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"Une dictature c’est quand les gens sont communistes, déjà. Qu’ils ont froid, avec

des chapeaux gris et des chaussures à fermeture éclair."
.

- OSS117

"All models are wrong, but some are useful."
.

- George E. P. Box





Abstract

Our society relies on a wide range of facilities, which provide goods and services. They carry significant amounts of

embedded materials, and their intensity and complexity has been increasing over the years. The metals and miner-

als demand has been widely assessed within the industrial ecology field, and conceptual and transdisciplinary ap-

proaches of materials have emerged from the rise of material use (e.g. the nexus behavior of resources and the social

metabolism). They aim at deepening the understanding of the interactions between nature and society, as well as

within our society. The ongoing energy transition has a significant material challenge in this transdisciplinary re-

search field. It carries changes for all sectors, and a potential shift from an energy materials dependency to a minerals

and metals dependency. The material basis of our society is addressed in a growing number of studies. A critical litera-

ture review allows to identify the main insights and gaps in a panel of publications displaying material flow analysis of

base materials between 2000 and 2021. This work aims at providing further insights on four specific gaps: (1) a lack of

prospective studies in a low-carbon context, (2) a lack of analysis of the energy-material nexus, (3) a lack of modeling

of some sectors and (4) a limited number of solution-oriented and political-oriented studies. This thesis is included

in a larger project of multi-sector material modeling: the Dynamic Modeling of Energy, Materials Demand and Supply

(DyMEMDS) model.

In a first published article, Olivier Vidal, Cyril François and myself show that the pace of the development and the

short lifetimes of renewable technologies creates a substantial increase of the materials demand. It would likely rely

on primary materials, as the recycling potential remains limited. In a second article, (Le Boulzec et al., submitted),

we conduct the first dynamic modeling of the fossil fuels supply chain and estimate the material requirements and

associated energy demand and CO2 emissions from 1950 to 2050 in two transition and baseline scenarios. We find

that gas is the main driver of material demand and that recycled steel from decommissioned fossil fuel infrastructures

could meet the cumulative need of future low-carbon technologies in some scenarios. Ambitious decommissioning

strategies are necessary, in parallel to building the infrastructure of renewable technologies. In a third article, (Le

Boulzec et al., submitted) we present the results of a dynamic and multi-regional modeling of the building sector from

1950 to 2100 in seven transition and baseline scenarios. The originality of this work relies on both the estimation of

the material weight of thermal renovation, and the analysis of the potential of material engineering to reduce energy

demand and environmental impact. We show that thermal renovation would represent a small share of the overall

increase of material demand, and the energy to produce renovation materials would amount to about 1% of the en-

ergy savings. The energy consumption of base material demand could questions the feasibility of some low-energy

demand scenario, but enhanced recycling of concrete wastes and low carbon materials could provide solutions.

The three sector studies highlight the significant increase of material demand in the building and energy sectors due

to the combination of the low-carbon transition and potentially surging population and GDP per capita. It could

translate into growing energy demand and environmental impact of material production. This thesis outlines the role

of (1) collect and recycling and (2) low-carbon materials to improve the sustainability of material use. However, local

and ambitious policies are urgently required to successfully implement the solutions.

.
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Résumé

Notre société repose sur un large éventail d’installations fournissant des biens et des services. Elles sont composées

d’importantes quantités de matériaux, utilisés avec une intensité et une complexité croissantes. La demande en mé-

taux et minéraux de notre société est étudiée dans le domaine de l’écologie industrielle, au sein duquel de nouvelles

approches ont émergé, tels que le nexus des ressources et le métabolisme social. La transition énergétique actuelle

représente un défi important au sein de ce champ de recherche. Synonyme de changements sectoriels, elle pour-

rait se traduire par le passage d’une dépendance aux matériaux énergétiques à celle aux minéraux et aux métaux. La

dépendance en matériaux de notre société est abordée dans un nombre croissant d’études. Une revue de la littérature

a permis d’identifier les principaux enseignements et lacunes dans une sélection d’études publiées entre 2000 et 2021.

Cette thèse propose une approche s’inscrivant dans quatre lacunes identifiées: (1) le manque d’études prospectives

dans un contexte de transition bas carbone, (2) le manque d’analyse du lien entre énergie et matériaux, (3) le manque

de modélisation de certains secteurs et (4) le nombre limité d’études proposant des solutions afin de diminuer les

impacts des matériaux. Ce travail s’inscrit dans un projet plus large de modélisation multisectorielle des matériaux :

le modèle DyMEMDS (Dynamic Modeling of Energy, Materials Demand and Supply).

Dans un premier article publié, nous montrons que le rythme de développement et la faible durée de vie des tech-

nologies renouvelables entraînent une augmentation substantielle de la demande en matériaux. Celle-ci reposerait

sur des matériaux primaires, le potentiel de recyclage restant limité. Dans un second article soumis, nous réalisons

la première modélisation dynamique de la chaîne d’approvisionnement en combustibles fossiles. Nous estimons

les besoins en matériaux ainsi que la demande énergétique et les émissions de CO2 associées à leur production de

1950 à 2050 dans deux scénarios. Nous constatons que le gaz est le principal moteur de la demande de matériaux

et que l’acier recyclé provenant des infrastructures de combustibles fossiles démantelées pourrait répondre aux be-

soins cumulés des futures technologies de production d’énergie renouvelable dans certains scénarios. Pour cela, des

stratégies ambitieuses de démantèlement sont nécessaires. Dans un troisième article soumis, nous présentons les ré-

sultats d’une modélisation dynamique et multirégionale du secteur du bâtiment de 1950 à 2100 dans sept scénarios.

L’originalité de ce travail repose à la fois sur l’estimation de la demande en matériaux dans la rénovation thermique,

et sur l’analyse du potentiel des matériaux bas-carbone pour réduire la demande énergétique et l’impact environ-

nemental. Nous montrons que la rénovation thermique représenterait une faible part de la croissance de la demande

en matériaux, et que l’énergie nécessaire à la production des matériaux de rénovation s’élèverait à environ 1% des

économies d’énergie. La consommation d’énergie de la demande de matériaux pourrait remettre en question la fais-

abilité de certains scénarios, mais le recyclage des déchets de béton et des matériaux bas-carbone pourrait apporter

des solutions.

Les trois études sectorielles mettent en évidence l’augmentation significative de la demande en matériaux dans les

secteurs du bâtiment et de l’énergie en raison de la combinaison de la transition bas-carbone et de la croissance de la

population et du PIB par habitant. Cela pourrait se traduire par une augmentation de la demande énergétique et de

l’impact environnemental de la production de matériaux. Cette thèse souligne le rôle (1) de la collecte et du recyclage

et (2) des matériaux bas-carbone pour améliorer la durabilité de l’utilisation des matériaux. Cependant, des politiques

locales et ambitieuses sont nécessaires de toute urgence pour mettre en œuvre ces solutions avec succès.

.
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Chapter 1

Introduction

1.1 A new era: the Anthropocene

1.1.1 Definition and the Great Acceleration

In the second half of the 19th century, Marsh (1864) proposed the first extensive description of a man-made earth

through his own observations. George P. Marsh eventually emphasized the need to acknowledge human effects, de-

spite the incapability of assessing the short to long-term impacts of human development on nature and of explaining

the origin of the Earth systems changes. Since then, the exponential development of human demography, activities

and their growing effects on Earth led Crutzen and Stoermer (2000) to theoretically define a new concept. Meaning

"the age of humans", the Anthropocene marks the extensive and profound footprint of humanity on Earth systems,

and was initially set to have begun in the late 18th century. However, the definition of a new Epoch requires criteria

to be met and several starting dates could be considered (Lewis and Maslin, 2015). Under the guidance of the Inter-

national Commission on Stratigraphy, the Anthropocene Working Group (AWG) was created to assess the "potential

addition [of Anthropocene] to the Geological Time Scale". In 2019, the AWG finally recommended the consideration

of the Anthropocene as a new geologic area starting in the mid-20th century (Subcommission on Quaternary Stratig-

raphy, 2019). As a symbol of this new Epoch, Steffen et al. (2007) described the undergoing rise of human activities

as the "Great Acceleration". The authors further proposed 24 graphs of Earth systems and socioeconomic indicators

evolution, recently updated in Steffen et al. (2015a) (Figure 1.1). While most of the socioeconomic indicators have

experienced a similar rise in the last decade than in the previous period, some recent changes can be observed in the

Earth system trends. The authors, however, outlined that this could be explained by different reasons, and that obser-

vations over a decade are too short to be extrapolated as long-term trends. For example, the stabilization of methane

emissions shows a balance between absorption and emissions, while the marine fish capture decrease could indicate

a rise in aquaculture, since fish consumption rose during the period.
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(a) Earth system trends (b) Socioeconomic trends

Figure 1.1: Great Acceleration graphs. Source: Steffen et al. (2015a)

1.1.2 Planetary boundaries and climate change impacts

The significant increase of the Earth system and socioeconomic indicators points out the need to estimate the limits

to the impacts of human activity for a sustainable development. Steffen et al. (2015b) defined planetary boundaries

for Earth-system processes, relying on control variables values1. The authors considered nine processes and assessed

their current levels of risk. Out of seven control variables currently assessed, Sterner et al. (2019) found out that four

of them may have already exceeded the authors-defined thresholds (Figure 1.2), which could represent a risk of desta-

bilization of the Earth System2. The authors emphasized the complexities of response to those risks, the potential

domino effect, and the urging need to design interdisciplinary and multi-variables policies by an extensive collabora-

tion between the academic and the political communities.

Among environmental issues, climate change (CC) has received considerable attention in recent decades. Climate

issues are devastating, cross-cutting to all environmental issues and can generate side benefits on biodiversity, health,

etc. Their analysis was undertaken by the academic literature, which led to the creation of the Intergovernmental

Panel on Climate Change (IPCC) more than 30 years ago. Following its creation in 1988, the IPCC published its first

Assessment Report (AR) in 1990. It indicated an enhancement of the greenhouse effect due to increasing emissions of

greenhouse gases (GHG) in human activities, which will induce a rise of the global average temperature. However, the

IPCC (1990) stated that uncertainties and natural climate variability could hamper the results, and that "a decade or

more" is needed to unequivocally assess the greenhouse effect. The climate change analysis have since become a ma-

jor research field, with a doubling of the number of publications every 5-6 years between 1980 and 2014 (Haunschild

et al., 2016). The improvements of climate models, methods and data analyses since the AR1 have allowed for an

improvement in the variety of results and their reliability. In the last assessment report (AR6), IPCC (2021a) reported

that "observed increases in well-mixed greenhouse gas (GHG) concentrations since around 1750 are unequivocally

caused by human activities". The authors further estimated the likeliness3 of human responsibility in the observed

higher precipitation over land, retreat of glaciers, warming and acidification of the upper ocean, sea level rise and

1After evaluating national planetary boundaries, O’Neill et al. (2018) estimated that "no country meets basic needs for its citizens at a glob-
ally sustainable level of resource use". The authors showed that the basic physical needs could be fulfilled, but that meeting further qualitative
objectives would require crossing planetary boundaries by several times.

2For further readings, an historical review of the conceptual development of the Anthropocene, Great Acceleration and planetary boundaries is
offered in Steffen et al. (2011).

3The likeliness is expressed on a scale ranging from exceptionally unlikely (0%-1%) to virtually certain (99%-100%).
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changes in the land biosphere. The current climate mitigation policies4 would lead to an estimated average global

warming of 2.8°C (UNEP, 2021) by 2100 with a 66% probability.

Figure 1.2: Control variables, their current levels of risk and the policies to be implemented. The upper dashed blue
line describes a future with risk of control variables and resulting changing Earth conditions while the lower blue
dashed line displays a stabilized Earth system. BII, Biodiversity Intactness Index; E/MSY, extinctions per million
species per year; P, phosphorus cycle; N, nitrogen cycle; SES, social–ecological systems. Source: Sterner et al. (2019).

The effects of climate change are manifold and display various levels of likeliness. IPCC (2018) described the cli-

mate change impacts on three categories of systems: physical systems, biological systems and human and managed

systems. The authors pointed out major climate change related impacts in all categories and all global regions with

mostly medium to high level of confidence (Figure 1.3). They emphasized the challenge of quantifying the effects of

human systems (e.g. health problem attributed to climate change), and their high and uneven vulnerability explained

by development inequalities. The increasing collection of data and performance of instrumentation provides deeper

understanding on the effects of climate change. While the IPCC assessment reports focus on continents, oceans and

the troposphere, recent reports displayed new impacts. For instance, Bailey et al. (2021) showed effects on a mid-

dle atmosphere layer: the mesosphere. The authors observed a cooling and a contracting of the mesosphere, which

results in a shrinking of the atmosphere5.

4After the 2030 pledges formulated at the COP26 in Glasgow.
5Some effects of this contracting on aerospace technologies are expected, such as a reduction of interferences in satellite communication and

"more space junk in low-Earth orbit".
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Figure 1.3: Observed regional impacts of climate change in the AR5. Source: IPCC (2018).

1.1.3 Towards catastrophic changes?

The climate change conundrum has progressively outlined the deep interactions between systems and the need to

conduct environmental analysis from an "interacting spheres and cycles" perspective (Summerhayes and Zalasiewicz,

2018). The complexity of the nexus approach is further enhanced by the inertial dimension of climate change. A

physical delay exists between the GHG emissions and the impacts, and the currently observed effects (heat waves,

wildfire...) result of past emissions. The updated future risks have been assessed in IPCC (2021a), and an interactive

map displaying regional environmental variables was provided IPCC (2021b). The authors identified five main cat-

egories of risks: unique and threatened systems, extreme weather events, distribution of impacts, global aggregate

impacts and large-scale singular events. They further emphasized the disproportionate increase of effects as warm-

ing rises. Thus, the AR6 depicts higher impacts at every scales (global, regional, sector...) with uneven distribution in

space and in time, and potential irreversible changes. The concept of tipping point emerged to describe these latter

large changes and the potential resulting domino effect. Lenton (2011) defined tipping points as a threshold occurring

when "a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate

system, qualitatively changing its future state". The probability of their occurrence has been debated in the literature,

as well as the triggering temperature (Lenton et al., 2019). However, the IPCC has been increasing the level of risk of

abrupt and irreversible events for low average global warming over time (Figure 1.4) and IPCC (2021a) recently stated

that "abrupt responses and tipping points [...] cannot be ruled out (high confidence)". The increasing probability

of extreme events has been increasing over time has led the research community to develop the terms "catastrophic

climate change" (CCC) and "climate emergency" (CE) to appropriately describe the coming effects of climate change

(Moriarty and Honnery, 2021).
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Figure 1.4: Level of risk of abrupt and irreversible changes with average global warming. Source: Lenton et al. (2019)

The tipping points are defined as thresholds for Earth subsystems referred to as tipping elements (Lenton et al., 2008).

The authors initially identified 9 tipping elements (the updated list is displayed on Figure 1.5), their main charac-

teristics and finally assessed of their impact depending on their likelihood (Lenton, 2011). They emphasized their

identification could lead to mitigation strategies, but that the intrinsic inertia of some systems could hamper their

effectiveness. However, Lenton et al. (2019) prompted for a better assessment of crossed tipping points impacts, as

"global cascade" could occur though systems interactions or feedbacks (Figure 1.5). The recent MOSAIC expedition

leader Markus Rex reported concerning results on possible Arctic "ice-free summers in just decades", which could be

one of the first triggered tipping points, and stated that "one can essentially ask if we haven’t already stepped on this

mine and already set off the beginning of the explosion"6. The literature on the potential implications of triggering

tipping points has flourished over the past years, for instance estimating the social cost of deforestation (Franklin and

Pindyck, 2018) or their economic impacts (Dietz et al., 2021)7.

6The MOSAIC expedition was a full-year scientific mission in the Arctic Ocean to deepen our understanding on climate change. The main
observation were detailed by Markus Rex during a press conference.

7The authors conducted a review on 52 publications tackling the economic impacts of tipping point and developed a meta-analytic integrated
assessment model. They demonstrated potential economic risk in almost all areas.
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Figure 1.5: Identified tipping elements, and assessment of their relative impact depending on their relative likelihood.
Source: Lenton et al. (2019)

1.2 The cause: human development

1.2.1 Link between impacts and resources

The resources consumption is the major source of GHG emissions. Oil, gas and coal have represented most of the CO2

emissions for a few centuries. Their share have significantly evolved, as coal dominated the early energy mix, while the

oil and gas demand increased from the mid-20th (Figure 1.6). An exponential growth in materials production has been

observed from the mid-20th century (Figure 1.7), with substantial environmental impacts (Figure 1.8). These impacts

have been studied from the late 1960s (Fischer-Kowalski and Hüttler, 1998), and the effects of metal ore mining and

processing were reviewed by Dudka and Adriano in 1997. The authors emphasized that actual extracted materials

quantities are significantly larger than the ore amounts, which induces a waste generation, while melting and refining

create gaseous and particulate matter emissions, sewage matter and solid wastes. Moreover, impacts can also be

accounted for after the end-of-life of the material-based products: during the recycling process or in landfills storage.

At the industrial level, materials production emitted 10 GtCO2 in 2005, and steel and cement represented about 16%

of the global CO2 emissions. The same levels was observed in 2016. The iron/steel and cement/concrete industries

represented both about 6% to 8% of the final energy demand and CO2 emissions (Andrew, 2017; Bataille, 2019).
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Figure 1.6: CO2 emissions by source. Source: Ritchie and Roser (2020)

Figure 1.7: Global resources production. Source: Worrell et al. (2016)

7



Figure 1.8: Global total and industrial CO2 emissions. Source: Worrell et al. (2016)

1.2.2 Link between resources and human development

The access to abundant and cheap energy has enable an industrial society to emerge, with an extensive reliance on

more complex technologies. Its combination with a soaring human demography and economic growth8 over the 20th

century has driven an exponential growth of resources use. Demand for materials has grown faster than population

growth. An evolution of the annual material demand per capita from 25 t/cap in 1970 to 37 t/cap in 2019 has been

observed 9. In contrast, per capita water use has remained stable, due to lower availability, which has led to an in-

crease in the share of the population experiencing water shortages (Kummu et al., 2016). Demography and economic

growth partially explain the increase in resources, and other factors such as industrialization and urbanization play an

important role. The growing organization of human society in the form of cities has created a new pattern of resource

consumption, which is studied in urban metabolism. It aims at analyzing the flows and stocks of resources and people

of a society on a territory (Galychyn et al., 2020). In contrast with agrarian metabolism, a higher density of flows, larger

stocks and a partial externalization of urban metabolism are observed. In Paris, France, the average supply distance

of food and energy significantly increased between the 20th and the 21st century (Billen et al., 2012; Barles, 2021)10. A

better knowledge of local metabolism characteristics would allow more accurate estimations of local resource use.

Despite the complexity of resources growth patterns, several theories emerged. They rely on analyses of the link

between resources use and GDP/capita. Bleischwitz and Nechifor (2016) proposed a short review of the resources

growth theories. The authors identified four phases in the literature:

• The emergence of resources growth theories in the 1950s.

• The Intensity-of-Use (IoU) hypothesis was developed in the late 20th century. Malenbaum (1973) identified a

potential inverted U-shaped form of demand with economic growth, which was ultimately validated for steel,

only in the middle-income countries (Wårell, 2014).

• A lack of interest for the topic in the 1980s and 1990s, as the materials prices were lowering and the globalization

was observed.

• The emergence of the decoupling debate in the context of environmental concerns.

Bleischwitz et al. (2018b) recently emphasized the need of a "greater demand on the underlying assumptions and the

8The GDP per capita (in $ppp 2011) increased from $9,677 per capita to more than $16,897 per capita between 1990 and 2019. The GDP per
capita data were retrieved from the World Bank database..

9The United Nations Environment Programme International Resource Panel Global Material Flows Database provides annual material data
between 1970 and 2019. The scope includes biomass, excavated earthen materials, fossil fuels, metal ores, mixed and complex products and non-
metallic minerals.

10Particular attention should also be paid to the effects of policies and changes in the energy mix on the average supply distance.
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possibility of long-term changes". The authors proposed a three-stage profile of the in-use stock per capita evolution.

At first, a growth stage occurs, during which the industrialization of a society leads to a rapid accumulation. This

stage explains the progressive shifting of materials demand towards emerging countries as they are building their

infrastructures (Pothen, 2017). Secondly, a maturing stage is reached when the stock growth slows down, before a

final saturation stage with a stabilization of the stock. The empirical data further suggested saturation values for steel

and cement at $12,000 GDP/capita and for copper at $20,000 GDP/capita (Bleischwitz et al., 2018b).

1.2.3 GDP: a very imperfect indicator

The International Monetary Fund defines Gross Domestic Product (GDP) as "the monetary value of final goods and

services - that is, those purchased by the end user - produced in a country over a given period of time (e.g., a quarter or

a year)11. The "basic" idea of GDP appeared in the 17th century, but it was not until the 1930s that the modern concept

as we know it today was developed with Simon Kuznets (Secretary of Commerce, 1934). Following the Bretton Woods

conference in 1944, GDP became the main tool for measuring the economic development of a country. Its adoption

on a global scale made it possible to compare economic growth between countries, and many derivatives were derived

from it, such as GDP per capita, often considered as an indicator of the standard of living. However, standard of living

is not synonymous with quality of life and well-being. There is a divide in this distinction that seems to be becoming

more and more pronounced, as already attested to in 1968 by Robert F. Kennedy’s remark in a speech at the University

of Kansas: "it [GDP] measures everything in short, except that which makes life worthwhile.”

This position is seen by some as the beginning of the "Beyond GDP" movement. The latter is defined by the European

Commission as the initiative that "aims to develop indicators that are as clear and attractive as GDP, but that take

greater account of the environmental and social aspects of progress". Although GDP remains the dominant tool for

measuring a country’s economic development and productivity, the search for more inclusive and comprehensive

indicators appeared from the 70s in France, Japan and the USA, in parallel of the critics to growth. They focused

on the opposition between this production indicator and the supposed measure of economic well-being, and the

exclusive process of addition to evaluate it (Méda, 2020). Meda (1999) later highlighted the need for the GDP index

to evolve from its exclusive quantitative to fit a changing worldview, and the "wealth" of our natural heritage and our

social cohesion. In the 2000s, the questioning of GDP gradually evolved from the academic spheres to the political

world (e.g. the Stiglitz-Sen-Fitoussi report commissioned by the French President (Stiglitz et al., 2009)).

GDP critics have focused on several aspects. First, from an economic and social perspective, a growing GDP in a

country does not necessarily reflect sustainable development or development without inequalities (Piketty and Gold-

hammer, 2014). Moreover, by definition, this indicator only integrates the monetary value of goods and services, and

not the informal economy, domestic labour and the externalities, which are defined as the positive and negative ef-

fects generated during their creation process12. Currently, a growing GDP generally translates into more goods and

services produced but at the expense of the environment (Kapoor and Debroy, 2019). The environmental impacts

of economic activity is neglected by GDP, while the expenses of restoration of natural environments or depollution

contribute to increase it.

Integrating the externalities into decision-making and measurement/study processes will help reconcile human and

economic development in more concrete and constructive ways. For example, the Genuine Progress Indicator (GPI) is

an alternative indicator that attempts to measure the real impacts of economic activity on the economic well-being of

populations (Kubiszewski et al., 2013). In this study, the authors reveal that, although differences can be observed for

each country, a generalized divergence appears between GDP and GPI after 1978. Indeed, if from 1950 to 1978 the two

indicators are clearly positively correlated, a reversal of trend occurs around 1978 at the global level, with a correlation

that becomes negative (GDP rising while the GPI stagnates and then falls)13. This reflects the rising environmental

11The IMF further describe the real GDP and its limitations.
12The total subsidies to fossil fuels were estimated to about $5.9 trillion in 2020, which represented about 6.8% of global GDP (Parry et al., 2021).

The authors outlined that only 8% of the subsidies are direct, i.e. for supply costs, and "92 percent for undercharging for environmental costs and
foregone consumption taxes".

13More indicators have been proposed over the years (Gadrey and Jany-Catrice, 2006; Smits and Steendijk, 2015)
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costs and social inequalities in most countries since that time, outweighing the economic benefits of GDP growth.

However, the GPI is not a perfect indicator, just as any indicator used individually. This is why many researchers agree

on the importance of a "dashboard" approach with the joint use of several indicators, such as Ecological Footprint,

Biocapacity, Human Development Index, Life Satisfaction, Gini coefficient, Social Progress Index, etc14.

This short review of the GDP-resources-impacts nexus introduces the current research field on the sustainability of

our human society. The assessment of environmental impacts and their mitigation could involve a wide range of

tools such as an overhaul of the energy system, geoengineering, a large scale development of carbon capture and

storage/use but also a change of the current growth model. In the next section, two of the main current topics on

sustainability are discussed: "our" relationship to growth and the feasability of the energy transition.

1.3 Are there any solutions? Questioning our relationship to growth and the

feasability of the energy transition.

1.3.1 The Limits to Growth

Despite the common belief in the benefits of economic growth (Thomas, 2000), numerical or modelling works have

highlighted the unsustainability of development methods based on the search for strong economic growth, and the

contradiction between continued economic growth and planetary limits15. In 1966, Kenneth Boulding described the

lack of understanding of the closed system concept of Earth by Economists, and its consequences for inputs and out-

puts (Boulding, 1966). In 1973, continuing this reasoning, he stated before the US Congress that "anyone who believes

exponential growth can go on forever in a finite world is either a madman or an economist." (Boulding, 1973). How-

ever, in a review of the contributions of economics to the effort to combat climate change, Criqui and Mathy (2022)

showed that economists have long identified the potential limits to to economic development imposed by natural

resources and environment. Economics has always been concerned with the relationship between human activities,

natural resources and the environment. Among the classical economists (F. Quesnay, A. Smith), natural resources

were seen as a source of wealth. At the beginning of the 19th century, the English classical economists (Smith, Ri-

cardo, Mills) nevertheless identified the problem of potential limits to human activities: man does not destroy nature;

nature imposes its own rhythm of exploitation and promises only a stationary state as a horizon. The neoclassicals

integrated the impact of human economic activities on exhaustible natural resources. Thus Arthur Pigou in 1920 in-

troduced the notion of negative environmental externality and the principle of environmental tax to achieve the social

optimum. At the beginning of the 20th century, economic science had fully integrated the issue of resource scarcity

and the ecological damage caused by capitalist development. But the solutions it proposed reinforced the existing

economic system more than they worried it...Aiming at better understanding the ultimate consequences of the bio-

physical limits to growth16, new approaches emerged, such as steady-state economics (Daly, 1973), early ecological

economics and the degrowth current (Georgescu-Roegen, 1971, 1979)17.

In an implicit coherence with econolical economics, the Club of Rome was created to "discuss the present and future

predicament of man" (Meadows et al., 1972). The emergence of systems dynamics allowed for the computation of a

global model–World3–analyzing human society development through five factors: population, agricultural produc-

tion, natural resources, industrial production, and pollution (Meadows et al., 1972). The results were published in the

Limits to Growth (LtG) report. Twelve scenarios were computed, describing several development profiles up to 2100.

After observing "overshoot and collapse" in most of them, the authors showed that the stabilization of both popu-

lation and industrial capital18 could prevent "overshoot and collapse", but that natural resources would be depleted,

14For instance (Laurent, 2020) and (Laurent, 2021) in the French literature.
15A detailed examination of the critics to growth is provided in Markantonatou (2016).
16Daly (1973) distinguished the moral and the biophysical critics to growth.
17Georgescu-Roegen was an initial member of the Club of Rome but finally became a critic as their vision of the possibility of sustainable growth

diverged.
18The authors identified two positive loops in the model, leading to population growth and capita growth. They stated that the loops were not

coherent with a limited resources world, and thus calibrated negative feedback loops (e.g death rate) to counteract the positive loops.
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except in case of favorable technological policies19. The study led to three main conclusions. Under unchanged trends

in the five considered factors, the World3 model forecasted that our society will experience the limits to growth within

a century [1]20. This result could however be prevented by the implementation of policies, which could lead to an

inclusive and sustainable equilibrium [2]. However, the authors emphasized that reaching this sustainable state will

strongly depend on the pace of the human reaction [3]. The LtG report triggered numerous reactions, summarized in

Bardi (2011) and Jackson and Webster (2016). The results were eventually confronted to recent empirical data (Turner,

2014; Herrington, 2021). In the most recent study, Herrington focused on four scenarios (Business-as-usual (BAU),

Business-as-usual 2 (BAU2), Comprehensive Technology (CT) and Stabilized World (SW)) and showed the best fit with

empirical data for BAU2 and CT, which indicates "a slowdown and eventual halt in growth within the next decade",

and the worst fit for the SW scenario, which results in a population and human welfare stabilization. As depicted in the

conclusion of the LtG report, Herrington finally concludes on the possibility to alter this trajectory and on the urgent

need for action (Herrington, 2021).

1.3.2 What evolution for the growth paradigm?

The strategy to reduce the depicted human impact on Earth systems requires to revisit our definition of prosperity

and its relationship with economic growth (Jackson, 2016). Infinite growth has been strived for decades and its rele-

vance in solving the current social and environmental crisis is advocated by the political world in the form of Green

Growth. It refers to the enhancement of economic growth while ensuring a better use of resources and a reduction of

the impacts of human activity (OECD, 2011), despite various definition displaying different levels of environmental

commitment (Hickel and Kallis, 2020). The concept was initially born under the Green Economy etiquette in the 1989

UK Government commissioned report "Blueprint for a Green Economy" (David W Pearce, 1989), a year before the first

occurrence of of the expression of green growth in a World Bank working paper (Colby, 1989). A decline of reference

to the green growth term was then observed after the Earth Summit of 1992, since the concept of Sustainable Devel-

opment21 became predominant in the sustainability debate (Brown et al., 2014). The concept was re-introduced after

the 2008 financial crisis, for its potential to revitalize the economy while coping with environmental issues (Georgeson

et al., 2017). Green economy and green growth progressively gained momentum as the United Nations Environment

Programme (UNEP) launched the Green Economy initiative in 2008, and the Organisation for Economic Co-operation

and Development (OECD) published the "Green Growth Strategy Package" (OECD 2011) defining green growth as

"fostering economic growth and development, while ensuring that natural assets continue to provide the resources

and environmental services on which our well-being relies". It relies on the concept of decoupling between economic

growth, resources use and impacts. This option requires rapid technological improvements to achieve an energy tran-

sition with for instance negative emissions technologies. Green growth is currently considered as the main option to

tackle the social and environmental conundrum, as shown in the 8t h Sustainable Development Goal of the United

Nations (United Nations, 2015).

However, there have been critics of an impossibility to achieve exponential growth with limited resources since the

1970s (Boulding, 1973; Meadows et al., 1972). Moreover, the GDP level has shown an absence of correlation with so-

cial welfare beyond some level (Hickel et al., 2021) and the green growth strategy requires an absolute decoupling

between economic growth, resource use and environmental impacts, which has rarely been observed over the past

decades (Parrique et al., 2019; Haberl et al., 2020). The decoupling options such as biofuels or carbon capture and stor-

age (CCS) have high uncertainties about their scalability, their impacts and their limited effect on emissions (Hickel

et al., 2021). The identification of these contradiction led the ecological economists to propose new options aside of

the decoupling approach. Several approaches have emerged over the past decades, providing new alternatives in the

debate on the future of human economic development and its sustainability. In the early 2000s, Latouche (2004) re-

19The authors emphasized that technology could be a solution but that "Faith in technology as the ultimate solution to all problems can thus
divert our attention from the most fundamental problem - the problem of growth in a finite system and prevent us from taking effective action to
solve it".

20The authors further stated that "the most probable result will be a rather sudden and uncontrollable decline in both population and industrial
capacity".

21Sustainable is defined as the "development that meets the needs of the present without compromising the ability of future generations to meet
their own needs" (World Commission on Environment and et al., 1987)
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introduced the degrowth alternative to the common growth model22. Acknowledging an "addiction to growth" in the

Western culture and its devastating effects on equality and sustainability, the author proposed the implementation of

degrowth to tackle the entropic nature of the current economic growth and to cope with the limited capacity of Earth

resources. He further insisted on the importance to envision this term within a "degrowth society" and its cultural

and socioeconomic specificities23, i.e. outside the scope of a growth-centered system in which degrowth would be

comparable to a destructive "negative growth". The notion was further developed in Latouche et al. (2009), with the

definition of a theoretical framework of 8 stages leading to degrowth through a virtuous circle24, and a preliminary

political program with an emphasis on job and work hours. The author however outlined the difficult uniform imple-

mentation of the notion at a global scale - considering the heterogeneity of development and cultures - and the need

to assess its potential at every levels. The sustainable coherence of degrowth was further defended in Martínez-Alier

(2009) and Martínez-Alier et al. (2010) with the introduction of the sustainable degrowth concept, and in Kallis (2011),

who defined degrowth as the "socially sustainable and equitable reduction of society’s throughput"25. Some critics

however emerged from the manichean aspect of degrowth, which fully reject the concept of growth. van den Bergh

(2011) emphasized the absurdity of the growth quest and the uselessness of the GDP indicator in measuring social

welfare, but acknowledged that growth can have positive effects in some development context. The author therefore

proposed the a-growth notion, which is indifferent to GDP growth, and focuses on social and environmental poli-

cies whatever their impacts on growth. The sectoral desaggregation of a-growth can result in degrowth, but van den

Bergh outlined it would become a mean, and not an objective26. A third alternative option considers the post-growth

approach. It acknowledges that economic growth has had positive effects on the development of human societies,

but that new paradigms are required to achieve further social and environmental goals (Jackson, 2016). Moreover,

post-growth policies are differentiated between countries, because the development without growth is "desirable" for

various reasons (Jackson, 2019). The post-growth topic has displayed flourishing interest in ecological economy, with

concerns about the role of "work in a post-growth world" (Mair et al., 2020) or the post-growth strategy in the Global

South (Gerber and Raina, 2018).

Degrowth, agrowth or post-growth could therefore provide policies framework for a more sustainable and inclusive

society Parrique (2019). However, van den Bergh and Kallis (2012) outlined that the past link between growth and

environmental impact was criticized in a context of no environmental policies. Future efficient policies implemen-

tation could provide more insights in the growth debate. Given the current pursuit of economic growth as a human

development objective (SdG), its decoupling with resource use and impacts is crucial (United Nations, 2015). A recent

comprehensive review of the decoupling between GDP, resource use and GHG emissions was conducted in Wieden-

hofer et al. (2020) and Haberl et al. (2020). They focused on two decoupling axis: resources decoupling and impact

decoupling. While resource decoupling is defined as a reduction of resource use per unit of GDP, impact decoupling

is defined as the decline of environmental impact per unit of GDP. The targeted decoupling can be relative in case

of a better efficiency, or absolute in case of a decrease of resources use or impact while the economy grows. The au-

thors showed that relative resource decoupling (material use) has been observed, as well as relative impact decoupling

(GHG and CO2 emissions). They further emphasized that few absolute decoupling were achieved mainly in crisis or

slow growth context, and that "a potentially fundamental incompatibility between economic growth and systemic

societal changes to address the climate crisis is rarely considered" (Wiedenhofer et al., 2020).

1.3.3 The energy transition

The depicted economic options of green growth, degrowth, agrowth and post-growth all rely on a sustainable ap-

proach of energy, which is currently achieved through an energy transition from fossil fuels to renewable energies.

Despite being currently closely linked with environmental challenges, several energy transitions have occurred in

22The term comes from the French word décroissance. Previous work already considered similar notion in the late 19th century. Parrique (2019)
and Martínez-Alier et al. (2010) provided thorough historical reviews and detailed origins of the approach.

23Such as a drop of work hours, an evolution in the role of states, or a greater emphasis on social relationships over material consumption.
24The 8 stages are re-evaluate, reconceptualize, restructure, redistribute, relocalize, reduce, re-use and recycle.
25The throughput are defined as the flow in the socio-economic metabolism, i.e. the resource inflow and outflow between nature and society, as

well as between societies.
26A comparison of the growth, degrowth and a-growth notions is provided in van den Bergh and Kallis (2012).
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human history, at various scales and paces, and for diverse reasons. Smil (2010) identified two main global energy

transitions, which allowed a rapid industrial and economic development: the transition from animal - initially human

- force to mechanical force, and the transition from biomass to fossil fuels, with a massive reliance on electricity as

a secondary energy27. The triggers of these transitions are manifold. In the first transition, the limited productivity

of human and domesticated animals led to the development of "inanimate prime movers", such as windmills or wa-

termills. The second transition is explained by the rapid industrial and city development, as Smil (2010) explained

it: "growing cities, expanding manufactures, and increasing iron production led to the demise of surrounding forests,

and affordable availability of nearby wood or charcoal supplies (as long-distance land transport using pack or draft

animals was usually prohibitively expensive) became a key factor limiting the size of preindustrial cities and the level

of iron output". It is still ongoing in many rural regions (sub-Saharian Africa, Asia, Latin America), and its past timing

displayed significant disparities among countries. While some areas used coal as a new major energy source, other

regions could not rely on domestic coal reserves, and operated a direct transition from biomass to oil and natural gas.

The related reliance on electricity is explained by Smil by a triptych of economic benefits: efficiency, productivity and

flexibility, as well as more technological aspects (easy to use, multi-scale applications, accuracy of delivery...). These

successive transitions have catalyzed the human society development. In order to better perceive the magnitude of

the evolution that has taken place over the past several centuries, the concept of energy slave has been developed. It

is defined as the number of human slaves - based on the average energy a person can produce - needed to provide

the equivalent energy use of our modern lifestyle (Mouhot, 2011), and Jancovici (2013) estimated the current French

energy consumption per capita to be equivalent to about 400 slaves.

General aspects of the ongoing energy transition

The ongoing energy transition is part of a larger ecological transition, and it displays new challenges compared to

the previously depicted examples. Under its current meaning, the term energy transition was firstly used in 1980 in

Germany by Krause et al. (1980). It aims at achieving a shift from fossil fuels to renewable energies, an increasing share

of electricity in the energy mix, and additional measures (e.g. CCS, demand efficiency...). The need for a transition is

explained by the conjunction of the oil and gas supply/demand peak perspective (Murphy and Hall, 2010; Delannoy

et al., 2021a,b) with the environmental stakes to reach a full decarbonation of the energy sector by 2050. The global

primary energy mix remains largely dominated by fossil fuels (Figure 5.1) and energy currently represents about 90%

of the global CO2 emissions (IEA, 2019a), of which 40% are emitted to generate power (Figure 1.10).

Figure 1.9: Global primary energy supply by sources from 1850 to 2014. Source: Court (2016)

27Duruisseau (2014) further proposed to segment these transitions in two categories: disruptive (e.g. the two identified by Smil (2010)), and
substitution (e.g. the ongoing replacement of oil by natural gas, or the nuclear industry development in France).
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Figure 1.10: Global energy-related CO2 emissions by sector. Source: IEA (2021b)

The process to politically assess the link between the energy system and the greenhouse gases emissions and aiming

at providing global measures to decarbonate our economy has been undergone through international climate nego-

tiations for almost 30 years. The United Nations Framework Convention on Climate Change (UNFCCC) was signed

in 1992 with the objective of "[stabilizing] greenhouse gas (GHG) concentrations in the atmosphere at a level that will

prevent dangerous human interference with the climate system, in a time frame which allows ecosystems to adapt

naturally and enables sustainable development" (UNFCCC, 2021a). It gathers 197 parties, which meet annually in

the Conferences of Parties (COP). Several major steps resulting from the COP can be outlined. The Kyoto Protocol

was established during COP1 in 1997, with the objective to reduce GHG emissions in 36 developed countries–thus ac-

knowledging the impact of development level on the capacity to tackle climate change through the “common but dif-

ferentiated responsibility and respective capabilities”–over two periods, to implement emission market mechanisms,

and to monitor national emissions inventories (UNFCCC, 2021d). In 2015, the COP21 held in Paris resulted in the

Paris agreement, which is a binding treaty adopted by 196 parties. It aims at limiting global warming to well below 2°C

and pursuing efforts to limit it to 1.5°C through Nationally Determined Contributions (NDC). These pledges consist of

comprehensive national climate action plans (UNFCCC, 2021c), with an emphasis of renewable energy development

and energy efficiency (UNFCCC, 2021b). In order to reach the climate objective of the COP21–and potentially go even

further–significant measures were expected at the COP26 in Glasgow, such as a reinforcement of the NDC announced

at the COP21. Worth noticing are the expected initiatives to phase-out of coal (e.g. Powering Past Coal Alliance) but

also of oil and gas (e.g. Beyond Oil & Gas Alliance), which remains a first step as the main oil and gas producers are

not part of the alliance, and the commitment to halt financing new energy-related project from 2022 by 39 parties28),

or the non-binding agreement to foster the shift to zero emissions vehicles in sales and owned/leased fleet by both a

set of countries and automotive manufacturers. However, the COP26 measures and pledges remain unambitious in

terms of scale and pace in relation to the climate emergency raised by the IPCC (IPCC, 2022).

This international negotiations and initiatives conceal strong regional and sector disparities, as agendas vary. The Eu-

ropean Union is at the forefront on the transition with a rising share of renewable energy in the energy mix from 9.6%

in 2004 to 19.7% in 2019 (European Commission, 2020), but displays a low share of battery-electric vehicles (BEV)

despite a significant increase and great ambitions (ACEA, 2020) and a current low level of 1% of annual building ren-

ovations (European Commission, 2021). The USA has experienced a two-fold raise of the share of renewables in the

energy to more than 12% in 2020 (EIA, 2020) and a tenfold increase of electric vehicle29 share in the stock between

28The 39 parties agreed to "end new direct support for the international unabated fossil fuel energy sector by the end of 2022, except in limited
and clearly defined circumstances that are consistent with a 1.5°C warming limit and the goals of the Paris Agreement.

29Only battery-electric vehicles are considered in these figures, plug-in hybrid electric vehicles are not accounted for.
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2013 and 2020, which represented only 0.35% of the total fleet in 2020 (IEA, 2021c). Finally, China displays a pecu-

liar situation. The country strongly relies on coal and further coal power plants projects are planned, while being the

leader in installed solar capacity and electric vehicle manufacturing (IEA, 2021a). The Chinese BEV number raised

by 35 times between 2014 and 2020, but only represented about 1% of the car fleet in 2020 (IEA, 2021c). These low

figures show that the energy transition remains at an early stage and that further ambitious measures are needed to

achieve the announced objectives. For example, the European Union established a Green Deal aiming at ensuring

"no net emissions of greenhouse gases by 2050, economic growth decoupled from resource use and no person and

no place left behind" through multi-sector actions (European Commission, 2019), while the US President Joe Biden is

currently experiencing internal struggle to implement his Climate Plan aiming in particular at cleaning the electricity

system and fostering domestic industries (Davenport, 2021). The means to reach the full decarbonation of the energy

system remains a highly researched topic, as manifold pathways exist. For several decades, institutions and the aca-

demic world have been developing models and scenarios to provide insights and influence the previously depicted

governmental transition plans.

A field of scenarios

Achieving the energy transition could materialize through numerous technological and regional paths. To provide

insights to the policy-makers on the requirements and consequences of the paths, energy transitions scenarios have

been extensively constructed by Non-Governmental Organization (NGO), private firms, charities, governmental or

intergovernmental organizations, think tanks and the academic world over the past decades. However, the variety

of methods and philosophies hamper the possibility of comparing scenarios. Therefore, several authors have pro-

gressively identified a classification to analyze scenarios (IPCC, 2001; Börjeson et al., 2006; van Vuuren et al., 2012;

Dagnachew et al., 2019) which led WEC (2019a) and Skea et al. (2021) to propose three types of scenarios:

• Outlooks, with the purpose to answer the question "what will happen?" (Börjeson et al., 2006). These scenarios

consider a business-as-usual case or planned policies (e.g. the Intended Nationally Determined Contributions

of the COP21 in the Stated Policies Scenario).

• Exploratory scenarios, with the purpose to answer the question "what can happen?" (Börjeson et al., 2006). They

aim at describing futures under a set of socio-economic hypothesis.

• Normative scenarios, with the purpose to answer the question "how a predefined target can be achieved?" (Bör-

jeson et al., 2006). In these scenarios, the technical path towards a predetermined target is assessed.

Depending on their typology, the scenarios propose different philosophies to policy makers. While the outlooks val-

idate or invalidate the current measures, the exploratory scenarios highlight what might happen if a specific set of

actions were taken. The normative scenario can help design policies, as they provide insights in what should be done

to achieve a specific target. Some of the existing scenarios can be listed following this classification, as presented in

Tables 1.1 and 1.2. Their number has been increasing over the past years, and more organisms have been develop-

ing their own scenarios. Most of them are carried out by private firms or intergovernmental organizations, and very

few scenarios were carried out by researchers. Among the research community scenarios, the Shared Socioeconomic

Pathways (SSP) hold a peculiar place. Five plausible socioeconomic future have been designed by the climate change

community in parallel of a set of GHG trajectories in the Representative Concentration Pathways (RCP) to create a

new generation of scenarios computed in Integrated Assessment Models (IAM) (Moss et al., 2010). In the scenarios

presented in Tables 1.1 and 1.2, the projected CO2 emissions display numerous futures within each category (Figures

1.11, 1.12 and 1.13). In their comparison of global energy scenarios, Skea et al. (2021) showed that some trends are

envisioned in every scenarios, however at various scales. They highlighted patterns in three similarities: an increase

of primary energy demand [1], a rise of the share of electricity in the energy mix [2] and of the share of solar and

PV [3]. Similarly, the authors identified patterns of differences. They firstly outlined the increasing demand of coal

and oil in outlooks, while stabilizing or dropping in most of exploratory and normative scenarios. Secondly, the ob-

served development of wind and solar energies displays various range of penetration. Thirdly, the authors showed

that the future role of hydropower in the energy mix could depend on the consideration of environmental constraints

in project development. The distribution of scenarios by type allows us to characterize the validity of the current
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measures, in particular through the evolution of CO2 emissions. We observe that the projected CO2 emissions range

of outlooks remains higher than in 1.5/2°C normative scenarios (Figures 1.11 and 1.13), which indicates that limiting

global warming to between 1.5°C and 2°C seems currently unrealistic.

Scenario
Year

(last update)
Organisation Type of body Reference

Global
warming

Outlook

Reference 2017 CEPSA Private firm CEPSA (2017) 4°C

International
energy outlook

2019 US EIA
Governmental
organization

EIA (2021)

Reference 2019 ExxonMobil Private firm ExxonMobil (2019)

Current policies 2019 IEA
Intergovernmental

organization
IEA (2019b)

Stated policies 2019 IEA
Intergovernmental

organization
IEA (2019b) 3°C

Reference 2020 IEEJ Think tank IEEJ (2020)

Business-as-usual 2020 BP Private firm BP (2020)

Announced
Pledges Scenario

2021 IEA
Intergovernmental

organization
IEA (2021e)

Ener Base 2021 Enerdata Private firm Enerdata (2021)

Ener Blue 2021 Enerdata Private firm Enerdata (2021)

Reform 2021 Equinor Private firm Equinor (2021) > 2°C

Energy
Transition Outlook

2021 DNV GL Private firm DNV (2021)

World Oil Outlook 2021 OPEC
Intergovernmental

organization
OPEC (2021)

Planned
Energy Scenario

2021 IRENA
Intergovernmental

organization
IRENA (2021)

Exploratory

Modern Jazz 2019 WEC Charity WEC (2019b) 2.5°C

Unfinished Symphony 2019 WEC Charity WEC (2019b) 2°C

Hard Rock 2019 WEC Charity WEC (2019b) > 3°C

Mountain 2019 Shell Private firm Shell (2019) 2.5°C

Ocean 2019 Shell Private firm Shell (2019) 2.6°C

Advanced Technology 2020 IEEJ Think tank IEEJ (2020) > 2°C

Waves 2021 Shell Private firm Shell (2021)

Islands 2021 Shell Private firm Shell (2021)

Momentum 2021 Total Energies Private firm TotalEnergies (2021) 2.2/2.4°C

Rupture 2021 Total Energies Private firm TotalEnergies (2021) 1.7°C

Rivalry 2021 Equinor Private firm Equinor (2021)

Table 1.1: Outlooks and exploratory global energy scenarios. The list is not exhaustive. Adapted from Skea et al. (2021)
and WEC (2019a)
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Scenario
Year

(last update)
Organisation Type of body Reference

Global
warming

Normative

SSPs RCP1.9 to 8.5 2011,2017 Researchers
Academic

community

van Vuuren et al. (2011)
Riahi et al. (2017)

van Vuuren et al. (2017)
Fricko et al. (2017)

Fujimori et al. (2017)
Calvin et al. (2017)

Kriegler et al. (2017)

1.5°C in
RCP1.9 and

2°C in
RCP2.6

Low Energy Demand 2018 Researchers
Academic

community
Grubler et al. (2018) 1.5°C

Sky 2019 Shell Private firm Shell (2019) 1.7°C

Sustainable development 2019 IEA
Intergovernmental

organization
IEA (2019a) 1.65°C

Rapid transition 2020 BP Private firm BP (2020) < 2°C

Net Zero 2020 BP Private firm BP (2020) 1.5°C

Net Zero Emissions 2021 IEA
Intergovernmental

organization
IEA (2021d) 1.5°C

Sky 1.5 2021 Shell Private firm Shell (2021) 1.5°C

Ener Green 2021 Enerdata Private firm Enerdata (2021)

Rebalance 2021 Equinor Private firm Equinor (2021) 2°C

1.5°C Scenario 2021 IRENA
Intergovernmental

organization
IRENA (2021) 1.5°C

Table 1.2: Normative global energy scenarios. The list is not exhaustive. Adapted from Skea et al. (2021) and WEC
(2019a)

Figure 1.11: Global energy-related CO2 emissions in outlooks. Sources: Various
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Figure 1.12: Global energy-related CO2 emissions in exploratory scenarios. Sources: Various

Figure 1.13: Global energy-related CO2 emissions in normative scenarios. Sources: Various

Criticisms and analysis

The scenarios analysis displays the current high range trajectory of global CO2 emissions, and therefore the need

to implement additional and more drastic energy transition measures-assuming the validity of the green growth

paradigm. It could represent a significant feasibility challenge. Over the past decades, numerous studies have con-

ducted analysis to assess the achievability of the energy transition and its impacts from a wide panel of topics, pro-

viding insights about the current and upcoming difficulties. Several aspects have particularly concentrated criticisms

and analysis, and are briefly explicited thereafter. It is not the purpose of this introduction to thoroughly review the

existing analysis of the feasibility of the energy transition, the literature being wide. I intend to provide a brief overview
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of some of the most challenging technical and biophysical topics, with a special emphasis on both the needed adap-

tation of the power system and the net energy constraints as major sources of concern on our society development.

Among the analyzed topics, the temporal feasibility has been debated from technological and historical perspectives,

as numerous past energy transitions can provide case studies. In 2009, Kramer and Haigh (2009) stated that "cost

is less important than the rate at which existing low-carbon energy technologies can be physically deployed". The

authors argued about the role of industrial capacity in limiting the minimum time needed for a technology to reach

a significant share of the energy mix. The energy transition could therefore be a very long process, taking decades to

complete. This statement is in accordance with historical examples of large scale transitions (Fouquet, 2016; Grubler

et al., 2016; Smil, 2016)30. We can observe that the lack of coordination between nations has already significantly de-

layed the potential transition, as international discussion have been carried out for more than 30 years31. The resulting

time frame could therefore already exceed the mid-century, which is currently targeted in most scenarios. The his-

torical examples provide further insights about the feasibility of government-led energy transition, which has proven

difficult to realize. Solomon and Krishna (2011) depicted the historical success of transitions for one sector in country

(e.g. in France and Brazil), and identified the novelty of the current global and multi-sector situation. The authors also

highlighted the challenge to implement a global "supply side energy transition", and the easier and quicker potential

on the demand side.

The ongoing energy transition has also raised concerns about its biophysical aspect, which is commonly measured

through the Energy Return On Investment (EROI)32. It is defined as the ratio of energy output on energy input33. It

has a direct link with net energy, which is defined as the energy output minus the energy input. The EROI was firstly

introduced by Charles A.S. Hall in a biological approach for fish migration (Hall, 1972) and later adapted to fossil fuels

in a biophysical approach (Cleveland et al., 1984). The ratio compares the production to the energy cost and indicates

the quality of an energy source (Hall et al., 2014). For an energy source to be energetically viable, a minimum EROI of

1:1 is needed. From a technological perspective, the EROI provides a powerful tool to assess of the energetic viability of

a technology - from both static and dynamic approaches - as it "integrates the counteracting effects of depletion and

technological improvements" (Hall, 2017). Fossil fuels values of EROI amounted to about 80:1 in mid-1950s for coal,

and decreased in the last decades (Murphy and Hall, 2010), while it fell from 140:1 in 1950 to about 20:1 in 2020 for

natural gas (Delannoy et al., 2021a) and from 45:1 in 1950 to less than 10:1 in 2020 for oil (Delannoy et al., 2021b)34, with

significant disparities between conventional and non-conventional sources, and geography. Conversely, standard

EROI35 of power generation technologies values are much lower (Figure 1.14)36. Decreasing EROI are observed for

renewables, which is explained by the use of the most "suitable" sites first for renewables Moriarty and Honnery

(2021) and for fossil fuels, because of the depletion of the most easily accessible resources for fossil fuels and lower

non-conventional EROI (Court and Fizaine, 2017; Dale et al., 2011; Delannoy et al., 2021b; Murphy, 2014; Gupta and

Hall, 2011). However, recent literature showed the difficulty to compare fossil fuels and renewable energy EROI at the

primary energy stage, and the need to consider the point-of-use EROI ( at the final energy stage) (Brockway et al.,

2019). The authors concluded that fossil fuels is significantly lower than standard EROI and could display closer value

to EROIpu of renewable energy.

30Comparing transitions requires an apple to apple basis, as stated in Grubler et al. (2016). The authors issued a criticism of Sovacool (2016),
who estimated a potential low transition period from the recent incremental technological changes (e.g. air conditioning, improved cookstoves...).

31As presented in Section 1.3.3.
32Sometimes referred to as Energy Return On Energy Invested (EROEI), e.g. in Režný and Bureš (2019)
33The EROI is expressed as X : 1, with X indicating the normalized energy output from the energy input.
34The decrease of fossil fuel EROI is explained by the production of less accessible deposits (e.g. deep offshore).
35Standard EROI is estimated at the primary energy stage.
36Which is explained by the lower density of renewable energy technologies.
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Figure 1.14: Energy Return on Investment (EROI) for the main power generation technologies. The EROI are differenti-
ated for the use of storage and over-capacities needed for the solar, wind and hydro energy. Static values are described
to give an indication of the magnitude of EROI by technology. Present values may be different. Source: (Weißbach
et al., 2013)

As the EROI decreases below 10:1, a net energy cliff is observed37 (Murphy and Hall, 2010). The net energy expo-

nentially drops, decreasing the energetic viability of the technology. From an energy perspective, the lower the EROI,

the more energy is needed to produce energy. It represents a major concern for the energy transition, since most of

new energy sources display lower EROI values than fossil fuels38. Several studies proposed estimations of the EROI

evolution in a low-carbon transition. In the power systems, Trainer (2018) estimated the EROI of a 100% renewable

Australian energy system to be around 5.9:1 - while currently about 40:1 - and Fabre (2019) predicted a global EROI

of 6:1 in 2050 for electricity in case of a 100% renewable system, and 12:1 in a BAU scenario39. King and van den

Bergh (2018) further showed a decrease of the global EROI by 24 to 31% by 2050 in two low-carbon scenario, and

Capellán-Pérez et al. (2019) concluded on a global energy system EROI between 3:1 and 5:1 in 2060. Therefore, from

an economic perspective, the more renewables in the energy mix, the more economic activity is allocated to energy

production, which could hamper the current "growth quest". The initial high EROI of fossil fuels resources has been a

catalyst for the economic development observed in the last decades (Hall et al., 2014; Hall, 2017), which is explained

by the productivity raise (Jackson, 2019). The expected decrease of EROI could create a divergence between primary

energy and net energy (Moriarty and Honnery, 2019). The usable energy would significantly decrease40, which could

have devastating consequences on the economy41, as a recession and a "below trend growth" could occur if energy

costs rise42 (Hall, 2017; Hamilton, 2009; Sers and Victor, 2018; Jackson and Jackson, 2021). Reviewing previous stud-

ies arguing of a link between economic growth and energy supply, Murphy and Hall (2010) and Fizaine and Court

(2016) further questioned the possibility of economic growth in a context of declining EROI. This analysis provided

an additional point in favor of degrowth, agrowth or post-growth. Indeed, a decreasing societal EROI has direct ef-

fects on the development capacity of a society, as depicted by Hall (2013) and King and van den Bergh (2018). Several

works were conducted to estimate the minimum EROI for a sustainable society–hereby defined as the current level

37It is explained by the exponential decrease of the ratio of net energy to used energy.
38Hall et al. (2014) outlined the difficulty to measure renewable energies EROI, as they are intermittent, and because of the need to account

for over-capacities, storage technologies, and grid connection. In the same vein, Carbon Capture and Storage (CCS) or Carbon Capture and Use
(CCU) would need to be accounted for in fossil fuels EROI if displayed at a large scale. Some studies proposed to further enlarge the scope of EROI.
Moriarty and Honnery (2019) introduced the new notion of green net energy, defined as the primary energy minus the input energy and the "energy
costs needed for energy maintenance". The authors showed a potential decrease of green net energy in about a decade, and emphasized the need
to assess of the evolution of a green EROI.

39These results could be significantly impacted by the technological improvements of renewables.
40Except in the case of drastic raise of gross energy, which could provide sufficient net energy even within a low-EROI society while having a

tremendous biophysical cost (Trainer, 2018).
41This remark does not take into account possible energy savings.
42Murphy and Hall (2010) showed that every historical US recessions occurred after an oil price peak.
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of development of western society. Hall et al. (2009) estimated a minimum value of 3:1 for a society to run, without

art, medicine or education, while Brandt (2017); Hall et al. (2009) and Hall (2017) concluded on a minimum societal

EROI of about 5:1 to 6:1 for a modern Western society–which current EROI was evaluated to 20:1 (King and van den

Bergh, 2018). The estimated levels of EROI in a low-carbon transition could therefore affect our lifestyles, and while

Hall et al. (2014) concluded that "[they] see no easy solution [to the current energy and climate challenge] when EROI

is considered", Moriarty and Honnery (2021) emphasized the higher potential of primary energy reductions than a

massive renewable development.

Besides the biophysical aspects previously described, the shift from fossil energy sources to renewables could have sig-

nificant technical consequences. Among them, the impact on the power grid of the increasing share of renewable en-

ergies in the power mix has been widely studied in the literature, and several main concerns have been raised. Firstly,

the intermittent nature of wind and power energies could create supply issues and requires the deployment of large

storage capacities or redundant plants (Trainer, 2013), which are local options. At a larger scale, existing and projected

power grid interconnections could provide an additional alternative to tackle intermittency, optimize the penetration

of renewables in low potential areas and achieve cost reductions (Yang, 2020; Li et al., 2020a). Multi-national inter-

connections have already been successfully implemented (e.g. Continental Europe, Nordic Europe, Central Ameri-

can Electrical Interconnection System, Integrated/Unified Power System...) and numerous are currently discussed at

governments level and analyzed in the literature, such as in the Middle-East (Zhang et al., 2017), in North-East Asia

(Ichimura and Omatsu, 2019; Ogino, 2020), in the Association of Southeast Asian Nations (Ahmed et al., 2017; Jiang

et al., 2019) or in Africa (Wu et al., 2017; Juma et al., 2020). Secondly, the current power grids rely on synchronous

sources to help ensuring the stability of the network43, mainly through their reactive power44 absorption and inertia.

Given that wind and PV are decentralized generation technologies and display various installations scale, they can be

connected in the low to high voltage grid. However, the French law prohibits installations connected to the low voltage

network from absorbing reactive power, which creates high-voltage issues (Commission de Régulation de l’Energie,

2020). Given the numerous low-scale renewables projects connected in the low-voltage network, the French energy

regulator proposed to lift this restriction. The further development of large scale projects could allow for a more sys-

tematic inclusion of reactive power absorption devices, as well as other systems enhancing the grid stability. The

second main characteristic altered by the development of renewables is inertia. Synchronous inertia is defined as

the "instantaneous physical response of conventional generators having directly coupled rotating mass, which acts

to overcome the imbalance of supply and demand by changing the rotational speed" (Hartmann et al., 2019). The

current decrease of synchronous inertia-as wind and PV are not synchronous devices-could therefore hamper the fre-

quency stability of the grid (Yan et al., 2015; Seneviratne and Ozansoy, 2016), and recent publications have analyzed

the minimum level of inertia (or critical inertia) for a grid to be stable in case studies (Ahmadyar et al., 2016; Gu et al.,

2018; Garcia-Casals et al., 2019; Johnson et al., 2019). In order to offset the inertia reduction and maintain frequency

stability, new systems are required. Their use is locally designed, as the power mix and grid resilience display various

regional profiles. Several stability options aims at providing additional inertia or tackling frequency instability, such

as synthetic/virtual inertia from electric vehicles (Magdy et al., 2021) or wind turbines (Fernández-Guillamón, 2019;

Berizzi et al., 2020)45 and fast frequency response, while other systems enhance the grid flexibility, such as demand

response and energy storage (Denholm and Hand, 2011; Vogler-Finck and Früh, 2015; McPherson and Tahseen, 2018;

Saygin et al., 2021)46. The increasing share of renewables in the power mix could therefore have significant conse-

quences on the grid behaviour. A joint study of the IEA and the French Transmission System Operator assessed a

maximum proportion of wind and PV-for the power grid to remain stable-of about 50% by 2035. Increasing this share

will require further systems and grid development (IEA and RTE, 2021) and expensive structural changes of power

grids are expected47, in addition to grid expansion to connect the new decentralized generation units.

43The power system stability is commonly segmented into three main aspects: rotor angle stability, frequency stability and voltage stability
(Kundur et al., 2004).

44Reactive power is an "unused" power generated by power installations.
45Virtual or synthetic inertial is now mandatory on a share of the installed wind turbines in several countries (Tamrakar et al., 2017). Such inertia

is referred to as virtual because it remains triggered after a contingency and displays higher response time than instantaneous physical response.
46Pilote projects have already been developed to assess the support potential of renewable plants. For instance, a 300 MW solar PV plant

equipped with advanced power electronics displayed encouraging results to "contribute to system-wide reliability" (Loutan et al., 2017).
47The four German Transmission System Operators presented in January 2021 their 2035 plan to achieve a share of renewables in the power mix
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The temporal and biophysical constraints, as well as the required power systems adaptation illustrate some of the

upcoming challenges of the energy transition. They outline the versatile stakes of the next decades, as the transition

presents temporal or technical obstacles, questions the development of human societies and the role of cheap and

abundant energy in the growth paradigm, but also represents an economic conundrum. The energy systems devel-

opment and adaptation will require increasing capital needs which could not be met in a business-as-usual scenario

(Dupont et al., 2021). The difficult economic context due to the COVID-19 health-and more generally the successive

financial, economic or terrorist crisis context-could further hamper the investment pace. Alongside the previously de-

picted challenges, numerous authors have identified an emerging physical paradigm due to the parallel multi-sector

shift towards low-carbon technologies, which is described in the next Section.

1.3.4 The minerals and metals research field

The analysis of minerals and metals in the anthroposphere has been studied for over 20 years in the literature. After

an early period of top-down studies48 focusing on assessing the global or regional stocks and flows of base materials

between the lithosphere and the anthroposphere (e.g. in the Stocks and Flows Project (STAF) (Graedel et al., 2002;

Spatari et al., 2002; Kapur et al., 2003; Vexler et al., 2004)), bottom-up studies49 have progressively gained interest in

order to analyze the sector drivers of demand and provide with a better description of technologies characteristics and

evolution. A special emphasis on the energy (e.g. Elshkaki (2019b); Moreau et al. (2019b) and Ren et al. (2021)) and

building sectors (e.g. Müller (2006); Wiedenhofer et al. (2015); Deetman et al. (2020) and Marinova et al. (2020a)) has

been observed over the years, as they represent major drivers of the materials consumption. The analysis allowed for a

progressive better insight of elements and materials cycles in the anthroposphere (Figure 1.15), as our system relies on

a majority of them without a thorough understanding of the types of uses, lifetimes, losses or recycling rates (Chen and

Graedel, 2012). The Figure 1.15 offers a simplified view of metals stocks and flows cycle in the anthroposphere. Several

steps are required to extract and transform a metal for its uses (A, B and C), and for a metal to be recycled (D and F).

However, scrap is generated at several stages (G, I and J) and losses occur (E and M), which hampers the recycling rate

of metals. Even if the metals are infinitely recyclable, the losses in the processes are irremediable (Gordon et al., 2006).

Figure 1.15: Simplified metals stocks and flows cycle (adapted from Graedel et al. (2011); Glöser et al. (2013) and
Maung et al. (2017)). A: Primary metals, B: Refined metals, C: Semi-finished and finished products, D: End-of-life
products, E: Losses in the collection, F: Collected metals, G: Recycled metals or old scrap, H: New scrap.

From the publications, two categories can be distinguished among the minerals and metals, and a better understand-

ing of the development phases of material demand emerged. While the technological metals are used for specific uses

of about 70%, which could require an investment estimated to more than 70 billions euros.
48A top-down study is defined as a modeling relying on input-output tables or which assesses stocks from a flow analysis.
49Bottom-up modeling focuses on describing parts of the system in details and then conducting a part-whole modeling.

22



in technologies applications (e.g. neodymium in permanent magnets, selenium in solar cells or lithium in batteries),

the structural materials provide the basis of the infrastructures in our society (e.g. aluminum, concrete, copper, steel,

iron, chromium, manganese50). Technological metals display lower reserves and are extracted in smaller quantities.

The segmentation allows for a more accurate picture of the dynamics of materials consumption. Bleischwitz et al.

(2018b) identified three stages in the stocks and flows of steel, cement, aluminum and copper. In the first step of in-

dustrialization, the demand and the per capita stock rapidly grow to build the infrastructures (growth stage), before

observing a stabilization of the demand and a slower growth of the per capita stock in a maturing stage, and a final sat-

uration stage with a stabilization of the per capita stock and a decrease of the demand. From an historical analysis, the

authors estimated saturation thresholds of about $12,000 GDP/cap for steel and cement, around $ 20,000 GDP/cap for

copper, and a weaker saturation trend for aluminum. The successive industrialization of Western Europe, Northern

America, OECD Pacific51, or China has therefore led to a substantial surge in raw materials demand between 1950 and

2020, estimated to 1.4%/yr for manganese, 4%/yr for nickel, 2.5%/yr for zinc, 5.5%/yr for aluminum, 3%/yr for copper,

3.2%/yr for steel and 5%/yr for cement (USGS, 2021b). The future industrialization of developing countries will create

a further increase in materials demand, in parallel of other drivers. Subsequent to the structural development, a so-

ciety requires increasing technological materials for high-technologies. New materials are used for new technologies,

new properties on existing devices or efficiency improvements (Graedel et al., 2015), and the annual growth of numer-

ous metals production reach 10% (Vidal et al., 2017). An overall growth of the demand of raw materials is expected,

stimulated by the population increase, the industrialization of developing and poor countries, the urbanization, the

materials complexification of technologies and the energy transition (Vidal et al., 2017).

Figure 1.16: Evolution of stock per capita and flow per capita with GDP per capita. Source: Bleischwitz et al. (2018b)

The increasing material constraints emerging from the energy transition have been identified through the estimations

of the raw materials intensities of technologies required in the bottom-up approaches. Two main findings were high-

lighted. Firstly, renewables are decentralized technologies, and therefore display higher materials requirements per

installed capacity (t/MW) than thermal units (Kleijn et al., 2011; Elshkaki and Graedel, 2013a; Vidal et al., 2017). The

materials intensities of power generation technologies are depicted in Figure 1.17 and the fast evolution (e.g. tech-

nological progress or scale effect) of renewables explains the important dispersion of the data. Significant variations

are observed between sub-technologies of an energy source (e.g. CSP, PV farm, PV farm tracker and PV roof), which

50Chromium, manganese, zinc and nickel are commonly considered as structural raw materials for their use in steel making.
51OECD Pacific is composed of Australia, New Zealand, Korea and Japan.
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could impact the material cost of the regional energy mixes. Moreover, the comparison of materials requirements of

supplied energy (t/MWh) magnifies the gap between renewables and thermal units. It is due to the intermittency of

solar and PV, as they generate power depending on the weather conditions. For instance, onshore wind consumes two

to three times more steel than coal in t/MW, and five times in t/MWh (Vidal, 2018).

Figure 1.17: Base materials requirement per MW (t/MW) for power generation technologies. Source: Vidal et al. (2017),
with data from Kleijn et al. (2011); Vidal et al. (2013).

Secondly, low-carbon technologies and their related modification of the energy system (e.g. storage, power transport,

connectivity...) significantly affected raw materials demand from a qualitative perspective, as most of materials of the

periodic table of elements are currently used (Figure 1.18). The combination of the two findings with lower lifetimes of

low-carbon energies and potential limited substitution for some uses (Graedel et al., 2015) could lead to supply con-

straints. The mineral industry could experience challenges depending on the scale of the ongoing energy transition,

in a context of demand increase in other sectors and of prolonged downturn of mining exploration between 2013 and

2020 (Liu, 2021).
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Figure 1.18: Raw materials used in energy technologies. Source: Christmann (2016)

The conjunction of an increase in the amounts and types of raw materials consumed led to a significant growth in

the number of publications studying the impact of the energy transition on the mining industry. The current energy

system relies on non-renewables energy materials (oil, gas and coal), and the development of wind and solar tech-

nologies could operate a shift toward a dependency to minerals and metals (Vidal et al., 2013). Numerous studies

have therefore estimated raw materials need in transition scenarios to better assess the consequences of the upcom-

ing shift in energy (Elshkaki and Graedel, 2013b; Vidal et al., 2018; Beylot et al., 2019; Deetman et al., 2021b), transport

(Watari et al., 2019; Nguyen et al., 2019a; Dunn et al., 2021) or building and infrastructures (Marinova et al., 2020a;

Deetman et al., 2020). Among the upcoming challenges, the supply constraint and the environmental constraint have

been identified. The supply issue could occur for technological materials displaying a potential depletion, sensitivity

to geopolitical events, or a surge in demand not met by the mining industry’s capacity. These challenges led to the

definition of the criticality concept, which is defined as the levels of importance in use and availability of a mate-

rial (National Research Council, 2008). Criticality of metals and its consequences was for instance observed during

the rare earth elements (REE) crisis in 2011. China accounts for almost the REE reserves, and its 2011 decision to

significantly reduce exports impeded the high-tech production around the world. The second challenge is the envi-

ronmental and energy impacts of raw materials supply. Unlike the supply constraint, structural materials are the main

source of concern of this challenge. The iron/steel and cement/concrete industries represented 12 to 14% of global

energy demand and CO2 emissions in 2018 (Bataille, 2019), and the primary production energy and environmental

impacts could further increase due to the conjunction of the previously depicted situation of expected growth and of

declining ore grades. As the most accessible deposits are progressively depleted, the production energy (MJ/kg) rises.

Technological progress have so far offset this trend, but future efficiency improvements are limited by a thermody-

namic limit of primary production energy (Vidal, 2021). A higher share of recycled materials could prevent the energy

demand rise, as secondary materials display significantly lower energy intensities (Birat et al., 2013; Chen et al., 2019;

Harvey, 2021). The combination of increased demand and higher energy intensity of production leads to a potentially

large growth in energy consumption in the mining sector. The current energy mix remains largely dominated by fossil

fuels, and the construction of low-carbon infrastructures could therefore take a heavy environmental toll, which could

be reduced in case of increasing reliance of materials production on renewable energy (McLellan, 2012). The deep in-

teraction between the energy system and the mining industry is commonly referred to as the energy-materials nexus,

which is a growing research topic in the literature (Giurco et al., 2014; Tokimatsu et al., 2017; Vidal et al., 2017; Peng

et al., 2019). In a broader perspective, the need to adopt system approaches when studying resources has been high-
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lighted by Graedel and van der Voet (2010) and thoroughly reviewed in Bleischwitz et al. (2018a). The authors defined

the resources nexus as "a set of context-specific interlinkages between two or more natural resources used as inputs

into systems providing essential services to humans" and analyzed the links between energy, food, water, materials

and land. The resources nexus topic has been recently illustrated by the water crisis in Chile and its impact on copper

production52, or by the ban on metal mining in El Salvador for water scarcity purposes53. The increasing upcoming

dependency to metals and minerals could therefore induce supply, energetic and environmental constraints. It is

the role of the academic community to estimate the future impacts of a conjunction of factors leading to a potential

significant increase in raw materials extraction, and to assess the potential of alternatives such as substitution and

recycling. The numerous scenarios depicted in Section 1.3.3 provide a panel of futures, for which the material dimen-

sions is often lacking and should be more systematically assessed. From the zero-emissions of renewable technologies

power generation and the recycling potential of metals and minerals, a more sustainable and circular economy could

be envisioned.

1.4 Contribution of this work

The estimation of stocks and flows of materials in a system are generally conducted through material flow analysis.

In a first Chapter, the academic literature computing dynamic material flow analyses of materials is reviewed. 129

publications were selected between 2000 and 2021, and the review methodology relies on Müller et al. (2014) and

Wiedenhofer et al. (2015). It allows to identify research gaps. The materials sector studies proposed in the remainder

of the thesis emerge from these conclusions, and aims at filling four of the identified gaps: (1) a lack of prospective

studies in a low-carbon context, (2) a lack of analysis of the energy-material nexus, (3) a lack of modeling of some

sectors and (4) a limited number of solution-oriented and political-oriented studies.

My PhD aims at providing further insights on the base material content of the low-carbon transition. It proposes a

modeling of the stocks and flows of four of the most structural materials (concrete, steel, aluminum and copper) in

two sectors in the context of the low carbon transition. First, a study on the global energy supply system is displayed.

It aims at providing an estimation on the material weight of renewable power and fossil fuel technologies in low-

carbon scenario, and to assess the recycling potential of decommissioning. Second, the building sector represents

most of the solid wastes generation and is a challenge for the circular economy. A material stocks and flows approach

of the residential and non-residential buildings was conducted for the period 1950-2100. A multi-regional approach

was adopted for energy transitions scenarios of the International Energy Agency and the academic community. It

encompasses both construction and thermal renovation.

The sector studies are included in a larger project, aiming at developing the Dynamic Modelling of Energy Matter

Demand and Supply (DyMEMDS). It is a stock and flow model computed at a multi-regional and multi-sector scale,

relying on System Dynamics and developed in the ISTerre laboratory.

52A Chile court suspended copper production in a region because of severe drought.
53The Parliament of El Salvador ordered the ban in early 2017.
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Chapter 2

Dynamic base materials modeling: a critical

review

Summary of the chapter

Objectives and methods

• The present chapter proposes a critical review of 129 dynamic material flow analyses of four base mate-

rials (aluminum, concrete, copper and steel) published from 2000 to 2021;

• A review methodology is developed. It relies on previous work by Müller et al. (2014) and Wiedenhofer

et al. (2020).

Results of the literature review

• Most studies adopt a national scope and focus on the building, power supply, transportation and infras-

tructures sectors;

• They increasingly encompass several base materials and consider a bottom-up approach;

• However, prospective studies in a low-carbon perspective remained limited, a lack of analysis of the

energy-material nexus was observed, and no analysis proposed solution-oriented modeling to decrease

the impacts of base materials.

Insights of the literature review

• The data challenge of bottom-up studies is progressively tackled by the development of material inten-

sity databases and sensitivity analyses;

• In-use stocks are linked with regional development levels;

• Material wastes are increasingly analyzed, mostly from a the political perspective;

• Recycling could play a significant role to decrease energy demand and GHG emissions in a context of

growing material use;

• Nexus

• The expected pace and magnitude of inflow increase and waste generation in the coming decades raised

concerns about the capacity of the political community to display incentives and biding measures.
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Materials represent the "modern basis of human society" (Graedel et al., 2015) and enable an increasing technologi-

cal complexity and lifestyle improvement. The challenges of quantifying resources stocks and flows in the anthropo-

sphere, their energy and environmental impacts, and their link to development have produced a rich literature in re-

cent decades. Seven analysis reviewed the publications on mineral and metallic materials over the last 10 years1. They

displayed various scopes and objectives. In the first large-scale review, Chen and Graedel (2012) proposed an overview

of static and dynamic anthropogenic cycles of materials in 350 papers. The authors showed the limited knowledge of

most material cycles and outlined that dynamic cycles were rarely considered. However, dynamic studies have been

increasingly developed over the past decade, and the methods displayed in dynamic material flow analyses (MFA)2 of

metal were reviewed in Müller et al. (2014), based on a standardized review protocol. Moreover, three of the literature

reviews focused on the construction sector. Augiseau and Barles (2017) reviewed publications on non-metallic miner-

als. The authors identified the main methodological approaches, highlighted the role of assumptions and data in the

reliability of publication outcomes and outlined the need to develop a study framework for analysing the metabolism

of a socioeconomic system. A framework was defined in Göswein et al. (2019) for urban building stock analysis, which

allows to choose a method, tool and dynamics of parameters. The literature on construction and demolition waste

was reviewed in (Wu et al., 2014b), and the authors proposed a relevance tree of methodology selection for future

studies. Finally, two publications proposed a more conceptual approach of materials. While Jin et al. (2016) showed

that criticality research is at an early stage, both in terms of scope and methodology, the literature on the decoupling

conundrum of GDP, resource use and GHG emissions was reviewed in Haberl et al. (2020) and Wiedenhofer et al.

(2020). They showed that relative decoupling of materials and GDP was identified in regions displaying intermedi-

ate economic growth or socio-economic and political turmoil, which absolute decoupling was observed only in low

economic growth or recession context.

The seven reviews have proposed analyses on MFA methods, the building sector, criticality and decoupling3. They

have not yet offered a more general overview of the main insights of publications, which is the focus of the present

literature review. The current combination of demographic surge, rapid economic development of emerging countries

and low-carbon transition could create a shift from energy materials to minerals and metals. Base materials such as

cement, steel, aluminum, chromium, copper, manganese and zinc had large demand among materials in 2020 (USGS,

2021b), showed limited substitution potential, and could account for a substantial share of materials demand for low-

carbon technologies. This chapter offers a critical review of 129 dynamic material flow analyses of four base materials:

aluminum, concrete, copper and steel published from 2000 to 2021 at national, regional, multi-regional and global

scales.

2.1 Methodology

In a first phase, the relevant publications were identified based on research, relevance and analysis methodologies.

The research of publication aims at embracing the largest panel of studies in order to have a broad outlook of the

previous works. It is crucial to use a multi-database approach to prevent any Matthew effect, as stated by Göswein

et al. (2019). The selection methodology intends to narrowing the outputs of the research by setting up a relevance

and/or quality review, and sometimes a duplicate removal (Wiedenhofer et al., 2020). Finally, the analysis method-

ology pursues a in-deep study of the selected literature through a contextual framework. The research phase of the

present review was first carried out through a keyword approach on Web of Science, Google Scholar, Semantic Scholar

and Connected Papers. 150 articles were finally selected for this literature review, covering a period from 2000 to 2021.

Finally, I elaborated a methodology adapted from the ODD protocol (Grimm et al., 2006) and the previous works of

Müller et al. (2014) and Wiedenhofer et al. (2020), it relies on 16 main categories and 66 sub-categories allowing a

thorough analysis of the dynamics of the bulk materials modeling research field. An overview of the selected papers is

1The review of Van den Heede and De Belie focus on LCAs of traditional and green concrete without q. The authors showed the significantly
lower impact of green concrete, in which cement is partially replaced by industrial by-products.

2MFA is a method which enables to quantify the stocks and flows of resources within a system. It is frequently used in metals and minerals
analyses in industrial ecology.

3More information on the reviews is available in Section A.
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given in a first section. It covers the general scope of the study (1a and 1b), the materials (2a to 2e), geographic (3a to

3d) and temporal scope (4a to 4c), a scenario segment in case of a prospective study (5a to 5c), as well as the sectors

included in the articles (6a to 6i). Then, the characteristics of modeling are identified:

• Modeling characteristics (7) capture the general frame of the model. They focus on either lifetime distribution

(7a, e.g. Weibull, D-based, normal etc), bottom-up and/or top-down modeling (7b), and domestic or footprint

approach (7c). Domestic approaches measures the materials consumed in an economy, thus considering the

total of local extraction plus materials imports minus materials exports. In the opposite, footprint approach

evaluates the materials impact of an economy, which consists of the materials consumed in the goods final

need (Wiedmann et al., 2015).

• The intensity inputs (8) of the modeling study. Four types of intensities are considered. Material intensities

(8a) reports the amount of materials in a given technology, e.g. the concrete consumed to produce a building

(in kg/m²). Materials embodied energy (8b), materials embodied CO2 emissions (8c) and materials embodied

environmental impacts (8d, other than CO2) are, respectively, direct and indirect consumed energy, CO2 emitted

and the other impacts of the extraction and transformation of materials.

Results and analysis are finally specified in the last part of the analysis methodology. It proceeds in five steps:

• The type of materials results is indicated. They can be stocks and/or flows (9a and 9b), and a special focus on

waste (9c) and collect and recycling results is provided (9d).

• Three energy results (10) are considered : embodied energy (10a) of the total materials embedded in a system,

exergy (10b) and EROI (10c)

• The impacts category corresponds to CO2 (11a) impacts of material, water (11b), land use (11c) and other im-

pacts (11d).

• The results analysis category encompasses sensitivity (11a) and/or uncertainty (12b) analyses. An uncertainty

analysis aims at assessing the errors in the outputs depending on the uncertainties in the inputs, while a sensi-

tivity analysis describes the impacts of an input variations on an output, and shows the impacts of independent

variables.

The emphasis was made on the possibility of details in this framework. Thus, 16 of the 46 require specific answers,

and 30 allow for a yes/no answer4. The detailed framework is presented in Table 2.1.

4Only positives answers are apparent for more clarity of the final document.
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Category Index Sub-category Answer

General
data

Title
Author
Year
Journal/Editor
DOI/ISBN

Overview

1
General
scope

1a Stocks and flows modeling Y/-

1b
Energy and environmental
impacts modeling

Y/-

2
Materials
scope

2a Aluminum Y/-
2b Concrete Y/-
2c Copper Y/-
2d Steel Y/-
2e Aggregated Y/-

3
Geographical
scope

3a National Specify country
3b Regional To be specified region
3c Multinational/Multiregional Y/-
3d Global Y/-

4
Temporal
scope

4a Retrospective and/or prospective
Retrospective, Prospective
or Both

4b Start year To be specified
4c End year To be specified

5 Scenario

5a Name/Organization To be specified
5b Other prospective approach To be specified

5c
Stock-driven by
logistic/Gompertz

Y/-

6 Sector scope

6a Power supply Y/-
6b Power grid and energy storage Y/-
6c Fossil fuels supply Y/-
6d Building Y/-
6e Domestic appliances Y/-
6f Public infrastructures Y/-
6g Transport Y/-
6h Industry Y/-
6i All sectors aggregated Y/-

7
Modeling
characteristics

7a Lifetime distribution To be specified
7b Bottom-up and/or top-down Bottom-up, Top-down or Both
7c Domestic or footprint approach Domestic or footprint
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Category Index Sub-category Answer

Model
design

8
Intensity
inputs

8a Materials intensities Static or Dynamic
8b Materials embodied energy Static or Dynamic

8c
Materials embodied CO2
emissions

Static or Dynamic

8d
Materials embodied
environmental impacts

Static or Dynamic

Results
and
analysis

9
Materials
results

9a Stocks In-use, Obsolete, Or Both
9b Flows Y/-
9c Waste stocks and/or flows Stocks, Flows, or Both
9d Collect and recycling Y/-

10
Energy
results

10a Embodied energy Y/-
10b Exergy Y/-
10c EROI Y/-

11
Impact
results

11a CO2 Y/-
11b Water Y/-
11c Land use Y/-
11c Other Y/-

12
Results
analysis

12a Sensitivity analysis Y/-
12b Uncertainty analysis Y/-

Table 2.1: Analysis methodology of the literature review

2.2 Results

The results of the literature review are displayed in the present Section. The Table 2.2 presents the main results and

more details are available in the text and the supplementary information.
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Index Sub-category Results Notes

1b
Materials embodied
environmental impacts

18/129

2a Aluminum 47/129

2b Cement/concrete 34/129

2c Copper 54/129

2d Steel 64/129

3a National 86/129 Domination of China and the USA.

3b Regional 6/129 Only on the European scope.

3c
Multinational/
Multiregional

20/129

4a Prospective 66/129 Mostly combined retrospective and prospective approaches.

6a Power supply 32/129

6b
Power grid and
energy storage

26/129 Mostly combined with energy supply modeling.

6c Fossil fuels supply 1/129 Only pipelines on the Chinese scope.

6d Building 65/129

6e Domestic appliances 20/129

6f Public infrastructures 53/129

6g Transport 56/129

6h Industry 26/129

6i Final demand goods 20/129

6j Trade 14/129 In top-down studies.

7b Bottom-up 49/129

9d Collect and recycling 83/129

10a Embodied energy 13/129

11a CO2 19/129

11b Water 2/129

12a Sensitivity analysis 39/129

12b Uncertainty analysis 36/129 Mostly combined with a sensitivity analysis.

Table 2.2: Main results of the literature review

2.2.1 Materials studied

The selected publications study four base materials, namely aluminum, concrete, copper and steel. As previously

stated, iron and steel were associated in this study, as well as cement and concrete. Iron/steel and copper were the

first dynamically studied materials between 2000 and 2003. The number of publications then remained low but ho-

mogeneous between materials until 2010. A domination of iron/steel is then observed until 2017, and of copper in

2018 and 2019 (Figure 2.1a). The number of publications per material finally converged between 2019 and 2021,

which is explained by the domination of multi-materials over single-material studies since 2019. The multi-materials

approach experienced a quick increase since 2011 (Figure 2.1b).
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(a) Number of publications by materials (b) Number of multi-materials and single-material publications

Figure 2.1: Publication by materials and multi-materials or single-material approach between 2000 and 2021.

2.2.2 Temporal and geographic scope

A majority of the 129 publications display a national approach, while the least represented geographic modeling are

regional (Table 2.2). All the regional-scale studies focus on Europe, adopting several perimeters (EU15, EU25, EU28).

The high number of national studies conceals significant differences in modeling across countries. Input-output

modeling and multi-national database development are used for most countries around the globe, mainly from a

top-down flow perspective. Great geographical disparities were identified. China accounts for most national, ahead

of the USA and Japan. Those three countries gather 54 national scale analyses in the selected literature, while most of

the remaining countries are modeled in one or two studies (Figure 2.2).

Figure 2.2: Number of national studies by country. The map was generated using Mapchart.

The temporal scope of the selected studies extends from 1700 to 2150. The retrospective approach represents 63 of the

129 material stocks and flows modeling analysis, and 66 publications present a prospective (or combined prospective

and retrospective approach). The majority of these prospective modeling considers a time frame up to 2050. In order

to model sector and/or overall material stocks and flows, they rely on two types of future assumptions. A first panel of

publications consider global or national existing scenarios from different sources :

• Institutions : International Energy Agency (Elshkaki and Shen, 2019; Elshkaki, 2019a,c; Moreau et al., 2019a;
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Watari et al., 2019; Kuipers et al., 2018; Vidal et al., 2018, 2017; Valero et al., 2018; Månberger and Stenqvist, 2018),

International Renewable Energy Agency (Moreau et al., 2019a), World Energy council (Elshkaki, 2019c)), United

Nations Environment Programme (Elshkaki et al., 2016), National Research Coordination Alliance for Energy in

France (Beylot et al., 2019), National Development and Reform Commission in China (Elshkaki, 2019a);

• Non-governmental organizations : World Wild Fund (Vidal et al., 2017, 2018; Moreau et al., 2019a), Greenpeace

(Valero et al., 2018; Elshkaki, 2019c);

• Private firms : Statoil (Elshkaki, 2019c);

• The climate change research community : Shared Socioeconomic Pathways (Deetman et al., 2021b; Marinova

et al., 2020a; Schipper et al., 2018)

The authors of a second panel of studies develop their own scenarios:

• Assumptions of various evolutions such as high or low growth, extrapolation of current market or growth trends

(Yang et al., 2021; Streeck et al., 2021) or demand stagnation in various years in Morfeldt et al. (2015); Wieden-

hofer et al. (2019) or sectoral hypothesis (Hong et al., 2016; Pfaff et al., 2018));

• Own scenarios, sometimes compatible with existing institutional scenarios (Seck et al., 2020; Elshkaki et al.,

2018; Elshkaki, 2019a; Tokimatsu et al., 2017; Månberger and Stenqvist, 2018).

2.2.3 Modeling characteristics, modeling tools and inputs

A top-down study was adopted in 80 analyses, while 49 bottom-up modeling were identified. The number of bottom-

up studies has been increasing over the past few years (Figure 2.3b). Only 38 footprint studies adopted a footprint

approach–including imports and exports of materials in final goods. As described in Müller et al. (2014), the MFA/SFA

approaches use the same loop-based description with various levels of stocks and flows computation. The overall

input/in-use stock/output structure is always observed, while secondary flows, obsolete stocks and trade flows are

considered depending on the purpose, scope and details level of the study. An average lifetime is usually considered,

and 72 of the 129 selected studies use one or several lifetime distributions. As stated in Cao et al. (2017a), these

mathematical tools allow to assess the probability of an amount of materials to survive a certain time. A domination

of Weibull distribution is observed, ahead of normal distributions (Figure A.8). A rare use of log-normal, logistic,

gamma or beta lifetime distributions was also noticed. A summary of the building-related lifetime distributions, their

scopes, mean values and standard deviations is displayed in Table 4.3 in Chapter 4.

(a) Example of Weibull and normal distributions (Zhou et al.
(2019))

(b) Number of top-down, bottom-up and joint approaches publi-
cations

Figure 2.3: Example of Weibull and normal distributions with a mean value of 34.1 and a standard deviation of 23.5 as
observed for Chinese urban residential buildings in Zhou et al. (2019) (left graph) and number of top-down, bottom-
up and joint approaches publications between 2000 and 2021 (right graph).

The assumption of in-use stock stagnation is observed in many studies through logistic or Gompertz approaches.

They depict a three-phase behavior of infrastructure and raw material stocks using an S-curve profile. These mathe-

matical tools were originally developed to analyze the evolution of the population (Gompertz, 1825; Verhulst, 1845).
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Applied to infrastructures, these curves outline a gradual change towards a state of saturation. The difference between

these two mathematical tools lies in the rate of growth before reaching saturation.

Materials intensities inputs were identified in bottom-up studies. A majority of the studies consider static intensi-

ties (19/53) and no clear trend towards more dynamic material intensities was found. Given their low occurrences,

embodied energy and impacts intensities analysis are difficult to formulate.

2.2.4 Sectors

The use of materials and goods database allow to compute all sectors and trade exchanges in top-down approach

(The yearbook of nonferrous metals industry of China, USGS, UN Comtrade database, Worldsteel, Copper Alliance)

mainly through a flow-driven approach. The sector most commonly included in bottom-up computing is building,

ahead of power supply, transportation and infrastructures. Multi-sector approaches are usually observed in the con-

sidered studies, with some overall patterns. Infrastructures and domestic appliances have a strong dependency with

the building sector, and the power grid, energy storage sector and the electrical vehicles are usually studied in parallel

of power supply. Only five publications carry out a detailed bottom-up approach for a large set of infrastructures.

Valero et al. (2018); Wang et al. (2015a); Dong et al. (2019); Yin and Chen (2013) pursued physical approach of material

content, and Chen (2018) adopted a monetary approach. Moreover, some sector gaps were exhibit, such as a lack of

study of the industry sector (Dong et al. (2019) considered an average copper intent for the industrial infrastructures

in China), final demand goods (Dong et al., 2021; Chen, 2018) and regional or global trade. Some sectors are not well

represented, such as fossil fuel supply infrastructures.

2.2.5 Materials, energy and impacts results and analysis

The results are segmented into three categories : materials, energy and impacts. As previously noticed, most of the

considered study do not focus on embodied energy and impacts of materials. Few results on energy and impacts

are observed. Material flow results are observed in most of the studies, either through a flow-driven or stock-driven

analysis. A domination of in-use stock over obsolete stock was identified. Moreover, it was found out that recycling

is a growing research field in the literature selected, from an increasing number of aspects such as its quantification,

modeling assumptions (e.g. recovery rate, raising recycling rate), the role of scrap quality, its link with stock dynamics

and its implications (e.g. policy, scrap trade).

An intermediate number of uncertainty and sensitivity analyses were conducted in the literature (Table 2.2). They

offer insights on the most influential input parameters. Two main insights were identified. First, uncertainties in the

lifetime represent a major share of the impacts in the outputs (Pauliuk et al., 2013; Hu et al., 2010; Spatari et al., 2005). It

was found that the standard deviation and shape of lifetime distributions had little or moderate impacts on the results

(Müller et al., 2011; Glöser et al., 2013; Wiedenhofer et al., 2019; Cao et al., 2017a; Ciacci et al., 2013; Deetman et al.,

2020), and that the mean value of the lifetime distributions could have substantial impacts on the outputs. Secondly,

Miatto et al. (2017b) showed the intuitive linear effect of material intensities variations on outputs. Static assumptions

about their regional values can therefore carry substantial impacts (Deetman et al., 2020; Watari et al., 2019).

2.3 Insights

2.3.1 Materials modeling: a data challenge

Initial MFA studies proposed a top-down approaches5, and relied on the rapid development of material flows databases6.

However, modeling the drivers of material stocks and flows requires further bottom-up approaches, allowing for a

more accurate computation of each sector. Most of the bottom-up studies consider a technological stock-driven

5We can cite the Stock and Flow project (STAF) of the Center for Industrial Ecology with several publications in the early 2000s (Graedel et al.,
2002; Spatari et al., 2002; Bertram et al., 2003).

6Such as the data from World Steel Association or Copper Alliance.
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modeling which compels to a more desegregated level of data. They rely on a significant number of material param-

eters (material intensities, recycling rates...) and technological parameters (technology desegregation, market share,

lifetime...). Moreover, the data challenge is further emphasized as several recent studies have proposed bottom-up

analysis at regional and multi-regional scales, with time and/or space dynamic parameters (Marinova et al., 2020a;

Deetman et al., 2020; Dunn et al., 2021). The identified data challenge can occur in several ways. A lack of data quality

can be observed-such as statistical breaks-or a lack of data intensity-such as incomplete perimeters and data gaps

(Wiedenhofer et al., 2015)7. In particular, given the lack of accurate data on specific materials, waste flows are not

well understood and carry most of the modeling uncertainties. Substantial impacts are observed the assessment of

materials in-use and obsolete stocks, and on recycling indicators (Glöser et al., 2013).

Several trends can be identified in the literature to cope with the data challenge. First, databases have been developed

over the recent years. They provide extensive data on material intensity for seven building types on the Dutch perime-

ter (Sprecher et al., 2021), 46 residential buildings on the Swedish perimeter (Gontia et al., 2018) and for 22 countries

Heeren and Fishman (2019)8. Second, Cao et al. (2018) and Heeren and Hellweg (2019) have proposed probabilistic

analysis of the building sector, which allowed to obtain results with confidence interval. Lastly, we observed an in-

creasing use of sensitivity analysis in the literature. The identified data challenge leads to gaps in the modeling scope,

as the fossil fuels supply chain, power grid and storage, public infrastructures, the industry and final demand goods

are rarely modelled in bottom-up approaches.

2.3.2 A growing emphasis of stock importance

Unlike energy materials, food or water, raw materials provide services to humans through their in-use stocks9. Ma-

terial in-use stocks are a pivotal part of MFA, and they encompass various roles in the socio-economic metabolism

(Pauliuk and Müller, 2014)10. The in-use stocks analysis has proven to be pertinent to provide insights about the pop-

ulation and the lifestyle (Müller, 2006), development levels (Gerst, 2009; Bader et al., 2011; Pauliuk et al., 2013), and

development patterns. Bleischwitz et al. (2018b) identified a pseudo-logistic profile of the material in-use stocks with

three stages describing the development level of a society: growth, maturing and saturation. The authors empirically

estimated saturation levels of the in-use stocks per capita. They outlined the larger differences in saturation levels

between countries for concrete and steel than for aluminum and copper, which could be explained by the higher

technological uses of those latter and the more common standards of materials demand in high-tech products. The

described profile further allow to understand the drivers of both the inflow and the outflow. The inflow can be en-

visioned as the supplier of the maintenance and expansion parts of the in-use stock. It therefore displays various

patterns depending on sectors and regions, as a shift from expansion to maintenance is observed as a society devel-

ops (Wiedenhofer et al., 2015; Miatto et al., 2017a; Nguyen et al., 2019b). The outflow is strongly impacted by the pace

of the stock expansion. A rapid expansion of the in-use stock requires higher material demand and could hamper its

recycling content11, which is observed in the low-carbon transition (Vidal et al., 2018) and rapid growth of developing

countries (Müller et al., 2011). Finally, both the inflow and the outflow are dependent on the lifetime of the in-use

stock12 and many authors insist on the benefit of increasing lifetime to reduce material inflow and environmental

impact (Hu et al., 2010; Huang et al., 2013; Cao et al., 2017b; Krausmann et al., 2017; Zhang et al., 2019).

2.3.3 Waste generation and recycling

Recycling has been widely addressed in the considered literature. It is explained by the usefulness of material flow

analysis to assess the circularity potential of materials in human systems and the high annual growth rate of metals

7Such difficulties could enhance the use of alternative methods in regions displaying poor data quality and/or intensity. Hattori et al. (2014);
Hsu et al. (2011) and Hsu et al. (2013) outlined the lack of data availability and the lower data "cost" of NTL studies.

8These three studies are out of the scope of the current review and are presented for the interested readers. In a lesser extent, Ortlepp et al.
(2018) and Kleemann et al. (2017) have also provided extensive dataset in their publications.

9The stock-flow-service nexus intend to analyse the "interrelations between material and energy flows, socioeconomic material stocks (“in-use
stocks of materials”) and the services provided by specific stock/flow combinations" (Haberl et al., 2017).

10The authors proposed a review of the roles of in-use stocks in the socio-economic metabolism
11The recycling content is defined as the share of recycled materials in the inflow.
12Which can be estimated from the technological lifetime and the material content of products.
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demand. In this section, the main aspects of recycling discussed in the literature are described: the environmental

interest, the link with product lifetimes, the impact on material trade, its challenges and the rapid development of

recycling indicators. It allows a lower use of primary materials, and a slower depletion of reserves and a reduction of

environmental impacts. The depletion of reserves remains a marginal issue for the selected base materials, and only

copper could eventually face a risk (Pfaff et al., 2018). Conversely, base materials represent a substantial part of total

material demand, energy demand and environmental impacts. Increasing the share of secondary materials could

provide a valuable solution to decrease these impacts13. This aspect is increasingly mentioned in the literature, but

rarely addressed properly. Most MFA studies do not compute the environmental impacts of material production, but

focus on the technical and political constraints of recycling.

The recycled materials are recovered and recycled after the end-of-life of the infrastructures. Their availability de-

pends on the lifetime of products and the demand level, which both vary by country and sector. The recent and rapid

development of some countries leads to a need of understanding of scrap generation dynamics, and its relationship

with the in-use stock. As a country develops, the scrap generation and the share of recycled materials in the total

inflow increase, which is explained by the progressive saturation of the in-use stock (Vidal et al., 2017). The rapid

accumulation of materials in the in-use stocks could create a massive scrap generation, and developing countries

need to develop recycling infrastructures (Dong et al., 2019). For example, a low secondary aluminum production is

currently observed in China, and scrap generation is expected to grow in the years to come since most of Chinese

consumed aluminum is the stocks (Liu, 2019; Li et al., 2020b)14. At a sector level, the different lifetimes of products

influence the availability of scrap for each materials. For example, while copper is mostly embedded in buildings-with

long lifetimes, the distribution of aluminum and steel stocks are more homogeneous between sectors. A low copper

scrap availability can therefore be observed, but the increasing use of copper in electronics could reduce the delay of

scrap availability Ciacci et al. (2017).

Despite its link with environmental impacts reduction, recycling is mostly analyzed through its policy implications in

the literature. An increase of the recycled content of the inflow could have significant effects on imports and exports

of raw materials (Bader et al., 2011). A growing emphasis on the role of urban mines for a decreasing dependency on

imports was observed in the publications. Liu (2019) emphasized the highly disruptive dimension of trade wars in

primary materials imports and regional availability, and the role of secondary materials to hamper trade dependency.

However, the higher reliance on domestic recycled resources could be hindered by the local recycling cost, grade

quality demand and environmental policies, e.g. for copper in the USA (Chen et al., 2016). The combination of these

constraints with the manufacturing role of China explains the distribution of material flows. While China imported

mostly primary, refined and scrap copper between 1990 and 2015, the country displayed almost no export of copper

scrap, and mostly exported finished goods (Soulier et al., 2018b). Conversely, three trends have been observed in

copper demand in the USA: an increase of overall material demand, a decline in secondary production and a rise of

old scrap export. It is explained by the high cost of cleaning copper old scrap before recycling, and the environmental

concerns of processes in local US companies (Chen et al., 2016; Gorman and Dzombak, 2020). The direct effect of

local policies on global scrap flows was also identified for aluminum flows. Aluminum scrap exports to China were

significantly reduced by tariffs evolution in Europe and the USA for political matters15. It had significant consequences

on the Chinese aluminum recycling policy, and led to recent improvements (Li et al., 2020b)16.

Four main future challenges of an increase of the recycling content of the inflow were identified in the literature. The

first two are related to the secondary material prices, as the economic viability of recycling relies on its competitiveness

compared to primary materials. First, the recycling prices could be increased by quality requirements and processing

needs (Chen et al., 2016). It would constitute a limit to recycling, especially for low-quality copper scrap which requires

13Secondary materials have lower production energy and impacts than environmental materials (Birat et al., 2013; Gutowski et al., 2013; Vidal,
2021)

14Informal recycling can however hamper the estimates of the recycled content of the inflow, for instance in copper studies (Dong et al., 2019).
15The European Commission aims at further tightening the control of copper in Waste from Electrical and Electronic Equipment (WEEE) as

significant amounts are illegally exported to developing countries (Ciacci et al., 2017).
16The Chinese efficiency recycling rate remains low, but recent measures such as the “Green Fence Policy” should allow its progressive increase

(Soulier et al., 2018b).
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energy-intensive processes (Ciacci et al., 2017; Wang et al., 2021)17. Second, the collection costs of end-of-life materials

could be prohibitive at current primary material prices18. Future metal prices will significantly impact the potential

of recycling (Ciacci et al., 2017), and the progressive depletion of primary reserves could result in prices rise, which

could finally have a beneficial impact on recycling (Vidal et al., 2017). Third, down-cycling is frequently observed in

steel alloys (Hatayama et al., 2010) and construction and demolition waste recycling (Miatto et al., 2017b)19, which

could reduce the recycled content in products requiring high-grade materials. Ciacci et al. (2017) highlighted the

existing solutions to increase the share of functional recycling for steel and aluminum, such as the differentiation of

sorting techniques by alloy and a reduction of the number of elements in alloys. The authors further emphasized their

potential implementation for copper. The needed improvement in alloys scrap is also outlined for stainless steel,

and could results in a reduction of environmental impacts (Igarashi et al., 2007). The last challenge lies in the lack

of mature recycling system in some countries, such as in China, leading to an increase of landfill deposits (Li et al.,

2020b). Scrap aluminum is therefore imported in China, despite metals availability in end-of-life products20.

Overcoming the challenges and developing an efficient recycling industry requires enhancing the knowledge of re-

cycling flows. A broad range of ratios and more detailed flows has been developed in the literature to provide better

insights in the recycling chain difficulties. A simplified cycle is presented in Figure A.9 to define ratios and for ease of

reading 21.

Among the listed ratios and flows, the end-of-life collection rate (EOL-CR)22 and the dissipative losses have gained

attention. Top-down studies have allowed better estimations of global and regional EOL-CR for copper (Spatari et al.,

2005; Soulier et al., 2018a; Pfaff et al., 2018) or aluminum (Ciacci et al., 2013; Sevigné-Itoiz et al., 2014). However,

the EOL-CR remains product-related, region-related and material-related, and few data is available at a regional and

product level23. A better knowledge of the material composition and quality of products is crucial to enhance the

EOL-CR24, which could ultimately lead to higher EOL-RR and lower environmental impacts (Sevigné-Itoiz et al., 2014).

However, Gorman and Dzombak (2020) emphasized that the US EOL-CR remains insufficient to achieve high EOL-

RR, as about half of the copper wastes collected were ultimately landfilled in 2015. Several recent publications have

estimated and discussed regional and sectoral EOL-CR. Low EOL-CR were observed in electronic products in the USA

(Wang et al., 2021), or in Europe, where Ciacci et al. (2017) outlined inefficiency in copper collection in end-of-life

vehicles (ELV) and waste of electrical and electronic equipment (WEEE). The EOL-CR is impacted by the yearly end-

of-life products flows, and significant variations of the copper EOL-CR over time were estimated in China (Gorman

and Dzombak, 2020), in the USA (Soulier et al., 2018b), and in Spain for aluminum (Sevigné-Itoiz et al., 2014). Few

data are also available on the dissipative losses (Lifset et al., 2012). They are defined as lost materials accounted for

in the in-use stocks (Hashimoto et al., 2007)25. These materials cannot be collected and are rarely estimated in the

selected literature, because of assessment difficulties. However, their inclusion in MFA studies is essential to identify

the material losses in the use stage and to enhance the estimation of environmental impacts of materials. The dissipa-

17Energy-intensive processes can also observed for technological metals, which are outside the scope of this study. Their recycling displays an
opposite relationship with the dilution rate of metals, which explains the low recycling rate of technological metals in high-tech products (Vidal
et al., 2017).

18Falconer (2009) showed that buried cables represent a substantial of the copper consumed in wind farm, and that no or little recovery of the
cables was planned during the decommissioning of wind farms. He further estimated that 70% to 80% of the copper in-use stock in wind farms
could remain buried in the UK.

19Down-cycling is defined as the recycling resulting in a lower quality of materials, and therefore a loss of functionalities. The down-cycled
materials are used for applications requiring lower performances materials. An example is the reuse of high performance concrete in non-structural
applications (e.g. roads, noise barriers...).

20Further limitations on the Chinese recycling system are detailed in Wübbeke and Heroth (2014).
21The issue of harmonizing recycling and end-of-life indicators was identified by Graedel et al. (2011) and Glöser et al. (2013). The authors

proposed a set of rates along the collection and recycling chain, which are described in the Section of SI
22EOL-CR is the share of metals embedded in end-of-life products actually collected
23The EOL-CR can be alloy-related for a same material. For instance, Yoshimura and Matsuno (2018) outlined differences in the collection and

recycling between copper and copper alloys, and the authors emphasized the need to consider different EOL-RR. It can result in significant and
growing variations in the final share of secondary materials in the inflow.

24In parallel, the appropriate form of the collection sector should be discussed. Markus et al. (2013) emphasized the different outcomes in
collection rates between a "formal sector" in which consumers pay for end-of-life products to be collected, and an "informal sector" in which the
consumers are paid for obsolete products, with higher collection rates.

25Lifset et al. (2012) further proposed the distinction between intentional and unintentional dissipative losses, and conducted a short review on
previous studies on dissipation of materials. The authors proposed an estimation of the dissipative losses of copper in the USA between 1975 and
2000, but this study is outside the scope of this review.
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tive losses occur in specific product use-e.g. brake pads, pesticides26, paint, treated wood. Differences were identified

between sectors (e.g. in France (Bonnin et al., 2013)), and an increasing use of these products has been observed (e.g.

in China (Chen and Shi, 2012) and in Japan (Hashimoto et al., 2009)).

2.3.4 Increasing policy considerations

The material basis of our modern society confers on metals and minerals a political dimension. However, a limited

number of studies proposed a political contextualization of the results, and the formulation of recommendations.

They emerged from concerns about material supply security in both Europe and China. The current and expected

surge in Chinese material demand accentuates its dependency to foreign imports. Several authors formulated policy

recommendations to mitigate this trend. For copper, they identified the need to: (1) enhance geological exploration,

(2) guarantee copper imports, (3) increase the collection rate, (4) rapidly develop the Chinese recycling infrastructures

and (5) achieve sustainable recycling by involving laws and institutions to monitor the firms (Zhang et al., 2015a; Wang

et al., 2017). For steel, Guo and Zhang (2016) provided a thorough analysis of the existing policy and proposed several

policy measures. The authors emphasized the need (1) to develop new governmental guidance to the steel industry,

(2) to adapt the industrial products to market changes (e.g. cost or demand), (3) to implement optimized loss and

export policies.

In Europe, a modelling of the European Waste Framework Directive showed its significant potential to achieve high

recycled share in the nonmetallic minerals inflow (Wiedenhofer et al., 2015). Moreover, a higher reliance on exports

is observed for aluminum (Ciacci et al., 2013) and copper. Ciacci et al. (2017) estimated that industrial companies

and consumers could experience copper shortages in case of a disruption of the primary copper supply chain, despite

increasing scrap generation. The authors reported that environmental legislation, technological improvements and

Asian copper recycling industry development have hampered the EU copper recycling industry, resulting in growing

exports of scrap to other countries. They further emphasized the opposition of these observations with the European

Circular Economy Strategy. The concomitant lack of European recycling industry, implementation of legislation to

improve the collection of copper scrap and potential constraints of higher recycling content in products-such as in

batteries (Commission, 2020)-could therefore further enhance the dependency to foreign recycling industries and re-

sult in a shortage risk. At a global scale, Seck et al. (2020) modelled the implications of two policies implementation in

copper demand scenarios. First, the authors considered the development of regional recycling industries and showed

the need to enhance recycling capacities in developing countries, as demand growth in long-lifetime technologies

leads to a higher reliance on imports and lower scrap availability. Secondly, they implemented accelerating sustain-

able mobility policies and estimated that "soft transportation" could induce medium copper demand reduction.

An increase of the recycled content of the material inflow could be achieved by policies implementations, e.g. through

a minimum share of secondary materials content in products (Wang et al., 2021; Ciacci et al., 2017). In Europe, the

amending Regulation (EU) N° 2019/1020 of directive 2006/66/EC aims at implementing a minimum recycled con-

tent for technological materials in industrial and transport batteries (Commission, 2020), and could allow recycling

investment to tackle low competitiveness of secondary materials.

2.4 Conclusion

This critical literature review covered dynamic material flow analysis of four base materials: aluminum, concrete,

copper and steel. The review included 129 articles quantifying prospective and retrospective stocks and flows, as well

as embodied energy and climate impacts of the use of these materials. It was conducted from 2000 to 2021 at national,

regional, multi-regional and global scales. A review methodology was developed, relying on previous works by Müller

et al. (2014) and Wiedenhofer et al. (2020).

It enabled to efficiently grasp the scopes, the model designs, as well as the result and analysis categories displayed in

the publications. It was found that (1) most studies adopted a national scope and (2) focused on the building, power

26Lifset et al. (2012) reported pesticides use to represent the main source of copper dissipation in 1975.
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supply, transportation and infrastructures sectors. They increasingly (3) encompassed several base materials and (4)

considered a bottom-up approach. However, (5) prospective studies in a low-carbon perspective remained limited, (6)

a lack of analysis of the energy-material nexus was observed, and (7) no analysis proposed solution-oriented modeling

to decrease the impacts of base materials. The main insights of the publications were identified:

• Bottom-up studies represent a data and assumptions challenge progressively tackled by material intensities

databases and sensitivity analysis;

• In-use stocks has a link with development level, and the regional patterns of maintenance and expansion of

materials in-use stocks carry a significant impact in the inflow and waste dynamics;

• Material wastes are increasingly analyzed, mostly from a the political perspective;

• Recycling could play a significant role to decrease energy demand and GHG emissions in a context of growing

material use;

• Policy-makers have a crucial role to successfully decrease regional supply security and environmental concerns;

• The expected pace and magnitude of inflow increase and waste generation in the coming decades raised con-

cerns about the capacity of the political community to display incentives and biding measures.

The results and the insights enabled to identified research gaps:

• A lack of modeling of some sectors;

• A lack of prospective studies in a low-carbon context;

• A limited number of solution-oriented and political-oriented studies;

• A lack of analysis of the energy-material nexus.
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Chapter 3

The DyMEMDS model

Summary of the chapter

• The Dynamic Modelling of Energy and Matter Demand and Supply (DyMEMDS) is a stock and flow

model.

• The DyMEMDS model computes the raw material stocks and flows and the associated energy demand

and environmental impacts.

• The model covers the entire energy chain and the three end-use sectors (industry, building and trans-

port).

• The general model structure is presented in the chapter.
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The DyMEMDS (Dynamic Modelling of Energy and Matter Demand and Supply) model is presented in this section.

The description is not exhaustive and up to date, as the model is constantly evolving, and only the methodology

behind the main features is depicted. The DyMEMDS model is currently developed in the Institute of Earth Sciences

(ISTerre) in Grenoble1. It aims at computing the raw materials stocks and flows, with an initial focus on the base

materials2, as well as the final energy demand and an increasing number of environmental impacts3 resulting from

materials production. The model covers the entire energy chain and the three end-use sectors (industry, building and

transport) and encompasses four types of physical variables:

• The technological unit (TU), which are defined as the infrastructures in the energy chain and end-use sectors;

• The raw materials (RM);

• The energy;

• The environmental impacts.

The overall structure of the DyMEMDS model is presented on Figure 3.1. In a first step, the stock of TU is assessed

for each sector. The number of TU depends on the sector, as only two TU are considered for the building sector

(residential and non-residential) while the transport sector is desegregated into 47 TU. The TU stocks can be estimated

through four methodologies (Figure 3.1), which enable to compute a wide range of scenarios:

• The energy approach. The sector energy demand (J/yr) and the energy demand bu TU (in J/TU/yr) allows to

endogenously estimate the stocks. This approach is used in the transport and energy sectors.

• The stock approach, in which the TU stocks are an exogenous variable;

• The Gompertz/logistic stock approach. The Gompertz/logistic curves depends on the GDP per capita, and

provide a useful tool to describe the behavior of the infrastructures and materials stock through a three-phase

profile: growth, maturation and saturation (Bleischwitz et al., 2018b). It enables to compute a trend-based

approach without the usual reliance on scenarios. This approach is used in the building sector.

• The combined energy and stock approach. It is used for the fossil fuels supply chain, for which the historical

data where extrapolated using the historical and prospective energy supply.

In parallel, two calculation methods are implemented in the DyMEMDS model. They aim at criticizing the scenarios

assumptions.In the share methodology, the full set of exogenous scenario data are considered (i.e. final energy de-

mand of the building, transport and industry sectors, and the energy supply). The results are therefore in line with

the scenario. Conversely, in the feedback methodology, only the final energy demand of the building and transport

sectors are considered as exogenous data feeding the model. The final energy demand of the industrial sector and the

energy supply are endogenously calculated, based on the model assumptions. The differences between the results

and the scenario outcomes enable a discussion on the assumptions.

1The model was initially developed on the Vensim software, and is currently being coded in Python. The initial results are displayed in the
published article "Modelling the demand and access of mineral resources in a changing world" in Section B.

2The base materials are defined as the materials used for structural uses, and for which a low substitution potential is observed. It includes
aluminum, copper, concrete, iron and the materials mostly used for alloy steel making (manganese, chromium or nickel).

3Such as CO2 emissions, land use or water consumption.
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Figure 3.1: Overall DyMEMDS model structure.

In a second step, the theoretical flow of TU (in TU/yr) is derived from the stock, following the equation:

StTU = St−1TU +Ftth.TU ·d t (3.0.1)

with StTU the stock of TU at time t , St−1TU the stock of TU at time t −1 and Ftth.TU the theoretical flow of TU at time t .

However, the end-of-life TU are not accounted for in the theoretical TU flow, and the actual TU flow is defined as the

sum of the theoretical TU flow and the end-of-life TU flow (Figure 3.2). Moreover, a renewal sub-loop is considered

in case of a substantial drop of the TU stock. It induces a negative theoretical TU flow, and could create a negative

actual TU flow, which has no physical reality4. We assumed that some assets could be removed from the TU in-use

stock before their end-of-life without being dismantled. A drop of the TU stock creates an unused flow, which supplies

an unused stock. It acts as a buffer stock, and prioritized over the actual flow, which allows to empty the unused stock

before any new manufacturing. The TU lifetimes is thus respected, and the total TU stock is the sum of the in-used TU

stock and the unused TU stock.

4We can consider the COVID19 crisis in which many infrastructures were unused but not dismantled.
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Figure 3.2: TU renewal structure.

The actual TU flow and the material intensities enable to estimate the primary RM production flow, which supplies

the RM in-use stock (Figure 3.1). At the end of the lifetime of each TU, the RM in-use stock is reduced by both the end-

of-life RM recycling flow and the losses RM flow during the recycling process, which respectively feed the recycled stock

and the cumulated losses stock. The recycled stock then allows for a recycled RM flow which is ultimately reused in the

RM in-use stock. The new TU thus consume both primary and secondary RM. The RM demand, which encompasses

both the primary and secondary RM flows, is then used to estimate the energy demand of RM production or recycling,

and finally the industrial energy and the energy supply in a feedback calculation method.

The sectors are separately computed, and ultimately aggregated in the model to estimate the RM stocks and flows,

the energy demand and environmental impacts of RM production and recycling, and finally the industrial energy and

energy supply. In order to initially simplify the recycling process in the model, the materials recycled were used in their

initial sector (Figure 3.3). This methodology has no or little physical reality, and a proper recycling module requires all

the sectors to be modelled, and the industry and transport modules remain under construction. The studies presented

in sections 4 and 5 are based on the initial separated recycling loops.
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Figure 3.3: Evolution of the DyMEMDS recycling structure.
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Chapter 4

Base materials impact of the building sector

in the low-carbon transition

Summary of the chapter

Objectives

• Estimating the base material weight of baseline and transition scenarios at a regional scale.

• Estimating the associated energy demand and CO2 emissions.

• Estimating the base material weight of thermal renovation. CO2

• Assessing the potential of material engineering to reduce energy demand and environmental impacts of

concrete.

Methods

• The prospective regional building stocks of seven scenarios are compared.

• A dynamic material flow analysis (MFA) of base materials is developed and applied between 1950 and

2100 (Section 4.1).

Results

• A significant growth of base material demand is expected in the building sector, with regional disparities

(Section 4.2).

• Thermal renovation would represent a small share of the increase, and the energy to produce renovation

materials would amount to about 1% of the energy savings.

• The recycled concrete aggregates (RCA) could reduce the landfills stocks if implemented quickly on a

large scale.

• The green concrete mixes could allow to significantly decrease the energy and environmental impacts

of concrete.
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4.1 Base materials impact of the building sector in the low-carbon transition
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ABSTRACT
The significant weight of the building sector in global material demand has been addressed in
several publications, but a lack of consideration of renovation and energy-materials nexus dimension
was identified. To fill these gaps, we developed a stock-flow dynamic model from 1950 to 2100,
using scenarios of the International Energy Agency and the Shared Socioeconomic Pathways of the
academic literature.We find that (i) the combined increasing stocks in the less developed countries and
the development of renovation strategies in themost developed countries results in a rise of the inflows;
(ii) it induces a large energy demand and environmental impacts, which could question the feasibility
of some low-energy demand scenarios; (iii) the large-scale use of recycled concrete aggregates and
green concrete1 displays a significant potential to enhance the reduction of energy andGHG impacts of
concrete. We furthermore highlight the crucial temporal aspect of policies to successfully implement
these solutions, as long lifetimes are observed in the building sector.

1. Introduction
The conjunction of a soaring human demography over

the 20tℎ century and a rapid improvement of housing condi-
tions has driven the increase of the final energy demand in
the building sector. It grew from 60 EJ in 1973 to more than
121 EJ in 2019 (IEA, 2021), representing approximately
40% of the global final energy demand. In a context of
rapid development of emerging countries and of increasing
of environmental concerns, a better understanding of the
drivers of the energy demand and environmental impacts of
the building sector has therefore become a growing topic in
the academic and institutional literature1.
1.1. The need to better evaluate the embodied

energy of buildings
The energy demand of the building sector is segmented

between the operational phase and the embodied phase,
which is defined as "the total energy used to construct,
maintain, and finally demolish a building" (Azari and Ab-
basabadi, 2018). The operational phase has been thoroughly
studied over the past decades and has led to a better un-
derstanding of the leverages to achieve higher energy effi-
ciency in the building sector, such as the design (Pacheco
et al., 2012) or the role of occupants (Yang et al., 2014;
Zhang et al., 2018). It has allowed the implementation of

∗Corresponding author
hugo.le-boulzec@outlook.fr (H. Le Boulzec)

ORCID(s): 0000-0003-3658-7715 (H. Le Boulzec); 0000-0002-7998-4115
(S. Mathy); 0000-0002-1485-3165 (B. Andrieu)

1The development of building energy and infrastructures databases in
Europe or the USA shows the growing importance of the understanding of
the building sector energy demand.

energy efficiency policies, such as in the European Union
(Economidou et al., 2020), where an improvement of house-
hold energy efficiency by 29% has been observed between
2000 and 2019 (Rousselot and Pinto Da Rocha, 2021). The
residential segment has received much of the focus, despite
the potential for energy efficiency in the non-residential
segment (Ruparathna et al., 2016), which explained the
increase of the share of the non-residential segment in the
building final energy demand over the last two decades (IEA,
2021). With the extensive knowledge on the operational
phase of buildings, the embodied phase has progressively
gained attention (Chastas et al., 2016; Azari andAbbasabadi,
2018). The bottom-up approach describing the materials and
their stocks and flows within the building sector has proven
to provide useful results to develop strategies to reduce
embodied energy and environmental impacts.
1.2. Dynamic materials modeling of the building

sector
The analysis of the social metabolism2 has been a grow-

ing research field over the past 20 years. Initial studies
developed static top-down approaches of the stocks and
flows of materials embedded in human societies3 and a

2The social metabolism-or socioeconomicmetabolism-"constitutes the
self-reproduction and evolution of the biophysical structures of human so-
ciety. It comprises those biophysical transformation processes, distribution
processes, and flows, which are controlled by humans for their purposes.
The biophysical structures of society (‘in use stocks’) and socioeconomic
metabolism together form the biophysical basis of society." (Pauliuk and
Hertwich, 2015)

3For instance at a regional level in the Stocks and Flows Project
(Graedel et al., 2002).
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growing trend for dynamic analysis has rapidly been ob-
served through dynamic material flows analysis (MFA). A
special emphasis is placed on the building sector in the
literature, as it represents a significant share of basematerials
demand4. Several recent studies have proposed reviews of
the materials modeling in the building sector. They allowed
a better understanding of the methodological approaches
displayed in the literature (Göswein et al., 2019; Nasir et al.,
2021), highlighted the substantial role of assumptions on
the outcomes (Augiseau and Barles, 2017) and provided a
comparison of the methods to quantify the material content
of construction and demolition wastes (Wu et al., 2014).

We have identified 21 dynamic MFA studies modelling
base materials using a bottom-up approach and focusing
on the building sector, on a national, multinational or
global scale5. The analysis were mainly conducted at a
national level, which enables to grasp the specificity of
local stock and flow dynamics, and improve data accu-
racy, especially concerning building lifetime and material
intensities (Augiseau and Barles, 2017). Probably due to
the low availability of estimates of building surfaces, only
three bottom-up studies computed material stocks and flows
of materials at regional or multi-regional scale (Mastrucci
et al., 2021). They display a focus on materials in a waste
framework (Wiedenhofer et al., 2015) and on the prospective
materials stocks and flows in a socioeconomic pathways,
with a thorough disaggregation of the residential and non-
residential buildings types (Marinova et al., 2020; Deetman
et al., 2020). However, none of these multi-regional studies
provide insights about the materials weight of the building
sector in a low-carbon transition context through thermal
renovation, and the analysis of the outcomes in the energy-
materials nexus.
1.3. The role of materials engineering to reduce

energy demand and environmental impacts
The consideration of the stocks and flows within the

energy-materials nexus represents a rising topic6. Indeed,
the share of GHG emissions from materials production
increased from 15% of global GHGs in 1995 to 23% in
2015 (Hertwich et al., 2019). The concrete sector alone
represented between 6 and 8% of global energy demand and
of CO2 emissions in 2016 (Bataille, 2019; Andrew, 2017).
In parallel, the construction and demolition wastes (CDW)
accounted for more than 30% of the global produced solid
wastes in 2020 (Ginga et al., 2020). In the perspective of
reducing the environmental impacts of concrete, new pro-
cesses of concrete production, through recovery, recycling

4The basematerials are defined as thematerials used for structural uses,
and for which a low substitution potential is observed. It includes aluminum,
copper, concrete, iron and the materials mostly used for alloy steel making
(manganese, chromium or nickel).

5A detail of the identified publications is provided in the Supplemen-
tary Information. We observe that the Chinese perimeter represents almost
half of these publications.

6The reader can refer to recent publications such as Giurco et al. (2014);
McLellan (2017); Vidal et al. (2017) or Elshkaki (2019). The inclusion of
resource studies within a broader nexus has been studied by Bleischwitz
et al. (2018a)

and the use of other materials in concrete manufacturing are
developed and studied.

Japan or the Netherlands achieve close to 100% concrete
recycling rate by recycling concrete into new structural
applications or in lower grade uses such as road (Tam, 2009;
Xicotencatl, 2017). It allows considerable reduction of the
environmental impacts of construction and demolition waste
(CDW) by lowering their amount in landfills and decreasing
the need for production. Concrete is recycled in the form
of aggregate by a crushing process, partly replacing natural
aggregate content in the concrete production7. However, the
different types of recycled aggregates suffer from a lack of
confidence from construction actors and are rarely used in
structural applications (Silva et al., 2019; European Envi-
ronment Agency, 2021). A growing number of publications
focus on the evaluation of mechanical and durability perfor-
mance of RAC using RCA replacement, showing that sev-
eral parameters could allow RCA replacement, such as the
structure of the aggregates (Silva et al., 2014; Verian et al.,
2018; Guo et al., 2018), the process conditions (Thomas
et al., 2018) or further enhancement techniques (Verian et al.,
2018).

The development of green concrete also aims to reduce
the environmental impact. It is a low-carbon concrete, which
production mainly relies on industrial or agricultural by-
products, nanoparticles and advanced techniques to further
understand concrete structures (Vishwakarma and Uthaman,
2020). Given that most of the energy demand and envi-
ronmental impacts of concrete production occurs during
cement production, the replacement of primary materials
by waste materials reduces lower impacts of concrete pro-
duction (Reiners and Palm, 2015). The use of wastes in
concrete production has been implemented for decades in
the concrete industry through supplementary cementitious
materials (SCM)8. The most common SCM are coal fly
ash (CFA)9, blast furnace slags (BFS)10, silica fume, or
metakaolin (Habert, 2014; Holland et al., 2016)11. The per-
formance and environmental impacts of green concrete have
attracted increasing interest in the literature (Siddique, 2014;
Gu and Ozbakkaloglu, 2016; Paris et al., 2016; Jiang et al.,
2018; Sandanayake et al., 2020). Despite the extensive re-
search on concrete recovery and recycling, and on green
concrete, their implementation has never been conducted in
large scale scenarios.

7Shares of 12% to 29% of recycled concrete were observed in German,
the Netherlands and the United Kingdom in 2012 and 2013 (Reiners and
Palm, 2015)

8The Lafarge company defines Supplementary Cementitious Materials
(SCMs) as "materials that, when used in conjunction with portland cement,
portland limestone cement or blended cements, contribute to the properties
of hardened concrete through hydraulic and/or pozzolanic activity".

9CFA is a by-product of the combustion of coal to generate electricity.
10BFS is produced during the iron-making process.
11Many other materials can also be used, such as foundry sand, wood

ash, plastic, glass and other ashes (Paris et al., 2016; Sandanayake et al.,
2020).
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1.4. Scope and objectives of this study
The present study aims at filling the identified gaps

by (1) estimating the base materials (concrete, aluminum,
copper and steel) weight of both construction and thermal
renovation12 in low-carbon transition scenarios, (2) esti-
mating the historical and prospective energy demand and
CO2 emissions of the materials production in the building
sector and (3) assessing the potential of energy demand and
environmental impact reductions of concrete in the build-
ing sector through concrete recovery, recycling and green
concrete use. This paper is structured as follows. Section 2
details the methods and data. Section 3 describes the results,
section 4 discusses them and section 5 concludes.

2. Methods and data
A three-step methodology was developed. First, histor-

ical and prospective floor areas were obtained. Second, the
base material stocks and flows in the building sector were
estimated using dynamic regional material intensities and
lifetimes in the DyMEMDS model. Lastly, their energy and
environmental impact was assessed and two solutions were
considered for a reduction of concrete demand and impacts:
concrete recovery and recycling, and green concrete. Their
potential was assessed in the selected scenarios.
2.1. Scenarios

Seven scenarios are considered: the Shared Socioeco-
nomic Pathways (SSP) combined with the Representative
Concentration Pathways (RCP), the Beyond 2 Degrees
Scenario (B2DS) and the Reference Technology Scenario
(RTS). They provide six socioeconomic futures which cor-
responds to six projections of the building surfaces. These
scenarios were selected for the wide range of socioeconomic
and climate pathways they depict and for their broad use
in the academic and institutional literature. Their main
characteristics are described in this section, and a summary
of the scenarios is provided in Table 1.
2.1.1. The Shared Socioeconomic Pathways combined

with Representative Concentration Pathways
The Shared Socioeconomic Pathways (SSP) feature mul-

tiple baseline (without climate policies) worlds because un-
derlying factors, such as population, economic growth, ed-
ucation, urbanization and the rate of technological devel-
opment, could lead to very different future emissions and
warming outcomes, even without climate policy. They are
based on five narratives intended to span the range of plau-
sible futures: sustainable and inclusive development in the
SSP1, middle of the road in the SSP2, regional rivalry in the
SSP3, inequality in the SSP4 and fossil-fueled development
in the SSP5 (O’Neill et al., 2017). They were developed
by the climate change research community in parallel of
the Representative Concentration Pathways (RCPs) that set
pathways for greenhouse gas concentrations and the amount
of warming that could occur by the end of the century (RCP

12Thermal renovation is related to energy management, and is referred
to as renovation in the rest of the study.

1.9 to RCP 8.5W/m2)13 (Moss et al., 2010; vanVuuren et al.,
2011). SSPs and RCPs are combined are combined to assess
the efforts needed both to reduce GHG emissions and to
adapt according to the different levels of global warming of
the RCPs and the different socio-economic assumptions of
the SSP. Such trajectories are quantified with six Integrated
Assessment Models (IAMs) (Riahi et al., 2017). Five of
these IAMs are used as markers14 for a specific SSP15.

The SSPs were computed with a climate constraint
through the implementation of RCPs. The RCP 2.6 was im-
plemented on the SSP1, SSP2 and SSP3, while the RCP 4.5
was used on the SSP2, SSP3 and SSP4. In order to provide
an extreme case, the SSP5 baseline was further selected
(Table 1). The computation with the GCAM 5.4 model was
selected because in this model, the regional residential and
non-residential floor areas are estimated for 32 regions from
1990 to 2100 through a logit approach (Calvin et al., 2017).
The building stock and floor areas depend on socioeconomic
assumptions (SSPs), but not on the RCP. The renovated
surfaces were estimated in Mastrucci et al. (2021). Given
the small final energy demand between the SSP2 2p6 and
4p5-and the SSP3 2p6 and 4p5-no difference was considered
in the renovation hypothesis. The results were extrapolated
as shares of the regional building stocks and used on the
surfaces of the selected pathways. The results of the SSP1
were used for the SSP4, as both are low-carbon pathways.
The SSP5 is a high carbon scenario, for which no renovation
was considered. We observe the highest renovation rates in
China, North America and Europe, reaching between 2021
and 2025 3% to 4% in the SSP1 and SSP4 and 1.6% to 2% in
the SSP2 and SSP3 period. Moreover, the renovation rates
decrease from the 2031-2035 period for most of the regions
in the SSP1-4 scenarios16. On a global average, the SSP2
displays the highest annual renovation rates-reaching 1.73%
in the 2026-2030 period, ahead of the SSP1.
2.1.2. The International Energy Agency scenarios

Two scenarios of the International Energy Agency were
selected: the Reference Technology Scenario (RTS) and the
Beyond 2°C Scenario (B2DS) (IEA, 2017). The RTS is a
baseline scenario that takes into account existing energy-and
climate-related commitments by countries, including Na-
tionally Determined Contributions pledged under the Paris
Agreement. The average temperature increase would reach
2.7°C to 3°C in 2100 (Table 1). Conversely, the B2DS pro-
poses an ambitious trajectory, with a 50% chance of limiting
the temperature increase to 2°C in 2100 by reaching carbon

13The RCP 1.9 translates into a average global warming of about 1.5°C.
It reaches at least 4°C in the RCP 8.5 (IPCC, 2021).

14A marker consists in a reference modeling of each SSP by an IAM,
which is used in climate policies analysis (Riahi et al., 2017). A further
computation of the five pathways in several of six selected IAMs allows for
a comparative analysis of the results.

15AIM/CGE for the SSP1 van Vuuren et al. (2017), MESSAGE-
GLOBIOM for the SSP2 (Fricko et al., 2017), IMAGE for the SSP3
(Fujimori et al., 2017), GCAM for the SSP4 (Calvin et al., 2017) and
REMIND-MAgPIE for the SSP5 (Fricko et al., 2017)

16The detailed regional renovation shares are displayed in the Supple-
mentary Information.
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Table 1
Summary of the socioeconomic characteristics of the selected scenarios.

Scenario
Computation
model Population

GDP
per capita

Average
global warming References

RTS
B2DS ETP-2017 High Low

2.7-3°C
<2°C IEA (2017)

SSP1 - RCP 2.6 GCAM 5.4 Low Medium 1.8°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP2 - RCP 2.6 GCAM 5.4 Medium Medium 1.8°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP3 - RCP 4.5 GCAM 5.4 High Low 2.7°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP4 - RCP 4.5 GCAM 5.4 Medium Low 2.7°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP5 baseline GCAM 5.4 Low High 4°C
Kim et al. (2006)
O’Neill et al. (2014)

neutrality by 2060 (Table 1). This requires unprecedented
efforts in all sectors at the global level, which translates in
particular into a drastic reduction in fossil fuel consumption
and a massive recourse to renovation (IEA, 2017). Both
scenarios display a similar residential and non-residential
building stock with different renovation policies, for nine
regions up to 2060. The IEA (2018) provided renovated
surfaces as shares of the global building stocks. The IEA
further stated that the renovation would mainly occur in
the Western and OECD countries. The total shares were
therefore distributed between Europe, North America and
the OECD countries. Unlike the SSPs, the renovation rate
increases until 2050 in the RTS and B2DS. The estimated
rates are provided in the Supplementary Information.
2.2. The DyMEMDS model

The modeling methodology of this study relies on the
DyMEMDS (Dynamic Modelling of Energy and Matter De-
mand and Supply) stocks and flows model (Figure 2) which
covers the entire energy chain and three end-use energy sec-
tor. A stock-driven flow approach is considered to estimate
the primary and secondary materials requirements, and their
associated production energy and CO2 emissions (Vidal,
2021; Le Boulzec et al., 2022).
2.2.1. DyMEMDS methodology

The building sector was segmented in two segments:
residential and non-residential. Historical surfaces data were
firstly used to calibrate logistic-based building stocks be-
tween 1900 and 2018, for nine multinational areas (Ta-
ble S1). Secondly, prospective floor areas and renovation
strategies were obtained from scenarios to compute the re-
gional residential and non-residential surfaces up to 210017.
Materials intensities, end-of-life collection rate (EOR-CR),
recycling process efficiency rate (EOL-PR) and regional

17Except in the Low Energy Demand and the International Energy
Agency scenarios, see Section 2.1.

building lifetimes distributions are then used to model base
material stocks and flows over time. Finally, the indirect
energy demand andCO2 emissions associatedwith themate-
rials production are estimated. The simplified methodology
behind the building module of the DyMEMDS model is
presented in Figure 1. Figure 2 displays more precisely the
materials stocks and flows loop used in the model. It was
previously described in Le Boulzec et al. (2022).
2.2.2. Historical and prospective regional building

stocks
The stock-driven approach in the DyMEMDS model

requires historical and prospective building stock input data,
which were obtained from the literature and from the seven
selected scenarios (Section 2.1). The building stock is di-
vided between the residential and non-residential segments.
Few historical floor area data are available in the literature at
the regional scale. Pan et al. (2020) provided a modelling of
Chinese residential and commercial building stocks based on
historical data between 1996 and 2014, in accordance with
the results of Huo et al. (2019). Some data are available for
Europe as well, but the perimeter is usually limited to the
European Union countries. IEA (2014) reported residential
and services buildings floor areas data in 2000 and 2011,
while Harvey et al. (2014) provided insights into regional
floor areas per capita and Calvin et al. (2017) displayed
national and regional data in the GCAM 5.4 model. At the
prospective level, seven different prospective trends of the
building stock evolution are depicted through the compu-
tation of seven scenarios: the five Shared Socioeconomic
Pathways in the open-source GCAM 5.4 model (Kim et al.,
2006), the Low Energy Demand (LED) scenario computed
in the MESSAGEix-GLOBIOM (Grubler et al., 2018) and
the RTS/B2DS scenarios modeled in the Energy Technol-
ogy Perspectives 2017 (ETP-2017) model (IEA, 2017). The
scenarios are briefly described in Section 2.1.
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Figure 1: Simplified methodology lying behind the DyMEMDS model. Adapted from Le Boulzec et al. (2022).

Figure 2: Key loop used in the DyMEMDS model to estimate the stocks and flows of materials during the construction and
maintenance of the infrastructure. Source: Le Boulzec et al. (2022)

The historical regional residential building floor areas
were then extrapolated back to 1900 with a logistic approach
based on GDP per capita18. The non-residential stock was

18The logistic curve provides a useful tool to describe the behavior of the
infrastructures and materials stock through a three-phase profile: growth,

assumed to represent a constant share of the total stock from
1900 to 1990, and the shares observed in the SSPs from 1991
maturation and saturation(Bleischwitz et al., 2018b). It allows to compute
the limited "carrying capacity" of a system (Chen and Graedel, 2015). The
GDP/capita values were obtained from the Maddison historical statistics
and the population from the United nations population
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Figure 3: Global building floor areas in the selected scenarios.

to 2018. The prospective surfaces were then considered from
2019 to 2100 for the SSPs and 2060 for the IEA scenarios.
However, the IEA (2018) showed significant differences in
the floor areas in 2017, and the prospective regional surfaces
were rescaled to fit the historical building stocks.

In parallel, renovation is considered from 2015 to 2050.
The renovation process requires both inflows and waste
outflows. Materials intensities of renovation were used to
estimate the annual inflows and outflows for the residential
segment only. The prospective renovation surfaces were ob-
tained for the SSP 1-5, the RTS and the B2DS (Section 2.1).
The global building floor areas are displayed in the Figure 3,
and the historical and modeled regional surfaces are detailed
in Section S1.2 of the Supplementary Information.
2.2.3. Intensities and recycling rates

The material scope of this study includes four base
materials (aluminum, concrete, copper and steel), which rep-
resent most of both the annual demand (USGS, 2021b) and
the environmental impacts of material production (Bataille,
2019). The dynamic end-of-life recycling rates fromLeBoulzec
et al. (2022) were considered for aluminum, copper and
steel. The regional recovery and recycling shares of Tam
et al. (2018) and Reis et al. (2021) were used for concrete,
assuming no concrete was recovered in 1990. In order to es-
timate materials stocks and the input and output flows of the
building sector, regional and dynamic materials intensities
were considered. A further distinction was made between
residential and non-residential intensities. The residential

segment displays various levels of intensities, which is
explained by the different constructive modes in the areas.
Concrete dominates the mixes ahead of masonry and wood,
except in North America andAfrica where wood remains the
most used materials (IEA, 2018). The non-residential seg-
ment encompasses various types of buildings (e.g. hospital,
industrial building, school, office, bar and restaurant...) with
different functionalities and only few disaggregated material
intensities data are available. Therefore, average values were
selected for this segment. As for the residential segment,
concrete remains dominant in the construction mix ahead
of steel, except in the North American segment where the
steel intensity is the highest. Dynamic material intensities
were considered to model the evolution of both the building
materials mix19 over time and the amounts required. A
logistic profile based on GDP was used to compute the
materials intensities, based on historical data from Müller
(2006); Ortlepp et al. (2016); IEA (2018) and Gontia et al.
(2018) for steel and concrete and from Ortlepp et al. (2016);
Kleemann et al. (2016); Ortlepp et al. (2018); ADEME et al.
(2018); Schipper et al. (2018); Dong et al. (2019); Marinova
et al. (2020) and Deetman et al. (2020) for aluminum and
copper. Given their structural nature in building, different

19For instance, a rising share of concrete observed in Japan and the
Western countries was observed after the Second World War, see Section
S1.4 of the Supplementary Information. However, no further evolution of
the mix was considered, such as the increasing use of wood.

Le Boulzec et al.: Preprint submitted to Elsevier Page 6 of 18

54



Base materials impact of the building sector in the low-carbon transition

saturation levels were considered for steel and concrete20,
while the same saturation levels were selected for copper
and aluminum.

Inflow and waste renovation materials intensities were
also considered to estimate the amounts required for the
prospective renovation in scenarios. For both intensities,
constant French data from ADEME et al. (2018) are consid-
ered for aluminum, concrete and steel at a global scale due
to a lack of data21. Given that no other regional renovation
intensities were available to the authors’ knowledge, the
impacts on results of this choice is unknown. The materials
intensities of renovation are low compared to construction
for aluminum, concrete and steel, as insulation materials, i.e.
glass, coating and plaster represent most of the inflow. Fi-
nally, primary production energies estimated in Vidal (2021)
and Le Boulzec et al. (2022) were selected, as well as
the secondary production energies and the CO2 emissions
from Le Boulzec et al. (2022). The historical data and the
modelled intensities are available in Section S1.4 of the
Supplementary Information.
2.3. Regional lifetimes

Lifetime represents an influential parameter in material
modeling (Hu et al., 2010), and its value carries significant
effects on infrastructure stock renewal and outputs (Müller
et al., 2014). In spite of this, the parameter is not well
known because of a lack of regional and empirical data
(Cao et al., 2019). Static values reduce the accuracy and
undermine the reach of studies, and dynamic lifetimes are
increasingly considered in the literature. Recent researches
focus on providing better insights about the lifetime dy-
namics (Zhou et al., 2019; Cao et al., 2019), studying the
impact of the choice of statistical distribution (Miatto et al.,
2017) and analysing the impact of lifetime on building LCA
results (Aktas and Bilec, 2012; Marsh, 2017). Dynamic
and regional mean lifetime were considered, and a normal
distribution was used. Due to a lack of data about the non-
residential building stocks lifetime characteristics, similar
values are considered for residential and non-residential
buildings. The methodology relies in three successive step.
Firstly, current regional lifetimes considered in the literature
were studied. Secondly, a four-parameter logistic function
was used to estimate dynamic lifetimes between 1900 and
2100. An initial value of 10 years and saturation levels 20
years higher than the current values were assumed for all
the regions (Figure S1). Finally, normal distribution were
applied on the logistic-basedmean lifetimes (�) and standard
deviation values of 0.3⋅� were considered. A full documen-
tation of the data and the lifetime distributions are available
in Section S1.3 of the Supplementary Information.

20It is explained by the different materials mixes in building in the
considered areas. For example, more steel and wood building are observed
in the North American area (IEA, 2018).

21Copper is not considered in ADEME et al. (2018).

2.4. Reducing the energy and environmental
burden of concrete

Two main solutions for a reduction of concrete demand
and impacts are considered. Firstly, a growing recovery and
recycling of concrete is studied, and the potential reduction
of accumulated concrete in landfills is assessed. It allows
for a reduction in primary concrete. Then, green concretes
mixes based on industrial by-products and recycled aggre-
gates are used in the projected concrete demand, to estimate
a potential decrease of the impacts of concrete production.
The two solutions are computed in the selected scenarios to
estimate the associated energy demand and CO2 emissions
reductions. Further solutions such as substitution or reducing
the amount of cement in concrete (Shanks et al., 2019) are
not considered and could provide additional tools in a further
analysis. This section describes the methodology to compute
the two considered solutions.
2.4.1. Concrete recovery and recycling

The first solution is displayed in two successive steps.
The recovery potential (1) is firstly assessed. It then allows
for an estimation of a reduction of the landfills burden (2).
Few data are available on the regional recovery rates of con-
crete, and the European Union results on the recovery and
recycling of Construction and Demolition Wastes (CDW)
are not representative of the global CDW management22.
The rates displayed in Reis et al. (2021) and Tam et al. (2018)
were used to estimate the regional lost and recovered stocks
and flows, and were assumed to increase by 20% by 2060.
Dynamic rates were used, assuming that no concrete was
recovered in 1990.

The concrete is recovered in two types of aggregates. Re-
cycled aggregates (RA) are composed of several materials in
significant proportions and represents most of the recovered
flow, and recycled concrete aggregates (RCA) are mainly
made of concrete waste Marinković and Carević (2019). The
RA and RCA replace natural aggregated (NA) to produce re-
cycled aggregated concrete (RAC).Most of the RA andRCA
are currently used for non-structural applications (Behera
et al., 2014; Silva et al., 2019), but recent studies have shown
that high shares of RCA in RAC could be reached under
some process conditions (Thomas et al., 2018; Guo et al.,
2018; Verian et al., 2018). In order to estimate the reduction
of the concrete lost stock, a business-as-usual case and three
scenarios of progressive increase of RCA replacement of NA
in concrete production are considered (Table 2). No replace-
ment was assumed before 2025, and final replacement share
of 20% was assumed to be reached in 2040 or 2060, and 50%
in 2060. The 20% replacement hypothesis aims to compute a
conservative scenario, in accordancewith the current limit in
some European countries (Tang et al., 2020), while the 50%
scenario displays a more optimistic case. RCA generation
is only computed to estimate the reduction of lost stock,
and given the lack of consensus, no energy demand and

22The European Union implemented a Waste Framework Directive,
which set quantitative objective by 2020.
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Scenario Replacement

RS1 Progressive increase from 0% in 2025 to 20% of RCA replacement in 2060

RS2 Progressive increase from 0% in 2025 to 50% of RCA replacement in 2060

RS3 Progressive increase from 0% in 2025 to 20% of RCA replacement in 2040

BAU No RCA replacement from 2025 to 2060

Table 2
Replacement scenarios of natural aggregates by recycled concrete aggregates.

environmental impact reductions were considered23. More
information about the literature and the methodology is
available in Section S1.5 of the Supplementary Information.
The SI further proposes a 50% penetration case to compute
RCA replacement on a smaller regional perimeter.
2.4.2. Green concrete

The second solution considered is green concrete, which
is defined as low-carbon concrete. Mainly based on industry
or agriculture by-products, it allows to reduce the energy
demand and environmental impact of concrete production.
Four green concrete mixes were considered, based on two
types of replacements used from 2030 to 2100:

• Replacement of natural aggregates by various types of
recycled concrete aggregated24, or steel slag25;

• Replacement of Ordinary Portland cement, by coal fly
ash (CFA)26 or blast furnace slag (BFS)27.

The four mixes were used on a low penetration case
(20% of the concrete inflow) and a high penetration case
(100% of the concrete inflow). The composition and green
concrete environmental impacts were selected from Flower
and Sanjayan (2007); Turk et al. (2015) and Kurda et al.
(2018). The four mixes and their production energy and
emissions reductions are summarized in Table 3.

3. Results
The stock-driven flow modeling approach conducted

offers a regional and dynamic analysis of materials, and
their production energy and CO2 between 1950 and 2100
for the SSPs, and 2060 for the RTS and B2DS. The results
are depicted in this section. The global level results are
presented, with both regional and segments distinction, and

23The energy demand of concrete production mostly occurs during ce-
ment production. The recycling of concrete has therefore little or no impact
on the overall concrete energy consumption (World Business Council for
and Sustainable Development, 2009).

24It includes fine RCA, coarse RCA and a mix of fine and coarse RCA.
Coarse and fine aggregates are defined by the size of their particles.

25Steel slag is a byproducts of steel manufacturing. The natural aggre-
gates are sometimes replaced by electric arc furnace steel slag (EAFSS),
which is produced during the electric arc furnace (EAF) steel manufacturing
process.

26Coal fly ash (CFA) is a by-products of coal combustion for power
generation.

27Blast furnace slag is a by-products of iron or steel during the blast
furnace manufacturing process.

a quantification of the material impacts of renovation is also
provided. Since the renovation assumptions are similar for
every RCPs within each SSPs, the results are identical for the
SSP2 2p6 and 4p5, and for the SSP3 2p6 and 4p5. Therefore,
the SSP2 2p6 and 4p5 are referred to as SSP2, and the SSP3
2p6 and 4p5 are referred to as SSP3 in this section.
3.1. Global in-use stocks and inflows of materials
3.1.1. Materials in-use stocks

The significant increase observed in the building stock
(Figure 3) has a direct impact on the materials embedded in
residential and non-residential buildings between 1950 and
2018. The concrete in-use stock grew from 9.7 to 211 Gt
in the period, while the steel in-use stock increased from
0.3 Gt to 8.8 Gt, the aluminum in-use stock from 5.2 Mt
to 386 Mt and the copper in-use stock from 5.1 Mt to 273
Mt (Figure 4). The global building surface experiences an
upward trend in all the selected scenarios. Different profiles
are however observed. Monotonic growth is observed in
the RTS, B2DS, and SSP2-3 for all base materials, while
non-monotonic growth is shown in the SSP1 and SSP4-
5. The in-use stocks displays substantial differences among
the scenarios. The concrete stock reaches between 332 Gt
(SSP4) and 580 Gt (SSP5) in 2100, while the steel stock
grows between 17 Gt (SSP4) and 27 Gt (SSP5), the copper
stock between 672 Gt (SSP4) and 1,264 Gt (B2DS in 2060)
and the aluminum stock between 827Gt (SSP4) and 1,340Gt
(SSP5). The SSP4 is the lessmaterial-intensive scenario, and
the SSP5, RTS and B2DS consumes the most materials. As
the assumptions of the IEA scenarios are very high in terms
of floor area, they lead to the highest weight of materials
until 2060. In-use stocks profiles vary among materials as
well. The SSP5 displays a reduction of the concrete in-use
stock from 2085, while the copper stock increases up to 2100
(Figure 4). This outcome is explained by the logistic be-
havior of the materials intensities and the regional building
hypothesis.
3.1.2. Materials inflows

The depicted stocks and their associated lifetimes create
a dynamic of input and output flows. The historical reduction
of the growth rate of materials in-use stock between 2008
and 2018 induces a stabilization of the annual inflows28
(Figure 5). The variations between 2018 and 2030 result

28We refer to the inflow as the sum of both the primary flow and the
recycled flow.
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Green concrete Replacement Production energy reduction Emissions reduction

GC1 30% CFA 19% 26%

GC2 60% CFA 38% 51%

GC3 60% CFA and 100% coarse RCA 60% 60%

GC4 40% BFS 22%

Table 3
Considered replacements in green concretes, using coal fly ash (CFA), recycled concrete aggregates (RCA) and blast furnace slag
(BFS). Sources : Flower and Sanjayan (2007); Turk et al. (2015) and Kurda et al. (2018)

(a) Concrete (b) Steel

(c) Copper (d) Aluminum
Figure 4: In-use stocks of concrete, steel, copper and aluminum in the global building sector. The RTS and B2DS results are
almost similar because of their similar building stock.

of both the transition from the historical modeled surfaces
to the prospective scenarios hypothesis and the beginning
of the renovation policies in 2015. Despite similar values
of the inflows in 2100 for some scenarios, they all display
significant differences in their profiles. In the SSP5, the
flows experience a substantial rise until 2035 before halving
for concrete, steel and aluminum. The SSP5 flows peak to
more than 11 Gt/yr for concrete, 0.49 Gt/yr for steel, 24
Mt/yr for aluminum and 19 Mt/yr for copper. We also find
that the SSP1 and the SSP4 present monotonic decreasing
profiles and similar values in 2100. However, while the SSP1
flows show a reduction of the degrowth rate from 2055 to
2100, the SSP4 flows exhibit an increase of this rate from
2060 to 2100. In the same vein, the SSP2 and SSP3 reaches
comparable flows values in 2100, and are the only scenarios
with upward phases. Finally, the RTS and B2DS display
higher flows values than other scenarios. The linear growth

of the surfaces in the two scenarios creates large required
inflows, estimated to 12.7 Gt/yr of concrete, 0.52 Gt/yr of
steel, 30 to 31.4Mt/yr of aluminum and 13.7Mt/yr of copper
in 2060. Regional materials stocks and flows were obtained
for the nine regions (Figures S8 to S29).

The building stock was segmented between the residen-
tial and the non-residential surfaces. The residential seg-
ment represents most of the global floor area, but displays
lower concrete, steel and aluminum intensities. We therefore
observe a high share of the non-residential segment in the
materials stocks and flows. It reaches 31% of the concrete
stock, 40% of the steel stock, 44% of the aluminum stock
and 16% of the copper stock in 2018, for only 26% of the
total floor areas. The share of the non-residential buildings
in the annual inflows increases over time in the SSPs, and
remains steady in the RTS and B2DS. The inflow was fur-
ther segmented between primary and secondary materials,
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum
Figure 5: Annual inflows of concrete, steel, copper and aluminum in the global building sector.

and no secondary concrete was assumed in the study. The
recycled steel reaches 20% of the annual flow in 2018, while
secondary aluminum and copper respectively represent 12%
and 10% of the inflow. The projected surfaces behavior has a
significant impact on the secondary share, since a decreasing
floor area allows for a higher share of recycled materials
in the inflow. We therefore observe substantial differences
between scenarios, and the SSP1 displays twice the share
of secondary materials compared to the SSP3, with 83%
of recycled steel, 58% of recycled aluminum and 49% of
recycled copper.
3.1.3. The material weight of thermal building

renovation
Projected renovation was considered in the seven scenar-

ios. The assumptions related to material intensities of reno-
vated surfaces ADEME et al. (2018) lead to low amounts
of concrete and steel for renovation in comparison with new
surfaces. Conversely, the aluminum intensities of renovation
is of the same scale as that of new construction. Different
renovation strategies were selected in the design of the SSPs
and IEA scenarios. While renovated surfaces-and material
demand-peak in all SSPs between 2020 and 2030, the need
for materials increases up to 2050 in the RTS and B2DS.
The SSP3 displays the lowest flow, while the B2DS has
the highest renovation flow. The required concrete reaches

between 1.4 Mt/yr and 3 Mt/yr, the steel flow between 1.8
Mt/yr and 3.9 Mt/yr and the aluminum flow between 1.6
Mt/yr and 3.3 Mt/yr. It represents a maximum of more than
1% of the annual new construction steel flow in the SSP1
and SSP4, while reaching more than 18% of the aluminum
flow in the same scenarios. However, strong disparities are
observed between regions within the scenarios. SSP4 is the
one that consumes the most materials for renovation. While
the aluminum demand for renovated surfaces represents less
than 6% of the new construction inflow in Africa, India,
Latin America, Middle East, OECD Pacific and Other Asia,
it reaches between 28% and 45% in China, Europe and North
America. The same trend is displayed in the other SSPs, the
RTS and the B2DS.
3.2. Materials production energy and CO2The energy and environmental cost of extracting and
transforming the base materials experienced a significant
rise during the historical period. The production energy of
raw materials increased from 4,300 PJ/yr to nearly 34,000
PJ/yr in 2006, before dropping to 23,500 PJ/yr in 2018, as a
direct effect of the 2007-2008 financial crisis. It represents
about 4% of the global final energy demand. The CO2emissions display a similar profile, finally reaching 1,300
MtCO2/yr in 2018-which represents 4% of the global CO2emissions-after a peak at more than 1,700 MtCO2/yr. The
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Scenario Production energy
of materials (EJ)

Building final
energy (EJ)

Energy savings
from renovation (EJ)

New buildings Renovation

SSP1 2p6 729 3.7 5,410 220

SSP2 2p6 758 3.5 5,510 196

SSP3 4p5 687 2.6 5,530 148

SSP4 4p5 628 3.6 5,620 231

SSP5 baseline 986 0 6,780 0

B2DS 1,025 5.9 5,100 461

RTS 1,018 9.8 4,300 299

Table 4
Estimations of production energy of materials in new building and renovation and comparison with the final energy demand and
the energy savings from renovation between 2015 and 2050.

energy consumed for materials production finally reaches
between 4,200 PJ/yr and 8,900 PJ/yr in 2100 in the SSPs,
which corresponds to 1960-1970 levels. The required energy
remains higher in the RTS and B2DS than in the SSPs in
2060. The same trend is observed in the CO2 emissions
evolution up to 2100. CO2 emissions could reach between
360 MtCO2/yr and 735 MtCO2/yr in 2100 in the SSPs
(Figure S49). The energy consumption of the production of
materials for renovation reaches between 2.6 EJ and 3.7 EJ
in the SSPs, 5.9 EJ in the RTS and 9.8 EJ in the B2DS (Table
4).
3.3. Impacts reduction potential
3.3.1. Concrete recovery

The assumed growing share of recovery of concrete
leads to a rise of recovered flow of concrete from 0.1 Gt/yr
in 1993 to more than 1.2 Gt/yr in 2018, with a recovered
stock amounting to 16 Gt. The recovered stock then displays
little differences between scenarios, due to the time-delay
effect of long lifetime in the building sector. The recovered
flow finally reaches between 2.9 Gt/yr and 4.5 Gt/yr in 2100,
and the recovered stock grows to more than 200 Gt in all the
scenarios (Figure 6). A noteworthy result is the evolution of
the lost stock with the assumed growing concrete recovery
compared to constant 2020 regional shares until 2100. The
Figure 6 shows the comparison for the lowest lost stock
(SSP4) and the highest value (SSP5).We observe differences
amounting to about 65 Gt between the two scenarios, which
represents between 18% and 20% of concrete lost stock
reduction in landfills.
3.3.2. Concrete recycling

Three cases of RCA replacement are considered. The
conservative scenarios assume a 20% RCA replacement of
NA in concrete by 2040 or 2060. Both scenarios require
maximum annual RCA processing between 0.7 Gt/yr and
1.7 Gt/yr depending on the prospective building stock. The
S1 scenario allows for a reduction of the concrete lost stock
reaching 16% to 24% in 2100. The 20-year delay observed

between the S1 and the S3 creates a higher RCA demand
peak in the S3, as the building stocks rise in the early
prospective period. It further allows for an average 4% larger
lost stock reduction by 2100 in the S3. However, even the
most ambitious RCA replacement scenario, assuming a 50%
level, does not allow for a depletion of the lost stock, which
decreases by 41% to 59% in 2100 in the seven selected
building surfaces scenarios (Figures S37 to S48).
3.3.3. Green concrete

The computation of the four green concrete mixes shows
that their use could reduce the energy demand and the
CO2 emissions of concrete production between 4% and 12%
by 2060 for a 20% penetration scenario (Table 5). A full
penetration of green concrete in the inflow of the building
sectors shows significant reduction of concrete impacts. The
energy demand drops between 19% and 60% while the
CO2 emissions decrease by 22% to 60% depending on the
concrete mix considered, as expected by the design of the
green concrete mixes. The CFA and BFS demand display the
same profile in the scenarios as the concrete inflows in Figure
5a. The CFA requirements could reach more than 700 Mt/yr
between 2030 and 2040 in the 100% penetration scenario
for the GC2 and GC3 mixes, and more than 140 Mt/yr in the
20% penetration case. For the GC4mix, the BFS needs reach
more than 70 Mt in the 20% case and almost 500 Mt in the
100% case in the early 2030s.

4. Discussion
4.1. Saturation levels of per-capita surface

The per-capita floor areas display high final levels in
the B2DS and RTS of the IEA (2017) and show steep rises
until 2060. Considering the medium population scenario of
the United Nations et al. (2019), the per-capita floor area
reaches 102 m²/capita in Europe, 117 m²/capita in North
America and 127 m²/capita in the OECD Pacific area in
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(a) Lost stock (b) Recovered stock
Figure 6: Global concrete lost and recovered stocks in the building sector for the selected scenarios. Only the two scenarios with
the lowest and the highest lost stocks are displayed. The filled lines show the lost stocks for increasing share of recovered concrete,
and constant 2020 shares are presented by the dashed lines. The residential and non-residential segments are aggregated.

Green concrete Production energy
reduction

CO2 emissions
reduction

GC1 4% 5%

GC2 8% 10%

GC3 12% 12%

GC4 4%

Table 5
Energy demand and CO2 emissions reductions in the scenarios
in 2100 for a use of green concretes on 20% of the concrete
inflow.

206029. The global average per-capita floor area finally raises
from 32 m²/cap in 2017 to 48 m²/cap in 2050 and 53 m²/cap
in 2060. The RTS and B2DS final per-capita floor areas were
not designed with saturation level, and the total floor area
displays a linear profile. We consider this linear assumption
to be unrealistic30, and the final levels are not in line with
the few prospective estimation available in the literature.
The SSPs display substantially lower per-capita stock values,
estimated between 54 and 66 m²/cap in Europe, 66 and 83
m²/cap in North America and 53 to 66 m²/cap in the OECD
Pacific. Deetman et al. (2020) and Marinova et al. (2020)
estimated a global value of about 38 m²/cap in 2050 in the
SSP2 scenario, which is 24% lower than in the IEA (2017)
study. In a normative 1.5°C scenario, Grubler et al. (2018)
estimated a global convergence to 30 m²/cap. In China,
Hong et al. (2016, 2014) and Cao et al. (2018) depicted
potential saturation levels of 46 m²/capita to 50 m²/capita
for the Chinese residential sector in 2050. Considering the
historical share of non-residential surfaces in the global
stock of 16% Pan et al. (2020), the saturation level of the

29In relative terms, the higher increase is observed in India, Other Asia
and OECD Pacific, with floor area per capita increasing by 125% to 167%
between 2017 and 2060.

30A saturation level is already observed in France. Insee (2017) reported
an almost steady residential floor area per capita of 40 m²/capita since 2006.

global stock could amount to 53 to 58 m²/capita in 2050, in
line with the SSPs, but significantly lower than the RTS and
B2DS. Given the impact of floor area per capita assumption
in the total floor area projections, an in-depth analysis of
their future regional saturation levels has yet to be conducted
to assess the consistency of scenarios.
4.2. Material weight of the building sector and

comparison with previous studies
The results reflect a significant share of the building

sector in the global materials consumption. The global total
demand for concrete was estimated to about 24 Gt/yr in 2020
(USGS, 2021a)31. The calculated demand in the building
sector reaches 8 Gt/yr in 2018, which represents about 40%
this global consumption. The steel inflow of 2019 amounts
to 18% of the global steel demand. It remains low in com-
parison to the 50% estimate of Worldsteel (2021). The con-
struction sector however also includes infrastructures and
networks, which could partially explain this difference. The
copper demand estimated exceeds 40% of the global refined
consumption, which is below the 30% common estimated
of the building share in the global demand, with regional
disparities (Schipper et al., 2018; Dong et al., 2019; Institute,
2021; ICSG, 2014). It indicates lower actual copper inten-
sities to the selected values. The aluminum consumption
of buildings was evaluated to 56% of the global demand
in 2018, which is not in line with the estimates32. Finally,
the results were compared with previous studies. Given the
different scenarios considered in the literature, only the SSP2
also selected in Deetman et al. (2020) and the historical
results were confronted. The Table S11 shows large dispar-
ities in the results of the different studies, and especially for
steel and aluminum. The present study displays intermediate
historical levels, and lower prospective stocks and flows
levels in the SSP2 than in Deetman et al. (2020). It is

31We considered a 20% share of cement in concrete.
32A25% to 37% share of building and construction in aluminumdemand

is observed.
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explained by slightly lower global building stock estimation
in the GCAM 5.4, and lower steel and aluminum intensities
in the present study.
4.3. Increasing materials demand and the

potential of RCA
The results show an increase of the building stock until

2060 or 2100 with various paces for the selected materials.
It is explained by both new construction and renovation. We
firstly observe increasing population and GDP per capita in
most of the scenarios, and rising base materials intensities
in the less developed areas. Moreover, a growing develop-
ment of renovation policies is observed in the scenarios to
tackle the environmental impact of the building sector. We
estimated that the aluminum weight of renovated surfaces
could be significant in Europe, North America and China,
while both concrete and steel display low amount in the
renovation process. The regional policies could therefore
carry a substantial impact on the aluminum demand.

The increase of the materials in-use stock will create
outflows of construction and demolition wastes, which could
ultimately translate into a growing landfills burden. The
potential of higher share of concrete recovery was showed
to reduce the concrete lost stock, and it is crucial to quickly
develop recovery strategies, because of the time-delay effect
on outflows of long lifetimes in the building sector. The
RCA replacement could further allows to use CDW as a
"secondary mine". However, we estimated that no depletion
of the concrete in landfills could occur in case of a late
and low-scale use of RCA. In a very ambitious scenario,
the lost stock could be depleted between 2047 and 2060
in all the scenarios for a 100% RCA replacement on 100%
of the inflow. The RCA demand could reach 3.5 Gt/yr to
8.6 Gt/yr. It shows the magnitude of the lost stock, and the
importance of policies in the feasibility of quickly initiating
a RCA processing industry.
4.4. Impacts of materials production and the

significant role of green concrete in reducing
concrete impacts

The base materials demand estimated in the study repre-
sents about 4% of the global CO2 emissions and final energy
consumption in 2018. It was estimated that concrete had
the most impact, with 1.9% of the CO2 emissions and 2.7%
of the final energy demand. Given the shares of the global
materials demands evaluated in Section 4.2, the global con-
crete and steel industries represent between 11% and 13% of
the global CO2 emissions and final energy consumption in
2018, in line with Bataille (2019) and Andrew (2017). The
prospective shares were estimated for the RTS, B2DS and
two different RCP33 applied on the SSP1, SSP2 and SSP3
(Table 6). We observe lower shares of production energy
of materials in final energy demand than the 2018 level,

33The Representative Concentration Pathways are scenarios of radiative
forcing, as previously presented in Section 2.1. It acts as a climate policy in
the SSP.

except for the B2DS. It is explained by the significant re-
duction in final energy demand, and similar socioeconomic
assumptions to the RTS. We further observe higher shares
in the RCP 2p6 scenarios than in the RCP 4p5, which is
in line with the stronger energy constraints to reach a lower
radiative forcing. The high share showed in 2100 in the SSP2
4p5 is explained by a substantial decrease of energy demand
at the end of the century. Our results further show that the
production energy ofmaterials is substantial when compared
to the final energy demand of the building sector. It could
amount to about 14% of the final energy demand of the
building sector in the SSP2 2p6 and 4p5, and 24% in the
B2DS (Table 4). The renovation represents a small share of
the production energy of materials, but it is worth noticing
that it could amount between 34% and 39% of the global
energy savings induced by the renovation (Table 4).

The rising shares of the production energy of materials
in final energy demand between 2060 and 2100 unveil the
issue of the feasibility of ambitious scenarios with medium
or high socioeconomic assumptions. The share of the base
materials production for the building sector increases in
2100 compared to the historical level, and could reach 7.3%
of the final energy demand in the B2DS. A similar trend in
others sectors-such as the development of renewable ener-
gies (Vidal et al., 2017, 2018) or storage devices (Deetman
et al., 2021)-could create a substantial energy constraint due
to the materials production. Concrete represents most of
the energy demand among the four selected base materials.
The implementation of a higher share of green concrete
depicted in Section 2.4 could provide an option to actually
reduce the energy and environmental impacts of concrete
production while considering higher socioeconomic path-
ways. We observed in Section 3.3.3 the energy reduction
potential when green concrete mixes were used on 20% or
100% of the flow. In the most optimistic case, the GC3 used
on 100% of the B2DS concrete inflow would allow to reduce
the building materials share of the energy demand below
the level of the RTS, and the GC2 induces intermediate
results. When applied on the SSP2 2p6 or 4p5, it the GC
mixes allow substantial energy savings in the peak demand
years. In 2040, between 1 and 9 EJ could thus be saved in
comparison with a BAU case (Table 6). The GCmixes could
therefore provide a significant tool to further decrease the
impact of concrete while consuming industrial or agriculture
by-products.

The rise in green concrete demand induces a growing
by-products demand. The feasibility of a large development
of some green concrete mixes could therefore be ham-
pered by a decrease in the main products demand, but our
model shows that a penetration of CFA on 100% of the
concrete inflow would not create shortage in most of the
scenarios at a global level. The development of various
low carbon concrete mixes could prevent dependency to
one materials, and rely on regional by-products availability.
Further assessments of the dynamic between the industrial
by-products generation, their stocks, the penetration rate
of green concretes and their composition would allow to
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Scenario CO2 emissions (MtCO2) Final energy (EJ)

2018 2040 2060 2100 2018 2040 2060 2100

SSP1 2p6

1,300

1,120 834 383

24

20 13 5

SSP2 2p6 & 4p5 1,120 948 746 20 15 10

SSP3 2p6 & 4p5 939 764 782 17 12 10

SSP4 4p5 897 645 451 16 10 6

SSP5 baseline 1,609 1,237 582 28 19 7

B2DS 1,501 1,608 28 25

RTS 1,510 1,617 28 25

SSP2 2p6 & 4p5 with GC2-20%

1,300

1,064 903 708

24

19 14 9

SSP2 2p6 & 4p5 with GC3-20% 1,053 894 700 18 14 9

SSP2 2p6 & 4p5 with GC2-100% 845 727 559 14 11 8

SSP2 2p6 & 4p5 with GC3-100% 896 768 594 11 10 7

B2DS with GC2-20% 1,430 1,530 26 21

B2DS with GC3-20% 1,413 1,513 26 23

B2DS with GC2-100% 1,116 1,193 21 19

B2DS with GC3-100% 1,188 1,270 16 15

Table 6
Final energy demand and CO2 emissions of the base materials production in the selected scenarios. The results of the SSP2 and
B2DS are further displayed with the green concrete scenarios on 20% or 100% of the inflow.

identify the opportunities and the constraints of a large use
of green concrete to decrease the environmental impacts of
the building sector.
4.5. Limitations

This study proposes a regional approach of the build-
ing sector, modeling raw materials as well as their em-
bodied energy and CO2 emissions. Several limitations to
a more accurate modeling were however identified. Firstly,
as emphasized in Augiseau and Barles (2017) and Müller
et al. (2014), data intensity and data quality significantly
undermine construction materials modeling studies, and in-
duce strong impact on outputs. In this bottom-up study, the
difficulty to assess materials intensities was observed, and
revealed significant errors in the copper demand results. Few
analysis tackle the regional disparities in both construction
mixes (concrete and steel) and other material uses (cop-
per and aluminum), and their evolution over time. If the
selected level of concrete consumption in buildings is in
accordance to common values of the literature, the estimated
copper and aluminum regional material intensities suffer
of significant uncertainties. This issue could benefit from
lower scale studies assessing the local intensities.We believe
that both household and multi-regional level studies could
be complementary to further understand the local materials
cycle dynamics while providing input for more accurate
large-scale analysis and allowing a better understanding of
building life cycle management.

Conversely to the dynamic and regional construction
materials intensities, renovation intensities are dynamic and

global. Only French static data about the ongoing national
building stock renovation were found by the authors, with no
hypothesis about further evolution of the embodied materi-
als. Given the differences in the regional construction mix,
it can be assumed that regional renovation intensities also
vary. Secondly, the overall building life span is considered,
without distinctions on the incorporated devices. Given the
structural nature of concrete and steel, this assumption is
reliable. It could however induce uncertainties for copper
and aluminum, if mainly incorporated in less structural de-
vices such as electrical applications (Schipper et al., 2018).
Further studying on the specific uses of materials in con-
struction is needed to assess the impact of this overall life
span assumption. Thirdly, the considered collect rates are not
specific to the building sector, which is not a physical reality.

5. Conclusion
Human demography is a growing concern in current en-

vironmental studies. It carries crucial impacts on residential
and non-residential building stock growth over the coming
decades, and was analyzed through six socioeconomic path-
ways combined with climate scenarios. Firstly, through a
MFA, the base materials stocks and flows of the building
sector was estimated, as well as the production energy and
CO2 emissions. Secondly, the results were confronted to
the prospective energy and CO2 emissions of the selected
scenarios, and two solutions were implemented to reduce the
impacts of concrete.
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We firstly find that (i) the material dependency of the
building sector could create a massive rise of the inflows,
further enhanced by two aspects: the considered increase of
the materials intensities in the less developed areas, and the
development of renovation strategies in the most developed
areas. We further show that (ii) a growing materials demand
translates into larger energy demand and environmental im-
pacts, which could question the feasibility of some low-
energy demand scenarios, and that (iii) the recycled concrete
aggregated display a significant potential to enhance the
reduction of accumulated concrete stocks in landfills and
green concrete could decrease the environmental burden of
concrete.

We furthermore highlight the crucial temporal aspect of
the RCA and green concrete implementation, as it requires
the development of industries to tackle the large concrete
demand of the building sector. Multi-sector policies would
be fundamental to apprehend the dependency between the
energy, industry or agriculture sectors, and successfully
provide high quality materials for structural uses.
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4.2 Supplementary information to: Base materials impact of the building sec-

tor in the low-carbon transition

4.2.1 Literature review

Dynamic materials modeling of the building sector

In the identified literature, several authors have identified a lack of knowledge of the anthropogenic stock (Schiller

et al., 2017). While initial publications have focused on primary materials inflows, the in-use stock has progressively

gained attention, for its role a driver of the construction and demolition flows, and the secondary materials providers

(B. Müller, 2006). It enables a better understanding of the dynamics of construction and demolition cycle, and the

maintenance and expansion shares of the construction inflow in the building sector. The publications show an in-

creasing share of maintenance in the most developed areas (Wiedenhofer et al., 2015), as well as a grow of the demo-

lition flow (B. Müller, 2006; Bergsdal et al., 2007). Conversely, the developing regions will experience a slowdown of

the annual building expansion in the coming decades, which could have profound industrial consequences for the

management of waste and secondary materials.

We further observe an increasing focus on the construction and demolition wastes. It provides estimations of the

prospective wastes (Bergsdal et al., 2008), potential secondary resources through a better classification of input ma-

terials (Hashimoto et al., 2009), circularity achievements (Arora et al., 2019) or analysis of the impacts of policies, for

example in the European Waste Framework Directive (Wiedenhofer et al., 2015). Despite a substantial increase of the

building in-use stock in China over the past years, per-capita level could further grow (Wang et al., 2015a; Zhang et al.,

2015b), before an expected reduction of the building stock expansion in the coming decades in developed areas and

China. It could allow a higher reliance on secondary resources to lower primary inputs and environmental impacts,

which require the development of an efficient waste management and recycling system (Shi et al., 2012; Wang et al.,

2015b).

Finally, the parameters assumptions are discussed in the literature, as they represent a major source of uncertainties

(Cao et al., 2018)1, but could provide tools to better manage materials stocks and flows. Several publications empha-

size the significant role of material efficiency to reduce materials demand and their environmental impacts. Material

efficiency is a multifaceted concept (Pauliuk and Heeren, 2021), which includes lifetime extension (Hu et al., 2010; Shi

et al., 2012; Huang et al., 2018)2, a better product design (Shanks et al., 2019)3, or higher recycling and reuse (Shi et al.,

2012; Wang et al., 2015b). Pauliuk and Heeren (2021) proposed the implementation of material efficiency strategies in

the building and transport sectors in Germany.

The role of materials engineering to reduce impacts

Contrary to the common belief that concrete is not recyclable, Japan or the Netherlands manage to achieve close

to 100% concrete recycling rate by recycling concrete into new structural applications or in lower grade uses such

as road (Tam, 2009; Xicotencatl, 2017). It allows considerable reduction of the environmental impacts of CDW by

lowering their amount in landfills. The potential of recycling construction and demolition waste (CDW) is substantial,

as they represent a significant part of the society wastes. They reached 25 to 30% of the overall generated European

Union wastes in 2017 (European Union (2017)), of which mineral and solidified wastes represented 76% (Reis et al.

(2021)). The European Union targeted the CDW in the its Waste Framework Directive4, and managed to fulfill the

objective to recover or recycle 70% of CDW by 2020 (Villoria Sáez and Osmani (2019)). More than 82% of generated

CDW were recycled in 2021, and only 11% were disposed in landfills (European Environment Agency (2021)). However,

the European results are not representative of the current global CDW management, and lower recovery rates are

1Liu et al. (2020) provided a household level desegregation study for a more accurate description of appliances life cycle in the building sector.
2Hu et al. (2010) raised questions about the optimal lifetime to reduce resources use and environmental impact through an increase of the share

of secondary materials in the input.
3Conversely to light-weighting products, dynamic and increasing materials intensities are sometimes used in MFA studies to model technolog-

ical change (Shi et al., 2012; Hatayama and Tahara, 2016).
4This directive from 2008 aimed at enhancing the recovery and management of CDW in a circular economy perspective.
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observed in other regions (Reis et al. (2021); Tam et al. (2018)).

Concrete is recycled in the form of aggregate by a crushing process, partly replacing natural aggregate content in the

concrete production5. Two types of recycled aggregates from construction and demolition waste (CDW) are gener-

ally considered (Marinković and Carević, 2019). Recycled aggregates (RA) are defined as mixed aggregates. Recycled

concrete aggregates (RCA) are mainly made of concrete, and their higher quality would allow a use recycled aggre-

gates concrete (RAC) for structural applications with different standard compositions depending on the countries

(Nováková and Mikulica, 2016). Despite potential environmental benefits (Tam et al., 2018), the use of recycled aggre-

gates is often limited to non-structural projects, e.g. in India (Behera et al., 2014), in the USA and in France6 because of

a lack of confidence of construction actors in RA (Silva et al., 2019; European Environment Agency, 2021). The differ-

ent applications of RA are described in Reis et al. (2021), and the authors outlined the growing number of encouraging

pilot projects using recycled aggregate concrete (RAC). Silva et al. (2019) further provided a review of 31 constructions

projects to demonstrate the technical and economic viability of recycled aggregates use. Among these projects, 11 are

related to structural use of concrete in buildings. They carry substantial benefits through four reductions : financial,

primary resources need, accumulation in landfills and environmental impacts.

The RAC research field has been growing over the past years, and the specific impact of replacing natural aggregates

by recycled concrete aggregates (RCA) on the properties of RAC was under focus. RCA is defined as aggregates recov-

ered from concrete in which other materials represent less than few percents (Marinković and Carević, 2019), and it

can be used for higher strength concrete than RA (Purnell and Dunster, 2010). However, Behera et al. (2014) showed

lower mechanical and durability performance of RAC, and emphasized the need of further assessment of RA qual-

ity and its impact on concrete. In reviews on the RCA impacts on RAC production, Silva et al. (2014) and Verian

et al. (2018) provided recommendations for an optimal use of recycled concrete aggregates (RCA) in concrete produc-

tion. The authors showed different challenges depending on the use of fine and coarse aggregates7, but a potential

was identified for both types. The authors further reported that some researches estimate a 30% limit in the use of

coarse RCA in concrete, but state that there could be no limit in its potential share if specific process conditions are

respected8. Thomas et al. (2013) further outlined the need for more assessment of RAC in different exposure condi-

tions. For moderate conditions, Thomas et al. (2018) estimated that a 25% replacement of NA by RCA displays viable

strength results. Guo et al. (2018) and Verian et al. (2018) further identified the potential to enhance recycled aggre-

gate concrete performances, using for example CO2 treatment and pozzolanic materials (e.g. fly ash). Several studies

have conducted further environmental assessment of RCA and natural aggregated for different mixes and geographic

perimeters, showing transport distances influence (Marinković et al., 2010) and avoided emissions in steel produc-

tion and waste disposal (Knoeri et al., 2013). However, no concordance in the potential reduction was observed in

the literature, and Wijayasundara et al. (2017) further showed similar embodied energy and impacts of RCA and nat-

ural aggregates in a cradle-to-gate analysis of RCA in Australia. Given the lack of consensus, no energy demand and

environmental impact reductions were considered.

In parallel of improving concrete recovery and recycling, "green concrete" aims at cutting the environmental im-

pact. It is defined as a low-carbon concrete, which production mainly relies on the use of industries or agriculture

by-products, nanoparticles and advanced techniques to further understand concrete structures (Vishwakarma and

Uthaman, 2020). Given that most of the energy demand and environmental impacts of concrete production occurs

during cement production, the replacement of primary materials by waste materials could achieve lower impacts of

concrete production (Reiners and Palm, 2015). The use of wastes in concrete production has already been imple-

mented for decades in the concrete industry through supplementary cementitious materials (SCM)9. The most com-

5Shares of 12% to 29% of recycled concrete were observed in German, the Netherlands and the United Kingdom in 2012 and 2013 (Reiners and
Palm, 2015)

6Most of the recycled CDW in France are used in non-structural applications. The RECYBETON project aims at increasing the share of RA in
concrete.

7Bravo et al. (2015) found that fine aggregates use hampers concrete performance, but that a limited share of coarse aggregates is viable. This
higher impact of fine RCA was also highlighted in Guo et al. (2018).

8Coarse and fine aggregates are defined by the size of their particles.
9The Lafarge company defines Supplementary Cementitious Materials (SCMs) as "materials that, when used in conjunction with portland

cement, portland limestone cement or blended cements, contribute to the properties of hardened concrete through hydraulic and/or pozzolanic
activity".

68

https://www.pnrecybeton.fr/
https://www.pnrecybeton.fr/
https://www.cement.org/cement-concrete/concrete-materials/aggregates#:~:text=Fine%20aggregates%20generally%20consist%20of,and%201.5%20inches%20in%20diameter
https://www.lafarge.ca/en/supplementary-cementitious-materials#:~:text=Supplementary%20Cementitious%20Materials%20(SCMs)%20are,hydraulic%20and%2For%20pozzolanic%20activity.


mon SCM are coal fly ash (CFA)10, blast furnace slags (BFS)11, silica fume, or metakaolin (Habert, 2014; Holland et al.,

2016)12. The study of "green concrete" performances and environmental impacts has showed a growing interest in the

literature and several publications recently reviewed the by-products studies (Siddique, 2014; Gu and Ozbakkaloglu,

2016; Paris et al., 2016; Jiang et al., 2018; Sandanayake et al., 2020).

4.2.2 Methodology

This section provides further documentation on the methodology in this study. The following items are detailed :

• The perimeter of the multinational areas considered in the scenarios are described in Section 4.2.2;

• The historical regional floor areas are displayed in Section 4.2.2;

• The regional lifetimes methodology and data are detailed in Section 4.2.2;

• The regional historical materials intensities and the methodology to set their logistic profiles up to 2100 are

explicited in Section 4.2.2.

Regional segmentation in the scenarios

Nine multinational areas are considered in this study. They are detailed in the Table 4.1.

Regions Countries

Africa Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Cen-
tral African Republic, Chad, Comoros, Congo, Cote d’Ivoire, Democratic Republic of the
Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia,
Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Libya, Madagascar, Malawi, Mali, Mau-
ritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome &
Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Sudan, South Sudan,
United Republic of Tanzania, Togo, Tunisia, Zambia, Zimbabwe

China
Europe Albania, Austria, Belarus, Belgium, Bulgaria, Bosnia and Herzegovina, Cyprus, Czech Re-

public, Croatia, Denmark, Estonia, Germany, Gibraltar, Greece, Finland, France, Hungary,
Ireland, Iceland, Israel, Italy, Kosovo, Latvia, Lithuania, Luxembourg, Malta, Moldova,
Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia,
Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine United Kingdom

India
Latin America Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Curacao, Dominican Re-

public, Ecuador, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Nicaragua, Panama,
Paraguay, Peru, Suriname, Trinidad and Tobago, Uruguay, Venezuela

Middle East Bahrain, Islamic Republic of Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Ara-
bia, Syria, United Arab Emirates, Yemen

North America Canada, Mexico, United States of America
OECD Pacific Australia, Japan, Korea, New Zealand
Other Asia Afghanistan, Armenia, Azerbaijan, Bangladesh, Bhutan, Brunei, Brunei Darussalam, Cam-

bodia, Hong Kong, Indonesia, Kazakhstan, Dem. People’s Republic of Korea, Kyrgyzstan,
Laos, Macao, Malaysia, Maldives, Mongolia, Myanmar, Nepal, Oceania (excluding Aus-
tralia and New Zealand), Pakistan, Philippines, Singapore, Sri Lanka, Taiwan, Tajikistan,
Thailand, Turkmenistan, Uzbekistan, Vietnam

Table 4.1: Summary of the considered regions.

10CFA is a by-product of the combustion of coal to generate electricity.
11BFS is produced during the iron-making process.
12Many other materials can also be used, such as foundry sand, wood ash, plastic, glass and other ashes (Paris et al., 2016; Sandanayake et al.,

2020)
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Historical regional building stocks

The surfaces obtained from the logistic approach adopted in this article are displayed in the Figure 4.1 for the residen-

tial segment and in the Figure 4.2 for the non-residential segment.

Figure 4.1: Historical residential regional floor areas.
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Figure 4.2: Historical non-residential regional floor areas.

Regional lifetimes

Recent publications analyzed the impact of lifetime in infrastructures modeling (Aktas and Bilec, 2012; Marsh, 2017;

Zhou et al., 2019; Cao et al., 2019). The authors outlined two majors aspects of lifetime assessment. Firstly, the need for

a more systematic use of lifetime distribution. Numerous statistical distributions exist, such as Weibull, normal, log-

normal, Gamma or Gompertz-based. They are widely used in the literature (Table 4.3), but no insights were available

about the best suited approach to model building lifetime. Miatto et al. (2017a) recently provided such an analysis.

The authors tested the sensitivity of the distribution on materials modeling at national and city scales, and concluded

on the low effects on stocks results and higher impacts on output flows. They further outlined the need to use sev-

eral distribution lifetimes when various buildings categories are considered, and the low impact of the distribution

choice in an aggregated building stock. Secondly, the inverse relation between lifetime and environmental impacts

was depicted in Marsh (2017). They showed that a lifetime value of 100 years reduces the environmental impacts by

38% in comparison with a 50-year level at the Danish scale. An optimal modeling of building lifetime therefore lies

in a combination of a dynamic mean value with a statistical distribution. This approach was conducted by Hu et al.

(2010) for the Chinese residential building stock, assuming a gradual increase of the mean value of a normal lifetime

distribution. A similar approach was selected in this study, using a Gompertz-modeled mean value over time and a

regional normal distribution.

The selected methodology thus intends to provide regional dynamic lifetimes in accordance with the previously de-

picted conclusions. However it does not consider local exceptions, such as a diminishing average lifetime in Norway

described in Brattebø et al. (2009). As previously stated, the building stock was segmented into two categories : res-

idential and non-residential. Due to a lack of data about the non-residential building stocks lifetime characteristics,

similar values are considered for both categories. The methodology relies in three successive steps :

1. Estimating current average regional lifetimes;

2. Evaluating logistic-based profiles for those lifetime between 1900 and 2100;
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3. Calibrating regional normal distributions with dynamic mean values.

The life span of buildings and their typology vary according to geography (AIMCC, 2015). In a first step, current re-

gional lifetimes considered in the literature were studied. They were obtained from a regional analysis and a census

of the observed mean values in lifetime distributions. A summary of those latter is presented in Table 4.3). At the Eu-

ropean level, JRC (2011) reported a life span of about 50 years for more than half of the French housing stock, 20% of

the buildings reaching 100 years. Wang et al. (2018) identified data from several studies, showing longer building life-

times for European buildings than Chinese or North American buildings. The values range from 64 to 132.6 years for

Germany, Spain, Belgium, the Netherlands, Switzerland, Austria, France, and the United Kingdom. Similarly, AIMCC

(2015) presented the results of several European studies predicting lifetimes between 50 and 75 years. Except for Ciacci

et al. (2013) and Hatayama et al. (2009), those values are commonly observed in the lifetime distribution summarized

in Table 4.3. Based on these results, an average service life of 70 years was considered for European commercial and

residential buildings.

In North America, Aktas and Bilec (2012) reported a slightly increasing life span since the late 1990s. The life span of

U.S. residential buildings has evolved from 50 years in 1997 to 61 years in 2009. Wang et al. (2018) estimated close

life spans for the United States and Canada buildings, respectively, with 60 and 70 years. There are large differences

in service life by construction type. In a study conducted in the United States and Canada, O’Connor (2004) revealed

that only one third of North American non-residential concrete buildings are more than 50 years old, compared to

63% of wood buildings and 20% of steel buildings. Wood has a longer life span than concrete, with a majority of

buildings destroyed after 75 years of life. Lifetimes ranging from 26 to 50 years are observed for concrete buildings.

The practical observations are therefore lower than the theoretical values of 51.6 years for wood buildings and 87.2

for concrete buildings (O’Connor, 2004). It covers a variety of reasons for demolition. In North America, nearly 80%

of concrete buildings are demolished for lack of use or for a new building project. Lower levels are observed for weed

(50%) and steel (60%). Only 31% of the buildings are demolished at the end of their life in O’Connor (2004), which

emphasizes the unreliability of the theoretical life span. An average life of 50 years was therefore considered for the

entire North American building stock13.

In China, a different trend is observed by Cao et al. (2019). The authors estimated a life span of 39.4 years for the

building flows between 1950 and 1969, and 37 years between 1970 and 1979. Lifetime then dropped to 25.3 years for

buildings finished between 1980 and 1989, and increases to 26.6 years in the 1990-1999 period and 33.8 years between

2000 and 2015. The life span of Chinese housing thus remains low, explaining the high annual demolition rate. On

average, Cai et al. (2015) estimated a current life span of Chinese residential buildings of 23.2 years, while Hu et al.

(2010) suggested average life spans of 30/40 years in the urban sector in the 1970s and 1980s, and 15 years in the rural

sector. These would increase over time for both rural and urban buildings due to China’s economic reform in 1978,

allowing for improved construction techniques (Hu et al. (2010)). These values and trend are confirmed by Wang et al.

(2018), surveying several studies and announcing a final value of 35 years for the Chinese building stock. Moreover,

Hu et al. (2010) depicted a significant increase of life span in the future, finally reaching 75 years. An average value of

35 years was considered in this study.

In Japan, the life span has been decreasing since the end of World War II, reaching 25 to 30 years in recent years (Wuyts

et al., 2019; Kobayashi, 2016), although with disparities depending on the construction method14. This low average

life span is explained by the depreciation of buildings observed in Japan, and remains slightly below the observed

values in Table 4.3. An average value of 30 years was finally considered for the Japanese building stock. A low value

is also observed in South Korea, with an average of 22.4 years (Seo and Hwang (1999)). A minimum value of 50 years

seems to be common in the New Zealand market, and Deetman et al. (2020) modeled the Oceania building stock with

a mean value of 83 years. Japan and Korea accounting for 85% of the total ASEAN population in 2020, a 35 year-value

is considered for this region.

13The concrete-made and steel-made building market shares were used to evaluate building lifetime. Concrete market share reached 34% in
non-residential and multi-story buildings, while steel market share was 46%.

14This is in accordance with the reported values of the Chinese Vice-Minister of Housing and Urban-Rural Development.
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In the Middle East, a lack of data is observed. The combination of poor quality materials and harsh climatic conditions

explains why buildings are renewed faster than in Western countries. Thus, we observe an average building life of

about 20 years in the United Arab Emirates15, 25 to 50 years in Saudi Arabia16 and 25 to 35 years in Iran17 (Yousefi and

Gholipour, 2018). An average life of 30 years was therefore considered for the Middle-East.

The other regions suffer a lack of data. A 60-year value is considered for Latin America, which is lower than theoretical

values of Heeren et al. (2015) and Deetman et al. (2020), and a lower value for the entire continent by Murakami et al.

(2010). A life span of 50 years was used in Deetman et al. (2020), and is retained in this study for ASEAN and Other

Asia. To the author’s knowledge, no precise assessments of life span are available for Africa and India, an average value

of 50 years was then considered. The final data are displayed in 4.2.

Area Average current life span Average saturation life span

Africa 50 70
ASEAN 50 70
China 35 55
Europe 70 90
India 40 60
Latin America 60 80
Middle East 30 50
North America 50 70
OECD Pacific 35 55
Other Asia 40 60

Table 4.2: Summary of the current and saturation regional building lifetimes considered in this study.

The selected average lifetime were then made dynamic over time. A four-parameter logistic function was used (eq

4.2.1). The parameters were designed assuming initial lifetimes of 10 years in 1900 and saturation values 20 years

higher than the current values (Table 4.2). The resulting lifetimes are displayed in Figure 4.3.

Lt = Lsat + Li ni t −Lsat

1+ t
ti

β
(4.2.1)

In this equation, Lt is the lifetime in the year t, Lsat is the saturation level of the lifetime, Li ni t its initial value, ti is the

inflection year and β influence the growth rate of the curve.

15The workshop "Life Expectancy of Buildings in the UAE" aimed at tacking the quality issue and thus increasing the buildings lifetime.
16Poor quality standards are assumed to be the source of this low life span.
17This average lifetime is even assumed to decrease as low quality standards actors represent an increasing market share.
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Figure 4.3: Regional average lifetimes between 1900 and 2100.
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References Distribution Area Building type
Mean
lifetime

Standard
deviation

Deetman et al. (2021b) Weibull Brazil Urban residential 100
Deetman et al. (2021b) Weibull Canada Residential 51
Hatayama et al. (2009) Weibull China All 32.5
Zhou et al. (2019) Weibull China Urban residential 34.1 23.5
Cai et al. (2015) Weibull China All 23.2
Deetman et al. (2020) Weibull China Residential 39
Wang et al. (2015b) Weibull China Residential 39
Olaya et al. (2017) Normal Colombia Residential 100 25
Vásquez et al. (2016) Normal Czech Republic Residential 100 25
Deetman et al. (2020) Weibull Eastern Europe Residential 78
Hatayama et al. (2009) Weibull Europe All 31.5
Murakami et al. (2010) Europe All 75
Vásquez et al. (2016) Normal Germany Residential 150 40
Bradley and Kohler (2007) Weibull Germany Urban residential
Ciacci et al. (2013) Normal Italy All 40 14
Hatayama et al. (2009) Log-normal Japan All 38.7
Tanikawa et al. (2015) Log-normal Japan All

Hashimoto et al. (2007)
Log-normal and
Weibull

Japan All

Deetman et al. (2020) Weibull Japan Residential 34
Murakami et al. (2010) Japan All 50
Fishman et al. (2014) Normal Japan and USA All
Deetman et al. (2020) Weibull Mexico Residential 56

Murakami et al. (2010)
North, Middle and
South America

All 50

Brattebø et al. (2009) Normal Norway All
180 down

to 95

Deetman et al. (2020) Weibull Oceania Residential 83

Deetman et al. (2020) Weibull
Rest of South
America

Residential 60.5

Deetman et al. (2020) Weibull
Southeastern
Asia

Residential 50

Heeren et al. (2015) Log-normal
Rest of South
America

Residential and
small offices

90

Müller et al. (2014) Normal The Netherlands Residential 60-90-120 20
Davis et al. (2007) Weibull UK All 60 13.7
Davis et al. (2007) Log-normal UK All 60 12.1
Deetman et al. (2020) Weibull USA Residential 77
Hatayama et al. (2009) Weibull USA All 75

Kapur et al. (2008)
Weibull, Gamma
and log-normal

USA All

Aktas and Bilec (2012) Weibull USA Residential 61 25
Ciacci et al. (2013) Normal USA All 50 15
Deetman et al. (2020) Weibull Western Europe Residential 63

Table 4.3: Summary of lifetime distributions, regional mean values and standard deviations in the literature.
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In a third and last step, normal distribution were applied on the logistic-based average lifetimes (eq 4.2.2). As depicted

in Table 4.3, a wide panel of standard deviation values are used in the existing studies. It also shows an evolution with

the mean value, and the ratio µ
σ of the selected studies ranges from 2 to 4.6. The data of Zhou et al. (2019) and Aktas and

Bilec (2012) were considered, respectively for China and North America, because of their estimation from historical

data. Given the lack of data for the other areas, an average value of 0.3·µ was selected in this study. This is however

a first order estimation, and it does not provide any overall pattern. Given the dynamic nature of the mean lifetimes,

the standard deviation also varies over time.

f (L) = 1

σ ·p2 ·π ·exp(−1

2
· (

L−µ

σ
)2) (4.2.2)

With f (L) the probability density function depending on the lifetime, σ the standard deviation and µ the mean life-

time. The final probability density functions of Europe, China, India and North America in 2000, 2020 and 2050 are

displayed in Figures 4.4a to 4.4d.

(a) Europe (b) North America

(c) China (d) India

Figure 4.4: Normal distribution of the European, North American, Chinese and Indian buildings lifetimes in 2000,
2020 and 2050.

Regional raw materials, energy and CO2 intensities

Some material modeling studies consider static materials intensities (Marinova et al., 2020a; Deetman et al., 2020;

Hong et al., 2016; Schebek et al., 2017; Yang and Kohler, 2008), and other provide useful data about their evolution

over time. Hu et al. (2010) assumed a dynamic steel material intensities in rural residential building in China, and

dynamic concrete intensities are displayed in Figure 4.5. An increase of concrete and steel intensities is generally ob-

served over time, except in Sweden (Gontia et al., 2018). Two reasons can explain this upward trend. Firstly, a change

in the construction mix occurred in Europe and Japan after the World War II. Concrete increased its domination over

material use in a context of rapid and economical reconstruction of destroyed cities (Steele, 2017; Diefendorf, 1989;

Chemillier, 1997). The rises represented in Figure 4.5 may thus provide insight about an evolution toward more con-

crete in the construction mix rather than a higher use of materials in concrete buildings. A further evolution of the

mix (e.g. wood building development) is considered in this study. Higher steel, aluminum and copper intensities over
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time draw a different trend, such as an increasing use of reinforced concrete, or higher electrification of buildings.

This research field is not well studied in the literature, and no quantitative regional trends are available to the author

knowledge.

Figure 4.5: Dynamic residential concrete intensity values observed in the literature. Netherlands data from B. Müller
(2006), Norway data from Bergsdal et al. (2007), Germany data from Ortlepp et al. (2018), French data from Serrand
et al. (2013) and Sweden data from Gontia et al. (2018). The decrease of intensity observed in Ortlepp et al. (2018)
could be explained by a recent rise of masonry use.

In this study, dynamic material intensities were considered. IEA (2018a) distinguished five building structures in nine

major regions: composite, wood, steel, masonry and concrete. While wood structures accounted for nearly 80% of the

residential stock in North America, Oceania and Africa, concrete was chosen in the rest of the world. The share of con-

crete structures reaches nearly 60% in Europe, China, India, ASEAN and most Asian countries residential buildings, as

well as in Latin America, while wood and masonry are the secondary structures. The situation is more homogeneous

in the non-residential sector. A majority of the stock relies on concrete structures - ahead of steel and masonry - ex-

cept in North America. Along with those market shares, IEA (2018a) specify regional material intensities for concrete

and steel. The concrete material intensities provided by the IEA (2018a) exceed more than 1000 kg/m² for residential

in regions with concrete as the main building material. This is in agreement with Liu (2010) for China, Kleemann et al.

(2016) for the Austrian capital, B. Müller (2006) for the Netherlands, Ortlepp et al. (2016) for Germany or Serrand et al.

(2013) for the city of Orleans. However, the values observed in the literature vary and are mainly focused on European

countries, which prevents the comparison of data from the majority of regions. Tertiary material intensities of con-

crete are higher than residential in all regions in IEA (2018a). Moreover, while concrete does not exceed 20% of the

residential market in North America, Oceania and Africa, its share of the tertiary market in these regions is increas-

ing significantly. It reaches 40% in North America, 60% in Oceania, and nearly 90% in Africa. Conversely, the market

shares of steel show little differences in material intensities between regions.

IEA (2018a) did not specify aluminum and copper consumption of the global building stock. Less data are available for

those two materials than for concrete and steel in the literature. Dong et al. (2019) estimated dynamic residential and

non-residential copper intensities from 1980 to 2050 for China. Koutamanis et al. (2018) compiled copper intensities

in kg/capita from Drakonakis et al. (2007); van Beers and Graedel (2007); Wittmer et al. (2007); Huang et al. (2013);

Cochran et al. (2007); Mália et al. (2013) and Li et al. (2013) for Florida, the USA, China, Korea, Norway, Switzerland,

Australia, New Heaven, and Cape Town. The authors showed significant differences between buildings, even within

the same perimeter and emphasize the difficulty to estimate copper intensity over large areas. Schipper et al. (2018) re-

ported material intensities of copper in residential building range from 0.92 to 3.18 kg/m², and from 0.46 to 1.58 kg/m²

for non-residential buildings. Copper is consumed in the building sector for wiring, air conditioning, plumbing and
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roof building (Koutamanis et al., 2018). This large range of uses and their regional disparities explain the significant

heterogeneity observed in the copper intensities. Residential aluminum intensity varies between 0.37 kg/m² and 0.73

kg/m² in Vienna, Austria (Kleemann et al., 2016), and between 0.6 kg/m² and 3.6 kg/m² in France depending on the

type of building (ADEME et al., 2018a). Hong et al. (2016) estimated dynamic residential and commercial aluminum

intensity from 2010 to 2025 in China, while Marinova et al. (2020b) and Deetman et al. (2020) provided values for both

the residential and the non-residential sectors at a multi-regional scale. In order to show the link between material

intensities and living standards, copper and aluminum intensities were differentiated with GDP/capita values in this

study. The ten selected areas were segmented in three groups depending on their GDP/capita value in 2020. Maxi-

mum values were estimated based on the data summarized in Table 4.4. They were considered for the first group, the

minimum value for the third group and an intermediate value was estimated for the second group. As described in

Schipper et al. (2018), the non-residential copper intensity are half the residential values. The current regional values

finally selected in this study are summarized in the Table 4.5.

References Aluminum Copper Year Area Building type

Ortlepp et al. (2018) 1.07 Germany Non-residential
Ortlepp et al. (2016) Germany Residential
Gontia et al. (2018) 3.3 Sweden Residential
Hong et al. (2016) 2.02 2010 China Residential
Hong et al. (2016) 2.2 2025 China Residential
Hong et al. (2016) 4.9 2010 China Commercial
Hong et al. (2016) 5.34 2025 China Commercial

Marinova et al. (2020b) 2.53 0.94
Average of studies

for various countries
Residential

Deetman et al. (2020) 4.2 3.2
Average of studies

for mainly developed countries
Non-residential

Dong et al. (2019) 0.11 1980 China Residential
Dong et al. (2019) 0.43 2010 China Residential
Dong et al. (2019) 0.59 2020 China Residential
Dong et al. (2019) 0.88 2050 China Residential
Dong et al. (2019) 0.05 1980 China Non-residential
Dong et al. (2019) 0.21 2010 China Non-residential
Dong et al. (2019) 0.3 2020 China Non-residential
Dong et al. (2019) 0.43 2050 China Non-residential
ADEME et al. (2018a) 0.6 0.7 2020 France Residential
ADEME et al. (2018a) 3.6 0.6 2020 France Non-residential
Kleemann et al. (2016) 0.73 0.37 1970 Austria Residential
Kleemann et al. (2016) 0.97 1.1 2003 Austria Hospital

Schipper et al. (2018) 0.92-3.18
Previous studies

for various countries
Residential

Schipper et al. (2018) 0.46-1.59
Previous studies

for various countries
Non-residential

Table 4.4: Summary of buildings residential and non-residential materials intensities (kg/m²).
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Building
type

Material
North

America
Europe China India ASEAN Africa

Latin
America

Other
Asia

Middle
East

OECD
Pacific

R

Concrete 400 1000 1100 1100 1100 400 1100 1100 1100 1000

Steel 12 37 39 37 37 14 37 37 37 33

Copper 3.2 3.2 0.6 0.3 0.6 0.3 0.6 0.6 0.6 3.2

Aluminum 1.3 1.3 2 0.36 0.8 0.36 0.8 0.8 0.8 1.3

NR

Concrete 900 1200 1500 1200 1400 1400 1400 1300 1300 1300

Steel 70 72 71 68 76 71 74 68 68 69

Copper 1.6 1.6 0.3 0.15 0.3 0.15 0.3 0.3 0.3 1.6

Aluminum 4.2 4.2 4.2 1.2 2.7 1.2 2.7 2.7 2.7 4.2

Table 4.5: Summary of the current residential and non-residential material intensities considered in this study in
kg/m². R = Residential, NR = Non-Residential.

Dynamic materials intensities were then modeled using a logistic function depending on GDP (eq 4.2.3). An initial

value of 120 kg/m² was assumed for concrete in 1900, in accordance to values observed in B. Müller (2006); Ortlepp

et al. (2016) and Gontia et al. (2018). Initial values of 0.05 kg/m² were considered for aluminum and copper, and 2

kg/m² and 10 kg/m² for residential and non-residential steel in 1900. A better knowledge of past steel, copper and

aluminum intensities are needed to design their evolution over time. The saturation levels considered are slightly

higher than the current values of Europe for concrete, with 1,200 kg/m² for residential buildings in 2100. A renewal of

residual non-concrete buildings was assumed, and a small increase of concrete market share in North America. Given

the lack of data, the same level than in the North America was considered in Africa for residential concrete intensity.

Other materials were assumed as less structural for building, and thus higher saturation levels are observed. The same

saturation levels were considered for the nine selected areas.

It = Isat

1+ Isat
I1900

·exp(−β(GDPt −GDP1900))
(4.2.3)

In this equation, It is the material intensity in the year t, Isat and I1900 are respectively the saturation level and the

1900 value of the material intensity, β is a parameter influencing the growth rate, GDPt is the GDP value in the year

t and GDP1900 is the 1900 value of GDP. The final results are displayed in Figures 4.6a to 4.6d for regional residential

buildings, in Figures 4.7a to 4.7d for regional non-residential buildings. A higher steep of material intensities is ob-

served for residential copper and non-residential aluminum. It lies in the assumption of almost no demand in 1900

and in the larger saturation values.

This study considers material flows for thermal renovation in addition to the construction related flows. The French

data from ADEME et al. (2018b) are depicted thereafter, and are considered at the global scale due to the lack of data.

This assumption covers high uncertainties, since various types of renovations could be implemented depending on

the area. The implemented renovations in ADEME et al. (2018b) are insulation of exterior walls, floors, roofs, and

replacement of doors, windows and closures. Along with the addition of material related to housing renovation, there

is a high production of waste. Indeed, materials are removed upstream of the renovation process, while others are lost

in the installation scraps (ADEME et al., 2018b). An average material intensity of the waste outputs was evaluated from

the total mass of waste and the total surface area renovated until 2050. A balancing of the individual and collective

share in the residential stocks was assumed (ADEME, 2017). The intermediate values of the "volontaire" scenario were

considered, and the results are summarized in the Table 4.6.

79



(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.6: Dynamic and regional material intensities in concrete, steel, copper and aluminum in the residential build-
ing sector.

Renovation process Aluminum Concrete Steel

Inflow 0.75 0.69 0.88
Waste outflow 0.003 0.47 0.016

Table 4.6: Materials intensities of renovation. The inflows and outflows per square meter of renovated floor area
(kg/m²).

Recycled aggregates concrete (RAC)

As described in the section S1.2, two types of recycled aggregates from construction and demolition waste (CDW) are

considered: recycled aggregates (RA) and recycled concrete aggregates (RCA). The different applications of RA are de-

scribed in Reis et al. (2021), and the authors outlined the growing number of encouraging pilot projects using recycled

aggregate concrete (RAC). Silva et al. (2019) further provided a review of 31 constructions projects to demonstrate the

technical and economic viability of recycled aggregates use. Among these projects, 11 are related to structural use of

concrete in buildings. They carry substantial benefits through four reductions : financial, primary resources need,

accumulation in landfills and environmental impacts. The RAC research field has been growing over the past years,

and the specific impact of replacing natural aggregates by recycled concrete aggregates (RCA) on the properties of

RAC was under focus. RCA is defined as aggregates recovered from concrete in which other materials represent less

than few percents (Marinković and Carević, 2019), and it can be used for higher strength concrete than RA (Purnell

and Dunster, 2010). However, Behera et al. (2014) showed lower mechanical and durability performance of RAC, and

emphasized the need of further assessment of RA quality and its impact on concrete. In reviews on the RCA impacts

on RAC production, Silva et al. (2014) and Verian et al. (2018) provided recommendations for an optimal use of recy-

cled concrete aggregates (RCA) in concrete production. The authors showed different challenges depending on the
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.7: Dynamic and regional material intensities in concrete, steel, copper and aluminum in the non-residential
building sector.

use of fine and coarse aggregates18, but a potential was identified for both types. The authors further reported that

some researches estimate a 30% limit in the use of coarse RCA in concrete, but state that there could be no limit in

its potential share if specific process conditions are respected19. Thomas et al. (2013) further outlined the need for

more assessment of RAC in different exposure conditions. For moderate conditions, Thomas et al. (2018) estimated

that a 25% replacement of NA by RCA displays viable strength results. Guo et al. (2018) and Verian et al. (2018) further

identified the potential to enhance recycled aggregate concrete performances, using for example CO2 treatment and

pozzolanic materials (e.g. fly ash).

RCA replacement scenarios methodology

A significant increase in the EOL-CR of CDW was observed over the past decade in Europe (Villoria Sáez and Osmani,

2019). However, most of other regions display lower rates (Tam et al., 2018; Reis et al., 2021), and most of the CDW

are disposed in landfills. The concrete lost stock amounted to about 45 Gt in 2020. The recycling of the accumulated

concrete in landfills would allow to decrease the dependency on primary mineral production and a reduction of the

storage burden. To provide a first-order estimate of the impact of a mass use of RCA replacement in concrete pro-

duction on lost stock reduction, a methodology was developed and computed on the building stock of the IEA (2017)

scenarios. It is based in the following assumptions :

1. No RCA replacement is observed at large scales until 2025;

2. It was assumed that both fine and coarse natural aggregates could be replaced by their related recycled aggre-

gates;

3. The potential shares of RCA in RAC described in Verian et al. (2018); Tam et al. (2018) and Thomas et al. (2018)

18Bravo et al. (2015) found that fine aggregates use hampers concrete performance, but that a limited share of coarse aggregates is viable. This
higher impact of fine RCA was also highlighted in Guo et al. (2018).

19Coarse and fine aggregates are defined by the size of their particles.
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were used to develop a business-as-usual case and four scenarios of RCA replacement (Figure 4.8) :

• Business-as-usual case : 0% of RCA replacement from 2025 to 2060

• Replacement scenario 1 (RS1) : progressive increase from 0% in 2025 to 20% of RCA replacement in 2060

• Replacement scenario 2 (RS2) : progressive increase from 0% in 2025 to 50% of RCA replacement in 2060

• Replacement scenario 3 (RS3) : progressive increase from 0% in 2025 to 20% of RCA replacement in 2040

4. A share of 60% to 75% of aggregates in concrete was considered20.

5. Most of the current annual recovered flow annual of concrete is used in non-structural applications and the

quality of the remaining wastes is unknown. It was assumed that RCA will be recovered from the concrete lost

stock. However, RCA represent a small share of CDW, as most of the wastes are RA (Purnell and Dunster, 2010),

but no estimation of the global overall share of RCA in CDW is available to the author’s knowledge. Further

estimations of RCA share in CDW will allow to calibrate the potential share of concrete inflow on which scenarios

can be applied.

6. The scenarios of RCA replacement are considered on 20%, 50% and 100% of the concrete inflow to exhibit the

limited geographical scale of RCA replacement in landfills.

Figure 4.8: RCA replacement shares in the BAU case and the three replacement scenarios considered.

"Green" concrete

Fly ash generation

Coal combustion products (CCP) are the residues produced during the combustion of coal to generate electricity.

They include fly ash, bottom ash, boiler slag and flue gas desulfurization materials (Kelly and Matos, 2017). Coal

fly ash (CFA) represents most of the residues, and is mainly recycled to produce concrete (Luo et al., 2021; Marinina

et al., 2021). Given that CFA is produced during with power generation, most countries display ash dumps and CFA is

recycled for a local use. Marinina et al. (2021) reported various rate of use of the generated fly ash among countries,

ranging from 10% in Russia and Africa to more than 90% in France, Japan, Germany and the UK. The future use of CFA

to decrease concrete environmental impacts depends on national energy policies. A gradual shift from fossil fuels to

renewable in the electricity mix will directly impact fly ash generation. CFA generation assessment in energy transition

scenarios could therefore provide insights in the future viability of using CFA to decrease concrete environmental

impacts. In this section, an estimation of CFA production is provided until to 2060 in the B2D and RT scenarios. It

20The Portland Cement Association reports a rate of aggregates in concrete ranging from 60% to 75%.

82

https://www.cement.org/cement-concrete/concrete-materials/aggregates


relies on :

• Historical fly ash generation data for China (Luo et al., 2021), India (Bhawan and Puram, 2020), the USA (Kelly

and Matos, 2017; AACA, 2016, 2017, 2018, 2019) and the UK (UKQAA, 2016);

• Historical coal demand (BP, 2021);

• Regional or global coal demand assumptions in the B2D and RT scenarios.

Historical fly ash generation intensity was firstly evaluated for the selected areas. They provide evolution of the CFA

produced per coal consumed. The countries display values ranging from about 2.5 Mt/EJ for the USA to more than

11 Mt/EJ for India, and a stabilization of their values are observed since 2005. Given that 72% of coal was consumed

by those countries in 2020 (Figure 4.9), these intensities allow to depict most of the global fly ash generation. The

projected CFA generation was then estimated based on the evolution of coal demand in the B2D and RT scenarios

(IEA, 2020b, 2021d) and constant future intensities were assumed until 2050. Their selected values are :

• 11 Mt/EJ for India;

• 6 Mt/EJ for China;

• 4 Mt/EJ for the UK;

• 2.5 Mt/EJ for the USA;

• 7 Mt/EJ for the rest of the world. This value was calibrated using the CFA production in 2016 reported in Jin et al.

(2021).

The estimated CFA production between 2010 and 2050 is displayed in Figure 4.11. It shows a stabilization of CFA gen-

eration at about 1,150 Mt between 2010 and 2060 in the RTS. The reduction of coal demand in the B2DS substantially

impact the CFA production. It drops to 530 Mt in 2030, and finally 250 Mt in 2060. At a regional level, the results are

displayed in Figure 4.13 for China, Figure 4.14 for India and Figure 4.12 for the USA between 2002 and 2060 in the RT

and B2D scenario. A significant increase of the fly ash production is observed between 2002 and 2020 in China. It

raised from 180 Mt to 580 Mt, and then experiences a reduction to 370 Mt in 2060 in the RT scenario, and 90 Mt in

the B2DS. An almost monotonous rise from 83 Mt in 2002 to 490 Mt in 2060 is showed for India in the RT scenario,

while it decreases to 60 Mt in 2060 in the B2D scenario. The USA production decreases from 69 Mt in 2002 to 30 Mt

in 2060 in the RT scenario, and drops to 7 Mt in 2060 in the B2D scenario (Figure 4.11). The utilization rate of CFA

reached more than 66% in China in 2015 (Luo et al., 2021), 54% in the USA (Kelly and Matos, 2017) and 56% in India

(Bhawan and Puram, 2020). Globally, this rate was only 25% in the early 2000s (Iyer and Scott, 2001), and experienced

a growth to 60% in 2016 (Jin et al., 2021). Based on this evolution, a global utilization rate was estimated between 2002

and 2019 (Figure 4.15). Finally, the accumulation of unused CFA was calculated between 2002 and 2019 (Figure 4.16),

and the initial lost stock in 2002 is unknown. It was found that the accumulated fly ash in landfills increased by 9.2

Gt between 2002 and 2019, which represents 15.5 years of current use, with strong regional disparities. The additional

stock reached 2.8 Gt in China during the period, 1.1 Gt in India, 0.5 Gt in the USA and 4.8 Gt in the rest of the world

(Figure 4.16). In the perspective of a progressive decrease in coal consumption, these stocks could become valuable

reserves. They could provide materials to the industries many years after the shutdown of coal-fired power plants.

Given that the CFA intensities are based on a stabilization assumption, the results carry high uncertainties. Moreover,

lower values were observed in the past21 and no reliable retrospective CFA generations can be estimated from the

intensities.

21The coal ash production in 1992 by country is provided Manz (1997)
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Figure 4.9: Historical coal consumption (BP, 2021)

Figure 4.10: Historical regional coal fly ash generation per EJ of coal consumed. Estimated from (UKQAA, 2016; Luo
et al., 2021; Kelly and Matos, 2017; AACA, 2017, 2018, 2019; Bhawan and Puram, 2020) and (BP, 2021).

Figure 4.11: CFA production between 2010 and 2100. Estimated historical global data are displayed between 2010 and
2019 and prospective results are showed for the SSPs and the RTS and B2DS between 2020 and 2100 (or 2060 for the
RTS and B2DS).
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Figure 4.12: Estimated CFA production in the USA between 2002 and 2100. Historical data are displayed between 2002
and 2015, estimated historical data are depicted between 2016 and 2019, and modeled data are showed between 2020
and 2100.

Figure 4.13: Estimated CFA production in China between 2002 and 2100. Historical data are displayed between 2002
and 2015 for the USA, estimated historical data are depicted in 2019 and 2019 and modeled data are showed between
2020 and 2100.
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Figure 4.14: Estimated CFA production in India between 2002 and 2019. Historical data are displayed between 2002
and 2019 for India, estimated historical data are depicted in 2019 for India and modeled data are showed between
2021 and 2100.

Figure 4.15: Historical utilization rate in China, India and the USA, and estimated values at the global level and for the
rest of the world.
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Figure 4.16: Estimated global additional stock of unused coal fly ash between 2002 and 2019.

"Green" concrete composition

Three studies were considered to compute the energy and environmental effects of using by-products and/or recy-

cled materials in concrete. The resulting materials is referred to as "green" concrete. Two types of replacements are

considered in the studies :

• Replacement of natural aggregates, by various (fine and coarse) recycled concrete aggregates (RCA), fine RCA,

coarse RCA or Electric Arc Furnace Steel Slag (EAFSS);

• Replacement of Ordinary Portland cement, by coal fly ash (CFA) or blast furnace slag (BFS).

Flower and Sanjayan (2007) considered CFA and BFS replacement, and found potential CO2 emissions reduction by

22% for BFS and 13% to 15% for CFA. Turk et al. (2015) analysed natural aggregate replacement by EAFSS, cement re-

placement by CFA, and combined EAFSS or CFA with RCA. The results display higher reductions for CFA replacement

than for EAFSS, and a positive impact of an additional RCA use. Kurda et al. (2018) analyzed a large panel of single

and combined replacements of fine RCA, coarse RCA and CFA (and additional superplasticizer not considered in this

study). The authors showed significant reduction potential of CFA and a higher reduction when combined with coarse

RCA than with fine RCA. The emissions decrease could reach 60% with a replacement CFA of 60% combined with a

100% coarse replacement. The results of the three studies are displayed in Table 4.7.
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Concrete mix Impact and potential reduction

References
Various

RCA
Fine
RCA

Coarse
RCA

CFA BFS EAFSS
Production

energy (MJ/t)
CO2 em.

(kgCO2/t)
Energy

reduction
Emissions
reduction

Kurda et al.
(2018)

1,950 362

50% 1,940 361 0.5% 0.3%

100% 1,940 360 0.5% 0.6%

30% 1,580 269 19% 26%

50% 30% 1,570 268 19% 26%

100% 30% 1,560 267 20% 26%

60% 1,210 176 38% 51%

50% 60% 1,190 174 39% 52%

100% 60% 1,190 174 39% 52%

100% 1,530 331 22% 8.6%

50% 100% 1,530 331 22% 8.6%

100% 100% 1,530 330 22% 8.8%

100% 30% 1,160 330 41% 34%

50% 100% 30% 1,150 238 41% 34%

100% 100% 30% 1,150 237 41% 35%

100% 60% 783 145 60% 60%

50% 100% 60% 781 145 60% 60%

100% 100% 60% 779 144 60% 60%

Turk et al. (2015)

1,690 260

25% 1,300 195 23% 25%

5.6% 1,400 250 17% 4%

30% 25% 1,150 190 32% 27%

28% 5.6% 1,230 242 27% 7%

Flower and
Sanjayan (2007)

290-322

25% 253-273 13-15%

40% 225-251 22%

Table 4.7: Energy and environmental impacts of various concrete mixes. RCA = Recycled Concrete Aggregates, CFA =
Coal Fly Ash, BFS = Blast Furnace Slag and EAFSS = Electric Arc Furnace Steel Slag.

The energy and environmental impact of an increase of "green" concretes based on CFA, BFS and combined CFA and

coarse RCA was computed in the B2D and RT scenario. The traditional concrete considered in Kurda et al. (2018) was

used (Table 4.8)22. Four "green" concretes were computed (Table 4.9) and used in 20%, 50% and 100% of concrete

demand.

Materials Fine aggregates Coarse aggregates Cement Water Total

763 1,060 350 186 2,359

Table 4.8: Traditional concrete mix materials in kg for 1 m3 (Kurda et al., 2018)

22A modification of a material used in a concrete mix display side effect on other contents (Kurda et al., 2018). For example, the fine aggregates
composition of a concrete mix changes when CFA is used. In this study, no side effects are considered.
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Green concrete Replacement Production energy reduction Emissions reduction

GC1 30% CFA 19% 26%
GC2 60% CFA 38% 51%
GC3 60% CFA and 100% coarse RCA 60% 60%
GC4 40% BFS 22%

Table 4.9: Considered replacements in "green" concretes.

4.2.3 Further results

Regional materials stocks and flows

The regional materials stocks and flows results are displayed in this section for the selected scenarios.

SSP1

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.17: Regional in-use stocks of concrete, steel, copper and aluminum in the SSP1. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.18: Regional inflows of concrete, steel, copper and aluminum in the SSP1. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.19: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the SSP1.
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SSP2

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.20: Regional in-use stocks of concrete, steel, copper and aluminum in the SSP2. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.21: Regional inflows of concrete, steel, copper and aluminum in the SSP2. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.22: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the SSP2.
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SSP3

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.23: Regional in-use stocks of concrete, steel, copper and aluminum in the SSP3. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.24: Regional inflows of concrete, steel, copper and aluminum in the SSP3. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.25: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the SSP3.
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SSP4

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.26: Regional in-use stocks of concrete, steel, copper and aluminum in the SSP4. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.27: Regional inflows of concrete, steel, copper and aluminum in the SSP4. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.28: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the SSP4.
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SSP5

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.29: Regional in-use stocks of concrete, steel, copper and aluminum in the SSP5. The residential and non-
residential segments are aggregated.

97



(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.30: Regional inflows of concrete, steel, copper and aluminum in the SSP5. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.31: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the SSP5.
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B2DS

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.32: Regional in-use stocks of concrete, steel, copper and aluminum in the B2DS. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.33: Regional inflows of concrete, steel, copper and aluminum in the B2DS. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.34: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the B2DS.
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RTS

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.35: Regional in-use stocks of concrete, steel, copper and aluminum in the RTS. The residential and non-
residential segments are aggregated.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.36: Regional inflows of concrete, steel, copper and aluminum in the RTS. The residential and non-residential
segments are aggregated.

(a) Concrete (b) Steel

(c) Copper (d) Aluminum

Figure 4.37: Global stocks of concrete, steel, copper and aluminum in the residential and non-residential segments in
the RTS.
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Materials weight of thermal renovation

(a) Concrete (b) Steel

(c) Aluminum

Figure 4.38: Materials flows needed for the renovated surfaces in the building sector for the selected scenarios. Reno-
vation is only considered in the residential segment.
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Concrete recovery and recycling

SSP1

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.39: Global in-use, recovered and lost flows (a) and stocks (b) in the SSP1. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.40: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP1, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP1.
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SSP2

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.41: Global in-use, recovered and lost flows (a) and stocks (b) in the SSP2. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.42: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP2, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP2.
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SSP3

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.43: Global in-use, recovered and lost flows (a) and stocks (b) in the SSP3. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.44: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP3, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP3.
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SSP4

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.45: Global in-use, recovered and lost flows (a) and stocks (b) in the SSP4. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.46: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP4, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP4.
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SSP5

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.47: Global in-use, recovered and lost flows (a) and stocks (b) in the SSP5. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.48: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP5, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the SSP5.
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B2DS

(a) Global flows (b) Global stocks

(c) Regional recovered stocks (d) Regional lost stocks

Figure 4.49: Global in-use, recovered and lost flows (a) and stocks (b) in the B2DS. The regional recovered stocks are
displayed in the Figure (c) and the lost stocks in the Figure (d).
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(a) Annual demand in the S1, S2 and S3 computed on 100% of the
inflow

(b) Annual demand in the S1, S2 and S3 computed on 50% of the
inflow

(c) Lost stock in the S1, S2 and S3 computed on 100% of the inflow(d) Lost stock in the S1, S2 and S3 computed on 50% of the inflow

Figure 4.50: Global annual demand of RCA for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the B2DS, and lost stocks of concrete for replacement scenarios on 100% of the inflow (a) and 50% of the inflow
(b) in the B2DS.
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"Green concrete"

Green concrete
Production energy

reduction
CO2 emissions

reduction

GC1 19% 26%

GC2 38% 51%

GC3 60% 60%

GC4 22%

Table 4.10: Energy demand and CO2 emissions reductions in the scenarios in 2100 for a use of "green concretes" on
100% of the concrete inflow.
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Materials production energy and CO2 emissions

(a) Energy (b) CO2

Figure 4.51: Global production energy and CO2 emissions of the materials in the building sector for the selected sce-
narios. The residential and non-residential segments are aggregated.
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4.2.4 Discussion

Comparison of materials results with other studies

References Year Area Perimeter Cement Concrete Steel Copper Aluminum

Stock (Gt)

Marinova et al. (2020b) 2018 Global Residential 240 12 0.2 1.2

Pauliuk et al. (2013) 2008 Global
Building and

infrastructures
17

Glöser et al. (2013) 2010 Global
Building and

infrastructures
0.2

Deetman et al. (2020) 2018 Global Building 267 15 0.31 1.3

This study 2018 Global Building 211 9 0.27 0.39

Deetman et al. (2020) 2050 Global Building SSP2 406 27 0.56 1.8

This study 2050 Global Building SSP2 355 16 0.54 0.8

Hu et al. (2010) 2010 China Residential 0.7

Dong et al. (2019) 2015 China Building 0.03

This study 2018 China Building 66 3 0.03 0.14

Flow (Mt/yr)

Gao et al. (2018) 2010 China Building 210

Hu et al. (2010) 2010 China Residential 56

Dong et al. (2019) 2015 China Building 2.2

Yin and Chen (2013) 2010 China Building 190

This study 2018 China Building 2,200 87 4.9 1.6

Moynihan and Allwood (2012) 2006 Global Building 290

Glöser et al. (2013) 2010 Global
Building and

infrastructures
7

Deetman et al. (2020) 2018 Global Building 8,900 600 12 44

This study 2018 Global Building 8,100 330 16 10

Deetman et al. (2020) 2050 Global Building SSP2 11,900 769 18 52

This study 2050 Global Building SSP2 7,500 310 17 14

Annual demand 2018 Global All sectors 4,050 1,800 25 29

Table 4.11: Results of stocks and flows of bulk materials in previous studies.
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Chapter 5

A bottom-up modeling of the energy sector:

raw materials, embodied energy and CO2

impacts

Summary of the chapter

Objectives

• Modeling fossil fuel and renewable infrastructures from 1950 to 2050.

• Estimating embedded materials, energy and CO2 emissions.

• Analyzing the role of the decommissioning of the fossil fuel supply chain from a material dimension.

Methodology

• Dynamic material flow analyses (MFA) are developed and applied.

• Baseline and low-carbon transition scenarios are considered.

Results

• The pace of the development and the short lifetimes of renewable technologies could create a substan-

tial increase of the material demand.

• The material intensities of oil, gas and coal supply chains have stagnated for more than 30 years.

• Gas is the main driver of current and future material consumption.

• Recycled steel from decommissioned fossil fuels infrastructures could meet the cumulative need of fu-

ture low-carbon technologies and reduce its energy and environmental toll.

• To be ambitious, decommissioning strategies should enhance in-use steel recycling.
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The ongoing energy transition is tackled from two angles: energy demand management and energy production de-

carbonation. The share of renewables in the global energy supply mix only reached 4.6% in 2018 and their share in

the electricity mix amounted to 29% in 2020, mainly represented by hydro (IEA, 2020a,b). An acceleration of their

penetration in the energy is required to achieve the political objectives–such as the EC proposal of a 40% target of re-

newable energy in the EU energy consumption in 20301. The increasing demand for low carbon technologies results

in a constraints for both base and technological materials. Vast amounts of base materials are needed to produce de-

centralized facilities, in a context of growing energy demand and other material-intensive technologies development.

Vidal et al. (2013) pointed out a shift from a energy materials dependency to a minerals and metals dependency. The

quantification of the future materials demand emanating from renewables became a growing research field. Some

studies focused on specific technological development such as photovoltaic panels (Shammugam et al., 2019; Kavlak

et al., 2014) or wind turbines (Davidsson and Höök, 2017). The material requirements for an increasing share of low

carbon technologies were estimated at a global level (Kleijn et al., 2011; Deetman et al., 2021b; Watari et al., 2019) and

at national levels (Viebahn et al., 2015; Beylot et al., 2019), and studied with new angles (EROI in Capellán-Pérez et al.

(2019) or substitution in Månberger and Stenqvist (2018)). In a first article included in the present chapter (Vidal et al.,

2018), we propose a modeling of the base materials requirements for three low-carbon scenarios, and the associated

embodied energy and CO2 emissions.

The strong interest in renewable modeling conceals the domination of fossils fuels since the 19th century (Figure

5.1). Oil, coal and gas still represented more than 81% of primary energy supply in 2018 (IEA, 2020b). Their decreasing

demand in energy transition scenarios brings out new matter about a future decommissioning of fossils supply infras-

tructures (OGUK, 2020; Ekins et al., 2006; Kaiser, 2018). No study was conducted on the materials embedded in those

infrastructures. In a second article included in the Section 5.1, we aim at proposing a first estimation of the amount of

base materials consumed in fossils fuels extraction and supply infrastructures, and the associated embodied energy

and CO2 emissions (Le Boulzec et al., 2022). The supplementary information is provided in Section 5.2.

Figure 5.1: Global primary energy supply by sources from 1850 to 2014. Sources: Court (2016)

1The 2021 amendment of the EC aims at raising the target from a previous 32% level in 2030 to 40%, and still considers a carbon neutrality by
2050.
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Modelling the material and energy costs
of the transition to low-carbon energy

Olivier Vidal(∗), Hugo le Boulzec and Cyril François

Isterre, CNRS, Université Grenoble-Alpes - France

Summary. — The evolution from 2000 to 2050 of the needs in concrete, steel,
aluminium and copper to build the infrastructure of electricity generation is mod-
elled for the scenarios of Garćıa-Olivares et al. (2012), Ecofys-WWF (2012) and the
blue map scenario of the IEA (2010). A simple dynamic model is used to estimate
the primary production, recycling and lost flows as well as the cumulative stocks of
material to be produced, to go into the infrastructure and to be lost. The energy
of material production is also estimated. When compared with the expected evo-
lution of global material and energy demands, the modelling results suggest that i)
the transition to low-carbon energies implies a substantial increase of raw materials
and energy consumption, ii) the shorter lifetime of wind and solar facilities and the
loss of recycling implies that the total amount of metal to be produced during the
deployment of the infrastructure of energy is significantly higher than their amount
stocked in the infrastructure, and iii) the needs in materials and energy will occur
in a period of expected increase of primary metal consumption at the world scale
and limited potential of recycling.

Introduction

Meeting a growing demand for energy while reducing greenhouse gas emissions is a

crucial challenge of the 21st century. The European Commission aims to reach a share

of renewable energy of at least 27% of EU energy consumption by 2030 and the COP21

Paris agreement on climate change targets reaching the “carbon neutrality” worldwide
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by 2050. To achieve these objectives, it is necessary to transform within 40 years the

existing fossil-fuels–based system of energy generation, transportation, storage, distri-

bution and use. Large infrastructures of energy generation with a material intensity

significantly larger than that of fossil fuels power plants are required to capture renew-

able but diluted energy [1-6]. The latest generations of > 5 MW off-shore wind turbines

with their foundation contain about 1000 t of steel and they require wiring network and

grounding systems that consume up to 9.6 tons of copper per MW [7]. This corresponds

to steel intensities 2 to 6 times larger than fossil fuel power plants and copper intensities

4 to 13 times larger [4]. The same observation is made for many other mineral resources

including cement, aggregates, aluminium, and a variety of rare metals and other “criti-

cal” raw materials like REE, platinium group metals, etc. [8]. The production of all these

materials is not neutral and it requires high amounts of energy. At present, about 10%

of the world energy demand is used for cement and steel productions alone. It appears

thus that the transition to renewable energy will be a source of energy and material

overconsumption during the next 40 years. An estimation of the needs must be made

to evaluate the best deployment options in regard to the actual and forecasted global

supply of material and energy for the next decades.

In the following, we propose a quite simple dynamic modelling of material flows and

stocks and energy flows. It is used to estimate the needs in primary and recycled material

for the future infrastructure of electricity generation for three contrasted energy scenarios.

The results are then compared to the needs of matter and energy at the global scale. Our

study focuses on the case of steel, cement, aluminium and copper, which are the major

and non-substitutable materials carrying the most important part of embodied energy in

the energy production facilities. Moreover, the historical consumption and production of

these raw materials are well documented since several decades, and their future needs can

be estimated in a relatively reliable way as it poorly depends on technological innovation

(in contrast to rare metals used in high technologies metals).

1. – The considered scenarios of energy

Many scenarios of the future energy demand have been published during the last

decades, which foresee contrasted evolutions in the shares of conventional and renewables

capacities. In the following, the IEA blue map scenario (BM) from [9] was selected

because it is rather conservative in anticipating that about 40% of the global electricity

(36500 TWh/yr in 2050) will be produced from renewable sources. The Ecofys-WWF

scenario (WWF) from [10] is more ambitious. It assumes a 100% renewable electricity

production in 2050, produced with a mix of solar PV and concentrated solar power

(CSP) technologies, wind turbines and hydropower (fig. 1). The WWF scenario is based

on the sobriety of use and assumes a strong reduction of global energy consumption down

to 260 EJ in 2050 (393 EJ in 2015; see [11]). Similarly, it assumes a limited increase

of electricity consumption to 29000 TWh/yr in 2050 (36500 TWh/yr for BM). The last

considered scenario (GO) proposed by Garćıa-Olivares et al. [2] assumes that the unique

source of energy in 2030 is electricity produced by wind turbines, CSP and hydropower.
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Fig. 1. – Evolution of the energy mix for the blue map [9], Ecofys-WWF [10] and Garćıa-Olivares
et al. [2] (GO) scenarios.

The global demand in electricity will reach the enormous value of 108000 TWh/yr in

2030. Such an evolution is clearly unrealistic, but the GO scenario remains interesting

because it provides an upper limit in raw materials demand for the transition to low-

carbon energy. In order to be more realistic, we have considered that the scenario is

achieved in 2050 instead of in 2030.

2. – The dynamic model

The value chain from primary extraction, use, end-of-life and recycling has been

modelled as shown in fig. 2. Three types of power generation infrastructures have been

considered on the basis of their lifetime. The lifetime of wind and solar power sources is

assumed to be 20 years, 40 years for coal, gas and oil-fired power plants, and 60 years

for nuclear power plants. For each type of installation, the stock in tons of “Primary

raw material in the infrastructure” is supplied by the flow in tons/year of “primary

production”, and the stock of “recycled metal in the infrastructure” is supplied by the

“recycling” flow. The infrastructure manufactured at t0 reaches its end of life in t0 + Δt

where Δt = lifetime (20, 40 or 60 years). The stock “primary raw material in the in-
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Fig. 2. – Schematic view of the model used to estimate the stocks and flows of matter during
the construction and maintenance of the infrastructure of electricity generation [4].

frastructure” is then reduced by the outgoing flow of “primary raw material in EOL

products”, which represents the flow of primary raw materials from the working infras-

tructure to the stock of end-of-life products (EOL). This t0 + Δt flow is equal to the

“primary production” flow at t0 multiplied by a collection rate (CR). The rest of the ma-

terial is lost at t0 +Δt through the flow “loss of primary metal” = “primary production”

×(1−CR). The stock of “EOL products” is also supplied by the already-recycled metal

flow entering a new recycling loop (“recycled metal in EOL products”). At t0 + Δt, this

“recycled metal in EOL products” flow is equal to the “recycling” flow at t0 multiplied

by CR. We have assumed that all the EOL products are immediately recycled, so that

this stock is empty. This assumption implies that the collection rate (CR) used in the

present study encompasses both the true collection and recycling rates of EOL products.

The model is run from 1900 to 2100, assuming that i) the installed capacities of
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Table I. – Energy consumed for the production of concrete, steel, aluminium and copper [12],
and collection rates (CR) of metals from the infrastructure of energy or for all goods at the global
scale.

2010 2030 2050 2050/2010

Primary energy of production (MWh/t)

Concrete 0.3 0.2 0.2 0.84

Steel 6.11 5.1 4.2 0.68

Al 23.6 20.8 18.1 0.77

Cu 8.3 8.3 8.3 1.00

Recycling energy (MWh/t)

Steel 1.9 1.5 1.1 0.57

Al 2.4 2.1 1.8 0.77

Cu 4.2 4.2 4.2 1.00

CR of metals in the infrastructure (%)

Steel 0.70 0.70 0.70 1.00

Al 0.70 0.70 0.70 1.00

Cu 0.70 0.70 0.70 1.00

Global CR (%)

Steel 0.65 0.67 0.68 0.73

Al 0.43 0.47 0.51 0.60

Cu 0.43 0.47 0.51 0.60

nuclear power stations increase linearly from 10 GW in 1950 to 609 GW in 2010, ii) the

installed capacities of other fossil fuel power stations and hydropower plants increase

exponentially at a constant rate of 3%/yr between 1900 and 2010, and iii) the installed

capacities remain constant after 2050.

The amounts of material in the electricity-generation infrastructures are calculated us-

ing the material intensities in tons per MW installed capacity listed in table 5.1 of [4]. The

energy required to produce the materials are calculated using the values in energy/mass

from [12] for primary production and recycling, which are listed in MWh/t in table I.

The collection rates (CR) of all metals from the electricity-generation infrastructure have

been set at 70%.

3. – Concrete, steel, aluminium and copper requirements for the future

electricity-generation infrastructure

For the three scenarios, the needs of copper for renewables represent more than 85%

of the total needs (i.e. including the other sources of electricity generation). For the blue

map scenario, the cumulative stock of primary copper in the infrastructure of electricity

generation is about 39 Mt in 2050 (24 Mt primary and 15 Mt recycled, see the graph in the
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Fig. 3. – Annual consumption (first column) and cumulative requirements (second column) of
primary materials (solid lines) and recycled materials (dotted lines) for the deployment of the
infrastructure of electricity production. The third column shows the annual energy consumed
for primary production and recycling. The red, green and blue lines show the GO, WWF and
BM scenarios, respectively. Yellow dots: annual global production.
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second column and last row of fig. 3). However, 30% of copper is lost during recycling, so

that the true amount of copper to produce by 2050 is about 55 Mt. This estimated value

is almost two times higher than that estimated by [5] for the same scenario (29 Mt). The

cumulative amount of copper increases to 90 Mt for the WWF scenario (50 Mt primary,

22 Mt recycled and 18 Mt lost) and 205 Mt for the GO scenario (55 Mt primary, 90 Mt

recycled and 60 Mt lost), in fair agreement with Garćıa-Olivares et al.’s [2] own estimates

(183 Mt). Finally, the BM, WWF and GO scenarios need 2, 4 and 10 years of the present

Cu global production, respectively, which will have to be allocated to the infrastructure

of electricity until 2050. In the BM scenario, the annual production of copper assigned

to the infrastructure of electricity generation peaks at 2.2 Mt/yr (1.2 Mt/yr of primary

Cu) at the end of the deployment period. It drops to 1.6 Mt/yr (0.5 Mt/yr primary)

after 2050, which is the flow of virgin Cu required to maintain the infrastructure and

balance the loss of recycling. For the GO scenario, the yearly consumption reaches 9 Mt

(4.5 Mt/yr primary) and it drops to 5 Mt/year (1 Mt/yr primary) after 2050.

Following our assumption that 70% of copper is recycled, from the infrastructure,

primary copper consumption between 2030 and 2050 ranges from 1 to 4.5 Mt/yr for

the three considered scenarios. This yearly consumption is equivalent to 5 to 20% of

the present global production. Garćıa-Olivares et al. [2] estimated that the share of

copper in the infrastructure of electricity generation represents 55% of the total amount

required to achieve the full shift from fossil to renewable energy. The cumulative amount

of primary copper to be produced until 2050 could be therefore as high as 270 Mt for the

GO scenario and 145 Mt for the WWF scenario, which is equivalent to 7 to 13 times the

present annual global production, and 20 to 40% of the known copper reserves. However,

it is emphasized that a significant portion of the needed metals comes from recycling. The

most exigent scenario (GO) requires 205 Mt copper, but if the infrastructure is recycled

for the same use, “only” half of this amount is primary copper.

The cumulative production and consumption of steel and aluminium show trends

similar to those of copper (fig. 3). About 500 Mt aluminium are necessary to achieve

the GO scenario, 230 Mt for the WWF scenario and 120 Mt for the blue map scenario.

These amounts represent 8, 4 and 2 years of the present global production, respectively.

The yearly consumptions of primary Al and steel between 2030 and 2050 represent 5%

(BM) to 25% (GO) of the present global productions. For the GO scenario, our esti-

mated amounts of steel incorporated in the infrastructure (13000 Mt) are much larger

than Garćıa-Olivares et al.’s own estimates (3800 Mt). The difference stems from the

use of different steel contents per MW of installed CSP facilities and to a lesser extend

from wind turbines. The steel content used in the present study for CSP technologies

(563 t/MW) was estimated by [4] as an average of the literature data and it is simi-

lar to the average of the data reported by [5]. In contrast, Garćıa-Olivares et al. used

data representative of Andasol 1 only (180 t/MW). Similarly, the steel content of wind

turbines estimated by [4] (166 t/MW) considers a range of on-shore and off-shore instal-

lations, while Garćıa-Olivares et al. used the value of Vesta V-90 (3 MW) turbine only

(132 t/MW). As for copper, a strong drop in primary metal consumption occurs after

2050, when the capacity of the installed infrastructure is assumed to remain constant.
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The primary metal consumption after 2050 remains however significant (200 Mt/yr, see

fig. 3), because the short lifetime of solar and wind infrastructures implies rapid renewal

and high losses of material during collection and recycling of the end-of-life infrastructure.

For the WWF and GO scenarios, the yearly recycling of metals from the infrastructure

after 2050 oscillates around values equivalent to the present global recycling from all

manufactured products. To achieve this goal, the present recycling capacities will have

to be scaled up significantly.

4. – Generated and consumed energy

The consumed energy to produce the raw materials for the electricity generation in-

frastructure increases until 2050, it drops sharply after 2050 and remains almost constant

until 2100 (fig. 3, last column). For the GO scenario, this energy rises from 63 TWh/yr in

2000 to 3050 TWh/yr in 2050, and it stabilizes at 1650 TWh/yr after 2050. The energy

consumed to produce the materials of the infrastructure is thus multiplied by 50 in 50

years, and it is 25 times higher after 2050 than in 2000, even if the installed capacity

remains constant. This is due to the fast replacement of wind and solar facilities, which

are assumed to have a twenty-year lifetime. Nevertheless, the energy consumed to pro-

duce the materials represent only from 2 to 4.5% of the annual energy generated by the

infrastructure between 2010 and 2050 and 1.5% after 2050. For the WWF scenario, the

energy consumption increases from 63 to 950 TWh/yr between 2000 and 2050 (between

0.4% and 3% of the produced energy) and stabilizes at 400 TWh/yr after 2050. For the

blue map scenario, the consumed energy increases to 250 TWh/yr in 2050 and remains

below 1% of the produced energy. For the three scenarios, the energy used to produce

the concrete, aluminium, copper and steel is less than 5% of the energy generated by

the infrastructure. This fraction may appear small, but it omits the energy to produce

other components than the generation system of the infrastructure, as well as the energy

consumed by the numerous industrial processes that transform the raw materials into

complex machines, the construction of the infrastructure, its maintenance and repair

operations. Whatever the true amount of energy consumed to build the infrastructure

of energy, our results show that greater amounts of energy are needed for the construc-

tion and maintenance of fully decarbonized electricity generation infrastructures than

for an infrastructure maintaining a fraction of the electricity produced from fossil fuels.

The shift to renewables will thus be a source of material and energy overconsumption.

The WWF scenario assumes a significant reduction of global energy demand down to

260 EJ/yr (72000 TWh/yr) in 2050 from 393 EJ/yr in 2015 [11]. Is this reduction of final

energy compatible with the increasing demand of energy at the global scale? This point

is discussed below.

5. – Comparison with future global trends

The results presented above can be compared with the global production of concrete,

steel, aluminium and copper as well as the global energy consumed for their supply. At
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this end, the model shown in fig. 1 was used and run for each commodity assuming an

average lifetime for all goods produced globally. This allowed us to infer the evolution

of primary and secondary productions, as well as the energy of production at the global

scale. The lifetime of iron (steel), copper and aluminium at the global scale were as-

sumed to be 30 years. The CR of steel was estimated in order to reproduce the 1900

to 2015 production data of crude steel reported by the USGS and the share of primary

iron (pig iron) and global scrap steel consumption reported by the AME group [13].

Between 2007 and 2050, the primary production and recycling of steel were assumed to

increase from 1300 Mt and 400 Mt, respectively, to 2200 Mt and 1000 Mt, respectively.

To reproduce these trends, the collection rate of steel should increase from 0.65 in 2000

and to 0.68 in 2100 (table I). The collection rate of copper was constrained to 0.43 for

the period 1930 to 2015 in order to reproduce the yearly amount of copper produced

from old scrap since 1960 [14] and the amount of primary copper produced since 1900

reported by the USGS [15]. It was more difficult to find reliable data for aluminium

and we assumed a collection rate similar to that of copper. The future primary copper

production was assumed to follow the trend estimated by [16] and the future production

of steel until 2050 corresponds to the base case scenario of [13], which is consistent with

the BM scenario. For aluminium, we assumed a constant growth rate of production

that reaches 150 Mt/year in 2050, in agreement with the estimates of [9] ranging from

142 to 190 Mt/yr. The growth rate of concrete production was assumed to increase to

7 Gt/year in 2050, which is slightly higher than the IEA estimates ranging between 5

and 6 Gt/year [9].

For the BM scenario, the proportions of metals for the infrastructure of electricity are

0.8 to 3% of the global production for steel, 1.5 to 6% of aluminium production and 2

to 5% of copper production. These proportions are much higher for the WWF scenario

(up to 9.5% for steel, 15% for aluminium and 10% for copper between 2040 and 2050),

and become huge for the GO scenario (9% for aluminium and 25% for steel and copper

between 2025 and 2050). In the case of copper, the maximum consumption of metals by

the infrastructure of electricity is reached at the time of the primary production peak

forecasted by [16] and [17]. If these copper peaks occur, the implementation of the

WWF and GO scenarios might be compromised by the availability of primary copper.

In any case, a significant proportion of the global copper production should be reserved

for the generation and use of electricity, and/or substitutes to copper will have to be

found. The same trends are observed for the recycled portion. Between 2025 and 2075,

20 to 30% of steel, 10 to 20% of aluminium and 30 to 50% of copper recycled every

year should be used for the infrastructure of electricity according to the GO scenario. It

must be emphasized that a significant increase of recycled metal is not possible, because

the amount of recycled metal is primarily constrained by the flow of metals to the EOL

products stock. This flow corresponds to the total production 30 years earlier multiplied

by the collecting rate. About 850 Mt of crude steel has been produced in 2000, while

the expected demand in 2030 will be about 2300 Mt. The share of recycled steel in total

production will thus be less than 35% in 2030. Actually, the true share of recycled steel

in total production is calculated to decrease down to 25% between 2000 and 2010 and to

EPJ Web of Conferences 189, 00018 (2018) https://doi.org/10.1051/epjconf/201818900018
LNES 2017

9
130



remain stable until 2030. Steel recycling and the ratio recycled/total should then rapidly

increase to reach 45% in 2050. Similar trends are observed for aluminium and copper.

In the same time, the substantial increase of (recycled metal)/(total production) ratios

after 2030 is accompanied by an equally significant decrease in raw materials energy

consumption.

The huge needs in commodities for the GO scenario result from the enormous re-

newable production of electricity, which reaches 109000 TWh/yr in 2050. In compar-

ison, electricity productions in the WWF and BM scenarios are 29000 TWh/yr and

36500 TWh/yr, respectively. The WWF scenario also assumes a decline in final global

energy from 102000 TWh/yr in 2010 [11] to 72000 TWh/yr in 2050. For the energy effi-

ciency improvements considered in table I, the energy consumed by the global production

of cement, aluminium and steel is 10700 TWh/yr in 2010 and 17200 TWh/yr in 2050. It

follows that the share of global final energy used to produce these commodities increases

from 10% to 16% between 2010 and 2050 in the BM and GO scenario. It increases from

10% to 24% over the same period of time in the WWF scenario. If we assume that the

industry worldwide will consume one third of the final energy in 2050 (as in 2015), 70%

of the industrial consumption of energy should be assigned to the production of cement,

steel and aluminium for the WWF scenario (fig. 4). This is quite unrealistic.

Apart from the raw materials availability, the WWF scenario thus raises the problem

of available energy for the future global production of mineral commodities. To cope with

the problem, the authors of the WWF scenarios assumed a 50 to 60% reduction of energy

consumed for the production of cement, steel and aluminium. Part of this reduction can

be achieved through an increase of the ratio recycling/primary production of metals,

because recycling is much less energy demanding than primary production (see table I).

However, as stated above, this ratio will remain unchanged until 2030, because the long

lifetime of metals in finished goods implies that their available amounts for recycling are

at best 50 to 80% of their primary production 30 to 50 years earlier. In a period of strong

growth of metal consumption, the available amounts of old scraps are therefore much less

than total production. Another way to reduce the energy of production is to significantly

improve the energy efficiency. However, a 50 to 60% reduction of embodied energy of

metals production in the next 40 years will be very difficult to achieve. In the past 40

years, the global average energy requirements for production of pig iron from ore and

aluminium smelting have been lowered by 25 to 30% only, and steel and aluminium are

already close to 60% efficiency relative to their thermodynamic limits [18]. Further energy

savings are more and more difficult when approaching these thermodynamic limits. For

the 16 to 32% energy improvement considered in the present study (table I), the global

final energy must remain above 110000 TWh/yr in 2050 in order to keep a constant

proportion of energy consumed by the production of concrete, steel and aluminium below

15%. This value is 40% higher than that envisaged in the WWF scenario, which is

extraordinary low compared to the majority of published values, which range between

110000 and 250000 TWh/yr. The final energy consumption assumed by WWF is only

one third of the value of the reference case proposed by the International Energy Outlook

2016 (815PJ/yr = 238800 TWh/yr).
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Fig. 4. – Global energy demand and electricity consumptions for the scenarios GO (red), WWF
(green) and BM (blue). The industry consumption (black line) is estimated to be 30% of the
global energy consumption. The energy consumed for the global production of concrete, steel
and Al (dashed lines) is calculated from the relative proportions of primary and secondary
production derived from dynamic modelling multiplied by the energies of production listed in
table I.

Conclusion

Contrasting needs in raw materials and energy are estimated for the different energy

scenarios used in the present study. This reflects the diversity of assumed energy mixes

and installed capacities. The huge amount of raw materials required by the scenario

GO makes it unrealistic to achieve in a short time. The WWF scenario is less exigent

in terms of materials requirements, but the very low final energy production in 2050 is

also unrealistic compared to the expected demand. Actually, the needs for the WWF

scenario are similar to those of the GO scenario if the capacity to be installed is scaled

up to the same value of the final energy. It must be emphasized that our estimates
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are fraught with large uncertainties because the variability of metal contents reported

in the literature for the different kinds of electricity generation is equally large. This

was illustrated by the differences discussed above for the steel content of CSP facilities,

but the same uncertainties exist for all technologies and commodities. It is also possible

that the energy efficiency of mineral resources production increases more than we have

assumed in this study. Having said that, at least three qualitative conclusions can be

drawn from the results of dynamic modelling:

1) With the current technologies, the transition to low-carbon energies implies a sub-

stantial increase in base materials consumption such as concrete, steel, aluminium

and copper. This result is in line with previous estimates [1-8] and studies focusing

on critical metals [19, 20]. The consumed raw materials and energy are maximum

during the building of the new infrastructure of energy, but they remain significant

after this period to maintain and renew the wind and solar infrastructures of with

a short lifetime.

2) The results of modelling show that i) the total amount of metal to produce dur-

ing the deployment of the infrastructure of energy is significantly higher than the

cumulative amount stocked in the infrastructure. This is due to the losses during

recycling. Assuming a twenty-year lifetime for the renewables infrastructure and

CR = 0.7, about 30% of the total copper production is lost by 2050, and 50% is

lost by 2100, which will have to be balanced by primary extraction; ii) a significant

portion of metals in the infrastructure is supplied by the recycling of the infrastruc-

ture. Therefore, the cumulative amount of metals in the infrastructure cannot be

interpreted in terms of primary resources consumption. Dynamic modelling is nec-

essary to estimate the true amount of primary metal and other resources required

to build the infrastructure. Since the relative proportions of recycled-to-virgin met-

als as well as the energy mixes both change with time, dynamic modelling should

be coupled with ACV analyses to correctly estimate the impacts of the energy

transition.

3) The needs in materials and energy will occur in a period of expected increase of

primary metal consumption at the world scale and limited potential of recycling.

The supply of metals from recycling is expected to increase but it will not become

higher than primary supply before the full shift to renewable energy.

More work is necessary to reach a comprehensive estimate covering the needs in mineral

resources and energy from other sectors of energy such as the storage, distribution and

use of electricity for applications that traditionally used fossil fuels, (transport, heat-

ing). Cement, steel, aluminium and copper are hardly substitutable and bear the most

important part of the energy consumed for the production of mineral resources. The

supply and impacts of supply of these basic raw materials that do not present any sign of

scarcity yet it is an issue as important as the supply of the so-called “critical elements”

produced in much lower quantities and whose use is likely to evolve fast with technical

innovation.
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Abstract
The low-carbon energy transition requires a widespread change in global energy infrastructures which
in turn calls for important inputs of energy and materials. While the transport and electricity sectors
have been thoroughly analyzed in this regard, that of the hydrocarbon industry has not received the
same attention, maybe in part due to the difficulty of access to the necessary data. To fill this gap, we
assemble public-domain data from a wide variety of sources to present a stock-flow dynamic model
of the fossil fuels supply chain. It is conducted from 1950 to 2050 and along scenarios from the
International Energy Agency. We estimate the concrete, steel, aluminum and copper requirements for
each segment, as well as the embedded energy and CO2 emissions through a dynamic material flow
analysis (MFA) model. We find that (i) the material intensities of oil, gas and coal supply chains have
stagnated for more than 30 years; (ii) gas is the main driver of current and future material consumption;
and (iii) recycled steel from decommissioned fossil fuels infrastructures could meet the cumulative
need of future low-carbon technologies and reduce its energy and environmental toll. Furthermore,
we highlight that regional decommissioning strategies significantly affect the potential of material
recycling and reuse. In this context, ambitious decommissioning strategies could drive a symbolic
move to build future renewable technologies from past fossil fuel structures.

1. Introduction
Human society and nature interactions have experienced

a radical change over the 20𝑡ℎ century, driven by the rapid
industrialization of Western economies and that of several
emerging countries in more recent years [1, 2, 3]. Economic
expansion is largely attributable to the availability and af-
fordability of fossil resources, whose high energy return on
investment (EROI) have triggered productivity gains [4, 5].
The abusive use of energy has however unleashed unprece-
dented climate and ecological damages, jeopardizing the
planet’s life supporting functions [6].

As a tentative response, 196 countries gathered during
the 2015 United Nations Climate Change Conference of
Paris and agreed to hold the increase in the global average
temperature to well below 2°C above pre-industrial levels.
Such a target requires deep transformations of our society
including, but not limited to, a shift away from fossil fuels to
low-carbon energies, which calls for important quantities of
energy and materials [7, 8, 9, 10, 11, 12]. While the transport
and electricity sectors have been thoroughly analyzed, the
hydrocarbons have not received the same attention, to the
best of the authors’ knowledge1. This may in part be due to
the fact that infrastructure data for the fossil fuel industries
are relatively difficult to access, and are often commercially
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ORCID(s): 0000-0003-3658-7715 (H. Le Boulzec); 0000-0002-5821-2597

(L. Delannoy); 0000-0002-1485-3165 (B. Andrieu); 0000-0002-7998-4115 (S.
Mathy)

1The relevant literature is reviewed in Section 2.

sensitive. This makes the analysis of this sector particularly
complicated for the scientific community not affiliated with
fossil fuel producers or operators. To fill this gap, we present
a stock-flow dynamic modeling of the infrastructures as a
part of the fossil fuels supply chain, from 1950 to 2050
and along scenarios from the International Energy Agency
(IEA). We estimate the concrete, steel, aluminum and copper
requirements for each segment, as well as the embedded
energy and CO2 emissions through a dynamic material flow
analysis (MFA). Finally, the potential of recycling steel from
decommissioned fossil fuel infrastructures to build power
technologies is further discussed.

This paper is structured as follows. Section 2 examines
the existing literature. Section 3 describes the methodology
and data used. Section 4 presents the results, section 5 dis-
cusses them, section 6 details the robustness and limitations
of the study and section 7 concludes.

2. Literature review
2.1. An evolving field

Modeling the stocks and flows of metals or minerals
that make the infrastructures has been a research topic for
more than twenty years. Early publications focus on static
global or regional MFA of the base materials used over the
20𝑡ℎ century-such as copper and steel. The Stocks and Flows
Project (STAF) launched in 2000 by the Center for Industrial
Ecology is one example [13, 14, 15, 16]. These studies
allow for top-down analysis, relying on material databases
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such as the Internation Copper Study Group [17] and the
World Bureau of Metal Statistics [18]2. The authors aim
at providing insights in the material cycles within human
society, and quantifying the losses-dissipation, landfills-and
the potential of secondary use. Materials analysis has pro-
gressively evolved towards dynamic studies, and bottom-up
approaches3 enable a better understanding of the technolog-
ical drivers of raw materials demand over time. A signif-
icant number of these publications deal with the building
sector because of waste generation and secondary resources
aspects [19, 20, 21], stock drivers [22], the effect of life-
time [23] or materials demand in transition scenarios [24,
25]. More recently, several authors also analyze the material
facet of the energy sector with growing consideration on the
consequences of the ongoing energy transition.
2.2. The energy transition challenge

The transition requires vast amounts of minerals and
metals [9, 26, 27] due to a significantly higher material inten-
sities of renewables [28, 29, 8] and new technologies [30].
Vidal et al. [8] state that "a shift to renewable energy will
replace one non-renewable resource (fossil fuels) with an-
other (metals and minerals)", while Li et al. [31] point out
the trend toward a "more metal-intensive energy future" as
renewable energy are increasingly being developed. Recent
dynamic MFA or simple flow analysis4 focus on quantifying
the prospective demand in non-energetic materials for a
low-carbon energy system in various institutional scenar-
ios (e.g. IEA-450, IEA Bluemap, NDRC scenarios), non-
governmental scenarios (e.g. Greenpeace, WWF-Ecofys)
or academic scenarios (e.g. SSP). Researchers show that
the most environmentally ambitious scenarios display the
highest material constraints [34, 35], and identify two areas
of concern: criticality, which is defined as the levels of
importance in use and availability of a material [36], as well
as environmental and energy impacts.

Among low-carbon technologies, the most significant
material constraint could stem from solar PV and wind
turbines along with power storage [37, 35] and the trans-
mission and distribution networks [38]. A higher level of
pressure for rare-earth elements (REE) than for base metals
is emphasized, with potential constraint in REE for each PV
solar technology [29, 39, 40], region-specific supply risk [41,
42, 43, 44, 45] which require future increase in numerous
metal supplies [46, 47] with potential limitations in reserves
which could hamper future projects [48]. The downscaling

2A top-down study is defined as a modeling relying on input output
tables which assesses stocks from a flow analysis.

3Bottom-up modeling focuses on describing parts of the system in
details and then conducting a part-whole modeling.

4Further modeling on the topic has been conducted through Life-Cyle
Analyses. For example, Kleijn et al. [28] examine the metals demand and
CO2 emissions of low-carbon energies for the power sector, in regard to four
different scenarios, while Koning et al. [32] estimate the required extraction
of 11 metals until 2050 under technology-specific low-carbon scenarios,
for the electricity and road transportation systems and Hertwitch et al. [33]
take on the issue by approaching the needs in steel, cement, copper and
aluminum for power generation technologies in the IEA BLUE Map and
Baseline scenarios.

of a global issue to a political scale also paves the way to
the criticality literature, estimating potential supply risks
for various situations [49, 50, 51, 52, 53, 54, 55]. Future
constraint on raw materials also comes from the energy
and environmental impact of their production. While the
criticality research field focuses on technological materials,
impact analyses are mainly conducted on base materials
though the link between energy and materials.
2.3. Recycling and the energy-raw materials nexus

The energy-material nexus remains insufficiently ad-
dressed in energy transition scenarios, and several authors
call for a better understanding of its impact [34, 35] and
for a better understanding of the assessment of the emission
costs and gains of the energy transition [31]. Elshkaki [39]
further estimates that the global energy demand of material
production for photovoltaic solar technologies could rep-
resent up to 12% of solar power generation in the IEA-
450 scenario by 2050, and its CO2 emissions could reach
up to 2.2% of the global emissions. Several policy tools
are incorporated in the publications, in order to discuss the
upcoming challenges. First, recycling could diversify supply
sources to reduce pressure on primary materials [35, 56]
for geopolitical purposes [46], and environmental concerns
as dilution of metals in deposits rises [57, 58]. However,
the short-term objective of energy transition is equivalent to
lifetimes of technologies, thus limiting the potential of recy-
cling before 2050 [9, 59, 45]. Second, studies emphasize that
material supply pressure could be mitigated by reducing the
material content in power generation technologies [40, 34].
2.4. Toward more systematic analysis

The upcoming material challenge is also addressed in
integrated assessment models (IAMs), as a necessary step
to produce "biophysically more consistent descriptions of
society’s future metabolism" [60]. IAMs allow to quantify
the material requirements in scenarios of low-carbon tran-
sitions from a system perspective. For instance, Hache et
al. [61, 62] and Seck et al. [63] use a modified version of the
TIMES model (TIAM-IFPEN) to study the critical materials
for the transportation sector electrification, the impact of
the future power generation on cement demand and the
copper availability up to 2050. Sverdrup et al. [64, 65]
and Olafsdottir and Sverdrup [66] focus on nickel, helium,
copper, zinc and lead using the WORLD7 model. Using
on the MEDEAS integrated assessment model, Capellàn-
Pérez et al. [67] assess the material investments necessary
for a transition to renewable energies, in a Green Growth
narrative, concluding it to be unrealistic.

The literature on the metals and minerals supply pres-
sure stemming from the energy transition has been recently
booming. However, despite the large share of fossil fuels in
the global primary energy consumption, researchers have to
date and to the best of the authors’ knowledge not explored in
detail the material requirements of the industry on a global
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scale and in a long-term perspective5. This study attempts
to tackle this question and fill the relative literature gap that
exists today. To do so, the following methodology is carried
out.

3. Methods and data
3.1. The DyMEMDS model

The DyMEMDS (Dynamic Modelling of Energy and
Matter Demand and Supply) model is developed to estimate
the needs in primary and recycled materials, as well as the
energy and CO2 emissions resulting from the extraction of
these materials, along global or national energy scenarios.
The entire energy chain is covered from primary energy to
final consumption with forty technologies of energy produc-
tion, storage, transport, transformation along three sectors
of energy use: transport, construction and industry [58]. A
multi-sector analysis of material stocks and flows is prepared
for further work. Only the fossil fuels supply chain module
is described in this section6.

Historical infrastructures data and energy scenarios are
used to model the hydrocarbon supply chain. When no data
are found, we use Gompertz functions of Gross Domes-
tic Product (GDP) and population or correlations with the
energy supply. Technological material intensities, recycling
rates, normal lifetime distributions and end-of-life recy-
cling rate (EOL-RR) are used to estimate retrospective and
prospective flows and stocks of materials. Indirect impacts
of the materials demand are evaluated relying on state-of-
the-art works on embodied energy and CO2 emissions of
materials. A local sensitivity analysis is finally conducted
to assess the effects of the mean lifetime and materials
intensities uncertainties. Figure 1 presents the methodology
lying behind the DyMEMDS model.

The most important box, ’raw materials stocks and
flows’, can be extended for further clarification. The primary
production flow in tons/year feeds an in-use stock in tons
of materials immobilized in the infrastructure. At the end
of the lifetime of the infrastructure considered, the in-use
stock is reduced by the flow of materials to be recycled.
Normal lifetime distributions are considered in this study.
The losses flow during the recycling process thus feeds the
cumulative losses stock, while the end-of-life recycling flow
builds a recycled stock. The latter then allows for secondary
production of a recycled materials flow, which is ultimately
reused in the in-use stock. New infrastructures thus mobilize
primary and secondary production. In the specific case of a
reduction of the infrastructure stock, there is a dismantling
before the end of the life span. An unused flow is then
created, ultimately feeding an unused stock, which then
follows a recycling path. This stock could eventually produce
a reused flow for other infrastructures. The infrastructures
embodied energy and CO2 emissions are finally estimated
through assumptions about the material production energies

5Only Wang et al. [68] proposed an estimation of the steel weight of
the drilled wells and the transportation pipelines in China.

6A detailed description of the inputs is provided in the Supplementary
Information.

and CO2 emissions. Figure 2 details the key loop used in
the DyMEMDS model to estimate the stocks and flows of
materials during the construction and maintenance of the
infrastructure.
3.1.1. Infrastructures

The infrastructures considered in this study are separated
into three main segments according to the historical distinc-
tion made in the petroleum industry: upstream, midstream
and downstream activities. It totals 11 technologies used
in supply activities from exploration to distribution. The
fossil fuels supply chain encompasses a larger number of
infrastructures some are excluded due to a lack of data
(oil tanks, national coal transport and processing), large
disparities in the data obtained (drilling rigs)7, or difficulties
to model future distribution in technologies related to decen-
tralized demand (petrol stations and compressed natural gas
services). Figure 3 displays the infrastructures typology used
in DyMEMDS.
3.1.2. Dynamic evolution of infrastructures

A stock-driven approach is conducted in order to model
the dynamic evolution of fossil fuels associated infrastruc-
tures. The evolution of technology stocks is assumed to be
correlated with the fossil fuels production (eq 1)8. Infrastruc-
tures are then attributed to a fossil fuel, either fully (eg. oil
tankers only carry petroleum products) or in a proportionate
manner (eg. wells produce both oil and gas). In this case,
the evolution of each infrastructure stock is correlated to
its related share of fossil products in the supply chain using
historical and prospective shares of oil, gas and coal traded
from BP [71] and the IEA9 [72].

Substantial annual variations are observed in hydrocar-
bon production, but only wells experience significant up-
wards and downwards annual changes. An adapted function
of each fossil fuel supply was established to prevent these
variations. It is defined as a third-order exponential moving
average10 (eq 2), which enables both to smooth out the
short-term impact of price variations on production and to
overweight the more recent values.

𝑆𝑡,𝑖 = 𝛼𝑖 ⋅ EMA3,𝑃𝑖 (𝑡) (1)

EMA3,𝑃𝑖 (𝑡) = 𝑃𝑖(𝑡) ⋅ 0.5 + EMA3,𝑃𝑖 (𝑡 − 1) ⋅ 0.5 (2)
7Significant disparities were observed in both material intensities and

rigs census. It is explained by both the recent and rapid development of
floating structures and the wide range of structure sizes.

8Some researchers rely on logistic or Gompertz functions, see for
instance the work of Gutiérrez et al. [69] for vehicle stocks and Huang et
al. [70] for buildings stocks. The link between hydrocarbon technologies
and energy prices, as well as political decisions (e.g. OPEC’s influence on
prices) hamper the application of this methodology here.

9A high share of traded oil is noticed, while coal and natural gas are
mostly consumed locally.

10A moving average is defined as an average of a predefined number of
past values in a dataset, which are weighted equally in its simple form. In its
exponential form, the weight of the values decreases exponentially, which
enables to outweigh the more recent data.
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Figure 1: Simplified methodology lying behind the DyMEMDS model.

Figure 2: Key loop used in the DyMEMDS model to estimate the stocks and flows of materials during the construction and
maintenance of the infrastructure.

With 𝑆𝑡,𝑖 the stock of infrastructure i in the year t, 𝛼𝑖 the
correlation coefficient for the infrastructure i and EMA3,𝑃𝑖 (𝑡)the third-order exponential moving average in year t of the
hydrocarbon supply 𝑃𝑖 related to the infrastructure i.
3.1.3. Material recycling

This study focuses on four bulk materials, namely alu-
minum, concrete, copper and steel, which represent a signifi-
cant share of material consumption [73], energy demand and
environmental impacts of material production [74]. No ma-
terial substitution is assumed for the base materials, but some
studies present contrasted views, e.g. Sverdrup et al. [75, 76]
A dynamic end-of-life recycling rate (EOL-RR) is assumed
for each material, encompassing both the recycling process
efficiency rate (EOL-PR) and the old scrap collection rate

(EOL-CR), as defined by Glöser et al. [77] and Graedel et
al. [78]. A global and multi-sectoral averaged EOL-CR is
assumed in this study. Table 1 summarizes the considered
rates.

1950 2010 2030 2050

Concrete 0 0 0 0
Steel 0.6 0.7 0.74 0.84
Aluminum 0.39 0.45 0.48 0.54
Copper 0.34 0.4 0.42 0.48

Table 1
End-of-life recycling rates of the considered materials.
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Figure 3: Oil, gas and coal infrastructures from production to final users supply. The infrastructures in grey and italic are not
considered in this study.

3.2. Materials, energy and CO2 intensities
The material requirements for the hydrocarbon produc-

tion infrastructures are obtained from Monfort et al. [79].
The dataset extensively relies on the Ecoinvent database11,
which provides with useful data for a large panel of infras-
tructures. Remaining intensities are obtained from both aca-
demic publications and private firms reports. The material
intensity data used in this study come mostly from sources
dating from the 1960s to the 2000s. The correlation between
infrastructure stock and hydrocarbon production justifies the
temporal validity of these data for the study, since nearly 60%
of historical oil production and 57% of historical gas produc-
tion took place between 1960 and 2000 [80]. The embodied
energies of primary and secondary materials are dynamic
between 1900 and 2100, and their scope extends from cradle
to gate. Primary metals embodied energies depend on both
the ore grade of the mined material and the technological
improvement of production technologies [81, 82, 83]. Data
from Vidal [84] and Vidal et al. [85] are considered for cop-
per, aluminum, and steel (assuming all steel alloys represent
steel). The production energy of concrete is estimated from
a multi-regional approach to cement production and clinker
energy intensities. Energy of metal recycling is assumed to
be consumed during secondary production as a fraction of
the energy of primary production. An annual technological
progress in production processes of 1% is estimated between
1900 and 2100, as well as a floor value equal that of the ther-
modynamic limit of the recycling processes. The minimum
energy of recycling equals the melting energy of each metal
plus the energy of collection and sorting. CO2 intensities
of materials production are also considered in the model:

11The Ecoinvent database contains life-cycle inventory data for a wide
range of technologies, with a thorough documentation on their hypothesis
and validity (e.g. geographical and temporal).

they are dynamic and vary according to the CO2 intensity
of the energy consumed over time. We consider a decreasing
intensity since 1900, and assume that 83g of CO2 are emitted
by MJ of consumed energy in 2015. This value is supposed
constant from 2015 onward.
3.3. Scenarios

Two scenarios from the International Energy Agency
(IEA) are selected: the Stated Policies Scenario (STEPS) and
the Net Zero Emissions by 2050 (NZE) [86, 87].

• The STEPS considers government measures already
in place or officially announced and envisions a quick
return to pre-COVID-19 consumption levels. By 2050,
the electricity mix is 55% renewable, coal consump-
tion falls by 15% from 2020, oil consumption rises
by 15% and gas consumption rises sharply by 50%.
The effects of climate change are limited to an average
global warming of 2.7°C in 2100 compared to pre-
industrial levels (Fig. 4).

• The NZE scenario offers a more ambitious approach.
Considered by the IEA as a deepening of the for-
mer Sustainable Development Scenario (SDS) [88],
it assumes the achievement of a carbon neutrality of
the energy sector by 2050, which allows to limit the
average global warming to 1.5°C. Renewable energies
play a predominant role, with solar and wind power
accounting for nearly 70% of electricity production in
2050. Moreover, energy demand falls by 7% between
2020 and 2050, with a decline in coal consumption
of 90%, 75% for oil and 55% for gas over the same
period (Fig. 4). When some information is missing,
data from the Sustainable Policies (SP) scenarios are
used instead [72].
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Figure 4: Historical and prospective global primary energy supply from fossil fuels in the STEPS and NZE scenarios.

3.4. Sensitivity analysis
A local sensitivity analysis was conducted to assess the

impact of the input parameters uncertainties on outputs.
Previous studies showed the significant share of lifetime un-
certainty impacts in sensitivity analysis [23, 89], and further
pointed out that the standard deviation and shape of lifetime
distributions had little effects on the results compared to the
mean value [90, 77, 91]. The sensitivity analysis therefore
focuses on the mean lifetime value in the normal distribution,
for which variations of ± 20% were computed.

4. Results
4.1. Infrastructures
4.1.1. Gas

The gas infrastructures experience a significant increase
in the STEPS and a drop after a peak in 2030 in the NZE
scenario. The largest increase in infrastructure occurs for
gas in the STEPS. The world fleet of LNG carriers reaches
more than 1200 units in 2050 in the STEPS, the storage
capacity exceeds 136 million cubic meters and the total
capacity of liquefaction and regasification plants doubles to
more than 3700 billion cubic meters between 2020 and 2050.
Conversely, the carbon neutral NZE scenario involves 40%
decrease in total LNG supply chain capacity between 2020
and 2050. The number of LNG carriers drops to 376, after
peaking at 788 vessels in 2030. The global pipeline network
displays a similar trend, raising to 15 million kilometers in
2050 in the STEPS, and dropping to less than 5 million kilo-
meters in the NZE scenario (Fig. 5). The modeled values of
the infrastructures stocks are available in the Supplementary
Information.
4.1.2. Oil

Two trends of the infrastructure of the oil supply chain
can be identified. After a slight increase between 2020 and
2030, the stock stabilizes in 2030 in the STEPS, while a
slowdown is observed in the NZE scenario between 2020
and 2025 and followed by a substantial reduction. This un-
veils a significant constraint on the infrastructures mobilized
in the oil supply stages. Pipelines, tankers and refineries
experience a drop in their stock by nearly 75% between 2020

and 2050. The number of pipelines decreases to 242,000
km, and the tanker fleet to only 150 Million Dead Weight
Tons (MDWT)12. In the STEPS, the growth of the traded
oil shares combined with the rise of the oil consumption
induces a faster development of transport infrastructures
than storage or refineries. The stock of petroleum prod-
ucts pipelines reaches 1.08 million kilometers in 2050, and
the fleet of tankers 670 MDWT, while the global refining
capacity increases to nearly 108 million barrels per day.
Wells development depends the cumulative consumption.
The number of wells thus slightly raises from 1.35 million
to 1.4 million in 2050 in the STEPS and experiences a
substantial decrease to 300,000 in the NZE scenario (Fig.
5).
4.1.3. Coal

The two global scenarios consider a drop in coal con-
sumption between 2020 and 2050, albeit of varying magni-
tude. The bulk carrier fleet thus collapses over the period
and finally reaches 150 MDWT and 21 MDWT in 2050,
respectively, in the STEPS and NZE scenarios (Fig. 5).
4.2. Materials

Steel is the main source of materials requirements for
fossil fuels. It represented nearly 70% of the sector mate-
rials demand between 1950 and 2020, and the remaining
30% is mainly concrete. In contrast, aluminum and copper
consumption represent 0.04% and 0.06%, respectively. How-
ever, these proportions conceal major disparities in absolute
annual consumption, depending on the evolution of the oil,
gas and coal markets. A first peak in consumption can be
observed in 1973, following the increase in hydrocarbon
consumption since the early 1940s. The annual demand
for concrete raised from 2.8 Mt/yr to 42 Mt/yr and steel
consumption grown from 4.4 Mt/yr to 64 Mt/yr between
1940 and 1973. The succession of two oil peaks in 1973
and 1979 then reduced the demand for materials to almost
zero for steel, concrete and copper, while the dependency of
aluminum demand to oil products infrastructures drove its
value to zero. The knowledge of historical material demand

12The DWT is a unit of the total carriage capacity of a vessel, including
all types of goods and passengers.
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Figure 5: Historical and prospective stocks of key infrastructures in the STEPS and NZE scenarios, global scale.
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Figure 6: Historical material intensities in the fossils supply sector from 1950 to 2016.

allows to estimate historical materials intensities for the
global fossils supply chain. Their values between 1950 and
2016 are displayed in Fig. 6. We observe a stabilization of
their level since the 1970s, despite a significant drop in the
sector’s aluminum intensities in the 1990s.

4.2.1. Material consumption in the scenarios
The historical distribution pattern of the cumulative con-

sumption among the four structural materials remains simi-
lar in the scenarios. Steel accounts for 70% of the cumulative
sectoral material demand between 2020 and 2050 for the
STEPS and over 77% in the NZE scenario. The share of
concrete in the total consumption experiences a decrease in
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the scenarios considered and aluminum and copper shares
remain low. The increase of the hydrocarbons demand until
2025 induces higher peak material requirements than those
observed historically. The steel, aluminum and copper de-
mands respectively reach 96 Mt, 80 kt and 0.44 Mt in 2025.
In the STEPS, the cumulative flow of steel needed between
2020 and 2050 is 2.4 Gt and that of concrete exceeds 1
Gt. This represents 1.4 years of total global production at
2020 levels for steel, and a small amount compared to an
estimated total global production of 20 to 24 Gt in 2020
for concrete [92, 93]. The NZE scenario requirements reach
0.34 Gt for steel and 0.1 Gt for concrete. An identical trend is
observed for copper and aluminum. The cumulative demand
for copper reaches 11 Mt in the STEPS, compared to a
total global production of 20 Mt in 2020, and cumulative
demand drops to only 1.5 Mt in the NZE scenario. The total
aluminum requirements amount to 0.86 Mt for the STEPS
and 51 kt for the NZE, which respectively represents 1.3%
and 0.08% of 2020 total global production. The combination
of this lower consumption and the identical historical stock
allows the NZE scenario to rely more heavily on recycled
materials. The proportion of recycled metals reaches more
than 80% in the NZE scenario, and 29% to 42% in the STEPS
scenario. The stock of concrete reaches more than 1.2 billion
tons in 2050, while a substantial drop to 0.35 billion tons is
observed in NZE scenario. This trend is similar for the three
structural metals, and steel stock amounts to 2.9 billion tons
in the STEPS and 0.82 billion tons in the NZE scenario in
2050 (Fig. 7). The peaks and drops observed in the stock
evolution in 2017 are explained by the differences between
the historical and prospective data.
4.2.2. Material consumption per fossil fuels and

segments
The oil and gas infrastructures represent most of the

raw materials, which is explained by the complexity and
decentralization of the supply infrastructures. The aluminum
is entirely consumed by the oil product pipelines for all
scenarios–due to underlying data–and the midstream seg-
ment therefore dominates aluminum consumption. Con-
versely, the split between oil and gas remains more equal
for concrete, steel and copper, although there is a clear
trend towards an increase in the share of gas in materials
demand over time. The share of gas in concrete consumption
evolves from 30% to nearly 60% between 1950 and 2050
and from 45% to nearly 70% over the same period for steel.
The distribution between the segments also shows important
differences. The upstream segment represents most of the
concrete demand between 1950 and 2050–in the production
of wells–while a more equal distribution is observed for steel
and copper.
4.2.3. Material consumption per infrastructures

The bulk materials demands show high level of dom-
ination of some infrastructures. Wells represented about
80% of concrete consumption until 1970 and their share
declined with the progressive development of gas pipelines,

which share reaches about 25% in 2050 in the STEPS. A
slight increase of the oil pipeline share was noticed, finally
reaching 5% in 2050. The gas network also carries most of
the sectoral steel demand. Its share experienced a rise from
45% of the consumption between 1950 and 1970 to almost
60% in 2050 in the STEPS. The wells have an opposite
profile and the oil pipelines represent 20% of steel demand
over the period. Copper is mostly consumed in steel alloys
in the hydrocarbon supply chains. It therefore displays a dis-
tribution profile similar to steel. Finally, nearly all aluminum
is consumed in oil pipelines-due to the underlying data.
4.2.4. Opportunity and uncertainties in the future

amount of recycled materials
The share of recycled materials in the hydrocarbon sup-

ply chain increased over time. It evolved from 3% in 1950
to nearly 20% in 2020, with disparities depending on the
metals considered. A future stabilization or drop in the fossil
fuels demand could further induce a substantial rise of the
recycled share of metals inflow in 2050, as pointed out in
the STEPS and NZE scenarios. The combination of this
trend with a lower production energy of recycled metals
results in an overall decline of the embodied energy and CO2emissions in the oil, gas and coal infrastructures. A high
recycling content of material depends on the EOL-RR of
the hydrocarbon supply industry, which could be hampered
by the evolution of the EOL-CR of the fossil fuels supply
sector. The future of the unused infrastructures is a growing
research field (e.g. OGUK [94] in the United Kingdom and
Kaiser [95] in the Gulf of Mexico), and regional political
decommissioning strategies will have significant impacts
on the EOL-CR. Simulation of several decommissioning
strategies by declines of 20% and 50% of the EOL-CR on
the obsolete stock of steel are displayed in Figure 8. An
estimated 0.8 billion tons of steel alloys are estimated to
be accumulated in landfills or leave in-situ by 2050 in the
STEPS. A decrease by half of the EOL-CR could lead to
a substantial rise of this amount to almost 2 Gt by 2050.
Similar results are observed in the NZE scenario, which is
explained by the time-delay impact of the lifespan on end-
of-life flows. The decommissioning scenarios will therefore
have significant effects on the possibilities of recycling.
4.3. Associated energy and CO2 emissions

The energy consumed to produce the materials increased
significantly between 1950 and 2019. A domination of steel
is observed in the historical and future results. It raised from
0.5 EJ to more than 1 EJ between 1950 and 2019, which rep-
resents about 0.15% of the world’s primary energy demand
in 2019. The energy requirements experience a slight drop to
0.96 EJ in 2050 in the STEPS and to only 0.08 EJ in the NZE
scenario in 2050 (Fig. 9). This represents 0.1% of global
final energy consumption in 2050 in the STEPS scenario and
0.02% in the NZE. A substantial rise is observed in the CO2emissions of sectoral materials production between 1950 and
2019. It evolves from 50 MtCO2 to more than 130 MtCO2,
i.e. 0.4% of global emissions in 2019. They first peaked at
more than 200 MtCO2 in 1973, before decreasing sharply in
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Figure 7: Historical and prospective stocks of structural materials in the NZE (left column) and STEPS (right column) scenarios.
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Figure 8: Obsolete steel stock in the hydrocarbon supply chain
from 1950 to 2050 in the STEPS.

the 1980s. The trajectories observed in the scenarios allow
for a slow decrease to 86 MtCO2 in 2050 in the STEPS
scenario and a significant drop to 25 MtCO2 in the NZE
scenario (composed only of recycling-related emissions,
Fig. 9).
4.4. Sensitivity analysis

The local sensitivity analysis focuses on the mean life-
time value, for which variations of ± 20% were computed.
The results show that the materials inflows vary between -
11% and +14%, and the outflows changes range from -14%
to +19%. Higher impacts are observed in the outflows than
on the inflows, as well as in the STEPS than in the NZE
scenario.

5. Discussion
5.1. Drivers of demand and materials intensities in

the fossils supply sector
The bulk materials computed in this study display differ-

ent drivers. It was found that the midstream and downstream
segments are the main drivers of steel, copper and aluminum
demand. Conversely, the upstream segment constitutes the
main consumer of concrete, ahead of the midstream activi-
ties. Those global findings can be extrapolated to national
oil, gas, and coal industries. Indeed, a segmentation of
countries depending on their profile (producer and/or con-
sumer, oil, gas and/or coal) allows to estimate their materials
demand pattern. A mainly consumer country is assumed to
have a developed upstream segment on its domestic territory
and thus a more significant share of concrete in the material
demand than the global share depicted in this study. How-
ever, detailed sector data are required to accurately assess
national materials demands. Sector materials intensities for
the global fossils supply chain were estimated in this study
(Fig. 6), and further intensities by segments were assessed
(Figures S9 to S12 in the Supplementary Information). It
allows for a first order evaluation of the materials consumed

per EJ of fossils produced and can be useful in future top-
down materials modeling studies.
5.2. What potential for fossil fuels structures to

provide materials for the energy transition?
The estimated amount of materials consumed in the

hydrocarbon supply chain remains low compared to the
global demand-with about 5% of the steel consumption,
1.7% of the copper and smaller share for aluminum and
concrete-and to others sectors. A comparison of material
intensities, annual demand, cumulative demand and in-use
stock with previous studies is provided in Table 2 for both
the power infrastructures and the fossil fuels supply chain.
The renewable and fossil primary energy supply in scenarios
considered in the studies are summarized in Table 3. The
current steel demand and in-use stock estimated in this study
are higher than in the power infrastructures computed by
Deetman et al. [38], while concrete, copper and aluminum
needs remain well below. A similar trend is observed for
the in-use stocks, and an estimation of the base materials
need for the fossil fuels infrastructures in SSP2 BL and
SSP2 450 are provided in Table 2 for comparison basis
with the results for renewable energies, grid and storage in
Deetman et al. [38]. Conversely to copper, aluminum and
concrete, the steel in-use stock in the fossil fuels supply chain
remains twofold the amount in the renewables and power
infrastructures in 2050.

Only the recycling of steel from end-of-life or decom-
missioned fossil fuels structures could potentially provide
a significant contribution to the construction of low-carbon
infrastructures. However, it will depend on both future fossil
fuel and renewable supply. Relying on data scenarios and
sectoral material intensities (Table 2), an estimation of the
available recycled steel is provided in Table 3 and hereafter
compared with the cumulative demand for the renewable
technologies. An EOL-RR of 0.8 was assumed, and the
actual available amounts will ultimately depend on the evo-
lution of the collection rate, as depicted in Section 4.2.4.
We observe that the increase of fossil fuels demand in the
STEPS, SSP2 BL and 450 hinders any secondary steel use in
the construction of low-carbon infrastructures. Conversely,
moderate reduction of fossil consumption in the Bluemap,
2D and B2D scenarios could allow to partially supply the
cumulative steel need of the power technologies13.Finally,
significant amounts of steel could be recycled in the WWF-
Ecofys, NZE and GO scenarios, which would potentially
meet the cumulative steel demand of the renewable and
power storage infrastructures in the WWF-Ecofys scenario.
It would only represent about 17% of the need in the GO
scenario, which considers a 100% renewable energy mix.
Through intensive recycling of decommissioned infrastruc-
tures, the accumulated steel stock in the fossil fuels supply
chain could therefore represent an achievable means to re-
duce the energy and environmental toll of material use for
the energy transition.

13Careful attention must be paid to the technological scope of each
study.
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Figure 9: Embodied energy and CO2 emissions of materials supply in the STEPS and NZE scenario.

References Steel
(iron) Concrete Copper Aluminum Years Technologies Scenarios

Sectoral material intensities (Mt/EJ)
Deetman et al. [38] 5.9 54 0.4 1.5 2015 PG+G+S Historical
This study 4 2 0.02 0.002 2015 HU+HM+HD Historical
This study 3.8 2.5 0.023 0.006 2015 Oil Historical
This study 9.7 3.8 0.038 0 2015 Gas Historical

Demand (Mt/yr)
Deetman et al. [38] 29 184 2.1 7 2015 PG+G+S Historical
This study 79 30 0.4 0.04 2015 HU+HM+HD Historical
Deetman et al. [38] 58 108 4.2 14 2050 PG+G+S SSP2 BL
Deetman et al. [38] 75 227 4.9 16 2050 PG+G+S SSP2 450
Vidal [9] 50 200 1.7 5.5 2060 R Bluemap
Vidal [9] 600 1600 5.5 23 2060 R GO
This study 2.3 0.2 0.01 0.005 2050 HU+HM+HD NZE
This study 86 34 0.37 0.05 2050 HU+HM+HD STEPS

Cumulative demand (Mt)
Vidal et al. [57] 1,000 N/A 40 160 2000-2050 R Bluemap
Vidal et al. [57] 12,000 N/A 200 300 2000-2050 R GO
Månberger and Stenqvist [96] N/A N/A 40-170 N/A 2010-2050 R+T B2D
Moreau et al. [59] 840 N/A 57 94 2010-2050 R+S WWF
Moreau et al. [59] 1,500 N/A 32 46 2010-2050 R+S 2D
Moreau et al. [59] 900 N/A 78 130 2010-2050 R+S IRENA REMAP
This study 1,000 390 4.6 0.6 2010-2050 HU+HM+HD NZE
This study 3,200 1,300 14 1.9 2010-2050 HU+HM+HD STEPS

In-use stock (Mt)
Deetman et al. [38] 521 4,772 38 132 2015 PG+G+S Historical
This study 2,000 1,000 9.3 1.1 2015 HU+HM+HD Historical
Deetman et al. [38] 1,456 9,199 98 365 2050 PG+G+S SSP2 BL
This study 2,880 1,390 12.6 0.77 2050 HU+HM+HD SSP2 BL
Deetman et al. [38] 1,413 8,386 91 319 2050 PG+G+S SSP2 450
This study 2,700 1,340 12 0.86 2050 HU+HM+HD SSP2 450
Vidal [9] 5,000 1,200 40 120 2060 R Bluemap
Vidal [9] 32,000 13,200 140 480 2060 R GO
This study 820 350 3.5 0.3 2050 HU+HM+HD NZE
This study 2,900 1,250 12.7 1.4 2050 HU+HM+HD STEPS

Table 2
Summary of the materials intensities, demand, cumulative demand and in-use stock consumed in the power generation, storage
and grid infrastructures and comparison with the hydrocarbon supply chain. PG = power generation, R = renewables, G = power
grid, S = power storage, T = electric transportation, HU = hydrocarbons upstream, HM = hydrocarbons midstream, HD =
hydrocarbons downstream, GO = scenario by García-Olivares et al. [97]. Value do not sum due to rounding.
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Scenario Year Renewable
supply (EJ)

Fossil
supply (EJ) Total TPES (EJ) Estimated available

recycled steel (Mt) Reference

Historical 2015 23 370 474 N/A IEA [98]

SSP2 BL 2050 84 694 842 0 Riahi et al. [99]

SSP2 450 2050 98 590 771 0 Riahi et al. [99]

Bluemap 2050 125 297 674 510 IEA [100]

WWF-Ecofys 2050 144 13 262 1,500 Singer et al. [101]

2D 2050 152 269 633 470 IEA [102]

B2D 2050 172 192 581 830 IEA [102]

STEP 2050 193 490 742 0 IEA [98]

IRENA REMAP 2050 222 166 494 N/A IRENA [103]

NZE 2050 258 110 550 1,000 IEA [87]

GO 2050 389 0 389 2,000 García-Olivares et al. [97]

Table 3
Primary renewable, fossil and total energy supply in 2050 in energy transition scenarios. Bioenergy is not accounted for in the
renewable supply. The available recycled steel is estimated from the steel in-use stock in 2015 and the scenarios fossil supply in
2050, assuming a 0.8 EOL-RR. GO = scenario by García-Olivares et al. [97].

5.3. The need to conduct ambitious
decommissioning strategies

The significant potential of recycling materials-and es-
pecially steel-in end-of-life fossil fuels structures was iden-
tified in section 5.2. We estimated that the current in-use
stock of steel could provide large amount of secondary
materials to build the future renewable technologies, but
that the future EOL-RR could substantially impact recycled
materials availability. Two main elements could affect the
EOL-RR. First, most of the copper of the fossil fuels supply
chain is consumed in steel alloys (e.g. stainless steel, 7%
nickel steel and 36% nickel steel in LNG infrastructures), for
which down-cycling14 is frequently observed. Hayatama et
al. [104] and Ciacci et al.[105] outlined the losses of copper
in alloys recycling and changes in functionality of complex
recycled steel alloys. Second, partial or total phasing-out
of fossil fuels will require decommissioning policies. Many
strategies can be adopted depending on the technology (e.g.
removal, partial removal, left in place, reefing or left in place
and repurposed) and will impact the EOL-RR. The removal
process of the infrastructures could generate substantial en-
ergy consumption and environmental impacts [106], which-
if recycled-could be compared to the savings from avoiding
the extraction of primary materials at a global scale in future
studies.

Decommissioning remains decisive to avoid both indi-
rect environmental impacts (e.g. preventing primary mate-
rial production) and direct environmental impacts15 (e.g.

14Down-cycling is defined as the recycling resulting in a lower quality
of materials, and therefore a loss of functionalities.

15The materials and environmental opportunities of decommissioning
have been emphasized [107, 108].

GHG emissions of abandoned wells [109, 110, 111]16). Am-
bitious decommissioning policies could allow to enhance
material recycling and reuse17. However, some processes
will require material demand (e.g. cement plugs of oil and
gas wells), a part of the estimated in-use stock will inevitably
be left in place (e.g. the materials embedded in the wellbore
[113]) and prohibitive collection price could hamper mate-
rial recovery18. The EOL-CR will ultimately be impacted by
the primary material prices and the local decommissioning
policies. At a global scale, decommissioning remains at its
early stage, and while some countries pave the way for
ambitious policies [95, 115], other display nascent strategies
[116]. However, the climate emergency urges to take rapid
action to reduce the environmental toll of human activities,
and ambitious decommissioning strategies could provide an
additional way to increase materials recycling and reuse.

6. Robustness and limitations
6.1. Robustness criteria and local sensitivity

analysis
The dynamic modeling of the hydrocarbon production

and supply infrastructure stock proposed in this study rep-
resents a simple global approach to the sector, focusing
on the main infrastructures. This model needs to be robust
and transparent, and several robustness criteria have been
identified. First, the stock modeling results are satisfactory

16Significant methane emissions have also been identified during the
operational phase [112]. The study shows that large methane emissions
during maintenance or failures of oil and gas equipments could represent
between 8% and 12% of the sector global methane emissions.

17Davies and Hastings [111] estimated that a 16,000 tons steel jacket left
in place and repurposed could retain 55,040 tCO2eq in GHG emissions.

18Raimi et al. [114] estimated median prices for wells plugging and
surface reclamation to $76,000 in the US, with significant disparities.
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for nine of the eleven infrastructure types modeled from
energy production. A first category of modeled infrastruc-
ture stocks displays averaged errors of less than 10% (wells,
gas and oil product pipelines, LNG liquefaction and re-
gasification plants, LNG storage facilities and refineries)
and a higher value are observed for coal carriers (11%),
oil tankers (12%) and LNG carriers (16%). Second, the
global approach developed in this study allows to assess the
evolution of hydrocarbon supply chain from a minimal panel
of characteristics of the hydrocarbon production and supply
sector. This approach, although minimal, does allow for the
analysis of the evolution of infrastructure stocks according
to assumptions such as the progression of LNG or non-
conventional hydrocarbons.

The sensitivity analysis conducted in this study shows
moderate effects of lifetime changes. However, as previously
described by Dong et al. [117] and Yin et al. [118], the
time delay induced by the lifetime carries growing effects
over time. A better knowledge of technological and regional
values of lifetime over time is needed to prevent substantial
variations in prospective dynamic modeling. It can also be
noticed linear impacts of the material intensities on stocks
and flows of the model. Global homogeneous data were
assumed in this analysis, and a better understanding of the
regional dynamics could increase the accuracy of the results.
Finally, local sensitivity analysis only describes variations in
a given point in space. This methodology therefore carries
limitations [119], and further studies should develop global
sensitivity analysis on more parameters and their possible
interactions [120].
6.2. Methodology-related limitations

The hydrocarbon production and supply sector are com-
puted independently of the other sectors, and the materials
recycled are consumed in the same sector. This approach
does not represent the actual recycling industry, and only a
multi-sector study considering recycling as a sector would
estimate accurate flows of recycled metals between the con-
sumer sectors. In addition, the materials consumed for well
closure is not considered [113], as well as the numerous
decommissioning strategies (Section 5.3). The choice of a
physical approach to the flows and stocks of materials also
carries limitations on the effectiveness of the model in terms
of operational reality of the sector. For example, an increase
in concrete demand is observed in the late 2040s in the NZE
scenario, despite a context of significant slowdown in hy-
drocarbons production. It is explained by end-of-life renewal
of some infrastructures. Assumptions of life extension, well
closure for profitability considerations and other sectoral and
financial realities could be considered in further studies.
6.3. Data-related limitations

Most of current infrastructures data on the fossil fuels
supply chain are difficult to access. To overcome this prob-
lem, the sector’s players call on the services of economic
intelligence companies (IHS Markit, Rystad Energy, Wood
Mackenzie, etc.) which collect confidential information (ob-
tained in an undisclosed manner) and provide data, tools

and analyses in return of a high price. Conversely, this
study relies on free and online available dataset describing
the evolution of the global fossil fuels supply chain over
time. They require extensive sources research, remain scarce
and suffer from a lack of sources comparison and from
numerous gaps, which hamper any extrapolation over time.
For instance, access to reliable data over time and consistent
over the geographical perimeter remains a limitation to this
study. The selected data were qualified according to their ge-
ographical scope, technological scope and year of the study.
The data collected do not allow a complete understanding
of the complexity of the hydrocarbon production sector, due
to the great variety of systems used from exploration to
distribution19. Detailed data on all these technologies and
their associated material intensities are not yet available, and
sub-segment scale data were therefore considered20. Thus,
the results displayed in the study are likely an underestimate
of the actual material demand. In addition, most of the
data are based on European or North American devices,
which could create high uncertainties in the results. This is
explained by the difference in both the global hydrocarbons
production and consumption patterns21.

Furthermore, our analysis relies on oil production sce-
narios which can be thrown into question. Indeed, the Inter-
national Energy Agency tends to assume parameters which
proved to result in too optimistic projections in the past [123,
124]. It consequently neglects the possibility to suffer from a
production crunch in the coming years [125] or to experience
a peak in the production of all oil liquids in the mid 2030s
now envisioned by an important number of actors [126].
While the issue of credible long-term oil scenarios is critical
at times of the resurgence of the ’peak oil’ debate [127], it
seems not to be taken into account by the IEA. We acknowl-
edge the fact that projecting oil demand and supply is an
intricate and complex task. Yet, we feel that the projections
we used carry great uncertainty, and that they should be
treated with a grain of salt.

7. Conclusions
This study models the evolution of the world’s fossil fuel

infrastructures and estimates dynamic embedded materials,
energy, and CO2 emissions from 1950 to 2050. To do so, it
firstly collects and centralizes free data from a large number
of sources and thus avoids using expensive datasets from
energy intelligence firms (McKenzie, IHS Markit, Rystad
Energy, etc.). Without claiming to provide the same quality

19A detailed list of equipment used in the offshore production of
hydrocarbons is provided by Rosneft.

20For example in the exploration sub-segment, see Supplementary
Information.

21Oil and gas drilling technologies are different from country to country,
with conventional hydrocarbons requiring fewer wells drilled than uncon-
ventional hydrocarbons for an equivalent level of production. There is
therefore a lack of correlation between the amount of oil produced and
the number of wells drilled at the regional level, with OPEC, for example,
accounting for nearly 32% of global oil production and 15% of natural gas
production between 1980 and 2019 for only 2.8% of wells completed over
the same period [121, 122].
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and disaggregation of data, our comprehensive dataset can
be used by other researchers to understand the role of hy-
drocarbon infrastructures in the energy transition. Secondly,
it develops and applies a dynamic material flow analysis
(MFA).

We find that (i) the material intensities of oil, gas and
coal have stagnated for more than 30 years; (ii) gas is the
main driver of current and future material consumption
and (iii) recycled steel from decommissioned fossil fuels
infrastructures could meet the cumulative need of future low-
carbon technologies and reduce its energy and environmen-
tal toll.

We furthermore highlight that the regional decommis-
sioning strategies will significantly affect the potential of
material recycling and reuse. In this context, ambitious
decommissioning strategies could drive a symbolic move
to build future renewable technologies from past fossil fuel
structures.
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5.2 Supplementary information: Dynamic modeling of global fossil fuel in-

frastructure and materials needs: overcoming the lack of available data

5.2.1 Global historical data of the hydrocarbons supply infrastructures

The upstream segment is common for oil and gas, and is composed of exploration and production devices for which

recent data is available. This segment includes exploration infrastructures-including devices used in seismic, mag-

netic and gravity methods-wells and onshore and offshore drilling rigs. At the global level, the Organization of the

Petroleum Exporting Countries (OPEC) provided a census of the number of wells between 1980 and 2016 with more

than 1.1 million wells in 2016 and 5,123 well pads in 2013 (OPEC, 2018). The organization also listed drilling platforms

between 1982 and 2013, without distinguishing between onshore and offshore structures. However, those drilling

devices are not considered in the study, because of the high level of uncertainty on the data collected. Indeed, the

census of rigs remains difficult at the global level, notably due to the lack of detail in the perimeter considered in the

majority of sources, and the diversity of offshore infrastructures. Baker Hughes provided a monthly report on onshore

and offshore rotary rig counts worldwide, with a value of 758 rigs in June 20212. A value of more than 6,000 offshore oil

and gas platforms are announced globally by Bull and Love (2019) and Schroeder and Love (2004), compared to 3,000

fixed offshore platforms by the IEA (2018b) and more than 12,000 offshore devices by Ars and Rios (2017). However,

IEA (2018b) stated that the recent increase in offshore production has been partly provided by floating facilities, the

number of which more than doubled between 2000 and 2016, making any accurate assessment of offshore produc-

tion devices difficult. Adding to this difficulty of identification is a trend toward larger platforms, greatly complicating

modeling from fossil fuel generation. IEA (2018b) stated that the size of platforms increases over time, allowing pro-

duction to be maintained while decreasing their number. Conversely, no census of the equipment used in exploration

methods has been obtained, but a study listing the quantities of raw materials consumed has been produced by the

American Petroleum Institute (Steiniger, 1962). Finally, the coal mines have been separated into two underground

and opencast categories. It is estimated than 40% of coal production comes from surface mines and 60% from under-

ground mines (World Coal Institute, 2009), with various extraction equipment.

In contrast to upstream, the activities of the midstream segment are different for oil and gas, especially for process-

ing. While oil does not require processing, several steps are required before eventual gas transportation and then

distribution. Schori (2012) further stated that the extent of processing depends on the quality of the gas produced.

The processed gas and oil are then transported to consumption centers. Four methods of transportation exist: road,

rail, sea, and pipeline. Only the last two are modeled here. Only 20% of gas is traded on international markets and

not consumed regionally. Similarly, in 2015, 61% of the transportation of petroleum products was by sea lanes (EIA,

2017). For natural gas, pipeline transportation and marine transportation in liquefied form were therefore considered

in this study. It includes the liquefaction of natural gas, its transport in the form of liquefied natural gas (LNG) in LNG

tankers, and its regasification. The market share of LNG has strongly increased over the recent decades, with global

liquefaction capacity growing from 165 bcm in 2000 to more than 467 bcm in 2017, while regasification capacity has

evolved from 334 bcm to more than 1,138 bcm in the same period (ENI, 2018). Similarly, the evolution of the number

of LNG carriers since the late 1960s - the years of construction of the first ships - follows a strong growth, linked to the

rapid development of LNG globally. IGU (2018) detailed a growth to about 200 ships in 2000, eventually progressing

to 525 units in 2018. The liquefaction of gas allows storage. Over the past decades, LNG global storage capacity have

increased from 39 mmcm to 62.8 mmcm between 2011 and 20183 (IGU, 2018). Gas pipelines represent the second

main way of transportation of natural gas. The network of natural gas transmission and distribution pipelines has

grown considerably over the last two decades. Its length was estimated at more than 844,000 kilometers in 2000, fi-

nally evolving to 3.04 million kilometers in 2017 (CIA, 2019). However, these data do not agree with the estimates of

CEER (2018), announcing more than 1.9 million kilometers for the European network, compared to only 224,000 km

for CIA (2019). We can also identify a strong difference for the French case, with 195,000 km of gas pipeline network

announced by the French Ministry of Ecological Transition (2022), against about 15,000 km for CIA (2019), as well as

2Baker Hughes proposes a monthly inventory of the global active rigs.
3The storage capacity is measured in ).

156

https://rigcount.bakerhughes.com/


for Canada, with more than 450,000 km of gas pipelines NRCAN (2020) against 110,000 km for CIA (2019), and finally

the United States, with 1.9 million kilometers announced by CIA (2019), lower than the 2.3 million kilometers identi-

fied by PHMSA (2022). These differences stem from the scope of the studies considered. Pipelines can be separated

into three broad categories: transmission pipelines, carrying hydrocarbons over long distances from production cen-

ters, distribution pipelines, serving end-users over short distances, and gathering pipelines, used between the field

and the transmission system (Moureau and Brace, 1993). However, the latter network remains a minority, accounting

for only 0.7% of the U.S. gas network in 2018 (PHMSA, 2022). Using data for the European, US, and Canadian gas

networks, we estimated a distribution pipeline share of 85% of the pipeline network. The rate was applied to the data

on the gas transmission pipeline network provided by CIA (2019), allowing us to obtain the historical evolution of the

global network between 2000 and 2017. In this study, the transportation network evolved from 840,000 km to more

than 1.36 million km between 2000 and 2018. For petroleum products, the midstream segment includes both tankers,

transport and distribution pipelines, and storage infrastructure. Globally, tanker transport grew strongly between

1980 and 2018, from 388 million Dead Weigth Tons (MDWT) to 561 MDWT, for about 12,000 units (UNCTAD, 2018;

GIIGNL, 2019). Tanker transport can be considered "dynamic" storage, but is not considered as such here to avoid

double counting. Geological storage was also excluded, due to lack of raw material data. Finally, only man-made

"static" storage tanks have been considered here. These are estimated at 8 billion barrels, more than half of which

are in OECD countries, including both commercial and strategic stocks (Magazine, 2016; IEA, 2018b; OPEC, 2018).

Finally, in contrast to the natural gas pipeline network, the petroleum product pipeline network has seen little growth

between 2000 and 2018, with the length increasing from 584,000 km to 788,000 km (CIA, 2019). The data considered

do not suffer from the same drawback, as the global network is predominantly a transportation network, not a distri-

bution network, unlike the gas network. For coal, the midstream segment remains simpler. After extraction, coal can

be processed before being transported, in order to meet customers’ requirements. This is accomplished by crushing

it, separating it by size, and then purifying it of mineral matter (Miller, 2017).

The final segment of the hydrocarbon supply chain is the downstream, which gathers refining and distribution activ-

ities. Refining capacity has increased significantly between 1965 and 2017, from 34.8 to more than 98 million barrels

per day with more than 600 refineries worldwide (BP, 2021; OGJ, 2014, 2009). In the absence of data on the share of

transmission and distribution networks, the entire petroleum product network was considered a transmission net-

work. The gas network is 86% a distribution network, and its the length has increased from 4.4 to over 10 million

kilometers between 2000 and 2018 (CEER, 2018; CIA, 2019; NRCAN, 2020; PHMSA, 2022).

5.2.2 Recent evolution of the oil, gas and coal sectoral production structure

Several developments in the oil and gas sector have been taken into account in this study. As mentioned above, an

increase in the share of gas transported in the form of Liquefied Natural Gas (LNG) has been considered, as well as the

share of unconventional oil and gas. Unconventional production has been separated into two main categories with

different characteristics: oil sands and shale oil on the one hand, shale gas and tight gas on the other. Since oil sands

exploitation does not require drilling, only the second category was considered. In order to model the impact of the

increase in production of unconventional hydrocarbons, three factors were considered: a decrease in the lifespan of

the wells, a decrease in their depth, and an increase in their number.

For the same level of production, more unconventional wells are needed, which is explained from the production pro-

file of unconventional drilling, measured by the production decline rate. It is defined as the annual rate of reduction

in oil or gas production from an oil field, and is calculated for each well and at the aggregate level. It differs according

to the age of the well, but also between conventional and unconventional hydrocarbons, for which its value is higher

(Kleinberg et al., 2018). The average value of the production reduction rate is about 2% to 8% for conventional hy-

drocarbons (IEA, 2019b; Michaux, 2019; Höök et al., 2009). The rate fluctuates depending on the size of the oil field,

its geographical location and its physical situation-offshore or onshore (Höök et al., 2009; IEA, 2013). The values ob-

served for fields producing unconventional hydrocarbons are considerably higher. In the Bakken field, located in the

United States, this rate reached nearly 60% in the first year of production, and then 25% in the second year (IHS, 2013),
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while the Barnett field experienced a rate of 39% after 2 years, eventually reaching 95% over 10 years (Stevens, 2010),

and the Eagle Ford field experienced a reduction of 74%, 47%, and 19%, respectively for the first, second, and third

year of production (Wachtmeister et al., 2017). This hyperbolic pattern of production reduction therefore explains the

need to increase drilling in order to maintain a high level of production. The density of wells per square kilometer,

however, varies considerably by reservoir, by hydrocarbon type, and by data source. Komduur (2010) announced a

density of 12 wells per km² in the Barnett oil field in the United States, compared to 2 wells per km² according to the

EIA (2013). At the national level, the EIA (2013) provided the density of wells in the large unconventional American

fields, ranging from 0.4 to 6 wells per km² with an average value of 2.8 wells per km², which is still higher than the

largest conventional fields in the world for which the values vary between 0.07 and 8.9 wells per km². Because of this

large disparity, no difference in well density was retained in this study.

In addition to a change in well density, a decrease in well life is observed. Indeed, the production reduction rates allow

us to estimate a lifetime of unconventional hydrocarbon wells between 8 and 12 years, compared to 30 to 40 years

for conventional hydrocarbon production (Stevens, 2010). Finally, the increase in the share of unconventional hydro-

carbons and deepwater drilling changes the average depth of drilling. The horizontal drilling technique increases the

total length of the wells, composed of a vertical part and then a horizontal part. The first part of the drilling consists of

the vertical part of the well, in the same way as conventional hydrocarbons. Newell et al. (2016) announced an aver-

age vertical depth between 1,200 and 3,900 meters, while Zendehboudi and Bahadori (2017) between 1,000 and 3,000

meters. This value reaches an average of 1828 meters in the Marcellus Basin (Fractracker, 2022). Once the reservoir

depth is reached, horizontal drilling begins. On the Marcellus Basin, located in the United States, the average length

of this second portion was 1150 meters between 2006 and 2016, and an increase in the length of the horizontal por-

tion of drilling over time (Doak et al., 2019). The average horizontal drilling distance in the Marcellus Basin increased

from 690 meters in 2003 to 1,200 meters in 2013, and to 3,000 meters in 2018. Nationally, this distance has evolved

from 1547 meters in 2012 to 2,221 meters in 2018 (Hughes, 2019), for a total drilling length of approximately 4,000

meters in unconventional wells in the United States. This evolution can be seen in the distribution profile of drilling

in Canada and the United States, with a sharp increase in the proportion of drilling to a depth of around 2,000 meters,

and the appearance of drilling to a depth of over 5,000 meters. The average depth of drilling in the United States has

increased from 1,100 meters in 1950 to more than 1,700 meters in 2008. Finally, the characteristics retained are an

average drilling length of 1,500 meters and a life span of 40 years for conventional deposits and 4,000 meters and 12

years for non-conventional deposits.

5.2.3 Embodied energy and CO2 emissions

The embodied energies of primary and secondary materials considered in this study are dynamic between 1900 and

2100, and their scope extends from cradle to gate. Primary metals embodied energies depend on both the ore grade of

the mined material and the technological improvement of production technologies (Norgate et al., 2007; Birat et al.,

2013; Gutowski et al., 2013; Vidal, 2021). Data from Vidal (2021) are considered for copper, aluminum, and steel. The

values considered for steel are used for all steel alloys in this study. Cement and concrete production is decentralized,

so material intensities depend on the efficiency of regional production facilities. Numerous cement and concrete ma-

terial intensities are proposed in the literature, both globally (Van den Heede and De Belie, 2012; Birat et al., 2013)

and by region (Marinković et al., 2017; Goggins et al., 2010; Praseeda et al., 2015)4. Because of this decentralization,

a multi-regional approach is adopted to estimate a global cement material intensity. In this study, we have assumed

an identical intensity for clinker and cement, theoretically composed of 95% cement (Taylor et al., 2006). In order

to simplify the calculations, only the main producing areas have been considered. China, India, Europe, the United

States and Japan represent nearly 70% of the world cement production between 1956 and 2016 (USGS, 2021a), so

regional energy intensities were determined for these regions using historical data and a logistic approach. For this

purpose, a theoretical energy intensity limit for cement was set at 1.76 MJ/kg (Worrell et al., 2001; Taylor et al., 2006)

4Many other studies provide regional cement and concrete intensities. A non exhaustive list of them include : Alcorn and Wood (1998); Ham-
mond and Jones (2008); Baird (1997); Kofoworola and Gheewala (2009); Dias and Pooliyadda (2004); Scheuer et al. (2003); Debnath et al. (1995);
Wan Omar et al. (2014); Dixit (2017); Worrell et al. (2001, 1994); Praseeda et al. (2017); Li et al. (2015); Gervasio et al. (2018); Lu et al. (2009); Mack
(2015); Taylor et al. (2006)
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and a maximum intensity of 20 MJ/kg. This value remains uncertain but has little impact on the study since 96.7%

of cement produced since 1900 was manufactured after 1950, and nearly 90% after 1970 (USGS, 2021a). Regional

energy intensities are then weighted by regional cement production, yielding a global cement/clinker intensity. His-

torical data for regional shares of global production are obtained between 1956 and 2016 (USGS, 2021a). The observed

1956 distribution is assumed constant since 1950, and the 2016 distribution is assumed constant through 2100. Ce-

ment/clinker energy intensity varies annually between 1900 and 2100 according to the combined change in regional

energy intensities and regional market shares in world production.

Recycling reduces the energy required for the production of materials, due to the lower number of stages in the pro-

duction of secondary metals than in primary metals. Indeed, primary production involves steps such as mining and

mineral processing (for copper, nickel, zinc, lead...) or crushing and screening for steel (Norgate et al., 2007; Chen

et al., 2019), which are not mobilized during secondary production. Secondary production primarily involves scrap

smelting and refining, as well as several steps of collection, recovery sorting and shredding (Norgate, 2013). Schäfer

and Schmidt (2019) and Johnson et al. (2007) pointed out that the origin of the metals collected influences the en-

ergy required for their recycling, and report embodied energy of secondary copper sometimes of the same order of

magnitude as that of primary copper. The scope of secondary metals production thus includes processes from col-

lection to refining. In this study, the embodied energy of secondary metals is assessed from a literature review of the

energy typically consumed in secondary processes, either in absolute terms or in terms of the energy consumption

of primary processes. However, this proportion of primary production consumption varies considerably over time

as the ore grade changes (Norgate and Jahanshahi, 2006). The proportion estimated in this study is therefore valid

only for the current period. This makes it possible to estimate a world average consumption of secondary metals,

varying then according to an annual rate of technological improvement of 1% between 1900 and 2100. Only steel,

aluminum and copper are considered in the secondary production. Nearly 70% of steel is currently produced by the

Blast Furnace/Basic Oxygen Furnace (BF/BOF) process and 30% via Electric Arc Furnace (EAF), with large regional

disparities (Yellishetty et al., 2010). EAF route steel represents most of the secondary steel production, explaining this

heterogeneity. This route allows secondary steel to consume between 1.3 and 6 GJ/t currently (Harvey, 2021), 2.6

MJ/kg according to Norgate (2013), 4.5 MJ/kg in Europe according to Birat et al. (2013) and decreasing from 8.8 MJ/kg

in 2010 for the United Kingdom (Hammond and Jones, 2008) and 7 MJ/kg at the end of the 1990s for the most energy

efficient processes (de Beer et al., 1998). Secondary steel thus consumes between 8 and 37% of the primary production

energy depending on the source. A current value of 20% is chosen, in agreement with the most recent sources, i.e. 3.5

MJ/kg for the metallurgical processes. After adding the energy needed for collection, recovery, sorting and shredding,

the final value of embodied energy of 3.9 MJ/kg is finally considered5.

Aluminum has a more drastic decrease of the energy consumption necessary for its production thanks to recycling6.

It reaches between 5 MJ/kg and 8.9 MJ/kg (Kear et al., 2000; Quinkertz et al., 2001; Schifo and Radia, 2004; Green, 2007;

Birat et al., 2013; Norgate, 2013; Milford et al., 2011), which represents a proportion of the primary production energy

mostly between 5% and 10%, and reaching up to 13%. A current proportion of 7% was selected based on a weighting

according to the age of the sources, allowing to estimate an average embodied energy value of secondary aluminum

of 5.1 MJ/kg for metallurgy, and a final value of 5.6 MJ/kg. Secondary copper production is achieved depending on the

origin of the copper scrap, either through the pyrometallurgical process or the hydrometallurgical process, especially

for printed circuit boards (Xu et al., 2016). No works studying the embodied energy of secondary copper at the global

level have been found. At the Chinese level, Chen et al. (2019) proposed a quantification of each stage of primary and

secondary production, and arrive at a proportion of 21% of secondary copper embodied energy to primary. A similar

proportion is estimated by Gaines (1980), with 20% on the US perimeter. Presenting differences according to the ore

concentration rate, Norgate and Jahanshahi (2006) reported a share of smelting and refining of only 9% for copper

mined with a concentration of 0.5%, reaching 40% for 3% Cu. A world average value of 15% is finally retained, i.e. 11.6

MJ/kg for the metallurgical process, and 12.8 MJ/kg for the final embodied energy value of secondary copper.

5This value depends on the distance traveled for between the collection site and the recycling site (Norgate, 2013). A distance of 150 km was
considered in this study. The strong impact of transport on recycling was also considered by Barba-Gutiérrez et al. (2008)

6Salonitis et al. (2019) provided a breakdown of energy consumption by primary production stage.
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Figure 5.2: Embodied energy of the primary materials production.

Figure 5.3: Embodied energy of the secondary materials production.
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5.2.4 Materials, energy and CO2 : further results

Bulk materials primary and secondary flows in the STEP and NZE scenarios

The bulk materials primary and secondary flows are presented in this section for the two considered scenarios.

(a) Aluminum primary and secondary flows in the STEPS sce-
nario.

(b) Aluminum primary and secondary flows in the NZE scenario.

(c) Steel primary and secondary flows in the STEPS scenario. (d) Steel primary and secondary flows in the NZE scenario.

Figure 5.4: Aluminum and steel primary and secondary flows in the fossil fuels supply sector for the NZE and STEPS
scenarios.
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(a) Concrete primary and secondary flows in the STEPS scenario. (b) Concrete primary and secondary flows in the NZE scenario.

(c) Copper primary and secondary flows in the STEPS scenario. (d) Copper primary and secondary flows in the NZE scenario.

Figure 5.5: Concrete and copper primary and secondary flows in the fossil fuels supply sector for the NZE and STEPS
scenarios.

(a) Embodied energy of materials supply in the NZE scenario. (b) Embodied energy of materials supply in the STEPS scenario.

(c) Embodied CO2 of materials supply in the NZE scenario. (d) Embodied CO2 of materials supply in the STEPS scenario.

Figure 5.7: Embodied energy and CO2 of materials supply by segments in the STEP and NZE scenarios.
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(a) Aluminum. (b) Concrete.

(c) Steel. (d) Copper.

Figure 5.6: Structural materials stocks by main consuming infrastructures in the STEPS scenario.

Historical sectoral materials intensities in the fossils supply sector

References
Steel

(iron)
Concrete Copper Aluminum Years Technologies Scenarios

Sectoral material intensities (Mt/EJ)
Deetman et al. (2021a) 5.9 54 0.4 1.5 2015 PG+G+S Historical
Deetman et al. (2021a) 3.9 50 0.3 0 2015 PG Historical
Deetman et al. (2021a) 2 4 0.1 1.5 2015 G Historical
This study 4 2 0.02 0.002 2015 HU+HM+HD Historical
This study 0.8 1.5 0.007 0 2015 HU Historical
This study 1.3 0.1 0.006 0.002 2015 HM Historical
This study 1.9 0.4 0.006 0 2015 HD Historical

Table 5.1: Summary of the materials intensities in the power generation, storage and grid infrastructures and compar-
ison with the hydrocarbons supply chain. PG = power generation, R = renewables, G = power grid, S = power storage,
T = electric transportation, HU = hydrocarbons upstream, HM = hydrocarbons midstream, HD = hydrocarbons down-
stream. Value do not sum due to rounding.
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Figure 5.8: Evolution of embodied CO2 emissions and embodied energy consumption depending on the share of
recycled materials in the demand.

Historical sectoral materials intensities by hydrocarbons in the fossils supply sector

(a) Historical steel materials intensities by hydrocarbon. (b) Historical concrete materials intensities by hydrocarbon.

(c) Historical aluminum materials intensities by hydrocarbon. (d) Historical copper materials intensities by hydrocarbon.
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Historical sectoral materials intensities by segment in the fossils supply sector

Figure 5.10: Historical steel materials intensities by segment.

Figure 5.11: Historical concrete materials intensities by segment.
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Figure 5.12: Historical aluminum materials intensities by segment.

Figure 5.13: Historical copper materials intensities by segment.
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Chapter 6

General conclusion

Human interaction with its environment has drastically evolved over the past centuries. The socio-metabolic regime

initially changed from a hunter-gatherer society to an agrarian society, and humanity currently faces an industrial

transitory phase to a new an unknown regime (Fischer-Kowalski, 2011; Pauliuk and Hertwich, 2015). Given the global

impacts on the Earth system and the development of inequality, a more sustainable use of resources would be fun-

damental to reach a new stable socio-metabolic regime (Pauliuk and Hertwich, 2015). The observed transition relies

heavily on Earth resources. The global material extraction of biomass, excavated materials, fossil fuels, metal ores

and non-metallic minerals increased from 92 Gt to 290 Gt between 1970 and 2019. Among the resources, metals and

minerals are the backbone of the industrial development, which led Graedel et al. (2015) to state of a ”materials ba-

sis of modern society”. Their growing and versatile use has enabled complex technologies to emerge on large scales,

substantially enhancing the lifestyle of some societies. This materials use carries significant environmental impacts,

and resources consumption represent the major source of GHG emissions. Moreover, the exponential use of materials

remains extensively coupled to economic growth, and the current and dominant growth paradigm compels a steady

increase in resources use. Reaching a circular and sustainable state requires questioning our relationship to growth

as well as an adaptation of both our production system (e.g. through the energy transition) and consumption habits

(e.g. through sobriety). Estimations of materials flows and stocks are essential to understand the demand pattern and

the current accumulated stocks, which could provide secondary materials to build future infrastructures. The met-

als and minerals demand has been widely assessed within the industrial ecology field, and a growing focus has been

observed on the material weight of the low carbon transition. It carries changes for all sectors, and a potential shift

from an energy materials dependency to a minerals and metals dependency. The material basis of our society has

been addressed with various methodologies and scopes over the past decades. A critical literature review has allowed

to identify the main insights and gaps in a panel of publications displaying material flow analysis of base materials

between 2000 and 2021. This work aimed at providing further insights on four specific gaps: (1) a lack of prospective

studies in a low-carbon context, (2) a lack of analysis of the energy-material nexus, (3) a lack of modeling of some

sectors and (4) a limited number of solution-oriented and political-oriented studies.

This thesis is included in a larger project of multi-sector material modeling: the Dynamic Modeling of Energy, Ma-

terials Demand and Supply (DyMEMDS) model, which presents a wide scope and very ambitious objectives. I want

to emphasize the significant role of data in the feasibility of developing such a model. It represents a data collection

and cleaning challenge, especially for dynamic data at a multi-regional level, which can substantially hampers the

result. The increasing development of open databases (Heeren et al., 2019 ; Gontia et al., 2018) could allow to better

grasp local data and their evolution over time. The DyMEMDS model is part of this open-data approach (for many

parameters and sectors).

Using the model, colleagues and I analyzed the base material requirements of the energy supply chain and the build-

ing sector, with an extensive focus on the energy transition consequences. In this regard, several conclusions can be

drawn:
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1. A low impact of thermal renovation on base material in the building sector is observed and the socioeconomic

assumptions remain the main driver.

2. We could observe a supply challenge of the energy infrastructures for base material requirements for renewable

technologies.

3. We estimate that the steel use in the fossil fuel supply chain is not lower than for renewables when the trans-

portation and distribution activities are considered.

Then, the energy demand and environmental impact of base material production were estimated, and the significant

role of recycling was highlighted, however with regional disparities. This showed the role of lifetime and age of stock

is a decisive aspect of evaluating the recycling potential, as previously highlighted in many previous studies. From a

recycling perspective, we also emphasized two key aspects :

1. The fossil fuel supply chain could represent a potential collect and management challenge in the coming decades.

Only the recycling option was considered to display an extreme case, but many other options are available and

should be properly studied.

2. By-products could play a significant role to decrease the impact of concrete production. Only CFA and BFS were

considered, but many other options are available.

This demonstrates the need to increasingly consider integrated approaches of both the end-of-life of infrastructures

and recycling, which requires:

1. Developing multi-sector models ;

2. Enabling multi-options approaches for the end-of-life, for instance consisting in a top to bottom approach of

recycling. Such an approach could compute the decommissionning process from a technological unit level (e.g.

full reuse option) to a sub-unit level (e.g. repowering or wind farms on rigs) to a resource level (e.g. recycling).

3. Enhancing our knowledge of by-products uses to replace primary materials.

Finally, in the three studies, we outlined that the combination of energy transition and surging population and GDP

per capita could have a significant impact on base material demand in the energy supply and building sectors. Both

primary and recycled materials production could satisfy the growing demand. We showed that a larger use of recycled

materials would minimize energy demand and environmental impacts, while preventing soaring lost stocks in land-

fills. However, we identified that technology lifetimes and decommissioning strategies could hamper the availability

of end-of-life materials, which could results in a substantial increase of primary production. It would lead to a growth

of associated energy demand and environmental impacts. Ambitious policies are required to rapidly implement bet-

ter collection strategies and develop recycling capacities. The large amount of outcomes produced by the academic

community could benefit from enhancing the political message to reach a better and wider audience. The sector

studies displayed in my thesis are included in a larger project of multi-sector material modeling. The Dynamic Mod-

eling of Energy, Materials Demand and Supply (DyMEMDS) model aims at computing the materials stocks and flows

from the energy supply to end-use sectors (building, transport and industry). Sector and multisector studies is pro-

vided in further work. The DyMEMDS model could progressively provide researchers or policy-makers with a valuable

open-data and open-source tool to expand the understanding of the material challenge and enable transdisciplinary

collaborations to tackle the upcoming material conundrum from a wide range of research fields.
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Appendix A

Appendix to Chapter 2: Dynamic base

materials modeling: a critical review

A.1 Review of the reviews

The challenges of quantifying resources stocks and flows in the anthroposphere, their energy and environmental im-

pacts, and their link to development have produced a rich literature in recent decades. Eight literature reviews pub-

lished over the last 10 years are analyzed in the following, which were selected because they report either a:

• Quantification of mineral or metallic raw materials stocks and flows;

• Quantification of the energy and environmental impacts of mineral or metallic raw materials;

• Quantification of the energy and environmental impacts of the production processes of one or more mineral or

metallic raw materials;

• Linkage of mineral or metallic raw materials with economic development or growth issues;

• Study of mineral or metallic raw materials from a conceptual angle (criticality, dematerialization, governance,

dissipation, etc.).

In the following, the eight literature reviews are explained, their methodologies are studied, and an analysis of the

evolution of the literature according to their conclusions is conducted.

Scope of this review

The publication period of the selected literature reviews is from 2012 to 2020. Five of them address the topic of quan-

tifying stocks and flows of mineral and metallic raw materials, using different approaches. Chen and Graedel (2012)

provide an initial critical review of 48 papers addressing the issue of anthropogenic cycles for 75 selected elements,

including 59 metals, 10 nonmetals and 6 metalloids. Both stocks and flows are considered, and only 59 elements are

finally analyzed in the selected literature. Different modeling methodologies are covered in this study, including SFA

and MFA. Müller et al. (2014) focus on dynamic materials flows analysis (MFA) used in the objective of modeling metal

stocks and flows in the anthroposphere between 1999 and 2013. Unlike the study by Chen and Graedel (2012) that con-

sider both static and dynamic studies, only papers proposing a dynamic analysis of the quantification are selected.

Sixty academic papers are analyzed using a methodology adapted from the Overview, Design concepts, Details (ODD)

protocol (Grimm et al., 2006). This dual stock and flow approach is also considered by Augiseau and Barles (2017), with

the specificity of focusing on building materials. The sectors analyzed in the 31 selected studies thus include build-

ing, energy, rail, road, telecommunication networks and public infrastructure (ports, airports). The selected items

encompass construction materials (concrete, cement, bricks, wood, steel, copper or aluminum) and the stocks and

flows are modeled by MFA or stock analysis. Wu et al. (2014b) propose a literature review focusing on the construction
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sector, but with the specificity of studying construction and demolition waste flows. Fifty-seven papers are reviewed,

with a material scope identical to Augiseau and Barles (2017) and the following modeling methodologies: site visit,

generation rate calculation, lifetime analysis, classification system accumulation and variables modeling. In addition,

Göswein et al. (2019) analyze the construction sector, using a stock approach, but differentiating themselves by adding

papers addressing the issue of embodied energy or emissions from construction materials. Twenty-eight studies are

selected in this critical literature review, using LCA, MFA and spatial modeling methodologies, using GIS. In addition,

the authors analyze the literature based on an adaptation of the IPAT equation1 for building stock research. Van den

Heede and De Belie (2012) also examine the quantification of environmental impacts in the literature, however with

a restrained scope on the concrete production process, the objective being to compare the impacts of traditional and

"green" concretes. A census of the impacts, environmental, mechanical and service life characteristics as well as an

LCA is carried out, based on the results of 104 papers. Only one systematic literature review studies the issue of decou-

pling between GDP, resources and CO2 emissions. It is published in 2 parts: Wiedenhofer et al. (2020) firstly address

the bibliometric approach and conceptual mapping, and Haberl et al. (2020) synthetize the insights. The main ob-

jective is to identify evidence–or lack thereof–of absolute or relative decoupling in a system that considers economic

growth as a primary goal. 835 papers are analyzed in Wiedenhofer et al. (2020) and Haberl et al. (2020), 98 of which

deal with the decoupling of growth and material consumption. The methodologies developed in this literature are

cross-sectional analysis, descriptive trend analysis, decomposition and regression analysis, econometric time series

analysis and econometric causality tests. Finally, Jin et al. (2016) propose a first systematic literature review on the

topic of materials criticality2. 48 studies are listed, analyzing Rare Earths Elements (REE), platinum group metals, 40

other metals, 12 non-metals and 27 other materials. This study aims at proposing a census of the definitions of this

recent concept, of the methods to analyze the criticality of a material and of the gaps of the existing literature.

Search, selection and analysis methodologies

The methodology used in the selected research literature can be separated into two processes: the search and se-

lection of papers, and the criteria for analysis. As the first phase of methodology is not systematically carried out,

or presents different qualities of detail between the different studies, three levels were identified. A first level "not

detailed" consisting of the absence of a description of a search and selection methodology, observed in Müller et al.

(2014) and Van den Heede and De Belie (2012). A second "detailed selection" level within which studies present the

methodology for selecting papers according to a list of criteria (Augiseau and Barles, 2017; Chen and Graedel, 2012),

separated into two categories:

• General criteria such as the language of writing or the year of publication;

• Criteria specific to the subject of the study. Some usually examined are the materials considered, the analysis of

stocks and/or flows, energy, emissions or the spatial scope of the study.

Wiedenhofer et al. (2020); Haberl et al. (2020); Jin et al. (2016); Göswein et al. (2019) and Wu et al. (2014b) propose

a third level of description "detailed search and selection" addressing both the search and selection methodology.

The search part has different sub-levels of detail. A first one explains a quick explanation of the keywords and the

diversity of databases mobilized in order to cover a broad spectrum or to prevent the Matthew effect3(Merton, 1968;

Göswein et al., 2019). A second sub-level has been defined when a description of the selection process is established

with sometimes a quantification of the number of studies selected by stages (Wu et al., 2014b; Wiedenhofer et al.,

2020). These differences in search and selection methodology may stem from the type of literature review. Four of

the five studies developing a systematic approach present a "detailed search and selection" methodology. The wide

range of studies available in the early stages of the search required a large number of steps to verify their relevance.

The highest quality level in the description of the search and selection methodology is observed in Wiedenhofer et al.

1The IPAT equation aims at describing the dynamics of impacts on the environment. The three letters refers to the terms of the equation :
Impact = Popul ati on · A f f l uence ·Technolog y (Ehrlich and Holdren, 1972)

2The concept of criticality was first defined by the National Research Council (2008) as the levels of importance in use and availability of a
materials.

3The Matthew effect can be defined as success attracting success (Merton, 1968). When adapted to scientific publication, it refers to increasing
visibility effect of journal on already acknowledge researchers’ publications (Drivas and Kremmydas, 2020; Larivière and Gingras, 2009).
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(2020), presenting over 11,500 studies initially obtained.

The development of analysis criteria constitutes the second part of the methodology observed in the literature reviews.

A criteria-based approach is commonly used, depending on the scope chosen in the study. Only Müller et al. (2014)

propose a standardization of analysis criteria for any MFA. It is based on the standardized ODD (Overview, Design

concepts, Details) protocol developed by Grimm et al. (2006) to describe individual-based models (IBM) or agent-

based models (ABM)4. The ODD protocol emerged from the difficult reproductability of ABM/IBM models, explained

by the combination of the lack of a common framework for description and the complexity of these models. The ODD

sequence consists of three main blocks segmented into seven secondary blocks, allowing for a quick understanding

of the general structure and purpose of the model (Grimm et al., 2006). The protocol is presented in Table A.1.

Main blocks Secondary blocks

Overview
Purpose
State variables and scales
Process overview and scheduling

Design concepts Design concepts

Details
Initialization
Input
Submodels

Table A.1: ODD protocol and its descriptive blocksGrimm et al. (2006).

The complexity of ABM or IBM models remains higher than that of MFA models, explaining their proposal of a sim-

plified approach to the ODD protocol for the analysis of the latter (Müller et al., 2014). The ODD structure (Overview,

Design concepts, Details) has thus been retained, and segmented - in a more detailed way than the original protocol

- into 15 sub-blocks. The Overview presents the objective of the model, its general structure and its scope in terms of

materials, processes and time scale considered. The Design concepts then describes the general principles of the se-

lected modeling approach, including for example spatial distribution, uncertainty or static or dynamic, retrospective

or prospective aspects. The Details presents the specifics for replicating the study in the last block (Müller et al., 2014).

The protocol is presented in Table A.2.

Main blocks Secondary blocks

Overview

Purpose
Materials (goods, substances)
Processes
Spatial and temporal scale and extent
System overview

Design
concepts

Basic principles
Static or dynamic modeling approaches
Dissipation
Spatial dimension
Uncertainty

Details

Initial condition
Model input data
Model output data
Evaluation
Detailed model description

Table A.2: ODD protocol adaptation by Müller et al. (2014) for dynamics MFA studies.

Summary of the findings of the literature reviews

4These models are a population and community modeling approach that allows for a high degree of complexity of individuals and of interac-
tions among individuals (DeAngelis and Grimm, 2014).
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The selected literature reviews provide an analysis of the research field on mineral and metallic raw materials, covering

a wide scope of approaches, methodologies and materials. In addition, they allow us to capture the main trends in

terms of study perimeters, modeling, data limitations, and inclusion of work with a policy-making objective. These

four aspects are developed in the following section.

Scope of studies

The scope is defined in terms of geography and materials. Of the 350 studies of anthropogenic cycles analyzed by

Chen and Graedel (2012), a majority focus on the national scale. There is an initial domination of studies on the USA

and Europe, and a progressive appearance of the Chinese perimeter. Base materials such as iron, copper, aluminum

and zinc are the most represented (Chen and Graedel, 2012; Müller et al., 2014). Müller et al. state that few studies

focus on REE–until 2013–despite strong recycling constraints and dissipation and low concentration issues. Those

are gradually becoming part of the concept of criticality, which appeared in 2008 (National Research Council, 2008).

In the literature review conducted by Jin et al. (2016), 28 of the 48 selected studies were published in 2013 and 2014,

demonstrating a growing interest in this research field.

Modeling methodologies : towards conceptual frameworks

Two modeling trends are observed by the above-mentioned authors of the reviews. First, a multiplicity of models is

noted, in relation to the objectives of each study. Four types of objectives were identified: quantification of stocks and

flows, estimation of environmental impacts of both production and consumption, waste quantification, and coupling

with economic growth. In each case, different approaches and inputs data are involved:

• Stocks and flows are considered either separately and jointly, depending on urban mining, scenario analysis or

recycling objectivesChen and Graedel (2012). Flows are sensitive to short-term variations, such as economic

crises and technological choices, while stocks are a more robust approach for forecast purposesMüller et al.

(2014).

• Bottom-up and top-down accounting. Whereas topdown approach refers to input-output tables and modeling

stocks from a flow analysis, bottom-up modeling focuses on describing parts of the system in details and then

conducting a part-whole modeling. Most of studies consider a top-down approach, with only 10% of papers

in Müller et al.Müller et al. (2014). The authors then assess that topdown modeling is relevant on large geo-

graphical scales, for bulk materials. On the other hand, they point out that the bottomup approach allows a

more accurate modeling, and is of great interest for a study of consumption habits and the consequences on

technical, sectoral and socio-cultural specificities. However, bottom-up modeling appears to be intrinsically

more complicated to conduct because of the higher data requirement. Augiseau and BarlesAugiseau and Bar-

les (2017) identified the complexity of hypothesis for this approach, often considering homogeneity between

buildings types, urban zones at a national level, average lifetime and material intensities based on experts’ con-

victions.

• Retrospective and prospective approaches, studying past stocks and flows for the former and extrapolating

those results for projection purposes for the latter.

• Static and dynamic accounting modeling. Static approach consists in an evaluation of stocks and flows at a

precise moment, whereas dynamic approach presents an evolution in time. Of the 1074 anthopogenic cycles

reviewed by Chen and GraedelChen and Graedel (2012), 989 are static and 85 are dynamic, demonstrating a

domination of static models. A rise of dynamic studies has, however, been observed over the past years, and

several reviews have been providedMüller et al. (2014); Göswein et al. (2019).

The conjunction of a multiplicity of methodological tools and objectives leads to a need for standardization towards

a conceptual framework. The relevance of the use of existing methods and approaches is first analyzed. Göswein

et al.Göswein et al. (2019) concluded on the application of LCA for environmental impacts at all scales, of MFA and

GIS for dynamic materials flows in space while Chen and GraedelChen and Graedel (2012) noted the interest of input-
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output tools. However, the authors point out the difficulties identified in the literature, such as the inequality of

data intensity and data quality, and the differences in perimetersAugiseau and Barles (2017). From the perspective of

long-term foresight models, Müller et al.Müller et al. (2014) express the importance of dynamic parameters and the

coupling of bottom-up and top-down approaches in time-variant MFA modeling.

Data quality and intensity

The data issue can be separated into two points, data quality5 and data intensity6 (Göswein et al., 2019). The un-

certainty and quality of the data depends on the considered time series or geographical scope and the reliability of

data from experts’ opinions is hardly evaluable Augiseau and Barles (2017). This has a direct impact on the reliability

of the outcomes of studies. Some parameters such as lifetime of infrastructures are poorly documented, while they

have a very strong impact on the magnitude of raw material flows and stocks with time (Müller et al., 2014). There

is therefore a need for further development of uncertainty and sensitivity analyses. Beside their quality, the number

of available data also constrains the further modeling approach. A bottom-up study requires a minimum amount of

input data (Göswein et al., 2019)which are not available for infrastructures such as ports, airports, and networks in the

literature, despite their consequent share in the flows and stocks of construction materials (Augiseau and Barles, 2017;

Wu et al., 2014b). Despite the increase of the number of available data, Jin et al. (2016) express their reservation about

its evolution. The authors describe the difficulty of quantification inherent in the conjunction of dissipative uses and

the integration of an increasing number of materials in technological products.

Policy-making and interdisciplinarity

A last weakness of raw materials modeling lies in the lack of integration into an environmental policy-making ap-

proach. Most studies acknowledge the possible importance of the issue of material stocks and flows at the economic

and environmental levels (Chen and Graedel, 2012; Müller et al., 2014). However, the nature of direct recommenda-

tions given in the papers must be adapted to the target audience. Göswein et al. (2019) add that a better documen-

tation of dynamic settings is necessary in this perspective, while Chen and Graedel (2012) emphasize the standard-

ization and combination of methods. This would allow for more efficient anthropogenic cycle studies, comparisons,

and thus better policy impact. A better effectiveness of recommendations and development of industrial ecology

policies requires exploration of new fields of action, and integration of stocks and flows analyses into an interdisci-

plinary framework including social, economic, political and technical dimensions. This is the condition to a better

understanding of social metabolism (Augiseau and Barles, 2017).

An example: building literature

A significant share of these studies focus on the construction sector and urban areas, and capture the evolving dynam-

ics of research on the topic. Energy consumption has been identified as the main contributor to the environmental

impacts of constructionAbd Rashid and Yusoff (2015), most of it occurring during the operational phaseLotteau et al.

(2015). The operational and embodied dimensions of energy have thus been widely studied, and industrial ecology

is increasingly focused on an analysis of the link between resources and environmental impacts. Two fields of study

have thus seen recent development in the construction sector, LCA and materials stock and flows analysisGöswein

et al. (2019). LCA assess the environmental impacts of sectors or products on their life cycle, and a growing number

of reviews focus on building LCA7. Material stocks and flows analysis aims at quantifying elements used in the sec-

tors of construction. Göswein et al. (2019) add the embodied energy and emissions of materials, and the dynamics of

their use. This allows one to define a methodological framework for stocks and flows analysis (Augiseau and Barles,

2017) as well as understanding the dynamics of cycles of elements (Müller et al., 2014). The combination of these

5Data quality is related to uncertainties and gaps in datasets.
6Data intensity is depicted as the amount of data available on the sectoral, temporal and geographical scope of a study.
7This studying field has been rapidly growing over the past years (Abd Rashid and Yusoff, 2015; Nwodo and Anumba, 2019; Lotteau et al., 2015;

Minunno et al., 2021; Dong et al., 2021; Roberts et al., 2020; Mastrucci et al., 2017; Bahramian and Yetilmezsoy, 2020; Yılmaz and Seyis, 2021). Dong
et al. (2021) provide a short review of the literature reviews about LCA of buildings.
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two dimensions was achieved by studying the input dynamics with the IPAT equation8, initially defined by Ehrlich

and Holdren (1972). Göswein et al. (2019) study each terms of the IPAT equation to account for temporal and spatial

cohort dynamics. They find that the population and the affluence (GDP/cap) variables are often dynamic, whereas

material intensity and emission intensity are mostly dynamic. This might be explained by the challenge to forecast

future technological innovationGöswein et al. (2019). In parallel with these demand-side studies, the research field of

embodied impacts related to materials is also studied from a supply approach. Van den Heede and De Belie (2012)

conduct a literature review on the environmental impacts of traditional and “green” concretes, and the replacing pos-

sibilities. The authors insist on the importance of the definition of the functional unit – in terms of strength, durability

and lifetime – which influences the final concrete choices.

A.2 Methodology : further details

Three types of methodologies are commonly observed in the reviews. The research methodology aims at embracing

the largest panel of studies in order to have a broad outlook of the previous works. It is crucial to use a multi-source

approach to prevent any Matthew effect, as stated by Göswein et al.Göswein et al. (2019). The selection methodology

intends to narrowing the outputs of the research by setting up a relevance and/or quality review, and sometimes a du-

plicate removalWiedenhofer et al. (2020). Finally, the analysis methodology pursues an in-deep study of the selected

literature through a contextual framework. The research phase of this review was first carried out through a keyword

approach on Web of Science and a research Connected Papers. The queries used were "Material flow analysis OR

substance flow analysis OR MFA OR SFA OR material flow OR material stock OR input-output OR IO" AND "Concrete

OR cement OR steel OR iron OR copper OR aluminum" AND "Dynamic OR time series".

A.3 Further results

Bibliometric analysis

A bibliometric analysis was conducted on the 129 selected articles. The software VOSviewer was used to describe

the network and temporal aspects of keywords and journals. The annual number of publications grew from 5 or less

between 2000 and 2007 to more than 21 in 2019. A substantial decrease was observed in 2020, which could be link to

the Covid-19 virus (Figure A.1). 52 journals were identified, and the most represented are displayed in Figure A.2. In

this visualization, each node represents a journal, the line length depicts their references connections, and the size

of a node describes a higher or lower number of publications (van Eck and Waltman, 2014). Resources, Conservation

and Recycling is the most represented journal, with most of it occurrences in the last years. It is ahead of Journal of

Industrial Ecology and Environmental Science & Technology, and a growing number of recent articles were published

in the Journal of Cleaner Production (Figure A.2).

8The IPAT equation aims at linking the impact to its causes. It is defined as: Impact = Population * Affluence * Technology.
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Figure A.1: Annual number of publications by approaches from 2000 to 2021.

Figure A.2: Temporal visualization of the main publishing journals of the selected articles. The graph was generated
using VOSviewer and a minimum number of documents of 5.

The keywords network visualization with a minimum occurrence of 5 allows to highlight 27 items segmented in four

clusters. As for journal, each node represents a keyword, the line length shows the co-occurrences, and the intensity of

occurrences is proportional to the nodes. Each cluster has a different color, and a node exclusively belongs to a cluster

(van Eck and Waltman, 2014). They are displayed in Figure A.3 and some trends can be identified. The material flow

analysis tool and industrial ecology show most occurrences ahead of recycling and copper. Three main clusters are

pictured in Figure A.3, each gathering four main types of information :
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• Materials (iron and steel, cement and copper)

• Modeling tools (MFA, dynamic MFA, SFA, LCA)

• Stocks and flows (overall, in-use stock, urban mining)

• General concepts (decoupling, social metabolism, efficiency, recycling, waste management, circular economy,

sustainable resource management)

These categories interact in different manners. The cluster represented in red gathers iron, steel and cement with

four concepts (material efficiency, resource efficiency, decoupling), the material flow analysis methodology and the

industry ecology field name. It thus shows the strong integration of MFA within the field of industry ecology in the con-

sidered studies, and its preference for iron, steel and cement modeling. It also unveils the greater link between those

two materials and efficiency or decoupling aspects compared to an "in-use stock" approach. The cluster displayed

in red informs about the strong relation between recycling and waste management with buildings and construction

through dynamic MFA. Moreover, it shows the central aspect of material intensities in buildings and waste manage-

ment studies. The blue cluster is centered around copper. In the selected documents, this material is strongly related

to scenario analysis about China using both MFA and SFA tools, and is more connected with circular economy than

other materials. The last cluster gathers only aluminum and international trade, and shows weak links with the other

clusters. It depicts the dynamic of international trade material with copper and aluminum in the Chinese area. The

temporal dynamic of the keyword was also studied in VOSviewer (Figure A.4). Older modeling occurrences can be ob-

served for iron, steel and aluminum than for copper and cement. The stock analysis dynamic evolves toward in-use

stocks and urban mining, with recent links between in-use stocks and more conceptual approaches. It also shows the

trend from modeling tools to more concepts in the analysis, and the recent consideration of scenario analysis. Given

the growing complexity of studies, the keywords however have a limited capacity of description. It is illustrated by

studies focusing on several materials, which do not appear in the keywords (2.2.1).

Figure A.3: Network visualization of the main keywords of the selected articles with a minimum occurrence of 5. Five
clusters are depicted. The graph was generated using VOSviewer.
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Figure A.4: Temporal visualization of the main keywords of the selected articles. The graph was generated using
VOSviewer.

Modeling characteristics, modeling tools and inputs

Figure A.5: Number of top-down, bottom-up and joint approaches publications between 2000 and 2021
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Figure A.6: Number of top-down and bottom-up national studies by country. The map was generated using Mapchart.

Figure A.7: Number of bottom-up national studies by country. The map was generated using Mapchart.
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Figure A.8: Example of Weibull and normal distributions with a mean value of 34.1 and a standard deviation of 23.5 as
observed for Chinese urban residential buildings in Zhou et al.Zhou et al. (2019)

In-use stock or in-use stock per capita saturation assumptions are observed in many studies through logistic or Gom-

pertz approaches. They depict a three-phase behavior of infrastructure and raw material stocks using an S-curve pro-

file. These mathematical tools were originally developed to analyze the evolution of the population (Verhulst, 1845

Gompertz (1825)). Applied to infrastructures, these curves outline a gradual change towards a state of saturation. In a

first phase, the stock grows slowly, before seeing its evolution explodes in a second period, and finally reaching satura-

tion in a last phase. This allows us to understand the progressive penetration of products in society, and the physical

reality of their consumption. It is indeed intuitive to perceive the limitation of demand per capita for consumer goods

such as housing, vehicles, etc. The difference between these two tools lies in the speed of growth. The Gompertz curve

enables to describe accelerated logistical developments, with an earlier occurrence of the inflection point than for a

logistical curve.

In materials-related literature, these two mathematical tools are used to model the evolution of an infrastructure stock

(Yoshimura and Matsuno (2018); Cao et al. (2018); Yin and Chen (2013); Huang et al. (2013); Shi et al. (2012) - referred

to as the technological approach in the rest of the study - or of a material stock - referred to as the material approach.

The first models of material in-use stocks over time are based on logistic approaches. Toi and Sato (1998) is the first

study found in the research field. The authors modeled the evolution of the steel stock in Japanese society between

1920 and 2120 using a time-dependent logistic curve eq A.3.1. An assumption was made on the total saturation stock,

and the curve was fitted on past data.

St = Ssat

1+exp(α−β · t )
(A.3.1)

In this equation, St is the total stock in the year t, Ssat is the saturation level of the stock and α and β are parame-

ters influencing the growth rate. The three parameters of the right side of the equation are independent. A similar

approach has been adopted by Igarashi et al. (2008) for an estimation of steel consumption in Japan and Asian coun-

tries between 2005 and 2030. They set a Ssat value of 14 t/capita, corresponding to the saturation level observed in

the Unites-States. An evolution of time-dependent logistic towards GDP-dependent logistic was then observed in the

literature. Hatayama et al. (2009) provide a logistic modeling of the per capita in-use stock of aluminum for China,

Japan, the United States and Europe. The three independent parameters are derived from past data curve fitting. The

authors note, however, that it is not possible to determine ssat with this method for countries whose stock is in its

logistic initiation phase. Saturation data from other regions are then required.
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st = ssat

1+exp(α−β ·GDPt )
(A.3.2)

In eq A.3.2, s(t ) in the per capita in-use stock in year t, ssat is the saturation value of the per capita in-use stock, GDPt

is the per capita GDP in year t, and α and β are parameters. A similar approach was used by Oda et al. (2013) for

the apparent demand of crude steel per capita in 8 countries. The methodology for determining the parameters was

further improved using a nonlinear regression between the GDP and per capita stock data in Hatayama et al. (2010),

finally evaluating aluminum recycling potential for the same areas. Hatayama et al. (2012) used both technological

and material approaches to estimated the future steel stock for three end-use sectors : civil engineering, building and

vehicles. The eq A.3.2 was used to calculate the civil engineering and building in-use stocks of steel, and the evolution

of the vehicles stock was estimated using a Gompertz curve which equation is shown in eq A.3.3.

st = ssat ·exp(α ·exp(β ·GDPt )) (A.3.3)

The three parameters ssat , α and β are defined as in eq A.3.2, and also calculated using a nonlinear regression. The

Gompertz function was found to best fit the evolution of vehicles stock by Huo and Wang (2012), and is therefore

frequently used in this research field as in Gutiérrez et al. (2009), Singh et al. (2020), Lian et al. (2018) or Wu et al.

(2014a). In order to use the latest data to fit the historical and the future data, Pauliuk et al. (2012) considered a

different set of parameters. They carried out a time-dependent logistic modeling of steel stock between 2009 and 2100

based on eq A.3.4

c(t ) = S

1+ ( S
c0
−1) ·exp(− S·ċ(t=t0)

c0·(S−c0) · (t − t0))
(A.3.4)

in which t0 = 2009, c(t ) and c0 are respectively the per capita stock in year t and the per capita stock in 2009, ċt0 is

the per capita stock change in 2009 and S represents the saturation level of the stock. The previous three-parameters

equations require hypothesis about the saturation stock value, either based on a coupling to economic development

or experts’ opinions. The GDP-correlation modeling was criticized by Pauliuk et al. (2013), stating that this only repre-

sents a shift to another exogenous parameter and would create a dependency towards population and GDP scenarios.

A four-parameter combined logistic and Gompertz function was developed by Liu et al. (2012) (eq A.3.5) in order to

make hypothesis about both saturation level and saturation time independently. They modeled the global aluminum

stock between 1950 and 2100.

st = ssat

1+ ( ssat
S0−1 ·exp(α · (1−exp(β · t ))))

(A.3.5)

In eq A.3.5, St represents the per capita stock in the year t, Ssat is the per capita saturation stock, S0 the initial per

capita stock and α and β are numerically determined parameters depending on a boundary condition (98% of the

saturation value at a given time). A similar approach was considered by Pauliuk et al. (2013) to depict the evolution

of regional steel stocks between 1950 and 2100 adding a condition of a tangential behavior of the curve to the historic

data. A summary of these studies is presented in Table A.3.
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References Function Approach Materials Time scale

Toi and Sato (1998) Logistic Past data curve fitting, time
dependent, saturation level
hypothesis

Steel 1920-2120

Igarashi et al. (2008) Logistic Past data curve fitting, time
dependent, saturation level
hypothesis

Steel 2005-2030

Hatayama et al. (2009) Logistic Past data curve fitting for all
parameters, GDP scenario

Aluminum 2000-2050

Hatayama et al. (2010) Logistic and Gompertz Past data curve fitting for all
parameters, GDP scenario

Steel 2005-2050

Hatayama et al. (2012) Logistic Past data curve fitting, GDP
scenario

Aluminum 2006-2050

Pauliuk et al. (2012) Logistic Time and stock dependent
logistic, hypothesis about
saturation levels and life-
time

Steel 2009-2100

Liu et al. (2012) Combined logistic and
Gompertz

Saturation time and satura-
tion level hypothesis

Aluminum 1950-2100

Pauliuk et al. (2013) Combined logistic and
Gompertz

Saturation time and satura-
tion level hypothesis

Steel 1950-2100

Oda et al. (2013) Logistic Saturation level assump-
tion, GDP scenario

Steel 1980-2050

Table A.3: Summary of materials stock modeling using logistic and Gompertz functions in the literature.

A.3.1 Uncertainty and sensitivity analysis

The uncertainty analysis aims at assessing the possible errors in the outputs depending on the uncertainties in the

inputs, while the sensitivity analysis describe the impacts of an input variations on an output, and show which inde-

pendent variable has the most impact. The local sensitivity analysis is the initial methodology. It is deterministic and

based on derivatives (Saltelli, 2008; Iooss and Lemaître, 2015). Given input variations - around the mean value - allow

to assess its impact on an output. This methodology however only displays variations in given points of space, and are

limited by unknown linearity of the model and uncertainty of the input. In order to prevent these limitations, global

sensitivity analysis was developed in the late 1980s. The input varies in its whole value range, allowing to compute

the average response of the output (Saltelli, 2008; Iooss and Lemaître, 2015). Moreover, the Sobol decomposition of

the variance gives indications about the effects of interaction of inputs. The first order term of the variance measures

the impact of a single input, while the second order assesses the impacts of the interaction of two inputs etc...(Mara

and Tarantola, 2008). Following the Sobol decomposition, the sum of first order variances are equal to unity in a set of

non-correlated parameters. A higher than unity value of this sum therefore indicates a correlation of inputsBuchner

et al. (2015), and a lower value informs about a lack of parameters and/or correlation considerations in the sensitivity

analysis (McMillan et al., 2010). Uncertainties are not well defined in the selected publications because of a lack of

traceability of data. They are commonly studied from assumptions about the data quality, Gaussian error propagation

(Bader et al., 2011) or Monte Carlo approach (Soulier et al., 2018b). These studies focus on input uncertainties, and

model uncertainties are rarely addressed. They are defined as the uncertainties related to the intrinsic imperfection of

models (Buchner et al., 2015), with a special focus on initial stock values, and lifetime definition. Conversely, sensitiv-

ity analysis are usually well addressed. Most of the studies consider a local sensitivity analysis, with a variation of one

of several input parameters by a fixed rate (Fishman et al., 2014; Carmona et al., 2021; Streeck et al., 2021; Dong et al.,

2019; Pauliuk et al., 2013; Hu et al., 2010; Yin and Chen, 2013; Spatari et al., 2005). A growing use of global sensitivity

analysis is however observed, based on the Monte-Carlo approach (Glöser et al., 2013; Soulier et al., 2018b; Buchner

et al., 2015; Soulier et al., 2018a; Cao et al., 2017a) or the FAST method (McMillan et al., 2010).
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A.3.2 Material cycle and ratios

The cycle used in this section is simplified, and further sub-rates can be defined. In a publication outside the scope of

this review, Ciacci et al. (2015) differentiated between the metals "lost by intent"-e.g. dissipative uses-from those "lost

by design"-e.g. selenium in glass.

1. The old scrap collection rate (EOL-CR) is the share of metals embedded in end-of-life products actually col-

lected:

C R = F

D
(A.3.6)

2. The recycling process efficiency rate (EOL-PR):

EOL−PR = G

F
(A.3.7)

3. The end-of-life recycling rate (EOL-RR) is defined as the proportion of metals embedded in end-of-life products

actually recycled:

EOL−RR = G

D
(A.3.8)

4. The recycling content (RC):

RC = K

A+K
(A.3.9)

5. The fraction of old scrap in the recycling flow (OSR):

OSR = G

G + J −K
(A.3.10)

6. The dissipation index (DI), defined by Lifset et al. (2012):

D I = H

H + A
(A.3.11)

Figure A.9: Simplified metals stocks and flows cycle (Adapted from Graedel et al. (2011); Glöser et al. (2013) and Maung
et al. (2017)). A : Primary metals, B : Refined metals, C : Semi-finished and finished products, D : End-of-life products,
E : Losses in the collection, F : Collected metals, G : Recycled metals or old scrap, H : New scrap.
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Appendix B

Appendix to Chapter 3: The DyMEMDS model
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Abstract: Humanity is using mineral resources at an unprecedented level and demand will continue
to grow over the next few decades before stabilizing by the end of the century, due to the economic
development of populated countries and the energy and digital transitions. The demand for raw
materials must be estimated with a bottom-up and regionalised approach and the supply capacity
with approaches coupling long-term prices with energy and production costs controlled by the quality
of the resource and the rate of technological improvement that depends on thermodynamic limits.
Such modelling provides arguments in favour of two classically opposed visions of the future of
mineral resources: an unaffordable increase in costs and prices following the depletion of high quality
deposits or, on the contrary, a favourable compensation by technological improvements. Both views
are true, but not at the same time. After a period of energy and production cost gains, we now appear
to be entering a pivotal period of long-term production cost increases as we approach the minimum
practical energy and thermodynamic limits for many metals.

Keywords: raw materials; mineral resources; demand; production energy; price

1. Introduction

The per capita consumption of global resources has doubled between 1950 and 2010 [1],
and the consumption of raw materials and mineral resources (gravel and sand, cement, ores,
industrial minerals) used to build the energy, transportation, and building infrastructures
and consumer goods of modern societies has increased at an average rate of 2–5%/year
over the past century. Humanity is now using mineral resources at an unprecedented level,
with 70 billion tons of material extracted from the ground per year [2–6]. This acceleration
naturally raises the question of supply sustainability, which has been discussed repeatedly
since the 1950s [7–16]. Recurring predictions of the short-term depletion of fossil resources
have so far not been verified by actual shortages. On the contrary, and despite the exponen-
tial growth in consumption observed for more than a century, metal reserves have never
been higher than they are today. The increase in reserves, despite the strong growth in
consumption, can be explained by technological progress, which makes it possible to ex-
ploit new fossil resources of lower quality at the same cost. Unconventional hydrocarbons,
which were undevelopable at a competitive cost a few decades ago, are now a major source
and most metal deposits developed today are less concentrated than those developed in the
past [17]. Because the amount of low-grade deposits is much greater than concentrated
deposits, reserves have increased with technological improvements. This trend gives
the misleading impression that perpetual growth is possible in a finite world, the Earth:
misleading because there is a thermodynamic limit to the potential of technological im-
provements, and what was possible in the past will not necessarily be possible in the future.

Sustainability 2022, 14, 11. https://doi.org/10.3390/su14010011 https://www.mdpi.com/journal/sustainability
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The future availability of fossil resources depends on production capacity, which, in
turn, depends on production technologies, the type and quality of ore deposits control-
ling production costs, and the proportion of recycled products at the end of their lives.
It also depends on demand, which, in turn, depends on population and standard of liv-
ing, economic and geopolitical cycles, and technological development associated with
energy and digital transitions. All these parameters define the conditions for economically
viable production. They vary over time, are coupled, and should not be analysed sepa-
rately. Over the past decades, the demand for non-energy materials has been intensively
studied through material flow or input–output analyses. The development of materials
databases [18–21] has enabled a comprehensive understanding of metal and mineral
stocks and flows within society at different scales through top-down studies (e.g., [22–27]).
Many recent efforts have been devoted to estimating future demand for raw materi-
als through bottom-up, stock-based analysis in the energy (e.g., [28–37]), transportation
(e.g., [31,38–42]), and construction sectors (e.g., [39,43–47]), its energy demand and pro-
duction cost (e.g., [6,39]), environmental impacts (e.g., [39,48–50]), or to reserve estimation
(e.g., [51–53]) and production capacities. However, very few studies have attempted to
combine all these dimensions into single models. Notable exceptions are the dynamic
models World7 [54,55] and MEDEAS-World [56], which couple global gross domestic
product (GDP) and demographic changes with commodity and energy demand. These
models are valuable and powerful tools for discussing the global resource issue in rela-
tion to socioeconomic changes. However, they sometimes rely on disputable empirical
assumptions such as the linear dependence of the total demand of metals on GDP evolution
assumed in MEDEAS [56]. This assumption, based on an empirical fit of global historical
data covering too short a period, is in conflict with the historical evolution in developed
countries [57–59]. Moreover, it assumes that the future demand for metal per GDP will
be the same as in the past, whereas new technologies that did not exist two decades ago
are developing fast in the sectors of energy, transport, and information and communica-
tions. The estimation of global demand requires a comprehensive bottom-up approach,
i.e., by technologies whose material intensities, use intensities, energy consumption, and
efficiencies change at different rates over time and by geographic regions with contrasting
transportation patterns and material intensities. The modelling of raw material supply can
also be improved by developing standardized approaches coupling long-term resource
prices with energy and production costs [60]. The minimum production energy and the
minimum practical production energies can be estimated from the quality of the resource
exploited (ore grade) and on technological improvement constrained in the last resort
by thermodynamic limits that cannot be overstepped. Finally, and before attempting to
apply the models to future developments, it must be demonstrated that they are capable of
reproducing the historical evolution of the demand for infrastructure and raw materials
over long periods of time, by country or geographical region. These different points are
discussed in the present contribution, along with a brief review of anticipated future needs
and production capacities. Our objective is not to provide a single answer to the complex
issues raised by the consumption and supply of mineral resources but rather to identify
some of the key points that seem important to consider in their modelling.

2. The Drivers of Mineral Resources Consumption
2.1. The Base Metals and Cement Consumption from Traditional Applications

The prospective analysis of metals and minerals in society requires a dynamic model
describing the evolution of stocks and flows. An inverted U-shape of demand with eco-
nomic growth was first proposed in the late 20th century [61] and later validated for steel
for middle-income countries [59]. Growing stock analysis has led to a better understand-
ing of stock and flow dynamics, and to the identification of a three-stage model of the
stock curve in use: growth, maturation, and saturation [57]. The first stage of economic
growth in all countries is characterized by the construction of raw materials demanding
infrastructures of heavy industry, housing, transport, communications, and energy. This
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phase of development mainly consumes “structural” raw materials produced in present
global quantities of more than one million tons per year (Mt/yr), such as sand and ag-
gregates, concrete, steel and iron, aluminium, copper, manganese, zinc, chromium, lead,
titanium, and nickel. Then, the annual consumption of structural raw materials levels
off when the gross domestic product (GDP) per capita reaches about 15,000 USD/cap
(maturing stage) and eventually declines as the in-use stock reaches its saturation limit
(saturation stage) [57,58]. When the saturation level of in-use stocks is reached, the size
of the infrastructure becomes mainly controlled by the evolution of population and the
material content of technologies. The number of technological units per capita (number of
cars, trucks, planes, ships, m2 building, etc.) as a function of GDP/capita thus follows the
sigmoidal pattern of a logistic function, whose parameters can be constrained by fitting
the historical evolution of each technology by countries (e.g., [46,62,63]). These parameters
depend on the geography, population density and lifestyle of the countries, with average
values in the order of 0.7 LDV/cap, 7 × 10−5 locomotive/cap, 1.5 × 10−5 aircraft/cap,
and 90 m2/cap. From these figures, the future evolution of infrastructure can be estimated
for given future GDP and population evolutions. This is illustrated in Figure 1, which
shows the number of observed and estimated light vehicles, locomotives, airplanes, and the
surface of buildings in the USA and China from 1950 until 2100. The results were obtained
with the model DyMEMDS (dynamic modelling of energy and matter demand and supply)
available online https://www.dropbox.com/sh/ws85dgbelt9ceyf/AAC8fYnglzzINREp2
7xvwFnra?dl=0 (accessed on 13 December 2021). DyMEMDS is a stock and flow model
that links the energy consumption, GDP, and population with raw materials consumption,
greenhouse gases emissions, global warming, and additional environmental impacts such
as the consumption of water and used land for mining. It includes about 50 technologies of
transportation, construction, and energy; 10 metals, cement, and gravel; and 9 geographical
regions covering the world. From the evolution of infrastructure calculated for imposed
future GDP and population evolutions (Figure 1), the stocks of materials by technologies are
estimated using dynamic raw material intensities in kg of material per technological unit.

The same material intensities were used for all countries except for the building sector,
which shows strong disparities between countries. The concrete and steel intensities are for
instance lower in the US than in China [64]. The stocks of materials in the infrastructure of
all regions are obtained by adding up the needs of all technologies, and the global demand
by adding up the demand of each geographical region (Figure 2). The annual consumptions
are then obtained by deriving the stocks over time and the annual flows of primary, recycled,
and lost materials are calculated for imposed lifetimes of goods, collection, and recycling
rates (Figure 3). This full bottom-up approach starting from regional GDP and population
evolutions makes it possible to link the global raw material consumption with the economic
development and the population and technological evolutions of each geographical region.
It reproduces the incremental increase in demand for base metals, cement, and gravels
observed since World War II. The period 1950–1970 was marked by a strong increase in
global consumption driven by the construction of the infrastructure of currently developed
countries. Consumption growth declined during the 1970–2000 period, as saturation
thresholds were approached in rich countries, and no poor country was economically
emerging. Then the rapid economic emergence of China in the late 1990s led to a second
period of increase in global consumption (Figure 3). China’s consumption is expected
to level off over the next decade, and then decline between 2030 and 2050. After 2050,
the need for new infrastructure in this country is no longer controlled by the evolution
of GDP/capita because the saturation thresholds are reached. Moreover, the amount
of recyclable material that was negligible before 2030 increases after 2030 as fast as the
increase in consumption observed between 2000 and 2025. The amount of steel available
for recycling between 2050 and 2075 is even higher than the apparent consumption. A peak
in steel consumption was also observed in the US in the 1970s, although less pronounced
than in China in 2030 because previous growth was slower. Since then, the US steel
consumption has remained relatively constant, which is a common observation made for
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all rich countries, as well as in China after 2050. An incremental evolution of demand is
also observed for Ni, Cr, and Mn, which are mainly used as alloying elements of steel. The
incremental evolution is less clear for other base metals such as copper and aluminium
involved in a variety of new applications with lower lifetimes than steel since the 1950s.
The decrease in Chinese consumption in 2030–2050 is likely to be compensated by the
increase due to the economic emergence India and African countries. Assuming that these
countries will achieve their economic development within the century, the Indian peak
of cement and steel consumption might occur in 2050 and 2100, and those of copper and
aluminium one or two decades latter. The African consumption peaks are expected to occur
15 years latter. In this scenario, the yearly global demand for steel and cement in 2100 is
fourfold the present value and sixfold the present consumption for aluminium and copper.

Figure 1. Evolution of the demand in infrastructure per capita in function of GDP/cap or time in
China (grey lines and open circles) and the USA (black line and black circles).
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Figure 2. Concrete and steel consumption by geographical regions based on a logistic growth of
regional infrastructures calculated for logistic GDP and population growths (Figure 1).

Figure 3. Raw material demand by sectors (Mt/year) calculated from the evolution of infrastructure
(Figure 1) for China (Left panel) and the USA (Right panel). The plain and dashed black lines show
the input and theoretical recycled flows, respectively (assuming no export or import of scrap). The
dots show the historical data (USGS).

2.2. The New Applications and High-Tech Metals

In parallel or after building its basic infrastructure, economies are moving towards
advanced technologies, which use many properties resulting from the electronic structure,
catalytic, quantum, or semiconductor properties specific to almost all the elements of
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the periodic table. Rapid changes in the use of metals have emerged during the last
decades in the Information and Communication Technology (ICT) sector: In 2019, there
were approximately 13 billion mobile phones and tablets [65] and 2 billion computers
(1 billion in 2008) in use, Facebook had more than 1 billion users, and global data centre
traffic was estimated at 4.8 zettabytes, representing more than 26,000 centuries of streaming
video. This ICT sector is a large consumer of rare and high-purity substances (Cu, In,
Ga, Sb, Ge, Co, Li, Ge, Ta, Nb, Au, Ag, rare earths, etc.) with dispersive uses resulting
from high dilution in many short-lived devices, which limits the potential for recycling in
the order of one percent. While the base metal consumption since 1990 has increased by
2–5%/year, the annual growth of rare metals production is about 10%/year. These huge
growth rates and possible supply problems have attracted most of the attention over the last
decade [66]. However, assessing the future of high-technology metals demand is difficult
because it depends on rapid technical innovation, and the use of high technologies is much
less dependent on GDP/capita than base metals. New technologies also concern the energy
sector, which is evolving to reduce our greenhouse gases (GHG) emissions and comply with
the Paris agreement. This agreement of COP21 aims at achieving the “carbon neutrality” in
the second half of the 21st century, which implies a deep review of the existing fossil-based
energy system. Unfortunately, solar and wind infrastructures require more raw materials
per installed capacity and energy supplied than fossil fuel-based facilities [34,37,67–69].
The same observation is made for the storage of energy, its transport, and its use at the
end of the energy chain. It follows that large amounts of structural and high-tech mineral
commodities will be consumed for the energy transition.

Figures 2 and 3 have been calculated under the assumption that the penetration of
low-carbon energy technologies will remain moderate. For the same evolution of GDP
and population, and thus of building, transport, and energy infrastructure, the demand
for metals will be different for a higher penetration of renewables. Examples are shown
in Figure 4, which illustrate the differences in global Cu, Li, Co, and Ni consumption
for the two contrasted energy scenarios RTS (Reference Technology Scenario) and B2DS
(Beyond 2 ◦C Scenario) of the International Energy Agency (IEA) [70]. In contrast to pre-
vious estimates based on GDP/capita evolutions (Figures 2 and 3), the demand in raw
materials in Figure 4 is calculated from the consumed energies listed in the scenarios,
which are transformed into an infrastructure for assumed evolutions of energy consump-
tion (−1%/yr) and material content. The evolution of infrastructure is then transformed
into raw materials demand using the same material intensities as those used to build
Figures 2 and 3. The demands in Cu, Li, Co, and Ni are noticeably higher for the B2DS
scenario, which foresees a massive incorporation of renewable energy in the energy mix.
Rare earth elements (REE), and in particular neodymium, are also elements of concern, as
they are used in the permanent magnets of a wide variety of technologies using electric
motors and in the generators of off-shore wind turbines. The estimates in Figure 4 must be
handled with care because the present technologies, intensity of use and recycling rates
are not necessarily representative of the future situation. The price of cobalt, used as a
cathode in lithium-ion batteries, increased from 55,000 to 83,000 USD/t between March
2017 and February 2018. This situation has prompted manufacturers to find solutions to
reduce or ban the use of cobalt in lithium batteries (increasing investments into cobalt-free
batteries research and development and production are currently observed by small to
large companies https://cleantechnica.com/2018/07/03/tesla-panasonic-investments-in-
cobalt-free-batteries-not-the-only-game-in-town/ (accessed on 13 December 2021)) and to
develop efficient recycling solutions (such as the development of closed loop recycling pro-
cesses https://www.umicore.com/en/media/press/new-power-from-old-cells-audi-and-
umicore-develop-closed-loop-battery-recycling (accessed on 13 December 2021)). Similarly,
during the rare earth elements (REE) crisis in 2011, engineers were able to find solutions to
either reduce the amount of used REE while maintaining the efficiency of technologies or
to change technologies. This illustrates the high potential of technological innovation to
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reduce the use of rare elements in high or/and energy technologies. For these reasons, it is
extremely difficult to provide reliable estimates of their future demand.

Figure 4. Annual demand for Cu, Li, Ni, and Co calculated for the evolution of infrastructure in the
reference technology (RTS) (Left panel) and the “Beyond 2 °C” scenario (B2DS) (Right panel) of the
International Energy Agency.

Even though it will depend on the rate of economic development and energy and nu-
merical transitions, the estimated cumulative amount of metals to be produced over the next
35 years is likely to be equivalent or exceed the cumulative amount produced from antiquity
to the present. These dizzying figures, which are consistent with previous estimates [2,3],
illustrate the reality of a forever growth of GDP. For a constant growth rate of 5%/year,
the quantity doubles every 12 years. It has been possible to double aluminium production
since 2000, but will it be possible to quadruple it in the next 40 years? This question is
addressed in the following section.

3. Can Future Production Meet the Demand?

Several studies suggest that the future supply of raw materials will not be able to keep
pace with demand because the stock of exploitable non-renewable resources is declining
over time and the production of several metals has already peaked or will peak in the
near future [8,10–13,16,71,72]. Although it was initially developed for oil production,
the application of Hubbert’s theory to mineral resources led Sverdrup et al. [72] to the
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conclusion that the production of gold, silver, copper, nickel, zinc, molybdenum, iron,
platinum, and indium should peak at or before 2050. The same authors described a similar
situation for conventional fossil energy resources, and a peak of non-conventional oil by
2075. However, a major flaw of Hubbert’s approach lies in the assumption that production
is limited by the sole availability of resources at continuously growing demand. According
to this logic, the observed decline in the growth rate of steel production between 1970 and
2000 (Figure 2) could have been misinterpreted as a sign of resource depletion, while it
was actually resulting from the temporarily declining growth of demand. Another pitfall is
the assumption that the “ultimate recoverable resource” (URR) is finite and quantifiable.
Metals and minerals are currently exploited from a small fraction of the continental crust.
The maximum value of reserves can be estimated from the log-Gaussian ore-tonnage (OT)
versus ore grade (OG) relationship of ore deposits [73,74]:

OT =
A

OG · σ ·
√

2π
· exp (

−log(OG)− µ2

2 · σ2 ) (1)

where µ is the central tendency, σ the dispersion, and A is the scaling factor that determines
the function amplitude. The additional amount of metal MOG that can be extracted with
varying OG reads:

MOG = OT · OG
100

(2)

MOG is the amount of additional available metal deduced from its geological dis-
tribution in the crust, whatever the cost of its extraction. The integral of MOG gives the
evolution of reserves plus cumulative production, which increases exponentially as long
as the average OG remains below the value of the peak of OT vs. OG (Equation (1)). By
combining Equations (1) and (2) with the expected evolution of demand (Section 2), it is
possible to estimate the required evolution of average OG and thus OT and metal reserves.
Based on the historical evolution of copper reserves, production, ore tonnage, and OG with
time, Vidal et al. [75] have estimated an URR of copper between 5 and 7.5 Gt in 2100 for a
copper price ranging between 10 and 15 thousands USD(1998)/t. Although these estimated
reserves are within the range of those made by [76–79], the approach is fraught with large
uncertainties arising from equally large uncertainties in the distribution of metals in the
Earth’s crust. Vidal et al.’s estimates assumed a bimodal distribution [75], one centred at the
average grade of copper in the crust (OG ≈ 30 ppm [80]) and another corresponding to the
peak OT of ore deposits centred at OG ≈ 0.3% [73]. However, the bimodal OT vs. OG dis-
tribution is questionable [76], and if a unimodal distribution centred at the average crustal
concentration is assumed, future reserves could be at least an order of magnitude higher.
Estimates of future reserves and resources availability from geologic criteria and OT vs. OG
distributions are thus quite uncertain. The question of availability is above all a question of
price and environmental impacts we will be willing to pay. Historical data show that, so
far, technological improvements have made it possible to mine less and less concentrated
and accessible ores (deeper, offshore) without unaffordable increases in production costs
and metal prices. Is this trend sustainable in the future? To answer the question, we must
now understand the links between energy and production costs, between metal prices and
OG, and between technological improvements and thermodynamic limits.

Energy of Metal Primary Production, Prices, and Reserves

Currently, about 12% of global energy consumption and about 35% of the energy
consumed by industry worldwide is used for the production of iron and steel, cement,
aluminium, and non-ferrous metals [81]. The production of mineral resources is therefore
very energy-intensive. The energy of primary metal production can be estimated as the
sum of three contributions [60,69]: (i) the comminution energy proportional to the inverse
of the mass concentration of metals in ore deposits ( 1

C ), (ii) the minimum energy to separate
the metal-bearing minerals from the disaggregated ore given by the mixing entropy of an
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ideal mixture of two components with no interaction (Esi), and (iii) the minimum energy
of metallurgy given by the Gibb’s free energy of formation of the ore mineral from its
constituents (−∆G◦f i):

Ei(2005) = η(2005) · (−∆G◦f i + Esi +
a

Ci(2005)
) (3)

where η(2005) is the inverse of the energy efficiency compared to the thermodynamic
minimum (η = 1 at the thermodynamic minimum). Based on the observed evolution of
the production energies of 20 metals (i) diluted from 1.9 (iron) to 2× 105 (gold, platinum),
average values of η(2005) = 3 and a = 0.2 are obtained (Figure 5a). Several studies have
shown that the average price of metals is proportional to the energy of their production,
which also varies as a power law of dilution ( 1

C ) [60,69,82–84]. For the 20 metals used to
derive the values η(2005) and a in Equation (3), a plot of the observed production energies
E(2005) as a function of their price in 2005 (P(2005)) confirms this proportionality, and the
following relationship is derived [85] (Figure 5c):

P(2005) = 26 · α · E(2005)1.1 (4)

A systematic deviation is observed between the observed and calculated price evalu-
ated with Equation (4). The ratio of the observed to the calculated price is proportional to
the metal dilution (Figure 6b), which suggests that the share of energy cost in price also
depends on metal dilution. This effect is taken into account by multiplying the RHS of
Equation (3) by α = 2

C(2005)0.2 (Figure 5b).

Figure 5. Energy (a), α in year 2005 (b), and price (c).

The evolution of production energy with time can be estimated with Equation (3) by
replacing the 2005 values of η and C by their values at year t. In order to account for the
variations of energy price with time, Equation (3) must also be corrected by the price of
energy at time t (PE(t)) relative to 2005 (PE(2005)):

P(t) = 26 · α · E(t)1.1 · ( PE(t)
PE(2005

)γ (5)

where γ is the elasticity of metals’ price variations relative to the variation in energy price.
Using the price of crude oil as a proxy of energy price, γ = 0.7 for copper and γ = 0.1 for
aluminum.
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Figure 6. (a) Calculated and observed (numbers) energies of copper production: The heavy black
line shows the energy of copper production with varying ore grade and technology E(t), the thin
black dashed line shows the energy at constant ore grade with varying technology (EC), and the
red dashed and continuous lines show the practical minimum energy (PME) and thermodynamic
limit (ETL), respectively. The observed data are plotted at the time of publication and reported ore
grades: (1) Rötzer and Schmidt [89]; (2) Rosenkranz [90]; (3) Gaines [91]; (4) Kellogg [92]; (5) Page
and Creasy [93]; (6) Norgate and Jahanshahi [86]; (7) Marsden [94]; (8) Office of Energy Efficiency
and Renewable Energy [95]; (9) Rankin [96]; (10) Chapman [97]. (b) Observed copper price (grey
line) and calculated price (black line). The future price is calculated at constant future price of energy
(=PE2015, continuous line) or at 2%/yr increasing price of energy after 2015 (dashed line). (c) η(t)
(black continuous line, left scale) and ore grade (gray line, right scale) used to compute (a,b). The
black dashed line in (c) shows η(t) calculated from η(2005) and a −1.5%/yr change.

At C < 1%, the metallurgy and separation energies are negligible compared to the
term ai

C that represents the comminution energy. It means that at constant technology and
price of energy, the energy of primary production of precious metals, copper, or nickel
are expected to increase exponentially with the decrease in ore grade observed over the
last century [17,86]. Proponents of a looming shortage of metals often use this argument
to claim that production will become prohibitively expensive in the future. However,
long-term historical data do not support this figure, and the inflation-adjusted commodity
prices have actually been falling between 1900 and 2000 [87]. This fall, also observed
for copper or nickel, indicates that the expected increase in production energy due to
falling ore grades has actually been offset by the improvements in energy efficiency and
productivity at constant ore grade (EC in the Figure 6a). The improvement in energy
efficiency was 1–2%/year between 1900 and 2000 [84,85,88], and until 2000, the energy
gains of all metals production have more than compensated the decrease in ore quality.
Since the regeneration of reserves increases with falling grade (Equations (1) and (2)),
these figures explain why both the produced quantities of metals and their reserves have
grown exponentially since 1900. However, this trend is not sustainable in the long term
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because there is a thermodynamic limit (ETL) to the extraction of metals, which is given
by Equation (3) with η = 1. This physical limit cannot be overstepped, whatever the
technological improvement. Steel production consumed about 50 MJ/kg in the 1950 and it
has been halved between the 1950s and 2000 [88]. It will most likely not be halved again
by 2050 to reach the thermodynamic limit equal to about 10 MJ/kg for iron oxide ore
(for metals at high concentration in ore deposits such as iron (C = 30–50%) or aluminium
(15–30%), the energy demand of crushing and grinding ore ( ai

C ) is negligible compared to
the energy of metallurgy (−∆G◦f ) in Equation (3)) (−∆G◦f = 7 MJ/kg of hematite), as the
investment required to gain a few MJ when approaching this limit becomes prohibitive.
More worrying, the thermodynamic limit of metals at C < 1% is expected to increase
exponentially with falling ore grade due to the term ai

C . In practice, this limit cannot be
reached because industrial processes cannot be 100% efficient, and the minimum value of η
in Equation (3) is unlikely to be lower than 1.5 (PME = 1.5·ETL). In the case of copper, η
decreased at an annual rate of −1.5%/yr from about 10 in 1930 to 2 in 2000 (dashed line in
Figure 6b). It will not be possible to continue on this trend because the minimum value of
η = 1.5 will be reached before the end of the century (continuous line in Figure 6c). For an
average ore grade of copper deposits decreasing at 1.5%/yr since 1900, improving current
mechanical crushing and grinding technologies will thus not compensate for the additional
energy to switch to lower grade ore in the future, as it has been the case during the 20th
century. The energy of copper production, which declined between 1900 and 2000, is thus
expected to increase from 2000 onward and parallels the PME in the second half of the
century (Figure 6a). Similar conclusions are drawn for precious metals and nickel, zinc,
and manganese.

4. Discussion

The above overview of some parameters controlling the demand and primary pro-
duction provides arguments for two classically opposed views of the future of mineral
resources: an unaffordable increase in costs and prices following the depletion of high
quality deposits or, on the contrary, a favourable compensation by technological improve-
ments. Both visions are true, but not at the same time. After a period of gains in energy and
production costs, it seems that we are now entering a pivotal period of long-term increasing
production costs as we approach the practical minimum energy and thermodynamic limits
for several metals. To reduce this increase in price, unknown breakthrough, but affordable,
grinding technologies based on non-mechanical processes will have to be found. Another
possibility is to reduce the price of energy. Renewable energies are virtually unlimited, and
once the infrastructure of production is built, they are cheap. If we could use renewable
energy sources at a low and stable price in the future, the increasing weight of energy
intensity in the cost of production would no longer be an issue. This is illustrated by Iceland,
which became in 2016 the world’s ninth largest producer of aluminium from imported
bauxite thanks to cheap geothermal and hydroelectric power, even though it has no ore and
most of its production is destined to foreign markets. If the use of renewable energy sources
were to become significant enough to cover the needs of the raw material production sector,
it would become possible to exploit low-grade resources that cannot be exploited at an
affordable cost today. However, energy transition scenarios present another constraint:
In order to cope with the targeted decrease in CO2 emissions, they generally assume a
strong reduction in energy consumption. For example, the amount of energy available
for the industrial sector in the scenario B2DS already used in Figure 2 is 65% that of RTS,
while the energy consumed for the production of raw materials is similar. The future share
of industrial energy consumed to produce the raw materials is thus higher in B2DS than
RTS, and the remaining energy available for the other industrial sectors is lower. These
figures will impact the intensive industries and in particular the raw material production
sector, which will already face the problem of declining resource quality. It thus seems
extremely difficult to switch to renewable energies while reducing global energy demand.
Neither the developed countries, which are expected to replace their fossil fuel-based
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energy infrastructure in two or three decades, nor the developing countries that produce
raw materials to build their basic infrastructure will spontaneously follow this path. Until
2050, the demand for energy will thus continue to grow on a global scale. On the longer
term, the energy demand for the production of raw materials is expected to decrease after
2050 in both scenarios B2DS and RTS. This is due to the combined effects of: (i) approaching
the saturation levels of infrastructure at the global scale, which entails a reduction of the
annual demand in raw materials; (ii) completing the energy transition; and (iii) rapidly
increasing the share of less energy-intensive recycled metals at the saturation levels and
unaffordable prices of primary metals.

The above overview of the parameters controlling the demand and primary produc-
tion also indicates that the question of the future of mineral resources cannot be based
solely on the knowledge of current geological availability for a constant rate of growth
in demand and technology. It must be studied using dynamic models that integrate the
value chain from primary production to recycling, coupling energy requirements and
thermodynamic limits, geological, environmental, technological, social, economic, and
geopolitical dimensions. Such models are intrinsically complex, but it is illusory to address
complex issues with empirical and deterministic models such as Hubbert’s model or any
model neglecting the role of technological improvement, including the development of
advanced exploration technologies, changes in resource quality, and variations in energy
prices with time. Coupling material flows with GDP and population evolution is quite
straightforward using sigmoid evolutions of the infrastructure/capita with GDP/capita
and assumptions on the materials contents. The consumed energy can also be estimated for
assumed intensities of use and energy efficiencies. In contrast, coupling the materials and
energy flows with economic models is more difficult because economic models lack physi-
cal bases and constraints and are derived from observations made in growing economies.
Since the industrial activities and consuming sectors are strongly coupled, it is difficult
to analyse one sector of metal production isolated from the whole economic system. To
circumvent the problem, a possible approach based on a prey–predator dynamic has been
proposed by Vidal et al. [75], in line of the previous study by Bardi and Lavacchi [8]. This
approach is also empirical, but it allows one to combine physical units (tons) with monetary
units without requiring a detailed and comprehensive description of all economic sectors.
It analyses the evolution of industrial capital (the predator, in monetary units) and the
metal reserves (the prey, in tonnes) with two coupled differential equations involving four
parameters controlling the yearly regeneration of reserves, metal production, regeneration
and erosion of capital. Interestingly, the cost (price) of metal production is given by the
ratio of two of them, corresponding to the capital growth to metal production. Applying
the model to the case of copper, we showed that the expected price evolution is similar to
the production energy-based independent estimate reported in Figure 6. Independently of
any economic consideration, the long-term price of metals derived from the production
energy calculated with the simple thermodynamic formalism proposed in Equations (4)
and (5), thus providing first order constraints on the future evolution of metals production.
In the case of copper, Vidal et al. [75] predicted a peak in primary production by 2050,
followed by a rapid collapse if the future demand is assumed to follow the historical trends
(+3%/year). In contrast, a scenario no longer based on a steady growing demand but on
the need for a population stabilizing at 11 billion inhabitants in 2100 and an average GDP
per capita of USD 10,000 provides more optimistic results. A peak in primary production
is still observed, but it is a peak in demand. A decrease in primary production occurs in
the second half of the century, when the saturation of infrastructures is approached and
recycled copper becomes the major source. Here, again, this example shows that the future
of natural resources cannot be dissociated from a scenario of demand, which is another
illustration of the limit of Hubbert-like approaches. The prey–predator model applied
to other metals suggests that the supply of most base and precious metals (except gold)
should also meet the demand until the end of the century. The situation is much less clear
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for rare metals, as historical data on reserves and production are missing, imprecise, or
cover too short a time period to be used as reliable constraints for the models.

In addition to the reserves, price, and energy production issues, the environmental im-
pacts of raw materials and energy production must also be integrated in the models. These
impacts might become a limiting factor to production in the future. An emblematic example
is given by El Salvador that made history as first nation to impose a blanket ban on metal
mining in response to diminishing water sources from polluting mining projects (this deci-
sion was approved by the Parliament of El Salvador in early 2017 https://www.theguardian.
com/global-development/2017/mar/30/el-salvador-makes-history-first-nation-to-impose-
blanket-ban-on-metal-mining (accessed on 13 December 2021)). The huge expected in-
crease in mineral resources consumption and primary production will increase conflicts
and social opposition. The surface occupied by mines and quarries at the world level has
been estimated to be about 400,000 km2 [98]; it could be doubled by 2050 and quadru-
pled by 2100. The embodied water consumption and other environmental impacts are
expected to follow the same trends. These figures are naturally concerning, especially in
arid production areas. To our knowledge, no model currently exists that describes the
local societal response to water and land use and more broadly to environmental impacts,
even though this could significantly hamper future resource supplies. This response is
expected to depend on the level of GDP/capita and population density, the industrial
typology, the level of agricultural production, and the geographical characteristics of the
producing countries, such as the availability of water. Modelling the feedback of resource
consumption and environmental changes on social opposition is a very important research
topic to address the issue of future mineral resource availability in a world of increasing
environmental constraints and increasingly compromised access to water and arable land.
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TURK, J., Z. COTIČ, A. MLADENOVIČ, AND A. ŠAJNA (2015): “Environmental evaluation of green concretes versus

conventional concrete by means of LCA,” Waste Management, 45, 194–205.

TURNER, G. (2014): Is global collapse imminent?, oCLC: 910153089.

UKQAA (2016): “UKQAA Ash Availability Report,” Tech. rep., UKQAA.

UNCTAD (2018): “Annual Report,” Tech. rep., UNCTAD.

UNEP (2021): “Addendum to the Emissions Gap Report 2021,” Tech. rep., UNEP.

UNFCCC (2021a): “About the Secreteriat,” .

——— (2021b): “Nationally determined contributions under the Paris Agreement - Synthesis report by the Secrete-

riat,” Tech. rep., UNFCCC, Glasgow.

——— (2021c): “The Paris Agreement,” .

——— (2021d): “What is the Kyoto Protocol?” .

UNITED NATIONS (2015): “The 17 goals,” .

USGS (2021a): “Cement, annual publication,” Tech. rep., USGS.

——— (2021b): “Mineral Commodity Summaries,” Tech. rep., USGS.

VALERO, A., A. VALERO, G. CALVO, A. ORTEGO, S. ASCASO, AND J.-L. PALACIOS (2018): “Global material requirements

for the energy transition. An exergy flow analysis of decarbonisation pathways,” Energy, 159, 1175–1184.

221



VAN BEERS, D. AND T. GRAEDEL (2007): “Spatial characterisation of multi-level in-use copper and zinc stocks in Aus-

tralia,” Journal of Cleaner Production, 15, 849–861.

VAN DEN BERGH, J. C. (2011): “Environment versus growth — A criticism of “degrowth” and a plea for “a-growth”,”

Ecological Economics, 70, 881–890.

VAN DEN BERGH, J. C. J. M. AND G. KALLIS (2012): “Growth, A-Growth or Degrowth to Stay within Planetary Bound-

aries?” Journal of Economic Issues, 46, 909–920.

VAN DEN HEEDE, P. AND N. DE BELIE (2012): “Environmental impact and life cycle assessment (LCA) of traditional and

‘green’ concretes: Literature review and theoretical calculations,” Cement and Concrete Composites, 34, 431–442.

VAN ECK, N. J. AND L. WALTMAN (2014): “Visualizing Bibliometric Networks,” in Measuring Scholarly Impact, ed. by

Y. Ding, R. Rousseau, and D. Wolfram, Cham: Springer International Publishing, 285–320.

VAN VUUREN, D. P., J. EDMONDS, M. KAINUMA, K. RIAHI, A. THOMSON, K. HIBBARD, G. C. HURTT, T. KRAM, V. KREY,

J.-F. LAMARQUE, T. MASUI, M. MEINSHAUSEN, N. NAKICENOVIC, S. J. SMITH, AND S. K. ROSE (2011): “The repre-

sentative concentration pathways: an overview,” Climatic Change, 109, 5–31.

VAN VUUREN, D. P., M. T. KOK, B. GIROD, P. L. LUCAS, AND B. DE VRIES (2012): “Scenarios in Global Environmental

Assessments: Key characteristics and lessons for future use,” Global Environmental Change, 22, 884–895.

VAN VUUREN, D. P., E. STEHFEST, D. E. GERNAAT, J. C. DOELMAN, M. VAN DEN BERG, M. HARMSEN, H. S. DE BOER,

L. F. BOUWMAN, V. DAIOGLOU, O. Y. EDELENBOSCH, B. GIROD, T. KRAM, L. LASSALETTA, P. L. LUCAS, H. VAN MEIJL,

C. MÜLLER, B. J. VAN RUIJVEN, S. VAN DER SLUIS, AND A. TABEAU (2017): “Energy, land-use and greenhouse gas

emissions trajectories under a green growth paradigm,” Global Environmental Change, 42, 237–250.

VERHULST, P.-F. (1845): “Recherches mathématiques sur la loi d’accroissement de la population,” Tech. Rep. 18, Nou-

veaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles, Bruxelles.

VERIAN, K. P., W. ASHRAF, AND Y. CAO (2018): “Properties of recycled concrete aggregate and their influence in new

concrete production,” Resources, Conservation and Recycling, 133, 30–49.

VEXLER, D., M. BERTRAM, A. KAPUR, S. SPATARI, AND T. GRAEDEL (2004): “The contemporary Latin American and

Caribbean copper cycle: 1 year stocks and flows,” Resources, Conservation and Recycling, 41, 23–46.

VIDAL, O., ed. (2018): Mineral Resources and Energy : Future Stakes in Energy Transition, Elsevier.

VIDAL, O. (2021): “Modeling the Long-Term Evolution of Primary Production Energy and Metal Prices,” in Mineral

Resources Economics 1: Context and Issues, Wiley, fizaine, f.; galiègue, x. ed.

VIDAL, O., H. L. BOULZEC, AND C. FRANÇOIS (2018): “Modelling the material and energy costs of the transition to

low-carbon energy,” EPJ Web of Conferences, 189, 00018, publisher: EDP Sciences.

VIDAL, O., B. GOFFÉ, AND N. ARNDT (2013): “Metals for a low-carbon society,” Nature Geoscience, 6, 894–896.

VIDAL, O., F. ROSTOM, C. FRANÇOIS, AND G. GIRAUD (2017): “Global Trends in Metal Consumption and Supply: The

Raw Material–Energy Nexus,” Elements, 13, 319–324.

VIEBAHN, P., O. SOUKUP, S. SAMADI, J. TEUBLER, K. WIESEN, AND M. RITTHOFF (2015): “Assessing the need for critical

minerals to shift the German energy system towards a high proportion of renewables,” Renewable and Sustainable

Energy Reviews, 49, 655–671.

VILLORIA SÁEZ, P. AND M. OSMANI (2019): “A diagnosis of construction and demolition waste generation and recovery

practice in the European Union,” Journal of Cleaner Production, 241, 118400.

VISHWAKARMA, V. AND S. UTHAMAN (2020): “Environmental impact of sustainable green concrete,” in Smart

Nanoconcretes and Cement-Based Materials, Elsevier, 241–255.

VOGLER-FINCK, P. J. AND W.-G. FRÜH (2015): “Evolution of primary frequency control requirements in Great Britain

with increasing wind generation,” International Journal of Electrical Power & Energy Systems, 73, 377–388.

VÁSQUEZ, F., A. N. LØVIK, N. H. SANDBERG, AND D. B. MÜLLER (2016): “Dynamic type-cohort-time approach for the

analysis of energy reductions strategies in the building stock,” Energy and Buildings, 111, 37–55.

WACHTMEISTER, H., L. LUND, K. ALEKLETT, AND M. HÖÖK (2017): “Production Decline Curves of Tight Oil Wells in

Eagle Ford Shale,” Natural Resources Research, 26, 365–377.

WAN OMAR, W.-M.-S., J.-H. DOH, AND K. PANUWATWANICH (2014): “Variations in embodied energy and carbon

emission intensities of construction materials,” Environmental Impact Assessment Review, 49, 31–48.

222



WANG, J., Y. ZHANG, AND Y. WANG (2018): “Environmental impacts of short building lifespans in China considering

time value,” Journal of Cleaner Production, 203, 696–707.

WANG, M., W. CHEN, Y. ZHOU, AND X. LI (2017): “Assessment of potential copper scrap in China and policy recom-

mendation,” Resources Policy, 52, 235–244.

WANG, T., P. BERRILL, J. B. ZIMMERMAN, AND E. G. HERTWICH (2021): “Copper Recycling Flow Model for the United

States Economy: Impact of Scrap Quality on Potential Energy Benefit,” Environmental Science & Technology, 55,

5485–5495.

WANG, T., D. B. MÜLLER, AND S. HASHIMOTO (2015a): “The Ferrous Find: Counting Iron and Steel Stocks in China’s

Economy: Counting Iron and Steel Stocks in China’s Economy,” Journal of Industrial Ecology, 19, 877–889.

WANG, T., X. TIAN, S. HASHIMOTO, AND H. TANIKAWA (2015b): “Concrete transformation of buildings in China and

implications for the steel cycle,” Resources, Conservation and Recycling, 103, 205–215.

WATARI, T., B. C. MCLELLAN, D. GIURCO, E. DOMINISH, E. YAMASUE, AND K. NANSAI (2019): “Total material require-

ment for the global energy transition to 2050: A focus on transport and electricity,” Resources, Conservation and

Recycling, 148, 91–103.

WEC (2019a): “Insight brief - Global energy scenarios comparison review,” Tech. rep., WEC.

——— (2019b): “World Energy Scenarios 2019,” Tech. rep., World Energy Council.

WEISSBACH, D., G. RUPRECHT, A. HUKE, K. CZERSKI, S. GOTTLIEB, AND A. HUSSEIN (2013): “Energy intensities, EROIs

(energy returned on invested), and energy payback times of electricity generating power plants,” Energy, 52, 210–

221.

WIEDENHOFER, D., T. FISHMAN, C. LAUK, W. HAAS, AND F. KRAUSMANN (2019): “Integrating Material Stock Dynam-

ics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050,”

Ecological Economics, 156, 121–133.

WIEDENHOFER, D., J. K. STEINBERGER, N. EISENMENGER, AND W. HAAS (2015): “Maintenance and Expansion: Model-

ing Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25: Stocks and Flows

in the EU25,” Journal of Industrial Ecology, 19, 538–551.

WIEDENHOFER, D., D. VIRÁG, G. KALT, B. PLANK, J. STREECK, M. PICHLER, A. MAYER, F. KRAUSMANN, P. BROCKWAY,

A. SCHAFFARTZIK, T. FISHMAN, D. HAUSKNOST, B. LEON-GRUCHALSKI, T. SOUSA, F. CREUTZIG, AND H. HABERL

(2020): “A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: biblio-

metric and conceptual mapping,” Environmental Research Letters, 15, 063002.

WIEDMANN, T. O., H. SCHANDL, M. LENZEN, D. MORAN, S. SUH, J. WEST, AND K. KANEMOTO (2015): “The material

footprint of nations,” Proceedings of the National Academy of Sciences, 112, 6271–6276.

WIJAYASUNDARA, M., R. H. CRAWFORD, AND P. MENDIS (2017): “Comparative assessment of embodied energy of

recycled aggregate concrete,” Journal of Cleaner Production, 152, 406–419.

WITTMER, D., T. LICHTENSTEIGER, AND D. WITTMER (2007): “Exploration of urban deposits: long-term prospects for

resource and waste management,” Waste Management & Research: The Journal for a Sustainable Circular Economy,

25, 220–226.

WORLD COAL INSTITUTE (2009): “The coal resource : A comprehensive overview of coal,” Tech. rep., World Coal Insti-

tute.

WORLD COMMISSION ON ENVIRONMENT AND, DEVELOPMENT, AND U. NATIONS (1987): “Our common future,” Tech.

rep., United Nations.

WORRELL, E., J. ALLWOOD, AND T. GUTOWSKI (2016): “The Role of Material Efficiency in Environmental Stewardship,”

Annual Review of Environment and Resources, 41, 575–598, _eprint: https://doi.org/10.1146/annurev-environ-

110615-085737.

WORRELL, E., L. PRICE, N. MARTIN, C. HENDRIKS, AND L. O. MEIDA (2001): “Carbon Dioxide Emissions

from the Global Cement Industry,” Annual Review of Energy and the Environment, 26, 303–329, _eprint:

https://doi.org/10.1146/annurev.energy.26.1.303.

WORRELL, E., R. VAN HEIJNINGEN, J. DE CASTRO, J. HAZEWINKEL, J. DE BEER, A. FAAIJ, AND K. VRINGER (1994): “New

gross energy-requirement figures for materials production,” Energy, 19, 627–640.

223



WU, G. C., R. DESHMUKH, K. NDHLUKULA, T. RADOJICIC, J. REILLY-MOMAN, A. PHADKE, D. M. KAMMEN, AND D. S.

CALLAWAY (2017): “Strategic siting and regional grid interconnections key to low-carbon futures in African coun-

tries,” Proceedings of the National Academy of Sciences, 114, E3004–E3012.

WU, T., M. ZHANG, AND X. OU (2014a): “Analysis of Future Vehicle Energy Demand in China Based on a Gompertz

Function Method and Computable General Equilibrium Model,” Energies, 7, 7454–7482.

WU, Z., A. T. YU, L. SHEN, AND G. LIU (2014b): “Quantifying construction and demolition waste: An analytical re-

view,” Waste Management, 34, 1683–1692.

WUYTS, W., A. MIATTO, R. SEDLITZKY, AND H. TANIKAWA (2019): “Extending or ending the life of residential build-

ings in Japan: A social circular economy approach to the problem of short-lived constructions,” Journal of Cleaner

Production, 231, 660–670.

WÅRELL, L. (2014): “Trends and developments in long-term steel demand – The intensity-of-use hypothesis revisited,”

Resources Policy, 39, 134–143.

WÜBBEKE, J. AND T. HEROTH (2014): “Challenges and political solutions for steel recycling in China,” Resources, Con-

servation and Recycling, 87, 1–7.

XICOTENCATL, B. M. (2017): “Scenarios for concrete-rubble recycling in the Netherlands,” Tech. rep., Leiden Univer-

sity.

XU, Y., J. LI, AND L. LIU (2016): “Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from

Waste Printed Circuit Boards,” Procedia Environmental Sciences, 31, 162–170.

YAN, R., T. K. SAHA, N. MODI, N.-A. MASOOD, AND M. MOSADEGHY (2015): “The combined effects of high penetration

of wind and PV on power system frequency response,” Applied Energy, 145, 320–330.

YANG, H., X. SONG, X. ZHANG, B. LU, D. YANG, AND B. LI (2021): “Uncovering the in-use metal stocks and implied

recycling potential in electric vehicle batteries considering cascaded use: a case study of China,” Environmental

Science and Pollution Research, 28, 45867–45878.

YANG, W. AND N. KOHLER (2008): “Simulation of the evolution of the Chinese building and infrastructure stock,”

Building Research & Information, 36, 1–19.

YANG, Y. (2020): “Electricity Interconnection with Intermittent Renewables,” Tech. rep.

YELLISHETTY, M., P. RANJITH, AND A. THARUMARAJAH (2010): “Iron ore and steel production trends and material flows

in the world: Is this really sustainable?” Resources, Conservation and Recycling, 54, 1084–1094.

YIN, X. AND W. CHEN (2013): “Trends and development of steel demand in China: A bottom–up analysis,” Resources

Policy, 38, 407–415.

YOSHIMURA, A. AND Y. MATSUNO (2018): “Dynamic Material Flow Analysis and Forecast of Copper in Global-Scale:

Considering the Difference of Recovery Potential between Copper and Copper Alloy,” MATERIALS TRANSACTIONS,

59, 989–998.

YOUSEFI, F. AND Y. GHOLIPOUR (2018): “Life cycle assessment of a real residential building in Tehran,” Honar-Ha-Ye-

Ziba: Memary Va Shahrsazi, 23, 81–92, publisher: University of Tehran University College of Fine Arts.

YILMAZ, Y. AND S. SEYIS (2021): “Mapping the scientific research of the life cycle assessment in the construction

industry: A scientometric analysis,” Building and Environment, 204, 108086.

ZENDEHBOUDI, S. AND A. BAHADORI (2017): “Production Methods in Shale Oil Reservoirs,” in Shale Oil and Gas Hand-

book, Elsevier, 285–319.

ZHANG, L., Z. CAI, J. YANG, Z. YUAN, AND Y. CHEN (2015a): “The future of copper in China—A perspective based on

analysis of copper flows and stocks,” Science of The Total Environment, 536, 142–149.

ZHANG, L., J. YANG, Z. CAI, AND Z. YUAN (2015b): “Understanding the Spatial and Temporal Patterns of Copper In-

Use Stocks in China,” Environmental Science & Technology, 49, 6430–6437.

ZHANG, T., L. LIU, AND X. LV (2019): “The change in the material stock of urban infrastructures in China,” Structural

Change and Economic Dynamics, 51, 24–34.

ZHANG, X.-P., M. OU, Y. SONG, AND X. LI (2017): “Review of Middle East energy interconnection development,”

Journal of Modern Power Systems and Clean Energy, 5, 917–935.

ZHOU, W., A. MONCASTER, D. M. REINER, AND P. GUTHRIE (2019): “Estimating Lifetimes and Stock Turnover Dynam-

ics of Urban Residential Buildings in China,” Sustainability, 11, 3720.

224


