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ABSTRACT

Multiple-object tracking (MOT) aims to provide all object trajectories (a,ccuraté
positions and consistent identities) in a given scene. The predominant way of
performing MOT is tracking-by-detection. It first detects the positions of objects in
video frames and then associates them despite object occlusions, (re-)occurring and
disappearing. Therefore, MOT relies on both object detection and object temporal
association. The two steps are often treated as two computer-vision sub-tasks: one
aims to robustly detect objects and the other focuses on optimally associating the
frame-to-frame object positions. Within this paradigm, this thesis investigates
three different problems in MOT: (i) Deep learning-based MOT methods have
been proposed but they are still trained with separate objective functions, directly
transferred from their corresponding sub-tasks: typically, a bounding-box regression
loss for the detection and an object-identity classification loss for the association.
Instead, standard MOT evaluations are unified metrics considering object miss
detections, false detections, and identity changes. To close this train-evaluation gap,
we propose a MOT training framework through a deep Hungarian proxy—deepMOT
(CVPR2020), leveraging standard evaluation metrics as objective functions for
training any deep MOT method; (ii) MOT becomes more challenging with the recent
introduction of very crowded scenes (e.g.MOT20). The challenging scenario with
dense interactions among objects motivates us to leverage the global dependency
of transformers. To this end, we question the current MOT model structures and
conceive a novel transformer-based MOT tracking method—TransCenter (TPAMI
revision), exhibiting state-of-the-art performance; (iii) Current MOT methods
are mostly trained with the supervision of abundant object-position and -identity
annotations. However, this is usually not possible in real-world applications where
we only have some annotated videos for training while we deploy the MOT method
to unlabeled scenes. We tackle this issue and propose an unsupervised domain
adaptation MOT training framework-DAUMOT (CVIU submission), to overcome
the limitation of unlabeled data. To conclude, (i) we address the supervised MOT
training problem by unifying the evaluation metrics and the training losses; (ii)
Facing the challenging crowded scenes, we rethink the MOT model structures
and propose a state-of-the-art transformer-based MOT method; (iii) To tackle
the unavailability of annotations in real-world data, we explore an unsupervised
domain adaptation framework for training MOT methods without labels in the

target scenes. The code of our works is publicly available for further research.



RESUME

Le suivi d’objets multiple (MOT) vise a fournir les trajectoires des objets présents
dans une séquence vidéo donnée. Le suivi d’objets multiple est un probleme
complexe. Dans une trajectoire, I'objet doit conserver une identité cohérente ct
inclure toutes ses positions au court du temps. Une approche prédominante de
MOT est appelée suivi par détection: clle détecte d’abord toutes les positions
d’objets dans la vidéo, puis tente de les associer temporellement en dépit du risque
d’occlusion, de (ré)apparition et disparition d’objets. Par conséquent, le MOT
s’appuie a la fois sur sa capacité a bien détecter les objets et sur la cohérence
de son association temporelle. Ces problemes sont généralement traités comme
deux sous-taches de la vision par ordinateur : I'une visant a détecter les objets et
lautre a trouver l'association temporelle entre detections. Avec le développement
rapide des méthodes basées sur I'apprentissage profond, des méthodes MOT ont été
proposé avec succes. Cependant, elles sont toujours entrainées avec des fonctions
de cotut distinctes, directement transférées de leurs sous-taches respectives : une
fonction de cotit pour la régression de la position des detections, et une pour la
classification/identification d’objets afin de résoudre I’association temporelle. Au
contraire, les évaluations standard de MOT utilisent des métriques unifiées qui
prennent en compte a la fois les détections manquées, les fausses détections et
les changements d’identité des objets. Pour combler ce fossé entre entrainement
et évaluation, nous proposons une approche novatrice pour le MOT -deepMOT-
utilisant ces métriques d’évaluation comme fonctions de cout, et généralisable a
n’importe quelle méthode de MOT profonde. Ces dernieres années, le MOT est
devenu plus complexe a cause de la densité importante des objets trackés dans
les scenes issues des nouveaux datasets. Ces scénarios aux interactions complexes
nous a incité a tirer parti de la capacité a saisir les dépendances globales des
architectures transformers. A cette fin, nous proposons une nouvelle méthode
MOT -TransCenter-, et présentant des performances de tracking supérieures a celles
de I'état de 'art. Toutes les méthodes ci-dessus sont construites sur des bases
de données d’entrainement fournissant les annotations d’identité et de position
des objets. Dans un contexte plus réaliste d’entrainement de ces méthodes a un
environnement cible spécifique (laboratoire, lieux publique ect), ces annotations ne
sont disponibles que pour un sous-ensemble de données. Pour résoudre ce probleme,
nous proposons une approche non supervisée - DAUMOT - qui surmonte cette

limitation par le biais de stratégies d’adaptation de domaine non supervisé.
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Chapter 1

Introduction

1.1 General Context

Figure 1.1: MOT aims to estimate for each object/person a trajectory (bounding
boxes with trajectory tails in the figure) with a consistent identity (different colors),
as shown in the above example from MOT17-04 [124].

In computer vision, researchers develop methods enabling machines to perceive

and understand the world from visual data. These data are often expressed as
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digitized images quantified into discrete values. Machines are taught with analytic
formulations or algorithms to process the raw discrete values and to produce
the desired output. Examples of some common computer vision tasks are image
classification [92], segmentation [66] and object detection [59, 137, 139, 164]. Using
such methods as building blocks, researchers also boost the development of higher-

level computer vision tasks such as single-object tracking (SOT).

Works on SOT tackle one object at a time. Notably in 2010, correlation-
filter-based methods, firstly introduced in [13] to SOT, have dominated the state-
of-the-art performance leaderboards [91, 182, 183] for years. After that, we see
learning-based methods enter to the domain since 2016 such as the siamese deep
neural networks, firstly used in SOT by SiamFC [10], made real-time SOT feasible.
Since then, SiamFC has drawn much attention to SOT with convolutional neural
networks [100, 101]. Importantly, the development was boosted by the release of
widely-used datasets such as OTB-13 (Object Tracking Benchmark) [182] in 2013,
OTB-15 [183] in 2015, and also the VOT 15-21 datasets [91].

More complex than SOT, multiple-object tracking (MOT) aims to perceive
multiple objects and depict their trajectories. This enables machines to follow all
the objects in a given video sequence, which is useful in applications such as security
surveillance, robot perception, and autonomous driving. As illustrated in Fig. 1.1,
MOT tackles the problem of finding the trajectories X = {X* X2 ... X% .. X"} of
objects i = 1,2, .., N in a video sequence. A trajectory X’ consists of L; frames of
positions xj, € R* (2D coordinate and object size) with [ = 1..., L; and an unique
identity ¢. From this formulation, we can see that an ideal MOT method should (i)
provide complete, correct, and identity consistent trajectories for all the objects; (ii)
handle the varying number of objects that (re-)appear and disappear in the given
(video) sequence. In this thesis, we address the multiple-person tracking problem,
which is also commonly denoted as MOT in the community and the methodologies

can be generalized to objects.

Before going into details of our contributions, we present the preliminaries to
help the understanding of MOT and our works: First, we introduce the commonly-
used MOT datasets. Second, we summarize state-of-the-art MOT methods with a
focus on the learning-based MOT methods. Third, we introduce the widely-used
MOT metrics and describe the process of the predominant MOT metrics. Finally,
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we summarize the existing problems and our solutions. The structure of the thesis

is presented to ease the reading.

1.2 MOT Datasets

(b) MOT17-13 (c) MOT20-05

Figure 1.2: Examples of the widely-used MOT datasets: MOT15 [97],
MOT16/17 [124] and MOT20 [38]. Different colors represent different object
identities.

Despite the MOT benchmark being introduced with the PETS dataset [44] in
2009 and developed in 2010, the video data were divided into different tasks and the
ones for MOT remained simple compared to crowded real-world scenes. Moreover,
for comparing to state-of-the-art methods, we usually submit our tracking results to
an official remote server provided by the dataset owner. For PETS [44], the submis-
sions were however limited to once a year during its conference workshops, making
the comparisons more difficult and less efficient. In 2015, a more standardized

and diverse benchmark was released-MOT15 [97]. It provides real-world scenarios
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(street view, campus, etc.) for multiple-person tracking and the user-friendly chal-
lenge organization attracted greatly the research efforts in this domain. Concretely,
MOT15 contains 5,500 frames in 11 videos in the train set and 5,783 frames in 11
videos for the test set. The dataset consists of 39,905 bounding boxes distributed
over 500 trajectories in the train set. MOT15 is challenging since most of the video
sequences were captured with severe camera motion, causing the rapid movements
of pedestrians between frames. Like MOT15, the MOTChallenge team released
afterward MOT16/17 [124] (MOT17 uses the same video sequences as MOT16
but with more public detection options, see below). MOT17 has videos with both
crowded scenes (e.g. MOT17-04) and moving-camera scenes (e.g. MOT17-13). It
contains 1,638 trajectories over 15,948 frames for the train set and 2,355 trajectories
distributed in 17,757 frames for the test set. Following MOT17, the recently released
MOT20 tackles very crowded scenes with different lighting conditions from only
static camera views (e.g. a dim night view from the roof of a stadium). It has
2,332 trajectories in 8,931 frames for the train set and 1,501 trajectories within
only 4,479 frames for its test set, making it be a much more challenging dataset.

Fig. 1.2 shows some examples from these datasets.

Morcover, the MOT datasets offer public detections for a fair comparison of
the data association ability among different MOT methods. Specifically, MOT17
provides three types of detections from different state-of-the-art detectors, namely
DPM [49], FRCNN [139] and SDP [190]. Besides, a private detection mode is also
available if the MOT method uses its own detections. The MOTChallenge website
has official leaderboards comparing different submissions of state-of-the-art methods
using standard MOT metrics, mainly MOTA. It provides a fair and standardized
platform for the research in MOT, greatly facilitating the comparisons among MOT
methods.

Even MOT15, 16/17, and 20 remain the mostly-used datasets for multiple-person
tracking, there exist other datasets tackling different scenarios in MOT. Among
them, the KITTI dataset offers 2D and 3D multiple-object (vehicle and person)
tracking data in an autonomous driving context; A similar but larger-scale vehicle-
driving video dataset BDD100K [195] provides 100 videos with annotations for
10 computer-vision tasks including MOT. DAVIS17-19 [18, 19, 133] and Youtube-

VIS [193] provide segmentation masks for multiple instances such as humans,
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animals, vehicles, and objects in videos of common life. Similarly, MOTS [170]

offers segmentation annotations for MOT17 videos. Both allow the exploration of
MOT via segmentation; The STEP [177] dataset steps further to segment every

pixel in some MOT17 sequences.

Differently, DukeMTMC [141] provides a multi-camera tracking scenario for
pedestrian tracking. CroHD [158] raises interest in head tracking, and TAO
dataset [36] targets the tracking for any object with overall 800 categories, being a
building block for the open-world object tracking problem [116].

1.3 MOT Methods

In general, MOT methods can be grouped into online and offline methods. In
online methods, we produce the predictions at ¢ only based on information from ¢ —1
and before while offline methods do not have this constraint and usually consider
that the whole tracking information is available. Obviously, online methods are
more adapted to real-world applications due to their causality while offline methods
usually serve for the post-processing or the labeling process. In this thesis, we focus
on the online modality even if the extension to offline methods is intuitive and

feasible.

MOT is challenging because it should handle trajectories of multiple objects
simultaneously. The predominant methodology to address this complex task is
called tracking by detection. With this, the MOT task can be respectively divided
into two sub-tasks: object detection and object temporal association. On one hand,
MOT should detect all the objects at each frame. The detection ability has a
great impact on finding adequate and accurate object trajectories. Moreover,
without sufficient detections, the object association can hardly be performed. For
this reason, we see the MOT performance evolve with the progress in object
detection [7, 122, 131, 203, 209]. On the other hand, multiple objects interact with
each other with mutual occlusions and having sufficient detection candidates means
a more difficult association process. Given the detections, a MOT method also
needs to correctly associate them through frames and assign them with consistent

identities. This association ability often relies on the bounding-box geometry,
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typically Intersection over Union (IoU) of object bounding boxes [11, 202, 209,
and appearance characteristics of objects [24, 26, 79, 94, 96, 157, 197] such as color
histograms, histograms of oriented gradient [35], and deep appearance features [96].
In modern methods, the bounding-box geometry and object-appearance cues are
often used jointly [7, 12, 104, 196, 203].

To model the data association process, early works [3, 5, 140] use probabilistic
models to optimally solve the association problem in MOT. These traditional
probabilistic models often suppose that the detections are provided, such as from
the public detections in MOTChallenge. The data association problem is also
modeled as graphs. Specifically, [73, 86, 159, 160, 161] leverage traditional graph
methods to model the positions of objects as nodes and the temporal connection
of the objects as edges. This graph-based approach is further developed by using
Graph Neural Networks (GNNs) where traditional graphs are replaced by learnable
GNNs [14, 65, 130, 176, 180, 181] to model the complex interactions of the objects.

While sufficient data [144, 167] and the development of computing hardware
helped deep-learning-based methods achieve much better performance in many
computer vision tasks such as image classification [92] and object detection [59, 137,
139], it is not trivial to construct a deep MOT method. The reasons lie not only in
the aforementioned difficulty in managing the detection and association of multiple
objects but also in the fact that objects can appear, disappear and reappear at any
frame of the given video sequence. The multiple sub-tasks and the varying number
of objects make MOT difficult to be formulated with neural networks in an end-to-
end (differentiable) and efficient manner. In previous works, deep learning was only
leveraged to tackle either the object detection [99] or the feature extraction for
object association [96, 149]. Not until 2017, [33, 125, 155] formulated the end-to-end
deep MOT method as multiple SOT instances or several concatenated sub-networks
using recurrent neural networks (RNNs) or convolutional neural networks (CNNs).
Nevertheless, the object association, occurrence and termination (i.e. birth and

death) processes remain not end-to-end.

The proof of concept of modeling MOT with neural networks [33, 125, 155] makes
deep MOT methods become popular. Notably, [7] advances the MOT performance
significantly by introducing a simple tracking by detection variant named tracking

by regression leveraging the FRCNN detector [139]. The detector provides reliable
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positions and the positions at ¢ — 1 are used as region proposals [139] to regress

(using the FRCNN regression head) their corresponding positions at ¢, i.e. object
association. Following such significant improvement, [209] then [203] replaces the
proposal-based detector with a keypoint-based detector [210] outputting dense
heatmaps, which greatly reduces the ambiguity in the bounding-box representation
of object positions, especially in crowded scenes. Similar to the tracking by regres-
ston framework, [154] detects new objects from a region-proposal network while
associating objects using a siamese network comparing the object appearances at

different time steps.

In recent years, the focus on the detection ability of MOT also moves towards
the interpolation of occluded objects that are usually ignored by common detectors.
Motion interpolation is a performance booster in MOT since a well-designed motion
model can compensate for missing detections due to occlusions. To this end, [64, 147]
focus on the motion-based interpolation using traditional probabilistic models. Very
recently, [202] benefits from the efficient and powerful YOLOX detector [57] and

suggests making use of low-score detections to discover (partially) occluded objects.

1.4 MOT Evaluation

To assess the performance of a MOT method, we commonly use CLEAR-
MOT [9] as the standard evaluation metric. It considers both the detection and
the object association processes by comparing the trajectories between the ground-
truth and predicted objects. Recall that MOT tackles the problem of finding
the trajectories X = {X* X2 ..., X¢ ..., X¥} of objects i = 1,2,.., N in a video
sequence. A trajectory of L; frames can be formulated as X' = {x} ,x{,, ..., x} }
where wil € R* is the 2D position and object size at time #; of object i. Importantiy,

at evaluation time, CLEAR-MOT calculates the metrics frame-by-frame. At time

t, the N; predicted bounding boxes, Xil, e ,XiNt must be compared to the M;
ground-truth objects, y{l, . ,nyf. We first need to compute the correspondence

between predicted bounding boxes and ground-truth objects. This is a non-trivial
problem as multiple ground-truth boxes may overlap and thus can be fit to several

track hypotheses. Moreover, the numbers of objects N; and M, vary with time t.
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Predicted Ground-truth False Negative False Positive  Identity Switch
trajectories trajectories (FN) (FP) (IDS)

Figure 1.3: An illustration of false negatives (FN), false positives (FP) and identity
switches (IDS) used in the CLEAR-MOT [9] metric. Triangles and circles represent
two different trajectories with different identities.

In the following, we will omit temporal index t to ease the reading. All expressions

will be evaluated with respect to time index ¢ unless specified otherwise.

The standard metric-CLEAR-MOT, proposed in [9], tackles this association
problem using bi-partite matching. First, a prediction-to-ground-truth distance
matrix D € RVM1 g € [0,1] is computed. For vision-based tracking, an
IoU (Intersection over Union)-based distance is commonly used. Then, the opti-
mal prediction-to-ground-truth assignment binary matrix is obtained by solving
the following integer program using the Hungarian (Kuhn-Munkres) algorithm
(HA) [93]:

A* = argmin Zdnmanm, s.t. Zanm <1,Vn; (1.1)

Ac{0,1}NxM =

Zanm <1,Vm; Zanm = min{N, M}.

By solving this integer program we obtain a mutually consistent association between

!The distance matrix D is considered without those objects/tracks that are thresholded-out,
i.e., too far from any possible assignment.
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ground-truth objects and track predictions. The constraints ensure that all rows
and columns of the assignment should sum to 0 or 1 — one-to-one assignment, thus
avoiding multiple assignments between the two sets. After finding the optimal
association A*, we can compute MOTA and MOTP using A* and D:?

MOTA = 1 — Zt(FPEFAI\; +1DS:). (1.2)
t t
d nma*nm

MOTP = 1 2=t 2z G (1.3)

2o TPy

where af,,. is the (n, m)-th entry of A* at time ¢. The true positives (TP) correspond
to the number of matched predicted tracks and false positives (FP) correspond
to the number of non-matched predicted tracks. False negatives (FN) denote the
number of ground-truth objects without a match. Finally, to compute ID switches
(IDS) we need to keep track of past-frame assignments. Whenever the track assigned
to a ground truth object changes, we increase the number of IDS and update the
assignment structure. Fig. 1.3 illustrates some examples of FP, FP, and IDS,
and the rest of predicted-ground-truth pairs are TP. As an extension of MOTA,
PR-MOTA [178] and AMOTA [179] consider confidence ranked detection/tracking
results instead of equally considering all tracking results with different confidence
scores as in MOTA.

Besides the CLEAR-MOT metric, another common MOT metric called IDF1 [142]
is proposed in 2016. It was formerly proposed to tackle the multiple-camera MOT
tracking problem in datasets such as DukeMTMC [141] but can be easily extended
to single-camera MOT datasets [38, 124]. The major difference from CLEAR-MOT
is the one-to-one matching step. IDF1 does not perform the matching at the
per-frame-detection but at the trajectory level. It matches the ground-truth trajec-
tories and the predicted ones by maximizing the number of matched detections for
each matched trajectory. By doing this, each ground-truth trajectory can only be
matched to at most one predicted trajectory and inversely. After the matching, the
number of matched detections are noted as identity true positives (IDTP), the rest
of ground-truth and predicted detections are identity false negatives (IDFN) and

identity false positives (IDFP), respectively. From the matching strategy, we see

2 Accounting also for the objects/tracks that were left out.
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that IDF1 focuses more on the association consistency than CLEAR-MOT. Even
IDF1 is usually paired with MOTA to assess the MOT performance, CLEAR-MOT
is still the dominant metric in most of the MOT leaderboards since the detection
ability is often the principle performance bottleneck for a MOT method. Moreover,
MOTA and IDF1 have a strong correlation, reflected in results shown in Chap. 2.

1.5 Contributions

Deep MOT methods have led the MOT performance since 2017 and the CLEAR-
MOT [9] is widely used to evaluate different aspects of the MOT performance
(detection and association). Nevertheless, training a deep MOT method using
standard metrics as objective functions is not properly addressed: previous MOT
methods are usually trained with separate losses dealing independently with the
object detection and association. For object detection, a common loss is the
LL1 distance regression between the ground-truth and predicted bounding boxes,
without considering their identities. For object association, an object-identity
classifier, trained with triplet loss [50] or cross-entropy loss, is used to extract
object identity features that are used to associate objects temporally based on
the feature (euclidean or cosine) distances. Furthermore, the motivation to make
standard MOT metrics trainable is not intuitive because it needs differentiable
approximations: as defined in Sec. 1.4, The HA, MOTA and MOTP contain non-
differentiable operations and thus cannot be directly used for tracker optimization
with the gradient descent technique. To close this discrepancy between training
and evaluation, deepMOT proposes a differentiable version of HA—Deep Hungarian
Net (DHN) as the gradient proxy and approximates MOTA and MOTP to be loss
functions, optimizing jointly a deep MOT method both in object detection and

association.

A novel MOT-specific training framework like DeepMOT can indeed ease the
MOT training process and improve the detection and association performance of
deep MOT methods. However, the performance bottleneck lies also in the deep
MOT structures. To this end, efforts have been made in probabilistic models [2, 15],
CNN-based [7, 96, 203, 209], RNN-based [125, 155] and graph-based [14, 149]
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methods. In spite of the efforts being made, the recent MOT20 [38], containing very

crowded tracking scenarios and frequently-present occlusions, makes MOT much
more challenging for most of the modern MOT methods. Since 2021, attention has
been driven to transformers [169] where its global dependency is intuitively suitable
for dealing with dense object interactions in MOT. In parallel to our solution, works
like [122, 131] directly extend the transformer-based object detection framework—
DETR [20, 214] to the MOT task. Differently, we redesign a transformer-based MOT
method with pixel-level dense queries—TransCenter, setting a new state-of-the-art

MOT baseline while running with a high efficiency.

The above-mentioned methods are built under the hypothesis that we possess
sufficient and accurate object positions and identities for training, like in the
standard MOT datasets [38, 124]. However we often only have an annotated subset
of training videos (source) while the real-world video scenes are not annotated
(target). This makes the deployment of a MOT method to real-world applications
difficult. The difficulty is mainly because the background and the object appearances
vary from one video sequence/dataset/camera angle to another, i.e. domain shifts.
In this case, the traditional supervised training can no longer be used since the
annotations in the target set are not available. Therefore, it is important to think
of an effective way to train a deep MOT method without available annotations—
unsupervised MOT. To address this, we see efforts such as Tracking by animation [69,
76] and SimpleReID [83]. The former is proposed to tackle the unsupervised MOT
problem but the training data are synthesized floating objects that are far from
being realistic. The latter, though claimed to be an unsupervised MOT method,
uses trajectories produced by an existing tracker that has been trained on standard

MOT datasets [38, 124] in a supervised manner.

Different from them, the existence of domain shifts among videos motivates
us to the solution with domain adaption so that we break these domain shifts to
improve the MOT performance (in the target set). Indeed, previous works in the
field like the domain adaptive object detection [23, 28, 126, 146, 187, 213] have
highlighted the drop of detection performance in the case of a significant domain
shift, and the detection domain adaptation has been addressed in [28] using a
binary domain discriminator. The unsupervised training with domain adaptation is
also well-addressed in the unsupervised person re-ID (URID) [46, 51, 56, 113, 200).



20
However, to our best knowledge, unsupervised training of MOT with domain

adaptation remains unsolved. Inspired by these works and considering the complex
nature of MOT, we propose an unsupervised MOT training framework using domain
adaptation-DAUMOT. It reduces the domain gap presented in a source-pre-trained
MOT method applied to the unlabeled target set and in consequence significantly

improves its performance in the unlabeled target set.

To summarize, we address the MOT training and the MOT network designing

issues with the following solutions:

e DeepMOT: unifying the supervised MOT training with standard MOT metrics

with novel differentiable proxy and approximations;

e TransCenter: tackling MOT with dense object interactions using a novel and

efficient transformer-based MOT network structure;

e DAUMOT: alleviating the performance drop in real-world unlabeled scenarios
by finetuning with the proposed unsupervised domain adaptation MOT

training framework.

1.6 Thesis Structure

In this thesis, we address the online MOT both in the training and the network
designing aspects: (i) Chap. 2 illustrates in detail the proposed MOT training
framework in the supervised setting—deepMOT; (ii) Chap. 3 studies the MOT
network designs and proposes a novel deep MOT model structure using transform-
ers with dense queries—TransCenter, demonstrating state-of-the-art performance
compared to modern MOT methods; (iii) We address the unsupervised domain
adaptation MOT problem in Chap. 4 and propose our solution using domain adap-
tation techniques-DAUMOT; (iv) Chap. 5 recalls our contributions in MOT and

points out the potential research directions for the future.
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Chapter 2

DeepMOT: Rethinking MOT

Supervised Training

=

“\.‘ =

RGB ' 2 gl,-,ﬁ [|Bounding

Images n ='-—1£;U Boxes o radients
o i -~ ¥ DeepMOT |
| Deep Multi-Object Deep Hungarian Net DeepMOT Loss
| Tracker I
| > > L
I I
PN, SR |

Figure 2.1: We propose DeepMOT, a general framework for training deep multiple-
object trackers including the DeepMO'T loss that directly correlates with established
tracking evaluation measures [9]. The key component in our method is the Deep
Hungarian Net (DHN) that provides a soft approximation of the optimal prediction-
to-ground-truth assignment, and allows to deliver the gradient, back-propagated
from the approximated tracking performance measures, needed to update the
tracker weights.

2.1 Introduction

Vision-based MOT is a long-standing research problem with applications in

mobile robotics and autonomous driving. It is through tracking that we become
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aware of surrounding object instances and anticipate their future motion. The

majority of existing methods for pedestrian tracking follow the tracking-by-detection
paradigm and mainly focus on the association of detector responses over time. A
significant amount of research investigated combinatorial optimization techniques
for this challenging data association problem [16, 17, 63, 108, 138, 149].

Recent data-driven trends in MOT leverage the representational power of deep
networks for learning identity-preserving embeddings for data association [80, 96,
171], learning the appearance model of individual targets [134, 211] and learning to
regress the pose of the detected targets [7]. However, these methods train individual
parts of the MOT pipeline using proxy losses (e.g. triplet loss [50] for learning
identity embeddings), that are only indirectly related to the MOT evaluation
measures [9]. The main difficulty in defining loss functions that resemble standard
tracking evaluation measures is due to the need of computing the optimal matching
between the predicted object tracks and the ground-truth objects. This problem
is usually solved by using the Hungarian (Kuhn-Munkres) algorithm (HA) [93],

which contains non-differentiable operations.

The significant contribution of this work is a novel, differentiable framework
for the training of deep multiple-object trackers, as illustrated in Fig. 2.1: it
proposes a differentiable variant of the standard CLEAR-MOT [9] evaluation
measures, which we combine into a novel loss function, suitable for end-to-end
training of MOT methods. In particular, we introduce a differentiable network
module — Deep Hungarian Net (DHN) — that approximates the HA and provides
a soft approximation of the optimal prediction-to-ground-truth assignment. The
proposed approximation is based on a bi-directional recurrent neural network
(Bi-RNN) that computes the (soft) assignment matrix based on the prediction-to-
ground-truth distance matrix. We then express both the MOTA and MOTP [9] as
differentiable functions of the computed (soft) assignment matrix and the distance
matrix. Through DHN, the gradients from the approximated tracking performance
measures are back-propagated to update the tracker weights. In this way, we can
train object trackers in a data-driven fashion using losses that directly correlate with
standard MOT evaluation measures. In summary, this work makes the following

contributions:
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(i) We propose novel loss functions that are directly inspired by standard MOT

evaluation measures [9] for end-to-end training of deep multiple-object trackers.

(ii) To back-propagate losses through the network, we propose a new network
module — Deep Hungarian Net — that learns to match predicted tracks to

ground-truth objects in a differentiable manner.

(iii) We demonstrate the merit of the proposed loss functions and differentiable
matching module by training the powerful MOT method-Tracktor [7] using
our proposed framework. We demonstrate improvements over the baseline
and establish a new state-of-the-art result (by the time of submission) on
MOTChallenge benchmark datasets [97, 124].

2.2 Related Works

Tracking as Discrete Optimization. With the emergence of reliable object
detectors [6, 35, 48] tracking-by-detection has become the leading tracking paradigm.
These methods first perform object detection in each image and associate detections
over time, which can be performed online via frame-to-frame bi-partite matching
between tracks and detections [93]. As early detectors were noisy and unreliable,
several methods search for the optimal association in an offline or batch fashion,

often posed as a network flow optimization problem [16, 17, 63, 108, 149].

Alternatively, tracking can be posed as a maximum-a-posteriori (MAP) esti-
mation problem by seeking an optimal set of tracks as a conditional distribution
of sequential track states. Several methods perform inference using conditional
random fields (CRFs) [1, 31, 128], Markov chain Monte Carlo (MCMC) [127] or
a variational expectation-maximization [2, 4, 5]. These methods in general, use
hand-crafted descriptors for the appearance model, such as color histograms [1, 29],
optical flow-based descriptors [31] and/or motion models [6, 128] as association
cues. Therefore typically only a few parameters are trainable and are commonly
learned using grid/random search or tree of parzen window estimators [8, 128].
In the case of CRF-based methods, the weights can be trained using structured
SVM [162, 174].
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Deep Multiple-Object Tracking. Recent data-driven trends in MOT leverage
representational power of deep neural networks. [185] learns track birth/death/as-
sociation policy by modeling them as Markov Decision Processes (MDP). As the
standard evaluation measures [9] are not differentiable, they learn the policy by

reinforcement learning.

Several existing methods train parts of their tracking methods using losses, not
directly related to tracking evaluation measures [9]. [88] leverages pre-learned CNN
features or a bilinear LSTM [89] to learn the long-term appearance model. Both
are incorporated into (Multiple Hypothesis Tracking) MHT framework [138]. Other
methods [54, 80, 96, 171] learn identity-preserving embeddings for data association
using deep neural networks, trained using contrastive [62], triplet [50] or quadruplet
loss [80]. At inference time, these are used for computing data association affinities.
Approaches by [134, 211] learn the appearance model of individual targets using
an ensemble of single-object trackers that share a convolutional backbone. A
spatiotemporal mechanism (learned online using a cross-entropy loss) guides the
online appearance adaptation and prevents drifts. All these methods are only
partially trained, and sometimes in various stages. Moreover, it is unclear how to

train these methods to maximize established tracking metrics.

Most similar to our objective, [174] proposes a framework for learning parameters
of linear cost association functions, suitable for network flow optimization [108]
based multiple-object trackers. They train parameters using structured SVM.
Similar to our method, they devise a loss function, that resembles MOTA: the
intra-frame loss penalizes false positives (FP) and missed targets while the inter-
frame component of the loss penalizes false associations, ID switches, and missed
associations. However, their loss is not differentiable and is only suitable for
training parameters within the proposed min-cost flow framework. [32] proposes
an end-to-end training framework that jointly learns feature, affinity, and multi-
dimensional assignment. However, their losses are not directly based on MOTA and
MOTP. [149] parameterizes (arbitrary) cost functions with neural networks and
trains them end-to-end by optimizing them w.r.t. the min-flow training objective.
Different from [149], our approach goes beyond learning the association function

and can be used by any learnable tracking method.

[7] proposes a tracking-by-regression approach to MOT. The method is trained
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for the object detection task using a smooth L, loss for the bounding box regressor.

Empirically, their method can regress bounding boxes in high-frame-rate video
sequences with no significant camera motion. Apart from the track birth and death
management, this approach is fully trainable, and thus it is a perfect method for
demonstrating the merit of our training framework. Training this approach on
sequence-level data using our proposed loss further improves the performance and
establishes a new state of the art on the MOTChallenge benchmark [97].

Hungarian (Kuhn—Munkres) Algorithm (HA). HA is designed in 1957 to
solve the minimum sum cost matching problem by optimally assigning (at most)
one edge for connecting a pair of vertices from two independent sets in a bipartite
graph. The cost (weighted) of the edges linking two vertices from two different sets
can be defined as the value of an entry in a N x M matrix—distance matrix D, where
N and M are the number of vertices in two sets (e.g. IV is the number of predicted
bounding boxes (tracks) and M is the number of ground-truth objects in the context
of MOT.) The original algorithm takes a square cost matrix (i.e. N = M) as the
input and outputs a binary assignment matrix A* where each row and column has
at most one assignment (i.e. the entry value is 1). It can be extended to deal with

rectangular matrices. The steps of HA are described as follows:
(i) Construct a N x M matrix by calculating the costs (distances) between vertices;
(ii)) Find the minimum value for each row and subtract it from each entry in the row;
(iii) Repeat step (ii) but for each column;

(iv) Draw a minimum number of lines through rows and columns so that all the zeros are

covered;

(v) If the number of drawn lines equals min(N, M), the final assignment matrix can be produced
by assigning one to entries having a value of zero so that each row and column has at most

one assignment, and assigning zero for the others; Otherwise, go to the next step;

(vi) Find the minimum value of uncovered entries (i.e. entries that are crossed by the drawn
lines) and subtract it from uncovered rows (i.e. rows that are not (fully) covered by lines)

and then add it back to the covered columns, go to step (iv).

As we can see, the HA contains several non-differentiable steps, which are

problematic for training with the gradient descent technique. For this reason, we



26
propose in the following a differentiable proxy, inspired by HA, to approximate the

assignment solution in a differentiable way.

2.3 DeepMOT

As described in Sec. 1.4, the first step to compute the CLEAR-MOT [9] tracking
evaluation measures is to perform bi-partite matching, using Hungarian Algo-
rithm [93], between the sets of ground-truth objects and of predicted tracks, as
described in Eq. 1.1. Once the correspondence between the two sets is established,
we can count the number of TP, FP, FN, and IDS needed to express MOTA and
MOTP (Eq. 1.2 and Eq. 1.3). As the main contribution, we propose a differentiable
loss inspired by these measures, following the same two-step strategy. We first
propose to perform a soft matching between the two sets using a differentiable
function, parameterized as a deep neural network— Deep Hungarian Net (DHN).
Once we establish the matching, we design a loss, approximating the CLEAR-MOT
measures, as a combination of differentiable functions of the (soft) assignment
matrix and the distance matrix. Alternative measures such as IDF1 [142] focus on
how long the tracker correctly identifies targets instead of how often mismatches
occur. However, MOTA and IDF1 have a strong correlation. This is reflected in
our results — by optimizing our loss, we also improve the IDF1 measure (Sec. 2.4.4).
In the following, we discuss both the differentiable matching module (Sec. 2.3.1)
and the differentiable version of the CLEAR-MOT measures [9] (Sec. 2.3.2).

Distance Matrix First-stage ludden Second-stage hidden
(Pradiction to Ground Truth) Tepresentation Tepresentatio Soft Azsignment Matrix
Row-wise Column-wise .
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Figure 2.2: Structure of the proposed DHN. The row-wise and column-wise flatten-
ing are inspired by the original HA, while the Bi-RNN allows for all decisions to be
taken globally, thus is accounting for all input entries.
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2.3.1 Deep Hungarian Net: DHN

Recall the notations defined in Sec. 1.4, in this section we introduce DHN, a
fundamental block in our DeepMOT framework. DHN produces a proxy A that is
differentiable w.r.t. D. Thus DHN provides a bridge to deliver gradient from the
loss (to be described later on) to the tracker. We formalize DHN with a non-linear
mapping that inputs D and outputs the proxy soft assignment matrix A. DHN is
modeled by a neural network A= g(D,wy) with parameters wy. Importantly, the
DHN mapping must satisfy several properties: (i) the output A must be a good
approximation to the optimal assignment matrix A*, (ii) this approximation must
be differentiable w.r.t. D, (iii) both input and output matrices are of equal, but

varying size and (iv) g must take global decisions as the HA does.

While (i) will be achieved by setting an appropriate loss function when training
the DHN (see Sec. 2.4.1), (ii) is ensured by designing DHN as a composite of
differentiable functions. The requirements (iii) and (iv) push us to design a network
that can process variable (but equal) input and output sizes, where every output
neuron has a receptive field equal to the entire input. We opt for bi-directional
recurrent neural networks (Bi-RNNs). Alternatively, one could consider the use of
fully convolutional networks, as these would be able to process variable input/output
sizes. However, large assignment problems would lead to partial receptive fields,

and therefore, to local assignment decisions.

We outline our proposed DHN architecture in Fig. 2.2. In order to process a
2D distance matrix D using RNNs, we perform row-wise (column-wise) flattening
of D. This is inspired by the original HA that performs sequentially row-wise and
column-wise reductions and zero-entry verifications and fed it to Bi-RNNs (see

details below), opening the possibility for g(-) to make global assignment decisions.

Precisely, we perform flattening sequentially, i.e., first row-wise followed by
column-wise. The row-wise flattened D is input to a first Bi-RNN that outputs
the first-stage hidden representation of size N x M x 2h, where h is the size
of the Bi-RNN hidden layers. Intuitively the first-stage hidden representation
encodes the row-wise intermediate assignments. We then flatten the first-stage
hidden representation column-wise, to input to a second Bi-RNN that produces the

second-stage hidden representation of size N x M x 2h. The two Bi-RNNs have
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the same hidden size, but they do not share weights. Intuitively, the second-stage
hidden representation encodes the final assignments. To translate these encodings
into the final assignments, we feed the second-stage hidden representation through
three fully-connected layers (along the 2h dimension, i.e., independently for each
element of the original D). Finally, a sigmoid activation produces the optimal
N x M soft-assignment matrix A. Note that in contrast to the binary output of

the Hungarian algorithm, DHN outputs a (soft) assignment matrix A € [0, 1]V*M,

Distance Matrix Computation. The most common metric for measuring
the similarity between two bounding boxes is the Intersection-over-Union (IoU).
Note that, in principle, the input D can be any (differentiable) distance function.
However, if two bounding boxes have no intersection, the distance 1 — IoU will
always be a constant value of 1. In that case, the gradient from the loss will be 0,
and no information will be back-propagated. For this reason, our distance is an
average of the Euclidean center-point distance and the Jaccard distance J (defined
as 1 — IloU):

Sy + T X"y

Ay, = 2.1
: 21)
f is the Euclidean distance normalized w.r.t the image size:

f(X”,ym) _ ”C(X ) _ C(y )HZ (2'2)

VIP W

where function ¢(-) computes the center point of the bounding box and H and W
are the height and the width of the video frame, respectively. Both the normalized
Euclidean distance and Jaccard distance have values in the range of [0, 1], so do all
entries d,,. Our framework admits any distance that is expressed as a composition
of differentiable distance functions. In the experimental section, we demonstrate
the benefits of adding a term that measures the cosine distance between two
learned appearance embeddings. In the following, we explain how we compute a
differentiable proxy of MOTA and MOTP as functions of D and A.
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Figure 2.3: DeepMOT loss: dMOT P (top) is computed as the average distance of
matched tracks and dMOT A (bottom) is composed with FP, IDS and FN.

2.3.2 Differentiable MOTA and MOTP

In this section, we detail the computation of two components of the proposed
DeepMOT loss: differentiable MOTA (dMOTA) and MOTP (dMOTP). As
discussed in Sec. 1.4, to compute the classic MOTA and MOTP evaluation measures,
we first find the optimal matching between predicted tracks and ground-truth
objects. Based on A", we count FN, FP and IDS. The latter is computed by
comparing assignments between the current frame and previous frames. To compute
the proposed dMOT A and dMOT P, we need to express all these as differentiable
functions of D and A computed using DHN (see Sec. 2.3.1).

The operations described in the following are illustrated in Fig. 2.3. First, we
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need to count FN and FP. Therefore, we need to obtain a count of non-matched

tracks and non-matched ground-truth objects. To this end, we first construct
a matrix C" by appending a column to A, filled with a threshold value 8 (e.g.,
5 = 0.5), and perform row-wise softmax (Fig. 2.3a). Analogously, we construct C°
by appending a row to A and perform column-wise softmax (Fig. 2.3b). Then, we

can express a soft approximation of the number of FP and FN as:

FP = Z C:;,MH» FN = Z C?V-‘rl,m‘ (2.3)

Intuitively, if all elements in A are smaller than the threshold 8, then entries of
C. 41 and Cy 4, will be close to 1, signaling we have a FP or FN. Otherwise, the
element with the largest value in each row/column of C" and C* (respectively) will
be close to 1, signaling that we have a match. Therefore, the sum of the N + 1-th
row of C° (Fig. 2.3b) and of the M + 1-th column of C" (Fig. 2.3a) provide a soft
estimate of the number of FN and the number of FP, respectively. We will refer to
these as FN and FP.

To compute the soft approximations IDS and dMOT P, we additionally need
to construct two binary matrices BTY and BEP, whose non-zero entries signal
true positives at the current and previous frames respectively. Row indices of
these matrices correspond to indices assigned to our tracks and column indices
correspond to ground truth object identities. We need to pad BLF for element-wise
multiplication because the number of tracks and objects varies from frame to frame.
We do this by filling-in rows and columns of B2 to adapt the matrix size for the
newly-appeared objects at the current frame by copying their corresponding rows
and columns from B™F. Note that we do not need to modify B™" to compensate
for newly appearing objects as these do not cause IDS. By such construction,
the sum of C{.y . @Eﬁp (where B is the binary complement of B) yields the
(approximated) number of IDS (Fig. 2.3c):

~ c =TP
IDS = || Cl:N,l:M <DB—l ||17 (24)

where || - ||1 is the Ly norm of a flattened matrix. With these ingredients, we can
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evaluate dMOT A:

FP +FN ++1DS

dMOTA =1 -
& M

(2.5)
~ controls the penalty we assign to IDS. Similarly, we can express dMOTP as:

_IIDeB™|,

dMOTP =1
IB™ Jlo

(2.6)
Intuitively, the L; norm expresses the distance between the matched tracks and
ground-truth objects, and the zero-norm || - ||¢ counts the number of matches.
Since we should train the tracker to maximize MOTA and MOTP, we propose the
following DeepMOT loss:

Loeepmor = (1 — dMOTA) + A\(1 — dMOTP), 2.7)

where A\ is a loss balancing factor. By minimizing our proposed loss function
Lpeepmor; We are penalizing FP, FN and IDS-all used by the CLEAR-MOT
measures [9]. Same as for the standard CLEAR-MOT measures, dMOT A, dMOTP

must be computed at every time frame .
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Figure 2.4: The proposed MOT training strategy (bottom) accounts for the track-
to-object assignment problem, solved by the proposed DHN, and approximates the
standard MOT losses, as opposed to the classical training strategies (top) using
the non-differentiable HA.
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2.3.3 How To Train Your Deep Multiple-Object Tracker

The overall tracker training procedure is shown in Fig. 2.4. We randomly sample
a pair of consecutive frames from the training video sequences. These two images
together with their ground-truth bounding boxes constitute one training instance.
For each such instance, we first initialize the tracks with ground-truth bounding
boxes (at time t) and run the forward pass to obtain the track’s bounding-box
predictions in the following video frame (time ¢+1). To mimic the effect of imperfect

detections, we add random perturbations to the ground-truth bounding boxes.

We then compute D and use our proposed DHN to compute A (Sec. 2.3.1).
Finally, we compute our proxy loss based on D and A (Sec. 2.3.2). This provides
us with gradient that accounts for the (soft) assignment, and that is used to update

the weights of the tracker.

2.4 Experimental Evaluation

In this section, we first detail the DHN implementation and experimentally verify
that our proposed DHN is a good approximation to HA [93] for bipartite matching,
as required by MOT evaluation measures (Sec. 2.4.1 and Sec. 2.4.2). We then
provide the implementation details of DeepMOT and DeepMOT-trackers (Sec. 2.4.3).
To show the merit of the proposed framework-DeepMOT, we conduct several
experiments on different datasets for evaluating pedestrian tracking performance
(Sec.2.4.4). Finally, we visualize the gradient back-propagated from the proposed
losses (Sec.2.4.5).

2.4.1 DHN Implementation Details

We provide as follows the implementation details of our differentiable matching
module-DHN.

DHN Training. To train the DHN, we create a data set with pairs of matrices (D
and A*), separated into 114,483 matrices for training and 17,880 for matrices testing.

The training pairs are generated as follows. We first compute distance matrices D
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using ground-truth labels (bounding boxes) and object detections provided by the

MOTChallenge datasets (MOT 15-17) [97, 124]. We augment the data by setting
all entries, higher than the randomly (with a uniform distribution ranging from 0
to 1) selected threshold, to a large value to discourage these assignments. This way,
we obtain a rich set of various distance matrices. We then compute assignments
using the Hungarian algorithm-HA (variant used in [9]) to get the corresponding

(binary) assignment matrices A", used as a supervisory signal.

We pose the DHN training as a 2D binary classification task using the focal
loss [111]. We compensate for the class imbalance (between the number of zeros ng
and ones n; in A™) by weighting the dominant zero-class using wo = n1/(ng + n1).
We weight the one-class by wy; = 1 — wy. We evaluate the performance of DHN by
computing the weighted accuracy (WA):

_ win] + wony

WA (2.8)

wing + U)OTLO’
where n] and n are the number of true and false positives, respectively. Since the
values of the output of DHN are between 0 and 1, we threshold the output at 0.5.

For training the DHN, we use the RMSprop optimizer [165] with a learning rate
of 0.0003, gradually decreasing by 5% every 20,000 iterations. We train DHN for
20 epochs (6 hours on a Titan XP GPU). For the focal loss, we weight zero-class by
wo = n1/(np + n1) and one-class by w; = 1 — wy. Here ng is the number of zeros
and n; the number of ones in A*. We also use a modulating factor of 2 in the focal
loss. Once the DHN training converges, we freeze the DHN weights and keep them
fixed when training trackers with DeepMOT.

DHN Usage. Once the DHN is trained with the strategy described above, its
weights are fixed: they are not updated in any way during the training of the deep

trackers.

2.4.2 DHN Ablation Study

In this section, we perform DHN ablation using our test split of 17,880 DHN

training instances, as explained previously in Sec. 2.4.1. We also evaluate the
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generalization of DHN by evaluating performing evaluation using distance matrices,
generated during the DeepMOT training process. Using these data, we provide (i)
an ablation study on the choice of recurrent units, (ii) a discussion of alternative
architectures; (iii) we experimentally assess how well the DHN preserves the
properties of assignment matrices; (iv) we provide an analysis of the impact of the

distance matrix size on the matching precision.

Discretization. To perform the evaluation, we first need to discretize the soft
assignment matrix A, predicted by our DHN to obtain a discrete assignment matrix

A. There are two possibilities.

(i) For each row of A, we set the entry of A corresponding to the largest value
of the row to 1 (as long as it exceeds 0.5) and the remaining values are set to

0. We refer to this variant as row-wise mazimum.

(ii) Analogously, we can perform column-wise mazximum by processing columns

instead of rows.

Distance Matrix First-stage hidden
(Track to Ground Truth) representation
Row-wise % Column-wise
" flatten ’ _. Reshape flatten
v Bi-RNN
N / N v
3 N
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) Second-stage hidden 2 x hidden units %
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(
Soft Assignment Matrix FC layers 2 x hidden units

Figure 2.5: Sequential DHN: Structure of the proposed Deep Hungarian Net.
The row-wise and column-wise flattening are inspired by the original Hungarian
algorithm, while the Bi-RNN allows for all decisions to be taken globally, thus is
accounting for all input entries.

DHN Model Variants. We compare to three different DHN architectures:

(i) Sequential DHN (seq, see Fig. 2.5),

(ii) Parallel DHN (paral, see Fig. 2.6),
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Figure 2.6: Parallel DHN variant: (i) We perform row-wise and the column-wise
flattening of D. (ii) We process the flattened vectors using two different Bi-RNNss.
(iii) They then are respectively passed to an FC layer for reducing the number of
channels and are concatenated along the channel dimension. (iv) After two FC
layers we reshape the vector and apply the sigmoid activation.

(iii) 1D Convolutional DHN (1d_conv, see Fig. 2.7).

The recurrent unit of the two recurrent architectures, seq and paral, is also
ablated between long-short term memory units (Istm) [72] and gated recurrent
units (gru) [30].

Accuracy and Validity. We reuse Eq. 2.8 for evaluating the weighted accuracy
of the outputs of our DHN. For validity, the output of the matching algorithm
should be a permutation matrix; i.e., there should be at most one assignment per
row/column. In the case of the HA, this is explicitly enforced via constraints on
the solution. To study how well the predicted (discretized) assignment matrices
preserve this property, we count the number of rows and columns by the following

criteria:

e Several Assignments (SA) counts the number of rows/columns that have
more than one assignment, after performing column-wise maximum or row-

wise maximum.

e Missing Assignments (MA) counts the number of rows/columns that are
not assigned (after performing column-wise maximum or row-wise maximum)
when ground-truth assignment matrix A* has an assignment or inversely when
there is no assignment in A* while A has an assignment in the corresponding

rows/columns.
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Figure 2.7: 1D convolutional DHN: Our 1D convolutional DHN variant is inspired
by the U-Net [143]. The encoder consists of two 1D-convolution layers of shapes
[1,24,15] and [24,48, 15] ([#input channels, #output channels, kernel size]). The
decoder consists of two 1D convolutional layers of shapes [96, 48, 5] and [72,24, 5].
Finally, we apply an 1D convolution and a sigmoid activation to produce A.

From Tab. 2.1, we see that the proposed sequential DHN (seq_gru) obtains the
highest WA (92.88% for row-wise maximum and 93.49% for column-wise maximum)
compared to others. Compared to the 1D convolutional DHN variant (WA of
56.43% and 56.18% for row-wise and column-wise maximum, respectively), Bi-RNN
shows the advantage of its global view due to the receptive field, equal to the
entire input. For the sequential DHN setting, we observe in Tab. 2.1 that gru
units consistently outperform Istm units with WA +9.22% (row-wise maximum)
and 46.42% (column-wise maximum). Finally, the proposed sequential DHN is
more accurate compared to the parallel variant of DHN (43.32% for row-wise and
+2.48% for column-wise maximum). As for the validity, the proposed seq_gru
commits the least missing assignments (MA) (4.79% and 6.41% for row-wise and
column-wise maximum, respectively), and commits only a few SA compared to

other variants.

DHN is a key component of our proposed DeepMOT training framework. To

evaluate how well DHN performs during training as a proxy to deliver gradients
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Table 2.1: Comparison of different network structures and settings in terms of WA,
MA and SA on the DHN test set.

Discretization| Network |VVA% (1) MA% (1) SA% (1)
seq_gru (proposed) | 92.88 4.79 3.39
Row-wise seq_lstm 83.66 13.79 5.98
maimum paral_gru 89.56 8.21 4.99
paral_Istm 88.93 8.67 5.38
1d_conv 56.43 35.06 2.78
seq_gru (proposed) | 93.49 6.41 26.57
Column-wise seq_lstm 87.07 13.54 47.04
A paral_gru 91.01 7.98 46.25
paral_Istm 90.50 8.60 47.43
1d_conv 56.18 79.54 7.73

from the DeepMOT loss to the tracker, we conduct the following experiment. We

evaluate DHN using distance matrices D, collected during the DeepMOT training

process. As can be seen in Tab. 2.2, the proposed sequential DHN (seq_gru)
outperforms the others variants, with a WA of 92.71% for row-wise and 92.36%

for column-wise maximum. For validity, it also attains the lowest MA: 13.17%
(row) and 12.21% (column). The SA is kept at a low level with 9.70% and 3.69%

for row-wise and column-wise maximum discretizations, respectively. Based on

these results, we conclude that (i) our proposed DHN generalizes well to matrices,

used to train our trackers, and (ii) it produces outputs that closely resemble valid

permutation matrices.
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Table 2.2: Comparison of different network structures and settings in terms of WA,
MA and SA on distance matrices during training.

Discretization | Network |WA% (1) MA% (1) SA% (1)
seq_gru (proposed)| 92.71 13.17 9.70
Row-wise seq_lstm 91.64 14.55 10.37
i paral_gru 86.84 23.50 17.15
paral_lstm 71.58 42.48 22.62
1d_conv 83.12 32.73 5.73
seq_gru (proposed)| 92.36 12.21 3.69
Column-wise seq_lstm 91.93 13.15 4.71
masimum paral_gru 87.24 20.56 16.67
paral_lstm 72.58 39.55 23.16
1d_conv 82.74 32.94 1.11

Matrix Size. To provide further insights into DHN, we study the impact of
the distance matrix size on the assignment accuracy. We visualize the relation
between WA and the input matrix size in Fig. 2.8. For validation, we generate
square matrices with sizes ranging from [2,300]. Precisely, we generate D with
a uniform distribution [0,1) and use the Hungarian algorithm implementation
from [9] to generate assignment matrices A*. For each size, we evaluate 10 matrices,
which gives us 2,990 matrices in total. As can be seen in Fig. 2.8, (i) the proposed
seq_gru consistently outperforms the alternatives. (ii) The assignment accuracy of
DHN and its variants decreases with the growth of the matrix size. Moreover, we
observe a performance drop for very small matrices (i.e., M = N < 6). This may

be due to the imbalance with respect to the matrix size during the training.

2.4.3 DeepMOT Experimental Settings

We demonstrate the practical interest of the proposed framework by assessing
the performance of existing (deep) multiple-object trackers when trained using
the proposed framework on several datasets for pedestrian tracking. We first
ablate the loss terms and the tracking architectures. We also evaluate the impact
of the framework w.r.t. other training alternatives. Finally, we establish a new
state-of-the-art score on the MOTChallenge benchmark.

Datasets. We use the MOT15, MOT16, and MOT17 datasets for the state-of-



39
the-art comparisons, which provide pedestrian video sequences captured in the

real-world indoor and outdoor scenarios. For the ablation studies, we divide the
MOT17 into train/validation sets. We split each sequence into three parts: the
first, one containing 50% of frames, the second one 25%, and the third 25%. We use
the first 50% for training data and the last 25% for validation to make sure there is
no overlap between the two. For MOT17, the public object detections (obtained by
DPM [48], SDP [192] and Faster RCNN [139] detectors) from the MOTChallenge

are used only during tracking.

Evaluation Metrics. In addition to the standard MOTP and MOTA measures [9)],
we report the performance using the IDF1 [142] measure, defined as the ratio of
correctly identified detections over the average number of ground-truth objects
and object tracks. We also report mostly tracked (MT) and mostly lost (ML)
targets, defined as the ratio of ground-truth trajectories that are covered by a track

hypothesis more than 80% and less than 20% of their life span respectively.

Tracktor. Tracktor [7] is an adaptation of the Faster RCNN [139] object detector
to the MOT task. It uses a region proposal network (RPN) and the classifica-
tion/regression heads of the detector to (i) detect objects and (ii) to follow the
detected targets in the consecutive frames using a bounding box regression head.
As most parts of Tracktor are trainable, this makes this method a perfect candidate
to demonstrate the benefits of our framework. Note that Tracktor was originally
trained only on the MOTChallenge detection dataset and was only applied to video
sequences during inference. In the following, we will refer to Tracktor trained in this
setting as Vanilla Base Tracktor. Thanks to DeepMOT, we can train Tracktor
directly on video sequences, optimizing for standard MOT measures. We will refer
to this variant as DeepMOT, Base Tracktor.

Tracktor4+ReID. Vanilla Tracktor has no notion of track identity. Therefore [7]
proposed to use an externally trained RelD module during inference to mitigate
IDS. This external RelD module is a feature extractor with a ResNet-50 backbone,
trained using a triplet loss [50] on the MOTChallenge video sequences. We will refer
to this variant as +RelDext. Note that this does not give Tracktor any notion
of identity during training. This means that the DeepMOT loss which penalizes

the number of IDS will have no significant effect on the final performance. For this
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reason, we propose to replace ReIDext with a lightweight RelD head that we can
train jointly with Tracktor using DeepMOT. This in turn allows us to utilize IDS
and to fully optimize performance to all components of CLEAR-MOT measures.
We refer to this variant as +RelDhead. It takes the form of a fully-connected
layer with 128 units plugged into Tracktor.

Even if such a network head has been previously used in [171], it was trained
externally using the triplet loss [50]. To the best of our knowledge, we are the first
to optimize such an appearance model by directly optimizing the whole network

for tracking evaluation measures.

For implementing the training with ReIDhead, we make the following changes.
Instead of selecting a pair of video frames, we randomly select ten consecutive frames.
This is motivated by the implementation of the external ReID mechanism in [7],
where the tracker averages appearance features over ten most recent frames. At each
training step, we compute representative embedding by averaging embeddings of
the past video frames and use it to compute the cosine distance to the ground-truth

object embeddings.

MOT-by-SOT. To demonstrate the generality of our method, we propose two
additional simple trainable baselines to perform MOT by leveraging two exist-
ing off-the-shelf (trainable) single-object trackers (SOTs): GOTURN [70] and
SiamRPN [102]. During inference we initialize and terminate tracks based on object
detections. For each object, the SOTs take a reference image at time ¢ — 1 of the
person and a search region in image ¢ as input. Based on this reference box and

search region, the SOTs then regress a bounding box for cach object independently.

Training Details. Recall that to train object trackers, we randomly select one
training instance from the sequence that corresponds to a pair of consecutive frames.
Then, we initialize object trackers using ground-truth detections and predict track
continuations in the next frame. At each time step, we use track predictions and
ground-truth bounding boxes to compute D, which we pass to our DHN and, finally,
compute the losses and back-propagate the gradient to the tracker through DHN.

Classic bounding-box data augmentation techniques are used. We initialize

trackers using ground-truth bounding boxes. To mimic the effects of imperfect object
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detectors and prevent over-fitting, we perform the following data augmentations

during the training:

e We randomly re-scale the bounding boxes with a scaling factor ranging from
0.8 to 1.2.

e We add random vertical and horizontal offset vectors (bounding box width

and/or height scaled by a random factor ranging from 0 to 0.25).

As for training hyperparameters, when training trackers using our DeepMOT
loss, we set the base value of § = 0.5, and the loss balancing factors of A = 5,7 = 2,
as determined on the validation set. We use the Adam optimizer [90] with a learning
rate of 0.0001. We train the SOTs for 15 epochs (72h), and we train Tracktor
(regression head and RelD head) for 18 epochs (12h) on a Titan XP GPU.

Track Management. In all cases, we use a simple (non-trainable) track man-
agement procedure. We (i) use detector responses to initialize object tracks in
regions, not covered by existing tracks (can be either public detections or Faster
RCNN detection responses in the case of Tracktor); (ii) we regress tracks from
frame ¢ — 1 to frame ¢ using either a SOT or Tracktor and (iii) we terminate tracks
that have no overlap with detections (SOT baseline) or invoke the classification
head of Tracktor, that signals whether a track is covering an object or not. As an

alternative to direct termination, we can set a track as invisible for K = 60 frames.

2.4.4 DeepMOT Results and Discussion

Beyond Bounding Box Regression. In Tab. 2.3, we first establish the Vanilla
Base Tracktor performance on our validation set and compare it to the DeepMOT
Base Tracktor. This experiment (i) validates that our proposed training pipeline
based on DHN delivers the gradient to the trackers and improves the overall
performance, and (ii) confirms our intuition that training object trackers using a
loss that directly correlates with the tracking evaluation measures has a positive
impact. Note that the impact on IDS is minimal, which may be on the first sight
surprising, as our proposed loss penalizes IDS in addition to FP, FN, and bounding

box misalignment.
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Table 2.3: Impact of the different RelD strategies for the two training strategies on
Tracktor’s performance.

Method ~ MOTA + MOTP 4 IDF14+ MT 4+ ML | FP| FN ] IDS ]

: Base 59.97 89.50 70.84 35.13 27.66 276 31827 326
+RelDext 60.20 89.50 71.15 35.13 27.80 276 31827 152
Base 60.43 91.82 71.44 3541 27.25 218 31545 309

+RelDext 60.62 91.82 71.66 3541 27.39 218 31545 149
+RelDhead 60.66 91.82 72.32 35.41 27.25 218 31545 118

DeepMOT | Van

We study this by first evaluating the impact of applying external ReID module,
i.e., +RelDext. As can be seen in Tab. 2.3, RelDext has a positive impact
on the performance, as expected, in terms of MOTA (+0.23% and +0.19%) and
IDS (—174 and —160) compared to Base for Vanilla and DeepMOT training

respectively.

To further demonstrate the interest of a RelD module, we also report the
+RelDhead architecture trained with DeepMOT. Importantly, +RelDhead
cannot be trained in the Vanilla setting due to the lack of mechanisms to penalize
IDS. Remarkably, +RelDhead trained end-to-end with Tracktor does not only
improve over the Base performance (MOTA +0.23%, IDS | 191), but it also
outperforms +RelDext (MOTA 1 0.04 and IDS | 31). Very importantly, the
lightweight RelD head contains a significantly lower number of parameters (=~ 131 K)
compared to the external RelD module (= 25 M).

Finally, in addition to improve the performance measures for which we optimize
Tracktor, DeepMOT consistently improves tracking measures such as IDF1 (11.17
improvement of DeepMOT+ReIDhead over Vanilla+ReIDext). We conclude
that (i) training existing trackers using our proposed loss clearly improves the
performance and (ii) we can easily extend existing trackers such as Tracktor to go
beyond simple bounding box regression and incorporate the appearance module

directly into the network. All modules are optimized jointly in a single training.

DeepMOT, Loss Ablation. Next, we perform several experiments in which
we study the impact of different components of our proposed loss (Eq. 2.7) on the
performance of Tracktor (DeepMOT—+RelIDhead). We outline our results in
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Table 2.4: Ablation study on the effect the training loss on Tracktor.

Training loss MOTA + MOTP 4+ IDF14+ MT 1+ ML ] FP| FN | IDS|
Vanilla 60.20  89.50  71.15 35.13 27.80 276 31827 152
Smooth L, 60.38  91.81  71.27 34.99 27.25 294 31649 164
AMOTP 60.51  91.74 7175 35.41 26.83 291 31574 142
dMOTA 6052 8831 7192 3541 27.39 254 31597 142
AMOTA+dMOTP-IDS 60.61  92.03 7210 3541 27.25 222 31579 124
dMOTA+dMOTP 60.66  91.82 72.32 35.41 27.25 218 31545 118

Tab. 2.4. In addition to Vanilla4+ReIDext (representing the best performance
trained in Vanilla settings), we also report results obtained by training the same
architecture using only the Smooth L; loss (see Fig. 2.4). We train the regression
head with Smooth L; loss using a similar training procedure as for DeepMOT, (see
Sec. 2.3.3), to regress predicted bounding boxes to the ones at the current time
step of their associated tracks. This approach is limited in the sense that we cannot
(directly) penalize FP, FN, and IDS.

The Smooth L; training, when compared to Vanilla, has a positive impact on
almost all performance measures, except for MT, FP, and IDS. However, both
Vanilla and Smooth L; are outperformed almost systematically for all performance
measures by the various variants of the DeepMOT loss. Remarkably, when using
the dMOTA term in our loss, we significantly reduce the number of IDS and
FP. Training with dMOTP has the highest impact on MOTP, as it is the case
when training with Smooth L;. When only optimizing for dMOT A, we have
a higher impact on the MOTA and IDF1 measure. Remarkably, when training
with (IMOTA+dMOTP), we obtain a consistent improvement on all tracking
evaluation measures with respect to Vanilla and Smooth L;. Finally, we assess the
impact of IDS, by setting the weight  to 0 (Eq. 2.5) (line dM OT A+dMOT P-IDS).
In these settings, the trackers exhibit a higher number of IDS compared to using

the full loss, confirming that the latter is the best strategy.

MOT-by-SOT Ablation. Using DeepMOT, we can turn trainable SOT methods
into trainable MOT methods by combining them with the track management

mechanism (as explained in Sec. 2.4.3) and optimize their parameters using our loss.
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Table 2.5: DeepMOT v.s. Smooth L; using MOT-by-SOT baselines and Tracktor.

Training MOTA + MOTP 4 IDF1+ MT+ ML | FP ] FN ] IDS |

Pre-trained = 45.99 85.87  49.83 22.27 36.51 2927 39271 1577
Smooth L,  52.28 90.56  63.53 29.46 34.58 2026 36180 472
DeepMOT  54.09 90.95 66.09 28.63 35.13 927 36019 261

Pre-trained  55.35 87.15  66.95 33.61 31.81 1907 33925 356
Smooth L;  56.51 90.88 68.38 33.75 32.64 925 34151 167
DeepMOT  57.16 89.32  69.49 3347 32.78 889 33667 161

Vanilla 60.20 89.50 71.15 35.13 27.80 276 31827 152
Smooth L;  60.38 91.81 71.27 3499 2725 294 31649 164
DeepMOT  60.66 91.82 72.32 35.41 27.25 218 31545 118

Tracktor |SiamRPN [GOTURN

In Tab. 2.5, we outline the results of the two MOT-by-SOT baselines (GOTURN [70]
and SiamRPN [102]). For both, we show the performance when using (i) a pre-
trained network, (ii) a network fine-tuned using the Smooth L; loss, and (iii) the
one trained with DeepMOT.

Based on the results outlined in Tab. 2.5, we conclude that training using
the Smooth L; loss improves the MOTA for both SOTs (GOTURN: +6.29%,
SiamRPN: +1.16%). Moreover, compared to models trained with Smooth L; loss,
we further improve MOTA and reduce the number of IDS when we train them
using DeepMOT. For GOTURN (SiamRPN), we record a MOTA improvement
of 1.81% (0.65%) while reducing the number of IDS by 211 (6). We also outline
the improvements comparing Vanilla4+RelIDext Tracktor trained with Smooth
Ly loss, and DeepMOT+RelDhead Tracktor trained using DeepMOT. These
results further validate the merit and generality of our method for training deep

multiple-object trackers.

MOTChallenge Benchmark Evaluation. We evaluate the trackers trained
using our framework on the MOTChallenge benchmark (test set) using the best-
performing configuration, determined previously using the validation set. During
training and inference, we use the camera motion compensation module, as proposed
by [7], for the three trained trackers. We discuss the results obtained on MOT15-17,

as shown in Tab. 2.6. We follow the standard evaluation practice and compare our
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Table 2.6: We establish a new state-of-the-art on MOT15-17 public benchmarks by
using the proposed DeepMOT.

Method MOTA + MOTP 1 IDF1t+ MT 1 ML | FP|] FNJ] IDS|
DeepMOT-Tracktor 53.7 77.2 53.8 194 36.6 11731 247447 1947
Tracktor [7] 53.5 78.0 52.3 19.5 36.6 12201 248047 2072
DeepMOT-SiamRPN  52.1 78.1 47.7 16.7 41.7 12132 255743 2271
>~ SiamRPN [102] 47.8 76.4 414 170 41.7 38279 251989 4325
8 DeepMOT-GOTURN  48.1 77.9 40.0 13.6 43.5 22497 266515 3792
= GOTURN [70] 38.3 75.1 25.7 94 47.1 55381 282670 10328
eHAF [153] 51.8 77.0 54.7 23.4 379 33212 236772 1834
FWT [71] 51.3 77.0 476 214 35.2 24101 247921 2648
jCC [85] 51.2 75.9 54.5 209 37.0 25937 247822 1802
MOTDT17 [26] 50.9 76.6 52.7 17.5 35.7 24069 250768 2474
MHT_DAM [88] 50.7 7.5 472 208 36.9 22875 252889 2314
DeepMOT-Tracktor 54.8 77.5 53.4 19.1 37.0 2955 78765 645
Tracktor [7] 54.4 78.2 525 19.0 36.9 3280 79149 682
DeepMOT-SiamRPN  51.8 78.1 45,5 16.1 451 3576 83699 641
© SiamRPN [102] 44.0 76.6 36.6 15.5 457 18784 82318 1047
5 DeepMOT-GOTURN  47.2 78.0 372 137 46.1 7230 87781 1206
% GOTURN [70] 37.5 75.4 25.1 84 46.5 17746 92867 3277
HCC [121] 49.3 79.0 50.7 178 39.9 5333 86795 391
LMP [161] 48.8 79.0 51.3 182 40.1 6654 86245 481
GCRA [120] 48.2 77.5 48.6 129 41.1 5104 88586 821
FWT [71] 47.8 75.5 44.3 19.1 382 8886 85487 852
MOTDT [26] 47.6 74.8 50.9 152 38.3 9253 85431 792
DeepMOT-Tracktor 44.1 75.3 46.0 172 26.6 608 26917 1347
Tracktor [7] 44.1 75.0 46.7 18.0 26.2 6477 26577 1318
» DeepMOT-SiamRPN  33.3 74.6 32.7 9.3 437 7825 32211 919
§ SiamRPN [102] 31.0 73.9 30.7 12,6 41.7 10241 31099 1062
8 DeepMOT-GOTURN  29.8 75.3 277 40 66.6 3630 38964 524
= GOTURN [70] 23.9 72.8 223 36 664 7021 38750 965
S AP_HWDPL p [25] 38.5 72.6 47.1 87 374 4005 33203 586
AMIR15 [145] 37.6 1.7 46.0 15.8 26.8 7933 29397 1026
JointMC [85] 35.6 71.9 45.1  23.2 39.3 10580 28508 457

RAR15pub [47] 35.1 70.9 454 13.0 423 6771 32717 381
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models to methods that are officially published on the MOTChallenge benchmark

and peer-reviewed. For MOT17, we average the results obtained using the three
sets of provided public detections (DPM [48], SDP [40] and Faster R-CNN [139]).
As in [7], we use these public detections for track initialization and termination.
Importantly, in the case of Tracktor, we do not use the internal detection mechanism

of the network, but only public detections.

As can be seen in Tab. 2.6, DeepMOT-Tracktor establishes a new state-of-the-art
on both MOT17 and MOT16. We improve over Tracktor (on MOT17 and MOT16,
respectively) in terms of (i) MOTA (0.2% and 0.4%), (ii) IDF1 (1.5% and 0.9%) and
(iii) IDS (125 and 37). On both benchmarks, Vanilla Tracktor is the second best-
performing method, and our simple SOT-by-MOT baseline DeepMOT-SiamRPN
is the third. We observe large improvements over our MOT-by-SOT pre-trained
models and models trained using DeepMOT. For GOTURN, we improve MOTA by
9.8% and 9.7% and we significantly reduce the number of IDS by 6536 and 2071,
for MOT17 and MOT16 respectively. A similar impact on DeepMOT-SiamRPN is

observed.

We report the results for MOT15 as a supplementary material. Our key

observations are:

(i) For the MOT-by-SOT baseline, we significantly improve over the trainable
baselines (SiamRPN and GOTURN). deepMOT-SiamRPN increases MOTA
for +2.3%, MOTP for +0.7% and IDF1 for +2.0%. Remarkably, deepMOT-
SiamRPN suppresses 2,416 FP and 143 IDS. We observe similar performance
gains for deepMOT-GOTURN.

(ii) deepMOT-Tracktor obtains results, comparative to the vanilla Tracktor [7].
Different from MOT16 and MOT17 datasets, we observe no improvements in
terms of MOTA, which we believe is due to the fact that labels in MOT15
are very noisy, and vanilla Tracktor already achieves impressive performance.
Still, we increase MOTP for 0.3% and reduce FP for 392.
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Figure 2.9: Visualization of negative gradients (direction and magnitude) from
different terms in the proposed DeepMOT loss: (a) FP and FN (b) MOTP (c-d)
IDS (compare (c) t —1 with (d) ¢). The predicted bounding boxes are shown in blue,
the ground-truth ones are shown in green and the gradient direction is visualized
using red arrows.

2.4.5 Training Gradient Visualization

The negative gradient should reflect the direction that minimizes the loss.
In Fig. 2.9, we plot the negative gradient of different terms that constitute our
DeepMOT loss w.r.t the coordinates of each predicted bounding box to demonstrate
visually the effectiveness of our DeepMOT. In this example, we manually generated
the cases that contain the FP, FN, or IDS. We observe that the negative gradient
does encourage the tracks’ bounding boxes to be close to those of their associated

objects during the training.
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2.5 Conclusion

In this work, we propose an end-to-end MOT training framework, based on a
differentiable approximation of HA and CLEAR-MOT metrics. We experimentally
demonstrate that our proposed MOT framework improves the performance of
existing deep MOT methods. Thanks to our method, we set a new state-of-the-
art score on the MOT16-MOT17 datasets. We believe that our method was the
missing block for advancing the progress in the area of end-to-end learning for deep
multiple-object tracking. We expect that our training module holds the potential

to become a building block for training future multiple-object trackers.
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Chapter 3

TransCenter: Improving MOT

Performance with Transformers

(a) Detection (b) Tracking

Figure 3.1: In our TransCenter, we propose to tackle the multiple-object tracking
problem with transformers in an accurate and efficient manner: the dense non-
overlapping representations provide sufficient and accurate detections through
dense heatmap outputs as shown in (a); The sparse tracking queries, obtained from
sampled features in object positions at the previous frame, efficiently produce the
displacements of objects from the previous to the current time step, as shown in

(b).
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3.1 Introduction

Recent progress in computer vision using transformers [169] for tasks such as
object detection [20, 110, 214], person re-identification (Re-ID) [68] or image super
resolution [191], showed the benefit of the attention-based mechanism. Transformers
are good at modeling simultaneously dependencies between different parts of the
input and thus at taking global decisions. These advantages fit perfectly the
underlying challenges of MOT, where current methods often struggle when modeling
the interaction between objects, especially in crowded scenes. We, therefore, are
motivated to investigate the use of a transformer-based architecture for MOT,
enabling global estimations during finding trajectories thus reducing missed or

noisy tracks.

Current MOT methods follow in principle the predominant tracking-by-detection
paradigm where we first detect objects in the visual scene and associate them
through time. The detection ability is critical for having a good MOT performance.
To this end, MOT methods combined with probabilistic models [5, 112, 140]
or deep convolutional architectures [7, 54, 132, 151, 176, 189, 201] usually use
either an integrated or external detector to predict discrete bounding-box outputs.
They are often based on overlapping predefined anchors that predict redundant
outputs (which might create noisy detections) and thus need hand-crafted post-
processing techniques (that might suppress correct detections) such as non-maximum
suppression (NMS). Instead, concurrent MOT methods [123, 131] built on recent
object detectors like DETR [20] leverage transformers where sparse noise-initialized
queries are employed, which perform cross-attention with encoded images to output
non-overlapping object-position predictions, thanks to the one-to-one assignment
of objects and queries during training. However, with sparse fixed-number queries,
the approach often suffers a lack of detections when the visual scene becomes
crowded and needs to re-adjust the hyper-parameters of queries. For these reasons,
we argue that having dense but non-overlapping representations for detection is
beneficial in MOT, especially in crowded-scene MOT. Indeed, there exist center-
based methods [203, 209] that output dense object-center heatmap predictions
directly related to the input image. The center heatmap representations are

pixel-related and thus inherit the one-to-one assignment of objects and queries
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(pixels) without external assignment algorithms. However, the locality of CNN
architecture limits the networks to explore the co-dependency of objects globally
while transformers do. Therefore, we believe that the transformer-based approach
with dense image-related (thus non-overlapping) representations is a better choice
for building a powerful MOT method.

Designing a powerful transformer-based MOT with dense image-related repre-
sentations is far from evident. The main drawback is the computational efficiency
related to the quadratic complexity in transformers w.r.t the dense inputs. There-
fore, both the encoder and the decoder in transformers should be carefully designed
to build an efficient and powerful MOT method. For the encoder, the DETR [20]
structure alleviates this issue by introducing a pre-feature extractor like ResNet-50
to extract lower-scale features before inputting the images to the transformers, but
the CNN feature extractor contributes also to the network complexity. Deformable
DETR reduces significantly the attention complexity but the ResNet backbone
is still kept. Alternatively, recent efficient transformers like [175] discard the pre-
feature extractor and input directly image patches, following the ViT structure [43].
They also reduce the attention complexity in transformers by a spatial-reduction

attention, which makes building efficient transformer-based MOT possible.

Concerning the TransCenter Decoder, indeed, Deformable DETR reduces signifi-
cantly in the decoder side the attention complexity but faced with dense queries, the
calculation is still heavy for real-time applications. We recall the dense representa-
tions obtained from the outputs of the encoder already learn global self-dependency
inside the encoder and have a size related to the input image. It is thus intuitive
to directly output the dense representations for heatmap predictions that avoids
the heavy dense detection cross-attention on the decoder side. Furthermore, MOT
is more than detection but also needs to associate objects from one time step to
another—tracking. The tracking happens in the decoder where we search the current
object positions with the known previous ones. By this intuition, we design sparse
tracking queries because the tracking has prior positional information and thus
does not need to search every pixel for finding current object positions, which

significantly speeds up the MOT method without losing accuracy.
To summarize, as roughly illustrated in Fig. 3.1, TransCenter tackles the MOT

problem with transformers in an accurate while efficient way. It (1) introduces



52
dense image-related queries to deal with miss detections from insufficient sparse

queries or over detections in overlapping anchors of current MOT methods, yielding
better MOT accuracy; (2) solves the efficiency issue inherited in transformers with
careful network designs, sparse tracking queries, and removal of useless external
overheads, allowing TransCenter to perform MOT efficiently. Overall, this paper

has the following contributions:

e We introduce TransCenter, the first center-based transformer framework for
MOT, which is also among the first to show the benefits of using transformer-
based architectures for MOT.

o We carefully explore different network structures to combine the transformer
with center representations, specifically proposing dense image-related multi-
scale representations that are mutually correlated within the transformer
attention and produce abundant but less noisy tracks, while keeping a good

computational efficiency.

e We extensively compare with up-to-date online MOT tracking methods, Tran-
sCenter sets a new state-of-the-art baseline both in MOT17 [124] (+4.0%
Multiple-Object Tracking Accuracy, MOTA) and MOT20 [38] (+18.8%
MOTA) by large margins, leading both MOT competitions by now in the
published literature.

e Moreover, two more model options, TransCenter-Dual, which further boosts
the performance in crowded scenes, and TransCenter-Lite, enhancing the
computational efficiency, are provided for different requirements in MOT

applications.

3.2 Related Works

3.2.1 Transformers in Multiple-Object Tracking

Transformer is first proposed by [169] for machine translation, and has shown

its ability to handle long-term complex dependencies between entries in a sequence
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by using multi-head attention mechanism. With its success in natural language

processing, works in computer vision start to investigate transformers for various
tasks, such as image recognition [43], Person Re-ID [68], realistic image generation

[82], super resolution [191] and audio-visual learning [52, 53].

Object detection with Transformer (DETR) [20] can be seen as an exploration
and correlation task. It is an encoder-decoder structure where the encoder extracts
the image information and the decoder finds the best correlation between the
object queries and the encoded image features with an attention module. The
attention module transforms the inputs into Query (@), Key (K), and Value (V')
with fully-connected layers. Having @, K,V the attended features are calculated
with the attention function [169]:

KT
Attention(Q, K, V') = Softmax( ¢

Vh

where h is the hidden dimension of @), K, and V. The attention calculation suffers

1% (3.1)

from heavy computational and memory complexities w.r.t the input size: the
feature maps extracted from a ResNet-50 [67] backbone are used to alleviate
the problem. Deformable DETR [214] further tackles the issue by proposing a
deformable attention inspired by [34], drastically speeding up the convergence (10x)
and reducing the complexity. The reduction of memory consumption allows in
practice using multi-scale features to capture finer details, yielding better detection
performance. However, the CNN backbone is still kept in Deformable DETR. This
important overhead hinders the Transformer from being efficient. Alternatively,
Pyramid Vision Transformer [175] (PVT) extracts the visual features directly from
the input images and the attention is calculated with efficient spatial-reduction
attention (SRA). Precisely, PVT follows the ViT [43] structure while the feature
maps are gradually down-scaled with a patch embedding module (with convolutional
layers and layer normalization). To reduce the quadratic complexity of Eq. 3.1 w.r.t
the dimension d of @), K, V', the SRA in PVT reduces beforehand the dimension of
K,V from R™" to R7*h (with 7 > 1, the scaling factor) and keeps the dimension
of Q unchanged. The complexity can be reduced by 72 times while the dimension
of the output attended features remains unchanged, boosting the efficiency of

transformer attention modules.



54

Transformers are still new in MOT. Before transformers, some attempts with
simple attention-based modules have been introduced for MOT. Specifically, [61]
proposes a target and distractor-aware attention module to produce more reliable
appearance embeddings, which also helps suppress detection drift and [173] proposes
hand-designed spatial and temporal correlation modules to achieve long-range
information similar to what transformers inherit. After the success in detection
using transformers, two concurrent works directly apply transformers on MOT based
on the (deformable) DETR framework. First, Trackformer [123] builds directly
from DETR [20] and is trained to propagate the queries through time. Second,
Transtrack [131] extends [214] to MOT by adding a decoder that processes the
features at ¢t — 1 to refine previous detection positions. Importantly, both methods
stay in the DETR framework with sparse queries and extend it for tracking. However,
recent literature [114, 203, 209] also suggests that point-based tracking may be a
better option for MOT while the use of pixel-level dense queries with transformers to
predict dense heatmaps for MOT has never been studied. In addition, we question
the direct transfer from DETR to MOT as concurrent works do [123, 131]. Indeed,
the sparse queries without positional correlations might be problematic in two
folds. Firstly, the insufficient number of queries could cause severe miss detections
thus false negatives (FN) in tracking. Secondly, queries are highly overlapping,
and simply increasing the number of non-positional-correlated queries may end
up having many false detections then false positives (FP) in tracking. All above
motivate us to investigate a better transformer-based MOT framework with careful
designs considering existing drawbacks. We thus introduce TransCenter, achieving

state-of-the-art performance.

3.3 TransCenter

TransCenter proposes to tackle the MOT task with the TransCenter Decoder
dedicated to the two main tasks: detection and temporal association. Different from
previous transformer-based MOT methods, TransCenter questions the use of sparse
queries without positional correlations (i.e. noise initialized), and explores the use
of image-related dense queries producing dense representations within transformers.

To that aim, we introduce the query learning networks (QLN) responsible for
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Figure 3.2: Generic pipeline of TransCenter and different variants: Images at ¢
and t — 1 are fed to the transformer encoder (DETR-Encoder or PVT-Encoder)
to produce multi-scale memories M; and M;_; respectively. They are passed
(together with track positions at ¢t — 1) to the Query Learning Networks (QLN)
operating in the feature dimension channel. QLN produce (1) dense pixel-level
multi-scale detection queries—-DQ), (2) detection memory-DM, (3) (sparse or dense)
tracking queries—TQ, (4) tracking memory—TM. For associating objects through
frames, the TransCenter Decoder performs cross attention between TQ and TM,
producing Tracking Features—TF. For detection, the TransCenter Decoder either
calculates the cross attention between DQ and DM or directly outputs DQ (in
our efficient versions, TransCenter and TransCenter-Lite, see Sec. 3.3), resulting
in Detection Features-DF for the output branches, S; and C;. TF, together with
object positions at t — 1 (sparse TQ) or center heatmap C;_; (omitted in the figure
for simplicity) and DF (dense TQ), are used to estimate image center displacements
T, indicating for each center its displacement in the adjacent frames (red arrows).
We detail our choice (TransCenter) of QLN and TransCenter Decoder structures in
the figure. Other designs of QLN and TransCenter Decoder are detailed in Fig. 3.3
and Fig. 3.4. Arrows with dotted line are only necessary for models with sparse

TQ.

converting the output of the encoder into the input of the decoder. Different
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architectures for the QLN and the TransCenter Decoder are possible and their

choices should take both the computational efficiency and accuracy into account.

While exploiting dense representations from dense queries (visualized in Sec. 3.5.2)
can help detect sufficiently the objects, especially in the case of crowded scenes,
the design of dense queries is not trivial. Indeed, the quadratic increase of cal-
culation complexity in transformers should be solved, and randomly initialized
dense queries may lead to FP. The fact that the dense queries are image-related
has three prominent advantages: (1) the queries are multi-scale and exploit the
multi-resolution structure of the encoder, allowing for very small targets to be

captured by those queries; (2) image-related dense detection queries also make
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the network more flexible since no parameter is needed to (re-)define the number

of queries like in [131] based on the scenes; (3) the query-pixel correspondence
discards the time-consuming Hungarian matching [93] (e.g. 0.45s per training step,
i.e. taking 6.9h more for training MOT?20 validation set for 50 epochs) for the
query-ground-truth object association during training. Up to our knowledge, we
are the first to explore the use of image-related dense query feature maps that scale
with the input image size. Meanwhile, we solve the efficiency issue through careful
network designs handling the dense representation of queries, which provides an

accurate and efficient MOT method even in crowded-scene MOT.

A generic pipeline of TransCenter is illustrated in Fig. 3.2. The RGB images
at t and t — 1 are input to the weight-shared Transformer encoder and we obtain
the dense multi-scale attended features called memories M; and M;_1, respectively.
They are the inputs of the QLN. The latter produces two sets of output pairs,
tracking queries (DQ) and memory (DM) for detecting the objects at time ¢,
and tracking queries (TQ) and memory (TM) for associating the objects at ¢
with previous time step ¢t — 1. Furthermore, TransCenter Decoder, leveraging the
deformable transformer [214], is used to correlate the detection/tracking queries
with the memories (DM /TM). To elaborate, TQ interacts with TM in the cross-
attention module of the TransCenter Decoder, resulting in the tracking features
(TF). Similarly, the detection features (DF') are the output of the cross-attention
between DQ and DM. To produce the output dense representations, DF are used
to estimate the object size S; and the center heatmap C;. TF are used to estimate

the tracking displacement T.

One can argue that the downside of using dense queries is the associated memory
consumption and computational efficiency. A prominent problem for obtaining
these dense queries is the use of the deformable DETR encoder (including the CNN
feature extractor ResNet 50 [67]), as previously done in the literature. Instead,
TransCenter uses PVT [175] as its encoder, PVT-Encoder. The reasons are 3-fold:
(1) it discards the ResNet-50 backbone and uses efficient attention heads [175],
reducing significantly the network complexity; (2) it has flexible scalability by
modifying & and block structures (we use B0 (PVT-Lite-Encoder) in TransCenter-
Lite and B2 (PVT-Encoder) for TransCenter, see details in [175] and Sec.3.4.1.);

(3) its feature pyramid structure is suitable for building dense pixel-level multi-scale
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queries.

Once the TransCenter Encoder extracts the dense memory representations My
and M,_;, we propose several design choices for QLN (see Section 3.3.1) and for
the TransCenter Decoder (see Section 3.3.2), to alleviate the complexity issue.
In particular, unlike DQ that are needed to represent every pixel (i.e. dense)
to discover new objects, we demonstrate that TQ can be sparse (visualized in
Sec. 3.5.3) since we have the position prior of objects at ¢ — 1 to search their
current positions at ¢, i.e. to find the corresponding object given its potions at
the previous frame, we do not need to search every pixel. Thus, the discretization
of tracking queries based on object positions at t — 1 (roughly from 14k to less
than 500 depending on the number of tracks) is beneficial and can significantly
speed up the tracking attention calculation in the TransCenter Decoder. Regarding
the detection side, the cross attention module between the dense detection queries
(DQ) and the detection memory (DM) is beneficial in terms of performance
but with important computational loads. To this end, we study the impact
on the computational efficiency and the accuracy of the detection cross-attention
(introducing TransCenter-Dual). Finally, a lighter version (with PVT-Lite-Encoder)
of TransCenter is also studied and denoted as TransCenter-Lite. In the next two
sections, we detail the design choices of the QLN and the TransCenter Decoder,
we provide the details of the final branches (see Section 3.3.3) and as well as the

training losses (see Section 3.3.4).

3.3.1 QLN: Query Learning Networks

As discussed previously in Sec. 3.3, DQ are dense and image-related that
discover object positions precisely and abundantly. Different from the detection
queries, TQ are sparse aiming at finding links between two different frames, and
thus TQ and TM should be produced by input features from different time steps.
Based on these attributes, the chosen QLNg_ ! produces DQ by M; (attended

features from image t) after a FFEN (feed-forward network with fully-connected

1”S” means sparse, ”—" means that the features are sampled from ¢ — 1. It is counter-intuitive

to have QLNg because at time ¢, we know neither the number of tracked objects (tracks) at ¢ nor
their positions, we cannot thus sample features with track positions.
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layers). For TQ, QLNg_ samples object features (with a feature sampler using

bilinear interpolation) from M;_; using track positions at ¢ — 1, while outputting
TM from features at a different time step, M;.

Track Positions at 1 — |

FFN |~ 1a L ™

M ™ M ™

™ FFN o

M
M, DM M, DM

FFN DQ FFN ——DQ FFN Tl

f:i?)ice?LNS_ (our (b) QLNp_ (c) QLNp (d) QLN

Figure 3.3: Query Learning Networks (QLN): TransCenter uses QLNg_ as its query
learning network, producing sparse tracking queries from information at ¢t — 1.

Different structures of QLN are studied such as QLNp_, QLNp (QLN,y, in green
arrow and QLNpg in blue arrow), and QLNg, detailed in Sec. 3.3.1. Best seen in
color.

To demonstrate the effectiveness of our choice (QLNg_), we ablate with different
QLN variants in Sec. 3.4.5. To elaborate, to demonstrate that having sparse tracking
queries is possible, we study QLN p_ following a similar strategy as QLNg_ but
produces dense (with the subscript ”D”) TQ without the feature sampler. Both
TQ in QLNg_ and QLNp_ are from M;_;, interacting with TM from M; in the
TransCenter Decoder. Inversely, based the aforementioned intuition that TQ and
TM should be from different time steps, we compare to QLN p, of two variants —
QLNy;, and QLN pg, outputting dense TQ from M, or DQ, respectively. They
interact with TM from M;_;. Finally, for demonstrating the superior performance
of our dense image-related queries, we compare to QLN similar to QLN pg but
the queries are from learnable embeddings (with the subscript "E”) initialized with

noise as in DETR [20], instead of the memories and thus not related to the images.

In summary, QLN are carefully designed and ablated to produce dense detection
queries relative to the input image and sparse tracking queries for accurate and
efficient MOT with transformers.

2We note that discarding TDCA is impossible since the tracking queries at ¢ — 1 or ¢ should
interact with TM for searching objects at ¢ or ¢t — 1.
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Figure 3.4: TransCenter Decoder is used to handle tracking queries TQ and
detection queries DQ. The detection attention correlates DQ and DM with the
attention modules to detect objects. The tracking attention correlates TQ and
TM (information from different time steps) to learn the displacements between
frames of the detected objects at ¢ — 1 (i.e. tracks). TransCenter Decoder has
three main modules TQSA, DDCA and TDCA (defined in Sec. 3.3.2). Different
versions of TransCenter Decoder depending on discarding the DDCA (TQSA) or
not, are denoted as Single-(TQSA) or Dual-(TQSA) decoder *. TransCenter uses
Single-TQSA considering the efficiency-accuracy tradeoff. The choice is based on
the ablation of the aforementioned variants in Sec. 3.4.5. Ny is the number of
decoder layers.

3.3.2 TransCenter Decoder

To successfully find object trajectories, a MOT method should not only de-
tect the objects but also associate them across frames. To do so, TransCenter
Decoder tackles in parallel with the two sub-tasks: detection and tracking. Tran-
sCenter Decoder consists of Tracking Deformable Cross-Attention (TDCA), and
Detection Deformable Cross-Attention (DDCA). We also introduce Tracking Query
Self-Attention (TQSA) to enhance the interactions among input sparse queries
through a multi-head self-attention module, knowing that the overhead is accept-
able because the queries are (tracking) sparse in TransCenter. TDCA and DDCA
calculate cross attention between (tracking or detection) queries—TQ or DQ and
(tracking or detection) memories-TM or DM, outputting TF or DF, respectively.
They leverage a deformable cross attention module in [214] with linear complexity

w.r.t. input size.
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From the efficiency perspective, the use of the multi-head attention modules

as in traditional transformers [169] as in DETR [20] implies a complexity growth
that is quadratic with the input size. Of course, this is undesirable and would
limit the scalability and usability of the method. To mitigate this, we resort to the
deformable multi-head attention [214]-Deformable Cross-Attention (DCA), where
the queries are input to produce sampling offsets for displacing the input reference
points. The reference points are from either the track position at ¢t — 1 for tracking
in TDCA or the pixel coordinates of the dense queries for detection in DDCA 3.
The displaced coordinates are used to locate and sample features in DM or TM
(Value). The input queries also produce in DCA the attention weights for merging

sampled features.

However, the cost of calculating the cross attention between DQ and DM is
still not negligible because of their multi-scale image resolutions. To solve this,
we demonstrate in Sec. 3.4.5 (Single v.s. Dual decoder, i.e. discarding DDCA or
not) that it is possible to output directly DQ as DF for output-branch predictions,
thanks to the dense pixel-level nature of DQ, with an acceptable loss of accuracy as
expected. Differently, under this sparse nature of TQ in the proposed TransCenter,
we enhance the interaction among queries, TQSA is added before TDCA.

To conclude, we choose to use a Single-TQSA decoder for the cross attention of
TQ and TM while we directly use DQ for the output branches. This is possible
thanks to the sparse TQ and dense DQ, which yields a good balance between
computational efficiency and accuracy. Other variants are ablated in Sec. 3.4.5 and
described in Fig. 3.4.

3.3.3 The Center, the Size and the Tracking Branches

Given DF and TF as inputs from the TransCenter Decoder, we use different
branches to output object center heatmap C; and their box size S; as well as the
tracking displacements T;. DF contain feature maps of four different resolutions,
namely 1/32,1/16,1/8, and 1/4 of the input image resolution. For the center

heatmap and the object size, the feature maps at different resolutions are combined

3The reference points arc omitted in the figures for simplicity.
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Figure 3.5: Overview of the center heatmap branch. The multi-scale detection
features are up-scaled (bilinear up.) and merged via a series of deformable convo-
lutions (Def. Conv., the ReLU activation is omitted for simplicity) [34], into the
output center heatmap. A similar strategy is followed for the object size and the
tracking branches.

using deformable convolutions [34] and bilinear interpolation, following the archi-
tecture shown in Fig. 3.5, into a feature map of 1/4 of the input resolution, and
finally into C, € [0, 1]#/“*W/4 (H and W are the input image height and width,
respectively) and S, € RA/4W/4x2 (the two channels of S; encode the object width
and height). Regarding the tracking branch, the tracking features TF are sparse of
size depending on the number of tracks at ¢ — 1 where one tracking query feature
corresponds to one track at t —1. TF, together with object positions at ¢t —1 (sparse
TQ) or center heatmap C,_; and DF (dense TQ), are input to two fully-connected
layers with ReLU activation. They predict the horizontal and vertical displacements

T, of tracks ¢t — 1 in the adjacent frames.
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3.3.4 Model Training

The model training is achieved by jointly learning a 2D classification task for
the object center heatmap and a regression task for the object size and tracking
displacements, covering the branches of TransCenter. For the sake of clarity, in this

section, we will drop the time index t.

Center Focal Loss. In order to train the center branch, we need first to build the
ground-truth heatmap response C* € [0, 1]#/4*W/4 As done in [209], we construct
C* by considering the maximum response of a set of Gaussian kernels centered
at each of the K > 0 ground-truth object centers. More formally, for every pixel

position (z,y) the ground-truth heatmap response is computed as:

C;y = kllllaX G((l’, y): (xkvyk‘)vo-)7 (32)

=1,...

where (2, yx) is the ground-truth object center, and G(+, -; o) is the Gaussian kernel
with spread o. In our case, ¢ is proportional to the object’s size, as described
in [95]. Given the ground-truth C* and the inferred C center heatmaps, the center
focal loss, L. is formulated as:
o @ *x
Lo — [1(2 (1 Ciy) log(Cyy) Cly = .1’ (3.3)
o | (1—C5,) (Cyy)*log(l — Cyy)  otherwise.

where the scaling factors are o = 2 and = 4, see [203].

Sparse Regression Loss. The values of S is supervised only on the locations

where object centers are present, i.e. C’;‘y = 1 using a L; loss:

HS%’ - S;y

|1 C;y =1,

LS:;{Z

2y (0 otherwise.

(3.4)

The formulation of L, for T is analogous to Lg but using the tracking output and
ground-truth displacement, instead of the object size. To complete the sparsity of
Lg, we add an extra L, regression loss, denoted as Li with the bounding boxes

computed from Sg and ground-truth centers. To summarize, the overall loss is
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formulated as the weighted sum of all the losses, the weights are chosen according

to the numeric scale of each loss:

L — LC + )\SLS + )\TLT + )\RLR (3.5)

3.4 Experimental Evaluation

3.4.1 Implementation Details

Inference with TransCenter. Once the method is trained, we detect objects
by selecting the maximum responses from the output center heatmap C;. Since
the datasets are annotated with bounding boxes, we need to convert our estimates
into this representation. In detail, we apply (after a max pooling) a threshold 7
(0.3 for MOT17 and 0.4 for MOT20) to the center heatmap, thus producing a list
of center positions {c,;}1,. We extract the object size s;; associated to each
position ¢, in S;. The set of detections produced by TransCenter is denoted as
D, = {cs, styk}fztl. In parallel, for associating objects through frames (tracking),
given the positions of tracks at ¢ — 1, we can estimate the object position in the
current frame by extracting the corresponding displacement estimate t,; from T;.
Therefore, we can construct a set of tracked positions f’t ={ci—1x + ter, St,k}gir
Finally, we use the Hungarian algorithm [93] to match the tracked positions — P,
and the detection at t — D,;. The matched detections are used to update the tracked
object positions at t. The birth and death processes are naturally integrated in
TransCenter: Detections not associated to any tracked object give birth to new
tracks, while unmatched tracks are put to sleep for at most T = 60 frames before
being discarded. An external Re-ID network is often used in MOT methods [7] to
recover tracks in sleep, which is proven unnecessary in our experiment in Sec. 4.4.3.
We also assess inference speed (fps) in the testset results either obtained from [202]

or tested under the same GPU setting.

Network and Training Parameters. The input images are resized to 640 x 1088
with padding in TransCenter (608 x 1088 in TransCenter-Lite). In TransCenter, the
PVT-encoder has [3,4, 6, 3] layers ([2,2,2,2] in PVT-Lite-Encoder) for each image
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level (see Fig. 2.4) and the corresponding hidden dimension h = [64, 128, 320, 512]

(h = [32,64,160,256] in PVT-Lite-Encoder). h = 256 for the TransCenter De-
coder with eight attention heads and six layers (four layers in TransCenter-Lite).
TransCenter is trained with loss weights Ag = 0.1, Az = 0.5 and Ay = 1.0 by the
AdamW optimizer [117] with learning rate 2e—4. The training converges at around
50 epochs, applying learning rate decay of 1/10 at the 40th epoch. The entire
network is pre-trained on the pedestrian class of COCO [167] and then fine-tuned
on the respective MOT dataset [38, 124]. We also present the results fine-tuning
with extra data like CrowdHuman dataset [152] (see Sec. 3.4.3 for details).

3.4.2 Protocol

Datasets and Detections. We use the standard split of the MOT17 [124] and
MOT20 [38] datasets and the test evaluation is obtained by submitting the results
to the MOTChallenge website. The MOT17 testset contains 2,355 trajectories
distributed in 17,757 frames. MOT20 testset contains 1,501 trajectories within
only 4,479 frames, which leads to a much more challenging crowded-scene setting.
We evaluate TransCenter both under public and private detections. When using
public detections, we limit the maximum number of birth candidates at each frame
to be the number of public detections per frame, as in [123, 209]. The selected
birth candidates are those closest to the public detections with IOU larger than
0. When using private detections, there are no constraints, and the detections
depend only on the network’s detection capacity, the use of external detectors, and
more importantly, the use of extra training data. For this reason, we regroup the
results by the use of extra training datasets as detailed in the following. In addition,
we evaluated our TransCenter in the KITTI data under the autonomous driving
setting, KITTI dataset contains annotations of cars and pedestrians in 21 and 29
video sequences in the train and test set, respectively. For the results of KITTI

dataset, we also used [163] as extra data.

Extra Training Data. To fairly compare with the state-of-the-art methods, we
clearly denote the extra data used to train each method (including several pre-prints
listed in the MOT Challenge leaderboard, which are marked with * in our result
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tables):* ch for CrowdHuman [152], pt for PathTrack [148], rel for the combination
of Market1501 [205], CUHKO1 and CUHKO3 [105] person re-identification datasets,
re2 replaces CUHKO1 [105] with DukeMTMC [142], 5d1 for the use of five extra
datasets (ETH [45], Caltech Pedestrian [41, 42], CityPersons [199], CUHK-SYS [186],
and PRW [206]), 5d14+CH is the same as 5d1 plus CroudHuman. (5d1+CH)
uses the tracking/detection results of FairMOT [203] (trained within the 5d1+CH

setting), and no for using no extra dataset.

Table 3.1: Results on MOT17 testset: the left and right halves of the table
correspond to public and private detections respectively. The cell background color
encodes the amount of extra-training data: green for none, orange for one extra
dataset, red for (more than) five extra datasets. Methods with * are not associated
to a publication. The best result within the same training conditions (background
color) is underlined. The best result among published methods is in bold. Best
seen in color.

| Public Detections I Private Detections
Method | Data MOTA® MOTP{ IDFI* MT+ ML| FP| FN| IDS| FPSt| Data MOTA$ MOTP{ IDFI1 MT+ ML| FP| FN| IDS| FPSt
MOTDTIT [27] rel 509 766 527 175 357 24069 250,768 2474 18.3
*UnsupTrack [54] pt 617 783 581 272 324 16872 197632 1864 <175
GMT.CT [65] re2 615 66.9 263 321 14,059 200655 2,415
TrackFormer [123] ch 625 607 298 269 14,966 206619 1189 6.8
SiamMOT [154] ch 65.9 635 346 239 18098 170,955 3,040 12.8
*MOTR [198] ch 67.4 67.0 346 245 32,355 149,400 1,992 7.5
TrackFormer [123] ch 65.0 639 456 138 70443 123552 3.528 0.8
CenterTrack [209] ch 675 784 647 346 246 18,489 160.332 3,03
TraDeS [81] ch 69.1 639 364 215 20,892 150.060 55
PermaTrack [166] ch 73.8 689 438 17.2 28998 114.104 3.69¢
*TransTrack [131] ch 745 806 639 468 113 28323 112137 3.66:
TransCenter | ch 75.9  8L.2 659 49.8 12.1 30,190 100,999 4,626 117 | ch 76.2 811 655 53.5 7.9 40,101 88,827 5.
GSDT [176] 5d1 66.2 79.9 68.7 40.8 183 43368 144261 3.
SOTMOT [114] 5d1 62.8 67.4 244 330 6,556 201,319 2,017 16.0 5d1 7.0 719 427 153 39,537 118.983 5.
GSDT_V2 [176] 5d1 73.2 665 417 175 26,397 120666 :
CorrTracker [173] 5d1 76.5 73.6  47.6 127 29,808 99510 3.3
FairMOT [203] 5d14+CH 3.7 81.3 723 432 173 27,507 117477 3.302
*RelationTrack [194] 5d14+CH 73.8 81.0 TAT 417 232 27,999 118.623
*CSTrack [109] 5d14+CH 749 80.9 72.6 415 175 23847 114.303 3.
MLT [201] (5d1+CH) 753  81.7 755 493 195 27879 109.836 1,
*FUFET [151] (5d14+CH) 762 811 80 511 136 32796 98475 3.2
TransCenter [5d1+CH 76.0 814 656 47.3 15.3 28,369 101,988 4972 117 || 5d14+CH 764 812 (54 5L7 11.6 37,005 89,712
TretrD17 [189] no 537 772 538 194 366 11731 247447 1047 <20
Tracktor [7] no 535 780 523 195 366 12201 243,047 2072 <20
Tracktor++ [7] no 56.3 8.8 551 21.1 353 8866 235449 1,987 <2.0
GSM_Tracktor [115] no 56.4 7.9 57.8 222 345 14379 230,174 1485 8.7
TADAM [61] no 59.7 58.7 9,676 216,029 1,930
CenterTrack [209] no 615 789 596 264 319 TL076 200672 20583 175
*FUFET [151] no 62.0 505 278 3L5 15114 196672 2621 68
ArTIST-C [147] no 623 507 291 340 19,611 191207 2,062 <175
MAT [64] no 67.1 80.8 69.2 389 264 22756 161,547 1,279 9.0
MTP [22] no 515 549 205 355 20,623 241618 2563 201 no 55.9 604 205 367 8,653 238853 1,188 20.1
ChainedTracker [132] no 666 782 574 322 242 22281 160491 5529 68
QDTrack [129] no 646 796 651 323 283 14103 152998 2652 20.3 no 687 790 663 406 219 26589 14,6643 3378 20.3
TransCenter | no 7L9 805 641 444 186 27,356 126,860 4,118 119 | no 72.7  80.3 640 487 14.0 33,807 115,542 4719 118

Metrics. Standard MOT metrics such as MOTA (Multiple Object Tracking
Accuracy) and MOTP (Multiple Object Tracking Precision) [9] are used: MOTA is

mostly used since it reflects the average tracking performance including the number

4COCO [167] and ImageNet [144] are not considered as extra data according to the MOTchal-
lenge [38, 124].
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of FP (False positives, predicted bounding boxes not enclosing any object), FN

(False negatives, missing ground-truth objects) and IDS [106] (Identities of predicted
trajectories switch through time). MOTP evaluates the quality of bounding boxes
from successfully tracked objects. Moreover, we also evaluate on IDF1 [142] (the
ratio of correctly identified detections over the average number of ground-truth
objects and predicted tracks), MT (the ratio of ground-truth trajectories that are
covered by a track hypothesis more than 80% of their life span), and ML (less than
20% of their life span).

3.4.3 Testset Results and Discussion

MOT17. Tab. 3.1 presents the results obtained on the MOT17 testset. The first
global remark is that most state-of-the-art methods do not evaluate under both
public and private detections, and under different extra-training data settings, while
we do. Secondly, TransCenter sets new state-of-the-art performance compared to all
other methods, in terms of MOTA, under CH and no-extra training data conditions,
both for public and private detections. Precisely, the increase of MOTA w.r.t. the
state-of-the-art methods is of 8.5% and 4.8% (both including unpublished methods
by now) for the public detection setting under CH and no-extra training data, and
of 1.7% and 4.0% for the private detection setting, respectively. The superiority
of TransCenter is remarkable in most of the metrics. We can also observe that
TransCenter trained with no extra-training data outperforms, not only the methods
trained with no extra data but also some methods trained with one extra dataset
(in terms of MOTA for both public and private detections). Similarly, TransCenter
trained on ch performs better than seven methods trained with five or more extra
datasets in the private setting, comparable to the best result in 56d1+CH (-0.3%
MOTA), showing that TransCenter is less data-hungry. Moreover, trained with
5d1+CH, the performance is further improved while running at around 11 fps.
Overall, these results confirm our hypothesis that TransCenter with dense detection
representations and sparse tracking representations produced by global relevant

queries in transformers is a better choice.

MOT20. Tab. 3.2 reports the results obtained in MOT20 testset. In all settings,

similar to the case in MOT17, TransCenter leads the competition by a large margin



67
Table 3.2: Results on MOT20 testset: the table is structured following the same
principle as Tab. 3.1. Methods with * are not associated to a publication. The best
result within the same training conditions (background color) is underlined. The
best result among published methods is in bold. Best seen in color.

| Public Detections I Private Detections
Method | Data MOTA+ MOTP 1 IDF14 MT+ ML| FP| FN| IDS| FPS?| Data MOTAf MOTPt IDF14 MT+ ML| FP| FN| IDS] FPS?
*UnsupTrack [84] pt 53.6 80.1 50.6 303 250 G439 231298 2,178 <17.5
*TransTrack [131] ch 645 800 592 491 136 28,566 151,377 3.565
TransCenter | ch 728 810 57.6 65.5 12.1 28,026 110,312 2621 84 | ch 729  81.0 577 66.5 118 28596 108,982 2,625 8.7
CorrTracker [173] 5d1 65.2 69.1 664 89 79429 95855 5.183 8.5
GSDT.V2 [176] 5d1 67.1 675 531 132 31,507 135395 3.230 0.9
GSDT [176] 5d1 671 791 675 531 132 31913 135409 3131 09
SOTMOT [114] 5d1 68.6 714 64.9 9.7 57064 101154 4209 85
FairMOT [203] 5d1+CH  61.8 78.6 67.3 68.8 7.6 103.440 88,901 5243 13.2
*CSTrack [109] 5d1+CH 666 788 686 504 155 25404 144358 3.196 4.5
*RelationTrack [194] 5d1+CH 672 792 705 22 89 GLI34 104597 4243 27
TransCentor [5d1+CH 724 812 57.9 642 12.3 25121 115421 2,290 8.6 |5d1+CH 725 811 581 G647 122 25722 114310 2,332 83
SORT [11] no 427 8.5 451 167 262 27,521 264,694 4,470 _<27.7
Tracktor++ [7] no 52.6 79.9 527 294 267 6,930 236,680 1,648 1.2
ArTIST-T [147] no 53.6 510 316 281 7765 230576 1,531 <12
GNNMatch [130] no 545 794 490 328 255 9522 223611 2035 0.1
TADAM [61] no 56.6 516 30407 18,2520 2,690
MLT [201] no 489 780 5 309 221 45,660 216,803 2,187 3.7
TransCenter | no 67.7 798  58.9 65.6 11.3 54967 108,376 3707 54 no 67.7  79.8 58.7 663 111 56435 107,163 3.750 8.4

compared to all the other methods. Concretely, TransCenter outperforms current
methods by +19.2%/+8.4% in MOTA with the public/private setting trained with
ch and +11.1%/18.8% without extra data. From the results, we observe another
remarkable achievement of TransCenter is the significant decrease of FN while
keeping a relatively low FP number. This indicates that the dense representation of
the detection queries can help effectively detect objects sufficiently and accurately.
As for tracking, TransCenter maintains low IDS numbers in MOT20 running at
around 8 fps in such crowded scenes, thanks to our careful choices of QLN and
the TransCenter Decoder. Very importantly, to the best of our knowledge, our
study is the first to report the results of all settings on MOT20, demonstrating
the tracking capacity of TransCenter even in a densely crowded scenario. The
outstanding results of TransCenter in MOT20 further show the effectiveness of our

design.

KITII. Additionally, we show the results of TransCenter in the KITTI dataset.
TransCenter outperforms significantly CenterTrack [209] in pedestrian tracking
(+5.3% MOTA) while keeping a close performance in car tracking. However, the
KITTI dataset is constructed in an autonomous driving scenario with only up
to 15 cars and 30 pedestrians per image (some of the sequences even contain no
pedestrians). The fast-moving camera motion and the sparse object locations

cannot fully show the capacity of TransCenter to detect and track crowded objects.
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Table 3.3: KITTI testset results in MOTA, MOTP, FP, FN, IDS and FPS. Best
results are underlined.

Method [MOTA + MOTP 1 FP | FN| IDS | FPS1

MASS [180] 84.6 854 4145 786 353 100.0

IMMDP [184] 82.8 828 5300 422 211 5.3

_AB3D [179] 83.5 852 4492 1,060 126 214.7
ESMAT [60] 83.6 85.9 5254 175 198  10.0

TrackMPNN [136]| 87.3 84.5 2,577 1,298 481  20.0
CenterTrack [209] | 88.8 85.0 2,703 886 254 22.2

TransCenter ‘ 87.3 83.8 3,189 847 340 18.5

AB3D [179] 38.9 64.6 11,744 2,135 259 214.7
§TrackMPNN [136] 52.1 73.4 7,705 2,758 626  20.0
ECenterTrack [209] 53.8 73,7 8,061 2,201 425 222

TransCenter ‘ 59.1 73.2 6,889 2,142 436 18.5

3.4.4 Efficiency-Accuracy Tradeoff Discussion

To have a direct idea to the better design of TransCenter, we discuss in de-
tail the efficiency-accuracy tradeoff comparing TransCenter, TransCenter-Lite,
and TransCenter-Dual to the transformer-based concurrent works — TransTrack [131]
and TrackFormer [123] as well as the center-based MOT methods — CenterTrack [209]
and FairMOT [203]. The comparisons take into account the number of model pa-
rameters, the model memory footprint during inference, the inference speed (frame
per second or FPS), and the MOTA performance as shown in Tab. 3.4, completed
with Tab. 3.1 and Tab. 3.2. Moreover, we compare the center heatmap/query
responses of the aforementioned methods in Sec. 3.5.1, showing that TransCenter

produces sufficient and accurate outputs.

Compared to Transformer-Based MOT. With the scientific purpose and
respect to our concurrent works, we compare TransCenter with them both in
accuracy and inference speed. Unfortunately, Trackformer [123] by far only shows
results on MOT17 and TransTrack [131] does not show results in all settings.

One important remark is that TransCenter systematically outperforms TransTrack
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Table 3.4: Comparison among CenterTrack [209], FairMOT [203], Trackformer [123],
TransTrack [131] and our proposed models in number of model parameters
(#params), Inference Memory (IM), Frame Per Second (FPS), MOTA. The results
are evaluated on both MOT17 and MOT20 testsets in private detection setting.
All the models are pretrained on CrowdHuman [152] except FairMOT [203] trained
also on 5d14+CH datasets. The default input image size for CenterTrack [209] is
544 x 960, 608 x 1088 for FairMOT [203] and TransCenter-Lite, 640 x 1088 for
TransCenter and TransCenter-Dual. TrackFormer [123] and TransTrack [131] use
varying input sizes with short size of 800.

Setting #params (M) | IM (MB) | FPS 1+ MOTA 1
CenterTrack [209] 20.0 892 17.5 67.8
FairMOT [203] 20.3 892 25.9 73.7
—TrackFormer [123] 40.0 976 6.8 65.0
g TransTrack [131] 47.1 1,002 10.0 74.5
= TransCenter-Dual 39.7 954 5.6 76.0
TransCenter 35.1 938 11.8 76.2
TransCenter-Lite 8.1 838 17.5 73.5
CenterTrack [209] 20.0 892 - -
FairMOT [203] 20.3 892 132 618
STrackFormer [123] 40.0 976 - -
g TransTrack [131] 47.1 1,002 7.2 64.5
= TransCenter-Dual 39.7 954 51 1735
TransCenter 35.1 938 8.7 72.9
TransCenter-Lite 8.1 838 11.0 68.0

and TrackFormer in both accuracy (MOTA) and speed (FPS) with a smaller
model size (# of model parameters) and less inference memory consumption in
all settings. Precisely, using the same training data, TransCenter exhibits better
performance compared TransTrack by +1.7% MOTA (by +11.2% v.s. TrackFormer)
in MOT17 and significantly by +8.4% in MOT20. Moreover, we recall that,
unlike our concurrent works, TransCenter leverages pixel-level dense and multi-
scale detection queries to predict dense center-based heatmaps, mitigating the
miss-tracking problem while keeping relatively good computational efficiency with
sparse tracking queries, efficient QLN and TransCenter Decoder. TransCenter
demonstrates thus a significantly better efficiency-accuracy tradeoff. Finally, for
different MOT applications, we provide TransCenter-Dual, introduced to further
boost the performance in crowded scenes, and TransCenter-Lite for efficiency-critical

applications.
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Compared to Center-Based MOT. With the long-term dependencies and

the dense interactions of queries in transformers, unlike pure CNN-based center
MOT methods, our queries interact globally with each other and make global
decisions. TransCenter exhibits much better accuracy compared to previous center-
based MOT methods, CenterTrack and FairMOT [203, 209]. Precisely as shown in
Tab. 3.1 and Tab. 3.4, TransCenter tracks more and better compared to Center-
Track, with +8.4% (+10.4%) MOTA and -71,505 (-73,812) FN in MOT17 private
(public) detections, using the same dense center representations and trained with
the same data. CenterTrack does not show results in MOT20 while FairMOT,
similar to CenterTrack, showed good result in MOT20. It alleviates miss detections
by training with much more data, leading to much fewer FN but producing much
noisier detections (FP). Surprisingly, with much less training data (CH), TransCen-
ter still outperforms by a large margin [203] (+11.1% MOTA shown in Tab. 3.4)
even in very crowded MOT20, with cleaner detections (suppressing -74,844 FP) and
better tracking associations (-2,618 IDS) shown in Tab. 3.2. Indeed, the inference
speed is slower compared to CNN-based methods, but the above comparisons have
demonstrated that previous center-based MOT methods are not comparable in
terms of accuracy to TransCenter, with an acceptable fps around 11 fps for MOT17
and 8 fps for MOT20. Moreover, to adapt to applications with more strict inference
constraints, TransCenter-Lite is introduced, keeping a better performance while

having competitive inference speed compared to center-based MOT methods.

To conclude, TransCenter expresses both better accuracy and efficiency com-
pared to transformer-based methods [123, 131]; much higher accuracy numbers and
competitive efficiency compared to [203, 209], showing better efficiency-accuracy

balance.

3.4.5 Ablation Study

In this section, we first experimentally demonstrate the importance of our
proposed image-related dense queries with naive DETR to MOT approaches. Then,
we justify the effectiveness of our choices of QLN and TransCenter Decoder (see
illustrations in Fig. 3.3 and Fig. 3.4, respectively), considering the computational

efficiency and accuracy. Both results are shown in Tab. 3.5. Furthermore, in
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Table 3.5: Ablation Study of different model structure implementations evaluated
on MOT17 and MOT20: different variants of the QLN and TransCenter-decoders
are discussed in Fig. 3.3 and Fig. 3.4, respectively. The module ablated in each
line is marked in grey . For the queries, ”D-S* means dense detection and sparse
tracking queries, with ”"D” refers to "dense” and ”S” refers to "sparse”, similarly
for 7S-S” and ”D-D”. Line 10, 12, 14, 16 are the proposed TransCenter, line
9 TransCenter-Lite and line 11 TransCenter-Dual, indicated with .

Settings \ MOT17 \ MOT20

Line Encoder Decoder  Queries QLN ‘MOTA 1 IDF11 FP | FN | IDS | FPS 1 ‘ MOTA t+ IDF11 FP| FN| IDS| FPS*
1 DETR Dual SS°  QLNp 494 49.6 4,909 8,202 602 2.5 42.5 26.8 19,243 153,429 4,375 1.5

2  DETR Dual D-D° QLNg 56.6 50.1 3,510 7,577 678 1.7 67.3 32.1 45,547 46,962 8,115 0.9

3 DETR Dual D-D  QLNpg| 69.2 71.9 1,202 6,951 203 1.9 79.47 66.9 7,697 53,987 1,680 1.2

4 DETR Dual DD QLNy,| 668 712 1074 7,757 167 19 | 783 647 5517 59447 1832 12

5 DETR Dual D-D QLNp_| 658 70.3 1,122 7,987 176 1.9 78.4 64.2 5,340 59,288 1,798 1.1

6 DETR Dual D-D  QLNpg| 692 71.9 1,202 6,951 203 1.9 79.4 66.9 7,697 53,987 1,680 1.2

7 DETR Single D-D  QLNpq 68.1 72.0 580 7922 141 2.1 79.8 66.9 6,955 53,445 1,657 1.2

8 PVT Single D-D QLNpg| 723 71.4 1,116 6,156 249 8.1 83.6 751 14,358 34,782 1,348 6.1

9*  PVT-Lite Single D-S QLNg_| 69.8 71.6 2,008 5,923 252 19.4 82.9 75.5 14,857 36,510 1,181 124
10* PVT  Single-TQSA D-S QLNg_ 73.8 74.1 1,302 5,540 258 124 83.6 75.7 15459 34,054 1,085 8.9

11*  PVT  Dual-TQSA D-S QLNg_| 74.6 76.5 892 5879 128 5.6 84.6 78.0 13,415 33,202 921 4.8

12+ PVT  SingleeTQSA D-S QLNg_| 738 741 1,302 5,540 258 124 83.6 75.7 15,459 34,054 1,085 8.9

13 PVT Single D-S QLNg | 69.4 72.5 1,756 6,335 197 13.3 83.0 747 14,584 36,4441 1,321 9.8

14*  PVT  Single-TQSA D-S QLNg_| 73.8 74.1 1,302 5,540 258 124 83.6 75.7 15,459 34,054 1,085 8.9

15 PVT Single D-D  QLNp_ 1.1 717 1,274 6274 278 9.0 82.5 75.0 12,686 40,003 1,216 6.3

16*  PVT  SingleTQSA D-S QLNg_| 73.8 74.1 1,302 5,540 258 124 83.6 75.7 15459 34,054 1,085 8.9

Tab. 3.6, we ablate the impacts of removing the external Re-ID network and the
NMS (Non-Maximum Suppression) during inference. Finally, we show an additional
ablation of the number of decoder layers. For the ablation, we divide the training
sets into a train-validation split, we take the first 50% of frames as training data
and test on the last 25%. The rest 25% of frames in the middle of the sequences are
thrown to prevent over-fitting. All the models are pre-trained on CrowdHuman [152]

and tested under the private detection setting.

Dense Representations Are Beneficial. We implemented a naive DETR MOT
tracker with its original 100 sparse queries (from learnable embeddings initialized
from noise) with the DETR-Encoder and Dual TransCenter Decoder (Line 1 in

Tab. 3.5). To compare, the same tracker but having dense representations (43,520,

5100 noise-initialized learnable queries.

643,520 noise-initialized learnable queries.

"As other MOT methods, we observe that clipping the box size within the image size for
tracking results in MOT20 improves slightly the MOTA performance. To have a fair comparison,
all the results in MOT20 are updated with this technique.
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i.e. H/4 x W/4) is shown in Line 2. From the results shown in Line 1-2 of Tab. 3.5,

we see that limited number of queries (100, by default in [214]) is problematic
because it is insufficient for detecting and tracking objects, especially in very
crowded scenes MOT20 (4+106,467 FN, -24.8% MOTA, compared to Line 2). This
indicates that having dense representations is beneficial, especially for handling

crowded scenes in MOT (some visualization examples are shown in Sec. 3.5.4).

Naive Dense v.s. Image-Related Dense Representations. One naive way
to alleviate the insufficient queries is to greatly increase the number of queries like
in Line 2 of Tab. 3.5: we drastically increase the number of queries from 100 to
43,520 (i.e. H/4 x W/4), same as the dense output of TransCenter. Meanwhile, we
compare this naive dense queries implementation to a similar one in Line 3 but
with image-related dense queries like in TransCenter. Concretely, we obtain the
dense queries from QLNpg (as described in Fig. 3.3(c)) with the memories output
from DETR-Encoder. We note that the image-related implementation has indeed
14,450 queries (i.e. the sum of the 1/8, 1/16, 1/32, and 1/64 of the image size), and
the up-scale and merge operation (see Fig.3.5) forms a dense output having the
same number of pixels of 43,520. Therefore, we ensure that the supervisions for

the losses are equivalent® for both Line 2 and 3.

The main difference between Line 2 and 3 is the queries: the proposed multi-scale
dense detection queries are related to the input image where one query represents
one pixel. The benefit of image-related pixel-level queries are well-discussed in
Sec. 3.3. From the experimental aspect in Tab. 3.5, for the noise-initialized queries
in Line 2, despite the manual one-to-one matching during training, increasing the
queries in a naive and drastical way tends to predict noisier detections causing
much higher FP (compared to Line 3, +2,308 and +37,850 in MOT17 and MOT20,
respectively) and thus much under-performed tracking results (-12.6% and -12.1%
MOTA for MOT17 and MOT20, respectively). Surely, although more sophisticated
implementations using sparse noise-initialized queries and Hungarian matching loss
like in [131] and [123] exhibit improved results, TransCenter shows both better

accuracy and efficiency, as discussed in Sec. 3.4.4.

8The Gaussian supervision in TransCenter for negative examples has values very close to 0,
thus similar to the classification loss in Line 2.
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QLN Inputs. A QLN generates tracking queries TQ and memories TM; detection

queries DQ and memories DM. Based on the nature of tracking, we argue that TQ
and TM should be obtained from information at different time steps since tracking
means associating object positions in the adjacent frames. This creates two variants
of QLN, namely QLN,,;, with TQ from M; and TM are from M;_; (Line 4) and
inversely, QLNp_, where TQ are from M;_; and TM are from My (Line 5). From
their results, we do not observe a significant difference in terms of performance,
indicating both implementations are feasible. Further, we experimentally compare
QLN (Line 4) and QLN pg (Line 6), where the only difference is the number of
FFN for outputting TQ. With an extra FFN for TQ, the performance is slightly
improved (42.4% for MOT17 and +1.1% for MOT20).

Efficient TransCenter Decoder. As we discuss in Sec. 3.3.2, the design
of TransCenter Decoder can have important impact on the computational efficiency
and accuracy with different variants (Line 11-16). Precisely, comparing Line 11 and
12, we observe indeed that, with dual-decoder handling cross-attention for both
detection and tracking, the performance is superior (+0.8% MOTA for MOT17 and
+1.0% for MOT20) but the inference is slowed down by around 50%. Balancing
the efficiency and accuracy, we argue that TransCenter (Line 12) is a better choice.
Moreover, removing the TQSA module (Line 13, 14), we obtain slight inference
speed up (+0.9 fps for MOT17 and MOT20) but at the cost of accuracy (-4.4%
MOTA in MOT17 and -0.6% in MOT20). Finally, we also study the effect of sparse
and dense tracking (Line 15-16), surprisingly, we find that using sparse tracking
can help better associate object positions between frames (-20 IDS in MOT17 and
-131 IDS in MOT20) and in a more efficient way (+3.4 fps in MOT17 and +2.6 in
MOT20).

Efficient PVT-Encoder. Passing from DETR-Encoder (Line 7) to PVT-Encoder
(Line 8) helps get rid of the ResNet-50 feature extractor, which speeds up the
inference from 2.1 fps to 8.1 in MOT17, and 1.2 to 6.1 fps in MOT20. Moreover,
the PVT-Encoder exhibits better results which may be due to the lighter structure
that eases the training (+4.2% MOTA in MOT17 and +3.8% in MOT20). Similarly,
with PVT-Lite-Encoder, we can speed up +7 fps for MOT17 and +3.5 fps for

MOT?20, comparing Line 9 and 10 while keeping a competitive performance.
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Table 3.6: Ablation study of external inference overheads: the results are expressed
in MOTA, MOTP, FP, FN, IDS as well as FPS. They are evaluated on both MOT17
and MOT20 validation sets using TransCenter, TransCenter-Lite and TransCenter-
Dual, respectively.

\ MOT17 \ MOT20
Setting  |MOTA 4 IDF1{ FP | FN | IDS | FPST|MOTA 1 IDF11 FP| FN| IDS| FPS1

+ ex-RelD 3.7 73.5 1,047 5800 286 4.5 83.6 75.5 15468 34.057 1,064 2.9

+ NMS 73.8 74.1 1,300 5,548 261  10.8 83.6 75.8 15,458 34,053 1,084 5.1
TransCenter 73.8 741 1,302 5,540 258 124 83.6 75.7 15459 34,054 1,085 8.9
+ ex-RelD 69.8 72.0 2,008 5922 248 52 82.9 749 14,894 36498 1,147 3.1

+ NMS 69.8 71.6 2,009 5,923 253 15.9 82.9 754 14,872 36,507 1,181 6.2
TransCenter-Lite | 69.8 71.6 2,008 5923 252 194 82.9 75.5 14,857 36,510 1,181 12.4
+ ex-RelD 74.6 75.8 840 5882 162 3.0 84.5 77T 13,478 33209 913 22
+ NMS 74.6 76.5 891 5879 127 5.1 84.6 779 13,413 33203 921 3.4
TransCenter-Dual | 74.6 76.5 892 5879 128 5.6 84.6 78.0 13,415 33.202 921 4.8

External Inference Overheads. MOT methods like [7] use an external Re-ID
network to extract identity features so that we can recover the objects which are
temporally suspended by the tracker through appearance similarities. The Re-ID
network (paired with a light-weight optical flow estimation network LiteFlowNet [77]
pre-trained on KITTT [58]) is often a ResNet-50 [7], pre-trained on object identities
in MOT17 trainset. From Tab. 3.6, we observe that this external Re-ID does
help reduce IDS, especially in crowded scenes but it slows down significantly the
inference. To speed up, we replace the external Re-ID features extractor simply
by sampled features from memories M;, with a feature sampler like in QLNg_
(Fig. 3.3(a)) using positions from detections or tracks at ¢, which is almost costless

in terms of calculation and achieves comparable results to external Re-ID.

One of the benefits of using dense representations is the discard of the one-to-one
assignment process during training. Intuitively, no NMS is needed during inference.
However, recall from Eq. 3.2 that the heatmaps are Gaussian distributions centered
at the object centers, a 3x3 max-pooling operation is somehow needed to select the
maximum response from each distribution (i.e. object center). In practice, a NMS
only is performed as in [7] within tracked objects. Similarly, the NMS operation
between tracks has little impact on the accuracy but with important overheads,
as shown in Tab. 3.6. For this reason, NMS is also discarded from TransCenter,
TransCenter-Lite, and TransCenter-Dual.

In summary, TransCenter can efficiently perform MOT with sparse tracking

queries and dense detection queries operating on the proposed QLN and TransCenter
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Decoder structures, leveraging the PVT-Encoder. The accuracy is further enhanced

with the finer multi-scale features from the PVT-Encoder, the sparsity of the
tracking queries as well as the chosen designs of the QLN and TransCenter Decoder.
Therefore, TransCenter shows a better efficiency-accuracy performance compared

to naive approaches and existing works.

TransCenter TransCenter-Lite TransCenter-Dual
75 74.6 84.6
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Figure 3.6: Ablation results in MOTA using different numbers of TransCenter
Decoder layers. The results are evaluated on both MOT17 and MOT20 validation
sets with TransCenter, TransCenterlite and TransCenter-Dual.

Number of Decoder Layers. We ablate in Fig. 3.6 the number of decoder
layers in TransCenter, TransCenter-Lite, and TransCenter-Dual. Precisely, we
search the best number of decoder layers within the range of [3,6] For TransCenter,
TransCenter-Dual, we find that having six layers of decoder gets the best results in
terms of MOTA both in MOT17 and MOT20 while with four layers in TransCenter-
Lite.

3.5 Qualitative Results and Visualizations

In this section, we qualitatively visualize the center heatmap responses (Sec. 3.5.1),

the detection queries (Sec. 3.5.2) and the tracking queries (Sec. 3.5.3) of TransCen-
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ter. Some tracking results (Sec. 3.5.4) in very crowded scenes of MOT20 are also

provided.

3.5.1 Center Heatmap Response

We qualitatively visualize and compare our center heatmap response in Fig. 3.7(d)
with other two center heatmap-based MOT methods [203, 209] in Fig. 3.7(c) and
Fig. 3.7(b) as well as the box centers predicted from sparse queries from one

concurrent transformer-based MOT method [131] in Fig. 3.7(a). Two concurrent

o

(a) TransTrack [131] (b) CenterTrack [209] (c) FairMOT [203] (d) TransCenter

Figure 3.7: Detection outputs of state-of-the-art MOT methods: (a) shows the
bounding-box centers from the queries in TransTrack [131]; (b), (c) are center
heatmaps of CenterTrack [209], FairMOT [203], and (d) is from TransCenter.

transformer-based MOT methods [123, 131] both use sparse queries, leading to
miss detections (pink arrow), that are heavily overlapped, possibly leading to false
detections (green arrow). Previous center-based MOT methods [203, 209] suffer
from the same problems because the centers are estimated locally. TransCenter is
designed to mitigate these two adverse effects by using dense (pixel-level) image-
related detection queries producing a dense representation to enable heatmap-based
inference and exploiting the attention mechanisms to introduce co-dependency

among center predictions.

3.5.2 Detection-Query Visualization

We visualize in Fig. 3.8 the detection queries from TransCenter using the
gradient-weighted class activation mapping, as described in [150]. The intuition
is that we can consider the center heatmap prediction as a 2D classification task,

similar to image segmentation. The center heatmap response is class-specific where
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Figure 3.8: Visualization of the detection queries TQ for TransCenter. The
visualization is obtained using the gradient-weighted class activation mapping [150],
as detailed in Sec. 3.5.2. (a) and (b) are from MOT20 while (c¢) and (d) are from
MOT17. Zones with red/orange color represent higher response values and with
blue color for lower values.

',I‘JY
it |
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the class is binary with "person” or "background”. Precisely, we calculate the
gradient from the center heatmap w.r.t. the detection queries. The gradient is
averaged over the image height and width. It is served as weights for the dense
detection queries (DQ), producing weighted activations after multiplication. Since
our dense detection queries are multi-scale, we re-scale the activations to the input
image size and take the average of pixel values from all scales. The activation is
plotted above the input image to show the link between their activated values and
the object positions. For the visualization purpose, negative values are removed
(by a ReLU activation function) and a normalization process by the maximum
activation value is performed. From the visualizations, we can see that the detection
queries tend to focus on arcas where pedestrians are gathered. This is intuitive

since the dense detection queries are used to find objects in a given scene.

Figure 3.9: Visualization of tracking queries for TransCenter. We visualize the
reference points in red dots, and their displacements (circles) and importance
(circle radius) with offsets and weights calculated from the tracking queries TQ, as
detailed in Sec. 3.5.3. (a) and (b) are from MOT20 while (c¢) and (d) are from
MOT17.
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3.5.3 Tracking-Query Visualization

Differently, the tracking queries TQ in TransCenter are sparse and thus cannot
be plotted directly to an image like the detection queries. Therefore, we visualize
them differently: Recall that TQ and TM interact in TDCA (see Sec. 3.2 in the
main paper) for the tracking inside TransCenter Decoder, where we sample object
features from the input TM. The sampling locations are obtained by displacing
the input reference points (normalized object center positions at the previous
frame) with sampling offsets (several offsets per reference point) learned from TQ.
Moreover, the sampled features are weighted by the attention weights learned from
TQ. Based on this mechanism, we visualize the tracking queries by looking at
the sampling locations (displaced reference points) in the image ¢. Concretely, we
show in Fig. 3.9 the reference points (track positions at ¢t — K, K is set to 5 for
better visualization) as red dots. The sampling locations are shown in circles with
different colors referring to different object identities. Their radius is proportional
to their attention weight (i.e. a bigger circle means a higher attention weight) and
we filter out sampling locations with weights lower than a threshold (e.g. 0.2) for
better visualizations. From Fig. 3.9, interestingly, we can see that the sampling
locations are the surrounding of the corresponding objects and the weights and the
attention weights get smaller when the locations get further from the object. This
indicates qualitatively that the tracking queries from the previous time step are

searching objects at ¢ in their neighborhood.
3.5.4 Qualitative Visualizations in Crowded Scenes

We report in Fig. 3.10 some qualitative results on the crowded MOT20 sequences,
to demonstrate the detection and tracking abilities of TransCenter in the context of
crowded scenes. We show the predicted center trajectories and the corresponding
object sizes. Fig. 3.10(a) is extracted from MOT20-04, Fig. 3.10(b) from MOT20-07
and Fig. 3.10(c) from MOT20-06. We observe that TransCenter manages to keep
high recall, even in the context of drastic mutual occlusions, and reliably associate
detections across time. To summarize, TransCenter exhibits outstanding results
on both MOT17 and MOT20 datasets for both public and private detections, and

for both with or without extra training data, which indicates that multiple-object
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Figure 3.10: Tracking trajectories visualization of very crowded scenes in MOT20
sequences under the private detection setting.

center point tracking using transformers equipped with dense image-related queries

is a promising research direction.

3.6 Conclusion

In this work, we introduce TransCenter, a powerful and efficient transformer-
based architecture with dense image-related representations for multiple-object
tracking. TransCenter proposes the use of dense pixel-level multi-scale detection
queries and sparse tracking queries. They are produced with carefully-designed QLN
and interacting in TransCenter Decoder with image features. TransCenter is able
to output dense representations for the objects’ center, size, and sparse temporal
displacement. Under the same training conditions, TransCenter outperforms its

concurrent works in MOT17 and by a large margin in very crowded scenes like
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MOT20, and even exhibits better performance than some methods trained with

much more data. More importantly, TransCenter maintains a rcasonably high
efficiency while exhibiting a state-of-the-art performance, thanks to its careful

designs proven by a thorough ablation.
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Chapter 4

DAUMOT: Training MOT with

Unsupervised Domain Adaptation

1
b/ JESET : %
- ! il [ 2 Ik _—

(a) Miss detection  (b) Over detection (c) Identity change

Direct Transfer

DAUMOT

Figure 4.1: Sample qualitative results from different sequences of MOT20 comparing
direct transfer (i.e. no adaptation) to DAUMOT. (a) shows the persons missed
by direct transfer whereas (b) showcases the over detection, and (c) show person
identity changes. The images illustrate the existence of large domain shifts between
source (MOT17) and target (MOT20) when the model is not trained with DAUMOT.
Green arrows point to the errors.
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4.1 Introduction

In the recent past, there has been significant scientific progress on multiple
object tracking (MOT) with various strategies being developed, most of them
based on deep convolutional neural networks [7, 189, 203, 209]. To this end, the
community has benefited from the existence of publicly available datasets such as
MOT17 [124] and MOT20 [38], which contain thousands of annotated tracks.

While these available annotations facilitate researchers to validate their proposed
methods, they are generally insufficient for real-world deployment. The main reason
for this is that a tracking method trained on a source dataset and evaluated on a
(different) target dataset tends to perform worse than the same method trained
directly on the target dataset. Thus, it is usually necessary to collect and annotate
a tracking dataset specific to each deployment scenario, a task that is often too

costly and unrealistic.

As extensively shown in our experiments, the unavailability of annotations
hinders supervised techniques to obtain competitive performance, motivating the
need for unsupervised MOT training methods. We argue that this is due to a distri-
bution shift between the source and target datasets, and we investigate unsupervised
domain adaptation (DA) for MOT. As an example, Fig. 4.1 demonstrates the

interest of the proposed DAUMOT training framework on some target sequences.

Recent MOT models rely on jointly solving the detection and tracking tasks [7,
189, 203, 209], and exploit person re-identification (re-ID) models to limit track
fragmentation [188, 209] or to associate detections through time [7, 203]. Although
to the best of our knowledge no unsupervised DA method has been reported in the

MOT literature, there exists some art exploring DA for person detection and re-ID.

Previous works in the field of domain adaptive object detection [23, 28, 126,
146, 187, 213] have highlighted the drop in detection performance in the case of
a significant domain shift. As an example, [28] addressed the adversarial DA
problem for object detection. Such strategies have also been explored to tackle
the unsupervised person re-ID (URID) task [46, 51, 56, 113, 200]. For instance,
clustering and finetuning [51, 56] first clusters the features into pseudo-ID labels

that are then used to fine-tune the feature extraction network.
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Although DA has proven useful for both person detection and re-1D, the

respective methods operate mainly on single images and are unable to exploit
temporal information. Therefore, the immediate question is how to leverage that
information in DA for MOT, and whether or not this is advantageous w.r.t. simply

extending existing DA techniques to MOT.

We investigate unsupervised DA in MOT by jointly addressing the identity and

detection domain shift problems as well as their disentanglement.

Our contributions can be summarized as follows:

e Empirical evidence is reported on the severity of the domain shift problem
in MOT by measuring the tracking performance on a target set of a model

trained on a source set (direct transfer).

e We introduce DAUMOT, a novel unsupervised DA MOT training strategy to
alleviate domain shift, together with two baselines, namely TA and TADA.

e Different from DA for object detection, two adversarial losses are designed
for MOT. First, adversarial sequence alignment to tackle the inter-sequence
domain shift, employing multi-class discriminators at the detection and image
levels. Second, identity-detection disentanglement is proposed to limit the

coupling between the detection and re-ID branches.

e Experimental results demonstrate the effectiveness of DAUMOT with two
different trackers on two unsupervised DA settings and using standard MOT
datasets [38, 124], namely MOT17 — MOT20 and MOT20 — MOT17.

4.2 Related Works

Domain Adaptive Object Detection and Segmentation. While object detec-
tion has been extensively investigated, see for instance ([59, 137, 139]), adapting
such methods under unsupervised learning constraints remains a scientific chal-
lenge. The use of adversarial DA ([55]) for object detection was firstly investigated
in ([28]). They applied it to an FRCNN ([139]) detector and performed distribution
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alignment at both image and detection levels. Their work motivated the appear-
ance of a family of DA Faster-RCNN ([23, 126, 146, 187, 213]). Differentiated
alignment at local and global scale ([146]) exploits global scene information to
guide adaptation, Hierarchical Calibration Networks balance feature transferability
and discriminability ([23]), additional image-level categorical classifiers improves
categorical consistency ([187]) when performing alignment, while clustering methods
at the RPN level ([213]) adjust region-level alignment. Other works take advantage
of Cycle-GAN’s ([212]) ability to transfer image style to create and finetune the
detector on a synthetic dataset (|74, 78]), or cast the task as a robust learning prob-
lem ([87]). Moreover, [215] uses the unsupervised domain adaptation for semantic

segmentation.

Unsupervised person re-ID. This approach takes advantage of recent achieve-
ments in supervised person re-ID models without requiring the costly labeling
process on the target dataset. Most studies start from a pre-trained model
on the source dataset and are based on the clustering and finetuning frame-
work [46, 51, 56, 113, 200]. They alternate between a clustering step that generates
noisy pseudo-labels and a finetuning step that adapts the network to the tar-
get dataset using the generated pseudo-labels. A lot of effort has been put into
improving the quality of the pseudo-labels [46, 51, 56, 113]. Other approaches,
inspired by unsupervised DA, use both source and target datasets during adap-
tation [21, 39, 135, 156, 207, 208]. They aim to match the source and target
distributions while leveraging source ground-truth ID labels to keep the discrimi-
native ability of features. For instance, SPGAN [39] proposes to learn a mapping
from source detections to the target detections, and the mapped source detections
are used to train the re-ID model. Alternatively, some exploit standard adversarial
unsupervised DA to match the source and target distributions [55, 135]. However,
negative transfer [37] induced by the strict ID separation between the source and
target datasets limits the ability of such strategies. A different approach exploits
spatial-temporal consistency to reconstruct tracks and use them to finetune the
re-ID model [103, 119].

Unsupervised Object Tracking. UDT [172] proposes a simple unsupervised
training strategy for single object trackers. The target object is annotated in at

least one target template frame, and a siamese network searches the object in
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another unlabeled frame (forward). The predicted object position is then used

to inversely search the object in the labeled frame (backward). From this, a
consistency loss can be calculated to train the model. USOT [204] builds upon this
idea by generating target labels using optical flow and dynamic programming, while
AMMC [75] leverages a novel data augmentation method by mimicking motion
change. However, extensions of these works to MOT are not straightforward due
to the variable number of objects that appear, overlap, and disappear at any single

video frame.

tracking by animation [69] has been proposed to tackle the unsupervised MOT
problem. The method is evaluated under very simple experimental settings using
synthetic data (MNIST-MOT —floating hand-writing digits [98]— and Sprites-MOT
—synthetic floating sprites—, both with uniform background). Only a few qualitative
results in a simple multi-person tracking scenario with few pedestrians [142] are
shown. This work has been extended [76] to noisy background conditions by adding
more complex synthetic patterns. However, none of these methods are evaluated
on standard MOT datasets [38, 124] and the training remains on synthetic floating
objects with a simple background. SimpleRelD [83] uses tracks produced by an
existing tracker that has been trained on standard MOT datasets [38, 124] in a
supervised manner. A re-ID network trained with contrastive losses temporally
associates incomplete tracks belonging to the same person to a trajectory. Since

SimpleRelD uses target annotations, it cannot be considered unsupervised.

While there have been some attempts to address unsupervised MOT, they are
not designed for realistic scenarios. We get inspiration from recent research in
unsupervised DA for person detection and person re-1D to propose DAUMOT, an
unsupervised MOT framework whose goal is to overcome the practical limitations
of previous attempts. We evaluated the impact of DAUMOT on two recent MOT
methods, namely FairMOT [203] and TransCenter [188], and on two unsupervised
tracking settings using standard MOT datasets [38, 124].
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4.3 Unsupervised DA MOT Training

Direct application of existing adaptation strategies for detection and person re-1D
to the tracking problem does not yield optimal results, as shown in our experimental
section (Sec. 4.4). We believe that this is due to three factors: (i) Methods conceived
for DA in object detection do not exploit the sequential nature of the tracking
problem. (ii) There can be domain shifts between tracking sequences from the same
dataset (domain). A similar problem can be found in real-world applications, where
a mobile platform might have to face different visual conditions once deployed.
(iii) The detection and re-ID branches in tracking methods are usually jointly
trained from shared features. However, when ground-truth labels are not available,
straightforward training might add spurious correlations between the two branches
(c.g. certain regions arc more prone to have certain identities). Consequently, an
unsupervised disentanglement mechanism between the two branches should be

cnforeed.

We propose to address the unsupervised MOT training problem with DAUMOT,
alternating between tracking and adaptation to exploit temporal information.
Moreover, DAUMOT uses adversarial strategies to (i) align source and target
datasets distributions, both at the detection and image levels, and (ii) to disentangle
identity-detection dependencies. In the following, we first introduce some basic
notations, and then present the main features of DAUMOT, namely tracking and

adaptation, adversarial sequence alignment, and identity-detection disentanglement.

4.3.1 Notations

We first introduce the notations for a generic tracker (following the tracking-
by-detection paradigm) and for the DA problem. In this work, we focus on online
(i.e. causal) trackers for simplicity. The extension to offline/non-causal trackers is

straightforward.

Let S and T be a labeled source and unlabeled target datasets respectively.
They are constituted by M (resp. M7) video sequences with images T ft (resp.
I ﬁ), where i and ¢ are the sequence and time indices, respectively (for simplicity,

we might omit the subscript ¢ when it is clear from the context). Each sequence
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of the source dataset S is annotated with the bounding boxes and ID labels of
NS tracks, denoted by bfn, where n is the identity index of object n. The target

dataset does not contain any annotated bounding boxes, and we will denote by Z)lTn
the bounding boxes of the N7 tracks inferred by the tracker.

Since one of the objectives of this work is to develop a widely-usable unsupervised
training method that is agnostic to MOT methodologies available today, we consider
in the following a generic tracker with a backbone ¢ followed by two branches
(parameterized networks): a detection branch ¥pgr producing track candidates and
an identity branch v, associating detections corresponding to the same object
through time (scc Fig. 4.2).

The proposed DAUMOT starts from models pre-trained on the source dataset
S using their original training strategies. We denote the loss of the detection and

identity branches as £5.. and L5, and define the pre-training loss as:

L30(8 Yo, i) = Lo (d, Yomr) + L5 (, Ur). (4.1)

To illustrate with an example, in the case of FairMOT [203], ¢ is the DLA-34
variant [210], with ¢,y and 1)y, corresponding to two convolutional layers having
the ReLU activation. L5, stands for the 2D focal loss of dense object center

heatmaps whereas L5 is the categorical cross-entropy loss of object identities.

4.3.2 Tracking and Adaptation

Inspired by person re-ID’s clustering and finetuning framework [46, 51, 56], we
propose the following tracking and adaptation (TA) framework. Clustering and
finetuning embeds the detections using the current re-ID model and clusters them
to generate ID pseudo-labels, which are then used to finetune the re-ID model.
This is carried out independently for each detection regardless of its spatial and

temporal occurrence.

TA alternates between two different steps. The tracking step considers the
appearance similarity by exploiting the identity embedding, and more importantly,
explores the spatial (multiple object positions) and temporal (multiple frames)

information to produce pseudo-tracks. This improves the quality of the pseudo-ID
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Figure 4.2: Overview of DAUMOT: alternating between tracking and adaptation.
First, tracking uses a generic MOT method on the target sequences to obtain
bounding-box and identity pseudo-labels. Second, the adaptation step updates
the tracker using labels and pseudo-labels respectively for the source and target
datasets, using standard ID and detection losses. In addition, we propose two
adversarial strategies, namely adversarial sequence alignment and identity-detection
disentanglement, to train the generic MOT method to be invariant to inter-sequence
domain shifts and disentangle the identity v, and detection v, branches. The
adversarial sequence alignment is implemented at the image and detection levels
with two multi-class discriminators, Dy, and Dy,. The adversarial disentanglement
is implemented with an ID multi-class discriminator Dy,s. All discriminators operate
on features sampled from the respective feature maps.

labels because it forces them to be temporally, spatially, and visually consistent.
Namely, the tracking step generates the pseudo-tracks on the whole unlabeled
target dataset, Bwa using the source pre-trained tracker and its original inference
strategy.

The adaptation step exploits source ground-truth tracks bfm and the target
pseudo-tracks l;;rﬁ to perform domain adaptation to the identity and detection
branches. Regarding the ID branch, the original ID classifier is extended to output
of size NS+ N7 and the identity loss is defined as the combination of the source S
and target T ID losses:

LT, ) = L5 (6, %) + LT (6, %) (4.2)

Similarly, we finetune the detection branch with the following combination of the
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source and target detection losses:

LT (¢, 1nr) = LS50 (0, Yoer) + L1 o0(0y Yer) (4.3)

The ID classifier and final detection layers are implicit in the losses above, although

they are displayed in Fig. 4.2.

Even though we consider TA as an extension of the clustering and finetuning
framework to MOT, we note that it is in itself a novel approach to the MOT task
that has not been covered in the literature so far. TA will be compared to DAUMOT
to show the effectiveness of our adversarial components. Since there is no similar
work for unsupervised MOT, we contribute with another baseline that extends
TA with a domain adversarial binary (source/target) discriminator, similar to [28§]
for person detection, and name it TADA (tracking and adaptation with domain
adaptation). We argue that this second baseline is not sufficient for the MOT
problem for two main reasons. First, source/target discrimination does not account
for inter-sequence distribution shifts that are often found in MOT. Second, since
MOT methods deal with both detection and re-ID, we experimentally prove that it
is beneficial to disentangle these two sub-tasks, as shown in [109] under the standard
supervised paradigm. We further confirm this intuition in the unsupervised domain
adaptation paradigm without modifying the original architecture, as explained
below, thus proposing DAUMOT that can be used with a generic MOT tracker.

4.3.3 Adversarial Sequence Alignment

In MOT, both in standard datasets and in practical deployment, we can observe
significant inter-sequence domain shifts. In fact, each sequence has a distinguish-
able and temporally consistent background, illumination conditions, and camera
viewpoint. We propose to exploit these domain shifts with a sequence-based ad-
versarial strategy that we name adversarial sequence alignment. The interest of
an adversarial framework is to interpret the backbone ¢ and detection branch
Yper as feature generators: extracting image and detection features respectively.
Indeed, if we adversarially train ¢ and e to extract features that are invariant

to domain shifts between training sequences (source and target), we will improve
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their generalization performance to other sequences, as shown in [107] and our

experiments.

The adversarial discriminator is a multi-class classifier where the classes are the
source and target sequence indices, and thus aims to recognize the sequence. We
apply this strategy at two different levels, as in [28]. First, with features sampled
over the entire input image (image-level alignment), used after the backbone
¢. Second, with features sampled at the bounding-box centers (detection-level
alignment), used after the detection branch iper. Since ground-truth bounding
boxes are not available for the target dataset, we sample detection features from
the inferred bounding boxes. Sampling features from image-level feature maps

allows us to reduce the computational overhead needed for adaptation.

Adversarial Image-level Alignment. It aims at endowing the shared embedding
(output of the backbone ¢) with invariance w.r.t. the inter-sequence domain shift.
To do so, we randomly extract features from the feature map ¢(I) and train a multi-
class discriminator Dy, that classifies the sequence index of the input feature and
adversarially updates ¢. The discriminator is trained with a standard multi-class

cross-entropy loss:

ﬁfI—XT = _EiNSUTJNi,qug(I) {IOg [DIM(f)]z} ) (4'4)

where the sequence % is sampled from the source and target datasets, the image I is
sampled from the sequence, the feature f from the feature map ¢(I), and [Dw(f)];

denotes the discriminator’s output corresponding to the ¢-th class.

Adversarial detection-level Alignment. It uses a similar strategy to the
image-level adversarial alignment but considers the backbone together with the
detection branch as the generator. It therefore samples features from the detection
feature map ¥per(d(I)). In addition, since the detection branch must focus on
providing ID invariant detection features, we sample the feature maps within the
object bounding boxes. While the ground-truth bounding boxes b;,, are available
to sample the source dataset, this information is nonexistent for the target dataset.
We overcome this problem by using the inferred bounding boxes ZN)m as mentioned

earlier. Therefore, we train ¢ and ¢ with a sequence multi-class discriminator
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Dper. The latter is trained with a standard multi-class cross-entropy loss:

‘CfS_AT = _Ei,I,f~¢DET(¢(I)) {IOg [DDET(f)]’L} ) (4'5)

where the sequence ¢ and the image I are sampled using the same strategy as in
image-level adversarial alignment. The feature f is sampled from the feature map of
the detection branch and within one of the ground-truth (inferred) bounding-boxes

for the source (target) dataset.

Adversarial Sequence Alignment. Denoted as L,q,, it is a combination of the
two aforementioned alignments by adding up £, and L,,,. The adversarial game
consists of training the image-level and detection-level discriminators to recognize
the sequence from the features computed by the generator, while the generator

aims to extract domain invariant features by maximizing L,g,.

4.3.4 Identity-detection Disentanglement

So far, we tackled the domain adaptation for the detection and identity branches
separately by performing adversarial sequence alignment using losses Eq. 4.4 and
Eq. 4.5, and adapting ¢, and tpg with the losses Eq. 4.2 and Eq. 4.3, respectively.
We further consider here the influence of ID information on the detection branch
when performing distribution alignment. Since the backbone is shared to perform
both tasks, it is reasonable to assume that the detection and ID information are
not properly disentangled in the detection branch. This problem is not evident
in the standard supervised paradigm thanks to the strong detection/ID super-
vision provided by ground-truth labels. In addition, because ID information is
domain-specific, improving identity-detection disentanglement should improve the

generalization ability of the detection branch to unseen identities.

We propose to disentangle ID information associated with bounding boxes in an
adversarial setting, using a similar strategy than for the detection-level adversarial
alignment. Features are sampled using the bounding box positions and an ID
discriminator is trained to recognize the ID associated with the bounding box
(i.e. the number of classes of the discriminator is equal to the number of identities

in S and 7). While in the source dataset all this information is available, we use
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inferred identities and bounding boxes for the target. In short, the disentanglement

discriminator Dy, aims to recognize the ID from ¢y, (¢(I)), while the generator
aims to provide ID-invariant features. The discriminator is trained with a multi-class

cross-entropy loss:

Lot7 = _EI,717fN1/)DET(¢(I)) {log [Dois(f)]n} (4.6)
where the image I is sampled from the source and target datasets, the identity (or
pseudo-identity) n is sampled from the ones present in image I, and the features
f are sampled from the bounding box in image I corresponding to ID n. As in
the previous case, the generator (¢, ¥pgr) is trained to maximize £5+7. To sum
up, as illustrated in Fig. 4.2, DAUMOT leverages a TA strategy. It also removes
ID dependency from detections and closes the domain gap between the labeled
source domain sequences and unlabeled target domain sequences using adversarial

training with the following min-max optimization process:

, S+T S+T
min max L + L
&%, Yoer Div,Dper,Dois D (¢’ ¢ID) DET (QS’ wDET)

—ﬁf;ZT(Qb, wDETv DIM) DDET) - ﬁ‘ngT(Cb’ 1/}DET7 DDIS)J (4-7)

where the various losses are weighted empirically.

4.4 Implementation Details and Results

We first detail in this section our own baselines (since there is no similar
unsupervised MOT in the literature to our best knowledge), and the used MOT
methods to which we implement the proposed DAUMOT (Sec. 4.4.1). Then, we
explain the experimental protocol with three settings (two for state-of-the-art
comparison in the testset and one for the ablation) in Sec. 4.4.2. Finally, the testset

and ablation results are discussed in Sec. 4.4.3.
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4.4.1 Implementation and Baselines

To begin with, we describe the various architectures that are ablated, the
implementation details of the DAUMOT architecture, and finally the state-of-the-

art MOT trackers that are used in our experiments.

Baselines and Ablation. We compare DAUMOT with three different baselines:
direct transfer (DT) measures the performance without any adaptation (lower
bound baseline), standard supervision training the tracker with target labels (upper
bound baseline) and TADA (see Section 4.3.2). We also ablate the two adversarial
losses of DAUMOT as well as the impact of the pseudo-track generation process on

the MOT performance.

DAUMOT Implementation. The two discriminators used for adversarial se-
quence alignment are classifiers with as many classes as sequences in the source and
target sets (MS 4+ M7). They consist of three fully-connected layers with ReLU
activation and normalization layers. The discriminator used for identity-detection
disentanglement follows the same principle with the right number of classes. A
gradient reversal layer [55] is used to reverse the back-propagated gradient and

adversarially update the tracker.

MOT Methods. We use two state-of-the-art methods to demonstrate the interest
of DAUMOT, namely FairMOT [203] and TransCenter [188].

FairMOT [203] leverages an encoder-decoder backbone ¢ based on a DLA-34
variant [210] to produce a shared feature heatmap processed by a re-ID and a detec-
tion branch. The original FairMOT implementation is used to conduct experiments
along with the original training strategy. The model is pre-trained on COCO [167]
and then on MIX data! along with the considered source dataset. For DAUMOT-
FairMOT, the detection-level features are extracted from the heatmap features lo-
cated right before the final heatmap output of the detection branch. The image-level
features are extracted right after the feature extractor ¢. Tracking pseudo-labels
are updated three times for 17—20 and once for 20—17. The weight for £3¢1 is
set to 1.0 for 1720 and 0.5 for 20— 17, and the weight for £5/J is set to 0.25

and 0.1, respectively. We sample L = 100 features to train Dyy,.

!Caltech Pedestrian [41, 42], CityPersons [199], CUHK-SYS [186], PRW [206], and ETH [45].
The MOT17 sequences are removed.
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TransCenter [188] uses ResNet-50 [67] and Deformable Transformers [214] as

its backbone ¢. The model is pre-trained on COCO [167], on Crowdhuman [152]
and then on the considered source dataset. For DAUMOT-TransCenter, we extract
image-level features from the output of the detection decoder (see details in [188]).
The detection-level features are pulled before the last convolutional layer of the
center-heatmap output. Since TransCenter does not have 9, the weight for £5+7
is 0. We set 0.1 for the weight of the adversarial losses and 1.0 for the rest in (4.7).
The number of image-level features is as in FairMOT (L = 100) and pseudo-labels

are computed just once.

4.4.2 Evaluation Protocol

MOT Dataset Source Target
Split Train Test Train Test

Test evaluation [N B
e
.

Test adaptation
Ablation [

Figure 4.3: Overview of the unsupervised MOT splits. Standard MOT datasets
are split into train and test where labels are available and unavailable, respectively.
The colors encode which part of which subset is used for training, adaptation or
evaluation.

Datasets and Metrics. We benchmark DAUMOT using two standard MOT
datasets: MOT17 [124] and MOT20 [38]. We also define two adaptation settings:
from MOT17 to MOT20 (17—20) and vice versa (20—17). The ablation study
is run on the training set, while the final results are computed on the test set,
similarly to [203, 209]. The official server is used to evaluate the performance of
the MOT test set. A detailed diagram showing the training (source), adaptation

(target) and evaluation (target) subsets is shown in Fig. 4.3.

To assess the MOT performance with the domain adaptation, we report tracking
recall (Rell) and precision (Pren), ID switches (IDS) and F1 (IDF1), and finally
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the standard MOT metric [9] MOTA. Since we are adapting the detection branch,

we perform experiments in the private detection setting.

4.4.3 Results and Discussion

Table 4.1: MOT17 testset evaluation: we list here online methods using private
detections. Best unsupervised method shown in bold.

| Method [Rell + Pren 1 1DS | IDF1 1 |MOTA 1
CorrTracker [173] | 0.824 0.940 | 3,369 0.736 | 0.765
FUFET [151] 0.825 0.934 | 3,237 0.680 0.762
MLT [201] 0.805 0.942 | 1,719 0.755 0.753
CSTrack [109] 0.797 0.950 | 3,567 0.726 | 0.749
| PermaTrack [166] 0.796 0.939 | 3,699 0.689 0.738
?é FairMOT [203] 0.792 0.942 | 3,303 0.723 0.737
= GSDT_V2 [176] 0.786 0.944 | 3,891 0.665 0.732
S| TransCenter [188] 2 | 0.781 0.950 | 4,614 0.622 | 0.732
a SOTMOT [114] 0.789 0.918 | 5,184 0.719 0.710
N TraDeS [81] 0.734 0.952 | 3,555 0.639 0.691
= QDTrack [129] 0.740 0.940 | 3,378 0.663 0.687
S| CenterTrack [209] 0.716 0.956 | 3,039 0.647 | 0.678
“| ChainedTracker [132] | 0.716 0.948 | 5,529 0.574 | 0.666
GSDT [176] 0.744 0.906 | 3,318 0.687 | 0.662
TransTrack [131] 0.710 0.943 | 5,355 0.569 | 0.658
MTP [22] 0.577 0974 | 1,188 0.604 | 0.559
DT-FairMOT 0.758 0.883 | 3,087 0.692 0.652

TADA-FairMOT 0.759 0.930 | 2,808 0.714 | 0.698
DAUMOT-FairMOT | 0.752 0.939 2,694 0.727 | 0.698

DT-TransCenter 0.686 0.765 | 5,421 0.539 | 0.465
TADA-TransCenter |0.665 0.909 | 1,845 0.605 0.596
DAUMOT-TransCenter | 0.649 0.903 |1,416 0.626 | 0.577

20—17 (Unsup.)

Testset Evaluation Results. We report in Tables 4.1 and 4.2 test set evaluation
tracking results on MOT17 and MOT20 respectively, for both DAUMOT-FairMOT
and DAUMOT-TransCenter. Results for the baselines DT, TADA, and standard

2In this work, we use the version of TransCenter available online in August 2021 before its
efficient design.
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Table 4.2: MOT20 testset evaluation: we list here online methods using private
detections. Best unsupervised method shown in bold.

‘ Method ‘ Rell 1 Pren T‘ IDS | IDF1 1 ‘ MOTA 1
o SOTMOT [114] 0.805 0.879 | 4,209 0.714 | 0.686
2 GSDT [176] 0.738 0.923 | 3,131 0.675 | 0.671
% GSDT_V2 [176] 0.738 0.924 | 3,230 0.675 | 0.671
= CSTrack [109] 0.721 0.936 | 3,196 0.686 | 0.666
L CorrTracker [173] 0.815 0.841 | 5,183 0.691 | 0.652
S| TransCenter [188] 0.717 0.890 | 4,653 0.504 | 0.619
8 FairMOT [203] 0.828 0.806 | 5,243 0.673 | 0.618
= MLT [201] 0.581 0.868 | 2,187 0.546 | 0.489
2 DT-FairMOT 0.483 0.911 | 4,659 0.421 0.427
7 TADA-FairMOT 0.656 0.842 {3,192 0.601 | 0.521
é DAUMOT-FairMOT ]0.642 0.871 | 3,216 0.585 | 0.541
B DT-TransCenter 0.720 0.864 | 6,356 0.441 0.594
i TADA-TransCenter |0.747 0.869 | 4,567 0.494 0.625
—| DAUMOT-TransCenter | 0.745 0.888 |3,836 0.522 | 0.644

supervision are also reported, along with state-of-the-art supervised methods. We
first note that for both trackers and datasets, DT performance is significantly lower
than their supervised counterparts FairMOT and TransCenter, demonstrating the
interest in investigating MOT DA: for MOT20 (MOT17), DT loses 19.1% (8.5%)
MOTA in DT-FairMOT and 2.5% (26.7%) in DT-TransCenter. DAUMOT exhibits
systematic tracking improvement for both trackers FairMOT /TransCenter in both
settings, suggesting that our approach can effectively mitigate the domain shift prob-
lem. For MOT20 (MOT17), DT is improved by +11.4%/45.0% (4+4.6%/+11.2%)
in MOTA and +16.4%/48.1% (+3.5%/+8.7%) in IDF1.

The first —quite unexpected result we extract from the table is that the proposed
unsupervised strategy, DAUMOT, outperforms several (6 methods in 20—17 and 3
in 17—20) supervised state-of-the-art MOT methods. Moreover, when comparing
DAUMOT with its supervised counterparts, a systematic and significant reduction
of the identity switches (IDS) can be observed. We believe this is due to the
identity dependency removal from detections and the reduction of domain shifts.
DAUMOT-TransCenter outperforms supervised TransCenter (reported by [188])
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by 2.5% in MOTA for MOT20. One of the reasons ® is that the MOT20 testset

has sequences with large domain shift (MOT20-06 and MOT20-08) w.r.t. MOT20
training sequences. By reducing domain shifts between source and target sequences,
DAUMOT can learn more generalizable features. On the other hand, supervised
training can easily overfit to the train sequences, leading to worse performance on
the testset.

Moreover, compared to TADA, DAUMOT performs better in MOT20 by
2.0%/1.9% in MOTA using FairMOT /TransCenter. For MOT17, TADA shows
competitive results compared to DAUMOT-TransCenter in MOTA, but it has
higher IDS (+429) and lower IDF1 (-2.1%). This shows that disentangling identity
from detections can help to reduce IDS and to have more ID-consistent trajectories.
The same phenomenon is observed in FairMOT. DAUMOT achieves better IDF1
(+1.3%) and produces fewer IDS (-114) than TADA.

Testset Adaptation Results. Additionally, to better understand the impact of
our method, we present experiments where we directly perform testset adaptation,
that is when we consider the testset dataset as the target domain directly, as
shown in the diagram of Fig. 4.3. While this is not standard practice, because
supervised methods need labels, and using testset labels would bias the results,
DAUMOT does not require the labels of the target set. Adaptation is therefore
performed using only the images (without annotations). After adaptation, we
evaluate the results in the official MOT testset server. We first note that DAUMOT
systematically outperforms Direct Transfer performance, as expected. Notably,
+4.3% (+13.3%) in MOTA for MOT17 (MOT20) while using FairMOT as the
base tracker, and +5.2% (4+1.8%) in MOTA for TransCenter. We also note that
adapting to the target testset yields similar or lower performance compared to
adapting to the target training set. DAUMOT-FairMOT changes by -0.3% (+1.9%)
for MOT17 (MOT20), while DAUMOT-TransCenter degrades by -6.0% (-3.2%) in
MOTA. This suggests that domain shift between train and testset is relatively small
(adapting to testset instead of trainset not improving performance), which further
motivates our approach to investigate cross-dataset tracking performance instead

of same-dataset evaluation. It also indicates that pseudo-track errors might drive

3Also, we observe that clipping the bounding boxes within the images in MOT20 can bring
the performance of TransCenter to 67.2% in MOTA.
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Table 4.3: MOT17 testset adaptation: we list here online methods using private
detections. Best unsupervised method shown in bold.

| Method |Rell 1 Pren 1/1DS | IDF1 1| MOTA ¢
CorrTracker [173] 0.824 0.940 | 3,369 0.736 | 0.765
FUFET [151] 0.825 0.934 | 3,237 0.680 | 0.762
MLT [201] 0.805 0.942 | 1,719 0.755 | 0.753
CSTrack [109] 0.797 0.950 | 3,567 0.726 | 0.749
| PermaTrack [166] 0.796 0.939 | 3,699 0.689 | 0.738
2 FairMOT [203] 0.792 0.942 | 3,303 0.723 | 0.737
% GSDT_V2 [176] 0.786 0.944 | 3,891 0.665 | 0.732
51 TransCenter [188] 0.781 0.950 | 4,614 0.622 | 0.732
ay SOTMOT [114] 0.789 0.918 | 5,184 0.719 | 0.710
= TraDeS [81] 0.734 0.952 | 3,555 0.639 | 0.691
S QDTrack [129] 0.740 0.940 | 3,378 0.663 | 0.687
~|  CenterTrack [209] 0.716 0.956 | 3,039 0.647 | 0.678
ChainedTracker [132] | 0.716 0.948 | 5,529 0.574 | 0.666
GSDT [176] 0.744 0.906 | 3,318 0.687 | 0.662
TransTrack [131] 0.710 0.943 | 5,355 0.569 | 0.658
MTP [22] 0.577 0.974 | 1,188 0.604 | 0.559
DT-FairMOT 0.758 0.883 | 3,087 0.692 | 0.652

DAUMOT-FairMOT |0.772 0.914 2,184 0.724 | 0.695

DT-TransCenter 0.686 0.765 | 5,421 0.539 0.465
DAUMOT-TransCenter | 0.670 0.819 |2,607 0.579 | 0.517

20—17

tracking performance down, and is probably the limiting factor of our approach in

terms of tracking performance.

Model/Loss Ablation Study. The full ablation study results with different
network components/baselines are detailed in Table 4.5. Overall, DAUMOT outper-
forms unsupervised baselines in MOTA in almost all cases. Compared to DT, the
gain of DAUMOT confirms the impact of domain shifts between source and target
sequences. In addition, DAUMOT exhibits better performance than the baseline
TADA, gaining +0.9%/+4.2% (+0.2%/42.0%) in MOTA in MOT20 (MOT17) using
FairMOT /TransCenter, confirming the interest of adversarial sequence alignment,

and identity-detection disentanglement.

We have also evaluated the contribution of each component in DAUMOT.
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Table 4.4: MOT20 testset adaptation: we list here online methods using private
detections. Best unsupervised method shown in bold.

‘ Method ‘ Rell T Pren T\ IDS | IDF1 ¢t ‘ MOTA 1
e SOTMOT [114] 0.805 0.879 | 4,209 0.714 | 0.686
2 GSDT [176] 0.738 0.923 | 3,131 0.675 | 0.671
% GSDT_V2 [176] 0.738 0.924 | 3,230 0.675 | 0.671
= CSTrack [109] 0.721 0.936 | 3,196 0.686 | 0.666
L CorrTracker [173] 0.815 0.841 | 5,183 0.691 | 0.652
S| TransCenter [188] 0.717 0.890 | 4,653 0.504 | 0.619
8 FairMOT [203] 0.828 0.806 | 5,243 0.673 | 0.618
= MLT [201] 0.581 0.868 | 2,187 0.546 | 0.489
- DT-FairMOT 0.483 0.911 | 4,659 0.421 0.427
? DAUMOT-FairMOT [0.652 0.882 |2,532 0.617 | 0.560
= DT-TransCenter 0.720 0.864 | 6,356 0.441 0.594

DAUMOT-TransCenter |0.736 0.865 [5,022 0.476 | 0.612

Comparing full DAUMOT to TA (i.e. DAUMOT —£$£7 — £5£7), we observe a
significant drop in performance when discarding the adversarial alignments and
disentanglement in almost all cases. Except for FairMOT in 20—17, the interest of
using the proposed adversarial strategies is confirmed in terms of MOTA, IDS, IDF1,
Recll, and Prcn almost systematically. Remarkably, we observe how DAUMOT
bridges approximately half the way from DT to full supervision, providing concluding
evidence that the proposed adversarial sequence alignment and identity-detection

disentanglement are an effective tool for unsupervised MOT.
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Table 4.5: Model/Loss ablation study: split MOT train sets are used. Best results
are in bold. Supervision is reported for completeness.

Setting ‘ Variant ‘ Rellt  Pren 1 ‘ IDS | IDF1 1 ‘ MOTA 1t
DT 0.612 0.913 | 6,952 0.513 | 0.544
TADA 0.717  0.893 | 3,032 0.672 | 0.626
g TA 0.703  0.895 | 2,909 0.663 | 0.617
= | DAUMOT —£5}7 | 0.710 0903 | 3,125 0.666 | 0.629
= | DAUMOT —£5(7 | 0709 0.902 | 2,848 0.674 | 0.628
DAUMOT 0.739 0.882 | 3,673 0.667 | 0.635
< Supervised 0.754  0.918 | 2,346  0.725 0.683
g DT 0.647 0.939 | 5808 0417 | 0.595
i TADA 0.701  0.943 | 4,645 0485 | 0.651
E TA 0.703  0.942 | 4455 0.489 | 0.653
Q | DAUMOT —£337 | 0.729  0.943 | 3,688 0.534 | 0.680
5 | DAUMOT —£3t7 | 0.700  0.947 | 4,030 0.503 | 0.654
= DAUMOT 0.751 0934 |3,548 0.551 | 0.693
Supervised 0.889 0.944 | 2,613 0.686 | 0.832
DT 0.601 0.907 | 188  0.646 | 0.536
TADA 0.671 0926 | 256  0.697 | 0.613
g TA 0.672 0.942 | 218 0.699 | 0.626
= | DAUMOT —£3{(" | 0.672 0934 | 242 0.694 0.620
= | DAUMOT —£57 | 0.661  0.927 | 245  0.697 | 0.605
DAUMOT 0.664 0.937 | 231 0695 | 0.615
= Supervised 0.743 0951 | 324  0.721 0.699
1 DT 0.464 0741 | 258 0438 | 0.297
S TADA 0.467 0.830 | 138 0511 | 0.368
E TA 0.475 0.778 | 163 0487 | 0.337
Q | DAUMOT —£57 | 0.478  0.829 | 130  0.506 | 0.377
S | DAUMOT —£5t7 | 0.486 0.833 | 163  0.514 | 0.386
= DAUMOT 0.458 0.871 | 132  0.509 | 0.388
Supervised 0.702  0.974 223 0.681 0.679

Pseudo-tracks Generation Analysis. In supplement to the DAUMOT com-
ponent ablation, we further study the impact of the frequency of pseudo-tracks
generation in Table 4.6. Interestingly, we note that the MOT performance does
not behave similarly in both settings: in MOT17—MOT20, we observe that higher
update frequency leads to higher performance. This suggests that gradually im-
proving the pseudo-track helps the model to converge to a better solution. On the
contrary, in MOT20—MOT17, it is harmful when pseudo-track generation gets
more frequent. We explain this by the fact that MOT20 has a track distribution
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Table 4.6: Pseudo-track update frequency ablation: we change the number of
iterations of the tracking and adaptation, i.e. the number of time n the pseudo-
tracks are regenerated during adaptation. The overall number of epochs remains
fixed to 20 for all runs. Best results are in bold.

\ n value \ Tracker \ Rell + Pren 1 \ IDS | IDF1 1 \ MOTA

n=1 0.700 0.881 | 4,316  0.625 0.600
o 1= 2 FairMOT | 0.715 0.885 | 3,602 0.658 0.617
?} n=3 0.739 0.882 | 3,673 0.667 0.635
= on=1 0.751 0.934 | 3,548  0.551 0.693
n =2 | TransCenter | 0.747 0.936 | 3,445 0.550 0.690
n=3 0.781 0.916 | 3,249 0.585 0.704
n=1 0.664 0.937 | 231  0.695 0.615
o =2 FairMOT | 0.633  0.891 195 0.659 0.552
? n=3 0.620  0.891 263 0.624 0.540
S n=1 0.458 0.871 | 132 0.509 0.388
n =2 | TransCenter | 0.496 0.774 168 0.507 0.349
n=3 0.489 0.735 189 0.478 0.310

significantly different compared to MOT17. Per sequence track density for MOT20
goes from 70 to 205 with an average of 170.9, while for MOT17, track density goes
from 9.6 to 69.8 with an average of 31.8. Also, aligning the distribution of the
detection branch encourages the tracker to produce as many detections on MOT17
as in MOT20, and thus produce FPs. This is reflected by the diminishing precision,

which is detrimental to pseudo-track generation.

This is not the case in MOT17 — MOT20. It is because the matching track
density on MOT20 will only lead to FNs. This does not affect significantly our
instance-level alignment strategy and thus the adaptation performance. We argue
that MOT17—MOT20 is a more realistic scenario since a real-life source dataset
should have lower-density tracks (annotation being less work-intensive, and most

existing MOT datasets have low-density tracks) compared to the target dataset.
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4.5 Conclusion

In this work, we investigate and propose the first unsupervised MOT using
domain adaptation: DAUMOT. Our method alternates between tracking and
adaptation, and uses adversarial adaptation strategies to mitigate inter-sequence
domain shifts and identity-detection coupling. We quantitatively demonstrate the
effectiveness of our approach with two state-of-the-art trackers on two standard
MOT datasets and in two different settings. An extensive ablation study assesses
the impact of each adaptation module. Indeed, we observe a performance gap
between classic supervised and unsupervised domain adaptation training, which is
reasonable and fosters further investigations in the under-discovered unsupervised
domain adaptation MOT field.

As for limitations, MOT17 and MOT20 focus on people tracking and do not
handle multi-class tracking scenarios, like in KITTI [58]. Moreover, our experiments
are performed with source and target datasets that have similar sizes, although
their track density varies significantly. In real-world applications, it is likely that
due to its unsupervised nature, the target dataset would be much larger than the

source.
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Chapter 5

Conclusion and Future Work

5.1 DeepMOT-Beyond CLEAR-MOT

In Chap. 2, we propose DeepMOT that closes the gap between the training
and evaluation by approximating MOTA and MOTP. A differentiable proxy of
the Hungarian algorithm is built to solve the one-to-one assignment problem in a
differentiable way and it conveys the gradient from the approximated MOTA and
MOTP to the deep MOT network. DeepMOT can effectively train the detection

and re-identification branches in a unified framework.

Recently, the leading position in MOT metrics taken by the CLEAR-MOT [9]
is challenged by some promising MOT metrics [118, 168]. The main drawback
of CLEAR-MOT is that it focuses more on the detections (FN, FP) errors while
the association error (IDS) has a limited impact on the MOTA metric. Precisely,
in modern mot methods, they usually have FN in the order of 100K and FP of
10K, while they only have around 1K of IDS. To alleviate the imbalanced MOTA,
DeepMOT weights each component of MOTA but the search for good weights
remains empirical. To solve this issue, built on MOTA, HOTA [118] suggests
evaluating the detection and association performance with two separate metrics:
the detection accuracy—DetA and the association accuracy—AssA. the association
accuracy is balanced by replacing IDS with TPAs (True Positive Associations), FNAs
(False Negative Associations) and FPAs (False Positive Associations). Combining

balanced DetA and AssA, as a possible direction of research, extending DeepMOT
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to differentiable HOTA might help the training more balanced in object detection

and association.

Moreover, object (re-)appearing and disappearing (birth and death processes)
commonly happen in MOT. To model them and penalize their errors in an end-
to-end (differentiable) way remains unsolved in deepMOT and could be a future

research topic in MOT.

5.2 Multimodal TransCenter

In Chap. 3, we study a more sophisticated way of embedding transformers
into MOT with TransCenter, which obtains significant improvements compared to

state-of-the-art mot methods while keeping a good efficiency-accuracy balance.

The higher efficiency allows deploying TransCenter in real-world robotic ap-
plications. In general, a robot can not only see (through cameras) but also hear
(through microphone arrays). We believe that having audio information of the
objects/speakers is beneficial for tracking. It is true especially in visual occlusions
where the audio information can help locate the occluded objects. For this reason,

a multimodal TransCenter will be useful for real-world robotic applications.

5.3 Open-World Tracking with DAUMOT

In Chap. 4, DAUMOT is among the first to tackle the unsupervised domain
adaptation MOT problem. While we observe significant performance improvements
in the target domain using DAUMOT, we consider for mow the domain gap within
one single class (i.e. pedestrian). To transfer (with annotations) a MOT method
of one object class to another is a brand-new MOT problem formulated recently
as open-world tracking in [116]. It tackles the problem of enabling machines to
track objects that they have never seen and the objects could be an object of a
different category (e.g. human to car). As a building brick, TAO [36] tracking
dataset provides overall 800 categories which can approximately cover common
objects in the open world. However, the methodology for open-world tracking

remains unclear, and extending DAUMOT to any class might be one solution.
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MOT aims to estimate for each object/person a trajectory (bounding
boxes with trajectory tails in the figure) with a consistent identity
(different colors), as shown in the above example from MOT17-04 [124]. 9

Examples of the widely-used MOT datasets: MOT15 [97], MOT16/17 [124]
and MOT20 [38]. Different colors represent different object identities. 11

An illustration of false negatives (FN), false positives (FP) and iden-
tity switches (IDS) used in the CLEAR-MOT [9] metric. Triangles

and circles represent two different trajectories with different identities. 16

We propose DeepMOT, a general framework for training deep
multiple-object trackers including the DeepMOT loss that directly
correlates with established tracking evaluation measures [9]. The key
component in our method is the Deep Hungarian Net (DHN) that
provides a soft approximation of the optimal prediction-to-ground-
truth assignment, and allows to deliver the gradient, back-propagated
from the approximated tracking performance measures, needed to

update the tracker weights. . . . . . .. ..o 21

Structure of the proposed DHN. The row-wise and column-wise
flattening are inspired by the original HA, while the Bi-RNN allows
for all decisions to be taken globally, thus is accounting for all input

entries. . . . . . ., 26
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DeepMOT loss: dMOT'P (top) is computed as the average distance
of matched tracks and dMOT A (bottom) is composed with FP, IDS
and FN. . . .

The proposed MOT training strategy (bottom) accounts for the
track-to-object assignment problem, solved by the proposed DHN,
and approximates the standard MOT losses, as opposed to the

classical training strategies (top) using the non-differentiable HA.

Sequential DHN: Structure of the proposed Deep Hungarian Net.
The row-wise and column-wise flattening are inspired by the original
Hungarian algorithm, while the Bi-RNN allows for all decisions to

be taken globally, thus is accounting for all input entries. . . . . . .

Parallel DHN variant: (i) We perform row-wise and the column-wise
flattening of D. (ii) We process the flattened vectors using two
different Bi-RNNs. (iii) They then are respectively passed to an
FC layer for reducing the number of channels and are concatenated
along the channel dimension. (iv) After two FC layers we reshape

the vector and apply the sigmoid activation. . . . . . .. ... ...

1D convolutional DHN: Our 1D convolutional DHN variant is inspired
by the U-Net [143]. The encoder consists of two 1D-convolution
layers of shapes [1,24, 15] and [24,48, 15] ([#input channels, #output
channels, kernel size]). The decoder consists of two 1D convolutional
layers of shapes [96,48, 5] and [72,24,5]. Finally, we apply an 1D

convolution and a sigmoid activation to produce A. . . . . . .. ..

Evaluation of performance of DHN and its variants on D of different

matrix SIZES. . . . . . . o e e

Visualization of negative gradients (direction and magnitude) from
different terms in the proposed DeepMOT loss: (a) FP and FN (b)
MOTP (c-d) IDS (compare (c) t — 1 with (d) t). The predicted
bounding boxes are shown in blue, the ground-truth ones are shown

in green and the gradient direction is visualized using red arrows.
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3.1

3.2

In our TransCenter, we propose to tackle the multiple-object tracking
problem with transformers in an accurate and efficient manner: the
dense non-overlapping representations provide sufficient and accurate
detections through dense heatmap outputs as shown in (a); The
sparse tracking queries, obtained from sampled features in object

positions at the previous frame, efficiently produce the displacements
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of objects from the previous to the current time step, as shown in (b). 49

Generic pipeline of TransCenter and different variants: Images at
t and t — 1 are fed to the transformer encoder (DETR-Encoder
or PVT-Encoder) to produce multi-scale memories M; and M;_4
respectively. They are passed (together with track positions at t — 1)
to the Query Learning Networks (QQLN) operating in the feature
dimension channel. QLN produce (1) dense pixel-level multi-scale
detection queries—DQ, (2) detection memory-DM, (3) (sparse or
dense) tracking queries—T'Q, (4) tracking memory—TM. For associat-
ing objects through frames, the TransCenter Decoder performs cross
attention between TQ and TM, producing Tracking Features—TF.
For detection, the TransCenter Decoder either calculates the cross
attention between DQ and DM or directly outputs DQ (in our
efficient versions, TransCenter and TransCenter-Lite, see Sec. 3.3),
resulting in Detection Features—DF for the output branches, S; and
C,;. TF, together with object positions at t — 1 (sparse TQ) or
center heatmap C;_; (omitted in the figure for simplicity) and DF
(dense TQ), are used to estimate image center displacements T
indicating for each center its displacement in the adjacent frames
(red arrows). We detail our choice (TransCenter) of QLN and Tran-
sCenter Decoder structures in the figure. Other designs of QLN and
TransCenter Decoder are detailed in Fig. 3.3 and Fig. 3.4. Arrows

with dotted line are only necessary for models with sparse TQ. . . .
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3.3

3.4

3.5

3.6

3.7

Query Learning Networks (QLN): TransCenter uses QLNg_ as its
query learning network, producing sparse tracking queries from
information at ¢ — 1. Different structures of QLN are studied such as
QLNp_, QLNp (QLNjy, in green arrow and QLNpg in blue arrow),
and QLNg, detailed in Sec. 3.3.1. Best seen in color. . . . .. . ..

TransCenter Decoder is used to handle tracking queries TQ and de-
tection queries DQ. The detection attention correlates DQ and DM
with the attention modules to detect objects. The tracking attention
correlates TQ and TM (information from different time steps) to
learn the displacements between frames of the detected objects at
t — 1 (i.e. tracks). TransCenter Decoder has three main modules
TQSA, DDCA and TDCA (defined in Sec. 3.3.2). Different versions
of TransCenter Decoder depending on discarding the DDCA (TQSA)
or not, are denoted as Single-(TQSA) or Dual-(TQSA) decoder .
TransCenter uses Single-T(Q)SA considering the efficiency-accuracy
tradeoff. The choice is based on the ablation of the aforementioned

variants in Sec. 3.4.5. Ny, is the number of decoder layers. . . . . .

Overview of the center heatmap branch. The multi-scale detection
features are up-scaled (bilincar up.) and merged via a series of
deformable convolutions (Def. Conv., the ReLU activation is omitted
for simplicity) [34], into the output center heatmap. A similar

strategy is followed for the object size and the tracking branches.

Ablation results in MOTA using different numbers of TransCen-
ter Decoder layers. The results are evaluated on both MOT17
and MOT20 validation sets with TransCenter, TransCenterlite and

TransCenter-Dual. . . . . . . . . . . ..

Detection outputs of state-of-the-art MOT methods: (a) shows the
bounding-box centers from the queries in TransTrack [131]; (b), (c)
are center heatmaps of CenterTrack [209], FairMOT [203], and (d)

is from TransCenter. . . . . . . . . . . . . . .
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3.8

3.9

3.10

4.1

Visualization of the detection queries TQ for TransCenter. The
visualization is obtained using the gradient-weighted class activation
mapping [150], as detailed in Sec. 3.5.2. (a) and (b) are from MOT20
while (c) and (d) are from MOT17. Zones with red/orange color
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represent higher response values and with blue color for lower values. 77

Visualization of tracking queries for TransCenter. We visualize the
reference points in red dots, and their displacements (circles) and
importance (circle radius) with offsets and weights calculated from
the tracking queries TQ, as detailed in Sec. 3.5.3. (a) and (b) are
from MOT20 while (c) and (d) are from MOT17. . . ... ... ..

Tracking trajectories visualization of very crowded scenes in MOT20

sequences under the private detection setting. . . . . . . ... . ..

Sample qualitative results from different sequences of MOT20 com-
paring direct transfer (i.e. no adaptation) to DAUMOT. (a) shows
the persons missed by direct transfer whereas (b) showcases the over
detection, and (c) show person identity changes. The images illus-
trate the existence of large domain shifts between source (MOT17)
and target (MOT20) when the model is not trained with DAUMOT.

Green arrows point to the errors. . . . . ... ... ... ...



4.2

4.3

Overview of DAUMOT: alternating between tracking and adaptation.
First, tracking uses a generic MOT method on the target sequences
to obtain bounding-box and identity pseudo-labels. Second, the
adaptation step updates the tracker using labels and pseudo-labels
respectively for the source and target datasets, using standard 1D
and detection losses. In addition, we propose two adversarial strate-
gies, namely adversarial sequence alignment and identity-detection
disentanglement, to train the generic MOT method to be invariant
to inter-sequence domain shifts and disentangle the identity v, and
detection v,y branches. The adversarial sequence alignment is im-
plemented at the image and detection levels with two multi-class
discriminators, D), and Dy,r. The adversarial disentanglement is
implemented with an ID multi-class discriminator Dp;. All dis-
criminators operate on features sampled from the respective feature

INADS. ¢ v e e e e e e e e e e e e

Overview of the unsupervised MOT splits. Standard MOT datasets
are split into train and test where labels are available and unavailable,
respectively. The colors encode which part of which subset is used

for training, adaptation or evaluation. . . ... .. ... ... ...
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