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Bayesian characterization of seismic sources:
from earthquake initiation to seismic ruptures.

par Emmanuel Caballero Leyva

Extended Abstract

Earthquakes are complex natural phenomena that can cause numerous victims and
significant material damage. Earthquake characterization is essential to understand
the mechanisms that cause such events and the physics behind the seismic rup-
ture. Like many areas of geophysics, the determination of the seismic source is
affected by various uncertainties and by the fact that there are often several mod-
els that can explain the observations. The general objective of this thesis is to
conduct a thorough study of different aspects of the earthquake source. First, I
focus on the initiation phase of earthquakes, trying to glimpse details about the
early stages of seismic ruptures. Specifically, I analyze the initiation phase of the
2017 MW = 6.9 Valparaiso earthquake. This earthquake is an interesting event
since it was preceded by a transient displacement accompanied by a foreshocks
sequence. We demonstrate that the pre-seismic GNSS signal cannot be explained
by the co-seismic and post-seismic displacements induced by foreshocks. We show
that this earthquake was probably preceded by an aseismic preslip on the fault. In
the second part of my thesis, I focus on the detailed characterization of the coseis-
mic slip distribution associated with large earthquakes. In particular, I examine the
2014 MW = 8.3 Illapel earthquake, where several works have led to different con-
clusions about the rupture process. We use a Bayesian slip inversion approach to
characterize this seismic rupture. We account for observational and forward model
uncertainties. In particular, we focus on the impact of Earth model inaccuracies on
the forward problem, especially for seismological data. Our kinematic models indi-
cate a high complexity in the source process, with significant slip at shallow depth
supported by breakdown energy estimates, and an asperity encircling rupture that
have been previously suggested by high-frequency back-projection studies.

Initiation phase of the 2017 Valparaiso earthquake
Transient deformations before several large earthquakes have been observed us-
ing geodetic measurements. These signals are observed simultaneously with the
occurrence of foreshock sequences (i.e., seismic events preceding the mainshock).
Two conceptual models have been proposed to explain the role of foreshocks dur-
ing the initiation phase of earthquakes [Mignan, 2014]. A first model considers
the existence of an aseismic slip gradually accelerating until the occurrence of the
main earthquake. According to this model, this pre-seismic slip would trigger the
foreshocks. The second model considers a cascade of foreshocks. In this model,
the foreshock events are triggered by each other (through static stress transfer and
possibly through postseismic slip) and contribute to a cascade of random ruptures,
finally leading to the mainshock. This model could explain the pre-seismic geodetic
signals by considering that these observations actually correspond to the accumu-
lation of coseismic and postseismic deformation associated with each foreshock.

On 24 April 2017, a MW = 6.9 earthquake occurred offshore Valparaíso in the cen-
tral segment of the Chilean subduction zone (33.089�S, 72.116�W, 21:38:28 UTC;
Centro Sismlógico National, CSN). This earthquake was preceded by a transient



displacement observed by continuous GNSS stations four days before the main-
shock [Ruiz et al., 2017]. Foreshocks were also identified with a significant increase
in seismicity rate two days before the mainshock (Figure 1). The primary goal of
this study is to assess the relative contribution of seismic and aseismic slip during
the few days preceding the 2017 Valparaíso earthquake.

For this purpose, we process GPS data of 68 stations in the South America region.
Figure 1-b shows the resulting horizontal displacements for stations in the vicinity of
the study area. There is a clear westward motion starting about three days before
the mainshock. In Figure 1-b, we can see that the slope of the cumulative seismicity
rate does not change significantly at the beginning of the transient displacement.
The increase in seismicity rate is delayed by about 24 hours and only starts with the
occurrence of a MW = 6.0 foreshock on April 23 (purple star in Figure 1-b).
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Figure 1: The 2017 Valparaiso earthquake sequence. (a) Earthquake locations in-
cluding foreshocks (blue circles), mainshock (green star), and aftershocks (white
circles). The red colormap indicates the preslip distribution resulting from the inver-
sion of GPS data. The black arrows show the cumulative observed GPS surface
displacements (up to one hour before the mainshock). Orange dots indicate the
seismicity distribution from 2017/01/01 until 2017/10/05 according to the microseis-
micity catalog obtained by S. Ruiz et al. (2017). (b) GPS Time-series in the vicin-
ity of Valparaíso. The vertical red dashed line indicates approximate onset of the
transient displacement visible on the timeseries. The cumulative number of earth-
quakes from S. Ruiz et al. (2017) is shown at the bottom of the figure. The purple
star represents the largest MW = 6.0 foreshock.



To constrain the contribution of foreshocks to the observed GPS displacement,
we estimate Centroid Moment Tensor (CMT) parameters for moderate to large
earthquakes during the Valparaíso earthquake sequence (from 2017/04/05 up to
2017/05/30). We use a modified version of the W-phase algorithm adapted to re-
gional distances and the magnitude range of the Valparaíso sequence [Kanamori
and Rivera, 2008, Zhao et al., 2017]. Estimated parameters are the deviatoric mo-
ment tensor, the centroid location, the centroid time, and the half-duration of an
isosceles triangular moment rate function. The resulting CMT catalog is shown in
Figure 2.
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Figure 2: CMT solutions of the 2017 Valparaíso earthquake sequence and cumula-
tive moment (a) CMT solutions of the 2017 Valparaíso earthquake sequence. Focal
mechanisms are contoured in blue and black for foreshocks and aftershocks re-
spectively. The size of beach balls scales with the moment magnitude. Color of the
compressive quadrants represents the event depth. (b) Cumulative scalar seismic
moment of the 2017 Valparaíso sequence. The mainshock scalar moment is not
included in this figure. The red dashed line outlines the approximate onset of tran-
sient displacements visible on GPS time-series. The green line indicates the origin
time.



To evaluate the contribution of foreshocks to observed surface displacements, we
calculate synthetic static displacements using our CMT catalog. Synthetics are
computed using the CSI package, incorporating the approach of Zhu and Rivera
[2002] to compute static displacement in a layered model. The largest foreshock
(MW = 6.0) largely dominates the co-seismic contribution to the observed GPS
transient, while MW < 6.0 events in our catalog generate relatively small surface
displacement. Since the MW = 6.0 foreshock plays an important role in the se-
quence, we assess uncertainties associated with the corresponding CMT parame-
ters. The posterior ensemble of plausible source locations and moment tensors is
appraised using a strategy similar to Sambridge [1999] while accounting for Earth
model uncertainty using the approach of Duputel et al. [2012a, 2014].

To evaluate the uncertainty on the predicted co-seismic displacement, we simulate
static displacement for each model samples from the MW = 6.0 foreshock. The
resulting stochastic co-seismic displacements are shown in Gray in Figure 3a for
the closest GPS stations to the mainshock epicenter. Even though we account
for uncertainties, the predicted cumulative co-seismic offsets are still significantly
smaller than the observed pre-seismic displacements (⇠ 6 to 8 mm of the east
component for the closest stations).

To get a total budget of seismic and aseismic displacement before the mainshock,
we compare GPS data one hour before the mainshock with the corresponding cu-
mulative foreshock displacement (Figure 3b). Observed displacements are on aver-
age, between 4 and 6 mm larger than co-seismic offsets. Such differences cannot
be explained by uncertainties in the observations and the predictions. These results
clearly suggest that a significant portion of the observed pre-seismic deformation is
actually aseismic and cannot be explained by foreshocks. We estimate that about
51± 11% of the displacement measured at the GPS stations originates from aseis-
mic slip on the fault. The portion of aseismic deformation is consistent between
neighboring stations (Figure 3c), suggesting a common source located in the vicin-
ity of the foreshocks.

Finally, we perform two slip inversions: a first slip inversion with the total GPS pre-
seismic displacement and another inversion after removing the foreshocks contribu-
tion (i.e., aseismic displacement only). The distribution of aseismic preslip spreads
toward the west of Valparaíso city with an extension of about 50⇥90 km and a scalar
moment of M0 = 3.08⇥ 1018 N.m (i.e., Mw = 6.26). This aseismic motion represents
about 50% of the moment calculated for the slip model derived from uncorrected
GPS data (M0 = 5.67⇥ 1018 N.m, Figure 3e). Given the cumulative moment of fore-
shocks (M0 = 1.48 ⇥ 1018 N.m), we estimate that nearly 70% of the scalar moment
released during the preparation phase of the Valparaíso mainshock is aseismic,
which is roughly in agreement with estimates from Ruiz et al. [2017]. The smaller
portion of aseismic moment derived from the comparison of slip models in Fig-
ure 3e-f likely results from the simplistic assumption in Figure 3e that all foreshocks
are located on the plate interface.

Different numerical and experimental studies have pointed out the influence of
aseismic preslip in the triggering of foreshocks [e.g., Kaneko et al., 2016, McLaskey
and Kilgore, 2013]. If such observations apply on natural faults, foreshock loca-
tions could potentially inform us about the overall spatial extent of the nucleation
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Figure 3: Slip during the Valparaíso foreshock sequence. a) Time series of GNSS
data (blue) and stochastic foreshock-induced co-seismic displacement (gray). Red
dots represent the average of stochastic co-seismic offsets. Green cross corre-
sponds to the total foreshock displacement, including the contribution of earth-
quakes below the magnitude of completeness. b) Distributions of observed pre-
seismic displacement and predicted cumulative co-seismic offsets caused by fore-
shocks. Blue histograms represent observations assuming Gaussian uncertain-
ties from standard errors estimated at each station. Red histograms correspond to
the posterior distribution of cumulative foreshock-induced co-seismic displacement.
c) Percentage of aseismic displacement for each station. d) Average postseismic
signal measured on stations TRPD, VALN, BN05 and QTAY. e) Slip inversion of pre-
seismic GPS data. f) Slip inversion of GPS data after removing foreshock-induced
displacement. Black and blue arrows are observed and predicted horizontal GPS
displacements along with their ellipses (representing observational and prediction
uncertainties, respectively). Colored circles are observed (outer circles) and pre-
dicted (inner circles) vertical displacements from GPS.



zone prior to an earthquake. This idea is in fairly good agreement with our results
suggesting a first-order correlation between preslip distribution and the location of
foreshocks (Figure 1 and Figure 3). Even if preslip appears to be an important
mechanism in the triggering of foreshocks, part of the foreshock activity likely re-
sults from cascading phenomena due to stress changes of neighboring events. In
addition, we still need to understand why most earthquakes are not preceded by
foreshock activity and even less with observable pre-seismic motion.

Revisiting the 2015 Mw=8.3 Illapel earthquake. From kine-
matic rupture inversion to rupture dynamics.
The 2015 MW = 8.3 Illapel earthquake is one of the largest recorded earthquakes

in the Chilean subduction zone [Ruiz et al., 2016]. Previous studies indicate a

rupture propagation from the hypocenter to the superficial part of the fault, with

a maximum slip varying between 10 and 16 meters [see e.g., Heidarzadeh et al.,

2016, Melgar et al., 2016b, Tilmann et al., 2016]. The slip distributions previously

reported show a significant disparity, depending on the data used and the adopted

inversion technique. Thus for some models, the slip magnitude in the surface part

of the fault is almost zero, while others show significant slip at shallow depth.

In this work, we revisit the 2015 MW = 8.3 Illapel earthquake by combining a com-

prehensive data set including permanent and survey GPS stations corrected for

post-seismic and aftershock signals, ascending and descending Sentinel 1A InSAR

images along with high-rate GPS and doubly integrated strong-motion waveforms.

We perform a kinematic slip inversion following a Bayesian approach in which we

obtain an ensemble of models and not a unique solution. The inversion is done

using the cascading capability of the AlTar code (https://altar.readthedocs.io).

This approach can incorporate different uncertainty assessments: observational

uncertainties and forward modeling uncertainties. The observational uncertainty is

commonly related to errors in measurements, while forward modeling uncertain-

ties are associated with imperfect modeling. In the present study, we focus on

accounting uncertainties due to Earth structure modeling. Specifically, we evalu-

ate the impact of inaccuracies in the 1D velocity model employed to compute static

and kinematic predictions. We follow three different schemes to map Earth model

uncertainty into prediction uncertainty. The first straightforward approach is to em-

pirically calculate the prediction uncertainty covariance matrix Cp using predictions

computed for a large number of random Earth models Ψi, (i = 1, . . . , n). Then,

we follow the first-order approximation approach proposed by Duputel et al. [2014].

Finally, we explore the possibility of using a 2nd order perturbation approach, pre-

viously introduced by Caballero et al. [2021] for point source inversions. In Figure

4, we compare the diagonal of the Cp matrix for HRGPS and strong motion sta-

tions. The 1st and 2nd order Cp matrices seem to capture the main features of the



empirical Cp matrix. However, there are differences that could play an important

role in complex inversion problems. For this reason, in the next section, we explore

the impact of the Cp matrix on the coseismic models of the 2015 MW = 8.3 Illapel

earthquake.

Figure 4: Covariance matrix comparison for HRGPS records (a) and Strong Motion
stations (b). The green line represents the diagonal of the empirical covariance
matrix (i.e., the matrix created from an ensemble of models). The red and blue
line represents the diagonal of the matrix calculated using the 1st and 2nd order
approximation approach.

We obtain a static slip inversion a posteriori PDF model and use the distribution

samples as seeds to make three different joint inversions: one using an empirical Cp

matrix and two others using a Cp matrix calculated using the first and second order

perturbation approach. The final slip distributions obtained using these different

approaches are shown in Figure 5. The solution based on 1st order Cp shows a slip

patch that is quite compact at shallow depth, while the shallow slip is more broadly

distributed when considering 2nd order or empirical Cp matrices. This results in a

larger peak slip value for the 1st order Cp solution (21.07 +/- 2.03 m), while empirical

Cp (17.35 +/- 1.96 m) and 2nd order Cp (18.52 +/- 2.74 m ) display smaller peak

slips.



(a) 1st order Cp (b) Empirical Cp (c) 2nd order Cp

Figure 5: Comparison of co-seismic slip distributions obtained using different pre-
diction error covariances Cp. Red colors are the final slip distributions. Arrows
represent the slip directions with their corresponding uncertainty. The red star is
the inverted hypocenter location (empirical, 1st, and 2nd order approximation, re-
spectively). The blue star is the CSN hypocenter, and the green star is the USGS
hypocenter.

Details of the solution obtained using a 2nd order Cp are shown in Figure 6. Stochas-

tic rupture propagation fronts in Figure 6 (a) suggest a complex rupture pattern. It

slowly grows close to the hypocenter, and then propagates northwestward to a shal-

lower area of the subduction interface. Stochastic moment rate functions in Figure

6 (b) indicate an overall rupture duration of 120 seconds approximately. The aver-

age scalar seismic moment is M0 = 3.20⇥ 1021N ·m, i. e., a moment magnitude of

MW = 8.27. The centroid time propagation is not homogenous, displaying complex

patterns, especially to the west of the hypocenter. We examine individually different

aspects of the Illapel earthquake rupture: (i) shallow slip distribution, (ii) observed

encircling rupture patterns, and (iii) fracture energy assessed from our posterior

ensemble of slip models.

To explore the contribution of shallow slip on the inversion, we perform a static slip

inversion imposing the shallow slip to be very small (a small prior in shallow sub

faults). In this manner, we obtain a slip model for which the shallow part is signifi-

cantly different due to the new prior. We compare the difference in tsunami wave-

form fits. We can see that the solution without shallow slip cannot fit the tsunami

waveforms as well as our initial model. The existence of large shallow slips supports

the fact that the 2015 event is not a simple repeat of the earthquake that affected

the region in 1943 [Tilmann et al., 2016]. This is consistent with historical reports

indicating that the tsunami generated in 1943 was much smaller than what was ob-

served in 2015. In addition, the differences in the duration of teleseismic body-wave

arrivals for both events suggest that the 1943 rupture did not involve shallow slip



(a) Rupture Times (b) Moment Rate functions

(c) Centroid times (d) Slip Uncertainty

Figure 6: Impact of using a 2nd order approximation Cp in slip inversion. (a) Poste-
rior mean coseismic slip model, arrows represent the slip directions and the ellipses
its corresponding uncertainty. Contours show stochastic rupture fronts samples
from the a posteriori distribution. (b) Stochastic moment rate functions. (c) Pos-
terior mean coseismic slip model with contours that represent stochastic centroid
time fronts samples from the a posteriori distribution. (d) Uncertainty of the ensem-
ble of coseismic slip models. The red star in the figures represents the inverted
hypocenter location.

[Tilmann et al., 2016].

Results in Figures 6 (a) and (c) show a possible encircling behavior northwest-

ward from the hypocenter location. We use the posterior coseismic mean model to

investigate the slip and slip rate evolution. The observed rupture slowly grows prop-

agating to the northwest during 35 seconds. Around 40 seconds, the rupture splits

into three slip-rate pulses depicting a first encircling pattern west of the hypocenter

(cf., slip rate snapshots between 40 and 50 seconds) and another encircling pat-

tern to the northwest (cf., slip rate snapshots between 45 and 60 seconds). These

encircling slip pulse contour fault areas with small slip amplitudes (cf., final slip dis-

tribution in Figures 6. Both slip branches finally join together generating a large



slip-rate pulse around 60 sec continuing at shallow depth toward the north until the

end of the rupture. The encircling slip pulses visible in our solution between 40 and

60 seconds are consistent with previous back-projection results that suggest such

complexities in the rupture.

Some studies have reported a low radiation efficiency for tsunami earthquakes

[Venkataraman and Kanamori, 2004]. This is related to the presence of sediments,

which dissipate a large part of the available energy. This is relevant for the 2015

Illapel earthquake as our solution suggests an important amount of slip at shallow

depth. To further investigate the rupture dynamics of the 2015 Illapel earthquake,

we follow an approach similar to Tinti et al. [2005a] and use kinematic models to

compute the breakdown work Wb. We follow the same methodology to obtain the

breakdown work of the 2014 MW = 8.1 Iquique earthquake. We compare the aver-

age breakdown energy of both earthquakes with the solution and scaling relation-

ship from Tinti et al. [2005a] (Figure 7 a). With our calculated breakdown energy,

we estimate a radiation efficiency of ⌘R = 0.015. Such low radiation efficiency is

consistent with our modeling results requiring significant slip at a shallow depth to

explain tsunami observations.

We also compare the average breakdown work of both earthquakes with the so-

lution and scaling relationship from Tinti et al. [2005a] and the scaling relationship

from Causse et al. [2014] (Figure 3.14 b). Even though there is a general agree-

ment, we can clearly see that the breakdown work averaged over the fault is small

compared with the scaling relationships. We suggest that such underestimation re-

sults from the fact that the averaging of Wb is done over the entire fault used for slip

inversion (even in regions that did not slip). To mitigate this effect, we decided to

weight the averaging of the breakdown work by the corresponding slip in subfaults.

We see that for the Illapel earthquake, the estimated value is more consistent with

the aforementioned scaling relationships. In the case of the Iquique earthquake,

there is still a significant offset, which could be then due to the compactness of the

rupture [Duputel et al., 2015].

To get insights into breakdown work scaling relationships, we calculate the fracture

energy G for a self-healing slip pulse model [Rice et al., 2005] for both earthquakes,

the 2014 Iquique and the 2015 Illapel earthquake. In both cases, the breakdown

work distributions seem to follow the same scaling relationship expected for fracture

energy calculated for self-healing pulses.



Figure 7: Average breakdown energies (a) and average breakdown work (b) for the
2015 MW = 8.3 Illapel earthquake and the 2014 MW = 8.1 Iquique earthquake. For
the breakdown energy, purple and red dots represent the average breakdown ener-
gies calculated in this study. For the breakdown work, green and red dots represent
the average breakdown work calculated in this study. Cyan and purple dots repre-
sent the average breakdown work weighted by the corresponding slip. Blue dots
represent the breakdown energies and breakdown work calculated by Tinti et al.
[2005a] respectively. The dashed green line represents the scaling relationship
from the same study while the dashed black line represents the scaling relationship
is from Causse et al. [2014].



Résumé étendu (en français)

Les séismes sont un phénomène naturel complexe qui peuvent provoquer de nom-

breuses victimes et des dégâts matériels importants. La caractérisation des séismes

est essentielle pour comprendre les mécanismes et la physique des rupture sis-

miques. Comme d’autres domaines en géophysique, la détermination de la source

sismique est affectée par différentes sources d’incertitudes et par le fait qu’il ex-

iste souvent plusieurs modèles permettant d’expliquer les observations. L’objectif

général de cette thèse est de mener une étude approfondie de la source, couvrant

différents aspects de la caractérisation des séismes. Premièrement, je me suis fo-

calisé sur la phase d’initiation des tremblements de terre, en essayant d’entrevoir

des détails concernant la préparation des ruptures sismiques. Spécifiquement, j’ai

analysé la phase d’initiation du séisme de Valparaiso en 2017 (magnitude MW =

6.9). Ce séisme est un cas d’étude intéressant car il a été précédé par un déplace-

ment transitoire accompagnée par de nombreux séismes pré-chocs. En démontrant

que le signal GNSS pré-sismique ne peut pas être expliqué par les déplacements

co-sismiques et post-sismiques induit par les séismes pré-chocs, nous montrons

que ce séisme a vraisemblablement été précédé par un glissement asismique sur

la faille. Dans une deuxième partie de ma thèse, je me suis intéressé à la caractéri-

sation détaillée de la distribution de glissement co-sismique associée aux grands

séismes. En particulier, j’examine le séisme d’Illapel en 2014 (MW = 8.3), dont

plusieurs travaux ont conduit à des conclusions différentes sur le processus de

rupture. La caractérisation cinématique de la source de ce séisme est donc ef-

fectuée via une approche d’échantillonnage bayésien qui s’est avérée utile pour

caractériser l’incertitude a posteriori. C’est également l’occasion de discuter la

meilleure façon de caractériser l’incertitude de modélisation (liée au problème di-

rect) en particulier pour les données sismologiques. Nos modèles cinématiques

indiquent une forte complexité dans le processus de rupture, associé à des "encer-

clements d’aspérités" qui ont été précédemment été suggérées par des études

utilisant des méthodes de rétro-projection.

Phase d’initiation du séisme de Valparaiso en 2017
L’utilisation de mesures géodésiques a permis de découvrir des déformations tran-

sitoires avant plusieurs grands séismes. Ces signaux sont observés simultané-

ment à l’occurence de séquences de séismes pré-chocs (c-à-d. des évènements

sismiques précédants le séisme principal). Deux modèles conceptuels ont été con-

struit pour expliquer ces observations [Mignan, 2014]. Un premier modèle con-

sidère l’existence d’un glissement asismique qui s’accélère graduellement jusqu’à

l’occurrence du séisme principal. Selon ce modèle, ce glissement pré-sismique dé-



clencherait les séismes pré-chocs. Le deuxième modèle considère une cascade

de séismes pré-chocs. Dans ce modèle, les séismes pré-chocs se déclenchent de

proche en proche (par transfert de contrainte statique et possiblement par l’intermédiaire

de glissement post-sismique) et contribuent à une cascade de ruptures aléatoires

qui conduit finalement au déclenchement du séisme principal. Ce modèle pour-

rait expliquer les signaux géodésiques pré-sismiques en considérant que ces ob-

servations correspondent en réalité à l’accumulation des déformations co-et post-

sismiques associées à chaque séisme pré-choc.

Le séisme de Valparaíso s’est produit le 24 avril 2017 (magnitude MW = 6, 9),

dans le segment central de la zone de subduction chilienne (33.089�S, 72.116�W,

21:38:28 UTC ; Centro Sismlógico National, CSN). Ce séisme a été précédé d’un

déplacement transitoire observé par des stations GNSS permanentes, trois jours

avant le choc principal [Ruiz et al., 2017]. Des séismes pré-choc ont également été

identifiés avec une augmentation significative du taux de sismicité deux jours avant

le choc principal (Figure 8). L’objectif principal de cette étude est d’évaluer la con-

tribution relative du glissement sismique et asismique pendant les jours précédants

le séisme de Valparaíso en 2017.

Pour ce faire, nous traitons les données GPS de 68 stations de la région d’Amérique

du Sud. La figure 1-b montre les déplacements horizontaux pour les stations

situées à proximité de la zone d’étude. On observe clairement un mouvement vers

l’ouest, qui commence environ trois jours avant la choc principal. Dans la figure 8-b,

on peut voir que la pente du taux de sismicité cumulé ne change pas de manière

significative au début du déplacement transitoire. L’augmentation du taux de sismic-

ité est decalé d’environ 24 heures et ne commence qu’avec l’apparition d’un séisme

pré-choc le 23 avril (magnitude MW = 6.0) (cf., étoile violette sur la figure 8-b).

Pour contraindre la contribution des séismes pré-choc aux déplacements GPS ob-

servés, nous estimons les paramètres du tenseur de moment barycentrique (Cen-

troid Moment Tensor CMT, en anglais) pour les séismes de magnitude MW > 3.6 la

séquence de séismes de Valparaíso (de 2017/04/05 à 2017/05/30). Nous utilisons

une version modifiée de l’algorithme W-phase adaptée aux distances régionales et

à la gamme de magnitude de la séquence de Valparaíso [Kanamori and Rivera,

2008, Zhao et al., 2017]. Les paramètres estimés sont le tenseur de moment dévi-

atorique, la localisation barycentrique, le temps barycentrique, et la demi-durée

d’un triangle isocèle qui représente la fonction de taux de moment sismique. Le

catalogue CMT résultant est présenté dans la Figure 9.

Pour évaluer la contribution des séismes pré-chocs aux déplacements superficiels,

nous calculons le déplacement statique synthétique en utilisant notre catalogue
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Figure 8: La séquence du séisme de Valparaiso de 2017. (a) Localisations des
séismes, y compris les pré-chocs (cercles bleus), le choc principal (étoile verte)
et les répliques (cercles blancs). La carte de couleur rouge indique la distribution
de glissement présismique résultant de l’inversion des données GPS. Les flèches
noires montrent les déplacements GPS observés cumulés (jusqu’à une heure avant
le choc principal). Les points orange indiquent la distribution de la sismicité du
2017/01/01 au 2017/10/05 selon le catalogue de microsismicité obtenu par S. Ruiz
et al. (2017). (b) Séries temporelles GPS dans les environs de Valparaíso. La
ligne verticale en pointillés rouges indique le début approximatif du déplacement
transitoire visible sur la série temporelle. Le nombre cumulé de séismes de S. Ruiz
et al. (2017) est indiqué en bas de la figure. L’étoile violette représente le plus grand
pré-choc MW = 6.0.

CMT. Nous utilisons le code CSI pour le calcul (http://www.geologie.ens.fr/

~jolivet/csi) , et nous suivons l’approche de Zhu and Rivera [2002] pour obtenir

des déplacements statiques dans un milieu stratifié. Le plus grand événement pré-

choc (magnitude MW = 6.0) prédomine largement la contribution cosismique au

déplacement transitoire observé dans les GPS. Puisque le pré-choc de magnitude

MW = 6.0 joue un rôle important dans la séquence, nous évaluons les incertitudes

associées aux paramètres CMT correspondants. Afin d’évaluer ces incertitudes,

nous effectuons une nouvelle inversion du CMT dans un cadre bayésien, en suiv-

ant l’approche proposé par Duputel et al. [2012a, 2014]. L’ensemble a posteriori
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Figure 9: Solutions CMT de la séquence du séisme de Valparaíso de 2017 et mo-
ment cumulé. (a) Solutions CMT de la séquence du séisme de Valparaíso de 2017.
Les mécanismes aux foyers sont délimités en bleu et en noir pour les pré-chocs et
les répliques respectivement. La taille de chaque mécanisme est proportionnelle
à la magnitude du moment. La couleur des mécanismes représente la profondeur
de l’événement. (b) Moment sismique scalaire cumulé de la séquence Valparaíso
2017. Le moment scalaire du choc principal n’est pas inclus dans cette figure. La
ligne pointillée rouge souligne le début approximatif des déplacements transitoires
visibles sur les séries temporelles GPS. La ligne verte indique l’heure d’origine.

des localisations de sources plausibles et des tenseurs de moment est évalué en

utilisant une stratégie similaire à celle de Sambridge [1999].

Pour évaluer l’incertitude sur le déplacement cosismique prédit, nous simulons des

déplacements statiques pour chaque échantillon du modèle du séisme pré-choc

MW = 6.0. Les déplacements cosismiques stochastiques résultants sont représen-

tés en gris sur la figure 10a pour les stations GPS les plus proches de l’épicentre du

choc principal. Même en prenant en compte les incertitudes, les déplacement co-



sismiques cumulés prédits sont encore inférieurs aux déplacements présismiques

observés (⇠ 6 à 8 mm de la composante Est pour les stations les plus proches).

Pour obtenir un bilan total du déplacement sismique et asismique avant le choc

principal, nous comparons les données GPS une heure avant le choc principal

avec le déplacement synthétique cumulé généré par les pré-chocs (Figure 10b).

Les déplacements observés sont en moyenne entre 4 et 6 mm plus grands que les

déplacements synthétiques cosismiques. De telles différences ne peuvent pas être

expliquées par les incertitudes liées aux observations et aux prédictions. Ces résul-

tats suggèrent clairement qu’une partie importante de la déformation pré-sismique

observée est en fait asismique et ne peut pas être expliquée par les pré-chocs.

Nous estimons qu’environ 51 % du déplacement mesuré aux stations GPS provient

d’un glissement asismique sur la faille. La partie lié à la déformation asismique

est cohérente entre les stations voisines (Figure 10c), ce qui suggère une source

commune située à proximité des pré-chocs.

Finalement, nous effectuons deux inversions de glissement : une première inver-

sion de glissement avec le déplacement présismique GPS total et une autre inver-

sion après avoir supprimé la contribution des pré-chocs (c’est-à-dire le déplace-

ment asismique uniquement). La distribution du glissement présismique s’étend

vers l’ouest de la ville de Valparaíso avec une extension d’environ 50⇥90 km et un

moment scalaire de M0 = 3.08 ⇥ 1018 N.m (c’est-à-dire, Mw = 6.26). Ce mouve-

ment asismique représente environ 50 % du moment calculé pour le modèle de

glissement dérivé des données GPS non corrigées (M0 = 5, 67 ⇥ 1018 N.m, Fig-

ure 3e). Compte tenu du moment cumulé des pré-chocs (M0 = 1, 48 ⇥ 1018 N.m),

nous estimons que près de 70 % du moment scalaire libéré pendant la phase de

préparation du choc principal de Valparaíso est asismique, ce qui est à peu près en

accord avec les estimations de Ruiz et al. [2017]. La plus petite part de moment

asismique dérivée de la comparaison des modèles de glissement dans la figure 3e-

f résulte probablement de l’hypothèse simpliste de la figure 3e selon laquelle toutes

les pré-chocs sont situées à l’interface des plaques.

Différentes études numériques et expérimentales ont mis en évidence l’influence

d’un glissement pré-sismique dans le déclenchement de séismes pré-chocs [par

exemple, Kaneko et al., 2016, McLaskey and Kilgore, 2013]. Si telles observa-

tions s’appliquent aux failles naturelles, les localisations des pré-chocs pourraient

potentiellement nous informer sur l’étendue spatiale globale de la zone de nucléa-

tion avant un séisme. Cette idée est en accord avec nos résultats suggérant une

corrélation du premier ordre entre la distribution du glissement pré-sismique et la lo-

calisation des pré-chocs (Figure 1 et Figure 3). Même si le glissement pré-sismique
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semble être un mécanisme important dans le déclenchement des pré-chocs, une

partie de l’activité des pré-chocs résulte probablement des phénomènes en cas-

cade liés aux changements de contraintes des événements voisins. De plus, nous

devons encore comprendre pourquoi la plupart des tremblements de terre ne sont

pas précédés d’une activité pré-choc et encore moins d’un mouvement présismique

observable.

Réexaminantion du séisme d’Illapel en 2015
Le séisme d’Illapel en 2015 (Chili, MW = 8, 3) est l’un des plus grands séismes en-

registré dans la zone de subduction chilienne [Ruiz et al., 2016]. Les études précé-

dentes indiquent une propagation de la rupture depuis l’hypocentre jusqu’à la partie

superficielle de la faille, avec un glissement maximal variant entre 10 et 16 mètres

[voir par exemple, Heidarzadeh et al., 2016, Melgar et al., 2016b, Tilmann et al.,

2016]. Les distributions de glissement obtenues précédemment montrent une dis-

parité importante, en fonction des données utilisées et de la technique d’inversion

adoptée. Ainsi pour quelques modèles, la magnitude de glissement dans la partie

superficielle de la faille est presque nulle, alors que d’autres présentent un glisse-

ment superficielle significatif.

Dans ce travail de thèse, nous réexaminons cet événement en combinant un en-

semble de données comprenant: (i) des stations GNSS permanentes et de cam-

pagne, corrigées des signaux post-sismiques et des répliques; (ii) des images

InSAR ascendantes et descendantes du satellite Sentinel-1A; (iii) des données

tsunami; (iv) de formes d’ondes GNSS à haute fréquence (HRGPS); (v) de formes

d’ondes obtenues à partir d’enregistrements accélérométriques en champ proche.

Nous effectuons une inversion du glissement cinématique en suivant une approche

bayésienne, dans laquelle nous obtenons un ensemble de modèles, et non une so-

lution unique. L’inversion cinématique est réalisée avec le code AlTar, qui permet

d’obtenir une solution statique avant d’incorporer les données dans un problème

conjoint. Cette approche bayesiénne nous permet d’incorporer des estimation des

incertitudes: (i) les incertitudes liées aux erreurs de mesures; (ii) les incertitudes

liées au problème direct, particulièrement, liées aux inexactitudes dans le modèle

de vitesse considéré lors de l’inversion. Dans l’étude présente, nous nous concen-

trons sur la comptabilisation des incertitudes dues à la modélisation de la structure

de la Terre. Plus précisément, nous évaluons l’impact des inexactitudes dans le

modèle de vitesse 1D employé pour calculer les prédictions statiques et cinéma-

tiques. Nous suivons trois schémas différents pour prendre en compte l’incertitude

du modèle terrestre. La première approche consiste à calculer empiriquement la

matrice de covariance de l’incertitude de prédiction Cp en utilisant les prédictions



calculées pour un grand nombre de modèles terrestres aléatoires Ψi, (i = 1, . . . , n).

Ensuite, nous suivons l’approche d’approximation au premier ordre proposée par

Duputel et al. [2014]. Enfin, nous explorons la possibilité d’utiliser une approche de

perturbation du second ordre, précédemment introduite par Caballero et al. [2021]

pour les inversions de sources ponctuelles. Dans la Figure 11, nous comparons

la diagonale de la matrice Cp pour les stations HRGPS et les stations de mouve-

ment fort. Les matrices Cp du premier et deuxième ordre semblent capturer les

principales caractéristiques de la matrice Cp empirique. Cependant, il existe des

différences qui pourraient jouer un rôle important dans les problèmes d’inversion

complexes. Pour cette raison, dans la section suivante, nous explorons l’impact de

la matrice Cp sur les modèles cosismiques du séisme d’Illapel de 2015 (MW = 8.3).

Figure 11: Comparaison des matrices de covariance pour les signaux HRGPS (a) et
les stations Strong Motion (b). La ligne verte représente la diagonale de la matrice
de covariance empirique (c’est-à-dire la matrice créée à partir d’un ensemble de
modèles). La ligne rouge et bleue représente la diagonale de la matrice calculée
en utilisant l’approche d’approximation de 1er et 2ème ordre, respectivement.

Nous obtenons une inversion de glissement statique a posteriori et utilisons les

échantillons de distribution comme échantillons origines pour effectuer trois inver-

sions conjointes différentes : l’une utilisant une matrice Cp empirique et deux autres

avec des matrices Cp calculée en utilisant les approches de perturbation du pre-



mier et du deuxième ordre. Les distributions des glissements finales obtenues à

l’aide de ces différentes approches sont présentées sur la Figure 12. La solution

basée sur la matrice Cp du premier ordre montre une zone de glissement assez

compacte à faible profondeur, alors que le même glissement est plus largement

distribué lorsqu’on considère les matrices Cp du second ordre et empirique. Cela

se traduit par un pic de glissement plus important pour la solution de 1er ordre de

la matrice Cp (21,07 +/- 2,03 m), tandis que la matrice empirique Cp (17,35 +/-

1,96 m) et la matrice du 2ème ordre Cp (18,52 +/- 2,74 m) présentent des pics de

glissement plus faibles.

(a) 1st order Cp (b) Empirical Cp (c) 2nd order Cp

Figure 12: Comparaison des distributions de glissement cosismique obtenues en
utilisant différentes matrices de covariance d’erreur de prédiction Cp. Les couleurs
rouges représentent les distributions de glissement finales. Les flèches représen-
tent les directions de glissement avec leur incertitude correspondante. L’étoile rouge
représente la localisation de l’hypocentre inversé. L’étoile bleue est l’hypocentre du
CSN, et l’étoile verte est l’hypocentre de l’USGS.

Les détails de la solution obtenue à l’aide d’un Cp d’ordre 2 sont présentés sur la

Figure 13. Les fronts de propagation stochastiques de la rupture sur la Figure 13 (a)

suggèrent un modèle de rupture complexe, où la rupture se développe lentement

à proximité de l’hypocentre. Puis, elle se propage vers le nord-ouest jusqu’à une

zone superficielle de l’interface de subduction. Les fonctions stochastiques de taux

de moment de la Figure 13 (b) indiquent une durée de rupture globale d’environ 120

secondes. Le moment sismique scalaire moyen est M0 = 3, 20⇥ 1021N ·m, soit une

magnitude de moment de MW = 8.27. La propagation temporelle du centre de la

pulse de glissement n’est pas homogène et présente des configurations complexes,

en particulier à l’ouest de l’hypocentre. Nous examinons individuellement différents

aspects de la rupture du séisme d’Illapel : (i) la distribution du glissement à faible

profondeur, (ii) les modèles de rupture encerclante observés, et (iii) l’énergie de

fracture évaluée à partir de notre ensemble postérieur des modèles de glissement.



(a) Rupture Times (b) Moment Rate functions

(c) Centroid times (d) Slip Uncertainty

Figure 13: Impact de l’utilisation d’une approximation de 2ème ordre Cp dans
l’inversion du glissement. (a) Modèle moyen a posteriori du glissement cosismique,
les flèches représentent les directions de glissement et les ellipses l’incertitude cor-
respondante. Les contours montrent les fronts de rupture stochastiques échan-
tillonnés à partir de la distribution a posteriori. (b) Fonctions de taux de moment
stochastique. (c) Modèle moyen a posteriori du glissement cosismique avec des
contours qui représentent des échantillons de fronts de temps centroïdes stochas-
tiques échantillonés de la distribution a posteriori. (d) Incertitude de l’ensemble des
modèles de glissement cosismique. L’étoile rouge dans les figures représente la
localisation de l’hypocentre inversé.

Afin d’explorer la contribution du glissement superficiel sur l’inversion, nous effec-

tuons une inversion du glissement statique en imposant un glissement superficiel

faible (une distribution a priori proche à zero dans les sous-failles proches de la

fosse océanique). De cette manière, nous obtenons un modèle de glissement pour

lequel la partie superficielle est significativement différente. Nous comparons la dif-

férence dans les ajustements de la forme d’onde des observations tsunami. Nous

pouvons voir que la solution sans glissement à faible profondeur ne peut pas ajuster

les formes d’onde tsunami aussi bien que notre modèle précédent. L’existence de

grands glissements superficiels supportent le fait que l’événement de 2015 n’est



pas une simple répétition du tremblement de terre qui a touché la région en 1943

[Tilmann et al., 2016]. Ceci est cohérent avec les témoignages historiques indi-

quant que le tsunami généré en 1943 était beaucoup plus petit que celui observé

en 2015. En outre, les différences dans la durée des arrivées des ondes de corps

télésismiques pour les deux événements suggèrent que la rupture de 1943 n’a pas

impliqué un glissement peu profond [Tilmann et al., 2016].

Les résultats des Figures 13 (a) et (c) montrent un possible effet d’encerclement

vers le nord-ouest de l’hypocentre. Nous utilisons le modèle moyen à posteriori

pour étudier l’évolution du glissement et du taux de glissement. La rupture ob-

servée croît lentement en se propageant vers le nord-ouest pendant 35 secondes.

Aux alentours de 40 secondes, la rupture se divise en trois pulses de taux de glisse-

ment décrivant un premier encerclement à l’ouest de l’hypocentre et un autre encer-

clement au nord-ouest. Ces pulses de glissement encerclantes contournent des

zones de failles avec de faibles amplitudes de glissement (cf. la distribution finale

du glissement dans les Figures 13). Les deux branches de glissement se rejoignent

finalement en générant une grande impulsion de glissement vers 60 secondes qui

se poursuit à faible profondeur vers le nord jusqu’à la fin de la rupture. Les pulses

de glissement dans notre solution entre 40 et 60 secondes sont cohérentes avec

les résultats précédents de rétroprojection qui suggèrent de telles complexités dans

la rupture.

Certaines études ont rapporté une faible efficacité de radiation pour les séismes de

type tsunami. Ceci est lié à la présence de sédiments, qui dissipent une grande par-

tie de l’énergie disponible. Ceci est pertinent pour le séisme d’Illapel de 2015 car

notre solution suggère une quantité importante de glissement à faible profondeur.

Pour approfondir la dynamique de rupture du séisme de 2015 à Illapel, nous suivons

une approche similaire à celle de Tinti et al. [2005a] et utilisons des modèles ciné-

matiques pour calculer le travail de rupture Wb. Nous suivons la même méthodolo-

gie pour obtenir le travail de rupture du séisme d’Iquique de 2014 (MW = 8.1). Nous

comparons l’énergie de fracture moyenne des deux séismes avec la solution et la

relation d’échelle de Tinti et al. [2005a] (Figure 14 a). Avec notre énergie de rupture

calculée, nous estimons une efficacité de radiation de 0, 015. Une efficacité de radi-

ation aussi faible est cohérente avec les résultats de notre modélisation nécessitant

un glissement superficiel important pour expliquer les observations tsunamis.

Nous comparons également la densité d’énergie de fracture des deux séismes avec

les solution et la relation d’échelle de Tinti et al. [2005a] et la relation d’échelle de

Causse et al. [2014] (Figure 14 b). Bien qu’il y ait un accord général, nous pouvons

clairement voir que la densité d’énergie moyenné sur la faille est faible par rapport



Figure 14: Energies moyennes de rupture (a) et travail moyen de rupture (b) pour
le séisme de 2015 MW = 8.3 Illapel et le séisme de 2014 MW = 8.1 Iquique.
Pour l’énergie de rupture, les points violets et rouges représentent les énergies de
rupture moyennes calculées dans cette étude. Pour le travail de rupture, les points
verts et rouges représentent le travail de rupture moyen calculé dans cette étude.
Les points cyan et violet représentent le travail de rupture moyen pondéré par le
glissement correspondant. Les points bleus représentent les énergies de rupture et
le travail de rupture calculés par Tinti et al. [2005a] respectivement. La ligne verte
en pointillé représente la relation d’échelle de la même étude tandis que la ligne
noire en pointillé représente la relation d’échelle de Causse et al. [2014].

aux relations d’échelle. Nous suggérons que cette sous-estimation résulte du fait

que le calcul de la moyenne de Wb est effectué sur l’ensemble de la faille utilisée

pour l’inversion du glissement (même dans les régions qui n’ont pas glissé). Pour

atténuer cet effet, nous avons décidé de pondérer le calcul de la moyenne par le



glissement correspondant dans chaque sous-failles. Nous constatons que pour le

séisme d’Illapel, la valeur estimée est plus cohérente avec les relations d’échelle

mentionnées précédemment. Dans le cas du séisme d’Iquique, il y a encore un

décalage significatif, qui pourrait alors être dû à la compacité de la rupture [Duputel

et al., 2015].

Pour avoir une vision globalle des relations d’échelle du travail de rupture, nous

calculons l’énergie de rupture G pour un modèle de pulse de glissement auto-

cicatrisant [self-healing pulse; Rice et al., 2005] pour les deux séismes, celui d’Iquique

en 2014 et celui d’Illapel en 2015. Dans les deux cas, les distributions du travail de

rupture semblent suivre la même relation d’échelle attendue pour l’énergie de rup-

ture calculée pour des self-healing pulses.
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General Introduction

Earthquakes are one of the most destructive natural phenomena in the world. Their

occurrence can cause several millions of euros in damages and human casualties.

For instance, the 1985 MW = 8 Michoacan earthquake caused approximately be-

tween three and four billion dollars losses and 10,000 casualties [Hall and Beck,

1986, Singh et al., 1988]. As a further example, the 2011 MW = 9.1 Tohoku earth-

quake resulted in 19,747 casualties and the nuclear crisis of Fukushima nuclear

center [Kazama and Noda, 2012]. For this reason, it is crucial to understand the

mechanisms at their origin and how we can prevent future catastrophes.

With the validation of the continental drift theory in the 60s [Le Pichon, 1968, McKen-

zie and Parker, 1967], scientists could link earthquake origin to a geodynamic pro-

cess. Efforts trying to explain earthquake mechanisms can be dated up to the

early 1900s, with the elastic rebound theory done by Reid [1910]. Earthquakes are

caused by the accumulation of potential energy (mainly elastic and gravitational en-

ergy) in the environment surrounding a locked fault. When the fault yield stress is

reached, this stored energy is liberated in the form of seismic waves, fracture en-

ergy, and thermal energy (Figure 15). In general, earthquakes obey this principle,

however, there are other phenomena that also interact in this cycle.

The second half of the XIXth century is marked by significant advances in the un-

derstanding of earthquake ruptures. For example, the first finite fault slip models for

California earthquakes were developed by Trifunac [1974], Hartzell and Helmberger

[1982], and Olson and Apsel [1982]. Simultaneously, the asperity model was pro-

posed to explain earthquake observations [Aki, 1979, Das and Aki, 1977, Lay and

Kanamori, 1981, Lay et al., 1982]. According to this conceptual model, faults are

segmented with areas of high strength called asperities separated by weak stress

barriers.

Assuming that such rupture segmentation is persistent, this model states that an

asperity can break regularly with the quasiperiodic occurrence of a "characteristic

1
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Figure 15: Example of Elastic Rebound theory for the San Andreas fault. In a first
stage, stress is accumulated on the fault as a consequence of plates interaction.
Then energy will be accumulated until reaching the yield stress. Finally, the fault will
liberate this energy. Figure from USGS website https://earthquake.usgs.gov/.

earthquake" with a similar rupture extent and seismic moment. However, actual

earthquake observations show that fault behavior is much more complex. If we

consider a simple isolated fault system, three different behaviors can be described

(Figure 16) [see Shimazaki and Nakata, 1980, Shearer, 2019]: (1) if these prop-

erties are invariant, we have a predictable cycle with the periodic occurrence of a

characteristic earthquake. (2) If in this system, the static friction is invariant but the

dynamic friction is not, we will be in a case where we can predict the time of recur-

rence. (3) If the dynamic friction is constant, but not the static friction, we will be able

to estimate the slip, but not the recurrence time. In reality, the behavior is even more

complex considering the interactions of multiple asperities [Kaneko et al., 2010] or

long-range dynamic interactions [Cruz-Atienza et al., 2021, Obara and Kato, 2016,

Zigone et al., 2012]. Such complexity leads researchers to the question of how

feasible the earthquake predictability is and how can we characterize earthquake

sources.

With the arrival of more advanced technology in the XXth century, new phenomena

affecting fault behavior were discovered [Beroza and Ide, 2011].

For example, Dragert et al. [2001] discovered a new sort of event called slow slip

events (SSE). SSEs are characterized by a slow displacement that lasts from days

to months. In contrast with earthquakes, SSE releases energy in an aseismic way,

i.e., there are no detectable seismic waves. In this regard, the occurrence of aseis-

mic slip in earthquake initiation phases has been a matter of study for the last two

2
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Figure 16: Simple models of recurring earthquakes parameterized by a yield stress
level �2 (related to the static friction on the fault) and a post earthquake stress level
�1 (related to the dynamic friction on the fault). This diagram is based on [Shimazaki
and Nakata, 1980]. Figure from Shearer [2019].

decades [Das and Aki, 1977, Mignan, 2014].

Along with slow slip events, tectonic tremors, also called non-volcanic tremors were

discovered [Obara, 2002]. These seismic events are known for non-having an im-

pulsive phase and mostly come along with SSEs, depending on the geological con-

text. Finally, it is worth mentioning also the existence of low-frequency earthquakes

(LFEs) and very low-frequency earthquakes (VLFs), that are thought to constitute a

large part of tectonic tremors [Ito et al., 2007, Shelly et al., 2006, 2007].

The discovery of SSEs and tectonic tremors leads scientists to a better understand-

ing of earthquake physics and tectonic settings. We show a schematic represen-

tation of how these phenomena interact in subduction zones (Figure 17, from Lay

[2015]). Domain A is where slow earthquakes (often referred to as tsunami earth-

quakes [Kanamori, 1972]) can occur. Domain B is the central region for megathrust

earthquake development. Domain C is a transition region where seismic activity

can still be present. Finally, domain D is characterized by the occurrence of SSEs

and tectonic tremors. We can see that earthquakes are represented as red patches

embedded in the fault region, surrounded by conditional stability regions (i.e., re-

gions that sometimes fail seismically and sometimes slip aseismically depending

on the stress conditions). Even though there are some similarities between this

model and the asperity model, this model describes variability in terms of interface

3
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frictional properties rather than strength variations as in the asperity model.

Figure 17: Schematic characterization of the megathrust frictional environment. Do-
main description is as follows: A: near-trench domain where tsunami earthquakes
or anelastic deformation and stable sliding occur; B: central megathrust domain
where large slip occurs with minor short-period seismic radiation; C: down-dip do-
main where moderate slip occurs with significant coherent short-period seismic ra-
diation; and D: transitional domain, only present in some areas, typically with a
young subducting plate, where SSEs, LFEs and tectonic tremors occur. Regions
of unstable frictional sliding are red regions labeled “seismic”. Regions of aseis-
mic stable or episodic sliding are white regions labeled “aseismic”. Orange areas
are conditional stability [Scholz, 1998] regions, which displace aseismically except
when accelerated by failure of adjacent seismic patches. Figure from Lay [2015].

The described models explain the earthquake occurrence by differences in frictional

or strength properties. Although these properties were considered for a long time to

be a permanent feature, the accumulation of observations over long periods shows

that there might be long-term modifications in the fault behavior. For example, ob-

servations of the 2011 MW = 9.1 Tohoku earthquake suggest that it was preceded

by 15 years of progressive unlocking of the fault interface [Mavrommatis et al., 2014,

Marill et al., 2021, Yokota and Koketsu, 2015].

Besides, another crucial aspect of earthquake source description is the imaging of

the fault slip. Detailed characterization of fault slip is relevant since we can use

it to increase our knowledge in seismology. For instance, we can develop fault

slip-based scaling laws [Mai and Beroza, 2000, Manighetti et al., 2005, Strasser

et al., 2010]. Besides, we can improve dynamic rupture models, which lead to a

better understanding of earthquake rupture physics [Day et al., 1998, Causse et al.,

2014, Heaton, 1990, Ide and Takeo, 1997]. In this regard, fault imaging results in a

demanding task since we are dealing with an ill-posed problem inversion, for which
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we can obtain different solutions using similar datasets. We can see in Figure 18

four different finite fault slip solutions for the 1999 MW = 7.6 Izmit earthquake. Such

non-uniqueness in the slip models can lead to distinct interpretations.

Figure 18: Selected finite-source rupture models for the 1999 MW = 7.6 Izmit earth-
quake (Turkey), obtained using different inversion strategies and different datasets.
Black stars mark the hypocenter. Colors indicate fault slip (in meters). Note the pro-
nounced dissimilarities of the slip distributions for this event. The inversion results
are from (a) Bouchon et al. [2002], (b) Sekiguchi and Iwata [2002], (c) Delouis et al.
[2002], and (d) Yagi and Kikuchi [2000]. Figure from Mai et al. [2016].

The overall goal of this thesis is to conduct an extensive study of the source, cover-

ing different aspects of earthquake characterization. Firstly, we analyze the initiation

phase of earthquakes, trying to glimpse details regarding the first stages of the rup-

ture. Secondly, we focus on complex fault slip inversions, for which Bayesian tools

have demonstrated to clarify some of the most complex patterns. This dissertation

is organized as follows.

In chapter one, I detail the different inversion approaches used for obtaining co-

seismic slip models. First, I present the different data sets that are used in inverse

problems. Secondly, I describe the representation of earthquakes in point and ex-

tended sources. Then, I introduce the corresponding parameterization for point and

extended sources. After, I describe the optimization-based inversion schemes used

to obtain finite fault slip distributions. Finally, I present the Bayesian approach in-

version schemes. Additionally, I describe how kinematic models can be used to

constrain rupture dynamics.

In chapter two, I first present the state-of-the-art regarding the initiation of earth-

quakes. I describe the different stages of earthquake ruptures and the current con-

ceptual models that are under examination. Next, I present the application for the

initiation phase of the 2017 MW = 6.9 Valparaíso earthquake. We find that there are

contributions of seismic and aseismic slip during the initiation phase of this earth-

quake. The results of this work have already been published and are included in

this chapter.
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In chapter three, we apply a Bayesian slip inversion approach described in chapter

one to investigate the rupture process of the 2015 MW = 8.3 Illapel earthquake.

We introduce and compare a new methodology to account for prediction/epistemic

uncertainty. By incorporating different datasets, we were able to characterize the

complex rupture of this event. The results of this work will be soon submitted as a

scientific research article to the journal Geophysical Journal International and are

included in this chapter.

Finally, chapter four presents a general conclusion. We also discuss the impact

our results could have on the current challenges of seismology, especially on the

understanding of earthquake source physics.
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Chapter 1

Source Inversion

1.1 Summary

During my Ph.D., I applied different inversion techniques to obtain Moment Tensor

(MT) solutions and slip models for large earthquakes in Chile. In this chapter, we will

describe the observations, the forward model, and the inversion methods that can

be used in source inversions. More precisely, we will describe the forward modeling

for a point source and a finite-fault along with their parametrization. Subsequently,

we will present two approaches for earthquake source inversions, the optimization,

and Bayesian inversions schemes. For the Bayesian scheme, we describe some

Bayesian samplers that are frequently used in earthquake studies. Finally, we dis-

cuss how dynamic parameters can be derived from kinematic slip models.

1.2 How to characterize the seismic rupture?

Seismology is a relatively new science that explores the interior of the Earth using

indirect methodologies [Agnew et al., 2002]. These indirect measurements are con-

ducted on the surface, so we don’t have any in-situ measure of the phenomena. In

seismology, for example, displacements or stress are difficult to measure directly

for earthquakes at depth. Geophysics developed a broad range of inverse methods

to solve such Earth-related problems [Menke, 2012]. Since earthquakes generally

occur on faults for which only have indirect measurements, inversion theory turns

out to be instrumental for earthquake studies. In the inverse theory, there are four

7
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main elements that we describe below (see Figure 1.1).

The observations dobs, are the measurement that we can assess on the Earth sur-

face. In the case of earthquake studies, they mainly correspond to ground motion

measurements (displacement, velocity or acceleration) but can also correspond to

tsunami wave height (often derived from sea bottom pressure gauges).

The forward problem is the theory that explain the response of the medium given

the model parameters. For example, it can be the theory describing the gravitational

field for a given pair of masses. In seismology, we use the forward theory allowing

us to predict the displacement field caused by a given earthquake (i.e., assuming a

rupture geometry and slip distribution). The forward model is represented as G(m),

where m are the model parameters to be used to explain the observations. The

relation between m and dobs, (i.e., dobs = G(m)) can be linear or non-linear.

Figure 1.1: Scheme of inversion theory.

In geophysics, we often want to know the causes at the origin of an observed phe-

nomena. With this purpose, we need to recover the model parameters m that ex-

plain the observations dobs. The underlying assumption is that we can find a series

of parameters mest for which the following expression is true:

dobs ⇡ G(mest) (1.1)

The parameters mest can be estimated by different approaches, depending on the

nonlinearity of the problem. Some of these methods are described in section 1.6.

1.3 Observations

By using observations available at the Earth surface, seismologists can explore

the interior of the Earth. For example, tomographies unraveling the composition

8
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of the Earth can be made using seismic records from earthquakes. Seismologists

and geodesists usually classify data in two main categories: kinematic and static

data. Kinematic data correspond to seismic data collected from accelerometers,

seismometers, or High Rate Global Positioning System (HRGPS) stations. On the

other hand, static data comprises diverse types of data, such as Global Navigation

Satellite System (GNSS) displacements, Interferometric Synthetic Aperture Radar

(InSAR) images, and tsunami waveform signals. The static data is only sensitive to

earthquake final slip distributions, while kinematic data can capture features from

the rupture history. Although tsunami data is usually sensitive to the final slip dis-

tribution, it can also provide information regarding the rupture history of very large

earthquakes (i.e., with magnitudes MW > 8.5).

1.3.1 Seismic Data

In seismology, we employ the temporal variation of the displacement field on the sur-

face. This displacement field, generally represented as u(x, t), is usually measured

by seismometers that measure the ground velocity (the derivative of displacement).

After instrument correction, such velocity records can be integrated to displacement

waveforms. During this thesis, we also used strong-motion sensors that are usually

accelerographs (i.e., measuring the ground acceleration).

The first seismometers were created at the end of the XIXth century [Rebeur-

Paschwitz, 1895]. We have, for example, the torsion seismometer created by Wood

& Anderson [Anderson and Wood, 1925]. These first seismometers were based

on simple mechanical principles. For example, the first vertical seismometers were

based on the inertia of a suspended mass connected to a spring. Figure 1.2 depicts

a simple scheme of the operation of mechanical instruments. When an earthquake

happens, the ground around the seismometer starts moving. Because the mass

is connected to a spring, the displacement will be distinct from the surrounding

ground displacement. The differential motion between the mass and the ground is

measured using the voltage induced in a coil by the motion of a magnet. The behav-

ior of the spring and the mass is well-known and is called the instrument response

of the seismometer.

The signal recorded on the seismometer represents the temporal displacement sig-

nal convolved with the instrument response. In the angular frequency domain !, the

observed signal S(!) corresponds to:

S(!) = ID(!) U(!), (1.2)

9
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Figure 1.2: A simple inertial seismometer for measuring vertical motion. Movement
of the suspended magnet induces a voltage in the coil; this signal is then amplified
and recorded. Figure from Shearer [2019].

where U(!) is the ground displacement, and ID(!) is the instrument response. De-

pending on the kind of instrumment, the signal S can be approximately proportional

to the ground velocity (seismometer) or to the ground acceleration (accelerometer).

To work with the recorded signal, they need to be corrected for the instrumental re-

sponse. The most common approach to correct is to deconvolute the instrumental

response from the signal. Thus, to extract the ground displacement, we follow:

U(!) ⇠ F (!)
S(!)

ID(!)
, (1.3)

where F (!) is a band-pass filter including the frequencies of interest applied to

avoid any other effect due to the instrument. The response of the instrument must

be a known function. In this manner, we can recover the actual ground motion

and minimize any effect due to the instrument response. For example, the ideal

seismometer would have a known wide velocity flat response through the entire

frequency domain. The first mechanical instruments had a flat response in dis-

placement at high frequencies (e.g. Wiechert, T0 10 s) but the gain was limited.

With the addition of a coil-magnet transducer (e.g. Galitzine) the gain was improved

but the response became flat in velocity in a narrow frequency band ( Figure 1.3).

Thankfully, the range of frequencies with flat response in velocity has improved

with the arrival of broadband seismometers. These new broadband seismometers

operate as force-feedback systems. There are many other sources of noise in seis-

mograms, such as the ambient noise induced by ocean-earth solid interactions and

long-period noise induced by pressure variations.

Strong motions are instruments with low gain, often with a flat frequency response in
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Figure 1.3: Velocity response functions for four different vertical-component instru-
ments(old IDA station ALE, long and short-period channels for the GDSN station
COL, and IRIS/IDA station ALE). Figure from Shearer [2019].

acceleration. Thanks to the low gain feature, these instruments don’t easily saturate

due to the large shaking in the vicinity of large earthquakes. Therefore, they are

frequently used in earthquake source studies. In theory, we can integrate from

acceleration to displacement. Firstly, to obtain the corresponding velocity, we would

have to integrate the acceleration records as:

v(t) =

Z
A(t) dt+ c (1.4)

Theoretically, we consider the constant c should be equal to zero. However, in

practice, there is a drift effect. This effect is due to various sources of instrumen-

tal variations, such as the transducer hysteresis of the measurement system or

the gravity effect due to ground tilting. The impact of this drift has been largely

studied by diverse authors [Boore and Bommer, 2005, Iwan et al., 1985]. Different

techniques have been suggested to correct strong-motion records from spurious

signals, including the drift shift [e.g., Bock et al., 2011, Chao et al., 2010, Graizer,

1979, Wang et al., 2011]. In Figure 1.4, we show the obtained seismogram from

integrated acceleration. We notice a drifting effect, particularly in the second part

of the signal. In this case, the effect was due to the large shake experienced by the

recording instrument.

Seismic data is chosen depending on the aim of the study. For example, broadband

data are often used at teleseismic distances (30-90 degrees) for diverse source
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Figure 1.4: Example of velocitogram integrated from an accelerometer record at
station 51JYC (31.96° N, 104.98° E) from the 2008 Wenchuan earthquake with
inconstant baseline shift. The smooth line shows the nonlinear trend correction on
velocity determined using the automatic scheme presented in Wang et al. [2011].
Figure from Wang et al. [2011].

studies (back projection, focal mechanism, etc). For finite fault studies, we usually

employ near-field strong-motion records and/or broadband seismograms recorded

at teleseismic to avoid saturation.

With the improvement of the sampling rate of GPS, geoscientists can now employ

these instruments to sample the displacement on the ground with a high sampling

rate. These new measurements called the High Rate Global Positioning System

(HRGPS), has brought new opportunities to earthquake study [Bock and Melgar,

2016, Crowell et al., 2012, Geng et al., 2013, Melgar et al., 2015]. We recommend

the following reading for further information about seismic data processing: Havskov

and Alguacil [2004], Havskov and Ottemoller [2010].

1.3.2 GNSS data

Among geodetic data, we find the Global Navigation Satellite Systems (GNSS).

Among GNSS, we can name the Global Positioning System (GPS) from the USA,

the European system Galileo, and the Russian Global Navigation Satellite Sys-

tem (GLONASS). These measurements have been of growing importance in earth-

quake studies over the last 30 years. This technology started in the 70s decade

with the launch of the first GPS satellite in 1978.

GNSS measurements rely on a system of reference from a satellite’s constellation,
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with which we can locate a point on the surface’s Earth. This location is made

by relative measurements of the phase of radiofrequency signals for each satellite.

Then, a triangulation between satellites is conducted. For this reason, the resolution

of GNSS largely depends on the number of satellites available at the observation

time. Because the measurement depends on signals traveling through different

mediums in a rotational Earth, corrections due to the atmosphere and rotation are

necessary [Altamimi et al., 2016, Bock et al., 2000]. At present, two principal soft-

ware packages are used to process GPS data: GAMIT, a software developed by

MIT (http://geoweb.mit.edu/gg/), and GIPSY, developed by the Jet Propulsion

Laboratory in Caltech (https://gipsy-oasis.jpl.nasa.gov/).

In seismology, we can employ permanent or campaign GNSS stations to study

seismic events. When we use permanent stations, we measure the location of the

corresponding station before and after the earthquake. Thus, we quantify the per-

manent static displacement produced by the seismic event [e.g., Matsu’ura et al.,

2007, Moreno et al., 2009]. In Figure 1.5, we observe the daily displacement quan-

tified in GPS stations in the Parkfield region. These time-series show clear co-

seismic offsets associated with earthquakes occurring in 2003 and 2004. It also

shows post-seismic deformations following both events.

Survey GNSS data requires more careful interpretation since such measurements

can incorporate displacement induced by a range of phenomena taking place in the

region. Among these phenomena, we can mention interseismic and post-seismic

displacements, as well as coseismic displacement caused by aftershocks [Klein

et al., 2017, Twardzik et al., 2021].

As we discussed in the previous section, the last decade has seen a considerable

development of High-Rate GPS ( a GPS with a sampling rate � 1 Hz). Such high

sampling rate allows the treatment of the HRPGS displacements as seismograms

and allows us to perform kinematic studies using HRGPS records. The general ad-

vantages are: (1) HRGPS provides direct measurements of ground displacement,

we thus avoid integration issues (like for the acceleration signals), and (2) HRPGS

signals don’t saturate. Unfortunately, HRGPS observations are much noisier than

seismological records, which prevent the use of such data for moderate sized or dis-

tant earthquakes. Moreover, HRGPS sampling rate is still relatively limited, which

prevent the observation of high frequency waves.

13



1.3. OBSERVATIONS

Figure 1.5: Detrended daily displacement time series of four continuous GPS
(cGPS) stations spanning nearly 15 years in the Parkfield, California region, in
north, east, and up components. The region experienced two earthquakes in
this period (26 December 2003 MW = 6.6 San Simeon and 28 September 2004
MW = 6.0 Parkfield), which generated both coseismic and postseismic deforma-
tion. The stations span both sides of the San Andreas fault. Prepared by Lina Su.
Figure from Bock and Melgar [2016].

1.3.3 InSAR images

Satellite data is also commonly employed to study earthquakes. We have, for exam-

ple, the Synthetic-Aperture Radar (SAR) images that we can use to measure the

ground deformation [Curlander and McDonough, 1991]. This technique is called

Interferometric Synthetic-Aperture Radar (InSAR), and it is often used to quantify

the coseismic displacement provoked by an earthquake. An extensive study of

the InSAR methodology can be found in Jolivet [in French 2011] and Simons and

Rosen [2007]. It is also worth mentioning the pioneering studies of Massonnet et al.

[1993] and Zebker et al. [1994] that produced InSAR data to image the displace-

ment caused by the 1992 MW = 7.3 Landers earthquake.

The general principle of InSAR is as follows: We have a satellite with a known orbit
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covering a region on the Earth with a fixed recurrent period. This satellite throws a

series of electromagnetic pulses that are then reflected on the ground, back to the

satellite. The phase difference between the received signals recorded sequentially

in the same region reflects a change, for example, induced by the displacement of

the ground between two consecutive passes. As the GNSS data, SAR images need

corrections since they are affected by atmospheric effects and uncertainties in satel-

lite orbits [Agram and Simons, 2015, Dalaison and Jolivet, 2020, Jolivet and Simons,

2018]. Because InSAR images depend on the recurrence time of the satellite, they

are also affected by postseismic deformation and interseismic displacement.

Figure 1.6: (a) Descending and (b) ascending interferograms showing the deforma-
tion of the Hector Mine earthquake. Each color cycle represents 10 cm of line-of-
sight (LOS) displacement toward (yellow–red–blue) or away from (yellow–blue–red)
the satellite. Arrows show the horizontal component of the look direction from the
radar satellites. Purple + and - signs point to areas of positive and negative LOS
displacement. The mapped fault trace is shown as thick line and the epicenter is de-
noted with a star. Coordinates are universal transverse Mercator (UTM) coordinates
(zone 115) in kilometers. Figure from Jónsson et al. [2002].

In Figure 1.6, we show an example of InSAR displacements for the 1999 MW = 7.1

Hector Mine, California earthquake, for which Jónsson et al. [2002] obtained a fault

slip distribution. We observe two different images that correspond to the ascending

and descending orbits.

As described above, satellites can record InSAR images in a recurrence period.

This systematic measurement allows scientists to explore fault deformation evolu-

tion in time and space. For example, Rousset et al. [2016] detect an aseismic fault

slip in the Anatolian fault from July 2013 to May 2014. This detection was made

thanks to a series of approximately 205 InSAR images.
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1.3.4 Tsunami Data

We have described data that are essentially obtained for inland regions, either in

the form of GPS displacements, seismograms, or InSAR images. However, we

can also use the ocean waves produced by earthquakes located under sea. At

present, there are different equipment deployed in the sea to measure sea-level

changes. One of this equipment is the Deep-ocean Assessment and Reporting of

Tsunamis (DART) buoy network. The original network was installed by the National

Oceanic and Atmospheric Administration in 2001. The DART’s purpose is to detect

tsunamis in the Pacific Ocean and also in the Indian and North-Atlantic Oceans,

mainly [Meinig et al., 2005] (https://www.ndbc.noaa.gov/dart/dart.shtml).

Estimates of tsunami wave heights are crucial since megathrust earthquakes, such

as the 2004 MW = 9.2 Sumatra earthquake [Lay et al., 2005], have demonstrated to

have devastating effects on society. For this reason, several works focusing on de-

veloping tsunami warnings have been developed [Allen and Greenslade, 2008, Mel-

gar et al., 2016a, Ohta et al., 2012]. Aside from the improvement in early warning,

tsunami data can also be used to study earthquake ruptures and create slip mod-

els. The first pioneer studies using tsunami data were conducted by Satake [1989]

for earthquakes in the Japan trench. At present, using tsunami data is a common

practice in finite fault inversions [Duputel et al., 2015, Gombert et al., 2018b].

1.4 Forward problem

In this section, we present the forward problem addressing the displacement fields

produced by earthquake sources. More specifically, we will start describing the

representation theorem and then continue with the displacement field generated by

point and extended sources.

Earthquakes are usually generated in faults embedded in the crust (but can also be

created by explosions). For this reason, natural seismic sources are represented

as dislocations or discontinuities in the displacement field. We can also describe

this dislocation with a set of body forces [Burridge and Knopoff, 1964]. To model

seismic sources, we follow the notation and treatment of Aki and Richards [2002,

chapter 3,]. Using the representation theorem, we consider an earthquake as a

discontinuity in the displacement field ∆u(⇠, ⌧) occurring in space at any point ⇠ on

the surface Σ, at a given rupture time ⌧ . We can then describe the displacement
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field u(x,t) observed at the position x and at time t as:

ui(x, t) =

Z T

0

d⌧

Z

Σ

∆uj(⇠, ⌧)cjkpq(⇠)⌫k(⇠)Gip,q(x, t; ⇠, ⌧)dΣ, (1.5)

where Gip is the Green function that describes the response in the component i

at the receiver position and time (x, t) due to a unit force applied in the direction p

at position and time (⇠, ⌧). The notation (, q) symbolizes derivation with respect to

the direction q. The properties of the medium at the surface are represented with

the elastic coefficients tensor cjkpq and the normal vector to the discontinuity surface

⌫(⇠) at component k. The term T in the integral represents the total rupture duration

of the earthquake.

1.4.1 Point source representation

Representing earthquakes as point sources is a common practice in seismology.

We introduce the moment tensor, a concept that would help us create the point

source representation. The moment tensor definition was originally proposed by

Backus and Mulcahy [1976] to describe earthquake sources. For a detailed re-

view of moment tensors, we recommend the work of Jost and Herrmann [1989].

In equation 1.5, we obtain the displacement field produced by a dislocation. We

observe two integrals, one in time and one the fault surface. We can represent the

integration in time by a convolution function as:

ui(x, t) =

Z

Σ

∆uj cjkpq ⌫k ⇤Gip,q dΣ. (1.6)

From this expression, we can define the moment density tensor as:

mpq = ∆uj cjkpq ⌫k. (1.7)

Each component of the moment density tensor represents a double force applied at

each point of the dislocation surface [Aki and Richards, 2002]. In summary, we have

three vector dipoles and three double couples with which we can represent any fault

geometry by a linear combination ( Figure 1.7). In terms of this symmetric tensor,

which is time-dependent, the representation theorem describing the displacement

field turns out to be:

ui(x, t) =

Z

Σ

mpq ⇤Gip,qdΣ (1.8)

We can consider the extended source in the surface Σ as a point source applied in
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Figure 1.7: The nine force couples which are the components of the seismic mo-
ment tensor. Each consists of two opposite forces separated by a distance d
(dashed line), so the net force is always zero. Figure from Stein and Wysession
[2009].

the point ⇠0. In this case, we define the moment tensor as:

Mpq =

Z

Σ

mpq dΣ =

Z

Σ

∆uj(⇠, ⌧) cjkpq(⇠) ⌫k(⇠) dΣ, (1.9)

with a displacement field:

ui(x, t) = Mpq ⇤Gip,q. (1.10)

In this manner, the characterization of seismic sources is achieved by finding the

different moment tensor components at the location ⇠0. The best point source lo-

cation is called the Centroid location, and the corresponding moment tensor is the

Centroid Moment Tensor (CMT) [Dziewonski et al., 1981]. If we consider that the

earthquake mechanism doesn’t change during the rupture, we can separate the

moment tensor terms as:

Mpq(⌧) = MpqS(⌧), (1.11)

where S(⌧) is a normalized function describing the evolution of the rupture, from its

initiation to its final displacement. Mpq is the static seismic moment tensor. We can

calculate the scalar seismic moment corresponding to the static seismic moment
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tensor as [Silver and Jordan, 1982]:

M0 =
1p
2
(M : M)1/2 (1.12)

In practice, M0 is usually estimated as M0 = µūA, with µ representing the shear

modulus, A the rupture area, and ū the average fault displacement.

We consider the elastodynamic Green function solution due to a Heaviside function

and express the displacement field (equation 1.5) in function of the moment tensor

as:

ui(x, t) =

Z T

0

MpqṠ(⌧)Hip,q(x, t; ⇠
0, ⌧)d⌧, (1.13)

where Hip,q(x, t; ⇠
0, ⌧) is the response to a Heaviside function, and Ṡ(⌧) is the time-

derivative of the function describing the evolution of the rupture. This time-derivative

function is commonly called the moment rate function and is used to characterize

seismic ruptures at regional or teleseismic distances [Vallée et al., 2011]. In prac-

tice, because of its simplicity, a triangular isosceles function centered at the centroid

time is used as a source time function [Dziewonski et al., 1981, Ekström et al., 2012,

Kanamori and Rivera, 2008]. Recent studies conducted by Meier et al. [2017] show

that most earthquakes follow this shape and are indistinguishable even between

intermediate and large earthquakes.

1.4.2 Extended source

If we have enough quality data, we can also characterize seismic sources by taking

into account their finiteness. We have, for example, the pioneering work of Haskell

[1964] to model the energy due to a finite fault earthquake. We change the notation

of the representation theorem (equation 1.5) and again consider the elastodynamic

Green function solution due to a Heaviside function:

un(x, t) =

Z T

0

d⌧

Z

Σ

∆u̇i(⇠, ⌧)cikpq(⇠)⌫k(⇠)Hnp,q(x, t; ⇠, ⌧)dΣ. (1.14)

We can now consider that the spatio-temporal distribution of dislocations, ∆u̇i(⇠, ⌧),

can be represented using a finite number of basis function Ns [Ide, 2015] as:

∆u̇i(⇠, ⌧) =
NsX

j=1

pjûj
i (⌧)�

j(⇠)hj(⇠, ⌧), (1.15)

∆u̇i(⇠, ⌧) is the ith-component of the slip vector on the fault. Here ûj
i (⌧) is the ith

component of the unit vector representing the slip direction at time ⌧ . This direction
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is always parallel to the fault plane and generally a time-dependent function. �j(⇠) is

a spatial basis function, and hj(⇠, ⌧) is a function describing the temporal evolution

respectively. The coefficient pj has a physical dimension that is equal to a volume.

Both �j(⇠) and hj(⇠, ⌧) are normalized so the integral is unity:

Z Z

Σ

�j(⇠)dΣ = 1;

Z +1

�1

hj(⇠, ⌧)d⌧ = 1 (1.16)

In practice, most of the finite fault studies use rectangular or triangular subfault divi-

sions. We can assume that �j(⇠) corresponds to boxcar functions. In this manner,

we have for the subfault j:

�j(⇠) =

8
<
:

1

Σj
if ⇠ ✏ Σj

0
(1.17)

where Σ
j corresponds to the surface of the jth-subfault in equation 1.15. In this

case, pj represents the seismic potency of the subfault, which is the product of the

subfault area and the slip amount. Another common choice for �j(⇠) is to use linear

or cubic spline functions.

1.5 Source parameterization

1.5.1 Point source parameterization

The point source representation is helpful for the rapid estimation of earthquake

characteristics as the magnitude and focal mechanism. We have, for example, the

moment tensor inversion schemes of Kikuchi and Kanamori [1991] or Utku [2011].

Similarly, we have the results of the global CMT project that systematically calcu-

lates centroid moment tensor solutions [Ekström et al., 2012].

We describe, as an example, the parameterization used in the W-phase centroid

moment tensor (WCMT) solution [Duputel et al., 2012b]. We chose to explain this

scheme since we use a modified version of the W-phase package in the next sec-

tion. This solution is based on the W-phase, a signal detected at low frequencies be-

tween the P-wave and S-wave arrival (Figure 1.8). The W-phase can be interpreted

as a superposition of the first, second and third overtones of spheroidal modes or

Rayleigh waves [Kanamori, 1993, Kanamori and Rivera, 2008]. Nowadays, the W-

phase CMT project runs in real-time, obtaining solutions for intermediate and large

magnitude earthquakes in various operating centers [Duputel et al., 2012b, Hayes
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et al., 2009].

Figure 1.8: W phase from the 2001 Peruvian earthquake (MW = 8.4) recorded at
HRV, and the synthetic W phase computed by mode summation using the GCMT
solution. Figure from Kanamori and Rivera [2008].

The WCMT inversion resolves for the moment tensor components, the coordinates

of the centroid location, and the centroid time [Duputel et al., 2012b]. The moment

tensor is described six independent components: [M11,M22,M33,M12,M13,M23].

We can also impose conditions to have a source without volumetric change:

tr(M) = M11 +M22 +M33 = 0 (1.18)

In spherical coordinates, the moment tensor components to invert are:

f = [Mrr,Mθθ,Mφφ,Mrθ,Mrφ,Mθφ]
t. (1.19)

For the centroid location, we invert the 5 time-space coordinates:

⌘c = [✓c,�c, rc, th, td]
t, (1.20)

where ✓c is the colatitude, �c is the longitude, rc the radius. The parameter th is

the half duration (half-width of the proposed triangular moment rate function). The

parameter td is the centroid delay (the temporal position of the center of the triangle,

measured from the assumed origin time).

1.5.2 Source parameterization for an extended source - Static

case

We now take into account the finiteness of the fault and obtain the final slip distri-

bution due to a seismic rupture. In this regard, we have static data sets that are
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only sensitive to the final slip distribution. To model these static data, we integrate

equation 1.15 up to the final rupture time T . We obtain the final displacement as

[Ide, 2015]:

∆ui(⇠) =
NsX

j=1

pjûj
i�

j(⇠), (1.21)

where ûj
i represents the rake direction of the final slip. This final slip distribution can

be then expressed as a linear combination of two unit vectors on the fault plane:

ûj
i = v1i + v2i . (1.22)

For example, we can use the strike-slip and dip-slip direction as unit vectors. If we

substitute equation 1.22 into equation 1.21 and use the mentioned directions, we

obtain:

∆ui(⇠) =
NsX

j=1

(pj1v1i + pj2v2i )�
j(⇠), (1.23)

where pj1 and pj2 correspond to the coefficients of each unit vector, respectively.

If we replace the previous equation into the representation theorem (equation 1.5),

the displacement field can be expressed as:

ui(x) =
NsX

l=1

(pl1v1j + pl2v2j )G
l
ij(x) (1.24)

With the Green function defined as:

Gl
ij(x) =

Z Z

Σ

�l(⇠)cjkpq(⇠)⌫k(⇠)Gip,q(x; ⇠)dΣ(⇠) (1.25)

If we use a sub fault parameterization, we have:

Gl
ij(x) =

1

Σl

Z Z

Σl

cjkpq(⇠)⌫k(⇠)Gip,q(x; ⇠)dΣ(⇠) (1.26)

where Σ
l corresponds to the subfault surface l for which �l(⇠) 6= 0 (equation 1.17).

We notice that we can characterize the slip distribution using the slip potency coef-

ficients pl1 and pl2. If we use this parameterization, the forward problem becomes

linear, so the relation between ds and G(m) turns out to be:

ds = Gsms (1.27)

where ds are the static data, Gs the corresponding static Green function, and ms the

slip potencies pl1 and pl2 for each subfault. The static Green functions correspond to
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the analytical solution of the displacement field due to a dislocation [Okada, 1985,

Steketee, 1958]. At present, there are different approaches developed to obtain the

response of a displacement field in a layered medium [e.g., Zhu and Rivera, 2002]

or 3D velocity models [Aagaard et al., 2013, e.g.].

1.5.3 Source parameterization for an extended source - Kine-

matic case

If we are interested in the temporal evolution of the rupture, we can use kinematic

data that are sensitive to the slip history. On this subject, there are two main ap-

proaches used to study the rupture with kinematic data: the linear approach (Multi-

time window method) and the nonlinear approach 1.9).

Figure 1.9: Schematic illustrations showing how to parameterize spatiotemporal slip
distribution. The initial time of time function is shown by contours in each of the top
figures. (a) Typical linear expression of the multi-time-window analysis. Unknown
parameters are amplitude for each window. (b) An example of nonlinear expression,
in which rupture time is also an unknown parameter. Figure from Ide [2015].

Linear approach - Multi-time window method

The multi-time window method is one of the most popular methods to study earth-

quakes. It was firstly proposed by Olson and Apsel [1982] and Hartzell and Helm-

berger [1982]. We show in Figure 1.9 (a) a schematic representation of this ap-

proach. Essentially, the method consists of the development of the function ûj
i (⌧)h

j(⇠, ⌧)
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from equation 1.15 as a series of Nt coefficients qk:

ûj
i (⌧)h

j(⇠, ⌧) =
NtX

k=1

qkvjki f(⌧ � (k � 1)∆⌧ � ⌧0(⇠)), (1.28)

where the unit vector vjki indicates the direction of the slip vector for the jth spatial

and kth temporal discrete unit in the spatiotemporal source volume. The function

f(⌧) is a temporal function that is zero for ⌧ < 0, with integration to infinity equal

to unity. Commonly, we use a triangular function as f(⌧) as shown in Figure 1.9

(a). We can see that for each index k, we have a triangular function with a delay

∆⌧ that depends on k, and varies between the minimal rupture time ⌧ = ⌧0(⇠) and

a maximum rupture time ⌧ = ⌧0(⇠) + (Nt � 1)∆⌧ . If we substitute the previous

representation into equation 1.15, we obtain a representation in spatio-temporal

basis functions for which we decompose the slip vector in two directions:

∆u̇i(⇠, ⌧) =
NsX

j=1

NtX

k=1

(pjk1v1i + pjk2v2i )�
j(⇠)f(⌧ � (k � 1)∆⌧ � ⌧0(⇠)), (1.29)

where pjkl is the seismic potency of the lth slip direction on the jth spatial and kth

temporal discrete unit.

If we follow a similar approach as in the static case, we can substitute the equation

1.29 into the equation 1.5. Considering a boxcar function �j(⇠) for the jth subfault,

and an initial rupture time ⌧0(⇠) = ⌧
j
0 , we obtain:

ui(x, t) =
NsX

l=1

NtX

k=1

(plk1v1j + plk2v2j )G
lk
ij (x, t� (k � 1)∆⌧ � ⌧ jo ) (1.30)

with Green functions as:

Glk
ij (x, t) =

1

Σl

Z T

0

d⌧

Z Z

Σl

f(⌧)cjkpq(⇠)⌫k(⇠)Hip,q(x, t; ⇠, ⌧)dΣ(⇠). (1.31)

As for the static case, we deal with a linear problem:

dk = Gkmk (1.32)

where dk are the kinematic data, Gk the Green functions, i.e., the calculated wave-

forms for the spatio-temporal basis functions, and mk the coefficients pjkl. As we

discussed before, this parameterization is widely used since it permits the descrip-

tion of the kinematic source problem as a linear equations system. However, a dis-

advantage of this parameterization is that we need a large number of Nt functions
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to model long earthquake ruptures, which increases the final number of parameters

to invert. To overtake this issue, we can define a minimum rupture time for each

subfault ⌧0(⇠) = |⇠ � ⇠0|/V
max
R , where V max

R is the maximum rupture velocity and ⇠0

the a priori hypocenter within the fault.

Nonlinear approach

In the multi-time window approach, we consider as known parameters the rupture

time and the rupture velocity, being invariable between sub faults. However, such

homogeneity is not necessarily true, so we parameterize the finite fault to take these

variations into account. We observe in Figure 1.9 (b) how the different rupture

velocities affect the evolution of the rupture and how the local source time function

is distinct from the linear approach. We have in this approach the representation of

∆u̇i(⇠, ⌧) as:

∆u̇i(⇠, ⌧) =
NsX

j=1

NsX

k=1

(pj1v1i + pj2v2i )�
j(⇠)f(⌧ � ⌧ j, rj), (1.33)

where f(⌧, r) is a function with null values for ⌧ < 0 and ⌧ > r, and with unity

integral. ⌧ j correspond to the local initial rupture time, and rj to the local rise time of

the subfault j. The function f(⌧, r), called in this approach moment rate function, is

a known function and equal for all the sub faults, and it is not divided into temporal

basis functions as for the multi-time window approach.

One important step of this technique is the selection of the moment rate function.

The most common functions are the triangular and the boxcar function (Figure

1.10).. However, other more complex functions such as the Yoffe pulse or the Gaus-

sian function are also used [Tinti et al., 2005b].

In this approach, we obtain a forward problem with a non-linear relation:

dk = Gk(mk). (1.34)

In this equation, dk represents the data. The function Gk describes the predictions

corresponding to the kinematic model mk. In contrast with the multi-time window

approach, this parameterization is not lineal. The model parameters mk are the

coefficients pjl, the initial rupture time ⌧ j, and the rise time rj. In practice, it is

possible to model the rupture velocity V j
R instead of the rupture time ⌧ j [e.g., Minson

et al., 2013]. This procedure is conducted by mapping the hypocenter location and

rupture velocity field into initial rupture times at each patch, implying the resolution
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Figure 1.10: Slip-velocity functions of delta, boxcar, Gaussian, truncated Kostrov,
and Yoffe are shown on the left. The corresponding slip functions of Heaviside,
ramp, smoothed ramp, square root, and Yoffe in slip are shown on the right. Figure
from Tinti et al. [2005b].

of the eikonal equation:

|r⌧ j| =
1

V j
R

, (1.35)

where ⌧ j = 0 in the hypocenter location.

1.6 Inversion schemes

Inversion schemes aim to infer the model m that fits the observations given the for-

ward problem and some constraints on the parameters. Let us define the residual

vector e = dobs �G(m) between the observations dobs and the predictions G(m)

for a given source model m. It is convenient to define a scalar quantity characteriz-

ing the overall magnitude of such residuals. A common approach is to use the L2
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norm of the residuals:

�(m) = ||dobs �G(m)||22. (1.36)

�(m) is proportional to the squared Euclidean length of the vector e:

E =
X

i

e2i = eTe. (1.37)

If we are in a linear Gaussian case, where G(m) = Gm, the model m̃ minimizing

�(m) (often referred to as the least-squares solution) is:

m̃ = (GtG)�1Gt.dobs. (1.38)

Although the least-squares solution is very convenient, in most cases, we face an

ill-posed inverse problem, where GtG is a ill-conditioned matrix. In such situations,

there are multiple solutions that can fit the observations equally well (there is no

unique solution). A common practice to avoid such non-uniqueness of the problem,

is to regularize the inversion. This can be made using the so called Tikhonov regu-

larization scheme in an optimization approach. As recent application examples, we

can cite the ELastostatic ADjoint INversion (ELADIN) method by Tago et al. [2021]

and the work of Radiguet et al. [2011]. Another approach is to describe the whole

solution space, that is the ensemble of models that can fit the observations given

the a priori information (hereafter refered to as the Bayesian approach). Examples

of Bayesian methods are the Transdimensional dimension algorithm [Dettmer et al.,

2014] or the CATMIP algorithm [Minson et al., 2013].

1.6.1 Optimization approach by Tikhonov regularization

The Tikhonov regularization is a well-known approach to regularize ill-posed prob-

lems [in Russian Tikhonov, 1963]. Also known as ridge regression, the Tikhonov

regularization has been employed in source studies since the early 80s. Examples

of finite fault studies based on Tikhonov regularization are the finite fault studies

conducted by Hartzell and Heaton [1983], Olson and Apsel [1982], and Segall and

Harris [1987].

To deal with the non-uniqueness of the inverse problem, the Tikhonov regulariza-

tion includes an additional regularization term to the misfit function in 1.36. The

estimated parameters are then determined as:

m̃ = argmin(||dobs �G(m)||22 + �2||Γm||22), (1.39)
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where Γ is the Tikhonov matrix, and � is the damping parameter, which weights

the regularization term. The matrix Γ can take diverse forms to impose different

restrictions. Thus, for example, we can choose Γ = I, which is called the zeroth-

order Tikhonov regularization. Among all possible solutions that fit the data equally

well, this regularization will favor the model with a minimum L2 norm, implying a

moment minimization in the case of slip inversions. Another option for Γ is to choose

the Laplacian operator Γ = r2. This choice will favor smooth solutions, preventing

rough slip changes. This regularization is also known as second-order Tikhonov

regularization.

For the linear case d = Gm, we can assume a weighted matrix W, so the equation

will turn to Wd = WGm. We suppose that W is diagonal, and we define the corre-

sponding weight to each data. In this manner, the general solution of equation 1.39

becomes:

m̃ = (GtW2G+ �2
Γ

t
Γ)�1GtW2dobs. (1.40)

We focus now on the damping parameter �. Its importance comes from the fact

that it modulates the impact of the regularization term. We show in Figure 1.11 the

differences between slip models when varying the � parameter. We can see that

the similarity with the reference model change for each �. Such dependence turns

out to be a weak point of this approach since the slip distribution, and therefore,

the conclusions deduced from them, greatly count on �. To avoid the over/under-

estimation of �, a common practice is to use the L-curve to estimate an appropriate

value of � [Hansen and O’Leary, 1993]. In this case, we will choose the � value

that is closer to the curve corner. However, the selection of this parameter remains

arbitrary, affecting the resulted slip model [see Causse et al., 2010].

Despite the simplicity of the previous equation, it is rarely used since it can produce

solutions with negative slips (i.e., in the direction opposite to the rupture rake angle).

The existence of a negative slip is still under debate. For example, in the context of

a subduction zone, it implies slip is occurring in the direction opposite to the long-

term sliding of the megathrust interface. Although one might think of local stress

changes inducing such phenomena, we do not expect to have large negative slip

(which is often seen in solutions not enforcing positivity constraints). There are

different techniques to impose bounded or positivity constraints using a Tikhonov

regularization scheme, such as nonnegative least squares or the conjugate gradient

method [Aster et al., 2018, Menke, 2012, Tarantola, 2005].
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Figure 1.11: Reference k-2 static slip distribution and inverted models for different
values of the smoothing parameter l. The inversion process is performed by as-
suming that all the model and source parameters are known except the static slip.
Mean slip equals 0.7 m. The space between the contour lines is 0.5 m. Figure from
Causse et al. [2010].

1.6.2 Bayesian approach

Optimization techniques based on Tikhonov regularization are very convenient ap-

proaches to address slip inversion problems. However, as we have shown, it re-

lies on nonphysical regularization that imposes restrictions to deal with the non-

uniqueness of the inversion. In this manner, the Bayesian approach turns out to be
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an interesting alternative as the solution is not made of a single model but rather an

ensemble of plausible models given the observations and our a priori knowledge

about the problem [Jackson and Matsu’Ura, 1985].

From the Bayes theorem, we can describe the a posteriori probability density func-

tion (PDF) of parameters p(m|dobs), given the observations dobs as:

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1.41)

where p(m) is the a priori probability density function of parameters and p(dobs|m)

is the data likelihood function, describing the ability of the model parameters m to

explain the observations dobs. The denominator of the equation 1.41 is a normal-

ization factor that can be defined as:

p(dobs) =

Z
p(dobs|m)p(m)dm. (1.42)

Contrary to the optimization approach, the solution of the inverse problem from a

Bayesian perspective is the a posteriori probability distribution function p(m|dobs).

We now consider a generic data set, dobs, for which we can design a forward model

G(m). We can define the forward model, including the uncertainties associated

with our problem:

dobs = G(m) + ed + ep (1.43)

where ed represents the uncertainty due to measurement errors and ep represents

the uncertainty due to forward model uncertainty. The ep error can be related, for

example, to inaccuracies in the Earth velocity model or the fault geometry. Both

errors are modeled as Gaussian distributions since these distributions assume the

least additional information, following the Principle of Maximum Entropy [Jaynes,

2003]. In this case, we can consider the likelihood function p(dobs|m) as [Tarantola

and Valette, 1982]:

p(dobs|m) = N (dobs|G(m),Cχ)

=
1

(2⇡)N/2|Cχ|1/2
exp

✓
�1

2
(dobs �G(m))TCχ

�1(dobs �G(m))

◆
. (1.44)

In the previous equation, N is the total number of observations, and Cχ is the co-

variance matrix defined as:

Cχ = Cd +Cp, (1.45)

where Cd and Cp correspond to the observational and forward modeling uncer-

tainty matrices, respectively (i.e., ed and ep). The term in the exponential function is
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equivalent to the misfit function 1.36 when assuming covariance matrices to char-

acterize uncertainties in the problem. The metric to characterize data residuals is

therefore similar to what is used in optimization problems.

In the previous paragraphs, we described a general Bayesian inversion scheme that

can be applied for linear or nonlinear problems. The Cd matrix is usually built by the

corresponding measurement errors or using some estimates of the noise level (e.g.,

level of ambient noise before the earthquake for kinematic data). The Cp matrix is

often neglected but in fact, it can often be comparable to or larger than Cd. Given

its importance, different methodologies have been proposed to model uncertainties

related to Earth model structure [Duputel et al., 2014] or fault geometry [Ragon

et al., 2018]. As a priori probability distributions, we can use the known information

about the earthquake such as the scalar seismic moment of the event [Fukuda and

Johnson, 2008] or the overall orientation of slip on the fault Minson et al. [2013].

We consider now the case of linear forward models, with Gaussian prior PDF distri-

bution:

p(m) =
1

(2⇡)M/2|Cm|1/2
exp

✓
�1

2
(m�mprior)

TCm
�1(m�mprior)

◆
, (1.46)

where M is the number of parameters, mprior the a priori expected mean value

of the model parameters, and Cm is the a priori covariance matrix. In this specific

case, with a linear forward model, the likelihood function in equation 1.44, and Gaus-

sian a priori distributions, the a posteriori PDF takes the Gaussian form [Tarantola

and Valette, 1982]:

p(m|dobs) =
1

(2⇡)M/2|C̃m|1/2
exp

✓
�1

2
(m� m̃)TC̃�1

m (m� m̃)

◆
. (1.47)

with m̃ being the average a posteriori model and C̃m being the posterior covari-

ance matrix (characterizing uncertainty on m̃). We can estimate the a posteriori

parameters as:

m̃ = (GtC�1
χ G+C�1

m )�1(GtC�1
χ dobs +C�1

m mprior)

C̃m = (GtC�1
χ G+C�1

m )�1. (1.48)

These expressions provide an analytical solution for the linear Gaussian case. If we

compare it with the Tikhonov optimization approach, we notice some similarities.

For example, the C�1
m acts like a regularization term. If we consider mprior = 0,

C�1
χ = W2, and C�1

m = �2
Γ
t
Γ, we obtain an equivalent expression to equation 1.40

(from the optimization approach).
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One of the main disadvantages of the general Bayesian inversion scheme is the

need to evaluate the complete a posteriori PDF distributions, which can be com-

putationally expensive. This is not really a problem for linear Gaussian problem

as such problems have an analytical solution (shown in equation 1.48). However,

Gaussian priors can be impractical as it does not allow to impose bounded con-

straints on model parameters (e.g., slip positivity in a given direction). To solve non-

Gaussian problems, a commonly used approach is to sample the posterior PDF.

Such Bayesian sampling approaches consist in generating a population of model

samples distributed according to p(m|dobs), with a higher density where the models

better explain the observations given the a priori information. Different methodolo-

gies have been proposed to overcome this issue and thus, obtain adequate and

fast samplers. Despite the computation cost in terms of sampling, one advantage

of this approach is that the inverse of the G matrix is not needed. For this rea-

son, the inversion can work without regularizing the inverse of G (or GtWG as in

equation 1.40). We will briefly describe some Bayesian samplers that are used in

seismology studies to obtain the a posteriori PDF distribution. We will also describe

the Cascading Adaptive Metropolis in Parallel algorithm (CATMIP), a methodology

applied in this work in chapter 3. For introduction readings of the Bayesian scheme,

see Bishop [2006], Minson [2010], Sambridge and Mosegaard [2002].

Bayesian samplers - Rejection method

The rejection method (also known as the acceptance-rejection method) is one of the

first sampling methods developed [Von Neumann, 1951]. For the rejection method,

the goal is to draw samples from a target PDF p(x). We start producing samples

from a known distribution g(x). Next, we assume that there is a known constant k

such that p(x)  k · g(x) for all x. We can then draw samples from p(x) following

the algorithm summarized in Table 1.1. This algorithm starts by creating random

samples from a known distribution. Then, the algorithm compares a normalized

version of the sample’s probability in the target distribution to a random variate. If

the sample has a large probability in the target distribution, we are more likely to

accept it. If the target PDF assigns a low probability to the sample, we are less

likely to admit it. In this way, we arrive at having an ensemble of samples distributed

proportionally to our target PDF.
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Table 1.1: Rejection method
1. Draw a candidate sample x from known distribution g
2. Generate a sample u from the uniform distribution U(0, 1)

3. If u  p(x)

k · g(x)
, accept x as a sample of p

4. Return to step 1

Table 1.2: Metropolis algorithm
· For i = 1, 2, ..., N

1. Draw z ⇠ p0(y � x), where p(x, y) = p0(y � x)
and compute a candidate sample y = xi�1 + z

2. Generate a sample u from the uniform distribution U(0, 1)

3. Compute ↵(x, y) = min{
p(y)

k · p(xi�1)
, 1}.

4. If u  ↵, xi = y. Otherwise xi = xi�1.

Bayesian samplers - Metropolis algorithm

The Metropolis algorithm is perhaps the most employed Markov Chain Monte Carlo

(MCMC) sampler [Chib and Greenberg, 1995, Metropolis et al., 1953]. A Markov

chain is a sequence of random variables where the probability distribution of Xn+1

depends solely on the previous value, Xn, and not on earlier values of random

variables in the sequence [Aster et al., 2018, Meyn and Tweedie, 2012].

In this algorithm, we generate samples from a proposal distribution and then prob-

abilistically decide whether or not to accept the candidate sample. The proposal

PDF will depend only on the current state of the process, so the candidate sam-

ple will have a PDF of the form p(x, y), where x is the current sample and y is the

candidate sample. In the original algorithm, the proposal PDF has to be such that

p(x, y) = p(y, x), i.e., the probability of moving from x to y has to be the same

the other way around. However, this requirement is not needed in alternative

Metropolis-based algorithms such as the Metropolis-Hasting algorithm [Hastings,

1970].

In the Metropolis algorithm, we propose a PDF with a random sample x0, from

which we will generate candidate samples following the procedure from Table 1.2.

If the candidate sample has a higher probability (the PDF is larger than the previous

PDF), it will be accepted. Contrary to the rejection method, if the candidate has a

lower probability, it might be accepted depending on the value of the random variate

u. This feature allows the algorithm to escape from local minima, exploring possible

models from the solution space.

Several issues result from the local character of the method (i.e., the fact that each
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model candidates y are generated in the vicinity of the previous sample x in Table

1.2). A poorly chosen proposal PDF p(x, y) can easily result in a very small rejec-

tion rate (typically if p(x, y) is tightly centered on x) or a very large rejection rate

(typically if p(x, y) generates model candidates far away from x). Such poor tuning

can results in large correlation in the series of generated model samples. Another

issue resulting from the local character of the method is the dependence of gener-

ated samples upon on the starting model (in particular if p(x, y) is poorly designed).

To mitigate this effect, a common approach is to remove all model samples gener-

ated during a "burn-in" period. There are other computing disadvantages, like the

fact that the Markov chain is not parallelizable as the rejection method. However,

several parallel adaptations have been built up to overcome these issues.

Bayesian samplers - Transitional Markov Chain Monte Carlo

The Transitional Markov Chain Monte Carlo (TMCMC) algorithm was proposed by

Beck and Au [2002] and Ching and Chen [2007]. For an extensive revision, we

recommend the work of Betz et al. [2016]. The idea behind this algorithm is to

converge to the posterior PDF p(m|dobs) by sampling a series of intermediate PDFs

f(m|dobs)j. For this purpose, we modify equation (1.41) to:

f(m|dobs)j / p(m) p(dobs|m)βj , (1.49)

where (j = 1, . . . , J) and � gradually varies from zero to one, i.e., 0 = �0 < �1 <

, . . . , < �J = 1. Thus, for j = 0 we have �0 = 0, which implies that we are sampling

from the a priori distribution f(m|dobs) / p(m). Finally, for j = J we have �J = 1,

which means we are sampling the complete posterior PDF p(m|dobs). The idea

of this algorithm is that even though the shapes from p(m) to p(m|dobs) change

dramatically, the change between two adjacent intermediate PDFs f(m|dobs)j is

smooth. This approach is, in principle, very similar to the simulated annealing [Kirk-

patrick et al., 1983], except that we stop at a temperature of 1 to sample the poste-

rior PDF.

There are two main elements of this algorithm: a resampling process and the choice

of the next � value from f(m|dobs)j to f(m|dobs)j+1. If the increase of � is too large,

the distribution will change too dramatically to ensure an appropriate sampling of the

model space. On the other hand, if the increase of � is too small, the distribution will

not change much and the sampling will not be efficient (computationally speaking).

The selection of � is thus done dynamically, to ensure a constant gain of information

between adjacent f(m|dobs)j (increasing � can be seen as increasing information
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brought by the data in the problem). As shown by Ching and Chen [2007] this is

equivalent to select �j+1 based on �j such that the coefficient of variation COV (the

ratio of the standard deviation to the mean) of p(dobs|m)βj+1�βj is equal to one.

Regarding the sampling process, the algorithm starts by sampling the prior distribu-

tion. So, for j = 0, we draw from the prior PDF Ns samples m(0,1), ...,m(0,Ns). Next,

we calculate the new � step using the coefficient of variation. For all the samples,

k = 1, .., Ns, we compute the weighting coefficient !(j,k) (the probability of choosing

a specific sample of �j,m(j,k)):

!(j,k) =
p(m(j,k))p(dobs|m(j,k))

βj+1

p(m(j,k))p(dobs|m(j,k))βj
= p(dobs|m(j,k))

βj+1�βj (1.50)

We compute the model sample covariance Σj. This covariance is used in the next

step at j = 1 as the covariance of the Gaussian proposal PDF used in the Metropolis

Chains (see below).

Then, we perform the resampling by randomly selecting samples m(j,k) from the

sample set. The probability of selecting a specific sample is given by the weighting

coefficients !(j,k). During this random resampling, some samples will be duplicated

while some others will not be selected (see Figure 1.12). Samples that are dupli-

cated are then replaced with new samples that are generated using the Metropolis

algorithm with a proposal PDF N(m,↵Σj) where ↵ is an arbitrary coefficient to be

tuned. Once this is done, we jump to the next value of � and continue in the same

fashion until we reach � = 1. A summary of the algorithm is presented in Table 1.3).

This algorithm has two main advantages. First, the sampling is made from an

equilibrium-like distribution, which permits to have a tolerable acceptance rate. Sec-

ondly, the proposal PDF is calculated from the current best candidates of the pos-

terior distribution. For example, if two parameters trade-off with each other, the

sampler will take large steps in the direction in which they co-vary and small steps

in directions with low covariance. However, one of the main limitations of the TM-

CMC is that it is not parallelizable. Besides, there is a problem with a theoretical

assumption in the TMCMC algorithm. Ching and Chen [2007] assume stationar-

ity for all the PDFs f(m,dobs)j, which implies ignoring the "burn-in" period of the

MCMC sampling.

Bayesian samplers - CATMIP

We now describe the Cascading Adaptive Tempered Metropolis In Parallel (CAT-

MIP) algorithm developed by Minson [2010] that we will use in chapter 3. CATMIP
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Table 1.3: TMCMC algorithm
1. Set j = 0. Generate Ns samples m0,1...m0,Ns

of the prior PDF f0 = p(m).
Selection of � step

2. Choose �j+1 such that the coefficient of variation =1.
3. Calculate the weighting coefficients and sample covariance Σj.

Resampling process

4. For k = 1, ..., Ns draw a sample m(j�1) from mj�1,1...mj�1,Ns

with probability !(mj�1,k). Use the Metropolis algorithm with N(m(j�1,k),↵Σj)
as the proposal PDF to append a new sample to the

chain of models which has mj�1,k as its starting model.
5. Repeat steps 2 to 4 until �J = 1 is reached.

Figure 1.12: TMCMC algorithm schematic: This cartoon illustrates one complete
cooling stage of the TMCMC algorithm. The five samples from �m are resampled
and then the Metropolis algorithm is run to replace the unique samples lost through
resampling. Numbers indicate the frequency of each model after resampling. The
five red samples comprise the posterior distribution for �m+1. The algorithm is plot-
ted with a 100% acceptance rate for simplicity. Figure from Minson [2010].

is in principle very similar to the TMCMC approach. Contrarily to TMCMC, CATMIP

is based on multiple Metropolis chains that run in parallel and the resampling is

done by duplicating/rejecting the last model samples of each chain, which allows a

larger exploration in high-probability regions.

The algorithm also starts sampling the prior distribution and draw from the prior

PDF Ns samples m(0,1), ...,m(0,Ns) for � step j = 0. As for TMCMC, we calculate

the new � step using the coefficient of variation. We also compute the model sam-
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Table 1.4: CATMIP algorithm
1. Set j = 0. Generate Ns samples m0 = {m(0,1)...m(0,Ns)} of the prior f0 = p(m).

Selection of � step

2. Choose �j+1 such that the coefficient of variation = 1.
3. Calculate the weighting coefficients and sample covariance Σj.

Resampling process

4. Draw Ns samples from mj with probability !j,k.
The set of resampled models is {m̂}.

5. Use each resampled model m̂ as the seed for generating Nsteps

models from the Metropolis algorithm with proposal covariance ↵Σj.
6. Collect mj+1, the set of sampled Markov chains.
7. Repeat steps 2 to 6 until �J = 1 is reached.

ples covariance Σj that are used to design the proposal PDF used to sample the

distribution at j = 1 (see description below). In an approach similar to TMCMC,

we perform the resampling by randomly selecting samples m(j,k) to create a new

set {m̂} (see Figure 1.13). The probability of selecting a specific sample is given

by the weighting coefficients !(j,k). The difference with TMCMC is that, after re-

sampling, the new samples in m̂ are used as seeds (i.e., initial models) to create

parallel Markov chains of samples of fixed length Nsteps (see Figure 1.13). Samples

in each chain are generated using the Metropolis algorithm with a Gaussian pro-

posal distribution of covariance ↵Σj. This exploration is embarrassingly parallel as

we are dealing with parallel Markov chains. When the Markov chains arrive at the

chain length limit, the final models from all chains are collected to make m(j+1,k).

The choice of the factor ↵ is adapted to the acceptance rate (i.e., the ratio of ac-

cepted samples) using acceptance and rejection weights [see Minson et al., 2013].

Nowadays, the AlTar code (https://altar.readthedocs.io), an implementation of

CATMIP running on CPUs and GPUs, also proposes to use the adaptative metropo-

lis algorithm. In both cases, the idea is to increase the random walk steps when the

acceptance rate is too large and to decrease the random walk steps when the ac-

ceptance rate is too small. The overview of the CATMIP algorithm is given in Table

1.4.

An additional feature of the algorithm is cascading. This allows us to split the inverse

problem and solve it in several sequential parts. For example, in slip inversions,

we can first extract final slip distributions using the static data. Then, we can use

the static slip model samples as starting points to resolve the full kinematic slip

inversion. In this way, the complete slip inversion problem is already constrained to

samples that are consistent with the static case.

Let us consider a case where we have two data sets: D1 and D2. We also divide
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Figure 1.13: CATMIP algorithm schematic. This cartoon illustrates one complete
cooling stage of the CATMIP algorithm. The five samples from �m are resampled
and then an instance of the Metropolis algorithm is run for each of the resulting
samples. Numbers indicate the frequency of each model after resampling. The five
red samples comprise the posterior distribution for �m+1. The algorithm is plotted
with very short Markov chains and a 100 per cent acceptance rate for simplicity.
In applications, the Markov chains would be much longer and the acceptance rate
much lower. Figure from Minson et al. [2013].

the parameters of the problem into two m = (m1,m2), where m1,m2 are taken as

independent a priori. Let’s suppose that the data likelihood for D1 depends only on

model parameters m1 while data likelihood for D2 depends on both m1 and m2. In

our case, static data (D1) is only sensitive to the final slip distribution (m1), while

kinematic data (D2) is also sensitive to the rupture evolution. The corresponding

posterior distribution takes the form of:

p(m|D) / p(m)p(D|m)

= p(m1)p(m2)p(D1|m1)p(D2|m1,m2)

= [p(m1)p(D1|m1)]p(m2)p(D2|m1,m2)

/ p(m1|D1)p(m2)p(D2|m1,m2) (1.51)

In the framework of transitioning schemes, we can incorporate 1.51 in terms of

38



1.7. RETRIEVING DYNAMIC PARAMETERS FROM KINEMATIC SLIP MODELS

transitional distributions in equation 1.49:

f(m|D, �j, �n) / p(m1)p(m2)p(D1|m1)
βjp(D1|m1,m2)

γn . (1.52)

Thus, we can sample the PDF p(m|D) by using the algorithm developed in Table

1.4 in two steps:

(1) f(m1|D1, �j) / p(m1) p(D1|m1)
βj

0 �j  1

(2) f(m|D, �n) / p(m1) p(D1|m1) p(m2) p(D2|m1,m2)
γn

0 �n  1.

(1.53)

Even though we have to run the algorithm twice, in practice, obtaining f(m1|D1, �j)

from the data set D1 and then f(m|D, �n) is faster than running the full inverse

problem directly.

1.7 Retrieving dynamic parameters from kinematic

slip models

We can use kinematic slip models to characterize the dynamic parameters of the

source. Since the slip distribution is directly linked to spatiotemporal stress distri-

bution, a common approach is to use it as a boundary condition in stress evolution

computations [Bouchon, 1997, Ide and Takeo, 1997]. In such a way, we end with

a slip–stress relation at each point on the fault plane. For example, in Figure 1.14

center, we show the slip distribution built by Ide and Takeo [1997]. We can see at

the top and the bottom the corresponding stress evolution within the fault.

It is worth mentioning that the slip-stress relation is based on the slip-weakening

model, as theoretically proposed by Ida [1972] and Andrews [1976]. Thus, be-

sides the stress evolution, we can estimate dynamic parameters related to the slip-

weakening model, such as the critical slip weakening distance Dc and the fracture

energy Gc. One example of earthquake description is the work of Guatteri and Spu-

dich [1998] and Guatteri and Spudich [2000]. They showed that the estimation of

Gc is more stable than that of Dc since Gc is controlled by the slip rate and thus

less affected by the limited resolution. Similarly, Tinti et al. [2005a] estimate the

breakdown energy for a series of earthquakes using kinematic slip distributions.
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Regarding the stress evolution computation, it can be executed using numerical

methods. For example, Aochi et al. [2000] compute the stress evolution using a

boundary integral equation method (BIEM), following the methodology from Fukuyama

and Madariaga [1998] for a planar fault in a 3D Elastic medium.

Figure 1.14: The relation between slip and stress on the fault plane, determined
for the 1995 Kobe earthquake [Ide and Takeo, 1997]. Each trace is the function
calculated at the corresponding location in the middle figure that shows final slip
distribution by contours. Figure from Ide [2015].
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Chapter 2

Initiation phase of Earthquakes.

2.1 Summary

In this chapter, we discuss state-of-the-art models that seek to explain the initiation

phase of earthquakes. We start by introducing laboratory and numerical experi-

ments that examine the nucleation phase of seismic ruptures. Next, we investigate

in detail the foreshock cascade model and the aseismic preslip triggering model.

Then, we continue by describing the foreshocks and the geodetic preslip obser-

vations supporting each model. Finally, we investigate the initiation phase of the

2017 MW = 6.9 Valparaíso earthquake by combining GNSS and seismic obser-

vations. We take into account the uncertainties related to earthquake location for

the largest foreshock of the sequence. We find that only half of the observed GPS

displacement can be explained by seismic contribution, suggesting the existence of

an aseismic slip during the initiation phase of this earthquake. The results of this

work have already been published and are included in this chapter.

2.2 How do earthquakes begin?

To understand how earthquakes begin, we have to go back to the first proposed

theories trying to explain earthquake occurrence in the 70s decade. With the arrival

of new geophysical observations and the advent of plate tectonics theory, geosci-

entists could compare seismic fault slip estimated for earthquakes against the con-

vergence rate in subduction zones. From this comparison, we have among the first
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studies suggesting the existence of aseismic slip on faults the work of Kanamori

[1977]. From this outcome, one question that arises is what is the interaction be-

tween aseismic slip on faults and earthquakes? Does this aseismic slip enhance

the rupture beginning?

To answer these questions, the asperity model was proposed by Lay and Kanamori

[1981] and Lay et al. [1982]. As explained in the General Introduction, this model

aims to explain the slip behavior with the existence of heterogeneities within the

fault. These heterogeneities can be seen as zones with high, intermediate, or low

stress. In this way, if the rupture propagates through a region where the stress

is high relative to the surroundings, the earthquake will break this region called

"asperity", having, as a result, a relatively large slip. In Figure 2.1 we show the

original asperity models proposed by Lay and Kanamori [1981], to explain some

slip models and the influence of stress heterogeneities within the fault.

On the other hand, we have the barrier model suggested by Das and Aki [1977] and

Aki [1979]. In this model, a barrier is a region that can stop the rupture but can also

be broken. If the barrier area is large enough, the propagation of the rupture tip will

be stopped [Husseini et al., 1975]. However, if the region is small compared with

the crack tip, there can be three different scenarios:

• The barrier will break if the tectonic stress is relatively high.

• If the tectonic stress is relatively low, the rupture will proceed beyond the bar-

rier, leaving behind an unbroken barrier.

• If the tectonic stress is intermediate compared with the stress within the bar-

rier, at the beginning the barrier will not cede, but it will eventually break due

to the increase of dynamic stress.

In this regard, Aki [1979] proposes to map barriers within the fault using aftershocks

sequences.

As we have shown so far, these models illustrate the general features of earth-

quake rupture. However, these models treat each event as time semi-independent

from each other and not as part of the same processes. In other words, the first

theoretical models explained each phenomenon, but not all together.
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Figure 2.1: An asperity model indicating the different nature of stress distribution
in each subduction zone category. The hatched areas indicate the zones of strong
coupling. Figure from Lay and Kanamori [1981].

2.3 Early work and numerical simulations of earth-

quake nucleation

Das and Scholz [1981] performed one of the first studies to model the entire source

cycle. In their model, the authors consider an earthquake as a shear crack, which

propagation follows an experimental-derived law. This experimental law depends

on the stress intensity factor at the crack tip, k and its relationship with crack pa-

rameters, the modulus of cohesion Kc in the presence of corrodent (such as water),

and the stress-corrosion limit K0.

One of the most important statements of this theory is that an earthquake needs to

be preceded by a nucleation phase in which a preseismic slip is necessary. Such

nucleation phase can potentially explain the occurrence of foreshocks depending

on the amplitude of k relative to Kc. If a region is embedded in the nucleation

zone and k � Kc, this zone will experiment the occurrence of foreshocks until the

mainshock event. Such theory suggest: (1) given the acceleration nature of the nu-

cleation phase, the probability for foreshocks to happen increases as we approach

the mainshock, and (2) the occurrence of foreshocks does not necessarily occur

depending on the nucleation zone size and preslip amplitude.

Regarding geophysical observations, Ellsworth and Beroza [1995] analyzed the ini-
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tiation phase of about 30 earthquakes, with magnitudes from MW = 2.6 to MW =

8.1. The results of this study lead to the definition of two conceptual models to ex-

plain the occurrence of foreshocks during the initiation phase: the foreshock slow

cascade model and the preslip model.

In the slow cascade model (Figure 2.2 (a)), stress changes induced by foreshocks

contribute to a slow cascade of random failures, leading eventually to the main-

shock. According to this model, foreshocks act as stochastic events that continue

until the mainshock event. This behavior implies that it will be nearly impossible to

predict the future occurrence of an earthquake.

In the preslip model (Figure 2.2 (b)), earthquakes are preceded by an aseismic

preslip that slides over a region. During this nucleation phase, the aseismic slip

gradually accelerates until the occurrence of the mainshock event. According to

this model, aseismic preslip drives the triggering of foreshocks, suggesting the pos-

sibility to forecast some earthquakes.

Figure 2.2: Schematic depiction of two possible mechanisms for foreshock genera-
tion. (a) Foreshocks triggered by previous foreshocks finally trigger the mainshock
in a cascade of failures. (b) Foreshocks occur within the nucleation zone as asper-
ities are loaded by the aseismic nucleation. The mainshock rupture is in Red and
Foreshocks are in Blue. Figure courtesy of Z. Duputel.

Thanks to the development of rock friction laws, like the rate-and-state law [Marone,

1998, Scholz, 1998], earthquake rupture numerical models with rock-based friction

laws were finally created [Cochard and Madariaga, 1996, Rice and Ben-Zion, 1996].

More recently, researchers have continued developing numerical models involving

more physical mediums, i.e., 2D and 3D models, to unveil the nucleation phase

complexity [e.g., Ampuero and Rubin, 2008, Lapusta and Rice, 2003, Rubin and

Ampuero, 2005]. For example, Lapusta and Liu [2009] developed a 3D methodology

to simulate the rupture evolution of a vertical planar strike-slip fault. Their simulation

is capable of recreating seismic and aseismic slip on the fault.

We now present the experimental studies related to the initiation phase. Most

of these studies relied on laboratory earthquakes, either modeled with rocks or
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laboratory-made faults.

2.4 Laboratory experiments

At the same time that numerical models were being developed to understand the

seismic rupture, the first experimental works were developed [Scholz, 1968, Scholz

et al., 1969]. In this regard, Dieterich [1978] proposes a time-dependent friction

theory using different experimental observations. In their work, authors suggest

that there could be a creeping before the main slip event.

On the other hand, Ohnaka and Shen [1999] designed a series of laboratory exper-

iments to elucidate characteristics of the nucleation and dynamic stages of earth-

quake ruptures. One of the main conclusions of this work, is that the nucleation

stage consists of two phases: phase I, an initial quasi-static phase, and phase II, a

subsequent accelerating phase (Figure 2.3). In phase I, the rupture evolves steadily.

In phase II, the rupture growth accelerates. Using the results of Ohnaka and Shen

[1999], Ohnaka [2000] introduces a scaling relationship for earthquake size and its

nucleation zone.

We focus now on the work of Latour et al. [2013]. In their work, they use a laboratory-

made fault using polycarbonate as a rock-analog material, for which they impose

stress conditions trying to simulate subduction regimes (Figure 2.4). They used

high-speed photoelasticity and high-frequency acoustic monitoring to track the slip

on the fault.

The outcomes from this work support the previous conclusion of Ohnaka and Shen

[1999] regarding the existence of two stages in the nucleation phase, an initial quasi-

static and an accelerating phase. However, there is a crucial difference in phase I.

Rather than having a steadily constant velocity growth, Latour et al. [2013] observe

an exponential velocity growth. In addition, Kaneko et al. [2016] compare the results

of Latour et al. [2013] with numerical modeling, showing that rate-and-state friction

laws and elastic continuum can reproduce the behaviors of rupture nucleation seen

in laboratory experiments.

Despite the observation of nucleation phases in both numerical and laboratory stud-

ies, the origin of foreshock sequences and the detectability of earthquake nucleation

is still under debate. The origin of foreshocks turns out to be crucial to understand

the physics during the initiation of earthquakes. In the following sections, we de-

scribe the observations supporting each model. Finally, we discuss studies that

suggest the coexistence of both models.
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Figure 2.3: Plots of the logarithm of the rupture growth rate V against the loga-
rithm of the rupture growth length L during the nucleation for events on the smooth
fault. Lsc denotes the critical length beyond which the rupture grows at accelerating
speeds, and the times t1 = 106.255 and t2 = 106.560465. Figure from Ohnaka and
Shen [1999].

Figure 2.4: Photograph of the polycarbonate plate with the acoustic array, in the
loading apparatus. Figure from Latour et al. [2013].
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Figure 2.5: Examples of videograms showing three spontaneous laboratory earth-
quakes at increasingly higher normal prestresses – Gray scale indicates the light
intensity change since time t = 0. Red curves highlight the position of rupture tips
as a function of time (from Latour et al. [2013]). Blue dashed lines are the pre-
dicted position of rupture fronts in numerical simulations conducted by Kaneko et al.
[2016]. Rupture nucleation can be decomposed into a quasi- static phase followed
by an acceleration phase before dynamic (seismic) rupture propagation. Notice
that the characteristics of rupture nucleation depend on the level of imposed normal
stress (indicated on top of each subplot). Figure modified from Kaneko et al. [2016],
courtesy of Z. Duputel.

2.5 Foreshocks triggered by aseismic pre-slip?

Dodge et al. [1996] is one of the first study introducing the preslip triggering model

to explain the occurence of foreshock sequences. In this study, six earthquakes

sequences in the California region were studied. This region is one of the best-

instrumented zones all around the world, with more than 500 permanent stations

nowadays (https://scedc.caltech.edu/about/dchistory.html). After analyzing

six foreshock sequences in California, they concluded that foreshocks production

could not be caused by this transfer but by an aseismic preslip.

Assuming that foreshocks are triggered by aseismic preslip, one way to detect ex-

tended nucleation phases is to look for significant increases in seismicity rates be-

fore large earthquakes. On this subject, Bouchon et al. [2013] analyze foreshock-

mainshock sequences in Japan and the west coast of North America. They found

that the interplate earthquakes are preceded by more pronounced increases in fore-

shock seismic activity than intraplate events. In Figure 2.6, we can see the normal-

ized stacks of the cumulative seismic moments. On average, we observe that for a
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24-hour stack, there is an overall increase in seismic activity between three and one

day before the mainshock, suggesting an aseismic pre-slip occuring over that time-

scale on average. As noted in section 2.6, such an increase of seismicity rate could

in fact be explained by the natural clustering of earthquakes (i.e., the cascading of

foreshocks).

Figure 2.6: Normalized stacks of the cumulative seismic moments of all the inter-
plate sequences. Each sequence carries the same weight. Figure from Bouchon
et al. [2013].

Another way to use seismology information to characterize the initiation phase of

earthquakes is by searching for repeating earthquakes. By definition, a repeating

earthquake is a family of events that generate very similar waveforms [Nadeau et al.,

1995]. The fact that these events have very similar waveforms is interpreted as the

repetitive rupture of a single asperity on the fault. Assuming that the rupture of

this asperity is triggered by surrounding fault creep, such repetitive events can be

used to assess variation of aseismic slip rate. For example, Bouchon et al. [2011]

detected numerous earthquakes with the same waveform signal 44 minutes before

the occurrence of the 1999 MW = 7.6 Izmit earthquake, showing a phase of slow

slip occurring prior to the mainshock.

Similarly, several studies have been made in the Japan region to analyze earth-

quake sequences [Igarashi et al., 2003, Uchida et al., 2016]. For the 2011 MW = 9.0

Tohoku earthquake sequence, we have the work of Uchida and Matsuzawa [2013]

and Mavrommatis et al. [2015], that show an acceleration of aseismic slip preceding
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the mainshock estimated from repeating earthquakes.

The repeating earthquakes can also be found in intraplate context. Tape et al.

[2013] investigated the nucleation phase of the 2012 MW = 3.9 Nenana earthquake,

which originated in a strike-slip fault located in central Alaska. This earthquake was

triggered by the 2012 MW = 8.2 Sumatra earthquake, whose surface waves act like

an aseismic pre-slip perturbing the fault.

With the advances in Global Navigation Satellite Systems (GNSS), the study of

ground displacements has taken an important role in unveiling the occurrence of

aseismic slips. In this sense, the 2011 MW = 9.0 was one of the first earthquakes

for which there is good GPS coverage and a dense seismic network. On one side,

Kato et al. [2012] employed repeating earthquakes to retrieve the evolution of a slow

slip starting one month before the mainshock event. On the other hand, by using

the Japanese GPS network, an aseismic slip preceding the mainshock was traced

back up to 14 years before the mainshock [Marill et al., 2021, Mavrommatis et al.,

2015, Miyazaki et al., 2011, Ozawa et al., 2012, Yokota and Koketsu, 2015].

In this regard, the 2014 MW = 8.1 Iquique earthquake brings a unique opportunity

to evaluate all the different techniques. Indeed, this earthquake is one of the few

sequences for which one may combine seismic and GNSS observations to ana-

lyze the initiation phase of the mainshock. The MW = 8.1 Iquique earthquake took

place in northern Chile on April 1st, 2014, having a foreshocks sequence with a

largest magnitude of MW = 6.7 on March 16th, 2014 [Brodsky and Lay, 2014, Lay

et al., 2014]. Interestingly, Ruiz et al. [2014] observe a transient signal in the GPS

displacement time series preceding the mainshock (Figure 2.7). Their analysis sug-

gests that foreshock-induced displacement could only explain 20% of the observed

displacement and that the rest of the observed transient correspond to aseismic

preslip before the mainshock. This conclusion is also supported by repeating earth-

quake studies that suggest an aseismic slip occurring prior to the main event, with a

moment magnitude around MW ⇡ 6.7 [Kato and Nakagawa, 2014, Kato et al., 2016,

Meng et al., 2015]. In this respect, Socquet et al. [2017] detected a slow slip event

starting eight months before the mainshock of the Iquique sequence, triggering at

the same time an increase in seismic activity and a decrease in the b value. These

results suggest a progressive expansion of failures into the conditionally stable ar-

eas surrounding small seismic asperities, which eventually, lead to the main rupture

nucleation.

On the contrary, Schurr et al. [2014] show that the transient displacement can be

explained only using the cumulated coseismic slip produced by the entire foreshock

sequence. This conclusion contradicts the findings of Ruiz et al. [2014], enhancing
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the debate about foreshocks’ role in the initiation phase. To compare both fore-

shocks models, Bedford et al. [2015] analyze the continuous GPS data before the

2014 Mw = 8.1 Iquique earthquake. They found that most of the transient GPS

displacement can be interpreted as foreshocks coseismic displacements. However,

there are two episodes between 18–21 and 25–31 March where the foreshock co-

seismic displacements cannot describe the observed displacements. This displace-

ment could be explained either as induced by foreshocks afterslip or an aseismic

preslip.

Figure 2.7: Motion of coastal GPS stations preceding the Iquique earthquake. (A)
North and (B) east components relative to a linear evolution model with seasonal
variations estimated since 2012. The thick red line denotes the origin time of the
mainshock, whereas the black dotted lines show the occurrence times of the MW >
6 foreshocks. Error bars indicate 1� formal uncertainty. Figure from Ruiz et al.
[2014].

By taking into account the uncertainty in earthquake locations, Herman et al. [2016]

attempted to assess the seismic and aseismic slip during the initiation phase of
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the 2014 MW = 8.1 Iquique earthquake. They found that starting with the largest

foreshock of MW = 6.7, the three largest foreshocks occurred in regions where the

Coulomb stress has had changed due to preceding events, indicating that these

events were brought to failure by prior seismicity. At the same time, they found, as

previously reported, that an aseismic slip could probably take place in the region

during the initiation phase. These results suggest that both foreshocks’ models

could be happening and interacting simultaneously within the fault.

2.6 Foreshocks as cascades of random failures?

The detection of foreshocks can be traced back to the 1970s with the work of Jones

and Molnar [1976], where foreshocks are cited as one of the reasons for the suc-

cess in predicting the 1975 MS = 7.3 Haicheng earthquake. In their study, Jones

and Molnar [1976] observe an increase of the foreshock seismicity rate before the

mainshock.

With the densification of seismological networks, and the development of new de-

tection methods, foreshock sequences detection increases globally. Several studies

point out the difference between the rate of foreshocks and how this rate increases

close to the mainshock beginning [Abercrombie and Mori, 1996, Bowman and King,

2001, Ellsworth and Beroza, 1995, Jaumé and Sykes, 1999, Knopoff et al., 1996,

Reasenberg, 1999].

One crucial aspect to consider in foreshock occurrence is the statistical significance

of the foreshocks rate. In this regard, Helmstetter and Sornette [2003] propose to

use the Epidemic-Type Aftershock (ETAS) model, a model previously introduced by

Kagan and Knopoff [1981, 1987], Ogata [1988], to study changes in the foreshocks

rate. The Epidemic-Type Aftershock (ETAS) model is a statistical model that tries

to mimic earthquake catalogs, including several mainshock-aftershock sequences

[Zhuang et al., 2012]. In general terms, the temporal ETAS model can be repre-

sented as follows:

�(t) = µ+
X

i|ti<t

A expα(Mi�Mc)(t� ti + c)�p, (2.1)

where �(t) is the temporal conditional intensity, µ is the time-independent back-

ground seismicity rate, and Mc is the magnitude of completeness. The sum repre-

sents the expected aftershock rate at a given time that is triggered by the previous

seismicity. The parameters A and ↵ describe the overall regional aftershock pro-

ductivity and the magnitude dependence on the number of triggered events, respec-
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tively. Finally, c and p are the parameters of the Omori-Utsu law [Utsu, 1957, Utsu

et al., 1995] describing the time-decay of the aftershock seismicity rate following a

mainshock.

In their work, Helmstetter and Sornette [2003] suggest that the difference between

foreshock, aftershock, and mainshock definition is rather empirical than physically-

based. In particular, they argue that there is no statistical difference between

foreshock, mainshock, and aftershock behaviors. They investigated the catalog

of the Southern California Data Center (SCEC) between 1932-2000, with more

than 22000 earthquakes. Their results suggest that most of the foreshock se-

quences can be explained by the natural clustering of earthquakes (i.e., mainshock-

aftershock sequences), thus, supporting the foreshock cascade model. Besides,

they suggest that seismic activity before a mainshock is independent of its magni-

tude.

Since the work of Helmstetter and Sornette [2003], the ETAS model has been

used to explore foreshock seismicity rates to investigate anomalous seismicity rates

during earthquake initiation phases [Marsan and Enescu, 2012, Marzocchi and

Zhuang, 2011, McGuire et al., 2005].

Thanks to the new and more accurate location techniques, in the last twenty yeas

there has been an improvement in earthquake location and completeness of cata-

logs [Gibbons and Ringdal, 2006, Ross et al., 2019]. One example of this improve-

ment is the work of Ellsworth and Bulut [2018]. In this study, the authors analyze

the foreshock sequence preceding the 1999 MW = 7.6 Izmit earthquake. For this

purpose, they relocated the sequence using the double-difference method and per-

formed cluster analysis and template matching. Using these relocated foreshocks,

they calculated the stress change due to each foreshock. In Figure 2.8, we ob-

serve distribution of foreshocks along the fault. As we can see, the region of stress

change fall in the new hypocenter location. These results support the idea that fore-

shocks trigger each other in a cascade of failures until reaching the instability that

will lead to the mainshock. These conclusions are in disagreement with the analysis

of Bouchon et al. [2011], previously describe in the previous section.

It is also worth noting the work of Ross et al. [2019] that improved the South Cal-

ifornia catalog from 2000 to 2017. In their work, they used the template matching

method to detect new events. They designate their catalog as the quake template

matching (QTM) catalog, with nearly 1.81 million earthquakes. We show in Figure

2.9 the obtained event density for the southern California region.

By using the QTM catalog, Trugman and Ross [2019] investigate the foreshock ac-

tivity sequences in the region of southern California. They use 46 mainshocks that
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Figure 2.8: East–west cross sections of the evolving shear stress changes on the
fault plane during the foreshock sequence to the 1999 Izmit earthquake. a–d,
Each frame corresponds to the origin time of one of the four largest foreshocks
and adds the stress change from that event. Stress change based on a previously
reported source model [Madariaga and Ruiz, 2016]. Red squares and error-bars
show hypocentroids and 2� location uncertainty of events occurring through the
time indicated in the figure heading. Green diamonds denote the hypocentroid of
the next foreshock in the sequence (a–c) and the mainshock hypocentre (d). Figure
from Ellsworth and Bulut [2018].

were selected for being spatial and time-isolated. To analyze the seismicity rate,

they used a Poisson distribution-based method, the interevent time method [Hainzl

et al., 2006]. One crucial assumption from this method is that it doesn’t account for

triggered event interactions as the ETAS model. The results suggest that 72 percent

of these mainshocks are preceded by foreshock activity that is significantly elevated

compared to the local background seismicity rate. Besides, such occurrence sug-

gests that foreshocks in nature are more prevalent than previously thought. This

conclusion enhances the preslip model. However, as we point out, the used Pois-

son distribution-based method does not take into account the interaction of events.

Following this study, van den Ende and Ampuero [2020] also analyze the QTM cat-

alog but using a Gamma distribution model. In this manner, they found that only 15
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Figure 2.9: Map of earthquake density in the QTM catalog (bins: 2 km by 2 km).
Figure from Ross et al. [2019]

of 46 mainshocks (33 %). However, taking into account temporal fluctuation in the

catalog, only 18 % of the foreshock sequence seismicity rates remain unexplained,

hence, linked to initiation processes.

Finally, Moutote et al. [2021] use the ETAS model to analyze the same foreshocks

sequences. The ETAS model can fully represent earthquake clustering contrarily

to Poisson or Gamma distributions that do not account for earthquake interactions.

By taking into account earthquake interactions, 18 % of foreshock sequence rates

could not be explained by their ETAS model. This result suggests that anoma-

lous seismicity rates are less common than what was originally suggested by Trug-

man and Ross [2019]. This study suggests that most foreshock sequences can

be explained by foreshock cascades. Nevertheless, the number of unexplained

sequences remain significant for which it would be interesting to search for the ex-

istence of preslip (i.e., using near-fault observations)
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Figure 2.10: Anomalous foreshock-mainshock sequences. Left) Poisson distribu-
tion model from Trugman and Ross [2019]. Center) Gamma distribution model
Differences between models from van den Ende and Ampuero [2020]. Right) ETAS
model from Moutote et al. [2021]. Figure courtesy of Z. Duputel and L. Moutote.

2.7 Co-existence of foreshock cascading and aseis-

mic pre-slip

As we have shown, previous studies lead to different conclusions regarding the

origin of observed foreshock sequences. The outcomes of each study depend on

several assumptions, so the role of foreshocks in the earthquake initiation phase is

still under debate.

For example, observations during the 2014 MW = 8.1 Iquique earthquake tend to

suggest that both foreshock cascading and preslip trigering could possibly co-exist

in nature. We can have, for instance, an aseismic slip triggering foreshock cas-

cades (possibly mediated by afterslip). Therefore, we can think that the earthquake

initiation consist in the co-existence of foreshock triggered by aseismic slip and

events triggered by earthquake interactions (i.e., static or dynamic stress-transfer).

Such co-existence is clear for the Iquique earthquake. We can see in the Cen-

tro Sismológico Nacional (CSN) catalog that large foreshocks actually triggered a

sequence of aftershocks. At the same time, analysis of Herman et al. [2016] and

Socquet et al. [2017] show that there is still transient displacements that cannot be

fully explained by foreshocks co-seismic offsets (hence suggesting aseismic pres-

lip).

In this regard, Mignan [2014] conducted a meta-analysis of foreshocks role stud-

ies, where he observes that the conclusion about the origin of foreshock sequences

depends substantially on the employed approach. Studies suggesting an aseismic

preslip triggering model are mostly based on the analysis of individual foreshock se-

quences. On the other hand, the foreshock cascade model is mostly supported by
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studies stacking many datasets together. Similarly, we recognize that the foreshock

cascade model conclusion is 100% based on statistical methods, i.e., methods us-

ing large datasets or catalogs. Meanwhile, the aseismic preslip triggering has been

obtained by different methods, statistical, heuristic (where foreshocks observations

are difficult to explain by earthquake triggering), and physical (i.e., static stress

transfer theory).

In this respect, McLaskey [2019] conducted a series of experiments on a 3 meters

rock sample. The fact of having a larger experiment setting contributes to taking into

account the complexity of the earthquake initiation process. The nucleation length

Lc calculated in this experiment follows the same scaling relationships previously

reported by Ohnaka and Shen [1999] and Latour et al. [2013]. The results from this

study suggest a rate-dependent “cascade up” model for earthquake initiation, which

can successfully recreate the foreshocks cascade’s behavior with the presence of

an aseismic slip (Figure 2.11), which supports the idea of the coexistence of models.

Figure 2.11: Three earthquake initiation models, their relationship to Lc, and their
implications for foreshocks. The preslip model (a) and cascade model (b) illustrate
endmember behavior where Lc is large (>10 km) or small (<1 m). (c) The labo-
ratory observations suggest a rate-dependent cascade up model, which contains
attributes of both end members. Figure from McLaskey [2019].

Beyond the fact that many studies are based on incomplete seismicity catalogs,

one limitation of past studies is the fact that they often do not combine multiple ob-

servations. As a matter of fact, many studies investigate seismicity catalogs alone,

without including geodetic observations. This is clearly due to the lack of near-
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fault observations for many foreshock sequences that prevent such joint analysis.

Studying sequences for which a joint analysis is possible is therefore important to

decipher the behavior of faults during the preparation of large earthquakes.

The following study was done in collaboration with Agnès Chounet, Zacharie Du-

putel, Jorge Jara, Cédric Twardzik, and Romain Jolivet. We focus on the initiation

phase of the 2017 MW = 6.9 Valparaíso earthquake. In this study, I analyzed and

compared geodetic and seismic observations, and wrote the manuscript. AC de-

veloped and adapted the CMT inversion algorithm and obtained the CMT catalog.

ZD conceived and led the study, and performed the slip inversions. CT and JJ pro-

cessed the GPS data. RJ developed the CSI code used to gather GPS data and

static Green’s functions for a given fault geometry. The results of this work have

already been published in Geophysical Research Letters and can be cited as:

Caballero, E., Chounet, A., Duputel, Z., Jara, J., Twardzik, C., & Jolivet, R. (2021).

Seismic and aseismic fault slip during the initiation phase of the 2017 MW = 6.9 Val-

paraíso earthquake. Geophysical Research Letters, 48, e2020GL091916. https:

// doi. org/ 10. 1029/ 2020GL091916.
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2.8 Seismic and aseismic fault slip during the initia-

tion phase of the 2017 Mw=6.9 Valparaiso earth-

quake.

2.8.1 Abstract

Transient deformation associated with foreshocks activity has been observed before

large earthquakes, suggesting the occurrence of a detectable pre-seismic slow slip

during the initiation phase. A critical issue consists in discriminating the relative con-

tributions from seismic and aseismic fault slip during the preparation phase of large

earthquakes. We focus on the April-May 2017 Valparaíso earthquake sequence,

which involved a MW = 6.9 earthquake preceded by intense foreshock activity. To

assess the relative contribution of seismic and aseismic slip, we compare surface

displacement predicted from foreshocks source models with transient motion mea-

sured prior to the mainshock. The comparison between observed and predicted

displacements shows that only half of the total displacement can be explained by

the contribution of foreshocks. This result suggests the presence of aseismic preslip

during an initiation phase preceding the mainshock.

Plain Language Summary

Several studies suggest that some large earthquakes are preceded by aseismic

fault slip. Such preslip could explain foreshock activity and transient displacements

observed before some large earthquakes. However, a large portion of observed

pre-seismic deformations could be associated with the displacement field caused by

each individual foreshock earthquakes. This study focuses on the 2017 MW = 6.9

Valparaíso (Chile) earthquake that was preceded by a noticeable GPS displace-

ment and numerous foreshocks. By combining geodetic and seismic observations,

our results show that only half of pre-seismic displacement can actually be ex-

plained by the contribution of foreshocks. This confirms that the Valparaíso earth-

quake was preceded by detectable aseismic fault slip accelerating into the main

dynamic rupture.
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2.8.2 Introduction

Experimental and theoretical studies suggest that earthquakes begin with aseis-

mic slow slip accelerating into a dynamic, catastrophic rupture [Das and Scholz,

1981, Kaneko et al., 2016, Latour et al., 2013, Ohnaka, 2000]. Laboratory-derived

rate-and-state models depict different evolution of preslip within nucleation zones of

various sizes [Ampuero and Rubin, 2008, Kaneko and Ampuero, 2011]. With tech-

nological advances such as high-speed photoelastic techniques, the progressive

acceleration from slow stable slip to fast dynamic slip can be accurately monitored

in laboratory conditions [e.g., Latour et al., 2013]. Despite these advances, the de-

tectability of such nucleation phases on natural faults is still an open question. In

addition to the nucleation itself, observations of the precursory phase leading to an

earthquake indicate that earthquakes are often preceded by foreshocks that could

potentially be triggered by aseismic preslip [Bouchon et al., 2011, 2013, Kato et al.,

2012]. Nonetheless, the role of foreshocks during this precursory phase remains

unclear. At present, two end-member conceptual models compete in explaining the

occurrence of foreshocks. In the first model, foreshock stress changes contribute to

a slow cascade of random failures, leading eventually to the mainshock [Ellsworth

and Bulut, 2018, Helmstetter and Sornette, 2003, Marsan and Enescu, 2012]. The

second model proposes that foreshocks are triggered by aseismic slip correspond-

ing to the nucleation process of the mainshock [Bouchon et al., 2011, Dodge et al.,

1996].

The continued development of geophysical networks in active tectonic regions pro-

vides new opportunities to better capture the genesis of earthquakes. Geodetic

observations provide strong evidences of pre-seismic transient deformations at var-

ious time-scales [Ito et al., 2013, Mavrommatis et al., 2014, Ozawa et al., 2012, Soc-

quet et al., 2017, Yokota and Koketsu, 2015]. However, the interpretation of such

observations is often difficult. This is particularly evident for the 2014 MW = 8.4

Iquique (Chile) earthquake, which was preceded by an active foreshock sequence

that started 8 months before the mainshock [Kato and Nakagawa, 2014]. This fore-

shock sequence was accompanied by clear GPS transient displacements, corre-

sponding at least to some extent to aseismic fault slip preceding the mainshock

[Ruiz et al., 2014, Socquet et al., 2017]. The aseismic behavior of the observed

pre-seismic transient is however debated as it might largely correspond to the cumu-

lative co-seismic displacement of the foreshocks and associated afterslip [Bedford

et al., 2015, Schurr et al., 2014]. A reliable estimate of the relative contribution of

seismic and aseismic deformations during nucleation is essential to better capture

fault processes at the onset of earthquakes [Herman et al., 2016].
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On 24 April 2017, a MW = 6.9 earthquake occurred offshore Valparaíso in the

central segment of the Chilean megathrust (33.089�S, 72.116�W, 21:38:28 UTC;

Centro Sismlógico National, CSN). This event is relatively moderate given that this

region of the Chilean subduction experienced earthquakes of magnitudes MW > 8

[Comte et al., 1986, Dura et al., 2015]. This earthquake, however, caught the at-

tention of seismologists because it was preceded by a vigorous foreshock activity

in the ⇠2 days preceding the mainshock. This precursory activity has also been

captured by GPS stations indicating a pre-seismic trenchward motion over a similar

time-scale [Ruiz et al., 2017, 2018]. A preliminary analysis of seismological and

geodetic observations suggests that 80% of pre-seismic GPS displacement is due

to aseismic fault slip preceding the mainshock [Ruiz et al., 2017]. This first order

estimate is obtained by comparing inverted preslip with the seismic moment of fore-

shocks assuming they are all located on the subduction interface. This assumption

is questionable as seismicity catalogs depict a significant dispersion of earthquake

locations around the plate interface [Ruiz et al., 2017, 2018], most events being

located at depths larger than the slab 1.0 model [Hayes et al., 2012]. Such disper-

sion, probably related to depth uncertainty, implies a significant non-random bias in

seismic moment for dip-slip earthquakes. For example, if an earthquake at 20 km

depth is mislocated at 25 km, the moment is underestimated by nearly 20% using

long-period teleseismic records [Tsai et al., 2011]. Such mis-estimation of seis-

mic moment may lead to non-negligible errors in the contribution of foreshocks to

observed pre-seismic deformations.

The primary goal of this study is to assess the relative contribution of seismic and

aseismic slip during the few days preceding the 2017 Valparaíso earthquake. Es-

timating the seismic contribution to observed geodetic displacement is difficult as

we deal with moderate-sized foreshocks (MW < 6) for which a co-seismic offset is

not clearly visible on GPS time-series. The seismic contribution to the observed

displacement can be estimated by modeling the source of foreshocks from seismic

data. However, this process should be done carefully as source models and the

corresponding predictions can be affected by significant uncertainties. In this work,

we obtain a moment-tensor catalog and predict the corresponding co-seismic off-

sets at GPS stations accounting for observational and modeling uncertainties. In

particular, we account for prediction uncertainties associated with inaccuracies in

the Earth model. We find that about half of the observed GPS pre-seismic dis-

placement is aseismic and is caused by preslip in the vicinity of the impending

mainshock hypocenter. Such pre-seismic deformation is unlikely to be explained

by afterslip induced by preceding foreshocks. This suggests that aseismic preslip

played an important role in the 2017 Valparaíso sequence.
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Figure 2.12: The 2017 Valparaiso earthquake sequence. (a) Earthquake locations
including foreshocks (blue circles), mainshock (green star), and aftershocks (white
circles). The red colormap indicates the preslip distribution resulting from the in-
version of GPS data (see section 2.8.6). The black arrows show the cumulative
observed GPS surface displacements (up to one hour before the mainshock). Or-
ange dots indicate the seismicity distribution from 2017/01/01 until 2017/10/05 ac-
cording to the microseismicity catalog obtained by S. Ruiz et al. (2017). (b) GPS
Time-series in the vicinity of Valparaíso. The vertical red dashed line indicates
approximate onset of the transient displacement visible on the timeseries. The cu-
mulative number of earthquakes from S. Ruiz et al. (2017) is shown at the bottom
of the figure. The purple star represents the largest MW = 6.0 foreshock.

2.8.3 Pre-seismic Transient Displacements captured by GPS

We process GPS data of 68 stations in South America from several networks (CSN,

LIA Montessus de Ballore, Ministerio de Bienes Nacionales, RAMSAC, RBMC-IP,

IGS, IGM Bolivia, see supplementary information S1 for references). Processing

is done using a differential approach [Herring et al., 2018] including tropospheric

delays and horizontal gradients. The results are computed in the ITRF 2014 refer-

ence frame [Altamimi et al., 2016] and converted in a fixed South-America frame

[Nocquet et al., 2014]. We use daily solutions except for the last position before

the mainshock, which is obtained from data up to one hour before the event. We
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remove a trend corresponding to interseismic motion from the time-series by fitting

a linear regression in a 4 months time-window before the mainshock. Finally, we

subtract the first sample of the time-series (i.e., which we consider as displacement

zero) and obtain the corresponding offsets.

Figure 2.12-b and S3 show the resulting horizontal displacements for stations in

the vicinity of the study area. There is a clear westward motion starting about 3

days before the mainshock and reaching ⇠8 mm close to the coast. Figure 2.12-b

compares GPS time-series with the cumulative number of earthquakes in the micro-

seismicity catalog obtained by Ruiz et al. [2017]. Interestingly, the pre-seismic GPS

transient starts before a noticeable increase in seismicity. In Figure 2.12-b, we can

see that the slope of cumulative seismicity rate does not change significantly at the

beginning of the transient. The increase in seismicity rate is delayed by about 24

hours and only starts with a MW = 6.0 foreshock on April 23 (purple star in Figure

2.12-b). This suggests that aseismic preslip initiated on the fault before the increase

in foreshock activity.

2.8.4 Centroid Moment Tensor catalog

To constrain the contribution of foreshocks to the observed GPS displacement,

we estimate Centroid Moment Tensor (CMT) parameters for moderate to large

earthquakes during the Valparaíso earthquake sequence (from 2017/04/05 up to

2017/05/30). We use records from broadband seismic stations located within 12�

from the mainshock hypocenter. These stations are mostly included in the C and

C1 regional networks maintained by the Centro Sismológico Nacional (CSN) of the

Universidad de Chile [Universidad de Chile, 2012]. We also use stations operated

by GEOSCOPE, and IRIS/USGS network [Institut de Physique du Globe de Paris

and Ecole et Observatoire des Sciences de la Terre de Strasbourg (EOST), 1982,

Albuquerque Seismological Laboratory (ASL)/USGS, 1993, 1988].

We use a modified version of the W-phase algorithm adapted to regional distances

and the magnitude range of the Valparaíso sequence [Kanamori and Rivera, 2008,

Zhao et al., 2017]. Estimated parameters are the deviatoric moment tensor, the

centroid location, the centroid time, and the half-duration of an isosceles triangular

moment rate function. The inversion is performed by fitting full waveforms in a

180 s time-window starting at the P-wave. We filter data between 12 s and 100 s

using different pass-bands for different magnitude events (see Table S1 in the online

supplementary). We compute Green’s functions for the source inversion in a 1D

layered structure extracted from the 3D Earth model of Ruiz et al. [2017] in the area
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of Valparaíso (Figure S4).

The resulting CMT catalog is shown in Figure 2.13 and in table S2. Most earth-

quakes (more than 90% of the total catalog) have thrust mechanisms. Interest-

ingly, foreshocks are mostly concentrated close to the mainshock hypocenter (see

Figure 2.12 and Figure 2.13-a). On the other hand, aftershocks show a different

behavior, surrounding the region where foreshocks have previously occurred.
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Figure 2.13: CMT solutions of the 2017 Valparaíso earthquake sequence and cu-
mulative moment (a) CMT solutions of the 2017 Valparaíso earthquake sequence.
Focal mechanisms are contoured in blue and black for foreshocks and aftershocks
respectively. The size of beach balls scales with the moment magnitude. Color of
the compressive quadrants represents the event depth. (b) Cumulative scalar seis-
mic moment of the 2017 Valparaíso sequence. The mainshock scalar moment is
not included in this figure. The red dashed line outlines the approximate onset of
transient displacements visible on GPS time-series. The green line indicates the
origin time.

The cumulative scalar seismic moment released by foreshocks before the main-
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shock is largely dominated by two events with MW � 5.5 (cf., Figure 2.13-b). These

foreshocks of magnitude MW = 6.0 and MW = 5.5 occurred respectively 43 hours

and 26 hours before the mainshock. As our CMT catalog only consists of MW � 3.8

earthquakes, the contribution of microseismicity is not included in our estimates

of cumulative seismic moment before the mainshock. Even though the individual

contribution of these small earthquakes to the observed displacement is negligible,

their large number may contribute to surface displacement. To assess the contribu-

tion of small earthquakes, we consider the frequency-magnitude distribution of our

CMT catalog assuming a completeness magnitude of Mc = 3.9 (Figure S5). We

compare our catalog with previous moment tensor catalogs of the same sequence

[Ruiz et al., 2017, 2018], which are qualitatively consistent with our estimates (Fig-

ure S5). We then compute the Gutenberg-Richter (GR) law using the methodol-

ogy proposed by Aki [1965] for the whole sequence, and the foreshocks sequence.

Even though the GR laws show some discrepancies, they are in good agreement

considering the uncertainties on our estimates (Figure S5). The foreshocks GR law

is then extrapolated to lower magnitudes, and the cumulative moment of magni-

tudes below the magnitude of completude is included to correct for the influence of

small, hence not detected earthquakes. Our CMT catalog suggests a cumulative

moment M0 = 1.474 ⇥ 1018 N·m. The cumulative seismic moment of foreshocks

with magnitudes below completeness is M0 = 4.966 ⇥ 1015 N·m (i.e., Mw = 4.4).

The contribution of microearthquakes is therefore negligible compared to seismic

events.

To evaluate the contribution of foreshocks to observed surface displacements, we

calculate synthetic static displacements using our CMT catalog and the same 1D

velocity model employed to obtain our CMT solutions. Synthetics are computed us-

ing the CSI package (http://www.geologie.ens.fr/~jolivet/csi) incorporating

the approach of Zhu and Rivera [2002] to compute static displacement in a lay-

ered model. Results on Figure S6 indicate that the largest foreshock (MW = 6.0)

largely dominates the co-seismic contribution to the observed GPS transient while

MW < 6.0 events in our catalog generate relatively small surface displacement. As-

suming that microearthquakes are located in the vicinity of MW � 3.8 foreshocks,

they should also have a negligible contribution to the observed surface displace-

ment (given their small cumulative scalar moment). As the MW = 6.0 foreshock

plays a important role in the sequence, we assess uncertainties associated with the

corresponding CMT parameters.
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2.8.5 Uncertainty on predicted co-seismic displacements

Synthetic co-seismic surface displacements are sensitive to uncertain earthquake

source parameters. For large magnitude foreshocks, uncertainties on centroid lo-

cation and moment tensor affect our estimates of the co-seismic contribution to the

transient displacement observed before the mainshock. Source parameters uncer-

tainties can either result from observational errors, or from errors in the forward

model (prediction/theoretical errors). For example, there might be innacuracies in

the velocity model, which is known to induce non-negligible errors in CMT solutions

[Duputel et al., 2012a, 2014, Morales-Yañez et al., 2020]. The point source assump-

tion is another source of uncertainty in the forward model. As for the observations,

temporally and spatially variable noise level at seismic stations is a major source of

uncertainty.

In order to assess uncertainties associated with the CMT solution of the largest

MW = 6.0 foreshock, we perform a new CMT inversion within a Bayesian frame-

work, following Duputel et al. [2012a, 2014]. Each source of uncertainty considered

here is integrated in the problem as a covariance matrix. The covariance matrix Cd,

associated with observational errors, is derived after a first CMT inversion. From

this inversion, an average correlation function is derived from residuals between

synthetic and observed waveforms at each station. This allows us to estimate the

correlation between neighbor data samples, and include it into Cd. The standard

deviation for each channel is fixed to 4 times the corresponding average absolute

residuals. This empirical procedure provides a conservative estimate of observa-

tional uncertainty associated with each waveform.

Forward modeling uncertainties are represented by the matrix Cp, which assesses

the influence of inaccuracies in the Earth model. We use the same velocity model as

in section 2.8.4 assuming log-normal uncertainties on elastic parameters as shown

in Figure S4. Uncertainty in each layer is estimated by assessing the spatial vari-

ability of the 3D Earth model of Ruiz et al. [2017] in the epicentral region and by

comparison with other regional models [e.g., Ruiz et al., 2018]. To evaluate the cor-

responding variability in the predictions, we employ the first-order perturbation ap-

proach described in Duputel et al. [2014], assuming that prediction error is linearly

related with uncertainty on the elastic parameters. A test is described in supple-

mentary information S2 and Figures S7-S8 to assess the validity of this approach.

The posterior ensemble of plausible source locations and moment tensors is ap-

praised using a strategy similar to Sambridge [1999]. At a fixed point-source loca-

tion in time and space, the posterior distribution of moment tensor parameters is
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Gaussian and can be written as [Tarantola and Valette, 1982]:

p(m|dobs,x) = N( em, eCm) (2.2)

where m are the moment tensor parameters, dobs is the data vector containing the

concatenated observed waveforms and x is the point source location. The right-

hand member of this equation is a Gaussian distribution of mean em and covariance
eCm. The posterior mean em is the maximum a posteriori moment tensor given by:

em =
�
GtC�1

χ G
�
�1

GtC�1
χ dobs, (2.3)

where G is the Green’s function matrix while Cχ = Cd + Cp is the covariance

matrix reflecting observational (Cd) and prediction uncertainties (Cp). The posterior

covariance matrix is given by:

eCm =
�
GtC�1

χ G
�
�1

(2.4)

To get the joint posterior distribution on moment tensor m and source location x, we

first calculate em and eCm on a 3D grid of possible point-source locations around the

hypocenter. Starting from the initial location xc determined in section 2.8.4 (corre-

sponding a moment tensor mc), we then employ an hybrid metropolis algorithm by

repeating the following iterations until a sufficiently large number of model samples

is generated:

1. Randomly generate a candidate point-source location x⇤ = xc + �x where �x

is a small perturbation randomly generated from a Gaussian distribution with

a standard deviation of 0.1� in latitude/longitude and �=0.1 km in depth.

2. Extract em and eCm from the grid point closest to x⇤ and generate a random

model m⇤ from p(m|dobs,x
⇤) in eq. (2.2).

3. Accept or reject m⇤ and x⇤ using a standard Metropolis approach:

• Draw a random number ↵ ⇠ U(0, 1)

• Accept m⇤ and x⇤ if ↵ < min
⇣
1, p(m|dobs,x

∗)
p(mc|dobs,xc)

⌘
.

• Otherwise duplicate mc and xc

Figure 2.14 shows 4500 model samples generated using the approach described

above. The posterior distribution shows a location uncertainty of about 10 km. We

observe a good fit between observed and synthetic seismograms (Figure S9). How-

ever, we also notice a trade-off between longitude and depth, which probably results
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Figure 2.14: Bayesian point-source model for the MW=6.0 foreshock on 2017-04-
23. Blue circles and lines in the figure represent model samples randomly drawn
from the posterior distribution. a) Samples from the posterior PDF depecting uncer-
tainties in the point source location. The red and orange stars are the initial solution
(i.e. starting model) and the posterior mean model respectively. b) Focal mecha-
nism uncertainty. c) Marginal posterior PDF of the scalar seismic moment. The red
and orange lines are the initial and the posterior mean model.

from the distribution of stations used for inversion (Figure S10). To evaluate the un-

certainty on the predicted co-seismic displacement, we simulate static displacement

for each model samples shown in Figure 2.14. The resulting stochastic co-seismic

displacements are shown in Gray in Figure 2.15a for GPS stations that are closest

to the mainshock epicenter. This shows prediction uncertainties ranging from 0.25

to 0.4 mm on the east component of displacement. Despite these uncertainties,

the predicted cumulative co-seismic offsets are still significantly smaller than the

observed pre-seismic displacements (⇠ 6 to 8 mm of the east component for the

closest stations).
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2.8.6 Partitioning between seismic and aseismic fault slip

In Figure 2.15, we compare the total cumulative foreshock co-seismic offset with

the observed pre-seismic GPS displacement. Predicted co-seismic displacements

include the contribution of microearthquakes below the magnitude of completeness,

assuming a total scalar moment derived from our GR analysis with a location and

mechanism similar to the MW = 6.0 foreshock. As discussed earlier, only the largest

foreshock MW = 6.0 is significantly contributing to co-seismic displacements (see

Figure 2.15a and S6). The contribution of earthquakes smaller than MW = 6.0 has

a minimal impact on the final result.

To get a total budget of seismic and aseismic displacement before the mainshock,

Figure 2.15b compares GPS data 1 hour before the mainshock with the correspond-

ing cumulative foreshock displacement. Observed displacement are on average

between 4 and 6 mm larger than co-seismic offsets. Such differences cannot be

explained by uncertainties on the observations and the predictions. These results

clearly suggest that a significant portion of the observed pre-seismic deformation

is actually aseismic and cannot be caused by foreshocks. We estimate that about

51±11% of the displacement measured at the GPS stations originates from aseismic

slip on the megathrust. As shown in Figure,2.15c, the portion of aseismic deforma-

tion is quite consistent between stations suggesting that a common source located

in the vicinity of the foreshocks could explain those results.

To further explore this hypothesis, we then conduct two inversions: a first slip inver-

sion of the total GPS pre-seismic displacement and another inversion after remov-

ing the contribution of foreshocks (i.e., aseismic displacement only). To build a fault

geometry, we use the CSI package to mesh the Slab 2.0 model with triangles of

variable sizes as shown in Figure 2.15e-f. We invert for slip values at the triangular

nodes using AlTar, a Markov chain Monte Carlo sampler based on the algorithm

described by Minson et al. [2013]. Continuous fault slip distribution is represented

as a linear interpolation of the slip values at the triangular nodes. Green’s functions

are computed in the same stratified elastic model used for our CMT catalog (Fig-

ure S4). Given the limited amount of available observations, we enforce a positive

Laplacian prior distribution with a scale parameter of 1 m. Such sparsity-inducing

prior will favor "simple" models with slip only where it is requested by the data.

Results in Figure 2.15e-f shows that GPS observations can be explained by slip in

the vicinity of the mainshock hypocenter. Aseismic slip distribution appears to be

somewhat more spread out, which may be an effect of the larger uncertainty associ-

ated with GPS data after removing the contribution of foreshocks (as the co-seismic

prediction uncertainty propagates in the corrected GPS data).
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2.8.7 Discussion and conclusion

We investigate the seismic and aseismic motions during the preparation phase of

the 2017 Mw = 6.9 Valparaíso earthquake. We first evaluate the contribution of

foreshock-induced displacement to pre-seismic GPS observations. Co-seismic off-

sets are largely dominated by a MW = 6.0 foreshock that occurred ⇠43 hours before

the mainshock. As pointed out in section 2.8.3, the transient GPS signal starts be-

fore the increase in seismicity rate. More specifically, we can see in Figure 2.15a

that the observed displacement on April 22 mainly corresponds to aseismic slip as

no significant foreshock occurs on that day. On the other hand, the position on April

23 results from a combination of seismic and aseismic fault slip. The detailed evo-

lution of the partitioning between seismic and aseismic slip is difficult to interpret

using daily GPS time-series in which each position corresponds to an average over

24 hours. This analysis is also subject to large observational and prediction uncer-

tainties. For these reasons, we focus on the overall partitioning between seismic

and aseismic slip during the preparation phase of the Valparaíso earthquake.

Our analysis shows that a significant part of pre-seismic GPS observations are not

explained by foreshock-induced displacement even when accounting for prediction

and observation uncertainties. We estimate that ⇠ 50± 11% of GPS displacements

is likely caused by aseismic slip, a ratio that is fairly consistent for different stations

in the vicinity of the Valparaíso sequence (Figure 2.15c). To check weather such

pre-seismic motion could be explained by slip on the plate interface, we conduct

a slip inversion after correcting GPS data from foreshock-induced displacement

(cf., Figure 2.15f). The distribution of aseismic preslip spreads toward the west

of Valparaíso city with an extension of about 50⇥90 km and a scalar moment of

M0 = 3.08⇥ 1018 N.m (i.e., Mw = 6.26). This aseismic motion represents about 50%

of the moment calculated for the slip model derived from uncorrected GPS data

(M0 = 5.67 ⇥ 1018 N.m, Figure 2.15e). Given the cumulative moment of foreshocks

(M0 = 1.48⇥ 1018 N.m), we estimate that nearly 70% of the scalar moment released

during the preparation phase of the Valparaíso mainshock is aseismic, which is

roughly in agreement with estimates from Ruiz et al. [2017]. The smaller portion

of aseismic moment derived from the comparison of slip models in Figure 2.15e-f

likely results from the simplistic assumption in Figure 2.15e that all foreshocks are

located on the plate interface.

Even if our analysis demonstrates the existence of aseismic slip prior to the Val-

paraíso mainshock, such aseismic motion may include afterslip from preceding

bursts of seismicity. This has been suggested for pre-seismic displacement ob-

served before the 2014 MW = 8.1 Iquique earthquake, which could potentially be
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explained by afterslip induced by foreshock seismicity [Bedford et al., 2015]. Test-

ing such possibility for the 2017 Valparaíso sequence is difficult as we cannot easily

isolate the afterslip signal from GPS time-series, which likely incorporate other con-

tributions including preslip of the impeding mainshock. To assess the contribution

of afterslip, we employ two approaches. In a first approach, we use the mainshock

post-seismic GPS signals as a proxy for the afterslip induced by foreshocks. The

mainshock post-seismic time-series are normalized by the co-seismic offset of each

station to evaluate the relative proportion of post-seismic displacement as a func-

tion of time. This suggests that about 10% of the co-seismic moment after 43 hours

corresponds to post-seismic deformations (see Figure 2.15d and Figure S11). This

result is consistent with values reported for earthquakes with similar or larger mag-

nitudes [Chlieh et al., 2007, D’agostino et al., 2012, Lin et al., 2013]. If we assume

a similar behavior for the foreshocks, the post-seismic signal caused by foreshocks

is below measurement uncertainties (approximately 0.7 mm for an uncertainty of

1.1 mm in GPS signals) and can therefore be neglected. In a second approach,

we make the more conservative assumption that afterslip caused by foreshocks is

totally released before the mainshock. Following the empirical scaling relationship

M0(postseismic)/M0(coseismic) = 0.36 + / � 0.2 proposed by Alwahedi and Hawthorne

[2019], the aseismic displacement not related to foreshocks is reduced to about

37% + / � 13% of the total pre-seismic GPS observations (Figure S12). The to-

tal observed displacement is therefore unlikely to be explained by the contribution

of foreshocks even when adding the associated afterslip. Such evaluation should

be taken with caution due to the non-linear nature of the relationship between slip

rate and co-seismic stress change for afterslip [e.g., Perfettini and Avouac, 2004,

Perfettini et al., 2010].

Diverse numerical and experimental studies bring up the potential importance of

aseismic preslip in the triggering of foreshocks [e.g., Kaneko et al., 2016, McLaskey

and Kilgore, 2013]. If such observations apply on natural faults, foreshock loca-

tions could potentially inform us about the overall spatial extent of the nucleation

zone prior to an earthquake. This idea is in fairly good agreement with our results

suggesting a first-order correlation between preslip distribution and the location of

foreshocks (Figure 2.12 and Figure 2.15). Even if preslip appears to be an impor-

tant mechanism in the triggering of foreshocks, part of the foreshock activity likely

results from cascading phenomena due to stress changes of neighboring events.

In addition, we still need to understand why most earthquakes are not preceded by

foreshock activity and even less with observable pre-seismic motion. This lack of

systematic precursory activity might partly be due to an observational gap due to

the incompleteness of current seismicity catalog [as suggested by Mignan, 2014] or
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the lack of near fault geodetic observations prior to large earthquakes. The analysis

of an highly complete earthquake catalog in Southern California showed that 72%

of MW � 4 earthquakes in the region are preceded by an elevated seismic activity

compared with the background seismicity rate [Trugman and Ross, 2019], suggest-

ing that foreshock activity is more ubiquitous than previously thought. However, a

recent reanalysis of the same catalog suggested that a much smaller portion of

these foreshock sequences were really anomalous and could not be attributed to

temporal fluctuations in background seismicity rate [van den Ende and Ampuero,

2020]. Although anomalous foreshock sequences currently appears to be the ex-

ceptional, the improvement of near-fault geodetic and seismological observational

capabilities are essential to bridge the gap between natural fault observations and

laboratory experiments, where foreshocks are commonly observed.
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Figure 2.15: Slip during the Valparaíso foreshock sequence. a) Time series
of GNSS data (blue) and stochastic foreshock-induced co-seismic displacement
(gray). Red dots represent the average of stochastic co-seismic offsets. Green
cross corresponds to the total foreshock displacement, including the contribution of
earthquakes below the magnitude of completeness. b) Distributions of observed
pre-seismic displacement and predicted cumulative co-seismic offsets caused by
foreshocks. Blue histograms represent observations assuming Gaussian uncer-
tainties from standard errors estimated at each station. Red histograms correspond
to the posterior distribution of cumulative foreshock-induced co-seismic displace-
ment. c) Percentage of aseismic displacement for each station. d) Average post-
seismic signal measured on stations TRPD, VALN, BN05 and QTAY (see Figure
S11). e) Slip inversion of pre-seismic GPS data. f) Slip inversion of GPS data
after removing foreshock-induced displacement. Black and blue arrows are ob-
served and predicted horizontal GPS displacements along with their 1-� ellipses
(representing observational and prediction uncertainties, respectively). Colored cir-
cles are observed (outer circles) and predicted (inner circles) vertical displacements
from GPS and tide gauges, respectively.
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Chapter 3

Revisiting the 2015 Mw=8.3 Illapel

earthquake. From kinematic rupture

inversion to rupture dynamics.

In this chapter we perfom a Bayesian slip inversion approach described in chapter

one to investigate the rupture process of the 2015 MW = 8.3 Illapel earthquake.

We introduce and compare a new methodology to account for prediction/epistemic

uncertainty. By incorporating different datasets, we were able to characterize the

complex rupture of this event.

The following study was done in collaboration with Zacharie Duputel, Cedric Twardzik,

Junle Jiang, Hideo Aochi, Cunren Liang, Lijun Zhu, Romain Jolivet, Eric Fielding,

Mark Simons and Luis Rivera. At of July 2022, it is in preparation to be submitted

to Geophysical Journal International. In this study, I processed the seismic data,

performed the joint inversion, analyzed the results, and wrote the manuscript. ZD

conceived and led the study. CT obtained the corrections for the GPS data. HA

wrote the code to obtain the stress evolution. JJ processed the tsunami data and

Green’s functions. RJ and ZD developed the CSI code used to gather data and

Green’s functions for a given fault geometry. EF and CL processed the InSAR data.

LZ, ZD, RJ, JJ and MS developed the code AlTar that we use to perform the joint

inversion.
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3.1. ABSTRACT

3.1 Abstract

The 2015 MW = 8.3 Illapel earthquake is the largest mega-thrust earthquake that

has been recorded along the Chilean subduction zone since the 2010 MW = 8.8

Maule earthquake. Previous studies indicate a rupture propagation from the hypocen-

ter to shallower parts of the fault, with a maximum slip varying from 10 to 16 meters.

The amount of shallow slip differs dramatically between rupture models with some

results showing almost no slip at the trench and other models with significant slip

at shallow depth. In this work, we revisit this event by combining a comprehensive

data set including continuous and survey GPS corrected for post-seismic and after-

shock signals, ascending and descending InSAR images of the Sentinel-1A satel-

lite, tsunami data along with high-rate GPS, and doubly integrated strong-motion

waveforms. We follow a Bayesian approach, in which we obtain an ensemble of

models. The kinematic inversion is done using the cascading capability of the AlTar

algorithm, allowing us to first get a static solution before integrating seismic data

in a joint model. We propose a new technique to calculate the forward problem

uncertainties matrix Cp using the second-order approach. We compare this new

approach with other current computations techniques. Results suggest that we can

retrieve the main features of complex ruptures such as the Illapel event with the new

2nd order approach. Kinematic models show a rupture with two main slip patches,

with an important shallow slip contribution. Rupture times suggest that an encir-

cling effect occurs when rupture propagates between the two main slip patches,

westward of the hypocenter. Encircling effects have been previously suggested

by previous back-projection results. To gain insight into rupture dynamics, we use

kinematic models to compute the stress evolution on the fault as a function of time.

We compute the breakdown work density from the stress evolution and compare

the resulting probability density estimates with similar calculations done for other

earthquakes.

3.2 Introduction

Chile is one of the seismically most active regions on Earth, where the Nazca plate

subducts under the South American plate with a convergence rate of approximately

67 mm/yr [Angermann et al., 1999, Vigny et al., 2009]. This large plate convergence

rate is accompanied with the occurrence of large mega-thrust earthquakes, such as

the 1943 MW = 7.9� 8.3 Illapel event, the 1960 MW = 9.5 Valdivia earthquake, the

2010 MW = 8.8 Maule earthquake, and the 2014 MW = 8.1 Iquique earthquake
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[Lomnitz, 2004, Ruiz and Madariaga, 2018]. One of the recent large mega-thrust

earthquakes in Chile is the 2015 MW = 8.3 Illapel earthquake. It occurred off the

west coast of the Coquimbo region on September 16th, 2015, at 22:54:31 UTC, with

a reported magnitude of MW = 8.3 (Centro Sismológico Nacional, CSN), triggering

a tsunami that reached the west Pacific coasts [Li et al., 2016, Ruiz and Madariaga,

2018]. The same area was previously hit by an earthquake of similar magnitude in

1943 [Beck et al., 1998].

Different groups have published numerous kinematic slip rupture models for the

2015 MW = 8.3 Illapel earthquake. As discussed by Satake and Heidarzadeh

[2017], even though all of these models share some general features, some prop-

erties of the rupture are still under debate. For example, the amount of shallow slip

differs dramatically between rupture models, with some models showing almost no

slip at the trench contrarily to other results. Several models suggest a relatively sim-

ple rupture with one single main slip patch, mainly located at the north-west of the

hypocenter with various amount of shallow slip [An and Meng, 2017, Heidarzadeh

et al., 2016, Li et al., 2016, Ruiz et al., 2016, Tilmann et al., 2016]. For example,

An and Meng [2017] suggest the absence of shallow slip, while other works indi-

cate that shallow slip is necessary to explain tsunami records [Lay et al., 2016, Li

et al., 2016, Tilmann et al., 2016]. In fact, Tilmann et al. [2016] suggested that the

difference between the 1943 Illapel event and the 2015 event is the shallow rupture

experienced during the 2015 event.

The degree of rupture complexity also varies among previously published results.

In contrast with the relatively simple rupture processes suggested by the aforemen-

tioned results, other studies suggest a more complex rupture scenario with at least

two main slip asperities [Melgar et al., 2016b, Lee et al., 2016]. While the relatively

compact model of Melgar et al. [2016b] is consistent with tsunami observations,

Lay et al. [2016] show that the model of Lee et al. [2016] involving a broad area

of shallow slip rupturing multiple times cannot reproduce tsunami data. Several

back-projections studies confirm the complexity of the 2015 Illapel rupture [Melgar

et al., 2016b, Okuwaki et al., 2016, Yin et al., 2016]. A common result among back-

projection studies is that the Illapel earthquake presents a northwestward migra-

tion. For example, An et al. [2017] shows a complex frequency dependent rupture

propagation with several branches. The back-projected low-frequency (LF) sources

migrate mainly to the west, while the high-frequency (HF) sources start going north-

eastward after turning towards the northwest. On the other hand, Meng et al. [2018]

results show a rupture that splits into two different branches separated along dip.

The analysis of these multiple rupture branches suggests an encircling rupture that

seems to be aligned with regions experiencing a high slip rate and large shallow
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slip. Unfortunately, such a complex pattern hasn’t been confirmed with previous

kinematic slip inversion models. This could be due to the fact that such encircling

rupture effects is only visible when analyzing the high-frequency wavefield. In addi-

tion, such encircling pattern likely involve abrupt changes in rupture velocities, while

most slip inversions consider fixed rupture velocities.

In this work, we revisit the 2015 MW = 8.3 Illapel earthquake by combining a com-

prehensive data set including permanent and survey GPS stations corrected for

post-seismic and aftershock signals, ascending and descending Sentinel 1A InSAR

images along with high-rate GPS and doubly integrated strong-motion waveforms.

We follow a Bayesian approach using the AlTar code, which allows us to obtain

the posterior probability distribution of slip models rather than a single optimum so-

lution. Moreover, we do not impose any smoothing or empirical regularizations,

which could potentially smooth out rupture complexities. We also employ a non-

linear parameterization enabling significant variation of rupture velocity during the

rupture process. We also analyze the impact that prediction error covariance matri-

ces have on coseismic slip inversions results. To further investigate the dynamics of

the 2015 Illapel rupture process, we also employ our posterior probability distribu-

tions to measure the fracture energy and the associated uncertainty. The resulting

estimates are compared to the MW = 8.2 Iquique earthquake and with existing

scaling relationships

3.3 Data

We investigate the complex rupture of the 2015 MW = 8.3 Illapel earthquake using

multiple datasets that are shown in Figure 3.1. This database includes GPS offsets,

Interferometric Synthetic Aperture Radar (InSAR) images, tsunami data along with

high-rate GPS and strong motion waveforms.

InSAR images are obtained from the Sentinel 1A satellite with ascending and de-

scending orbits (see supplementary information). We use 14 tsunami stations: 6

DART buoys and 6 coast gauges focusing mainly on first arrivals and open sea

sites to minimize coastal effects (see supplementary information). We use daily

and survey GPS data provided by Klein et al. [2017]. Both datasets are affected

by co-seismic offsets induced by MW = 7.1 and MW = 6.8 aftershocks occurring

respectively 23 min and 5 hours after the mainshock. Survey GPS data also in-

cludes several weeks of post-seismic displacement. Details of GPS data process-

ing can be found in Klein et al. [2017]. To correct both daily and campaign GPS

data from aftershocks and post-seismic deformation, we use high-rate post-seismic
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time-series from Twardzik et al. [2021]. These measurements are interpolated using

cubic splines and removed from co-seismic GPS offsets. We estimate uncertainty

of the corrected data by conducting the aforementioned correction stochastically

(using Gaussian realizations given uncertainties on daily, survey and post-seismic

GPS datasets). We scale the resulting standard deviations to ensure a unit reduced

�2. This results in a scaling factor of 10 for the East component and a scaling factor

of 5 for the West and Up components. While this approach is empirical, it allows us

to avoid any overfitting of the GPS observations while keeping a relative weighting

between stations based on the variability of the corrected observations.

Figure 3.1: General overview of the studied region with data sets used in this study
(a). Green star represents the hypocenter obtained by the Chilean Seismological
Center (CSN). Ascending (b) and descending (c) Sentinel 1-A InSAR images.

For the kinematic data set, we use records from High Rate GPS (HRGPS) stations

and strong motion data located within 5 degrees from the mainshock hypocenter.

These stations are part of the Chilean Seismological Service (CSN) of the Universi-

dad de Chile [Universidad de Chile, 2012]. In total, we have 96 strong motionwave-

forms that we double integrate into displacement time series. The integration of ac-
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Figure 3.2: Comparison between displacements corrected from ground motion
records and HRGPS displacements. Red and black waveforms represent HRGPS
and strong motion respectively. On the maps, the blue star represents the CSN
hypocenter while circles indicate station location (orange for the strong motion sta-
tion depicted, yellow for the ensemble of strong motion stations, and purple for
HRGPS stations). Variation in waveforms is mostly due to differences in colocation.

celeration data is a delicate operation as it often results in large drifts in velocity and

displacement waveforms. To obtain displacement records, after removing any linear

trend in accelerograms, we therefore remove an additional velocity drift at the end

of the waveforms. This additional coda correction is done by using a quadratic func-

tion to fit to displacement waveforms from the time when 90% of the acceleration

energy is reached. Visual inspection of the corrected displacement records is then

done to ensure the good quality of the data. To further check the corrected records,

we compare the obtained strong motion displacements with HRGPS displacements

(Figure 3.2 and Figure S1). In total, we were able to recover 43 displacement com-

ponents from strong motion with high-quality displacement waveforms.

To calculate synthetic static displacements, we use the Classic Slip Inversion (CSI)

package (https://github.com/jolivetr/csi), following the approach of Zhu and

Rivera [2002] for an Earth layered model. We calculate Green’s Functions using the

one-dimensional velocity model built by Duputel et al. [2015] (see Figure 3.3). For

the kinematic Green’s Functions, we use the wavenumber integration module for

a layered model of the CPS seismology package (http://www.eas.slu.edu/eqc/

eqccps.html) from [Herrmann, 2013]. We filter both the kinematic Green function

and data between [0.01,0.06667] Hz.
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3.4 Methodology

To perform the joint inversion, we follow a Bayesian approach in which we obtain

an ensemble of models and not a unique solution. The inversion is done using the

cascading capability of the AlTar code (https://altar.readthedocs.io), allowing

us to first get a static solution before integrating waveform data in a joint model.

This code is based on the Cascading Adaptative Metropolis In Parallel (CATMIP)

algorithm proposed by Minson et al. [2013] that we will describe below. The AlTar

package has been successfully employed for different problems. Jolivet et al. [2015]

and Jolivet et al. [2020] estimated the interseismic coupling of the San Andreas

fault and the Northern Chile subduction interface. Studies of individual earthquakes

have been carried out by Duputel et al. [2015], Bletery et al. [2016], and Gombert

et al. [2018a], among others. Finally, Jiang and Simons [2016] imaged the seafloor

deformation during the 2011 Tohoku Earthquake.

Starting from the Bayes theorem, we can obtain the a posteriori probability density

function (PDF) of the parameters m, given the observations dobs as:

p(m|dobs) =  p(m) p(dobs|m), (3.1)

where p(m) is the a priori probability density function of parameters, p(dobs|m) is

the data likelihood function and  a normalization factor. The likelihood function can

be defined as:

p(dobs|m) = exp

✓
�1

2
(dobs � g(m))TCχ

�1(dobs � g(m))

◆
. (3.2)

Cχ is the sum of Cd and Cp, which correspond to the observational and forward

modeling uncertainties, respectively. In the case of the CATMIP algorithm, we

sample the a posteriori PDF using a series of transitional intermediate PDF. The

transitional PDFs are controlled by the parameter �, which acts as a tempering

parameter. By incorporating the beta parameter into equation 3.1, we obtain:

f(m|dobs, �k) / p(m) p(dobs|m)βk , (3.3)

where (k = 1, . . . ,M) and � varies from zero to one, i.e., 0 = �0 < �1, . . . , �M = 1.

These transitional steps will converge to the solution by smoothly informing the sys-

tem. Given the number of parameters, we also use the cascading capability of the

AlTar code. Cascading allows to firstly solve the static problem and then use this so-

lution as initial samples in the joint inversion. Extensive details of the algorithm can
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be found in Minson et al. [2013]. As mentioned before, the Cχ matrix incorporates

different uncertainty assessments. The observational uncertainty is commonly re-

lated to errors in measurements. The details of observational uncertainty estimates

can be found in the supplementary information.

The forward modeling uncertainties are associated with imperfect modelling that

can be caused by different factors, such as imperfect Earth models or fault ge-

ometries [Beresnev, 2003, Ide, 2015, Wald and Graves, 2001, Williams and Wal-

lace, 2015]. Several studies have highlighted the importance of considering forward

modeling uncertainties in slip inversions [Duputel et al., 2012a, 2014, Hallo and

Gallovič, 2016, Ragon et al., 2018, Yagi and Fukahata, 2011]. For example, Dupu-

tel et al. [2014] study the uncertainties linked to inaccuracies in the Earth structure

model. On the other side, Ragon et al. [2018] analyze uncertainties associated with

inaccuracies in fault geometries. Also, Razafindrakoto and Mai [2014] assess the

influence of the employed source time function and elastic structure on earthquake

slip imaging.

In the present study, we focus on accounting uncertainties due to Earth structure

modeling. Specifically, we evaluate the impact of inaccuracies in the 1D velocity

model employed to compute static and kinematic predictions. Uncertainties in the

elastic parameters Ψ is assumed to follow a log-normal distribution:

p(logΨ) =
1p

(2⇡)N |CΨ|
exp

✓
�1

2
(logΨ� log Ψ̄)TCΨ(logΨ� log Ψ̄)

◆
,

(3.4)
where CΨ is the covariance characterizing uncertainty around log Ψ̄ (the logarithm

of the elastic parameters used to compute the predictions shown in Figure 3.3).

This choice of a log-normal distribution is motivated by the fact that (1) the elastic

parameters are strictly positive and (2) Ψ values are derived from tomography tech-

niques based on relative model perturbations (� logΨ; [e.g., Tromp et al., 2005]).

The uncertainty on the Earth model considered in the present study is shown in

Figure 3.3. The level of uncertainty is measured by comparing different models

from the region [following Duputel et al., 2015].

We follow three different schemes to map Earth model uncertainty into prediction

uncertainty. The first straightforward approach is to empirically calculate the pre-

diction uncertainty covariance matrix Cp using predictions computed for a large

number of random Earth models Ψi, (i = 1, . . . , n) drawn from p(logΨ):

Cp =
1

n� 1

nX

i=1

(g(Ψi,m)� g(Ψ̄,m)) (g(Ψi,m)� g(Ψ̄,m))T , (3.5)
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where g(Ψi,m) is the prediction for the Earth model Ψi and the source model m.

In our case, we use a preliminary source model m derived from a first preliminary

slip inversion. g(Ψ̄,m) is the prediction response for the average Earth model. This

empirical approach is computationally expensive because it needs the calculation

of predictions for each randomly generated Earth model. To evaluate the number

of models n necessary to calculate an accurate empirical Cp matrix, we compare

empirical Cp matrices calculated for an increasing number of random Earth models.

We observe that the empirical Cp matrix is converging using 195 random Earth

samples (Figure S2), corresponding to relatively smooth histograms in Figure 3.3.

Figure 3.3: Model variability of the P-wave, S-wave, and density as a function of
depth in the Illapel region. The black line represents the velocity layered model
used for Green’s Function (GF) calculation. Grey histograms are the probability
density function for each parameter as a function of depth.

To test a computationally less expensive approach, we also follow the first-order

approximation approach proposed by Duputel et al. [2014]. Assuming that we can

approximate our forward model g(Ψ,m) by linearized perturbations, for an a priori

Earth model we have then:

g(Ψ,m) ⇡ g(Ψ̃,m) +KΨ(Ψ̃,m) · (Ψ� Ψ̃), (3.6)

where K is the sensitivity kernels of the prediction with respect to elastic parameters
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used to compute forward predictions:

(KΨ)ij(Ψ̃,m) =
@gi
@Ψj

(Ψ̃,m). (3.7)

We use then K to estimate Cp as:

Cp = KΨ ·CΨ ·KT
Ψ
, (3.8)

where CΨ is the same log-normal covariance that we use for perturbating the ran-

dom models of the empirical Cp. While this approach looks appropriate for static

data, it could be problematic for kinematic data as the link between Earth model

perturbations and waveform predictions is probably not linear. Indeed, changes in

the velocity model induce both time-shifts and amplitude variations in the predicted

waveforms.

Therefore, we also explore the possibility of using a 2nd order perturbation ap-

proach previously introduced by Caballero et al. [2021] for point source inversions.

In this approach, we can estimate a covariance matrix using a second order ap-

proximation of the forward model as:

g(Ψ,m) ⇡ g(Ψ̃,m) +KΨ(Ψ̃,m)·(Ψ� Ψ̃)+
1

2
(Ψ� Ψ̃)·HΨ(Ψ̃,m)·(Ψ� Ψ̃), (3.9)

where HΨ is the second order derivative with respect to the elastic parameters:

(HΨ)ijk(Ψ̃,m) =
@2gi

@Ψk@Ψj

(Ψ̃,m). (3.10)

From equation 3.9, we can then calculate the matrix Cp creating a large number of

models and following the equation 3.5.

The derivatives in equation 3.9 are computed numerically using finite differences.

We summarize the difference in computational cost between approaches in table

3.1. The computational cost of each approach in terms of forward model evaluation

is summarized in Table 3.1. In this study, the empirical approach necessitated about

200 forward model evaluations, which is much less that what is necessary when us-

ing a 2nd order approach. However, the computational cost is significantly reduced

when considering 1st order derivatives or 2nd order derivatives without cross-terms.

In the following, we will only consider the empirical, first order and 2nd order without

cross-terms approaches.

In Figure 3.4 and Figure S3, we compare the diagonal of the Cp matrix for HRGPS

and strong motion stations. The 1st and 2nd order matrices seem to capture the
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Table 3.1: Approaches to calculate Cp (for 36 parameters)
Approach. Number of forward model evaluations
Without Cp 0
Empirical 195 (in this study)

1st order Forward Derivatives 37
1st order Centered Derivatives 72
2nd order without cross-terms 73

2nd order 1333

main features of the empirical Cp matrix. However, there are differences that could

play an important role in complex inversion problems. For this reason, in the next

section, we explore the impact of the Cp matrix on the coseismic models of the

2015 MW = 8.3 Illapel earthquake.

Figure 3.4: Covariance matrix comparison for HRGPS records (a) and Strong Mo-
tion stations (b). The green line represents the diagonal of the empirical covariance
matrix (i.e., the matrix created from an ensemble of models). The red and blue
line represents the diagonal of the matrix calculated using the 1st and 2nd order
approximation approach.

To represent the 2015 MW = 8.3 Illapel earthquake fault, we design a curved fault

geometry matching local seismicity and focal mechanisms. The fault surface is

divided into 10 down-dip and 17 along-strike patches (170 in total) with 18km side-
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length. We invert for along-strike slip, down-dip slip, rise time, rupture velocity from

each subfault, and hypocenter location (along-strike and down-dip distance). The a

priori distributions are shown in Figure S4. We use the hypocenter of the CSN as

a priori since it was obtained using regional data. For InSAR images, we include a

nuisance parameter to correct each image from a constant offset, i.e., two nuisance

parameters in total. We add translation parameters for the GPS data sets, i.e., three

parameters for each set.

Since we are working with different data sets, we want to know how sensitive they

are to slip on the fault. Thus, we carry out a sensitivity analysis for each data set.

We follow the approach similar to Duputel et al. [2015]. The sensitivity of each data

set is calculated as:

S(D) = diag(Gt(D) ·C�1
χ (D) ·G(D)), (3.11)

where G is the corresponding Green functions (in the down-dip direction), and Cχ is

the covariance matrix described above for a given data set D. For a given subfault,

this measure is equivalent to computing the L2 norm of the predictions due to one-

meter dip-slip in the considered patch. The corresponding sensitivities are shown in

Figure S5. We can see that tsunami data are sensitive mainly to the shallow region

of the fault. In contrast, InSAR and GPs data better image the inshore fault region.

The kinematic data is globally sensitive to slip over the entire fault. Finally, if we use

the whole data set, we have an overall good sensitivity over the entire fault.

3.5 Results

Following the cascading approach of the AlTar code, we first perform an inversion

of the final slip using static data (that is, InSAR, GPS and tsunami data). We thus

generate a posterior ensemble of slip models for which to posterior mean and un-

certainty is shown in Figure 3.5. This model presents two main slip patches that

extend up-dip to the trench. The peak slip is around 23.93 +/- 5.4 meters, while the

mean fault slip is about 3.34 +/- 0.12 meters. Even if tsunami data is employed, slip

uncertainty is larger in the shallow part of the fault, due to the lack of data coverage

in that area.

We then use the a posteriori PDF of the static slip model as seeds to make three

different joint inversions: one using an empirical Cp matrix and two others using a

Cp matrix calculated using the first and second order perturbation approach. The

final slip distribution obtained using these different approaches are shown in Figure
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Figure 3.5: Posterior mean coseismic slip model for the static data set. Arrows
represent the slip directions and the ellipses its corresponding uncertainty.

3.6. We also compare the posterior distributions of dip-slip in the online supplement

(Figure S6). The posterior mean coseismic models are relatively similar, showing

two, possibly three main slip patches. The three solutions exhibit two clear slip

zones, one northwestward to the hypocenter and the other at shallow depths close

to the trench. The deeper slip patch is well constrained for the three solutions, with a

mean slip of 6 ⇠ 7 meters for this region. The solution based on 1st order Cp show

slip patch that is quite compact at shallow depth, while shallow slip is more broadly

distributed when considering 2nd order or empirical Cp matrices. This results into a

larger peak slip value for the 1st order Cp solution (21.07 +/- 2.03 m), while empirical

Cp (17.35 +/- 1.96 m) and 2nd order Cp (18.52 +/- 2.74 m ) display smaller peak

slips.

Figure 3.7 compares rupture times between solutions (taking the solution based

on empirical Cp as reference). Both the first order and second order Cp matrices

result in rupture times that are similar to the empirical covariance matrix. How-

ever, the second order approach presents an overall smaller dispersion (� = 4.75s)

compared with the first order approach (� = 5.97s).

Details of the solution obtained using a 2nd order Cp is shown in Figure 3.8. Similar
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(a) 1st order Cp (b) Empirical Cp (c) 2nd order Cp

Figure 3.6: Comparison of co-seismic slip distributions obtained using different pre-
diction error covariances Cp. Red colors are the final slip distributions. Arrows
represent the slip directions with their corresponding uncertainty. The red star is
the inverted hypocenter location (empirical, 1st, and 2nd order approximation, re-
spectively). The blue star is the CSN hypocenter, and the green star is the USGS
hypocenter.
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Figure 3.7: Rupture times comparison between different Cp inversion solutions.
Comparison between the empirical covariance matrix and the first order (a) and
2nd order (b) approaches.

figures are presented for the 1st order and empirical Cp in supplementary Figures

S7 and S8. Stochastic rupture propagation fronts in Figure 3.8 (a) suggest a com-

plex rupture pattern. It slowly grows close to the hypocenter, and then propagates

northwestward to a shallower area of the subduction interface. The patches with

larger slips display a rupture speed varying from 2 to 4 km/s. Stochastic moment
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rate functions in Figure 3.8 (b) indicate an overall rupture duration of 120 seconds

approximately. The average scalar seismic moment is M0 = 3.20 ⇥ 1021N ·m, i. e.,

a moment magnitude of MW = 8.27. We can notice two energy peaks, a small one

at 25 seconds, and another one at 50 seconds. As it has been reported before

[Gombert et al., 2018b], we observe an anti-correlation of rise-time and initial rup-

ture times (Figure S9). This likely results from the fact that observations are more

sensitive to the slip pulse centroid time that its initial rupture time. We therefore also

analyze the posterior distribution of centroid times in Figure 3.8 (c). The distribution

of centroid times clearly shows the complexity of the rupture propagation, especially

at the north-west of the hypocenter. The centroid time propagation is not homoge-

nous, displaying a complex pattern, especially to the west of the hypocenter.

We use the posterior coseismic model to calculate synthetic displacements and

compare them with GPS observations (Figure 3.9 (a)). Both permanent stations

and campaign survey stations show an acceptable fit, including the vertical compo-

nents. Stochastic predictions of tsunami waveforms display a good agreement with

tsunami observations (Figure 3.9 (b)). In particular, we see that later arrivals are

often well fitted even if they are not inverted for. Some tide gauges stations present

a slight time-shift between observed and predicted waveforms. This shift could be

explained by local site effects, which are hard to model. Figure 3.10 shows that

InSAR data is also well predicted by our posterior coseismic model. The InSAR

residuals are smaller than 10% of LOS displacements with spatial distributions that

do not seem to be strongly correlated with the co-seismic displacement pattern.

Kinematic data show a directivity effect with larger amplitudes toward the north that

is well reproduced by the model (Figures 3.11, and S10). We can see that stochas-

tic waveforms reproduce most of the complex features visible in the HRGPS and

strong motion records.

3.6 Discussion

In the next subsections, we will examine individually different aspects of the Illapel

earthquake rupture. We first assess the reliability of our model close to the trench

by exploring the importance of shallow slip to fit tsunami records. We then inves-

tigate complex encircling rupture patterns visible in our solutions. Finally, we use

our posterior ensemble of slip models to asses fracture energy in comparison with

existing scaling laws.
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(a) Rupture Times (b) Moment Rate functions

(c) Centroid times (d) Slip Uncertainty

Figure 3.8: Impact of using a 2nd order approximation Cp in slip inversion. (a) Pos-
terior mean coseismic slip model, arrows represent the slip directions and the el-
lipses its corresponding uncertainty. Contours show stochastic rupture fronts sam-
ples from the a posteriori distribution. (b) Stochastic moment rate functions. (c)
Posterior mean coseismic slip model with contours that represent stochastic cen-
troid time fronts samples from the a posteriori distribution. (d) Uncertainty of the
ensemble of coseismic slip models. The red star in the figures represents the in-
verted hypocenter location.

3.6.1 Impact of Shallow slip.

At present, there is no general agreement regarding the amount of shallow slip dur-

ing the Illapel earthquake, since some studies indicate the absence of shallow slip

[An and Meng, 2017], while others demonstrate that shallow slip is necessary to ex-

plain tsunami observations [Lay et al., 2016]. To explore the contribution of shallow

slip on the inversion, we perform a static slip inversion imposing the shallow slip to

be very small. Results in Figure 3.12 are obtained by using a narrow gaussian cen-

tered on zero for the along-dip component of slip (considering a standard deviation

of 0.5m). If we compare the resulting solution in Figure 3.12 with the previous pos-
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(a) GPS predictions (b) Stochastic tsunami waveforms

Figure 3.9: (a) Observed displacement GPS (black arrows) and predictions for the
posterior mean model (red arrows) using a 2nd order approximation Cp. The col-
ormap indicates vertical component displacements for observed (outer circle) and
synthetic (inner circle) data. (b) Comparisons between tsunami observations (black)
and stochastic predictions (red) using a 2nd order approximation Cp. The tsunami
waveform signal used in the inversion is shown between blue dots. The map corre-
sponds to each tsunami station.

terior coseismic models in Figure 3.5 and Figure 3.8, we can still find the downdip

slip patch close to the hypocenter. However, the shallow part of the model is signifi-

cantly different due to the new prior. The comparison of model performance for both

solutions is shown in Figure 3.12 (b). We can see that the solution without shallow

slip cannot fit the tsunami waveforms as well as our initial model. The existence

of large shallow slips supports the fact that the 2015 event is not a simple repeat

of the earthquake that affected the region in 1943 [Tilmann et al., 2016]. This is

consistent with historical reports indicating that the tsunami generated in 1943 was

much smaller than what was observed in 2015. In addition, the differences in the

duration of teleseismic body-wave arrivals for both events suggest that the 1943

rupture did not involve shallow slip [Tilmann et al., 2016]. The reason why the 2015

event involve shallow slip contrarily to the 1943 event is unclear. One possibility is

that shallow slip deficit was larger in 2015 than in 1943. This is consistent with cou-

pling models from Metois et al. [2016] showing that the fault is not creeping at plate

rate at shallow depth. However, this remains speculative as fault coupling close to

the trench is poorly resolved by land-based geodetic data and could potentially be

biased when ignoring stress shadowing effects [Lindsey et al., 2021].
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Figure 3.10: InSAR images misfit using the posterior coseismic model using the
2nd order Cp matrix solution. Observed ascending (a) and descending (d) Sentinel
1-A images. We show the corresponding synthetic displacement for ascending (b)
and descending (c) images and the respective residual, ((c) for ascending, and (f)
for descending images).

3.6.2 Encircling rupture pattern during the 2015 Illapel earth-

quake.

Back-projection results from Meng et al. [2018] show an encircling rupture during

the 2015 Illapel earthquake. However, this encircling effect hasn’t been reported by

any previous kinematic slip inversion model. Results in Figures 3.8 (a) and (c) show

a possible encircling behavior northwestward from the hypocenter location. We use
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Figure 3.11: Examples of comparisons between data (black) and stochastic predic-
tions (red) for HRGPS and Strong Motion stations using a 2nd order approximation
Cp. On the maps, the blue star represents the hypocenter while circles indicate
station location (orange for the station depicted and yellow for the other stations)

the posterior coseismic mean model to investigate the slip and slip rate evolution.

Snapshots are shown in Figure 3.13. The rupture slowly grows propagating to

the north-west during 35 seconds. Around 40 seconds, the rupture splits in three

slip-rate pulses depicting a first encircling pattern west of the hypocenter (cf., slip

rate snapshots between 40 and 50 seconds) and another encircling pattern to the

northwest (cf., slip rate snapshots between 45 and 60 seconds). These encircling

slip pulse contour fault areas with small slip amplitudes (cf., final slip distribution in

Figures 3.8 and 3.13). Both slip branches finally join together generating a large

slip-rate pulse around 60 sec continuing at shallow depth toward the north until the

end of the rupture.

If we compare it with previous studies, we find that the general northwestward mi-

gration pattern is quite similar to the results published by Melgar et al. [2016b]. The

encircling slip pulses visible in our solution between 40 and 60 seconds are consis-

tent with previous back-projection results that suggest such complexities in the rup-

ture. Ruiz et al. [2016] back-projection results show an early stage bilateral rupture

that later merged and propagated up-dip. Meng et al. [2018] report two episodes
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No shallow slip
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No shallow slipIncluding shallow slip

Figure 3.12: (a) Posterior mean coseismic slip model for a stati inversion with a
non shallow slip a priori. Arrows represent the slip directions and the ellipses its
corresponding uncertainty. (b) Comparisons between tsunami observations (black)
and stochastic predictions with shallow slip (red) and without shallow slip (blue).
The tsunami waveform signal used in the inversion is shown between yellow dots.
The map shows the depicted tsunami stations.

of splitting of rupture fronts, occurring both before reaching 60 seconds. This effect

is known as a "double encircling pincer movement" and was previously reported by

Das and Kostrov [1983]. The first episode reported by Meng et al. [2018] is between

15 and 35 seconds, and the second, around 45 and 60 seconds. The first encir-

cling is colocated with the static coseismic model of An and Meng [2017]. However,

such a model could miss rupture features retrieved by our joint inversion that incor-

porates kinematic data. For both episodes, Meng et al. [2018] suggest encircling

effects that are northern than the encircling patches that we obtained. We report

the first encircling episode approximately at 40 seconds, at least 20 seconds later

than Meng et al. [2018]. The later presence of slip on the slip animation and Figure

3.13 indicate the presence of an asperity/barrier region [Das and Kostrov, 1983,

Madariaga, 1983], as previously suggested by Meng et al. [2018]. Both encircling

episodes are contouring regions with small final slip amplitudes and are resulting

in large slip where the slip-rate pulses are focusing. This is quite consistent with

numerical modeling results of Kato [2007] showing such focusing effect around a

circular asperity, which supports the existence of such phenomena. The encircling

effect can be also produced by a hierarchical asperity model or cascade-up growth

model. This means that small weaker patches are embedded inside larger stronger
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fault areas [Noda et al., 2013].

Figure 3.13: Five seconds snapshots of slip (first and third row) and slip rate (sec-
ond and fourth row) evolution. Slip and slip rate are calculated using the posterior
mean coseismic model using the 2nd order Cp solution. The red star is the inverted
hypocenter location. Arrows represent the possible encircling locations.

3.6.3 Breakdown work of the 2015 MW = 8.3 Illapel earthquake

Some studies have reported a low radiation efficiency for tsunami earthquakes

[Venkataraman and Kanamori, 2004]. This is due to the presence of sediments,

which dissipate a large part of the available energy. This is relevant for the 2015

Illapel earthquake as our solution suggests large slip at shallow depth. To further
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investigate the rupture dynamics of the 2015 Illapel earthquake, we follow an ap-

proach similar to Tinti et al. [2005a], and use kinematic models to compute dynamic

parameters. Consequently, we use kinematic model samples from our posterior dis-

tribution as a boundary condition to compute stress evolution following the method-

ology of Aochi et al. [2000]. Using these stress evolution computations, we can

obtain the corresponding breakdown work following Tinti et al. [2005a]:

Wb =

Z Tb

0

(⌧(t)� ⌧min) · ⌫(t)dt, (3.12)

where Wb is the breakdown work, ⌧ is the traction, ⌫ is the slip rate, and Tb is the

time where the minimum traction ⌧min is reached.

Following this approach, we were able to recover slip weakening distance Dc and

breakdown work Wb for an ensemble of samples driven from the a posteriori PDF

of the 2015 MW = 8.3 Illapel earthquake. It is worth mentioning that the breakdown

work is also called the fracture energy in seismology studies [Tinti et al., 2005a].

However in fact, it is different from what is commonly used in fracture mechanics

(where it is strictly defined as the energy used to produce a new crack surface). As

pointed out by Kanamori and Rivera [2006] and Tinti et al. [2005a], what is generally

referred to as fracture energy in seismology includes different types of energy such

as the energies used for off-fault cracking, and various thermal processes. To avoid

any confusion, we follow Tinti et al. (2005) and refer to it as breakdown energy.

Beyond the interest of estimating Wb for Illapel, we focus on studying Wb since

different studies have pointed out the dependence of Dc on the final slip, making

Dc a not reliable parameter [Guatteri and Spudich, 2000, Piatanesi et al., 2004,

Tinti et al., 2009]. We follow the same methodology to obtain breakdown work of

the 2014 MW = 8.1 Iquique earthquake to compare it with the Illapel event since

the Iquique earthquake is located almost in the same region and has a similar mag-

nitude. We use the solution of Duputel et al. [2015] because it was also obtained

using a similar Bayesian approach. We compare the average breakdown energy of

both earthquakes with the solution and scaling relationship from Tinti et al. [2005a]

(Figure 3.14 a). Both breakdown energies follow the proposed scaling relationship.

This result suggests that even though the scaling relationship was calculated using

smaller magnitude events, such a relationship can be extrapolated to larger mag-

nitudes. We compare our breakdown estimations with those of Aochi and Ruiz

[2021]. In their work, Aochi and Ruiz [2021] create a simplified kinematic slip inver-

sion using ellipses and then used this inversion to make a dynamic model. Their

estimation of total fracture energy EG is 8.5⇥ 1016 J. Our breakdown energy for the

Illapel earthquake is 1.89 + /� 0.11⇥ 1018, which is about one order of magnitude
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larger. The estimation of Aochi and Ruiz [2021] followed the scaling relationship

of Aochi and Twardzik [2020], which is built using events with magnitudes between

MW = 6.0 � 7.8. Such events can possibly be modelled by simplified models (one

or two ellipses). However, given the complexity of the Illapel earthquake, different

patches are needed to recover the complete rupture fracture energy. We can use

the estimate of radiated energy ER = 2.93⇥1016 J from Ye et al. [2017] and compute

the radiation efficiency as:

⌘R =
ER

ER + (EG or Wb)
. (3.13)

If we use the results of Aochi and Ruiz [2021], we obtain ⌘R = 0.256 . On the

other hand, with our calculated breakdown energy we estimate a radiation effi-

ciency of ⌘R = 0.015. Venkataraman and Kanamori [2004] reported radiation ef-

ficiencies smaller than 0.25 for tsunami earthquakes (such as the 1992 Nicaragua

earthquake). Such low radiation efficiency is consistent with our modelling results

requiring significant slip at shallow depth to explain tsunami observations.

Moreover, we compare the average breakdown work of both earthquakes with the

solution and scaling relationship from Tinti et al. [2005a] and the scaling relation-

ship from Causse et al. [2014] (Figure 3.14 b). Even though there is a general

agreement, we can clearly see that the breakdown work averaged over the fault is

small compared with the scaling relationships. We think that such underestimation

results from the fact that the averaging of Wb is done over the entire fault used for

slip inversion (even in regions that did not slip). To mitigate this effect, we decided to

weight the averaging of the breakdown work by the corresponding slip in subfaults.

We see that for the Illapel earthquake, the estimated value is more consistent with

the aforementioned scaling relationships. In the case of the Iquique earthquake,

there is still a significant offset, which could be then due to the compactness of the

rupture [Duputel et al., 2015]. We compare again with the aforementioned study

of Aochi and Ruiz [2021]. They report an average breakdown work of 7.5 MJ/m2,

while our estimates are 34.4 + / � 2.04 MJ/m2, and 122.8 + / � 14.7 MJ/m2 for

the average and weighted average breakdown work respectively. The approach of

Aochi and Ruiz [2021] smoothens any possible heterogeneity inside the patch and

is limited in low frequencies. These limitations would explain the differences with

our average breakdown estimates, since posterior coseismic mean models show a

very heterogeneity rupture (Figures 3.6 and 3.8).

We carry out a final comparison between individual subfault slip and the analogous

breakdown work (Figure 3.15). We find the same behavior that was reported by

Tinti et al. [2005a], where the breakdown work scales as u2. To get insights about
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breakdown work scaling relationships, we calculate the fracture energy G for a self-

healing slip pulse model [Rice et al., 2005]. For this model, the fracture energy is

calculated as:

G = G⇤

✓
µu2

⇡L

◆
, (3.14)

where µ is the shear modulus, L the sliding zone, and u the corresponding displace-

ment. The expression G⇤ depends of two terms:

G⇤ = g(✓) F (vr), (3.15)

where g(✓) is a function of the ratio R/L, with L being the sliding zone, and R the

slip weakening zone. On the other hand, F (vr) depends of the velocity rupture vr

and the fracture mode, i.e, the function is different for mode II and mode III. For the

Illapel event we choose to use mode II, while for the Iquique earthquake we adopt

mode III. The function g(✓) varies from 1, when R/L ! 0, to 2 when R/L = 1.

In this work we decide to make the conservative assumption of having R/L = 1,

hence having the maximum G. We approximate the corresponding sliding zone L

as L = vr ⇥ Ts, where vr and Ts are the inverted rupture velocity and rise time for

each model subfault. In case this value is bigger than the corresponding subfault

length, i.e., L > 18, we keep this last value.

Fracture energy for the 2015 MW = 8.3 Illapel earthquake and the 2014 MW =

8.1 Iquique earthquake are shown in Figure 3.15. In both case, the same scaling

relationship seems to be valid with breakdown work estimates that evolves similarly

as fracture energy from the scaling relationship in equation 3.14. However, fracture

energy is consistently smaller than its corresponding value of breakdown work. An

explanation for this offset could be the fact that the calculation of breakdown work

involves a mixture of energies, i.e., heat and surface energy. On the contrary, the

model of a self-healing slip pulse only includes fracture energy.

3.7 Conclusion

Using extensive static and kinematic data sets, and a realistic uncertainty model,

we obtain fully Bayesian joint inversions of the 2015 MW = 8.3 Illapel earthquake.

We employ a non-linear parameterization (inverting for slip, rupture velocity, rise

time and hypocenter location), which allows us to resolve the complexity of the

rupture. We also explore three approaches to evaluate prediction uncertainty due to

inacuracies in the Earth model. We use an empirical estimate of the prediction error

covariance matrix Cp along with 1st order and 2nd order perturbation approaches.
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Figure 3.14: Average breakdown energies (a) and average breakdown work (b) for
the 2015 MW = 8.3 Illapel earthquake and the 2014 MW = 8.1 Iquique earthquake.
For the breakdown energy, purple and red dots represent the average breakdown
energies calculated in this study. For the breakdown work, green and red dots
represent the average breakdown work calculated in this study. Cyan and purple
dots represent the average breakdown work weighted by the corresponding slip.
Blue dots represent the breakdown energies and breakdown work calculated by
Tinti et al. [2005a] respectively. The dashed green line represents the scaling re-
lationship from the same study while the dashed black line represents the scaling
relationship is from Causse et al. [2014].

Results suggest that 2nd order approximation can provide results that are similar to

those obtained using an empirical Cp, which can help to save computing time.

Our kinematic slip models indicate two main slip asperities : a first asperity close to
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Figure 3.15: Scaling of breakdown work density with slip and Fracture energy es-
timates from Rice et al. (2005). (a) Scaling relationships for the 2015 MW = 8.3
Illapel earthquake. (b) Scaling relationships for the 2014 MW = 8.1 Iquique earth-
quake.

the hypocenter and another one at a shallow depth. Results show that the rupture

propagated slowly at shallow depth. Analysis of an inversion imposing a small slip

amplitude close to the trench suggests that shallow slip is necessary to fit tsunami

observations. Historical records suggest that such shallow slip did not occur during

the 1943 earthquake that affected the same region of the Chilean megathrust.

Estimation of rupture and centroid times suggests that an encircling rupture be-

havior takes place in the westward region. This phenomenon has been previously

suggested by back-projection studies, and depict a focusing effect that is consis-

tent with dynamic simulations of encircling ruptures. The 2015 MW = 8.3 Illapel

earthquake and the 2014 MW = 8.1 Iquique earthquake exhibit a breakdown work

density that scales as u2 and is in good agreement with scaling relationships pre-

viously reported by Tinti et al. [2005a] and Rice et al. [2005]. The total breakdown

energy is consistent with scaling relationships suggested for smaller earthquakes.
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Chapter 4

General conclusions

In this work, we explored both the rupture nucleation and propagation using vari-

ous types of observations, including seismic, geodetic and tsunami data. The joint

interpretation of these different observations is a challenging task as each data set

is affected by different uncertainties and is sensitive to different fault processes. In

the framework of this PhD work, a particular effort was made to characterize the ob-

servational and prediction uncertainties, which provide a natural weighting between

disparate data sets.

As we discussed in section 2, the origin of foreshock sequences distinguishing be-

tween the current conceptual models (foreshocks cascaded model or aseismic pre-

slip triggering) is an ongoing matter of study. New experimental and numerical

studies, such as McLaskey [2019], show that both conceptual models could actu-

ally be coexisting. Studies for the 2014 MW = 8.2 Iquique earthquake suggest the

occurrence of an aseismic preslip up to 8 months before the mainshock [Socquet

et al., 2017]. At the same time, a series of self-triggered foreshocks have been ob-

served [Herman et al., 2016]. The corresponding foreshock seismicity rate can be

explained using the temporal ETAS seismicity model [Schurr et al., 2014]. Our work

regarding the initiation phase of the 2017 MW = 6.9 Valparaiso earthquake sug-

gests that the transient displacements prior to the mainshock cannot be explained

only with foreshock induced displacements, even when accounting for prediction

and observation uncertainties. This implies the presence of a seismic and an aseis-

mic contribution. We estimate that ⇠ 50 ± 11% of GPS displacements are likely

caused by an aseismic slip, a ratio that is fairly consistent for different stations in

the vicinity of the Valparaiso sequence. We assess the aseismic preslip distribution
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by performing a slip inversion following a Bayesian scheme. The aseismic preslip

has a scalar moment of M0 = 3.08 ⇥ 1018 N.m, which corresponds to a magnitude

Mw = 6.3. Given the cumulative moment of foreshocks (M0 = 1.48 ⇥ 1018 N.m),

we estimate that nearly 70% of the scalar moment released during the preparation

phase of the Valparaíso mainshock is aseismic, which is roughly in agreement with

estimates from Ruiz et al. [2017].

Even if the results suggest that aseismic preslip is one of the mechanisms triggering

foreshocks, part of the foreshock activity likely results from cascading phenomena

due to stress changes of neighboring events. Why some earthquakes are preceded

by foreshocks while others are not is still an open question in seismology. The ab-

sence of a systematic precursory activity might partly be due to an observational

gap due to the incompleteness of the current seismicity catalog [as suggested by

Mignan, 2014]. In this regard, the need of conducting statistical studies using a

highly complete earthquake catalog, such as the Southern California catalog. Trug-

man and Ross [2019] showed that 72% of MW � 4 earthquakes in this region are

preceded by an elevated seismic activity compared with the background seismicity

rate, suggesting that foreshock activity is less exceptional than previously thought.

However, Moutote et al. [2021] reanalyzed the same catalog and found that only

18% of these foreshock sequences were really anomalous and could not be at-

tributed to temporal fluctuations in background seismicity rate. Even though we take

into account the contribution of missing events in GPS displacement time-series, we

could use these more complete catalogs to have a better estimation of the seismic

missing contribution in the transient displacement. Likewise, in the Valparaiso se-

quence analysis, we correct the GPS time-series removing the seismic contribution

to estimate the overall partitioning between aseismic and seismic slip. However, it

would be interesting to jointly invert for seismic data and geodetic time-series (in-

stead of correcting geodetic time-series using source models derived independently

from seismic data). Besides, laboratory-driven and theoretical models show that

that earthquakes are preceded by the growth of self-accelerating aseismic slip that

smoothly reaches co-seismic slip-rates [e.g., Ohnaka, 1992, Latour et al., 2013].

One objective of future studies should be to use geodetic time-series to assess if

slip evolution before mainshocks follow what is predicted by these studies.

As the second project of this thesis, we obtained fully Bayesian joint inversions of

the 2015 MW = 8.3 Illapel earthquake. The 2015 MW = 8.3 Illapel earthquake is

an interesting earthquake for which more than ten different kinematic models have

been published. Nevertheless, these models exhibit significant variability. Some

models exhibit almost no shallow slip [An and Meng, 2017], contrarily to other stud-

ies [Lay et al., 2016]. Delimiting the amount of shallow slip turns out to be crucial
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as it can generate hazardous tsunami waves. This variation can be attributed to

differences in methodology and employed observations. We employ a non-linear

parameterization (inverting for slip, rupture velocity, rise time, and hypocenter lo-

cation), which allows us to resolve the complexity of the rupture. Since computing

forward problem uncertainties is computationally expensive, we explore three ap-

proaches to predict uncertainty due to inaccuracies in the Earth model: using an

empirical covariance matrix Cp, a covariance matrix Cp calculated using the 1st

order approximation, and a new approach, the 2nd order approximation approach.

Results using a 2nd order approach are similar to those obtained using an empirical

matrix, which can save computing time.

Our kinematic solution shows a rupture with two main slip areas, a first asper-

ity close to the hypocenter, and another one at shallow depth, with an important

amount of shallow slip, in agreement with previous studies including tsunami obser-

vations [Lay et al., 2016, Melgar et al., 2016b]. Analysis of an inversion imposing

a small slip amplitude close to the trench confirms that shallow slip is necessary to

fit tsunami observations. Rupture times suggest a rupture that propagates slowly

at shallow depth, with a northwestward direction. Rupture times also indicate that

an encircling rupture occurs westward of the hypocenter. Encircling effects have

been previously suggested by previous back-projection studies [Meng et al., 2018]

and depict a focusing effect consistent with dynamic simulations of encircling rup-

tures. To gain insight into rupture dynamics we use kinematic models to compute

the stress evolution on the fault as a function of time. We compute the breakdown

work density from the stress evolution and compare the resulting probability density

estimates with similar calculations done for the 2014 MW = 8.1 Iquique earthquake.

Both earthquakes exhibit a breakdown work density that scales as u2 and is in good

agreement with scaling relationships previously reported by Tinti et al. [2005a] and

Rice et al. [2005]. The total breakdown energy is consistent with scaling relation-

ships suggested for smaller earthquakes.

In this work, we obtain more reliable estimates for the 2015 MW = 8.3 Illapel earth-

quake by employing a Bayesian scheme. This allows us to have robust slip dis-

tribution solutions on the fault. Furthermore, we have developed a methodology

to calculate estimations of breakdown work Wb and energy Eb by using our pos-

terior ensemble of models. In this regard, an interesting perspective would be to

use the same methodology (Bayesian slip inversion and dynamic parameters eval-

uation) to analyze many other earthquakes. Beyond having a detailed description

of various ruptures, such approach would allow us to have interesting insights into

scaling relationships and energy budget for different earthquakes (intraplate events,

megathrust and tsunami earthquakes along with shallow and deep events). This
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kind of studies have been conducted using single finite fault inversion models [Ye

et al., 2016], which limits the estimation of uncertainties. Similarly, we could com-

pare our estimates of breakdown work with scaling relationships developed using

laboratory earthquakes and numerical modeling [e.g., Lambert and Lapusta, 2020,

Paglialunga et al., 2022, Viesca and Garagash, 2015].
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Appendix A

Supporting Information for Seismic

and aseismic fault slip during the

initiation phase of the 2017 Mw=6.9

Valparaíso earthquake

Contents of this file

1. Text S1 to S2

2. Figures S1 to S12

3. Tables S1 to S2

Introduction
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S1. GPS proccesing

68 continuous GPS (cGPS) were processed in South America (66 stations) and

Nazca (2 stations) Plates (Figures A.1 and A.2), from different networks that are

listed below:

• 13 cGPS from the International GNSS service (www.igs.org): ANTC, AREQ,

BRAZ, BRFT, CHPI, GLPS, ISPA, KOUR, LPGS, RIO2, SANT, UFPR, UNSA.

• 3 cGPS from the Instituto Geográfico Militar of Bolivia (www.igmbolivia.gob.

bo): SCRZ, URUS, YCBA.

• 11 cGPS from the Brazilian Network (RBMC-IP, www.ibge.gov.br): CUIB,

MABA, MSCG, NAUS, POAL, POVE, PRCV, ROCD, RSAL, SAVO, TOPL.

• 15 cGPS from Argentian National Network (RAMSAC, www.ign.gob.ar [Piñón

et al., 2018]) AZUL, BCAR, CATA, DINO, EBYP, ESQU, MA01, NESA, PEJO,

RWSN, SL01, TUCU, UNRO, UNSJ, VBCA

• 5 cGPS from the Chilean - French cooperation through LIA “Montessus de

Ballore” (www.lia-mb.net): CONS, JRGN, OVLL, UAPE, UDAT.

• 2 cGPS from the Ministerio de Bienes Nacionales of Chile (www.bienesnacionales.

cl ): BN05, BN13

• 18 cGPS from the Centro Sismológico Nacional de Chile (CSN, www.csn.

uchile.cl [Baez et al., 2018]): CHDA, CTPC, CUVI, DGF1, LVIL, MPLA,

NAVI, PORT, QTAY, RCSD, ROB1, QTAY, SLMC, TLGT, TRPD, UAIB, VALN,

ZAPA.

All these data were processed in double differences using GAMIT 10.7 software to

obtain daily, 12 and 6 hours estimates of station positions, choosing ionosphere-free

combination and fixing the ambiguities to integer values. The precise orbits from the

International GNSS Service for Geodynamics, precise EOPs from the IERS bulletin

B, IGS tables to describe the phase centers of the antennas, FES2004 ocean-tidal

loading corrections, as well as atmospheric loading corrections (tidal and non-tidal).

We used precise orbits from the International GNSS Service for Geodynamics, pre-

cise EOPs from the IERS bulletin B, IGS tables to describe the phase centers of the

antennas, FES2004 ocean-tidal loading corrections, as well as atmospheric loading

corrections (tidal and non-tidal). One tropospheric vertical delay parameter and two

horizontal gradients per stations are estimated every 2 hours. Daily solutions and

position time series are combined using the PYACS software [Nocquet, 2017] in a
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regional stabilization process. The results are mapped into ITRF 2014 reference

frame [Altamimi et al., 2016] and then put in the South-American frame using the

Euler pole at �83.4� E, 15.2� N, and angular velocity 0.287�my�1 [Nocquet et al.,

2014].
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S2. Prediction error covariance matrix

We focus on prediction uncertainties due to inaccuracies in the Earth model. These

uncertainties are represented by the matrix Cp. We note the forward model g(Ψ,m)

for a source model m, and Earth model parameters Ψ (i.e., P and S wave velocities,

density). We can estimate Cp empirically from an ensemble of random models

Ψi, (i = 1, . . . , n) as:

Cp =
1

n� 1

nX

i=1

(g(Ψi,m)� ḡ(Ψ,m))(g(Ψi,m)� ḡ(Ψ,m))T , (A.1)

where ḡ is the mean of the ensemble of predictions g(Ψi,m). In the following,

we refer to Cp estimated in equation (1) as the empirical prediction error covari-

ance matrix. Alternatively, we can compute Cp following a linearized perturbation

approach. We assume that our forward model g(Ψ,m) is well approximated by

linearized perturbations of our predictions. For an a priori Earth model Ψ̃ we write:

g(Ψ,m) ⇡ g(Ψ̃,m) +KΨ(Ψ̃,m) · (Ψ� Ψ̃), (A.2)

where KΨ(Ψ̃,m) is the sensitivity kernels of the predictions with respect to elastic

parameters used to compute forward predictions:

KΨ(Ψ̃,m) =
@gi
@Ψj

(Ψ̃,m). (A.3)

In this first order approximation, we use the sensitivity kernel KΨ(Ψ̃,m) to estimate

the covariance matrix Cp [Duputel et al., 2014]:

Cp = KΨ ·CΨ ·KT
Ψ
, (A.4)

where CΨ is the covariance matrix describing uncertainty in the Earth model. To

analyze both approaches, we consider a simple test case limited to an uncertain in

S-wave velocity in a single layer (at 30 km depth) using the source parameters of

the MW = 6.0 foreshock on 2017-04-23 (see section 3 of the main text). For com-

parison, we calculate prediction error covariance matrices Cp using equation (1)

and equation (4). We plot in Figure S7 the diagonal components of both matrices

for a representative station. We observe that there is an overall good agreement

between our first order Cp and the empirical Cp matrix. We notice some discrep-

ancies in the variance amplitudes and a time-shift in the late part of the waveforms

(after 75s in Figure S7). To explore the origin of these effects, we compare synthetic

waveforms predicted from the stochastic models and the waveforms calculated with
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the first order approach. The results shown in Figure S8 indicate that the time-

shift and amplitude difference in Figure S7 are related to the fact that the first order

approach is unable to perfectly reproduce large perturbations in the Earth model.

To correct these differences, we can also estimate a covariance matrix using a

second order approximation of the forward model as:

g(Ψ,m) ⇡ g(Ψ̃,m) +KΨ(Ψ̃,m)·(Ψ� Ψ̃)+
1

2!
(Ψ� Ψ̃)·HΨ(Ψ̃,m)·(Ψ� Ψ̃), (A.5)

where HΨ is the second order derivative with respect to the elastic parameters:

HΨ(Ψ̃,m) =
@2gi

@Ψk@Ψj

(Ψ̃,m). (A.6)

The computation of H involves evaluating n2 derivatives, where n is the number of

elastic parameters (e.g., 3 parameters per layer for a 1D Earth model). However,

assuming that cross-terms are negligible, we can reduce the number of 2nd order

derivatives to be evaluated to n.

As shown in Figure S7 and S8, some of the imperfections obtained with the first

order approach can be corrected by employing a second order approach neglecting

cross-terms. In practice, these discrepancies are more significant when we apply

larger perturbations to the velocity model. Despite the fact that the inaccuracies

of the first order approach have been corrected, we notice in Figure S8 that the

differences between the first and second order approach are relatively small given

the 1 Hz sampling frequency used in our moment tensor inversions. Our tests

show that the differences are more visible when inverting waveforms with a higher

sampling rate.
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Figure A.1: Map of the GPS stations processed in South America and Nazca Plates.
The red stations are those ones used to define the Reference Frame, while the blue
ones are just used on the processing. The pink box denotes the study area (see
Figure A.2 to look at the stations processed in this region).
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Figure A.2: Map of the GPS stations processed in the study area.
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Figure A.3: GPS time series for the Valparaíso region network for north and east
component. The images show the time series before and after the mainshock
(green line) of the sequence.
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Figure A.4: Model variability of the P-wave, S-wave, and density as a function of
depth in Valparaíso region. Black line represents the velocity layered model used
for Green’s Function (GF) calculation. Grey histograms are the probability density
function for each parameter as a function of depth as described in Cp.
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Figure A.5: Gutenberg-Richter law for the 2017 Valparaíso earthquake sequence.
Three different catalogs of the sequence are shown: Our CMT catalog, S. Ruiz et
al. (2017) catalog, and J. A. Ruiz et al. (2018) catalog. For each catalog, both the
whole sequence (foreshocks and aftershocks), and the foreshocks sequence are
represented.
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Figure A.6: Synthetic surface displacement for different ranges of magnitude, fore-
shocks with Mw � 5.5 (largest foreshock Mw = 6.0) and foreshocks with Mw  5.5.
The Mw = 6.0 contribution appears to dominate the signal, with respect to the cu-
mulative contribution of smaller foreshocks.

117



0 25 50 75 100 125 150 175

time(s)

10 16

10 15

10 14

10 13

10 12

10 11

10 10

10 9

10 8

2nd order

Empirical

10 16

10 15

10 14

10 13

10 12

10 11

10 10

10 9

10 8

1st order

Empirical

GO05-BHZ

Figure A.7: Diagonal of the Cp matrix for the vertical component of the station G005.
The matrix is calculated for the MW = 6.0 foreshock of the Valparaíso sequence
(see section 3 of the main text). The red line represents the diagonal matrix for the
empirical covariance matrix (i.e., the matrix created from an ensemble of models).
The blue line represents the first (top) and second-order (bottom) approaches used
to compute Cp.
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Figure A.8: Comparison between synthetic waveforms predicted from stochastic
models calculated with a log-normal distribution, and synthetic waveforms calcu-
lated using the first and second order Cp matrix. The waveforms are generated
using the source model of the MW = 6.0 foreshock presented in section 3 of the
main text. The X-axis represents time shifts between waveforms generated with the
average velocity model of the region (figure S4) and waveform predicted for ran-
domly perturbed velocity models. The Y-axis represents time shifts between wave-
forms generated with the average velocity model and waveforms generated either
with the first or the second order approximation (see equations (2) and (5) of text
S2). The color represents the correlation coefficient of each pair of waveforms. If
the comparison follows the y = x line, it means that the perturbation approximation
properly estimates the empirical covariance matrix. We can observe that the sec-
ond order approach better approximates actual synthetics (especially when there is
a significant time-delay between waveforms).
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Figure A.9: Waveforms fit for the MW = 6.0 foreshock using CMT solution from
our catalog. Observed (black) and synthetic (red) waveforms for a given station
(orange). The fit (inversion) is made between red dots. The blue star represents
the CMT location. Yellow dots correspond to the ensemble of stations used in the
inversion.
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Figure A.10: Stations used for the MW = 6 foreshock CMT inversion. The CMT
location is shown in purple.
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Figure A.11: Mainshock postseismic surface displacement normalized by the co-
seismic displacement at each GPS station. This ratio approximates the moment
ratio between postseismic and coseismic terms.
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Figure A.12: Same as Figure 4 of main text but with the quick postseismic contribu-
tion produced by the largest foreshock.
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Table A.1: Bandpass filter corner frequencies used for CMT inversion
Magnitude Low Corner Freq (Hz) High Corner Freq (Hz)
< 4.5 0.02 0.08
> 4.5 0.015 0.06
6.0 0.01 0.04
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Table A.2: CMT solutions of our catalog.

Date Time Lon � Lat � Depth km M0 N·m Mw Mrr N·m Mtt N·m Mpp N·m Mrt N·m Mrp N·m Mtp N·m

2017-04-15 01:50:23 -70.85 -31.93 35.5 3.56e+14 3.63 -1.49e+20 -8.60e+20 1.01e+21 -1.82e+20 -1.83e+21 2.927e+21

2017-04-22 22:46:44 -71.96 -33.14 17.5 2.21e+16 4.83 1.76e+23 -1.58e+22 -1.60e+23 -2.78e+22 -1.41e+23 3.324e+21

2017-04-22 23:57:13 -72.03 -33.05 21.5 2.10e+15 4.15 1.28e+22 -1.07e+21 -1.17e+22 -8.45e+20 -1.70e+22 9.225e+20

2017-04-23 01:49:12 -72.06 -33.03 22.5 8.47e+15 4.55 5.58e+22 2.57e+21 -5.83e+22 -5.42e+21 -6.24e+22 9.259e+20

2017-04-23 02:36:06 -72.10 -33.03 19.5 1.16e+18 6.0 7.45e+24 -3.96e+23 -7.05e+24 4.10e+23 -9.06e+24 -5.981e+22

2017-04-23 02:43:18 -71.89 -33.05 21.5 1.76e+16 4.76 7.84e+22 2.41e+22 -1.03e+23 -1.86e+22 -1.44e+23 -4.994e+22

2017-04-23 02:52:38 -72.00 -33.05 25.5 8.02e+15 4.54 6.41e+22 -5.19e+20 -6.36e+22 1.29e+21 -4.66e+22 -1.311e+22

2017-04-23 03:00:12 -71.97 -32.86 14.5 5.04e+15 4.40 3.97e+22 -7.83e+21 -3.19e+22 -9.10e+21 -3.43e+22 4.470e+21

2017-04-23 03:02:17 -72.02 -33.07 26.5 8.48e+15 4.55 7.48e+22 -5.13e+21 -6.97e+22 6.45e+21 -4.39e+22 -2.778e+21

2017-04-23 12:52:15 -71.99 -33.07 26.5 5.42e+14 3.76 3.07e+21 2.78e+20 -3.34e+21 4.33e+20 -4.30e+21 -6.063e+20

2017-04-23 16:12:54 -71.96 -32.99 25.5 1.93e+15 4.12 1.12e+22 -2.14e+21 -9.07e+21 -7.36e+20 -1.63e+22 -9.098e+20

2017-04-23 19:40:10 -72.16 -33.05 21.5 2.10e+17 5.5 1.69e+24 -1.06e+23 -1.59e+24 5.75e+22 -1.31e+24 8.445e+22

2017-04-23 20:30:50 -72.10 -33.06 30.5 1.50e+15 4.05 5.58e+21 1.06e+22 -1.62e+22 2.95e+21 -5.86e+21 -3.027e+20

2017-04-24 01:19:42 -72.04 -33.11 22.5 1.31e+15 4.01 6.16e+21 9.72e+20 -7.14e+21 4.68e+20 -1.12e+22 -1.181e+21

2017-04-24 03:50:50 -72.14 -33.09 24.5 4.53e+15 4.37 3.42e+22 -3.71e+21 -3.05e+22 3.65e+21 -3.11e+22 4.655e+21

2017-04-24 03:54:11 -72.05 -33.10 21.5 7.87e+15 4.53 5.58e+22 -2.75e+21 -5.30e+22 8.92e+21 -5.55e+22 -8.387e+21

2017-04-24 06:54:36 -72.06 -33.11 23.5 7.69e+14 3.86 4.85e+21 -7.75e+20 -4.07e+21 1.17e+21 -6.13e+21 4.638e+20

2017-04-24 13:17:02 -71.93 -33.00 28.5 5.03e+14 3.73 2.19e+21 1.04e+21 -3.23e+21 -7.60e+18 -4.09e+21 -1.127e+21

2017-04-24 23:54:45 -71.93 -33.29 35.5 1.43e+16 4.70 5.65e+22 3.38e+22 -9.04e+22 2.77e+22 -1.16e+23 -1.953e+22

2017-04-25 00:17:36 -72.04 -33.17 20.5 7.58e+15 4.52 6.05e+22 -5.41e+21 -5.51e+22 -5.64e+21 -4.85e+22 5.282e+21

Continued on next page
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Table A.2 – Continued from previous page

Date Time Lon � Lat � Depth km M0 N·m Mw Mrr N·m Mtt N·m Mpp N·m Mrt N·m Mrp N·m Mtp N·m

2017-04-25 01:33:15 -72.04 -33.16 22.5 1.56e+16 4.73 1.27e+23 -3.88e+21 -1.23e+23 1.73e+22 -9.06e+22 6.894e+21

2017-04-25 01:43:03 -72.09 -33.16 22.5 6.78e+16 5.15 5.20e+23 -3.77e+22 -4.82e+23 2.10e+22 -4.56e+23 5.773e+21

2017-04-25 01:54:30 -72.11 -33.10 22.5 1.45e+15 4.04 2.60e+21 2.37e+21 -4.97e+21 8.85e+20 -1.22e+22 -6.659e+21

2017-04-25 02:33:05 -71.89 -33.00 32.5 9.88e+14 3.93 8.24e+21 -2.88e+21 -5.36e+21 1.11e+21 -7.10e+21 -3.851e+20

2017-04-25 03:02:23 -72.08 -33.16 23.5 9.33e+15 4.58 7.71e+22 -1.13e+22 -6.58e+22 8.15e+21 -5.93e+22 3.680e+21

2017-04-25 05:56:26 -72.28 -33.03 17.5 2.43e+15 4.19 2.26e+22 -5.64e+21 -1.70e+22 -6.61e+19 -1.27e+22 4.963e+21

2017-04-25 06:34:15 -71.93 -32.97 25.5 4.88e+14 3.73 3.60e+21 -5.02e+20 -3.10e+21 -6.10e+20 -3.50e+21 4.637e+19

2017-04-25 08:15:17 -71.98 -32.97 24.5 9.43e+14 3.92 5.98e+21 -5.54e+20 -5.43e+21 1.41e+20 -7.48e+21 -6.557e+20

2017-04-25 08:29:06 -72.09 -33.15 19.5 1.21e+15 3.99 8.03e+21 7.54e+20 -8.78e+21 3.61e+20 -8.67e+21 -1.002e+20

2017-04-25 09:33:31 -72.00 -33.10 27.5 3.85e+15 4.32 2.18e+22 -3.06e+21 -1.87e+22 5.88e+21 -3.20e+22 -3.549e+21

2017-04-25 10:20:23 -72.11 -32.92 21.5 1.95e+15 4.13 8.25e+21 -2.08e+20 -8.04e+21 -1.85e+21 -1.76e+22 -2.089e+20

2017-04-25 10:24:35 -72.14 -32.90 22.5 2.28e+15 4.17 1.90e+22 -2.81e+21 -1.62e+22 -1.29e+21 -1.43e+22 -2.237e+21

2017-04-25 11:22:02 -72.20 -33.03 19.5 1.03e+15 3.94 8.45e+21 -1.21e+21 -7.24e+21 3.36e+19 -6.50e+21 1.057e+21

2017-04-25 11:24:09 -72.27 -33.12 19.5 1.70e+15 4.09 1.50e+22 -2.19e+21 -1.28e+22 3.35e+21 -9.24e+21 2.462e+20

2017-04-25 12:13:23 -72.21 -33.12 19.5 1.21e+16 4.65 1.02e+23 -1.01e+22 -9.21e+22 1.81e+22 -6.92e+22 2.311e+21

2017-04-25 12:37:37 -72.16 -33.05 21.5 1.31e+15 4.01 8.31e+21 -3.74e+20 -7.94e+21 1.08e+20 -1.02e+22 1.217e+21

2017-04-25 14:26:35 -72.10 -33.17 21.5 2.76e+15 4.23 1.34e+22 7.15e+20 -1.41e+22 2.13e+21 -2.37e+22 2.934e+21

2017-04-25 15:32:07 -72.21 -33.10 19.5 1.18e+15 3.98 1.15e+22 -2.05e+21 -9.41e+21 -5.21e+20 -4.93e+21 2.174e+21

2017-04-25 16:38:53 -72.18 -33.07 19.5 1.41e+15 4.03 9.02e+21 4.71e+20 -9.49e+21 4.63e+20 -1.06e+22 -5.471e+20

2017-04-25 16:48:36 -72.01 -33.31 24.5 1.99e+15 4.13 9.15e+21 6.87e+20 -9.84e+21 7.19e+21 -1.58e+22 1.966e+21

2017-04-25 20:57:54 -72.15 -33.13 19.5 1.16e+15 3.98 9.76e+21 -9.29e+20 -8.83e+21 1.11e+21 -6.90e+21 -3.074e+19

Continued on next page
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Table A.2 – Continued from previous page

Date Time Lon � Lat � Depth km M0 N·m Mw Mrr N·m Mtt N·m Mpp N·m Mrt N·m Mrp N·m Mtp N·m

2017-04-25 21:03:13 -72.06 -33.12 17.5 8.67e+14 3.89 6.93e+21 -2.24e+21 -4.69e+21 1.96e+21 -6.05e+21 6.534e+20

2017-04-25 23:58:11 -71.98 -32.95 26.5 1.25e+15 4.00 1.04e+22 -1.85e+21 -8.51e+21 1.59e+20 -8.10e+21 1.225e+21

2017-04-26 00:43:00 -71.96 -32.94 26.5 4.63e+14 3.71 1.77e+21 2.60e+20 -2.03e+21 -4.96e+20 -4.19e+21 -5.287e+19

2017-04-26 10:05:34 -72.21 -33.14 21.5 4.05e+15 4.34 3.21e+22 -3.83e+21 -2.82e+22 6.22e+21 -2.64e+22 1.765e+20

2017-04-26 14:45:55 -71.85 -33.29 27.5 4.49e+15 4.37 3.33e+22 -2.38e+20 -3.31e+22 3.36e+21 -3.00e+22 1.143e+21

2017-04-26 15:14:01 -71.99 -33.30 31.5 4.64e+15 4.38 3.80e+22 7.82e+20 -3.88e+22 9.17e+21 -2.42e+22 2.401e+21

2017-04-27 01:55:05 -71.81 -33.13 32.5 1.05e+15 3.95 9.92e+21 -3.26e+20 -9.59e+21 9.98e+20 -3.61e+21 1.043e+21

2017-04-27 05:09:22 -71.90 -33.31 27.5 4.06e+16 5.01 3.31e+23 1.23e+22 -3.43e+23 8.57e+21 -2.13e+23 7.488e+22

2017-04-27 06:55:45 -71.88 -33.29 25.5 1.86e+15 4.11 1.23e+22 -7.08e+20 -1.16e+22 1.08e+21 -1.42e+22 -1.304e+20

2017-04-27 08:24:41 -71.89 -33.28 28.5 1.34e+16 4.68 1.04e+23 7.86e+21 -1.12e+23 6.07e+21 -7.88e+22 3.411e+21

2017-04-27 08:46:34 -72.06 -33.10 23.5 1.70e+15 4.09 8.60e+21 -5.83e+20 -8.01e+21 1.44e+21 -1.47e+22 -4.253e+20

2017-04-27 21:17:33 -71.92 -33.30 29.5 8.93e+14 3.90 5.29e+21 1.21e+21 -6.50e+21 2.02e+20 -6.69e+21 -4.765e+20

2017-04-28 15:30:05 -72.02 -33.26 23.5 7.43e+17 5.85 5.32e+24 -2.17e+23 -5.10e+24 1.60e+24 -5.03e+24 5.323e+23

2017-04-28 15:33:30 -71.96 -33.32 23.5 2.32e+16 4.84 1.72e+23 -1.56e+22 -1.57e+23 4.19e+22 -1.58e+23 -1.243e+22

2017-04-28 15:40:24 -71.91 -33.26 28.5 8.66e+15 4.56 4.40e+22 1.25e+22 -5.65e+22 4.84e+22 -4.91e+22 -2.064e+22

2017-04-28 15:49:44 -71.91 -33.31 26.5 2.89e+16 4.91 1.74e+23 2.36e+22 -1.98e+23 3.56e+22 -2.18e+23 1.129e+22

2017-04-28 15:58:34 -72.05 -33.26 27.5 1.32e+17 5.35 9.24e+23 -2.51e+22 -8.98e+23 3.88e+23 -8.39e+23 2.300e+23

2017-04-28 16:05:57 -71.66 -33.17 29.5 5.06e+17 5.74 3.37e+24 -4.38e+23 -2.93e+24 -6.71e+23 -3.88e+24 5.465e+23

2017-04-28 17:09:40 -71.93 -33.25 20.5 7.87e+15 4.53 2.26e+22 1.64e+22 -3.91e+22 2.52e+22 -6.67e+22 -3.073e+21

2017-04-28 17:21:48 -72.06 -33.23 24.5 3.25e+15 4.27 1.51e+22 2.05e+21 -1.72e+22 9.80e+21 -2.64e+22 -6.374e+19

2017-04-28 17:38:09 -71.93 -33.35 29.5 4.21e+15 4.35 -1.54e+22 -8.40e+21 2.38e+22 2.62e+22 -8.34e+21 -2.420e+22

Continued on next page
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Table A.2 – Continued from previous page

Date Time Lon � Lat � Depth km M0 N·m Mw Mrr N·m Mtt N·m Mpp N·m Mrt N·m Mrp N·m Mtp N·m

2017-04-28 17:41:50 -71.98 -33.30 25.5 1.11e+17 5.30 7.98e+23 -2.82e+22 -7.70e+23 2.17e+21 -7.79e+23 -3.052e+22

2017-04-28 17:57:07 -71.94 -33.36 30.5 2.57e+15 4.21 1.60e+22 1.97e+21 -1.79e+22 -3.88e+21 -1.88e+22 3.429e+20

2017-04-28 18:28:23 -71.96 -33.28 29.5 2.68e+15 4.22 1.30e+22 9.66e+20 -1.39e+22 3.90e+21 -2.28e+22 -1.247e+21

2017-04-29 01:06:23 -72.02 -33.25 20.5 4.87e+14 3.73 1.49e+21 1.13e+21 -2.63e+21 2.44e+21 -3.40e+21 -1.148e+21

2017-04-29 01:08:35 -71.99 -33.37 27.5 5.34e+15 4.42 3.22e+22 2.74e+21 -3.49e+22 -3.80e+21 -4.03e+22 -9.976e+21

2017-04-29 01:37:16 -72.07 -33.23 25.5 5.16e+15 4.41 3.27e+22 4.71e+21 -3.74e+22 2.14e+22 -3.01e+22 7.211e+21

2017-04-29 01:46:00 -72.02 -33.22 24.5 5.41e+16 5.09 4.98e+23 -4.40e+22 -4.54e+23 8.74e+22 -2.43e+23 1.079e+22

2017-04-29 02:36:24 -71.73 -33.12 32.5 7.30e+14 3.84 7.48e+21 -1.76e+21 -5.71e+21 -7.30e+20 2.43e+21 1.489e+21

2017-04-29 04:50:34 -72.07 -33.24 22.5 7.66e+14 3.86 4.21e+21 -9.67e+19 -4.11e+21 3.07e+21 -5.62e+21 6.726e+20

2017-04-29 08:30:43 -72.05 -33.25 24.5 2.92e+15 4.24 8.79e+21 7.25e+21 -1.60e+22 1.38e+22 -2.17e+22 -1.908e+20

2017-04-29 08:54:02 -72.03 -33.24 22.5 2.54e+15 4.20 6.44e+21 4.24e+21 -1.07e+22 8.88e+21 -2.20e+22 1.113e+20

2017-04-30 17:55:34 -72.02 -33.37 26.5 8.74e+14 3.89 5.89e+21 -2.22e+20 -5.67e+21 -6.18e+20 -5.07e+21 -4.335e+21

2017-04-30 21:49:02 -72.26 -32.97 22.5 1.04e+15 3.95 1.05e+22 -1.74e+21 -8.73e+21 4.23e+20 -4.01e+21 -3.070e+20

2017-05-01 23:38:45 -72.21 -33.01 18.5 1.79e+15 4.10 1.49e+22 -1.38e+21 -1.35e+22 1.76e+21 -1.07e+22 -1.596e+20

2017-05-03 16:50:22 -72.26 -33.08 21.5 5.62e+15 4.43 5.74e+22 -1.11e+22 -4.63e+22 2.43e+21 -2.16e+22 1.035e+21

2017-05-04 14:31:43 -72.15 -33.09 22.5 5.62e+14 3.77 4.83e+21 -2.63e+20 -4.57e+21 6.57e+20 -2.99e+21 3.640e+20

2017-05-05 01:34:46 -72.24 -32.90 18.5 1.04e+15 3.95 6.92e+21 5.61e+20 -7.48e+21 8.32e+20 -7.45e+21 9.744e+20

2017-05-05 04:42:01 -71.99 -32.82 22.5 4.92e+14 3.73 2.14e+21 8.61e+19 -2.23e+21 9.84e+20 -4.22e+21 8.527e+20

2017-05-05 10:48:21 -72.18 -32.94 16.5 6.36e+14 3.80 5.53e+21 -1.53e+20 -5.37e+21 1.07e+21 -3.11e+21 -1.131e+20

2017-05-09 09:22:31 -72.27 -33.75 21.5 7.49e+14 3.85 5.79e+21 1.88e+20 -5.98e+21 -4.60e+19 -4.54e+21 9.364e+20

2017-05-09 11:28:32 -72.25 -33.05 19.5 4.44e+14 3.70 4.06e+21 -9.09e+20 -3.15e+21 1.48e+19 -2.55e+21 4.498e+20

Continued on next page
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Table A.2 – Continued from previous page

Date Time Lon � Lat � Depth km M0 N·m Mw Mrr N·m Mtt N·m Mpp N·m Mrt N·m Mrp N·m Mtp N·m

2017-05-13 16:54:46 -72.06 -32.94 26.5 6.48e+16 5.14 5.42e+23 -3.86e+22 -5.04e+23 -5.74e+22 -3.78e+23 -6.968e+21

2017-05-16 02:16:29 -72.21 -32.96 16.5 1.99e+15 4.13 -2.93e+21 1.90e+21 1.03e+21 3.93e+21 -1.01e+22 -1.707e+22

2017-05-16 04:36:15 -71.65 -32.00 27.5 4.20e+15 4.35 1.60e+21 9.87e+20 -2.59e+21 2.57e+20 -4.18e+22 3.070e+21

2017-05-18 00:44:56 -72.32 -33.03 17.5 2.20e+15 4.16 2.37e+22 -3.86e+21 -1.98e+22 7.27e+20 -2.60e+21 1.786e+21

2017-05-23 01:05:12 -72.16 -32.94 19.5 1.61e+15 4.07 6.78e+21 -7.61e+20 -6.02e+21 9.26e+21 1.18e+22 1.183e+21

2017-05-29 20:39:36 -71.86 -32.16 26.5 5.78e+14 3.77 -2.65e+21 2.71e+21 -6.71e+19 -1.05e+21 -5.11e+21 1.094e+21

2017-05-30 06:45:58 -72.19 -32.98 18.5 8.59e+14 3.89 7.53e+21 -1.20e+21 -6.34e+21 1.74e+21 -4.68e+21 7.912e+20
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Appendix B

Supporting Information for

Revisiting the 2015 Mw=8.3 Illapel

earthquake. From kinematic rupture

inversion to rupture dynamics.

Contents of this file

1. Text S1 to S2

2. Figures S1 to S10

Text S1. Data processing

InSAR images. InSAR data consist of a descending pair (20150824-20150917)

and an ascending pair (20150826-20150919) acquired by the Sentinel-1A satellite

operated by the European Space Agency under the Copernicus program. We used

ISCE software [Rosen et al., 2012] to process the data, and Snaphu to unwrap

the interferograms [Chen and Zebker, 2002]. We used SRTM DEM [Farr et al.,

2007] to coregister the InSAR pairs, remove topographic phase and geocode the

interferograms. To improve computational efficiency, we use a resolution-based

resampling of InSAR observations [Lohman and Simons, 2005]. In the resampling

process, displacement measurements are averaged over windows of sizes ranging

from 0.6 to 10 km.

Tsunami data. We use seven tide gauges (buca1, chnr1, juan1, meji1, papo1, talt1,
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toco1) and seven sea-bottom pressure sensor records (D32401, D32402, D32411,

D32412, D43412, D43413, D51407) at NOAA DART (Deep-ocean Assessment and

Reporting of Tsunamis) stations [Mungov et al., 2013]. We remove tidal signals at

each station by fitting and subtracting a sinusoidal function over a time window of

25 hr before and 20 hr after the earthquake initiation time. We then lowpass-filter

the data at 240 sec, with one sample per minute. For the inversion, we only use the

first 30 min time-window after tsunami arrival.

The tsunami Green’s functions are computed using COMCOT [Cornell Multi-grid

Coupled Tsunami Model code Liu et al., 1995] with the GEBCO (General Bathy-

metric Chart of the Oceans) 30-sec bathymetry (The GEBCO_2014 Grid, version

20141103, http://www.gebco.net). We downsample the 30-sec bathymetry data

to a 0.4 min and 1 min grid size for near-field (D32401, D32402, D32411, and

tide gauges) and far-field (other stations) simulations, respectively. We compute

seafloor deformation for each slip source using a modified 1D elastic structure,

where we assume that the shallowest layer of 2.6 km is ocean water. We apply

a spatial filter when predicting seafloor deformation for unit slip, as a way to ap-

proximate the effect of water layer attenuation [Geist and Dmowska, 1999, Kajiura,

1981]. To account for long-period dispersion [Watada, 2013] that is not incorpo-

rated in COMCOT, each simulated tsunami waveform is corrected with a frequency-

dependent shift in arrival times calculated along ray paths (near-field stations) or

great-circle paths (far-field stations), following the method in Jiang and Simons

[2016].

Text S2. Observation measurement uncertainties.

The observed uncertainties are represented by the matrix Cd. In the case of GPS

data, we used the associated standard errors and incorporate them in Cd. For the

InSAR images, we use a two steps approach to calculate the corresponding Cd.

First, we compute residuals from a preliminary slip inversion, and from them, we

compute an empirical covariance function as a function of the distance between

observation points. Secondly, we estimate the best-fit exponential function of the

covariance to build the full data covariance Jolivet et al. [2012]. Given the correlation

between InSAR images pixels, The obtained exponential function is:

C(i, j) = �2e�
||i,j||2

λ , (B.1)

where � and � are 0.00605 m 7.75 km respectively.

For the kinematic data, we compute the observational uncertainty in two steps.

First, we use an a priori solution to compute synthetic waveforms and we obtain
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the residual between synthetic and observed data. Then, based on residual length,

we calculate an exponential correlation function with a length of 10% and 6% for

HRGPS and strong motion data respectively. From this exponential correlation

function, we compute the 20% of relative error and we add it to the standard er-

rors calculated from the waveform.

Data Set S1.

Movie S1.

Audio S1.
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Figure B.1: Comparison between displacements corrected from ground motion
records and HRGPS displacements. Red and black waveforms represent HRGPS
and strong motion respectively. On the maps, the blue star represents the CSN
hypocenter while circles indicate station location (orange for the strong motion sta-
tion depicted, yellow for the ensemble of strong motion stations, and purple for
HRGPS stations). Variation in waveforms is mostly due to differences in colocation.
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Figure B.2: Difference between final empirical covariance matrix and intermediate
covariance matrix calculated using a number of samples.
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Figure B.3: Covariance matrix comparison for HRGPS records (a) and Strong Mo-
tion stations (b) at hypocenter distances greater < 200 km. The green line repre-
sents the diagonal of the empirical covariance matrix (i.e., the matrix created from
an ensemble of models). The red and blue line represents the diagonal of the matrix
calculated using the 1st and 2nd order approximation approach.
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Figure B.4: A priori probability density function (PDF) distributions. A priori PDFs
are shown for the inverted parameters. We include nuisance parameters to include
a linear ramp to account for InSAR orbital errors and translation parameters for each
GPS data set.
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Figure B.5: Sensitivity for each data set. The sensitivity is shown for (a) GPS, (b)
InSAR, (c) Tsunami and dart data, (d) tsunami, InSAR, GPS and tide-gauges, (e)
High rate GPS and strong motion, and (f) The ensemble of data sets.
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Figure B.6: Posterior mean distributions for the dip slip parameters. The colors
represent the empirical Cp matrix (green), the first order approximation matrix (red),
and the second order approximation matrix (blue). The strength of the colors are
proportional to the magnitude of the slip.
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(a) Rupture Times (b) Moment Rate functions

(c) Centroid times (d) Slip Uncertainty

Figure B.7: Impact of using an empirical covariance matrix Cp in slip inversion.
(a) Posterior mean coseismic slip model, arrows represent the slip directions and
the ellipses its corresponding uncertainty. Contours show stochastic rupture fronts
samples from the a posteriori distribution. (b) Stochastic moment rate functions.
(c) Posterior mean coseismic slip model with contours that represent stochastic
centroid time fronts samples from the a posteriori distribution. (d) Uncertainty of
the ensemble of coseismic slip models. The red star in the figures represents the
inverted hypocenter location.
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(a) Rupture Times (b) Moment Rate functions

(c) Centroid times (d) Slip Uncertainty

Figure B.8: Impact of using a 1st order approximation Cp in slip inversion. (a) Poste-
rior mean coseismic slip model, arrows represent the slip directions and the ellipses
its corresponding uncertainty. Contours show stochastic rupture fronts samples
from the a posteriori distribution. (b) Stochastic moment rate functions. (c) Pos-
terior mean coseismic slip model with contours that represent stochastic centroid
time fronts samples from the a posteriori distribution. (d) Uncertainty of the ensem-
ble of coseismic slip models. The red star in the figures represents the inverted
hypocenter location.
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Figure B.9: Comparison between rupture and rise times for the patch with maximum
slip.
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Figure B.10: Examples of comparisons between data (black) and stochastic predic-
tions (red) for HRGPS and Strong Motion stations using a 2nd order approximation
Cp. On the maps, the blue star represents the hypocenter while circles indicate
station location (orange for the station depicted and yellow for the other stations).
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List of Figures

1 The 2017 Valparaiso earthquake sequence. (a) Earthquake loca-

tions including foreshocks (blue circles), mainshock (green star), and

aftershocks (white circles). The red colormap indicates the preslip

distribution resulting from the inversion of GPS data. The black ar-

rows show the cumulative observed GPS surface displacements (up

to one hour before the mainshock). Orange dots indicate the seis-

micity distribution from 2017/01/01 until 2017/10/05 according to the

microseismicity catalog obtained by S. Ruiz et al. (2017). (b) GPS

Time-series in the vicinity of Valparaíso. The vertical red dashed line

indicates approximate onset of the transient displacement visible on

the timeseries. The cumulative number of earthquakes from S. Ruiz

et al. (2017) is shown at the bottom of the figure. The purple star

represents the largest MW = 6.0 foreshock. . . . . . . . . . . . . . . 4

2 CMT solutions of the 2017 Valparaíso earthquake sequence and cu-

mulative moment (a) CMT solutions of the 2017 Valparaíso earth-

quake sequence. Focal mechanisms are contoured in blue and black

for foreshocks and aftershocks respectively. The size of beach balls

scales with the moment magnitude. Color of the compressive quad-

rants represents the event depth. (b) Cumulative scalar seismic mo-

ment of the 2017 Valparaíso sequence. The mainshock scalar mo-

ment is not included in this figure. The red dashed line outlines the

approximate onset of transient displacements visible on GPS time-

series. The green line indicates the origin time. . . . . . . . . . . . . 5
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3 Slip during the Valparaíso foreshock sequence. a) Time series of

GNSS data (blue) and stochastic foreshock-induced co-seismic dis-

placement (gray). Red dots represent the average of stochastic co-

seismic offsets. Green cross corresponds to the total foreshock dis-

placement, including the contribution of earthquakes below the mag-

nitude of completeness. b) Distributions of observed pre-seismic dis-

placement and predicted cumulative co-seismic offsets caused by

foreshocks. Blue histograms represent observations assuming Gaus-

sian uncertainties from standard errors estimated at each station.

Red histograms correspond to the posterior distribution of cumulative

foreshock-induced co-seismic displacement. c) Percentage of aseis-

mic displacement for each station. d) Average postseismic signal

measured on stations TRPD, VALN, BN05 and QTAY. e) Slip inversion

of pre-seismic GPS data. f) Slip inversion of GPS data after remov-

ing foreshock-induced displacement. Black and blue arrows are ob-

served and predicted horizontal GPS displacements along with their

ellipses (representing observational and prediction uncertainties, re-

spectively). Colored circles are observed (outer circles) and predicted

(inner circles) vertical displacements from GPS. . . . . . . . . . . . . 7

4 Covariance matrix comparison for HRGPS records (a) and Strong

Motion stations (b). The green line represents the diagonal of the

empirical covariance matrix (i.e., the matrix created from an ensem-

ble of models). The red and blue line represents the diagonal of the

matrix calculated using the 1st and 2nd order approximation approach. 9

5 Comparison of co-seismic slip distributions obtained using different

prediction error covariances Cp. Red colors are the final slip distri-

butions. Arrows represent the slip directions with their corresponding

uncertainty. The red star is the inverted hypocenter location (empiri-

cal, 1st, and 2nd order approximation, respectively). The blue star is

the CSN hypocenter, and the green star is the USGS hypocenter. . . 10

6 Impact of using a 2nd order approximation Cp in slip inversion. (a)

Posterior mean coseismic slip model, arrows represent the slip direc-

tions and the ellipses its corresponding uncertainty. Contours show

stochastic rupture fronts samples from the a posteriori distribution.

(b) Stochastic moment rate functions. (c) Posterior mean coseismic

slip model with contours that represent stochastic centroid time fronts

samples from the a posteriori distribution. (d) Uncertainty of the en-

semble of coseismic slip models. The red star in the figures repre-

sents the inverted hypocenter location. . . . . . . . . . . . . . . . . . 11
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7 Average breakdown energies (a) and average breakdown work (b)

for the 2015 MW = 8.3 Illapel earthquake and the 2014 MW = 8.1

Iquique earthquake. For the breakdown energy, purple and red dots

represent the average breakdown energies calculated in this study.

For the breakdown work, green and red dots represent the average

breakdown work calculated in this study. Cyan and purple dots rep-

resent the average breakdown work weighted by the corresponding

slip. Blue dots represent the breakdown energies and breakdown

work calculated by Tinti et al. [2005a] respectively. The dashed green

line represents the scaling relationship from the same study while the

dashed black line represents the scaling relationship is from Causse

et al. [2014]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 La séquence du séisme de Valparaiso de 2017. (a) Localisations

des séismes, y compris les pré-chocs (cercles bleus), le choc princi-

pal (étoile verte) et les répliques (cercles blancs). La carte de couleur

rouge indique la distribution de glissement présismique résultant de

l’inversion des données GPS. Les flèches noires montrent les dé-

placements GPS observés cumulés (jusqu’à une heure avant le choc

principal). Les points orange indiquent la distribution de la sismicité

du 2017/01/01 au 2017/10/05 selon le catalogue de microsismicité

obtenu par S. Ruiz et al. (2017). (b) Séries temporelles GPS dans

les environs de Valparaíso. La ligne verticale en pointillés rouges in-

dique le début approximatif du déplacement transitoire visible sur la

série temporelle. Le nombre cumulé de séismes de S. Ruiz et al.

(2017) est indiqué en bas de la figure. L’étoile violette représente le

plus grand pré-choc MW = 6.0. . . . . . . . . . . . . . . . . . . . . . 16

9 Solutions CMT de la séquence du séisme de Valparaíso de 2017 et

moment cumulé. (a) Solutions CMT de la séquence du séisme de

Valparaíso de 2017. Les mécanismes aux foyers sont délimités en

bleu et en noir pour les pré-chocs et les répliques respectivement.

La taille de chaque mécanisme est proportionnelle à la magnitude du

moment. La couleur des mécanismes représente la profondeur de

l’événement. (b) Moment sismique scalaire cumulé de la séquence

Valparaíso 2017. Le moment scalaire du choc principal n’est pas in-

clus dans cette figure. La ligne pointillée rouge souligne le début ap-

proximatif des déplacements transitoires visibles sur les séries tem-

porelles GPS. La ligne verte indique l’heure d’origine. . . . . . . . . 17
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10 Glissement pendant la séquence de séismes pré-chocs de Valparaíso.

a) Séries temporelle des données GNSS (bleu) et déplacement co-

sismique stochastique induit par le pré-choc MW = 6.0 (gris). Les

points rouges représentent les déplacements moyens cosismiques

stochastiques. La croix verte correspond au déplacement présis-

mique total, y compris la contribution des séismes inférieurs à la

magnitude de complétude. b) Distributions des déplacements pre-

sismiques observés (blue) et des déplacements cosismiques cumulés

générés pour les séismes pré-chocs (rouge) une heure avant le choc

principal. Pour les observations, on suppose des incertitudes gaussi-

ennes à partir des erreurs standard estimées à chaque station. c) Pour-

centage de déplacement asismique pour chaque station. d) Signal

post-sismique moyen mesuré sur les stations TRPD, VALN, BN05 et

QTAY. e) Inversion de glissement des données GPS présismiques.

f) Inversion de glissement des données GPS sans la contribution des

séismes pré-chocs. Les flèches noires et bleues représentent les

déplacements GPS horizontaux observés et prédits, ainsi que leurs

ellipses 1-� (représentant les incertitudes respectives). Les cercles

colorés représentent les déplacements verticaux observés (cercles

extérieurs) et prédits (cercles intérieurs) à partir du GPS. . . . . . . 19

11 Comparaison des matrices de covariance pour les signaux HRGPS

(a) et les stations Strong Motion (b). La ligne verte représente la diag-

onale de la matrice de covariance empirique (c’est-à-dire la matrice

créée à partir d’un ensemble de modèles). La ligne rouge et bleue

représente la diagonale de la matrice calculée en utilisant l’approche

d’approximation de 1er et 2ème ordre, respectivement. . . . . . . . . 21

12 Comparaison des distributions de glissement cosismique obtenues

en utilisant différentes matrices de covariance d’erreur de prédiction

Cp. Les couleurs rouges représentent les distributions de glissement

finales. Les flèches représentent les directions de glissement avec

leur incertitude correspondante. L’étoile rouge représente la localisa-

tion de l’hypocentre inversé. L’étoile bleue est l’hypocentre du CSN,

et l’étoile verte est l’hypocentre de l’USGS. . . . . . . . . . . . . . . 22
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13 Impact de l’utilisation d’une approximation de 2ème ordre Cp dans

l’inversion du glissement. (a) Modèle moyen a posteriori du glisse-

ment cosismique, les flèches représentent les directions de glisse-

ment et les ellipses l’incertitude correspondante. Les contours mon-

trent les fronts de rupture stochastiques échantillonnés à partir de la

distribution a posteriori. (b) Fonctions de taux de moment stochas-

tique. (c) Modèle moyen a posteriori du glissement cosismique avec

des contours qui représentent des échantillons de fronts de temps

centroïdes stochastiques échantillonés de la distribution a posteri-

ori. (d) Incertitude de l’ensemble des modèles de glissement cosis-

mique. L’étoile rouge dans les figures représente la localisation de

l’hypocentre inversé. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

14 Energies moyennes de rupture (a) et travail moyen de rupture (b)

pour le séisme de 2015 MW = 8.3 Illapel et le séisme de 2014 MW =

8.1 Iquique. Pour l’énergie de rupture, les points violets et rouges

représentent les énergies de rupture moyennes calculées dans cette

étude. Pour le travail de rupture, les points verts et rouges représen-

tent le travail de rupture moyen calculé dans cette étude. Les points

cyan et violet représentent le travail de rupture moyen pondéré par

le glissement correspondant. Les points bleus représentent les éner-

gies de rupture et le travail de rupture calculés par Tinti et al. [2005a]

respectivement. La ligne verte en pointillé représente la relation d’échelle

de la même étude tandis que la ligne noire en pointillé représente la

relation d’échelle de Causse et al. [2014]. . . . . . . . . . . . . . . . 25

15 Example of Elastic Rebound theory for the San Andreas fault. In a

first stage, stress is accumulated on the fault as a consequence of

plates interaction. Then energy will be accumulated until reaching

the yield stress. Finally, the fault will liberate this energy. Figure from

USGS website https://earthquake.usgs.gov/. . . . . . . . . . . . 2

16 Simple models of recurring earthquakes parameterized by a yield

stress level �2 (related to the static friction on the fault) and a post

earthquake stress level �1 (related to the dynamic friction on the

fault). This diagram is based on [Shimazaki and Nakata, 1980]. Fig-

ure from Shearer [2019]. . . . . . . . . . . . . . . . . . . . . . . . . . 3
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17 Schematic characterization of the megathrust frictional environment.

Domain description is as follows: A: near-trench domain where tsunami

earthquakes or anelastic deformation and stable sliding occur; B:

central megathrust domain where large slip occurs with minor short-

period seismic radiation; C: down-dip domain where moderate slip

occurs with significant coherent short-period seismic radiation; and

D: transitional domain, only present in some areas, typically with a

young subducting plate, where SSEs, LFEs and tectonic tremors oc-

cur. Regions of unstable frictional sliding are red regions labeled

“seismic”. Regions of aseismic stable or episodic sliding are white

regions labeled “aseismic”. Orange areas are conditional stability

[Scholz, 1998] regions, which displace aseismically except when ac-

celerated by failure of adjacent seismic patches. Figure from Lay

[2015]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

18 Selected finite-source rupture models for the 1999 MW = 7.6 Izmit

earthquake (Turkey), obtained using different inversion strategies and

different datasets. Black stars mark the hypocenter. Colors indicate
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Résumé

L’objectif général de cette thèse est de mener une étude approfondie de la source, couvrant 
différents aspects de la caractérisation des séismes. Premièrement, je me suis focalisé sur la phase 
d'initiation des tremblements de terre. Spécifiquement, j’ai analysé la phase d’initiation du séisme de 
Valparaiso en 2017 (magnitude Mw=6.9). Ce séisme est un cas d’étude intéressant car il a été 
précédé par un déplacement transitoire accompagnée par de nombreux séismes pré-chocs. Nous 
montrons que ce séisme a vraisemblablement été précédé par un glissement asismique sur la faille. 
Dans une deuxième partie de ma thèse, je me suis intéressé à la caractérisation détaillée de la 
distribution de glissement co-sismique associée aux grands séismes. En particulier, j’examine le 
séisme d’Illapel en 2014 (Mw=8.3). La caractérisation cinématique de la source de ce séisme est 
donc effectuée via une approche d’échantillonnage bayésien qui s’est avérée utile pour caractériser 
l’incertitude a posteriori. Nos modèles cinématiques indiquent une forte complexité dans le 
processus de rupture, associé à des "encerclements d’aspérités" qui ont été précédemment été 
suggérées par des études précédents.

Mots-clés: Phase d’initiation, séisme de Valparaiso, séisme d’Illapel, inversion cinématique

Résumé en anglais

The general objective of this thesis is to conduct a thorough source study covering different aspects 
of earthquake characterization. First, I focused on the initiation phase of earthquakes. Specifically, I 
analyzed the initiation phase of the 2017 Valparaiso earthquake (magnitude Mw=6.9). This 
earthquake is an interesting case study because it was preceded by a transient displacement 
accompanied by many pre-shock earthquakes. We show that this earthquake was probably 
preceded by an asismic slip on the fault. In a second part of my thesis, I am interested in the detailed 
characterization of the co-seismic slip distribution associated with large earthquakes. In particular, I 
examine the 2014 Illapel earthquake (Mw=8.3). The kinematic characterization of the source of this 
earthquake is therefore performed via a Bayesian sampling approach, which has proven useful in 
characterizing the a posteriori uncertainty. Our kinematic models indicate a high complexity in the 
rupture process, associated with "encircling asperities" that have been previously suggested by 
previous studies.

Keywords: Initiation phase, Valparaiso earthquake, Illapel earthquake, kinematic inversion
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