
HAL Id: tel-03814686
https://theses.hal.science/tel-03814686

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal rule-based scenarios for the design of safe
autonomous vehicles

Joelle Abou Faysal

To cite this version:
Joelle Abou Faysal. Formal rule-based scenarios for the design of safe autonomous vehicles. Modeling
and Simulation. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4031�. �tel-03814686�

https://theses.hal.science/tel-03814686
https://hal.archives-ouvertes.fr

Confidential C

Scénarios Formels Basés sur des Règles pour la

Conception de Véhicules Autonomes Sûrs

Joelle ABOU FAYSAL
Renault Software Factory, Université Côte d’Azur, CNRS, Inria, I3S

Présentée en vue de l’obtention

du grade de docteur en informatique

à l’Université Côte d’Azur

Dirigée par : Frédéric MALLET

Co-encadrée par : Nour ZALMAI

 Ankica BARISIC

Soutenue le : 9 Juin 2022

Devant le jury, composé de :

Rapporteuses :

Daniela CANCILA, Chargée de recherche,

Commissariat à l’énergie atomique et

aux énergies alternatives (CEA)

Amel MAMMAR, Professeur, Telecom

SudParis

THÈSE DE DOCTORAT

Acknowledgements

First of all, I would like to express my gratitude to the Université Côte d’Azur
establishment, for giving me the chance to complete my studies. I thank each
of the committee members of this study, Pr. Amel Mammar and Dr. Daniela
Cancila, for their time and their generous and thoughtful contributions. I would
also like to thank them for making my defense a pleasant moment, as well as for
their brilliant comments and suggestions. I would like to express my gratitude
and my special thanks to my supervisors Dr. Ankica Barisic, Dr. Nour Zalmai
and Pr. Frédéric Mallet, they have been great mentors for me. I would like to
thank them for encouraging my research and allowing me to grow as a research
engineer. Their advice both on research and on my career has been invaluable.
Ankica, Thank you for supporting me for everything. You are such an amazing
person who provided me positive energy and immense knowledge. I have been
extremely lucky to have a supervisor who cared so much about my work, and who
responded to my questions and queries so patiently and promptly. Nour, thank
you for accepting to be my advisor and for guiding and supporting me over these
past two years. This fruitful work would not be possible without you. I want
to thank also Jean-Pierre Giacalone who was my first supervisor at Renault and
gave me the chance to start this thesis.

I owe a huge debt of gratitude to Kairos team directed by Pr. Robert De
Simone who welcomed me and provided feedback and encouragement. I also
thank Dr. Julien DeAntoni for helping me and organizing presentation support
at crucial times.

I thank my team at Renault directed by Guillaume Menez for welcoming me
into the team. I got an incredible Ph.D. during these three years. I want to
thank Cedric Leclerc, Francois Amand, and Benoit Sainson for allowing me to
work in good environmental conditions. I want to thank also Nadege Rizet and
Frederic Ronconi for their time and for giving me the safety support needed for
my thesis. I am lucky to get a job opportunity with Renault in the Dea-LA
team directed by Dr. Laurent Pahun and Marc Peresse. I am glad that my first
working experience will start with you.

A special thanks to my family. Words can not express how grateful I am to
my mother, and father for all of the sacrifices that you have made on my behalf.
I would also like to thank my beloved brother Jean and sister Joya. Thank you

v

for supporting me in everything, and especially I can’t thank you enough for
encouraging me throughout this experience.

I thank my best friends Lama, Sally, Ghadir, Maroua, Farah, and Layal for
listening, guiding, encouraging, and advising, with wisdom and good humor al-
ways. Thank you for the valuable and timely feedback at key stages in the
research process and the personal motivation.

Thanks also to my wonderful best friends and colleagues in Renault, Sarra,
Tarek, Berkay, Mathieu, Ugo and Raj for daily sustenance in so many ways. A
special note of thanks to Dr. Youssef Bou Issa who is one of the reasons I am
here today, and to Dr. Kabalan Chaccour whom both provided feedback and
encouragement.

Abstract of the thesis

Title: Formal rule-based scenarios for the design of safe autonomous vehicles

The automotive industry is preparing to deploy fleets of Autonomous Vehi-
cles (AVs), which raises both technical and social challenges. Indeed, acceptance
of AVs from both users and public authorities requires proof of the safety, re-
liability, and security of the proposed solutions. Major errors from AVs cannot
be tolerated by society who expects a close-to-zero accident policy. Considering
the wide uncertainty in the AV’s environment, we cannot use the otherwise suc-
cessful, systematic, and exhaustive verification techniques. Therefore, we need
to rely on the assume-guarantee approach in which we can enforce some guaran-
tees on the vehicle’s safety under a set of assumptions on the environment. This
work addresses this topic by considering a scenario-based approach for known
unsafe scenarios. Here safety is restricted to the acceptance of the Safety Of The
Intended Functionality (SOTIF) standard, recently defined by ISO/PAS 21448.

One proposal to assess safety is to test AVs in real traffic and observe their
behavior. As logical as it may sound, it is neither feasible nor sufficient because
it poses significant risks to the environment and requires a lot of testing, which
makes it non-scalable and that does not guarantee to cover 100% of the possible,
however unlikely, scenarios. What we propose is to precisely define scenarios in
which we describe the environmental conditions, and we provide the risks and
the measures to be taken when a hazard is identified.

In this thesis, we design a process based on formal modeling and verification
to give sufficient guarantees and build concrete evidence to ensure the safety of
AV. We propose a formal language, called Extensible Platform for Safety Anal-
ysis of AVs (EPSAAV), to bridge the gap between safety requirements, usually
expressed in a natural language, and the actual code embedded inside the vehicle.
We use EPSAAV in the fashion of Model-Based System Engineering (MBSE) in
a model-centric approach where artefacts and analyses are automatically derived
from the model. We propose three instantiations of this language. First, we
generate a safety report that can be used as a reference at the corporate level to
disseminate the safety policy to be enforced in the company. Secondly, we gener-
ate a dedicated monitor to be interfaced with a chosen simulator. The operational
semantics of this monitor are exploited in simulation to debug and identify am-
biguities in scenarios. Typically this can be used by other teams to validate their

vii

work with regard to the global safety policy of the corporation. Third, we rely
on the formal semantics of this language to detect inconsistencies that may arise
from the safety requirements. For this purpose, we build a dedicated verification
engine.
Finally, to illustrate the feasibility of the proposed framework, we apply it to
Renault-Nissan safety policy in full integration with the operational teams of Re-
nault.

Keywords: Autonomous Vehicles, safety, formal rules, scenarios-based testing.

Résumé de la thèse

Title: Scénarios formels basés sur des règles pour la conception de véhicules
autonomes sûrs

Les constructeurs automobiles se préparent à déployer des flottes de Véhicules
Autonomes (VAs). Cela soulève des défis à la fois techniques et sociaux. En ef-
fet, l’acceptation tant par les usagers que par les pouvoirs publics nécessite de
convaincre de la sûreté, de la fiabilité, et de la sécurité des solutions proposées.
Les erreurs majeures commises par les AV ne peuvent être tolérées par la société,
qui attend une politique proche du zéro accident. Compte tenu de la grande
incertitude dans l’environnement des VAs, nous ne pouvons pas nous contenter
d’utiliser uniquement les techniques de vérification systématiques et exhaustives.
Par conséquent, nous devons nous appuyer sur l’approche hypothèse-garantie
dans laquelle nous pouvons appliquer certaines garanties sur la sûreté de fonction-
nement du véhicule à partir d’un ensemble d’hypothèses sur l’environnement. Ce
travail aborde ce sujet en considérant une approche basée sur des scénarios pour
les cas dangereux connus. La sûreté de fonctionnement se limite à l’acceptation
de la norme Safety Of The Intended Functionality (SOTIF), récemment définie
par la norme ISO/PAS 21448.

Une proposition pour évaluer la sûreté de fonctionnement consiste à tester des
VAs en circulation réelle et à observer leur comportement. Aussi logique que cela
puisse parâıtre, cette méthode est difficilement réalisable et largement insuffisante
car elle présente des risques importants pour l’environnement et nécessite de
nombreux tests. Cette méthode est donc non évolutive et non exhaustive car il
n’est pas possible de couvrir tous les scénarios possibles, et notamment ceux très
peu probables, avec une occurence très faible. Ce que nous proposons, c’est de
définir précisément des scénarios dans lesquels nous décrivons les conditions de
l’environnement ainsi que les risques et les mesures à prendre lorsqu’un danger
est identifié.

Dans cette thèse, nous concevons un processus basé sur la modélisation formelle
et la vérification pour donner des garanties suffisantes et construire des preuves
concrètes pour assurer la sûreté de fonctionnement du VA. Nous proposons un
langage formel, appelé Extensible Platform for Safety Analysis of AVs (EP-
SAAV), pour combler l’écart entre les exigences de sûreté de fonctionnement,

ix

généralement exprimées en langage naturel, et le code réel intégré à l’intérieur
du véhicule. Nous utilisons EPSAAV comme Model-Based System Engineering
(MBSE) dans une approche centrée sur des modèles où les artefacts et les analyses
sont automatiquement dérivés du modèle. Nous proposons trois instanciations de
ce langage. Dans un premier temps, nous générons un rapport de sûreté de fonc-
tionnement qui peut servir de référence au niveau de l’entreprise pour diffuser la
politique de sûreté de fonctionnement à appliquer dans l’entreprise. Dans un sec-
ond temps, nous générons un moniteur dédié pour s’interfacer avec un simulateur
choisi. La sémantique opérationnelle de ce moniteur est exploitée en simulation
pour déboguer et identifier les ambigüıtés dans les scénarios. Typiquement, cela
peut être utilisé par d’autres équipes pour valider leur travail par rapport à la
politique de sûreté de fonctionnement globale de l’entreprise. Troisièmement,
nous nous appuyons sur la sémantique formelle de ce langage pour détecter les
incohérences pouvant découler des exigences de sûreté de fonctionnement. À cette
fin, nous construisons un moteur de vérification dédié.
Enfin, pour illustrer la faisabilité de l’approche proposée, nous l’appliquons à la
politique de sûreté de fonctionnement Renault-Nissan pleinement intégrée aux
équipes opérationnelles du groupe Renault.

Mots clés: Véhicules Autonomes, sûreté de fonctionnement, règles formelles,
tests basés sur des scénarios.

Confidential C

Joelle ABOU FAYSAL
Renault Software Factory, Université Côte d’Azur, CNRS, Inria, I3S

Presented for obtaining the degree

of doctor in computer science at the

University Côte d’Azur

Directed by: Frédéric MALLET

Co-supervised by: Nour ZALMAI

 Ankica BARISIC

Defended on : 9 June 2022

In front of the jury, composed of:

Daniela CANCILA, In Charge Of Research,

Commissariat à l’énergie atomique et aux

énergies alternatives (CEA)

Amel MAMMAR, Professor, Telecom SudParis

Contents

Acknowledgements v

Abstract vii

Résumé ix

1 Introduction 1
1.1 Context and motivation . 1
1.2 Research problems and questions 3
1.3 Collaboration between Kairos and Renault Software Factory . . . 7
1.4 Thesis contributions and outline 8

1.4.1 Research contributions . 8
1.4.2 Outline . 9

2 Background and State of the Art 11
2.1 Introduction . 11
2.2 Overview automotive safety approaches 12
2.3 Safety standards for AVs . 13

2.3.1 ISO26262 FuSa standard 13
2.3.2 ISO/PAS 21448 SOTIF standard 15
2.3.3 Combining FuSa and SOTIF to cover safety 17

2.4 Hazard And Risk Analysis (HARA) technique to evaluate safety . 20
2.5 Formalization of safety requirements 21
2.6 Model-Driven Engineering (MDE) 22
2.7 Model-Driven Architecture (MDA) 25

2.7.1 Metamodeling . 25
2.7.2 Model transformation . 26
2.7.3 Code generators . 27

2.8 Domain-Specific Modeling Language (DSML) 27
2.8.1 DSL stakeholders . 29
2.8.2 DSL life-cycle . 29

2.9 Overview of existing safety solutions 31
2.10 Conclusion . 33

xii

3 Proposal for an Extensible Platform for Safety Analysis of Au-
tonomous Vehicles (EPSAAV) 34
3.1 Introduction . 34
3.2 User process . 36
3.3 EPSAAV language development 38

3.3.1 Technologies used for the platform specification 39
3.3.2 Abstract domain concept 41

3.3.2.1 Scene and ObjectType domain concepts 43
3.3.2.2 ParameterTypeLibrary and PropertyTypeLibrary

domain concepts 43
3.3.2.3 Expression and SelectByGoal domain concepts . 45
3.3.2.4 AlertLibrary and ActionLibrary domain concepts 49

3.3.3 Concrete syntax . 49
3.3.3.1 RuleBasedPlanner grammar 50
3.3.3.2 Scene grammar 51
3.3.3.3 ObjectTypeLibrary grammar 52
3.3.3.4 PropertyTypeLibrary grammar 52
3.3.3.5 AlertLibrary and ActionLibrary grammars 53

3.3.4 RBP and libraries illustration using EPSAAV specifier . . 54
3.3.5 Generation of artefacts . 56

3.3.5.1 Human-readable document generation 57
3.3.5.2 Monitor generation 59
3.3.5.3 Verification rules generation 59

3.4 Conclusion . 59

4 Generation of a Monitor for Renault Simulation Environment 61
4.1 Introduction . 61
4.2 Sensing data for AV . 62

4.2.1 Perceiving the environment sensors 63
4.2.2 Perception challenges . 64

4.2.2.1 Sensor uncertainty 64
4.2.2.2 Robust detection 65
4.2.2.3 Illumination lens flare 65
4.2.2.4 Weather and precipitation 65

4.2.3 Overcoming sensing challenges using EPSAAV language . 66
4.3 Representative AD software architecture 67

4.3.1 Advanced Driver-Assistance Systems (ADAS) 69
4.3.2 AV simulators . 70
4.3.3 FusionRunner debugger 71

4.3.3.1 Why using FusionRunner? 73
4.3.3.2 FusionRunner : a visualization tool for debugging 73

4.4 C Code generation using EPSAAV language 76
4.4.1 Safety Checker module integration 77

4.4.2 Visualization of Safety Checker module performance signals 79

4.5 Interfacing the Safety Checker module with the FusionRunner to
assess safety . 80

4.6 Conclusion . 81

5 From Safety Rules to Satisfaction Checking 83

5.1 Introduction . 83

5.2 Satisfiability solvers . 84

5.3 SAT solver . 85

5.4 Rules contradiction . 85

5.5 Phases of implementation tasks to deploy the SAT solver 86

5.5.1 Translating rules to Boolean formulas 88

5.5.2 Testing inconsistencies . 91

5.5.3 Boolean Satisfiability problem 92

5.6 Java code generation for inconsistencies study 93

5.6.1 Testing validity of each rule in the rule-based planner . . . 94

5.6.2 Testing consistency of sequential and parallel rules with
each other . 99

5.6.3 Testing consistency of the whole system 103

5.7 Conclusion . 105

6 Application of EPSAAV Approach to a Renault Use Case 106

6.1 Introduction . 106

6.2 Safety engineering workflow . 107

6.2.1 Traditional workflow . 108

6.2.2 Workflow using EPSAAV language 109

6.2.3 Workflow improvements and EPSAAV benefits 110

6.3 From AREA2 to Area2Spec using EPSAAV language 111

6.3.1 Evaluate unsafe known scenarios 111

6.3.1.1 Risk of a frontal collision with the PV in deceler-
ation scenario . 112

6.3.1.2 Risk of rear collision with the FV due to a false
recognition scenario 113

6.3.1.3 Risk of a side collision with SV due to missing
lane detection scenario 114

6.3.1.4 Risk of a side collision with the SV due to poor
infrastructure scenario 115

6.3.1.5 Risk of a side collision with SV swerving into Ego
lane scenario . 116

6.3.2 IVEX co-pilot and Area2Spec document 117

6.3.2.1 Formalization of frontal collision with the PV in
deceleration risk 118

6.3.2.2 Formalization of rear collision with the FV due to
a false recognition risk 118

6.3.2.3 Formalization of side collision with SV due to
missing lane detection risk 119

6.3.2.4 Formalization of a side collision with the SV due
to poor infrastructure risk 120

6.3.2.5 Formalization of side collision with the SV swerv-
ing into Ego lane risk 121

6.3.3 EPSAAV benefits over IVEX co-pilot 121
6.4 RBP and libraries instantiation forArea2Spec using EPSAAV spec-

ifier . 122
6.5 Area2Spec human-readable generated document using EPSAAV

generator . 128
6.6 Area2Spec monitor connected to the FusionRunner 129

6.6.1 C code monitor generation using EPSAAV generator . . . 129
6.6.2 Area2Spec Safety Checker module connected to the Fusion-

Runner . 133
6.6.3 Testing scenarios on real data recordings 135

6.6.3.1 Scenario 1: no lane detection 136
6.6.3.2 Scenario 2: strong braking collision with PV . . . 136
6.6.3.3 Scenario 3: No rule violations 137

6.7 Area2Spec verification engine fed to the SAT solver 137
6.8 SAVI process . 141

6.8.1 Ambiguities detection . 143
6.8.2 Rule inconsistencies verification 145

6.9 Conclusion . 149

7 Conclusion 152
7.1 Thesis summary . 152
7.2 Results obtained . 153
7.3 Future work . 155

7.3.1 Evolution of the EPSAAV tool 156
7.3.2 Reusability of the EPSAAV tool in various contexts 156

Abbreviations 158

Appendix A 160
A.1 Model instantiation of requirements and environment 160
A.2 Text auto-generation for Area2Spec 164
A.3 C code auto-generation using EPSAAV generator 168
A.4 Java code auto-generation using EPSAAV generator 185

List of Figures

1.1 Research process overview. 9

2.1 Overview of ISO 26262 in [1] . 13

2.2 Automotive-specific risk-based approach called ASIL to determine
integrity levels. 14

2.3 Evaluate safety for known/unknown safe/unsafe scenarios. 16

2.4 Evolution of scenario categories using SOTIF. 16

2.5 Overview automotive safety: FuSa and SOTIF. 17

2.6 Traditional requirement-based testing workflow. 18

2.7 Taxonomy for driving automation. 19

2.8 Language development structure defining abstract and concrete
syntax with artefacts generation. 24

2.9 MDE process . 25

2.10 Metamodel in EMF taken from [2]. 26

2.11 DSL life-cycle taken from [3] . 29

3.1 Proposition cycle. 34

3.2 Two-way views of the approach. 35

3.3 Two-way views of the approach. 36

3.4 Schematic diagram explanation for the user process. 37

3.5 Overview of the used technologies grouped in Gemoc Framework. 38

3.6 Gemoc Execution Framework. 40

3.7 Defining EPSAAV language using Gemoc framework. 41

3.8 Abstract description of EPSAAV metamodel using EMF technology. 42

3.9 Scene metamodel composed of SceneObject referring to ObjectType
containing a ParameterTypeLibrary and assigned to a Property-
TypeLibrary. 44

3.10 ParameterTypeLibrary containing parameters with types. 44

3.11 PropertyTypeLibrary containing properties composed of states that
can have values. 45

3.12 Expression abstract metamodel using logical operators. 46

3.13 TestValue referring an InstanceValue that is a StringValue to its
PropertyType. 46

xvi

3.14 Case where emergency braking should have a higher priority than
light acceleration. 47

3.15 SelectByGoal notion to categorize rule execution. 48
3.16 Libraries of actions and alerts. 49
3.17 Concrete Xtext Files referred to domain concepts in our metamodel. 50
3.18 RBP.xtext project for the textual representation of RuleBased-

Planner description. 51
3.19 Textual representation of Goal features in the RuleBasedPlanner

description. 51
3.20 Scene.xtext project for the textual representation of Scene descrip-

tion. 52
3.21 OTP.xtext project for the textual representation of ObjectType-

Library description. 53
3.22 ParameterTypeLibrary textual representation in ObjectTypeLi-

brary description. 53
3.23 Properties.xtext project for the textual representation of Proper-

tyTypeLibrary description. 54
3.24 Grammar for Alert and action libraries. 54
3.25 RBP illustration. 55
3.26 Scene illustration. 55
3.27 Object type library illustration. 55
3.28 Ego properties illustration. 56
3.29 Alert library illustration. 56
3.30 Action library illustration. 56
3.31 Three types of generated artefacts from the EPSAAV safety rules. 57
3.32 Artefacts coded to be generated in Xtend project. 57
3.33 Example of a human-readable document generated. 58

4.1 Tasks in an autonomous system. 62
4.2 An example of sensor set for AV. 63
4.3 Example of lense flare illumination taken from [4]. 65
4.4 Weather in winter, rain and fog taken from [5]. 65
4.5 Stable control property to define perception stability. 66
4.6 Front car distance property containing states with different values. 66
4.7 Line detection property containing states with a given threshold. . 67
4.8 Representative software architecture of AD. 68
4.9 Real driving scenarios and simulators for ADAS. 69
4.10 Simulation in the loop for ADAS. 71
4.11 FusionRunner integration in the ADAS. 72
4.12 FusionRunner Control window. 74
4.13 Fusion Context View window. 74
4.14 Fusion Display window. 75
4.15 Safety Checker module generation process with EPSAAV language. 76

4.16 Safety Checker module implemented in AD software architecture. 77
4.17 SAFETYCHECKER window to view safety measures, all goals

with triggered actions, and alerts and properties. 79
4.18 PropertyLibraryName.c containing check functions with If state-

ments. 80
4.19 Example of interfacing the If statements with a function in Prop-

ertyLibraryName.c. 81
4.20 Comments to interface fusion data in SceneName.c. 81

5.1 Phases of implementation tasks to study inconsistency using the
DSML proposed and the SAT solver. 87

5.2 Example of a safety requirement defined by the expert using the
EPSAAV tool. 90

5.3 Java code generation from a goal defined by the safety expert in
Figure 5.2. 91

5.4 Implementation of SAT4J library in Eclipse. 91
5.5 SAT problem and solutions. 93
5.6 Definition of a goal with two sequence conditions containing spe-

cific logical operators. 95
5.7 Definition of an Ego property library with four states containing

variables. 96
5.8 Definition of the build Equiv function replacing the IFONLYIF

operator. 96
5.9 Generation of Java function containing Boolean formulas compat-

ible to the SAT4J library. 97
5.10 Generation of Java functions to test internal rule validity. 97
5.11 Solutions for the function build goal1 cond1() containing AND op-

erator. 98
5.12 Solution presented after testing build goal1 cond1 True() function. 98
5.13 Solutions presented after testing build goal1 cond1 False() function. 98
5.14 Solution presented for the AND operator in goal1 cond1 adding

one variable for the acceleration alert. 99
5.15 The AccelerateEgo and DecelerateEgo rules run in parallel. 101
5.16 Results of a parallel test applied using the AND operator on the

AccelerateEgo and DecelerateEgo rules. 101
5.17 Results of a parallel test forcing the AccelerateEgo and Decelera-

teEgo rules to be true. 102
5.18 The AccelerateEgo and MaintainEgoSpeed rules executed sequen-

tially. 102
5.19 Result of a priority test of MaintainEgoSpeed and AccelerateEgo

functions to check inconsistency. 103
5.20 Code for translating sequential execution of the AccelerateEgo and

DecelerateEgo rules to test the system coherency. 104

5.21 Code for translating sequential execution of the AccelerateEgo and
DecelerateEgo rules to test the system coherency. 104

6.1 Traditional workflow in Renault Group. 108
6.2 Workflow using EPSAAV language. 109
6.3 Scenario of a PV decelerating. 112
6.4 Scenario EV between the FV and the PV and an interference occurs.113
6.5 Scenario of an EV between the FV and the PV and next to SVs,

and a line/lane disturbance occurs. 114
6.6 Scenario of an EVmaking a cut-in and does not detect the guardrail

due to an invisible old line. 115
6.7 Scenario of an SV that is taking EV lane and straddling. 116
6.8 Alert library for Area2Spec defined in Area2Al.alerts. 122
6.9 Action library for Area2Spec defined in Area2Ac.actions. 123
6.10 Object type library containing parameters and refering to property

library using EPSAAV specifier in Area2Obj.otp. 123
6.11 Scene for Area2Spec defined in Area2Sc.scene. 124
6.12 Ego property library for Area2Spec defined in Area2PEgo.prop. . . 124
6.13 Different states of front car distance property measured in seconds. 125
6.14 RuleBasedPlanner file (Area2Spec.rbp) containing all the require-

ments in Area2Spec. 125
6.15 Goal1 in the RBP to detect interferences of PV and SV. 126
6.16 Goal2 in the RBP to check if the system misses detection of PV,

SV, or lines while having a stable control and executes an emer-
gency operation. 127

6.17 Goal3 in the RBP to report the Delta V when imminent collision
distance of PV or SV occurs. 127

6.18 Goal4 in the RBP containing five sequential conditions to trig-
ger different type of alerts regarding front and rear car distance
violations. 128

6.19 Area2Actions.h containing the actions and a processactions() func-
tion. 130

6.20 Area2Alerts.h containing the alerts and a processalerts() function. 130
6.21 Goal t structure with three functions to trigger, execute, and raise

alarms in Safety Checks.h. 130
6.22 Declaration of functions for goal1 condition1 in Safety Checks.h. . 131
6.23 Example of an instantiation of goal1 condition1 in init goals() func-

tion in Safety Checks.c. 131
6.24 trig goal1 condition1() function using if condition to check safety

in Safety Checks.c. 131
6.25 trig goals() defining the priorities and parallel executions between

all goals in Safety Checks.c. 132
6.26 Enumerations of states for each property in EgoProperties.h. . . . 132

6.27 Example of front car distance check() function to check for the
state in EgoProperties.c. 133

6.28 Ego t and Obstacle t object types enumerating parameters in
Scene.h. 133

6.29 Perceived objects instantiation in the scene and function to link
the output of the monitor to the input of the debugger in Scene.c. 133

6.30 Obstacle and Ego positions in the scene defined in the FusionRunner.135

6.31 No lane/line detection in the Fusion Context View. 136

6.32 Fusion Display window showing the missing lanes. 137

6.33 SAFETYCHECKER window showing states triggered for proper-
ties for step=2594. 138

6.34 SAFETYCHECKER window showing goal2 cond1 and corre-
sponding behaviors triggered for step=2594. 139

6.35 Strong braking distance with a PV in the Fusion Context View. . 139

6.36 Fusion Display window showing the missing lanes. 140

6.37 SAFETYCHECKER window showing states triggered for proper-
ties for step=2594. 141

6.38 SAFETYCHECKER window showing goals and behaviors trig-
gered for step=2594. 142

6.39 No rule violations in the Fusion Context View. 142

6.40 Fusion Display window showing the tracking of the PV with no
violation. 143

6.41 SAFETYCHECKER window showing states triggered for properties.144

6.42 build goal1 cond1() and build goal2 cond1() functions for goal1 cond1
and goal2 cond1 representing boolean translation for logical op-
erations in Sat4jRules.java. 144

6.43 build goal1 cond1 True() and build goal1 cond1 False() functions
for goal1 cond1 in Sat4jRulesConsistency.java. 145

6.44 Alert functions for goal1 cond1 in Sat4jRulesConsistency.java. . 145

6.45 Priority test for Goal2 cond1 and Goal1 cond1 considering or
not alerts in Sat4jRulesConsistency.java. 145

6.46 Parallel tests for Goal2 cond1 and Goal3 cond1 considering or
not alerts in Sat4jRulesConsistency.java. 146

6.47 System solution that is the coherence of all four goals and coher-
ence of all properties in Sat4jSystemConsistency.java. 146

6.48 Coherence all properties() and coherence traffic jam() functions in
Sat4jSystemConsistency.java. 147

6.49 Emergency maneuver triggered in a real replayed scenario. 147

6.50 Ambiguity in a real replayed scenario at step=4217 triggering
emergency maneuver with no PV. 148

6.51 Ambiguity solved in the real replayed scenario at step=4217 adding
a non stability line condition. 148

6.52 Solution for goal1 cond1 presenting an inconsistency in distance
and tracking variables. 148

6.53 Solution for goal1 cond1 presenting an inconsistency in the states
of the same property. 149

6.54 Improving tests to eliminate inconsistent solutions considering prop-
erties coherence. 150

6.55 Inconsistency found after a priority test for goal1 cond1 and
goal2 cond1. 150

6.56 Inconsistency found after a parallel test for goal3 cond1 and
goal2 cond1. 150

7.1 Safety Checker Module replacing ADAS functionality blocks. . . . 157

List of Tables

4.1 Summary of specific simulators and their features used for AD . . 72
4.2 C code generated from our framework based on EPSAAV language. 77

5.1 Truth table for the implication expression of Goal1Condition1 in
RBP2. 86

5.2 Truth table for the RBP2 expression. 87
5.3 Truth table for the AND logic operator. 88
5.4 Truth table for the OR logic operator. 89
5.5 Truth table for the NOT logic operator. 89
5.6 Truth table for the EQUIVALENCE logic operator. 89
5.7 Basic logical symbols integrated in the SAT solver. 90
5.8 Combination cases for the two rules. 99

xxii

Chapter 1

Introduction

1.1 Context and motivation

Nowadays, 90% of car accidents are caused by human errors, such as poor driving
skills or indigent judgment due to a failure of human perception or the driver’s
lack of attention [6]. Moreover, errors made by road users, such as violations of
traffic rules, affect traffic safety as well [7]. Sometimes a brake failure caused by a
vehicle’s malfunction, or even a lack of safety infrastructure induces loss of lives.
To improve road traffic safety and security, automotive industries have started
to invest a lot of money in deploying self-driving systems for transportation.
France’s road and traffic regulations have evolved to allow tests in controlled
environments [8]. Replacing human drivers with (partially) automated systems
aims at taking better decisions and putting efforts to reduce errors. The road
is long as there are several intermediate levels of autonomy before reaching fully
Autonomous Vehicles (AVs).

The main difficult hurdle in the autonomous domain is to guarantee that sys-
tems and software components are safe and secure. With the advent of AVs,
engineers have witnessed several deaths and accidents that raise troubling ques-
tions about the safety and security of such vehicles and the current limitations
of the technology. The question that arises is: who is responsible for a crash? It
is important to show that AVs make better decisions than human drivers under
all circumstances. It is also necessary to overcome these challenges before having
big fleets of cars on the roads. To avoid rejection from public opinion, we need
to get them involved in the adoption of good decisions.

It is, therefore, crucial to provide concrete evidence to be clear on the actual
advantages of using AVs and be clear on what rules they should follow and what
guarantees they offer. Safety is associated with guarantees that some conditions
must be met when contingencies arise. If not, the behavior must be adjusted
accordingly. In dynamic environments, real-time safety checks of the planned
trajectories and the driver are sometimes lacking to ensure that the trajectories

1

obtained from trip planning are safe.
One proposal to assess operational safety is to test-drive AVs in real traffic and

observe their behavior. As logical as this may sound, it is not efficient because
it poses significant risks to the environment. We can look at the Uber accident
[9] where the driver was doing mileage tests in Arizona. Several things went
wrong while the driver was not paying attention to the road: there was no real-
time driver safety check, and Uber did not have the resources in the vehicle to
assess the driver’s attention. Mileage testing requires a lot of time and testing
to ensure safety, and there is no practical way to assess the coverage rate or to
pinpoint rare, even though possible, cornercases [10]. Using a statistical approach
to estimate “How many miles autonomous vehicles would need to be driven to
demonstrate safety” leads to the assessment that 8 billion miles in 400 years
with a fleet of 100 vehicles driving all the time would be necessary [10]. This is
somehow unachievable leading to the conclusion that AVs cannot express safety
capabilities based on road tests only [11, 12]. Simulation testing is certainly
a viable alternative [13] that is only valid if we assess the external conditions
under which we guarantee safe behavior. Consequently, the tests are conducted
over limited Operational Design Domains (ODDs) under which one can define
precisely both the assumptions and the expected safety requirements. However,
such approaches offer no global guarantees with regards to the wide variety of
situations, user behaviors, or driving conditions left unexplored. Even under
limited ODDs, we still need rigorous approaches and formal language to specify
the safety rules and enforce them in the context of real or simulated scenarios.

Such languages dedicated to the specific, very specialized community (here the
safety experts) are known as Domain-Specific Languages (DSL) [14]. As they are
specific, they demand the build ad-hoc specific support tools, even though more
and more modeling framework strives to provide generic support and help reduce
the development time of such tools, therefore increasing productivity [15, 16]. For
the Safety domain, DSLs can be a solution to fill the gap between safety experts
and embedded code developers. Bridging this gap is expected to increase safety
engineers’ productivity, validate the correctness of the requirements, and improve
solutions’ reliability. By safety engineer, we refer to the safety system engineer
who has the task of defining software requirements related to functional and
safety. Sometimes, engineers can experience practical difficulties when adopt-
ing DSLs [17]. The measure of success has to be determined by assessing the
impact of correct specification by formally defining requirements and having a
code generation that can help detect rules’ violations and inconsistencies in a
realistic context of use. In the typical software development lifecycle, we try to
translate needs into natural language requirements and produce code that meets
them. However, safety studies of operation are often carried out by specialists
in the field, after the functional and organic architectures have been defined.
This results in late detection of operational safety issues and loss of time due to
the necessary iterations between the system architecture and the safety special-

2

ist engineer. This is why safety concerns need to be addressed from the early
stages of the DSL life cycle so that practitioners can perform incremental safety
evaluations.

Model-Based System Engineering (MBSE) is meant to use DSLs in a holistic
fashion to provide a co-design with regular, short iterations. MBSE maintains
global systems models, instead of raw text documents, as global shared modeling
artefacts that should be used as a communication medium between engineers. It
advocates for a model-centric approach where shared models are at the center of
the process and different concrete artefacts are automatically derived from the
domain model. Many approaches are following and applying MBSE to different
domains, including safety and security verification [18]. Our work adheres to this
principle and contributes to it in the context of AVs. MBSE helps to deal with the
increasing size and complexity of systems [19] and allows to reason on the model
before deployment. Formal modeling and verification in automotive systems are
essential to provide sufficient guarantees, especially in the case of dangerous and
unforeseen situations. Building a systematic safety evaluation approach is sup-
posed to mitigate the risk of producing inappropriate solutions that often cannot
be reused. This work is expected to enhance the community awareness of the
relevance of Domain-Specific Modeling Languages (DSML) for safety assessments
to bridge the gap between the safety engineers and code artefacts provided by
embedded code engineers.

1.2 Research problems and questions

The explosion in the complexity of vehicle safety assessment, therefore, imposes
methods of high-performance and robust developments in vehicle safety. Opera-
tional safety defined in the ISO 26262 standard [20] implies having a design for
the safety component that deals with all unsafe situations. This standard requires
several demonstrations of compliance with the rules in the development of com-
plex and critical functions. So far, the engineering activities in the system design
process and the safety were separate and sequential. For example, the system
architecture defines system performance, and the safety specialist is interested
in the system when it malfunctions. He must therefore enrich the functional
analysis of the system with the dysfunctional aspects, and return results after a
certain delay. The conclusions of the analysis are therefore partially valid. This
misalignment also results in producing and testing code in which they discover
errors between what was intended and what was built. The same problems occur
when testing scenarios. This is where the Safety Of the Intended Functionality
(SOTIF) standard came to help the engineer not only to test requirements but
to perform scenario-based testing to deal with more complex situations treating
higher levels of autonomy. Our research work tackled the following problems:

1. Lack of a systematic approach for scenario-based safety evalua-

3

tion of AVs environment. Most of the existing evaluations use tradi-
tional manual approaches to enforce safety decisions [21]. There is a threat
to using these approaches, as safety experts’ analyses depend on their ex-
periences. Sometimes safety rules are not well formalized and usually are
not reusable in subsequent development. In addition, classical exhaustive
verification techniques cannot guarantee that the system is safe because of
the high degree of uncertainty in the environment. Safety experts need to
provide rapid production of a growing number of complex software tasks.
Their degree of specialization is pushing for the involvement of domain con-
cepts in the software development process. There is a necessity to assess
the impact of introducing a DSL in their domain and evaluate it. There is
also a need for a tool that can deal with situations when the environment
gets more complex. Safety experts define requirement-based tests as fo-
cusing on malfunctions rather than environmental conditions. This is why
presenting a system that helps the safety engineer formally introduce his
rules considering the outside conditions is crucial.

2. Lack of operational solutions to support the analysis of safety
specifications. Safety experts usually produce requirements using natural
language. Therefore there is a big gap between what they express and
the code artefacts or variables that implement the solution. Reducing this
gap to provide analysis support at the level of safety specifications is of key
importance. Domain experts give these specifications to the developers who
integrate them into the simulators. A gap remains between safety and the
implementation of the system which begins to widen as the rules become
more complex. Automation is needed to fill this gap, which gives the safety
expert more time to spend on rule specification.

3. Inability to detect violations in real or simulated scenarios while
detecting errors and ambiguities of defined requirements. In or-
der to assess all safety experts’ notifications, it is necessary to provide an
approach that shows the implication of the defined requirements on real
scenarios. It helps better visualize exploited safety defined specifications
by producing to the interpreter engineer warnings and notices during an in-
fringement. This improves testing rules and trigger alerts and actions to the
user to help him avoid collisions when transgressions occur. For instance,
performance limitations or insufficiency of the implemented functions are
due to technical limitations such as sensor performance and noise. They
can also be due to limitations of the algorithm such as object detection
failures and limitations of actuator technology. The safety expert may have
missed a specific requirement making his performed evaluation study not
mature enough. This is why it is primordial to detect the violations’ origins
and visualize the provenance of the ambiguity in its defined requirement.

4

4. Inability to automatically detect inconsistencies from the defined
requirements and specifications. In order to evaluate all safety experts’
documents, it is necessary to provide an approach supported by adequate
tools which can be integrated into safety rules. For instance, the vehicle
must come to a complete stop if a pedestrian is near the crossing line. At
the same time, vehicles should maintain a specific speed to reach a comfort-
able driving level for the passengers. Most importantly, the AV should be
aware that pedestrians can be obstructed by a traffic sign and may step out
in front of you. The highest priority is placed on entities with an associated
risk of collision which in this case is for the pedestrian. Sometimes, the
safety expert does not pay attention to the parallel or priority executions
between the defined rules. This is why it is radical to uncover requirements
inconsistencies and systematize rules’ order. Presenting an automation sys-
tem that helps the safety engineer automatically detect inconsistencies in
their defined requirements is essential to speed up their analyses.

The deployment of safety is interesting from Renault’s point of view. With
many organizations developing their safety assessment languages or hiring com-
panies to develop such languages for them, our framework can help them perform
safety evaluations on scenarios and reach more of the missing requirements and
specifications. The main challenges while addressing the problems identified in
this dissertation were:

1. Defining an appropriate level of abstraction for Safety domain
considering AV’s environment. Most of the existing safety evaluations
are performed ad-hoc, not reporting enough details of the experimental
design or analysis result. This research work produced a general safety
model for AV in Chapter 3, tailored for conditional environment and rules
evaluation, and instantiates it in a case study for Renault in Chapter 6.
Integrating the safety assessment process for scenario-based testing with
the DSML development was an additional challenge. Both the Functional
Safety domain evaluation and DSML development process are complex and
evolving. Therefore, we discussed the safety criteria and proposed a devel-
opment and evaluation process that can be used to achieve formalization to
inject safety rules (Sections 3.3.2 and 3.3.3). Using the MBSE approach to
assess software safety, enables formalization, improves reuse of the software,
and helps to address safety analysis [22].

2. Developing the tool to support the analysis of safety specifica-
tions. It was challenging to capture the complexity of information and
process to generate code and human-readable documents. It was also ardu-
ous leveraging it systematically. We developed a tool that supports discov-
ered knowledge, validates assumptions, and provides an automation scheme.
This knowledge is presented in a formal model which captures only the

5

meaningful information, helps with traceability and development decisions,
and produces desired monitors and documents (Section 3.3.5).

3. Applying safety assessments to DSML development in an indus-
trial context to visualize violations and detect ambiguities of de-
fined requirements. The DSMLs are developed for different domains,
each of them having users with different background knowledge and the
necessity to understand specific concepts. It was challenging to apply our
approach in the development of DSMLs for automotive safety contexts.
However, we succeeded to apply our approach to real and simulated sce-
narios by connecting our DSML with the simulator used in Renault which
can guarantee all unsafe cases (Chapter 4). The user is alerted with specific
information and assumptions that might be linked to the motion planner
shortly.

4. Applying safety assessments to DSML development in an indus-
trial context to verify inconsistencies in safety engineers’ choices.
By studying rule inconsistencies, the engineer is informed if there is a spec-
ification misplaced in its rule-based planner or if it should be triggered in
priority. We succeeded to apply our approach by connecting our DSML
with a Solver that helps study logic expressiveness on rules. This aids the
expert to modify his alternatives by adding or removing priorities on rules
(Chapter 5).

The objective of the research is to promote the environment of the AV in
the use of DSMLs by building up a conceptual framework that supports their
development process, leveraging safety as a first-class concern. This involves
the integration and adaptation of the current evaluation methodologies, their
concepts, methods, tools, processes, and metrics. As briefly presented in Section
1.2, the aim of our research consists in providing contributions for the following
major problems faced in the realm of DSML safety evaluation:

• RP1: Lack of a systematic approach for scenario-based safety evaluation
of AVs environment.

• RP2: Lack of operational solutions to support the analysis of safety spec-
ifications.

• RP3: Inability to detect violations in real or simulated scenarios while
catching errors and ambiguities of defined requirements.

• RP4: Inability to automatically detect inconsistencies from the defined
requirements and specifications.

In particular, we address the following research questions:

6

• RQ1: How to model the safety evaluation for AVs environment?

• RQ2: How to support the analysis of safety specifications?

• RQ3: How to promote detection of violations in real or simulated scenarios
while catching errors and ambiguities of defined requirements?

• RQ4: How to promote automation of inconsistencies detection from the
defined requirements and specifications?

The RQ1 is related to RP1, RQ2 to RP2, RQ3 to RP3, RQ4 is related
to RP4. Each of the above research questions is also related to the research
hypotheses in the following Section.

1.3 Collaboration between Kairos and Renault

Software Factory

Renault Group currently offers advanced driver assistance systems (ADAS) on
its vehicles. These systems improve safety and provide convenience and comfort
features. They serve as a gateway to AVs, even if they are initially designed
to only assist the driver, who remains in control of the vehicle. Renault’s goal
for AVs is to change the car driving experience by reducing the risk of accidents
and making commutes less stressful and more productive. Renault Group has
launched pilot projects to study the behavior of autonomous Renault vehicles.
I had the opportunity to do the thesis in collaboration with Renault and Kairos,
a joint team between Inria and I3S Laboratory. This thesis helps to support
these studies by providing a language to inspect rule violations and inconsisten-
cies. It helps safety experts improve, modify or even add their own safety goals.
At Renault, I am part of the ADAS team managed by Guillaume Menez. My
supervisor is Dr. Nour Zalmai. I also work in the Kairos research team led by
Robert De Simone and my work has been supervised by Pr. Frederic Mallet with
the assistance of Dr. Ankica Barisic.
Kairos works on methods and tools for temporal constraints at different levels of
abstraction. More specifically, the team promotes the use of logical (formal) time
from requirements to analysis and is interested in Model-Based Design approaches
where analyses are conducted on models before generating various artefacts for
simulation, monitoring or verification. These MBSE approaches are a solution to
verify security and safety in the field of AVs. Kairos goal, however, is to benefit
from all the industry-grade knowledge and experience embodied in these mod-
els and environments. This thesis exposes the need to complete and harmonize
these models and their associated DSML representation, to achieve operational
semantic continuity.

7

1.4 Thesis contributions and outline

1.4.1 Research contributions

The motivation of this work is to provide a systematic methodological approach
using DSML to evaluate the functional safety requirements of AVs targeting safety
experts. The design science methodology [23, 24, 25] fosters the creation of arte-
facts that are driven to problem-solving projects. Wieringa [26] regards design
science projects as a set of nested regulative cycles that solve practical (i.e. engi-
neering) and knowledge (i.e. research) problems that are decomposed into sub-
problems. The preceding pages explained the industrial context and the need to
define a DSML for AVs. The hypothesis that is verified in this thesis is that it is
possible to integrate the Safety domain and DSMLs to carry out safe operational
systems.

• To answer RQ1 when bringing integrating the Safety domain in the model-
ing language, it is necessary to check that we fuse the mandatory elements
and share vital terminology. For this, the first contribution of this thesis is
to propose a conceptual model using DSML for defining AVs environment
to evaluate the safety, which we called Extensible Platform for Safety Anal-
ysis of AVs (EPSAAV) presented in Chapter 3. The use of DSML enables
fast prototyping of AV’s environment by using a metamodeling structure
[27]. Endowed with formal semantics it brings a possibility to assess AV’s
environment before generating a conforming monitor. Therefore it makes it
possible to define the safety goals, corresponding to a deliverable required
by the SOTIF standard.

• The second contribution of this thesis that answers RQ2 is a methodology
implemented in the DSML that supports the analysis of safety requirements
and validates safety experts’ choices and helps them in the development
process (Chapter 3).

• The question then arises whether the safety goals can lead to violations and
be used to detect ambiguities from the defined requirements. Our third
contribution is complementary to the second one and responds to RQ3
(presented in Chapter 4). The safety of the intended functionality, where
intended means specifications, another deliverable required by ISO/PAS
21448, is an extracted view of this process. This contribution leads to
determining Safety Analysis of Violations and Inconsistencies (SAVI) as an
iterative process to modify the defined requirements described in Chapter
6.

• The last question addressed here is whether or not the safety goals are
consistent and actually express the intention of safety engineers. Our fourth

8

contribution is complementary to the second one and responds to RQ4
(presented in Chapter 5). We study rules inconsistencies to verify sequential
and parallel rules. This contribution leads also to a Safety SAVI process by
modifying the defined requirements (Chapter 6).

1.4.2 Outline

Figure 1.1: Research process overview.

This thesis is divided into the following major parts as presented in Figure
1.1:

• context and related work that detail the problem definition in Chapter
2. We introduce the reader to the context of safety. It is followed by a
description of the methods and standards for safety specifications where we
analyze the related approaches. We also introduce the context of Model-
Driven Engineering where we present Domain-Specific Modeling Languages
(DSMLs) and their life cycle. This Chapter also highlights the scope of
related works, their benefits, and shortcomings for solving the problem
addressed in this thesis.

• proposal of a systematic approach

– Chapter 3 introduces concepts and technologies that are crucial for the
argumentation of our proposed solution using DSML. It presents the
Extensible Platform for Safety of AVs (EPSAAV) conceptual frame-
work as a proposed solution to the given problem. This takes into

9

account AV’s environment and also follows up with the experimental
model for DSML and patterns for usability. The proposed DSML gen-
erates human-readable documents and monitors to be carried out in
the following Chapters.

– Chapter 4 describes how monitors are generated by the proposed tool
EPSAAV and interfaced with the simulator used in Renault and called
FusionRunner. Based on this adaptation engineers can analyze viola-
tions and detect ambiguities in the requirements.

– Chapter 5 describes our verification engine based on a SAT Solver to
detect inconsistencies in the rules themselves and help safety engineers
build meaningful ones.

• applicability of proposed approach: Renault’s use case

– Chapter 6 shows the feasibility of our approach and introduces a case
study inspired by Renault’s internal process. This study illustrates
how the SAVI process works.

Finally, Chapter 7 discusses possible future work and concludes the thesis.

10

Chapter 2

Background and State of the Art

2.1 Introduction

The Autonomous Driving (AD) domain in a wide range of components leads to a
situation where safety needs become increasingly demanding and complex. There
have been many accidents and fatalities by self-driving vehicles which caused a
debate about the current limitations of the technology. Car manufacturers are
therefore faced with a growing demand for safety assessments in the behavior of
their vehicles. All critical systems, such as AVs, do not only depend on an array
of electronics, sensors, and computer systems, they also require strong safety and
functional requirements to ensure these systems work as intended and are built
to mitigate risks. To show availability and service guarantee, computer systems
inside modern automated vehicles must be highly responsive to the external en-
vironment. Several standards have been provided to automotive companies to
develop safer systems. We mention about the benefits of Domain-Specific Mod-
eling Language (DSML) to accompany the design process and help build better
safety requirements.

In this Chapter we introduce the safety standards ISO26262 [28] for Functional
Safety (FuSa), and ISO/PAS 21448 the Safety Of The Intended Functionality
(SOTIF) [29] used for AVs. We then compare both standards and talk about
how SOTIF can ensure and complement FuSa. We talk about the methods used
in these standards that safety engineers apply to evaluate safety. We describe
the Model-Driven Engineering (MDE) technology used in the thesis, and how
we introduce the concept of a domain using the life-cycle of Domain-Specific
Language (DSL). Our goal is indeed to build a DSML for safety analysis enabling
Model Testing (MT).

11

2.2 Overview automotive safety approaches

Many approaches to evaluate safety are currently being used in the automotive
industry. The most famous four are the following:

• The first one is ”The Miles Driven” to show that systems can perform
autonomously without failure on the roads for a very large number of kilo-
meters (or miles). It is also called ”Data-Driven Safety” to show that
self-driving cars are somewhat better than human drivers. This approach
is problematic because we need a huge amount of miles to be driven, 30
billion miles [12], to have enough statistical evidence.

• Another approach called ”Disengagements”, is when the driver either takes
control when the autonomous software requests him, or when he feels the
need to intervene. In 2017, Waymo drove 563,000 kilometers in California
and experienced 63 disengagements for a rate of roughly one disengagement
every 9,000 kilometers [30]. The primary causes of the 63 Waymo disengage-
ments in order of frequency, were unwanted vehicle maneuvers, perception
discrepancies, hardware issues, software issues, behavior predictions, and
finally, a single case of a reckless road user. It’s clear that the core tasks of
perception, prediction, and behavior planning remain challenging problems,
and much work still needs to be done.

• A third approach is ”Simulation” to build a virtual world, sometimes called
digital twins, within which the AV’s software is driven miles as a way to
achieve the huge “Miles Driven” targets that would be needed to make a
statistical claim on the safety of the AV’s decision-making capabilities. The
problem with this method is that validating that the simulator faithfully
represents reality is as hard as validating the driving policy itself. In [12]
they proved that even if a simulator has been shown to reflect reality for
a driving policy, it is not guaranteed to reflect reality for another driving
policy.

• Another approach of ”Scenario-based Verification” is a combination of using
The Miles Driven and Simulation approaches. It claims to assure an AV’s
ability to make safe driving decisions. The basic idea is that if only we could
concentrate on all the possible driving scenarios that could exist in the entire
world where the AV is exposed to several environmental conditions. This
diversity can be covered via simulation or even on closed track testing or
on-road testing, and as a result we can be confident that the AV will only
ever make safe driving decisions [12].

The most realistic approach to assessing safety is applying scenario-based testing
via simulation and real-data scenarios.

12

2.3 Safety standards for AVs

In this Section, we discuss existing safety frameworks for automotive and low-
level autonomy feature development, which are often used in assessing hardware
and software failures in AVs. Many institutes and laboratories are aiming to
work for AV safety standards such as IEEE and the Underwriters Laboratories.
In this thesis, we are interested particularly in two international standards: the
Functional Safety (FuSa) approach described in ISO 26262 and the Safety Of The
Intended Functionality (SOTIF) approach that elaborates on ISO 26262 and is
defined in ISO/PAS 21448.

2.3.1 ISO26262 FuSa standard

Figure 2.1: Overview of ISO 26262 in [1]

Let us start with the basic chests and concept of ISO 26262 Functional Safety
(FuSa) of electrical and/or electronic systems [28]. FuSa is the absence of un-
reasonable risk from malfunctioning behavior caused by failures of hardware and
software in a car, or unintended behaviors arising with respect to its intended

13

design. FuSa addresses the hazards that can affect AV safety. It does not address
hazards related to electric shock, fire, smoke, heat, radiation, toxicity, flammabil-
ity, reactivity, corrosion, the release of energy, and similar hazards, unless directly
caused by malfunctioning behavior of E/E safety-related systems [1]. We give the
example of a malfunction occurring during inadvertent braking. This serious case
can injure or kill people in the car or around the car, and ISO 26262 cares about
how to avoid this malfunction in an Electronic Component Unit (ECU) or even
on communication between ECUs, and if these kinds of malfunctions occur, this
standard proposes how to mitigate them to save people’s lives.

The functional safety process is presented in an overall structure Figure 2.1.
ISO 26262 is based upon a V-model as a reference process model for the different
phases of product development. The shaded V represents the interconnection
between the concept phase, the product development at the system, hardware,
and software level phases, and the production and operation phase. We describe
here the advantages of the ISO26262 standard.

• ISO26262 is a development method that improves previous workflows by
testing components before deployment.

• It provides an automotive safety life-cycle. This life-cycle consists of the
following management, development, production, operation, service, and
decommissioning phases. It supports tailoring the necessary activities dur-
ing these life-cycle phases.

Figure 2.2: Automotive-specific risk-based approach called ASIL to determine
integrity levels.

• ISO 26262 includes guidance to avoid these risks by providing appropriate
requirements and processes.

• ISO26262 provides an automotive-specific risk-based approach to determine
integrity levels, called ASIL presented in Figure 2.2. For example, a haz-
ardous event combining S3 (fatal injury), E4 (high probability), and C3
(uncontrollable) is assigned to the ASIL D level. For many positions, there

14

is no ASIL level assigned, and Quality Management (QM) is listed instead.
It means that there is no requirement to comply with ISO 26262 but the
product must be developed in accordance with a QM process approved in
an international standard such as NCAP [31]. It uses ASILs to specify
applicable requirements of ISO 26262 to avoid unreasonable residual risk.
ASIL replaces the concept of IEC 61508’s SIL [32] which is based on the
probability of failure per hour of use. In ISO 26262 the events that could
cause injury are listed, and an ASIL is calculated (according to the table
proposed in the standard). Three aspects are considered:

– Severity (S0 to S3): classifies the type of injuries that could result
from this event;

– Probability of Exposure (E0 to E4): the probability that the event
occurs in normal operation;

– Controllability (C0 to C3): classifies the difficulty of the driver to
control the situation and avoid injury.

In this thesis, we focus on Part 6 which shows the ISO 26262 phase model for
the product development at the software level in Figure 2.1. Part 6 deals with
Software (SW) and includes tables of recommended (+) and highly recommended
techniques (++) for different phases of the development process and each Auto-
motive Safety Integrity Level (ASIL). The left side of the cycle covers the SW
Requirements, SW Architecture, SW Detailed Design, and Code/Model Imple-
mentation. These phases are covered in the thesis by the proposed tool that
follows the same cycle. EPSAAV language is a Domain-Specific Modeling Lan-
guage that follows the DSL life-cycle presented in the following Section 2.8, for
the safety domain presented in the ISO26262 life-cycle in Figure 2.1. On the right
side of the cycle feature the software unit test and verification phases. Each of
these phases aims to verify and validate if the corresponding design phase is im-
plemented as required. The V model aims at maintaining the phases by tracing
them.

2.3.2 ISO/PAS 21448 SOTIF standard

SOTIF has appeared as a new standard called ISO/PAS 21448 [29] to cope with
the second edition of ISO 26262. SOTIF also talks about safety but it must be
separated from functional safety. It is the absence of unreasonable risk due to
hazards resulting from functional insufficiencies of the intended functionality or
by reasonably foreseeable misuse by persons. We stop at SOTIF to talk about
car faults and focus on the exterior of the car that can cause dangerous behaviors.
One of the reasons for these dangerous cases can be functional deficiencies (such as
bugs in the camera system resulting in no detection) and also foreseeable misuse
by people (such as telling the driver to take over the wheel). The Operational

15

Design Domain (ODD) of the function consists of several use cases that contain
trigger events related to external factors such as environmental conditions, road
conditions, traffic conditions, or driver misuse. The hazards arising from these
initiating events, when combined with specific operational scenarios, may lead to
hazardous events that can result in damage.

Scenarios that may be encountered in the ODD of any automated driving
function can be categorized as shown in Figure 2.3. In this thesis, we look at the

Figure 2.3: Evaluate safety for known/unknown safe/unsafe scenarios.

area 2 that is the known unsafe scenarios. The diagram in Figure 2.4 provides a
graphical view of how all scenarios that may be encountered by an autonomous
system in the field are categorized, also taken from [33]. At the start of SO-

Figure 2.4: Evolution of scenario categories using SOTIF.

TIF activities, the area covered by the known or unknown dangerous scenarios
is large, which leads to an unacceptable residual risk. The objective of SOTIF
activities is to identify and reduce the number of hazardous scenarios such that
the residual risk falls to an acceptable level. The objectives of SOTIF activities

16

are to maximize or maintain zone 1, minimizing zones 2 and 3. This maintains
or improves the safe functionality. By identifying risks arising from known haz-
ardous scenarios and implementing technical measures to improve function, we
can minimize area 2. Once the measures have been evaluated through testing, the
scenarios can be moved to area 1. By executing operations tests to validate and
identify unsafe scenarios, unknown unsafe scenarios are minimized and moved to
the second area. SOTIF activities provide an argument that the residual risk is
acceptable. In this thesis, the main objective was to create a language to build
and verify all requirements of known unsafe scenarios. Another advantage of
SOTIF is that this standard presents an openness to new ideas by not providing
details on how the process takes place. It gives high-level guidance to show the
right direction but does not detail how exactly it should be done.

2.3.3 Combining FuSa and SOTIF to cover safety

Figure 2.5 shows what SOTIF can add to ISO 26262, and why we need more than
one standard to cover all the risks and hazards related to automated functions.
SOTIF requires scenario-based testing since it takes into account environmental

Figure 2.5: Overview automotive safety: FuSa and SOTIF.

conditions that can only be described in scenarios, unlike ISO 26262 which re-
quires requirements-based testing since it describes failures that occur from the
E/E systems and can be translated in form of requirements. Requirements-based
testing was the main safety workhorse for a long time. It is a testing approach in
which test cases, conditions and data are derived from requirements [34]. Figure
2.6 shows the typical design process for requirement-based testing workflow. It
encompasses dividing requirements into small pieces creating an implementation
model, and in parallel creating test cases that we call test vectors, and expected
outputs. Test vectors and the expected output are designed in a requirement
model in which we specify a reference model to early validate requirements. This
implementation and expected outputs are used to verify the behavior of the actual

17

Figure 2.6: Traditional requirement-based testing workflow.

implementation. We can find many issues regarding this type of testing. First, it
is difficult to measure the completeness of test cases against requirements. Sec-
ond, it is very hard to tell if all test cases have covered all requirements in the
implementation model, Finally, there is no way to verify all requirements inde-
pendently of the implementation, so we are only showing how are we going to test
unlike what to test. Now that we have identified that we can not put everything
happening in the outside world only in the requirements, and the description of
situations in the environment is not complete, then we can come to the end of
this methodology to ask what is the value of the tests based on the requirements.
Requirement-based testing comes to its limit. Scenario-based testing is a new
methodology of testing to distinguish all situations and classify them. Auto-
mated driving needs to address the complexity of the outside environment and
integrate it into the test cases for verification and validation to cover all scenarios
and make them safe. This can work by classifying all critical parameters into dif-
ferent boxes to reduce testing efforts. The scenario-based testing approach comes
to validation at the higher level to see that the final product has been achieved,
and at the lower level, we have to use the requirements.

FuSa defines safety by creating item boxes around ECU sensors and alerting
the system when faults occur inside to prevent cascading to the outside, un-
like SOTIF which cares about the outside environment that leads to accidents
or dangerous scenarios. So basically both standards study safety using goals to
define requirements, but the techniques and methods are different. Comparing
FuSa to SOTIF, FuSa has targets for certain hardware metrics, unlike SOTIF
where the engineers has the freedom to choose the metrics they need to achieve
a safe function and to provide an acceptable risk. The Society of Automotive
Engineers (SAE) has defined six levels of automation [35]. The taxonomy for
driving automation (see Figure 2.7) can be roughly understood as Level 0 with-
out automation; Level 1 hands-on/shared control; Level 2 hands-off; Level 3 eyes

18

closed; Level 4 mind off, and Level 5 steering wheel optional. L1 performs ei-
ther longitudinal or lateral control, unlike L2 which performs both at the same
time. Examples include adaptive cruise control (ACC) and lane-keeping assist
(LKA). L2 represents partial automation such as Nissan Pro Pilot Assist. Level
L3 performs object and event detection and response (OEDR). At this level, the
driver does not need to pay attention to the driving task. He automatically re-
ceives alerts when he needs to take back control of the vehicle. L4 and L5 are
the higher levels where the vehicle can handle emergencies autonomously and
the driver can concentrate on other tasks. The industry knows how to manage
L1 and L2, so the engineering part is not so challenging for SOTIF. At the first
level, accelerating and braking are easy and simple functions to understand what
is their implication. SOTIF becomes a concern and a challenge for other levels
of driving automation, because we ask how many scenarios are covered when the
car is highly automated since testing real data may take too many miles, so we
have to find measures to replace them.

Figure 2.7: Taxonomy for driving automation.

Traditional FuSa always assumes that something goes wrong in the system
and is not safe, and SOTIF thinking is earlier than FuSa thinking because it
asks the question of whether a safe defined function for the client could fail and
does not work as it is supposed to. With ADAS technologies, SOTIF comes to
the rescue by giving engineers the ability to design systems that cannot harm or
endanger people. As the automated levels arise, it is not so easy to ignore any
implications a function might have and that’s where the SOTIF idea comes in to

19

ask if that function as is defined is safe or not. Malfunctions become misuses and
are not defined in an Excel spreadsheet or a table of cases to decide whether it
is safe or not. With ADAS/AD functionalities, the list seems endless, taking the
case of traffic variations or the example of emergency braking assistance. If we
want to make it safe according to ISO 26262, implementing emergency braking
must not harm anyone. It is supposed to brake before hitting an obstacle so that
all participants such as bicycles, pedestrians, or cars are safe. We can now define
the function and ask when to start braking and how strong. In some situations,
this may not be appropriate, for example, if we are braking hard and someone
is behind they could also hit us. Thus, the action defined for braking assistance
which has as its main idea not to hit someone in front is perfectly correct, but
it depends on the comfort we want to give to the driver. Another topic comes
for false positive and false negative braking while assuming we have the perfect
environment, we can handle these situations as well. It is important to equalize
all functions by updating SOTIF to minimize the overall risk. If we find out
that this minimization and the updated risk of the improved functions are not
sufficient, then additional measures are necessary. SOTIF makes the system safe
by asking the question is it safe in the first place and comes out with the result
showing the risk and proposing the engineer take it or optimize it further.

2.4 Hazard And Risk Analysis (HARA) tech-

nique to evaluate safety

Safety is the absence of unreasonable risk of harm. By risk, it is the probability
of having harm with a certain severity. The hazard is the potential source of
unreasonable risk of harm, for example, if the system software has a bug that
can potentially cause an accident, the software bug will be the hazard. Sources
of hazards can be mechanical, such as an incorrect assembly of a brake system
can cause a premature failure. They can be electrical, such as faulty internal
wiring leading to a loss of indicator lighting. They can also be hardware (failure
of computing hardware chips used for AD), software bugs, or even bad or noisy
sensors or inaccurate perception. Hazards can also arise due to behavioral in-
correct planning or decision making. It is also possible that the fallback fails by
not providing enough warnings to the human driver to resume responsibility, or
maybe the AD system gets hacked by some malicious entity.
Hazard And Risk Analysis (HARA) is the process commonly found in ISO 26262
based projects. It is an effective systems engineering analysis technique to ensure
functional safety. When it comes to SOTIF, the process is quite similar to FuSa.
Since SOTIF deals with function limitations, no malfunctions are considered in
the scenarios. SOTIF also starts by analyzing the system regarding hazards,
which is so much alike between these two standards. The first step is basically

20

the same thing. In SOTIF, HARA is applied by finding root causes and cov-
ers reasonably foreseeable misuses that are not covered by ISO 26262. The root
cause is something SOTIF treats unlike ISO 26262. SOTIF considers the con-
dition of the environment of the overall situation that triggers the system to do
something inappropriate. We can take the example of an antenna failure, which
is a malfunction treated by FuSa. The loss of communication is a case of misuse
treated by SOTIF. For SOTIF, it is important to limit the list to just the failure
scenario at the function level without defining the source of the failure. This
is why SOTIF comes as a complementary standard for FuSa. The operational
scenarios in which the functional faults are to be analyzed are defined. These
scenarios shall be a combination of the below three factors:

• What is the vehicle doing (accelerating, decelerating, etc..)?

• Where is the scenario happening (type of road and weather conditions)?

• What is the environment of the AV (obstacles, construction zone, etc..)?

This activity captures the various scenarios and environmental conditions that
might be hazardous for the AV so that the safety risks associated with each use
case can be analyzed.

2.5 Formalization of safety requirements

Formalizing the requirements has the potential to dramatically reduce the proba-
bility of system failures during the development of automotive embedded systems
[36]. We can have three levels of languages.

• Natural language that is a language anyone can use. They are easily un-
derstandable and they evolve naturally. Dealing with safety requirements,
experts try to impose some order on them so they can define their way of
ensuring safety. Many disadvantages arise from using natural languages.
They are full of ambiguities, which people deal with by using contextual
clues. In order to make up for ambiguities and reduce misunderstandings,
natural languages employ lots of redundancy [37]. As a result, they are
often verbose.

• Formal language is designed by engineers for specific applications. It is
meant to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of the context. For example,
the notation that safety experts use is a formal language that is particularly
good at denoting requirements. Formal languages must have strict rules
about syntax. They are less redundant and more concise. The main hurdle
faced in using formal languages is the ability to learn how to use them. Users

21

will have to learn and follow a strict guide to understand fully the language’s
grammar rules. The rules being more formal than with natural language
usage, it usually takes longer to read a program because the structure is
as important as the content and must be interpreted in smaller pieces for
understanding.

The software safety requirements sometimes are non-formalized and expressed in
natural languages. At the software architectural design phase (seen in Figure
2.1), many use semi-formal modeling language (such as UML [38, 39]) to support
the design and analysis of safety. However, at the software unit design phase,
tools like Simulink are effectively used for prototyping, simulation, and code gen-
eration [40]. Semi-formal languages impose strict grammatical rules but do not
always give a unique semantic interpretation. Formal languages require to have
a strict semantic interpretation for each rule.
Four ASILs are defined in ISO 26262: ASIL A, ASIL B, ASIL C, and ASIL D,
where ASIL A is the lowest safety integrity level and ASIL D the highest one [41].
ISO 26262 recommends formalization and semi-formalization techniques to de-
termine higher ASILs for the hazards. Once the risk parameters are determined,
ASILs will be assigned to the hazardous event from the standardized matrix pro-
vided in the ISO 26262 standard.

In this thesis, a new approach for the formalization of safety requirements is
introduced, targeting the demands of safety standard ISO 26262. By following
the proposed approach, we meet the obligations of ISO 26262 to write e.g. un-
ambiguous, consistent, verifiable, and complete requirements. The formalization
we follow was built in two steps, first by defining an operational interpretation
by providing a unique transformation from the rules into C code. Second by pro-
viding a unique logical interpretation by transforming the rules into first-order
predicates. The operational interpretation is used to derive monitors and study
inconsistencies by running code on different scenarios. We use Xtext technol-
ogy [2] to define the syntax of the language. By using the proposed approach,
it becomes easier to produce proof by providing a formalization of each of the
steps in the implementation of safety as required by ISO 26262. We accredit
the goals in ASIL-D highly recommended by ISO 26262 to achieve formal safety
requirements.

2.6 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is a software development methodology that
focuses on creating and exploiting domain models, which are conceptual models
of all the topics related to a specific problem [42]. Hence, it highlights and
aims at abstract representations of the knowledge and activities that govern a

22

particular application domain, such as in this thesis, is the Safety domain. The
MDE approach has many advantages such as:

• increasing the productivity by maximizing compatibility between systems,

• simplifying the process of design via models in the application domain, in
our case Safety domain, and

• promoting communication between individuals and teams working on the
system.

• promoting robustness to changes. When a change in a requirement occurs,
parts that are not affected are reusable. However, an update is required for
the changing parts, which requires tool support.

Actors as important as the Object Management Group (OMG) [43] and the
Eclipse ”Eco-system” propose a set of techniques and/or tools based on mod-
els for software development. Some of the better-known MDE initiatives is the
Eclipse Modeling Framework (EMF) for programming and modeling tools which
we use in the thesis [44]. This framework allows the creation of tools implement-
ing the Model-Driven Architecture (MDA) standards of the OMG [45]; but, it
is also possible to use it to implement other modeling-related tools. The idea of
using MDE is to present levels of abstraction for developing systems. The main
activity is to design models instead of directly developing code and following a
more precise methodology. This helps define steps before attacking the develop-
ment part, and the developers are alerted of what is done at each step and how by
detailing the methodology. Capturing the requirements is an important thing to
take into account while defining the abstraction. Use cases come to detail how to
achieve the abstraction and describe the problem [46]. Feature oriented-diagrams
also play a key role in that [47].

At each stage of an MDE process, quality management information could be
integrated, such as verification, validation, and test case generation as promoted
by the SW V-model as shown in Figure 2.1. Verification is to verify if a more
concrete model does not break the specification promoted by its abstract specifi-
cation model. A validation can allow system developers to instantiate prototypes
from intermediate models to test their functionality before full system implemen-
tation. Automatic test case generation can produce result scenarios, thus making
it possible to test its actual implementation, for example in [48].

An MDE process should thus define:

1. levels of abstraction, abstract syntax, and concept domains for each level;

2. the refinements and additional information in the lower level of abstraction
that is represented in a concrete syntax;

23

3. how code is generated for the modeling language and how to deploy the
code represented in semantics;

4. how can a model be verified and validated following the upper-level models.

Metamodeling technique [49] allows methodologists define precisely a class of
models or domain concepts that define level of abstraction. It defines a modeling
language by specifying its abstract syntax, eventually along with its semantics.
Concrete syntaxes come along with this abstract syntax to give the user the ca-
pability to view and modify models using different modeling notations. Model
transformation technique [50] allows methodologists to define relationships be-
tween models, and to add refinements on them. It gives the possibility to verify
concrete models. Code generators technique is needed to map a model to some
textual files, that constitute the operational semantics.

Figure 2.8: Language development structure defining abstract and concrete syn-
tax with artefacts generation.

A significant issue is the current lack of a tool-independent solution and proper
modeling notations to fully specify how to generate test cases from models, how
to perform validation and deployment, and how to describe those models.

The standard MDE uses artefacts for defining a language’s syntax (using
metamodels) and its operational semantics (using model transformation) as seen
in Figure 2.8. The language’s syntax helps for formalizing the AVs’ environment
and requirements using Xtext technology [2]. The operational semantics are
defined to generate monitors to verify the inconsistencies between the rules and
check ambiguities in violations (using code generators). They are defined using
Xtend framework [51].

All of these technologies used in the thesis to define the MDE process are
grouped in the Gemoc initiative integrated with the Eclipse Gemoc Studio [52].

24

We detail these technologies in Chapter 3 Section 3.3.1. Examples of MDE pro-
cesses and applications are provided in the following Chapters and appendix A.

2.7 Model-Driven Architecture (MDA)

Model-Driven Architecture (MDA) is a software design approach for the develop-
ment of software systems. It is an OMG initiative that provides a set of guidelines
for the structuring of specifications, which are expressed as models. MDA is a
domain engineering that supports the MDE of software systems. It separates the
specification of the operation of a system from the details given by defining a
specification architecture. MDA is entirely implemented by means of models and
model transformations.

To promote MDA, OMG including many US organizations joined to create
the Unified Modeling Language (UML) standardization process. It was born
from a unification concern regarding object-oriented modeling languages and was
spread in many interesting languages (OMT, Booch, etc.). UML is a set of
coherent modeling notations that can capture requirements using case diagrams
and data structure using object diagrams with constraints. Many motivations to
use UML are documentation, communication between actors of the project such
as architects and developers, prototyping, abstraction, code generation, UML was
first proposed as a universal language, and later new extensions were proposed to
add notions to the UML. MDA community opted for a Domain-Specific Language
(DSL) and OMG proposed new standards for modeling languages definition.

2.7.1 Metamodeling

Figure 2.9: MDE process

As seen in Figure 2.9, a metamodel is a model about models. Many existing
definitions may be found, but in the context of this thesis, we will consider meta-
models as the specifications of the abstract syntax of a language. The abstract

25

consists of having a vocabulary and properties to each domain concept or object,
and relations between them that constitute the taxonomy. A metamodeling lan-
guage that has an abstract level has certainly a metamodel. In the context of
this thesis, we use Eclipse Modeling Framework (EMF) [44] that permits us to
describe the abstract syntax of modeling languages. EMF goes beyond storing
models by applying code generation and generating storage artefacts for models
with a specific API to make it possible to manipulate changes in the model. The
language in which the metamodel is defined is called Ecore. Ecore is an essential
part of EMF. Your models instantiate the metamodel, and your metamodel in-
stantiates Ecore. The metamodel is the Ecore model of your language. In EMF a
model is made up of instances of EObjects which are connected. An EObject is an
instance of an EClass. A set of EClasses can be contained in a so called EPack-
age, which are both concepts of Ecore. EClasses can have EAttributes for their
simple properties. These are shown inside the EClasses nodes. We can take the
example in Figure 2.10 taken from [2] where we show Model, Type, SimpleType,
Entity, and Property as EClasses.

Figure 2.10: Metamodel in EMF taken from [2].

2.7.2 Model transformation

Model transformation is the second important technique of MDE. It makes it pos-
sible to build bridges between modeling languages for dedicated purposes. They
can cover a full exploration and manipulation of models. To define the language
and cover the concepts of models, we need to specify their concrete syntax. A
concrete syntax can be textual to describe particular representations of models,
graphical which uses graphical icons (e.g., tree-like) to show the elements of the
model and relations among them or both of them. Sirius [53] and Xtext [2] can
specify the graphical and textual concrete syntax respectively. Sirius could be
used in the concept of this work. It is a visual language that describes a set of
visual sentences given by a set of visual elements. This improves readability and
usability. In this thesis, we use Xtext for the concrete definition of the models. It

26

is possible to have several different concrete syntaxes for the same abstract syn-
tax [54]. Moreover, it is possible to apply the same concrete syntax for different
abstract syntaxes since the concrete and abstract syntaxes are separated. Xtext
relies heavily on EMF internally and uses EMF models as the in-memory repre-
sentation of any parsed text files. It acts as an interface between the instances of
the concepts and the domain user is supposed to produce them.

2.7.3 Code generators

To define a language we need to specify semantics that results in artefacts. An
example of such an artefact is program code, which can be compiled into an
executable file. To do so, there exist several code generators from models. Xtend
technology helps generating artefacts in form of a monitor and verification engine,
and even documents using generators. Xtend is a statically-typed programming
language that translates to comprehensible Java source code. The benefits of
code generation are the following :

• productivity: with code or text generation, we only need to write the
generator once. It saves time as it can be reused as many times as we need.

• simplification: the source of truth is the abstract description in the meta-
model and not the code. Instead of analyzing and comparing the whole
generated code, the engineer can replace the developer by only accessing
the model.

• portability: targeting different languages or frameworks is not a burden
anymore. Changing the generator is a solution; for instance, with a parser
generator, C#, Java, and C++ parsers are generated with small modifica-
tions. The same abstract syntax can be used to generate different types of
artefacts.

• consistency: We systematically apply generation rules so consistently
across a model. The generated code or text follows the user description
and applies the same methods defined, such as creating domain concepts
and defining naming rule matches. The quality is consistent throughout the
whole model as it is done systematically. With written code, the industry
distributes the tasks to different engineers and developers. With generated
code or text, they are replaced with one engineer who defines the rules and
the related transformations.

2.8 Domain-Specific Modeling Language (DSML)

A Domain-Specific Modeling Language (DSML) is a language that supports solu-
tions to crucial problems in a given dedicated domain using models. As prescribed

27

by the DSL community, MDE promotes the usage of various ”small” dedicated
languages. In this thesis, as we are dealing with the Safety domain, using DSML
intends to raise the level of abstraction closer to safety users’ domain under-
standing. Unlike a General Purpose Language (GPL), such as Java or C meant
to apply to multiple domains, a Domain-Specific Language (DSL) offers the end-
user the ability to express their needs in terms of the problem domain rather than
of computational solution [55]. DSL provide a notation tailored towards an ap-
plication domain as they are based on models of relevant concepts and features
of the domain [14]. They give an expressive power to model the requirements
more easily and simplify the development of applications in specialized domains.

DSL offers important advantages over a GPL [56]:

• Abstractions: providing abstraction level to represent domain concepts from
the application domain;

• Concrete syntax: providing natural notation for a given domain and avoid-
ing the syntactic clutter;

• Error checking: enabling building static analyzers that can find and report
more errors in a language familiar to the domain expert;

• Optimization: creating opportunities for generating optimized code based
on domain-specific knowledge;

• Tool support: creating opportunities to improve any tooling aspect of a de-
velopment environment, including editors, debuggers, etc.; domain-specific
knowledge can be used to provide the smarter tool support to developers.

The use of MDD techniques and tools is considered a viable approach to
address accidental complexity [57]. MDD transforms the explicit models into
other lower-level models considered as development artefacts using model trans-
formation. This transformation approach deals with the complexity of large-scale
problems enabling prototyping, simulation, and validation and verification tech-
niques [16].

A DSML provides interfaces for activities such as model execution. It also
provides a structural way to define a concrete and abstract DSL through the
use of a meta-modeling environment. It facilitates rapid development but is
at the same time somewhat restrictive. It produces similar results to the IDE
design style, although it is significantly more sophisticated. Different tools and
platforms are now being defined to support DSL implementation and processing,
such as, Microsoft DSL Tools [58], Generic Modeling Environment (GME) [59],
and Epsilon [60] based on GMF/EMF [61, 44].

28

2.8.1 DSL stakeholders

Many DSL stakeholders exist in the application of the SW language.
The Language Engineer manages the implementation and design of a functional
SW language. They are involved in the language specification, implementation,
and evaluation, as well as in providing templates and scripts [62].
The DSL User or Domain User is a person who uses the DSL to create applica-
tions [62].
A Domain Expert is the person involved in the language development process.
He is an expert in systems software development. He is a person with special
knowledge or skills in a particular area of endeavor.

DSLs are usually built by Language Engineers in cooperation with Domain
Experts [57]. Domain Users will use the DSL and are considered the target audi-
ence for it. Although Domain Users know the domain, they are not necessarily
as experienced as Domain Experts. They may also not have the experience of
Language Engineers in working with languages. Thus, it may turn out that the
language is valid by construction for Domain Experts and Language Engineers,
but not necessarily for other Domain Users. Neglecting domain users in the
development process can lead to a DSL that they are not able to work with.

2.8.2 DSL life-cycle

Figure 2.11: DSL life-cycle taken from [3]

For the tool development in this thesis, we follow a DSL life-cycle detailed by
Völter [57], Mernik [14], and Visser [63]. The following list constitutes the DSL
or DSML development phases presented in Figure 2.11 taken from [3]:

• The Decision phase is the ”when” part of DSL development, while the
remaining phases are the ”how” part. Its purpose is to identify the need

29

for a domain DSL and its validity, which includes justifying that the effort
of investing in its creation can be compensated. To make the decision, do-
main experts and Language engineers should discuss domain requirements
following DSL development patterns.

• The objective of the Analysis is to define the domain model with DSL
support taking into account the terms and expressions related to the ded-
icated domain that will be explored. During this phase, domain experts
help language engineers define the domain concept description and the fea-
ture models, and the functional and technical requirements. The analysis
phase mainly produces a domain model which is the metamodel, represent-
ing the common and variable properties of the system in the domain [56].
The domain model will be used to facilitate the creation of configurable
architectures and components.

• The Design phase is a language engineer task in which he formalizes his
abstract syntax and defines representations and rules composition. The
engineers also specify the semantics of these rules. Traditionally, all car
software was written manually based on detailed low-level software require-
ments using natural languages. Today, the trend is to replace programming
with higher-level domain-specific languages. The principle is to model the
necessary functional behavior by simply adding library blocks and linking
them. The specification model obtained is then simulated by the designer
to check whether its behavior conforms to the specification. Once the spec-
ification model has been validated, there are two ways to integrate it into
the car component. The oldest way is to use the model as a software spec-
ification and manually write the code corresponding to the model. This
method can be error-prone and time-consuming. This is why the preferred
method today is to transform the specification model into a design model
that can be used to automatically generate the target code. The formal
nature of DSL is previously described in Section 2.5.

• The Implementation phase integrated the DSL artefacts with the infras-
tructure and all the necessary implementation to the platform transforma-
tions. A DSL can be implemented by different approaches, for example,
model checkers and simulators in order to help the interpreter or the mod-
eler validate the specified model and requirements.

• The Deployment phase is the last phase where domain experts deliver
documentation to validate and understand the software.

• The Evaluation that should include the verification (testing if the right
functionality is provided by the DSL) as well as its validation (testing if
this DSL is right for its users) presented in [3].

30

2.9 Overview of existing safety solutions

Many existing solutions above have come up with new approaches that can be
validated offline without requiring the use of large test traces extracted from
hours of observations. One of these approaches is called Responsibility Sensitive
Safety (RSS [12]) and has largely inspired our proposal. S. Shalev-Shwartz, S.
Shammah, and A. Shashua have created a white-box approach for the interpre-
tation of safety assurance requirements. They have developed redundant sensing
systems in a complex environment. Besides the fact that a software change will
require new data collection, they lack a fundamental property: interpretability.
In case of an accident, we need to know why it has happened and who is respon-
sible, and possibly to prove that the autonomous driving systems took all the
precautions to prevent it. This model does not aim to guarantee that a vehicle
will not be involved in an accident, but rather to make explicit the assumptions
and driving policies under which it can guarantee the safety of the vehicle. This
model is also parametric in the sense that it needs some values that, as the authors
suggest, should be discussed between regulatory bodies and vehicle manufactur-
ers. However, this approach does not identify precisely the events involved and
does not include environmental conditions such as weather.

Sensor uncertainty dilemma has been handled using probabilistic models with
formal specifications [64]. A rule-based strategy was also designed to evaluate
sensors’ dependability [65]. Yet, the main problem of autonomous driving systems
perception is still not explored. In this thesis, we give the user the capability to
add parameters and specifications relying on the sensors and the environment, to
examine ambiguities.

An approach is adopted in [66] where they address the potential conflicts be-
tween safety and security properties. They considered safety and security prop-
erties during the design phases of a platooning autonomous system: from textual
specification, modeling, 3D simulation, embedded software to early prototyping.
This is interesting to combine the proposed approach with their framework to
automatically generate the two domains and evaluate them.

Many of the existing solutions use MBSE approaches, but most of the studies
are done to create and generate new scenarios or review ones designed by other
experts [67]. They ease the scenario creation process but do not formal safety
rules descriptions. Furthermore, a SceML study was carried out [67] to create a
graphical model to generate new scenarios or test existing ones using Machine
Learning. They facilitate the scenario creation process, but not the formal de-
scription of safety rules. This is why we apply formal semantics to this approach
that allows specifying, designing, and analyzing the system. Mathematical rea-
soning can improve software reliability and dependability and is essential when
developing complex software systems.

Another solution is a modeling and simulation environment called STIMULUS
developed by Argosim that has been acquired by Dassault Systèmes [68]. This In-

31

dependent Software Publisher (ISV) develops and tests requirements in real-time
and helps system integrators and their suppliers in critical areas such as trans-
port, nuclear, and medical systems. STIMULUS also highlights inconsistencies
and ambiguities in requirements by validating them from the specification phase.
It also allows for the fast detection of incomplete or underspecified requirements.
Developers used MS Word (informal), SysML, and Papyrus. This solution is pro-
prietary and license-based. Unfortunately, what the autonomous driving world
needs is a standard accessible to all, open-source, with a formal semantic. Simi-
lar solutions to this exist, however, some of them do not offer a language subset
that can be used for scenario description. We can mention Measurable Scenario
Description Language (M-SDL) created by Foretellix [69]. Despite being released
openly (under Apache License, Version 2.0), the modeling and simulation tools
are proprietary solutions. In order to achieve standardization in the industry, we
need a whole ecosystem that is open-source.

Moreover, the language has some major downsides. For example, in M-SDL
there is no way to specify important details such as the key characteristics of a
sensor (sample rate, accuracy). This is important to understand the assumptions
made about the environment and how precise and accurate the decisions can be.
However, it is good to praise the good advantages of M-SDL. Its toolkit is capable
of generating combinations of scenario variants along with monitors to check and
track scenario coverage. In other words, with the simple description of one behav-
ioral scenario, the specification may represent hundreds of thousands of scenario
variations, each with slightly different conditions. Each of these scenarios will be
tested including edge cases. The tools also allow us to monitor and measure the
coverage of the autonomous functionality critical to proving autonomous vehicle
(AVs) safety.

In [70], the authors presented an Event-B model [71] for the exterior lighting
system case study. Their model takes into account all the requirements and has
been verified by proving a large number of properties. It is interesting to look in
detail at the requirements and try to adapt with the AV domain. They prove that
formalization leads to identify several small ambiguities in their requirements, and
is an effective technique to discover defects early in the software development
process. The Event-B model [72, 71] presents a formal method of verification
of transport systems is adopted, famous for its use by the RATP [73] on the
verification of trains. It would be interesting to combine these formal methods
to ensure that trains run safely within a given network in the use of AVs. In [74],
Finkelstein introduced the notion of inconsistency management and discussed the
use of first-order predicate logic as a formalism to introduce logical contradictions.
In [75], the authors use a propositional logic approach, similar to [74]. Both
studies present limitation of insufficient expressiveness and complexity associated
with expressing and translating software models in a logical formalism [76]. In
[77], A. Kreutzmann, D. Wolter, F. Dylla, and J. H. Lee have developed a software
tool based on the concept of proof-carrying code. It enables software developers’

32

verification for a formalization of collision regulations. This was done based on
Spatio-temporal logic that led to capturing complex navigation concepts with
software verification.

An MBSE approach is proposed by [78] to address safety and security. The
model is based on three viewpoints that enable the expressive language to assess
the properties of the system architecture. Those standards cover additional safety
perspectives but not for fully AVs since their environment is more complex and
complicated.

2.10 Conclusion

The need for automated vehicles (AVs) necessitates the establishment of a safety
assessment methodology for road approval authorities. Therefore, we have pre-
sented an overview of safety approaches and detailed safety international stan-
dards, FuSa and SOTIF, to evaluate safety. SOTIF can be considered as a com-
plementary standard for FuSa taking into account the misuse of environmental
conditions. We detailed the HARA, a common technique used in both standards,
that captures various scenarios that could be dangerous for AV so that the risks
can be analyzed. We described the formalization procedure recommended by the
ISO26262 standard to define rules and detect inconsistencies. SOTIF adopts a
scenario-based assessment, using real-world data or generated to use a scenario
database with scenarios that an AV might encounter when operating in real life.
We mention the MDE methodology that focuses on the creation and exploitation
of domain models. A level of abstraction and refinements are defined using a con-
crete syntax. A code generator is helpful to specify the semantics that generates
artefacts represented in monitors, documents, and verification engines. The DSL
life-cycle deals with the safety domain by enabling Test-Driven Development for
safety and focusing on detecting rules inconsistencies and ambiguities in scenar-
ios. It has significant advantages over GPL, such as optimization by creating
generated code based on safety knowledge and supporting that knowledge by
creating a gateway to the development domain.
The proposed methodology is based on what is previously mentioned to evaluate
the safety, focusing more on SOTIF standard. It enables the user to formally
specify requirements to check safety by generating a monitor, a verification en-
gine, and a document. This formalization process helps produce proof as re-
quired by ISO 26262 and accredits the goals in ASIL-D highly recommended by
ISO 26262. We mentioned what are the existing safety solutions and how our
proposed framework can be an extension of these works. The tool created is an
iterative approach that consists of improving the requirements after evaluating
the safety of the generated code.

33

Chapter 3

Proposal for an Extensible
Platform for Safety Analysis of
Autonomous Vehicles (EPSAAV)

3.1 Introduction

In this thesis, we want to take into consideration the aspects previously identified
in Chapter 2. MDE [42] promotes the use of models in the software life cycle.
The models consist in defining a level of abstraction which helps the developer
to concentrate on the model which constitutes the core business, and gives him
a better understanding of complex systems. Another activity is concretizing
the model by improving it to integrate details of the final system. MDE has
many advantages like providing means to automate the concrete mechanism, and
formalizing methods using formal specifications. Another advantage is involving
automatic code generation replacing writing code manually. We rely on DSML

Figure 3.1: Proposition cycle.

34

with the principles of MDE. We present a novel model related to the safety of
AVs. A simulation platform is designed to analyze the environment and the
trajectory of AVs within a given ODD.
Figure 3.1 shows the three sequential phases that constitute the proposition cycle
of the approach.

1. This platform depends on model-based systems and includes the AV’s en-
vironment, safety rules and their priorities, and execution scenarios. This
is considered the first phase of the cycle in Figure 3.1. The safety expert
needs to define all the environments and the conditions in libraries. He
also needs to describe the requirements in a rule-based planner. Building
libraries help to reuse the same constructs later on.

2. Once all the libraries are ready and instantiated using the formalization
tool created, our platform helps produce a human-readable document, a
monitor, and a verification engine. They are generated and constitute the
monitoring system.

3. Using the generated systems, the monitor is fed to a simulator to visualize
breaches and detect ambiguities from the formal specification, and the ver-
ification engine is analyzed by a SAT solver to detect inconsistencies within
the defined rules that seemed valid when expressed in a natural language
but have no actual logical interpretation.

Therefore, this platform helps to reevaluate the existing rules in two ways: either
by reconsidering rule priorities or by proposing new rules to be integrated into
the existing safety model. The validation and verification of the generated rules
follow a process based on the formal rules applied on real or simulated scenarios.
The developed platform helps the user define his formal rules. Thanks to this
approach, we also enable the detection of ambiguities and inconsistencies in real
or simulated scenarios.
It is important to differentiate the user process from the language development

Figure 3.2: Two-way views of the approach.

part. We present two perspectives of our approach in Figure 3.3.
First, we introduce general steps for user perspective in Section 3.2. We

detail how the user can use our approach and what he needs to do to perform
a safety assessment. Second, from a language engineer perspective detailed in
Section 3.3, we describe the necessary steps to implement the DSML. We detail
our metamodel and concrete syntax to generate monitors.

35

Figure 3.3: Two-way views of the approach.

3.2 User process

This Section focuses more on how the user can fill the files in the textual repre-
sentation and create the model from EPSAAV.
Figure 3.3 presents the user process perspective. EPSAAV tool contains an EP-
SAAV specifier to illustrate and model all domain concepts in a formal gram-
mar and help the safety experts formalize his requirements, and an EPSAAV
generator that is responsible to generate the systems needed as seen in Figure
3.4. It represents a schematic diagram explanation for the steps that the user
must follow to validate the application and make the violation and inconsistency
studies possible:

1. First, he needs to describe the AV environment and rules by creating spe-
cific files in the application of the workspace. The six files constituting the
formalized requirements and libraries have specific extensions defined in
Section 3.3.3. One file consists of describing formal rules presented in Sec-
tion 3.3.3.1, the one describing the scene is discussed in Section 3.3.3.2, two
files are for parameters as seen in Section 3.3.3.3 and the properties shown
in Section 3.3.3.4. Two files are for alerts and actions libraries addressed in
Section 3.3.3.5. The engineer only has to follow the format proposed from
the EPSAAV specifier that eases the structure and formalizes the input
data.

2. The EPSAAV generator is used to produce resulting artefacts:

(a) The generated textual document is meant to replace paper documents

36

Figure 3.4: Schematic diagram explanation for the user process.

used in the traditional flow. Being able to generate it fully shows that
our language has the right expressiveness. It contains the description
of the requirements and serves as a reference for all safety engineers
to report and disseminate safety policies to be enforced in Renault.

(b) The C-language monitors are generated and should be interfaced with
the chosen simulator which applies real or simulated scenarios. When-
ever the user defines generator-specific inputs, the EPSAAV language
produces code faster than if it had been written manually. Those mon-
itors give an operational semantics to the requirements presented in
the textual document. Among the relevant simulators, we can cite
public ones such as Apollo provided by Baidu [79], CARLA [80], Five
AI [81], and Webots for automotives [82]. CARLA and Webots are
very promising and are largely used by the automotive community. In
our case study, we use FusionRunner debugger as a resimulation tool
that debugs real and simulated scenarios since it is already integrated
within Renault process. This part is more detailed in Chapter 4.

(c) Another generated code is useful to test inconsistencies in the rules. It
is a verification tool that uses formal semantics defined by the safety
expert to detect inconsistencies in the requirements. We have included
a solver in the language so that the user does not have to interface it
with the code. Among the relevant solvers, we considered SMT [83]
and SAT [84] solvers as they are generic to compute satisfiability. In
our use case, we deploy a SAT solver as the rules mainly consists of

37

Boolean invariants. This part is more detailed in Chapter 5.

3. The automatic generation of artefacts allows safety to be assessed and rules
to be modified based on outputs. It is an iterative approach that helps
safety experts proceed to a Safety Analysis of Violations and Inconsistencies
(SAVI) which we define.

(a) The generated monitor, that will be interfaced to a simulator, allows
our user visualize all violations and study ambiguities. Accordingly
more rules can be added or they can be modified to remove detected
ambiguities.

(b) The generated verification engine detects inconsistencies among the
rules according to the formal semantics. It is used as a support to
make sure that the safety rules have an actual (unique) logical inter-
pretation. When there is no formal support, it is easy to write rules
that seem correct but have no valid interpretation or have only one
trivial interpretation when the system is safe if nothing useful happens.

3.3 EPSAAV language development

The objective of this Section is to describe the EPSAAV tool using DSML to
support formal rules definition and artefacts generation. Figure 3.5 gives a first

Figure 3.5: Overview of the used technologies grouped in Gemoc Framework.

representation of the overall language development process and the technologies
used. It is the higher level description of Figure 3.3.

38

This view focuses on the model handled and its evolution during the approach.
The EPSAAV metamodel proposed is defined by its abstract syntax, its gram-
mar using concrete syntax, and semantics applying generation of documents and
monitors in the language development.

Abstract Domain Concept represents the role of the actors in the EPSAAV
developed. It verifies the control logic of the metamodel and represents the
structure of the source code for the compiler to use. Concrete Syntax and the
general sequencing of activities for configuration determine which text strings are
accepted, and provide the internal grouping structure of the language. It indicates
how the text is supposed to be grouped. EPSAAV and the configuration parts are
considered as inputs for the main generation process. We can then ensure, assess,
and validate the files’ generation. Once the documents and monitors are ready,
we proceed to a SAVI. This approach is not only limited to the Autonomous
Driving (AD) function and the safety field. It is also intended to be integrated
into the new set of methods, tools, and processes being deployed within Renault
Group.

The implementation of the EPSAAV language is detailed in Section 3.3.2.
To ensure the acceptability of this language, we need to make sure it has the
right expressiveness and build support for analysis. We can manipulate this
expressiveness at the concrete level described in Section 3.3.3. An automatic
generation of a monitoring system (monitor and verification engine) assists the
interpreter by triggering alarms and behaviors. The generation is depicted in
Section 3.3.5. The monitoring system enables the user to detect inconsistencies
thanks to the solver, and encounters ambiguities in violations of rules thanks to
the simulator. We detail the SAVI process in the use case described in Chapter
6. After performing a SAVI, the user can modify the rules, which we call also
goals, and repeat the same cycle to ensure the correctness of the autonomous
behavior. The users activities of how they can use the platform are later detailed
in Chapter 6.

3.3.1 Technologies used for the platform specification

Limited expressiveness makes it harder to express wrong things and facilitates
verification. High expressiveness usually leads to undecidability issues. DSML
provides solutions to describe rules using vocabulary close to the problem do-
main, while the actual code is (partially) generated [85]. Our framework uses
Gemoc open-source tool based on Eclipse [86] to combine several heterogeneous
technologies. The modeling environment focuses on design and validation prob-
lems in complex systems. One of them is enabling the evolution or creation of
languages and models. It also integrates heterogeneous parts for different applica-
tions that work together to deliver a global service. Specification and simulation
techniques aim to model and validate system design and architecture. They are
combined with formal verification tools to describe and simulate what a system

39

should do. The use case in Chapter 6 is intended to illustrate this. The developed
framework covers all aspects of a DSML, from abstract and concrete syntax to
semantic operations, as shown in Figure 3.6.

Figure 3.6: Gemoc Execution Framework.

We have started with the definition of the abstract syntax and the meta-
model. It is based on Eclipse Modeling Framework (EMF) [87], which supports
Ecore metamodel implementation. EMF consists of a graphical description of the
metamodel. It is a framework and code generation facility that defines the model
and generates implementation objects. It unifies the three important technolo-
gies: Java, XML, and UML. Its model is the common high-level representation
that glues them all together. The EMF metamodel describes the objects and the
relationships of the environment. Once we have the final libraries generated from
EMF, this generative approach allows us to generate various concrete syntaxes
by using Xtext artefacts [2, 88] as seen in Figure 3.6. It is interesting to note
that the Gemoc framework generates an IDE with syntax checking using Xtext
technology. Once the concrete syntax was processed, we need the operational
semantics to assign behavior to each of the declarations in our DSL. To do this,
we use Xtend [51], a programming language adapted to implement the execution
semantics of Ecore metamodels. We are generating two types of artefacts: one for
the integration with the AV’s environment system (code for monitor generation,
and code for verification engine), and the other one for the description of this
environment and specifications (human-readable document).

The Gemoc framework is open source and integrates with other Eclipse-based
tools. It features easy code generation and adapts when settings are changed so
that it works properly as development continues. In other words, the language
allows us to express the ODD in a common, non-ambiguous language in which we
can express the scenarios that need to be handled safely by a vehicle to achieve
“certification” as discussed by [89].

40

We use these technologies for the proposed language to shorten the development
cycles and have an effective method of reasoning on these rules. The interesting
thing about this approach is that we can adopt new requirements that we meet
or change the existing ones by extending the language without changing the base.
It is also good to note that the generated monitors reduce time costs for engineer
development. Furthermore, safety experts can benefit from the tool that can
reduce error implementation so the safety engineers could spend more time on
rule specification. We describe in the following Sections Figure 3.7 for the abstract
syntax (EMF), concrete syntax (Xtext), and operational semantics (Xtend).

Figure 3.7: Defining EPSAAV language using Gemoc framework.

3.3.2 Abstract domain concept

Abstraction is a simplified selection of technical tasks that intend to reduce com-
plexity by removing information that is not relevant or necessary. It allows the
engineers to concentrate on core functionalities and to discard details by deferring
secondary concerns. Models are examples of supporting abstraction in software
engineering by hiding implementation details to the client software system and
offering instead interfaces. Engineers can easily manipulate, communicate, and
reason on models expressed in a given language as mentioned in Section 2.7.1.

Figure 3.7 gives a detailed representation of the three concepts or levels pro-
posed. The first level represents the role of each actor in relation with EPSAAV.
The metamodel consists of domain concepts to assess safety considering AV’s en-
vironment. The first one in Figure 3.7 is the RuleBasedPlanner . It groups all the
requirements defined by the safety expert. The SCENE domain concept consists
of defining the perception capacity of the AV, such as it can perceive a Following
Vehicle (FV) or a Preceding Vehicle (PV), or even both. The OBJECTTYPE
contains all the PROPERTIES and PARAMETERS defined in libraries. Re-
quirements depend on these libraries to evaluate safety. Finally, the BEHAVIOR
raises alerts and actions when a rule violation occurs. We model these four main

41

Sections (RuleBasedPlanner, Scene, ObjectType, and Behaviors) in EPSAAV lan-
guage at the abstract level. We use EMF presented in Section 3.3.1 to describe
the metamodel.

The metamodel in Figure 3.8 shows the higher level of the domain concepts
and their relationships and what we need to describe safety requirements.

Figure 3.8: Abstract description of EPSAAV metamodel using EMF technology.

• RuleBasedPlanner (RBP) is the domain concept containing all the specifi-
cations or rules to evaluate safety. It is the central object of our metamodel.
It is responsible for formalizing and specifying rules. It refers to a described
Scene. It is composed of one Goal at least. By Goal, we mean the rule spec-
ified by the user.

• Scene domain concept is the perception capacity that describes the agents
seen in the scenarios. The Scene is described in detail in Section 3.3.2.1.
Each agent is the SceneObject containing parameter and property libraries
described in Section 3.3.2.2.

• Goal domain concept is the safety rule or specification that is applied on
a specific object type (ObjectType). The ObjectType can be either the
autonomous vehicle (ego car), the preceding vehicle (PV), the following
vehicle (FV), the pedestrian, etc. We created the Filter domain concept to
be able to apply the Goal on a specific role object (SelectByRole). By role,
we refer to an ObjectType. We also give the ability to filter by expression
(SelectByExpression), which means to apply rules in certain conditions, for
example in a traffic jam, or on highways, etc. It takes the same form as the
Expression domain concept described later. Each Goal can contain multiple
goals. Goals can be executed in parallel or sequential. The SelectByGoal is
responsible for assigning the execution type to each rule, which means that

42

we need to know if a certain defined rule is sequentially executed with the
others (it has a priority), or it is parallel. We detail SelectByGoal domain
concept in Section 3.3.2.3. A Goal is composed of at least one Condition.

• Condition domain concept follows the form: When Expression is True,
then execute Alert and Action. The Expression follows the logic ex-
pressiveness described further in Section 3.3.2.3. The Alert and Action
represent the behaviors and are detailed in Section 3.3.2.4.

We will address in these Sections their detailed levels. We also note that for each
new representation model of the domain concepts we present in the following fig-
ures, we try to hide the unnecessary domain concepts to be more precise and less
complex. This is why the associations are shown as attributes with an association
logo.

3.3.2.1 Scene and ObjectType domain concepts

Each driving task requires object and Event Detection and Response (OEDR).
OEDR helps to identify objects around the ego car, that is the AV, detect events
that occur nearby, and then react to them. There are three crucial parts of
perception: (1) Static Objects (e.g.: road structure, traffic lights, and signs), (2)
Dynamic Objects (e.g.: vehicles and pedestrians), (3) Ego module, or the AV
module, that corresponds to internal parameters and properties of the AV, such
as the speed, the acceleration, the safety distance with the seen objects, the Time
To Collision (TTC), etc. For this reason, we created a scene specification, which
is very important to describe the capacity of perceived objects around the AV.
The Scene specifies the roles of these objects by attributing a name to each one,
and their types as seen in Figure 3.9. It forces the system to have one ego car as
a SceneObject that is referred to a predefined ego ObjectType. Each ObjectType
is added to the ObjectTypeLibrary that has a version for update matters. Every
ObjectType refers to a PropertyTypeLibrary that has a version, and is composed
of a ParameterTypeLibrary (detailed in Section 3.3.2.2).

3.3.2.2 ParameterTypeLibrary and PropertyTypeLibrary domain con-
cepts

In Figure 3.10, ParameterTypeLibrary is a library containing all necessary pa-
rameters of a given ParameterType. Each parameter can have a type (Primi-
tiveParameterType) such as float, integer, boolean, or string. These parameters
are important to assess safety.

In Figure 3.11, PropertyTypeLibrary is a library containing all necessary prop-
erties of type ListType. Each ListType can have states (StringValue) that can be
equal (=), less than (<), or greater than (>) a value, or it can be an interval of

43

Figure 3.9: Scene metamodel composed of SceneObject referring to ObjectType
containing a ParameterTypeLibrary and assigned to a PropertyTypeLibrary.

Figure 3.10: ParameterTypeLibrary containing parameters with types.

two values. This is why we gave the StringValue an operator, value and value1
in case it is an interval, and a unit for the values.

For instance, we need the TTC value for the Preceding Vehicle (PV) to test
if the distance is safe or not: PV is the SceneObject, Obstacle is an ObjectType,
and TTC is a ParameterType created in PVParametersLibrary, a parameter li-
brary created for PV. TTC can be measured in seconds (PrimitiveParameterType
float).
PropertyTypeLibrary contains properties. Each property contains states repre-
senting the situations the object faces to assess its safety in the scenario. Let
us suppose that EgoPropertiesLibrary is the library created for the Ego car con-
taining properties such as a preceding vehicle distance property. This property
returns the distance between the Ego and the Preceding Vehicle (PV). The states
of this property can be a safe distance which validates that the distance between

44

Figure 3.11: PropertyTypeLibrary containing properties composed of states that
can have values.

EV and PV is safe, and an emergency distance which confirms it is an unsafe
distance. The property can not be assigned to more than a state at a time slot:
the preceding vehicle distance is either a safe distance or emergency distance and
not both. Both states are assigned to StringValue types. The safe distance can
be 2 seconds (operator: =, value: 2, unit: seconds) [90].

The ParameterTypeLibrary always depend on the ObjectType. This means in
case we delete the ObjectType, we will lose the related parameter library. This is
where came the idea of versioning what remains in case of loss of an ObjectType.
We gave a version string to the PropertytypeLibrary same as for ObjectTypeLi-
brary. In case of any update, we give new versions to these libraries. This is how
rules cover conditions that consist of testing properties or parameter values for
each objectType.

3.3.2.3 Expression and SelectByGoal domain concepts

As mentioned previously, an Expression is referred to an alert and an action
as shown in Figure 3.12. We create a new representation model and hide all
the other elements just to represent the Expression domain concept. This is
the reason why alert and action are shown as attributes with an association
logo. The main expressiveness of our rules is based on Boolean invariants. So
we use classical logical operators to build expressions as seen in Figure 3.12. An
Expression can contain logical operators and a TestValue that is a PropertyType
with its StringValue as seen in Figure 3.13. We use the following logic operators
defined from [91]:

• The logical AND (&&) operator (logical conjunction) for a set of Boolean
operands is true if and only if all the operands are true. Otherwise, it is
false. AND operator should at least contain two expressions (which explains

45

Figure 3.12: Expression abstract metamodel using logical operators.

Figure 3.13: TestValue referring an InstanceValue that is a StringValue to its
PropertyType.

the cardinality of [2..*])

• The logical OR (||) operator (logical disjunction) for a set of operands is true
if and only if one or more of its operands is true. It is typically used with
Boolean (logical) values. When it is, it returns a Boolean value. However,
the || operator actually returns the value of one of the specified operands,
so if this operator is used with non-Boolean values, it will return a non-
Boolean value. OR operator should at least contain two expressions (which
explains the cardinality of [2..*])

• The logical NOT (!) operator (logical complement, negation) takes truth
to falsity and vice versa. It is typically used with Boolean (logical) values.
When used with non-Boolean values, it returns false if its single operand
can be converted to true; otherwise, it returns true. NOT operator should
contain one expression (which explains the cardinality of [1..1])

46

• The IFONLYIF operator that acts as an equivalence operator. If the
operands are equals, IFONLYIF returns true. It returns false otherwise. It
is the equivalence operator described in 5.7. IFONLYIF operator should
only contain two expressions (which explains the cardinality of [2..2])

A Goal can contain at least one Condition. Each Condition is composed of
one Expression as seen in Figures 3.8 and 3.12.

It is also important to prioritize rules in case of a behavior’s contradiction.
We show in Figure 3.14, two rules (or Goals). The first rule leads to a slight

Figure 3.14: Case where emergency braking should have a higher priority than
light acceleration.

acceleration. The second rule leads to execute an emergency braking. These two
actions are contradictory and can not be triggered at the same time. Goal 1
consists of having three conditions : (1) following the Preceding Vehicle (PV),
(2) respecting the speed threshold, and (3) respecting the safety distance of 2
seconds. If the three conditions are met together at the same time, the first
goal leads to a light acceleration, contrary to the second goal which generates
emergency braking. The second Goal consists of respecting a Time To Collision
(TTC) for every Vehicle Road User (VRU), e.g. pedestrians.
Imagine that the engineer defines these two goals in a conjonctive way. We can
have a case where all the conditions are met and both actions are triggered at
the same time. In this case, emergency braking should have a stronger priority
than light acceleration, and this priority needs to be carefully defined within the
execution type sorting.

This is why we introduce the notion of SelectByGoal in Figure 3.15 that allows

47

Figure 3.15: SelectByGoal notion to categorize rule execution.

the user to execute their goals with their conditions in parallel (ParallelExecu-
tion) or sequentially (PriorityExecution). We sum up the ParallelExecution with
Constraint goal type, and PriorityExecution with Priority goal type.
Note that the Goal domain concept is the same as the Goal introduced in Fig-
ure 3.8, but due to the creation of a new representation model, the associations
became attributes preceding to a logo.
If a goal has a priority goal type, the second is not executed unless the first is
false. If a goal has a constraint goal type, we activate a parallel execution. The
same concept is applied to the conditions for each goal. A goal can be made up
of several conditions (when..then). If this goal is given a priority goal type, all
conditions will execute sequentially. If we give this goal a constraint goal type, all
the conditions will run in parallel. Let us take a more complex example of having
two goals: Goal1{Condition1, Condition2} and Goal2{Condition3, Condition4}.
We can have four cases to the SelectByGoal, which is for us a goal type, as follows:

1. If Goal1 and Goal2 have a priority goal type, then the execution starts with
Condition1. If Condition1 is false, then the system executes Condition2. If
Condition2 is false, then the system executes Condition3. If Condition3 is
false, then the system executes Condition4.

2. If Goal1 has a priority goal type, and Goal2 has a parallel constraint type,
then the execution starts with Condition1, then Condition2. If Condition2
is false, then the system executes in parallel Condition3 and Condition4.

3. If Goal1 has a parallel constraint type, and Goal2 has a priority goal type,
then the execution starts with Condition1 and Condition2 and Condition
3 in parallel. If Condition3 is false, then the system executes Condition4.

4. If Goal1 and Goal2 have a parallel constraint type, then the execution starts
with Condition1, Condition2, Condition3, and Condition4 in parallel.

48

This priority-constraint categorization helps the engineer choose which rule should
be accomplished before or at the same time as another one. It implies a hierarchy
of priorities between all the rules. If the engineers want to give priority to a rule,
they use the Priority goal type, otherwise the choose the Constraint goal type.

3.3.2.4 AlertLibrary and ActionLibrary domain concepts

Figure 3.16: Libraries of actions and alerts.

As mentioned earlier, each Goal, having a SelectByGoal to specify the type
of execution, is composed of at least one Condition containing an Expression
using logical operators. The metamodel can also filter the rules either by role
or by expression. Each Condition shall trigger a behavior in case of an occuring
violation. This is why, it refers to alerts and actions that represent the behavior
to be triggered.

We created libraries for the actions and alerts displayed in Figure 3.16. Ac-
tions that can be integrated into the motion planner. Alerts have an informative
objective to alert the user of the situation. Creating this metamodel gives us the
right to a more concrete description of the environment and the rules described
in 3.3.3.

3.3.3 Concrete syntax

While metamodeling is now well understood for the definition of abstract syntax,
we explain in this Section the definition of concrete syntax. Concrete syntax
definition is an important part of metamodeling [49]. We choose to have a tex-
tual concrete syntax to match the classical paper-papers requirements used in
Renault’s process. The semantics is given by transformation [92] to C code in a
first step and to propositional logic expressions in a second step. This Section

49

describes the concrete syntax. Figure 3.7 shows the integration of the concrete
syntax within the Gemoc framework. We use Xtext technology to provide a
concrete textual syntax to our language.

We create Xtext files for the main domain concepts presented and described in
our metamodel in the previous Section 3.3.2. These are presented in Figure 3.17.
It grants grammar description of the goals and their priorities in Section 3.3.2.3,
the scene in Section 3.3.2.1 with the parameters and properties in Section 3.3.2.2,
and actions and alerts in Section 3.3.2.4. We have file extensions for these domain
concepts in a working environment, so the programming environment identifies
the grammar to use. The extensions defined for each domain concept serve the
user to create new files and libraries formally.

Figure 3.17: Concrete Xtext Files referred to domain concepts in our metamodel.

With Xtext we define the grammar for the language. As a result, we get
for each object (i.e. domain concept) Xtext project with full infrastructure. We
detail the grammar for each object in the following subSections and link them to
the instance models which we present later.

3.3.3.1 RuleBasedPlanner grammar

RBP file (with .rbp extension) is central for the user to define his safety rules and
depends on other models which are introduced later. For the RuleBasedPlanner
concept, we present a part of its grammar we used in Figure 3.18. An instance
model of the rule-based planner grammar is presented in Section 3.3.4. We also
present a detailed use case in Chapter 6 in Figures 6.14, 6.15, 6.16, 6.17, and
6.18.

The RuleBasedPlanner possesses a name that has a EString type. Seen that
it also refers to a Scene, scene=[Scene—EString] means that another file (which
has .scene extension) contains all data for the scene (detailed in Section 3.3.3.2).
The cardinality of (ownedGoals+ =Goal)+ in the RuleBasedPlanner means that
the user should at least define one Goal, as we can see in Figure 3.15. The car-
dinality of (ownedGoals+ =Goal)∗ in the Goal means that the user is not forced
to define a Goal in a previously defined one. Each Goal introduces one Condi-
tion (WHEN) at least that constitutes logics expressivity, since the + cardinality
refers to [1..*]. Each Condition can refer to Action and Alert domain concepts
since the ∗ cardinality refers to [0..*]. Since it is a reference for the alerts and
actions, this means that other files (which have .alerts and .actions extensions)

50

Figure 3.18: RBP.xtext project for the textual representation of RuleBasedPlan-
ner description.

contain all data for the behaviors (detailed in Section 3.3.3.5). Each Goal has a
goal execution type (Constraint or Priority) as seen in Figure 3.19, and can be
filtered either by Role or by Expression.

Figure 3.19: Textual representation of Goal features in the RuleBasedPlanner
description.

3.3.3.2 Scene grammar

Scene file (with .scene extension) serves for the user to define the objects seen
in the scenarios and their types. It captures the perception capabilities of the

51

autonomous vehicle. For the Scene concept defined in Section 3.3.2.1, we present
a part of its grammar in Figure 3.20. The Scene owns a name, refers to the ego

Figure 3.20: Scene.xtext project for the textual representation of Scene descrip-
tion.

car, and is composed of at least one ownedSceneObject other than the ego. Every
ownedSceneObject has an ObjectType that is detailed below. The user defines
the concrete files using .scene extension in the application created outside the
workspace. An instance model of the scene’s grammar is presented in Section
3.3.4. We also detail a use case in Chapter 6 in Figure 6.11.

3.3.3.3 ObjectTypeLibrary grammar

OTP file (with .otp extension) serves for the user to define the ego and the types’
objects. It also serves to specify what are the parameters used to assess safety, and
to refer each ObjectType to a PropertyTypeLibrary. For the ObjectTypeLibrary
presented in Section 3.3.2.2, we present a part of its grammar in Figure 3.21. The
ObjectTypeLibrary owns a name and a version. It is composed of one type for the
ego, and can have other types for the ownedSceneObject. Every ObjectType can
have a PropertyTypeLibrary and another parameterTypeLibrary. As for the ego
type, it has to contain one ego property library, that is EgoObjectType, to make
the expressions valid. An instance model of the object type library grammar is
presented in Section 3.3.4. We also present a detailed use case in Chapter 6 in
Figure 6.10.

3.3.3.4 PropertyTypeLibrary grammar

Properties file (with .prop extension) serves for the user to define all the prop-
erties and states. For the PropertyTypeLibrary presented in Section 3.3.2.2, we
present a part of its grammar in Figure 3.23. Every PropertyTypeLibrary has
a name and a version, and contains a list of properties, or states, (owned-
PropertyType+=ListType)+. Each property can have different values (owned-

52

Figure 3.21: OTP.xtext project for the textual representation of ObjectTypeLi-
brary description.

Figure 3.22: ParameterTypeLibrary textual representation in ObjectTypeLibrary
description.

Values+=StringValue)+. Each value can be constant by giving it a specific value
with its unit and operator, or can be a variable. We can see an instance model
of this grammar in Section 3.3.4. We detail other instance models in Chapter 4
in Figures 4.6 and 4.7, and in Chapter 6 in Figure 6.12.

3.3.3.5 AlertLibrary and ActionLibrary grammars

Alerts and actions files (with the extensions .alerts and .actions) allow the user
to define the necessary alerts and actions. For the actions and alerts libraries
presented in Section 3.3.2.4, we present their grammar in Figure 3.24. Each Alert
and Action has a name with EString type. An instance model of the alert and
action libraries’ grammar is presented in Section 3.3.4. We also present another
examples in Chapter 6 in Figures 6.8 and 6.9.

53

Figure 3.23: Properties.xtext project for the textual representation of Property-
TypeLibrary description.

(a) Alerts.xtext definition. (b) Actions.xtext definition.

Figure 3.24: Grammar for Alert and action libraries.

3.3.4 RBP and libraries illustration using EPSAAV spec-
ifier

This Section illustrates the abstract and concrete syntaxes defined previously.
We represent an example of files instantiated. This is considered the interac-
tive console that the user will use to define his libraries and requirements. As
mentioned previously, the user have to create six files as following:

• A file for the rule-based planner named RBP.rbp containing all the rules
with the assigned behaviors as seen in Figure 3.25. It is based on the
grammar defined in Section 3.3.3.1. We can see the Scene assignement
and two sequential rules: the first deceleration Goal serves of alerting the
driver to decelerate when the front car distance is unsafe. This rule has
a priority over the acceleration Goal if the distance between Ego and PV
is safe. Since the second rule does not contain more than one condition
and does not succeed any rule, it does not matter if it has a constraint or
prioirty goal type.

54

Figure 3.25: RBP illustration.

• A file for the scene named Scene.scene containing the objects perceived in
the scenario as seen in Figure 3.26. It is based on the grammar defined in

Figure 3.26: Scene illustration.

Section 3.3.3.2. We chose only to perceive the Ego car (the AV) with an
Ego object type, and the PV with an Obstacle object type.

• A library for the object types named ObjectTypeLib.otp as seen in Figure
3.27. It is based on the grammar defined in Section 3.3.3.3. For the Ego

Figure 3.27: Object type library illustration.

type, we need the longitudinal acceleration parameter, and for the Obstacle
type, we need the ttc min and the id with float and integer units respec-
tively.

55

• A library for the Ego properties named EgoProperties.prop as seen in Figure
3.28. It is based on the grammar defined in Section 3.3.3.4. It contains one

Figure 3.28: Ego properties illustration.

property to check the distance with the PV. We named it front car distance,
and have two states: safe distance (if it is above or equal to 2 seconds) and
unsafe distance if it is less than 2 seconds).

• A library for the alerts that we named Alerts.alerts as seen in Figure 3.29.
It is based on the grammar defined in Section 3.3.3.5. It contains two alerts

Figure 3.29: Alert library illustration.

triggered to the driver: the longitudinal deceleration and acceleration.

• A library for the actions that we named Actions.actions as seen in Figure
3.30. It is based on the grammar defined in Section 3.3.3.5. It contains two

Figure 3.30: Action library illustration.

actions triggered to the driver: decelerate and accelerate.

3.3.5 Generation of artefacts

We explain in this Section the generation of artefacts relying on what is described
in Section 2.7.3. This step is important as the semantics is given by transfor-
mation. To generate artefacts, we use the instance model created by the safety
engineer. These instance models are created by using the abstract and concrete
model which we described before in Sections 3.3.2 and 3.3.3 as seen in Figure 3.7.

We use the EPSAAV generator to achieve code and text generation from
models while making no restrictions on the visual appearance of the metamodel.

56

We use Xtend as a support for code and text generation. It supports auto-
indentation and is fully integrated with the Eclipse IDE [51]. Code and text
generations do not cross the language boundaries. We use what is included in
the previous syntaxes for the generation. We proceed to three different types of
generation as seen in Figures 3.31 and 3.32 and described further. The code

Figure 3.31: Three types of generated artefacts from the EPSAAV safety rules.

Figure 3.32: Artefacts coded to be generated in Xtend project.

generators created in this thesis are intended for C and Java languages but could
be adapted to other languages required in the whole design flow.

3.3.5.1 Human-readable document generation

We generate for each user environment definition a human-readable document
that describes all the input data that he introduced. Figure 3.33 presents the
document generated from the illustrations presented previously in Section 3.3.4.
Another application of an instance model for a text generation and described
in Chapter 6 in Section 6.5 and added to the Appendix A.2. This helps him
re-evaluate his decision, and communicate with engineers to improve the system
development.

57

Figure 3.33: Example of a human-readable document generated.

The human-readable generation for this thesis is a text document but can
be adapted to another format. This document contains all libraries and require-
ments. It can be considered as a report that can be used as a reference at the
company level to disseminate the safety policy to be applied in the company. It
is useful and time-saving to generate a human-readable document. This docu-
ment was at the center of the process. Our major contribution is show that a
model-based approach allows for building a mode trustable process while still
being able to produce the exact same document as a conservative measure to
remain compatible with the initial process.

The first document generation is long to set up and it requires a lot of effort
to get familiar with the document generation approach and the associated tools.
After a few iterations, as the system definition and specifications evolve, the
document is changed and needs to be updated. In the short term, creating a
document (architecture, interface, specification, verification plan) is always faster
by hand the first time. But once the method generation of the document is set,
it is automatic and changes can be applied faster in a systematic way.

Safety experts nowadays use handwritten techniques instead of generated doc-
uments. They may realize that it becomes tedious to identify the parts of the

58

document that must be updated and to perform those modifications. In this case,
the model and the document share the same information and face changes and
risks of inconsistencies. The engineers spend most of the effort on synchroniza-
tion instead of engineering. This is how document generation brings value and
constitutes the engineers reference instead of the model.

3.3.5.2 Monitor generation

Most safety experts tend to use hand-written English documents to capture safety
requirements. Pure textual documents are prone to errors as there is no way to
actually detect flaws.

This is why we introduced this proposal to help him avoid wasting time in
development and reduce code errors. To do so, we generate a code, which we
called monitor system, compatible with the simulator used. In our case, we
produce C code that is compatible with the FusionRunner debugger used for
simulation. We elaborate further on this in Chapter 4. The application of an
instance model is detailed in Chapter 6 in Section 6.6.

3.3.5.3 Verification rules generation

We also want to prevent inconsistencies in the rules defined. To achieve this, we
generate another code, that we call verification rules. Those rules are a translation
of safety rules into first-order predicates. We can then use a satisfiability analyses
to detect inconsistencies that may arise within the safety requirements. In our
case, we produce a Java code described in Chapter 5 that is relies a SAT solver
used in big industrial problems. The application of an instance model is detailed
in Chapter 6 in Section 6.7.

3.4 Conclusion

In this Chapter, we have presented our EPSAAV framework and how the language
process development is implemented using Gemoc Studio: an abstract syntax that
defines the EPSAAV metamodel and frames the source of truth, a concrete syn-
tax that enables engineers to define rules and libraries using EPSAAV specifier
in an interactive console, and an operational semantic for artefacts generation.
We addressed a case study in which we specify an instantiation model to evaluate
the feasibility of EPSAAV language. The user instantiates the model by creating
six initial files with specific extensions; RBP (.rbp), alerts and actions libraries
(.alerts and .actions), object type library that contains parameters and proper-
ties (.otp and .prop), and scene (.scene) that can be used as a console for testing
or validation purposes.
We mentioned the real use of generating text documents in helping users com-
pare their alternatives and saving time for synchronization. Each type of code

59

generated corresponds to a specific step in the design and validation process.
One monitor generated in C language is compatible with a simulator to detect
ambiguities when violations occur while executing various scenarios. We detail
the monitor and the FusionRunner debugger in the following Chapter 4. A set of
verification rules are generated in a language compatible with a industrial-strengh
SAT solver to study inconsistencies in rules. To do this effectively, we address
the study in Chapter 5.

60

Chapter 4

Generation of a Monitor for
Renault Simulation Environment

4.1 Introduction

The automotive industry has started working on improving the safety field. Self-
driving cars can potentially identify hazards better than people in several circum-
stances. They combine sensors and software to control, navigate, and drive the
vehicle. This helps avoid human errors due to inattention or tiredness, as AVs
may have good perception capabilities and be less vulnerable to incapacitation,
such as distraction or fatigue. To do this, safety rules must be explicitly cap-
tured and integrated together with traditional functional requirements. Safety
assessments of the AVs came as an important aspect in the development of safe
autonomous systems [93, 94, 95]. ISO 26262 defines functional safety for auto-
motive equipment applicable throughout the lifecycle of all automotive electronic
and electrical (E/E) safety-related systems. This standard only deals with mal-
functions that may arise from E/E systems. Therefore, the traditional methods
to assess the safety and evaluate driver assistance systems are no longer sufficient
to reach higher-level of autonomy in AVs [28]. They are not feasible to com-
plete the huge amount of testing required by these methodologies [96]. To not
postpone the progress of AVs, it is crucial to develop new assessment methods
[93] that take into consideration the environmental conditions under which AVs
evolve. We presented in Chapter 2 Section 2.2 an overview of safety approaches.
Drawbacks are mentioned in Data Driven Safety and Disengagements approaches
as they require very large amount of data that would take hundreds of years to
gather so as to ensure safety. This is problematic. Simulation is a solution to deal
with any day-to-day situation, which means any time of the year, any weather
or traffic conditions, and every road in the world. Sometimes, a slight difference
between the simulation and reality can change the results. Addressing a tool
that includes both simulated and real data is an important solution to support

61

both approaches. Another challenge is the interaction between the driver and
the system. By building a sophisticated autonomous system, we can send alerts
to the driver and the safety engineer to interact and identify causes of dangerous
situations.
Therefore, in this thesis, we present our Scenario-based Verification approach,
in which we aim to expose the AV to scenarios known as dangerous situations
by using a debugger to trigger safety notifications and study the reaction of AV
exposed to complex driving tasks The objective of this Chapter is to present the
simulation environment for evaluating the safety and to explain the choice of us-
ing FusionRunner as a resimulation tool at Renault. In doing so, we support the
SOTIF standard that advocates for scenario-based test methods.
This Chapter is organized as follows: Section 4.2 introduces the sensors’ data
challenges and how we can integrate them into the EPSAAV language. In Sec-
tion 4.3, we represent the Autonomous Driving (AD) software architecture where
the simulation environment plays its role, and describe the FusionRunner. The
proposed methodology to verify safety using FusionRunner complies to the SO-
TIF standard by adopting an assessment based on traffic scenarios. To analyze
and verify traffic scenarios on real-world driving data, we introduce in Section
4.4 our process to generate monitors. We show how we connect these monitors
to the FusionRunner in Section 4.5. Finally, Section 4.6 summarizes this entire
Chapter.

4.2 Sensing data for AV

SOTIF considers the environmental conditions that lead to unsafe and inappro-
priate situations. It is important to know the source of the failures that are
independant from the AV system. Sensing data is an important task to verify
and check safe and unsafe cases, and track sensors availability to evaluate misuses
treated by SOTIF, e.g loss of communication. All driving tasks can be broken
down into three components (see Figure 4.1). By understanding what is happen-

Figure 4.1: Tasks in an autonomous system.

ing around the ego car, one can perceive its surroundings and analyze ego motion
and the environment. After that, the system needs to make a driving decision,

62

such as accelerating or braking (e.g., when AV perceives a pedestrian entering
the roadway) [97].

4.2.1 Perceiving the environment sensors

A reliable perception system must be able to extract information from the exter-
nal environment for proper planning and decision-making. Perception systems
are used to detect vehicles, humans, and other objects around the vehicle using
sensors. AVs use combinations of exteroceptive and proprioceptive sensors and
technologies to detect roadways, lanes and lines, and other static and dynamic
objects.

Figure 4.2: An example of sensor set for AV.

Figure 4.2 shows an example of a sensor set for AV along with the type and
detection zones of each sensor. For instance, cameras can give a panoramic view, a
digital side mirror if they are on the sides, traffic sign recognition, lane departure
warning, etc. Sensors can be used like the Yaw Rate Sensor and the driver’s
camera which could be helpful for safety monitoring in case of a takeover control
and other sensors that could be useful in terms of increasing the reliability of the
system. Any driving task requires the Object and Event Detection and Response
(OEDR) [98] to identify objects around the AV, recognize events occurring nearby,
and then respond to them. For any agent or element on the road, the AV must
identify what it is and understand its motion. There are two crucial parts to
perception:

63

1. static objects that segregate regions on-road or even off-road regions such
as the road, lane markings, traffic lights, and signs,

2. dynamic objects that are crucial for making informed driving decisions such
as reactions to surrounding vehicles and pedestrians, and ego movement or
localization, which are a key point for a robust perception and trustworthy
decisions.

We need to be able to estimate where the Ego Vehicle (EV) is and how it is
moving at all times by knowing the position to inform the system and make safe
driving decisions. The data used for ego movement estimation can come from
Global Positioning System (GPS), Inertial Measurement Unit (IMU), odometry
sensors, and other predefined maps to strengthen the system. Depending on the
incoming source, data are more or less reliable and may be more subject to errors.
The main problem is that the sensor measurements may not be precise, and the
precision does not provide information about the general error. This depends on
various factors, including the conditions of use of the sensors. These factors do
not have geometric properties.
Safety assessment can be done considering either raw sensor data or fused data
which combines several raw sensor data. In this thesis, we choose to assess safety
by relying on the fused data. To check whether the AV is in a safe situation or
not, we need a module that contains all the variables, parameters, and informa-
tion regarding the safety of the ego car. Errors and persistence settings should
also be specified to investigate safety scenarios. These arguments have an impact
on safety and affect decision planning. We describe further what are the environ-
mental condition challenges that the AV faces and may affect its safety. We give
examples of errors and persistence and how we implement these requirements
using the EPSAAV specifier.

4.2.2 Perception challenges

There are various approaches to perceiving the environment with the associated
challenges to be faced.

4.2.2.1 Sensor uncertainty

Each sensor has its strengths and weaknesses in terms of range, detection capabil-
ities, and reliability in different environments. Providing redundancy is necessary
to safely sense the environment, but the more sensors AV used, the more complex
algorithms are and the more expensive the car is. Sensor uncertainty is one of
the challenges as it often happens that visibility becomes dazzling or measure-
ments are corrupted [99]. For example, Lidar, Radar, and GPS measurements
are noisy in terms of position values. An uncertainty on measurement should be

64

considered while addressing safety concerns. There is a crucial need to develop a
system capable of addressing this problem.

4.2.2.2 Robust detection

Perception aims to have a robust detection and segmentation. Approaches with
modern machine learning improve efficiency and accuracy and this is when the
amounts of data increase [100, 101, 102]. Access to large datasets is critical to this
effort, and it is a very expensive and time-consuming process. When studying
safety, we need an exhaustive and comprehensive system that can catch errors
and trigger alerts to the user.

4.2.2.3 Illumination lens flare

There are also effects such as drastic lighting changes and lens flare seen in Figure
4.3 and illustrated in [4], or GPS outages and tunnels that render some sensor
data completely unusable or unavailable. Perception methods require multiple
redundant information sources to overcome sensor data loss.

Figure 4.3: Example of lense flare illumination taken from [4].

4.2.2.4 Weather and precipitation

Weather conditions and precipitation can affect the quality of sensors’ input data.
Sometimes testing vehicles that do not use sensors immune to weather conditions
can affect unforeseen input data efficiency as seen in Figure 4.4.

Figure 4.4: Weather in winter, rain and fog taken from [5].

65

4.2.3 Overcoming sensing challenges using EPSAAV lan-
guage

33% of crashes only involved detection and perception factors [97]. Sensors most
of the time have some degree of tolerance and exhibit errors. It is crucial to link
this tolerance, the capacity of the sensors, and the degree of safety that can be
ensured considering the confidence in the vehicle. Challenges can be described in
error and persistence parameters which are important when evaluating safety.

The error parameter helps manage and bandage the error of all the sensors, for
example in case of any failure or a breakdown. Each of the sensing technologies
has limitations regarding sensing the environment in terms of supported range,
accuracy, and resolution. Therefore, systems using these sensing technologies
may have inconsistencies between the internal digital representation of the system
environment and the actual environment, and thus there is a level of uncertainty
in the actual state of the system, which has the potential to lead it to exhibit
faulty behavior [103].

There is also the notion of continuity over time of objects that safety teams
would like to be able to calibrate what the sensor detects and does not. The main
problem is that the system is a bit disturbed and blinded with a probability of an
occlusion. Sometimes perceiving an appearance and disappearance of the same
object results in the inability of the system to determine whether the object
exists or does not exist. The persistence parameter is affected by the confidence
degree and plays an important role in these issues. In today’s technologies, we
have a vulnerability from this point of view, for example, if things are no longer
visible or for example if we no longer see the lines, we must be able to bear this
non-persistence.

Figure 4.5: Stable control property to define perception stability.

Figure 4.6: Front car distance property containing states with different values.

Therefore, by using the EPSAAV language defined in Chapter 3, we give the
user a facility to abstract away from some these challenges. These parameters
and properties can be related to errors and persistence to help the user better

66

define safety requirements. The tool supports the inclusion of errors and persis-
tence from sensors by defining new values and states in parameter and property
libraries.

Figure 4.5 is an example of a property called stable control following the
grammar defined by the EPSAAV specifier, which represents a property to
define AV’s stability, for example, if there is something wrong with the sen-
sors, then the control is not stable. Figure 4.6 is another example of a prop-
erty called front car distance which illustrates how we define the different
states for the front car distance and assign them values. For instance, it has
a safe distance state if the front car distance is equal or greater than 2
seconds. it has an acc distance if it is equal or greater than 1.2 seconds, a
strong braking distance if it is equal or greater than 0.8 seconds, and im-
minent collision distance when front car distance is less than 0.8 seconds.
Using EPSAAV grammar, we can have states for each property to define its ex-
istence. Each type of perceived object can have its library of properties with
different states. Figure 4.7 is another example using the same domain con-
cept’s grammar, which consists of adding a persistence value on detecting a line
missing which illustrates how we define the different states when the car is not
detecting or detecting the lines after. The threshold used in this case is 0.3
seconds but can be adapted depending on manufacturer internal choices. Us-

Figure 4.7: Line detection property containing states with a given threshold.

ing these states we can measure line detection time, and a counter that returns
no detection in less than t6=1 when there is no line detection in less than
0.3 seconds, and no detection in more than t6=1 if more than 0.3 seconds.
In this way, the safety expert can use the tool to integrate all the parameters of
perception errors and persistence to assess safety.

4.3 Representative AD software architecture

The information provided by the hardware components helps us represent the
software architecture necessary to conduct the tasks. Figure 4.8 shows the AD’s
software architecture. As mentioned earlier, the environment is detected using
fusion or raw data. These measurements (i.e. Sensor Outputs) are transmitted
to the Mapping and Perception modules which are responsible for locating the
AV and identifying elements of the environment such as bicycles, the road, road
markings. The Motion Planning module decides actions and creates a path exit
that should be both safe and comfortable for the driver. The execution of this plan

67

Figure 4.8: Representative software architecture of AD.

is done in the Controller module. This module is responsible for braking, steering,
and positioning the vehicle to follow the planned path. It calculates current errors
and tracks the local plan performance and adjusts current actuation commands
to minimize errors in the future. The System Supervisor monitors all parts of the
Software stack as well as the Hardware output. The Software Supervisor checks
and ensures that all systems are working as intended, and if anything goes wrong,
they are responsible for notifying the pilot of the problem found or a subsystem
failure event. It also analyzes inconsistencies between the outputs of all modules.
Simulators can be used to show the eventual real effects of each component and
act as an alternative to replace the operation of a real process. They remain the
convenient way to analyze how self-driving vehicles’ perform over billions of miles
of test drives, designed to keep them safe.

Simulator plays a key role in the AD software architecture. For instance, they
can override the perception component that identifies elements and modules in the
environment such as lines, ego, and objects as seen in Figure 4.9. They can also
generate different scenarios and substitute the motion planner and the controller
by taking as input the planning decisions from the ADAS. They enable vehicle
designers to virtually test these scenarios quickly and cost-effectively. This not
only accelerates development but also reduces the need for physical road testing.
For example, model-based development tools help designers create AV simulators
that have proven to be much more robust, less error-prone, and safer on the road
[104]. Because the simulation is performed in a virtual environment, it continues
to be faster, less expensive and provides more insight into the underlying physics
than physical prototyping. These tools can also reduce development time, code
validation and verification costs. In this thesis, we need a simulator capable of
replacing perception with localization of the environment, and simulating tra-

68

Figure 4.9: Real driving scenarios and simulators for ADAS.

jectory planning with useful safety information. EPSAAV language can use any
existing simulator to evaluate safety. In this Section, we present the simulation
environment used by Renault.

4.3.1 Advanced Driver-Assistance Systems (ADAS)

Advanced driver-assistance systems (ADAS) are groups of functionalities that
help people in driving and parking tasks. ADAS increase vehicle and road safety
by reducing road fatalities and limiting human errors. ADAS relies on sensors
to perceive the environment and detect nearby obstacles or driver errors, and
respond accordingly. ADAS follow the automation scale levels provided by SAE
[35]. ADAS are among the fastest-growing segments in the automotive domain
due to steadily increasing adoption of industry-wide quality and safety standards
[105, 106].

Many features for ADAS have progressed to assist the driver in adopting
functions. We can cite the following components that are important in the context
of the thesis:

• Adaptive Cruise Control (ACC) can maintain a chosen velocity and distance
between a vehicle and the vehicle ahead. ACC can automatically brake or
accelerate with concern to the distance between both vehicles [107]. This
system still requires an alert driver to take in his surrounding environment,
as it only controls speed and the distance between the ego vehicle and the
car in front.

• Autonomous Emergency Braking (AEB) is a system that automatically
brakes if a collision with a target (vehicle, pedestrian, bicycle) is immi-
nent. This is to avoid the collision or reduce the damage of the collision (if
unavoidable) [108].

69

• Automatic Emergency Steering (AES) uses sensors and computer process-
ing to detect when the ego vehicle could collide with an object in its path
[109]. It applies automatic steering to mitigate or avoid the collision, even
if the driver takes no action.

4.3.2 AV simulators

We can build, test, and debug embedded applications without a simulator [110].
However, there are several reasons why a simulator can make engineering tasks
easier and save a lot of development time. Simulators do not replace an emulator,
but the imitation of the operations of a real process. They are production and
process planning support tools. They play an important role in ensuring that a
successful system is designed in the shortest possible time.

We can find many benefits in using simulators. First, they save money and
time while creating less expensive virtual experiences. Real assets take a lot
of setup time for configuration and debugging. Second, they facilitate the ver-
ification and communication of ideas and concepts. Engineers gain confidence
by visualizing and testing different conditions on the same or different scenar-
ios without putting production at risk. Simulators are important in the field of
safety to help safety engineers make the right decision before making changes in
the real world. Third, they allow observing the behavior of the system over time
at any level of detail. It also provides the experts with a realistic review unlike
traditional techniques used to assess safety. Additionally, simulators can increase
accuracy by capturing much more detail than an analytical test. It allows devel-
opers to virtually test millions of driving situations to assess safety on scenarios.
It also helps manage uncertainty by allowing the quantification of risks while
allowing for simple representations and more robust solutions. It is like a flight
simulation where the pilot can make mistakes in a simulated environment and
learn from his mistakes. System simulation can improve process understanding
and minimize the risk of errors in real life. They provide sensor and ego data
from the test simulations which are then transmitted to the ADAS systems con-
taining all the block functionality of the AV such as AEB, ACC, advanced park
assist (APA), direction steering automatic emergency (AES). Since the simulator
can replace AD architecture components, it can improve ADAS functionality by
providing testing on simple representations and better planning decisions. Figure
4.10 shows how ADAS applies fusion on the raw data and provides the higher-
level blocks of data that separate detected objects based on their type.
Although the number of AV simulation tools has increased in recent years, it is
very challenging to select the best tool for a specific development. Many factors
are desirable in simulators such as open-source, cross-platform, customization,
and documentation. In the table 4.1, we present a summary of the specific sim-
ulators and their features and functionalities used for AD.

Several studies exist for the evaluation of AV simulators [118] and for a sys-

70

Figure 4.10: Simulation in the loop for ADAS.

tematic review of the perception system and simulators [119]. Simulators have
become standard tools for many companies when considering a new installation
or a change in production. Although these driving simulators are not the ob-
jective of the thesis, the proposed approach makes it possible to generate code
compatible with the scripting language of the chosen simulator. It should be
noted that the user can apply the EPSAAV tool to any simulator.
In Renault Group, SCANeR [117] is one of the simulators used to simulate sce-
narios. Developed for automotive experts, SCANeR Studio is designed to meet
the specific needs of dynamic simulation professionals. They also use another
tool called FusionRunner which runs a resimulation of real or generated scenar-
ios from SCANeR. In the following Section, we talk about the advantages of
FusionRunner for the thesis.

4.3.3 FusionRunner debugger

The main objective of FusionRunner is the development of algorithms and on-
target embedded code, the development of multi-sensor fusion analysis, and de-
bugging tools in the context of vehicle driver assistance. It is an optimized tool
to better analyze and debug fusion algorithms, algorithm development for ego
tracking using sensors, algorithm development based on artificial intelligence,
and continuous resimulation with real perception. It traces input signals from
real recordings or simulated ones from SCANeR simulator, and executes data
fusion algorithm by replaying open-loop software as shown in Figure 4.11. An
example of a SCANeR simulation is when we are testing a scenario with an input

71

Table 4.1: Summary of specific simulators and their features used for AD

Simulator Scripting Language License
Carla[80] Python GPL/Open Source
SIMLidar[111] C++ GPL/Open Source
DeepDrive[112] C++, Python GPL/Open Source
Webots[82] C/C++, Java, Python GPL/Open Source

or MATLAB
Udacity[113] C++, Python GPL/Open Source
AirSim[114] C++, Python, C#, Java GPL/Open Source
Carcraft/Waymo[115] C++ Restricted
Helios[116] Java GPL/Open Source
SCANeR[117] C/C++, C#, LabView, Python, Restricted

Matlab/Simulink, FMI, RTMaps

of braking at 1G or accelerating at 1G, etc., we want to know what the output
will be. Both scenarios provide sensor data (camera, lidar, radar, etc.) and ego
data (speed, acceleration, direction, etc.). This data is the input to the fusion.
FusionRunner works for ACC and AEB feature components. This can provide

Figure 4.11: FusionRunner integration in the ADAS.

greater autonomy and complexity, emphasizing their perception and mapping
subsystems [120]. FusionRunner is a general tool in which we can implement
data fusion of different types of sensors. It executes tracking and applies machine
learning standards for classifications. It can take into account several types of
input formats, executes and displays fusion outputs using internal signals, and
checks if everything is consistent.

72

4.3.3.1 Why using FusionRunner?

FusionRunner has many advantages in AD resimulation.

1. First, it runs the perception algorithm of Renault and performs sensor data
fusion. It is an accessible tool for the thesis.

2. It can provide a re-simulation of real or generated scenarios (e.g., from
SCANeR simulators).

3. It provides a wealth of environmental information. It can offer raw data
and fused data, and already incorporate useful computed quantities such
as TTC, Path Prediction, critical target selection.

4. It can take into account several sensors.

5. It can be used offline to reevaluate, and online.

6. It helps to visualize the inputs, internal data, and outputs of the Renault
Fusion data which allows evaluating the performances of the algorithms.

7. The processing time in resimulation is shorter than in real-time on a stan-
dard central processing unit (CPU). In Renault, using five CPUs with eight
cores, we can replay 10000 kilometers of driving data within half an hour.
Additionally, it is sometimes necessary to reprocess the scenario to access
the specific of an entire data. In this case, the system must avoid repro-
cessing due to the amount of time it takes and the cost it generates. Fu-
sionRunner provides reprocessing in a visual interface that optimizes the
time and uses curves and graphs.

4.3.3.2 FusionRunner : a visualization tool for debugging

It features a command-line interface in C language as well as a scripting interface
for the Graphical User Interface (GUI). We use the command-line interface to
record data, or even playback recorded data in FusionRunner. The GUI consists
of several dialog windows. The first window in the Figure 4.12 is the Control
window designated as an interface. The control window provides:

• A File menu to open and close scenarios.

• An Options menu to access settings and open other windows.

• A Perfs menu to assess signals performance.

• A Signal menu to display signal curves for each module.

• A Help menu that opens a help page.

73

Figure 4.12: FusionRunner Control window.

• A set of buttons to control the scenario execution.

• A scrollbar that allows the user to navigate through the current scenario.

• Information about current playback mode, single-step mode, and forward
delay.

• Text entry boxes for time, current step (fusion iteration), and current frame
(context) that support user entries.

The time indicated in the FusionRunner control window always refers to the
fusion time. However, the fusion call is only performed if the current time is
strictly greater than the fusion call time where the fusion has not yet been called.
When a scenario is loaded, FusionRunner first calculates the start and end times
of the simulation. The simulator stores all the data so that we can come back to
each step if ambiguity is placed.
The Fusion Context window in Figure 4.13 displays the current frame of the
loaded scenario. We can compare the video to the measured data which enables
safety assessment.

Figure 4.13: Fusion Context View window.

The Fusion Display window in Figure 4.14 illustrates the fusion outputs of the
most recently executed fusion calls. This also displays the current open scenario,

74

Figure 4.14: Fusion Display window.

current fusion step, and call date. Two actions can be performed on the Fusion
Display window:

1. Zoom in / Zoom out: using the mouse scroll wheel.

2. move displayed items using mouse right-click.

These essential windows provided in FusionRunner help the safety engineer stop
program execution and carefully check for ambiguities that arise from their formal
safety specifications. FusionRunner allows us to examine the values of variables,
the execution of generated safety module, and to inspect violations of specific
functions and rules. We dive deeper into the generated safety verifier module in
the following Section.

75

4.4 C Code generation using EPSAAV language

The proposed DSML allows C-code generation, which we call Safety Checker
module, compatible with the simulator used. As mentioned before, for the thesis,
we use FusionRunner which gives access to information needed for safety instead
of adding new algorithms. After describing safety rules in the Rule-Based Planner
using EPSAAV specifier, EPSAAV tool generates a C code that shares the
same language with the FusionRunner. The Safety Checker module is generated
from the user-defined environment and rules as shown in Figure 4.15. This code

Figure 4.15: Safety Checker module generation process with EPSAAV language.

is then fed and interfaced with the output of the debugger. Yield allows rules
to be changed and violations to be investigated according to FusionRunner ’s
output. This work follows an iterative process where a safety expert can refine
and improve his requirements based on the analysis of the outputs from the
resimulation.

In this Section, we show the Safety Checker module that is generated to assess
and review safety. We also show how we visualize the safety signals’ performance
using a window we added to give us feedback on safety rules.

76

4.4.1 Safety Checker module integration

The Safety Checker module enhances the effectiveness and efficiency of the safety
rules verification process, enabling the safety expert to meet the specific demands
required for Functional Safety and SOTIF certifications. With the Safety Checker
module, the safety engineer can automatically detect interference between soft-
ware elements with different ASIL by checking formal rules and defined require-
ments. The Safety Checker module contains automatically generated and verified

Figure 4.16: Safety Checker module implemented in AD software architecture.

C code that is error-free as the experts are actively working on specification desig-
nation, allowing them to maximize their time and productivity while developing
the highest quality applications and safety. Table 4.2 shows the automatically
generated C code with their headers. The extensions used are for defined files
created by the user to identify the environment.

Table 4.2: C code generated from our framework based on EPSAAV language.

C code Header extension of Linked object
the input file

ActionLibraryName ActionLibraryName .actions ActionLibrary
AlertLibraryName AlertLibraryName .alerts AlertLibrary
PropertyLibraryName PropertyLibraryName .prop PropertyTypeLibrary
SceneName SceneName .scene Scene
Safety Checks Safety Checks .rbp RuleBasedPlanner

The Safety Checker module’s automated features can save hours of the develop-
ment process, eliminating the need to perform manual code checks by hand. All

77

the generated code is compiled and verified so that the user has only one task to
interface with the fusion output described in Section 4.5.

• ActionLibraryName.c and AlertLibraryName.h are about enumerating ac-
tions and alerts in defined structures and instantiating process functions for
both.

• ActionLibraryName.c and AlertLibraryName.c contain switch cases in pro-
cess functions with all actions and alerts respectively to be printed to the
user. For this thesis, actions have an informative task, but for future out-
look, actions could be related to motion planner and controller, as shown
in Figure 4.16.

• PropertyLibraryName.h renames properties as data types such as prop-
ertyName t, and lists their states. It also declares a function for each
property in this form: propertyName t propertyName check();

• PropertyLibraryName.c contains functions for each property and is detailed
with instructive comments. All generated comments must be filled in by the
engineer to bridge the gap between rules inputs and the debugger outputs.
They contain if conditions for each state as seen in Figure 4.18.

• SceneName.h is composed of instantiated functions and structures. For
structures, it defines each objectType as a data type and lists the pa-
rameters defined in the structure. For functions, it instantiates the pa-
rameter functions for each objectType in the following form: param-
Type t get objectType param();. It also contains a function named fu-
sionDatatoScene() which takes fusion data as a parameter.

• SceneName.c instantiates fusionDatatoScene() by calling functions for each
objectType to get its parameters. This part is also to be filled in by the
user to interface the parameters with the fusion data as shown in Figure
4.20.

• Safety Checks.h contains Goal t structure composed of three functions:
(1) isTriggered() to include safety rules, (2) execute() to call actions, and
(3) raiseAlarm() to trigger alerts.
We also instantiate trigger conditions for each goal trig goalx conditiony(),
raising alarms alarm goalx conditiony() and execute goalx conditiony() for
the actions as different functions for each condition in a goal.

• Safety Checks.c details init goals() function that initiates all goals with con-
ditions, and trig goals() that triggers them by applying priority or parallel
execution. If Goal1 has priority over Goal2, we test if Goal1 is false before
triggering Goal2. It also details (trig goalx conditiony()) that transforms

78

the logical expressiveness of each condition into an if statement using logi-
cal operators. It also performs runtime and alarm functions based on what
the safety engineer has set.

4.4.2 Visualization of Safety Checker module performance
signals

The visual safety appraisal can be used to assess the safety engineer’s decision
to determine visual communications needs. The use of FusionRunner was ini-
tially designed around the process of using driving simulators and was structured
around the accessibility of the graphical interface.

Figure 4.17: SAFETYCHECKER window to view safety measures, all goals with
triggered actions, and alerts and properties.

To facilitate the safety evaluation procedure, we have created a window to
visualize all the performances of the safety signals. The addition of a graphi-
cal interface simplifies debugging and represents safety metrics and shortcuts to

79

increase assessment productivity. We can manipulate back in time to check for
ambiguities of violations triggered at a certain step. The SAFETYCHECKER
window in Figure 4.17 defines the rules, properties, and parameters (safety met-
rics) declared by the engineer. It shows the interface created in the Perfs menu
to visualize the use case.

4.5 Interfacing the Safety Checker module with

the FusionRunner to assess safety

As mentioned above, the second step of the user process depicted by Figure 4.15
is to interface the FusionRunner ’s output with the C code input in the Safety
Checker module. The software engineer has two files to fill:

1. PropertyLibraryName.c where it needs to fill in the if statements with the
correct thresholds by calling functions from SceneName.c as shown in Figure
4.18. An example of filling the thresholds and statements from Figure 4.6,

Figure 4.18: PropertyLibraryName.c containing check functions with If state-
ments.

is taking into consideration the Time To Collision (TTC) parameter by
calling the function get preceding vehicle ttc min(). The filling form
is shown in Figure 4.19.

2. SceneName.c in which engineer should provide fusion data as parameter
and get necessary parameters for each objectType as shown in Figure 4.20.

These functions need to be manually filled by the software engineer to choose
the right getter functions to defined thresholds. In case the safety engineer does
not specify any threshold, the software engineer will apply his thresholds based
on the states declared. When the interface is completed, the Safety Checker
module becomes part of the ADAS to improve and assess the safety of AEB and
ACC functions. Once all the rules are well specified, Safety Checker module can
override these features to guarantee when to brake or accelerate.

80

Figure 4.19: Example of interfacing the If statements with a function in Prop-
ertyLibraryName.c.

Figure 4.20: Comments to interface fusion data in SceneName.c.

4.6 Conclusion

In this Chapter, we have mentioned the perceptual challenges of sensors that
can be enhanced by using parameters and properties introduced by the EPSAAV
tool. We have validated the use of a simulator for the proposed approach. We
coupled the simulator objective to the representative AD software architecture.
Any simulation can replace perception and planning components that reduce pro-
cessing time and provide access to pre-processed scenarios in a short time.
The proposed approach can be interfaced with any existing simulator. In this
Chapter, we announced the use of FusionRunner which performs resimulation
and debugging of generated or real scenarios. FusionRunner presents many ad-
vantages discussed earlier. It generates metrics that can be consulted via an
interface to analyze at a glance the quality and performance of the software and
to quickly identify potential problems.

81

FusionRunner calculates all necessary information such as braking and im-
proves algorithmic performances. It gives us access to raw or fusion data. How-
ever, it remains a tool to maintain because it is coded in C/C++, which requires
a lot of effort. This is where the proposed approach comes to the rescue by au-
tomatically generating code and replacing feature components. It enriches the
simulation by creating a safety branch to validate the development process and
test ambiguities in the scenarios.

82

Chapter 5

From Safety Rules to Satisfaction
Checking

5.1 Introduction

To enhance the development of safety systems, MBSE has been used to provide
early validation and verification for DSML. Formalizing specifications helps catch
mistakes and study the properties of the solutions. It also clarifies concepts and
paper proofs by complementing them with automatic strategies. ISO 26262 ex-
tends the concept of Safety Integrity Levels (SIL) proposed in IEC-61508 and is
adopted and redefined as Automotive Safety Integrity Level (ASIL). It examines
the functional safety requirements for all the different electrical and electronic
systems of a vehicle. ASIL-D is an automotive hazard classification that is part
of the functional safety and represents the highest level of risk management, so
components or systems developed for this level are manufactured to the strictest
safety requirements that highly recommend formalization. We focus on safety
requirements that must be described by an appropriate combination of formal
methods that specify the concept phase for automotive applications. The verifi-
cation of these systems is done by providing formal proof on an abstract mathe-
matical model. Several DSML approaches apply software verification techniques
and validate the implementation by applying automatic or semi-automatic solvers
(Section 5.2). As global verification often leads to undecidable problems, most
problems are usually reduced to domains where we have solvers available. Be-
cause of the expressiveness of EPSAAV, that is driven from the safety domain,
we decided to reduce our safety rules to a Boolean Satisfiability Problem (SAT).
This is a first step to convince the industry of the benefit of moving from a paper
document to a computer model as it immediately opens a wide range of vali-
dation and verification possibilities. In this thesis we use a SAT Solver (SAT4J
relying on the Java language) to detect inconsistencies between safety rules that
are difficult to detect when the specification is too large and certainly very error-

83

prone if the process remains paper-based. Besides, this encoding of our rules
as Boolean Predicates gives a formal interpretation (by transformation) to the
EPSAAV language.

In this Chapter, we provide the requirements for using the SAT solver in
Section 5.3. We mention the need of the solver by giving rules inconsistencies
examples in Section 5.4, and what are the three implementation steps in the
tool to automatically generate Java code in Section 5.5. This compatible code
is then transmitted to the solver and depends on the formal rules described by
the safety expert. This makes it possible to detect inconsistencies and check the
validity and completeness of the rules. These inconsistencies can result from a
requirement or specifications executed in parallel or sequential. To assess that,
we present tests to verify SAT solutions. This is all described in the Section 5.6.
If the safety engineer wishes to modify the environment, the code automatically
adapts to his modifications.

5.2 Satisfiability solvers

In the early 2000s, Satisfiability Modulo Theories (SMT) has built on the success
of SAT solvers and on their efficiency to extend the expressiveness of what can be
verified by defining ad-hoc theories [121, 122]. While there is a real opportunity
in EPSAAV to benefit from SMT solvers we decided to limit our study to SAT
solvers at it is already a big step compared to the state of practice and it is
sufficient to prove our points. However, it is very clear that relying on SMT
would open a vast domain of further verifications that could be treated as future
work but that remains out of the scope of this thesis.

Nowadays, most verification tools depend on solvers which are now very pop-
ular tools for solving different types of problems. We can cite safety verification
studies on the properties of finite state machines using a SAT solver [123]. Recent
breakthroughs in their development have also resulted in a great advance in the
relevance of SMT solvers, leading to the development of many different industrial
applications in the fields of software verification, model-based testing and debug-
ging [83], verification of models, and use case generation [124, 125]. SMT solvers
that solve more advanced theories are necessarily incomplete or even slower than
SAT solvers [126]. Most SMT solvers use a state-of-the-art SAT solver to evaluate
whether an SMT instance is satisfiable or not. This is why, within the scope of
this thesis, we pick out for the beginning the suitable SAT solver and integrate it
into the framework. The SAT solver gives us a certainty of validity of our results.
For future perspectives, SMT could be integrated to provide more complex cases.
The formal rules defined are based on simple logical operations which can be
defined using the SAT Solver.
We describe in detail the SAT solver and the steps for its integration.

84

5.3 SAT solver

Satisfiability is the problem of determining whether the variables of a given
Boolean formula can be assigned in such a way that the formula evaluates to
true. If no such assignment exists, it means that the function expressed by the
formula is false for all possible variable assignments. In the latter case, we say
that the formula is satisfiable; otherwise, it is unsatisfiable. The SAT solver ad-
dresses this problem and is known for computational complexity, representing the
first decision problem to be proven NP-complete [84, 127]. It has been used in
many practical applications and is remarkably motivating MBSE [128]. It serves
as a trusted kernel checker for verifying results of other untrusted verifiers such
as BDDs, model checkers, and SMT solvers [129]. Almost all SAT solvers in-
clude time-outs, so they terminate in a reasonable time even if they cannot find
a solution. Different SAT solvers find different instances easy or hard, and some
excel at proving unsatisfiability, and others at finding solutions [130]. Their tools
excel at finding inconsistencies by interpreting domain specifications as a logic
problem [131]. SAT4J is the java library used for solving Boolean satisfaction
and optimization problems. Being in Java, the promise is not to be the fastest
one to solve those problems, but to be fully featured, robust, user friendly, and to
follow Java design guidelines and code conventions solving SAT problems. The li-
brary is designed for flexibility, by using heavily the decorator and strategy design
patterns. Furthermore, SAT4J is open source, under the dual business-friendly
Eclipse Public License and academic friendly GNU LGPL license [132].

5.4 Rules contradiction

To help the safety engineer catches inconsistencies in his rules, we included a SAT
solver in our process. Let us see the following example:

RBP = (Goal1Condition1 =⇒ action1)∧
(Goal1Condition2 =⇒ action1)∧
(Goal1Condition3 =⇒ action1)

(5.1)

The first interpretation satisfies the formula RBP if (Goal1Condition1 =⇒
action1), (Goal1Condition2 =⇒ action1) and (Goal1Condition3 =⇒ action1)
are true. A second interpretation does not satisfy the formula if one of them is
false. We can take the real example described previously in Figure 3.14 for the
safety assessment with the following conditions:

Goal1Condition1 = follow the PV;

Goal1Condition2 = respect speed threshold;

Goal1Condition3 = respect safety distance of 2s;

and action1 = light acceleration.

(5.2)

85

At first sight, there is no contradiction in this example among the rules because
we have different conditions for these goals. However, let us suppose that we have
a policy system having the following properties:

RBP2 =(Goal1Condition1 =⇒ action1) ∧ (Goal1Condition2 =⇒ action1)

∧ (Goal1Condition3 =⇒ action1) ∧ (Goal2Condition1 =⇒ action2)
(5.3)

Goal2Condition1 = respect a TTC for every VRU;

and action2 = emergency braking.
(5.4)

Conflict occurs with RBP2 because it satisfies action1 and action2. Satisfying
them means that the AV is allowed to accelerate and decelerate at the same
time. Imagine the case study when the RBP contains numerous goals that are
composed of multiple conditions and the safety expert needs to be sure that there
is no inconsistency. An obvious way to solve the SAT problem is to traverse the
truth table for the expression as seen in tables 5.1 and 5.2.

Table 5.1: Truth table for the implication expression of Goal1Condition1 in
RBP2.

Goal1Condition1 action1 Goal1Condition1
⇒action1

0 0 1
0 1 1
1 0 0
1 1 1

The logical contradiction in the previous example is clear and easy, but as
the system becomes more complex, we need truth tables to enumerate all combi-
nations of inputs and define if a solution exists. We propose an implementation
process to deploy the SAT solver which tests whether the change still has a
conflict arisen and determines which subjects and resources are involved in the
inconsistency. Our proposed language gives the possibility of modifying these
conflicts to eliminate all possible inconsistencies.

5.5 Phases of implementation tasks to deploy

the SAT solver

Executing formal requirements using operations is an important technique for
requirements validation and rapid prototyping. We present an efficient and fully
automatic approach to run the code generated from the rules and specifications
which then uses a SAT solver as shown in Figure 5.1. The requirement is trans-

86

Table 5.2: Truth table for the RBP2 expression.

Goal1Cond1 Goal1Cond2 Goal1Cond3 Goal2Cond1 RBP2
⇒action1 ⇒action1 ⇒action1 ⇒action2
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Figure 5.1: Phases of implementation tasks to study inconsistency using the
DSML proposed and the SAT solver.

lated into a logical formula and later into a satisfiability problem. Based on the
state of the system in which the operation is called and the arguments of the
operation, an out-of-the-box SAT solver calculates a new state that satisfies the

87

conditions of the operation. An effort is made to keep system state changes as
small as possible. We present a tool to generate Java method bodies for opera-
tions specified in requirements. A SAT solver decides whether a Boolean formula
is satisfiable. If there is an inconsistency present, the engineer can see its origin
and then modify the rules. In other words, three commitments are developed
and given by the process:

1. Translating rules to Boolean formulas

2. Testing inconsistencies

3. Verifying solutions

5.5.1 Translating rules to Boolean formulas

First, domain experts have to describe the safety rules executed in parallel or
sequentially based on the environment (scene, parameters, and properties) and
the behaviors (alarms and alerts), using formal syntax. By translating rules to
Boolean formulas using EPSAAV language, SAT solvers can be used to determine
valid system states for the animation. Boolean formulas concern the following
logic operators in the table 5.7. A formula contains binary variables that are
connected by logical relations. Boolean operators are used as standard functions
that take one or more binary variables as input and return a single binary output.
Each Boolean operator is defined by a truth table in which we enumerate every
combination of inputs and define the output. Common logical operators include:

1. The AND operator that is written as ∧ and takes two inputs and returns
true if both are true as seen in table 5.3.

Table 5.3: Truth table for the AND logic operator.

Goal1 Goal2 Goal1 ∧Goal2
0 0 0
0 1 0
1 0 0
1 1 1

2. The OR operator that is written as ∨, takes two inputs and returns true if
at least one of them is true as seen in table 5.4.

3. The IMPLICATION operator that is written as ⇒ and evaluates whether
the two inputs are consistent with the statement if..then. Its truth table is
shown in Figure 5.1.

88

Table 5.4: Truth table for the OR logic operator.

Goal1 Goal2 Goal1 ∨Goal2
0 0 0
0 1 1
1 0 1
1 1 1

Table 5.5: Truth table for the NOT logic operator.

Goal1 ¬Goal1
0 1
1 0

4. The NOT operator is written as ¬ and takes one input and returns true if
the input is false and vice-versa as seen in table 5.5.

5. The EQUIVALENCE operator ⇔ operator and takes two inputs and re-
turns true if the two inputs are identical and returns false otherwise as seen
in table 5.6. It can be decomposed as two implications as seen in table 5.7.

Table 5.6: Truth table for the EQUIVALENCE logic operator.

Goal1 Goal2 Goal1 ⇔ Goal2
0 0 1
0 1 0
1 0 0
1 1 1

We aim to establish whether there is any way to set these variables so that the
formula evaluates to true. We rely on those multiple basic formulas adaptable to
the SAT solver, presented and implemented from [133]. We chose to integrate its
code for the ease of properties name mapping. As seen in the table 5.7, to pass
from the Example using a logic operator to its corresponding Boolean formula,
the EPSAAV generator eases this affiliation.
All the rules presented in the rule-based planner must be translated into these
basic formulas. A boolean logic formula takes a set of variables that can be
true or false and combines them using Boolean operators returning true or false.
The RBP and RBP2 formulas defined previously in equations 5.1 and 5.3 are
examples of rules using logic operators with 4 and 6 defined variables respec-
tively. For the second combination, we could evaluate this formula and see if it
returns true or false. Notice that even for these simple examples it is hard to
see what the answer is by inspection. This is why we work on generating Java

89

Table 5.7: Basic logical symbols integrated in the SAT solver.

Symbol Read as Example Boolean formula
∧ and c = a ∧ b IBoolSpecification.and(“c”, “a”, “b”)
∨ or c = a ∨ b IBoolSpecification.or(“c”, “a”, “b”)
⇒ implies c = a ⇒ b IBoolSpecification.implies(“c”, “a”, “b”)
¬ not c = ¬a IBoolSpecification.not(“a”)
⇔ equivalence c = a IBoolSpecification.implies(“c”, “a”)

IBoolSpecification.implies(“a”, “c”)

code compatible with the SAT solver using these formulas. The engineer does
not spend time in hand-coding making fewer errors, which enables him to save
time on implementing larger and more rules. In previous Chapters, we detail

Figure 5.2: Example of a safety requirement defined by the expert using the
EPSAAV tool.

the DSML development part and describe the tool based on a meta-model that
facilitates the environment’s description and generates monitors such as code.
Figure 5.2 is an example of a goal definition where the system shall trigger a
brake acc alerting the engineer with the longitudinal acceleration value. The pol-
icy is related to an OR logical symbol of an ACC front car distance and ACC
straddling car distance, which implies triggering a brake and an alert to the en-
gineer. Figure 5.3 represents the generation of the rules to Java code following
the formulas defined in the table 5.7. This generation is done by taking into ac-
count the defined rules and transforming them into these Boolean formulas using
a flexible and expressive dialect of Java code developed in Xtend projects. It
is our intention to make use of the intense research on satisfiability solving for
executing specifications. We have implemented the SAT4J library in Eclipse as
seen in Figure 5.4, and tested the Java code generated.

The first phase consists of generating Java method bodies from goals that are
compatible with the SAT4J library to solve SAT problems as shown in Figure
5.3. All logic operations for rules specification are translated to specific forms
of coding. The ”is” verb is translated from the tool by joining the property to
the state using this form state property. An example of front car distance

90

Figure 5.3: Java code generation from a goal defined by the safety expert in
Figure 5.2.

Figure 5.4: Implementation of SAT4J library in Eclipse.

is acc distance is translated to acc distance front car distance as seen in
Figure 5.3. We follow this format to avoid duplicating same state if it exists
twice such as acc distance for both properties front car distance and strad-
dling car distance.

5.5.2 Testing inconsistencies

The second phase consists of testing the inconsistency of the rules applying spe-
cific formulas by automatically generating specific controls for each rule. When
the safety engineers decide to write their code, they can make a mistake in the
order of the rules or even repeat their definition twice. To help them determine
whether his RBP is consistent or not, several tests should be run. Before digging
into these formulas, let us first understand what needs to be addressed. First test
is to validate that solutions exist when the rule (or goal) is true as follows:

test(Goal)

{
true, rule valid

false, rule invalid

We can give a simple example using an AND operator:

Goal = (front car distance = safe distance)∧
(front car distance = not exist)

(5.5)

This example shows that a front car distance should only have one state, either
a safe distance or not exist. So; no solution for this rule, and the rule is then
invalid. This test is important to see if the rule is valid or not, meaning that the
associated triggering condition of a goal is satisfiable or not. After verifying that

91

the rule is valid, we can analyze all the solutions. It is then important to be able
to see if there is a case in the truth table where two contradictory actions can
be triggered at the same time. Another test is applied on two conditions within
the same goal, or even on two goals if they contain only one condition each, to
determine the type of execution:

test(G1, G2)


Priority execution

Parallel execution

Identical rules

We take the example in RBP2 in equation 5.3.
The Goals (or even Conditions in Goals) that trigger different behaviors (ex-

amples action1=light acceleration, and action2=emergency braking) are not sat-
isfiable at the same time, then a priority must be given. If two conditions are
exclusive then the order does not matter and there is no need for assigning a
priority. This test is necessary to see if two same states that are present in the
requirement have always the same value. We also apply test on the whole system
regarding the actions, the alerts, and the coherence between the goals and the
states. The system solution presents all possible solutions to the defined rules,

test(system solution)

{
true, system coherent

false, system not coherent

After applying the tests for the system, if we get solutions, the system will give us
consistent output. If there is no solution for the system, then there is no consistent
solution. These tests are performed on successive matched rules and for the whole
system. This test is useful in case several conditions withing several (concurrent)
goals would be satisfiable at the same time but leading to different actions. Given
the specification, our framework generates a campaign of tests, each individually
testing one particular kind of inconsistency (akin to unit testing). If one test
fails, it points at a possible inconsistency within the rules that must be addressed
by the safety engineer. We take the example of RBP2 in the equation 5.3 but
G1 and G2 are executed sequentially. The system solution will give us all the
possible solutions consistent with the defined behaviors and properties. Since
they are now executed in sequence, the system will present consistent solutions.
If we test the Goals in RBP2 in parallel with the consistency of behaviors and
properties, then the system will give all the inconsistencies present as solutions.

5.5.3 Boolean Satisfiability problem

The Boolean Satisfiability problem asks whether there is at least one combination
of Boolean input variables that makes the Boolean logic formula True. When
this is the case, we say the formula is satisfiable. SAT solvers algorithms can

92

be classified into two types. First, complete algorithms guarantee to return SAT
or UNSAT. Second, incomplete algorithms return SAT or return UNKNOWN
without providing an answer. The best case is when they find a solution that
satisfies the expression. If they do not, then we can not draw conclusions. The
SAT solver that constitutes an algorithm for establishing satisfiability, takes the
Boolean logic formula as input and returns three types of SAT solutions for the
SAT problem as seen in Figure 5.5.

Figure 5.5: SAT problem and solutions.

If it is a SAT problem, we have at least one solution verification if it finds a
combination of variables that can satisfy it. For instance, RBP2 in table 5.2
has a solution if all the variables are true. Otherwise, the conditions defined in
the rule have no solutions, which means UNSAT can demonstrate that no such
combination exists. In addition, it may sometimes return without an answer if
it cannot determine whether the problem is SAT or UNSAT. ALL SAT solutions
mean computing all the configuratio of input variables that make the formula
True. Depending on solvers, it may be very expensive to compute all SAT.

5.6 Java code generation for inconsistencies study

The inconsistency is the lack of consistency such as statements can be not com-
patible with another one. They contain incoherent or illogical elements in thought
or actions. As previously introduced, we have three phases for testing inconsis-
tencies on the rules: the validty of each rule, the consistency between the rules,
and the consistency for the whole system to find all possible coherent solutions.
Requirements have a very important role to play in a safe and reliable system.
They provide general information about AV functionality, for example, they may
indicate that the car is facing a perception error or that it should apply a full
brake or even accelerate for comfort aspects. The requirements must always be
followed because they are at a higher level than ordinary policies. So if there is
a conflict between the requirements and the policies, the policies should change,

93

not the requirements.
Using the EPSAAV tool, the safety engineer can manipulate these policies to
meet a specific requirement and try to claim for inconsistencies by analyzing the
solutions. With the increasing complexity of AV systems, it becomes very difficult
to cover all unsafe cases. Therefore, a safety system may contain a loophole. As a
solution, we integrate a formal way to describe safety requirements into the tool
to raise the existence of soundness rules. Soundness is the property of only being
able to prove true things. Completeness is the property of being able to prove all
true things. So a given logical system is sound if and only if the inference rules
of the system admit only valid formulas. The SAT Solver can also be applied to
specific tests to meet any requirements. This is why we differentiate three types
of tests that are generated for the engineer to test his requirements.

• testing validity of internal rules,

• testing consistency of sequential and parallel rules with each other,

• testing of the whole system considering properties and goal coherence.

These tests are generated in three different Java files respectively to the previous
testing phases:

• Sat4jRules.java is a Java file that contains the rules translated to Boolean
forms,

• Sat4jRulesConsistency.java relies on the previous file to test whether some
conditions are SAT or UNSAT, in turn. It also combines conditions from
different goals to see which ones are compatible or not leading to a different
recommendation depending on whether those conditions are sequential, or
parallel, with or without priorities.

• and Sat4jSystemConsistency.java that helps verify solutions of the system
and the goals coherence with the properties coherence. It combines all rules
and actions of all the goals to see whether globally the system is satisfiable.

5.6.1 Testing validity of each rule in the rule-based plan-
ner

The EPSAAV tool helps the analysis of safety requirements in an automatic
process. Using the Boolean satisfiability problem, we can find a solution that
satisfies the expression. We can also check all the solutions that exist to analyze
the choice of priorities. As we said earlier, a specific Boolean formula should be
generated automatically from the rule-based planner.
As defined before, a Goal can be composed of multiple Condition. A Condi-
tion starts with a WHEN, and ends with an Action and an Alert. Consider

94

an example of rules defined in a rule-based planner in Figure 5.6. Goal1 re-
groups two conditions. The first one requires a deceleration when there is an
emergency distance with the pedestrian detected (pedestrian tracking is detec-
tion). The second one, which is the second WHEN, is a possibility of accelerat-
ing when the front car does not exist and has no emergency distance with the
EV (neither strong braking distance nor imminent collision distance). Note that
OR(a,b,c) can be also read as (a OR b OR c); and NOT(OR(a,b,c))=NOT(a
OR bb OR c)=(NOT a) AND (NOT b) AND (NOT c). This example is in-
spired from the Figure 3.14 where two actions are contradictory and need to
be specified as sequential rules. This case refers to the EgoProperties li-

Figure 5.6: Definition of a goal with two sequence conditions containing specific
logical operators.

brary which contains four properties: front car distance, front car tracking,
pedestrian distance and pedestrian tracking as shown in Figure 5.7. Each
of these properties is assigned to variables. The goal translated into Boolean
formulas is shown in Figure 5.9. The first condition in goal1 is translated to
build goal1 cond1() function, and consists of decelerating. The second condition
in goal1 is translated to build goal1 cond2() function, and consists of accelerat-
ing. For the internal validity rule test, we do not consider the actions and alerts,
but rather test the rules if solutions are correct or not. Both functions take the
logic requirements defined by the safety expert and translate the logical opera-
tors into Boolean formulas defined in the table 5.7. For the first condition trans-
lated into build goal1 cond1(), we put the result of the AND operator of emer-

95

Figure 5.7: Definition of an Ego property library with four states containing
variables.

gency distance pedestrian distance and detection pedestrian tracking in
goal1 cond1. For the second condition translated into build goal1 cond2():

• NEGATION of goal1 cond2 which is the OR disjunction of
strong braking distance front car distance,
imminent collision distance front car distance, and the IFONLYIF
operator seen in the next point and defined as goal1 cond2 1. The nega-
tion is commented later to not force the function to be false.

• goal1 cond2 1 refers to the IFONLYIF. When exist front car distance
and stable tracking front car tracking are false, or when both are strictly
true, goal1 cond2 1 is true. This is why, the IFONLYIF uses the build Equiv
function (seen in Figure 5.8).
In our case, a= goal1 cond2 1 which is the name of the function,
b=exist front car distance and c=stable tracking front car tracking
that can both be true or false at the same time. This function regroups all
of these Boolean formulas:

Figure 5.8: Definition of the build Equiv function replacing the IFONLYIF oper-
ator.

– spec.clause(a,b,c) that is the equivalent to ¬a∧b∧c
– spec.clause(b,a,c) that is the equivalent to ¬b∧a∧c
– spec.implies(a,c) that is the equivalent to a⇒c or ¬a∨c

96

– spec.or(b+c,b,c) that is the equivalent to (b+c)=b∨c where the
addition symbol is a concatenation method to rename a new variable
that executes the OR operator between b and c

– spec.forces(b+c) that forces the concatenation b+c to be true.

Figure 5.9: Generation of Java function containing Boolean formulas compatible
to the SAT4J library.

This is how all the rules are generated using the EPSAAV generator and trans-
formed into functions interfaced with the SAT4J. Note that the translation of the
states in each property becomes: StateName PropertyName. In order to see
solutions for this rendered objective, we need to force the goals to become true
and test also their negation. To study the validity of the internal rules, we au-
tomatically generate for each condition two functions: build goalX condY True()
and build goalX condY False(). The first one test the validity, the second one
test the falsifiability. An example is shown in Figure 5.10.

Figure 5.10: Generation of Java functions to test internal rule validity.

Before forcing the function to be true or false, we test the AND operator for
goal1 cond1, we run the build goal1 cond1() function and visualize three re-
sults in Figure 5.11. When we try to run functions in Figure 5.10 forcing true
and false tests, we see that build goal1 cond1 True() has one solution as seen in
Figure 5.12, and build goal1 cond1 False() contains two solutions as seen in Fig-
ure 5.13. So the function build goal1 cond1() groups false and positive results.
For the goal2 cond2 (Figure 5.9), the build goal1 cond1 False() function is the
true one and vice versa.

97

Figure 5.11: Solutions for the function build goal1 cond1() containing AND op-
erator.

Figure 5.12: Solution presented after testing build goal1 cond1 True() function.

Figure 5.13: Solutions presented after testing build goal1 cond1 False() function.

The numbers in the tables of the two Figures 5.12 and 5.13 represent the number
of variables which in our case is 3 variables in Figure 5.11. Each variable can be
true or false and is indicated by the sign in front of the variable number. If it has
a negative sign, it means it is false or null. Otherwise, it is positive. If all the
variables contained in the rule are true, it is possible to eliminate this solution
because it does not make sense to have only all positive or negative solutions. If
all the variables are false, they are automatically eliminated for the SAT problem.

98

5.6.2 Testing consistency of sequential and parallel rules
with each other

To prove that two rules are inconsistent, we first test rules with their alerts by cre-
ating build goal1 cond1 Alert() function wich takes the alert into account in the
inconsistency test, and force it to be true with the function build goal1 cond1 Alert True()
with one solution seen in Figure 5.14. Specifications or rules can have no solution

Figure 5.14: Solution presented for the AND operator in goal1 cond1 adding
one variable for the acceleration alert.

or even one solution where it is always true/false. Experts can write parallel
rules that sometimes they do not pay attention to the inconsistencies and must
have priority, and can also write sequential rules that can be opposed. Consider
the case of two rules R1 and R2 as shown in the table 5.8. Four combination
cases exist: Safety expert has two ways of defining rules as seen in equation 5.6.

Table 5.8: Combination cases for the two rules.

Case R1 R2 Explanation Sequential Parallel
1 0 0 Rule 1 and Rule 2 are false 0 0
2 0 1 Rule 1 is false, Rule 2 is true 1 1
3 1 0 Rule 1 is true, Rule 2 is false 1 1
4 1 1 Rule 1 and Rule 2 are true 0 1

For the sequential equation, it is the sum of [(R1∧¬R2)∨(¬R1∧R2)], and for the
parallel (R2 ∨ R1). We eliminate as mentioned previously the solution when all
rules are false.

Define(R1, R2)

{
Sequential definition, (R1∧¬R2)∨(¬R1∧R2)

Parallel definition, (R2 ∨ R1)
(5.6)

The priority execution study falls under cases 2 and 3, note that in the first
case, the two rules are not triggered and the last case cannot be true since one is
called before the other. For parallel execution, we sometimes miss giving priority
between rules triggered at the same time which causes inconsistency.

If the safety expert sets R1 and R2 to run in parallel, it is necessary to know
if the defined properties are consistent. From the table 5.8, the 4th case is when
both rules are set to true. This is a case where we can see possible inconsistencies

99

since they are triggered together, so the operator is an AND operator on R1 and
R2. To test this, we apply AND test defined in the equation 5.8 to see solutions
when both are triggered together and analyze the results.
For the priority goal type, let us consider that R1 has a priority over R2 as
following:

if(R1){
raiseAlarm(AlertR1);

}elseif(R2){
raiseAlarm(AlertR2);

}

(5.7)

If we consider R1 = a and R2 = a&b, the second condition is never going to
happen and we never have Alert2 executed because a ⊂ a&b. Sometimes, the
safety engineer does not notice that a requirement can never be triggered. To
test this inconsistency, we follow tests in equation 5.8. These tests are generated
to check and verify inconsistencies in the rules. If R1 is executed before R2,
we apply ¬R1∨R2 which constitutes the 3rd case in table 5.8 where R1 is true
and R2 is false. To see when R2 is positive, we must test ¬R2∨R1, the inverse
where we can visualize the solutions when R1 is executed and not R2. If the
solutions make sense, the safety engineer should question his choice, modify the
requirements or even add new specifications. If the expert defines rule R1 which
is sequential with rule R2 or vice versa, that means we need to test priority on R1
or R2 respectively. This test ensures that a rule is triggered before the other, and
there is no case where one of them takes precedence. Finally, if R1 implies R2
and R2 implies R1, they are identical. This last test deals with the complexity
listed in the requirements.

test(R1, R2)


¬R2∧R1, when priority execution of R2 over R1

¬R1∧R2, when priority execution of R1 over R2

R1 ∧ R2, when parallel execution

(R1 =>R2) ∧ (R2 =>R1), when rules are identical

(5.8)
Consider the example in Figure 5.15 where two goals are executed simul-

taneously. The AccelerateEgo goal has an acceleration behavior whenever the
distance to the front car is safe. The DecelerateEgo goal slows down the EV
when the distance requires an emergency maneuver with an imminent collision
distance. As these rules are executed in parallel, we test the AND between these
two rules. Remember that this is a simple example to see the automatically gen-
erated tests. Figure 5.16 shows the 15th solution presented when all variables are
true. Figure 5.17 is the solution when these two rules are triggered in parallel
and are both true. Variables 4 and 8 are contradictory since either can be true.
We can see acceleration and deceleration states are true at the same time which

100

Figure 5.15: The AccelerateEgo and DecelerateEgo rules run in parallel.

Figure 5.16: Results of a parallel test applied using the AND operator on the
AccelerateEgo and DecelerateEgo rules.

is inconsistent. Variables 2 and 6 are also contradictory since we cannot have a
safe distance and a collision imminent distance at the same time. Seeing a lot
of states incoherent, the safety engineer needs to change the GoalType and set a
priority. Then, a test is performed according to the formulas of the equation 5.8.
Deceleration has a priority over acceleration, which makes more sense. The best
solution is to reverse the two rules because the deceleration in the AD is critical
for vehicle safety.

Consider the example in Figure 5.18 where two goals are defined in sequence
(with a Priority GoalType). The AccelerateEgo goal in this case has an accel-
eration behavior whenever the distance to the front car does not exist. The

101

Figure 5.17: Results of a parallel test forcing the AccelerateEgo and Decelera-
teEgo rules to be true.

MaintainEgoSpeed goal remains with the same speed whenever the distance to
the front car does not exist and the system does not track it. We execute the

Figure 5.18: The AccelerateEgo and MaintainEgoSpeed rules executed sequen-
tially.

priority test with MaintainEgoSpeed ∨ ¬AccelerateEgo to see if there is a so-
lution where it presents an inconsistency. Figure 5.19 shows the solution where
maintaining speed and accelerating are both true, so maintain speed is never
executed since not exist front car distance is a common variable used in both
goals, which means goal1 does not let the system pass to goal2 that is included in
goal1’s condition. This is how experts check that the priority is not well written
and they need to change the goals or even maybe the type of execution.

102

Figure 5.19: Result of a priority test of MaintainEgoSpeed and AccelerateEgo
functions to check inconsistency.

5.6.3 Testing consistency of the whole system

To test consistency of the whole rule-based planner, we need to parse the solu-
tions to the ruleset. Generating a function that gives all the solutions is a way
to deal with the consistency of the whole system. The rules that are executed
sequentially are translated to this form:

G1 priority over G2 =G1 ∨ ((¬G1) ∧G2) (5.9)

The rules that are executed in parallel are translated to this form:

G1 parallel with G2 =G1 ∨G2 (5.10)

with G1 = R1 ∧ Alert1

G2 = R2 ∧ Alert2
(5.11)

The coherence of the system is the coherence of all the rules with their behav-
iors. Let us take the example in Figure 5.15 with a priority execution. Figure
5.20 shows the translation to study the coherence and the solutions of the sys-
tem with all the rules. The coherence decelerateEgo() function takes into account
the negation of coherence accelerateEgo(), considering or not the behavior trig-
gered (the commented lines are with behaviors). We then create a function
coherence all goals behaviors() that uses an OR logic operator for all goals co-
herences. The system solutions are equal to coherence all goals behaviors and
coherence all properties as seen in the following generic equation 5.12:

System solution = coherence all goals behaviors ∧ coherence all properties
(5.12)

103

Figure 5.20: Code for translating sequential execution of the AccelerateEgo and
DecelerateEgo rules to test the system coherency.

This generic equation is characterized in Figure 5.21 where for the example in
Figure 5.15, coherence all properties is expressed as follow:

coherence all properties

= coherence safe distance ∨ coherence imminent collision distance

= (safe distance ∧ ¬imminent collision distance)∨
(¬safe distance ∧ imminent collision distance)

(5.13)
The system solution formula is generated by EPSAAV tool to help the user
verify solutions for his rule-based planner. One of the states for each property
should be activated and not both. We can not have a safe distance and an
imminent collision distance at the same time. We dig into more examples and

Figure 5.21: Code for translating sequential execution of the AccelerateEgo and
DecelerateEgo rules to test the system coherency.

analysis in Section 6.7 and 6.8.

104

5.7 Conclusion

In this Chapter, we have discussed the necessity of using a constraint solver. We
restrict ourself to a SAT solver (SAT4J) as it is sufficient to prove our point and
has enough expressiveness for the kind of language used in safety requirements.
However, note that encoding the enumeration types may lead to very inefficient
encoding that did not justify by itself to use an SMT solver instead. To detect
conflicts, depending on the structure of the rules we use the SAT solver to prove
the system is satifiable or valid or falsifiable. Our framework is in charge of gen-
erating all the codes to check inconsistencies. The objective is to arrive at a solid
and complete system that helps the engineer to integrate his safety requirements
knowing that the inconsistencies will be dealt with.
We presented the three implementation phases to deploy the SAT solver. First, a
Java generation is performed according to the safety rules defined by the expert.
This generation follows a systematic encoding into Boolean formulas based on the
structure of the rules. A set of Boolean operators are combined into these Boolean
logic formulas that are fed to the SAT solver. Obviously, a lot of effort needs to be
put into the infrastructure to code the generator to support these features. How-
ever, it reduces the development time for the safety engineer who may not be an
expert in programming. In a second step, inconsistency tests on the rules and the
system are carried out. We detail the generation Java code to study the inconsis-
tencies between the rules. Java code is represented in three files: Sat4jRules.java,
Sat4jRulesConsistency.java and Sat4jSystemConsistency.java. We dig deeper into
the application of safety requirements for a Renault use case in the Chapter 6 to
assess the usability of our approach and of our verification engine on an industrial
case study.

105

Chapter 6

Application of EPSAAV
Approach to a Renault Use Case

6.1 Introduction

The EPSAAV language in Chapter 3 and the generated monitor and verification
engine with the environments presented in Chapter 4 and 5 are defined by its
abstract syntax which captures all Safety domain concepts and its semantics and
concrete syntax close to the safety engineer terminology. By interacting with a
provided concrete syntax, the safety engineer is guided to provide a syntactically
and semantically correct and complete instance model, which includes the safety
goals or rules, expected properties, as well the targeted scenes with associated
safety behaviors (alerts and actions). EPSAAV specifier constitutes the defi-
nition and configuration of these rules and environment by using a formalization
technique, and provides the internal grouping structure. The produced specifica-
tion is considered as input for the EPSAAV generator which enables generation
of documents, verification tools, and monitors. Both EPSAAV specifier and
generator constitute the thesis contributions. Developers can assess, and val-
idate the generation process, while safety engineers can directly use generated
documents and tools.
The impact of EPSAAV is interesting from Renault’s point of view, which pro-
vided a testbed for validating the language. With many organizations developing
their languages or hiring companies to develop such languages for them, our
DSML can aid them in conducting safety evaluations.
In this Chapter, we present a feasibility study that combines verification and val-
idation. First, we present the traditional scenario in safety engineering and the
problems it may face, the workflow using EPSAAV tool, and the improvements
of the proposed DSML in Section 6.2. In our use case, we refer to the Safety
domain, note that the approach can be applied to other domains such as secu-
rity. We present the concrete implementation of the domain concepts (introduced

106

also in Chapter 3), and introduce an industrial case study describing scenarios in
Section 6.3, and an instantiation of EPSAAV in Section 6.4. Finally, we carry out
a pilot empirical evaluation of the implemented tool in Sections 6.5, 6.6 and 6.7.
This illustrates the possibility of capturing all relevant information to perform
a DSML assessment and how it can be used in the analysis of the results and
modification of the initial requirements following the SAVI process in Section 6.8.

6.2 Safety engineering workflow

In automotive research companies, many techniques are used to evaluate safety.
One of these techniques is scenario planning which allows decision-makers to iden-
tify ranges of potential outcomes and estimated impacts. It evaluates responses
and manages positive and negative possibilities while presenting significant risks.
When a worst-case event occurs, scenario planning documents add tremendous
value by playing on multiple outcomes and listing immediate steps to contain the
damage [134]. Scenario planning can document actions and emergency decisions
that constitute a clearer picture of key drivers for AV’s growth and the potential
impact of future events. In the automotive industry, two main actors exist to val-
idate safety. First, a safety engineer is a professional who applies the principles
for the design and evaluation of unsafe scenarios. By safety engineer, we refer
in this thesis to the safety system engineer who has the task of defining software
requirements related to functional and safety. Second, developers are profession-
als who could support monitoring safety assessment while being responsible for
running code on various components of AV. Safety engineering is a team activity
to evaluate and specify safety requirements.
Safety engineers make sure AVs are safe by monitoring the work environment
and inspecting hazards and safety violations. They recommend safety features in
new processes and evaluate plans for new specifications. They assure that a life-
critical system behaves as needed even when features fail. All experts use safety
standards and evaluate unsafe scenarios to grant each one a human-readable docu-
ment. While safety analysis techniques rely on the expertise of the engineer, they
depend also on the types of techniques they are following. Traditional techniques
are hard to derive relationships between causes and consequences. It is always
good to spot details and explanations of violations. The two most common fault
techniques used in Renault are Failure mode and effects analysis (FMEA) [135]
and Fault tree analysis (FTA) [136] which are the ways of finding problems and
assessing probabilistic risk. In Renault Group, automotive safety engineers used
traditional methods to provide acceptable levels of safety, which workflow we dis-
cuss in the Section 6.2.1. Using the EPSAAV, the engineers are empowered with
a new workflow represented in the Section 6.2.2. We discuss the benefits of the
new approach in Section 6.2.3.

107

6.2.1 Traditional workflow

In the traditional workflow, safety engineer defines requirements in a human-
readable document (e.g. pdf document), which is then sent to development team
(see in fig. 6.1). A Software Architecture maps the full set of software require-
ments to software components and defines interfaces for each. In this workflow,
we link directly safety engineers (or safety SW engineers) with the developers.
Developers need to develop solutions and deploy the requirements on all the com-
ponents. This process can take time. The developers then implement monitor

Figure 6.1: Traditional workflow in Renault Group.

code which may constitute simulation errors. If a simulation error exists, they
start looking for the type of error. Errors can be related to development or re-
quirements. If it’s a development failure, they correct the problem and starts
analyzing if the output meets the expert’s specifications. If all goes well, they
integrate the monitor into the run-time environment. If not, they analyze the
source of the error such as missing conditions in the rule. They need to under-
stand the requirements to prove that their actions are coherent. For instance, if
they wait for a deceleration alert at a certain step, they consider it as an ambigu-
ity in the definition of the rules that pushes them to contact the safety engineers
to reassess specifications. If a requirement error is detected, the safety engineers
edit the requirements and send them back to the developers.

108

6.2.2 Workflow using EPSAAV language

Fig. 6.2 shows the new workflow using DSML support. The safety experts define
safety requirements using the formal syntax close to their domain concepts. They
then obtain three different types of generated outputs from the tool:

1. A human-readable document that allows them to validate the correctness
of their specifications,

2. a verification engine that enables the experts to check and analyze the
inconsistencies of the rule using a solver, and

3. a monitor code that is inserted by the developers into the debugger.

Figure 6.2: Workflow using EPSAAV language.

The developers take the code from the monitor and connect it to the debugger
linking all input data with simulated or real data output. They then run the code
and update the generator if there are any errors. They hand over the modified
platform to the experts who check and verify the violations by visualizing all
ambiguities with behavioral messages. After receiving all the implementations
from the developers, the safety experts then study whether there is a need to
modify the specifications. If so, they go through a Safety Analysis of Violations
and Inconsistencies (SAVI) process that we introduce later in 6.8. This process
helps them assign new formal safety requirements and automatically generate the
right document and monitor to assess safety.

109

6.2.3 Workflow improvements and EPSAAV benefits

Traditional workflow presents many disadvantages for the automotive industry.
First, the results of traditional risk analysis are difficult to apply directly to mod-
ern software design, especially since the code may have errors when translated.
The safety expert does not have the means to verify the correctness of require-
ments directly, as there is no guide to address potential vulnerabilities and threats
at the component level. Rules may contain inconsistencies, be repeated multiple
times, or even have the wrong execution type of goal (executed in parallel instead
of sequentially, vice versa).
Second, development engineers can also misinterpret specifications from safety
experts and produce conceptual errors when coding, which is difficult to be cap-
tured by a safety engineer. As the system becomes more complex and contains
more rules, developers need much more time to develop and memorize what was
done.
Third, developers are sometimes tasked with analyzing the output and source
of ambiguities, and due to their lack of safety experts, it is difficult for them to
prove the correctness of safety requirements so they contact the expert. As this
can take a lot of time, sometimes the developer skips the analysis and deploy di-
rectly the code to the execution environment. All of these threats can cause costs
in communication and development problems whenever a change is required, as
there is no automatic link between the fields of safety and development.

With the support of EPSAAV specifier, we provide the safety expert with a
tool for formalizing their needs, which helps them follow a single format to avoid
misunderstandings with other engineers. The correctness of rules specification is
syntactically and semantically validated and proven, and the engineers visualize
better their inputs, unlike the first workflow where they do not follow a specific
pattern to configure his inputs.
A second advantage is the concept of generation of a document, a monitor, and
verification engine which saves development time and ensures consistency of rules
by using a solver and a simulation environment, which as result reduces costs and
improves correctness. The developer no longer needs to create the monitor code
by hand for each specification. The EPSAAV generator automatically gen-
erates the monitor giving a single task to the developer to connect it to the
debugger.
Another advantage of portability allows easy adaptation of the code to several
languages instead of concentrating on a single generator. Developers can imple-
ment with ease a new code generator in the case of a system change, or extend
it and test the functional correctness by reusing the existing implementation. In
other words, we can generate many languages by modifying the existing code
in Xtend projects, created to automatically generate human-readable documents
and files. In the traditional workflow, if the industry decides to switch program-
ming languages, developers have to redo all the work from scratch, leaving more

110

room for error and more work to be done. Regarding the validation of specifica-
tions and the checking of inconsistencies in its defined rules, safety engineers can
visualize violations and investigate ambiguities by using the verification engine,
without the need to wait for the development process to be completed in order to
change its rules. He touches the real world and bridges the safety realm without
needing to spend a lot of time in the development process.
Finally, the safety engineers are provided with the same human-readable document
which was used in traditional flow for their specification, so they can conceptu-
ally validate what was specified in the platform and use it for communication
with other safety engineers. With the monitors and engines generated in the new
process, developer costs are reduced and the safety engineer takes full respon-
sibility for analyzing their requirements using monitors provided by EPSAAV
specifiers and generators.

6.3 From AREA2 to Area2Spec using EPSAAV

language

We dedicate this Section to explain the scenarios developed in a Renault project
that assessed known hazardous scenarios, named AREA2 for known unsafe sce-
narios that is represented in Chapter 2 in Section 2.3.2. The AREA2 was de-
veloped in collaboration with the consulting company Tecris to help AD systems
for level 3 to better assess dangerous scenarios. The measures and risks are for-
malized in this thesis, in a pdf file called Area2Spec, with the help of an IVEX
project in Renault Group where they developed a co-pilot to assess safety. We
detail this transformation and the advances favored by the proposed approach.

6.3.1 Evaluate unsafe known scenarios

The AREA2 document was developed to define the SOTIF requirements. It
was created to reduce the barriers between the safety field and development en-
gineering. The main goal for developers is to program AD using the AREA2
document. It identifies risks and assesses performance limits. AREA2 takes into
account failures to specify functional and system AD mode in a SOTIF HARA
[137]. SOTIF can be seen as an extension of the Functional Safety (FuSa) [138]
approach described in the V-shaped ISO 26262 standard designed to address the
challenges of automated driving functions but with augmented components. The
objective of AREA2 is to determine the greatest number of use cases for the sys-
tem and to verify that Renault can handle all scenarios in critical situations. The
AREA2 document uses several strategies and expertise from the System, Fusion,
Validation, and Security teams to verify and validate the use cases. Methodolo-
gies for doing validation and verification consist of testing and validating that
any scenario can be handled by the EV. These tests can be simulations to check

111

that any scenario with a significant variation in the initial parameters does not
lead to an accident. They can also be in the field to apply it to specific envi-
ronmental conditions to validate the capability of perception sensors and verify a
scenario that has not been successfully run in simulation. The advantage of the
proposed approach is that it can be applied to a real or simulated environment.
Thus, both tests can be performed and analyzed using the EPSAAV specifier
and generators. Another test that can be done is on the open road to test the
EV against real-world environmental conditions. When all rules are well speci-
fied and approved by safety experts and developers, the developed tool could be
deployed on these open roads to assess safety during known dangerous scenarios.
The triggered actions are useful for planning, and the alerts are essential for the
driver to know what is happening around. AREA2 serves as a complement to
test teams. It describes all the parameters required to prepare the tests and es-
timate the combinations.
AREA2 document presents 13 scenarios evaluating known unsafe situations. In
our case study, we evaluate safety in five scenarios that constitute longitudinal
and lateral controls.

6.3.1.1 Risk of a frontal collision with the PV in deceleration scenario

The scenario is represented in Figure 6.3 where EV is on the highway in a
traffic jam. There is a PV in front of the EV and is making a deceleration
regarding if it is a strong braking or nominal deceleration.

Figure 6.3: Scenario of a PV decelerating.

The risk is to have a front collision with the PV.

The measures to avoid the collision with the PV are the following:

1. The system shall detect the PV that is decelerating.

2. It should maintain a safe distance by braking.

3. In case of an accident, a report should be done for the Delta-V. Delta V
specifically refers to the change in velocity between pre-collision and post-
collision trajectories of a vehicle.

112

The parameters that are applied on this and all following scenarios consist of
values for deceleration types. These values were given by Renault Safety Team
that are then used for safety evaluation.

• ACC braking when there is an ACC distance of 1.2 seconds. In this case,
it is not a safe distance anymore but less.

• Strong braking when there is a strong braking distance of 0.8 seconds.

• Emergency maneuver is the worst case and shall be triggered when the
system detects an imminent collision with the others. So it is less than 0.8
seconds and usually, it requires maximum braking.

The safety distance is the 2 seconds rule that is used in Renault and is a rule
of thumb by which a driver may maintain a safe trailing distance at any speed
[139].

6.3.1.2 Risk of rear collision with the FV due to a false recognition
scenario

The scenario is represented in Figure 6.4 where EV in on the highway in traffic
jam. The EV is between the Following Vehicle (FV) and the PV. The EV starts
creating a false recognition. By false recognition, we can mention:

Figure 6.4: Scenario EV between the FV and the PV and an interference occurs.

• Interferences that may be caused by entering a tunnel,

• or even a wrong detection of objects.

The risk is to have a rear collision with the FV.

The measures to avoid the collision with the FV are the following:

1. The system shall detect the obstacle on the road in front of the EV.

113

2. It should make a deceleration and confirm the obstacle.

a- During the confirmation phase, the EV executes an ACC braking,

b- in case of positive confirmation, the EV executes a necessary value
of braking,

c- in case of negative confirmation, the EV should not apply a brake.

3. The system shall apply emergency braking in case of an imminent collision.

4. In case of an accident, a report should be done for the Delta-V.

6.3.1.3 Risk of a side collision with SV due to missing lane detection
scenario

The scenario is represented in Figure 6.5 where EV is on the highway in a
traffic jam. The EV is between the FV and the PV, and there are other users such
as Straddling Vehicle (SV) or guardrail. The EV starts creating a disturbance
preventing line or lane detection.

Figure 6.5: Scenario of an EV between the FV and the PV and next to SVs, and
a line/lane disturbance occurs.

The risk is to have a lateral collision with an SV.

The measures to avoid a collision with the SV are the following:

1. The system shall activate the lighting or the wiping system sending to the
driver an alert.

2. In case of loss line the system shall maintain the vehicle in the lane using
the remaining information about the PV.

114

3. In case of loss of PV, the system shall maintain the vehicle in the lane using
the remaining information about SV.

4. If the line disappears more than a threshold in seconds, the EOP1 shall be
triggered. The EOP1 requires the driver to take his hands on the wheel
and should be prepared to take over.

5. If the PV disappears more than a threshold in seconds, the EOP1 shall be
triggered.

6. The worst case is when the system detects an imminent collision with SV,
the emergency maneuver shall be triggered.

6.3.1.4 Risk of a side collision with the SV due to poor infrastructure
scenario

The scenario is represented in Figure 6.6 where EV is on the highway in a
traffic jam. On the left and right sides of EV, there are other road users such as
SV or guardrail. Disturbances in infrastructures prevent correct detection of the
lane such as an old-line visible or missing road markings in many situations such
as a cut-in case.

Figure 6.6: Scenario of an EV making a cut-in and does not detect the guardrail
due to an invisible old line.

The risk is to have a lateral collision with the SV.

115

The measures to avoid a collision with the SV are the following:

1. The system shall detect the incoherence between sensors that cause loss of
line/lane detection.

2. The system shall maintain the vehicle in the lane using the remaining in-
formation of PV, SV, and lines.

3. If the line disappears more than a threshold in seconds, an EOP1 is trig-
gered.

4. The worst case is when the system detects an imminent collision with SV,
the emergency maneuver shall be triggered.

6.3.1.5 Risk of a side collision with SV swerving into Ego lane scenario

The scenario is represented in Figure 6.7 where EV is on the highway in a
traffic jam. The EV is following the PV. An SV is straddling over the Ego lane.

Figure 6.7: Scenario of an SV that is taking EV lane and straddling.

The risk is to have a lateral collision with the SV.

The measures to avoid a collision with the SV are the following:

1. The system shall regulate the safe distances with SV and stay behind.

2. The Ego shall continue to follow the same line and the trajectory of PV.

3. If the SV continues to straddle after a threshold, an EOP1 shall be triggered.

4. The worst case is when the system detects an imminent collision with SV,
the emergency maneuver shall be triggered.

116

6.3.2 IVEX co-pilot and Area2Spec document

The Renault group has collaborated with the IVEX team to apply their co-pilot
which analyzes the safety of AVs [140]. IVEX’s vision is to reduce traffic casu-
alties and make AVs and semi-AVs safe [141]. Their objective was to provide a
safety model to focus on longitudinal and lateral controls and to study real and
simulated datasets provided by Renault. The overview is based on IVEX’s elab-
orated work and weekly discussions with Renault and IVEX’s analysis activities.
The scope of activities focused on one-way freeway situations, with particular
attention to the longitudinal safety distance. Work started from the IVEX safety
model which includes an improved variant of the RSS safety rules [12] for the lon-
gitudinal safety distance. Improvements include runtime adaptation of particular
settings that retain safety properties but allow for more realistic and reasonable
ego car behavior.
IVEX has used the previous scenarios presented to check safety using their co-
pilot. This latter is used to continuously verify the planned trajectory and assess
the operational safety of the trajectory. An important goal of this collaboration is
that we formalized the safety test measures on previous scenarios. This document
is called Area2Spec and is used for their safety assessment on multiple Renault
real data scenarios. This transformation used a logical expressiveness for the rules
and inspired our work. The formalized rule proved that the approach of testing
requirements in a logical expressiveness is a solution to evaluate safety. Renault
presented the AREA2 five goals containing the measures and risks. With the
help of IVEX, we introduced a document called Area2Spec that contains all the
formal rules of the AREA2 document.

Operational Design Domain (ODD)

Safety rules considered in Area2Spec were initially structured and expressed in
human text language. Situations covered for Level 3 autonomy were essentially
in a traffic jam, at low speed, and various weather and light conditions as well as
infrastructure and slopes. Organized in Area2Spec, the rules provide information
about the situation is verified, the collision is avoided and specific behavior to
consider. Since all scenarios are in a traffic jam that must be the operating case,
known as the Operating Design Domain or ODD, we created a property traf-
fic jam that has true and false states. We note that the formal constructions
provided for EV and PV are equally applicable to FV. This would however be
flagged as impractical by the EPSAAV generator. The verification engine and
the monitor code imply having priorities. Indeed, a priority is linked to levels of
responsibility according to the highway code: EV can only be held responsible
for blowing the front car via a longitudinal maneuver. Therefore, EV instructions
should be specified as having priority over FV. This is done by changing the Goal
Type implemented in the EPSAAV specifier to priority for the corresponding

117

instruction block.
Another aspect that IVEX and our work have highlighted is related to perception
imperfections. It consists of the potential loss of traces of objects over time. With
existing information from sensors used in vehicles, the driver assistance system
is subject to loss of object tracking due to inaccuracies in location and trajec-
tory parameter estimates. This causes object identifiers to disappear and new
identifiers to be generated, potentially for the same objects. Safety rules must
deal with such a case in order to decide the validity of issuing a new behavior.
The corresponding tracking state values are then expressed in the formalization
process.

6.3.2.1 Formalization of frontal collision with the PV in deceleration
risk

Formal expressions (FEs) are addressed for each measure or requirement (R) in
scenario (S1) presented in Section 6.3.1.1 as following:

1. S1R1= the system shall detect the PV that is decelerating.
S1FE1= Introducing front car distance property.

2. S1R2= it should maintain a safety distance by braking.
We introduce five states for front car distance that can be not exist,
safe distance, acc distance, strong braking distance, and
imminent collision distance.
We also introduce actions such as emergency maneuver, brake strong,
and brake acc.

• S1FE2 1=when front car distance is imminent collision distance
then goal is executing emergency maneuver;

• S1FE2 2= when front car distance is strong braking distance
then goal is executing brake strong;

• S1FE2 3= when front car distance is acc distance then goal is
executing brake acc;

3. S1R3= in case of an accident, a report should be done for the Delta V.
Delta V specifically refers to the change in velocity between pre-collision
and post-collision trajectories of a vehicle.
S1FE3= when front car distance is imminent collision distance then
goal is executing report longitudinal delta V.

6.3.2.2 Formalization of rear collision with the FV due to a false
recognition risk

Formal expressions (FEs) are addressed for each requirement (R) in scenario (S2)
presented in Section 6.3.1.2 as following:

118

1. S2R1= the system shall detect the obstacle on the road in front of the EV.
S2FE1= same as S1FE1 requirement.

2. S2R2= it should make a deceleration and confirm the obstacle.

• S2R2 a= during the confirmation phase, the EV executes an ACC
braking,

– S2FE2 a 1= introducing of front car tracking property with
five states: not exist, not confirmed, stable tracking, dis-
appeared less than t1, and disappeared more than t1 .

– S2FE2 a 2= when front car tracking is not confirmed then
goal is executing brake acc;

• S2R2 b= in case of positive confirmation, the EV executes a necessary
value of braking,
S2R2 b is formalized previously in Section 6.3.2.1 in S1FE2.

• S2R2 c= in case of negative confirmation, the EV should not apply
braking.
We force the system not to produce alerts and actions giving the pri-
ority to the imminent collision distance for the PV.

– S2FE2 c 1= introducing of rear car distance property with three
states: not exist, safe distance, and emergency distance.

– S2FE2 c 2= when rear car distance is emergency distance
then goal is executing no action needed.

3. S2R3= the system shall apply emergency braking in case of an imminent
collision. S2R3 is formalized previously in Section 6.3.2.1 in S1FE2.

4. S2R4= in case of an accident, a report should be done for the Delta V.
S2R4 is formalized in Section 6.3.2.1 in S1FE3.

6.3.2.3 Formalization of side collision with SV due to missing lane
detection risk

Formal expressions (FEs) are addressed for each requirement (R) in scenario (S3)
presented in Section 6.3.1.3 as following:

1. S3R1= the system shall activate the lighting or the wiping system sending
to the driver an alert.
This requirement is not the main concern for the thesis, this is why we did
not include any activation of hardware systems.

119

2. S3R2= in case of loss line the system shall maintain the vehicle in the lane
using remaining information about the PV.
S3FE2= introducing of line detection property with a state for the miss-
ing detection no detection in more than t6, another state for
no detection in less than t6, and one stable state.

3. S3R3= in case of loss of PV, the system shall maintain the vehicle in the
lane using remaining information about SV.
S3FE3= introducing of stable control property with true and false states.

4. S3R4= if the line disappears more than a threshold in seconds, the EOP1
shall be triggered. The EOP1 requires the driver to take his hands on the
wheel and should be prepared to take over.
S3FE4= when line detection is no detection in more than t6 then
goal is executing emergency operation 1.
We introduced the emergency operation 1 in the action library.

5. S3R5= if the PV disappears more than a threshold in seconds, the EOP1
shall be triggered.
S3FE5= when front car tracking is disappeared more than t1 then
goal is executing emergency operation 1.

6. S3R6= the worst case is when the system detects an imminent collision
with SV, the emergency maneuver shall be triggered.
The formalization of this requirement is defined previously in Section 6.3.2.1
in S1FE3.

6.3.2.4 Formalization of a side collision with the SV due to poor in-
frastructure risk

Formal expressions (FEs) are addressed for each requirement (R) in the sce-
nario S4 presented in Section 6.3.1.4. All of them are formalized previously for
the PV, and are applied to SV replacing the properties front car distance and
front car tracking, with straddling car distance and straddling car tracking
respectively.
Straddling car distance property has five states: that can be not exist,
safe distance, acc distance, strong braking distance, and
imminent collision distance.
Straddling car tracking property has three states: not exist,
straddling less than t7, and straddling less than t7.

1. S4R1= the system shall detect the incoherence between sensors that cause
loss of line/lane detection.
We introduced a bug notification that helps to study the bug from sensor
perception.

120

S4FE1= when front car distance is not exist if and only if
front car tracking is not exist or disappeared then execute bug notification.
Same thing is applied for the straddling car distance to test if there is
a perception error.

2. S4R2= the system shall maintain the vehicle in the lane using the remaining
information of PV, SV, and lines.
Same formal pattern is used in Section 6.3.2.3 in S3FE3.

3. S4R3= if the line disappears more than a threshold in seconds, an EOP1
is triggered. Formalization for this requirement is done in Section 6.3.2.3
on S3FE5.

4. S4R4= the worst case is when the system detects an imminent collision
with SV, the emergency maneuver shall be triggered.
The formalization of this measure is defined previously in Section 6.3.2.1 in
S1FE3.

6.3.2.5 Formalization of side collision with the SV swerving into Ego
lane risk

Formal expressions (FEs) are addressed for each measure (R) for the scenario S5
presented in Section 6.3.1.5, where S5R1, S5R2 and S5R4 are previously defined.

1. S5R1= the system shall regulate the safe distances with SV and stay be-
hind.

2. S5R2= the Ego shall continue follow the same line and the trajectory of
PV.

3. S5R3= if the SV continues to straddle after a threshold, an EOP1 shall be
triggered.
S5FE3= when straddling car tracking is straddling more than t7
then goal is execution emergency operation 1.

4. S5R4= the worst case is when the system detects an imminent collision
with SV, the emergency maneuver shall be triggered.

6.3.3 EPSAAV benefits over IVEX co-pilot

There are many drawbacks to using the IVEX Assessment Tool. The Area2Spec
requirements that they used are predefined and therefore fixed. Once defined, we
could not make any changes after their studies or add new requirements. Each
modification or introduction of rules implies significant manual modifications.
The safety engineers at Renault do not have access to the safety requirements,

121

so they cannot test their specifications using the co-driver. Their co-pilot is
proprietary, the only purpose of the use is to display certain violations in specific
scenarios. Another disadvantage is that they did not present a formalism to study
the inconsistencies in each rule and between a pair of rules. What we want is to
help the engineer to express their needs and modify their specifications to assess
safety.
The proposed approach comes to the rescue by giving full access to the tool to
edit existing specifications. It also gives all possible solutions for all rules defined
using EPSAAV generator, so that the experts know where to apply changes
if a solution contradicts what they expect. EPSAAV generator also gives him
the ability to choose a specific simulator and solver and automatically generate
monitors that help reduce development time and cost.

6.4 RBP and libraries instantiation for Area2Spec

using EPSAAV specifier

We dedicate this Section to illustrating the EPSAAV conceptual framework with
a case study about the Area2Spec document for safety requirements. All the
files instantiated are represented in the Appendix A.1. EPSAAV was developed
to lower the barriers between the safety experts. A safety expert may produce
a safety rules document in which the rules may be duplicated or contradictory.
Experts cannot successfully analyze everything if they do not have a common
documentation platform and a tool where all the rules are inserted in one place.
It was also conceived to subordinate the work of developers and instantly assess
safety. The safety engineer has to specify the requirements using the EPSAAV
specifier. As mentioned in Chapter 3, we created six files to create Area2Spec
as following:

• A library for the alerts named Area2Al.alerts as seen in Figure 6.8. It is
based on the grammar defined in Chapter 3 in Section 3.3.3.5. It contains
all the alerts that we want to pass to the driver.

Figure 6.8: Alert library for Area2Spec defined in Area2Al.alerts.

• A library for the actions named Area2Ac.actions containing all actions
needed in Figure 6.9. It is based on the grammar defined in Chapter 3
in Section 3.3.3.5.

122

Figure 6.9: Action library for Area2Spec defined in Area2Ac.actions.

• A library for the object type named Area2Obj.otp (seen in Figure 6.10).
It is based on the grammar defined in Chapter 3 in Section 3.3.3.3. This
was not defined in Area2Spec to give power to the developer to attack the
parameters that need to be taken into account. For the Ego, we want to
define for each step the timestamp for the detected or missing lane. For
the obstacle, we define an ID and counters for tracking or missing obstacle,
and a parameter for Time To Collision (TTC).

Figure 6.10: Object type library containing parameters and refering to property
library using EPSAAV specifier in Area2Obj.otp.

• A file for the scene named Area2Sc.scene containing all the capacity of
perceiving objects. It is based on the grammar defined in Chapter 3 in
Section 3.3.3.2. Each object refers to an ObjectType defined previously. In
Area2Spec, we included PV, SV, and FV that have an Obstacle type, and
the EV that is the Ego that we want to evaluate safety rules on. Figure
6.11 shows the input data for the scene.

• A library for the Ego properties named Area2PEgo.prop (seen in Figure
6.12). It is based on the grammar defined in Chapter 3 in Section 3.3.3.4.
It contains all properties and states that we want to use to define the re-
quirements. The safety engineer shall decide, if it is necessary, what is the
threshold for each state. These thresholds depend on AEB braking system

123

Figure 6.11: Scene for Area2Spec defined in Area2Sc.scene.

Figure 6.12: Ego property library for Area2Spec defined in Area2PEgo.prop.

specifications. It is important to note that distances are not expressed in
meters, but in seconds. The safe distance follows the two seconds rule. We
can see in Figure 6.13 the differences between front car distance states.
The most critical one is the imminent collision distance. Same thresh-
olds are applied to straddling car distance. Other thresholds defined by
the safety expert referring to the braking system specifications are:

– For front car tracking, t1= 0.25 seconds and does not exist when it
is more than 0.33 seconds.

– For line detection, t6= 0.3 seconds.

– For straddling car tracking, t7= 2 seconds.

• A file for the rule-based planner named Area2Spec.rbp, containing all FEs
expressed for all five scenarios defined in Section 6.3.2. It is based on the
grammar defined in Chapter 3 in Section 3.3.3.1. After grouping all these
formal requirements, we obtained four rules defined as goals as seen in

124

Figure 6.13: Different states of front car distance property measured in seconds.

Figure 6.14: RuleBasedPlanner file (Area2Spec.rbp) containing all the require-
ments in Area2Spec.

Figure 6.14. The RBP contains four goals. The Goal1 has priority goal
type (GoalType Priority), which means the condition (WHEN) defined in
Goal1 is executed before all the other conditions (in Goal1 case, we only
have one condition), and before the first condition of the following goal (in
this case Goal2). If Goal1 is false, then we pass to Goal2 that has also
one condition (when). The Goal2 has a constraint goal type (GoalType
Constraint), which means the condition in Goal2 is executed in parallel
with both conditions defined in Goal3 since this latter has also a constraint

125

goal type. Goal4 has a priority goal type, so we execute the first condition,
if it is false we pass to the second one. If the second when is false we pass
to the third condition. The last condition is executed if the previous one is
false.

– Goal1 detects interference for the front detection of the PV. It also
detects interference of the SV and sends back to the engineer an alert
of bug notification (seen in Figure 6.15). For the thesis, the action
is only informative. Later, actions could be linked with the assistant
planning. The RBP check the Goal1 first that has priority goal type.
If there is no false recognition, we executeGoal2 andGoal3 in parallel
since they have constraint goal type.

Figure 6.15: Goal1 in the RBP to detect interferences of PV and SV.

– Goal2 seen in Figure 6.16 contains one condition to verify disappear-
ance of PV or SV, or even missing line/lane detection when the EV
has a stable control. If so, we apply an emergency operation by telling
the driver to take over the wheel. The RBP executes at the same time
Goal3.

– Goal3 seen in Figure 6.17 contains two conditions executed in parallel.
They both report the delta V when EV has an imminent collision
distance with PV or SV. We note that Goal2 and Goal3 could be
sum up in one goal seen that they are executed in parallel.

126

Figure 6.16: Goal2 in the RBP to check if the system misses detection of PV,
SV, or lines while having a stable control and executes an emergency operation.

Figure 6.17: Goal3 in the RBP to report the Delta V when imminent collision
distance of PV or SV occurs.

– Goal4 seen in Figure 6.18 starts with testing the imminent collision
distance that is considered as the most critical that leads to an emer-
gency maneuver. If a false recognition occurs and during the con-
firmation of PV, we send the alert to the driver to apply the brake.
As mentioned previously, the action could be an immediate control
by the rule-based planner. But for now, it is just an alert passed to
the driver. If there is no such case, the system tests the rear car dis-
tance that imposes the car to not brake in case there is an emergency
distance with FV. If not, we verify strong braking and acc distances
respectively. Note that the priority is given to the rear car to avoid
rear collision, and in case EV faces a critical case of having a front
collision, we trigger the emergency maneuver.

127

Figure 6.18: Goal4 in the RBP containing five sequential conditions to trigger
different type of alerts regarding front and rear car distance violations.

6.5 Area2Spec human-readable generated doc-

ument using EPSAAV generator

After using the EPSAAV specifier to formalize all the environment and rules
presented in the previous Section 6.4, the tool manages an automatic generation
as discussed in the Chapter 3 in Section 3.3.5.

EPSAAV generator draw up a generated safety report described in Section
3.3.5.1 that can be used as a reference at the corporate level to disseminate the
safety policy to be enforced in the company. This document (.txt) is represented
in the Appendix A.2. This document is, for now, a text document (.txt) contain-
ing the properties, which in our case are the Ego properties, the behaviors which
are the action and alert libraries, and the rule-based planner which contains the
goals executed in sequence or parallel and following a logical expressiveness. This
generation contains same description as Area2Spec.
Experts need to know briefly what they have chosen explicitly so as not to confuse
others. As mentioned in the workflow using EPSAAV in Figure 6.2, they have

128

to test if it is necessary to modify the specifications. This is why for the case
study where we implemented the Area2Spec document, the four written goals
are automatically generated in the document (.txt) to summarize the require-
ments. The users also have the version of each Area2Spec environment. After
defining their formal requirements, they can simultaneously create and manage
multiple versions of the rule-based planner, all of which have the same general
safety assessment function but are enhanced, upgraded, or customized. It is also
an improvement not only for safety experts but also for developers who need to
connect files to the debugger. When a developer is working on the latest files, easy
access to goal history helps them understand the purpose of the dataset. It allows
him to seamlessly make changes and update the generator that works within the
long-term goals of the safety assessment. It tracks contributions made by multi-
ple safety experts and provides traceability as proof of all revisions and changes
made. Tracking changes from the original copy to the many improved versions
and, finally, to the final version once all the scenarios have been described.

6.6 Area2Spec monitor connected to the Fu-

sionRunner

As mentioned in the Chapter 3 in Section 3.3.5.2 and in Chapter 4, a C monitor is
automatically generated, and the files presented in the Section 4.4 are obtained
which are then connected to the FusionRunner debugger in Section 4.5. We
include this monitor for this use case in the Appendix A.3.
In this Section, we present the code in detail and how we connect it to the
FusionRunner by interfacing and filling all the functions using fusion data.

6.6.1 C code monitor generation using EPSAAV genera-
tor

All the generated code is compiled and verified so that the development engineer
has only one task to interface with the merge output described in the next Section.

• Area2Actions C code file with its header contains the actions cited in the
library in Figure 6.9. Area2Actions.h is the header file presented in Figure
6.19. It contains the enumeration of the actions called Area2Actions t.
It also contains a function processactions() that only prints out for now the
action name.

• Area2Alerts.c and Area2Alerts.h seen in Figure 6.20 contain the alerts in the
enumeration Area2Alerts t cited in the library in Figure 6.8. The header
file contains a processalerts() function that prints out the informative alert
to the user.

129

Figure 6.19: Area2Actions.h containing the actions and a processactions() func-
tion.

Figure 6.20: Area2Alerts.h containing the alerts and a processalerts() function.

• Safety Checks.c and Safety Checks.h are essential to translate formal rules
to code using If conditions.
The first step was generating three functions: (1) isTriggFunct boolean
function to trigger the goal, (2) execute function to call the action, and (3)
raiseAlarm function to trigger the alert. All of them are used in a Goal t

Figure 6.21: Goal t structure with three functions to trigger, execute, and raise
alarms in Safety Checks.h.

structure that is then used for each goal with the conditions as a type. We
can see an example of the first condition in goal1 in Figure 6.22. The func-
tion isTriggered is assigned to trig goal condition1(), execute is referred to

130

Figure 6.22: Declaration of functions for goal1 condition1 in Safety Checks.h.

execute
goal1 condition1(), and raiseAlarm to alarm goal1 condition1() as seen in
Figure 6.23. All these assignments are done in an init goals() function. The

Figure 6.23: Example of an instantiation of goal1 condition1 in init goals() func-
tion in Safety Checks.c.

trig goal condition1() function contains the if condition of all the properties
written in the RBP. Figure 6.24 shows the transformation given by the mon-
itor. To check states for the properties, we create for each property a check

Figure 6.24: trig goal1 condition1() function using if condition to check safety in
Safety Checks.c.

function and define them in EgoProperties C files. Trig goal1 condition1()
calls the actions and the alerts if the conditions are true. If not, the function
returns false. The other goals and conditions are shown in the Appendix.
An important notion given by the monitor is the type of execution that is
also generated depending on the goal type that the safety engineer inserted
(Constraint or Priority). Figure 6.25 shows the trig goals() defining the
priorities between all goals. Goal1 condition1 has a priority over all other
goals. Goal2 and goal3 are executed in parallel. Goal4 has a sequential
execution between its conditions.

• EgoProperties.h lists states in enumeration types. Figure 6.26 is an ex-
ample for the traffic jam and front car distance properties enumerat-
ing all possible states defined in the library by the safety engineer. It

131

Figure 6.25: trig goals() defining the priorities and parallel executions between
all goals in Safety Checks.c.

also declares functions for each property such as traffic jam check() and
front car distance check().

Figure 6.26: Enumerations of states for each property in EgoProperties.h.

EgoProperties.c details functions that the developer must fill to bridge the
check functions with the current state. Figure 6.27 shows what is generated
by the monitor. The commented lines in green are the parts that must be
connected to the debugger by the developer and given back to the safety
engineer.

• Scene.h contains object parameters for each object type (Figure 6.28). It
also intantiates the getter functions for each parameter to each object type.

• Scene.c contains the roles defined using object types such as PV and SV that
used Obstacle t data type(Figure 6.29). FusionDatatoScene() function is
created to bridge the ouptut of the monitor generated with the input of
fusion data in the debugger. The getParameters() functions for each role
object are to be filled by the developer.

132

Figure 6.27: Example of front car distance check() function to check for the state
in EgoProperties.c.

Figure 6.28: Ego t and Obstacle t object types enumerating parameters in
Scene.h.

Figure 6.29: Perceived objects instantiation in the scene and function to link the
output of the monitor to the input of the debugger in Scene.c.

6.6.2 Area2Spec Safety Checker module connected to the
FusionRunner

The two main files that need to be adapted concern applying the thresholds for
all states in the properties (in EgoProperties.c), and defining properties check
functions by getting the corresponding parameters from the FusionRunner (in
Scene.c).

133

The values and thresholds are chosen by the safety expert according to the spec-
ifications of the given AEB braking system. In EgoProperties.c, we can cite all
check functions for all the properties:

• We start with the traffic jam check() function. Since the ODD requires the
EV to always be operational in a traffic jam, we only return a true value
for this function.

• For front car distance check() function, we use get preceding vehicle ttc min()
to get the TTC value in seconds and compare it with the states. If it is
2 seconds or more, it is a safe distance, else if it is more or equal to 1.2
seconds it is an acc distance, else if TTC is more or equal to 0.8 seconds,
it is strong braking, else it is an imminent collision distance.

• For front car tracking check() function, we consider the threshold t1=0.25
seconds when the front car disappeared. We created two functions: one to
track the existence of PV named get preceding vehicle counter tracking(),
and one get preceding vehicle counter not tracking() whenever PV is miss-
ing.

• For straddling car distance check() function, same thresholds are used as for
the function front car distance check() using get straddling vehicle ttc min()
function.

• For straddling car tracking check() function, same as front car tracking check()
with a t7= 2 seconds threshold. The function that we generate to track the
existence of SV is get straddling vehicle counter tracking().

• For line detection check() function, the threshold to consider the line disap-
peared is t6= 0.3 seconds. We created two functions: one to track the exis-
tence of the lanes named get Ego Lane detection(), and another function if
lanes are missing get Ego Lane missing(), since FusionRunner simplify the
tasks by giving directly the option to use lane informartion.

• For rear car distance check() function, we return not exist rear car distance
since scenarios tested in the FusionRunner do not consider FVs.

• For stable control check() function, we consider EV always stable returning
true state since the Fusion is already done of the set of data and information
is filtered to have better stability in the scenarios.

In Scene.c, we all have getter functions for information connected by Fusion.
The Figure 6.30 represents the positions of all the obstacles which can be SV or
PV. The SV can be Obstacle2, Obstacle3, Obstacle6 or Obstacle7. PVs can be
Obstacle0 or Obstacle1. Many important information for security analysis such
as TTC are provided by the Fusion.

134

Figure 6.30: Obstacle and Ego positions in the scene defined in the FusionRunner.

• For the Ego getParameters(), we need to check lane detection that is com-
posed of right and left lines. If interferences occur, then we affect Lane detection
and Lane missing parameters.

• For the preceding vehicle getParameters(), if we do not detect any Obsta-
cle0 position, we increment the counter not tracking parameter. If the
scenario starts tracking the PV with an id corresponding to the Obstacle0
position, then we take the corresponding ID and TTC values, and we start
affecting the counter tracking parameter.

• For the straddling vehicle getParameters(), if we do not detect any position
regarding Obstacle2, Obstacle3, Obstacle6, or Obstacle7, we increment the
counter not tracking parameter, and if the scenario starts tracking an
SV with an id corresponding to the cited obstacles, then we take the id
and ttc values, and we start affecting the counter tracking parameter. If
there exist multiple SVs, one SV is chosen with the least value of TTC.

6.6.3 Testing scenarios on real data recordings

After generating the C monitor and connecting it with FusionRunner, we replay
real-data drives that are recorded and start analyzing them. In this Section, we
detail some analysis and describe the source of violations.

135

6.6.3.1 Scenario 1: no lane detection

A scenario is given in 6.31 where the ego car is not detecting the lines even when
there is stability in the control of the vehicle, and this is due to bad markings on
the ground. By stability, we know that there are no lines and the error does not
come from the sensors.
The Fusion Display in Figure 6.32 shows the sketch in a window with the

Figure 6.31: No lane/line detection in the Fusion Context View.

corresponding parameters for this step, in which we see that the car with ID =
25766, is entering ego’s lane.
At step=2594, this car is not perceiving any line (see Figure 6.33). It is good

to note that fusion algorithm gives us information about lanes, which makes the
procedure easier to track the lines.
The safety assessment for this scenario is described in goal2 cond1 to test the
missing lane detection (see Figure 6.16) that leads to trigger an action and an
alert of EOP1 (Emergency Operation) as seen in Figure 6.34.

6.6.3.2 Scenario 2: strong braking collision with PV

A scenario is given in 6.35 where the ego car is having a strong braking distance
with a PV.
The Fusion Display in Figure 6.36 shows the sketch in a window with the cor-
responding parameters for this step, in which we see that the PV’s distance is a
strong braking distance.
At step=540, the EV has a TTC=0.815, which is a previously defined threshold
for the PV distance described in Figure 6.13(see Figure 6.37). It is good to note
that the fusion algorithm gives us information about the lanes, which helps in
the procedure of tracking the lines.
The safety assessment for this scenario is described in goal4 cond4 to test the
strong braking distance with the PV (see Figure 6.18) that leads to trigger an
action and an alert of Brake Strong and Longitudinal Acceleration respec-
tively as seen in Figure 6.38.

136

Figure 6.32: Fusion Display window showing the missing lanes.

6.6.3.3 Scenario 3: No rule violations

A scenario is given in 6.39 where the ego car is not violating any safety rule.
The Fusion Display in Figure 6.40 shows the sketch in a window with the corre-
sponding parameters for this step, in which we see that the ego car is perceiving
a front vehicle.
At step=6617, this car is in a safe situation having a stable front car tracking

and a line stability (see Figure 6.41).

6.7 Area2Spec verification engine fed to the SAT

solver

EPSAAV generator gives a verification engine that produces three Java files
as mentioned in Chapter 3 in Section 3.3.5.3, and detailed in Chapter 5:

• Sat4jRules.java that contains goals expressed in boolean specification func-

137

Figure 6.33: SAFETYCHECKER window showing states triggered for properties
for step=2594.

tions,

• Sat4jRulesConsistency.java that forces the generated functions in the pre-
vious file to be true and false, and shows the generated code to test priority
or parallel executions,

• and Sat4jSystemConsistency.java that tests all solutions for the rule-based
planner with the coherence of goals and properties.

We include the generated Java files in the Appendix A.4. Since we have
in Area2Spec four goals containing 9 conditions, we get 9 build functions that
gave us a translation for the logical requirements. Figure 6.42 is an example
of build goal1 cond1() and build goal2 cond1() functions in Sat4jRules.java. We
have 45 solutions for the goal1 cond1; 15 solutions for goal2 cond1; one so-
lution for each goal3 cond1, goal3 cond2, goal4 cond2, and goal4 cond3;
and three solutions for each goal4 cond1, goal4 cond4, and goal4 cond5.

In Sat4jRulesConsistency.java, we generate two functions for each goal as seen
in Figure 6.43. Build goal1 cond1 True() is created to force the goal1 cond1 to

138

Figure 6.34: SAFETYCHECKER window showing goal2 cond1 and corre-
sponding behaviors triggered for step=2594.

Figure 6.35: Strong braking distance with a PV in the Fusion Context View.

be true, and build goal1 cond1 False() to be false. We apply the same procedure
for all conditions in each goal. Goal2 cond1 presents 7 true solutions out of
15, that test the system if EV is performing in a stable control, and there test
the disappearance of SV, PV, or even in line detection to perform an emergency
maneuver.

In Area2Spec example, build goal1 cond1 True() has 29 results and
build goal1 cond1 False() has 16 which makes them 45 in total. We also gen-
erate goals with triggered behaviors so that we can study behaviors inconsis-

139

Figure 6.36: Fusion Display window showing the missing lanes.

tency. In Figure 6.44, we show the three functions for alerts generation. The
first build goal1 cond1 Alert() (90 solutions=29 true + 61 false) which takes the
build goal1 cond1() from Sat4jRules.java file. True and False functions are also
generated for the alerts.
For the priority and parallel tests, we apply (¬X∧Y) and (X∨Y) tests respectively.
Goal1 cond1 has a priority execution over Goal2 cond1. Since Goal1 cond1
starts with a NEGATION operator, the negation of it is true. Figure 6.45 shows
the priority test code trying ¬Goal2 cond1 ∨ Goal1 cond1.
Goal2 cond1 has a parallel execution with Goal3 cond1. Figure 6.46 shows
the parallel test code trying Goal2 cond1 ∧ Goal3 cond1. Both of the goals
should be set to true and executed at the same time.

In Sat4jSystemConsistency.java, we generate functions to test the system so-
lutions (seen in Figure 6.47). The system solution is the multiplication of the
coherence of the properties and of all goals. By multiplication, we mean the
AND operator. Since we have four goals, we generate a function for each goal
called coherence goal() that takes the condition to help execute the goal. For

140

Figure 6.37: SAFETYCHECKER window showing states triggered for properties
for step=2594.

instance, goal2 cond1 is true when goal1 cond1 is true (since goal1 cond1 is
originally false). So the coherence of goal2 cond1 is achieved when we apply
the AND operator between this goal and the goal1 cond1 True().
The coherence of the properties is the addition of all coherence of each property
as seen in Figure 6.48. For instance, the coherence of traffic jam is when one
of the states is triggered, such as we can not have both states (no and yes) for a
traffic jam at the same time. Same procedure is applied for all the other proper-
ties. This is how we can manage to check on solutions for the system and analyze
what cases we can have and what we can edit. For Area2Spec, we can have 7128
solutions for the system respecting properties and goal coherences, which 3600 of
them are true.

6.8 SAVI process

The Safety Analysis of Violations and Inconsistencies (SAVI) process involves
modifying requirements after detecting ambiguities or inconsistencies in the rules.
Ambiguities are investigated using FusionRunner to visualize real or simulated

141

Figure 6.38: SAFETYCHECKER window showing goals and behaviors triggered
for step=2594.

Figure 6.39: No rule violations in the Fusion Context View.

data, and inconsistencies are tested using the SAT4J solver. The SAVI process
follows the Area2Spec document, where we generate from the EPSAAV gener-
ator a C monitor and a Java verification engine. These two are the inputs to the
process, and the outputs are tested again to assess safety.

142

Figure 6.40: Fusion Display window showing the tracking of the PV with no
violation.

6.8.1 Ambiguities detection

We test Safety Module generated from Area2Spec requirements on real data sce-
narios using the FusionRunner. Among these scenarios, we have open road driv-
ing data, which includes city, and highway environments. In addition, we also
have NCAP real data recordings that a predetermined real use cases [31].

The advantage of using FusionRunner is that we can track violations and
state values graphically. One of these violations that caught the eyes is in the
data set at step=4217 and refers to the goal2 cond1 as seen in 6.49. The
behaviors triggered are emergency operation. The states that are true are:
not exist front car distance, disappeared more than t2 front car tracking,
not exist straddling car distance, not exist straddling car tracking, and
stable lne detection.
If we look at Figure 6.50, we do not see PV or SV in the real video.
This is considered a detected ambiguity in the wrong formalization of the rule,
and if we go back to the formal requirement of Figure 6.16, the goal should be

143

Figure 6.41: SAFETYCHECKER window showing states triggered for properties.

Figure 6.42: build goal1 cond1() and build goal2 cond1() functions for
goal1 cond1 and goal2 cond1 representing boolean translation for logical op-
erations in Sat4jRules.java.

144

Figure 6.43: build goal1 cond1 True() and build goal1 cond1 False() functions for
goal1 cond1 in Sat4jRulesConsistency.java.

Figure 6.44: Alert functions for goal1 cond1 in Sat4jRulesConsistency.java.

edited by adding a condition to execute the emergency maneuver. The mod-
ification is seen in Figure 6.51 which consists of adding a condition on the line
stability that avoids triggering error for such case.

6.8.2 Rule inconsistencies verification

In this part, we analyze all solutions for the generated verification engine us-
ing the SAT4J library. For the solutions of goal1 cond1, 16 solutions out of
45 are false which makes this rule true since it has the NEGATION operator.
These solutions constitute the possible cases where we can have a bug. Fig-
ure 6.52 shows a solution where front car tracking (variable 7) and strad-

Figure 6.45: Priority test for Goal2 cond1 and Goal1 cond1 considering or
not alerts in Sat4jRulesConsistency.java.

145

Figure 6.46: Parallel tests for Goal2 cond1 and Goal3 cond1 considering or
not alerts in Sat4jRulesConsistency.java.

Figure 6.47: System solution that is the coherence of all four goals and coherence
of all properties in Sat4jSystemConsistency.java.

dling car tracking (variable 11) are not compatible with front car distance
(variable 4) and straddling car distance (variable 10) respectively, which cause
triggering a bug notification.
After analyzing the 16 solutions, we noticed that this goal only presents ver-

ification of both front car and straddling car incompatibilities and not just
one of them. This can be fixed by proposing a replacement of the OR operator
in goal1 cond1(seen in Figure 6.15) with the AND operator that includes the
conflict in each obstacle type.

Figure 6.53 shows also a bug having disappeared more than t1 and disap-
peared less than t1 (variables 8 and 9) at the same time. We can also eliminate
this issue by testing goal1 cond1 with the coherence of front car tracking
property (Figure 6.54a) that helps us deleting unreasonable cases (Figure 6.54b).

The first function in Figure 6.45 presents 103 solutions that show when both
sequential rules are applied at the same time. To eliminate having more than one
state set to true for the properties used, we apply coherence front car tracking()
and coherence straddling car tracking() which give us 29 solutions. This means

146

Figure 6.48: Coherence all properties() and coherence traffic jam() functions in
Sat4jSystemConsistency.java.

Figure 6.49: Emergency maneuver triggered in a real replayed scenario.

that when goal1 cond1 is not true (we use the True function since this goal
starts with a NOT operator), goal2 cond1 can be true. The engineer can now

147

Figure 6.50: Ambiguity in a real replayed scenario at step=4217 triggering emer-
gency maneuver with no PV.

Figure 6.51: Ambiguity solved in the real replayed scenario at step=4217 adding
a non stability line condition.

Figure 6.52: Solution for goal1 cond1 presenting an inconsistency in distance
and tracking variables.

pass by the solutions to see if there is a case where the second rule should be
executed before the first one. If so, current requirements should be edited. Same
priority test is applied for goal4 cond1 and goal4 cond2 (seen in Figure 6.18).

148

Figure 6.53: Solution for goal1 cond1 presenting an inconsistency in the states
of the same property.

We notice one solution (Figure 6.55) where the not confirmed state is set to
true, and the imminent collision distance is null. The safety engineer can
analyze this solution by asking if the not confirmed case can include or not the
imminent collision case. This problem is discussed in Chapter 5 in equation 5.7.
If so, a modification is required since variable 4 is included in variable 2.

Figure 6.56 represents one solution out of 7 when parallel test is done on
goal2 cond1 and goal3 cond1. This solution contains an inconsistency regard-
ing PV properties; we can see disappeared more than t1 front car tracking
false (variable 4) while imminent collision distance front car distance is
true (variable 8). The safety expert shall reconsider these requirements that can
affect the system’s decision.

The consistency of each goal with each other is tested in Sat4jSystemConsistency.java,
as are the system-wide solutions where we can find all the possibilities. The co-
herence of the whole system is equal to the coherence of all the goals. By carrying
out all the previous tests on the rules, the sequential rules, and the parallel rules,
it is ensured that the system is coherent and that the rules do not contain any
inconsistencies.

6.9 Conclusion

The safety and security of AV are key topics to achieving full vehicle auton-
omy where the driver becomes a passenger. It is necessary to give an idea of
the complexity of the system since it involves perceiving and interpreting the
environment, anticipating the actions of other road occupants to plan a safe tra-
jectory, reacting to the unexpected, while respecting the regulations and ensuring
the comfort and safety of passengers. The safety engineers lack the automatic
interaction tools during the development of AV, which can help them understand
the correctness of the safety rules, guarantee the reliability of the system in in-

149

(a) Functions tested in parallel to solve the inconsistency in
the states of the same property.

(b) Solution for goal1 cond1 that considers the coherence
of front car tracking property.

Figure 6.54: Improving tests to eliminate inconsistent solutions considering prop-
erties coherence.

Figure 6.55: Inconsistency found after a priority test for goal1 cond1 and
goal2 cond1.

Figure 6.56: Inconsistency found after a parallel test for goal3 cond1 and
goal2 cond1.

numerable possible situations, and its resistance to possible malicious attacks.
In this Chapter, we discussed the benefits of introducing a new workflow using

150

the EPSAAV tool which marked a new mode of interaction between the safety
engineer and the development system for AVs. In Renault, some of the engi-
neers are still using traditional methods while new research is being done using
model-based approaches to the safety that have become prominent. The proposed
approach tackles these problems by enhancing safety engineers to define safety
requirements that follow one common format in the Safety domain. We show
how this approach can reduce development costs and improve the correctness of
safety rules, by enabling the direct interaction of safety engineers with a system
under development. Additionally, this approach contributes to development by
enabling quick reuse and improvements of existing solutions. The approach we
are providing helps him save development time and cost by obtaining generated
documents and monitors. He can check violations and inconsistencies in his re-
quirements and takes full responsibility in the Safety domain. We report the
Area2Spec use case on the assessment of the validation of the EPSAAV tool.
Area2Spec consists of five scenarios that we specify formally and define require-
ments using these unsafe known scenarios. We show how we apply EPSAAV
specifier for this case study and how we generate monitors and verification en-
gine using EPSAAV generator. All the environment of Area2Spec is detailed
and expressed using logical operators. We show how the developers can connect
the code to the debugger, and how they can detect ambiguities. We show also
how safety engineers can apply generated tests to validate their execution types
and test inconsistencies by giving system solutions.

151

Chapter 7

Conclusion

7.1 Thesis summary

The main goal of this thesis is to propose a solution for assessing the safety
requirements of AVs using DSML. We started by introducing our research ob-
jectives, formulating research questions, and presenting our research approach
(Chapter 1). We continued by understanding the relevant safety domain, safety
approaches and standards that ensure safety (Chapter 2). Furthermore, we also
introduced in Chapter 2 MDE and DSML contexts (its implementation, stake-
holders, and life-cycle) and highlighted a state of practice in safety assessment and
identifying traditional safety techniques using MBSE and efforts which may lead
to safety assessment. We illustrated how the EPSAAV can be integrated with
DSML development and discussed the applicability of the EPSAAV approach to
incremental iterative DSL development.

We proposed to approach our problem by introducing EPSAAV design model
which is general enough to be applied to different safety studies (Chapter 3). This
model was further placed in a process of DSML development which was defined
as a pattern language. We captured all the relevant concepts and activities, by
using an MDD approach, in the EPSAAV conceptual framework using Gemoc
Studio. This framework groups the abstract syntax that defines the EPSAAV
metamodel, a concrete syntax that enables engineers to inject rules and libraries
using an interactive console. This latter constitutes the EPSAAV specifier
to formalize specifications according to specific semantics. A generation of a
document, a monitor, and a verification engine that correspond to specific studies
and analysis is provided using EPSAAV generator.

One monitor generated in C language, called the Safety Checker module,
is compatible with Renault’s simulation environment named FusionRunner to
detect ambiguities when violations occur. We detail the process in the following
Chapter 4. FusionRunner performs resimulation and debugging of generated or
real scenarios and presents many advantages such as calculating all necessary

152

information and improving algorithmic performances. It also gives us access to
raw or fusion data. It generates metrics that can be consulted via an interface
in order to analyze at a glance the quality and performance of the software
and to quickly identify the problems introduced. This is why the choice fell on
FusionRunner note that the monitor can adapt to the language chosen.

A verification engine is generated in Chapter 5 in which we have discussed
the necessity of using a solver. The choice fell on the SAT solver (SAT4J library)
to ensure results with simple Boolean operators. Note we can change the SAT
and use the SMT for more complex systems since the source code generated is
adaptable with any solver type. The objective of this contribution is to arrive
at a solid and complete system that helps the engineer to integrate his safety re-
quirements knowing that the inconsistencies will be dealt with. We presented the
three implementation phases to deploy the SAT solver. This generation follows
specific Boolean formulas. A set of Boolean operators are combined into these
Boolean logic formulas that are fed to the SAT solver. We also detail in this
Chapter the generation tests of Java code to study the inconsistencies between
the rules and the system.

From the point of view of the feasibility of the EPSAAV conceptual frame-
work to support the DSML for safety evaluation, the generated monitor and the
verification engine were used in Chapter 6 to approve the usefulness of the pre-
vious contributions. We discussed the potential users of the EPSAAV approach.
The prototype was used to instantiate the usability evaluation of industrial safety
works. The final step was to prove that our approach provides a solution to our re-
search problems by explaining the SAVI process with a case study. AREA2SPEC
served to illustrate our solution design. Obviously, a lot of effort needs to be put
into the infrastructure to support these features. However, it reduces the devel-
opment time for the safety engineer who may not be an expert in programming.

7.2 Results obtained

The problem tackled in this thesis is very well-known in the safety area. To our
knowledge before this thesis was written, there was no real attempt to tackle
the problem in such a global and methodical manner. Therefore, during our
thesis argumentation, we believe to have introduced the systematic approach
which promotes quality in the use of DSLs, during their development process by
leveraging usability as a first-class concern. We present a summary of the main
results achieved and some of the benefits of the development of this dissertation:

1. To define an appropriate level of abstraction for safety evalua-
tion, we developed a systematic approach for safety evaluation
of AVs environment. We proposed a conceptual modeling frame-
work called EPSAAV that regroups specifier and generators. This
comprehensive framework which is presented in Chapter 3 identifies all the

153

mandatory concepts and activities and aggregates them into a formal meta-
model. It highlights the complexity of the information or specifications that
should be traced to streamline and automate the generation process. The
conceptual framework contributed directly to the thesis objective, by pro-
viding a set of practices that the safety engineer should follow to provide
a complete solution to a safety problem. The framework helps the safety
engineers to explicitly model the evaluation process, which contributes to
formalizing their requirements according to ASIL levels. We applied our ap-
proach in a real-life case study of the usability evaluation of known unsafe
scenarios for SOTIF requirements in Chapter 6.

2. To integrate a tool to help an automatic generation of documents
and monitors that solves safety assessment problems, we have
developed a tool that provides an automation scheme to help
generate easy-to-use monitors and engines. This generation bridges
the gap between safety experts and developers from the definition of safety
requirements to the validation of these specifications. Safety experts do not
need to have expertise in development to assess safety in real or simulated
scenarios.

3. To promote detection of violations to help the safety engineer
catch violations and ambiguities in his defined requirements, we
proposed to provide an approach that associates the EPSAAV
framework to a simulator seen in Chapter 4. The problem here is
that the safety experts are not sometimes involved in the language develop-
ment and may not be the end-users. They may miss a specification that is
important for failure detection, which leads to an immature safety evalua-
tion. They may therefore introduce biases in the perception of the language
design and its usability. We proposed a systematic approach that generates
a monitor that is fed to the simulator, in our case study we used a debugger
called FusionRunner that does resimulation of real or simulated scenarios.
We have applied our approach in a real case study of violations detection
and evaluation using FusionRunner in Chapter 6.

4. In order to favor the detection of rules inconsistencies to help
the safety engineer to revise and reconsider his requirements, we
proposed to provide an approach that combines the EPSAAV
framework with a solver to find all possible solutions in Chapter 5.
We chose the SAT solver to study the logical expressiveness of the rules and
run priority and parallel tests on its rules to ensure that no inconsistencies
exist. We have applied our approach in a real case study of inconsistencies
detection and evaluation using SAT solver in Chapter 6.

Some of the benefits arising from these results and confirmed by case studies:

154

• Feasibility of the EPSAAV conceptual framework to support the
safety engineers to prepare safety evaluation. The case study pro-
vided valuable feedback and improvements suggestions over the framework.
The framework does not only help the safety experts follow a specific for-
mat of describing the specifications using the EPSAAV specifier, but also
eliminates syntactical errors that could be produced in the description. Fur-
ther, the framework gives him a document to validate the correctness of his
specifications, a monitor to verify and check violations, and a formal verifi-
cation engine to analyze rules inconsistencies. All these generated files are
provided by the EPSAAV generator. Finally, we conducted an evaluation
study of the traditional workflow in Renault, and the workflow using the
proposed approach which confirmed the feasibility of the EPSAAV concep-
tual framework to support safety engineers in conducting safety evaluations.

• Traceability of safety assessment. Our systematic approach enabled
tracing a justification of the safety assessment, and its impact throughout
the evolution of the DSML. Each safety evaluation is a concrete instantia-
tion of a high-level safety objective. It refers to the precise context which
stores the assumptions which impacted the safety evaluation decision. As
a consequence of the evaluation, new features get discovered, and develop-
ment priorities can change according to tests and analyses.

• Easy integration of the monitor and the verification engine and
reduction in time development. The given systematic approach for file
generation does not depend on any particular technology. The developer
only needs to connect the files with the debugger or simulator and give
them back to the safety engineer. If the technologies change in Renault, we
can adapt the generation without losing time development. It was specified
taking into consideration the reuse of the existing knowledge enabling easy
integration with existing artefacts or assessment support.

• Design of reusable safety experiments. Safety assessment modeling
defines objects of experience that are reusable. We have shown in the case
of AREA2SPEC (Section 6.8) that the tool gives the possibility to modify
the requirements and to benefit from this reuse by having a comparison
between the current and previous versions of the rule-based planner.

7.3 Future work

In this Section, we are pointing out the future work which emerged from the
proposed solution. Namely, we highlight the following two work directions to be
explored:

155

7.3.1 Evolution of the EPSAAV tool

The EPSAAV approach, besides documenting the safety evaluation process, en-
ables formalizing the requirements and assessing rule violations and inconsisten-
cies.
As part of the future work, we are improving the tool to support time constraints
to test safety after a certain time, such as execute Action after n seconds. This
could be implemented in Gemoc Studio using Clock Constraint Specification Lan-
guage (CCSL) [142] to achieve a model Checking. CCSL gives the possibility to
better express temporal information such as a state preceding the other, and
helps to study concurrent behaviors. Another improvement could be done on the
definition of the requirement that could be taken into account graphically instead
of syntactically. This could also be implemented in Gemoc Studio using Sirius
[143].
In future work, we can also improve the resolution of solutions and filter them
by applying more automatically generated tests for the solver such as applying a
coherence test on behaviors shared by the same requirements. Furthermore, we
can create methods to indicate the inconsistency to the safety engineer instead of
looking at all the solutions. We can also choose the SMT solver for more complex
systems since we have proved that the SAT solver works perfectly and demon-
strated that we can have solutions according to the specified requirements. Last,
we can add architect engineers in the workflow which communicates between the
safety engineer and the development engineer, and discuss future works such as
adding new simulators or using other solvers.

7.3.2 Reusability of the EPSAAV tool in various contexts

We underlined the usability of the EPSAAV tool in the field of safety. More
testing for existing or simulated scenarios could be done using FusionRunner to
visualize more violations and detect ambiguities. The current tests were per-
formed under five scenarios following the SOTIF standard for known hazardous
scenarios. The goal is to provide feature safety for unforeseen scenarios that
might be encountered by the system. We can consider for future work applying
the proposed EPSAAV tool on electrical and electronic malfunctions since SOTIF
supplements ISO 26262. It uses the same vocabulary but extends it with stand-
alone specific terms, and its scope is complementary to ISO 26262. They are
different standards, and it is their combination that helps autonomous develop-
ers avoid dangerous situations, both in the presence and absence of malfunctions
and unintended use cases.
In this thesis, we dug into the ADAS component to create a safety module checker
for AEB and ACC components (see Figure 7.1). If an inconsistency exists be-
tween the output signals from the ECUs and the Safety Module Checker, the
latter can make the final decision. For future work, applying safety requirements

156

Figure 7.1: Safety Checker Module replacing ADAS functionality blocks.

on other functional blocks such as APA, AES, and other ECUs could be a possi-
ble solution to separate safety from path planning and gives the Safety domain
hand in a decision if an inconsistency occurs.
In addition, we find that reusing and reasoning the tool can also be reused in
various domains such as security and comfortability. To make this possible, it is
necessary to obtain an appropriate number of specifications, and organize them
with the support of experts. We leave this for future work as it is not the focus
of this thesis.

157

Abbreviations

ACC Adaptive Cruise Control
AEB Autonomous Emergency Braking
AES Automatic Emergency Steering
AD Autonomous Driving
APA Advanced Park Assist
ASIL Automotive Safety Integrity Levels
AV Autonomous Vehicle
CCSL Clock Constraint Specification Language
CPU Central Processing Unit
DSL Domain Specific Language
DSML Domain-Specific Modeling Language
ECU Electronic Control Unit
EMF Eclipse Modeling Framework
EPSAAV Extensible Platform for Safety Analysis of AVs
FMEA Failure Modes and Effects Analysis
FV Following Vehicle
FTA Fault Tree Analysis
GPS Global Positioning System
GUI Graphical User Interface
HMI Human-Machine Interface
IBM International Business Machines
IMU Inertial Measurement Unit
LKA Lane Keeping Assistance
MBSE Model-Based System Engineering
MDA Model-Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
ODD Operational Design Domain
OEDR Object and Event Detection and Response
OMG Object Management Group
OO Object Oriented
PV Preceding Vehicle
RBP Rule-Based Planner

158

SAE Society of Automotive Engineers
SAT Boolean Satisfiability
SAVI Safety Analyses of Violations and Inconsistencies
SIL Safety Integrity Levels
SMT Satisfiability Modulo Theories
SV Straddling Vehicle
TTC Time To Collision
UML Unified Modeling Language
VRU Vehicle Road User

159

Appendix A

A.1 Model instantiation of requirements and en-

vironment

Listing A.1: Area2Ac.actions

//this is the definition of the library for the actions

ActionLibrary Area2Actions :
Action "brake_acc";
Action "brake_strong";
Action "report_longitudinal_delta_V";
Action "report_lateral_delta_V";
Action "emergency_operation_1";
Action "emergency_maneuver";
Action "bug_notification";
Action "no_action_needed";

Listing A.2: Area2Al.alerts

//this is the definition of the library for the alerts

AlertLibrary Area2Alerts :
Alert "longitudinal_acceleration";
Alert "longitudinal_information_reporter";
Alert "lateral_information_reporter";
Alert "bug_notification";
Alert "eop1";
Alert "no_alert_needed";

Listing A.3: Area2Ego.prop

//this is the definition of the library for the Ego properties

PropertyTypeLibrary EgoProperties

160

{ version ’1’
state "traffic_jam" CanBe "yes" "no"
state "front_car_distance" CanBe "not_exist"
"exist"
"safe_distance" operator">=" value 2.0 unit "s"
"acc_distance" operator">=" value 1.2 unit "s"
"strong_braking_distance" operator">=" value 0.8 unit "s"
"imminent_collision_distance"
state "front_car_tracking" CanBe "not_confirmed"
"not_exist" operator">=" value 0.33 unit "s"
"disappeared_less_than_t1" operator"<" value 0.25 unit "s"
"disappeared_more_than_t1" operator">=" value 0.25 unit "s"
"stable_tracking" operator">" value 0.25 unit "s"
state "line_detection" CanBe "stable"
"no_detection_in_less_than_t6" operator"<" value 0.3 unit "s"
"no_detection_in_more_than_t6" operator">" value 0.3 unit "s"
state "straddling_car_distance" CanBe "

imminent_collision_distance"
"safe_distance" operator"=" value 2.0 unit "s"
"acc_distance" operator">=" value 1.2 unit "s"
"strong_braking_distance" operator">=" value 0.8 unit "s"
"not_exist" operator">=" value 0.33 unit "s"
state "straddling_car_tracking" CanBe "not_exist"
"straddling_less_than_t7" operator"<" value 2.0 unit "s"
"straddling_more_than_t7" operator">=" value 2.0 unit "s"
state "stable_control" CanBe "stable" "not_stable"
state "rear_car_distance" CanBe "not_exist"
"safe_distance" operator"=" value 2.0 unit "s"
"emergency_distance"

}

Listing A.4: Area2Obj.otp

//this is the definition of the library for the Ego and Obstacle
parameters

ObjectTypeLibrary OTL version’1’:

Ego {
EgoPropertyLibrary EgoProperties;
EgoParameterLibrary Ego :

parameter Lane_detection Type float;
parameter Lane_missing Type float;

}

"Obstacle"{
ParameterLibrary Obstacle :

parameter id Type int32;
parameter counter_tracking Type float;

161

parameter counter_not_tracking Type float;
parameter ttc_min Type float;

}

Listing A.5: Area2Sc.scene

//this is the definition of the scene

scene Scene {
ego ˆEgo
role Ego objectType "OTL.Ego"
role "preceding_vehicle" objectType "OTL.Obstacle"
role "straddling_vehicle" objectType "OTL.Obstacle"

}

Listing A.6: Area2Spec.rbp

//this is the definition of the Rule Based Planner

RuleBasedPlanner RBP{
scene ˆScene
GOAL goal1
{
GoalType Priority
WHEN{

NOT(
OR(//no_interference_in_front_car_detection :
{ propertyType "EgoProperties.front_car_distance" is

"EgoProperties.front_car_distance.not_exist"
ifonlyif(

OR (propertyType "EgoProperties.front_car_tracking" is
"EgoProperties.front_car_tracking.not_exist",
propertyType "EgoProperties.front_car_tracking" is
"EgoProperties.front_car_tracking.

disappeared_less_than_t1",
propertyType "EgoProperties.front_car_tracking" is
"EgoProperties.front_car_tracking.

disappeared_more_than_t1"
)

)
}, //no_interference_in_straddling_car_detection :
{ propertyType "EgoProperties.straddling_car_distance"

is
"EgoProperties.straddling_car_distance.not_exist"

ifonlyif (
propertyType "EgoProperties.straddling_car_tracking" is
"EgoProperties.straddling_car_tracking.not_exist"
)

}

162

)
)
action "Area2Actions.bug_notification"
alert "Area2Alerts.bug_notification"

}
GOAL goal2{

GoalType Constraint
WHEN{

AND(//no lane or infrastructure detection
propertyType "EgoProperties.stable_control" is

"EgoProperties.stable_control.stable",
AND(NOT(propertyType "EgoProperties.line_detection" is

"EgoProperties.line_detection.stable"),
OR(propertyType "EgoProperties.front_car_tracking" is
"EgoProperties.front_car_tracking.

disappeared_more_than_t1",
propertyType "EgoProperties.line_detection" is
"EgoProperties.line_detection.

no_detection_in_more_than_t6",
//swerving SV to EV’s lane
propertyType "EgoProperties.straddling_car_tracking"

is
"EgoProperties.straddling_car_tracking.

straddling_more_than_t7"
))

)
action "Area2Actions.emergency_operation_1"
alert "Area2Alerts.eop1"

}
GOAL goal3{
GoalType Constraint //report Delta V when imminent

collision
WHEN{

propertyType "EgoProperties.front_car_distance" is
"EgoProperties.front_car_distance.

imminent_collision_distance"
action "Area2Actions.report_longitudinal_delta_V"
alert "Area2Alerts.longitudinal_acceleration"

}
WHEN{

propertyType "EgoProperties.straddling_car_distance" is
"EgoProperties.straddling_car_distance.

imminent_collision_distance"
action "Area2Actions.report_longitudinal_delta_V"
alert "Area2Alerts.longitudinal_acceleration"

}
GOAL goal4{
GoalType Priority

WHEN{//imminent collision
OR(propertyType "EgoProperties.front_car_distance" is

"EgoProperties.front_car_distance.

163

imminent_collision_distance",
propertyType "EgoProperties.

straddling_car_distance" is
"EgoProperties.straddling_car_distance.

imminent_collision_distance")
action "Area2Actions.emergency_maneuver"
alert "Area2Alerts.longitudinal_acceleration"

}
WHEN{//during confirmation of PV

propertyType "EgoProperties.front_car_tracking" is
"EgoProperties.front_car_tracking.not_confirmed"
action "Area2Actions.brake_acc"
alert "Area2Alerts.longitudinal_acceleration"

}
WHEN{//collision with the rear

propertyType "EgoProperties.rear_car_distance" is
"EgoProperties.rear_car_distance.emergency_distance"
action "Area2Actions.no_action_needed"
alert "Area2Alerts.no_alert_needed"

}
WHEN{//strong braking collision

OR(propertyType "EgoProperties.front_car_distance" is
"EgoProperties.front_car_distance.

strong_braking_distance",
propertyType "EgoProperties.

straddling_car_distance" is
"EgoProperties.straddling_car_distance.

strong_braking_distance")
action "Area2Actions.brake_strong"
alert "Area2Alerts.longitudinal_acceleration"

}
WHEN{//acc collision

OR(propertyType "EgoProperties.front_car_distance" is
"EgoProperties.front_car_distance.acc_distance",
propertyType "EgoProperties.

straddling_car_distance" is
"EgoProperties.straddling_car_distance.

acc_distance")
action "Area2Actions.brake_acc"
alert "Area2Alerts.longitudinal_acceleration"

}
}

}
}

}
}

A.2 Text auto-generation for Area2Spec

Listing A.7: Area2Spec.txt

164

BEGIN GOAL goal1{
Goal type: Priority
when{

NOT (
front_car_distance is not_exist
IFONLYIF(

front_car_tracking is not_exist
OR(

front_car_tracking is disappeared_less_than_t1,
front_car_tracking is disappeared_more_than_t1

)
)
OR(

straddling_car_distance is not_exist
IFONLYIF(

straddling_car_tracking is not_exist
)

)
)

}
then behavior_goal1_cond1:

executing bug_notification
bug_notification

BEGIN GOAL goal2{
Goal type: Constraint
when{

stable_control is stable
AND(

NOT (
line_detection is stable

)
AND(

front_car_tracking is disappeared_more_than_t1
OR(

line_detection is no_detection_in_more_than_t6,
straddling_car_tracking is straddling_more_than_t7

)
)

)
}
then behavior_goal2_cond1:

executing emergency_operation_1
eop1

BEGIN GOAL goal3{
Goal type: Constraint
when{

front_car_distance is imminent_collision_distance
}
then behavior_goal3_cond1:

165

executing report_longitudinal_delta_V
longitudinal_acceleration

when{
straddling_car_distance is imminent_collision_distance

}
then behavior_goal3_cond2:

executing report_longitudinal_delta_V
longitudinal_acceleration

BEGIN GOAL goal4{
Goal type: Priority
when{

front_car_distance is imminent_collision_distance
OR(

straddling_car_distance is
imminent_collision_distance

)
}
then behavior_goal4_cond1:

executing emergency_maneuver
longitudinal_acceleration

when{
front_car_tracking is not_confirmed

}
then behavior_goal4_cond2:

executing brake_acc
longitudinal_acceleration

when{
rear_car_distance is emergency_distance

}
then behavior_goal4_cond3:

executing no_action_needed
no_alert_needed

when{
front_car_distance is strong_braking_distance
OR(

straddling_car_distance is strong_braking_distance
)

}
then behavior_goal4_cond4:

executing brake_strong
longitudinal_acceleration

when{
front_car_distance is acc_distance
OR(

straddling_car_distance is acc_distance

166

)
}
then behavior_goal4_cond5:

executing brake_acc
longitudinal_acceleration

}
}

}
}
BEGIN RESOURCES

resource longitudinal_acceleration
resource longitudinal_information_reporter
resource lateral_information_reporter
resource bug_notification
resource eop1
resource no_alert_needed

END RESOURCES

BEGIN ACTIONS
action brake_acc
action brake_strong
action report_longitudinal_delta_V
action report_lateral_delta_V
action emergency_operation_1
action emergency_maneuver
action bug_notification
action no_action_needed

END ACTIONS

BEGIN STATE VECTOR
PropertyTypeLibrary EgoProperties{

state traffic_jam CanBe yes no
state front_car_distance CanBe not_exist exist

safe_distance acc_distance strong_braking_distance
imminent_collision_distance

state front_car_tracking CanBe not_confirmed not_exist
disappeared_less_than_t1 disappeared_more_than_t1
stable_tracking

state line_detection CanBe stable
no_detection_in_less_than_t6 no_detection_in_more_than_t6

state straddling_car_distance CanBe
imminent_collision_distance safe_distance acc_distance
strong_braking_distance not_exist

state straddling_car_tracking CanBe not_exist
straddling_less_than_t7 straddling_more_than_t7

state stable_control CanBe stable not_stable
state rear_car_distance CanBe not_exist safe_distance

emergency_distance
}
END STATE VECTOR

167

A.3 C code auto-generation using EPSAAV gen-

erator

Listing A.8: Area2Actions.c

/** \file Area2Actions.c

*
* \author

* \brief action library functions for safety checker

*
*/

#include "Area2Actions.h"
#include <stdio.h>

void processactions(Area2Actions_t Area2Actions_enum) {
switch (Area2Actions_enum) {

case ac_brake_acc:
printf("brake_acc\n");
break;

case ac_brake_strong:
printf("brake_strong\n");
break;

case ac_report_longitudinal_delta_V:
printf("report_longitudinal_delta_V\n");
break;

case ac_report_lateral_delta_V:
printf("report_lateral_delta_V\n");
break;

case ac_emergency_operation_1:
printf("emergency_operation_1\n");
break;

case ac_emergency_maneuver:
printf("emergency_maneuver\n");
break;

case ac_bug_notification:
printf("bug_notification\n");
break;

case ac_no_action_needed:
printf("no_action_needed\n");
break;

default:
printf("no_action\n");
break;

}
}

Listing A.9: Area2Actions.h

/** \file Area2Actions.h

168

*
* \author

* \brief action library for safety checker

*
*/
#ifndef Area2Actions_H_
#define Area2Actions_H_

typedef enum {
ac_brake_acc,
ac_brake_strong,
ac_report_longitudinal_delta_V,
ac_report_lateral_delta_V,
ac_emergency_operation_1,
ac_emergency_maneuver,
ac_bug_notification,
ac_no_action_needed,

} Area2Actions_t;

void processactions(Area2Actions_t Area2Actions_enum);

#endif

Listing A.10: Area2Alerts.c

/** \file Area2Alerts.c

*
* \author

* \brief alert library functions for safety checker

*
*/

#include "Area2Alerts.h"
#include <stdio.h>

void processalerts(Area2Alerts_t Area2Alerts_enum) {
switch (Area2Alerts_enum) {
case al_longitudinal_acceleration:

printf("longitudinal_acceleration\n");
break;

case al_longitudinal_information_reporter:
printf("longitudinal_information_reporter\n");
break;

case al_lateral_information_reporter:
printf("lateral_information_reporter\n");
break;

case al_bug_notification:
printf("bug_notification\n");
break;

case al_eop1:
printf("eop1\n");

169

break;
case al_no_alert_needed:

printf("no_alert_needed\n");
break;

default:
printf("no_alert\n");
break;

}
}

Listing A.11: Area2Alerts.h

/** \file Area2Alerts.h

*
* \author

* \brief alert library for safety checker

*
*/
#ifndef Area2Alerts_H_
#define Area2Alerts_H_

typedef enum {
al_longitudinal_acceleration,
al_longitudinal_information_reporter,
al_lateral_information_reporter,
al_bug_notification,
al_eop1,
al_no_alert_needed,

} Area2Alerts_t;

void processalerts(Area2Alerts_t Area2Alerts_enum);

#endif

Listing A.12: EgoProperties.c

/** \file EgoProperties.c

*
* \author

* \brief EgoProperties functions for safety checker

*
*/

#include "EgoProperties.h"
#include "Scene.h"

traffic_jam_t traffic_jam_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

170

if () {
return yes_traffic_jam;

} else {
return no_traffic_jam;

}

*/
return yes_traffic_jam;

}

front_car_distance_t front_car_distance_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float safe_distance_threshold = 2.0f; //
safe_distance>=2.0s

static const float acc_distance_threshold = 1.2f; //
acc_distance>=1.2s

static const float strong_braking_distance_threshold = 0.8f; //
strong_braking_distance>=0.8s

if () {
return not_exist_front_car_distance;

}else if () {
return exist_front_car_distance;

}else if () {
return safe_distance_front_car_distance;

}else if () {
return acc_distance_front_car_distance;

}else if () {
return strong_braking_distance_front_car_distance;

} else {
return imminent_collision_distance_front_car_distance;

}

*/
return not_exist_front_car_distance;

}

front_car_tracking_t front_car_tracking_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float not_exist_threshold = 0.33f; //not_exist
>=0.33s

static const float disappeared_less_than_t1_threshold = 0.25f;
//disappeared_less_than_t1<0.25s

static const float disappeared_more_than_t1_threshold = 0.25f;
//disappeared_more_than_t1>=0.25s

static const float stable_tracking_threshold = 0.25f; //

171

stable_tracking>0.25s

if () {
return not_confirmed_front_car_tracking;

}else if () {
return not_exist_front_car_tracking;

}else if () {
return disappeared_less_than_t1_front_car_tracking;

}else if () {
return disappeared_more_than_t1_front_car_tracking;

} else {
return stable_tracking_front_car_tracking;

}

*/
return not_confirmed_front_car_tracking;

}

line_detection_t line_detection_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float no_detection_in_less_than_t6_threshold = 0.3
f; //no_detection_in_less_than_t6<0.3s

static const float no_detection_in_more_than_t6_threshold = 0.3
f; //no_detection_in_more_than_t6>0.3s

if () {
return stable_line_detection;

}else if () {
return no_detection_in_less_than_t6_line_detection;

} else {
return no_detection_in_more_than_t6_line_detection;

}

*/
return stable_line_detection;

}

straddling_car_distance_t straddling_car_distance_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float safe_distance_threshold = 2.0f; //
safe_distance=2.0s

static const float acc_distance_threshold = 1.2f; //
acc_distance>=1.2s

static const float strong_braking_distance_threshold = 0.8f; //
strong_braking_distance>=0.8s

static const float not_exist_threshold = 0.33f; //not_exist
>=0.33s

172

if () {
return imminent_collision_distance_straddling_car_distance;

}else if () {
return safe_distance_straddling_car_distance;

}else if () {
return acc_distance_straddling_car_distance;

}else if () {
return strong_braking_distance_straddling_car_distance;

} else {
return not_exist_straddling_car_distance;

}

*/
return imminent_collision_distance_straddling_car_distance;

}

straddling_car_tracking_t straddling_car_tracking_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float straddling_less_than_t7_threshold = 2.0f; //
straddling_less_than_t7<2.0s

static const float straddling_more_than_t7_threshold = 2.0f; //
straddling_more_than_t7>=2.0s

if () {
return not_exist_straddling_car_tracking;

}else if () {
return straddling_less_than_t7_straddling_car_tracking;

} else {
return straddling_more_than_t7_straddling_car_tracking;

}

*/
return not_exist_straddling_car_tracking;

}

stable_control_t stable_control_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

if () {
return stable_stable_control;

} else {
return not_stable_stable_control;

}

*/
return stable_stable_control;

}

173

rear_car_distance_t rear_car_distance_check() {

/*TODO User Adaptation : functions declared in Scene.c with
thresholds

static const float safe_distance_threshold = 2.0f; //
safe_distance=2.0s

if () {
return not_exist_rear_car_distance;

}else if () {
return safe_distance_rear_car_distance;

} else {
return emergency_distance_rear_car_distance;

}

*/
return not_exist_rear_car_distance;

}

Listing A.13: EgoProperties.h

/** \file EgoProperties.h

*
* \author

* \brief Ego Property library for safety checker

*
*/

#include <math.h>
#ifndef EgoProperties_H_
#define EgoProperties_H_

typedef enum {
yes_traffic_jam,
no_traffic_jam,

} traffic_jam_t;

typedef enum {
not_exist_front_car_distance,
exist_front_car_distance,
safe_distance_front_car_distance,
acc_distance_front_car_distance,
strong_braking_distance_front_car_distance,
imminent_collision_distance_front_car_distance,

} front_car_distance_t;

typedef enum {
not_confirmed_front_car_tracking,
not_exist_front_car_tracking,
disappeared_less_than_t1_front_car_tracking,

174

disappeared_more_than_t1_front_car_tracking,
stable_tracking_front_car_tracking,

} front_car_tracking_t;

typedef enum {
stable_line_detection,
no_detection_in_less_than_t6_line_detection,
no_detection_in_more_than_t6_line_detection,

} line_detection_t;

typedef enum {
imminent_collision_distance_straddling_car_distance,
safe_distance_straddling_car_distance,
acc_distance_straddling_car_distance,
strong_braking_distance_straddling_car_distance,
not_exist_straddling_car_distance,

} straddling_car_distance_t;

typedef enum {
not_exist_straddling_car_tracking,
straddling_less_than_t7_straddling_car_tracking,
straddling_more_than_t7_straddling_car_tracking,

} straddling_car_tracking_t;

typedef enum {
stable_stable_control,
not_stable_stable_control,

} stable_control_t;

typedef enum {
not_exist_rear_car_distance,
safe_distance_rear_car_distance,
emergency_distance_rear_car_distance,

} rear_car_distance_t;

traffic_jam_t traffic_jam_check();

front_car_distance_t front_car_distance_check();

front_car_tracking_t front_car_tracking_check();

line_detection_t line_detection_check();

straddling_car_distance_t straddling_car_distance_check();

straddling_car_tracking_t straddling_car_tracking_check();

stable_control_t stable_control_check();

rear_car_distance_t rear_car_distance_check();

175

#endif

Listing A.14: Scene.c

/** \file Scene.c

*
* \author

* \brief scene for safety checker

*
*/

#include "Scene.h"

static Ego_t Ego;
static Obstacle_t preceding_vehicle;
static Obstacle_t straddling_vehicle;

static void Ego_getParameters(/*TODO User Adaptation : Parameter
FusionControlData */);

static void preceding_vehicle_getParameters(/*TODO User
Adaptation : Parameter FusionControlData */);

static void straddling_vehicle_getParameters(/*TODO User
Adaptation : Parameter FusionControlData */);

void fusionDatatoScene(/*TODO User Adaptation : Parameter
FusionControlData */) {

Ego_getParameters(/*TODO User Adaptation : Parameter
FusionControlData */);

preceding_vehicle_getParameters(/*TODO User Adaptation :
Parameter FusionControlData */);

straddling_vehicle_getParameters(/*TODO User Adaptation :
Parameter FusionControlData */);

}

static void Ego_getParameters(/*TODO User Adaptation : Parameter
FusionControlData */) {

/*TODO User Adaptation : Link Fusion Output with Autogenerated
Parameters in Scene.h */

}

static void preceding_vehicle_getParameters(/*TODO User
Adaptation : Parameter FusionControlData */) {

/*TODO User Adaptation : Link Fusion Output with Autogenerated
Parameters in Scene.h */

}

static void straddling_vehicle_getParameters(/*TODO User
Adaptation : Parameter FusionControlData */) {

/*TODO User Adaptation : Link Fusion Output with Autogenerated

176

Parameters in Scene.h */
}

float_t get_Ego_Lane_detection() {
return Ego.Lane_detection;

}

float_t get_Ego_Lane_missing() {
return Ego.Lane_missing;

}

uint32_t get_preceding_vehicle_id() {
return preceding_vehicle.id;

}

float_t get_preceding_vehicle_counter_tracking() {
return preceding_vehicle.counter_tracking;

}

float_t get_preceding_vehicle_counter_not_tracking() {
return preceding_vehicle.counter_not_tracking;

}

float_t get_preceding_vehicle_ttc_min() {
return preceding_vehicle.ttc_min;

}

uint32_t get_straddling_vehicle_id() {
return straddling_vehicle.id;

}

float_t get_straddling_vehicle_counter_tracking() {
return straddling_vehicle.counter_tracking;

}

float_t get_straddling_vehicle_counter_not_tracking() {
return straddling_vehicle.counter_not_tracking;

}

float_t get_straddling_vehicle_ttc_min() {
return straddling_vehicle.ttc_min;

}

Listing A.15: Scene.h

/** \file Scene.h

*
* \author

* \brief scene struct for safety checker

*

177

*/

#include "../src/fusrun_types.h"
#ifndef Scene_H_
#define Scene_H_

//functions instantiation:

void fusionDatatoScene(/*TODO User Adaptation : Parameter
FusionControlData */);

float_t get_Ego_Lane_detection();
float_t get_Ego_Lane_missing();

uint32_t get_preceding_vehicle_id();
float_t get_preceding_vehicle_counter_tracking();
float_t get_preceding_vehicle_counter_not_tracking();
float_t get_preceding_vehicle_ttc_min();

uint32_t get_straddling_vehicle_id();
float_t get_straddling_vehicle_counter_tracking();
float_t get_straddling_vehicle_counter_not_tracking();
float_t get_straddling_vehicle_ttc_min();

//structures instantiation:

typedef struct Ego {
float_t Lane_detection;
float_t Lane_missing;

} Ego_t;

typedef struct Obstacle {
uint32_t id;
float_t counter_tracking;
float_t counter_not_tracking;
float_t ttc_min;

} Obstacle_t;

#endif

Listing A.16: Safety Checks.c

#include "EgoProperties.h"
#include "Area2Actions.h"
#include "Area2Alerts.h"
#include "Scene.h"
#include "Safety_Checks.h"
#include <stdio.h>
/** \file Safety_Checks.c

*

178

* \author

* \brief safety checker

*
*/

void init_goals() {
goal1_condition1.isTriggered = &trig_goal1_condition1;
goal1_condition1.execute = &execute_goal1_condition1;
goal1_condition1.raiseAlarm = &alarm_goal1_condition1;

goal2_condition1.isTriggered = &trig_goal2_condition1;
goal2_condition1.execute = &execute_goal2_condition1;
goal2_condition1.raiseAlarm = &alarm_goal2_condition1;

goal3_condition1.isTriggered = &trig_goal3_condition1;
goal3_condition1.execute = &execute_goal3_condition1;
goal3_condition1.raiseAlarm = &alarm_goal3_condition1;

goal3_condition2.isTriggered = &trig_goal3_condition2;
goal3_condition2.execute = &execute_goal3_condition2;
goal3_condition2.raiseAlarm = &alarm_goal3_condition2;

goal4_condition1.isTriggered = &trig_goal4_condition1;
goal4_condition1.execute = &execute_goal4_condition1;
goal4_condition1.raiseAlarm = &alarm_goal4_condition1;

goal4_condition2.isTriggered = &trig_goal4_condition2;
goal4_condition2.execute = &execute_goal4_condition2;
goal4_condition2.raiseAlarm = &alarm_goal4_condition2;

goal4_condition3.isTriggered = &trig_goal4_condition3;
goal4_condition3.execute = &execute_goal4_condition3;
goal4_condition3.raiseAlarm = &alarm_goal4_condition3;

goal4_condition4.isTriggered = &trig_goal4_condition4;
goal4_condition4.execute = &execute_goal4_condition4;
goal4_condition4.raiseAlarm = &alarm_goal4_condition4;

goal4_condition5.isTriggered = &trig_goal4_condition5;
goal4_condition5.execute = &execute_goal4_condition5;
goal4_condition5.raiseAlarm = &alarm_goal4_condition5;

}

void trig_goals() {
if (goal1_condition1.isTriggered() == FALSE) {

goal2_condition1.isTriggered();
goal3_condition1.isTriggered();
goal3_condition2.isTriggered();
if (goal4_condition1.isTriggered() == FALSE) {

179

if (goal4_condition2.isTriggered() == FALSE) {
if (goal4_condition3.isTriggered() == FALSE) {

if (goal4_condition4.isTriggered() == FALSE) {
goal4_condition5.isTriggered();

}
}

}
}

}
}

bool_t trig_goal1_condition1() {
if (!(((front_car_distance_check() ==

not_exist_front_car_distance) && ((
front_car_tracking_check() == not_exist_front_car_tracking)
|| (front_car_tracking_check() ==
disappeared_less_than_t1_front_car_tracking) || (
front_car_tracking_check() ==
disappeared_more_than_t1_front_car_tracking))) || ((
straddling_car_distance_check() ==
not_exist_straddling_car_distance) && (
straddling_car_tracking_check() ==
not_exist_straddling_car_tracking)))) {

goal1_condition1.execute();
goal1_condition1.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal1_condition1() {
processactions(ac_bug_notification);

}

void alarm_goal1_condition1() {
processalerts(al_bug_notification);

}

bool_t trig_goal2_condition1() {
if ((stable_control_check() == stable_stable_control) && ((

!(line_detection_check() == stable_line_detection)) &&
((front_car_tracking_check() ==
disappeared_more_than_t1_front_car_tracking) || (
line_detection_check() ==
no_detection_in_more_than_t6_line_detection) || (
straddling_car_tracking_check() ==
straddling_more_than_t7_straddling_car_tracking)))) {

goal2_condition1.execute();
goal2_condition1.raiseAlarm();
return TRUE;

}

180

return FALSE;
}

void execute_goal2_condition1() {
processactions(ac_emergency_operation_1);

}

void alarm_goal2_condition1() {
processalerts(al_eop1);

}

bool_t trig_goal3_condition1() {
if (front_car_distance_check() ==

imminent_collision_distance_front_car_distance) {
goal3_condition1.execute();
goal3_condition1.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal3_condition1() {
processactions(ac_report_longitudinal_delta_V);

}

void alarm_goal3_condition1() {
processalerts(al_longitudinal_acceleration);

}

bool_t trig_goal3_condition2() {
if (straddling_car_distance_check() ==

imminent_collision_distance_straddling_car_distance) {
goal3_condition2.execute();
goal3_condition2.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal3_condition2() {
processactions(ac_report_longitudinal_delta_V);

}

void alarm_goal3_condition2() {
processalerts(al_longitudinal_acceleration);

}

bool_t trig_goal4_condition1() {
if ((front_car_distance_check() ==

imminent_collision_distance_front_car_distance) || (
straddling_car_distance_check() ==

181

imminent_collision_distance_straddling_car_distance)) {
goal4_condition1.execute();
goal4_condition1.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal4_condition1() {
processactions(ac_emergency_maneuver);

}

void alarm_goal4_condition1() {
processalerts(al_longitudinal_acceleration);

}

bool_t trig_goal4_condition2() {
if (front_car_tracking_check() ==

not_confirmed_front_car_tracking) {
goal4_condition2.execute();
goal4_condition2.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal4_condition2() {
processactions(ac_brake_acc);

}

void alarm_goal4_condition2() {
processalerts(al_longitudinal_acceleration);

}

bool_t trig_goal4_condition3() {
if (rear_car_distance_check() ==

emergency_distance_rear_car_distance) {
goal4_condition3.execute();
goal4_condition3.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal4_condition3() {
processactions(ac_no_action_needed);

}

void alarm_goal4_condition3() {
processalerts(al_no_alert_needed);

}

182

bool_t trig_goal4_condition4() {
if ((front_car_distance_check() ==

strong_braking_distance_front_car_distance) || (
straddling_car_distance_check() ==
strong_braking_distance_straddling_car_distance)) {

goal4_condition4.execute();
goal4_condition4.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal4_condition4() {
processactions(ac_brake_strong);

}

void alarm_goal4_condition4() {
processalerts(al_longitudinal_acceleration);

}

bool_t trig_goal4_condition5() {
if ((front_car_distance_check() ==

acc_distance_front_car_distance) || (
straddling_car_distance_check() ==
acc_distance_straddling_car_distance)) {

goal4_condition5.execute();
goal4_condition5.raiseAlarm();
return TRUE;

}
return FALSE;

}

void execute_goal4_condition5() {
processactions(ac_brake_acc);

}

void alarm_goal4_condition5() {
processalerts(al_longitudinal_acceleration);

}

Listing A.17: Safety Checks.h

/** \file Safety_Checks.h

*
* \author

* \brief safety checker

*
*/
#ifndef Safety_Checks_H_
#define Safety_Checks_H_

183

typedef bool_t(isTriggFunct_t)(void);
typedef void(executeBehavior_t)(void);
typedef void(raiseAlarm_t)(void);

typedef struct Goal_t {
isTriggFunct_t *isTriggered;
executeBehavior_t *execute;
raiseAlarm_t *raiseAlarm;

} Goal_t;

typedef enum {
n_goal1_condition1,
n_goal2_condition1,
n_goal3_condition1,
n_goal3_condition2,
n_goal4_condition1,
n_goal4_condition2,
n_goal4_condition3,
n_goal4_condition4,
n_goal4_condition5,
Goal_condition_size,

} goal_condition_t;

void init_goals();
void trig_goals();

Goal_t goal1_condition1;
bool_t trig_goal1_condition1();
void execute_goal1_condition1();
void alarm_goal1_condition1();

Goal_t goal2_condition1;
bool_t trig_goal2_condition1();
void execute_goal2_condition1();
void alarm_goal2_condition1();

Goal_t goal3_condition1;
bool_t trig_goal3_condition1();
void execute_goal3_condition1();
void alarm_goal3_condition1();

Goal_t goal3_condition2;
bool_t trig_goal3_condition2();
void execute_goal3_condition2();
void alarm_goal3_condition2();

Goal_t goal4_condition1;
bool_t trig_goal4_condition1();
void execute_goal4_condition1();
void alarm_goal4_condition1();

184

Goal_t goal4_condition2;
bool_t trig_goal4_condition2();
void execute_goal4_condition2();
void alarm_goal4_condition2();

Goal_t goal4_condition3;
bool_t trig_goal4_condition3();
void execute_goal4_condition3();
void alarm_goal4_condition3();

Goal_t goal4_condition4;
bool_t trig_goal4_condition4();
void execute_goal4_condition4();
void alarm_goal4_condition4();

Goal_t goal4_condition5;
bool_t trig_goal4_condition5();
void execute_goal4_condition5();
void alarm_goal4_condition5();

#endif

A.4 Java code auto-generation using EPSAAV

generator

Listing A.18: Sat4jRules.java

package checksafety;
import java.util.Arrays;

import fr.kairos.timesquare.ccsl.sat.IBooleanSpecification;

public class Sat4jRules{

static public void build_Equiv(IBooleanSpecification spec,
String a, String b, String c) {

spec.clause(a,b,c);
spec.clause(b,a,c);
spec.implies(a,c);
spec.or(b+c,b,c);
spec.forces(b+c);

}

// static public void build_Xor(IBooleanSpecification spec,
String a, String b, String c) {

// spec.clause(c,a,b);
// spec.clause(b,a,c);

185

// spec.clause(a,b,c);
// }

static public void build_goal1_cond1(IBooleanSpecification spec
) {

//spec.not("goal1_cond1");
spec.or("goal1_cond1", "goal1_cond1_1", "goal1_cond1_2");
build_Equiv(spec,"goal1_cond1_1", "

not_exist_front_car_distance",
"goal1_cond1_1_1");

spec.or("goal1_cond1_1_1", "not_exist_front_car_tracking",
"disappeared_less_than_t1_front_car_tracking",
"disappeared_more_than_t1_front_car_tracking");

build_Equiv(spec,"goal1_cond1_2", "
not_exist_straddling_car_distance",

"not_exist_straddling_car_tracking");
}

static public void build_goal2_cond1(IBooleanSpecification spec
) {

spec.and("goal2_cond1", "stable_stable_control", "
goal2_cond1_1");

spec.or("goal2_cond1_1",
"disappeared_more_than_t1_front_car_tracking",
"no_detection_in_more_than_t6_line_detection",
"straddling_more_than_t7_straddling_car_tracking");

}

static public void build_goal3_cond1(IBooleanSpecification spec
) {

spec.or("goal3_cond1", "
imminent_collision_distance_front_car_distance");

}

static public void build_goal3_cond2(IBooleanSpecification spec
) {

spec.or("goal3_cond2", "
imminent_collision_distance_straddling_car_distance");

}

static public void build_goal4_cond1(IBooleanSpecification spec
) {

spec.or("goal4_cond1", "
imminent_collision_distance_front_car_distance", "
imminent_collision_distance_straddling_car_distance");

}

static public void build_goal4_cond2(IBooleanSpecification spec
) {

spec.or("goal4_cond2", "not_confirmed_front_car_tracking");
}

186

static public void build_goal4_cond3(IBooleanSpecification spec
) {

spec.or("goal4_cond3", "emergency_distance_rear_car_distance
");

}

static public void build_goal4_cond4(IBooleanSpecification spec
) {

spec.or("goal4_cond4", "
strong_braking_distance_front_car_distance", "
strong_braking_distance_straddling_car_distance");

}

static public void build_goal4_cond5(IBooleanSpecification spec
) {

spec.or("goal4_cond5", "acc_distance_front_car_distance", "
acc_distance_straddling_car_distance");

}

}

Listing A.19: Sat4jRulesConsistency.java

package checksafety;
import fr.kairos.timesquare.ccsl.sat.IBooleanSpecification;

public class Sat4jRulesConsistency{

//Creating function *build_goal(x)_condition(y)_True*
//Creating function *build_goal(x)_condition(y)_False*
//Creating function *build_goal(x)_condition(y)_Alert*
//Creating function *build_goal(x)_condition(y)_Alert_True*
//Creating function *build_goal(x)_condition(y)_Alert_False*

static public void build_goal1_cond1_True(IBooleanSpecification
spec) {

Sat4jRules.build_goal1_cond1(spec);
spec.forces("goal1_cond1");

}

static public void build_goal1_cond1_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal1_cond1(spec);
spec.not("goal1_cond1");

}

static public void build_goal1_cond1_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal1_cond1(spec);
spec.and("goal1_cond1_Alert", "goal1_cond1","bug_notification

187

");
}

static public void build_goal1_cond1_Alert_True(
IBooleanSpecification spec) {

build_goal1_cond1_Alert(spec);
spec.forces("goal1_cond1_Alert");

}

static public void build_goal1_cond1_Alert_False(
IBooleanSpecification spec) {

build_goal1_cond1_Alert(spec);
spec.not("goal1_cond1_Alert");

}

static public void build_goal2_cond1_True(IBooleanSpecification
spec) {

Sat4jRules.build_goal2_cond1(spec);
spec.forces("goal2_cond1");

}

static public void build_goal2_cond1_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal2_cond1(spec);
spec.not("goal2_cond1");

}

static public void build_goal2_cond1_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal2_cond1(spec);
spec.and("goal2_cond1_Alert", "goal2_cond1","eop1");

}

static public void build_goal2_cond1_Alert_True(
IBooleanSpecification spec) {

build_goal2_cond1_Alert(spec);
spec.forces("goal2_cond1_Alert");

}

static public void build_goal2_cond1_Alert_False(
IBooleanSpecification spec) {

build_goal2_cond1_Alert(spec);
spec.not("goal2_cond1_Alert");

}

static public void build_goal3_cond1_True(IBooleanSpecification
spec) {

Sat4jRules.build_goal3_cond1(spec);
spec.forces("goal3_cond1");

}

188

static public void build_goal3_cond1_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal3_cond1(spec);
spec.not("goal3_cond1");

}

static public void build_goal3_cond1_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal3_cond1(spec);
spec.and("goal3_cond1_Alert", "goal3_cond1","

longitudinal_acceleration");
}

static public void build_goal3_cond1_Alert_True(
IBooleanSpecification spec) {

build_goal3_cond1_Alert(spec);
spec.forces("goal3_cond1_Alert");

}

static public void build_goal3_cond1_Alert_False(
IBooleanSpecification spec) {

build_goal3_cond1_Alert(spec);
spec.not("goal3_cond1_Alert");

}
static public void build_goal3_cond2_True(IBooleanSpecification

spec) {
Sat4jRules.build_goal3_cond2(spec);
spec.forces("goal3_cond2");

}

static public void build_goal3_cond2_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal3_cond2(spec);
spec.not("goal3_cond2");

}

static public void build_goal3_cond2_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal3_cond2(spec);
spec.and("goal3_cond2_Alert", "goal3_cond2","

longitudinal_acceleration");
}

static public void build_goal3_cond2_Alert_True(
IBooleanSpecification spec) {

build_goal3_cond2_Alert(spec);
spec.forces("goal3_cond2_Alert");

}

static public void build_goal3_cond2_Alert_False(
IBooleanSpecification spec) {

189

build_goal3_cond2_Alert(spec);
spec.not("goal3_cond2_Alert");

}

static public void build_goal4_cond1_True(IBooleanSpecification
spec) {

Sat4jRules.build_goal4_cond1(spec);
spec.forces("goal4_cond1");

}

static public void build_goal4_cond1_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond1(spec);
spec.not("goal4_cond1");

}

static public void build_goal4_cond1_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond1(spec);
spec.and("goal4_cond1_Alert", "goal4_cond1","

longitudinal_acceleration");
}

static public void build_goal4_cond1_Alert_True(
IBooleanSpecification spec) {

build_goal4_cond1_Alert(spec);
spec.forces("goal4_cond1_Alert");

}

static public void build_goal4_cond1_Alert_False(
IBooleanSpecification spec) {

build_goal4_cond1_Alert(spec);
spec.not("goal4_cond1_Alert");

}
static public void build_goal4_cond2_True(IBooleanSpecification

spec) {
Sat4jRules.build_goal4_cond2(spec);
spec.forces("goal4_cond2");

}

static public void build_goal4_cond2_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond2(spec);
spec.not("goal4_cond2");

}

static public void build_goal4_cond2_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond2(spec);
spec.and("goal4_cond2_Alert", "goal4_cond2","

longitudinal_acceleration");

190

}

static public void build_goal4_cond2_Alert_True(
IBooleanSpecification spec) {

build_goal4_cond2_Alert(spec);
spec.forces("goal4_cond2_Alert");

}

static public void build_goal4_cond2_Alert_False(
IBooleanSpecification spec) {

build_goal4_cond2_Alert(spec);
spec.not("goal4_cond2_Alert");

}
static public void build_goal4_cond3_True(IBooleanSpecification

spec) {
Sat4jRules.build_goal4_cond3(spec);
spec.forces("goal4_cond3");

}

static public void build_goal4_cond3_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond3(spec);
spec.not("goal4_cond3");

}

static public void build_goal4_cond3_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond3(spec);
spec.and("goal4_cond3_Alert", "goal4_cond3","no_alert_needed

");
}

static public void build_goal4_cond3_Alert_True(
IBooleanSpecification spec) {

build_goal4_cond3_Alert(spec);
spec.forces("goal4_cond3_Alert");

}

static public void build_goal4_cond3_Alert_False(
IBooleanSpecification spec) {

build_goal4_cond3_Alert(spec);
spec.not("goal4_cond3_Alert");

}
static public void build_goal4_cond4_True(IBooleanSpecification

spec) {
Sat4jRules.build_goal4_cond4(spec);
spec.forces("goal4_cond4");

}

static public void build_goal4_cond4_False(
IBooleanSpecification spec) {

191

Sat4jRules.build_goal4_cond4(spec);
spec.not("goal4_cond4");

}

static public void build_goal4_cond4_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond4(spec);
spec.and("goal4_cond4_Alert", "goal4_cond4","

longitudinal_acceleration");
}

static public void build_goal4_cond4_Alert_True(
IBooleanSpecification spec) {

build_goal4_cond4_Alert(spec);
spec.forces("goal4_cond4_Alert");

}

static public void build_goal4_cond4_Alert_False(
IBooleanSpecification spec) {

build_goal4_cond4_Alert(spec);
spec.not("goal4_cond4_Alert");

}
static public void build_goal4_cond5_True(IBooleanSpecification

spec) {
Sat4jRules.build_goal4_cond5(spec);
spec.forces("goal4_cond5");

}

static public void build_goal4_cond5_False(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond5(spec);
spec.not("goal4_cond5");

}

static public void build_goal4_cond5_Alert(
IBooleanSpecification spec) {

Sat4jRules.build_goal4_cond5(spec);
spec.and("goal4_cond5_Alert", "goal4_cond5","

longitudinal_acceleration");
}

static public void build_goal4_cond5_Alert_True(
IBooleanSpecification spec) {

build_goal4_cond5_Alert(spec);
spec.forces("goal4_cond5_Alert");

}

static public void build_goal4_cond5_Alert_False(
IBooleanSpecification spec) {

build_goal4_cond5_Alert(spec);
spec.not("goal4_cond5_Alert");

192

}

//test priority rules by applying : test(cond1 and !cond2) ou
test(!cond1 and cond2)

// static public void testPrioritygoal3_cond2_over_goal3_cond1(
IBooleanSpecification spec) {

// build_goal3_cond2_True(spec);
// build_goal3_cond1_False(spec);
// }
//
// static public void testPrioritygoal3_cond1_over_goal3_cond2(

IBooleanSpecification spec) {
// build_goal3_cond2_False(spec);
// build_goal3_cond1_True(spec);
// }
//
// static public void

testPrioritygoal3_cond2_over_goal3_cond1_Alerts(
IBooleanSpecification spec) {

// build_goal3_cond2_Alert_True(spec);
// build_goal3_cond1_Alert_False(spec);
// }
//
// static public void

testPrioritygoal3_cond1_over_goal3_cond2_Alerts(
IBooleanSpecification spec) {

// build_goal3_cond2_Alert_False(spec);
// build_goal3_cond1_Alert_True(spec);
// }
//

static public void testPrioritygoal4_cond2_over_goal4_cond1(
IBooleanSpecification spec) {

build_goal4_cond2_True(spec);
build_goal4_cond1_False(spec);

}

// static public void testPrioritygoal4_cond1_over_goal4_cond2(
IBooleanSpecification spec) {

// build_goal4_cond2_False(spec);
// build_goal4_cond1_True(spec);
// }

static public void
testPrioritygoal4_cond2_over_goal4_cond1_Alerts(
IBooleanSpecification spec) {

build_goal4_cond2_Alert_True(spec);
build_goal4_cond1_Alert_False(spec);

}

193

// static public void
testPrioritygoal4_cond1_over_goal4_cond2_Alerts(
IBooleanSpecification spec) {

// build_goal4_cond2_Alert_False(spec);
// build_goal4_cond1_Alert_True(spec);
// }

static public void testPrioritygoal4_cond3_over_goal4_cond2(
IBooleanSpecification spec) {

build_goal4_cond3_True(spec);
build_goal4_cond2_False(spec);

}

// static public void testPrioritygoal4_cond2_over_goal4_cond3(
IBooleanSpecification spec) {

// build_goal4_cond3_False(spec);
// build_goal4_cond2_True(spec);
// }

static public void
testPrioritygoal4_cond3_over_goal4_cond2_Alerts(
IBooleanSpecification spec) {

build_goal4_cond3_Alert_True(spec);
build_goal4_cond2_Alert_False(spec);

}

// static public void
testPrioritygoal4_cond2_over_goal4_cond3_Alerts(
IBooleanSpecification spec) {

// build_goal4_cond3_Alert_False(spec);
// build_goal4_cond2_Alert_True(spec);
// }

static public void testPrioritygoal4_cond4_over_goal4_cond3(
IBooleanSpecification spec) {

build_goal4_cond4_True(spec);
build_goal4_cond3_False(spec);

}

// static public void testPrioritygoal4_cond3_over_goal4_cond4(
IBooleanSpecification spec) {

// build_goal4_cond4_False(spec);
// build_goal4_cond3_True(spec);
// }

static public void
testPrioritygoal4_cond4_over_goal4_cond3_Alerts(
IBooleanSpecification spec) {

build_goal4_cond4_Alert_True(spec);
build_goal4_cond3_Alert_False(spec);

194

}

// static public void
testPrioritygoal4_cond3_over_goal4_cond4_Alerts(
IBooleanSpecification spec) {

// build_goal4_cond4_Alert_False(spec);
// build_goal4_cond3_Alert_True(spec);
// }

static public void testPrioritygoal4_cond5_over_goal4_cond4(
IBooleanSpecification spec) {

build_goal4_cond5_True(spec);
build_goal4_cond4_False(spec);

}

// static public void testPrioritygoal4_cond4_over_goal4_cond5(
IBooleanSpecification spec) {

// build_goal4_cond5_False(spec);
// build_goal4_cond4_True(spec);
// }

static public void
testPrioritygoal4_cond5_over_goal4_cond4_Alerts(
IBooleanSpecification spec) {

build_goal4_cond5_Alert_True(spec);
build_goal4_cond4_Alert_False(spec);

}

// static public void
testPrioritygoal4_cond4_over_goal4_cond5_Alerts(
IBooleanSpecification spec) {

// build_goal4_cond5_Alert_False(spec);
// build_goal4_cond4_Alert_True(spec);
// }

// static public void testPrioritygoal1_cond1_over_goal2_cond1(
IBooleanSpecification spec) {

// build_goal1_cond1_True(spec);
// build_goal2_cond1_False(spec);
// }

static public void testPrioritygoal2_cond1_over_goal1_cond1(
IBooleanSpecification spec) {

build_goal1_cond1_True(spec);
build_goal2_cond1_True(spec);

}

// static public void
testPrioritygoal1_cond1_over_goal2_cond1_Alerts(
IBooleanSpecification spec) {

195

// build_goal1_cond1_Alert_True(spec);
// build_goal2_cond1_Alert_False(spec);
// }

static public void
testPrioritygoal2_cond1_over_goal1_cond1_Alerts(
IBooleanSpecification spec) {

build_goal1_cond1_Alert_True(spec);
build_goal2_cond1_Alert_True(spec);

}

// static public void testPrioritygoal2_cond1_over_goal3_cond1(
IBooleanSpecification spec) {

// build_goal2_cond1_True(spec);
// build_goal3_cond1_False(spec);
// }
//
// static public void testPrioritygoal3_cond1_over_goal2_cond1(

IBooleanSpecification spec) {
// build_goal2_cond1_False(spec);
// build_goal3_cond1_True(spec);
// }
//
// static public void

testPrioritygoal2_cond1_over_goal3_cond1_Alerts(
IBooleanSpecification spec) {

// build_goal2_cond1_Alert_True(spec);
// build_goal3_cond1_Alert_False(spec);
// }
//
// static public void

testPrioritygoal3_cond1_over_goal2_cond1_Alerts(
IBooleanSpecification spec) {

// build_goal2_cond1_Alert_False(spec);
// build_goal3_cond1_Alert_True(spec);
// }

// static public void testPrioritygoal3_cond2_over_goal4_cond1(
IBooleanSpecification spec) {

// build_goal3_cond2_True(spec);
// build_goal4_cond1_False(spec);
// }
//
// static public void testPrioritygoal4_cond1_over_goal3_cond2(

IBooleanSpecification spec) {
// build_goal3_cond2_False(spec);
// build_goal4_cond1_True(spec);
// }
//
// static public void

testPrioritygoal3_cond2_over_goal4_cond1_Alerts(

196

IBooleanSpecification spec) {
// build_goal3_cond2_Alert_True(spec);
// build_goal4_cond1_Alert_False(spec);
// }
//
// static public void

testPrioritygoal4_cond1_over_goal3_cond2_Alerts(
IBooleanSpecification spec) {

// build_goal3_cond2_Alert_False(spec);
// build_goal4_cond1_Alert_True(spec);
// }

//test parallel rules by applying : test(!goalX_cond1 and !
goalX_cond2)

static public void testParallelgoal3_cond1_goal3_cond2(
IBooleanSpecification spec) {

build_goal3_cond2_True(spec);
build_goal3_cond1_True(spec);

}

static public void testParallelgoal3_cond1_goal3_cond2_Alerts(
IBooleanSpecification spec) {

build_goal3_cond2_Alert_True(spec);
build_goal3_cond1_Alert_True(spec);

}

// static public void testParallelgoal4_cond1_goal4_cond2(
IBooleanSpecification spec) {

// build_goal4_cond2_True(spec);
// build_goal4_cond1_True(spec);
// }
//
// static public void testParallelgoal4_cond1_goal4_cond2_Alerts

(IBooleanSpecification spec) {
// build_goal4_cond2_Alert_True(spec);
// build_goal4_cond1_Alert_True(spec);
// }
//
// static public void testParallelgoal4_cond2_goal4_cond3(

IBooleanSpecification spec) {
// build_goal4_cond3_True(spec);
// build_goal4_cond2_True(spec);
// }
//
// static public void testParallelgoal4_cond2_goal4_cond3_Alerts

(IBooleanSpecification spec) {
// build_goal4_cond3_Alert_True(spec);
// build_goal4_cond2_Alert_True(spec);

197

// }
//
// static public void testParallelgoal4_cond3_goal4_cond4(

IBooleanSpecification spec) {
// build_goal4_cond4_True(spec);
// build_goal4_cond3_True(spec);
// }
//
// static public void testParallelgoal4_cond3_goal4_cond4_Alerts

(IBooleanSpecification spec) {
// build_goal4_cond4_Alert_True(spec);
// build_goal4_cond3_Alert_True(spec);
// }
//
// static public void testParallelgoal4_cond4_goal4_cond5(

IBooleanSpecification spec) {
// build_goal4_cond5_True(spec);
// build_goal4_cond4_True(spec);
// }
//
// static public void testParallelgoal4_cond4_goal4_cond5_Alerts

(IBooleanSpecification spec) {
// build_goal4_cond5_Alert_True(spec);
// build_goal4_cond4_Alert_True(spec);
// }

// static public void testParallelgoal1_cond1_goal2_cond1(
IBooleanSpecification spec) {

// build_goal1_cond1_True(spec);
// build_goal2_cond1_True(spec);
// }
//
// static public void testParallelgoal1_cond1_goal2_cond1_Alerts

(IBooleanSpecification spec) {
// build_goal1_cond1_Alert_True(spec);
// build_goal2_cond1_Alert_True(spec);
// }

static public void testParallelgoal2_cond1_goal3_cond1(
IBooleanSpecification spec) {

build_goal2_cond1_True(spec);
build_goal3_cond1_True(spec);

}

static public void testParallelgoal2_cond1_goal3_cond1_Alerts(
IBooleanSpecification spec) {

build_goal2_cond1_Alert_True(spec);
build_goal3_cond1_Alert_True(spec);

}

198

static public void testParallelgoal3_cond2_goal4_cond1(
IBooleanSpecification spec) {

build_goal3_cond2_True(spec);
build_goal4_cond1_True(spec);

}

static public void testParallelgoal3_cond2_goal4_cond1_Alerts(
IBooleanSpecification spec) {

build_goal3_cond2_Alert_True(spec);
build_goal4_cond1_Alert_True(spec);

}

}

Listing A.20: Sat4jSystemConsistency.java

package checksafety;
import fr.kairos.timesquare.ccsl.sat.IBooleanSpecification;

public class Sat4jSystemConsistency{

static public void system_solution(IBooleanSpecification spec){
coherence_all_properties(spec);
coherence_all_goals_behaviors(spec);
spec.and("system_solution", "coherence_all_properties", "

coherence_all_goals_behaviors");
}

static public void coherence_all_goals_behaviors(
IBooleanSpecification spec){

coherence_goal1(spec);
coherence_goal2(spec);
coherence_goal3(spec);
coherence_goal4(spec);
spec.or("coherence_all_goals_behaviors", "coherence_goal1","

coherence_goal2",
"coherence_goal3","coherence_goal4");

}

static public void coherence_all_goals_behaviors_true(
IBooleanSpecification spec){

coherence_all_goals_behaviors(spec);
spec.forces("coherence_all_goals_behaviors");

}

static public void coherence_goal1(IBooleanSpecification spec){
//Sat4jRulesConsistency.build_goal1_cond1_Alert(spec);
Sat4jRules.build_goal1_cond1(spec);
spec.or("coherence_goal1", "goal1_cond1");

}

199

static public void coherence_goal1_FALSE(IBooleanSpecification
spec){

//Sat4jRulesConsistency.build_goal1_cond1_Alert_False(spec);
Sat4jRulesConsistency.build_goal1_cond1_False(spec);

}

static public void coherence_goal2(IBooleanSpecification spec){
coherence_goal1_FALSE(spec);
//Sat4jRulesConsistency.build_goal2_cond1_Alert(spec);
Sat4jRules.build_goal2_cond1(spec);
spec.or("coherence_goal2", "goal2_cond1");

}

static public void coherence_goal3(IBooleanSpecification spec){
coherence_goal1_FALSE(spec);
//Sat4jRulesConsistency.build_goal3_cond1_Alert(spec);
//Sat4jRulesConsistency.build_goal3_cond2_Alert(spec);
Sat4jRules.build_goal3_cond1(spec);
Sat4jRules.build_goal3_cond2(spec);
spec.or("coherence_goal3", "goal3_cond1","goal3_cond2");

}

static public void coherence_goal4(IBooleanSpecification spec){
coherence_goal1_FALSE(spec);
coherence_goal4_cond1(spec);
coherence_goal4_cond2(spec);
coherence_goal4_cond3(spec);
coherence_goal4_cond4(spec);
coherence_goal4_cond5(spec);
spec.or("coherence_goal4", "goal4_cond1","goal4_cond2","

goal4_cond3","goal4_cond4","goal4_cond5");
}

static public void coherence_goal4_cond1(IBooleanSpecification
spec){

//Sat4jRulesConsistency.build_goal4_cond1_Alert(spec);
Sat4jRules.build_goal4_cond1(spec);

}

static public void coherence_goal4_cond1_FALSE(
IBooleanSpecification spec){

//Sat4jRulesConsistency.build_goal4_cond1_Alert_False(spec);
Sat4jRulesConsistency.build_goal4_cond1_False(spec);

}

static public void coherence_goal4_cond2(IBooleanSpecification
spec){

coherence_goal4_cond1_FALSE(spec);
//Sat4jRulesConsistency.build_goal4_cond2_Alert(spec);

200

Sat4jRules.build_goal4_cond2(spec);

}

static public void coherence_goal4_cond2_FALSE(
IBooleanSpecification spec){

//Sat4jRulesConsistency.build_goal4_cond2_Alert_False(spec);
Sat4jRulesConsistency.build_goal4_cond2_False(spec);

}

static public void coherence_goal4_cond3(IBooleanSpecification
spec){

coherence_goal4_cond2_FALSE(spec);
//Sat4jRulesConsistency.build_goal4_cond3_Alert(spec);
Sat4jRules.build_goal4_cond3(spec);

}

static public void coherence_goal4_cond3_FALSE(
IBooleanSpecification spec){

//Sat4jRulesConsistency.build_goal4_cond3_Alert_False(spec);
Sat4jRulesConsistency.build_goal4_cond3_False(spec);

}

static public void coherence_goal4_cond4(IBooleanSpecification
spec){

coherence_goal4_cond3_FALSE(spec);
//Sat4jRulesConsistency.build_goal4_cond4_Alert(spec);
Sat4jRules.build_goal4_cond4(spec);

}

static public void coherence_goal4_cond4_FALSE(
IBooleanSpecification spec){

//Sat4jRulesConsistency.build_goal4_cond4_Alert_False(spec);
Sat4jRulesConsistency.build_goal4_cond4_False(spec);

}

static public void coherence_goal4_cond5(IBooleanSpecification
spec){

coherence_goal4_cond4_FALSE(spec);
//Sat4jRulesConsistency.build_goal4_cond5_Alert(spec);
Sat4jRules.build_goal4_cond5(spec);

}

static public void coherence_all_properties(
IBooleanSpecification spec){

coherence_traffic_jam(spec);
coherence_front_car_distance(spec);
coherence_front_car_tracking(spec);
coherence_line_detection(spec);
coherence_straddling_car_distance(spec);

201

coherence_straddling_car_tracking(spec);
coherence_stable_control(spec);
coherence_rear_car_distance(spec);
spec.or("coherence_all_properties", "coherence_traffic_jam",

"coherence_front_car_distance", "
coherence_front_car_tracking",

"coherence_line_detection", "
coherence_straddling_car_distance",

"coherence_straddling_car_tracking", "
coherence_stable_control",

"coherence_rear_car_distance");
}

static public void coherence_traffic_jam(IBooleanSpecification
spec){

spec.clause("yes_traffic_jam", "no_traffic_jam","
coherence_traffic_jam");

spec.clause("no_traffic_jam", "yes_traffic_jam","
coherence_traffic_jam");

spec.clause("coherence_traffic_jam", "yes_traffic_jam", "
no_traffic_jam");

spec.forbids("yes_traffic_jam","no_traffic_jam");
spec.forbids("no_traffic_jam","yes_traffic_jam");
spec.not("coherence_traffic_jam");

}

static public void coherence_front_car_distance(
IBooleanSpecification spec){

spec.clause("not_exist_front_car_distance", "
safe_distance_front_car_distance","
acc_distance_front_car_distance","
strong_braking_distance_front_car_distance","
imminent_collision_distance_front_car_distance","
coherence_front_car_distance");

spec.clause("safe_distance_front_car_distance", "
not_exist_front_car_distance","
acc_distance_front_car_distance","
strong_braking_distance_front_car_distance","
imminent_collision_distance_front_car_distance","
coherence_front_car_distance");

spec.clause("acc_distance_front_car_distance", "
not_exist_front_car_distance","
safe_distance_front_car_distance","
strong_braking_distance_front_car_distance","
imminent_collision_distance_front_car_distance","
coherence_front_car_distance");

spec.clause("strong_braking_distance_front_car_distance", "
not_exist_front_car_distance","
safe_distance_front_car_distance","
acc_distance_front_car_distance","

202

imminent_collision_distance_front_car_distance","
coherence_front_car_distance");

spec.clause("imminent_collision_distance_front_car_distance",
"not_exist_front_car_distance","

safe_distance_front_car_distance","
acc_distance_front_car_distance","
strong_braking_distance_front_car_distance","
coherence_front_car_distance");

spec.clause("coherence_front_car_distance", "
not_exist_front_car_distance", "
safe_distance_front_car_distance", "
acc_distance_front_car_distance", "
strong_braking_distance_front_car_distance", "
imminent_collision_distance_front_car_distance");

spec.forbids("not_exist_front_car_distance","
safe_distance_front_car_distance");

spec.forbids("not_exist_front_car_distance","
acc_distance_front_car_distance");

spec.forbids("not_exist_front_car_distance","
strong_braking_distance_front_car_distance");

spec.forbids("not_exist_front_car_distance","
imminent_collision_distance_front_car_distance");

spec.forbids("safe_distance_front_car_distance","
not_exist_front_car_distance");

spec.forbids("safe_distance_front_car_distance","
acc_distance_front_car_distance");

spec.forbids("safe_distance_front_car_distance","
strong_braking_distance_front_car_distance");

spec.forbids("safe_distance_front_car_distance","
imminent_collision_distance_front_car_distance");

spec.forbids("acc_distance_front_car_distance","
not_exist_front_car_distance");

spec.forbids("acc_distance_front_car_distance","
safe_distance_front_car_distance");

spec.forbids("acc_distance_front_car_distance","
strong_braking_distance_front_car_distance");

spec.forbids("acc_distance_front_car_distance","
imminent_collision_distance_front_car_distance");

spec.forbids("strong_braking_distance_front_car_distance","
not_exist_front_car_distance");

spec.forbids("strong_braking_distance_front_car_distance","
safe_distance_front_car_distance");

spec.forbids("strong_braking_distance_front_car_distance","
acc_distance_front_car_distance");

spec.forbids("strong_braking_distance_front_car_distance","
imminent_collision_distance_front_car_distance");

spec.forbids("imminent_collision_distance_front_car_distance
","not_exist_front_car_distance");

spec.forbids("imminent_collision_distance_front_car_distance
","safe_distance_front_car_distance");

spec.forbids("imminent_collision_distance_front_car_distance

203

","acc_distance_front_car_distance");
spec.forbids("imminent_collision_distance_front_car_distance

","strong_braking_distance_front_car_distance");
spec.not("coherence_front_car_distance");

}

static public void coherence_front_car_tracking(
IBooleanSpecification spec){

spec.clause("not_confirmed_front_car_tracking", "
not_exist_front_car_tracking","
disappeared_less_than_t1_front_car_tracking","
disappeared_more_than_t1_front_car_tracking","
stable_tracking_front_car_tracking","
coherence_front_car_tracking");

spec.clause("not_exist_front_car_tracking", "
not_confirmed_front_car_tracking","
disappeared_less_than_t1_front_car_tracking","
disappeared_more_than_t1_front_car_tracking","
stable_tracking_front_car_tracking","
coherence_front_car_tracking");

spec.clause("disappeared_less_than_t1_front_car_tracking", "
not_confirmed_front_car_tracking","
not_exist_front_car_tracking","
disappeared_more_than_t1_front_car_tracking","
stable_tracking_front_car_tracking","
coherence_front_car_tracking");

spec.clause("disappeared_more_than_t1_front_car_tracking", "
not_confirmed_front_car_tracking","
not_exist_front_car_tracking","
disappeared_less_than_t1_front_car_tracking","
stable_tracking_front_car_tracking","
coherence_front_car_tracking");

spec.clause("stable_tracking_front_car_tracking", "
not_confirmed_front_car_tracking","
not_exist_front_car_tracking","
disappeared_less_than_t1_front_car_tracking","
disappeared_more_than_t1_front_car_tracking","
coherence_front_car_tracking");

spec.clause("coherence_front_car_tracking", "
not_confirmed_front_car_tracking", "
not_exist_front_car_tracking", "
disappeared_less_than_t1_front_car_tracking", "
disappeared_more_than_t1_front_car_tracking", "
stable_tracking_front_car_tracking");

spec.forbids("not_confirmed_front_car_tracking","
not_exist_front_car_tracking");

spec.forbids("not_confirmed_front_car_tracking","
disappeared_less_than_t1_front_car_tracking");

spec.forbids("not_confirmed_front_car_tracking","
disappeared_more_than_t1_front_car_tracking");

204

spec.forbids("not_confirmed_front_car_tracking","
stable_tracking_front_car_tracking");

spec.forbids("not_exist_front_car_tracking","
not_confirmed_front_car_tracking");

spec.forbids("not_exist_front_car_tracking","
disappeared_less_than_t1_front_car_tracking");

spec.forbids("not_exist_front_car_tracking","
disappeared_more_than_t1_front_car_tracking");

spec.forbids("not_exist_front_car_tracking","
stable_tracking_front_car_tracking");

spec.forbids("disappeared_less_than_t1_front_car_tracking","
not_confirmed_front_car_tracking");

spec.forbids("disappeared_less_than_t1_front_car_tracking","
not_exist_front_car_tracking");

spec.forbids("disappeared_less_than_t1_front_car_tracking","
disappeared_more_than_t1_front_car_tracking");

spec.forbids("disappeared_less_than_t1_front_car_tracking","
stable_tracking_front_car_tracking");

spec.forbids("disappeared_more_than_t1_front_car_tracking","
not_confirmed_front_car_tracking");

spec.forbids("disappeared_more_than_t1_front_car_tracking","
not_exist_front_car_tracking");

spec.forbids("disappeared_more_than_t1_front_car_tracking","
disappeared_less_than_t1_front_car_tracking");

spec.forbids("disappeared_more_than_t1_front_car_tracking","
stable_tracking_front_car_tracking");

spec.forbids("stable_tracking_front_car_tracking","
not_confirmed_front_car_tracking");

spec.forbids("stable_tracking_front_car_tracking","
not_exist_front_car_tracking");

spec.forbids("stable_tracking_front_car_tracking","
disappeared_less_than_t1_front_car_tracking");

spec.forbids("stable_tracking_front_car_tracking","
disappeared_more_than_t1_front_car_tracking");

spec.not("coherence_front_car_tracking");
}

static public void coherence_line_detection(
IBooleanSpecification spec){

spec.clause("stable_line_detection", "
no_detection_in_less_than_t6_line_detection","
no_detection_in_more_than_t6_line_detection","
coherence_line_detection");

spec.clause("no_detection_in_less_than_t6_line_detection", "
stable_line_detection","
no_detection_in_more_than_t6_line_detection","
coherence_line_detection");

spec.clause("no_detection_in_more_than_t6_line_detection", "
stable_line_detection","
no_detection_in_less_than_t6_line_detection","

205

coherence_line_detection");
spec.clause("coherence_line_detection", "

stable_line_detection", "
no_detection_in_less_than_t6_line_detection", "
no_detection_in_more_than_t6_line_detection");

spec.forbids("stable_line_detection","
no_detection_in_less_than_t6_line_detection");

spec.forbids("stable_line_detection","
no_detection_in_more_than_t6_line_detection");

spec.forbids("no_detection_in_less_than_t6_line_detection","
stable_line_detection");

spec.forbids("no_detection_in_less_than_t6_line_detection","
no_detection_in_more_than_t6_line_detection");

spec.forbids("no_detection_in_more_than_t6_line_detection","
stable_line_detection");

spec.forbids("no_detection_in_more_than_t6_line_detection","
no_detection_in_less_than_t6_line_detection");

spec.not("coherence_line_detection");
}

static public void coherence_straddling_car_distance(
IBooleanSpecification spec){

spec.clause("
imminent_collision_distance_straddling_car_distance", "
safe_distance_straddling_car_distance","
acc_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance","
not_exist_straddling_car_distance","
coherence_straddling_car_distance");

spec.clause("safe_distance_straddling_car_distance", "
imminent_collision_distance_straddling_car_distance","
acc_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance","
not_exist_straddling_car_distance","
coherence_straddling_car_distance");

spec.clause("acc_distance_straddling_car_distance", "
imminent_collision_distance_straddling_car_distance","
safe_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance","
not_exist_straddling_car_distance","
coherence_straddling_car_distance");

spec.clause("strong_braking_distance_straddling_car_distance
", "imminent_collision_distance_straddling_car_distance","
safe_distance_straddling_car_distance","
acc_distance_straddling_car_distance","
not_exist_straddling_car_distance","
coherence_straddling_car_distance");

spec.clause("not_exist_straddling_car_distance", "
imminent_collision_distance_straddling_car_distance","
safe_distance_straddling_car_distance","

206

acc_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance","
coherence_straddling_car_distance");

spec.clause("coherence_straddling_car_distance", "
imminent_collision_distance_straddling_car_distance", "
safe_distance_straddling_car_distance", "
acc_distance_straddling_car_distance", "
strong_braking_distance_straddling_car_distance", "
not_exist_straddling_car_distance");

spec.forbids("
imminent_collision_distance_straddling_car_distance","
safe_distance_straddling_car_distance");

spec.forbids("
imminent_collision_distance_straddling_car_distance","
acc_distance_straddling_car_distance");

spec.forbids("
imminent_collision_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance");

spec.forbids("
imminent_collision_distance_straddling_car_distance","
not_exist_straddling_car_distance");

spec.forbids("safe_distance_straddling_car_distance","
imminent_collision_distance_straddling_car_distance");

spec.forbids("safe_distance_straddling_car_distance","
acc_distance_straddling_car_distance");

spec.forbids("safe_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance");

spec.forbids("safe_distance_straddling_car_distance","
not_exist_straddling_car_distance");

spec.forbids("acc_distance_straddling_car_distance","
imminent_collision_distance_straddling_car_distance");

spec.forbids("acc_distance_straddling_car_distance","
safe_distance_straddling_car_distance");

spec.forbids("acc_distance_straddling_car_distance","
strong_braking_distance_straddling_car_distance");

spec.forbids("acc_distance_straddling_car_distance","
not_exist_straddling_car_distance");

spec.forbids("strong_braking_distance_straddling_car_distance
","imminent_collision_distance_straddling_car_distance");

spec.forbids("strong_braking_distance_straddling_car_distance
","safe_distance_straddling_car_distance");

spec.forbids("strong_braking_distance_straddling_car_distance
","acc_distance_straddling_car_distance");

spec.forbids("strong_braking_distance_straddling_car_distance
","not_exist_straddling_car_distance");

spec.forbids("not_exist_straddling_car_distance","
imminent_collision_distance_straddling_car_distance");

spec.forbids("not_exist_straddling_car_distance","
safe_distance_straddling_car_distance");

spec.forbids("not_exist_straddling_car_distance","
acc_distance_straddling_car_distance");

207

spec.forbids("not_exist_straddling_car_distance","
strong_braking_distance_straddling_car_distance");

spec.not("coherence_straddling_car_distance");
}

static public void coherence_straddling_car_tracking(
IBooleanSpecification spec){

spec.clause("not_exist_straddling_car_tracking", "
straddling_less_than_t7_straddling_car_tracking","
straddling_more_than_t7_straddling_car_tracking","
coherence_straddling_car_tracking");

spec.clause("straddling_less_than_t7_straddling_car_tracking
", "not_exist_straddling_car_tracking","
straddling_more_than_t7_straddling_car_tracking","
coherence_straddling_car_tracking");

spec.clause("straddling_more_than_t7_straddling_car_tracking
", "not_exist_straddling_car_tracking","
straddling_less_than_t7_straddling_car_tracking","
coherence_straddling_car_tracking");

spec.clause("coherence_straddling_car_tracking", "
not_exist_straddling_car_tracking", "
straddling_less_than_t7_straddling_car_tracking", "
straddling_more_than_t7_straddling_car_tracking");

spec.forbids("not_exist_straddling_car_tracking","
straddling_less_than_t7_straddling_car_tracking");

spec.forbids("not_exist_straddling_car_tracking","
straddling_more_than_t7_straddling_car_tracking");

spec.forbids("straddling_less_than_t7_straddling_car_tracking
","not_exist_straddling_car_tracking");

spec.forbids("straddling_less_than_t7_straddling_car_tracking
","straddling_more_than_t7_straddling_car_tracking");

spec.forbids("straddling_more_than_t7_straddling_car_tracking
","not_exist_straddling_car_tracking");

spec.forbids("straddling_more_than_t7_straddling_car_tracking
","straddling_less_than_t7_straddling_car_tracking");

spec.not("coherence_straddling_car_tracking");
}

static public void coherence_stable_control(
IBooleanSpecification spec){

spec.clause("stable_stable_control", "
not_stable_stable_control","coherence_stable_control");

spec.clause("not_stable_stable_control", "
stable_stable_control","coherence_stable_control");

spec.clause("coherence_stable_control", "
stable_stable_control", "not_stable_stable_control");

spec.forbids("stable_stable_control","
not_stable_stable_control");

spec.forbids("not_stable_stable_control","

208

stable_stable_control");
spec.not("coherence_stable_control");

}

static public void coherence_rear_car_distance(
IBooleanSpecification spec){

spec.clause("not_exist_rear_car_distance", "
safe_distance_rear_car_distance","
emergency_distance_rear_car_distance","
coherence_rear_car_distance");

spec.clause("safe_distance_rear_car_distance", "
not_exist_rear_car_distance","
emergency_distance_rear_car_distance","
coherence_rear_car_distance");

spec.clause("emergency_distance_rear_car_distance", "
not_exist_rear_car_distance","
safe_distance_rear_car_distance","
coherence_rear_car_distance");

spec.clause("coherence_rear_car_distance", "
not_exist_rear_car_distance", "
safe_distance_rear_car_distance", "
emergency_distance_rear_car_distance");

spec.forbids("not_exist_rear_car_distance","
safe_distance_rear_car_distance");

spec.forbids("not_exist_rear_car_distance","
emergency_distance_rear_car_distance");

spec.forbids("safe_distance_rear_car_distance","
not_exist_rear_car_distance");

spec.forbids("safe_distance_rear_car_distance","
emergency_distance_rear_car_distance");

spec.forbids("emergency_distance_rear_car_distance","
not_exist_rear_car_distance");

spec.forbids("emergency_distance_rear_car_distance","
safe_distance_rear_car_distance");

spec.not("coherence_rear_car_distance");
}

}

Listing A.21: MyNameMapper.java

package checksafety;

import java.util.HashMap;
import java.util.LinkedList;

import fr.kairos.lightccsl.core.stepper.INameToIntegerMapper;

public class MyNameMapper implements INameToIntegerMapper {
private LinkedList<String> names = new LinkedList<>();

209

private HashMap<String,Integer> nameToId = new HashMap<>();

@Override
public Iterable<String> getClockNames() {

return names;
}
@Override
public int getIdFromName(String name) {

Integer v = nameToId.get(name);
if (v == null) {

nameToId.put(name, v = names.size());
names.add(name);

}
return v;

}
@Override
public String getNameFromId(int arg0) {

return names.get(arg0);
}
@Override
public int size() {

return names.size();
}

}

Listing A.22: Test.java

package checksafety;

import java.util.List;

import fr.kairos.lightccsl.core.stepper.ClockStatus;
import fr.kairos.lightccsl.core.stepper.ISolutionSet;
import fr.kairos.lightccsl.core.stepper.IStep;
import fr.kairos.timesquare.ccsl.sat.IBooleanSpecification;
import fr.kairos.timesquare.ccsl.sat.ISATSolverBuilder;
import fr.unice.lightccsl.sat.SAT4JSolverBuilder;

public class Test {
public static void main(String[] args) {

ISATSolverBuilder builder = new SAT4JSolverBuilder();
// ISATSolverBuilder builder = new SATBDDBuilder();

IBooleanSpecification boolSpec = builder.specification();
// BooleanSatisfactionProblem bsp = (

BooleanSatisfactionProblem)boolSpec;

MyNameMapper mapper = new MyNameMapper();
boolSpec.setNameMapper(mapper);

210

//Sat4jRules.build_goal2_cond1(boolSpec);
//Sat4jRulesConsistency.testParallelgoal2_cond1_goal3_cond1(

boolSpec);
//Sat4jSystemConsistency.coherence_front_car_tracking(

boolSpec);
//Sat4jSystemConsistency.coherence_straddling_car_tracking(

boolSpec);
//Sat4jSystemConsistency.coherence_straddling_car_tracking(

boolSpec);
//Sat4jSystemConsistency.coherence_goal2(boolSpec);
Sat4jSystemConsistency.system_solution(boolSpec);

// ISolutionSet set = builder.solution();
// try {
// IStep step = set.pickOneSolution();
// for (int i = 0; i< step.size(); i++) {
// System.out.print(mapper.getNameFromId(i) + ":");
// ClockStatus status = step.status(i);
// switch(status) {
// case Must: System.out.println("1, "); break;
// case Cannot: System.out.println("0, "); break;
// case May: System.out.println("?, "); break;
// case Undetermined: System.out.println("x, "); break;
// }
// }
// System.out.println(step);

ISolutionSet set = builder.solution();

try {
List<? extends IStep> step = set.allSolutions();
System.out.print(step+"\n");
for (int j = 0; j<= step.size()-1; j++) {

System.out.println("Solution "+(j +1)+":");
System.out.println(step.get(j));
IStep onestep = step.get(j);
for (int i = 0; i< onestep.size(); i++) {

System.out.print((i +1)+": " + mapper.getNameFromId(i)
+ "=");

ClockStatus status = onestep.status(i);
switch(status) {
case Must: System.out.println("1, "); break;
case Cannot: System.out.println("0, "); break;
case May: System.out.println("?, "); break;
case Undetermined: System.out.println("x, "); break;
}

}
System.out.println("\n");

}

211

} catch (Exception e) {
e.printStackTrace();

}

}
}

212

Bibliography

[1] I. Standard, “26262 road vehicles-functional safety,” International Orga-
nization for Standardization, www. iso. org, date of access, vol. 20171210,
2018.

[2] Eclipse. Xtext. Accessed: 2022-04-03. [Online]. Available: https:
//www.eclipse.org/Xtext/documentation/308 emf integration.html

[3] A. Barǐsić, V. Amaral, and M. Goulão, “Usability driven dsl development
with use-me,” Computer Languages, Systems & Structures, vol. 51, pp.
118–157, 2018.

[4] C. in Colour. (2022) Understanding camera lens flare. Accessed: 2022-
02-07. [Online]. Available: https://www.cambridgeincolour.com/tutorials/
lens-flare.htm

[5] S. R. Center. (2022) Understanding camera lens flare. Accessed:
2022-04-06. [Online]. Available: https://www.trafficsafetystore.com/blog/
winter-rain-and-fog-oh-my-is-autonomous-technology-ready-for-harsh-weather/

[6] L. Vanbever. (2019) Self-driving networks: Breaking new ground
in network automation. Accessed: 2020-06-05. [Online]. Avail-
able: http://univ-cotedazur.fr/en/eur/ds4h/research/forum-numerica/
forum-numerica/past-sessions/laurent-vanbever

[7] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review
on safety failures, security attacks, and available countermeasures for
autonomous vehicles,” Ad Hoc Networks, vol. 90, p. 101823, 2019, recent
advances on security and privacy in Intelligent Transportation Systems.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1570870518309260

[8] C. A. Driving.eu. (2022) France takes lead on allowing au-
tomated driving on public roads. Accessed: 2022-03-31. [On-
line]. Available: https://www.connectedautomateddriving.eu/blog/
france-takes-lead-on-allowing-automated-driving-on-public-roads/

213

https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.eclipse.org/Xtext/documentation/308_emf_integration.html
https://www.cambridgeincolour.com/tutorials/lens-flare.htm
https://www.cambridgeincolour.com/tutorials/lens-flare.htm
https://www.trafficsafetystore.com/blog/winter-rain-and-fog-oh-my-is-autonomous-technology-ready-for-harsh-weather/
https://www.trafficsafetystore.com/blog/winter-rain-and-fog-oh-my-is-autonomous-technology-ready-for-harsh-weather/
http://univ-cotedazur.fr/en/eur/ds4h/research/forum-numerica/forum-numerica/past-sessions/laurent-vanbever
http://univ-cotedazur.fr/en/eur/ds4h/research/forum-numerica/forum-numerica/past-sessions/laurent-vanbever
https://www.sciencedirect.com/science/article/pii/S1570870518309260
https://www.sciencedirect.com/science/article/pii/S1570870518309260
https://www.connectedautomateddriving.eu/blog/france-takes-lead-on-allowing-automated-driving-on-public-roads/
https://www.connectedautomateddriving.eu/blog/france-takes-lead-on-allowing-automated-driving-on-public-roads/

[9] J. F. Drazkowski, R. S. Fisher, J. I. Sirven, B. M. Demaerschalk, L. Uber-
Zak, J. G. Hentz, and D. Labiner, “Seizure-related motor vehicle crashes
in arizona before and after reducing the driving restriction from 12 to 3
months,” in Mayo Clinic Proceedings, vol. 78, no. 7. Elsevier, 2003, pp.
819–825.

[10] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving
would it take to demonstrate autonomous vehicle reliability?” Transporta-
tion Research Part A: Policy and Practice, vol. 94, pp. 182–193, 2016.

[11] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety, vol. 4,
no. 1, pp. 15–24, 2016.

[12] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model
of safe and scalable self-driving cars,” CoRR, vol. abs/1708.06374, 2017.
[Online]. Available: http://arxiv.org/abs/1708.06374

[13] X. Yan, S. Feng, H. Sun, and H. X. Liu, “Distributionally consistent simu-
lation of naturalistic driving environment for autonomous vehicle testing,”
arXiv preprint arXiv:2101.02828, 2021.

[14] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM computing surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[15] E. Vacchi and W. Cazzola, “Neverlang: A framework for feature-oriented
language development,” Computer Languages, Systems & Structures,
vol. 43, pp. 1–40, 2015.

[16] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008.

[17] J. Gray, K. Fisher, C. Consel, G. Karsai, M. Mernik, and J.-P. Tolvanen,
“Dsls: the good, the bad, and the ugly,” in Companion to the 23rd ACM
SIGPLAN conference on Object-oriented programming systems languages
and applications, 2008, pp. 791–794.

[18] J. D’Ambrosio and G. Soremekun, “Systems engineering challenges and
mbse opportunities for automotive system design,” in 2017 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017,
pp. 2075–2080.

[19] J. Duprez, “An mbse modeling approach to efficiently address complex
systems and scalability,” in INCOSE International Symposium, vol. 28,
no. 1. Wiley Online Library, 2018, pp. 940–954.

214

http://arxiv.org/abs/1708.06374

[20] M. A. Gosavi, B. B. Rhoades, and J. M. Conrad, “Application of functional
safety in autonomous vehicles using ISO 26262 standard: A survey,” in
SoutheastCon 2018. IEEE, 2018, pp. 1–6.

[21] C. Ackermann, J. Bechtloff, and R. Isermann, “Collision avoidance with
combined braking and steering,” in 6th International Munich Chassis Sym-
posium 2015. Springer, 2015, pp. 199–213.

[22] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
based approaches for verification of embedded control systems: An overview
of traditional and advanced modeling, testing, and verification techniques,”
IEEE Control Systems Magazine, vol. 36, no. 6, pp. 45–64, 2016.

[23] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[24] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in infor-
mation systems research,” MIS quarterly, pp. 75–105, 2004.

[25] R. Wieringa, “Empirical research methods for technology validation: Scal-
ing up to practice,” Journal of systems and software, vol. 95, pp. 19–31,
2014.

[26] ——, “Design science as nested problem solving,” in Proceedings of the 4th
international conference on design science research in information systems
and technology, 2009, pp. 1–12.

[27] K. Falkner, V. Chiprianov, N. Falkner, C. Szabo, and G. Puddy, “A model-
driven engineering method for dre defense systems performance analysis
and prediction,” in Handbook of research on embedded systems design. IGI
Global, 2014, pp. 301–326.

[28] I. ISO, “26262: Road vehicles-functional safety,” International Standard
ISO/FDIS, vol. 26262, 2011.

[29] ——, “Pas 21448-road vehicles-safety of the intended functionality,” Inter-
national Organization for Standardization, 2019.

[30] G. V. Tepteris, “Autonomous vehicles: Basic concepts in motion control
and visual perception,” Ph.D. dissertation, University of the Aegean, 2020.

[31] T. M. OMBUDSMAN. (2022) What is an ncap rating? Accessed:
2022-02-10. [Online]. Available: https://www.themotorombudsman.org/
knowledge-base/what-is-an-ncap-rating

[32] A. Hayek and J. Börcsök, “Safety chips in light of the standard iec 61508:
survey and analysis,” in 2014 International Symposium on Fundamentals
of Electrical Engineering (ISFEE). IEEE, 2014, pp. 1–6.

215

https://www.themotorombudsman.org/knowledge-base/what-is-an-ncap-rating
https://www.themotorombudsman.org/knowledge-base/what-is-an-ncap-rating

[33] ENSEMBLE. Sotif iso24418.1. Accessed: 2022-03-27. [Online]. Available:
https://platooningensemble.eu/storage/uploads/documents/2021/03/24/
ENSEMBLE-D2.10 Iterative-process-documentation-and-Item-Definition
Final.pdf

[34] tutorialspoint. Requirement based testing. Accessed: 2022-04-02. [Online].
Available: https://www.tutorialspoint.com/software testing dictionary/
requirements based testing.htm

[35] S. S. Shadrin and A. A. Ivanova, “Analytical review of standard sae j3016
taxonomy and definitions for terms related to driving automation systems
for on-road motor vehicles with latest updates,” Automobile. Doroga. In-
frastruktura., no. 3 (21), p. 10, 2019.

[36] M. Krammer, P. Stirgwolt, and H. Martin, “From natural language to semi-
formal notation requirements for automotive safety,” SAE Technical Paper,
Tech. Rep., 2015.

[37] Runestone Academy. Formal and natural languages. Accessed:
2022-04-03. [Online]. Available: https://runestone.academy/ns/books/
published/thinkcspy/GeneralIntro/FormalandNaturalLanguages.html#
formal-and-natural-languages

[38] W. E. McUmber and B. H. Cheng, “A general framework for formalizing
uml with formal languages,” in Software Engineering, International Con-
ference on. IEEE Computer Society, 2001, pp. 0433–0433.

[39] C. Gomez, J. Deantoni, and F. Mallet, “Multi-view power modeling based
on uml, marte and sysml,” in 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE, 2012, pp. 17–20.

[40] J. Friedman, “Matlab/simulink for automotive systems design,” in Proceed-
ings of the Design Automation & Test in Europe Conference, vol. 1. IEEE,
2006, pp. 1–2.

[41] D. D. Ward and S. E. Crozier, “The uses and abuses of asil decomposi-
tion in iso 26262,” in 7th IET International Conference on System Safety,
incorporating the Cyber Security Conference 2012. IET, 2012, pp. 1–6.

[42] S. Kent, “Model driven engineering,” in International conference on inte-
grated formal methods. Springer, 2002, pp. 286–298.

[43] OMG. (2022) Omg standards development organization. Accessed:
2022-04-12. [Online]. Available: https://www.omg.org/

[44] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

216

https://platooningensemble.eu/storage/uploads/documents/2021/03/24/ENSEMBLE-D2.10_Iterative-process-documentation-and-Item-Definition_Final.pdf
https://platooningensemble.eu/storage/uploads/documents/2021/03/24/ENSEMBLE-D2.10_Iterative-process-documentation-and-Item-Definition_Final.pdf
https://platooningensemble.eu/storage/uploads/documents/2021/03/24/ENSEMBLE-D2.10_Iterative-process-documentation-and-Item-Definition_Final.pdf
https://www.tutorialspoint.com/software_testing_dictionary/requirements_based_testing.htm
https://www.tutorialspoint.com/software_testing_dictionary/requirements_based_testing.htm
https://runestone.academy/ns/books/published/thinkcspy/GeneralIntro/FormalandNaturalLanguages.html#formal-and-natural-languages
https://runestone.academy/ns/books/published/thinkcspy/GeneralIntro/FormalandNaturalLanguages.html#formal-and-natural-languages
https://runestone.academy/ns/books/published/thinkcspy/GeneralIntro/FormalandNaturalLanguages.html#formal-and-natural-languages
https://www.omg.org/

[45] A. G. Kleppe, J. B. Warmer, J. Warmer, and W. Bast, MDA explained:
the model driven architecture: practice and promise. Addison-Wesley Pro-
fessional, 2003.

[46] I. Jacobson, “The use-case construct in object-oriented software engineer-
ing,” in Scenario-based design: envisioning work and technology in system
development, 1995, pp. 309–336.

[47] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son, “Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[48] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel, “Automatic test
generation: A use case driven approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 140–155, 2006.

[49] C. Atkinson and T. Kühne, “The role of metamodeling in mda,” in Proc.
UML 2002 Workshop on Software Model Engineering. Citeseer, 2002, pp.
67–70.

[50] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE software, vol. 20, no. 5,
pp. 42–45, 2003.

[51] Borealis AI. Code generation (with xtend). Accessed: 2022-01-24. [Online].
Available: https://goto40.github.io/self\protect\discretionary{\char\
hyphenchar\font}{}{}dsl/xtext code generation xtend/

[52] GEMOC. (2022) The gemoc initiative. Accessed: 2022-04-10. [Online].
Available: https://gemoc.org/

[53] Eclipse. The easiest way to get your own modeling tool. Accessed:
2022-04-04. [Online]. Available: https://www.eclipse.org/sirius/

[54] N. Kahani and J. R. Cordy, “Comparison and evaluation of model trans-
formation tools,” Queen’s University, Kingston, Tech. Rep., 2015.

[55] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[56] K. Czarnecki, “Overview of generative software development,” in Inter-
national workshop on unconventional programming paradigms. Springer,
2004, pp. 326–341.

[57] T. Stahl, M. Völter, and K. Czarnecki, Model-driven software development:
technology, engineering, management. John Wiley & Sons, Inc., 2006.

217

https://goto40.github.io/self\protect \discretionary {\char \hyphenchar \font }{}{}dsl/xtext_code_generation_xtend/
https://goto40.github.io/self\protect \discretionary {\char \hyphenchar \font }{}{}dsl/xtext_code_generation_xtend/
https://gemoc.org/
https://www.eclipse.org/sirius/

[58] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-specific development
with visual studio dsl tools. Pearson Education, 2007.

[59] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling environ-
ment,” in Workshop on Intelligent Signal Processing, Budapest, Hungary,
vol. 17, no. 01. Citeseer, 2001.

[60] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack, “Model migration
with epsilon flock,” in International conference on theory and practice of
model transformations. Springer, 2010, pp. 184–198.

[61] R. C. Gronback, Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education, 2009.

[62] A. Kleppe, Software language engineering: creating domain-specific lan-
guages using metamodels. Pearson Education, 2008.

[63] E. Visser, “Webdsl: A case study in domain-specific language engineer-
ing,” in International summer school on generative and transformational
techniques in software engineering. Springer, 2007, pp. 291–373.

[64] C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and C. Rousset,
“A real-time, multi-sensor architecture for fusion of delayed observations:
application to vehicle localization,” in 2006 IEEE Intelligent Transportation
Systems Conference. IEEE, 2006, pp. 1316–1321.

[65] M. Gao and M. Zhou, “Control strategy selection for autonomous vehicles
in a dynamic environment,” in 2005 IEEE International Conference on
Systems, Man and Cybernetics, vol. 2. IEEE, 2005, pp. 1651–1656.

[66] R. Passerone, D. Cancila, M. Albano, S. Mouelhi, S. Plosz, E. Jantunen,
A. Ryabokon, E. Laarouchi, C. Hegedűs, and P. Varga, “A methodology
for the design of safety-compliant and secure communication of autonomous
vehicles,” IEEE Access, vol. 7, pp. 125 022–125 037, 2019.

[67] B. Schütt, T. Braun, S. Otten, and E. Sax, “Sceml: a graphical modeling
framework for scenario-based testing of autonomous vehicles,” in Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, 2020, pp. 114–120.

[68] B. Jeannet and F. Gaucher, “Debugging embedded systems requirements
with STIMULUS: an automotive case-study,” in 8th European Congress
on Embedded Real Time Software and Systems (ERTS 2016), Toulouse,
France, Jan. 2016. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01292286

218

https://hal.archives-ouvertes.fr/hal-01292286
https://hal.archives-ouvertes.fr/hal-01292286

[69] Foretellix. (2020) Open measurable scenario description language (M-SDL).
[Online]. Available: https://www.foretellix.com/open-language/

[70] A. Mammar, M. Frappier, and R. Laleau, “An event-b model of an au-
tomotive adaptive exterior light system,” in International Conference on
Rigorous State-Based Methods. Springer, 2020, pp. 351–366.

[71] J.-R. Abrial and A. Hoare, The B-book: assigning programs to meanings.
Cambridge university press Cambridge, 1996, vol. 1.

[72] J.-R. Abrial, “Faultless systems: Yes we can!” Computer, vol. 42, no. 9,
pp. 30–36, 2009.

[73] RATP. (2022) Ratp transportation. Accessed: 2022-04-12. [Online].
Available: https://www.ratp.fr/

[74] A. C. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency handling in multiperspective specifications,” IEEE Trans-
actions on Software Engineering, vol. 20, no. 8, pp. 569–578, 1994.

[75] B. Schatz, P. Braun, F. Huber, and A. Wisspeintner, “Consistency in
model-based development,” in 10th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, 2003. Proceed-
ings. IEEE, 2003, pp. 287–296.

[76] S. J. Herzig, A. Qamar, and C. J. Paredis, “An approach to identifying
inconsistencies in model-based systems engineering,” Procedia Computer
Science, vol. 28, pp. 354–362, 2014.

[77] A. Kreutzmann, D. Wolter, F. Dylla, and J. H. Lee, “Towards safe navi-
gation by formalizing navigation rules,” TransNav : International Journal
on Marine Navigation and Safety of Sea Transportation, vol. Vol. 7, no. 2,
pp. 161–168, 2013.

[78] J. Brunel, L. Rioux, S. Paul, A. Faucogney, and F. Vallée, “Formal safety
and security assessment of an avionic architecture with alloy,” Electronic
Proceedings in Theoretical Computer Science, vol. 150, p. 8–19, May 2014.
[Online]. Available: http://dx.doi.org/10.4204/EPTCS.150.2

[79] Baidu. Appollo simulator user guide. Accessed: 2020-06-05. [Online].
Available: http://www.apollo.auto/index.html

[80] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun,
“CARLA: an open urban driving simulator,” CoRR, vol. abs/1711.03938,
2017. [Online]. Available: http://arxiv.org/abs/1711.03938

219

https://www.foretellix.com/open-language/
https://www.ratp.fr/
http://dx.doi.org/10.4204/EPTCS.150.2
http://www.apollo.auto/index.html
http://arxiv.org/abs/1711.03938

[81] Five AI. Using simulation in the safety assurance of autonomous vehicles.
Accessed: 2020-06-05. [Online]. Available: http://dsc2019.org/Docs/
FiveAI-DSC2019-v15.pdf

[82] Webots for automobiles. Webots user guide and reference manual.
Accessed: 2020-06-05. [Online]. Available: https://cyberbotics.com/doc/
automobile/introduction

[83] S. Außerlechner, S. Fruhmann, W. Wieser, B. Hofer, R. Spörk,
C. Mühlbacher, and F. Wotawa, “The right choice matters! smt solving
substantially improves model-based debugging of spreadsheets,” in 2013
13th International Conference on Quality Software. IEEE, 2013, pp. 139–
148.

[84] J. Marques-Silva and S. Malik, “Propositional sat solving,” in Handbook of
Model Checking. Springer, 2018, pp. 247–275.

[85] J. Gray, S. Neema, J.-P. Tolvanen, A. S. Gokhale, S. Kelly, and J. Sprinkle,
“Domain-specific modeling.” Handbook of dynamic system modeling, vol. 7,
pp. 7–1, 2007.

[86] B. Combemale, O. Barais, and A. Wortmann, “Language engineering with
the gemoc studio,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE, 2017, pp. 189–191.

[87] Eclipse. Code generation (with xtend). Accessed: 2022-04-04. [Online].
Available: https://www.eclipse.org/modeling/emf/

[88] L. Bettini, Implementing domain-specific languages with Xtext and Xtend.
Packt Publishing Ltd, 2016.

[89] P. Koopman, R. Hierons, S. Khastgir, J. Clark, M. Fisher, R. Alexander,
K. Eder, P. Thomas, G. Barrett, P. Torr et al., “Certification of highly au-
tomated vehicles for use on uk roads: Creating an industry-wide framework
for safety,” White Rose Research Online, 2019.

[90] J. E. Naranjo, C. González, J. Reviejo, R. Garćıa, and T. De Pedro, “Adap-
tive fuzzy control for inter-vehicle gap keeping,” IEEE Transactions on
Intelligent Transportation Systems, vol. 4, no. 3, pp. 132–142, 2003.

[91] Mozilla. Expressions and operators. Accessed: 2022-04-05. [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Operators

[92] N. Chomsky, “Three models for the description of language,” IRE Trans-
actions on information theory, vol. 2, no. 3, pp. 113–124, 1956.

220

http://dsc2019.org/Docs/FiveAI-DSC2019-v15.pdf
http://dsc2019.org/Docs/FiveAI-DSC2019-v15.pdf
https://cyberbotics.com/doc/automobile/introduction
https://cyberbotics.com/doc/automobile/introduction
https://www.eclipse.org/modeling/emf/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators

[93] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and H. Winner,
“Three decades of driver assistance systems: Review and future perspec-
tives,” IEEE Intelligent transportation systems magazine, vol. 6, no. 4, pp.
6–22, 2014.

[94] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels, and J. M.
Zöllner, “Testing of advanced driver assistance towards automated driv-
ing: A survey and taxonomy on existing approaches and open questions,”
in 2015 IEEE 18th International Conference on Intelligent Transportation
Systems. IEEE, 2015, pp. 1455–1462.

[95] A. Pütz, A. Zlocki, J. Bock, and L. Eckstein, “System validation of highly
automated vehicles with a database of relevant traffic scenarios,” situations,
vol. 1, p. E5, 2017.

[96] J. Ploeg, E. de Gelder, M. Slav́ık, E. Querner, T. Webster, and N. de Boer,
“Scenario-based safety assessment framework for automated vehicles,”
arXiv preprint arXiv:2112.09366, 2021.

[97] A. S. Mueller, J. B. Cicchino, and D. S. Zuby, “What humanlike errors do
autonomous vehicles need to avoid to maximize safety?” Journal of safety
research, vol. 75, pp. 310–318, 2020.

[98] A. Christensen, A. Cunningham, J. Engelman, C. Green, C. Kawashima,
S. Kiger, D. Prokhorov, L. Tellis, B. Wendling, and F. Barickman, “Key
considerations in the development of driving automation systems,” in 24th
enhanced safety vehicles conference. Gothenburg, Sweden, 2015.

[99] V. Isler and R. Bajcsy, “The sensor selection problem for bounded un-
certainty sensing models,” in IPSN 2005. Fourth International Symposium
on Information Processing in Sensor Networks, 2005. IEEE, 2005, pp.
151–158.

[100] A. Prudius, A. Karpunin, and A. Vlasov, “Analysis of machine learning
methods to improve efficiency of big data processing in industry 4.0,” Jour-
nal of Physics: Conference Series, vol. 1333, p. 032065, 10 2019.

[101] Y. Kondratenko, I. Atamanyuk, I. Sidenko, G. Kondratenko, and
S. Sichevskyi, “Machine learning techniques for increasing efficiency of the
robot’s sensor and control information processing,” Sensors, vol. 22, no. 3,
p. 1062, 2022.

[102] L. Lazos and R. Poovendran, “Hirloc: High-resolution robust localization
for wireless sensor networks,” IEEE Journal on selected areas in communi-
cations, vol. 24, no. 2, pp. 233–246, 2006.

221

[103] J. D’Ambrosio, A. Adiththan, E. Ordoukhanian, P. Peranandam,
S. Ramesh, A. M. Madni, and P. Sundaram, “An mbse approach for devel-
opment of resilient automated automotive systems,” Systems, vol. 7, no. 1,
p. 1, 2019.

[104] Ansys. (2022) Why simulation is a driving force for autonomous vehicles.
Accessed: 2022-02-07. [Online]. Available: https://www.ansys.com/blog/
simulation-drives-autonomous-vehicles

[105] C. Hoyos, B. D. Lester, C. Crump, D. M. Cades, and D. Young, “Consumer
perceptions, understanding, and expectations of advanced driver assistance
systems (adas) and vehicle automation,” in Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, vol. 62, no. 1. SAGE Pub-
lications Sage CA: Los Angeles, CA, 2018, pp. 1888–1892.

[106] Continental. (2022) Continental builds new plant for advanced
driver assistance systems in the usa. Accessed: 2022-04-06. [On-
line]. Available: https://www.continental.com/en/press/press-releases/
advanced-driver-assistance-systems/

[107] S. Schleicher, C. Gelau et al., “The influence of cruise control and adaptive
cruise control on driving behaviour–a driving simulator study,” Accident
Analysis & Prevention, vol. 43, no. 3, pp. 1134–1139, 2011.

[108] V. Sandner, “Development of a test target for aeb systems,” in 23rd inter-
national technical conference on the enhanced safety of vehicles (ESV), no.
13-0406, 2013.

[109] S. Rasmana, D. Adiputra, W. Yahya, M. A. Rahman, A. Dwijotomo, M. M.
Ariff, and N. A. Husain, “A systematic review on the autonomous emer-
gency steering assessments and tests methodology in asean,” Journal of the
Society of Automotive Engineers Malaysia, vol. 5, no. 2, pp. 185–193, 2021.

[110] H. Hagras, V. Callaghan, M. Colley, and M. Carr-West, “A fuzzy-genetic
based embedded-agent approach to learning and control in agricultural au-
tonomous vehicles,” in Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No. 99CH36288C), vol. 2. IEEE, 1999,
pp. 1005–1010.

[111] V. Méndez, H. Catalán, J. R. Rosell, J. Arnó, R. Sanz, and A. Tar-
quis, “Simlidar–simulation of lidar performance in artificially simulated
orchards,” Biosystems engineering, vol. 111, no. 1, pp. 72–82, 2012.

[112] Deepdrive. (2022) Deepdrive self-driving ai. Accessed: 2022-02-08. [Online].
Available: https://deepdrive.io/

222

https://www.ansys.com/blog/simulation-drives-autonomous-vehicles
https://www.ansys.com/blog/simulation-drives-autonomous-vehicles
https://www.continental.com/en/press/press-releases/advanced-driver-assistance-systems/
https://www.continental.com/en/press/press-releases/advanced-driver-assistance-systems/
https://deepdrive.io/

[113] Udacity. (2022) Udacity open sources its self-driving car
simulator for anyone to use—techcrunch. Accessed: 2022-
02-08. [Online]. Available: https://techcrunch.com/2017/02/08/
udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
?guccounter=2

[114] AirSim. (2022) Welcome to airsim. Accessed: 2022-02-08. [Online].
Available: https://microsoft.github.io/AirSim/

[115] Engadget. (2022) ’carcraft’ is waymo’s virtual world for autonomous
vehicle testing. Accessed: 2022-02-08. [Online]. Available: https:
//www.engadget.com/2017-08-23-waymo-virtual-world-carcraft.html

[116] S. Bechtold and B. Höfle, “Helios: A multi-purpose lidar simulation frame-
work for research, planning and training of laser scanning operations with
airborne, ground-based mobile and stationary platforms.” ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 3,
no. 3, 2016.

[117] SCANeR. AVSimulation User Guide for SCANeR. Accessed: 2020-06-08.
[Online]. Available: https://www.avsimulation.com/solutions/

[118] M. Holen, K. Knausg̊ard, and M. Goodwin, “An evaluation of autonomous
car simulators and their applicability for supervised and reinforcement
learning.”

[119] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles re-
search,” Sensors, vol. 19, no. 3, p. 648, 2019.

[120] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of au-
tonomous car—part i: Distributed system architecture and development
process,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp.
7131–7140, 2014.

[121] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An efficient sat solver,”
in International Conference on Theory and Applications of Satisfiability
Testing. Springer, 2004, pp. 360–375.

[122] B. Dutertre and L. De Moura, “The yices smt solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, no. 2, pp. 1–2, 2006.

[123] M. Sheeran, S. Singh, and G. St̊almarck, “Checking safety properties using
induction and a sat-solver,” in International conference on formal methods
in computer-aided design. Springer, 2000, pp. 127–144.

223

https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/?guccounter=2
https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/?guccounter=2
https://techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/?guccounter=2
https://microsoft.github.io/AirSim/
https://www.engadget.com/2017-08-23-waymo-virtual-world-carcraft.html
https://www.engadget.com/2017-08-23-waymo-virtual-world-carcraft.html
https://www.avsimulation.com/solutions/

[124] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Communications of the ACM, vol. 54, no. 9, pp. 69–77,
2011.

[125] X. Gillard, C. Pecheur, S. BUSARD, and R. SADRE, “Adding sat-based
model checking to the pynusmv framework,” Ph.D. dissertation, Master’s
thesis, M. Sc. Thesis, Université Catholique de Louvain, 2016.

[126] B. König, M. Nederkorn, and D. Nolte, “Cores: a tool for computing core
graphs via sat/smt solvers,” Journal of Logical and Algebraic Methods in
Programming, vol. 109, p. 100484, 2019.

[127] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness to
practical success,” Communications of the ACM, vol. 52, no. 8, pp. 76–82,
2009.

[128] A. Gharbi, O. Fischer, and D. N. Mavris, “Towards a robust computational
solution for the verification and validation of complex systems in mbse using
wymore’s tricotyledon theory of system design,” in AIAA SCITECH 2022
Forum, 2022, p. 0094.

[129] F. Marić, “Formal verification of a modern sat solver by shallow embedding
into isabelle/hol,” Theoretical Computer Science, vol. 411, no. 50, pp. 4333–
4356, 2010.

[130] C. A. Tovey, “A simplified np-complete satisfiability problem,” Discrete
applied mathematics, vol. 8, no. 1, pp. 85–89, 1984.

[131] K. Marussy, O. Semeráth, and D. Varró, “Automated generation of consis-
tent graph models with multiplicity reasoning,” Submitted to the IEEE for
possible publication, 2020.

[132] D. Le Berre and A. Parrain, “The sat4j library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 7, no. 2-3, pp. 59–64,
2010.

[133] F. Mallet, “ccsl–sts,” urlhttps://github.com/frederic–mallet, 2021.

[134] V. L. Bernardin Jr, T. Mansfield, B. Swanson, H. Sadrsadat, and S. Bindra,
“Scenario modeling of autonomous vehicles with trip-based models,” Trans-
portation Research Record, vol. 2673, no. 10, pp. 261–270, 2019.

[135] H.-C. Liu, L. Liu, and N. Liu, “Risk evaluation approaches in failure mode
and effects analysis: A literature review,” Expert systems with applications,
vol. 40, no. 2, pp. 828–838, 2013.

224

[136] B. Vesely, “Fault tree analysis (fta): Concepts and applications,” NASA
HQ, 2002.

[137] ISO26262. System safety(functional safety, sotif, cyber security). Accessed:
2022-03-07. [Online]. Available: https://iso26262fs.wordpress.com/tag/
hara/

[138] ISO 26262-1. (2011) Functional safety. Accessed: 2022-03-10. [Online].
Available: http://www.iso.org/

[139] F. Han, A. W. Bandarkar, and Y. Sozer, “Energy harvesting from mov-
ing vehicles on highways,” in 2019 IEEE Energy Conversion Congress and
Exposition (ECCE). IEEE, 2019, pp. 974–978.

[140] M. H. C. Torres, J.-P. Giacalone, and J. Abou Faysal, “A case study on
formally validating motion rules for autonomous cars,” in International
Conference on Software Engineering and Formal Methods. Springer, 2020,
pp. 233–248.

[141] IVEX. Intelligent vehicle technology: Enable safe autonomy. Accessed:
2022-03-10. [Online]. Available: https://www.ivex.ai/

[142] F. Mallet and R. De Simone, “Correctness issues on marte/ccsl constraints,”
Science of Computer Programming, vol. 106, pp. 78–92, 2015.

[143] D. Phung, “Implementation of graphical editor using sirius,” 2018.

225

https://iso26262fs.wordpress.com/tag/hara/
https://iso26262fs.wordpress.com/tag/hara/
http://www.iso.org/
https://www.ivex.ai/

	Acknowledgements
	Abstract
	Résumé
	Introduction
	Context and motivation
	Research problems and questions
	Collaboration between Kairos and Renault Software Factory
	Thesis contributions and outline
	Research contributions
	Outline

	Background and State of the Art
	Introduction
	Overview automotive safety approaches
	Safety standards for AVs
	ISO26262 FuSa standard
	ISO/PAS 21448 SOTIF standard
	Combining FuSa and SOTIF to cover safety

	Hazard And Risk Analysis (HARA) technique to evaluate safety
	Formalization of safety requirements
	Model-Driven Engineering (MDE)
	Model-Driven Architecture (MDA)
	Metamodeling
	Model transformation
	Code generators

	Domain-Specific Modeling Language (DSML)
	DSL stakeholders
	DSL life-cycle

	Overview of existing safety solutions
	Conclusion

	Proposal for an Extensible Platform for Safety Analysis of Autonomous Vehicles (EPSAAV)
	Introduction
	User process
	EPSAAV language development
	Technologies used for the platform specification
	Abstract domain concept
	Scene and ObjectType domain concepts
	ParameterTypeLibrary and PropertyTypeLibrary domain concepts
	Expression and SelectByGoal domain concepts
	AlertLibrary and ActionLibrary domain concepts

	Concrete syntax
	RuleBasedPlanner grammar
	Scene grammar
	ObjectTypeLibrary grammar
	PropertyTypeLibrary grammar
	AlertLibrary and ActionLibrary grammars

	RBP and libraries illustration using EPSAAV specifier
	Generation of artefacts
	Human-readable document generation
	Monitor generation
	Verification rules generation

	Conclusion

	Generation of a Monitor for Renault Simulation Environment
	Introduction
	Sensing data for AV
	Perceiving the environment sensors
	Perception challenges
	Sensor uncertainty
	Robust detection
	Illumination lens flare
	Weather and precipitation

	Overcoming sensing challenges using EPSAAV language

	Representative AD software architecture
	Advanced Driver-Assistance Systems (ADAS)
	AV simulators
	FusionRunner debugger
	Why using FusionRunner?
	FusionRunner: a visualization tool for debugging

	C Code generation using EPSAAV language
	Safety Checker module integration
	Visualization of Safety Checker module performance signals

	Interfacing the Safety Checker module with the FusionRunner to assess safety
	Conclusion

	From Safety Rules to Satisfaction Checking
	Introduction
	Satisfiability solvers
	SAT solver
	Rules contradiction
	Phases of implementation tasks to deploy the SAT solver
	Translating rules to Boolean formulas
	Testing inconsistencies
	Boolean Satisfiability problem

	Java code generation for inconsistencies study
	Testing validity of each rule in the rule-based planner
	Testing consistency of sequential and parallel rules with each other
	Testing consistency of the whole system

	Conclusion

	Application of EPSAAV Approach to a Renault Use Case
	Introduction
	Safety engineering workflow
	Traditional workflow
	Workflow using EPSAAV language
	Workflow improvements and EPSAAV benefits

	From AREA2 to Area2Spec using EPSAAV language
	Evaluate unsafe known scenarios
	Risk of a frontal collision with the PV in deceleration scenario
	Risk of rear collision with the FV due to a false recognition scenario
	Risk of a side collision with SV due to missing lane detection scenario
	Risk of a side collision with the SV due to poor infrastructure scenario
	Risk of a side collision with SV swerving into Ego lane scenario

	IVEX co-pilot and Area2Spec document
	Formalization of frontal collision with the PV in deceleration risk
	Formalization of rear collision with the FV due to a false recognition risk
	Formalization of side collision with SV due to missing lane detection risk
	Formalization of a side collision with the SV due to poor infrastructure risk
	Formalization of side collision with the SV swerving into Ego lane risk

	EPSAAV benefits over IVEX co-pilot

	RBP and libraries instantiation for Area2Spec using EPSAAV specifier
	Area2Spec human-readable generated document using EPSAAV generator
	Area2Spec monitor connected to the FusionRunner
	C code monitor generation using EPSAAV generator
	Area2Spec Safety Checker module connected to the FusionRunner
	Testing scenarios on real data recordings
	Scenario 1: no lane detection
	Scenario 2: strong braking collision with PV
	Scenario 3: No rule violations

	Area2Spec verification engine fed to the SAT solver
	SAVI process
	Ambiguities detection
	Rule inconsistencies verification

	Conclusion

	Conclusion
	Thesis summary
	Results obtained
	Future work
	Evolution of the EPSAAV tool
	Reusability of the EPSAAV tool in various contexts

	Abbreviations
	Appendix
	Model instantiation of requirements and environment
	Text auto-generation for Area2Spec
	C code auto-generation using EPSAAV generator
	Java code auto-generation using EPSAAV generator

