof we will denote this sort of unfolding by “unfolding from a
valence 2 vertex”. We will say that the unfolding of an edge e is an unfolding “from t(e)”.
Since no new edge is created in Γ, edges will keep the same name after unfolding.

The topological edges of the graph Γ are connected components of the graph without
its vertices with valence greater or equal to 3. Since the number of topological edges of
the graph is finite any infinite sequence of unfoldings from valence 2 vertices would have
infinitely many unfoldings in at least one topological edge.

Note that an unfolding from a valence 2 vertex does not change any label outside
of its topological edge. Consequently valence 2 unfoldings in different topological edges
commute.

In most cases a topological edge is a segment c. It may be a circle, only if Γ is a circle.
First let us study the case of a segment (Figure 1.6). It is composed of a certain number
of edges with labels, and is bounded by vertices of valence 1 or at least 3. We will show
that there is a bound (depending on Γ) on the length of any sequence of unfoldings from
inner vertices in the same topological edge. As unfoldings in different topological edges
commute, this will show that no infinite sequence of unfoldings from valence 2 vertices
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Figure 1.6 – Topological edges

exist.
Choose an orientation for c and view it as a concatenation of oriented edges e1 . . . el.

We define the following complexity for a segment c of length l:

K(c) :=
n∏
i=1
|λ(ei)|i ×

n∏
i=1
|λ(ēi)|n+1−i

which gives more weight to initial labels of edges at the end of the chain and to terminal
labels of edges at the beginning of the chain. Note that it is well-defined since it does not
depend on the choice of orientation for c.

The idea is that unfoldings move factors of labels in the direction where they will
weight less. Let us show that the complexity decreases during any unfolding.

Let i ∈ {1, . . . , l − 1}. Suppose we do an unfolding of ei (a valence 2 unfolding, so
we exclude the case i = l). We obtain a new segment c′ with different labels. Two labels
change: λ(ei+1) is divided by a factor q and λ(ei) is multiplied by this same factor q, where
|q| 6= 1. Therefore K(c′) = K(c)× |q|i/|q|i+1 = K(c)/|q| so K(c′) < K(c).

Since the formula for the complexity does not depend on the orientation of the segment
we get the same result for an unfolding of a ēi.

As K is a positive integer it cannot decrease indefinitely. This proves that the sequence
of unfoldings must stop when the topological edge is a segment.

When the graph is a circle, it has a single topological edge. If there exists a vertex
group which is strictly bigger than all edge groups at this vertex, then no unfolding can
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occur from this vertex and labels at this vertex can only increase. The graph minus this
vertex is a segment to which we can apply the argument above: no unfolding sequence
can be infinite.

If not then every vertex has at least one label which is ±1. Choose an orientation of
the circle and orient the edges accordingly. If all initial labels (for this orientation) are ±1
then the group is a solvable Baumslag-Solitar group. The same deduction can be made
with the reverse orientation. If this happens for neither orientation then we can find two
vertices with a label different from ±1 pointing in different directions. Call v1, v2 these
two vertices, which split the circle into two segments. Call B the segment with the ±1
labels at its endpoints and A the segment with greater labels. Up to taking a subsegment
of B we may suppose that the labels borne by the edges of B are all ±1.

Unfoldings in A cannot be done indefinitely, because no unfolding from v1 or v2 occur
and we are again in the case of a segment. This shows that any long enough sequence of
unfoldings must involve an edge in B.

The only unfoldings which may involve edges in B are unfoldings from v1 or v2. If we
perform such an unfolding we increase one of the labels inside B. Then we can define a
new partition where B strictly decreases, and iterate until there is a vertex with both
labels different from ±1.

1.2 Special factors, and algorithm for simplicity of
group elements

1.2.1 Special factors for a deformation space

In this section, we introduce special factors with respect to some deformation space
DA. They are an analogue of free factors for free groups.

Remark 1.2.1. We will write D̄A to denote the set of all trees obtained by collapsing
G-invariant subforests in trees of DA, including the trivial tree. We include trees of DA

which correspond to collapsing empty forests.

Definition 1.2.2. A special factor H with respect to DA is a subgroup of G which is the
stabilizer of a point in a tree T in D̄A and which is not elliptic in DA.

When the deformation space is obvious, we will write simply special factor.
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Figure 1.7 – Expansion and collapse on the standard tree T1 (seen in the quotient) and
new special factor with respect to D obtained after the collapse, visible in T3 ∈ D̄. The
tree T2 is in D but not in DAmin .

We call H a proper special factor when H 6= G. Elliptic groups, i.e. vertex stabilizers
of trees in DA, are not considered to be actual special factors.

Examples 1.2.3. This notion depends on the allowed edge groups in DA. The space DAmin

of reduced trees has fewer allowed edge groups than D. Consider the standard tree T1 for
BS(2, 4) := 〈a, t|ta2t−1 = a4〉 (see Figure 1.7) and perform an expansion (yielding T2) and
a collapse (yielding T3) as described by the figure. We obtain a special factor with respect
to D, which is the subgroup 〈a, tat−1〉. This subgroup cannot be obtained by collapsing a
tree in DAmin , thus it is not a special factor with respect to DAmin .

For a subgroup H < G, denote its conjugacy class by [H].

Definition 1.2.4. A system of special factors with respect to DA is a finite collection of
conjugacy classes of subgroups H := {[H1], . . . , [Hk]} of G such that there exists TH ∈ D̄A

such that H is the set of conjugacy classes of vertex stabilizers in TH which are not elliptic
in D.

The system is proper if it is not {[G]}.

Remark 1.2.5. Just like special factors, a system of special factors can be viewed in a
graph of groups. Is is given by a collection of disjoint subgraphs Γ1, . . . ,Γk of Γ such that
for every i ∈ {1, . . . , k} the subgroup Hi is isomorphic to π1(Γi).

Definition 1.2.6. Let H := {[H1], . . . , [Hk]} be a system of special factors. We say that
a collection G of elements of G is H-peripheral, which we write G � H, if for any g ∈ G
there exists 1 ≤ i ≤ k such that g is contained in a conjugate of Hi.

The collection G is simple if there exists a proper system of special factors H such that
G � H.
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A system of cyclic factors H′ is H-peripheral (H′ � H) if for every conjugacy class
[H ′] ∈ H′ there exists [H] ∈ H such that H ′ can be conjugated into a subgroup of H.

Remarks 1.2.7. 1. Equivalently H′ � H if there exists a G-equivariant map TH′ → TH

where TH′ , TH are defined as in Definition 1.2.4.

2. The relation � defines an order on the set of systems of special factors. It is obviously
reflexive and transitive. Suppose H′ � H and H � H′, then we get two maps
TH′ → TH and TH → TH′ . This implies that TH′ and TH have the same elliptic
subgroups. In particular they have the same non-cyclic vertex stabilizers, soH = H′.
Thus � is antisymmetric.

1.2.2 Whitehead graph and criterion for simplicity

We fix a collection of cyclic allowed edge groups A and consider a restricted deforma-
tion space DA.

Definition 1.2.8. Let T be a G-tree. A turn in T is an unordered pair of distinct edges
with same origin. If e, e′ are two such edges, the corresponding turn is denoted by {e, e′}.

When e = e′ we call the pair a degenerate turn.
A geodesic γ crosses a turn {e, e′} if γ contains e ∪ e′.

Let G := {g1, . . . , gk} ∈ G be a finite collection of loxodromic elements. Let T ∈ DA

and v a vertex in T . The set Ev is the set of edges of T with origin v.

Definition 1.2.9. The Whitehead graph WhT (G, v) is the following graph. The vertex set
is Ev. Two vertices e, e′ are linked by a non-oriented edge in WhT (G, v) when there exists
g ∈ G and some conjugate of g whose axis crosses the turn {e, e′}.

Remarks 1.2.10. 1. Equivalently, we link e and e′ by an edge whenever there is h ∈ G
such that {he, he′} is a turn in the axis of some g ∈ G.

2. The Whitehead graph is a simplicial graph. In particular it does not have any loop.

3. The group Gv has a natural action on WhT (G, v).

Definition 1.2.11. When WhT (G, v) is not connected, we call admissible connected com-
ponent any connected component in WhT (G, v) whose stabilizer is in A. When all edge
groups are allowed all connected components are automatically admissible.
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Let p be a vertex in WhT (G, v). Let W0 be the connected component which contains
p. The vertex p is an admissible cut point if W0 \ {p} is disconnected and if there exists
a connected component A of W0 \ {p} satisfying A ∩Gv · p = ∅.

The Whitehead graph WhT (G, v) has an admissible cut (for A) when it has either an
admissible connected component or an admissible cut point.

Remarks 1.2.12. 1. In the admissible cut point definition, the stabilizer of A is auto-
matically an allowed edge group since it is a subgroup of Gep , where ep is the edge
of T corresponding to the vertex p of the Whitehead graph.

2. Since the Whitehead graph has no loop, A contains a vertex.

The following lemma uses that T is locally finite in an essential way.

Lemma 1.2.13 (Dual tree to the Whitehead graph). Let p a vertex in WhT (G, v) and
W0 the connected component containing p. If p is a cut point in W0 (i.e. W0 \ {p} is not
connected) then p is an admissible cut point of the Whitehead graph.

Proof. Let p a vertex in WhT (G, v) whose complement is disconnected. A dual forest to
the Whitehead graph can be defined as follows.

First we define the following equivalence relation on the geometric realization of the
Whitehead graph W : for all points x, y ∈ W , x ∼ y if for all q ∈ Gv · p, x and y are in
the same connected component of W \ {q}. Equivalence classes of this relation define a
partition of W \Gv · p. An equivalence class may contain no vertex of W and that is why
we work with the geometric realization of the graph. This partition is coarser than the
partition into connected components of W \Gv · p.

Then we define the bipartite graph B as follows. There is a vertex uq for every vertex
q ∈ Gv · p. There is also a vertex vP for every equivalence class P of the equivalence
relation defined above. We put an edge between uq and vP if q ∈ P̄ .

The graph B obtained is a forest because every vertex uq disconnects all its neighbours
in B. It is connected if and only if the Whitehead graph is.

Let W0 be the connected component of W containing p. Suppose p is a cut point of
W0. The component B0 of B containing up is a finite tree so it has a terminal vertex w.
Vertices uq cannot be terminal since q is a cut vertex so w = vP for some equivalence
class P , which is attached to a vertex uq = h · up of B0.

The equivalence class P is a connected component ofW0 \{h ·p} because Gv ·up∩ P̄ =
{uq}. Taking A = P in the definition, h · p (and thus p) is an admissible cut point.
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We can now state the main theorem of this section. Its proof is given in subsection
1.2.4.

Theorem 1.2.14. Let G ∈ G be a finite collection of loxodromic elements. If G is simple
with respect to DA then for all T ∈ DA there exists a vertex v ∈ T such that WhT (G, v)
has an admissible cut for A.

Remark 1.2.15. A solvable Baumslag-Solitar group BS(1, n) := 〈a, t|tat−1 = an〉 has no
proper special factor (with respect to D = DAmin).

Remark 1.2.16. Let T a G-tree and T ′ a tree obtained from T by subdividing an edge.
Then there exists a vertex v ∈ T such that WhT (G, v) has an admissible cut if and only
if there exists such a vertex in T ′.

Indeed T ′ inherits the Whitehead graphs of T in addition with another Whitehead
graph coming from the additional vertex v′. The latter is a graph containing exactly two
vertices. If they are joined by an edge, there is no admissible cut. If not, WhT ′(G, v′)
is disconnected, which means for any g ∈ G, no translate of the axis of g crosses the
subdivided edge. In T this edge must then appear as an isolated vertex in the Whitehead
graph of one of its endpoints, so some Whitehead graph in T has an admissible cut.

1.2.3 Unfolding lemma

Let T ∈ DA. According to remark 1.2.16 we may assume the following : up to perform-
ing a finite number of edge subdivisions at the beginning, T has no edge with both ends in
the same orbit, i.e. T/G has no loop. This allows us to deal with fewer cases in the proof.
The proof is similar to that of an analogous result concerning the case of free products in
[GH19, Proposition 5.1]. We will need the following lemma which enables us to perform
unfoldings on T or expansions when we find a Whitehead graph with an admissible cut.
We allow vertices of valence 2 in the trees considered.

Lemma 1.2.17. Suppose T/G has no loop. The following conditions are equivalent :

1. There exists a Whitehead graph WhT (G, v) with an admissible cut with respect to
DA.

2. There exists a tree S ∈ DA and a non-injective G-equivariant application f : S → T

sending edge to edge or edge to vertex such that for every g ∈ G, ‖g‖S = ‖g‖T .
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In the second condition S/G has also no loop. Moreover the map f can be chosen to be
either a fold or a collapse.

Let us start with a preliminary result about lifting the axis of an element g ∈ G when
performing an unfolding.

Lemma 1.2.18. Let g be a loxodromic element in G. Let T, S ∈ DA and f : S → T

a simplicial map such that for all edge e ∈ T , edges in the pre-image f−1(e) := {ẽ ∈
E(S)/f(ẽ) = e} all share a common vertex. Suppose that every turn in the axis of g lifts
to S, that is to say: for every turn {e1, e2} in AxisT (g) there exists a turn {ẽ1, ẽ2} in S

such that f(ẽ1) = e1, f(ẽ2) = e2.
Then AxisT (g) lifts isometrically in S. Equivalently f is isometric on AxisS(g).

Remark 1.2.19. Remark 1.1.24 states that this lemma applies to folds of type A, B and
C.

Proof. First of all, given an orientation of an edge e ∈ T , the edges in f−1(e) get a
compatible orientation. We will call a set of edges with a common vertex a star. If f−1(e)
is a star then this orientation is either centripetal or centrifugal.

We claim that for every edge e ∈ AxisT (g) the intersection f−1(e) ∩AxisS(g) consists
in a unique edge ẽ. Moreover, if e, e′ are adjacent in T then ẽ, ẽ′ are adjacent in S. This
yield a continuous application AxisT (g)→ AxisS(g) which is an inverse for f on the axis.
This proves the lemma.

Now let us prove the claim. Let e1, e2, e3 be three consecutive edges in AxisT (g) with
t(e1) = o(e2) and t(e2) = o(e3). We will show that f−1(e2) ∩ AxisS(g) consists in exactly
one edge.

Let A1, A2, A3 be the respective pre-images of e1, e2, e3. They are stars. We endow them
with an orientation, either centrifugal or centripetal, compatible with the orientation of
their image. Because of orientations in T and since the turns lift, the star A1 is attached
to an end of A2 if the latter is centripetal, and to the centre if it is centrifugal (see figure
1.8 for a picture of the different cases). On the contrary, A3 is attached to the centre of
A2 if A2 is centripetal and to an end if it is centrifugal. In both cases, distance between
A1 and A3 is 1. There is a unique edge in A2 which is adjacent to both A1 and A3 and
we call it ẽ2.

Since AxisT (g) ⊂ f(AxisS(g)), AxisS(g) intersects both A1 and A3. Since it is a
geodesic, its intersection with A2 must be the single edge ẽ2. This proves the first part of
the claim.
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Figure 1.8 – Relative dispositions of the stars depending on their orientations

The second part follows: the lift ẽ1 is adjacent to A2 and the intersection of two stars
is a single point, so it is adjacent to ẽ2.

Proof of lemma 1.2.17. Suppose that the first condition is true: there is a vertex v ∈ T
such that WhT (G, v) has an admissible cut. We distinguish several cases based on the
shape of WhT (G, v) and give an application f : S → T for each case (see figure 1.9). The
map f will be a collapse in Case 1, a type A or type C fold in Case 2, and a type B fold
in Case 3. Types of folds were defined in subsection 1.1.2. Note that although type A and
B folds may look similar, they lead to very different Whitehead graphs which need to be
dealt with separately.

Case 1 : Suppose that the Whitehead graph WhT (G, v) is disconnected and that the
stabilizer of a connected component is an allowed edge group of D. In this case, denote the
connected components by C1, . . . , Cn (note that two connected components might belong
to the same orbit). Suppose that Stab(C1) is an allowed edge group.

Since C1 is a connected component of the Whitehead graph, we have h·C1∩C1 6= ∅⇒
h ∈ Stab(C1). Let S = T Stab(C1),C1 obtained by expansion, according to Lemma 1.1.22
with f : S → T the collapse map. We have S ∈ DA because StabC1 ∈ A and T ∈ DA.

Let g ∈ G. As no translate of the axis of g crosses a turn between any pair of distinct
connected components Ci and Cj, no translate of AxisS(g) can cross the added edges, so

45



Chapitre 1 – Whitehead algorithm for automorphisms of generalized Baumslag-Solitar groups

Case 1: disconnected graph
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Figure 1.9 – The three cases in the first part of the proof of the lemma. Above, the shape
of the Whitehead graph; below, the shape of the tree around the corresponding vertex
after transformation.
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all turns of AxisT (g) lift to S. By lemma 1.2.18 the collapse is isometric on the axes so
‖g‖S = ‖g‖T .

In other cases, suppose that the Whitehead graph has no admissible connected com-
ponent but has a cut point (necessarily admissible, according to lemma 1.2.13). In that
case the orbit of the cut point under Gv cannot be the whole graph. The reason is that the
graph is finite and without simple loop, and thus cannot have only cut points as vertices.

Case 2: Suppose that the Whitehead graph W has a Gv-invariant admissible cut
point. Then Gv fixes an edge in T . Call e such a cut point. Denote by A a connected
component of W \ {e}: its stabilizer is a subgroup of Gv so it lies in A.

If Gv ·A 6= W \ {e} denote by B the complement of Gv ·A in W \ {e}. The part B is
stable under the action of Gv. The subset A′ := Gv · A is stable as well. Neither A′ nor
B are empty. If {f, f ′} is a turn of a translate of the axis of some g ∈ G, then {f, f ′} is
included in Gv · A ∪ {e} or in B ∪ {e}.

We define a new tree S as follows (see Figure 1.9). First we expand T at the vertex v
by unattaching edges of A′, attaching an edge eA′ to v and re-attaching the edges of A′

to the other end of eA′ , which gives the expanded tree T1 := TGv ,A
′ (see lemma 1.1.22 for

notations). Similarly we unattach edges of B to re-attach them on a new edge eB with
origin v, which gives the tree T2 := TGv ,B1 . The lemma guarantees that T2 belongs to DA

since the stabilizer of the new edge is in A. Finally we collapse the edge e of T2, which
is a collapsible edge since its stabilizer is Gv and its ends are not in the same orbit. Let
S be the resulting tree. It belongs to DA. Folding eA′ with eB is a type A fold and yields
the original tree T .

Let g be an element of G. Let us prove ‖g‖S = ‖g‖T . The pre-image of an edge by the
fold S → T is a star. Every turn in AxisT (g) lifts in S: the only turns which do not lift are
those of the sort h ·{A′, B}. Yet such turns are never crossed by the axis by assumption on
the Whitehead graph. According to lemma 1.2.18 f is isometric in restriction to AxisS(g)
so the translation length of g is the same in T as in S.

On the contrary, if G · A = W \ {e} then as A is not the only connected component
there exists h 6= 1 such that h ·A∩A = ∅. The stabilizer of A is then a subgroup H ( Gv

and H,A satisfy the conditions of the expansion lemma 1.1.22 with H allowed as an edge
stabilizer. We perform an expansion at the vertex v as follows: for u ∈ Gv/H, unattach
uA and re-attach it on a new edge ue′ with origin v. This yields the expanded tree TH,A
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which belongs to DA. We then get S by collapsing e. Since e is collapsible we have S ∈ DA.
When one folds the edges ue′ with u ∈ Gv/H, one gets T ; the fold is of type C.

Again, for every g ∈ G, all turns in AxisT (g) lift to S so lemma 1.2.18 guarantees
‖g‖S = ‖g‖T .

Case 3 : Suppose that W does not have any Gv-invariant cut point. Denote by e a
cut point and by W0 the connected component of W containing e. Let A be a connected
component of W0 \ {e} which does not contain any element of Gv · e. Such a component
exists by definition of an admissible cut point. By remark 1.2.12 A contains a vertex.
Remember that its stabilizer is an allowed edge group (remark 1.2.12) and is a subgroup
of Ge.

Denote by B the complement of Gv · A in W \ Gv · {e}; B may be empty and may
intersect W \W0. Again B is stable by Gv. We also define A′ := Ge · A.

Since Gv · e has at least two elements, {e} ∪A′ is a proper subset of Ev, so even when
B is empty, we may use lemma 1.1.22 to do the following expansions.

See figure 1.10 for a closer illustration of the case. First we do an expansion at vertex v:
we partition the set of edges into Bt⊔h∈Gv/Ge({e}∪A′). We get the tree T1 := TGe,{e}∪A

′

with notations of lemma 1.1.22: we replace the vertex v by a star with |Gv/Ge| branches.
Then we attach B to the centre of the star, and edges in h · ({e} ∪ A′) to h ·Ge. We call
e1 the edge joining {e} ∪ A′ to the centre of the star (which we will still call v). We call
w the origin of e1.

Then we perform a second expansion at w which is the origin of e1, ē and of the
edges of A′ and has stabilizer Ge. The tree T2 := TGe,A

′

1 may be described as follows: we
unattach the edges of A′ then re-attach them on a new edge e2 with origin w (see figure
1.10).

Finally consider the collapse S = T2/ ∼e. Since Ge ∈ A, T1, T2 and S are in DA. There
is an application S → T which sends e1 and e2 on e and it is the (type B) fold of e1 with
e2.

Let g be an element of G. The only turns of T at v which may be crossed by translates
of the axis of g are those of the sort h · {A,A}, h · {A, e}, {B,B}, h · {B, e}, h · {e, h′ · e}
with h, h′ ∈ Gv. All these turns lift to S. According to lemma 1.2.18, the whole axis lifts
isometrically so ‖g‖T = ‖g‖S.

We have proved the existence of S and f in all cases where the Whitehead graph has
an admissible cut.
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Conversely, suppose there exists S and f : S → T non-injective, sending edge to edge
or edge to vertex, such that ‖g‖S = ‖g‖T for every g ∈ G. According to [BF91], this
application may be considered as a composition of collapses and folds.

Let us consider only the last collapse or last fold. Since neither folds nor collapses can
increase translation length, this application satisfies the second condition of the lemma.
We may then suppose f is either a fold or a collapse, which simplifies the proof. In both
cases f is 1-Lipschitz. The assumption about translation lengths implies that for every
g ∈ G, f is isometric on the axis of g. Therefore all turns in AxisT (g) lift to S.

If f is a collapse, as it does not change deformation space, it is a quasi-isometry, so
connected components of the subforest collapsed by f are bounded.

Let v ∈ T be such that the subtree f−1(v) is not reduced to a point. As f is a
collapse, the pre-image of any edge in T is a single edge in S. In the Whitehead graph
WhT (G, v), any two vertices joined by an edge correspond to edges of T in the same
connected component of S \ f−1({v}). Otherwise AxisS(g) contains an edge collapsed
by f . Therefore the Whitehead graph has at least as many connected components as
S \ f−1({v}) which is not connected.

Let e a collapsed edge in S whose image is v. As e is collapsible, it has an end w

such that Gw = Ge and such that w is terminal in f−1(v). The vertex w belongs to the
boundary of S \ f−1(v) since S has no valence 1 vertex. Every connected component of
S \ f−1({v}) whose boundary is w has stabilizer included in Ge. The stabilizers of all
corresponding components in WhT (G, v) are then subgroups of Ge, so they are allowed
edge groups. Thus the Whitehead graph has an admissible cut.

If f is a fold, it is defined by two edges of S with same origin w: call them e1 and e2.
Call their endpoints v1 and v2. Call e′ the edge of T which is the image of e1 and e2, w′

its initial vertex and v′ its terminal vertex (which is the image of v1 and v2). The vertices
v′ and w′ are in different orbits as we supposed that T/G is without simple loop.

We will prove that WhT (G, v′) \ {e′} is disconnected and the stabilizer of at least
one of its connected components E1 is in A. Lemma 1.2.13 states that this implies that
WhT (G, v′) has an admissible cut.

Figure 1.12 recaps all different cases of folds and associated shapes of graphs.
Three different kind of folds may occur, which correspond to cases A, B and C.

1. Gei = Gvi for i ∈ {1, 2} and e1, e2 lie in different orbits (type A)

2. Gv1 ⊂ Ge2 , up to permutation of indices, and e1, e2 lie in different orbits (type B)
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Figure 1.11 – A fold as described.

3. e2 = he1 for some h ∈ Gv and Gei = Gvi (type C)

In the three cases, define Ẽ1 to be the set of edges of S with origin v1, except ē1. Let
E1 be the image of Ẽ1 in T . Define E2 similarly.

Since all turns represented in WhT (G, v′) lift to S, any edge of WhT (G, v′) with one
endpoint in E1 joins E1 to itself or to ē′. In particular, E1 and E2 are in distinct connected
components of WhT (G, v′) \ {e′}. Therefore WhT (G, v′) has an admissible cut.

1.2.4 Proof of the theorem

Lemma 1.2.20. (Expansion of non-cyclic vertex groups) Let R ∈ D̄A whose certain
vertices v1, . . . , vk (in different orbits) have stabilizers H1, . . . , Hk some special factors.
Let T ∈ D and Ti the minimal subtree for Hi in T . There exists a G-tree S ∈ DA and a
map f : S → T and a collapse π : S → R such that:

— the image by π of the collapsed subforest is G · {v1, . . . , vk},

— for all i ∈ {1, . . . , k}, f|π−1(vi) is an isomorphism to Ti.

In other words, it is possible to blow up R by replacing vi by Ti.
A proof of this result is given in [GL17, Proposition 2.2]. The key assumption is the

fact that all edge groups in R are elliptic in T so we can attach edges of R to the subtrees
which replace the vertices. Here we suppose that R is the result of the collapse of some
R̃ ∈ D, so its edge groups are also edge groups in R̃ and are elliptic in any tree in DA.

Proof of theorem 1.2.14.. Let G be a GBS group and let G := {g1, . . . , gk} be a finite
collection of loxodromic elements of G. Let T ∈ DA. Suppose that G is simple with
respect to DA, that is, there exists a non-trivial G-tree R ∈ D̄A such that every gi ∈ G
fixes a vertex vi ∈ R.
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For every 1 ≤ i ≤ k, let Ti be the minimal Gvi-invariant subtree of T . We obtain a new
tree S ∈ DA by applying lemma 1.2.20 starting from R so that for every i ∈ {1, . . . , k},
the vertex vi is replaced by a copy of Ti.

Let f : S → T be the map given by Lemma 1.2.17. If f is injective then it is an
isomorphism (surjectivity is obtained by minimality of the image for the action of G). In
that case, for every i ∈ {1, . . . , k}, the axis of gi avoids images of edges in S coming from
edges in R. Therefore some Whitehead graph at an end of such an edge has an isolated
vertex and has an admissible cut.

When f is not injective, we showed Lemma 1.2.17 that there is a vertex at which the
Whitehead graph has an admissible cut, which proves the theorem.

1.3 Algorithm

This part is dedicated to a theorem which states that one can decide algorithmically
whether a collection of loxodromic elements of G is simple with respect to some DA, or
not.

Before stating the theorem, let us explain how we deal with the set A of allowed edge
groups. Let Γ be a graph of groups representing G; it has finitely many vertices v1, . . . , vn.

Definition 1.3.1. For H a subgroup of G we denote by AH the family of subgroups
{A ∩H,A ∈ A}. Since A is stable by taking subgroups, AH is a subfamily of A.

For each v ∈ V (Γ) let Iv be a family of positive integers. We say that (Iv)v∈V (Γ)

represents A if for every v ∈ V , A|Gv is the set of all subgroups of Gv whose index is a
multiple of an element in Iv.

Examples 1.3.2. — Iv = {1} for each v ∈ Γ represents AZ.

— Suppose Γ is reduced. Let Iv be the set of absolute values of labels at v, then (Iv)v∈Γ

represents Amin.

— Given Γ a graph of groups for G, we can choose A to be the set of bi-elliptic
subgroups in Γ. If so, A is represented by (Iv)v∈V (Γ) where Iv is the set of all labels
at v.

In the sequel we assume that A is represented by a family (Iv)v∈V (Γ) of finite sets.
Here is the theorem which we will prove.

Theorem 1.3.3. There is an algorithm which takes as input:
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— a graph of cyclic groups ΓG representing G

— a marking G→ π1(ΓG, v0)

— a finite family of finite subsets (Iv)v∈V (ΓG) representing a family A of subgroups of
G

— a finite collection of loxodromic elements G ⊂ G.

which decides whether there exists a system of proper special factors H of G with respect
to DA such that G � H, and then returns such a system when it exists.

We show that the construction of Whitehead graphs is algorithmic, and that the con-
struction of the map of Lemma 1.2.17 is algorithmic too. Finally, after giving a description
of the algorithm, we prove that it terminates.

1.3.1 Paths in graphs of groups, fundamental group

In this section we give some general definitions and results about GBS groups. For
algorithmic purposes it is more convenient to work with graphs of groups than with trees.

Let G be a GBS group. We suppose it is given by a graph of cyclic groups ΓG. From
this graph we deduce a presentation 〈s1, . . . , sn|r1, . . . , rm〉. We will use this presentation
to define a marking in other graphs of groups below.

Let Γ be any graph of cyclic groups. It is given as a set of vertices and edges, a label
λ(e) for each edge e and a set of generators (av)v∈V (Γ) for all vertex groups.

We define π1(Γ) as a subgroup of the Bass group B(Γ) like in [Ser77, Definition (a),
part 5.1]. The group B(Γ) has the following presentation: generators are

— elements av indexed by vertices of Γ, where av is to be thought of as a generator of
the vertex group Gv ' Z

— elements te indexed by oriented edges in Γ.

Relations are the following:

1. for all edge e ∈ Γ we have te = t−1
ē

2. for all e ∈ Γ with initial vertex u and terminal vertex v, with labels λ(e) = p and
λ(ē) = q, we have aqv = tea

p
ut
−1
e

A path α in the graph of groups is a pair α = (w, γ) where

— γ is a path v0, e1, . . . , en, vn in the underlying graph of Γ, where the vi are vertices
and ei are edges such that t(ei) = vi = o(ei+1),
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— w is a word a0te1a1 . . . tenan where ai ∈ Gvi for all i ∈ {0, . . . , n}.

We denote by [α] the element of B(Γ) represented by w.
The length of a path (w, γ) is the number of edges in γ. Its initial and terminal vertices

are v0 and vn respectively.
Let α = (a0t1 . . . an; v0, e1, . . . , vn) and α′ = (a′0t′1 . . . a′m; v′0, e′1, . . . , v′m) be two paths in

Γ such that vn = v′0. The concatenation of α and α′ is the path

α · α′ = (a0t1 . . . tnbt
′
1a
′
1 . . . a

′
m; v0, e1, . . . , vn, e

′
1, . . . , v

′
m)

where b is the element of Gvn equal to ana′0.
Let v ∈ Γ. A loop based at v in Γ is a path with initial and terminal vertices equal to

v.
To a loop α = (w, γ), one associates the corresponding element [α] := [w] ∈ B(Γ).
If α, α′ are loops in Γ based at v then [α · α′] = [α] · [α′].
Fix a vertex v in Γ. The fundamental group π1(Γ, v) is the subgroup of B(Γ) consisting

of the elements of B(Γ) associated to loops based in v.

Remark 1.3.4. If a word in the generators of B(Γ) corresponds to a path in the graph,
then this loop is unique. We really mean the word as a sequence fo letters and not the
corresponding element of B(Γ). Thus the word is sufficient to describe a path in the graph
of groups, and we will use the word on its own when the description in terms of edges
and vertices is not needed.

A marking of Γ is a map {si, 1 ≤ i ≤ n} → π1(Γ, v) which associates a loop based at
v in Γ to each generator of G, such that it induces an isomorphism G→ π1(Γ, v).

For every g ∈ G, given the expression of g as a word in the generators {si, 1 ≤ i ≤ n},
we can determine a loop in Γ based at v which represents g.

We call a path in Γ given by a word w reduced if no subword in w is of the form teatē

with a ∈ ie(Ge). Note that here vertex groups are cyclic so determining if a belongs to
ie(Ge) boils down to a question of divisibility.

We call a loop α cyclically reduced if the concatenation α · α is reduced.

We may modify the marking by the following process. Given another vertex v′ and a
path α in the graph of groups Γ from v to v′, there is an isomorphism π1(Γ, v) ' π1(Γ, v′)
defined by
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σα :π1(Γ, v)→ π1(Γ, v′)

[h] 7→ [ᾱhα]

Lemma 1.3.5. A path h = (w, γ) can be reduced algorithmically, i.e. there is an algorithm
which finds a reduced path h′ such that [h] = [h′] in B(Γ).

A loop can be cyclically reduced algorithmically: for any loop α, one can find a cyclically
reduced loop α′ and a path β such that [α] = [β̄α′β].

The proof is standard and straightforward. We leave it to the reader.

Lemma 1.3.6. Suppose that γ is a reduced loop based at v and that [γ] ∈ Gv. Then γ

has length 0.

The proof for this fact is in [Ser77, 5.2, Theorem 11].
With the elements above we define the universal cover TΓ,v of the graph of groups Γ.

It is a graph defined as follows. The set of vertices is

Ṽ = {paths in Γ with initial vertex v}/ ∼

where γ ∼ γ′ if γ and γ′ have the same terminal vertex vi ∈ Γ and [γ]−1[γ′] ∈ Gvi .
Denote by [γ]V the vertex associated to the path γ. The group π1(Γ, v) acts on Ṽ by left
concatenation.

Note that checking whether two paths define the same vertex boils down to checking
whether a path in Γ can be reduced to a length zero path, by lemma 1.3.6, so it is
algorithmic.

Let ṽ = [1]V . It is a lift for the base point.
The oriented edges of (T, v) are defined as follows:

Ẽ =
{

(α, ate)/ α path in Γ from v to v′, e ∈ Ev′ , a ∈ Gv′

}
/ ∼

where Ev′ is the set of edges with origin v′. The equivalence relation ∼ is defined by
(α, ate) ∼ (α′, a′te′) if and only if e = e′ and a−1α−1α′a′ ∈ iē(Ge). The origin of this edge
is [α]V and its terminus is [α · ate]V .

Denote by [(α, ate)]E the equivalence class of (α, ate). The group π1(Γ, v) acts on Ẽ

by left concatenation of α. We have the relation [(α, ate)]E = [(α · a, te)]E for all a ∈ Gv′ .
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The edge with opposite orientation is [(α, ate)]E = [α · ate, tē].

The graph defined is a tree. The quotient of (T, v) under the action of π1(Γ, v) is Γ;
the projection of [γ]V is the last vertex of γ (see [Ser77] for a proof).

Note that for different base points v, v′ the universal covers TΓ,v and TΓ,v′ are iso-
morphic. Given α joining v to v′, we define an isomorphism between TΓ,v and TΓ,v′ by
[γ]V 7→ [ᾱ · γ]V (this is well-defined since it does not depend on the representative γ
chosen). A marking G → π1(Γ, ∗) yields an action of G on TΓ,∗. If we identify π1(Γ, v)
with π1(Γ, v′) with the isomorphism σα as above, the isomorphism between the trees is
G-equivariant.

Lemma 1.3.7. Let α be a path in Γ with first vertex v. It can be lifted to a path in T

with first vertex ṽ and last vertex pα, the equivalence class of α in Ṽ .
Suppose α is reduced. Then the distance between ṽ and pα in (T, v) is equal to the

length of α.

Proof. We follow the proof of [Bee15, Proposition 2.6].
First of all we construct the path between ṽ and pα. Denote by n the length of α.

Write (as a word) α = a0te1a1 . . . an, and αi := a0te1a1 . . . ai for i ≤ n.
Let ṽi = [αi]V and ẽi = [(αi−1, tei)]E.
The path ṽ, ẽ1, ṽ1, . . . , ẽn, ṽn = g · ṽ is a path in T . Let us show that it is a geodesic,

that is, no consecutive edge are opposite.
Suppose ẽi+1 = ẽi for some i ∈ {0, . . . , n}. Then

[(αi, tei+1)]E = [(αi · tei+1 , t̄ei+1)]E = [(αi−1, tei)]E

so ēi = ei+1 and teiait̄ei ∈ iei(Gei). Since the word is reduced this leads to a contradiction.
Thus the lift of the path α is a geodesic in T .

Lemma 1.3.8. Let Γ be a labelled graph and g be an element in π1(Γ, v) represented by
a cyclically reduced loop γ. Let T be the universal cover of Γ defined as above.

If the loop has length zero, then g is elliptic. Otherwise g is loxodromic and the path
in T defined by γ, joining ṽ to gṽ, is a fundamental domain of the axis of g in T .

In particular, for each loxodromic element g ∈ G, one can compute a fundamental
domain of its axis.
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Proof. Let γ be a cyclically reduced loop in Γ such that [γ] = g. Let ṽ be the lift of the
base point v in T . Since γ is cyclically reduced, lemma 1.3.7 ensures that [ṽ, g2 · ṽ] is a
geodesic. Therefore ṽ belongs to the axis of g in T . As a result the path [ṽ, g · ṽ] is a
fundamental domain of the axis of g.

1.3.2 Algorithmicity of Whitehead graph computation and un-
foldings

Lemma 1.3.9. Let Γ be a marked graph of groups for G. Let T be its universal cover.
Let x be a vertex in T represented as x = [γx]V for some path γ in Γ. Let Gx be the
stabilizer of x, not to be confused with vertex groups in Γ. The subgroup Gx is generated
by ax := γxaπ(x)γ̄x and one can compute

— the link lk(x)

— the action of ax on lk(x).

Proof. Since T is a tree, lk(x) is the collection of edges of T with initial vertex x. Denote
by π the quotient map T → Γ. Any edge of T with origin x has a unique representative
of the form (γx, akπ(x)te) with e ∈ lk(π(x)) and 0 ≤ k < λ(e).

All such edges can be listed algorithmically since the indices of edge groups in vertex
groups are all finite.

For every y := [γx, akπ(x)te]E ∈ lk(x) we have ax · y = [γx, ak+1 mod λ(e)
π(x) te]E.

Let g ∈ G be a loxodromic element. With the input of a graph of groups and a loop
for g we can compute the Whitehead graphs WhT ({g}, v):

Lemma 1.3.10. Let Γ be a graph of cyclic groups. Let (w, γ) be a cyclically reduced loop
in Γ based in v representing some g ∈ π1(Γ). Let T be the universal cover of Γ at basepoint
v and let x be a vertex in T . The computation of the Whitehead graphs WhT ({g}, x) is
algorithmic.

Proof. By lemma 1.3.9 we can compute the link of x and the action of Gx on it.
By lemma 1.3.8 we may compute a fundamental domain of the axis of g2 (or equiva-

lently a pair of consecutive fundamental domains of g). All orbits of turns crossed by the
axis of g appear in this segment. For every turn τ of Axis(g) based at a point in the orbit
of x we can find a pair of edges in lk(x) forming a turn in the same orbit, and using the
action of Gx, we can find all turns at x in the orbit of τ .
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The elements of lk(x) form the vertices of WhT (g, x) and the turns computed above
are edges.

Corollary 1.3.11. Let G ⊂ G be a finite collection of loxodromic elements of G. Then
the computation of the Whitehead graphs WhT (G, v) is algorithmic.

Lemma 1.3.12. Given a Whitehead graph WhT (G, v), the action of Gv on it and the set
Iv, one can decide algorithmically whether it has an admissible cut.

Proof. Finding connected components in a finite graph is algorithmic. The set Iv allows
to check the admissibility of connected components by calculating stabilizers.

Lemma 1.2.17 states that given a Whitehead graph with an admissible cut there exists
a non-injective map f : S → T which preserves translation length of every g ∈ G. In the
proof we actually gave a construction of such a map. We are going to prove that this
construction can be done algorithmically. First we show that collapses and expansions
can be done algorithmically:

Lemma 1.3.13. There is an algorithm which takes as input a graph of groups Γ, a
collapsible edge ε = vw of Γ such that Gw = Gε, a marking ψ : G→ π1(Γ, v) and outputs

— a marked graph of groups (Γ′, ψ′) whose universal cover is the tree T ′ obtained by
the collapse of the orbit ε of the universal cover T of (Γ, ψ)

— an isomorphism φ : π1(Γ, v)→ π1(Γ′, v′) such that φ ◦ ψ = ψ′.

Proof. First construct the graph of groups Γ′: we collapse the collapsible edge ε in Γ. Since
Gw = Gε we have λ(ε̄) = ±1. We create the new graph of group Γ′ by deleting ε and
w and redefining any edge with origin w by attaching it to v instead. The label of such
edges is multiplied by ±λ(ε). There is a map between the underlying graphs f : Γ → Γ′

which sends each vertex to the corresponding vertex in Γ′ (which we will write with a ′)
and sends w to v′, and sends any edge except ε to the corresponding edge and sends e to
the vertex v′.

Now let us build a morphism φ : B(Γ)→ B(Γ′):

au 7→ au′ for u 6= w

aw 7→ a
±λ(ε)
v′

te 7→ te′ for ε 6= e

tε 7→ 1
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This morphism sends any path in the graph of groups Γ to a path in Γ′. In particular
it induces a morphism π1(Γ, v) → π1(Γ′, v′). Moreover the induced morphism is an iso-
morphism between both fundamental groups. We define ψ′ = φ ◦ ψ. It is a marking on
Γ′.

The morphism φ induces a map (T, v)→ (T ′, v′) because it sends paths to paths and
preserves the equivalence relations defining trees. This map is a collapse map and it is
G-equivariant for the markings ψ and ψ′.

The graph Γ′ and the marking ψ′ can be computed from Γ and ψ, which proves the
lemma.

We have a similar result for expansions. It is slightly more difficult since while collapses
may be defined from data in the quotient, the definition of an expansion requires some
information in the tree.

Lemma 1.3.14. There is an algorithm which takes as input

— a marked graph of groups (Γ, ψ)

— a vertex v ∈ Γ

— a subset S ( E(ṽ), where ṽ is the basepoint of the universal cover (T, v), such that
∀g ∈ Gṽ, gS ∩ S 6= ∅⇒ g ∈ Stab(S)

and outputs

— a marked graph (Γ′, ψ′) whose universal cover is T ′ = T Stab(S),S (see lemma 1.1.22)

— an isomorphism φ : π1(Γ, v)→ π1(Γ′, v′) such that φ ◦ ψ = ψ′.

Proof. Like in the proof of the collapse in lemma 1.3.14, we first construct an oriented
graph, then construct a map between B(Γ) and B(Γ′) which induces a map between trees.

Let Γ′ be the labelled graph obtained as follows. The vertices of Γ′ are the vertices of
Γ along with another vertex w′. To distinguish them from the vertices of Γ we write their
names with a ′. The edges are redefined according to the following rule (see figure 1.13).
Let n := [Gṽ : Stab(S)]. Let π : T → Γ be the quotient map.

1. Add an edge ε with origin v′ and terminal vertex w′ with label n near v′ and 1 near
w′.

2. For e ∈ E(Γ) not in π(S), keep e with same origin and same label λ(e).

3. For e ∈ E(Γ) in π(S) we have o(e) = v. Redefine its origin to be w′ and its label to
λ(e)/n.
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Figure 1.13 – Redefinition of edges

This defines the origin of all oriented edges of Γ′. We then define t(e) = o(ē) for all
e ∈ E(Γ′).

Let f : Γ′ → Γ be the natural collapse map.
For each edge e with origin v in Γ, let ẽ := [(1, te)]E be its standard lift in T with

origin ṽ. If e ∈ π(S) choose c(e) such that eS := ac(e)v ẽ ∈ S. Note that π−1(e)∩S = 〈anv 〉ẽS.
Let χ : B(Γ′)→ B(Γ) be the following morphism:

au′ 7→ au for u′ 6= w′

aw′ 7→ anv

te′ 7→ te for e /∈ π(S) ∪ π(S̄)

te′ 7→ ac(e)v te for e ∈ π(S)

tε 7→ 1

and define the morphism φ : B(Γ)→ B(Γ′):

au 7→ au′

te 7→ te′ for e /∈ π(S) ∪ π(S̄)

te 7→ a−c(e)v tεte′ for e ∈ π(S)

We can check that χ ◦ φ = idB(Γ). Both these morphism send paths to paths so they
induce morphisms between fundamental groups. One also easily checks that φ◦χ|π1(Γ′,v′) =
idπ1(Γ′,v′). Thus χ induces an isomorphism π1(Γ′, v′)→ π1(Γ, v) and the restriction of φ is
its inverse.

Define the marking ψ′ = φ ◦ ψ of Γ′.
The morphism χ sends paths to paths, so it induces a map f̃ : (T ′, v′)→ (T, v) between

universal covers. This map is G-equivariant for the markings ψ and ψ′.

We want to prove that f̃ is the collapse map of the orbit ε and that T ′ = T StabS,S.
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Let ṽ′ = [1v′ ]V be the basepoint in T ′. Let w̃′ = [1v′tε1w′ ]V and ε̃ = [(1v′ , tε)]E. In
order to prove that T ′ = T Stab(S),S we need to show that the link of the vertex w̃′ is the
pre-image of S by f̃ , together with the edge ¯̃ε.

Note that f̃ collapses the orbit ε. To prove that it is a collapse map, we also need
the following fact: f̃ is injective on the set of edges not in the orbit of ε. Indeed, for
e ∈ E(T ′) \ G · ε, φ ◦ χ(Ge) = Ge. Thus two distinct edges in the same orbit cannot be
sent to the same edge.

Note that edges in different orbits are also sent to images in different orbits. This
proves that f̃ is injective on the set of edges. Thus it is injective on the interior of T ′ \G · ε̃
and it is the collapse map associated to the orbit ε.

Let S ′ = lk(w̃) \ {ε̃}. Let us show that it is contained in the preimage of S. Let
ẽ′ := [(1v′tεakw′ , te′)]E be an edge in S ′. By definition of the edges in Γ′, the corresponding
orbit of edge e ∈ Γ is in π(S) ⊂ Γ. Thus there is an edge [(ac(e)w′ , te)]E ∈ S ⊂ T . In
view of the definition of χ, the image of ẽ′ by f̃ is [(ankv , ac(e)v te)]E = [(ank+c(e)

v , te)]E. Since
ankv ∈ Stab(S) we have f̃(ẽ) = [ankv (ac(e)v , te)]E = ankv ẽS so it belongs to S.

The number of edges in S ′ is equal to the number of edges in S, and both can be
computed with [Gṽ : StabS] and the labels. Since f̃ is injective on the set of edges and
sends S ′ to S, it induces a bijection between both sets so f̃−1(S) = S ′. This proves that
T ′ is the tree T StabS,S.

Corollary 1.3.15. Given T , H and S such as defined in lemma 1.1.22, the tree TH,S can
be constructed algorithmically.

Lemma 1.3.16. There is an algorithm which takes as input

— a marked graph of groups (ΓT , ψ) with π1(ΓT ) ' G, and universal cover T

— finite sets ITv associated to each vertex v ∈ V (ΓT ) representing a family of allowed
edge groups A such that T ∈ DA

— a Whitehead graph WhT (G, v) and an admissible cut of this graph for A, where G
is a finite collection of loxodromic elements of G

and gives

— a marked graph of groups ΓS and universal cover S ∈ DA

— sets ISv associated to vertices of ΓS representing the same collection of allowed sub-
groups A
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such that there exists a non-injective map S → T , sending edge to edge or vertex, such
that for every g ∈ G, ‖g‖S = ‖g‖T . Moreover the map S → T can be chosen to be either
a fold or a collapse.

Proof. The proof of lemma 1.2.17 gives a construction of such a tree S (or equivalently
the associated graph of groups) by performing expansions and collapses on T . Lemmas
1.3.13 and 1.3.14 compute a new marked graph of groups for a collapse or an expansion,
along with an isomorphism between fundamental groups which is compatible with the
markings.

Finally we need to check that the sets which describe A can be computed, i.e. for any
vertex group in ΓS we need to find its maximal subgroups which belong to A. For any
vertex group H of ΓS the change of markings given by lemmas 1.3.13 and 1.3.14 enables
one to compute the image of H as a vertex subgroup in ΓT , so using the family (ITv )v∈ΓT

one can compute the family (ISv )v∈ΓS .

1.3.3 Description and termination of the algorithm

In this subsection we prove Theorem 1.3.3. Using the criterion given by theorem 1.2.14
we give an algorithm deciding, given G and G ⊂ G a finite collection of loxodromic
elements, whether G is simple, and if so, determining a system of special factors H such
that G � H.

Note the following fact:

Lemma 1.3.17. If WhT (G, v) has an isolated vertex, then G is simple with respect to D.

Proof. In the quotient T/G the axis of g avoids some edge which defines a subforest of
T/G containing the image of the axis of every g ∈ G.

Here is the description of the algorithm. We start with the tree T0 := TG ∈ D corre-
sponding to the graph of groups ΓG defining G. We may check immediately whether G
is a solvable Baumslag-Solitar group, in which case no proper special factor exists. We
suppose it is not the case. Start with n = 0:

1. Compute the axis of every g ∈ G in Tn. If some edge orbit does not intersect any axis,
then its complementary subgraph is a subforest of Γ. It may have some components
with elliptic fundamental group. Such components do not contain any element of G.
The set of components of the subforest with non-elliptic fundamental group gives a
system of proper special factors H such that G � H. The algorithm returns YES.
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2. Compute Whitehead graphs for all vertices of Tn/G and check whether at least one
of them has an admissible cut, using lemma 1.3.10. If none is found, then G is not
simple and the algorithm returns NO.

3. If we find v ∈ Tn/G such that WhTn(G, v) has an admissible cut, we compute a tree
Tn+1 such that there is a G-equivariant f : Tn+1 → Tn sending edge to edge or to
vertex with ‖g‖Tn+1 = ‖g‖Tn for every g ∈ G. Lemma 1.3.16 ensures that this can
be done. Start again step 1 with Tn+1.

Lemma 1.3.18. The algorithm described above terminates. When it does, either it finds
T ∗ such that AxisT ∗(g) does not cross some orbit of edges for every g ∈ G, or it finds a
proof that G is not simple.

Proof. At each iteration of the second step we replace Tn by a tree Tn+1 obtained by an
expansion or an unfolding. Expansions and unfoldings of type A or B increase the number
of orbits of edges by one while unfoldings of type C do not change this number. Suppose
by contradiction that the algorithm does not terminate, yielding an infinite sequence
(Tn)n∈N. Lemma 1.1.25 implies that the number of edges in Tn/G tends to infinity. Thus
there exists N ∈ N such that the number of edges of TN/G is strictly greater than∑
g∈G
‖g‖TN =

∑
g∈G
‖g‖T0 . Then there must be at least one orbit of edge avoided by the axis

of every g ∈ G, so the algorithm should have stopped at the N -th iteration: this is the
contradiction we needed.

1.4 Decreasing sequences of special factors

In this part, G is a non-elementary GBS group. Let A be a family of allowed edge
subgroups of G. Let H be a special factor with respect to DA. The induced deformation
space DA|H is the deformation space of H-trees of which elliptic groups and allowed edge
groups are those of D which are contained in H.

In particular D|H is the cyclic deformation space for H. If A|H := {A∩H/A ∈ A}, we
have DA|H = (D|H)A|H .

Lemma 1.4.1. A subgroup K ⊂ H is a special factor of G with respect to DA if and only
if K is a special factor of H with respect to DA|H .

Proof. If T is a tree in D̄A then its minimal H-invariant subtree TH is a tree in D̄A|H .
Conversely, any H-tree in D|H is a subtree of some G-tree in D.
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•2
1

2 •<
e •1 2 2

ΓG

ΓH
• •4 2

ΓH reduced by
collapsing e

Graphs of groups for H and G

Figure 1.14 – Example: H is a special factor of G for Dred because Ge fixes the edge of
the loop after reduction. On the contrary (Dred)|H is not the reduced space for H because
Ge does not fix any edge in reduced H-trees (for example the universal cover of the graph
of groups on the right).

Suppose K ⊂ H is a special factor of G, then it is a vertex stabilizer of some vertex v
in some T ∈ D̄A. The vertex v must belong to the minimal H-invariant subtree TH ∈ D̄A|H
since K is not an allowed edge group. Therefore K is a special factor for H with respect
to DA|H .

Now suppose K is a special factor of H with respect to DA|H : there is a collapse T → T̄

with T ∈ DA|H and such that K is a vertex stabilizer in T̄ . There is a tree S ∈ DA such
that T is a subtree of S and there is a collapse S → S̄ such that the restriction to T is
the collapse T → T̄ and the collapse is an isometry on S \ T . Edge stabilizers belong to
A. Thus K is a vertex stabilizer in S̄ so it is a special factor for G.

Remark 1.4.2. If A = Amin the family of subgroups which are bi-elliptic in reduced trees
of D, we have DA = Dred. However, the elements of DAmin

|H are not necessarily reduced as
H-trees of D|H . In fact some bi-elliptic groups appearing in some reduced G-trees might
not be bi-elliptic in reduced H-trees (see figure 1.14 for an example). This means that
Amin|H is not the family of subgroups of H which are bi-elliptic in reduced H-trees of
D|H .

Given a family G of loxodromic elements of G, the algorithm of Theorem 1.3.3 that
we described can be iterated in order to find a �-decreasing sequence (Hn) of systems of
special factors with respect to DA such that for all n ∈ N, G � Hn. One can ask whether
there exists a minimal system of special factors Hmin such that G is Hmin-peripheral, and
if the iteration of the algorithm eventually finds such a system. The answer is yes. We
introduce a complexity on special factors which enables us to prove the existence of a
minimal factor and that the algorithm stops.
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Remark 1.4.3. Additional operations used to iterate the Whitehead algorithm are them-
selves algorithmic. We need two things. The first one is to be able to take a (possibly
non-connected) subgraph Γ′ ⊂ Γ, compute the corresponding subgroups G′1, . . . , G′k and
the minimal subtrees of these subgroup. Indeed the connected components of Γ′ may
have valence 1 vertices, in which case they do not represent the minimal subtree for the
corresponding G′i. The second one is to deduce the replacements for DA in every factor
of the system. It consists in keeping all allowed edge groups which are contained in the
special factor G′i for every i ∈ {1, . . . , k}. In practice, for a factor G′i corresponding to a
connected component Γ′i, this means we keep every Iv for which v belongs to Γ′i.

For any non-elementary GBS group H we denote by b1(H) the first Betti number of
any graph of cyclic groups with fundamental group H. This is an invariant of trees in the
cyclic deformation space for H. We denote by M(H) the set of conjugacy classes of big
vertex stabilizers with respect to Amin. Define m(H) := #M(H). Vertex stabilizers are
the same in all trees in D|H so m(H) is also well-defined.

We also introduce the following integer:

σ(H) =
∑

K∈M(H)
i(K)

where i(K) is an integer which we define as follows and which is linked to the peripheral
structure of K (see [GL07, Definition 4.10])

Define i(K) = [K : K ′] where K ′ = 〈g ∈ K|g bi-elliptic in some T ∈ DAmin〉. This
definition does not depend on any graph of groups for H. However one can compute i(K)
easily using the labels of a reduced graph of groups for H. Given such a graph, there
exists exactly one vertex v corresponding to the conjugacy class K. Absolute values of
labels at v are never 1 because K is big. Then i(K) is the GCD of all labels at v.

Both b1(H),m(H), σ(H) only depend on the conjugacy class of H. For any special
factor H < G let [H] be the conjugacy class of H in G.

Definition 1.4.4. We define the following complexity, which is a triple of non-negative
integers, for any non-elementary GBS group H:

C(H) = (b1(H),m(H), σ(H))

It does not depend on the reduced graph of groups chosen to compute it nor on A. We
order complexities with lexicographic order.
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1.4. Decreasing sequences of special factors

For elementary GBS groups, we define the complexity to be (0, 0, 0).

Proposition 1.4.5. Let G be a GBS group and H a special factor of G. Then C(H) <
C(G).

Remark 1.4.6. The proposition is true for any choice of A. Since a special factor with
respect to DA is a special factor with respect to DZ, it suffices to prove Proposition 1.4.5
for DZ.

Definition 1.4.7. Let Γ be a graph of groups and Γ′ be a subgraph of Γ. We say that
Γ is reduced with respect to Γ′ if no collapse of Γ in the same deformation space has a
subgraph with fundamental group π1(Γ′).

This property is a minimality condition: if Γ′ ⊂ Γ, up to collapsing some edges, we
can obtain Γ̄′ ⊂ Γ̄, where Γ̄ is reduced with respect to Γ′ and π1(Γ̄′) = π1(Γ′).

Remark 1.4.8. The definition implies that if an edge e ∈ Γ has label λ(e) = ±1 and is not
a loop, then e ⊂ Γ \ Γ′ and o(e) ∈ Γ′.

Proof of proposition 1.4.5. There exists a graph of groups Γ for G such that some sub-
graph ΓH ⊂ Γ has fundamental group H.

We may suppose that Γ is reduced with respect to ΓH . In particular, ΓH is reduced.
We also suppose H is not an elementary GBS subgroup.

If at least one of the edges in Γ \ ΓH is non-separating then the first Betti number of
ΓH is strictly smaller than b1(Γ) so C(H) < C(G).

If all edges in Γ \ ΓH are separating, then each connected component of Γ \ ΓH is a
tree attached to ΓH by a single vertex. Figure 1.15 illustrates this case.

In that case we first prove that the number of big vertex stabilizers (with respect to
Amin) cannot increase.

Suppose v ∈ ΓH is a vertex whose stabilizer in H is big. If no label in Γ \ ΓH at v is
±1, then Gv < G is a big vertex stabilizer in Γ.

Otherwise, let e be an edge with o(e) = v such that λ(e) = ±1. The edge e is not in
ΓH since v is big in ΓH , thus e is separating. Furthermore no label at t(e) is ±1, so Gt(e)

is a big vertex group containing Gv. Thus every big stabilizer in H is a subgroup of a big
stabilizer in G.

Moreover the subgroup Gt(e) < G can contain at most one big vertex stabilizer of H.
This implies m(H) ≤ m(G).
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At least one vertex with two edges:
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Take the
subgraph ΓH

. . . •
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Only one edge on every vertex:
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. . . •
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q H ∩K
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i(K) = gcd(np, nq)

i(K) = n× i(K ∩H)
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. . . •
K ∩H
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q

big in ΓH

i(K ∩H) = gcd(p, q)

Figure 1.15 – Cases when all edges in Γ \ ΓH are separating.
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1.4. Decreasing sequences of special factors

Suppose at least one of the edges in Γ\ΓH has both its label distinct from ±1. One of
its vertices v does not belong to Γ′. The stabilizer of v is big (see remark 1.1.20): no edge
at v is a loop, and all labels at v are different from ±1 because Γ is reduced with respect
to Γ′. Thus m(H) < m(G) so C(H) < C(G) again.

Assume that all edges in Γ\ΓH are separating and have one label equal to ±1. In that
case, all edges in Γ \ ΓH have one vertex in ΓH , which carries the ±1 label, and a valence
1 vertex. If at least two such edges are attached to the same vertex in ΓH then ΓH has
strictly fewer big vertex stabilizer classes than Γ (see figure 1.15). Therefore we have to
deal with the case where at most one edge of Γ \ ΓH is attached to each vertex of ΓH .

In that case, compute σ in Γ and ΓH . Only the latter is reduced. To reduce Γ we
collapse all edges in Γ \ΓH . Thus we get a reduced graph Γ′ which is similar to ΓH but at
some vertices, all labels are multiplied by a factor. At such vertices the GCD of all labels
is also multiplied by the factor, so the corresponding iΓ(K) is greater than iΓH (K ∩H).
Therefore σ(H) < σ(G) so C(H) < C(G).

Remark 1.4.9. If H is a special factor of G with respect to Dred(G), then (b1(H),m(H)) <
(b1(G),m(G)). However if F is another special factor of G for Dred(G), such that F < H,
we do not necessarily have (b1(F ),m(F )) < (b1(H),m(H)). In fact F may not be a
special factor of H for Dred(H) (see remark 1.4.2). Therefore this simplified complexity is
not helpful to study a decreasing sequence of special factors, even with respect to DAmin .

We deduce:

Corollary 1.4.10. Every decreasing sequence of special factors with respect to DA is
stationary.

Proof. Let G ⊃ G1 ⊃ · · · ⊃ Gn ⊃ . . . be a decreasing sequence of special factors of
G. Either all the Gi are all non-elementary groups so Proposition 1.4.5 ensures that the
sequence is stationary, or for some n ∈ N the group Gn is elementary. The elementary
GBS groups do not have any non proper special factors so in that case the sequence is
also stationary.

Corollary 1.4.11. Every �-decreasing sequence of systems of special factors with respect
to DA is stationary.

Proof. This is a consequence of Corollary 1.4.10 and Kőnig’s Lemma.

Lemma 1.4.12. If A,B are distinct special factors of G with respect to DA, then either
A ∩B is elliptic or it is also a special factor of G with respect to DA.
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Proof. Let A,B be as in the lemma. We will construct a tree in D̄A in which A ∩ B is a
vertex stabilizer.

There exists a G-tree T ∈ D̄A where B is a vertex stabilizer. The group A acts on T ;
let TA be the minimal subtree of T for this action. Subgroups of the form hBh−1 ∩ A fix
a vertex in TA. Consider the graph of groups TA/A.

Let S ∈ D̄A be such that A is the stabilizer of a vertex v ∈ S. We may suppose that
all vertices with non cyclic stabilizers are in the orbit of v. We perform an expansion
on S by replacing the vertices in the orbit of v by copies of TA, which is possible since
edge stabilizers of S are elliptic in TA. We obtain a new tree R which has a vertex with
stabilizer B ∩ A.

We need to show that it can be obtained by collapse of a tree of DA. We can perform
an expansion of the vertex orbit of S by replacing it by T̂A, the minimal subtree of A in
T̂ ∈ DA where T̂ → T is a collapse. All edge and vertex stabilizers of T̂A are allowed in
DA. Then we get a tree R̂ ∈ DA which yields R by collapse. This shows that A ∩ B is
either elliptic or a special factor of G with respect to DA.

Corollary 1.4.13. Let H,H′ be two systems of proper special factors. Define H ∧H′ :=
{[H ∩H ′]/H ∩H ′ non elliptic , [H] ∈ H, [H ′] ∈ H′}. Then H ∧H′ is a system of proper
special factors.

Proof. The elements of H∧H′ are all special factors according to Lemma 1.4.12. We need
to check that they are all simultaneously vertex stabilizers in some tree S ∈ D̄A. The
proof works like the proof of Lemma 1.4.12. Let T ∈ D̄A (resp. T ′) be a tree in which
every factor of H (resp. H′) is a vertex stabilizer. We find minimal trees Ti ⊂ T for H ′i
for every [H ′i] ∈ H′, then we blow up T ′ by replacing the vertex fixed by gH ′ig−1 by gTi
for every g ∈ G. The result is a tree S in which the conjugacy classes of non-cyclic vertex
stabilizers are the set H ∧H′, and S ∈ D̄A.

Corollary 1.4.14. Let G be a finite collection of loxodromic elements of G. The set of
systems of special factors H with respect to DA such that G � H admits a smallest element
for �.

Proof. Note that this set is never empty since {G} is itself a system of special factors
with respect to DA.

Corollary 1.4.11 ensures that any �-decreasing sequence of systems of special factors
is stationary. Thus there exists a system of special factors H such that G � H which is
minimal for this property.
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Let us show that it is unique. Let H′ be another minimal special factor such that
G � H′. Let g ∈ G: there is H ∈ H and H ′ ∈ H′ such that g ∈ H ∩H ′ so H ∧H′ is not
empty. By Lemma 1.4.12 it is a system of special factors of G.

By minimality of H we get H ⊂ H′, and conversely by minimality of H′. By Remark
1.2.7 2. the relation � is an order so both systems are equal.

Using Whitehead algorithm and corollary 1.4.14 we deduce that there exists an algo-
rithm which finds the smallest system of special factorsH such that G ⊂ G isH-peripheral
with respect to DA:

Theorem 1.4.15. There is an algorithm which takes as input

— a marked graph of groups ΓG representing a group G

— a finite collection of loxodromic elements G ⊂ G as loops in ΓG
— finite sets (Iv)v∈V (ΓG) representing a collection of allowed edge groups A

and outputs the smallest system of special factors H of G with respect to DA such that G
is H-peripheral, as a finite collection of marked graph of groups.

Proof. We give the algorithm in the case where G has a single element. The algorithm
consists in constructing a decreasing sequence of special factors containing g. In the case
where G consists of more than one element, the algorithm would construct a decreasing
sequence of systems of special factors.

Define H0 := {G}, Γ0 := ΓG and D0 := DA. We will construct a decreasing sequence
of special factors H0 ⊃ · · · ⊃ HN , where g ∈ Hn for every n ∈ {0, . . . , N}. The space
Dn is defined as the induced deformation space for Hn. It coincides with the induced
deformation space for Hn seen as a special factor of some Hm for m < n. For every n, we
will construct sets (Inv )v∈V (Γn) which represent the family of allowed edge groups of Dn.

Here is the algorithm. Start with i = 0. Use Theorem 1.3.3 applied to Γi to decide
whether g is contained in a special factor of Hi or not. If yes, then Hi is the minimal
special factor containing g and the algorithm stops. Else the algorithm gives

— a special factor Hi+1 ( Hi such that g ∈ Hi+1

— a new graph of groups Γ′i with π1(Γ′i) ' Hi

— a subgraph of groups Γi+1 ⊂ Γ′i such that π1(Γi+1) ' Hi+1.

Then start again with i+ 1 instead of i.
Applying this construction, we get a decreasing sequence of special factors with respect

to DA.
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Corollary 1.4.10 guarantees that this sequence is stationary, which means that the
algorithm stops eventually.The last factor obtained, given as a marked graph of groups,
is the minimal special factor containing g.
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Chapitre 2

DETECTION OF FULLY IRREDUCIBLE

AUTOMORPHISMS IN GENERALIZED

BAUMSLAG-SOLITAR GROUPS

Introduction

Baumslag-Solitar groups are defined by

BS(p, q) = 〈a, t|tapt−1 = aq〉

They were introduced by Baumslag and Solitar in [BS62] as examples of non-Hopfian
groups.

Generalized Baumslag-Solitar (GBS) groups are defined as fundamental groups of
finite graphs of infinite cyclic groups (see Figure 2.1 for examples). Equivalently they are
groups which act on a simplicial tree with infinite cyclic edge and vertex stabilizers and
finite quotient.

In this paper we are interested in the outer automorphism group Out(G) for a GBS
group G.

GBS groups naturally act on trees with infinite cyclic edge and vertex stabilizers.
In general a GBS group admits infinitely many such actions, and there are infinitely
many corresponding graphs of groups. In [For06] Forester introduced deformation spaces
associated to a GBS group G. It consists in the space of G-trees which have the same
elliptic groups as a given tree T . Here we consider the cyclic deformation space which is
the space of all minimal actions of G on simplicial trees with infinite cyclic edge and vertex
stabilizers, up to G-equivariant isomorphism and homothety (unless G is isomorphic to
Z, Z2 or the fundamental group of a Klein bottle). The cyclic deformation space D is the
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groups

Figure 2.1 – Examples of graphs of groups with cyclic vertex and edge groups

GBS analogue of the outer space of Culler and Vogtmann CVN for the free group FN :
outer space is a contractible space with a proper action of Out(FN).

For a GBS group G, there is a natural action of Aut(G) on D by pre-composition of
the action of G: if φ ∈
Aut(G) and (T, ρ) ∈ D where ρ : G→ Isom(T ) is the action, then (T, ρ) · φ = (T, ρ ◦ φ).
Since inner automorphisms act trivially this is actually an action of Out(G). In the rest
of the paper, we distinguish actual automorphisms in Aut(G) and their outer class in
Out(G): we denote the former with lower case letters and the latter with upper case
letters.

Studying actions of G on trees with cyclic stabilizers is equivalent to studying marked
graphs of groups (Γ, σ) where Γ is a graph of cyclic groups and σ is an isomorphism
G ' π1(Γ).

An automorphism Φ ∈ Out(FN) is called fully irreducible when no conjugacy class
of free factors is Φ-periodic. In the case of GBS groups, free factors are not relevant but
there is an analogue called special factor, which we develop in Chapter 1. A special factor
is a subgroup of G which is the fundamental group of a subgraph of groups in some graph
of cyclic groups for G. We can define a fully irreducible automorphism Φ ∈ Out(G): it is
an automorphism which has no periodic conjugacy class of special factor.

In [BH92] Bestvina and Handel prove that any fully irreducible element Φ ∈ Out(FN)
admits a train track representative, which is an action on a tree T ∈ D with a φ-equivariant
map f : T → T for some φ ∈ Φ whose iterates stretch equally all edges and send them on
geodesic paths. The set of train track trees behave like a translation axis for Φ in CVN .
Train track representatives are a key tool for studying fully irreducible automorphisms
and they can be computed. However it is not known whether train track representatives
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always exist for fully irreducible automorphisms of a GBS group in general, although
there are many examples. When G has no non-trivial integer modulus (see for example
[Lev07] for a definition of modulus) then there is a bound on the number of edges in
graphs of cyclic groups for G ([For06]). The results in [Mei15] imply that fully irreducible
automorphisms of G in this case admit train track representatives. Yet we do not know
whether such groups always admit interesting fully irreducible automorphisms.

Another example is G = BS(p, pn) for p > 1. In [Bou16] Bouette proved that in that
case, all automorphisms are reducible since there is a globally invariant conjugacy class
of special factors. However by replacing D by another deformation space allowing greater
vertex stabilizers, namely those in the invariant conjugacy class, there are fully irreducible
automorphisms and they admit train tracks.

In this paper we adapt an algorithm given by Kapovich in [Kap14] and [Kap19] which,
given an automorphism Φ which is atoroidal, i.e. has no periodic conjugacy class, and a
train track representative for Φ, decides whether or not Φ is fully irreducible. The atoroidal
condition can actually be weakened. In the original papers by Kapovich the algorithm
applies to any automorphism since there is an algorithm in [BH92] which either finds a
train track representative for Φ or gives a proof that Φ is not reducible.

A non-solvable GBS group is a GBS group which is neither isomorphic to Z, Z2, the
fundamental group of a Klein bottle nor BS(1, n) for some n ∈ Z \ {0}.

A conjugacy class [g] ∈ G is loxodromic if there exists T ∈ D (equivalently for any
T ∈ D) the action of g on T is loxodromic.

A loxodromic conjugacy class [g] with g ∈ G is pseudo-periodic for Φ ∈ Out(G) if
‖φn(g)‖ is bounded for n ∈ N, for some automorphism φ ∈ Φ. While in a free group
context this would ensure that the conjugacy class of g is actually periodic, it is not the
case here. An outer class Φ ∈ Out(G) is pseudo-atoroidal if it has no pseudo-periodic
hyperbolic conjugacy class.

The paper is centred around the two following theorems, which are independant.

Theorem A. There is an algorithm which takes a non-solvable GBS group G, a pseudo-
atoroidal automorphism Φ ∈ Out(G) and a train track representative f : T → T for Φ,
and decides whether Φ is fully irreducible.

Theorem B. There is an algorithm which takes a non-solvable GBS group G and an
outer automorphism Φ ∈ Out(G) with a train track representative f : T → T and decides
whether Φ is pseudo-atoroidal.
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Structure of pseudo-periodic conjugacy classes and subgroups. The fixed group
for an automorphism φ ∈ Aut(G) is the subgroup of G whose elements are fixed for φ.
When φ is an automorphism of a free group, the fixed group of φ is always finitely
generated ([Ger87]). In GBS groups, fixed groups are not always finitely generated: see
Example 2.0.1. The notion of pseudo-periodic subgroup associated to an automorphism
φ ∈ Aut(G) seems to be more interesting.

Examples 2.0.1. Let G := BS(2, 4) = 〈a, t|ta2t−1 = a4〉. Let φ ∈ Aut(G) be the inner
automorphism defined by g 7→ a2ga−2. The fixed group Fix(φ) is the subgroup generated
by {t−ka2tk, k ∈ Z} and it is not finitely generated. In fact, let T ∈ D be the standard
tree for BS(2, 4) of Figure 2.1. Let v be the unique vertex of T with stabilizer 〈a〉. Let e be
the edge from v to tv. The minimal invariant subtree for Fix(φ) is the subset of T which
can be reached from v by an edge path γ := e1, . . . , en such that for every i ∈ {1, . . . , n}
the subpath e1, . . . , ei does not contain more edges in G · e than in G · ē.

The quotient of the minimal subtree by Fix(φ) has infinite diameter. Therefore Fix(φ)
is not finitely generated.

In free groups, pseudo-periodic conjugacy classes are actually periodic. However, in
a GBS group, this is not automatically true. In Chapter 1 we proved the existence of
a minimal special factor containing g for every loxodromic g ∈ G. A conjugacy class is
simple if its minimal special factor is not G. If [g] is pseudo-periodic, then the conjugacy
class of the minimal factor containing g is periodic: if g is simple, then G has a proper
periodic conjugacy class of special factors. Thus we have:

Lemma C. If there exists a simple pseudo-periodic conjugacy class for Φ ∈ Out(G), then
Φ is not fully irreducible.

The strategy for finding pseudo-periodic conjugacy classes is based on Nielsen paths,
just as the study of periodic conjugacy classes in free groups. Let f : T → T be a train
track representative for Φ ∈ Out(G). A Nielsen path is a finite path [x, y] in T such that
there exists g ∈ G such that f(x) = gx and f(y) = gy. More generally a periodic Nielsen
path is a Nielsen path for fn for some n ≥ 1. They can be split into concatenations of
periodic indivisible Nielsen paths (pINP). The link between pseudo-periodic conjugacy
classes for Φ and periodic indivisible Nielsen paths for f is given by:

Proposition D. Let g ∈ G be an element whose conjugacy class is pseudo-periodic for
Φ ∈ Out(G). Suppose f : T → T is a train-track representative for Φ. Then the axis of g
in T is a concatenation of periodic indivisible Nielsen paths.
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Consider a periodic indivisible Nielsen path η ⊂ T . Define V Y (η) as the set of points
of T which can be joined to one endpoint of η by a concatenation of periodic indivisible
Nielsen paths. By Proposition D the axis of g ∈ G such that the conjugacy class [g] is
pseudo-periodic is contained in the convex hull of V Y (η) for some periodic indivisible
Nielsen path η and that that g ∈ Stab(V Y (η)).

Like in the case of free groups, there are finitely many G-orbits of periodic indivisible
Nielsen paths, and they can be computed:

Theorem E. Let Φ ∈ Out(G) and let f : T → T be a train track map for Φ. There are
finitely many orbits of periodic indivisible Nielsen paths for f .

Furthermore there is an algorithm which finds all orbits of pINPs.

Consequently there exist finitely many sets V Y (η) where η is a pINP up to translation,
so there exist finitely many conjugacy classes of subgroups Stab(V Y (η)) which could
contain elements whose conjugacy class is pseudo-periodic:

Theorem F. Let Φ ∈ Out(G). There exist finitely many subgroups

G1 = Stab(V Y (η1)), . . . , Gk = Stab(V Y (ηk))

in G, well defined up to conjugacy, for which one can compute a finite set of generators,
such that:

— If a conjugacy class [g] with g ∈ G is pseudo-periodic for Φ then there exists i ∈
{1, . . . , k} such that a conjugate of g belongs to Gi.

— Conversely, for all i ∈ {1, . . . , k}, all loxodromic elements of Gi have a pseudo-
periodic conjugacy class.

Theorem B follows.

Given an actual automorphism φ ∈ Aut(G) and a tree T ∈ D, one can define the
pseudo-periodic subgroup associated to Gφ as the subgroup

Gφ := {g ∈ G/dT (∗, φn(g)∗) is bounded for n ∈ N}

where ∗ is any base point in T . The group Gφ does not depend on the choice of the base
point ∗, nor on the choice of T ∈ D.
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Pseudo-periodic subgroups of GBS groups are related to fixed groups for automor-
phisms of free groups. There is also a link with Nielsen paths and pseudo-periodic conju-
gacy classes:

Theorem G. Let Φ ∈ Out(G) and let f : T → T be a train track representative for Φ.
Let ψ ∈ Aut(G) such that ψ ∈ Φk for some k ∈ N. If Gψ contains a loxodromic element,
there exists a pINP η ⊂ T such that

Gψ ⊂ Stab(V Y (η))

Moreover, for any pINP η such that Stab(V Y (η)) contains a loxodromic element, there
exists k ∈ N and ψ ∈ Φk such that Stab(V Y (η)) = Gψ.

This indicates that the subgroups Stab(V Y (η)) for η a pINP are the maximal sub-
groups among the pseudo-periodic subgroups which contain loxodromic elements.

Periodic special factors and stable lamination. Given an outer automorphism
Φ ∈ Out(G) with a train track representative f : T → T , one can define the stable
lamination Λ+ associated to T as the G-invariant collection of bi-infinite geodesics of T
obtained by taking the closure of the set of translates of iterates fn(e) for an edge e ∈ T .

Theorem A is a consequence of the following criterion extending [Kap14]:

Theorem H. Let G be a non-solvable generalized Baumslag-Solitar group. Let Φ ∈
Out(G) be an automorphism of G with a primitive train track f : T → T with no simple
pseudo-periodic element. Then Φ is fully irreducible if and only if all Whitehead graphs
WhT (Λ+, v) are connected.

A train track map is primitive when the associated transition matrix is primitive.
We actually prove a slightly stronger version of this criterion, using restricted deforma-

tion spaces instead of the standard deformation space (see [GL07, Def. 3.12]): restricted
deformation spaces have a restriction on allowed edge groups as well as on vertex groups.

From this criterion we deduce the algorithm of Theorem A. The algorithmicity here
comes from the fact that Λ+(f) is quasi-periodic, which guarantees that the computation
of the turns taken by the lamination takes only finitely many steps. The computation of
Whitehead graphs is possible since the trees in D are locally finite.

Note that the criterion given by Theorem H does not require that Φ be pseudo-
atoroidal: Theorem A actually applies to automorphisms with non-simple pseudo-periodic
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conjugacy classes. However we do not know how to algorithmically determine whether an
automorphism satisfies this hypothesis. We can decide whether there exist pseudo-periodic
conjugacy classes, and for a given element we can decide whether it is algorithmic using the
results of Chapter 1, but the set of pseudo-periodic conjugacy classes could be complicated.

In order to answer this question, we would need to know whether one of the subgroups
Stab(V Y (η)) defined before contains a simple element. Without any algorithmic answer
to this question, we need the pseudo-atoroidal condition to assemble Theorems B and A.

In Section 2.1 we define irreducible automorphisms and train track representatives, as
well as the stable lamination which comes with a train track map. In Section 2.2 we prove
Theorem H. Section 2.3 is about pseudo-periodic conjugacy classes and how they may
be understood using Nielsen paths; pseudo-periodic subgroups and their computation is
developed in Section 2.4. These two sections can be read independently of Section 2.2.
Finally Section 2.5 puts together the arguments for Theorem A.

2.1 Special factors, automorphisms of GBS groups

A Generalized Baumslag-Solitar group (GBS) is a group which admits a minimal
action on a simplicial tree with infinite cyclic vertex and edge stabilizers. Equivalently it
is a group isomorphic to the fundamental group of a finite graph of infinite cyclic groups
on both vertices and edges.

GBS groups isomorphic to Z, Z2 and the fundamental group of a Klein bottle are
called elementary. Along with Baumslag-Solitar groups BS(1, n) for n ∈ Z \ {0}, they are
the solvable GBS groups. In this paper we will always assume that G is a non-solvable
GBS group.

A G-tree is a simplicial tree with an action of G by graph isomorphisms. It can be
endowed with a metric, in which case we demand that the action be by isometries.

The set of vertices of a tree T will be denoted by V (T ) and the set of edges by E(T ).
The initial vertex of an edge e is o(e) and its terminal edge is t(e). The opposite edge of
e is ē.

We identify every tree T with its geometric realization. A path in a tree T is a con-
tinuous map from an interval to T . We will assume paths are linear on edges. We will
frequently identify paths with their image in T . A tight path is a path which has no back-
tracking. An edge path is a path whose image can be described by whole edges e1, . . . , ek

such that for 1 ≤ i < k, t(ei) = o(ei+1).
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Let T be a G-tree. A subgroup H < G is elliptic in T if it fixes a point. It is bi-elliptic
if it fixes two distinct points. When H is not elliptic and contains a loxodromic element,
there exists a minimal H-invariant subtree which we denote by TH .

A deformation space introduced by Forester in [For06] is the space of all minimal G-
trees which have the same elliptic subgroups, up toG-equivariant isometry and homothety.

The cyclic deformation space D is the deformation space of all G-trees where elliptic
subgroups are all isomorphic to Z. This is well defined. Indeed there exists a G-tree T such
that all edge and vertex stabilizers in T are infinite cyclic. Define DT as the deformation
space containing T . For non-elementary GBS groups the set of elliptic subgroups (i.e.
subgroups which fix at least a point) is independent of the tree and has an algebraic
characterization (see [Lev07] for example) so we set D := DT .

Let A be a family of elliptic subgroups in D, invariant by conjugacy and by passing
to a subgroup. The restricted deformation space DA is the subspace of trees in D where
all bi-elliptic groups belong to A.

Let T be a G-tree. Let Y be a G-invariant proper subforest of T . Define the equivalence
relation ∼ on T as the minimal G-equivariant equivalence relation such that all points
of a connected component of Y are equivalent. The quotient map πY : T → T/ ∼ is the
collapse of the subforest Y . The tree T/ ∼ belongs to the same deformation space as T if
and only if Y does not contain the axis of any loxodromic element of G.

A subgraph of the graph of groups is collapsible if its pre-image in the universal cover
does not contain the axis of a loxodromic element. Equivalently, when collapsing the
corresponding subforest, the stabilizers of the new vertices are elliptic subgroups of G.

Remark 2.1.1. Collapsibility can be checked using labels. To determine if a subgraph
Γ0 ⊂ Γ is collapsible, first of all obtain a new graph from Γ0 by deleting all edges with
a valence 1 vertex carrying the label ±1. This yields a graph of groups Γ1. Then repeat
with Γ1. Since the number of edges decreases the procedure will eventually stop, yielding
either a graph with no edge, or a graph where all valence 1 vertices have labels different
from ±1. The subgraph Γ0 is collapsible if and only if the first case happens.

Let DA be a restricted deformation space, possibly D if all edge groups are allowed. A
special factor with respect to DA is a subgroup H of G with the following property (see
Chapter 1 for more details). There exists a collapse map π : S → S̄ such that S ∈ DA

and H is a vertex stabilizer in S̄.

A marked graph of groups is a pair (Γ, σ) where Γ is a graph of groups and σ : G →
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π1(Γ) is an isomorphism. Bass-Serre theory gives a correspondance between marked graphs
of groups and G-trees ([Ser77]).

Marked graphs of groups offer a nice point of view regarding special factors. A subgroup
H < G is a special factor if and only if there exists a marked graph of groups (Γ, σ) and
an identification σ : G → π1(Γ) such that H identifies to the fundamental group of a
subgraph of Γ. In this definition, Γ is the quotient S/G with S ∈ DA such that H is a
vertex stabilizer in a collapse S̄.

In the rest of the paper we fix A, so we omit to specify it when referring to special
factors.

Definition 2.1.2. The outer automorphism Φ ∈ Out(G) is reducible with respect to DA

if there exists a special factor A ⊂ G with respect to DA such that the conjugacy class of
A is invariant by Φ.

The outer automorphism Φ is called fully irreducible if for all n ∈ N, Φn is not reducible.

Remark 2.1.3. Since the notion of special factors depends on A, so does the notion of
reducible automorphisms. Actually if A ⊂ A′ then special factors with respect to A are
special factors with respect to A′, so an automorphism which is reducible for A is also
reducible for A′. The strongest notion of fully irreducible automorphism is achieved with
DA = D. We have not explored the possible differences caused by the choice of A yet.

2.1.1 Computations in GBS groups and trees

In the rest of the paper we will need to perform some algorithmic operations on GBS
groups and their automorphisms. In this subsection we justify why and how we can do
them. The main operations are summed up by Proposition 2.1.4.

In order to deal with the group G algorithmically, we consider elements of G as words
in a graph of groups. The trees on which G act also admit a description as a set of words.
The definitions in this section are standard, though they are given in the special case of
GBS groups whose graphs of groups have cyclic edge and vertex groups, hence the simpler
relations. A more detailed description is available in Chapter 1, Section 1.3.

Let Γ be a graph of groups with cyclic edge and vertex groups. Let (av)v∈V (Γ) be
generators for every vertex group Gv of Γ and (ae)e∈E(Γ) be a choice of generators for the
edge groups. Each inclusion Ge ↪→ Gt(e) is given by a nonzero integer λ(ē) such that ae is
sent to aλ(ē)

t(e) . The integers λ(e) is the label of e.
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Let (te)e∈E(Γ). The Bass group B(Γ) is the group generated by the elements av and te
for v ∈ V (Γ) and e ∈ E(Γ), and with the following relations:

— te = t−1
ē for e ∈ E(Γ)

— for all e ∈ Γ, with labels λ(e) = p and λ(ē) = q, we have apo(e) = tea
q
t(e)t

−1
e

A path in the graph of groups is a word ak0
v0 te1a

k1
v1 . . . tena

kn
vn where vi−1 = o(ei), vi = t(ei)

for 1 ≤ i ≤ n and ki ∈ Z for 0 ≤ i ≤ n. It is a loop if v0 = vn; in that case we say that it
is based at v0. Paths represent elements of B(Γ). The integer n is the length of the path.

Fix a base point v0 ∈ V (Γ). The fundamental group of Γ at vertex v0 is the subgroup
π1(Γ, v0) < B(Γ) whose elements are represented by loops in Γ based at v0. The group is
independant of the choice of v0 up to isomorphism.

A path w := ak0
v0 te1a

k1
v1 . . . tena

kn
vn in Γ is reduced if for all 1 ≤ i ≤ n−1, ei = ēi+1 implies

that λ(ēi) does not divide ki.
Given a path w, one can algorithmically compute a reduced path which represents the

same element of B(Γ). The reduced path is not necessarily unique, however its length is
unique.

The universal cover Tv0 of the graph of groups Γ is a tree which can be constructed
as follows: the set of vertices is

Ṽ = {paths in Γ with initial vertex v0}/ ∼

where γ ∼ γ′ if γ and γ′ have the same terminal vertex vi ∈ Γ and γ−1γ′ ∈ Gvi as an
element of B(Γ).

The oriented edges of the universal cover are defined as follows:

Ẽ =
{

(α, ate)/ α path in Γ from v to v′, e ∈ Ev′ , a ∈ Gv′

}
/ ∼

where Ev′ is the set of edges with origin v′. The equivalence relation ∼ is defined by
(α, ate) ∼ (α′, a′te′) if and only if e = e′ and a−1α−1α′a′ ∈ iē(Ge). The opposite edge of
(α, ate) is the edge (α · ate, t̄e).

The group π1(Γ, v) acts on Ṽ and Ẽ by left concatenation of the paths. The quotient
of Tv0 by this action is Γ.
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Proposition 2.1.4. Let G be a GBS group given as a finite set of generators and a
marking G ' π1(Γ, v) where Γ is a graph of group with cyclic edge and vertex stabilizers
and v is a vertex in Γ.

One can algorithmically solve the following problems:

(i) word problem: given an element g ∈ G given as a loop in the graph of groups, find
out whether g is the identity

(ii) given x ∈ Ṽ (resp. e ∈ Ẽ) and g ∈ G given as a loop, compute the image gx

(iii) given vertices x, x′ ∈ Ṽ (resp. edges e, e′ ∈ Ẽ) given as paths in the graph of groups,
decide if x ∼ x′ (resp. e ∼ e′), i.e. if the paths x, x′ represent the same point of Tv

(iv) given x, y in Ṽ , find out whether x, y belong to the same orbit, and when they do,
find g ∈ G such that y = gx

(v) given two pairs (x, x′), (y, y′) of elements of Ṽ , find out whether there exists g ∈ G
such that (y, y′) = (gx, gx′)

(vi) given x ∈ Ṽ and n ∈ N, list all edge paths with length n and first vertex x

(vii) given an edge e ∈ E(Γ), compute the graph of groups Γ′ obtained from Γ by subdi-
viding e

Proof. (i) Using the identification of the set of generators of G with loops in Γ, one can
compute a loop w in Γ for g. By [Ser77, 5.2, Theorem 11] a word w represents the trivial
word if and only if it can be reduced to the trivial loop 1 = a0

v0 , or equivalently if every
reduced form is the trivial loop. Since computing a reduced loop is algorithmic, the word
problem can be solved.

(ii) To compute the image gx of x ∈ V (T ) given as a path in Γ based at v0, it suffices
to compute a loop for g based at v0 and concatenate it on the left of the path representing
x.

(iii) Let γ, γ′ be paths in Γ representing x, x′. Their first vertex is v0 and their last
vertex is a vertex vi ∈ V (Γ). The concatenation γ−1 ·γ′ is a loop based at vi. It represents
an element of Gvi ⊂ B(Γ) if and only if there exists a reduced loop for it with length 0
(or equivalently, if every reduced loop for γ−1γ′ has length 0).

(iv) The points x, y belong to the same orbit in T if and only if the paths representing
them have the same terminal vertex in V (Γ). The element g ∈ G represented by the loop
yx−1 satisfies gx = y.

(v) We can assume that there exists g ∈ G such that gx = y and find such a g. The
set of elements of G such that gx = y is {gu, u ∈ Stab(x)}. Let γx be a path representing

83



Chapitre 2 – Detection of fully irreducible automorphisms in generalized Baumslag-Solitar
groups

x and let v be its terminal vertex in V (Γ). By definition of Ṽ , Stab(x) = {aix, i ∈ Z} with
ax := γxavγ

−1
x . Since av is elliptic on Tv0 and the tree Tv0 is locally finite, the orbit 〈av〉 ·x′

is finite so there exists i ≥ 1 such that aixx′ = x′, and one can algorithmically find such
an i by (iii). Thus the pairs (x, x′) and (y, y′) are in the same orbit if and only if there
exists 0 ≤ j < i such that gajxx′ = y′. This can be checked algorithmically.

(vi) This can be done by induction. For n = 1 it suffices to list all edges with origin
x: if γx is a path in Γ representing x and vx is the image of x in V (Γ), then the edges are

{(γx, aivxte, e ∈ E(Γ) s.t. o(e) = vx, 0 ≤ i < λ(e)}

For n > 1, list all edge paths with length n − 1. The edge paths with length n are the
paths γ̃ · ẽ where γ̃ is an edge path with length n − 1 starting with x, ẽ ∈ Ẽ is an edge
whose origin is the last vertex of γ̃, and the last edge of γ̃ and ẽ are not opposite.

(vii) The subdivision consists in replacing e by edges e′, e′′ with o(e′) = o(e), t(e′′) =
t(e), and t(e′) = o(e′′) is a new vertex. Labels are the following: λ(e′) = λ(e), λ(ē′) =
λ(e′′) = 1, λ(ē′′) = λ(ē). The new marking must also be computed; the operation consists
in replacing te in paths in Γ by te′1te′′ .

A group automorphism φ : G → G can be described using a finite set of generators
for G. We also assume that we know a description of the inverse of the automorphism
G → π1(Γ) in terms of the generators of π1(Γ) described above. Thus one can compute
the image of any element of π1(Γ) by φ and the image is a loop in Γ.

Maps between trees can be described using the same tool. For a G-equivariant map
between trees (or a φ-equivariant map; the G-equivariant case is the case φ = id) sending
vertex to vertex, it suffices to give the image of every orbit of vertex and edge in the tree.
Let f : T → T be a G-equivariant map and let V ⊂ V (T ) be a set of representatives for
V (T/G), let E ⊂ E(T ) be a set of representatives for E(T/G):

— the image of a vertex v ∈ V is a path f(v) ∈ Ṽ

— the image of an edge e ∈ E is a path in the universal cover: it may be a single vertex
or several edges.

For another vertex gv (resp. edge ge) with g ∈ G described as a loop in π1(Γ), the
image is φ(g)f(v) (resp. φ(g)f(e)) where φ(g) and f(v) are paths which can be computed
separately.
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2.1.2 Irreducible automorphisms and train track representatives

Let T, T ′ be metric G-trees. Let d be the distance on T and d′ be the distance on T ′.
Let f : T → T ′ be a map sending vertex to vertex and edge to non-backtracking edge
path. The Lipschitz constant of f is Lip(f) := supx 6=y∈T

d′(f(x),f(y))
d(x,y) .

In the rest of the paper, we will always assume that maps between trees send vertex
to vertex and send edges to non-backtracking edge paths. We need not assume that maps
are linear on edges but for e ∈ E(T ) and e′ ∈ f(e) we will assume that it is linear on
f−1
|{e}({e′}).

Let v ∈ T be a vertex. A turn at v is an unordered pair of distinct edges {e, e′} with
origin v. If e = e′ we call it a degenerate turn. A non-backtracking path γ crosses a turn
{e, e′} if e and e′ appear in γ.

Fix a map f : T → T . A turn {e, e′} is illegal if there exists n ≥ 1 such that fn(e)
and fn(e′) are paths with a common prefix of nonzero length. Otherwise the turn is legal.
A non-backtracking path γ is a legal path if every turn crossed by γ is legal.

Definition 2.1.5. We say that f is a train track map if f sends every edge e ∈ E(T ) to
a legal path. It is a metric train track map if in addition the stretch factor on every edge
is uniform and equal to Lip(f), i.e. len(f(e)) = Lip(f) len(e).

When f is a train track map, for every e ∈ E(T ) and every n ∈ N the path fn(e) is a
geodesic.

The bounded cancellation constant BCC(f) is a constant introduced in [Coo87] in the
case of free groups, with the following property. Let α, β be legal paths and let α · β be
their concatenation. The path α · β may not be legal and subsegments of f(α) and f(β)
may be equal. However the length of the common subsegments is bounded by BCC(f).
The constant exists for the following reason. A piecewise linear map between G-trees in
the same deformation space is a quasi-isometry ([GL07, Remark 3.9]). Thus there is a
constant C such that for all x, y ∈ T , f(x) = f(y) ⇒ d(x, y) < C, and the constant
Lip(f)C has the property above.

Let φ ∈ Aut(G). We say that a map f : T → T represents φ if it is φ-equivariant, i.e.
for every t ∈ T and g ∈ G we have f(g · t) = φ(g) · T .

We call f : T → T a train track representative of φ if it represents φ and is a train
track map. A train track representative for Φ ∈ Out(G) is a train track representative for
some φ ∈ Φ.
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Remark 2.1.6. For all Φ ∈ Out(G), for all T ∈ D, there exist a φ-equivariant map
f : T → T with φ ∈ Φ sending vertex to vertex and piecewise linear on edges. However
the train track condition is restrictive.

A theorem by Bestvina and Handel in [BH92] states that every fully irreducible auto-
morphism of FN has a train track representative. It is not known whether an analogue is
true for all GBS groups. Given an arbitrary representative for Φ one can apply a proce-
dure to try to obtain a train track map but the termination has not been proved, unless
D is finite dimensional ([Mei15]).

The transition matrix A(f) associated to f : T → T is a matrix defined as follows. By
assumption f sends vertex to vertex and edge to edge path. Suppose E(T/G) contains
n unoriented edges e1, . . . , en. The matrix A(f) is the square matrix of size n such that
A(f)i,j is the number of edges in the orbit ei which appear in f(ej), without taking
orientation into account.

A subforest of a tree T is proper if it is not T . It is essential if it contains the axis of
an element of G.

Lemma 2.1.7. Let φ ∈ Aut(G). The following assertions are equivalent:

— there exists a proper special factor H < G such that the conjugacy class of H is
invariant by φ

— there exists a tree T and a map f : T → T representing φ such that T contains a
proper G-invariant essential subforest Y with f(Y ) ⊂ Y .

Proof. Suppose there exists a proper special factor H < G such that H is invariant by φ.
By definition of special factors there exists a collapse π : T → T̄ with T ∈ D such that H
is the stabilizer of a vertex v ∈ T̄ . Then Y := π−1(G · v) is a proper G-invariant subforest
of T . Moreover it contains the axis of every loxodromic element of H so it is essential.

Now let us construct the map f : T → T . The subgroup H is a GBS group and φ|H
is an automorphism of H. There exists a map fH : TH → TH representing φ|H . Here is a
construction of the map fH . Let u be a vertex in TH . In the collapse T → T̄ , the vertex u
is sent to v with Gv = H so Gu ⊂ H. Since H is φ-invariant we also have φ(Gu) ⊂ H. The
point is that there exists a vertex w ∈ TH such that φ(Gu) fixes w: there exists w ∈ T such
that φ(Gu) ⊂ Gw, and by replacing w by its projection on TH we still have the inclusion.

Define fH(gu) = φ(g)w for every g ∈ G. Since there are finitely many of G-orbits of
vertices in TH , one can repeat this procedure until fH is fully defined on vertices of TH
and extend to edges by linearity.
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Now we want to extend fH to T . It suffices to define the image of one vertex in every
orbit of vertices. Let v be a vertex in T \ G · H. There exists a vertex w ∈ T such that
φ|H(Gv) ⊂ Gw. Define f(v) = w and extend by equivariance on G · v by

f(gv) = φ(g)f(v)

By repeating this for every orbit of vertices and extending linearly on edges, we define f
such that f|TH = fH . Therefore f(Y ) ⊂ Y .

Conversely suppose there exists T ∈ D containing a proper G-invariant essential sub-
forest Y . Let Y0 be a connected component of Y containing the axis of a loxodromic
element h. By collapsing the forest Y we obtain a tree T̄ in which h fixes a point v. The
stabilizer of v is a proper special factor H. There are finitely many orbits of vertices in
T̄ so there are finitely many conjugacy class of non-cyclic vertex stabilizers in T̄ . Since
f(Y ) ⊂ Y , f induces a map f̄ on T̄ . The vertex v must be sent to a vertex with non-
cyclic stabilizer. Thus there exists n ≥ 1, k ≥ 1 and g ∈ G such that fn+k(v) = gfk(v) so
φn+k(H) ⊂ gφk(H)g−1, i.e.

φn(H) ⊂ g′Hg′−1

with g′ = φ−kg. By repeating this we obtain a sequence of decreasing special factors

H ⊃ g−1
1 φn(H)g1 ⊃ · · · ⊃ g−1

N φnN(H)gN ⊃ . . .

By Corollary 1.4.10 of Chapter 1 the sequence must be stationary so H and φn(H) are
actually conjugate.

A square non-negative matrix A of size m is irreducible if for every 1 ≤ i, j ≤ m there
exists n ∈ N such that (An)i,j > 0. The matrix A is primitive if there exists n > 0 such
that all coefficients of An are positive.

A well-known result about primitive and irreducible matrices is:

Theorem 2.1.8 (Perron-Frobenius). Let A be a non-negative primitive matrix with size
n× n.

— There exists a real eigenvalue λ > 0 (the Perron-Frobenius eigenvalue) such that for
every other eigenvalue µ 6= λ we have |µ| < λ.

— The eigenvectors for λ are unique up to scalar multiplication and there exists an
eigenvector v for λ such that v > 0.
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If A is irreducible the same hold except that |µ| ≤ λ.

A proof of the theorem can be found in [Sen81, Theorem 1.1].

Lemma 2.1.9. Suppose φ is a fully irreducible automorphism with a train track map
f : T → T . When φ is fully irreducible then there exists a collapse π : T → T ′ with
T ′ ∈ D and a train track map f ′ : T ′ → T ′ with π ◦ f = f ′ ◦ π such that A(f ′) is an
irreducible matrix.

Moreover, if the Perron-Frobenius eigenvalue of A(f ′) is greater than 1, then A(f ′) is
primitive, so there exists a power n such that A(f ′)n > 0.

In that case f ′ is an irreducible train track map. If A(f ′) is primitive then we call f
primitive.

Proof. Suppose A(f) is not irreducible. There exists a partition I ∪ J = {1, . . . , n} such
that for every i ∈ I, j ∈ J , A(f)i,j = 0. Then let ΓJ be the subgraph of Γ = T/G spanned
by edges ej such that j ∈ J . Then the corresponding subforest TJ ⊂ T is invariant by f .
By Lemma 2.1.7, TJ is non essential since φ has no invariant conjugacy class of special
factors.

Let π : T → T̄ = T/ ∼TJ be the collapse of the non essential invariant forest TJ .
Since TJ is non essential T̄ ∈ D. We have f(TJ) ⊂ J so the map f induces a map f̄ on T̄
such that if π is the collapse map T → T̄ then π ◦ f = f̄ ◦ π.

If A(f̄) is irreducible then we are done. Otherwise this process can be iterated by
collapsing a non essential f -invariant forest of T̄ . At each step the number of orbits of
edges in T̄ decreases so this stops eventually and we obtain the map f ′ : T ′ → T ′ such
that A(f ′) is irreducible.

Let us check that the map f ′ : T ′ → T ′ is a train track map. Let π be the collapse
map T → T ′. For every k ∈ N we have π ◦ fk = f ′k ◦ π. If γ is a non-backtracking path in
T then π(γ) is also non-backtracking. For every edge e′ ∈ E(T ′), there is a unique edge
e ∈ π−1(e) and f ′k(e′) = π ◦fk(e). Since f is train track fk(e) is geodesic and so is f ′k(e′).

Let us prove that A(f ′) is a primitive matrix. Since f ′ is a train track map, for every
n ∈ N, A(f ′n) = A(f ′)n. As in [Sen81, Section 1.4] an irreducible matrix A admits a
partition of indices such that A induces a permutation of the classes of the permutation.
In terms of tree maps, it means that there exists k ≥ 1 and a G-invariant partition
T1t· · ·tTk of E(T ) such that f ′ induces a permutation of the subforests Ti, i ∈ {1, . . . , k}.
Moreover k = 1 if and only if A(f ′) is primitive.
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By contradiction, suppose k > 1. There is a power f ′m such that for every i ∈ {1, . . . , k}
we have f ′m(Ti) ⊂ Ti. Lemma 2.1.7 implies that Ti must be a non-essential, thus collapsi-
ble, subforest. Its connected components must be uniformly bounded.

The Perron-Frobenius of A(f ′) is greater than 1 so there is an edge e in T such that
the diameter of fmn(e) is unbounded when n goes to infinity. There is a subforest Ti such
that e ∈ Ti, and fmn(e) must also be contained in a connected component of Ti. This is
a contradiction and it implies that k = 1 and A(f ′) is primitive.

Observe that the construction of f ′ : T ′ → T ′ starting from f : T → T is algorithmic.

Remark 2.1.10. Let f be a train track representative for φ (i.e. sending edges to legal
paths but not necessarily at a uniform speed). Suppose A(f) is irreducible. Let λ be the
Perron-Frobenius eigenvalue for A(f) and let v be the right Perron-Frobenius eigenvector
normalized such that its coordinates add up to 1. The metric on T can be redefined
such that len(ei) is the i-th coordinate of v. Then the Lipschitz constant of the new map
f : T → T is uniform on edges and is equal to λ, so f is a metric train track map.

Because of Remark 2.1.10 all train track maps will be considered as metric train track
maps. This point of view is not necessary but it gives some intuition on the behaviour of
the iterate images of edges by f .

Remarks 2.1.11. — If G is solvable then it has no special factor. Baumslag-Solitar
groups have no fully irreducible automorphism: if q = pn for some n ∈ N, then
BS(p, q) has an Aut(G)-invariant conjugacy class of special factor ([Bou16]). For
other Baumslag-Solitar groups or an amalgamated product Z∗ZZ all automorphisms
have finite order in Out(G) ([Lev07]). Thus we do not consider these groups when
studying fully irreducible automorphisms.

— Suppose G is not solvable and is neither a Baumslag-Solitar group BS(p, q) nor an
amalgamated product Z ∗Z Z: then graphs of groups for G have more than one edge
and have a proper subgraph representing a proper special factor. Let f : T → T

be an irreducible train track map representing φ ∈ Aut(G). If the Perron-Frobenius
eigenvalue of A(f) is 1 then T = T · φ and f is an isometry. This implies that f
preserves a subgraph of T/G so φ is not fully irreducible.

Corollary 2.1.12. Suppose G is a non-solvable Baumslag-Solitar group which is neither
a Baumslag-Solitar group nor an amalgamated product Z ∗Z Z. Let Φ ∈ Out(G) with a
train track representative.
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There is an algorithm which takes a train track representative f : T → T for Φ and
either computes a primitive train track representative for Φ or gives a proof that Φ is
reducible.

Proof. The construction of an irreducible representative for Φ follows Lemma 2.1.9. Lemma
2.1.9 also states that if Φ is fully irreducible and the Perron-Frobenius eigenvalue is strictly
greater than 1 then the transition matrix is also primitive. By Remark 2.1.11 2. if the
Perron-Frobenius eigenvalue is 1 then Φ is reducible. In that case the matrix is not prim-
itive. Since there exists a power n depending on the size of the matrix A such that if A
is primitive then An > 0, one can algorithmically test the primitivity of the transition
matrix.

2.1.3 The stable lamination associated to a train track map

Let T be a G-tree in D. Let ∂T be the space of ends of T , i.e. the set of equivalence
classes of infinite geodesic rays of T , where rays ρ, ρ′ are equivalent if the Hausdorff dis-
tance d(ρ, ρ′) is finite. We endow it with the standard topology: a basis of neighbourhoods
for ξ ∈ ∂T is {Vx, x ∈ V (T )} where Vx is the connected component of T \ {x} containing
a ray for ξ.

For any other tree T ′ ∈ D there exists a G-equivariant quasi-isometry f : T → T ′

which induces a G-equivariant homeomorphism ∂f : ∂T → ∂T ′. The homeomorphism ∂f

does not depend on the choice of f so there is a canonical identification of ∂T ′ with ∂T
for any T ′ ∈ D.

A lamination of G is a closed, symmetric, G-invariant subset of ∂T × ∂T \∆, for any
tree T ∈ D, where ∆ is the diagonal. As discussed above, its definition does not depend
on the tree T .

There is a canonical action of Aut(G) on ∂T and thus on the set of laminations: let
T ∈ D and φ ∈ Aut(G) and let f : T → T be a representative for φ. It induces a
homeomorphism of ∂T which does not depend on the choice of f .

Since laminations are G-invariant, the action of Aut(G) on ∂T yields an action of
Out(G) on the set of laminations.

Let Λ be a lamination. For T ∈ D, the realization ΛT of Λ in T is the G-invariant
set of unoriented bi-infinite geodesics whose endpoints belong to Λ ⊂ ∂T × ∂T \∆. The
geodesics of the realization are called leaves of Λ. If T ′ ∈ D and f : T → T ′ is a quasi-
isometry, then for any leaf λ ∈ ΛT , the geodesic obtained by tightening f(λ) is a leaf of
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ΛT ′ . Conversely all leaves of ΛT ′ are obtained that way.
A leaf segment of ΛT is a segment of T contained in a leaf in T .
We now introduce the stable lamination of an automorphism with a irreducible train

track.

Definition 2.1.13. Let Φ ∈ Out(G) and f : T → T be an irreducible train track
representative for Φ. The stable lamination Λ+ is defined by its realization in T . A bi-
infinite geodesic λ lies in Λ+

T if and only if for every leaf segment σ ⊂ λ, there exists an
edge e ∈ E(T ) and n ∈ N such that σ ⊂ fn(e).

Remark 2.1.14. Since all edges are legal, all leaf segments are also legal, so there is no
cancellation in leaves in T when applying f . Thus leaves of Λ+

T are legal. Viewing f as a
metric train track map, they are also uniformly stretched by the factor Lip(f). The set
Λ+
T is stable by f . It implies that Λ+ is stable by Φ.

Remark 2.1.15. If Φ ∈ Out(G) admits an irreducible train track representative f : T → T

and thus a stable lamination Λ+ can be defined, then Φn admits fn : T → T as a train
track representative. Then the stable lamination associated to fm is equal to Λ+. Indeed,
a subsegment of fk(e) is also a subsegment of fnm(e) for some m ∈ N : since for N
big enough, fN(e) contains a translate of e, then for m big enough fnm−k(e) contains a
translate of e and fnm(e) contains a translate of fk(e).

Definition 2.1.16. A lamination Λ is minimal with respect to a tree T if it satisfies the
following condition: ∀λ, λ′ ∈ ΛT , ∀I leaf segment in λ, ∃g ∈ G such that gI ⊂ λ′. In other
words, all leaves of a minimal lamination have the same leaf segments up to the action of
G.

Remark 2.1.17. Let T, S ∈ D. A lamination Λ is minimal with respect to T if and only if
it is minimal with respect to S. Indeed let f : T → S be a G-equivariant quasi-isometry.
There exists C > 0 depending on f such that the image of any geodesic path in T is in
the C-neighbourhood of a geodesic path in S.

Let λS, λ′S be leaves of ΛS. Let λT , λ′T be the corresponding leaves in ΛT . Let IS ⊂ λS

be a leaf segment. There exists IT ⊂ λT such that f(IT ) contains a C-neighbourhood of
IS in λS. There also exists g ∈ G such that gIT ⊂ λ′T . The segment f(gIT ) = gf(IT ) is in
a C-neighbourhood of λ′S so its central part containing gIS is contained in λ′S.

Lemma 2.1.18. The stable lamination associated to an automorphism with an irreducible
train track representative is minimal.
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A proof can be found in [BFH97, Lemma 1.2] for free groups, and it can be adapted
to the case of GBS groups.

Definition 2.1.19. A leaf ` of the realization of a lamination in a tree is quasi-periodic
if for every l > 0 there exists Cl > 0 such that if σ is a leaf segment of ` of length at most
l then any leaf segment of ` of length at least Cl contains a translate of σ.

Lemma 2.1.20. Let Φ ∈ Out(G) with a train track f : T → T . Let ` be a leaf of Λ+
T .

The leaf ` is quasi-periodic.

Proof. Let l > 0. Let e ∈ E(T ). Since the stable lamination is minimal, there exists k ∈ N
depending on l such that fk(e) contains an edge path in every orbit of edge paths with
length at most l crossed by leaves of the lamination.

There exists n ∈ N such that for every e′ ∈ E(T ) and m ≥ n, the path fm(e′) contains
an edge in the orbit of e.

Let Cl := maxe∈E(T ) len(fn+k(e′)). Let σ ⊂ ` be a leaf segment with length at least Cl.
There exists m ∈ N and e′ ∈ E(T ) such that σ ⊂ fm(e′). Moreover m ≥ n+ k. The path
fm−k(e′) contains an edge in the orbit of e so fm(e′) contains a subpath in the orbit of
fk(e), which itself contains a path in every orbit of edge paths with length at most l.

Let us fix an automorphism Φ ∈ Out(G), and suppose it admits a train track rep-
resentative and thus a stable lamination Λ+. Let S ∈ D, not necessarily the train track
representative. Let v be a vertex in S. Let λ be a leaf in the stable lamination Λ+

S . The
Whitehead graph of the leaf λ at the vertex v is the graph WhS(λ, v) such that

— vertices are edges of S with origin v

— there is an edge e− e′ if there exists g ∈ G such that {e, e′} is a turn in gλ

The vertex stabilizer Gv acts naturally on WhS(λ, v). The stable lamination is mini-
mal so all leaves of the stable lamination have the same subsegments up to translation.
In particular they have the same turns up to translation so for any leaf λ′ in Λ+ we
have WhS(λ′, v) = WhS(λ, v). We may as well define the Whitehead graph of the stable
lamination at vertex v by WhS(Λ+, v) = WhS(λ, v) for any leaf λ.

Lemma 2.1.21. Let Φ ∈ Out(G) be an automorphism with an irreducible train track
representative f : T → T and associated stable lamination Λ+. The Whitehead graphs
WhT (Λ+, v) can be computed algorithmically.
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Proof. In order to compute Whitehead graphs we need to find all orbits of turns taken
by the lamination.

Let e ∈ E(T ). Since f is irreducible, every leaf segment of Λ+
T is a subsegment of a

translate of fn(e) for some n ∈ N. Therefore all turns taken by Λ+
T appear in fn(e) for

some n ∈ N.
There are two ways a turn can arise in some fn(e). If {e1, e2} is a turn in fn(e) then

either it is a turn in f(e′) for some e′ ∈ E(T ) (first type), or it is the turn between fk(e′1)
and fk(e′2) where {e′1, e′2} is a turn of the first type (second type).

There exists a power fn depending only on the size of A(f) such that for every edge
e of T , fn(e) crosses every orbit of edge in T . Therefore all turns of the first type appear
in fn+1(e). Let K be the number of orbits of turns in T , which is finite. Then all turns of
the second type appear in fn+1+k(e) for some k ≤ K. This gives a bound on the number
of iterations needed to find all turns.

The following results may apply to more general laminations. Let Λ be a lamination.
We say that a finitely generated subgroup H ⊂ G containing a hyperbolic element carries
Λ if there exists S ∈ D such that any leaf in ΛS is contained in a translate of the minimal
subtree for H in S. The condition only depends on the conjugacy class of H. Moreover it
does not depend on a choice of S:

Lemma 2.1.22. If a finitely generated subgroup H carries Λ then in any S ∈ D, any leaf
of ΛS is contained in a translate of the minimal subtree SH .

Proof. Let S ∈ D. A bi-infinite geodesic λ is contained in SH if and only if it lies in a
bounded neighbourhood of SH .

Since H carries Λ, there exists a tree S ′ ∈ D such that all leaves of ΛS′ are contained
in S ′H .

Let f : S ′ → S be a G-equivariant map. It is a quasi-isometry. Let λ be a leaf of ΛS′ .
Up to translating it we may suppose that it is contained in S ′H . Then f(λ) is contained
in f(S ′H). By minimality the tree SH is contained in f(S ′H). The diameter of S ′H/H is
bounded, also by minimality, so the diameter of f(S ′H)/H is also bounded. Therefore
f(S ′H) must be contained in a c-neighbourhood of SH for some c > 0.

The image f(λ) must then be contained in a c-neighbourhood of SH . The tightened
leaf [f(λ)] is a geodesic contained in f(λ) so it is contained in SH .
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For minimal laminations such as the stable lamination of an automorphism, we have
the following:

Proposition 2.1.23. Let Λ be a non-empty minimal lamination. Let H be a special factor
of G. Then Λ is carried by H if and only if there exists T ∈ D such that there exists a
leaf of ΛT contained in the minimal subtree for H in T .

Proof. The direct implication is immediate. Conversely, by Lemma 2.1.22, if there exists
T ∈ D and a leaf λ ∈ ΛT contained in the minimal subtree TH , then for all T ′ ∈ D, the
realization of λ in ΛT ′ is also contained in T ′H .

We choose T ′ ∈ D such that T ′H and its translates are disjoint: for all g ∈ G, gT ′H∩TH 6=
∅⇒ g ∈ H. The leaf λ is contained in T ′H . If λ′ is another leaf, its segments are translates
of segments of λ. This implies that λ′ all edges crossed by λ′ belong to G·T ′H . As translates
of T ′H are disjoint λ′ must be contained in a single translate of T ′H .

Lemma 2.1.24. Let A be a special factor for G. Let T ∈ D. Let TA be the minimal subtree
for A. There exists C > 0 such that for all g ∈ G \ A we have diam(TA ∩ g · TA) ≤ C.

Proof. By definition of a special factor, there exists a tree S ∈ DA such that the translates
of the minimal subtree SA are disjoint.

There exists a G-equivariant application f : S → T which is a quasi-isometry and such
that TA ⊂ f(SA). There exists a constant C depending on f such that if two subtrees are
disjoint, the diametre of their intersection is bounded by C.

We deduce the following, which can be applied to the stable lamination of an auto-
morphism in our context:

Proposition 2.1.25. Let Λ be a minimal lamination. There exists a unique special factor
relative to D and minimal for inclusion which carries Λ.

Proof. The existence is a consequence of the descending chain condition given in Corollary
1.4.10 of Chapter 1. For uniqueness we need to show that if a leaf of Λ is contained in the
minimal subtree for two special factors A and A′ then it is also contained in the minimal
subtree for A ∩ A′.

It suffices to prove that the intersection TA ∩ TA′ is contained in a bounded neigh-
bourhood of TA∩A′ . By Lemma 2.1.24 there exists C > 0 such that for every g ∈ G,
diam(TA ∩ gTA) ≥ C ⇒ g ∈ A and diam(TA′ ∩ gTA′) ≥ C ⇒ g ∈ A′.
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There exists J > 0 depending on C and T such that every segment σ of T with length
at least J contains at least two segments of length C in the same G-orbit and with same
orientation in σ.

Let σ ⊂ TA ∩ TA′ be a segment with length at least J . There exists a segment I ⊂ σ

with length C and g ∈ G such that gI ⊂ σ. Then the diameter of TA ∩ gTA is greater
than C so g ∈ A. Similarly g ∈ A′. The axis of g is contained in TA∩A′ . Thus TA ∩ TA′ is
contained in a J-neighbourhood of TA∩A′ .

2.2 Whitehead graphs of the lamination and reducibil-
ity

In order to decide whether an automorphism with a train track representative is fully
irreducible, the Whitehead graphs of the stable lamination give important information.
In order to state the main theorem we need to introduce first pseudo-periodic conjugacy
classes, which will be developed further in Section 2.3.

Definition 2.2.1. Let Φ ∈ Out(G) and let φ ∈ Φ.
The conjugacy class of an element g ∈ G is pseudo-periodic for Φ if ‖φn(g)‖T is

bounded.

A fact worth mentioning is that the minimal special factor containing a pseudo-periodic
element is periodic. We prove this in Section 2.3.

The aim of this section is to prove:

Theorem 2.2.2. Let Φ be an automorphism of G with a train track f : T → T with no
simple pseudo-periodic conjugacy class. Then Φ is fully irreducible if and only if for every
v ∈ T , the Whitehead graph WhT (Λ+

f , v) is connected.

Propositions 2.2.3 and 2.2.6 are GBS equivalents for analogue results by Kapovich
([Kap14, Proposition 4.1, Proposition 4.2]). Along with Corollary 2.2.7 they prove Theo-
rem 2.2.2.

Proposition 2.2.3. Let Φ ∈ Aut(G) be an automorphism with an irreducible train track
representative f : T → T and an associated stable lamination Λ+.

Let S ∈ D be any tree. Let f ′ : S → S be a representative for Φ. If there exists v ∈ S
such that the Whitehead graph WhS(v,Λ+) is not connected and such that the stabilizer
of some of its connected components is in A, then Φ is reducible in DA.
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Remark 2.2.4. If DA = D the condition on stabilizers of connected components is always
true.

Lemma 2.2.5. Let Φ be an outer automorphism having an irreducible train track repre-
sentative. Let S be a G-tree. If there exists a special factor whose minimal subtree in S

contains a leaf of the stable lamination, then Φ is reducible.

Proof. Let λ be a leaf of the stable lamination. There exists a unique minimal special
factor H carrying the leaf λ (Proposition 2.1.25). By Proposition 2.1.23, every leaf of the
lamination is contained by a translate of H. Let φ ∈ Φ. Since the stable lamination is
φ-invariant, all leaves are also carried by translates of φ(H). By minimality there is an
element h such that we have H ⊂ hφ(H)h−1. It follows that H = hφ(H)h−1. Otherwise,
construct a decreasing sequence

· · · ⊂ h−1
n φ−n(H)hn ⊂ · · · ⊂ H

and by Chapter 1, Corollary 1.4.10 this sequence is stationary. This implies that H is
conjugate to φ(H).

Proof of Proposition 2.2.3.. Let φ ∈ Aut(G) with a train track representative f : T → T .
Let f ′ : S → S be a representative for φ. Suppose there exists a vertex v such that the
Whitehead graph WhS(v,Λ+) is non-connected with at least one connected component
with stabilizer in A. We will construct a tree S ′ such that there exists a collapse S ′ → S,
and such that the lifts of the leaves of Λ+ in S ′ avoid an orbit of edges.

Let C1, . . . , Ck be the connected components of WhS(v,Λ+).
Let E be the star with k edges e1, . . . , ek. Replace v by E by attaching the end of ei

to edges in Ci. By extending this construction by G-equivariance, we define an expansion
at vertex v.

The edge ei has the same stabilizer as the corresponding connected component Ci. It
is possible that the construction created an edge with stabilizer not in A. Collapse these
edges. By assumption, at least one edge in E has stabilizer in A, so not all edges are
collapsed.

We obtain a tree S ′ with a collapse map π : S ′ → S. The leaves of the stable lamination
can be lifted in S ′.

By construction leaves in S ′ do not cross the edges which are collapsed by π. Thus
there is a special factor H which carries a leaf of the lamination. By Lemma 2.2.5, φ is
reducible.
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Proposition 2.2.6. Let Φ ∈ Out(G). Let f : T → T be a train track representative for
Φ. Suppose that the incidence matrix A(f) is primitive. Let Λ+ be the stable lamination.

Then if for every v ∈ T , the Whitehead graph WhT (Λ+, v) is either connected, or
disconnected such that no connected component has a stabilizer in A, then no leaf of the
lamination is carried by a proper special factor.

Proof of Proposition 2.2.6.. First let us prove the proposition under simplified assump-
tions: we suppose that all Whitehead graphs are connected.

By contradiction, let Φ, f, T be as in the proposition and such that all Whitehead
graphs of the stable lamination are connected. Let φ ∈ Φ be such that f is φ-equivariant.
Let A be a special factor such that the leaf λ is contained in the minimal subtree TA of
A in T . By Proposition 2.1.23 this implies that A carries the stable lamination and that
every leaf of it is contained in a translate of TA.

Let e be an edge in TA. Let e′ be any edge of T . Up to reversing the orientation of these
edges, there exists a geodesic path e = e0 . . . en = e′ (see Figure 2.2 for what follows). Turns
in this path are not necessarily crossed by any leaf of Λ+. However, Whitehead graphs
are connected. At every turn ēi, ei+1 at vertex vi, there exist edges ēi = ε0, . . . , εk = ei+1

with origin vi such that εj, εj+1 is a turn crossed by a leaf. Thus ε̄jεj+1 is a leaf segment.

| |
e

leaves

| |
e′

Figure 2.2 – Cover the path between e and e′ with overlapping leaf segments.

This yields a sequence of leaf segments which cover the path between e and e′ and
such that two consecutive segments overlap over at least the length of an edge.

Since leaf segments are legal, they are all stretched uniformly by f . There is a power
m of f such that the image of any edge by fm is strictly longer than constant C given by
Lemma 2.1.24.

If we apply fm to the leaf segments above, we obtain longer leaf segments such that
two consecutive segments overlap by a length greater than C. Since all leaf segments are
contained in translates of TA, they must be contained in the same translate he′TA. In
particular fm(e) and fm(e′) are both contained in he′TA, by Lemma 2.1.24.
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Since fm(e) is longer than C and fm(e) ⊂ he′TA for any e′ ∈ E(T ), the element he′ ∈ G
actually does not depend on e′ and we denote it by h.

Therefore there exists m ∈ N and h ∈ G such that fm(e′) ⊂ hTA for all e′ ∈ E(T ).
This implies that fm(T ) ⊂ TA, which gives the desired contradiction since fm is surjective
by minimality of the action.

Now suppose that Whitehead graphs may be disconnected, though stabilizers of con-
nected components do not belong to A. Let A be a special factor such that TA contains
a leaf λ of the stable lamination.

Let R be the smallest G-equivariant equivalence relation on E(T ) such that two edges
in a turn crossed by a leaf of the lamination belong to the same equivalence class. It defines
a partition of E(T ). If eRe′ then all edges on the geodesic path between e and e′ also
belong to the same equivalence class. Each equivalence class spans a connected subtree of
T . When all Whitehead graphs are connected, there is a single equivalence class.

Now we prove that there exists m ∈ N such that fm(Si0) is contained in a translate of
TA. The argument is the same as in the simple case of the proof: take e ∈ TA ∩ S on the
leaf λ. There is m ∈ N depending uniquely on T,A, f such that for any e′ ∈ S the images
fm(e) and fm(e′) are in the same translate of TA. This works well since the restriction of
any Whitehead graph to Si0 is connected. Then we have fm(Si0) ⊂ gTA for some g ∈ G.

As fm(S) ⊂ gTA and fm(Si0) is unbounded, Lemma 2.1.24 implies φm(StabS) ⊂
Stab fm(Si0) ⊂ gAg−1, so Stab(S) ⊂ φ−m(gAg−1).

Let {Si}i∈I be the set of subtrees of T corresponding to equivalence classes of R. The
intersection Si ∩ Sj for i 6= j is either empty or a single vertex. This means that {Si}i∈I
is a transverse covering of T (see [Gui04, Def. 4.6]).

There exists i0 ∈ I such that λ is contained in Si0 . Since the transition matrix of the
train track is primitive, λ crosses all orbits of edges in T so all subtrees Si are translates
of Si0 . Construct T̂ (the skeleton of the transverse covering, [Gui04, Def. 4.8]) as follows.
It is a bipartite graph. Vertices of T̂ are sh with h ∈ G/ StabSi0 which correspond to
translates of Si0 and xv for v ∈ T such that v is the intersection of two distinct translates
of Si0 . There is an edge sh−xv if v ∈ hS. This yields a G-tree with vertex stabilizers of xv
elliptic in D and vertex stabilizers of sh conjugate to StabS 1. The edge group of sh − xv
is the stabilizer of the component of WhT (Λ+, v) which intersects hSi0 , so it is not in A.

1. This tree may also be obtained by replacing vertices of T by stars on the connected components of
their Whitehead graph, as in the proof of Proposition 2.2.3, then collapsing copies of Si0 .
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Construct a map T̂ → R where R is a collapse of an element of DA and has a vertex
stabilizer φ−m(A). Map the vertex sh of T̂ for h ∈ G to the vertex of R with stabilizer
hφ−m(A)h−1 and map every vertex xv to a vertex of R whose stabilizer contains Gv. All
edge groups in R are in A while no edge group in T̂ is in A. Thus every edge of T̂ is sent
to a point in R. By continuity the image of T̂ is a single point in R and is G-invariant.
By minimality of the action on R, the tree R must be a single point and φ−mA = G so
A = G, which is a contradiction.

Corollary 2.2.7. If Φ ∈ Out(G) satisfies the hypotheses of Proposition 2.2.6, and no
simple element in G is pseudo-periodic for Φ, then Φ is fully irreducible.

Proof. By contradiction, let Φ be an automorphism satisfying the hypotheses of the corol-
lary. Let φ ∈ Φ.

Let H be a special factor of G. Up to replacing Φ by Φk and to choosing φ ∈ Φk, we
may assume that φ(H) = H.

Let TH be the minimal subtree of H. Let h ∈ H be a loxodromic element whose axis
is contained in TH , so h is simple. By assumption ‖φn(h)‖ goes to infinity.

We will find a contradiction to Proposition 2.2.6 by finding a leaf of Λ+ contained in
TH .

Let e1, . . . , em be the edges of a fundamental domain for h. Some fundamental domain
of the axis of φn(h) can be written as a concatenation of (maybe empty) sets Jni where
Jni ⊂ fn(ei) for 1 ≤ i ≤ m.

The non-degenerate Jni are leaf segments of Λ+, some of them may be empty. Since
‖φn(h)‖T goes to infinity, at least one of the Jni must also go to infinity when n goes to
infinity. Besides we have Jni ⊂ Tφ(H) = TH for all n ∈ N.

Suppose that (Jni0)n∈N tends to infinity. The segments Jni0 are arbitrarily long leaf
segments, all contained in TH . Let λ be a leaf of Λ+. Then every leaf segment of λ is
contained in a translate of Jni0 for some n ∈ N.

By Lemma 2.1.24 there exists C such that if the intersection of two translates of TH
has diameter greater than C, then the translates are equal.

Since λ is quasi-periodic there exists L > 0 such that for every leaf segment σ of length
3C, every leaf segment γ ⊂ λ with len(γ) ≥ L contains a translate of σ.

There exists i0 and n ∈ N such that len(Jni0) ≥ L. By minimality of Λ+, the leaf λ
contains a translate of Jni0 so every leaf segment σ ⊂ λ with len(σ) = 3C is a translate
of a subsegment of Jni0 ⊂ TH . Tile λ with such leaf segments of length C such that two

99



Chapitre 2 – Detection of fully irreducible automorphisms in generalized Baumslag-Solitar
groups

consecutive tiles overlap on more than C. Each segment of the tiling is contained in a
translate of TH and by Lemma 2.1.24 all these translates must be equal. Thus λ ⊂ gTH

for some g ∈ G and Proposition 2.1.23 implies that H carries Λ.

2.3 Nielsen paths and pseudo-periodic elements

The aim of the present section is to define and describe pseudo-periodic conjugacy
classes of an outer automorphism Φ ∈ Out(G). They are analogues of periodic conjugacy
classes for an automorphism of a free group.

Pseudo-periodicity is a weaker notion than periodicity: the conjugacy class of g ∈ G is
pseudo-periodic if the translation length ‖φn(g)‖T is bounded for some, equivalently any,
tree T ∈ D, and some φ ∈ Φ. While it automatically implies that the conjugacy class of
g is periodic in the free group case, it is not always true for GBS groups.

An outer automorphism Φ ∈ Out(G) is pseudo-atoroidal if it has no pseudo-periodic
conjugacy classes.

The point is that when there exists a simple element g ∈ G whose conjugacy class
is pseudo-periodic, then the conjugacy class of the unique proper minimal special factor
containing g is Φ-periodic. In Section 2.2 we gave a criterion for reducibility, such that
automorphisms satisfying the criterion are irreducible if and only if they do not have any
pseudo-periodic conjugacy classes.

For algorithmic purposes we need to find the pseudo-periodic conjugacy classes for an
automorphism Φ ∈ Out(G). We will see that like for free groups, there is a strong link be-
tween pseudo-periodic conjugacy classes and Nielsen paths, which are some periodic paths
in a train track representative for Φ. Finding Nielsen paths in a train track representative
will be our first goal. Then we establish the link with pseudo-periodic conjugacy classes.

2.3.1 Computation of periodic indivisible Nielsen paths

Like in the free group case, we can define Nielsen paths associated to a train track
map. They are a useful tool to understand periodic elements of an automorphism. In the
free group Nielsen paths are usually defined in the quotient graph but here we will define
them in the tree instead, since in GBS graphs some non-degenerate turns cannot be seen
in the quotient graph. Some example of references include [BH92], [BFH97].

For any path α in a tree T we define [α] as the path obtained by tightening α while
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keeping the same endpoints. Equivalently, it is the geodesic between the endpoints of α. If
the endpoint of α is the initial point of β then α ·β is the concatenation of α and β. It is a
tight concatenation if α and β are geodesics and α ·β is a geodesic. A tight concatenation
is a legal concatenation if the turn at the concatenation point is legal, otherwise it is
illegal.

Let f : T → T be an irreducible train track representative for Φ ∈ Out(G). A Nielsen
path is a tight path γ ⊂ T such that there exists g ∈ G such that f(γ) and gγ are
homotopic relative endpoints, i.e. g−1 · f fixes both endpoints of γ.

A periodic Nielsen path is a tight path γ ⊂ T such that there exists n ≥ 1 and g ∈ G
such that fn(γ) and gγ have the same endpoints. The minimal nonzero integer n is the
period of γ.

Remark 2.3.1. A tight concatenation of periodic Nielsen paths γ1 · γ2 might not be a
periodic Nielsen path but it is pre-periodic: there exists k ∈ N such that [fk(γ1 · γ2)] is a
periodic Nielsen path. This is a consequence of the local finiteness of trees: [fk(γ1 ·γ2)] has
bounded length. Since the tree is locally finite and the orbits of the endpoints are periodic,
there are finitely many possibilities for the orbit of [fk(γ1 · γ2)], hence its periodicity.

In general the endpoints of a Nielsen path are not vertices of the tree but rather lie in
the interior of some edges.

An indivisible Nielsen path (INP) is a Nielsen path which cannot be written as the tight
concatenation of two shorter Nielsen paths. A periodic indivisible Nielsen path (pINP) is
a periodic Nielsen path which cannot be written as the concatenation of two shorter
periodic Nielsen paths. Periodic INPs are defined as INPs for a certain power of f . Just
as for periodic Nielsen path one can define the period of a periodic INP.

Lemma 2.3.2 is a GBS version of well-known facts for pINPs in the free group case.

Lemma 2.3.2. Let f : T → T be a train track map.

(i) Let γ be a periodic Nielsen path of period n. There exists a unique decomposition of
γ as a tight concatenation of periodic indivisible Nielsen paths whose period divides
n.

(ii) If γ is a tight concatenation of periodic indivisible Nielsen paths η1 · · · · ·ηk and η is a
pINP such that η ⊂ γ then there exists i ∈ {1, . . . , k} such that η = ηi. In particular
the decomposition of a periodic Nielsen path into pINPs is unique.

(iii) A periodic indivisible Nielsen path contains a unique illegal turn. It is a tight con-
catenation α · β where α, β are legal subpaths.
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Proof. Let γ be a periodic Nielsen path. Let g ∈ G and n ∈ N such that g · fn fixes the
endpoints of γ.

Let γ1, . . . , γk be the maximal legal subsegments such that γ = γ1 · · · · · γk. The path
γ cannot be legal since the lengths of its images by fn is bounded so k ≥ 2.

We have γi ⊂ g ·fn(γi) for all 1 ≤ i ≤ k. Indeed fn(γi) is a legal segment, so it can only
intersect a unique g−1γj, otherwise it would cross an illegal turn. Since fn(γ) covers g−1γ

and [fn(γ)] has exactly the same number of illegal turns as γ, fn induces a permutation
of the γi for 1 ≤ i ≤ k. By continuity of fn the permutation must be trivial.

Up to taking a multiple of n we may suppose that there is cancellation at every illegal
turn when applying fn. For 2 ≤ i ≤ k − 1, γi lies in the interior of g · fn(γi). Since fn

stretches legal segments uniformly this implies that there is a unique fixed point vi for
g · fn in the interior of γi. The vertices vi cut γ into k− 1 shorter periodic Nielsen paths,
each of which has a unique illegal turn.

Since periodic indivisible Nielsen paths cannot be cut into smaller paths, they have
at most one illegal turn, and at least one since their length does not grow exponentially
with f . This proves (iii). Conversely, if a periodic Nielsen path has a unique illegal turn,
it can be written as a concatenation of legal paths α · β. Up to replacing f by gfn, the
first point of α and the last point of β are fixed by f and all other points in α · β escape
exponentially when iterating f . Therefore pINPs are exactly periodic Nielsen paths with
one illegal turn. For a general periodic Nielsen path γ, we found a decomposition into
periodic Nielsen paths with one illegal turn each, also pINPs so (i) is proved.

Let us prove (ii). Now we do not assume that γ is a periodic Nielsen path, only that it
is a concatenation of pINPs. We just proved that the former implies the latter. Observe
that if α, β are legal paths and if η = [x, y] is a pINP with x ∈ α, y ∈ β then for any
a, b ∈ α · β such that {a, b} 6= {x, y}, either d(fn(a), fn(b)) → ∞ or there exists n ∈ N
such that fn(a) = fn(b).

Let η = [x, y] be a pINP in γ. There exists a unique illegal turn in η and it is also the
illegal turn in a pINP γ′ = [x′, y′] which appears in a decomposition of γ.

Let α, β be the maximal legal subsegments in which x, y lie. Since γ′ has a unique
illegal turn, x′, y′ lie in α · β. Since γ′ is a pINP the sequence d(fn(x′), fn(y′)) is bounded
and positive. The claim implies that {x′, y′} = {x, y}.

This proves the uniqueness of the decomposition.

Recall the bounded cancellation constant BCC(f). Suppose α · β is the concatenation

102



2.3. Nielsen paths and pseudo-periodic elements

of two legal paths. Then we have len([f(α · β)]) > λ len(α · β)− 2 BCC(f).
We can deduce a bound on the length of Nielsen paths. Let Cf := 2 BCC(f)

λ−1 . If α, β are
legal and len(α · β) > Cf then len([f(α · β)]) > len(α · β) so the length of ([fn(α · β)])
is strictly increasing. Therefore, if α · β is an indivisible Nielsen path, then len(α) ≤
Cf , len(β) ≤ Cf .

The following fact is a well-known fact for the free group case and also applies here,
mainly because trees are also locally finite in the GBS case.

Lemma 2.3.3. There are finitely many orbits of periodic indivisible Nielsen paths.

Remark 2.3.4. Since T is locally finite, there are finitely many orbits of edge paths with
bounded length. However in general the endpoints of pINPs are not vertices of T so pINPs
are not edge paths.

Before proving Lemma 2.3.3 we introduce the following notion which will enable us to
work with edge paths while looking for periodic indivisible Nielsen paths.

Definition 2.3.5. A pseudo-pINP is an edge path γ ⊂ T with one illegal turn such that
there exists n ≥ 1 and g ∈ G such that γ ⊂ g[fn(γ)].

Lemma 2.3.6. Every pseudo-pINP contains a unique pINP. Conversely, the minimal
edge path containing a pINP is a pseudo-pINP.

Proof. Suppose γ is an edge path with one illegal turn, and let n ≥ 1 and g ∈ G be such
that γ ⊂ g[fn(γ)]. Up to replacing f by gfn we may suppose γ ⊂ [f(γ)]. Write γ as the
concatenation α · η1 · η2 · β where the illegal turn is between η1 and η2, and η1 and η2 are
the maximal subpaths such that f(η1) = f(η̄2). If γ contains a pINP γ′ then the length of
each legal branch of γ′ must be λ len(η1)

λ−1 , which proves uniqueness. For the existence, since
γ ⊂ f(γ) this length defines a unique subpath γ′ ⊂ γ and [f(γ′)] = γ′.

Conversely, the minimal edge path γ containing a pINP γ′ is sent to an edge path
containing gfn(γ′) for some n ≥ 1 and g ∈ G. Since γ′ ⊂ g[fn(γ′)] ⊂ g[fn(γ)] and γ is
the minimal edge path containing γ′, then γ is a pseudo-pINP.

Now we prove Lemma 2.3.3.

Proof of Lemma 2.3.3. First of all the tree T is locally finite and there are finitely many
orbits of illegal turns. There is a bound on the lengths of pINPs, namely the critical
constant Cf . Finally every pINP crosses a unique illegal turn.

103



Chapitre 2 – Detection of fully irreducible automorphisms in generalized Baumslag-Solitar
groups

Every pINP is contained in a pseudo-pINP whose legal branches have length at most
Cf + maxe∈E(T ) len(e). There are finitely many orbits of edge paths with bounded length,
hence finitely many orbits of pseudo-pINPs with bounded length. Since every pseudo-pINP
contains a unique pINP by Lemma 2.3.6, there are finitely many orbits of pINPs.

The important implication of Lemma 2.3.3 is that the set of orbits of indivisible Nielsen
paths can be computed algorithmically. To prove this for GBS groups we use an approach
which resembles [CL15, Sections 5, 6], where long turns are used to understand pINPs.

The algorithm which finds all periodic indivisible Nielsen paths relies on the correspon-
dance with pseudo-pINPs given by Lemma 2.3.6. It suffices to prove that all pseudo-pINPs
can be computed algorithmically. This would be quite simple if we knew the bound Cf .
However we do not know how to estimate BCC(f) and instead we will give an algorithm
which does not need it. The algorithm consists in testing all edge paths with bounded
length for pseudo-pINPs, and using a criterion to make sure that the bound on the length
was sufficiently big. If not then the bound is increased: eventually it becomes greater than
Cf and the criterion is satisfied.

Let γ = α ·β be an edge path with len(α), len(β) 6= 0 such that α, β are legal subpaths
and the turn at the concatenation is illegal.

The following technical lemma studies the behaviour of the sequences ([fn(γ)])n∈N.

Lemma 2.3.7. (i) There are four mutually exclusive behaviours for the sequence ([fn(γ)]),
illustrated by Figure 2.3:

(1) for some n ∈ N, [fn(γ)] is legal and neither fn(α) nor fn(β) contains the other

(2) for some n ∈ N, fn(α) ⊂ fn(β) or fn(β) ⊂ fn(α)

(3) γ contains a pseudo-pINP

(4) γ does not contain any pseudo-pINP but there exists k ≥ 1 such that [fk(γ)]
does

(ii) There is an algorithm which takes an edge path γ with one illegal turn and returns
what case ([fn(γ)]) belongs to

(iii) If α, β are both longer than Cf then case (2) is not possible

(iv) If there exists a pINP η such that the minimal edge path containing η strictly contains
γ then γ is in case (2).
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Figure 2.3 – Four different cases for the behaviour of [fn(γ)]

Proof. (i) If there exists n ∈ N such that [fn(γ)] is legal then the sequence belongs to
case (1) or (2). Otherwise, for all n ∈ N, the path [fn(γ)] contains an illegal turn. In
particular its length is never zero. Let B ≥ Cf be a bound on the length of legal branches
of pseudo-pINPs. There are finitely many edge paths with length at most 2B so there
exist k ≥ 0, n ≥ 1 and g ∈ G such that [fk(γ)] and g[fk+n(γ)] are either equal, or
intersect on a length at least B on each side of the illegal turn. Let η be the maximal
edge path in the intersection [fk(γ)]∩g[fk+n(γ)]. Let αη be one of the legal branches of η.
Since len(αη) ≥ Cf we have len(fn(αη) ∩ [fn(η)]) ≥ len(αη). Therefore the image [fn(η)]
contains g−1η, so η is a pseudo-pINP. The sequence belongs to case (3) if k = 0 and to
case (4) otherwise.

Case (1) obviously excludes cases (2), (3) and (4). Case (2) excludes cases (3) and (4)
since it implies that [fn(α · β)] is a legal path. Definition of cases (3) and (4) also implies
that they are mutually exclusive.

(ii) Before giving the algorithm which determines the case, let us give some prelimi-
naries:

— By Proposition 2.1.4 (v), there is an algorithm which, given finite non-backtracking
edge paths α, β, decides whether they belong to the same orbit or whether there
exists g ∈ G such that α ⊂ gβ.

— There is an algorithm which takes an edge path η and a period p ≥ 1, and determines
if η is a pseudo-pINP with period at most p. Compute the iterates [fn(η)] for
n ∈ {1, . . . , p}. If there exists n such that [fn(η)] contains a translate of η then
η is a pseudo-pINP whose period divides n. Otherwise it is not a pseudo-pINP with
period at most p.
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Let γ be an edge path with one illegal turn. Repeat the following steps, starting with
n = 0:

— Compute fn(γ).

— If fn(γ) is legal, check whether fn(α) ⊂ fn(β) or vice-versa. If yes then γ belongs
to case (2), else it belongs to case (1). The algorithm stops.

— If fn(γ) is not legal, check if it contains a pseudo-pINP with period at most n+ 1.
Suppose it contains a pseudo-pINP with period p ≤ n + 1. Then either case (3) or
case (4) is true. The pINP contained in η also has period p: if γ contains a pINP
η0 then η contains its fn-image, so η0 has period p. Then it suffices to check if γ
contains any pseudo-pINP with period p. If yes then γ is in case (3), else it is in
case (4).

— Replace n by n+ 1.

Because of (i) this will eventually terminate.
(iii) If len(α) ≥ Cf then for every n ∈ N, len(fn(α)∩ [fn(γ)]) > λ len(α)−BCC(f) >

len(α). A similar statement holds if len(β) ≥ Cf . When both α and β are longer than Cf ,
(2) cannot occur.

(iv) Suppose that there exists a pINP η, a pseudo-pINP η′ containing η, such that
γ ( η′, and that γ does not contain η. One of the endpoints x of γ lies in the interior of η.
Let y be the endpoint of η in the same legal branch as x. The distance dT (fn(x), fn(y))
increases exponentially since [x, y] is legal. The distance between fn(y) and the illegal
turn is bounded by Cf . For n0 big enough, dT (fn0(x), fn0(y)) > Cf so fn0(x) lies in the
simplified part of fn0(η). Since γ ⊂ η′, [fn0(γ)] is contained in [fn0(α)] or [fn0(β)] so γ is
in case (2).

Proposition 2.3.8. There is an algorithm taking a train track map f : T → T and
finding all orbits of minimal pseudo-pINPs.

Proof. Proposition 2.1.4 (v) implies that given two edge paths, one can decide whether
they belong to the same orbit. As a result one can list all orbits of edge paths of given
length: it suffices to choose a representative for each orbit of vertex, and then construct
all edge paths with given length starting with these vertices.

Start with L = 1. Apply the following steps.

— Let LL be a list of representatives of edge paths with shape α ·β where α and β are
legal paths with combinatorial length at most L.
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— For each path in LL, determine what case they belong to using Lemma 2.3.7 (ii).

— If there exist a path in case (2) then increase L by 1 and start again. Else stop. Let
T be the subset of LL consisting of paths in case (3).

Every path γ ∈ T contains a pseudo-pINP, moreover point (iii) of Lemma 2.3.7 ensures
that we can find such a pseudo-pINP η0 ⊂ γ and its period p. For every other pseudo-
pINP η ⊂ γ, the period of η is also p. Compute [fp(η)] for every η ⊂ γ in order to find
all pseudo-pINPs in γ and find the minimal one.

This algorithm eventually stops because after enough steps L becomes greater than
Cf so case (2) does not occur. Suppose that the algorithm stops, then for every minimal
pseudo-pINP η there exists γ ∈ T such that η ⊂ γ. By contradiction suppose otherwise.
Then len(η) > L. There exists a subpath γ ( η of combinatorial length L and by mini-
mality of η, γ does not contain the pINP contained in η. Then by (iv) of Lemma 2.3.7 γ
is in case (2) which is a contradiction.

Of course it is more convenient to work with edge paths than with arbitrary paths
which can start or end in the middle of an edge, especially for algorithmic purposes.
Instead of using pseudo-pINPs, we will subdivide T at the endpoints of pINPs so that all
pINPs become actual edge paths:

Lemma 2.3.9. There exists a subdivision s : T → T ′ with T ′ ∈ D and a train track map
f ′ : T ′ → T ′ such that f ′ ◦ s = s ◦ f , such that the endpoints of all pINPs for f ′ are
vertices of T ′.

Proof. Define T ′ by subdividing T at every endpoint of periodic indivisible Nielsen paths.
Since there are finitely many orbits of pINPs the tree T ′ is simplicial. Let s : T → T ′ be
the corresponding isometry.

Since the set of pINPs is stable under f , the map f ′ induced by f on T ′ maps vertex
to vertex. The map f ′ is a train track map.

Lemma 2.3.10. One can compute a subdivision s : T → T ′ and a train track map
f ′ : T ′ → T ′ such that f ′ ◦ s = s ◦ f and such that all pINPs for f ′ start and end at
vertices of T ′.

Proof. The map f exists by Lemma 2.3.9. We will give an algorithmic construction.
One can find all orbits of minimal pseudo-pINPs by Proposition 2.3.8. Let γ be a

minimal pseudo-pINP. It contains a unique pINP η. There exists n ≥ 1 and g ∈ G such
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that η = g[fn(η)]. The first point of η (resp. last point) is a vertex if and only if the first
edge (resp. last edge) of γ is equal to the first edge (resp. last edge) of g[fn(γ)]. This can
be checked algorithmically.

There exists k ≥ 1 such that all pINPs are k-periodic. Step by step, we will construct
a subdivision of T which is fk-invariant. We will check that it is also f -invariant.

Start with S = T .
While there exists a pINP η = [x, y] for fk such that x is not a vertex, define the

subdivided tree S ′ as follows. Let e be the edge of S which contains x. Subdivide e by
adding a new vertex v representing x. The map fk induces a map on S ′ with fk(x) = gx

where g is such that fk(η) = gη.
By repeating this with S := S ′ for every pINP, we obtain an fk-invariant subdivision

T ′.

Now we would like to prove that the subdivision is f -invariant. We need to define f
on vertices of V (T ′) \ V (T ). Suppose v ∈ V (T ′) \ V (T ). In T the point v is not a vertex
but it is the endpoint of a pINP η. There exists a unique pINP η′ such that [f(η)] = η′,
and the path η′ can be computed. The map f sends the endpoints of η to those of η′:
define f ′(v) as the corresponding endpoint of η′ in T ′. By construction f ′(v) is a vertex.

The construction does not depend on the choice of η since it exhibits the subdivision
of Lemma 2.3.9.

2.3.2 Pseudo-periodic conjugacy classes of G

Recall that the conjugacy class of g ∈ G is pseudo-periodic for Φ ∈ Out(G) if ‖φn(g)‖T
is bounded for n→∞ and φ ∈ Φ.

The motivation for the notion of pseudo-periodicity is given by the following result,
which we will prove below:

Proposition 2.3.11. If there exists a simple element h ∈ G such that h is pseudo-
periodic, then a power of Φ is reducible.

Lemma 2.3.12. Let g ∈ G be a loxodromic element. Let φ ∈ Aut(G): The following
conditions are equivalent:

— ‖φn(g)‖T does not tend to infinity

— ‖φn(g)‖T is bounded.
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Proof. The axis of g in T can be partitioned into maximal legal segments, concatenated at
illegal turns. Let s1, . . . , sm be consecutive maximal legal segments forming a fundamental
domain of AxisT (g).

For every n ∈ N there exists In ⊂ {1, . . . ,m} such that ⋃i∈In fn(si) contains a funda-
mental domain of the axis of φn(g). We may assume In ⊂ In−1 for every n ∈ N. For i ∈ In
let Jni := fn(si) ∩ AxisT (φn(g)). It is a legal segment.

If ‖φn(g)‖T is not bounded then at least one of the Jni has unbounded length. Suppose
for N ∈ N, len(JNi0 ) > 2Cf . When applying f to Jni0 , it is stretched by a factor λ, however
there might be cancellation at the ends of Jni0 because of illegal turns. Since this cancel-
lation cannot exceed BCC(f), we have len(JN+1

i0 ) ≥ λ len(JNi0 )− 2 BCC(f) > λ
2 len(JNi0 ) +

λCf − 2 BCC(f) > λ
2 len(JNi0 ) so len(Jni0) ≥

(
λ
2

)n−N
len(JNi0 ). Therefore ‖φn(g)‖T goes to

infinity.

Remark 2.3.13. Equivalently the conjugacy class of an element g ∈ G is pseudo-periodic
for Φ if there exists S ∈ D such that ‖φn(g)‖S is bounded with φ ∈ Φ, and equivalently
if for all S ∈ G, ‖φn(g)‖S is bounded.

Pseudo-periodic elements are the right analogue of periodic elements in the GBS con-
text. Although the conjugacy class of a periodic element is not periodic, the translation
length is.

Lemma 2.3.14. Let φ ∈ Aut(G). Let h, g ∈ G be loxodromic elements. Suppose there
exists t ∈ D and v ∈ AxisT (h)∩AxisT (g) such that [v, h2v] = [v, g2v]. Then in any S ∈ D
there exists w ∈ S such that [w, g2w] = [w, h2w] is a common pair of fundamental domains
for g and h. In particular ‖g‖S = ‖h‖S for all S ∈ D.

Proof. Let φ, h, g, T, v be as described in the hypotheses.
Let f : T → S be aG-equivariant application. See Figure 2.4. The segment [f(v), hf(v)]

intersects AxisS(h). Let lh be the distance between f(v) and AxisS(h). It is equal to the
distance between hf(v) and the axis. Moreover the length of the intersection [f(v), hf(v)]∩
[hf(v), h2f(v)] is equal to lh. The same goes for lg and since gv = hv and g2v = h2v, we
have lg = lh.

Let wS ∈ S be the point of [f(v), hf(v)] at distance lh = lg from f(v). It belongs to
AxisS(h) and AxisS(g).

The translation length of both g and h in S is dS(f(v), hf(v))− 2lh. Therefore hwS =
gwS is the point of [f(v), hf(v)] at distance lh from hf(v) and h2wS = g2wS is the point
at distance lh from h2(v).
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Figure 2.4 – Description of the proof of Lemma 2.3.14: image of the pair of fundamental
domains in the new tree S

Remark 2.3.15. The previous lemma is also true when replacing 2 with any n ≥ 2: if g, h
share n consecutive fundamental domain in some T ∈ D then they do in every T ∈ D.

Corollary 2.3.16. Let h, g ∈ G be loxodromic elements such that there exists T ∈ D and
v ∈ AxisT (h) ∩ AxisT (g) such that [v, h2v] = [v, g2v]. Then any special factor containing
h also contains g.

Proof. Let A be a special factor containing h. Let S ∈ DA be a tree such that a collapse
S̄ of S has a vertex x with stabilizer A. By Lemma 2.3.14 the axes of h and g in S share
a fundamental domain [w, gw] ⊂ S.

In S̄, A is the stabilizer of the vertex x. Therefore the axis of h is sent to x by the
collapse map S → S̄. The fundamental domain of g in the axis of h is also sent to x, so
the whole axis of g is sent to x by equivariance. Thus g fixes x and g ∈ A.

In the following result, the fact that trees in D are locally finite is fundamental.

Proposition 2.3.17. Let φ ∈ Aut(G). Let g ∈ G be a loxodromic element. The following
conditions are equivalent:

(i) the conjugacy class of g is pseudo-periodic for the outer class Φ = [φ]

(ii) for any T ∈ D, for all N ≥ 1, there exist distinct n,m ∈ N such that φn(g) and
φm(g) admit N common consecutive fundamental domains up to translation

(iii) for all N ≥ 1, there exists m > 0 such that for any S ∈ D, g and φm(g) admit N
common consecutive fundamental domains up to translation in S
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(iv) for any T ∈ D the sequence (‖φn(g)‖T )n→−∞ is bounded.

Proof. Let us prove (i) ⇒ (ii). Suppose the conjugacy class of g is pseudo-periodic.
Let f : T → T be a representative for φ. Let B > supn∈N ‖φn(g)‖T . Let N ∈ N. Since

there are finitely many orbits of edge paths with length at most NB, there exist distinct
n,m ∈ N and h ∈ G such that φn(g) and hφm(g)h−1 share N consecutive fundamental
domains.

To prove (ii) ⇒ (iii), take T ∈ D. By (ii) there exists n,m such that φn(g) and φm(g)
haveN consecutive fundamental domains up to translation. By Lemma 2.3.14 and Remark
2.3.15, these two elements have N consecutive fundamental domains, up to translation,
in every tree in S ∈ D. In particular in S · φ−n they do. This implies that g and φm−n(g)
share N fundamental domains up to translation in S, for every S ∈ D.

Suppose (iii): in particular, by taking S ′ := S ·φn we have ‖φn(g)‖S = ‖φn+m(g)‖S for
any n ∈ Z. Therefore ‖φn(g)‖S is bounded so g is pseudo-periodic for [φ] so (i) and (iv)
are true.

Finally suppose (iv). Condition (iv) is condition (i) for φ−1 instead of φ, and it implies
(iv) for φ−1, which is (i) for φ. Therefore (iv) ⇒ (i).

Now we can prove Proposition 2.3.11, which states that the minimal factor containing
an element whose conjugacy class is pseudo-periodic is itself periodic.

Proof of Proposition 2.3.11. Condition (iii) of Proposition 2.3.17 states that there exist
n,m such that h and φm(h) share two consecutive fundamental domains up to translation.
Using Corollary 2.3.16 this implies that any special factor containing h also contains a
conjugate of φm(h), and vice versa. Thus the minimal factors containing these elements
are conjugate and the conjugacy class of these factors is φm-periodic.

The following results are the key for finding pseudo-periodic elements in G:

Proposition 2.3.18. Let g ∈ G be an element whose conjugacy class is pseudo-periodic
for Φ ∈ Out(G). Suppose f : T → T is a train-track representative for Φ. Then the axis
of g in T is a concatenation of periodic indivisible Nielsen paths.

Proof. Let φ ∈ Φ be such that f is φ-equivariant. The axis of g in T is a concatenation
of maximal legal subsegments interrupted by illegal turns. The tightened image of the
axis of g by fn is the axis of φn(g). Since fn maps legal segments to legal segments, the
number Nn of orbits of maximal legal segments in AxisT (φn(g)) never increases with n.
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Figure 2.5 – Picture of the action of f on legal segments

Since g and φnk(g) share two fundamental domains up to translation (Proposition 2.3.17
(iii)) for some fixed k and every n ∈ N, the number Nn is actually a constant N .

By Proposition 2.3.17 (iii) there exists n ≥ 1 and h ∈ G such that hφn(g)h−1 and
g have at least N + 1 consecutive fundamental domains in common. Up to replacing φ
by ch ◦ φn for some l ∈ Z, and f by hfn, we may suppose that g and φ(g) share N + 1
consecutive fundamental domains. Let us call σ the segment where both axes overlap. Up
to replacing φ by cφ(gl) ◦ φ we may suppose that for any fundamental domain η ⊂ σ, the
first point of f(η)∩ σ is contained in η (see Figure 2.5). Note that the set of pINPs for φ
does not change when replacing φ with a power or composing with an inner automorphism,
so these assumptions will not change the outcome of the proof.

Let γ1, . . . , γN , . . . , γN2 , γN2+1 be consecutive maximal legal segments which appear
whole in σ. The isometry g shifts the legal subsegments: for i ∈ {1, . . . , N2 + 1−N} we
have γi+N = gγi = φ̃(g)γi.

The map f sends legal paths to legal paths, and it induces a bijection between the
sets of maximal legal subsegments of AxisT (g) and AxisT (φ(g)). This bijection preserves
the order of the segments. On the part where the axes overlap, f shifts the subsegments
γi by an amount which does not depend on i. More accurately, there exists 0 ≤ j < N

such that for every 1 ≤ i ≤ N(N − 1), f(γi) ⊃ γi+j.
In particular, for i ∈ {1, . . . , N + 1} we have

fN(γi) ⊃ fN−1(γi+j) ⊃ · · · ⊃ γi+Nj = gjγi.
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Since for all i ∈ {1, . . . , N + 1} we have gjγi ⊂ fN(γi) and fN stretches legal segments
uniformly, there exists a unique point pi ∈ γi such that fN(pi) = gjpi. Besides pN+1 = gp1.
Thus for 1 ≤ i ≤ N the segment [pi, pi+1] is a periodic Nielsen path, and since it has a
unique illegal turn it is a pINP for f . Therefore AxisT (g) is a concatenation of pINPs.

We also have a converse:

Proposition 2.3.19. Suppose that g ∈ G is a loxodromic element whose axis is a con-
catenation of pINPs. Then g is pseudo-periodic.

Proof. Suppose the axis of g ∈ G is a concatenation of pINPS. There exists a fundamental
η1 · · · · · ηk for g where ηi is a pINP for i ∈ {1, . . . , k}. There exists a common n ∈ N such
that for all i ∈ {1, . . . , k} there exists hi ∈ G such that [fn(ηi)] = hiηi. By continuity of
fn the paths hiηi and hi+1ηi have a common endpoint, although hi may be different from
hi+1.

Therefore, for every k ∈ N, len([fnk(η1 · · · · ·ηk)]] ≤ len(η1 · · · · ·ηk). Since f is Lipschitz,
this proves that ‖φm(g)‖T →∞ when n→∞.

Remark 2.3.20. A consequence is that there cannot be any illegal concatenation of pINPs
forming the axis of a loxodromic element ofG. If there were such an element g, up to taking
a power of Φ we could suppose the axis of g is made of INPs with an illegal concatenation
occuring at some point. Then the sequence ‖φn(g)‖T would be non increasing and non
constant because of the illegal turn. This contradicts Proposition 2.3.17 (iv).

2.4 Pseudo-periodic subgroups

In this section we introduce a collection of subgroups whose loxodromic elements
are exactly the elements of G whose conjugacy class is pseudo-periodic, and we give an
algorithm which computes these subgroups.

These groups can be understood as pseudo-periodic subgroups, which are analogous
to fixed subgroups for free groups. The notion of pseudo-periodicity which is used here
depends on a choice of actual automorphism φ ∈ Aut(G) and is not a conjugacy class
invariant.
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2.4.1 Algorithmic computation of pseudo-periodic conjugacy classes

Fix Φ ∈ Out(G). Our aim in this subsection is to determine a subset of points which
can be effectively constructed, and such that the loxodromic elements of its stabilizer are
pseudo-periodic.

Let f : T → T be a train track map for Φ. Let η := [x0, x1] ⊂ T be a periodic
indivisible Nielsen path for f . The Nielsen class associated to η is the set

V Y (η) := {y ∈ T/∃x0 = y0, y1, . . . , yn s.t. ∀1 ≤ i ≤ n [yi−1, yi] is a pINP }

The set of pINPs with both ends in V Y (η) is called EY (η). For any η′ ∈ EY (η) we
have V Y (η′) = V Y (η).

Lemma 2.4.1. Let Φ ∈ Out(G) and let f : T → T be a representative for Φ. Let η be a
pINP for f . Then for g ∈ G the following are equivalent:

(i) V Y (η) = gV Y (η)

(ii) V Y (η) ∩ gV Y (η) 6= ∅

Proof. The implication (i) ⇒ (ii) is obvious since V Y (η) 6= ∅.
Suppose (ii). Let us prove (i). Let x ∈ V Y (η)∩ gV Y (η). Let y ∈ V Y (η). By definition

of V Y (η), there is a concatenation of pINPs from x to y. Since x ∈ gV Y (η) there is also a
concatenation from x to gy. Thus y and gy can be connected by a concatenation of pINP
so they belong to the same Nielsen class. We deduce gV Y (η) = V Y (η).

Lemma 2.4.2. Let Φ ∈ Out(G) with a train track representative f : T → T . Let η be a
pINP for Φ.

Suppose Stab(V Y (η)) contains a loxodromic element.
The action of Stab(V Y (η)) on the subtree Y (η) := conv(V Y (η)) is cocompact.

Proof. Let V Y := V Y (η), Y := conv(V Y ) and EY := EY (η).
The set V Y/ Stab(V Y ) is finite because the image of V Y in T/G is finite: by Lemma

2.4.1, if g ∈ G, y ∈ V Y and gy ∈ V Y , then g ∈ Stab(V Y ).
The set EY/ Stab(V Y ) is finite because EY/G is finite and for g ∈ G, V Y ∩ gV Y 6=

∅ ⇒ g ∈ Stab(V Y ). There exist representatives I1, . . . , Ik for EY and their union I1 ∪
· · · ∪ Ik is a compact subset of T whose orbit covers Y .

Thus Y/ Stab(V Y ) is compact.
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Corollary 2.4.3. Let Φ ∈ Out(G) with a train track representative f : T → T be such
that there exists a pINP η for f . The sets V Y (η)/ Stab(V Y (η)) and EY (η)/ Stab(V Y (η))
are finite.

The stabilizers of the Nielsen classes contain all the information on pseudo-periodic
conjugacy classes, and they can be computed:

Proposition 2.4.4. Let Φ ∈ Out(G). Let f : T → T be a train track representative for Φ.
For every pINP η for f , one can compute algorithmically a description of the set V Y (η)
and of its stabilizer in the following form:

— a finite set of generators for the subgroup Stab(V Y (η))

— a list of representatives for each Stab(V Y (η))-orbit of points of V Y (η)

— a list of representatives for each Stab(V Y (η))-orbit of pINP in EY (η).

Proof. By Lemma 2.3.10 we may subdivide T such that the endpoints of all pINPs are
vertices.

Let η be a pINP for f .
We construct the set EY := EY (η) as follows. It suffices to construct all possible pINP

concatenations starting from an endpoint of η, which actually constructs the vertices of
V Y := V Y (η).

Define EYn as the list of pINPs which appear in concatenations of length at most n
from y0, where η = [y0, y1]. For all n ≥ 1 we have EYn ⊂ EYn+1.

The construction of EYn is algorithmic. One needs a list of representatives for all G-
orbits of pINPs, which can be computed using Proposition 2.3.8. Given a pINP γ ending
with a vertex x, we need to know whether there is a pINP γ′ 6= γ with x as endpoint.
This question can be answered using these facts, which are consequences of Proposition
2.1.4:

— given a G-orbit of pINPs [γ′] one can decide whether one endpoint of [γ′] is in the
same orbit as x

— if so, one can compute a representative γ′ with x as an endpoint and compute all
other translates by applying repeatedly a generator of Gx. Since T is locally finite,
Gx · γ′ is finite so eventually, all translates of γ′ starting at x have been computed.

Since there are finitely many G-orbits of pINPs there exists n ∈ N such that all orbits
of pINPs in EYn+1 also appear in EYn.
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Choose a minimal set of representatives in R ⊂ EYn such that all orbits of pINPs in
EYn+1 are represented in R. Let η1, . . . , ηs be the pINPs of EYn \R. For every 1 ≤ i ≤ s

there exists an element gi ∈ G such that giηi belongs to R ⊂ EYn−1. Let a be a generator
of Stab(η). Let Gη := 〈g1, . . . , gs, a〉.

Then define EYη := Gη · EYn.

Let us prove that EYη = EY . It suffices to prove that EYη is the set of all pINPs
which belong to a pINP path to y0.

Suppose γ ∈ EYη. There exists a word g1 . . . gm in the generators of Gη and a pINP
γ0 ∈ EYn such that γ = g1 . . . gmγ0.

For every 1 ≤ i ≤ m, the paths γ0, giγ0 belong to EYn and can be joined by a
concatenation of pINPs within EYn. Thus there is a concatenation containing all pINPs

γ0, g1γ0, g1g2γ0, . . . , g1 . . . gmγ0 = γ.

Conversely suppose that there exists a concatenation of pINPs γ0, γ1, . . . , γm such that
γ0 ∈ EYn. Let us prove that γm ∈ EYη. We proceed by induction on m. The case m = 0 is
obvious. For greater m suppose every concatenation of at most m pINPs starting with a
pINP in EYn is contained in EYη. By the induction hypothesis, there exists g ∈ Gη such
that gγm−1 belongs to EYn. Thus gγm belongs to EYn+1 so there exists i ∈ {1, . . . , s} such
that gigγm ∈ EYn. Since gig ∈ Gη, this proves that γm ∈ EYη. Thus a concatenation of
m+ 1 pINPs belongs to EYη. We can conclude by induction.

Now let us prove that the stabilizer of EYη is the subgroup Gη, which is finitely
generated. The inclusion Gη ⊂ Stab(EYη) is true. Conversely let g ∈ Stab(EYη). There
exists a concatenation of pINPs η, . . . , g · η. There exists g′ ∈ Gη such that g′η = g · η so
g ∈ g′ Stab(η) ⊂ Gη.

The list EYn provides the list of representatives of the orbits of pINPs in EY . Moreover
the ends of the elements of EYn are a list V Yn of representatives of the orbits of V Y .
There may be redundant elements in both EYn and V Yn and they may be eliminated
algorithmically using Proposition 2.1.4.

Serre’s Lemma ([Ser77, Section 6.5, Corollary 2]) gives a criterion for deciding whether
a finitely generated subgroup acting on a tree is elliptic.

Lemma 2.4.5. Suppose a finitely generated group G acts by isometries on a simplicial
tree T . Let {s1, . . . , sn} be a finite generating set for G. Then the action of G is elliptic
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if and only if

— for all i ∈ {1, . . . , n} the isometry si is elliptic

— for all i, j ∈ {1, . . . , n}, sisj is elliptic.

Corollary 2.4.6. There is an algorithm which finds whether there exists a pseudo-periodic
conjugacy class in G.

Proof. We can algorithmically compute finitely many generating sets for the stabilizers
Stab(V Y (η)) for finitely many pINPs η representing every pINP orbit in T .

By Lemma 2.4.1 there exist pseudo-periodic conjugacy classes if and only if one of
these subgroups contain a loxodromic element.

Since a finitely generated subgroup is either elliptic or contains a loxodromic element,
it then suffices to check that the algorithm returns only elliptic subgroups using Serre’s
lemma (Lemma 2.4.5). If it returns only elliptic subgroups then there exists no pseudo-
periodic conjugacy class in G, otherwise there exists one.

2.4.2 Link with pseudo-periodic subgroups

We now introduce pseudo-periodic subgroups, which can be defined independently of
any train track representative. We will prove that when a train track map does exist,
elements of pseudo-periodic conjugacy classes are pseudo-periodic for some ψ in the outer
automorphism class of [φk] for some k ∈ N. Pseudo-periodic subgroups which contain
loxodromic elements are contained in the subgroups Stab(V Y (η)) defined before, and
maximal pseudo-periodic subgroups containing loxodromic elements coincide with some
Stab(V Y (η)).

Definition 2.4.7. Let φ ∈ Aut(G) be an actual automorphism. An element g ∈ G is
pseudo-periodic for φ if for any T ∈ D, for any x ∈ T , the sequence (dT (x, φn(g)x))n∈N is
bounded.

Remarks 2.4.8. 1. The boundedness of the sequence (dT (x, φn(g)x))n∈N depends nei-
ther on T nor on x.

2. This notion is not defined for conjugacy classes of g. There may exist a pseudo-
periodic element g ∈ G and a conjugate of g which is not pseudo-periodic. The
conjugate will be pseudo-periodic for some φ′ ∈ Aut(G) such that φ′ and φ belong
to the same outer class.
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3. The definition also applies to elliptic elements. Not every elliptic element is pseudo-
periodic in general.

4. If g is pseudo-periodic and loxodromic, then its conjugacy class is pseudo-periodic
for Φ = [φ].

5. The set {g ∈ G/g pseudo-periodic } is a subgroup of G. Indeed suppose g, h are
pseudo-periodic. For every n ∈ N we have

dT (x, φn(gh)x) ≤ dT (x, φn(g)x) + dT (φn(g)x, φn(g)φn(h)x)

= dT (x, φn(g)x) + dT (x, φn(h)x).

6. A loxodromic element g ∈ G is pseudo-periodic for φ if and only if there exists
m ∈ N such that gm is pseudo-periodic. The direct implication is immediate. For
the converse, observe that since φn(g) is loxodromic for every n ∈ N we have
dT (x, φn(g)x) ≤ dT (x, φn(gm)x).

7. For any n ∈ N we have the inclusion Gφ ⊂ Gφn .

Definition 2.4.9. Let φ ∈ Aut(G). The pseudo-periodic subgroup Gφ associated to φ is
the subgroup of pseudo-periodic elements for φ.

Lemma 2.4.10. Let φ ∈ Aut(G) and g ∈ Gφ be a loxodromic pseudo-periodic element.
For each T ∈ D, there exists ∈∈ N such that for every k ∈ Z, φk(g) and φk+n(g) have a
pair of fundamental domains in common.

Proof. Since [g] is a pseudo-periodic conjugacy class, by Proposition 2.3.17, up to replacing
φ by a power, we may suppose that ‖φn(g)‖T = ‖g‖T for every n ∈ N.

Let x ∈ T . Since g is pseudo-periodic there exists r > 0 such that for all n ∈ N,
dT (x, φn(g)x) ≤ r. Therefore, for every n ∈ N, x is at distance at most r/2 of the axis of
φn(g). The intersection AxisT (φn(g)) ∩ B(x, 2r) is a segment with endpoints in B(x, 2r)
and length at least 3r. Since there are finitely many such segments, there exist n,m with
m > n + N such that AxisT (φm(g)) ∩ B(x, 2r) = AxisT (φn(g)) ∩ B(x, 2r). Moreover we
have ‖φn(g)‖T = ‖g‖T ≤ r. These axes overlap over more than 2‖φn(g)‖T = 2‖φm(g)‖T .
This means they share at least two consecutive fundamental domains in T .

By Lemma 2.3.14, n does not depend on T : for any S ∈ D, if g, φn(g) share two
fundamental domains in T then they also do in S.
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Remark 2.4.11. For a loxodromic pseudo-periodic element g ∈ G we can predict two
behaviours for φn(g) depending on the modulus ∆(g) ∈ Q∗. The modulus is a morphism
∆ : G→ Q∗ defined as follows; see [Lev07] for a more detailed presentation. Fix an elliptic
element a ∈ G. Since the commensurator of any elliptic element of G is G, there exist
p, q ∈ Z \ {0} such that gapg−1 = aq. The ratio p/q does not depend on the choice of a.
Define ∆(g) := p/q ∈ Q.

Suppose g is pseudo-periodic. By Lemma 2.4.10 there exists n > 1 such that φn(g)
and g share a fundamental domain σ. Therefore φn(g)g−1 fixes one endpoint of σ. Let
a ∈ G be a generator of the stabilizer of this endpoint: then φn(g)g−1 ∈ 〈a〉. There exists
k ∈ Z such that φn(g) = akg.

Let p, q ∈ Z \ {0} be such that gapg−1 = aq.

— Suppose ∆(g) 6= 1. Then p− q 6= 0 and ap−qg = apga−p. Thus if l1 = l2 mod p− q
then al1g and al2g are conjugate.

Since there exist infinitely many possible choices for n, there exist n, n′ such that
φn(g) = akg and φn

′(g) = ak
′
g with k = k′ mod p − q. So φn(g), φn′(g) are con-

jugates, and so are g and φn
′−n(g). Thus the conjugacy class of g is actually pe-

riodic. This does not imply that there are finitely many axes among the axes of
{φn(g)/n ∈ N}!

— Suppose ∆(g) = 1, so q = p. This is the unimodular case. Then apg = gap so ap fixes
the axis of g. There exist φn(g) = akg, φn

′(g) = ak
′
g with k = k′ mod p so φn(g)

and φn′(g) have the same axis. By Lemma 2.3.14 this implies that g and φn′−n(g)
have the same axis, and that φl(g) and φl+n′−n(g) have the same axis for every l ∈ Z.
In particular there exists m > 1 such that the axis of φmn(g) is the same as the axis
of g for every n ∈ Z. Here the axis is “periodic”, but the conjugacy class of g is not
in general.

In the rest of the section, we assume that Φ ∈ Out(G) is an automorphism of G
and it has a train track representative f0 : T → T . We will study automorphisms in
Aut(G) which are in the outer automorphism class Φk for some k ∈ N. For ψ in the outer
automorphism class Φk, we will always use the train track representative f such that
f = g · fk0 for some g ∈ G, such that f is ψ-equivariant. This way, periodic Nielsen paths
are the same for every ψ ∈ Φk.

In our study, automorphisms whose representative has periodic points hold a special
role.
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Definition 2.4.12. Let ψ ∈ Aut(G) be in the outer class of Φk for some k ∈ Z and
f : T → T be a ψ-equivariant train track map. Let η be a pINP for f . We say that ψ is
adapted to η if the endpoints of η are f -periodic.

Remark 2.4.13. The set of pINPs for Φ is the same as for Φn, for any n ∈ N. Thus a map
f is adapted to η if and only if there exists n ∈ N such that fn is adapted to η.

Proposition 2.4.14. Let k be such that for every pINP η in T , [fk0 (η)] is in the orbit of
η. For every loxodromic g ∈ G such that the conjugacy class [g] is pseudo-periodic for Φ,
there exists ψ ∈ Φk with an associated train track representative f such that g ∈ Gψ and
(ψ, f) is adapted to a pINP η in the decomposition of the axis of g given by Proposition
2.3.18.

Therefore for every loxodromic g in a pseudo-periodic conjugacy class [g] of G, there ex-
ists a pINP η and a pair (ψ, f) adapted to η such that g ∈ Gψ. Moreover g ∈ Stab(V Y (η)).

Proof. Let [g] be a pseudo-periodic conjugacy class. By Proposition 2.3.18 the axis of g
is a concatenation of pINPs. Take a pINP η = [x, y] in AxisT (g): there exists h ∈ G

such that [fk0 (η)] = hη. Define ψ := ch−1 ◦ φk. The map f := h−1 · fk0 is a train track
representative for ψ and the endpoints x, y of η are fixed points for f .

For every n ∈ N, fn(x) = x. Since [x, gx] is a concatenation of pINPs, the distance
dT (fn(x), fn(gx)) = dT (x, φn(g)x) is bounded so g ∈ Gψ.

A point x ∈ T is a pre-periodic point for f if there exists n ≥ 0 such that fn(x) is
periodic. We say x is non-escaping if for any y ∈ T the distance dT (y, fn(x)) is bounded
for n → ∞. A pre-periodic point is obviously non-escaping but the converse is also true
for a train track map:

Lemma 2.4.15. Let φ ∈ Aut(G) and f : T → T be a train track representative for φ. If
x is non-escaping then there exists n ∈ N and m ∈ N \ {0} such that fn+m(x) = fn(x),
so x is actually a pre-periodic point.

Proof. Suppose for some n0 ∈ N, fn0(x) is a vertex. Since f maps vertices to vertices and
T is locally finite, fn(x) takes only finitely many values so there exists n < m such that
fn(x) = fm(x) and fn(x) is an actual periodic point.

If fn(x) is in the interior of an edge for every n ∈ N, there exists n < m such that
fn(x) and fm(x) are both contained in the same edge e. The image fm−n(e) contains e
so there exists a fixed point x0 ∈ e for fm−n. Since e is a legal segment, it is stretched
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uniformly by a factor λ > 1 and unless fn(x) = x0, the distance dT (x0, f
k(m−n)(x)) grows

exponentially when k → +∞. Therefore fn(x) = x0.

Suppose that the pair (φ, f) is adapted to a pINP η ⊂ T . The points of V Y (η) are
non-escaping so they are also pre-periodic for f .

The following lemma is a general result about actions on trees.

Lemma 2.4.16. Let H be a group acting on a simplicial tree T by isometries such that
there exist loxodromic isometries. Suppose that there exists an elliptic element a ∈ H such
that for every loxodromic h ∈ H, the product ah is an elliptic isometry. Then the action
of H on T is dihedral.

Proof. As in [GL07] we distinguish 4 possible types of action for H: linear abelian, dihe-
dral, genuine abelian and irreducible. We prove the lemma by contraposition, i.e. if the
action is abelian or irreducible then for every elliptic a there exists a loxodromic h ∈ H
such that ah is loxodromic.

Suppose that the action is abelian (linear or genuine). It has a fixed point ξ ∈ ∂T .
Let a ∈ H be an elliptic isometry. Let h ∈ H be a loxodromic isometry. Both h and a

fix ξ so there exists x ∈ AxisT (h) such that the subray [x, ξ] is contained in FixT (a). The
isometry ah acts on [x, ξ] like h so it is also loxodromic.

Otherwise suppose that the action is irreducible. Let a ∈ H be an elliptic element, and
h ∈ H be a loxodromic element. Suppose AxisT (h) ∩ FixT (a) = ∅. Let us prove that ah
is loxodromic. Let p ∈ T be the projection of FixT (a) on AxisT (h). The point p′ := h−1p

is sent by ah to the point ap. Let v ∈ T be a point in [p′, p]. Then ahv ∈ [ap, ahp]. In
particular ahv is not in [p′, ahp′] so ah is loxodromic and p′ belongs to its axis.

Suppose now that AxisT (h) ∩ FixT (a) is non empty. If a fixes one of the endpoints
of AxisT (h) then the same discussion as for the abelian case applies. Else there exists a
loxodromic element g ∈ H whose axis does not intersect the axis of h. Since AxisT (h) is
not fixed by a, there exists k ∈ Z such that hk AxisT (g) does not intersect FixT (a) so up
to replacing g by the conjugate hkgh−k we may assume AxisT (g)∩FixT (a) = ∅. Then ag
is loxodromic.

Suppose that a pair (φ, f) is adapted to eta. The following is the key for proving that
V Y (η) is stable by Gφ:

Lemma 2.4.17. Suppose the group Gφ of pseudo-periodic elements contains a loxodromic
element. Let φ ∈ Aut(G) with a train track representative f : T → T . Suppose that (φ, f)
is adapted to η = [x, x′] a pINP in T . Then Gφ ⊂ Stab(V Y (η)).
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Proof. Suppose first that g is a loxodromic element. By Remark 2.4.13, f is adapted to η
if and only if its powers are. By Remark 2.4.8 Gφ ⊂ Gφn so it suffices to prove the lemma
for the pair (φn, fn) for some n ∈ N. Thus we may assume for simplicity that f(x) = x.

By Lemma 2.4.1 the points gx and g2x are pre-periodic. They might not be periodic
points. If gx is a periodic point, the path [x, gx] is a periodic Nielsen path so by Lemma
2.3.2 it is a concatenation of pINP.

Suppose otherwise. The axis of g is a legal concatenation of pINPs, by Proposition
2.3.18. We will prove that all these pINPs belong to EY (η). Then by Lemma 2.4.1 g ∈
Stab(V Y (η)). This will conclude the proof for g loxodromic.

See Figure 2.6 for a picture of this proof.
The point x is fixed by f and since the path between x and g2x is a concatenation

of pINPs, the point g2x is non-escaping, so it is pre-periodic. Thus there exists N ∈ N
such that for all n ≥ N , fn(g2x) = φn(g2)x is a periodic point. By Lemma 2.4.10 we may
choose n such that φn(g2)x is periodic and the axes of φn(g) and g intersect along two
common fundamental domains. By Lemma 2.4.1 we have φn(g2) ∈ Stab(V Y (η)).

The path [x, φn(g2)x] is a concatenation of pINPs. It contains a pINP η′ ⊂ AxisT (φn(g)).
By Lemma 2.3.2 η′ appears in the decomposition of the Nielsen path [x, φn(g2)x]. Thus
η′ ∈ EY (η).

Since φn(g) and g share two fundamental domains, there exists l ∈ Z such that
φn(g)lη′ ⊂ AxisT (g) ∩ AxisT (φn(g)). By Lemma 2.3.2 this translate of η′ appears in the
pINP decomposition of AxisT (g), besides it belongs to EY (η). This completes the proof
when g is loxodromic.

If g is elliptic the argument using the axes does not work any more. If there exist
loxodromic elements h1, h2 such that g = h1h2 then the path [x, gx] can be written as the
concatenation [x, h1x] · h1[x, h2x] and the loxodromic case completes the proof.

If g cannot be written as a product of loxodromic elements then by Lemma 2.4.16 the
action of Gφ on its minimal subtree is dihedral (by assumption it is not elliptic). Let ` be
the invariant axis in T . If g fixed ` then for any loxodromic element h ∈ Gφ, gh would be
loxodromic so g = (gh)h−1 would be a product of loxodromic elements. Thus g acts like a
symmetry. There exists a loxodromic isometry h ∈ Gφ with axis `. By Proposition 2.3.18
` is a legal concatenation of pINPs.

As in the loxodromic case, the pINPs in the decomposition of ` = AxisT (h) belong to
EY (η). Furthermore this decomposition into pINPs is g-invariant. Let y ∈ V Y (η) be an
endpoint of a pINP in `, then the point gy is also in EY (f). By Lemma 2.4.1 we have
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Figure 2.6 – Finding a concatenation of pINPs between x and gx

g ∈ Stab(V Y (η)). This concludes the proof in the elliptic case.

Corollary 2.4.18. Let φ ∈ Aut(G) and let f be a train track representative for φ. Suppose
that (φ, f) is adapted to η. Then Stab(V Y (η)) = Gφ.

Proof. The inclusion Gφ ⊂ Stab(V Y (η)) is proved by Lemma 2.4.17. Let us prove the
inverse inclusion. Suppose g ∈ Stab(V Y (η)). Let x0 be an endpoint of η. Then gx0 ∈
V Y (η) so gx0 is pre-periodic. For all n ∈ N we have fn(gx0) = φn(g)fn(x0). Since x0

and gx0 are pre-periodic, there exists B > 0 such that the sets {fn(x0), n ∈ N} and
{φn(g)fn(x0), n ∈ N} have diameter smaller than B. Then for all n ∈ N we have

dT (x0, φ
n(g)x0) ≤ dT (x0, φ

n(g)fn(x0)) + φn(g)dT (fn(x0), x0) ≤ 2B
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so g ∈ Gφ.

Pseudo-periodic subgroups defined by pairs (φ, f) which are adapted to a pINP have
good properties but not all pseudo-periodic subgroups arise in this way. However we will
see that it is the case for maximal pseudo-periodic subgroups.

Proposition 2.4.19. Let ψ ∈ [φk] for some k ∈ N, and let f be the associated train track
representative. If the action of Gψ on T is irreducible then the pair (ψ, f) is adapted to a
pINP.

Proof. Suppose that the action of Gψ is irreducible. Then we claim that Gψ contains
unimodular loxodromic elements u, v ∈ G whose axes have distinct endpoints and an
intersection longer than 4Cf . We postpone the proof of the claim.

By Remark 2.4.11 there exists n ≥ 1 such that u and φn(u) have the same axis with
same orientation, and have the same action on it. Recall that fn sends maximal legal
segments to legal segments. Writing the axis of u as a bi-infinite concatenation of pINPs
{ηi, i ∈ Z}, fn induces a translation on the set of pINPs: there exists ku ∈ Z such that
[fn(ηi)] = ηi+ku .

Similarly fn shifts the pINPs {η′j, j ∈ Z} in AxisT (v) by kv ∈ Z. The length of a pINP
is at most 2Cf so the intersection AxisT (v)∩AxisT (u) contains a pINP ηi = η′j belonging
to the decomposition of both axes. Suppose by contradiction that ku 6= 0 is non-zero,
then there exists m ∈ N such that [fnm(ηi)] ∩ AxisT (u) = ηi+mku , which is non-empty,
does not intersect AxisT (v). However [fnm(ηi)] = fnm(η′j) = η′j+mkv ⊂ AxisT (v). This is a
contradiction.

Thus fn(ηi) = ηi so (ψ, f) is adapted to ηi.

Now let us prove the claim. We will use Lemma 2.4.20 below to construct u and v as
announced. Since the action of Gψ is irreducible there exist loxodromic elements g, h ∈ Gψ

with disjoint axes. The axes of g and hg−1h−1 are disjoint so the element u := ghg−1h−1

is unimodular and loxodromic, and ‖u‖T ≥ 2‖g‖T . Up to replacing g by a power we
may suppose ‖u‖T ≥ 4Cf . Moreover the axes of g and u intersect along one fundamental
domain of g, so there exists l ∈ Z such that the axes of u an glu−1g−l do not intersect.
Thus the element v := glu−1g−lu is also unimodular and loxodromic, moreover the axes
of u and v overlap on a length equal to ‖u‖T , which proves the claim.

Lemma 2.4.20. Let T be a simplicial tree. Let a, b be loxodromic isometries of T with
disjoint axes. Then the product ab is a loxodromic isometry with translation length ‖a‖T +
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Figure 2.7 – Axis of gh when g, h have disjoint axes

‖b‖T + 2dT (AxisT (a),AxisT (b)). Moreover AxisT (ab) ∩ AxisT (a) is a single fundamental
domain for a.

Proof. Most of this is proved in [CM87, p. 1.5]; we give the proof for completeness but
it is best explained by Figure 2.7. Let a, b be as above. Let pa be the projection of
AxisT (b) to AxisT (a), and pb be the projection of AxisT (a) to AxisT (b). Let x := b−1pb.
Then abx = apb and the path [x, abx] is the union [x, pb] ∪ [pb, pa] ∪ [pa, apa] ∪ [apa, apb].
The overlap of those 4 segments has zero length because pa, pb are projections. The path
[pb, abpb] = [pb, pa]∪ [pa, apa]∪ [apa, apb]∪ [apb, abpb] has the same length since [apb, abpb] =
ab[x, pb] and the decomposition also has trivial overlap. If x were not in the axis, the
point pb which lies in the interior of [x, abx] would be moved by a shorter distance, so x
is actually in the axis. The translation length is ‖a‖T + ‖b‖T + 2dT (pa, pb) as announced
and AxisT (ab) ∩ AxisT (a) = [pa, apa].

Pseudo-periodic subgroups containing loxodromic elements are contained in stabilizers
of Nielsen classes, with equality when the subgroup comes from a pair adapted to a pINP:

Lemma 2.4.21. For every ψ in Φk for k ∈ N, if Gψ contains a loxodromic element, there
exists η ⊂ T a pINP such that Gψ ⊂ Stab(V Y (η)).

If (ψ, f) is adapted to a pINP then the inclusion is an equality.

Proof. The second statement, for (ψ, f) adapted to a pINP η, is a consequence of Corollary
2.4.18: we have Gψ = Stab(V Y (η)).

Suppose Gψ contains a loxodromic element. If the action of Gψ on T is irreducible
then by Proposition 2.4.19 (ψ, f) is adapted to a pINP η so the second statement applies.
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Otherwise suppose that there is a fixed point in ∂T for the action of Gψ. Let g be such
that the attracting point for g is fixed by Gψ.

By Proposition 2.4.14 there exists a pINP η ⊂ AxisT (g) and a pair (ψ′, f ′) adapted to
η so g ∈ Stab(V Y (η)) = Gψ′ . Let h ∈ Gψ be a loxodromic element. The axes of g and h
intersect along an infinite ray. There exist powers l,m such that ‖gl‖T = ‖hm‖T so gl and
hm have at least two fundamental domains in common, and by Lemma 2.3.14 for every
φ in the outer class of Φ and every n ∈ Z the elements φn(gl) and φn(hm) also share two
fundamental domains.

Up to replacing η by some translate gjη, we may assume η ⊂ AxisT (h) so glh−mη = η.
Since the conjugacy class [h] is pseudo-periodic, AxisT (h) is a concatenation of pINPs and
by Lemma 2.3.2, η is a pINP of the decomposition. Thus the pINPs in AxisT (h) belong
to EY (η). By Lemma 2.4.1 h ∈ Stab(V Y (η)).

By Lemma 2.4.16 all elliptic elements can be written as the product of loxodromic
elements so since all loxodromic elements of Gψ belong to Stab(V Y (η)), we have Gψ ⊂
Stab(V Y (η)).

The only remaining case is when the action of Gψ is dihedral. In that case Gψ preserves
an axis ` in T .

There exists a loxodromic element g ∈ Gψ whose axis is `. Let η be a pINP in `:
then the endpoints of the pINPs in the decomposition of ` belong to V Y (η). Since this
decomposition is unique by Lemma 2.3.2 and G preserves the set of pINPs in T , the group
Gψ preserves V Y (η) ∩ `. By Lemma 2.4.1 this implies Gφ ⊂ Stab(V Y (η)).

Thus maximal pseudo-periodic subgroups which contain loxodromic elements come
from pairs adapted to a pINP:

Proposition 2.4.22. A pseudo-periodic subgroup H containing a loxodromic element is
maximal for inclusion among pseudo-periodic subgroups if and only if there exists a pINP
η ⊂ T and a pair (ψ, f) adapted to η such that H = Gψ.

Proof. Suppose H is maximal. By Lemma 2.4.21 there exists a pINP η such that H ⊂
Stab(V Y (η)). There exists ψ ∈ Φk for some k ∈ N and g ∈ G such that f := gfk0 fixes the
endpoints of η, so the pair (ψ, f) is adapted to η and Stab(V Y (η)) = Gψ. By maximality
H = Gψ.

Conversely suppose there exists a pair (ψ, f) such that H = Gψ adapted to a pINP
η ⊂ T . By Corollary 2.4.18 H = Stab(V Y (η)). Let H ′ be a pseudo-periodic subgroup
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such that H ⊂ H ′: by Lemma 2.4.21 there exists η′ such that H ′ ⊂ Stab(V Y (η′)). Thus
for h ∈ H, AxisT (h) ⊂ conv(V Y (η′)). By uniqueness of the decomposition of AxisT (h)
into pINPs, the pINPs in h belong to EY (η) and EY (η′) so V Y (η) = V Y (η′) and H ′ ⊂
Stab(V Y (η)) = H, hence the maximality of H.

Corollary 2.4.23. There are finitely many conjugacy classes of maximal pseudo-periodic
subgroups containing loxodromic elements associated to the outer classes Φk ∈ Out(G) for
k ∈ N. Furthermore, these subgroups are finitely generated.

Proof. This is a consequence of Proposition 2.4.22 and Corollary 2.4.18: the maximal
pseudo-periodic subgroups containing loxodromic elements coincide with the stabilizers
of Nielsen classes containing loxodromic elements.

The conclusion follows from the fact that there are finitely many orbits of Nielsen
classes and their stabilizers are finitely generated.

2.5 Algorithm

In this section we assemble the results obtained before to give the desired algorithm.
First let us explain how to deal with restricted deformation spaces.

Let G be a GBS group represented by a graph of groups Γ. As in Chapter 1 we say
that a family of subgroups A which is invariant by conjugacy and taking subgroups is
represented by finite sets of integers (Iv)v∈V (Γ) if for every v ∈ Γ and every lift ṽ in the
universal cover of Γ, the set Iv is the set of minimal elements of {[Gv : Gv ∩ A], A ∈ A}
for divisibility.

Theorem 2.5.1. There is an algorithm which takes

— a non-elementary GBS group G

— an automorphism φ ∈ Aut(G)

— a train track representative f : T → T for φ where T is given as a graph of groups

which finds out whether φ is pseudo-atoroidal.

Proof. This is a consequence of Corollary 2.4.6.

Theorem 2.5.2. There is an algorithm which takes

— a non-elementary GBS group G
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— a pseudo-atoroidal automorphism φ ∈ Aut(G)

— a train track representative f : T → T for φ where T is given as a graph of groups

— a family of sets (Iv)v∈V (T/G) representing the family of subgroups A

which finds out whether φ has no pseudo-periodic element. In that case it decides whether
φ is iwip for DA.

In the previous theorem, φ need not be pseudo-atoroidal as long as it has no simple
pseudo-periodic conjugacy class. Note that we do not know how to check this condition
algorithmically.

Proof. There are two steps in this algorithm.
The first step consists in finding either a primitive train track representative or a proof

of reducibility for φ. Corollary 2.1.12 solves this problem algorithmically using the matrix
A(f) and produces a primitive train track representative if it exists.

The second step consists in computing turns of the stable lamination and its Whitehead
graphs, then using Corollary 2.2.7. Using Lemma 2.1.21 we can compute all Whitehead
graphs. Then compute connected components of WhT (Λ+, v) for every v ∈ V (T/G). Let
W be such a Whitehead graph. If W is not connected we need to compute the stabilizers
of connected components. As in Section 1.3 of Chapter 1, one can compute for every
connected component C the index i(C) := [Gv : Stab(C)]. Then Stab(C) ∈ A if and only
if i(C) is divisible by some i ∈ Iv.

If there exists a Whitehead graph with a connected component whose stabilizer is in
A then by Proposition 2.2.3 φ is reducible. Moreover the proof of the proposition also
gives an invariant class of special factors with respect to A for φ.

Otherwise Corollary 2.2.7 states that φ is fully irreducible.
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Chapitre 3

STRONGLY CONTRACTING AXES FOR

FULLY IRREDUCIBLE AUTOMORPHISMS

OF GENERALIZED BAUMSLAG-SOLITAR

GROUPS

Introduction

Let G be a generalized Baumslag-Solitar (GBS) group, i.e. a group which is isomorphic
to the fundamental group of a graph of groups where all vertex and edge groups are infinite
cyclic. By Bass-Serre theory, G admits a minimal action by isometries on a simplicial tree
T such that all vertex or edge stabilizers in T are infinite cyclic.

In general G admits infinitely many such actions. When G is not isomorphic to Z,Z2 or
the fundamental group of a Klein bottle 〈a, b|a2 = b2〉 = 〈a, t|tat−1 = a−1〉, then the cyclic
deformation space D associated to G is defined as the projectivized set of minimal actions
of G by isometries on metric simplicial trees with edge and vertex stabilizers isomorphic
to Z, where actions T, T ′ are identified if there exists a G-equivariant isometry T → T ′.
The space D is analogous to Culler and Vogtmann’s Outer Space CVN for the free group
FN . The study of Outer Space is crucial for understanding the outer automorphism group
Out(FN). Just as Out(FN) acts on CVN , the outer automorphism group Out(G) acts on
D by pre-composition of the action: if G acts on T , then define T · φ as the action whose
underlying space is T and where for t ∈ T , g ·T ·φ t = φ(g) ·T t.

There is an important analogy between the study of the outer automorphism group of
free groups FN and mapping class groups. In this analogy, Outer Space is the counterpart
for Teichmüller space. Fully irreducible automorphisms of Out(FN) are a special class
of automorphisms which do not preserve the conjugacy class of any free factor. In some
sense they act on Outer Space by translations along an axis whose points are actions
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which admit a train track representative. Their equivalent in the mapping class groups
context is pseudo-Anosov automorphisms. Such automorphisms can also be defined for
GBS groups: we say that an automorphism φ ∈ Out(G) is fully irreducible if no conjugacy
class of proper cyclic factor is φ-periodic. A cyclic factor is the analogue of a free factor
for the free group: it is a non-cyclic subgroup G′ < G such that there exists a graph of
groups Γ representing G, and a subgraph Γ′ ⊂ Γ such that the fundamental group π1(Γ′)
identifies to the subgroup G′. We say that G′ is a proper cyclic factor if G′ 6= G.

One main property for a fully irreducible automorphism φ ∈ Out(FN) is that its action
on CVN is hyperbolic and admits an axis Lφ. In order for this to make sense, we endow
CVN with the non-symmetric Lipschitz metric dLip: it is defined by

dLip(T, T ′) := Lip(T, T ′) vol(T )
vol(T ′)

for T, T ′ ∈ CVN , where Lip(T, T ′) := supf :T→T ′ Lipschitz Lip(f).
One can define a closest point projection πf : D → Lf such that for T ∈ D,

dLip(T, πf (T )) is minimal. Define the outward ball B→(Y, r) := {T ∈ D/dLip(Y, T ) < r}.
In [Alg11] Algom-Kfir proves that the projections on axes have the strong contraction

property: there exists B > 0 depending only on N and φ such that the diameter of the
projection of any outward ball in D disjoint from Lφ is bounded by B.

Likewise we can define these objects for the deformation space D of a GBS group.
A few differences arise, for example because trees in D have non-trivial edge stabilizers:
one consequence is that in general there exist T, T ′ ∈ D such that dLip(T, T ′) = 0 and
dLip(T ′, T ) is arbitrarily large.

In this paper we prove the analogue of this property for fully irreducible automorphisms
of a GBS group:

Theorem A. Let G be a GBS group with b1(G) ≥ 3. Let φ be an atoroidal fully irreducible
automorphism such that φ, φ−1 both admit train track representatives. Let Lφ be an axis
for φ in D and let πφ be a closest point projection to Lφ. Then there exists D > 0 such
that for any Y ∈ D and r > 0 such that B→(Y, r) ∩ Lφ = ∅

diam(πφ(B→(Y, r))) ≤ D

The proof for this result is similar to [Alg11].
We do not know whether train track representatives always exist for fully irreducible
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automorphism. Several cases are known:

— The procedure in [BH92] may be adapted to construct a train track map by hand
on a specific example. See Example 3.1.11.

— If G has no non-trivial integer modulus then [For06] proves that D has finite di-
mension. Then [Mei15] implies that all fully irreducible automorphisms admit train
track representatives.

— If G := BS(p, pn) then Bouette proved in [Bou16] that all automorphisms of G are
reducible and preserve the conjugacy class of a common cyclic factor H. She then
introduces a new deformation space DH consisting in all G-trees with cyclic edge
stabilizers, and vertex stabilizers either cyclic or conjugate to H. In this deforma-
tion space, there exist fully irreducible automorphisms and they admit train track
representatives.

The second case is not relevant here since we need the trees in the deformation space to
be locally finite.

For technical reasons, we ask that the automorphism φ in the theorem be pseudo-
atoroidal, which means that for all g ∈ G, (‖φn(g)‖T )n∈N is unbounded.

We also need the first Betti number b1(Γ) for any graph of cyclic groups Γ with
π1(Γ) ' G to be at least 3. Actually b1(Γ) does not depend on the choice of Γ when G is
not isomorphic to the fundamental group of a Klein bottle, which we exclude.

An important result in [Alg11] is the fact that axes of automorphisms have bounded
projection on each other. This fact is of great interest since it enables the definition of
a projection complex on which the quasi-tree construction of [BBF15] could be applied.
However we do not know yet if this still holds in the GBS context, due to the fact that
the Lipschitz metric is even less symmetric. For example it is not true that the Lipschitz
metric is quasi-symmetric on the θ-thick part of D. Furthermore, there is no bound on
the number of candidates in trees of D.

In Section 3.1 we give some background about GBS groups and their automorphisms.
We develop the topic of laminations in Section 3.2. In Section 3.3 we prove the analogue
of results from [Alg11] which state that the axis of a simple element cannot follow both
the stable and unstable lamination for a long distance; the method of the proof differs
somehow from the original. Section 3.4 develops the behaviour of lines in T such as axes
of elements of g when iterating a train track f : T → T , and Section 3.5 relies on it
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to define a projection of D on the axis of a fully irreducible element with a train track
representative. The contents in this section are really close to [Alg11] and are there for
completeness.

We prove negative curvature properties of the projection in Section 3.6, that is, in-
equalities about distances in D. Although the former does not differ from the free group
case, the latter needs some arguments which are specific to GBS groups. Finally we prove
the strong contraction for balls of outward radius.

3.1 Generalities

3.1.1 Graphs and trees

A graph Γ is defined by (V (Γ), E(Γ), ·̄, o, t) where
— V (Γ) is a set of vertices
— E(Γ) is a set of edges
— the map ·̄ is an involution E(Γ)→ E(Γ) without fixed point; for e ∈ E(Γ) the edge

ē is called the opposite edge

— the maps o, t : E(Γ) → V (Γ) are the initial vertex and terminal vertex maps, with
the property that every e ∈ E(Γ) satisfies o(e) = t(ē).

It is finite if V (Γ), E(Γ) are finite. See [Ser77] for more details on graphs.
An edge path in Γ is a sequence e1, . . . , ek with ei ∈ E(Γ) for i ∈ {1, . . . , k} and

t(ei) = o(ei+1) for i ≤ k − 1. It is non-backtracking if for all i ∈ {1, . . . , k − 1}, ēi 6= ei+1.
It is a loop if o(e1) = t(ek).

A tree is a graph without non-backtracking loops.
Let E+(Γ) be an orientation of the edges, i.e. a subset of E(Γ) such that E+(Γ)tE+(Γ)

is a partition of E(Γ).
A metric on a graph Γ is a map lenΓ : E(Γ) → R+ such that for all e ∈ E(Γ),

lenΓ(ē) = lenΓ(e).
The geometric realization of a graph Γ is the union of points (xv)v∈V (Γ) and segments

(σe)e∈E+(Γ) where σe is isometric to [0, lenΓ(e)] for every e ∈ E(Γ), where for every e ∈
E+(Γ) we identify the first point of σe with xo(e) and its last point with xt(e). It is endowed
with the associated path metric. It does not depend on the choice of E+(Γ).

In the rest of the paper we will identify trees and other graphs with their geometric
realizations. A path in a tree T is the image of a Lipschitz map from an interval to T . It
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is non-backtracking if the map is an immersion, and equivalently if it is a the image of
a geodesic. In the context of geometric realizations an edge path is a path which is the
image of an edge path in the graph. For two points x, y ∈ T , the segment [x, y] is the
unique geodesic from x to y.

A graph of groups is a graph Γ together with collections of vertex groups (Gv)v∈V (Γ) and
edge groups (Ge)e∈E(Γ) and monomorphisms ιe : Ge → Gt(e). Let τ be a maximal subtree
in the graph Γ. The fundamental group π1(Γ, τ) of the graph of groups Γ is defined as
follows:

π1(Γ, τ) =
〈 ⋃
v∈V (Γ)

Gv ∪ (te)e∈E(Γ)|
⋃

v∈V (Γ)
Rv,

⋃
e∈E(Γ)

Re, Rτ

〉

where

— for v ∈ V (Γ), Rv is the set of relations of Gv

— for e ∈ E(Γ), Re = {teφe(h)tēφē(h)−1/h ∈ Ge}

— Rτ := {te, e ∈ τ}

Note that for h = 1 we obtain the relation tē = t−1
e . Up to isomorphism the fundamental

group does not depend on the choice of τ . If the vertex groups and edge groups are finitely
generated then π1(Γ) is finitely presented.

Let G be a group. A marked graph of groups for G is a graph of groups Γ together
with a marking (i.e. an identification) Ψ : G→ π1(Γ). The automorphism group of G acts
as follows on the set of marked graphs of groups: if φ ∈ Aut(G) and (Γ,Ψ) is a marked
graph of groups then (Γ,Ψ) · φ := (Γ,Ψ ◦ φ).

A G-tree T is a metric simplicial tree with an action of G by isometries. The tree T is
minimal if there is no proper G-invariant subtree.

The universal cover of a graph of groups Γ is a minimal π1(Γ)-tree T such that T/G
is isomorphic to Γ as a graph and for every v ∈ V (Γ) and every lift v̄ ∈ T , the stabilizer
of v̄ is isomorphic to Gv. By Bass-Serre theory in [Ser77], universal covers exist and are
unique up to π1(Γ)-equivariant isomorphism.

Moreover Bass-Serre theory gives a correspondance between marked graphs of groups
for G and G-trees.

If Γ is a metric graph then the metric naturally lifts to its universal cover.
In a G-tree T we denote the pointwise stabilizer of a vertex v (resp. an edge e) by Gv

(resp. Ge).
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A generalized Baumslag-Solitar (GBS) group is a group which is isomorphic to the
fundamental group of a finite graph of groups where all vertex and edge groups are infinite
cyclic. If a generator is chosen for every vertex and edge group then the monomorphisms
φe are defined by the multiplication by an integer λ(ē) ∈ Z \ {0}.

Let G be a GBS group. In the general case there exist infinitely many marked graphs
of cyclic groups for G. Making Aut(G) act on a marked graph of groups often yields
infinitely many other markings, besides in general cases there are infinitely many possible
underlying graphs of groups.

Let T be a G-tree. A subgroup H < G is elliptic in T if it fixes a point in T . Suppose
all elliptic groups in T are also elliptic in S. Then there exists a G-equivariant map T → S

(see by example [GL07]).
Let T, T ′ be G-trees. We say that they lie in the same deformation space if they have

the same sets of elliptic subgroups. Equivalently they are in the same deformation space
if there exist G-equivariant maps T → T ′ and T ′ → T .

Now let us define the cyclic deformation space D associated to a group G, as the set
of minimal simplicial G-trees with cyclic vertex and edge stabilizers, where we identify T
and T ′ if there is a G-equivariant isometry or homothety T → T ′.

Equivalently we could define D with marked graphs of groups.
If G is not isomorphic to Z2 or the fundamental group of a Klein bottle 〈a, b|a2 =

b2〉 ' 〈a, t|tat−1 = a−1〉, then D is a deformation space, i.e. all trees in D have the same
elliptic subgroups.

Let T ∈ D and let e be an edge in T . Define the equivalence relation ∼e as the minimal
G-invariant equivalence relation such that x ∼e y if x, y ∈ e. The collapse of the edge e is
the quotient map T → T/ ∼e. The edge e in T is collapsible if T/ ∼e∈ D. Equivalently
an edge is collapsible if its image in the quotient is not a loop and one of its two labels is
±1.

A tree of D is reduced if none of its edges is collapsible.
GBS trees in the same deformation space share some properties. Let Γ be a finite

connected graph. Then the first Betti number b1(Γ) is defined by b1(Γ) = #E(Γ) −
#V (Γ)+1. By [GL07, Section 4] the first Betti number is an invariant of the deformation
space.

Let G be a GBS group with cyclic deformation space D. We say that an elliptic
subgroup H < G is big if there exists a tree T ∈ D such that H fixes no edge in T .

From [GL07] we deduce:
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Lemma 3.1.1. Let T ∈ D. The number of vertices v ∈ T such that for all edge e with
origin v, Ge 6= Gv is bounded by the number of conjugacy classes of big subgroups of G.

If T is reduced then these numbers are equal.

Remark 3.1.2. The notion of big subgroups is defined in [GL07], though it depends on a
family A of subgroups of G: a subgroup H < G is big if it is elliptic and is not conjugate
into a subgroup of an element of A. Here the corresponding choice for A is the family of
subgroups which fix an edge in a reduced tree of D, or equivalently in every reduced tree
of D. Thus an elliptic subgroup is big if fixes a single point in some (equivalently any)
tree in D.

Solvable GBS groups are GBS groups isomorphic to Z and BS(1, n) for n ∈ N (which
include Z2 and the fundamental group of a Klein bottle).

3.1.2 Cyclic factors, irreducible automorphisms

From now on we assume G is a non-solvable GBS group. The automorphism group of
G is Aut(G). The outer automorphism group is Out(G) := Aut(G)/ Inn(G) where Inn(G)
is the subgroup of inner automorphisms {cg : x 7→ gxg−1, g ∈ G}.

Cyclic factors are the GBS analogue of free factors for free groups.

Definition 3.1.3. A cyclic factor of G is a subgroup H such that there exists a graph
of cyclic groups Γ and an identification G ' π1(Γ), with a subgraph ΓH such that H is
conjugate to π1(ΓH).

The family of cyclic factors of G is stable by conjugacy and by automorphisms.

Examples 3.1.4. 1. If G := BS(2, 4) = 〈a, t|ta2t−1 = a4〉, the first graph of groups of
Figure 3.1 represents G. The red subgraph represents the subgroup H := 〈a, t−1a2t〉
which is a cyclic factor.

2. The second and third graphs of Figure 3.1 represents G := 〈u, r, s, t|tunt−1 =
suns−1 = runr−1 = u〉. The subgroup 〈u, r〉 ' BS(1, n) is a cyclic factor, it can be
seen in the graph on the left. The subgroup 〈u, rur−1, rsus−1r−1, rst〉 ' BS(1, n3)
is a cyclic factor which can be seen in the graph on the right.

Definition 3.1.5. An automorphism φ ∈ Aut(G) is fully irreducible if no power of φ pre-
serves the conjugacy class of a cyclic factor. Since inner automorphisms preserve conjugacy
classes, the full irreducibility can be defined for outer automorphisms.
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Figure 3.1 – Examples of cyclic factors

A representative for φ is a map f : T → T with T ∈ D which is φ-equivariant, i.e.
∀t ∈ T , ∀g ∈ G, f(gt) = φ(g) · f(t).

A representative for an outer automorphism class ψ ∈ Out(G) is a representative for
some automorphism in the class ψ.

Definition 3.1.6. Let φ ∈ Out(G). A pseudo-periodic conjugacy class for φ is the conju-
gacy class of an element g ∈ G such that ‖φn(g)‖n∈N is bounded.

An automorphism φ ∈ Out(G) is pseudo-atoroidal if φ has no pseudo-periodic conju-
gacy class.

Train track representatives for automorphisms of Out(FN) were introduced in [BH92].
They are a main tool for studying these automorphisms. One can define likewise train
tracks for other families of groups acting on trees.

Definition 3.1.7. Let T be a G-tree. A gate structure on T is a G-invariant family of
equivalence relations (∼v)v∈V (T ) on the sets Ev of edges with origin v. Equivalence classes
for these relations are called gates.

Let τ : T → T ′ be a G-equivariant map sending edges to non-degenerate non-
backtracking paths. The gate structure induced by τ is the minimal gate structure such
that for v ∈ V (T ), e, e′ ∈ Ev, if τ(e) ∩ τ(e′) has non-zero length then e ∼v e′.
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Definition 3.1.8. Let T be a G-tree with a gate structure. A turn in T is a pair of edges
with same origin. The turn {e, e′} is illegal if e and e′ belong to the same gate. Otherwise
the turn is legal.

Definition 3.1.9. Let φ ∈ Out(G). Let f : T → T be a representative for φ sending
vertex to vertex.. Then f is train track if for every e ∈ E(T ):
— len(f(e)) > 0
— at every vertex v ∈ V (T ) there are at least two gates for the gate structure induced

by f .
— for every k ∈ N, fk(e) crosses only legal turns for the gate structure induced by f .

The train track structure is the gate structure such that e ∼ e′ if there exists k ∈ N such
that fk(e) ∩ fk(e′) is not a single point.

Suppose f : T → T is a train track representative for a fully irreducible automorphism
φ ∈ Out(G). Up to precomposing f with a map T → T whose restriction to edges is a
homeomorphism, we may assume that f stretches the edges uniformly. Let e1, . . . , en be
the edges of T/G. Let A(f) be the transition matrix for f where A(f)ij is the number of
occurences of edges in the orbit ei in f(ej), for 1 ≤ i, j ≤ n. Irreducibility of φ implies
that up to collapsing edges in T the matrix A(f) is primitive, i.e. there exists k ∈ N such
that A(f)k > 0 (see Chapter 2, Lemma 2.1.9).

The theorem of Perron-Frobenius below then applies to A(f):

Theorem 3.1.10 (Perron-Frobenius). Let A be a non-negative primitive matrix with size
n × n. There exists a real eigenvalue λ > 0 (the Perron-Frobenius eigenvalue) such that
for every other eigenvalue µ 6= λ we have |µ| < λ. The eigenvectors for λ are unique up
to scalar multiplication and there exists an eigenvector v for λ such that v > 0.

A proof of the theorem can be found in [Sen81, Theorem 1.1].
Let λ be the Perron-Frobenius eigenvalue and (l1, . . . , ln) be the left Perron-Frobenius

eigenvector. Define a metric on T by len(en) := ln. Then for every e ∈ E(T ) we have
len(f(e)) = λ len(e), and the Lipschitz constant Lip(f) is λ.

From now on we assume train track maps are linear on edges and have the same
Lipschitz constant on all edges.

Recall that it is not known whether all fully irreducible automorphisms admit train
track maps. However some do exist: Example 3.1.11 is an example of fully irreducible
automorphism with a train track representative.
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Figure 3.2 – The quotient T/G in Example 3.1.11

Examples 3.1.11. Let G := 〈r, s, t|runr−1 = suns−1 = atunt−1 = u〉. Define φ ∈ Aut(G)
by

φ :



u 7→ u

r 7→ s

s 7→ t

t 7→ rsts−1t−1

Define the tree T (whose quotient T/G is represented on Figure 3.2) by a fundamental
domain with vertices v, x and edges

ea = [v, rv]

eb = [v, tx]

ee = [v, x]

ef = [v, s−1x]

Define f on T by
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f :v 7→ v, x 7→ tx

ea 7→ ee − s · ēf
eb 7→ ea − r · ee − rs · ēf − rs · eb − rst · ēe − rst · ef
ee 7→ eb

ef 7→ ee

The map f is a train track representative for φ. To see this we can compute the successive
images of the turns taken by f . Consider the turn {ēa, ree} at vertex rv which is taken
by f(eb):

r{r−1ēa, ee} φ(r){ef , eb} φ2(r){ee, ea} φ3(r){eb, ee} φ4(r){ea, eb}
f f f f

f

When applying f to φ4(r){ea, eb} we find a turn in the orbit of φ2(r){ee, ea} which we
had already found. Thus {ēa, ree} is a legal turn. The proof for the other turns goes the
same way.

The inverse of φ is

φ−1 :



u 7→ u

r 7→ tsrs−1r−1

s 7→ r

t 7→ s

which is the same automorphism as φ, but with swapped roles for r and t. Thus it admits
a train track map.

Let f : T → S be a G-equivariant map between trees of D, sending vertex to vertex
and edge to edge path. By [For02] it is a quasi-isometry, i.e. a map such that for all
x, y ∈ T , K−1dT (x, y)−C ≤ dT ′(h(x), h(y)) ≤ KdT (x, y)+C. Thus the map has bounded
backtracking property (see [Gab+98]) and there exists a constant BBT(f) ≤ K2C+C such
that for every x, y ∈ T the image f([x, y]) lies in a BBT(f)-neighbourhood of [f(x), f(y)].

In [BFH97] and [Alg11], a similar constant BCC(f) is used. Let us clarify the link
between these constants. Suppose α · β is a geodesic concatenation of paths with α f -
legal. When applying f to α · β, there is a subsegment τ ⊂ α such that f(τ) ⊂ f(β). Let
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τ ′ ⊂ β be a minimal prefix such that f(τ) ⊂ f(τ ′). The first point of τ and last point of
τ ′ are mapped to the same point. Then because f is a quasi-isometry there is a constant
K depending only on f such that the length of τ · τ ′ is bounded by K. This gives a bound
BCC(f) (from bounded cancellation constant, introduced by Cooper in [Coo87]) on f(τ):
the simplification which occurs at an illegal turn is bounded by BCC(f). By applying
the previous paragraph to τ · τ ′ we have BCC(f) ≤ BBT(f). In order to keep a reduced
number of constants, we will use the BBT constant instead of BCC where it could be
used.

For a path η in a tree T , we denote by [η] the unique non-backtracking path which has
the same endpoints as η. We can extend this notation to infinite paths which converge to a
point in the boundary of T : for example, this is well-defined for a bi-infinite quasi-geodesic
such as the image of a line by a quasi-isometry.

Definition 3.1.12. Let φ ∈ Out(G) be a fully irreducible automorphism with a train
track representative f : T → T . The critical constant is Cf := 2 BBT(f)

λ−1 .

The critical constant has the following property: for any geodesic concatenation α ·
β · γ ⊂ T such that β is legal and len(β) ≥ Cf then let α′ ⊂ α, β′ ⊂ β, γ′ ⊂ γ such that
the path [f(α · β · γ)] can be written as the concatenation [f(α′)] · [f(β′)] · [f(γ′)]. Then
len(f(β′)) ≥ Cf . More specifically we have:

Lemma 3.1.13. Let φ ∈ Out(G) be fully irreducible. Let f : T → T be a train track
representative. Let α be any path in T . Let β ⊂ α be a legal subpath with length at least
2Cf . Define β′ as the legal subpath of β obtained by cutting out the Cf

2 -neighbourhood of
the endpoints. Then β′ satisfies the following condition: for all n ∈ N

fn(α \ β′) ∩ fn(β′) = ∅ and fn(β′) ⊂ [fn(α)]

In particular len([fn(α)]) ≥ λn len(β′).

Proof. Let α, β be as above.
We actually prove a slightly stronger statement by induction on n. Define β′n as the

segment obtained by cutting out a BBT(f)
n∑
k=1

λ−k-neighbourhood from the endpoints of

β. Observe that β′ = ⋂
n∈N β

′
n since BBT(f)

∞∑
k=1

λ−k = BBT(f)
λ− 1 = Cf

2 .

We will prove that for all n ∈ N we have

fn(α \ β′n) ∩ fn(β′n) = ∅ and fn(β′n) ⊂ [fn(α)]
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and since β′ ⊂ β′n is a subsegment of the legal segment β′n, the same holds for β′.
The condition is true for n = 0 since β′0 = β.
Suppose the lemma holds for some n ∈ N. Since β′n is legal we have len(fn(β′n)) =

λn len(β′n). Besides fn(β′n) ⊂ [fn(α)]. Apply f to the path fn(α). There may be cancel-
lation at the endpoints of the legal segment fn(β′n) but this cancellation does not exceed
BBT(f) when measured in fn+1(β′n), since β′n is legal.

This neighbourhood in fn+1(β′n) corresponds to a λ−n−1 BBT(f)-neighbourhood of
the endpoints of β′n: as a result fn+1(β′n+1) does not intersect f(fn(α) \ fn(β′n)) since it
is contained in β′n. It does not intersect f(fn(β′n) \ fn(β′n+1)) either. Finally note that
f(fn(α) \ fn(β′n)) ∩ fn+1(β′n) = fn+1(α \ β′n) ∩ fn+1(β′n).

Since fn+1(β′n+1) does not meet fn+1(α \ β′n+1), is is contained in [fn+1(α)].

A consequence of Lemma 3.1.13 is:

Lemma 3.1.14. Let φ ∈ Out(G) be fully irreducible. Let f : T → T be a train track
representative. For any path α in T , for any legal subpath β ⊂ α such that len(β) > 2Cf ,
we have for every n ∈ N:

len(fn(β) ∩ [fn(α)]) ≥ 1
2λ

n len(β)

Proof. Suppose α contains a legal subsegment β of length greater than 2Cf . Let β′ be
the subsegment of β at distance Cf

2 from the endpoints of β. By Lemma 3.1.13, for every
n ∈ N, fn(β′) ⊂ [fn(α)] so we have:

len(fn(β′)) = λn len(β′)

= λn
(

len(β)− 2 BBT(f)
λ− 1

)

≥ λn len(β)
(

1− 1
2

)

Therefore len(fn(β) ∩ [fn(α)]) ≥ 1
2λ

n len(β).

Definition 3.1.15. Let f : T → T be a train track representative for φ ∈ Out(G). A
non-backtracking segment η ⊂ T is a periodic Nielsen path if there exists g ∈ G and n ≥ 1
such that g[fn(η)] = η. We call it simply a Nielsen path if we can choose n = 1.

A periodic Nielsen path is indivisible if it cannot be written as the non-backtracking
concatenation α · β of two periodic Nielsen paths.
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A result about periodic indivisible Nielsen paths (or pINPs) from Chapter 2 is:

Proposition 3.1.16. Let f : T → T be a train track representative for an automorphism
φ ∈ Out(G). There are only finitely many orbits of periodic indivisible Nielsen paths.

Periodic Nielsen paths give a characterization of pseudo-periodic conjugacy classes for
φ ∈ Out(G), proved in Chapter 2, Section 2.3:

Lemma 3.1.17. Let f : T → T be a train track representative for φ ∈ Out(G). The
conjugacy class of an element g ∈ G is pseudo-periodic for φ if and only if the axis of g
in T is a geodesic concatenation of periodic indivisible Nielsen paths.

Lemma 3.1.18. Suppose that φ is fully irreducible, pseudo-atoroidal and has a train
track representative f : T → T . Then there exists m ∈ N such that it is impossible to
concatenate more than m periodic Nielsen paths for f together in T , and more than m

periodic Nielsen paths for f− in T−.

Proof. There are finitely many orbits of periodic INPs; let l be the number of orbits of
periodic INPs. By contradiction, suppose L is a path in T which contains a concatenation
of more than 2l pINPs. Then there exists η, gη ⊂ L with g ∈ G loxodromic such that there
is a fundamental domain for g which is a concatenation of pINPs. By Lemma 3.1.17, this
implies that g is a loxodromic pseudo-periodic element for φ, which is impossible since φ
is pseudo-atoroidal, so we can set m := 2l.

3.1.3 The Lipschitz metric on D

The space D can be endowed with a pseudo-metric called the Lipschitz metric. For
T, T ′ ∈ D define

Lip(T, T ′) = inf
f :T→T ′

Lip(f)

where the infimum is taken over all G-equivariant Lipschitz functions f : T → T ′. In
[Mei15] the following is proved:

Proposition 3.1.19. For T, T ′ ∈ D there exists a G-equivariant map f : T → T ′, sending
vertex to vertex and edge to edge path, linear on the edges, such that Lip(f) = Lip(T, T ′).

The Lipschitz metric is defined as follows: for T, T ′ ∈ D

dLip(T, T ′) = log
[
Lip(T, T ′) vol(T/G)

vol(T ′/G)

]
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The distance dLip(T, T ′) is unchanged by rescaling T or T ′: it only depends on their
projective classes. If T, T ′ are normalized so that vol(T ) = vol(T ′) = 1 then dLip(T, T ′) =
log Lip(T, T ′). Sometimes it is more practical to work with 1-Lipschitz maps, for example
when T → T ′ is a collapse or a fold. When Lip(T, T ′) = 1 then dLip(T, T ′) = log vol(T )

vol(T ′) .
The Lipschitz metric is not a metric in the actual sense.

Lemma 3.1.20. The Lipschitz metric has the following properties:

(i) for T, T ′ ∈ D, dLip(T, T ′) ≥ 0

(ii) for T, T ′, T ′′ ∈ D, dLip(T, T ′′) ≤ dLip(T, T ′) + dLip(T ′, T ′′)

Proof. (i) Let T, T ′ ∈ D scaled such that Lip(T, T ′) = 1. Then f induces a 1-Lipschitz
map on the quotients. By minimality f is surjective so vol(T ′/G) ≤ vol(T/G). Thus

log Lip(T, T ′) vol(T/G)
vol(T ′/G) ≥ 1

(ii) Let T, T ′, T ′′ ∈ D. Let f : T → T ′, f ′ : T ′ → T ′′ be Lipschitz maps. Then
Lip(T, T ′′) ≤ Lip(f ′ ◦f) ≤ Lip(f) Lip(f ′). By taking the lower bound we get Lip(T, T ′′) ≤
Lip(T, T ′) Lip(T ′, T ′′). By taking the logarithm we obtain what we want.

Remark 3.1.21. The other properties of metrics fail for D:

— like in CVN the Lipschitz metric is not symmetric. A common counter example is
drawn on Figure 3.3: if T, T ′ are the same tree with a different metric on edges such
that T ′/G has a very short loop, dLip(T ′, T ) is very big.

— unlike in CVN there exist T, T ′ in D such that dLip(T, T ′) = 0 and dLip(T ′, T ) 6= 0.
More precisely, dLip(T ′, T ) can be chosen arbitrarily big. See Figure 3.3.

— If φ ∈ Out(G) and T ∈ D then dLip(T, T · φ) = 0 implies that T = T · φ. This is
a consequence of the fact that the actions are minimal so maps are surjective. A
1-Lipschitz G-equivariant surjective map from T to itself is an isometry, unless G is
solvable.

The Lipschitz metric and its computation have been explored before in [Bes11] for free
groups, [FM15] for free products, and [Mei15] for more general deformation spaces. The
facts presented below can be found in these papers.

Let T, T ′ ∈ D. Let f : T → T ′ be a piecewise linear G-equivariant map. The tension
graph ∆(f) is the subforest of T spanned by edges e ∈ E(T ) such that the stretch factor
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on e is Lip(f). The map f is optimal if it realizes the infimum of Lip(T, T ′) and if at every
vertex v ∈ ∆(f), there are at least two gates at v for the gate structure induced by f
which contain edges in ∆(f). In [Mei15] Meinert proves that optimal maps exist.

The distance between two points in D can be effectively computed by comparing
translation lengths of some elements of G in both trees. Suppose f : T → T ′ is a G-
equivariant map between trees of D. For every g ∈ G we have, by applying f to a
fundamental domain,

‖g‖T ′
‖g‖T

≤ Lip(f)

thus by taking the lower bound we have Lip(T, T ′) ≥ maxg∈G ‖g‖T ′‖g‖T
. It is actually an

equality, as this result from [Mei15] states:

Lemma 3.1.22. Let T, T ′ ∈ D. Let f : T → T ′ be an optimal map. There exists g ∈ G
such that AxisT (g) is f -legal and contained in the tension graph for f . In particular

Lip(T, T ′) = ‖g‖
′
T

‖g‖T
= max

h∈G

‖h‖′T
‖h‖T

Let T ∈ D. A candidate of T is an element g ∈ G such that the map π : AxisT (g)/〈g〉 →
T/G has one of the following forms (see Figure 3.4):

— a loop: the map π is an embedding

— a figure eight: there are two embedded circles u, v in T which intersect in exactly
one point. The map π maps the circle AxisT (g)/〈g〉 to the tight loop which crosses
u and v successfully.

— a barbell: there are two disjoint embedded circles u, v in T/G, and a segment s
which connects u to v; π maps the circle to the tight loop which crosses u, s, then
v, and then s backwards.

— an embedded singly degenerate barbell : it is the degenerate case of the barbell
where v is a single vertex. In that case, the vertex group at v must be greater than
the edge group of the last edge of s.

— an embedded doubly degenerate barbell : degenerate case of the barbell where both
circles are single vertices. The vertex group at u must also be greater than the edge
group of the first edge of g.

In particular a candidate crosses each orbit of edge at most twice. In [FM15, Theorem
9.10] the following theorem is proved for the case of free products:
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Figure 3.4 – The five possible shapes for a candidate in the quotient graph

Theorem 3.1.23. Let T ∈ D. For every T ′ ∈ D, there exists a candidate g of T such
that

Lip(T, T ′) = ‖g‖
′
T

‖g‖T

For the proof we refer to [FM15]. Note that the context differs a little since the
deformation space and the group are different. The relevant point is that contrary to
elements of CVN , trees in the outer space for a free product may have non-free vertex
stabilizers, which account for the degenerate barbells. In the case of GBS products we
also have vertices whose stabilizer is greater than the stabilizers of incident edges, hence
the presence of degenerate barbell candidates.

3.1.4 The axis of an irreducible automorphism

Proposition 3.1.24. For an automorphism φ ∈ Out(G) with a primitive train track map
f : T → T , then

Lip(f) = Lip(T, T · φ) = min
S∈D

Lip(S, S · φ)

Proof. Since f is a train track map, at each vertex of T there are at least two gates.
Consequently there exists h ∈ G such that AxisT (g) is legal. Let n ∈ N. Since h is
fn-legal for all n ∈ N we have ‖φ

n(h)‖T
‖h‖T

= Lip(fn) = Lip(f)n.
Then we have Lip(T, T · φn) = supg∈G

‖φn(g)‖T
‖g‖T

= ‖φn(h)‖T
‖h‖T

= Lip(f)n. Let λ := Lip(f).
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Let S ∈ D. Let f ′ : S → S ·φ be such that Lip(S, S ·φ) = Lip(f ′) =: λ′. By triangular
inequality, for n ∈ N we have Lip(S, S · φn) ≤ λ′n.

By triangular inequality we have

λn = Lip(T, T · φn) ≤ Lip(T, S) Lip(S, S · φn) Lip(S, T ) ≤ λ′n Lip(T, S) Lip(S, T )

If λ′ < λ this inequality becomes false when n is big enough, hence the minimality of
λ = Lip(T, T · φ).

A map γ : R→ D is a geodesic for the Lipschitz distance if for any t, s ∈ R, t < s⇒
dLip(γ(t), γ(s)) = s − t. Since the metric is not symmetric, the distance dLip(γ(s), γ(t))
needs not be |s− t|: in fact it can even be zero.

Proposition 3.1.25. Let f : T → T be a train track representative for φ. There exists a
geodesic Lf : R→ D such that for every n ∈ Z, T · φn ∈ Lf , and such that the map Lf is
continuous for the axes topology.

For a construction see [Mei15, Section 4.4]. The axes topology on D is the coarsest
topology such that the functions T 7→ ‖g‖T for g ∈ G are continuous; for more information
on the topologies of D see [GL07].

If f : T → T is a train track representative we choose an arbitrary axis Lf crossing
T and denote by Tt the unique point of the axis such that dLip(T, Tt) = t if t ≥ 0 and
dLip(Tt, T ) = −t if t ≤ 0.

Similarly there is an axis Lf− for φ−1 defined from f− : T− → T−. Since dLip is Out(G)-
invariant the axes stay within a bidirectional bounded neighbourhood of each other.

We already stated that between any two trees in D, there exists a G-equivariant
quasi-isometry. The quasi-isometry constants can be chosen uniformly if the trees lie in a
subsegment of Lf :

Lemma 3.1.26. For any T, S ∈ D and D ≥ 1 such that max{Lip(T, S),Lip(S, T )} ≤ D,
any optimal map T → S is an equivariant (D, 4D)-quasi-isometry.

Proof. Let T, S ∈ D. Scale T, S such that vol(T/G) = vol(S/G) = 1. There exists X ⊂ T

such that G · X = T and diam(X) ≤ 1. For every oriented edges −→e ,
−→
e′ ∈ E(T ), there

exists an edge path with length at most 2 with first edge −→e and last edge h
−→
e′ for some

h ∈ G. This fails if G is solvable, but we assumed that it is not the case.
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Let us prove this fact. First we will prove that for any edge e there exists a path
−→e . . .

←−
he for some h ∈ G.

Since G is not solvable, then the action of G on T is irreducible. Since T is not a line,
there exist translates h1e, h2e such that for any line containing both edges, the orientations
of the edges along the line differ.

There exists h ∈ G such that AxisT (h) crosses both h1e and h2e. Either h1e and h2e

point towards each other, or they may point away from each other, but in that case there
exists k ∈ Z such that hkh1e and h2e point towards each other. Then we get a path
−→
h1e . . .

←−
h2e.

Now let e, e′ be edges in the tree. There is a path which connects both edges, but
the path may fail to contain a translate of −→e . . .

−→
he′ for some h ∈ G. By concatenating

paths which reverse the orientation on one or both sides we obtain a path satisfying the
condition.

As for the bound on the length of the path, observe that if an edge appears in the
path twice with same orientation, then subpath can be deleted to obtain a shorter path.

Let τ : T → S be an optimal map. Let x, y ∈ T . Let e be the first edge of [x, y]. Let e′

be an edge with origin y and not in [x, y]: such an edge exists since T is minimal. By the
fact above, there exists g ∈ G and a path containing

−→
e′ , g
−→
e′ with these orientations and

length at most 2. Thus dT (gx, y) ≤ 2 and [x, y] ⊂ AxisT (g). We have dT (x, y) + 2 ≤ ‖g‖T .
Then by Lemma 3.1.27 we have Lip(S, T ) ≤ D,Lip(T, S) ≤ D so

dS(τ(x), τ(y)) ≤ DdT (x, y)

and

dS(τ(x), τ(y)) ≥ dS(τ(x), τ(gx))− dS(τ(gx), τ(y))

≥ ‖g‖S − 2 Lip(τ)

≥ ‖g‖T
D
− 2 Lip(τ)

≥ dT (x, y)
D

− 2
D
− 2D

Then the optimal map τ : T → Tt′ is a (D, 4D)-quasi-isometry.

We have the following result about the axes Lf and Lf− :

148



3.2. The stable and unstable laminations

Lemma 3.1.27. Let φ ∈ Out(G) be a fully irreducible automorphism. Let f : T → T be
a train track representative for φ and f− : T− → T− be a train track representative for
φ−1. Let Lf ,Lf− be axes in D for φ and φ−1.

Let a < b, c, d be real numbers. There exists a constant Da,b,c,d > 1 such that for every
X, Y ∈ {Tt/a ≤ t ≤ b} ∪ {(T−)t/c ≤ t ≤ d}, Lip(X, Y ) ≤ Dc,d.

Proof. Let n,m ∈ N be such that

n log(λ) ≤ a,m log(λ) ≥ b, n log(λ−) ≤ c,m log(λ−) ≥ d

There is a quadrilateron which crosses T · φn, T · φm, T− · φm, T− · φn, which contains
{Tt/a ≤ t ≤ b} and {(T−)t/c ≤ t ≤ d}. Its length is

d := dLip(T · φn, T · φm) + dLip(T, T−) + dLip(T− · φm, T− · φn) + dLip(T−, T )

Therefore, for every X, Y as above we have L(X, Y ) ≤ D := ed.

Remark 3.1.28. Lemmas 3.1.26 and 3.1.27 imply that for every S ∈ D, there exist (K,C)
such that for every t ∈ [0, log(λ)], there exist equivariant (K,C)-quasi-isometries Tt → S

and S → Tt.

3.2 The stable and unstable laminations

Let T, T ′ ∈ D. There exists aG-invariant quasi-isometry T → T ′. In fact all equivariant
quasi-isometries T → T ′ are close:

Lemma 3.2.1. Let T, T ′ be metric G-trees such that T is co-compact. Let u, v be contin-
uous G-equivariant maps T → T ′. There exists a constant C depending on u and v such
that for every x ∈ T

dT ′(u(x), v(x)) ≤ C

Proof. LetK ⊂ T be a compact subset such thatG·K = T . Let C := maxx∈K dT ′(u(x), v(x)).
For every y ∈ T there exists g ∈ G and x ∈ K such that y = gx so by G-equivariance

dT ′(u(y), v(y)) = dT ′(gu(x), gv(x)) = dT ′(u(x), v(x)) ≤ C.
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Recall that a G-invariant quasi-isometry f induces a G-equivariant homeomorphism
∂T → ∂T ′. Because of Lemma 3.2.1 the homeomorphism does not depend on f so there
is a canonical G-invariant identification of the boundaries of all trees of D.

A lamination Λ is a G-invariant, symmetric, closed subset of ∂T × ∂T \∆ where ∆ is
the diagonal, for some T ∈ D. The discussion above implies that for any S ∈ D, Λ can be
canonically identified with a subset of ∂S × ∂S \∆ so we may drop the reference to T .

When we fix a tree T , Λ identifies with a G-invariant set of unoriented bi-infinite
geodesics of T which we call the realization of Λ in T and which we denote by ΛT . Its
elements are called leaves. A leaf segment is a subsegment of a leaf of ΛT . The assumption
that Λ is a closed subset of ∂T × ∂T \∆ translates into the following fact: if (σn)n∈N is
an increasing sequence of leaf segments in T whose union is a bi-infinite geodesic ` ⊂ T ,
then ` is a leaf of ΛT .

If T ′ ∈ D is another tree, there exists a G-invariant quasi-isometry h : T → T ′. For
any leaf λ ∈ ΛT , the line of T ′ obtained by tightening h(λ) is a leaf of ΛT ′ , and conversely
all leaves of ΛT ′ are tightened images of leaves of ΛT .

Let φ ∈ Out(G) be a fully irreducible automorphism. Let f : T → T be an primitive
train track representative for φ with Lipschitz constant λ > 1. Define the stable lamination
Λ+
f by its realization in the train track tree T , as the set of bi-infinite geodesics whose

subsegments belong to

{σ ⊂ T/∃e ∈ E(T ),∃n ∈ N, σ ⊂ fn(e)}

We call Λ+
f−

the unstable lamination.

Remark 3.2.2. Since λ > 1, if e is an edge of T such that e ⊂ ˚f(e), then the limit of fn(e)
when n→∞ is a leaf of the lamination. Since f is primitive, one can check that the set
of leaves which can be obtained by this process by replacing f with gf for g ∈ G is a
G-invariant subset of the stable lamination and its closure is the stable lamination.

Lemma 3.2.3. For every l > 0 there exists nΛ > 0 such that if α ⊂ T contains a legal
subsegment with length at least 2Cf , then [fn(α)] contains a leaf segment of Λ+

f with length
at least l for all n ≥ nΛ.

Proof. Let β be a legal subsegment of α with length at least 2Cf . By Lemma 3.1.13 the
subpath θ ⊂ β obtained by truncating the Cf/2-neighbourhood of the endpoints has the
following property: for any n ∈ N, fn(θ) ⊂ [fn(α)].
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We have len(θ) ≥ Cf . There exists n1 ∈ N depending on T and λ such that λn1Cf ≥
2 maxe∈E(T ) len(e) so fn1(θ) contains an edge.

There exists n2 ∈ N depending on l such that λn2 mine∈E(T ) len(e) ≥ l. For n ≥ n2, for
any e ∈ E(T ), fn(e) contains a leaf segment of Λ+

f with length l.
Then for any n ≥ n1 + n2, [fn(α)] contains a leaf segment of Λ+

f with length l.

Definition 3.2.4. A lamination Λ is minimal in T if all leaves of ΛT have the same leaf
segments up to the action of G, i.e. for every leaf segment σ ⊂ T of ΛT , for every leaf `
in T , there exists g ∈ G such that gσ ⊂ `.

Definition 3.2.5. Let Λ be a lamination. Let T ∈ D. A leaf ` ∈ ΛT is quasi-periodic if
for every C > 0 there exists L > 0 such that for every subsegment σ ⊂ ` with len(σ) = C,
for every subsegment γ ⊂ ` with len(γ) > L, there exists g ∈ G such that gσ ⊂ γ.

Remark 3.2.6. If T → S is a quasi-isometry and ΛT is minimal, then Λ is minimal in S.
Similarly, if a leaf in T is quasi-periodic, then the realization of this leaf in another tree
S ∈ D is also quasi-periodic. A proof is given in Chapter 2, Remark 2.1.17.

The following is proved in [BFH97], although for a slightly different definition of the
stable lamination.

Lemma 3.2.7. Let f : T → T be an irreducible train track representative for an automor-
phism φ ∈ Out(G) with Lipschitz constant λ. Then the stable lamination Λ+

f is minimal
and its leaves in T are quasi-periodic.

Proof. First let us prove the minimality. There exists N ∈ N such that for all e, e′ ∈
E(T/G), fN(e) contains an edge in the orbit of e′.

Let ` ⊂ T be a leaf of Λ+
f . Let k ∈ N. Let us prove that there exists a constant

Lk such that every segment of ` longer than Lk contains a translate of fk(e0) for every
e0 ∈ E(T/G).

Let σ be a subsegment of ` with length at least Lk := 2λk maxe∈E(T/G) len(fN(e)).
By definition of the stable lamination, there exists e ∈ E(T ) such that σ ⊂ fN+n(e)
with n ≥ k. The segment σ is contained in the concatenation of segments fk(fN(e′)) for
edges e′ ⊂ fn−k(e). Each of these segments contains a translate of fk(e0) and is shorter
than len(σ)/2 so one of them is contained in σ, hence in `. This proves that ` contains a
translate of every leaf segment of Λ+

f contained in fk(e0) for any e0 ∈ E(T ).
This also proves the quasi-periodicity: for all C > 0 there exists k ∈ N such that every

segment I longer than C is contained in fk(e) for some edge e, and every leaf segment of
the leaf ` longer than Lk contains a copy of fk(e) and thus a copy of I.
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Lemma 3.2.8. Let Λ,Λ′ be two distinct minimal closed G-invariant laminations with
quasi-periodic leaves. Then for any G-tree T , there exists a bound CT on the length of leaf
segments which are common to both laminations.

Proof. Let T ∈ D. By contraposition we prove that if the bound CT does not exist then Λ
and Λ′ have the same sets of leaf segments in T . Since they are closed this implies Λ = Λ′.

Suppose that there exist leaf segments (ηn)n∈N with ηn ⊂ ΛT ∩ Λ′T for all n ∈ N, and
len(ηn)→∞. Then for any leaf segment σ ⊂ ΛT , there exists n ∈ N and g ∈ G such that
gσ ⊂ ηn ⊂ Λ′T so σ is also a leaf segment of Λ′T . By symmetry ΛT and Λ′T have the same
leaf segments, so the laminations Λ and Λ′ are equal.

We need the following:

Lemma 3.2.9. Let h : T → T ′ be a (K,C)-quasi-isometry where K ≥ 1, C ≥ 0.
For every l > 0 there exists L > 0 depending on l,K,C such that if η is a bi-infinite

geodesic, if σ is a subsegment of η with length at least L, then [h(σ)] contains a subsegment
of [h(η)] with length at least `.

Proof. Let l > 0. Let η be a bi-infinite geodesic. Let σ be a subsegment of η. Then the
length of [h(σ)] is at least K−1 len(σ)− C.

The image h(η) lies in a BBT(h)-neighbourhood of [h(η)], where BBT(h) ≤ K2C+C.
The endpoints of [h(σ)] are in this neighbourhood so the length of [h(σ)] ∩ [h(η)] is at
least K−1 len(σ)−C−2 BBT(h). Thus by taking L ≥ K(l+C+2 BBT(h)), if len(σ) ≥ L,
then [h(σ)] contains an l-segment of [h(η)].

For a lamination Λ, T ∈ D and C > 0, a C-piece of ΛT is a leaf segment of ΛT with
length C.

Lemma 3.2.10. Let f : T → T and f ′ : T ′ → T ′ be two train track representatives for a
fully irreducible automorphism φ ∈ Out(G). Then the stable laminations Λ+

f and Λ+
f ′ are

equal.

Proof. We will prove that every leaf segment of (Λ+
f )T ′ is also a leaf segment of (Λ+

f ′)T ′ :
by symmetry we will get the result.

Let C > 0. By quasi-periodicity of the leaves of Λ+
f , there exists L > 0 such that every

leaf segment of (Λ+
f )T ′ longer than L contains every orbit of leaf segment of (Λ+

f )T ′ with
length at most C.

Let h : T → T ′ be a G-equivariant quasi-isometry.
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By Lemma 3.2.9 there exists L0 > 0 such that for every bi-infinite geodesic η ⊂ T , for
every segment σ ⊂ η with length at least L0, the segment [h(σ)] ∩ [h(η)] has length at
least 2L+ 2 BBT(h). Without loss of generality, we may assume L0 ≥ Cf .

There exists g ∈ G be such that AxisT ′(g) is legal for f ′. The conjugacy class of g is
not pseudo-periodic since ‖φn(g)‖T ′ →∞ when n→∞.

The axis of g in T does not have to be legal, however the number of orbits of f -illegal
turns under the action of 〈φn(g)〉 cannot increase when n → ∞: f sends f -legal subseg-
ments to f -legal subsegments and AxisT (φn(g)) = [fn(AxisT (g))]. Since {‖φn(g)‖T , n ∈
N} is unbounded, this implies that there exists n0 ∈ N such that AxisT (φn0(g)) contains
an f -legal subsegment with length L0. Since AxisT ′(φn0(g)) is also f ′-legal, up to replacing
g ∈ φn0(g) we can assume n0 = 0.

As in Lemma 3.2.3 there exists N > 0 such that for every e ∈ E(T ′), f ′N(e) is a
leaf segment of (Λ+

f ′)T ′ with length at least 2L. The axis of φN(g) in T still contains a
legal subsegment with length at least L0 since L0 ≥ Cf . Once again, up to replacing g
by φN(g), we may assume that the axis of g in T ′ can be cut into pieces of (Λ+

f ′)T ′ with
length at least 2L.

The map h maps AxisT (g) to a BBT(h)-neighbourhood of AxisT ′(g). By Lemma 3.2.9
and by definition of L0, h(AxisT (g)) ⊂ T ′ contains a leaf segment of [h(Λ+

f )T )] = (Λ+
f )T ′

with length at least 2L+2 BBT(h) and a subsegment with length at least 2L is contained
in AxisT ′(g).

Then there exists a segment γ′ ⊂ T ′ of length greater than L that is both a leaf
segment (Λ+

f )T ′ and (Λ+
f ′)T . Thus every leaf segment of (Λf )T ′ of length C is a leaf segment

of (Λf ′)T ′ .

From now on, we can simply refer to the stable lamination as Λ+
φ or simply Λ+ when

the automorphism is obvious. The notation Λ−φ denotes the unstable lamination Λ+
φ−1 .

Lemma 3.2.11. For a fully irreducible automorphism φ ∈ Out(G), the stable lamination
and unstable lamination are distinct.

Proof. Assume by contradiction that Λ−φ = Λ+
φ . See Figure 3.5.

Let f : T → T be a train track representative for φ and f− : T− → T− be a train track
representative for φ−1. Let τ : T → T− be a G-equivariant quasi-isometry.

There exists g ∈ G loxodromic whose axis in T is f -legal. By Lemma 3.2.9 there exists
L > 0 such that for every leaf segment σ of (Λ+)T longer than L, [τ(σ)] contains a leaf
segment of (Λ+)T− longer than 2Cf− .
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φ

φ−1

•
T

•
T · φn

•
T− · φn

•
T− · φn

τ τ

fn

fn−

g φn(g)g

φn(g)g

Figure 3.5 – When applying fn and then fn−, the translation length of g increases if n is
big enough

Let n0 ∈ N be such that for any edge e ∈ T , len(fn(e)) ≥ 2Cf . Let n ≥ n0. Then
every e ∈ AxisT (φn(g)) contributes a leaf segment of (Λ+)T− = (Λ−)T− longer than 2Cf
in AxisT−(φn(g)). By Lemma 3.1.13, the images βe := [τ(fn(e))] for different edges e
contain subsegments β′e obtained from βe by cutting out the Cf−

2 -neighbourhood of the
endpoints. The subsegments β′e satisfy the following: for any edge e, for any m ∈ N,
fm− (β′e) ⊂ AxisT−(φn−m(g)) and for any other edge e′, fm− (β′e) ∩ fm− (β′e′) = ∅.

This implies that [fn−(AxisT−(φn(g)))] = AxisT−(g) contains two disjoint leaf segments
fn−(β′e), gfn−(β′e) = fn−(β′φn(g)e) longer than λnCf .

Then we must have ‖g‖T− ≥ λnCf , which is a contradiction for n sufficiently big.

3.3 Laminations and simple elements of G

3.3.1 Simple elements, simple pairs and Whitehead graphs

Definition 3.3.1. A loxodromic element g ∈ G is simple if it is contained in a proper
cyclic factor of G.

A pair of elements g, h ∈ G is simple if there exists cyclic factors Hg, Hh such that
g ∈ Hg, h ∈ Hh and a graph Γ of cyclic groups with π1(Γ) ' G, with disjoint subgraphs
Γg,Γh such that π1(Γg) ' Hg, π1(Γh) ' Hh.

In that case Hg, Hh belong to a proper system of cyclic factors, i.e. collection of con-
jugacy class of cyclic factors which can be simultaneously seen in some graph of groups
as the fundamental groups of disjoint subgraphs.

Lemma 3.3.2. Suppose b1(G) ≥ 3. For any tree T ∈ D, the candidates in T are simple.
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Proof. If b1(G) ≥ 3 then every candidate g for T avoids at least an orbit of edges G · e.
Then T \G · e is a proper subforest of G which contains the axis of g. It defines a cyclic
factor containing g, so g is simple.

Lemma 3.3.3. Suppose b1(G) ≥ 3. Suppose g, h ∈ G are candidates in T ∈ D. There
exists a candidate k ∈ G such that {k, g} and {k, h} are both simple.

Proof. Since b1(Γ) ≥ 3 and g, h are candidates, neither of their axes crosses every orbit
of edges in T .

Let eg, eh be edges in Γ such that π(AxisT (g)) avoids eg and π(AxisT (h)) avoids eh,
where π : T → Γ is the quotient map. Since b1(g) ≥ 3 the graph Γ′ := Γ \ {eg, eh}, which
may be disconnected, has a connected component with first Betti number b1(Γ′) ≥ 1.
There exists an element k ∈ G whose axis in T is in a lift of Γ′. Then AxisT (k) crosses
neither eg nor eh so:

— the axes of g, k are in Γ \ eg, so {k, g} is simple

— the axes of h, k are in Γ \ eh, so {k, h} is simple

Thus k is the element of G that we were looking for.

Definition 3.3.4. Let ` be a bi-infinite geodesic in T ∈ D. A turn in ` is a pair {e, e′} ⊂
E(T ) of distinct edges such that o(e) = o(e′) and e ∪ e′ ⊂ `.

Definition 3.3.5. Let G be a collection of bi-infinite geodesics of some T ∈ D. Let
v ∈ V (T ). The Whitehead graph W := WhT (G, v) is the following graph:

— vertices of W are edges of T with origin v

— there is an edge e− e′ in W if there exists ` ∈ G and g ∈ G such that g · ` contains
both e and e′, i.e. if {e, e′} is a turn crossed by `

Remark 3.3.6. For G, T, v as in the definition, we have WhT (G, v) = WhT (G · G, v).

Examples 3.3.7. The two main examples, which we will both use in this paper, are the
following.

1. G = {AxisT (hgh−1), h ∈ G} is the collection of axes of all conjugates of some g ∈ G.
In that case we write WhT (G, v) = WhT (g, v).

2. let f : T → T be a train track representative for a fully irreducible automorphism
and let S ∈ D, let G = (Λ+)S. Since all leaves in Λ+ have the same subsegments in
S, for any leaf ` ∈ (Λ+)S, for any v ∈ V (S), WhS(Λ+, v) = WhS(`, v).
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The interest of Whitehead graphs is that they help understanding cyclic factors. In
Chapter 1 we prove the following theorem (Theorem 1.2.14):

Theorem 3.3.8. — Let g ∈ G be a loxodromic element. Then g is simple if and only
if for every T ∈ D there exists v ∈ T such that WhT (g, v) is disconnected or has a
cut vertex, i.e. a vertex p ∈WhT (g, v) such that WhT (g, v) \ {p} is disconnected.

— Let g, h ∈ G be loxodromic elements. Then {g, h} is simple if and only if for every
T ∈ D there exists v ∈ T such that WhT ({g, h}, v) is disconnected or has a cut
vertex.

The stable lamination of an automorphism φ ∈ Out(G) is carried by a cyclic factor H
if and only if there exists T ∈ D such that for every leaf ` ∈ (Λ+)T there exists a translate
of the minimal subtree TH which contains `.

Minimality of these laminations imply that the stable lamination is carried by H if
and only if there exists a leaf ` ∈ (Λ+)T such that ` is contained in TH . For all S ∈ T ,
there exists a quasi-isometry T → S and it implies that the realization of ` in S is in the
subtree SH , so the fact that Λ+ is carried by H can be seen in every S ∈ D. These facts
are proved in Chapter 2.

Lemma 2.2.5 of Chapter 2 implies:

Proposition 3.3.9. Suppose φ ∈ Out(G) is a fully irreducible automorphism with irre-
ducible train track representative f : T → T . Then no leaf of the stable lamination (Λ+

φ )T
is carried by a cyclic factor.

3.3.2 Long segments of laminations in axes of elements of G

In this section, we assume that φ ∈ Aut(G) is a fully irreducible automorphism such
that both φ and φ−1 have train track representatives.

The following lemma is a transposition of Lemma 1.2.17 from Chapter 1. The original
lemma gives a link between the Whitehead graph of the axis of a loxodromic element
g ∈ G in a tree S and the existence of a tree Ŝ where Ŝ → S is either a fold or a collapse
which induces an isometry AxisŜ(g) → AxisS(g). The proof of the lemma does not use
the specific fact that AxisS(g) is an axis of an element and could actually work with any
bi-infinite geodesic. In particular, it can be transposed to laminations:

Lemma 3.3.10. Let S ∈ D such that no edge in S/G is a loop. Let `+ be a leaf of the
stable lamination Λ+ and `− be a leaf of the unstable lamination Λ−. The following are
equivalent:
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— There exists a vertex v ∈ V (S) such that WhS({`+, `−}, v) is disconnected or has a
cut vertex

— There exists a tree Ŝ ∈ D and a non-injective map π := Ŝ → S such that if ˆ̀+, ˆ̀−

are the leaves in Ŝ corresponding to `+, `− then π induces isometries ˆ̀+ → `+ and
ˆ̀− → `−.

Remarks 3.3.11. 1. The assumption that S has no loop is not especially restrictive: in
fact, up to subdividing all loops before applying the lemma, we may assume that S
has no loop. The tree Ŝ produced by the lemma does not have any loop either.

2. A non-injective G map Ŝ → S sending vertex to vertex and edge to edge is a
composition of collapses and folds (see [BF91]). In particular we can assume that
the map π given by the lemma is either a collapse or a fold.

Proposition 3.3.12. There exists S ∈ D such that for every v ∈ V (S), the Whitehead
graph WhS(Λ+ ∪ Λ−, v) is connected without cut vertex.

Proof. Let T be the initial train track representative for φ. We will change T gradually
using Lemma 3.3.10.

By Proposition 3.3.9 from Chapter 2, the Whitehead graph WhT (Λ+, v) is connected
for every v ∈ S. The graph WhT (Λ+ ∪Λ−, v) has even more edges so it is also connected.

If an edge of T is a loop then subdivide it so that Lemma 3.3.10 applies. Endow T

with the combinatorial metric, i.e. give each edge the length 1. This does not change the
Whitehead graphs.

Suppose there exists a Whitehead graph in T which has a cut point. By applying
Lemma 3.3.10 and Remark 3.3.11, we can construct a sequence

. . . Tn → Tn−1 → · · · → T0 = T

where each map Ti → Ti−1 is either a collapse or a fold whose restriction to the leaves of
both laminations are isometric. The construction of the sequence stops when we find n

such that every Whitehead in Tn has no cut vertex.
The maps Ti → Ti−1 are in fact not collapses, since a collapsed edge in Ti would not

be crossed by any leaf of the lamination, contradicting Proposition 3.3.9. They are folds.

We want to prove that the sequence above cannot be infinite. By contradiction, assume
it is infinite. In Chapter 1, Lemma 1.1.25 we proved that the number of orbits of edges
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of the trees of the sequence built by iterating Lemma 3.3.10 has to go to infinity in that
case.

The first Betti number b1(Tn) is constant. Recall that for a connected graph Γ with V
vertices and A edges we have b1(Γ) = A− V + 1.

Recall that a big vertex stabilizer is a vertex stabilizer which does not fix any edge in
some (equivalently any) reduced tree. By Lemma 3.1.1 there is a bound on the number of
vertices of valence 1 in Tn/G. In fact, the associated vertex groups are big since trees in
D are minimal. Since there exist finitely many conjugacy classes of big vertex stabilizers,
this gives a bound on the number of vertices of valence 1 in Tn/G.

Let An, Vn be the number of edges and vertices in Tn/G. For every v ∈ Tn denote by
val(v) the valence of v. Then we have

2Vn + 2b1(Γ)− 2 = 2An =
∑

v∈Tn/G
val(v)

Therefore
2b1(Γ)− 2 =

∑
v∈Tn/G

(val(v)− 2)

The only negative terms in the sum correspond to valence 1 vertices so there is a lower
bound on their sum. This implies that there is a bound on the number of vertices with
valence ≥ 3.

As a result, since the number of edges in Tn when n goes to infinity is unbounded, the
number of vertices of valence 2 in Tn/G is unbounded.

Let v ∈ Tn/G be a vertex of valence 2. Let l1, l2 be the labels at v. If |l1| > 1 and
|l2| > 1 then the stabilizers of vertices in the orbit of v are big. Thus the number of
vertices of valence 2 with both labels distinct from ±1 is bounded by m(G). For every
other vertex of valence 2, one of the labels is 1 or −1.

A topological edge in Tn/G is a connected component of

Γ \ {v ∈ V (Γ)/ val(v) 6= 2 or no label at v is ± 1}

There is a bound B, independent of n, on the number of topological edges in Tn/G. Since
vol(Tn/G) is unbounded there is no bound on the length of topological edges.

A subsegment σ := e0, . . . , ek of a topological edge is increasing if for any i ∈
{1, . . . , k}, Go(ei) = Gei . It is decreasing if for any i ∈ {0, . . . , k − 1}, Gt(ei) = Gei . A
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subsegment with a single edge is both increasing and decreasing. This can be understood
efficiently with labels: σ is increasing (resp. decreasing) if λ(ei) = ±1 (resp. λ(ēi) = ±1)
for all i ∈ {1, . . . , k}.

We will now prove that any topological edge of Tn/G can be cut into at most 2m(G)+1
subsegments which are either increasing or decreasing. See Figure 3.6 for an example.

Let σ := e0, . . . , ek be a topological edge. Cut it into subsegments by the following
process. Let σ1 := e0, . . . , ei1 be the maximal decreasing prefix of σ: it has at least one
edge. Let σ2 be the maximal increasing prefix of σ \ σ1. The label λ(ēi1) must be nonzero
unless σ1 = σ, so since σ is a topological edge, λ(ei1+1) = ±1 so σ2 also has at least one
edge. Continue this procedure to construct an alternating sequence of disjoint decreasing
and increasing subsegments.

Write σ as the concatenation σ1, . . . , σN of subsegments. We claim that whenever
an increasing subsegment is followed by a decreasing subsegment, the last edge of the
former has a big stabilizer, and no edge in the latter does. Thus the number of increasing
subsegments in σ is bounded by m(G) + 1.

Suppose σj is an increasing subsegment followed by a decreasing subsegment σj+1.
Let ei be the last edge of σj. Then by maximality of σj, λ(ei+1) 6= ±1. Besides, σ1 is a
decreasing subsegment so there is a decreasing subsegment before σj. Let ei′ be its last
edge. We have i′ < i and λ(ēi′) 6= ±1. For all p ∈ {i′+1, i}, λ(ep) = ±1 so σj is collapsible
and collapses to a vertex v with labels λ(ei+1) on the right, ∏i′≤p≤i λ(ep) on the left. Both
labels are not ±1 so the vertex group associated to v is big. It is also the edge group
associated to ei.

For a topological edge of length k, at least one the maximal topological edges is longer
than k

2m(G)+2 . Thus there is no bound on the maximal length of half topological edges
when n increases.

Suppose σ is an increasing subsegment of a topological edge with length k in Tn/G.
Let us prove that there exists a leaf of Λ+ and a leaf of Λ− which overlap along a segment
with length k. Let πn : Tn → Tn/G be the quotient map.

Write σ as the concatenation e0, . . . , ek with λ(ei) = ±1 for all i ∈ {1, . . . , k} (see
Figure 3.7). Let w = t(ek), v = o(e0).

The subsegment σ lifts in T to a subforest Yσ. Let σ̃ be a connected component of
Yσ\π−1

n (v). It is a finite rooted tree with root w̃ which is a lift of w. For every i ∈ {1, . . . , k},
any lift of ẽi is an edge of T which points towards w̃. The terminal vertices of σ̃, other
than possibly w̃, are the lifts of v.
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Figure 3.6 – General form of a topological edge and monotonous subsegments
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Figure 3.7 – Pre-image of an increasing subsegment

The vertex group Gw̃ acts transitively on the set of lifts of v.
Let ` be a leaf of Λ+. There is a translate of ` which crosses a lift of ek. Thus it contains

[ṽ, w̃] where ṽ is a lift of v. By transitivity of the action of Gw̃, for every ṽ′ ∈ π−1
n (v), the

segment [ṽ′, w̃] is contained in a leaf of Λ+.
Similarly, if `− is a leaf of Λ−, there exists a translate of `− crossing ẽk and by translat-

ing further by an element of Gw̃ we can make sure that it crosses [ṽ′, w̃] for any arbitrary
ṽ′ ∈ π−1

n (v). Then the translates of ` and `− overlap on a length at least k.
The same proof can be transposed to the case of a decreasing subsegment.

Since there is no bound on the length of monotonous subsegments, for every L > 0
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there exists n ∈ N such that Tn contains an increasing or decreasing subsegment σ longer
than L. Let σ̃ be a lift for σ in Tn. There exist leaves `+, `− of the stable and unstable
laminations which both cross σ̃. Therefore the leaves `+ and `− overlap on a length bigger
than L.

The maps Tn → T for n ∈ N are isometric in restriction to the leaves of the laminations.
Thus there is no bound on the length of common subsegments of both laminations in T , so
by Lemma 3.2.8 the laminations are equal. This is a contradiction to Lemma 3.2.11.

Proposition 3.3.13. Let φ ∈ Out(G) be a train track automorphism. Let f : T → T be
a train track representative for φ. Let Lf be an axis for φ in D passing through T .

There exists L > 0 such that for any Tt ∈ Lf :

(i) If g is a simple loxodromic element in G, then AxisTt(g) cannot simultaneously
contain an L-piece of Λ+ and an L-piece of Λ−.

(ii) If g, h are simple loxodromic elements such that AxisTt(g) contains an L-piece of Λ+

and AxisTt(h) contains an L-piece of Λ−, then the pair {g, h} is not simple.

Proof. Let S be a tree obtained with Proposition 3.3.12, i.e. such that for every v ∈ V (S)
the Whitehead graph WhS(Λ+ ∪ Λ−, v) is connected without cut vertex. Note that for
any n ∈ Z, S · φn has the same property since Λ+,Λ− are φ-invariant.

By quasi-periodicity of leaves, there exists a constant L1 > 0 such that any leaf segment
of Λ+ in S (resp. Λ−) longer than L1 contains all turns in Λ+ (resp. Λ−). Suppose AxisS(g)
contains an L1-piece of Λ+ and an L1-piece of Λ−, then WhS(g, v) is connected without
cut vertex for all v ∈ V (S). By theorem 3.3.8 g is not simple. This proves assertion (i) in
the specific case where the tree is S: now we would like to prove it for Tt in the axis of φ.

By Remark 3.1.28 there exist constantsK > 1, C > 0 such that for every t ∈ [0, log(λ)]
there exists a G-equivariant (K,C)-quasi-isometry ht : Tt → S. There is an upper bound
B ≥ 0, depending only on (K,C), on BBT(ht).

Let L0 be the constant of Lemma 3.2.9 for the quasi-isometry constants K,C and
` = L1 + 2B. If a fundamental domain γ of g in Tt contains a leaf segment σ with
len(σ) ≥ L0 then [ht(γ)] contains a leaf segment with length at least L1 + 2B, and a
fundamental domain of g in S contains an L1-piece of the lamination. This works for both
laminations.

Let L > max{L0, 2KL1}. Suppose AxisTt(g) contains leaf segments σ+, σ− of the stable
and unstable laminations, both longer than L. Up to replacing g with gl for some l ∈ N we
can suppose a fundamental domain for g contains both σ+ and σ−. Lemma 3.2.9 ensures
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that AxisS(g) contains L1-pieces of both laminations, therefore implying that gl hence g
is not simple.

Finally suppose t /∈ [0, log(λ)]. There exists n ∈ Z such that Tt′ := Tt · φn with
t′ = t + n log(λ) ∈ [0, log(λ)]. Then ht′ : Tt′ → S induces a G-equivariant (K,C)-quasi-
isometry Tt → S · φ−n. With the same arguments as above we come to the same result,
with the same constant L. This proves (i).

The proof of (ii) is analogous. We just proved that there exists L > 0, such that
for Tt ∈ Lf there exists n such that for any g ∈ G, if AxisTt(g) contains an L-piece of
any lamination then AxisS·φn(g) contains an L0-piece of the same lamination. Applying
this to g with the stable lamination and h with the unstable lamination, we get that
WhS·φn({g, h}, v) is connected without cut vertex for any v ∈ V (S) and therefore {g, h}
is not simple.

3.4 Legality

Let G be a GBS group with first Betti number b1(G) ≥ 3.
In this section we fix a pseudo-atoroidal fully irreducible automorphism φ ∈ Out(G)

with a train track representative f : T → T and a train track representative f− : T− → T−

for φ−1. The goal is to study the evolution of ‖φn(g)‖T , ‖φn(g)‖T− when n → ±∞ for
g ∈ G.

The following three lemmas prove an analogue of Lemmas 2.9 and 2.10 in [BFH97].
The point of view differs a little since we state the results in the trees and not in the
quotient graphs. A notable difference which is caused by non-trivial edge stabilizers is the
fact that a concatenation of pINPs is not always a Nielsen path, since it might only be
pre-periodic. The statements also differ a little for technical reasons.

Lemma 3.4.1. Let φ ∈ Aut(G) be an automorphism with a train track representative
f : T → T . For every C > 0 there exists M ∈ N such that for any edge path σ ⊂ T , one
of the following holds:

(a) [fM(σ)] is legal

(b) [fM(σ)] contains a legal segment of length ≥ C between two illegal turns

(c) [fM(σ)] has fewer illegal turns than σ
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(d) σ is a concatenation η0 ·η1 · · · · ·ηk+1 for some k ≥ 1 where η0, ηk+1 are legal subpaths,
and for 1 ≤ i ≤ k the path fM(ηi) is a periodic indivisible Nielsen path, and turns
at the concatenation points are legal.

Proof. Without loss of generality we may assume C > Cf . Then if σ := [y, y′] contains a
legal path with length C then for any n ∈ N, [fn(σ)] also does, by definition of the critical
constant.

Let M ∈ N be a big enough integer, to be determined later. Suppose there exists a
path σ ⊂ T such that both (a), (b) and (c) fail. Since [fM(σ)] cannot have more illegal
turns than σ, it has exactly the same number of illegal turns k ≥ 1. There exist maximal
legal subsegments γ0, . . . , γk such that σ is the concatenation γ0 · · · · · γk. Since (a) fails
we have len(γi) ≤ C for every i ∈ {1, . . . , k − 1}.

The map f maps legal segments to legal segments and since the number of illegal turns
is constant, for every n ≤ M , there is a unique decomposition [fn(σ)] = γn0 · γn1 · · · · γnk
into maximal legal subsegments. We have len(γni ) ≤ Cf for all i ∈ {1, . . . , k − 1}.

There are finitely many orbits of edge paths of T with length at most 2Cf . Let N be
the number of orbits of such subpaths.

Let i ∈ {2, . . . , k − 1}. There exists pi ≤ N and gi ∈ G such that γNi−1 · γNi =
gi
(
γN+pi
i−1 · γN+pi

i

)
.

There also exists p1 ≤ N and g1 ∈ G such that the restrictions of γN0 · γN1 and
g1
(
γN+p1

0 · γN+p1
1

)
to a 2Cf -neighbourhood of the illegal turn are equal. Similarly define

pk ∈ N, gk ∈ G such that restrictions of γNk−1 · γNk and gk
(
γN+pk
k−1 · γN+pk

k

)
coincide.

By taking the smallest common multiple of all pi for i ∈ {1, . . . , k} we may replace pi
by some P ∈ N which does not depend on i.

Thus for every i ∈ {2, . . . , k − 1}, we have γNi−1 · γNi ⊂ gi[fP (γNi−1 · γNi )]. The same
holds for restrictions to a 2Cf -neighbourhood of the illegal turn for i ∈ {1, k}. Note that
this implies that there exists no n ∈ N such that γn0 or γnk vanish.

For any i ∈ {1, . . . , k} the path γNi contains a unique point xi such that xi = gif
P (xi),

and γN0 contains a unique point x0 such that x0 = g1f
P (x0). The point x0 might be equal

to y, xk might be equal to y′. Note that giγN+P
i = gi+1γ

N+P
i = γNi so for i ∈ {0, . . . , k−1}

actually gi+1f
P (xi) = gif

P (xi) = xi. Then for any i ∈ {1, . . . , k} the path [xi−1, xi] is a
periodic indivisible Nielsen path.

For any i ∈ {0, . . . , k} there exists a unique point yi ∈ σ such that fN(yi) = xi. The
points y0, . . . , yk subdivide σ into k+2 subsegments. Define ηi = [yi, yi+1] for i /∈ {0, k+1},
η0 = [y, y0] and ηk+1 = [yk, y′]: we just proved that ηi is a pre-Nielsen path for 1 ≤ i ≤ k.

163



Chapitre 3 – Strongly contracting axes for fully irreducible automorphisms of Generalized
Baumslag-Solitar groups

The other subpaths η0 and ηk+1 are legal, and the other subpaths are pre-Nielsen paths,
so σ satisfies (d).

The integers N and P only depend on T . If M ≥ N + P we proved that for any path
σ such that (a), (b) and (c) fail, (d) holds.

The following result, which is a key for Lemma 3.4.3, implies that when neither Case
(a), Case (b) nor Case (d) of Lemma 3.4.1 occur, the decrease of the number of illegal
turns is a definite proportion of the length of the segment.

Lemma 3.4.2. Let φ ∈ Aut(G) with a train track representative f : T → T . Let C > Cf .
Let M0 ≥ 1 be the corresponding integer given by Lemma 3.4.1. There exists p ∈ N with
the following property. Let M := pM0. There exists K < 1 and K ′ ≥ 0 such that for
any loxodromic g ∈ G, for any σ ⊂ AxisT (g), there exists segments α, β, σ′ such that
[fM(σ)] = α · σ′ · β with
— len(α) ≤ K ′/2, len(β) ≤ K ′/2
— σ′ ⊂ AxisT (φM(g)) or len(σ′) = 0
— either σ′ contains a legal subsegment with length greater than C, or

len(σ′) ≤ K len(σ) +K ′

Moreover, if σ contains a legal subsegment longer than C, then so does σ′.

Proof. Let C > Cf . Let g ∈ G and σ ⊂ AxisT (g). Let M0 be the constant of Lemma 3.4.1
for C.

Let m ∈ N be the maximal number of pINPs which may be concatenated in T or T−,
from Lemma 3.1.18.

If len([fM0(σ)]) ≤ K ′0 := 2 BBT(fM0) + 2mC, then define α := [fM0(σ)], and σ′ and β
as single points such that [fM0(σ)] = α · σ′ · β. These subsegments satisfy the statement
for any choice of p, with len(σ′) = 0.

Suppose len([fM0(σ)]) > K ′0. Define σ0 := [fM0(σ)] ∩ AxisT (g), which is not empty,
and let α0, β0 be the remaining subsegments. Note that if σ contains a legal subsegment θ
with length greater than C > Cf , then [f iM0(σ)∩AxisT (φiM0(g))∩ f iM0(θ) is longer than
C for all i ≥ 1, hence the last statement.

Let nbl(θ) denote the number of maximal legal subsegments in a segment θ. We will
now prove that if σ0 contains no legal subsegment longer than C, then its number of
maximal legal subsegments nbl(σ) decreases.
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Write σ := θ0 · θ1 · · · · · θn where each subsegment θi except θ0 has m+ 2 maximal legal
subsegments. Let i ∈ {1, . . . , n}. Apply Lemma 3.4.1 to θi. Case (d) cannot happen since
θi has m+1 illegal turns. If Case (a) happens then Case (c) also happens: nbl([fM0(θi)]) <
nbl(θi) = m + 1. Suppose Case (b) happens: either [fM0(θi)] ∩ AxisT (φM0(g)) contains a
legal subsegment with length C, or an illegal turn of θi is sent outside AxisT (φM0(g)), in
which case nbl([fM0(θi)] ∩ AxisT (φM0(g))) < nbl(θi).

Thus if σ0 does not contain any legal subsegment longer than C, then

nbl(σ0) ≤ nbl(θ0) + nbl([fM0(θ1)] ∩ AxisT (φM0(g))) + · · ·+ nbl([fM0(θn)] ∩ AxisT (φM0(g)))

≤ nbl(θ0) + (nbl(θ1)− 1) + · · ·+ (nbl(θn)− 1)

≤ nbl(σ)− n

where n =
⌊

nbl(σ)
m+1

⌋
.

Therefore, with k := (1− 1
m+1), we obtain

nbl(σ0) ≤ k nbl(σ)

This can be iterated as long as [f iM0(σ)] ∩ AxisT (φiM0(g)) contains no legal subsegment
of length C by applying the same argument to σ1 instead of σ, creating a decreasing
subsequence σ1, σ2, . . . of σ and increasing sequences α1, α2, . . . and β1, β2, . . . . Then for
p ≥ 1, [fpM0(σ)] can be cut into subsegments αp · σp · βp with

— len(αp), len(βp) ≤ K ′0
∑p−1
i=0 λ

i =: K ′p
— σp ⊂ AxisT (φpM0(g))

— nbl(σp) ≤ kp nbl(σ)

Now convert this result into lengths: we obtain

len(σp) ≤
Ckp

lmin
len(σ)

where lmin := mine∈E(t) len(e).
Choose p such that Ckp

lmin
< 1. Let K := Ckp

lmin
and K ′ := K ′p.

Finally we get
len(σ) ≤ K len(σ) +K ′

thus we obtain the lemma with α := αp, β := βp, σ′ := σp.
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Lemma 3.4.3. Recall that φ is pseudo-atoroidal. Let h : T → T− be a Lipschitz G-
equivariant map, sending vertex to vertex, and edge to edge path.

For every C > 0 there exists N ∈ N and L > 0 such that for any g ∈ G, for any
geodesic σ ⊂ AxisT (g) with length greater than L and possibly infinite, if σ′ := [h(σ)],
then one of the followings holds:
(A) [fN(σ)] ∩ AxisT (φN(g)) contains a legal segment of length > C

(B) [fN− (σ′)] ∩ AxisT−(φ−N(g)) contains a legal segment of length > C.

Proof. Let M be the constant from Lemma 3.4.2. Assume

C ≥ max
{
Cf , Cf−

}
We will suppose by contradiction that the lemma fails for N := Mi with i sufficiently

big. We will take a segment σ in T for which both (A) and (B) fail, and show that this
assumption leads to a contradiction in the following sense. For j ∈ {0, . . . , i} the segment
[fMj(σ)] can be cut into three segments: one in the axis of φMj and two “error” parts
outside of the axis. Using the fact that (A) fails, we see that the part in the axis must
not contain any long legal subsegment, thus its length can be estimated by counting the
number of maximal legal subsegments in it. Lemma 3.4.2 controls the decrease of the
number of maximal legal subsegments in σ up to error parts.

However the error parts may grow, for two reasons: they are stretched by fM and the
inner part produces small errors too, which add to the previous error. The aim of the
proof is to take σ long enough to keep the growth of these error parts small in comparison
with the decrease of the inner part, so that the overall effect of fMi on σ is a decrease.

Then we apply the reverse: we look at the evolution of fMj
− ◦h◦fMi(σ) for j ∈ {0, . . . , i}.

Now the argument for the absence of long legal subsegments in the inner part is the fact
that (B) fails, and the conclusion is similar: the overall length of the segment decreases.
As a result [fMi

− ◦ h ◦ fMi(σ)] is a lot shorter than σ in proportion.
The contradiction comes from Lemma 3.2.1: the maps h and fMi

− ◦ h ◦ fMi are equal
up to a bounded error, so when σ is long enough, it cannot decrease much in proportion
when applying fMi

− ◦ h ◦ fMi.
We now write a formal argument along these lines.

Let i ∈ N; set N := Mi. Let σ be a segment in AxisT (g).
By Lemma 3.2.1, there exists a constant Bi such that for any x ∈ T , dT−(h(x), fMi

− ◦h◦
fMi(x)) ≤ Bi. There exists a constant L1,i depending on Bi and h such that if len(σ) > L1,i

166



3.4. Legality

then len([h(σ)]) > 4Bi so

len([fMj
− ◦ h ◦ fMi(σ)])

len(σ) >
1
2 (3.1)

Moreover there exists Di ≥ 0 depending on f, f−, h, i such that for any σ ⊂ AxisT (g),
for any segment θ ⊂ σ at distance greater than Di from the endpoints of σ, [fMi

− ◦ h ◦
fMi(θ)]∩AxisT (g) ⊂ [h(σ)]∩AxisT (g). Let σ̃ be the subsegment of σ obtained by cutting
out a Di-neighbourhood of the endpoints.

Suppose that both (A) and (B) fail for σ and for N = Mi.

Since (A) fails for σ, no segment [fMj(σ)]∩AxisT (φMj(g)) for j ∈ {0, . . . , i} can contain
a legal subsegment longer than C. By Lemma 3.4.2 there exist constants K < 1, K ′ ≥ 0
and a decomposition [fM(σ)] = α1 · σ1 · β1 such that

len(σ1) ≤ K len(σ) +K ′

Define by induction αj · σj · βj = [fM(σj−1)] using Lemma 3.4.2. For all j ∈ {1, . . . , i} we
have

len(σj) ≤ K len(σj−1) +K ′

and len(αj), len(βj) ≤ K ′/2 so

len([fM(σj−1)]) ≤ K len(σj−1) +K ′ + 2λMK
′

2

where λ := Lip(f). Thus we have

len([fMi(σ)]) ≤ Ki len(σ) +K ′(1 + λM)
i−1∑
j=0

Kj ≤ Ki len(σ) + K ′(1 + λM)
1−K

Remember that σ̃ be the subpath obtained from σ by cutting out theDi-neighbourhood
of the endpoints. Let σ′j := [fMj

− ◦ h ◦ fMi(σ̃)] ∩ AxisT−(φM(i−j)(g)) for j ∈ {0, . . . , i}: it
cannot contain legal subsegments longer than C. Indeed [fMi

− ◦ h ◦ fMi(σ̃)] ∩ AxisT (g) ⊂
[h(σ)] ∩ AxisT (g) and by assumption that (B) fails, the latter does not contain any legal
subsegments longer than C.

Applying the same argument as above using Lemma 3.4.2 with f−, C, we obtain again
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K−, K
′
− such that

len([fMi
− ◦ h ◦ fMi(σ̃)]) ≤ Ki

− len([h ◦ fMi(σ̃)]) + K ′−(1 + λM− )
1−K−

with λ− := Lip(f−). By combining both inequalities, using the fact that h is Lipschitz:

len([fMi
− ◦ h ◦ fMi(σ̃)]) ≤ Lip(h)Ki

− len([fMi(σ̃)]) + K ′−(1 + λM− )
1−K−

≤ Lip(h)Ki
− len([fMi(σ)]) + 2 Lip(h)Ki

−Di Lip(fM)i + K ′−(1 + λM− )
1−K−

≤ Lip(h)(K−K)i len(σ) + Lip(h)Ki
−

(
K ′(1 + λM)

1−K + 2Di Lip(fM)i
)

+ K ′−
1−K−

so
len([fMi

− ◦ h ◦ fMi(σ)]) ≤ Lip(h)(K−K)i len(σ) + Si

where Si is an additive constant depending on i.
Now assume that i is big enough so that Lip(h)(K−K)i < 1/4. Note that the choice

of i does not depend on σ but only on the maps fM , fM− , h and on C. Then there exists
a constant L2,i ≥ 0 such that if σ is longer than L2,i then

len([fMi
− ◦ h ◦ fMi(σ)])

len(σ) ≤ 1
2 (3.2)

If σ is longer than L := max{L1,i, L2,i} then inequations 3.1 and 3.2 contradict each
other. This achieves the proof.

Corollary 3.4.4. For every C > 0 there exists N ∈ N such that for every g ∈ G one of
the followings holds:
(A) AxisT (φN(g)) contains a legal segment of length > C

(B) AxisT−(φ−N(g)) contains a legal segment of length > C.

Proof. It suffices to apply Lemma 3.4.3 to a long enough subsegment σ ⊂ AxisT (g).

In the rest of the section, our aim will be to prove that if g ∈ G then AxisT ·φn(g)(g) has
increasingly long legal subsegments. This is a key step in the definition of the projection
D → Lf .
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As in [Alg11] we define the legality threshold and the legality of a path in T :

Definition 3.4.5. Let κ := 4 BBT(f)
λ−1 = 2Cf be the legality threshold.

For every finite path α ⊂ T we define the legality ratio of α with respect to the train
track structure as follows. Let α1, . . . , αk be the maximal legal subsegments of α. Then
the legality of α is

Legf (α, T ) :=

∑
len(αi)≥κ

len(αi)

len(α)
which is the proportion of α which belongs to a legal subpath longer than κ.

If g is a loxodromic element of G, then we distinguish two cases:

— g is legal and we define Legf (g, T ) = 1

— there exists a fundamental domain α for g which starts and ends at an illegal turn
of the axis. Then Legf (g, T ) = Legf (α, T ).

Remarks 3.4.6. — If α is a fundamental domain of g which does not start and end at
an illegal turn while AxisT (g) contains one, then Legf (α) ≤ Legf (g).

— If (αn)n∈N is a sequence of nested subsegments of AxisT (g) whose length goes to
infinity then Legf (g, T ) = limn→∞ Legf (α, T ).

— For l ∈ Z \ {0} we have Legf (gl, T ) = Legf (g, T ).

— To define Legf−(g, T−) we use the threshold κ− := 2Cf− .

The following result states that if α contains sufficiently many long legal subsegments,
then the length of fn(α) grows exponentially, as though α were legal.

Lemma 3.4.7. Let ε > 0. There exists a constant C(ε) such that for every finite path α
in T such that Legf (α, T ) ≥ ε, for every n ∈ N we have len([fn(α)]) ≥ C(ε)λn len(α).

Proof. Since Legf (α, T ) ≥ ε, α contains at least one legal subsegment of length greater
than κ. Let β1, . . . , βk be the maximal legal subsegments of α longer than κ. For every
i ∈ {1, . . . , k} let θi be the subsegment of βi obtained by cutting out the Cf

2 -neighbourhood
of the endpoints. By Lemma 3.1.13 the images of θ1, . . . , θk by fn are disjoint for any
n ∈ N and contained in [fn(α)]. Moreover for every i ∈ {1, . . . , k}, len(θi) ≥ 1

2 len(βi).
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Since κ = 2Cf we have

len([fn(α)]) ≥
k∑
i=1

len(fn(θi))

≥ λn
k∑
i=1

len(θi)

≥ 1
2λ

n
k∑
i=1

len(βi)

≥ 1
2λ

nε len(α)

Therefore we obtain the desired result, with C(ε) = ε/2.

Corollary 3.4.8. Let ε > 0. There exists a constant C(ε) such that for every loxodromic
g ∈ G such that Legf (g, T ) ≥ ε, for every n ∈ N we have ‖φn(g)‖T ≥ C(ε)λn‖φn(g)‖.

Proof. Let ε > 0. Let g ∈ G. There exists x ∈ AxisT (g) such that Legf ([x, gx], T ) =
Legf (g, T ) ≥ ε. By Lemma 3.4.7, for any k ∈ N we have dT (fn(x), φn(gk)fn(x)) ≥
C(ε)λndT (x, gkx).

Thus

‖φn(g)‖T = inf
k∈N

dT (fn(x), φn(gk)fn(x)
k

≥ C(ε)λndT (x, gkx)
k

= C(ε)λn‖g‖T

Lemmas 3.4.9 and 3.4.11 aim to prove basic properties which can be deduced from
Lemma 3.4.7. Together they prove that the legality function n 7→ Legf (φn(g), T ) cannot
be greater than ε in a neighbourhood of −∞. They are illustrated by Figure 3.8.

Lemma 3.4.9. For any ε > 0 there exists M ∈ N such that for any g ∈ G such that
Legf (g) ≥ ε, for any m ≥M , ‖φm(g)‖T > ‖g‖T .

Proof. By applying Lemma 3.4.7 to a fundamental domain for g starting at a legal turn,
there exists C(ε) such that for all m ∈ N

‖φm(g)‖T ≥ C(ε)λm‖g‖T
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n

‖φn(g)‖T

+
‖g‖T

‖φn(g)‖T ≥ ‖g‖T

+
m

+
‖φ−m(g)‖T

Figure 3.8 – If Legf (g, T ) ≥ ε0 then ‖φn(g)‖T is above the red graph. If Legf (φ−m(g), T ) ≥
ε0 then ‖g‖T must be above the green graph, so if m is big then ‖φ−m(g)‖T is small.

so with M ≥ − logC
log λ we get the lemma.

Remark 3.4.10. Similarly there existsM− such that if Legf−(g) ≥ ε then for any m ≥M−,
‖φ−m(g)‖T− > ‖g‖T− .

Lemma 3.4.11. For any loxodromic g ∈ G there exists mg ∈ N such that for any m ≥ mg,
Legf (φ−m(g)) < ε.

Proof. Suppose Legf (φ−m(g)) ≥ ε for some m ∈ N and ε > 0. By applying Corollary 3.4.8
to φ−m(g), there exists C(ε) such that ‖g‖T ≥ C(ε)λm‖φ−m(g)‖T . Let le be the length of
the shortest edge in T , then ‖φ−m(g)‖T ≥ le so

m ≤ log(‖g‖T )− logC − log le
log λ .

Corollary 3.4.4 proves that for any g in G, either φN(g) has a f -legal segment of
length C, either φ−N(g) has an f−-legal segment of length C, where the integer N does
not depend on g at all. A crucial point is Lemma 3.4.12, i.e. that such a result also works
with the legality ratio, i.e. up to choosing a greater N , either the legality ratio of φN(g) in
T or the legality ratio of φ−N(g) in T− is greater than a definite ε0. Combined with Lemma
3.4.7 we will then be able to prove that len(g) grows exponentially when n → ±∞, and
has a minimum in a bounded subset of Lf .
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•
θ1 •

> KN •
θ2 •

> KN •
θ3 •

> KN . . .

Figure 3.9 – The axis of g in T is cut into subsegments θi separated by subsegments longer
than KN .

The following lemma needs the fact that φ is pseudo-atoroidal since it relies on Lemma
3.1.18 through Corollary 3.4.4. It is proved for the free group case in [BFH97].

Lemma 3.4.12. There exists ε0 > 0 and N ∈ N such that for every loxodromic element
g ∈ G, one of the followings holds:

— Legf (φN(g), T ) > ε0

— Legf−(φ−N(g), T−) > ε0

Proof. Fix a G-equivariant quasi-isometry h : T → T−. Recall that for a G-equivariant
quasi-isometry between G-trees u : T1 → T2, such as h, f, f− and their products, if a
segment σ is contained in the axis of an element g in T1, then [u(σ)] is contained in the
axis of g in T2 apart from a BBT(u)-neighbourhood of its endpoints.

Let C := max{2Cf , 2Cf−}. Let L,N be the constants given by Lemma 3.4.3.
There exists a constant KN depending on L and the quasi-isometry constants for f, f−

such that for any points x, y ∈ T , fN(x) = fN(y) ⇒ dT (x, y) ≤ KN and fN− ◦ h(x) =
fN− ◦ h(y)⇒ dT (x, y) ≤ KN).

Observe that for any subsegment σ ⊂ AxisT (g) of length at leastKN , there exists x ∈ σ
such that fN(x) ∈ AxisT (φN(g)) and x− ∈ σ such that fN− ◦ h(x−) ∈ AxisT−(φ−N(g)).

The axis of g in T can be cut into subsegments θi, i ∈ Z of length L separated by other
subsegments of length KN (see Figure 3.9).

By the choice of KN , for any i ∈ Z, [fN(θi)] ∩ [fN(θi+1)] = ∅ and [fN− ◦ h(θi)] ∩ [fN− ◦
h(θi+1)] = ∅.

There exists a power gl such that 2L + 3KN < ‖gl‖T . Let k := b‖g
l‖T−KN
L+KN c. There

exists a fundamental domain α for gl in AxisT (g) which contains at least k consecutive
θi, θi+1, . . . , θi+k−1 of the segments defined above, and at distance at least KN from its
endpoints.

Let αN ⊂ T be a fundamental domain for φN(gl) contained in [fN(α)], and let α−N ⊂
T− be a fundamental domain for φ−N(gl) contained in [fN− ◦ h(α)]. Since there is a KN -
margin between θi, θi+k−1 and the endpoints of α, for every j ∈ {i, . . . , i+ k− 1} we have
[fN(θj)] ∩ AxisT (φN(g)) ⊂ αN and [fN− (θj)] ∩ AxisT−(φ−N(g)) ⊂ α−N .
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By Lemma 3.4.3, for each j ∈ Z, either [fN(θj)] ∩ AxisT (φN(g)) contains an f -legal
segment with length C, or [fN− ◦h(θj)]∩AxisT−(φ−N(g)) contains an f−-legal segment with
length C. Suppose the first case happens for at least half of the indices in {i, . . . , i+k−1}.
Then since the images of the segments θj do not overlap, there are at least k/2 legal
segments with length C in the fundamental domain αN . Thus Legf (φN(g)) ≥ Ck

2 len(αN ) .
Since k > len(α)−L−2KN

L+KN and the fact that ‖gl‖T = len(α) ≥ 2L+ 3KN we obtain

Legf (φN(g)) ≥ C

2 len(αN)
len(α)− L− 2KN

L+KN

≥ C len(α)
2 len(αN)

1− L−2KN
2L+3KN

L+KN

≥ C len(α)
2 len(αN)

L+ 5KN

(L+KN)(2L+ 3KN)

≥ C

2 Lip(fN)
L+ 5KN

(L+KN)(2L+ 3KN) > 0

The bound does not depend on g nor on α.
Similarly, if the second case happens, i.e. if there are more long legal segments in

α−N ⊂ AxisT−(φ−N(g)), then we get

Legf−(φ−N(g)) ≥ C

2 Lip(fN− ◦ h)
1− L−2KN

2L+3KN
L+KN

Since at least one of these two cases occurs, we can define ε0 as the smallest of both
bounds and we obtain the lemma.

For a geodesic in T (resp. T−) and a constant L > 0 we define the lamination ratio
LR(g, T,Λ+, L) (resp. LR(g, T−,Λ−, L) as the upper bound of the proportion of AxisT (g)
(resp. AxisT−(g)) which can be covered by pairwise disjoint leaf segments of Λ+ (resp. Λ−)
with length at least L.

Lemma 3.4.13. Let ε0 > 0. For any L > 0, there exists N1 ≥ 0 such that for any g ∈ G,
for any n ≥ N1, if Legf (g, T ) > ε0 then

LR(φn(g), T,Λ+, L) > ε0/4.

Proof. Let g ∈ G be such that Legf (g, T ) > ε0. Let β ⊂ AxisT (g) be a maximal legal
subsegment with length at least κ. Let β′ ⊂ β be the subsegment obtained by cutting out
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the Cf
2 ≤

κ
4 -neighbourhood of the endpoints. Its length is at least len(β)− Cf and for all

n ∈ N, fn(β′) ⊂ AxisT (φn(g)).
There exists n1 ∈ N such that λn1Cf ≥ 4lmax where lmax := maxe∈E(T ) len(e). Thus

fn1(β′) contains at least one edge of T . In fact, the number of edges of T contained in
fn1(β′) is at least kβ′ :=

⌊
λn1 (len(β)−Cf )

lmax

⌋
and their total length is at least cβ′ := λn1(len(β)−

Cf )− 2lmax.
There exists n2 ∈ N such that for every edge e ∈ T , fn2(e) is a leaf segment with

length greater than L.
Thus fn1+n2(β′) is contained in AxisT (φn1+n2(g)) and contains at least kβ′ disjoint

open leaf segment with length at least L whose total length is at least λn2cβ′ .

Let B be the set of 〈g〉-orbits of maximal legal subsegments of AxisT (g).
Let n ∈ N. The proportion of AxisT (φn1+n2+n(g)) covered by the leaf segments is at

least
λn2+n

∑
β∈B

λn1(len(β)− Cf )− 2lmax

λn1+n2+n‖g‖T
Thus

LR(φn1+n2+n(g), T,Λ+, L) ≥

∑
β∈B

λn1(len(β)− Cf )− 2lmax

λn1‖g‖T

≥

∑
β∈B

λn1(len(β)− Cf )− λn1
Cf
2

λn1‖g‖T

≥

∑
β∈B

len(β)
4

‖g‖T
≥ ε0

4

This proves the lemma with N1 = n1 + n2.

Lemma 3.4.12 yields a constant ε0. For the rest of the paper we fix such an ε0. Define
k(g), k−(g) as follows:

— k(g) = min{k ∈ Z/Legf (φk(g)) ≥ ε0}

— k−(g) = max{k ∈ Z/Legf−(φk(g)) ≥ ε0}

By Lemma 3.4.11 these integers are well-defined.
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Lemma 3.4.14. There exists N ∈ N such that for any loxodromic g ∈ G, |k(g)−k−(g)| ≤
N .

Proof. Let g ∈ G be a loxodromic element. Let N0 be the constant given by Lemma 3.4.12.
Lemma 3.4.12 implies that either Legf (φN0(φk(g)−N0−1(g))) or Legf−(φ−N0 ◦φk(g)−N0−1(g))
is greater than ε0. By definition of k(g), the former does not hold so Legf−(φ−2N0+k(g)−1(g)) >
ε0. Therefore we have

k(g)− k−(g) ≤ 2N0 + 1.

Lemma 3.4.9 gives M such that for all m ≥M we have

‖φm(φk(g)(g))‖T > ‖φk(g)(g)‖T .

It also gives a similar constant M− for f−. If we had k−(g) − k(g) ≥ max{M,M−} then
by applying Lemma 3.4.9 twice with m = k−(g)− k(g) we would get a contradiction:

‖φk(g)‖T = ‖φ−m ◦ φm ◦ φk(g)‖T > ‖φm ◦ φk(g)‖T > ‖φk(g)‖T

This gives an upper bound for k−(g)− k(g).

3.5 Defining the projection

Let g ∈ G be a loxodromic element. Like in [Alg11] we define t0(g) := k(g) log(λ+).
The following lemma is the same as [Alg11, Lemma XX]. The fact that G is a GBS group
instead of FN has no influence.

Lemma 3.5.1. There exists a constant C > 0 such that for every loxodromic element
g ∈ G we have for t ≥ t0:

C−1λb
t−t0

log(λ)c‖g‖T0 ≤ ‖g‖Tt ≤ Cλb
t−t0

log(λ)c‖g‖T0

and for t ≤ t0:
C−1λ

b t0−tlog(λ)c
− ‖g‖T0 ≤ ‖g‖Tt ≤ Cλ

b t0−tlog(λ)c
− ‖g‖T0

Proof. We will prove the inequalities in the case where t is a multiple of log(λ). The
result for other values of t can be obtained by applying Lemma 3.1.27 to a translate of
the subsegment {Tt/0 ≤ t ≤ log(λ)}, and it will only result in increasing the multiplicative
constants by a controlled amount.
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Write t0 = t0(g). First let us deal with the case t ≥ t0. Let n ∈ N and let tn =
t0 + n log λ.

We have Ttn = Tt0 · φn.
Since f is λ-Lipschitz we have

‖g‖Ttn ≤ λn‖g‖Tt0

Let us prove the other side of the inequality. Lemma 3.4.7 can be applied to a well-
chosen fundamental domain for g and gives a constant C(ε0) independant of n and g such
that

‖g‖Ttn ≥ C(ε0)λn‖g‖Tt0

which gives the first part of the Lemma.

Now let us deal with the case t ≤ t0. Let n ∈ N. Let tn = t0 − n log(λ). In that case
we have n = t0−t

log(λ) .
We have

Lip(T, T−)−1 ≤ ‖g‖T
‖g‖T−

≤ Lip(T−, T )

and by applying this to φn(g) instead of g for any n ∈ Z, we have

Lip(T, T−)−1 ≤ ‖g‖T ·φ
n

‖g‖T−·φn
≤ Lip(T−, T )

In particular, since Tt0 = T · φk(g) this also works when replacing T, T− with Tt0 , T−t0 .
We now have T−tn = T−t0 ·φ

−n so ‖g‖T−tn ≤ λn−‖g‖T−t0 . We deduce the right inequality:

‖g‖Ttn ≤ Lip(T−, T )‖g‖T−tn
≤ Lip(T−, T )λn−‖g‖T−t0
≤ Lip(T−, T ) Lip(T, T−)λn−‖g‖Tt0

Now let us prove the left inequality. Lemma 3.4.12 gives an integer constant N such
that k−(g) ≥ k(g) − N . Thus we have by the same arguments as above, and for n ≥ N

and TtN = Tt0 · φ−N we obtain

‖g‖T−tn ≥ C(ε0)λn−N− ‖g‖T−tN
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Since ‖g‖T−tN ≥ Lip(T− · φ−N , T−)−1‖g‖T−t0 we have

‖g‖T−tn ≥ C(ε0)λ−N− Lip(T− · φ−N , T−)−1λn−‖g‖T−t0

When 0 ≤ n < N then we have
‖g‖T−t0
‖g‖T−tn

≤ Lip(T−, T− · φN) so in any case there is a
constant C > 1 depending only on T, T−, N such that

‖g‖Ttn ≥ C−1λ−n(t)‖g‖Tt0

This proves the lemma.

Define Θ(g) := {t ∈ R/‖g‖Tt minimal }.

Lemma 3.5.2. There exists s > 0 such that for every loxodromic g ∈ G and t ∈ Θ(g),
then |t− t0(g)| < s.

Proof. Let C be the constant from Lemma 3.5.1. Suppose t > t0(g). Then we have ‖g‖Tt ≥

C−1λ

⌊
t−t0(g)
log(λ)

⌋
‖g‖Tt0 so since ‖g‖Tt ≤ ‖g‖Tt0 this implies t− t0 ≤ log(Cλ).

We get a similar inequality for t < t0, hence the result.

Remark 3.5.3. The diameter of Θ(g) is bounded by 2s.

An important property of the projection is that projections of simple pairs are close:

Lemma 3.5.4. There exists s′ > 0 with the following property. Let {g, h} be a simple
pair of loxodromic elements of G. Then |t0(g)− t0(h)| < s′.

Proof. We prove this by contraposition: we will show that if t0(g) and t0(h) are too far
apart then we can find t in between such that the axes of g and h in Tt contain long
segments of the stable and unstable lamination (see Figure 3.10).

Let L0 be the constant from Proposition 3.3.13 such that elements in a simple pair
cannot contain leaf segments longer than L0 of both lamination in their axes. Without
loss of generality we may assume L0 > κ.

By Lemma 3.2.9 there exists a constant L1 such that if a path β ⊂ T− contains a
leaf segment of Λ− longer than L1, then [h−(β)] contains a leaf segment of Λ− of length
greater than L0. The choice of L1 depends only on h−, f−, and L.

Without loss of generality suppose t0(g) < t0(h).
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φ

φ−1

•
t0(g)

•
t0(h)

•
t0(h)

n log λ
•
t1

•

N log λ−

•
n log λ−

•
m log λ−

•

LEGf−(h) be-
comes ≥ ε0Axis(h) contains

long leaf segments
of Λ−

Axis(h) contains long
leaf segments of Λ−

Axis(g) contains long
leaf segments of Λ−

Figure 3.10 – If t0(g), t0(h) are sufficiently far apart, then there exists t such that the axes
of g and h in Tt contain long leaf segments of the opposite laminations

Let N1 > 0 be the integer given by Lemma 3.4.13 for f , ε0 and L0. Similarly define
N1,− > 0 as the integer given for f−, ε0, L1.

By definition of t0 we have Legf (g, Tt0(g)) ≥ ε0. Thus for all n ≥ N1 we have

LR(g, Tt0(g)+n log(λ),Λ+, L0) ≥ ε0/4.

Similarly for all n ≥ N1,− we have Legf−(h, Tt0(h)−n log(λ−),Λ−, L1) ≥ ε0/4.

Suppose t0(h)−t0(g) > N1 log(λ)+N1,− log(λ−). Then there exists t0(g)+N1 log(λ) <
t < t0(h)−N1,− log(λ−). Consequently AxisTt(g) contains an L0-piece of Λ+ and [h(AxisT−t(h))]
contains an L0-piece of Λ−. This contradicts the fact that the pair {g, h} is simple.

Here is a direct corollary:

Corollary 3.5.5. Let s, s′ be the constants from Lemmas 3.5.2 and 3.5.4. For a simple
pair {g, h}, diam(Θ(g) ∪Θ(h)) < s+ s′.

In order to evaluate the distance dLip(X,Lf ) for some arbitrary X ∈ D, we will use
candidates of X. Lemma 3.5.4 applies in particular to candidates:

Corollary 3.5.6. Suppose b1(G) ≥ 3. There exists s′′ > 0 such that for every X ∈ D, if
g, h are candidates in X, then for any tg ∈ Θ(g) and th ∈ πf (h) we have |tg − th| < s′′.
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Proof. By Lemma 3.3.3 there exists k ∈ G such that the pairs {g, k} and {h, k} are simple.
Applying the previous corollary gives |tg − th| < |tg − tk|+ |tk − th| < 2s′ + 2s.

For X ∈ D, define ΘX := {t ∈ R/dLip(X,Tt) minimal }.

Lemma 3.5.7. For every X ∈ D, the set ΘX is non-empty.
Moreover there exists s > 0 such that for every X ∈ D, diam(ΘX) < s.

Proof. Let X ∈ D. By Theorem 3.1.23, for all t ∈ R, there exists a candidate such that
dLip(X,Tt) = log ‖g‖Tt‖g‖X

.
Therefore we have

dLip(X,Tt) = max
g candidate

log ‖g‖Tt
‖g‖X

Fix a candidate g. The function t 7→ ‖g‖Tt
‖g‖X

is minimal for t ∈ Θg. We will prove that
dLip(X,Tt) reaches its minimum in a D-neighbourhood of Θg, where D does not depend
on X nor on the number of candidates in X.

Let t0 := t0(g). If h is another candidate we have |t0(h) − t0| < s′′ where s′′ is the
constant from Corollary 3.5.6. By Lemma 3.5.1 we have

‖h‖Tt0 ≤ ‖h‖Tt0(h)Cλ
s′′

log(λ)

Write K = Cλ
s′′

log(λ) . For t∗ ≥ log(2CK)+ log(λ) and t > t0 +s′′+ t∗ we have t > t0(h)+ t∗

and still by Lemma 3.5.1 we get

‖h‖Tt ≥ 2K‖h‖Tt0(h) ≥ 2‖h‖Tt0

Dividing both sides by ‖h‖X does not change the inequality.

Therefore we have for t > t0 + s′′ + t∗

max
h candidate

‖h‖Tt
‖h‖X

≥ 2
‖h‖Tt0
‖h‖X

For t < t0 we get a similar result. We deduce a constant ∆t such that for t ∈ R \ [t0−
∆t, t0 + ∆t] we have dLip(X,Tt) > log 2dLip(X,Tt0). Since t → Tt is continuous for the
axes topology, t 7→ dLip(X,Tt) reaches its minimum in a ∆t-neighbourhood of t0.

Remark 3.5.8. The previous proof differs slightly from the proof of [Alg11, p. XX] since
there is no bound on the number of candidates in elements of D, unlike in CVN . This
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comes from the fact that D is not finite dimensional so there is no bound on the number
of orbits of edges in elements of D.

For X ∈ D we choose tX in ΘX . Since ΘX has bounded diameter and the bound does
not depend on X this will be well enough defined.

3.6 Negative curvature properties of the projection

In this section we prove the analogues of Lemmas 5.7 and 5.8 of [Alg11] and deduce
the strong contraction property.

The difference in the proof with [Alg11] is the proof of Lemma 3.6.4. The initial
proof relies on special shapes of graphs such as roses (see [Alg11, Proposition 5.10]). Here
reduced graphs will take the role of roses. The other proofs are actually quite similar to
the free group case.

Lemma 3.6.1. There exist s, c > 0 such that for any X ∈ D, if |t − tX | > s then
dLip(X,Tt) ≥ dLip(X, π(X)) + dLip(π(X), Tt)− c.

Proof. Suppose t ≤ tX . Let g be a candidate in X. The idea of the proof is that if s is
big enough, then Legf (g, TtX+s) is also big and g almost realizes dLip(TtX+s, Tt).

There is a candidate h of X such that Lip(X, π(X)) = ‖h‖π(X)
‖h‖X

. Since tX ∈ Θ(X)
we have tX ∈ Θ(h). By Lemmas 3.5.2 and 3.5.4 there exists a constant s such that for
every candidate g of X we have |tX − t0(g)| < s. Thus for any candidate g of X, for any
t1 > tX + s, we have Legf (g, T1) > ε0.

Let Z := Tt1 . Let g be a candidate of X such that dLip(X,Z) = ‖g‖Z
‖g‖X

.
Applying twice Lemma 3.5.1 to g for t and t1 we obtain a constant C such that

‖g‖Tt
‖g‖Z

≥ C−2λ
t−t0(g)
log(λ) −

t1−t0(g)
log(λ) −1 = C−2λ−1et−t1

Remarking that et−t1 = Lip(Z, Tt) we have

Lip(Z, Tt) ≤
‖g‖Tt
‖g‖Z

1
C2λ

with C2λ > 1.
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Since Lip(X,Z) = ‖g‖Z
‖g‖X

we have

Lip(X,Tt) ≥
‖g‖Tt
‖g‖X

= ‖g‖Tt
‖g‖Z

‖g‖Z
‖g‖X

≥ 1
C2λ

Lip(Z, Tt) Lip(X,Z)

Applying the logarithm we get a constant K > 0 such that dLip(X,Tt) ≥ dLip(X,Z) +
dLip(Z, Tt)−K.

Finally by definition of the projection we have dLip(X,Z) ≥ dLip(X, π(X). If t−tX > s

we have

dLip(X,Tt) ≥ dLip(X, π(X) + dLip(Z, Tt)−K

≥ dLip(X, π(X)) + dLip(π(X), Tt)− s−K

Lemma 3.6.2. There exist s, c > 0 such that for any X, Y ∈ D, if |tX − tY | > s then
dLip(Y,X) ≥ dLip(Y, π(X))− c.

Before proving Lemma 3.6.2 we need some preliminary results.

Lemma 3.6.3. Let X,T ∈ D and e0 ∈ E(X). Suppose every edge orbit in X \ G · e0

is non-collapsible. There exists a G-equivariant map τ : X → T such that every edge in
X \G · e0 is contained in a τ -legal bi-infinite geodesic in X \G · e0.

Proof. We will prove this by constructing the map τ : X → T such that at every vertex
v ∈ V (X), at least two gates at v for the gate structure induced by τ contain edges in
E(X) \G · e0. Then there exist bi-infinite τ -legal geodesics with the desired property.

There exists a G-equivariant map τ0 : X → T . We may suppose that τ0 sends vertex
to vertex and is linear on edges.

Let v1, . . . , vn be representatives of every vertex orbit of V (X). In order to define a
new map τ , it suffices to choose the image of vi for every i ∈ {1, . . . , n}. The image of vi
can be any vertex wi ∈ V (T ) such that Gvi ⊂ Gwi .
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Suppose there exists v ∈ X such that there is only one gate at v which contains edges
in E(X) \G · e0. We include the case where there is only one gate at v.

Let w = τ0(v). There exists a vertex w′ ∈ T such that ⋂e∈Ev\G·e0 τ0(e) = [w,w′]. Since
no edges in τ0 are collapsible except translates of e0, the images τ0(e) have non-zero length.
Since these edges are contained in a single gate, the intersection has non-zero length and
we have w 6= w′.

Let us prove Gv ⊂ Gw′ . Let a ∈ Gv. By contradiction suppose aw′ 6= w′, then for
any edge in Ev \ G · e0 we have w′ /∈ τ(ae) which contradicts the definition of w′, thus
Gv ⊂ Gw′ . Define τ1 by

τ1 : x ∈ V (X) 7−→

 τ0(x) if x /∈ G · v
gw′ if x = gv

Note that if there exists e ∈ Ev such that τ0(e) = [w,w′], then e cannot be a loop in the
quotient. If e were a loop [v, gv] ⊂ T then g−1ē = [v, g−1v], which is also in Ev and has
same length, would also be sent to [w,w′] = [w, gw] = [w, g−1w]. This would imply that
g2 is elliptic, which is a contradiction. Thus the vertices of e are in distinct orbits, and
since the image of e is a single point, τ1 factors through the collapse of e.

Since no edge orbit is collapsible except e0, e can be collapsed only if e is a translate
of e0. We do not care about the image of e0.

By construction of τ1, there are at least two gates for τ1 at vertex v which contain
edges in Ev \G · e0. Let us prove that gates at other vertices have not changed.

Let e ∈ E(T ) \ G · e0. Neither τ0 nor τ1 collapse e. If an endpoint x of e is in G · v,
then τ1(x) is in the interior of τ0(e). Otherwise τ1(x) = τ0(x). Thus if o(e) /∈ G · v, the
first edge of τ1(e) and τ0(e) are equal. Thus the gate structure at o(e) is unchanged.

Therefore the number of vertices with at most one gate containing edges not in G · e0

is smaller for τ1 than for τ0.

We can iterate this procedure with τ1 instead of τ0 until we find a map τ such that all
vertices in X have at least two gates containing edges not in G · e0.

Lemma 3.6.4. Let L be the constant from Proposition 3.3.13. Suppose r ∈ R is such
that for every candidate u ∈ G for X, the axis AxisTr(u) contains an L-piece of Λ−. Let
g ∈ G. Suppose that AxisTr(g)/〈g〉 contains k disjoint 2L-pieces of Λ+ for some k ∈ N.
Then for every edge e0 ∈ E(X), AxisX(g)/〈g〉 contains at least k/2 edges in the orbit of
e0.
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AxisX̄(g)

AxisTr(g)

τ

µ1 µ2

• • • • • • • • •

•

•

•

•

•

•

•

• •
σ1 σ2

τ(η)

Figure 3.11 – Axis of g in Tr; the 2L-pieces are in thick red, the image of AxisX′(g) in
dotted line and the µj are highlighted in green. The line τ(η) is also represented. Due to
minimality of µj, η contains σj.

Proof. Let e0 be an orbit of edges in E(X). There exists a collapse X → X ′ such that e0

is not sent to a single point, and every edge e 6= e0 in X/G is not collapsible.

By Lemma 3.6.3 there exists a map τ : X ′ → Tr such that:

— at every vertex v ∈ V (X ′), there are at least two gates for the train track structure
induced by τ

— at every vertex v, at least two gates contain edges which are not in G · e0.

Let σ1, . . . , σk be the 2L-pieces of Λ+ in AxisTr(g). Let µj := ei . . . el be a minimal
edge path in AxisX′(g) such that [τ(µj)] contains σj (see Figure 3.11). We claim that for
all j ∈ {1, . . . , k}, the edge path µj contains one edge in G · e0. By contradiction, assume
that for some j ∈ {1, . . . , k} no edge in µj is in G · e0.

The path µj can be completed into a bi-infinite line η ⊂ X ′ \ G · e0 such that every
turn of η is τ -legal, apart from turns in the interior of ei . . . el. By minimality of µj, the
image τ(ei) (resp. τ(el)) is not contained in τ(ei+1 . . . el) (resp. τ(ei . . . el−1)). Therefore
the legality property of η implies that the image [τ(η)] contains the segment [τ(µj)].

Now we would like to find the axis of an element h ∈ G such that AxisTr(h) contains
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[τ(µj)] and AxisX′(h)∩G ·e0 = ∅. Suppose we find such an h. Then AxisTr(h) contains an
L-piece of Λ+. However, in X ′, there exists a candidate u ∈ G, possibly equal to h, whose
axis does not cross G · e0. The assumptions of the lemma imply that AxisTr(u) contains
an L-piece of Λ−. By Proposition 3.3.13 the pair {h, u} is not simple. This contradicts
the fact that their axes in X ′ both avoid G · e0. The conclusion is that e0 must appear
somewhere in µj.

Let us explain how we construct h. In the special case where there exists an edge
e ∈ E(X ′) such that there are two translates e, he in η with same orientation, and one on
each side of µj then [e, he] contains a fundamental domain for the axis of h and again by
minimality of µj, AxisTr(h) contains [τ(µj)].

In the general case, since no edge in X ′ \G ·e0 is collapsible, the connected component
of X ′ \G · e̊0 containing η has no valence 1 vertex. Its stabilizer is a cyclic factor H and
this connected component is the minimal subtree X ′H . For every g ∈ G, gX ′H ∩ X ′H 6=
∅ ⇒ g ∈ H. The subtree X ′H has infinite diameter because it contains η. As X ′/G is
finite, there exists a vertex with unbounded H-orbit so H is not elliptic. Thus it is not
cyclic.

If H is not solvable, then the action of H on X ′H is irreducible: for every segment
I ⊂ X ′H , there exists h ∈ H whose axis contains I.

Let I ⊂ η be a segment containing a 2 BBT(τ)/m-neighbourhood of µj, where m =
mine/∈G·e0

len(τ(e))
len(e) . Let h ∈ H be a loxodromic element whose axis contains I.

The cancellation in τ(AxisX′(h)) does not reach µj so AxisTr(h) contains [τ(µj)].

Finally we must deal with the case where H is isomorphic to BS(1, n). The subtree
X ′H is reduced, so X ′H/H consists in a single edge. If n = ±1 then X ′H is a line. If h ∈ H
is a loxodromic element then its axis contains η. Moreover since XH has only valence 2
vertices, they have to belong to different gates so all turns are τ -legal. Therefore AxisTr(h)
contains [τ(µj)].

If |n| > 1 then XH is not a line but there is a fixed point ξ in ∂XH for the action
of H. If the line η has both endpoints different from ξ then it might be impossible to
find h containing µj as a whole. However η contains only one orbit of edge e. Up to
reversing the orientation of e we may assume Ge = Gt(e), so every turn of the form {e, aē}
with a ∈ Gt(e) is degenerate. Therefore η maps to . . . ēēē . . . ēe . . . eee . . . in X ′H/H. Since
ei . . . el has length > 2L there exists a subsegment η0 with length > L of the form eee . . .

or ēēē . . . Once again such a segment is τ -legal otherwise there would only be one gate
at the vertices of XH . There exists a loxodromic element h ∈ H such that AxisX′(h)
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contains η0. Therefore AxisX′(h) contains a L-piece of Λ+ so once again we can apply the
discussion above.

We proved that for any j ∈ {1, . . . , k}, there exists a translate of e0 in X ′ such that
the minimal edge subpath µj contains a translate of e0.

If the segments µj, j ∈ {1, . . . , k} are disjoint, then we are done. This may fail though.
We will see that µj ∩ µj′ = ∅ if |j − j′| ≥ 2 and may be a single edge if |j − j′| = 1. Thus
when counting the translates of e0 in the µj, j ∈ {1, . . . , k}, a translate may be counted
more than once, but it can be counted for at most twice (see Figure 3.12). Therefore
AxisX′(g)/g contains at least k/2 translates of e0. Since this lifts to X we get the lemma.

Let us prove the fact about the intersection of the segments µj.
First we prove that a 2L-piece of Λ+ cannot be contained in the τ -image of a single

edge e. By contradiction, suppose otherwise: again we will construct a simple pair of
elements containing long pieces of opposite laminations. The edge e must be in the orbit
of e0. As above, one can find τ -legal turns {e, e1} and {ē, e2} with e1, e2 /∈ G · e0. Let e′ be
an edge of X ′ \G · e0. Since e′ is not collapsible, there exists a translate he′ 6= e′ such that
{e′, he′} (if e′ is not a loop in the quotient) or {e′, hē′} (if e′ is a loop) is a non-degenerate
turn. Define

ρi := ei · hiēi · hih′iei · hih′ihiē1 . . .

if ei is not a loop, where hi, h′i are such that {ei, hei} and {ēi, h′ēi} are non-degenerate. If
ei is a loop define

ρi := ei · hiei · h2
i ei . . .

Suppose ei is not a loop. Then ei cannot be identified with hiei by τ , because the
vertex groups at t(ei) and hit(ei) are not nested: it would imply that Tr has an elliptic
element which is not elliptic in X ′. There exists a subdivision of X ′ such that ei = ai ·e′i ·bi,
with τ(bi) = τ(hibi) and τ(ai) = τ(h′iai). Then

[τ(ρi)] := τ(ai) · τ(e′i) · hiτ(ē′i) · hih′iτ(e′i) . . .

and since the turns between e and ei are legal, there is no simplification between τ(ai)
and τ(e).

If ei is a loop, then we already proved in Lemma 3.6.3 that ei and hiēi cannot have
the same image by τ , or we would obtain new elliptic elements. Once again there exists a
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subdivision ei = ai · e′i · bi with τ(b̄i) = hiτ(ai). Thus

[τ(ρi)] := τ(ai) · τ(e′i) · hiτ(e′i) · h2
i τ(e′i) . . .

and once again there is no cancellation between τ(ai) and τ(e).
Consequently we can construct a bi-infinite geodesic ρ̄1 · e · ρ2 such that ρ1, ρ2 are rays

which cross only one orbit of edges, and τ(e) ⊂ [τ(ρ̄1 · e · ρ2)]. We proved above that
the rays need not be legal, the point is that the cancellation which may occur at turns
remains controlled.

Let l be such that the image of any segment of longer than l by τ is longer than 2 Lip(τ).
Let ρ0

1, ρ
0
2 be prefixes of the rays longer than l. The path ρ̄0

1 · e · ρ0
2 can be closed into a

loop in the quotient, representing an element h ∈ G such that AxisTr(h) = [τ(AxisX(h))]
contains τ(e), hence a 2L-piece of Λ+. The point is that this loop may be constructed
such that it crosses only three orbits of edges in X ′. Since b1(X ′/G) ≥ 3, AxisX′(h) must
avoid one orbit of edges.

There exists a candidate u of X ′ whose axis avoids the same orbit of edge as h, thus
{u, h} is a simple pair. By assumption AxisTr(u) contains an L-piece of Λ−, which is
a contradiction to Proposition 3.3.13: thus τ(e) cannot contain a whole 2L-piece of the
lamination.

The second point is that the intersection of segments µi, µj cannot be more than one
edge: by minimality of µj, the last endpoint of σj lies in the image of the last edge of µj
but not in the image of any other edge. Similarly for j′ > j, the first point of σj′ lies in
the image of the first edge of µj′ and not in any other edge. Thus the intersection µi ∩ µj
is at most one single edge.

Besides, if |j′ − j| ≥ 2, then σj+1 must be contained between the last point of σj and
first point of σj′ . This is not possible if both belong to the same edge, hence the fact.

Now we have sufficient tools to prove Lemma 3.6.2.

Proof of Lemma 3.6.2. Let X, Y be as in the statement of the lemma. Assume tY < tX

in Lf . The other case works similarly by exchanging the roles of φ and φ−1 and will give
other constants s, c: we will take the greater constants.

There exists s1 such that for any s > s1, for any t ∈ R, for any candidate g of Tt,
Legf (g, Tt+s) > ε0. This is a consequence of the following facts: Tt has an f -legal candidate
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• • • •

µis may overlap. . .

X̄

Tr

• • •

but may not be one edge

Figure 3.12 – The subsegments of AxisX(g) whose image contain a 2L-piece of Λ+ may
overlap

u (Lemma 3.1.22) so t0(u) ≤ t, and there exists s > 0 such that for any other candidate
v we have t0(v) ≤ t0(u) + s (Lemma 3.5.4).

Let L be the constant from Proposition 3.3.13. By Lemma 3.4.13 there exists N1 ∈ N
such that for every candidate g of X, LR(φN1(g), T,Λ+, 2L) > ε0/4.

There exists s2 > 0 such that for any t ∈ R, the image of any candidate of Tt in Tt−s3

contains an L-piece of Λ−.

Define d = s1 + N1 log(λ) + s2. Suppose tX − tY > d. Let r = tX − s2. Let g ∈ G be
a candidate of Y which realizes Lip(Y, π(X)). Then the axis of g in Tr contains long leaf
segments of Λ+. Actually LR(g, Tr,Λ+, 2L) ≥ ε0/4. A given leaf segment of length longer
than 2L can be at least half covered with disjoint 2L-pieces of Λ+. Thus a proportion of
at least ε0/8 of AxisTr(g) can be covered by disjoint 2L-pieces of Λ+.

Let k(r) be the number of disjoint 2L-pieces of Λ+ which tile AxisTr(g)/〈g〉. We have

2Lk(r) > ε0

8 ‖g‖Tr

Now AxisTr(g)/〈g〉 contains k(r) 2L-pieces of Λ+. By Lemma 3.6.4 AxisX(g)/〈g〉 con-
tains at least k(r)/2 edges in each orbit of E(X). Since vol(X/G) = 1 we have

vol(AxisX(g)/〈g〉) = ‖g‖X ≥ k(r)/2.

Thus
‖g‖X ≥ k(r)/2 ≥ ‖g‖Tr

ε0

16L
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Then

Lip(Y,X) = ‖g‖X
‖g‖Y

≥ ‖g‖Tr
‖g‖Y

ε0

16L
≥ ε0

16L Lip(Y, Tr)

By triangular inequality dLip(Y, Tr) ≥ dLip(Y, π(X))− r so

dLip(Y,X) ≥ dLip(Y, π(X))− s2 − log(16L
ε0

)

Definition 3.6.5. The ball of outward radius r > 0 centered at Y ∈ D is

B→(Y, r) := {X ∈ D/dLip(Y,X) < r}

A closest point projection to Lf is a map pf : D → Lf such that for all X ∈ D, the
distance dLip(X, pf (X)) is minimal. The map πf constructed in Section 3.5 is a closest
point projection to Lf .

Now we can state and prove the strong contraction property.

Theorem 3.6.6. Let φ be a fully irreducible automorphism such that φ, φ−1 both admit
train track representatives.

Let Lf be an axis for φ in D and let pf be a closest point projection to Lf . Then there
exists D > 0 such that for any Y ∈ D and r > 0 such that B→(Y, r) ∩ Lf = ∅

diam(pf (B→(Y, r))) ≤ D

Proof. Let Y ∈ D, r = dLip(Y, pf (Y )). Let B := B→(Y, r). A ball centred at Y intersects
the axis if and only if its radius it greater than r. Balls with smaller radius are contained
in B so it suffices to bound diam(pf (B)) independently of Y . Let X ∈ B. Let s, c be
the constants from Lemma 3.6.2 and s′, c′ be the constants from Lemma 3.6.1. Suppose
dLip(pf (Y ), pf (X)) > max{s, s′}. Then Lemma 3.6.2 yields

dLip(Y,X) ≥ dLip(Y, pf (X))− c
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and using Lemma 3.6.1:

dLip(Y,X) ≥ dLip(Y, pf (Y )) + dLip(pf (Y ), pf (X))− c− c′

Since dLip(Y,X) < r = dLip(Y, pf (Y )) we have

dLip(pf (Y ), pf (X)) ≤ c+ c′

Therefore diam(pf (B)) ≤ 2 max{s, s′, c+ c′}. This bound is independent of Y .
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Titre : Facteurs cycliques, automorphismes irréductibles et axes contractants pour les groupes
de Baumslag-Solitar généralisés

Mot clés : automorphismes de groupes de Baumslag-Solitar, espaces de déformation, repré-

sentants train track, facteurs invariants, construction d’espaces hyperboliques

Résumé : Un groupe de Baumslag-Solitar
généralisé est le groupe fondamental d’un
graphe de groupes cycliques infinis. Cette
thèse porte sur l’étude du groupe d’automor-
phismes extérieurs d’un tel groupeG. Par ana-
logie avec l’outre-espace associé au groupe
d’automorphismes extérieurs Out(FN ), on ex-
ploite l’action de Out(G) sur un espace de dé-
formation, qui est un espace dont les points
sont des actions de G sur des arbres. Nous
définissons les facteurs cycliques comme les
facteurs qui apparaissent dans les scinde-
ments cycliques de G, et donnons un algo-
rithme qui décide si un élément donné du

groupe G appartient à un tel facteur. Les auto-
morphismes complètement irréductibles sont
des automorphismes dont aucune puissance
ne fixe la classe de conjugaison d’un tel fac-
teur. Nous donnons un algorithme analogue
à [Kap14] qui permet de décider si un au-
tomorphisme est irréductible lorsque celui-ci
a un train track et aucun élément pseudo-
périodique. Enfin, inspirée par [Alg11], nous
montrons que les projections au point le plus
proche sur les axes de translation dans l’es-
pace de déformation des automorphismes ir-
réductibles admettant des train track sont for-
tement contractantes.

Title: Cyclic factors, irreducible automorphisms and contracting axes for generalized Baumslag-
Solitar groups

Keywords: Automorphisms of Baumslag-Solitar groups, deformation spaces, train track rep-

resentatives, invariant factors, construction of hyperbolic spaces

Abstract: A generalized Baumslag-Solitar
group is the fundamental group of a graph of
infinite cyclic groups. This thesis focuses on
the outer automorphism group of such a group
G. In analogy with the Outer Space associated
to the outer automorphism group Out(FN ),
we study the action of Out(G) on a deforma-
tion space which is a space whose points are
some actions of G on trees. We define cyclic
factors as subgroups which occur in splittings
over cyclic groups, and give an algorithm de-

ciding if a given element of G belongs to such
a factor. Fully irreducible automorphisms are
automorphisms having no periodic conjugacy
class of cyclic factor. We give an algorithm
which decides whether an automorphism is ir-
reducible, given that it has a train track repre-
sentative and no periodic element; it is anal-
ogous to [Kap14]. Finally, inspired by [Alg11],
we prove that closest point projections to the
axis of an irreducible element with a train track
representative are strongly contracting.
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