N

N
N

HAL

open science

Homomorphic cryptography and privacy
Chloé Hébant

» To cite this version:

Chloé Hébant. Homomorphic cryptography and privacy. Cryptography and Security [cs.CR]. Univer-

sité Paris sciences et lettres, 2021. English. NNT: 2021UPSLE027 . tel-03814728

HAL Id: tel-03814728
https://theses.hal.science/tel-03814728

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03814728
https://hal.archives-ouvertes.fr

PSL

UNIVERSITE PARIS

THESE DE DOCTORAT

DE L'UNIVERSITE PSL

Préparée a I'Ecole Normale Supérieure de Paris

Homomorphic Cryptography and Privacy

Soutenue par

Chloé Hébant
Le 20 Mai 2021

Ecole doctorale n°386

Sciences Mathématiques de
Paris Centre

Spécialité
Informatique

ECOLE NORMALE
SUPERIEURE

E | \‘I S RESEARCH UNIVERSITY PARIS

Composition du jury :

Dario Catalano
University of Catania

Benoit Libert
Ecole Normale Supérieure de Lyon

Caroline Fontaine

Ecole Normale Supérieure de Paris-

Saclay
Olivier Sanders
Orange Labs, Rennes

David Pointcheval
Ecole Normale Supérieure de Paris

Duong Hieu Phan
Telecom Paris
Institut Polytechnique de Paris

Rapporteur

Rapporteur

Présidente du jury

Examinateur

Directeur de théese

CoDirecteur de these

I Résumé

Avec T'utilisation massive du stockage dématérialisé, ’homomorphisme est devenu l'une des
propriétés les plus largement employées en cryptologie. Dans cette these, nous allons étudier
comment 'utiliser dans des protocoles multi-utilisateurs concrets qui nécessitent non seulement
de la confidentialité, mais aussi de I'anonymat, de ’authentification ou encore de la vérifiabilité.
Pour cela, nous utilisons des schémas homomorphes de chiffrement, de signature numérique et
de preuves a divulgation nulle de connaissances, mais, a chaque fois, nous devrons limiter leurs
capacités de malléabilité pour atteindre le niveau de sécurité préalablement défini.

Tout d’abord, 'aspect confidentiel est abordé au travers de I’étude de calculs sur des bases
de données externalisées. Etre capable d’appliquer des fonctions sur des données chiffrées sans
avoir & les télécharger pour les déchiffrer entierement est permet de profiter de la puissance de
calcul du serveur qui est généralement supérieure a celle du client. Cela peut étre également
indispensable lorsqu’une société sans droit d’acces & une base de données de clients souhaite
obtenir le résultat d’un calcul. La quantité d’information apprise ne doit pas étre supérieure a
celle contenue dans le résultat du calcul. Nous proposons pour cela un schéma de chiffrement
décentralisé qui permet d’évaluer des fonctions quadratiques sur les données externalisées tout
en ayant un contréle des opérations griace a un groupe d’inspecteurs.

Cependant, la confidentialité des données n’est pas toujours la propriété la plus recherchée
pour un systeme car elle ne protege pas l'identité de ’expéditeur. Pour le vote électronique,
chaque bulletin chiffré doit étre associé a un électeur afin de vérifier que celui-ci était autorisé
a voter, mais apres la phase de vote, 'anonymat doit étre assuré. Pour cela une solution est
de mélanger plusieurs fois I’'urne de sorte que, au moment du dépouillement, qui correspond au
déchiffrement, aucun lien entre le vote et I’électeur ne puisse étre fait. C’est le fonctionnement
d’un réseau de serveurs-mélangeurs dont nous proposons une nouvelle construction basée sur des
signatures linéairement homomorphes avec un cofit de vérification de 'urne finale indépendant
du nombre de mélanges. Ce protocole est donc d’autant plus efficace que le nombre de mélanges
augmente et représente un progres par rapport aux constructions déja connues.

Dans certains cas, avoir un anonymat parfait permettrait 1'utilisation malveillante d’un sys-
teme et la cryptologie doit aussi tenir compte de ces abus potentiels. La troisieme contribution
de cette these consiste en la proposition du premier protocole d’accréditation anonyme multi-
autorités tragable : un utilisateur demande une accréditation aupres d’une autorité émettrice et
peut 'utiliser pour accéder a un systéme tout en restant anonyme. En cas d’abus, une autorité
juge peut lever I’anonymat et retrouver un utilisateur malveillant grace au tragage. De plus, ce
protocole, tout en étant aussi efficace que les précédents pour une seule autorité émettrice, per-
met d’agréger des accréditations d’autorités émettrices distinctes pour avoir une accréditation
de taille optimale .

Mots clés : Cryptographie a Clé Publique, Protocoles Homomorphes, Anonymat, Vote
Electronique, Calculs Multipartites

ii

I Abstract

With the massive use of dematerialized storage, homomorphism has become one of the most
widely used properties in cryptology. In this thesis we will study how to use it in concrete
multi-users protocols requiring not only confidentiality but also anonymity, authentication or
verifiability. Homomorphic encryption schemes, homomorphic digital signatures and homomor-
phic zero-knowledge proofs will be used together, but each time restricted to achieve the desired
level of security.

First, the confidential aspect is studied for computations on large outsourced databases.
Being able to apply functions on encrypted data without having to download and decrypt
it entirely may be essential and allows to take advantage of the computational power of the
server. This can also be interesting when a third-party company without right-access to the
database wants to obtain the result of a computation. However, some guarantees on the learned
information need to be taken. To this end, we present a decentralized encryption scheme that
allows controlled evaluation of quadratic functions on outsourced data thanks to a group of
controllers.

However, sometimes confidentiality of the data is not the most desired property for a system
as it does not protect the sender. For electronic voting, each encrypted ballot must be associated
with its voter to verify that he is allowed to vote. After the voting phase, anonymity is achieved
by shuffling so that, during the count, which corresponds to the decryption, no link between
votes and voters can be made. We propose a new construction of mix-network based on linearly
homomorphic signatures which allows for the first time a verification which is cost-independent
of the number of mix-servers. This scalable mix-net improves the efficiency compared to already
known constructions, especially with an increasing number of shuffles.

Nevertheless, with perfect anonymity comes the threat of malicious use of the system. Cryp-
tology must consider these possible abuses and we propose the first multi-authority anonymous
credential protocol with traceability property: a user asks a credential issuer for a credential
and uses it to access a system while remaining anonymous. In case of abuse, an authority can
revoke anonymity and trace a malicious user. The scheme is as efficient as the previously known
credential schemes while achieving the multi-credential issuer functionality.

Keywords: Public-Key Cryptography, Homomorphic Protocols, Anonymity, E-voting, Multi-
party Computation

iv

I Acknowledgments

Lorsque l'on écrit ces lignes, c’est qu'une aventure d’environ 3 ans se termine. On a beau
s'imaginer défendre des le début de la these, lorsque ’on arrive au bout de I’écriture du manuscrit,
une certaine nostalgie est inévitable. J’ai eu la chance de rencontrer de merveilleuses person-
nes qui ont su me partager avec finesse leurs connaissances, j’ai eu la chance de travailler dans
un cadre bienveillant et chaleureux et finalement j’ai eu la chance de voyager avant que cette
pandémie ne nous frappe. Je tiens donc a remercier du fond du coeur tous ceux que j’ai ren-
contrés, ceux avec qui j’ai travaillé ou simplement ceux avec qui j’ai pu échanger. Si vous lisez
cette these et que je n’ai pas explicitement cité votre nom, veuillez m’en excuser ! Je suis siire
que vous méritez, vous aussi, des remerciements ne serait-ce que pour avoir lu cette section.

Pour commencer, j’aimerais remercier mes deux directeurs de theése sans qui tout cela ne
serait jamais arrivé et pour qui j’ai énormément de reconnaissance. Tout a commencé grice
a Duong Hieu Phan en 2016 par un projet de master suivi par un stage au Vietnam. Cette
premiere expérience de recherche a été pour moi fantastique, tant humainement que profession-
nellement. Mon deuxiéme stage m’a ensuite amené & Paris et m’a permis de rencontrer David
Pointcheval. L’expérience fut positive puisqu’elle s’est transformée en theése. Je vous remercie
pour les nombreux conseils, le partage de vos connaissances et le temps que vous m’avez consacré
tout au long de mon parcours, votre réactivité pour répondre & mes questions et la clarté de vos
réponses. J’espere sincerement pouvoir continuer a travailler avec vous.

Isincerely thank Benoit Libert and Dario Catalano for being the rapporteurs of my manuscript.
It is clearly not the easiest part and I hope you enjoyed the reading. Je remercie également Car-
oline Fontaine et Olivier Sanders pour avoir accepter de prendre part a mon jury.

Je remercie également tous les membres de 1’équipe crypto de 'ENS qui sont déja partis,
qui vont bientot partir et ceux que je n’ai pas pu d’avantage rencontrer a cause de la pandémie
(par ordre alphabétique, mon tact légendaire m’empéchant de trier par préférence). Merci
donc & Aisling a true tech-woman model, Aurélien pour tes cours d’escalade, Anca pour étre
la maman de César dont j’ai temporairement eu la garde, Antoine pour nous avoir entrainés
a survivre & des pandémies lors de soirées jeux ... avant la pandémie, Azam, Balthazar pour
avoir tenté de ressusciter un cactus mort, Baptiste, Bogdan pour m’avoir montré qu’il était
possible de manger trés lentement, Brice, Céline pour avoir co-organisé le Working Group avec
moi, Damien pour avoir partagé ton frigo, Damuhn, Edouard pour tes conseils en restaurant
de burgers, Florian, Geoffroy, Georg, Hoeteck, Hugo, Huy, Jérémy pour nous avoir fait peur en
disparaissant temporairement lors d’un voyage a 1’étranger, Julia, Léo, Léonard, Louiza pour
nos longues conversations téléphoniques, Mélissa pour avoir partagé les logements en dur ou
en toile lors des voyages, Michael, Michel pour avoir organisé un immense team building pile a
mon arrivée avec I'organisation d’Eurocrypt, Michele, Michele pour étre mon fournisseur officiel
de conseils en cas d’urgence pour de l'informatique pratique, Paola, Pierre-Alain pour avoir
légué un cactus mort & Balthazar, Phong, Pierrick pour étre mon fournisseur officiel de plantes
d’aquarium, Pooya pour nos discussions de randonnées, Razvan, Romain pour tes extraits de
vie qui ont animé de nombreuses fois le labo, Théo, Thierry.

Je tiens également a exprimer toute ma reconnaissance a l’équipe administrative du DI,
notamment & Sophie Jaudon, Valérie Mongiat, Linda Boulevart et Lise-Marie Bivard et au SPI,

vi

Ludovic Ricardou et Jacques Beigbeder.

Je souhaite également remercier le service des cartes de 'ENS qui devait beaucoup m’apprécier
pour me faire venir aussi souvent en désactivant mon badge, les différentes générations de ma-
chines a café, les nombreuses plantes et les aquariums qui égayaient le labo & une certaine époque,
les cours d’escalade du mardi ou du jeudi midi, les soirées jeux de sociétés ou de Wii. Je souhaite
de tout coeur aux doctorants actuels et futurs de vivre cette expérience de labo pour laquelle
j’ai des souvenirs mémorables.

J’aimerais aussi sincerement remercier Yannick pour m’avoir accueillie virtuellement, pandémie
oblige, dans son équipe pour un « stage de fin de thése » ainsi que son équipe chaleureuse. In
particular, I would like to sincerely thank Steve for being a great supervisor and Tim for all
your answers to my practical questions. Je souhaite aussi remercier Mathieu et son équipe pour
m’avoir accueillie dans les virtual but cultural and social events dans la « bonne » time-zone.

Je souhaite aussi remercier les amis de plus longue date qui ont suivi de pres ou de loin mon
cheminement jusqu’a cette these (par année de rencontre) : Elodie, le Soutien Mental (elles se
reconnaitront), Ghislain et Alexia, Florent, Nicolas, Neals, Charline et Thanh.

Pour finir, cette thése n’aurait pas pu avoir lieu sans le soutien inconditionnel de ma famille.
Ils supportent mon hypersensibilité au quotidien et ¢a ne doit pas étre évident. En particulier,
je remercie énormément ma soeur, mes parents et bien évidemment Yoan.

Yoan, j’ai essayé mais je n’arrive pas résumer en quelques mots tout ce que tu m’apportes
sans en avoir les larmes aux yeux. Je vais donc étre bréve mais chargée de sentiments: je T’aime.

I Contents

Résumé
Abstract
Acknowledgments

1 Introduction

<

1.1 Classical Cryptography e
1.1.1 Confidentiality
1.1.2 Authentication
1.1.3 Provable Security
1.2 Advanced Security Goals o
1.2.1 Decentralization
1.2.2 Anonymity
1.2.3 Traceability e
1.3 Homomorphism
1.3.1 Homomorphic Encryptions o 0L,
1.3.2 Homomorphic Signatures
1.3.3 Security with Homomorphism
1.3.4 Homomorphic Zero-Knowledge Proofs
1.4 Contributions L
1.5 Organization of the Manuscript L.
Preliminaries
2.1 Notations and Usefull Notions,
2.2 Provable Security
2.3 Computational Assumptions
2.4 Cryptographic Primitives L
2.4.1 (Homomorphic) Encryption
2.4.2 (Homomorphic) Signature o L
2.4.3 (Homomorphic) Proof o
Decentralized Evaluation of Quadratic Polynomials on Encrypted Data
3.1 Freeman’s Approach
3.1.1 Notations e
3.1.2 Freeman’s Scheme with Projections
3.1.3 Homomorphic Properties o
3.1.4 Security Properties
3.1.5 Re-Encryption
3.1.6 Verifiability
3.1.7 Distributed Decryption oo

3.2 Optimized Version e

O I I 1O O CLUU i b W W+~

[y
[y

viii

3.2.1 Imstantiation L Lo
3.2.2 Security Properties o
3.2.3 Decentralized Homomorphic Encryption
3.2.4 Efficiency
3.3 Applications
3.3.1 Encryption for Boolean Formulae
3.3.2 Group Testing on Encrypted Data
3.3.3 Consistency Model on Encrypted Data

Linearly-Homomorphic Signatures

4.1 Definition, Properties and Security

4.2 Our One-Time LH-Sign Scheme

4.3 FSH LH-Sign Scheme

4.4 Square Diffie-Hellman

4.5 SgDH LH-Sign Scheme o
4.5.1 A First Generic Conversion v v
4.5.2 A Second Generic Conversion

MixNet

5.1 Our Scheme: General Description oo

5.2 Our Scheme: Full Description,

5.3 Scalability
5.3.1 Constant-Size Proof
5.3.2 Efficiency

5.4 Security Analysiso
5.4.1 Proof of Soundness e
5.4.2 Proof of Privacy: Unlinkability
5.4.3 Proof of Correctness e

5.5 Applications e e
5.5.1 Electronic Voting e
5.5.2 Message Routing

Anonymous Credentials

6.1 Overview of our New Primitives
6.1.1 Tag-based Signatures.
6.1.2 Signatures with Randomizable Tags
6.1.3 Aggregate Signatures. oL L oo

6.2 Aggregate Signatures with Randomizable Tags
6.2.1 Anonymous Ephemeral Identities,
6.2.2 Aggregate Signatures with Randomizable Tags
6.2.3 One-Time ART-Sign Scheme with Square Diffie-Hellman Tags (SqDH)
6.2.4 Bounded ART-Sign Scheme with Square Diffie-Hellman Tags (SqDH) . . .

6.3 Multi-Authority Anonymous Crendentials
6.3.1 Definition L e
6.3.2 Security Model L
6.3.3 Anonymous Credential from Ephemerld and ART-Sign Scheme

6.4 SgDH-based Anonymous Credentials
6.4.1 The Basic SqDH-based Anonymous Credential Scheme
6.4.2 A Compact SqDH-based Anonymous Credential Scheme

6.5 Traceable Anonymous Credentials,
6.5.1 Traceable Anonymous Credentials
6.5.2 Traceable SqDH-based Anonymous Credentials

47
47
50
ol
53
o6
56
o7

61
62
64
66
67
67
68
68
71
76
78
78
79

81
82
82
83
84
84
85
85
87
90

ix

6.5.3 Groth-Sahai Proof for Square Diffie-Hellman Tracing
6.6 Related Work L

7 Conclusion
A Joint Generation of Square Diffie-Hellman Tuples

B Another Bounded SqDH-Based ART-Sign

100
100

103

105

107

Chapter

|
I Introduction

Chapter content

1.1 Classical Cryptography ot i i i ittt v vt v v v oo 1
1.1.1 Confidentiality 2
1.1.2 Authentication 2
1.1.3 Provable Security 3

1.2 Advanced Security Goals v v i i it e e e e e e e e e e e 3
1.2.1 Decentralization o 4
1.2.2 Anonymity 4
1.2.3 Traceability)

1.3 Homomorphism ittt ittt 5
1.3.1 Homomorphic Encryptions 6
1.3.2 Homomorphic Signatures 6
1.3.3 Security with Homomorphism 7
1.3.4 Homomorphic Zero-Knowledge Proofs 7

1.4 Contributions o e e e e e e e e 7

1.5 Organization of the Manuscript 00000

Covid-19. The pandemic spreads across the world and teleworking is currently the norm. We
log in every morning to check our mailbox, we connect to the VPN to work on the intranet, we
save all the files on the cloud and finally, we meet colleagues and family on virtual meetings. We
are more than ever dependent on the Internet and all its features. Even children are attending
classes from home and people living in dead zones suffer the most from this situation. The
Internet is essential and the need to improve privacy is huge in all our uses of electronic devices.

How can we guarantee privacy whereas being connected is more and more essential?

One solution is to study and propose scenarios integrating privacy by design. This the-
sis explores this field and makes its contribution to cloud computation, electronic voting and
anonymous authentication.

1.1 Classical Cryptography

Cryptography is a very large field but first, let us start with some historical notions that will be
useful for the full understanding of this thesis.

2 1 - Introduction

1.1.1 Confidentiality

Historically, the aim of cryptology was to protect confidentiality of communications. The first
propositions to hide a message were to encrypt it by transforming it in a secret manner in order
to make it incomprehensible. The hidden message can then travel safely to the receiver who
applies at his turn secret transformations to recover the original message. A non-encrypted, and
thus understandable, message is called in clear.

However, Kerckhoff’s principles (1883) [Ker83] state that the security must not rely on secret
transformations but instead, must rely on public transformations (so that the mechanism can
fall in the hands of the adversary) with the use of a key that shall remain secret (must not go
in the hands of the adversary).

To that end, an encryption scheme is defined as the set of three algorithms. The algorithm
EKeygen describes the construction of the key, the algorithm Encrypt details the steps to encrypt.
It outputs a hidden message called ciphertext. Finally, the algorithm Decrypt allows to recover
the original message.

In fact, encryption schemes are divided in two categories depending if the same key is used to
both encrypt and decrypt (symmetric encryption) or if the scheme provides two keys (asymmetric
encryption): a public one to encrypt so that anyone can encrypt a message with it and a secret
one to decrypt so that only the owner of the key can recover the message. This thesis exclusively
focuses on the latter case, also called public-key cryptography as it allows a particular user to
receive messages from several users while being the only one possessing the tool to decrypt them
and thus, being the only one responsible for his security.

Especially, an encryption schemes is said secure if an attacker can not deduce one bit of
information on a clear from its corresponding ciphertext.

The most famous public-key cryptosystem still in use was developed by Rivest, Shamir and
Adleman [RSAT78] in 1978. To generate the keys, one needs to choose a large number n product
of two primes p and ¢ and two numbers e and d such that e-d = 1 mod ¢(n). The public key is
(n = pq, e) while the secret key is the decomposition (p, q) of n with the private element d. To
encrypt a message m € Zj, one computes the ciphertext ¢ = m® mod n. Whereas to decrypt,

d

one recovers the message with ¢? = (m®)4 = m! mod n.

1.1.2 Authentication

How can Bob be sure he is receiving a message from Alice and not from Eve pretending to
be Alice? In our digital world, one needs to be careful about phishing and other attempts of
false impersonations. A way to avoid that is to add an authentication process and to check
the supposed identity of the user. While confidentiality is mainly achieved with encryption,
authentication is mainly achieved thanks to digital signatures.

Similarly to an encryption scheme, a digital signature scheme is made up of three algorithms.
The algorithm SKeygen generates the signing key (must be kept secret) and the verification key
(public). The algorithm Sign creates a signature from a message and the signing key while the
algorithm Verif verifies a signature given a message and a verification key. If this last algorithm
outputs 1, the signature is said valid. We will use these algorithms a lot all along this manuscript,
most of the time enhanced with special properties.

To illustrate, the RSA signature is composed of the algorithm SKeygen using the same
numbers n, p, q, e, d such that n = pg and ed = 1 mod ¢(n) as for the RSA algorithm EKeygen
but this time, the signing key is (p, q,d) and the verification key is (n,e). To sign a message
m, one needs to compute o = H(m)? mod n with H a full domain hash function. Thus, if
we compute o€, we can verify the signature o was correct by recovering or not the message as
o = (H(m)4)¢ = H(m)! mod n.

Classically, a signature scheme is said secure if an attacker cannot forge a new valid signature
even if he previously saw valid ones.

1.2 - Advanced Security Goals 3

1.1.3 Provable Security

The first definition and proof of security dates back to Shannon [Sha49] in 1949. In his article,
he defines the notion of perfect secrecy in the sense of information theory and gives the example
of the One-Time Pad scheme which is perfectly secure. However, this scheme is not convenient
as the size of the key needs to be at least equal to the size of the message.

To avoid this limitation, security proofs are no longer necessarily made in the sense of infor-
mation theory but are most often reductions of mathematical problems for which the complexity
is widely accepted.

For example, the RSA encryption scheme is based on the factoring problem: given a very
large number product of two prime numbers n = pq, the goal is to find the two prime factors p
and gq. The decomposition being part of the secret key of the encryption scheme, breaking the
problem directly breaks the security of RSA.

In this manuscript, we will use two other mathematical problems often used in cryptography
defined on a group G generated by g. The Discrete Logarithm (DL) problem is, given an element
X of G, to find the exponent x such that X = ¢g*. The other is the Computational Diffie-Hellman
(CDH) problem [DH76] (1976): given two elements X = ¢ and Y = ¢g¥ of G, the goal is to
compute Z = ¢g*¥. For these two problems, the bigger is the number of elements in G, the more
difficult is the problem. The security of cryptographic schemes is thus usually defined with a
security parameter configuring the size of the group. Then, we make the assumption that the
problem is difficult and if attacks are improved or found, it is possible to adapt the level of
security with the security parameter.

A variant of the CDH problem is the Decisional Diffie-Hellman (DDH) problem: given three
elements X = ¢*,Y = ¢g¥ and Z of a cyclic group, the goal is this time to decide if Z = ¢*¥ or
not. It is at the core of the El Gamal cryptosystem [EIG84] (1984), the second main public-key
encryption scheme that we will use a lot all along this manuscript.

1.2 Advanced Security Goals

The cryptographic world where Alice and Bob are discussing secretly together is not relevant
anymore. We live in a connected world where some scenarios imply to deal with thousands of
users while still achieving some kind of security. There are users and servers, different access
rights for each of them and sometimes there are various authorities at the same time having
different abilities. As the number of persons involved increases and the technologies are improv-
ing, more specific definitions of security notions are necessary. In this section, we broach the
advanced and modern thematic to improve the privacy of users by a better control of his data
or guarantees on sensitive systems.

A Multi-User World. Working in a multi-user setting means having to consider different
roles for each user. An honest user follows the protocol, an honest-but-curious user follows the
protocol but tries to retrieve information from the communications he sees passing by and finally
a malicious user tries to actively attack the protocol. If several users try to attack together with
a common goal, we talk about collusion but an attacker can also corrupt others. Some schemes
allow a limited number of collusions/corruptions, i.e. they are proven safe until this threshold
is reached.

Privacy in a World of Information. For the scenarios studied in this manuscript, we will
consider Uma, a user who wants to protect her privacy while wishing to take advantage of the
technological advances of her time. She therefore uses a cloud to store her data but would like
to allow a company to study her records, such as allowing it to do statistical studies of cancers
on her medical record but only if the company is forced by the system to recover only this

4 1 - Introduction

information and nothing more. Uma would also like to vote electronically at the next election
but requests that anonymity is guaranteed as well as the result of the election. Finally, Uma
would like to be able to log in anonymously while being properly authenticated to a system. She
accepts that, in return, if she misuses and abuses the system, her anonymity may be revoked by
a judge.

All of these scenarios require new and more complex security concepts than the one histori-
cally used. Cryptology should not be a hindrance to the use of new technological advances.

1.2.1 Decentralization

Decentralized Cryptography is one of the main directions of research in cryptography, espe-
cially in a concurrent environment of multi-user applications, where there is no way to trust any
authority. Recently, the rise of blockchain’s applications also showed the importance of decen-
tralized applications. However, the blockchain mainly addresses the decentralized validation of
transactions, but it does not help in decentralizing computations. For the computational pur-
pose, though general solutions can be achieved via multi-party computation, reasonably efficient
solutions only exist for a limited number of protocols, as decentralization usually adds design
constraints to protocols: in broadcast encryption [FN94], the decentralized protocol in [PPS12]
is much less efficient than the underlying original protocol [NNLO1]; in attribute-based encryp-
tion [SWO5], the decentralized scheme [CCO09] implies some constraints on the access control
policy, that are removed in [LW11], but at the cost of using bilinear groups of composite order
with 3 prime factors, etc...

In the last decade, the most active research direction was about computing over encrypted
data, with the seminal papers on Fully Homomorphic Encryption (FHE) [Gen09] and on Func-
tional Encryption (FE) [BSW11, GKP"13, GGH"13]. FE was generalized to the case of multi-
user setting via the notion of multi-input/multi-client FE [GGGT14, GGJS13, GKLT13]. Tt is
of practical interest to consider the decentralization for FHE and FE without need of trust in
any authority. In FE, the question in the multi-client setting was recently addressed by Chotard
et al. [CDG'18a] for the inner product function and then improved in [ABKW19, CDG'18b],
where all the clients agree and contribute to generate the functional decryption keys, there is no
need of central authority anymore. Note that, in FE, there are efficient solutions for quadratic
functions [Gay16, BCFG17] but actually, only linear function evaluations can be decentralized
as none of the methods to decentralize linear schemes seems to apply, and no new method has
been proposed so far.

1.2.2 Anonymity

Sometimes confidentiality is not the most desired property for a system as it does not protect
the sender or the receiver. In 1981, Chaum wrote the first article [Cha81] proposing a scheme
able to hide the participants of a communication.

A wuser is anonymous when his name is either not known or not given. In practice, the
anonymity is defined as the property to not be identifiable within a set. Hence, the anonymity
notion can be obtained throught an unlinkability property. In the next two sections we will see
use-cases of anonymity addressed in this thesis.

Electronic voting

There are mainly three ways to construct electronic voting schemes: from blind signatures, from
additively homomorphic encryption and from shuffles performed by mix-networks. The first
method requires to have interactions during the voting phase: the voter needs to communicate
with an authority so that, she can blindly sign his vote. The second method requires to make a

1.3 - Homomorphism 5

proof at the time of the vote that the ballot is a valid one (e.g. the ballot is the encryption of 0
or 1 but nothing else). The last one is the solution studied in this thesis.

A shuffle of ciphertexts is a set of ciphertexts of the same plaintexts but in a permuted order
such that it is not possible to trace back the senders after decryption. It can be used as a
building block to anonymously send messages: if several servers perform a shuffle successively,
nobody can trace the messages. More precisely, one honest mix-server suffices to mask the order
of the ciphertexts even if all the other ones are dishonest. Moreover increasing the number
of mix-servers leads to a safer protocol but also increases its cost. The succession of shuffles
constitutes the notion of a mix-net protocol introduced by Chaum [Cha81], with applications to
anonymous emails, anonymous routing, but also eletronic voting.

Anonymous authentication

In an anonymous credential scheme, a user asks an organization (a credential issuer) for a
credential on an attribute, so that he can later claim its possession, even multiple times, but in
an anonymous and unlinkable way.

Usually, a credential on one attribute is not enough and the user needs credentials on multiple
attributes. Hence the interest in attribute-based anonymous credential schemes (ABC in short):
depending on the construction, the user receives one credential per attribute or directly for a set
of attributes. One goal is to be able to express relations between attributes (or at least selective
disclosure), with one showing. As attributes may have different meanings (e.g. a university
delivers diploma while a city hall delivers a birth certificat), there should be several credential
issuers. Besides multi credential issuers, it can be useful to have a multi-show credential system
to allow a user to prove an arbitrary number of times one credential still without breaking
anonymity. For that, the showings are required to be unlinkable to each other.

1.2.3 Traceability

Nevertheless, with perfect anonymity comes the threat of malicious use of the system as it is
not possible to identify anyone, even in case of misbehavior. Thus, in tracing scheme, one takes
advantage of computational anonymity to find guilty members who can be at any level: a guilty
sender of an encrypted message, a guilty signer, a guilty verifyer or a guilty authority. Collusions
between users with different parts can also help to combine powers.

Here comes the traitor-tracing schemes [CEN94, CFNPO00] with application to group sig-
natures, group encryption [LYJP14], broadcast encryption, inner-product functional encryp-
tion [DPP20] or identity-based encryption [BBP19]. When the number of traitors is not bounded,
the scheme is said fully traceable. To identify a culprit, one can add a new authority possessing
a secret or one can request public traceability and in such a case, no secret is needed: everyone
can find a traitor in case of misbehavior.

However, finding a guilty is not enough. When someone is declared guilty one needs to have
guarantees against defamation of users or authorities. In particular, the exculpability property
ensures that no coalition of authorities can convincingly accuse an innocent user in a group
signature scheme. After finding a traitor and having the guarantee of its culpability, one can
eventually revoke him but revokability is usually a more difficult property to achieve. When it is
not possible, a solution is to combine traceability with decentralization. Hence, even a malicious
authority cannot defame a user easily, its ability to judge or revoke being shared among parties.

1.3 Homomorphism

The presented scenarios require to develop new cryptographic tools. Secret sharing techniques
allow decentralization by replacing an authority by a group of members. Indeed, thanks to

6 1 - Introduction

Shamir [Sha79], it is possible to decompose a secret key s in parts so that s = >~ s;, each user
U; of a group possesses s; a fragment of the secret and is not able to decrypt a ciphertext alone.
However, they can decrypt by playing with the other members of the group which implicitly
reconstruct the secret s =3, s;.

All along this manuscript we will use another key ingredient: the homomorphism.

1.3.1 Homomorphic Encryptions

For some generic encryption scheme, if we modify a ciphertext it becomes a completely random
string and the content is lost as it is not decryptable anymore even with the secret key. Not
being able to manipulate ciphertexts is called non-malleability. For a long time, this property
ensured the security of encryption schemes: either we know the secret key and we can find the
message again or we do not know it and all the operations we can do will not help.

However, with the RSA encryption scheme, if we multiply two encryptions of m; and meo
together, we obtain the ciphertext of the message m; x ma: if ¢y = m{ mod n and c; = m§
mod n then ¢; - cg = (myp X mg2)® mod n. A cryptosystem with such property is said to be
multiplicatively homomorphic as one can operate on the clears by multiplication. With the
Paillier cryptosystem [Pai99], if we multiply two encryptions of m; and mg together, we obtain
the ciphertext of the message m; 4+ mo. This scheme is thus additively homomorphic.

The homomorphism property can be of great interest: if Alice and Bob want to give a com-
mon gift to Charlie but none of them want to tell how much he gave. They both encrypt the
amount with an additively homomorphic scheme and can, thanks to the property of homomor-
phism, multiply their two encryptions together and send the result to Charlie. She will be able
to decrypt it and the message will correspond directly to the sum of the two amounts.

Another common usage of homomorphism with encryption is for refreshing a ciphertext:
by multiplying an encryption of 1 by a ciphertext of m, encrypted with a multiplicatively
homomorphic scheme, one can obtain a new encryption of m thanks to the usage of the neutral
element 1 for the multiplication. The new ciphertext while still encrypting the same message can
be indistinguishable from the original one. A similar relation can be obtained with an encryption
of 0 and an additively homomorphic scheme.

Generically, an encryption scheme in which making an operation on ciphertexts is equivalent
to encrypting the result of a “twin operation” on the clears is called homomorphic. The seminal
paper of Gentry [Gen09] published in 2009 combines for the first time both multiplicative and
additive properties, and thus, allows the evaluatation of any function on ciphertexts. This
scheme is called fully homomorphic encryption (FHE).

1.3.2 Homomorphic Signatures

Similarly to homomorphic encryption, one can define homomorphic signatures. The notion
dates back to Rivest in a series of talks [Riv00] and Johnson et al. [JMSWO02], with notions in
[ABCT12].

They can help for computations on certified data. For example, Alice has n grades m;
all individualy signed into o; on a remote server. Later, the server is asked to perform an
authenticated computation of a mean of the data. Thus, it computes o = f(o1,...,0y,) possible
thanks to homomorphism and M = f(my,...,my) and publishes the result (M,o). Then,
anyone can check that the server correctly applied f to the data by verifying that o is a valid
signature.

The linearly-homomorphic signatures, that allow to sign vector sub-spaces, were introduced
in [BFKWO09], with several follow-ups by Boneh and Freeman [BF11b, BF11a]. With a linearly
homomorphic signature scheme, from a signature ¢ on the message mi and o9 a signature on
the message meo, it is possible to compute for all «, 8, the signature o = «aoy 4+ [So9, a valid
signature on the message m = ami + Bmao.

1.4 - Contributions 7

As for encryption, a signature scheme can also be multiplicatively homomorphic: with the
RSA signature, if we compute o1 x 09 = (m1-m2)? mod n, this is a valid signature of the message
m1 - meo from two valid signatures o; of m; and oo of mo. Even if this scheme illustrated the
homomorphism, it is, as presented, not secure.

1.3.3 Security with Homomorphism

The security of an homomorphic scheme is different and needs to be strengthen. For example,
an attacker seeing a signature of a message m, could simply forge the signature of m + m, which
would break the basic notion of security. He does not know the keys but he is able to compute
a valid signature of a new message (here m + m).

With the RSA signature scheme above, an attacker can forge any message of his choice: if an
attacker asks the signature o = (m - 7¢)¢ mod n, this is a valid signature of the message m - r°.
However with that, the attacker can forge the signature o* = o/r which is a valid signature of
m while the signer does not know m.

To include the malleability in the security, we will require that it is not possible for an
attacker to provide a signature outside the space generated by the signatures already given. A
similar change in the security definition is of course needed for all the homomorphic schemes
and thus, encryption ones.

1.3.4 Homomorphic Zero-Knowledge Proofs

The last kind of schemes we will intensively use in this thesis is the zero-knowledge proofs. They
were introduced for the first time by Goldwasser, Micali and Rackoff [GMRS85] in 1985.

A zero-knowledge proof is a protocol where a prover knowing a witness w makes a proof that
a statement x € L is true to a verifier. The zero-knowledge property implies that the verifier does
not learn more than the fact is true or false and nothing about the witness. In 1986, Goldreich,
Micali and Wigderson [GMW87] shows that any language in NP possess zero-knowledge proofs.

For example, Bob can make a proof of Diffie-Hellman tuple to Alice: Alice thanks to the
proof can verify if the tuple (X = ¢*,Y = ¢¥,Z) is or not a Diffie-Hellman (if Z = ¢®¥ or not)
but she will not learn any of the exponents involved. The language is this case is the set of
Diffie-Hellman tuples and the witness of Bob can be the pair of scalars x and y.

The showing of a proof can be interactive or non-interactive if the verifier after having
received elements from the prover can check the proof latter without any further interaction
with the prover. Moreover, the zero-knowledge proofs is said of statements if it proves a relation
(as a proof of Diffie-Hellman tuple), or of knowledge if it proves the knowledge of a witness:
when Bob wants to authenticate himself to a system, he needs to show he knows the password.
A non-interactive zero-knowledge proof of knowledge is also called signature of knowledge.

With the Groth-Sahai [GS08] scheme, it is possible to combine together different proofs into
a unique one. This property can be viewed as an homomorphic property: the combinations of
the proofs creates a proof of a relation of statements.

In this thesis, zero-knowledge proofs will be used sometimes enhanced of the homomorphic
property to prove that a ciphertext is correctly construted or for authentication.

1.4 Contributions

This thesis studies the usage of the homomorphic property in concrete multi-users protocols
requiring not only confidentiality but also anonymity, authentication or verifiability. Homo-
morphic encryption schemes, homomorphic digital signatures and homomorphic zero-knowledge
proofs will be used together to create new protocols, but, each time, restrictions will be applied
to limit the possible malleability.

8 1 - Introduction

The results presented in this manuscript come from two published papers (co-authored with
Duong Hieu Phan and David Pointcheval) and one paper still in reviewing process (co-authored
with David Pointcheval).

First, we will present a decentralized encryption scheme that allows the controlled evaluation
of quadratic polynomials on outsourced data. Then, we will describe a new method to build mix-
networks from linearly homomorphic signatures allowing a verification which is cost-independent
of the number of servers. Finally, we will detail a new traceable multi-authority anonymous
credential protocol. After defining the security, the schemes are proved to achieve the desired
level of security. Below, we detail the contributions.

Decentralized Evaluation of Quadratic Polynomials on Encrypted Data [HPP19].
In this paper, we revisit the Boneh-Goh-Nissim (BGN) [BGNO05] cryptosystem, and the
Freeman’s variant [Frel0], that allow evaluation of quadratic polynomials, or any 2-DNF
formula. Whereas the BGN scheme relies on integer factoring for the trapdoor in the
composite-order group, and thus possesses only one pair of public/secret keys, the Free-
man’s scheme can handle multiple users with one general setup that just needs a pairing-
based algebraic structure to be defined. We show that it can be efficiently decentralized,
with an efficient distributed key generation algorithm, without any trusted dealer, but also
efficient distributed decryption and distributed re-encryption, in a threshold setting.

To motivate our work, we focus on some real-life applications of computations on encrypted
data, without central authority which only require evaluations of quadratic polynomials
so that specific target users can get the result in clear, by running re-encryption in a
distributed manner under the keys of the target users.

This paper has been published in the proceedings of the conference ISC in 2019.

Linearly- Homomorphic Signatures and Scalable Mix-Nets [HPP20].
In this article, we propose a new approach for proving correct shuffling of signed ElGamal
ciphertexts: the mix-servers can simply randomize individual ballots, namely the cipher-
texts, the signatures, and the verification keys, with an additional global proof of constant
size. This technique can be seen as an improvement of signatures on randomizable ci-
phertexts [BEPV11] which however does not allow updates of the verification keys. This
previous approach excluded anonymity because of the invariant verification keys.

The computational complexity for each mix-server is linear in the number of ballots and
the overhead after each shuffle can be updated to keep it constant-size. Thus, the final
proof implies just a constant-size overhead and the verification is also linear in the number
of ballots, but independent of the number of rounds of mixing. This leads to a new highly
scalable technique.

Our construction relies on Groth-Sahai proofs with pairings [GS08] and a new compu-
tational assumption that holds in the generic bilinear group model. We avoid the proof
of an explicit permutation on all the ciphertexts (per mixing step) but the appropriate
properties of the Mix-Nets are deeply guaranteed using linearly-homomorphic signature
schemes with new features, that are of independent interest.

This paper has been published in the proceedings of the conference PKC in 2020.

Traceable Multi- Authority Anonymous Credentials [HP20].
Following the path of aggregate signatures [CL11], our first contribution is the formal-
ization of an aggregate signature scheme with randomizable tags (ART-Sign) for which
we propose a practical construction. With such a primitive, two signatures of different
messages under different keys can be aggregated only if they are associated to the same
tag. In our case, tags will eventually be like pseudonyms, but with some properties which

1.5 - Organization of the Manuscript 9

make them ephemeral (hence Ephemerld scheme) and randomizable, even when they are
associated to the same user.

However our goal is to obtain a compact ABC system, which is our second contribution:
the Ephemerld scheme generates keys for users, they will use for authentication. Public keys
being randomizable, multiple authentications using the same key will remain unlinkable.
In addition, these public keys will be used as (randomizable) tags with the above ART-
Sign scheme when the credential issuer signs an attribute. Thanks to aggregation, multiple
credentials for different attributes and from several credential issuers but under the same
tag, and thus the same user, can be combined into a unique compact (constant-size)
credential.

About security, whereas there exists a scheme proven in the universal composability (UC)
framework [CDHK15], for our constructions we consider a game-based security model for
ABC inspired from [FHS19]. As we support different credential issuers, we additionally
consider malicious credential issuers, with adaptive corruptions, and collusion with mali-
cious users. However, the keys need to be honestly generated, thus our proofs hold in the
certified key setting. As for all the recent ABC schemes, our constructions will rely on
signature schemes proven in the bilinear generic group model.

Our last contribution is traceability, in the same vein as group signatures: whereas show-
ings are anonymous, a tracing authority owns tracing keys, and thus is able to link a
credential to its owner. In such a case, we also consider malicious tracing authorities, with
the non-frameability guarantee. Because the previous constructions ([CL13], [Verl7]) are
broken, our scheme is the first traceable attribute-based anonymous credential scheme.

1.5 Organization of the Manuscript

This thesis is organized into seven chapters as follows:
Chapter 1 is the present introduction.

Chapter 2 is a preliminary chapter introducing the notations used in the manuscript. It also
provides some definitions and some general notions and presents already existing crypto-
graphic primitives used in the next chapters. In particular, it describes the homomorphic
properties we will use a lot.

Chapter 3 presents our decentralized encryption scheme to evaluate quadratic polynomials on
encrypted data. It is based on the paper [HPP19].

Chapter 4 is an introduction to linearly homomorphic signatures. In particular, we present
two constructions: the first one is a modified already existing one used in our mix-net and
the second one is new and used in our anonymous credential scheme. This chapter can be
read independently of the previous one.

Chapter 5 presents our scalable mix-net. It is based on the paper [HPP20]. This chapter
depends on the previous one.

Chapter 6 presents our anonymous credential scheme. It is based on the paper [HP20]. This
chapter depends on the chapter 4.

Chapter 7 concludes this manuscript and expands the scope of the field with open questions.

10

1 - Introduction

Chapter

2
I Preliminaries

Chapter content

2.1 Notations and Usefull Notions 11
2.2 Provable Security e e e e e 13
2.3 Computational Assumptions 0000 0o 14
2.4 Cryptographic Primitives 000, 15
2.4.1 (Homomorphic) Encryption 15
2.4.2 (Homomorphic) Signature 18
2.4.3 (Homomorphic) Proof 21

This preliminary chapter aims to fix the notations and to recall the basic notions we will use
throughout this thesis. In particular, we recall the homomorphic primitives we will manipulate
to provide concrete constructions in the following chapters.

2.1 Notations and Usefull Notions

Sets. The set of all bit strings is denoted by {0, 1}*, while the set of bit strings of length n € N
is {0,1}". If = € {0,1}*, its bit-length is denoted |z|. If S is a finite set, we denote by |S| the
number of elements in S and by s <~ S the process of selecting s uniformly at random in the
set S.

Groups, Fields. We obtain a group by adding to a set a binary operation with good properties.
Usually in this thesis, groups will be finite of order p a prime number and denoted with the
multiplicative notation. Because a group of prime order is cyclic, an element of (G,-) can be
seen as an element of {1,g,...,¢?"!} and we will use the abusive notation G = (g) to denote
such a group with generator g. Moreover, we assume given g € G and = € Zj,, one can efficiently
compute g*. In other words, the multiplication over G is an efficient operation.

We denote the set of integers by Z and the set of non-negative ones by N. For a positive
integer n and an integer x € Z, the reduction of modulo n, denoted x mod n, is the remainder
of the Euclidean division of = by n. We denote by (Z,,, +) the additive group of integers modulo
n and by (Zy,+, -) the ring of integers modulo n. Again, p is a prime number in this thesis and,
we denote by Z; = Z,\{0} the group of units of Z, as Z, becomes a field in that case.

Vectors, Matrices. The vectors x = (x;); and matrices M = (m, ;);; are in bold and the
vectors are written as row vectors, with sometimes components separated by commas for clarity:
ifx & X" x = (x1 X9 -+ my) = (1,22, ,Tp).

We denote by M, »(Zp) the set of matrices on Z,, of size m x n, and thus m row-vectors
of length n. (M, ,(Zp),+) is an Abelian group. When A € My, (Zy) and B € M,, v (Zy),
the matrix product is denoted A x B € M,, (Zp), or just AB if there is no ambiguity.
(Myn(Zp),+, x) is a ring, and we denote by GL,,(Z,) C My, n(Z,) = My(Z,) the subset of the

12 2 - Preliminaries

invertible matrices of size n (for the above matrix product x), which is also called the general
linear group.

We will use the tensor product: for two vectors a = (ai,a2, - ,a,) € Z; and b =
(b1, b2, -+ ,bi) € Zy', the tensor product a ® b is the vector (aib, -+ ,a,b) = (a1b1, - ,a1bm,
agby, + agbm, + , anby) € Zy"; and for two matrices A € My n(Zp) and B € My v (Zy),

ay by a; ® by
a; ® by
A= B = A®B= . € Mmm’,nn’(Zp)'

Am bm’ a,, ® bm/

The bilinearity of the tensor product gives:
for A, A" € M, ,(Zy,) and B, B’ € M, 1/ (Zy),
(A+A)®B+B)=(A2B)+(AB)+ (A®B')+ (A'@B')

We will also use the following important relation between matrix product and tensor product:

fOI’ A e Mm’k(zp), Al € Mk,n(Zp)aB (= Mml’k/ (Zp), and B/ & Mk’,n’(Zp)7
(AxA)®(BxB)=(AcB)x (A2 B).

Projections. In order to continue with matrix properties and linear applications, a projection
7 in a space of dimension n is a linear function such that m o m = m. Any projection of rank 1
can be represented by the matrix P = B~'U, B, where U,, is the canonical projection and B is
the change of basis matrix:

0 ... 00 p1
U, = | = B=|

0 ... 00 .

0 ... 01 b

where K = (p1,...,Pn—1) is the kernel of the projection and (b) the image.

Given two projections 71 and mo of rank 1, that are represented by P = Bl_lUnBl and
P, =B, lUnt7 respectively, the tensor product m = m ® 7o is represented by P = P; ® P,
that is equal to

(B;'U,B1) ® (B; 'U,By) = (B]' @By ') x (U, @ Uy) x (By @ By)
= (B1 ®Bs) "' x U2 x (B; ®By).

The associated change of basis matrix is thus B = B; ® Bo. In dimension 2:

pP1 ® P2
P1 P2 p1 ® ba

B, = and By = , then B=B; ® By =)
b1 ® by

hence, the image of 7 = 71 ® my is spanned by b = by ® bg, while {p; ® p2,p1 ® b2,b; ® pa}
is a basis of the kernel. But, as explained below, p; ® ra + 11 ® pe, for r1,ry & ZI%, provides a
uniform sampling in ker(7):

ker(m) = {(z1 +22) - P1 ®P2 +¥2 - P1 @ b2 +y1 - b1 @ p2, 21,72, y1,Y2 € Zp}
={p1® (2 -P2+y2-ba)+ (z1-pP1+y1-b1) P2, 21,22, Y1, Y2 € Zp}.

2.2 - Provable Security 13

Cryptographic Notations. All along this manuscript, x will be the security parameter. In
all the public-key cryptographic primitives, keys will implicitly include the global parameters
and secret keys will include the public keys.

Bilinear Group Setting. A bilinear group generator G is an algorithm that takes a security
parameter as input, and outputs a tuple (G1, Go, Gr, p, g, 8, ¢) such that G; = (g) and G2 = (g)
are cyclic groups of prime order p (a k-bit prime integer), and e : G; X Go — G is an admissible
pairing:

e ¢ is bilinear: for all a,b € Z,, (9%, g°) = e(g, 9)%;
e ¢ is efficiently computable (in polynomial-time in k);
e ¢ is non-degenerated: e(g,g) # 1.

Furthermore, the bilinear setting (G1, Go, Gr,p, 9,9, ¢) is said symmetric when G; = Go and
asymmetric when Gy # Go and of

e Type 1: if there exist two efficiently computable isomorphisms from G; to Go and con-
versely from Gs to Gy;

e Type 2: if there only exists an efficiently computable isomorphism from Gs to Gq;
e Type 3: if there is no efficiently computable isomorphism between G; and Gs.

In this thesis, we will only use asymmetric pairing of type 3 and denote in Fraktur font
elements of Go for the sake of clarity.

2.2 Provable Security

Correctly evaluate the security of a system is challenging and fundamental. Especially because
it is always possible to attack a system: it suffices to try all the possible secrets until finding
the correct one. This method is called the brute-force attack. However, it takes time and
sometimes more efficient attacks can be found. Moreover knowing precisely the powers of an
attacker is often impossible: what does he intend to do, how much power or how long does he
have? Therefore, the goal becomes to modelize the interactions between some adversary and
the system so that a real attacker would have less power than the idealized/considered one.
This is usually achieved by upper bounding the data he has access to and formalized by an
experiment representing the desired security as a game between an attacker and an implicit
challenger playing as wanted by the system.

With the current computational power available, one considers an attack to be infeasible
if it requires 2'?® computational steps to break the system and one says that a cryptosystem
provides x bits of security if it requires 2" elementary operations to be broken. Hence, the goal
becomes to prove that the attacker winning the experiment has to perform at least this number
of operations.

After having defined the attacker and the security model we want to achieve, the proof
usually consists in hybrid games where the first one corresponds to the interactions between the
attacker and the system and each step of the proof shows that this intermediate experiment is
equivalent to the next one until the final experiment corresponds to the desired security or a
difficult mathematical problem. Usually at the end, one can tell if the attacker can break the
system if he is also able to break this well-known hard problem.

For that, it can be easier to make proofs in the Random Oracle Model (ROM) [BR93] in
which hash functions used in a scheme are considered as an ideal random oracle. Hence, the
randomness is considered as perfect.

14 2 - Preliminaries

Another possible model to help in the study of the security is the Generic Group Model
(GGM) [Sho97]: if the attacker has access to group elements, then he can just make linear
combinations of them and nothing else. For example, if the attacker knows A and B such that
A = ¢® and B = ¢® then the attacker can obtain C' = ¢®®t#® for any o and 3 but cannot have
D = g% with d not in relation with @ and b. In fact, this corresponds to an idealization of the
group structure as the attacker can not exploit any special structure of the representation of the
group elements. Similarly, the Generic Bilinear Group Model (GBGM) adds the idealization of
the pairing operation.

Finally, security proofs in the Common Reference String Model [Dam00] assume that a string
crs, known by all the participants before the begining of the scheme, exists and was honestly
generated.

Of course, the best model is the Standard Model where no idealization of the system is made
but difficult to achieve.

2.3 Computational Assumptions

As introduced in the previous chapter, in an asymmetric bilinear setting (G1, G2, G, p, g, 9, €),
or just in a simple group G, we can make assumptions that will help in the establishment of the
security proofs of the cryptographic schemes.

The most famous one is the Discrete Logarithm (DL) Assumption:

Definition 1 — Discrete Logarithm (DL) Assumption
In a group G of prime order p, it states that for any generator g, given y = ¢%, it is
computationally hard to recover x.

There exists a variant of the DL assumption when having two groups G1, Gs:

Definition 2 — Symmetric External Discrete Logarithm (SEDL) Assumption
In groups G1 and Go of prime order p, it states that for any generators g and g of G; and
Go respectively, given f = ¢% and § = g7, it is computationally hard to recover z.

The second most famous assumption is the Decisional Diffie-Hellman (DDH) assumption:

Definition 3 — Decisional Diffie-Hellman (DDH) Assumption
In a group G of prime order p, it states that for any generator g, the two following
distributions are computationally indistinguishable:

More precisely, the advantage Advg}dh(A) of an adversary A against the Decisional Diffie-

Hellman (DDH) problem in G is defined by:
Pr[A(g, g%, 9", g") = 1lv,y & Zp| — Pr [A(g, 9", 6", ¢°) = 1|v,y,2 & L)

The DDH problem in G is said (t,¢)-hard if for any advantage A running within time ¢, its
advantage Adv@"(A) is bounded by . We also denote by Advid"(t) the best advantage any
adversary can get within time t.

It is well-known, using an hybrid argument, or the random-self-reducibility, that the DDH
assumption implies the Decisional Multi Diffie-Hellman (DMDH) assumption:

2.4 - Cryptographic Primitives 15

Definition 4 — Decisional Multi Diffie-Hellman (DMDH) Assumption
In a group G of prime order p, it states that for any generator g and for any constant
n € N, the two following distributions are computationally indistinguishable:

Diran(9) = {(9, (9")is b, (h*4)i); b & G, (21); ¢ Zp}
D" (9) = {9 (g™)i, by (W)i); h & G, (20)i, (yi)i & Z}.

2.4 Cryptographic Primitives

In this section we introduce the homomorphic blocks at the core of this thesis. Each time the
primitive will be presented in its simplest form with its corresponding security definition and,
after that, homomorphic properties will be utilized to enhance it. Hence, the notations will be
fixed and already existing constructions given.

The first part focuses on the definition of an encryption scheme then, the second one describes
a signature scheme and the last one concerns zero-knowledge proofs.

2.4.1 (Homomorphic) Encryption

We begin with the most famous crytographic primitive: encryption. In this thesis we only use
Public-Key Encryption schemes:

Definition 5 — Public-Key Encryption Scheme
A public-key encryption scheme consists of the following algorithms:

EKeygen(r): Given a security parameter &, it outputs the public key pk with the associated
private key sk;

Encrypt(pk, m): Given a message m and a public key pk, it outputs the ciphertext C'

Decrypt(sk, C'): Given a ciphertext C' and a secret key sk, it outputs a message m.

A user with the pair (sk, pk) of secret-public keys can publish pk to everyone likely to send
him a message. However, sk needs to be stored in a safe place.
A public-key encryption scheme if said correct is for all message m and (sk, pk) < EKeygen(x),

Decrypt(sk, Encrypt(pk, m)) = m.
Example 6 (El Gamal Cryptosystem). To illustrate, the El Gamal encryption scheme (1984) is

composed of the three algorithms (EKeygen, Encrypt, Decrypt) defined on a cyclic group G = (g)
of prime order p with:

El Gamal Encryption Scheme [EIG84]

EKeygen(r): Given a security parameter k, it chooses x & Z,, and outputs the public key
pk = ¢g~* and the private key sk = .

Encrypt(pk,m): To encrypt a message M € G using public key pk, it chooses r & Z,, and
outputs the ciphertext C' = (M - pk”, g") € G2.

Decrypt(sk, C'): Given C' = (c1,c2) and the private key sk, it computes c; - c§<.

The scheme is correct as ¢y - 02 =M -pk"-(g T)Sk =M. g_Sk“”’Sk =M.

16 2 - Preliminaries

Security. The security of a public encryption scheme can be defined by different levels (from
the weakest to the strongest):

IND-CPA: the older is the semantic security, a.k.a. Indistinguishability Under Chosen-Plaintext
Attacks. Informally, it means that an attacker can not find which message is encrypted
after receiving a ciphertext of one of the two messages of its choice;

IND-CCA: the Indistinguishability Under adaptive Chosen-Ciphertext Attacks is similar to the
previous scenario except that the attacker has access to an oracle answering the decryption
of encrypted messages. The only restriction is that the attacker can not request the
decryption of the challenge ciphertext.

IND-CCA = IND-CPA
Let us now formally define the semantic security for a public-key encryption scheme. The

attack is done in two steps, and so the adversary outputs a state s to resume the process in the
second step:

Definition 7 — IND-CPA
Let & = (EKeygen, Encrypt,Decrypt) be an encryption scheme. Let us denote

Exp?d'cPa_b(A) the experiment defined by:

Expi;d-cpa-b(A):

(sk, pk) < EKeygen(k)
(s,m0,m1) < A(pk)
C < Encrypt(pk, my)
b+ A(s, C)
return

The advantage Advignd'c')a(/l) of an adversary A against indistinguishability under chosen

plaintext attacks (IND-CPA) is

Pr[EXpi;d—Cpa—l(A) —_ 1] o Pr[Expi;d-CPa-O(A) — 1]

An encryption scheme & is said (¢,e) — IND-CPA if for any adversary .4 running within
time ¢, its advantage Advg‘d'cPa (A) is bounded by & and we denote by Advg‘d'Cpa (t) the best
advantage any adversary A can get within time t.

For example, the El Gamal cryptosystem is IND-CPA secure under the DDH assumption.

Homomorphic Encryption Scheme

An encryption scheme is said partially homomorphic or homomorphic within a group (G, *) if
one can define an additional algorithm taking as input two ciphertexts C' on implicit message
m and C’ on implicit message m’ and producing a ciphertext C” on the message m x m’/. For
a multiplicative group (G, -), this algorithm is usually denoted Multiply(C,C") whereas for an
additive group (G, +), it is denoted Add(C,C").

If the scheme is at the same time additively (meaning having an Add algorithm as defined
above) and multiplicatively (meaning having an Multiply algorithm as defined above) homomor-
phic then, one can evaluate any function on ciphertexts and the scheme is said fully homomor-
phic.

Example 8 (El Gamal Cryptosystem). The El Gamal encryption scheme as presented in Ex-
ample 6 is homomorphic in (G,) as one can define an algorithm Multiply:

2.4 - Cryptographic Primitives 17

Multiply(C, C"): Given two El Gamal ciphertexts C = (c1, c2) and C" = (¢, ¢)), it outputs

C" = (c1-c},ca-ch).

This works as:
C" = ((M-pk") - (M' - pk"™),g" - ") = (M - M") - pk" ", g"+"") = Encrypt(pk, M - M").

However, by changing the message space from G to Z, and by defining the encryption of
m € Z, by Encrypt(pk,m) = (¢" - pk",g"). The scheme becomes homomorphic in (Z,, +):

Add(C,C"): Given two El Gamal ciphertexts C = (c1, c2) and C" = (¢}, ¢}), it outputs

C" =(c1-c},ca-ch).
We will often use this El Gamal version in this manuscript.

Security. An homomorphic encryption scheme can be IND-CPA secure however, IND-CCA2
can not be achieved. Indeed, the attacker chooses two messages mg, m; and sends them to the
challenger, the challenger chooses b < {0,1} and encrypts my into Cp. The attacker receiving
Cp simply computes C' = Cj, x Cj, and asks the decryption to obtain m = 2 - my. Finding the
right ' = b is then easy.

Freeman Cryptosystem.

To evaluate 2-DNF formulae on encrypted data, Boneh-Goh-Nissim described a cryptosys-
tem [BGNO5] in 2005 that supports additions, one multiplication layer, and additions again.
They used a bilinear map on a composite-order group and the secret key is the factorization of
the order of the group. Unfortunately, composite-order groups require huge orders, since the
factorization must be difficult, with costly pairing evaluations.

In order to improve the efficiency on this cryptosystem, Freeman in [Frel0] proposed a system
on prime-order groups, using a similar property of noise that can be removed, with the general
definition of subgroup decision problem:

Freeman's Cryptosystem [Frel0]

EKeygen(x): Given a security parameter k, it generates (G, H,Gp,p,g,b,¢e) < G(k), two
subgroups G1 C G, Hy C H and three homomorphisms 71, 7o, 7 such that G1, Hy
are contained in the kernels of 71, w9 respectively and e(m1(g), m2(h)) = mr(e(g,h)).
Finally, it outputs the public key pk = (G, Gy, H, H1,Gr, €, g,b) and the private key
sk = (w1, 2, 77);

Encrypt(pk,m): To encrypt a message m using public key pk, one picks ¢g; < G; and
b1 & Hy, and outputs the ciphertext (C4,Cg) = (¢" - g1,h™ - h1) € G x H;

Decrypt(sk,C): Given C € G (resp. € H or € Gr), it outputs m < log, (,)(m1(C)) (resp.
10g7r2(h) (772(0)) or 1OgTrT(e(g,h)) (ﬂ'T(C)))

Freeman’s scheme also has homomorphic properties:

Add(C, C"): Given two ciphertexts C and C’ of G (resp. of H or of Gr), it chooses g1 € Gy
and h; € Hy and outputs the ciphertext C” = C - C" - g1 (resp. C”" =C-C"- hy or
C” = C ' Cl : e(glv h) . €(g, hl))a

18 2 - Preliminaries

Multiply(C, C"): Given a ciphertext C' € G and C" € H, it outputs the ciphertext C" =
6(07 C/) : e(gla h) : 6(97 bl)

This scheme is secure under the subgroup decision problem which informally means that an
attacker can not distinguish elements of the subgroup G; C G from elements of G and as well
as elements of the subgroup H; C H from elements of H.

2.4.2 (Homomorphic) Signature

After having described the encryption schemes with their homomorphic variant, we will now
present the signature schemes following the same structure. First, we provide the general defi-
nition with an example and the security requirement. Then, we extend the signature schemes
to their homomorphic version.

In their seminal article [DH76], Diffie and Hellman described a digital signature scheme
as a “digital phenomenon with the same properties as a written signature. It must be easy
for anyone to recognize the signature as authentic, but impossible for anyone other than the
legitimate signer to produce it”:

Definition 9 — Digital Signature Scheme
A signature scheme consists of the following algorithms:

SKeygen(r): Given a security parameter k, it outputs the (public) verification key vk with
the associated (private) signing key sk;

Sign(sk,m): Given a signing key and a message m, it outputs the signature o;

VerifSign(vk, m, o): Given a verification key vk, a message m and a signature o, it outputs
1 if o is a valid signature relative to vk, and 0 otherwise.

A signature scheme is said correct is for all message m and for all (sk,vk) < SKeygen(k),
VerifSign(vk, m, Sign(sk,m)) = 1.

Example 10 (Schnorr Signature Scheme). Let G = (g) be a cyclic group of prime order p and
H :{0,1}* x G — Z, be a hash function. The Schnorr signature scheme (1989) is composed of
the three algorithms (SKeygen, Sign, VerifSign) with:

Schnorr Signature Scheme [Sch90]

SKeygen(r): Given a security parameter k, it outputs the signing key sk = x & Z and
the verification key vk = g*;

Sign(sk,m): Given a signing key sk and a message m € {0,1}*, it chooses a & Zy, and
computes r = g% ¢ = H(m,r) and s = a + cx mod p. The signature is then
o= (s,c);

VerifSign(vk, m, 0): Given a verification key vk, a message m and a signature o = (s, ¢),
it computes r = ¢® - vk~ ¢ and outputs 1 if ¢ = H(m,r), and 0 otherwise.

The scheme is correct as H(m,r) = H(m, g° - vk~) = H(m, g°~*¢) = H(m, g%).

Security. The security of a signature scheme was defined for the first time by Goldwasser et
al. [GMRSS] and is called the unforgeability. As for encryption, one can distinguished different
levels of attackers (from the weakest scheme to the safest):

2.4 - Cryptographic Primitives 19

EUF: a scheme is said to be Existentially Unforgeable (EUF) if an attacker can not succeed in
forging the signature of one message, even not of his choice;

SUF: a scheme is said to be Strong Unforgeable (SUF) if an attacker can not succeed in forging
the signature of one message, even not of his choice;

Let us now formally define the universal unforgeability for a signature scheme:

Definition 11 — EUF-CMA
Let X = (SKeygen, Sign, VerifSign) be a signature scheme and A an attacker against it
having access to the signing oracle Sign(sk, -). Let us denote Exp®*™2(1%) the experiment
defined by:

euf-cma (1/1)

Exp :
(sk, vk) < SKeygen(k)
(m*,a*) — ASign(sk,~)(Vk)

return m* “new” A VerifSign(vk, m*, ™)

The advantage Adve'm2(4) of an adversary A against ezistential unforgeability under
chosen-message attacks is Adve'FM3(A4) = | Pr[Exp®Fe™(1%) = 1]|. A signature scheme
X is said t — EUF-CMA secure if for any adversary .4 running in time ¢ polynomial in x and
making a number of signing queries also polynomial in &, its advantage AdveU=™2€(A) is
negligible.

)

By replacing m* “new” by (m*,c*) “new” in the definition above, we obtain the formal

definition of the Strong Unforgeability.

Homomorphic Signature Schemes

In this part, we will provide the informal notions of the homomorphic signature schemes as a
more detailed presentation of the specific linearly homomorphic signatures will be done in the
Chapter 4. The concept dates back to Desmedt [Des93] in 1993.

Similarly to encryption, a signature scheme is said homomorphic in (G, -) if one can define
an additional algorithm:

MultiplySign(vk, (w/,;,mi,ai)le): Given a public key vk and ¢ tuples of weights w; and
signed messages m; in o;, it outputs a signature o on the message m = Hle m;.

Example 12 (Libert et al. [LPJY13] Signature Scheme). In their article, Libert et al. [LPJY13]
introduce a new signature scheme proven in the standard model with messages in M € G", for
a cyclic group (G, x) of prime order p and some n € poly(k):

One-Time Linearly Homomorphic Signature Scheme [LPJY13]

SKeygen(k,n): Given a security parameter x and the dimension n, it generates
(G,Gr,p,g,e) < G(k) a symmetric bilinear setting of prime order p. Then, it
choses generators h, g.,gr, h. <& G. For i = 1 to n, it picks x;, v, 0; < Zy and
computes g; = gXig)i, h; = hX*h%. The signing key is sk = {xi,%i,;}"_; and the
verification key is vk = (g., hy, bz, by {9, hi}iey);

Sign(sk, M): Given a signing key sk = {xi, 7i, d;}/—; and a vector-message M = (M;); €

20 2 - Preliminaries

G", it outputs the signature o = (2,7, u) with
n n n
z = HMi_Xi, r= HMi_Wi, U= HM;‘SZ';
i=1 =1 =1

VerifSign(vk, M, o): Given a verification key vk, a vector-message M = (M;); and a
signature o, it outputs 1 if M # lgn and o = (2,7, u) satisfies

n n

lg, = e(gz,2) - elgr,r) - [[el9i, Mi), 1gp = e(hz, 2) - e(h,u) -] e(hi, My).
i=1 =1

Their scheme was inspired by the one-time structure-preserving signature of Abe et al.[AFGT10]
and is multiplicatively homomorphic as one can define a MultiplySign algorithm:

MultiplySign(vk, (w;, M;,0;)¢_;): Given a public key vk and ¢ tuples of weights w; € Zy and
signed messages M; in o; = (z;,r;,u;), it outputs the signature o = (z,r,u) with:

The output of this algorithm is a valid signature on the vector M = Hle M. In fact, as for
El Gamal, the signature scheme can be seen as a linearly homomorphic one as the message can
be m = (m1,...,my,) € Zy such that M = (g",...,g"").

Security. Similarly to homomorphic encryption, the security of homomorphic signatures needs
to be specified. Indeed, if one can evaluate any function of previously seen signatures of messages,
an attacker can forged any message of his choice. Informally, the security will require that an
attacker can not forge a message outside an authorized space.

For example, the Libert et al. scheme defined above considers that a signature o = o - ag is
not a forgery if the attacker previously asked for the signatures o; and o9. The attacker needs
to provide a signature outside any linear combination of previously asked signatures.

Aggregate Signature Schemes

In 2001, Boneh, Lynn and Shacham propose a new signature scheme [BLS01] that was extended
firstly in 2007 by Bellare, Namprempre and Neven [BNNO7] and then, in 2018 by Boneh, Drijvers
and Neven [BDN18]. These extensions allow aggregation of multiple messages signed by multiple
users. Hence, their signature is constant-size. Moreover, the verification is also constant-time
when the same message is signed by all the users (multi-signature). Since this is the most
interesting case for us, we focus on it.

BLS Aggregate Signature Scheme

Let G = (g) be a cyclic group of prime order p and H : {0,1}* — G* be a full-domain hash func-
tion. The BLS signature scheme is composed of the three algorithms (SKeygen, Sign, VerifSign)
with:

Boneh-Lynn-Shacham Signature Scheme [BLS01]
SKeygen(r): Given a security parameter #, it chooses sk < Z,, and outputs (sk, vk = g*);

Sign(sk,m): Given a signing key sk and a message m € {0, 1}*, it outputs the signature

2.4 - Cryptographic Primitives 21

o = H(m)*;

VerifSign(vk, m, o): Given a verification key vk, a message m and a signature o, it outputs
1 if and only if (g, vk, H(m), o) is a Diffie-Hellman tuple.

Given N tuples (vk;, 04, m;), it is possible to aggregate the signatures into a unique one
o =[] o;. To verify o, one needs to check that:

e(g,0) = H e(vk, H(m;)).

However, this scheme is sensitive to the rogue public-key attack if all the message m; are the
same. In 2018, Boneh, Drijvers and Neven proposed a scheme to solve this issue.

BDN Multi-Signature Scheme

Let MSparam = (G1,G2,Gr,p,g,9,€) + G(k) be an asymmetric pairing setting and let Hy :
{0,1}* — Gy and H; : {0,1}* — Z, be two full-domain hash functions.

Boneh-Drijvers-Neven Multi-Signature Scheme [BDN18]

MSKeygen(MSparam): Given the global parameter MSparam, it chooses sk < Zy and
outputs (sk,vk = g%);

MSKeyAgg({vki,...,vkx}): Given N verification keys vk;, it outputs the aggregated ver-
ification key avk = [TV, vk?l(Vki’{Vkl’”"VkN});

MSSign({vky,...,vkyx},sk;, m): Given N verification keys vk;, a signing key sk; and a
message m, it outputs o; = Ho(m)%.
From all the individual signatures o;, any combiner (who can be one of the signers)

N 0_7—[1(vkj,{vk1,.‘.,ka})'

computes the multi-signature msig = [[;_; i ;

MSVerif (avk, m, msig): Given a verification key avk, a message m and a signature msig, it
outputs 1 if and only if e(g, msig) = e(Ho(m), avk).

Since the aggregated verification key can be precomputed, verification just consists of two
pairing evaluations.

2.4.3 (Homomorphic) Proof

A zero-knowledge proof (ZK) [GMRR85] is a protocol between two players: a Prover and a Verifier
where the prover needs to convince the verifier of a given statement without revealing any other
information that the truth of this statement. The prover knowing a witness w and a statement
s provides a proof m that the verifier, given the statement s, accepts or rejects.

Informally, a zero-knowledge proof must satisfy the three properties:

Completeness: if the prover and the verifier follow the protocol, the verifier always accepts;
Soundness: a false proof is rejected with a probability of at least 1/2;

Zero-knowledge: whatever the verifier learns, he could have learned by himself without any
interaction with the prover.

Moreover, the zero-knowledge proof is said non-interactive (NIZK) if the prover simply sends
a proof m and, later, the verifier can verify m without any more information from the prover.

22 2 - Preliminaries

To achieve that, the classical method uses commitment schemes: the prover first commits some
random values and receives a challenge from the verifier, then the prover sends his response.

A commitment scheme ensures that a user committing a value m such that Com = Commit(m)
reveals no information about m (hiding property) but prevents the user from modifying m later:
there is only one way to open the commitment (binding property).

In particular, a commitment scheme is said perfectly hiding (resp. perfectly blinding) if the
hiding property (resp. blinding property) is true independently of the power of the attacker and
computationally if it relies on a computational assumption.

Example 13. To prove (g,h, A = ¢g*, B = h") is a Diffie-Hellman tuple with a Schnorr-like
zero-knowledge proof, the prover first chooses r & Z,, and sends the commitments U = g" and
V = h" to the verifier that answers a challenge ¢ € Z,. The prover constructs its response
s =7 —x-cmod p and the verifier checks whether both U = ¢° - A° and V = h* - B® hold.

To make the proof non-interactive, one can use the Fiat-Shamir heuristic with ¢ generated
by a hash function on the statement (g, h, A, B) and commitment (U, V). The proof eventually
consists of (¢, s). From this proof, one can compute the candidates for (U, V'), and check whether
the hash value gives back c.

Groth-Sahai Proofs

Let (G1,Go,Gr,p,g,8,¢) < G(k) be an asymmetric pairing setting. We recall the Groth-Sahai
methodology [GS08] to prove a Diffie-Hellman tuple in Go (because it will be used in G, later).
As the Groth-Sahai proofs are randomizable [BCC'09], we will also present how to randomize
a Diffie-Hellman proof of (g, g’,,2l") and how to update it into a new one for (g, g”, A, 2A”).

First, we set a tuple (v1,1,v1,2,v2,1,v22) € G#, such that (v1,1,v1,2,V2,1,9 X v22) is not a
Diffie-Hellman tuple. Then, given a Diffie-Hellman tuple (g, g’, 2, 2’) in G2, knowing the witness
a € Zy such that A = g* and 2’ = g’“, one first commits a:

Com = (c=wg -vfy,d = vy g% vly)
for a random p & Zy, and one sets © = gt and ¥ = A*, which satisfy:

e(c,g) = e(va,9) - e(vi1,0) e(d,g) =e(va2-9.9) - e(v1,2,0)
e(c,A) = 6(0271,9[/) ce(v1,1,¥) e(d,A) =e(va2 - g,) e(vi2,¥)

The proof proof = (Com, ©, %), when it satisfies the above relations, guarantees that (g, g/, 2, 2")
is a Diffie-Hellman tuple.

Security. This proof is zero-knowledge, under the DDH assumption in Gi: by switching
(1)171,11172,v271,g X 0272) into a Diffie-Hellman tuple, one can simulate the proof, as the com-
mitment becomes perfectly hiding.

Efficiency. To verify the proof, instead of checking the four equations independently, one
can apply a batch verification [BFIT10], and pack them in a unique one with random scalars
T11,71,2, 91, Lo & Ly

e(cr1,1dw1,27gw2,19112,2) — 6(1);0711,1 (1}272 . g)wlyg’g/xllm/xZQ)

r1,1, %12 T2, 1J7%2,2
X e(vL1 vy 5, O)

One thus just has 3 pairing evaluations.

2.4 - Cryptographic Primitives 23

Updating the Diffie-Hellman proof. The interesting property of Groth-Sahai proofs is that
it is possible from a Diffie-Hellman proof for (g, g’,2,2') to generate the Diffie-Hellman proof
for (g,g” = g” , A, A" = A'") just knowing the incremental witness o/, whereas the new witness

shoud be aa/, but is unknown to the prover: from the Diffie-Hellman proof proof = (Com, ©,V¥)
for (g,g’,2(,2") where

_ — & M — & 14 (07 _ —
Com = (¢ = v510) 1,d = V5507 5g%) e =g v =A*

one can compute the proof proof” for (g,g"” = g A A = Ql’a,), with u/ & 7Z, and:

/

, ’ / ’ ’ ’ ’
Com’ = (c* -wfy,d* -ofy) O =0% gV V=g Y

One implicitly updates a into aa’ and p into o’u + ¢/, In particular, one can remark that if
o/ =1, this simply randomizes the original proof.

24

2 - Preliminaries

Chapter

3
I Decentralized Evaluation of
Quadratic Polynomials on

Encrypted Data

This chapter is based on the paper [HPP19] published in the proceedings of the International
Conference on Information Security, ISC 2019.

Chapter content

3.1 Freeman’s Approach o it ittt e e 26
3.1.1 Notations e 26
3.1.2 Freeman’s Scheme with Projections 27
3.1.3 Homomorphic Properties 28
3.1.4 Security Properties oL 30
3.1.5 Re-Encryption 32
3.1.6 Verifiability 33
3.1.7 Distributed Decryption Lo 37

3.2 Optimized Version ittt ittt e e 37
3.2.1 Imstantiationo L L 37
3.2.2 Security Propertieso 39
3.2.3 Decentralized Homomorphic Encryption 40
3.24 Efficiency e 43

3.3 Applications o e e e e e e e e 43
3.3.1 Encryption for Boolean Formulae 44
3.3.2 Group Testing on Encrypted Data 44
3.3.3 Consistency Model on Encrypted Data 45

In 2005, Boneh, Goh and Nissim [BGNO05] proposed a nice solution for quadratic polynomi-
als evaluation. However, their solution relies on a composite-order elliptic curve and thus on
the hardness of the integer factoring. This possibly leads to a distributed solution, but that
is highly inefficient. Indeed, no efficient multi-party generation of distributed RSA modulus is
known, except for 2 parties. Catalano and Fiore [CF15] introduced an efficient technique to
transform a linearly-homomorphic encryption into a scheme able to evaluate quadratic opera-
tions on ciphertexts. They are able to support decryption of a large plaintext space after the
multiplication. However, as in Kawai et al. [KMH'19] which used this technique to perform
proxy re-encryption, they only consider a subclass of degree-2 polynomials where the number
of additions of degree-2 terms is bounded by a constant. This is not enough for most of the
applications and we do not try to decentralize these limited protocols.

In 2010, Freeman [Frel0] proposed a conversion from composite-order groups to prime-order
groups for the purpose of improving the efficiency. In Section 3.1, we show Freeman’s conver-
sion allows multi-user setting, since a common setup can handle several keys and we show it

26 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

is well-suited for distributed evaluation of 2-DNF formulae. However, it is not enough to have
an efficient distributed setup. One also needs to distribute any use of the private keys in the
construction: for decryption and re-encryption. Unfortunately, Freeman’s generic description
with projection matrices does not directly allow the design of a decentralized scheme, i.e., with
efficient distributed (threshold) decryption without any trusted dealer. We thus specify in Sec-
tion 3.2 particular projections, with well-chosen private and public keys. Finally, in Section 3.3,
we propose two more applications that are related to the group testing and the consistency
model in machine learning.

Related Work. In a previous and independent work, Attrapadung et al. [AHM™ 18] pro-
posed an efficient two-level homomorphic encryption in prime-order groups. They put forward
a new approach that avoids Freeman’s transformation from BGN encryption. Interestingly, our
work shows this scheme falls into Freeman’s framework because their construction is similar
to the simplified non-decentralized version of our scheme which is obtained from BGN via a
Freeman transformation with a particular choice of projections. The concrete implementations
in [AHM™ 18] show that such a scheme is quite efficient, which applies to our construction, and
even to the distributed construction as each server, for a partial decryption, essentially has to
perform a decryption with its share. In another unpublished work [CPRT18], Culnane et al.
considered a universally verifiable MPC protocol in which one of the two steps is to distribute
the key generation in somewhat homomorphic cryptosystems. However, as we mentioned above,
Freeman’s generic description with projection matrices, as considered in [CPRT18], does not
lead to an efficient distributed decryption. In short, our result bridges the gap between the
objective of decentralization as in [CPRT18] and the efficiency goal as in [AHM18].

3.1 Freeman’s Approach

3.1.1 Notations

In this section, for a generator g of a cyclic group G = (g), we use the implicit representation
[a] of any element h = g* € G and by extension we will use the “bracket” notations, which
makes use of the matrix properties over the exponents defined in Chapter 2, that are scalars in
Zy, when G is a cyclic group of order p. See Figure 3.1 for more details about the “brackets”

o Forx €Zy, A € My n(Zy): [z] =g¢%, [A] = gt = (g%7)45

o ForzeZ, A Be Myn(Zy),X € Myw(Zy),Y € My m(Zy):

v Al=g (Al X=¢*X Y- [A]=g" [A]+[B]=[A+B

o For A € My, (Zy), B € My n(Zp): [A]1 0Bl = [A®Blr

Figure 3.1: Bracket Notations

In case of bilinear groups, we also define, for A € M,, ,(Z,) and B € M,/ (Zy), [A]1 ®
Bl = [A ® B|r, which can be evaluated with pairing operations between G; and Gy group
elements.

3.1 - Freeman’s Approach 27

3.1.2 Freeman’s Scheme with Projections

The main goal of Freeman’s approach was to generalize the BGN cryptosystem to any hard-
subgroup problems, which allows applications to prime-order groups under the classical Deci-
sional Diffie-Hellman or Decisional Linear assumptions, with high gain in efficiency.

We now present a variant of Freeman’s cryptosystem allowing multiple users, without the
twin ciphertexts (in G and H). Since we will work in groups Gi, Go, and Gr, the algorithms
EKeygen, Encrypt and Decrypt will take a sub-script s to precise the group Gg in which they
operate, but the Setup is common.

Multi-User Freeman's Cryptosystem
Setup(x): Given a security parameter x, it runs and outputs param =
(Glu(G?)GT)p)glquve) «— g(ﬁ’)

EKeygen,(param): For s € {1,2}, it chooses By & GL3(Z,), let Py = B;1UsB; and
ps € ker(Py) \ {0}, and outputs the public key pk, = [ps|s and the private key
sk, = Py.

From (pk;,sk;) < EKeygen,(param) and (pky,ska) < EKeygen,(param), one can
consider pky = (pkj,pky) and skp = (sky,sks), which are associated public and
private keys in G, as we explain below.

Encrypt,(pk,, m, As): For s € {1,2}, to encrypt a message m € Z, using public key
pk, and As; = [a]s € G2, it chooses r < Z, and outputs the ciphertext Cs =
(m -[a]s +7 - [ps]s, [a]s) € G2 x G2.
For s = T, with A, = ([a1]1, [a2]2), it sets [a]r = [a1]1 ® [az]2 € G4, chooses [r1]; &
G%, [ra]2 & G3, and outputs Cp = (m-[a]p+[p1]1 ®[r2]o*[r1]1e[p2)s, [a]7) € G xG7.

Decrypt,(sks, C): For s € {1,2}, given Cs = ([cs,1]s, [Cs,2]s) and sky = Py, it lets C =
([Cs,l]s : PS7 [CS,Q]S : Ps)
For s =T, it computes Céw = ([CT,I]T . (Pl ® Pg), [CT,Z]T . (Pl ® Pz))
In both cases, it outputs the logarithm of the first component of c;’l in base the first
component of ¢ 5.

With the algorithms defined above, we have three encryption schemes & : (Setup, EKeygen,,
Encrypt,, Decrypt,) for s = 1,2 or T, with a common Setup.

Remark. We note that in Freeman’s cryptosystem, ciphertexts contain encryptions of m in
both G; and Gs to allow any kind of additions and multiplication. But one could focus on one
ciphertext only when the formula to be evaluated is known.

Proposition 14. For s € {1,2,T}, & is correct.

Proof. For s =1,2:

als - Py = [aPg]s
s = (m [a]s"'r' [ps]s)’Ps =m:- [a]s'Ps"'T‘ [ps]s'Ps

»
|

=m - [aPg|s +r - [psPs]s = m - [aPs]s # - [0]; = m - [aPg]s

28 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

For s =T
[era]r - (P1®P2) = [a]r - (P1 ® P2) = [a(P1 ® P)]r
[eralr - (P1®P2) = (m - [a]r + [p1]1 @ [r2]2 + [r1]1 @ [P2]2) - (P1 ® P2)
=m-[a(P1 ® P2)|r + ([p1]1 @ [r2]2) - (P1 @ P2) + ([r1]1 @ [p2]2) - (P1 @ Py)
=m-[a(P; ®Pa)]r +[p1 @ r2]7 - (P1 @ P2) + [r1 ® p2]7 - (P1 ® Py)
=m-[a(P1 ® Pa)|r + [p1P1 @ r2Pa|7r + [r1P1 ® poPa]r
=m- [a(P1 ® Pz)]T + [0 & I'QPQ]T + [I‘1P1 ® O]T =m- [a(P1 & Pg)]T

In both cases, Cf | = [c} 1]s = m-[c} 5]s = m-Cf 5. Whatever the size of the vectors, one discrete
logarithm computation is enough to extract m. O

As already explained above, the encryption process masks the message by an element in the
kernel of a certain projection. The secret key is the corresponding projection Pg which later
removes this mask. In the Decrypt algorithm, C’ is a Diffie-Hellman tuple (whatever the group
under consideration), the discrete logarithm of one component is enough to decrypt, since the
plaintext is the common exponent.

One can note that matrices By and By are drawn independently, so the keys in G; and Go
are independent. For any pair of keys (pk; = [p1]1, pky = [P2]2), one can implicitly define a
public key for the target group. To decrypt in the target group, both private keys sk; = Py
and sky = Py are needed. Actually, one just needs P; @ Py to decrypt: Cf = ([era]r - (P1 ®
Py), [cr2]r - (P1®Py)), but Py ® Py and (P, P3) contain the same information and the latter
is more compact.

3.1.3 Homomorphic Properties

As BGN, Freeman cryptosystem also allows additions, one multiplication layer, and additions:
we detail the homomorphic functions below.

Add(Cs, CY): Given two ciphertexts Cs = ([cs1]s, [€s.2]s), C" = ([c1]s, [€52]s) in one of
G} x G},G3 x G3,G% x Gf, if [cso]s = ¢ 2]s, it outputs ([cs 1]s * [Cs1ls, [Cs.2]s),
otherwise it outputs L.

Multiply(Cy, C2): Given two ciphertexts C = ([e1.1]1, [c12]1) € G x GF and Ca = ([c2.1]2,
[CQ’Q]Q) S G% X G%, it outputs CT = ([C1’1]1 ° [02,1]2, [Cl,g]l ° [C272]2) € G% X G%«

Randomizeg(pk,, Cs): Given a ciphertext Cs = ([cs,1]s, [Cs,2]s), for s € {1,2} and a public
key pk, = [ps]s, it chooses a, r & Z, and outputs (a - ([cs1]s + 7 - [Ps]s), @ - [Cs,2]s);
while for s = T and a public key pkp = ([p1]1, [p2]2), it chooses a < Ly, r1]1 & G?
and [ra]2 ¢ G3, and outputs (a - ([er,1]r + [P1]1 @ [r2]2 + [r1]1 @ [P2]2), & - [er2]7).

Instead of performing a systematic randomization of ciphertexts as proposed by Freeman
each time an Add or a Multiply is computed, we create a specific function Randomize usable at
any time, when more privacy is required.

Let us check the correctness of the three homomorphic functions:

Proposition 15. Add and Multiply are correct.

Proof. Let us first consider the addition operations:

3.1 - Freeman’s Approach 29

e For s=1,2:

Add(Encrypt,(pkg, m, [a]s; 7), Encrypt,(pk,, m/, [a]s; 7))
= ([ma +rpy]s - [m/a + T/ps]s, [a]s) = ([(m + m/)a + (r + T/)ps]s, [a]s)
= Encrypt,(pky, m +m’, [a]s; 7 +17)

o Fors="1T:

Add(Encrypty (pkp, m, ([a1]1, [az]2);r1, re),
Encrypty(pky, m', ([a1]1, [az]2); 7, 13))
= ([m([a1]1 [az]2) + 11 @ p2 + P1 ® T2|7-
[m'([a1]1 @ [ag]2) + 1] ® p2 + p1 @ rh]7, [a1]1 © [ag]s)
= ([(m +m)([a1]1 ® [az]2) + (r1 +1]) ® P2+ P1 @ (r2 + 1)1, [a1]1 @ [a2]2)
= Encryptp(pkp, m +m/, ([a1]1, [a2]2); r1 + 1,12 4 15)

About multiplication, we can see that

Multiply(Encrypt; (pky, m1, [a1]1;71), Encrypts (pky, ma, [az]e; r2))
= ([miai + mpi)1 - [moaz + rapal2, [a1]1 © [az]2)
(mia; +m1p1) @ (meag + rep2)|r, [a1]1 @ [az]2)

[
[mia; ® moas + mia; ® rap2 + rip1 ® meas + r1p1 Q repalr, [ai]1 © [az]2)
[
[

= (
= (
= ([mia; ® moag + mia; ® rap2 + rip1 ® (moag + r2p2)|7, [a1]1 ® [az]2)
= (

mime(a; ® az) + p1 @ (rimeag + rirapz2) + (remiar) @ pelr, [ai]1 @ [az]2)

= Encrypty(pky, mima, ([ai]1, [az]2); mirear, morias + r17r2p2)

Proposition 16. For s € {1,2,T}, Randomize, is correct, with a = 1.
Proof. For s € {1,2}:

Randomize,(pk,, Encrypt,(pk,, m, [a]s; 1), o, 7')
= ([a(ma +rps +1'ps)ls, [eals) = ([m(aa) + a(r +1')psls, [eal;)
= Encrypt,(pk,, m, [aa]s; a(r +17))

Since 7’ is uniformly distributed, the mask of the first component of the ciphertext is uniformly
distributed, as in a fresh ciphertext, while with o = 1, the basis in the second component
remains unchanged. In addition, the random « also randomizes the basis [aals, in the second
component of the ciphertext, but computationally only, under the DDH assumption in Gs.

For s =T

Randomizer (pky, Encrypty(pky, m, ([a1]1, [as]2); 1), a, 1), 15)

= (a-(m-[a]r +[p1]1 ® [r2)2 + [r1]1 @ [P2]2 + [P1]1 @ [r3]2 + [r]]1 @ [Pa]2, [a]7),
([cai)1, [oas]2))

= (a-(m-[a]7 +[p1]1 @ [r2 + 152 + [r1 +1]1 @ [P2]2), ([eai]; @ [aaz]2))

= Encrypty(pky, m, ([cai]1, [cas]s); ara + 1), a(ra +15))

Again, since r} and r/, are uniformly distributed, the mask of the first component of the cipher-
text is uniformly distributed, as in a fresh ciphertext. In addition, the random « randomizes
the basis in the second component of the ciphertext, but computationally only, under the DDH
assumption in both G; and Gs. L]

30 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

3.1.4 Security Properties

Theorem 17. For s € {1,2}, & is IND-CPA under the DDH assumption in Gs: for any
adversary A running within time t, Advignsd'cpa (A) <2x Adv%ih (t).

Proof. We denote by Advignsd'Cpa (A) the advantage of A against £. We assume the running time
of A is bounded by t.

Game Gq: In this first game, the simulator plays the role of the challenger in the experiment
Expgsd'Cpa'O(A), where b = 0:
S(k):
e param = (G1,G2,Gr,p, 91, g2, €) < Setup(k)
o (sks, pky) < EKeygen,(param)
* Mo, mi, [a]s — A(parama pks)
« Cs=(mo-[a]s +7 - [ps]s, [a]s) < Encrypt,(pk,, mo, [a]s)
o U« A(param,pk,, Cs)

We are interested in the event E: b = 1. By definition,

PrlE] = Pr [Expf™0(4) = 1)

Game Gi: Now the simulator takes as input a Diffie-Hellman tuple ([p]s, [r]s), with r =
r - p for some scalar r, and emulates EKeygen, and Encrypt, by defining pk, < [p]s and
Cs < (mg - [a]s *+ [r]s, [a]s). Thanks to the Diffie-Hellman tuple, this game is perfectly
indistinguishable from the previous one: Prg,[E] = Prg,[E].

Game Gy: The simulator now receives a random tuple ([p]s,[r]s): Prg,[E] — Prg,[E] <
Advih ().

Game Gj3: The simulator still receives a random tuple ([p]s, [r]s), but generates Cs < (m; -
[a]s * [r]s, [a]s). Thanks to the random mask [r]s, this game is perfectly indistinguishable
from the previous one: Prg,[E] = Prg,[E].

Game G4: The simulator now receives a Diffie-Hellman tuple ([p]s, [r]s), with r = r - p for
some scalar r: Prg,[E] — Prg,[E] < Adv«dﬁh (t).

Game Gs;: In this game, the simulator can perfectly emulate the challenger in the experiment
Expgsd'Cpa_l(A), where b = 1: This game is perfectly indistinguishable from the previous

one: Prg,[E] = Prg,[E].

One can note, that in this last game, Prg [E] = Pr {Exp?sd'c"a'l(A) = 1}, hence

Pr [Exp?sd_Cpa'l(A) = 1} —Pr {Expi;sd{pa'o(A) = 1} <2x Advﬁédsh (1),
which concludes the proof. O

Corollary 18. & is IND-CPA under the DDH assumptions in G1 or Gs. More precisely, for
any adversary A running within time t,

AdvEy P (A) < 2 x min{AdVE (¢ + b + te), AVE (¢ + t + te)),

where t,, is the time for one multiplication and t. the time for one encryption.

3.1 - Freeman’s Approach 31

Proof. The semantic security for ciphertexts in G comes from the fact that:

Encrypty(pkr, m, ([a1]1, [a2]2))
= Multiply(Encryptl(pkl, m, [al]l)v Eanyth(ka,]-a [32]2))
= Multiply(Encryptl(pkl, 1, [al]l)) Encryth(pkz, m, [32]2))

Indeed, with this relation, each ciphertext in G; can be transformed into a ciphertext in G
(idem with a ciphertext in G2). Let A be an adversary against IND-CPA of &7, in Gr.

Game Go: In the first game, the simulator plays the role of the challenger in the experiment
Expg‘;'Cpa'O(.A), where b = 0:
S(k):
® param = (le GZa GTapa g1, 92 6) — Setup("{’)
o (ski, pk;) - EKeygen;(param),(ska, pky) < EKeygen,(param)
* g, mi, [a]la [a]Q <~ .A(param, (pk17 pk?))
o Or= EncryptT<(pk17 pk2)a mo, ([a]lv [8]2))
« B« Alparam, (pky, pky), Cr)

We are interested in the event E: b’ = 1. By definition,

PrlE] = Pr [Explfd™0(4) = 1]

Game Gj: The simulator interacts with a challenger in Exp?ld'Cpa'o(A), where b = 0. It thus
first receives param, pk; from that challenger, generates pky by himself to provide (pkp =
(pky, pkq)) to the adversary. The latter sends back (mg, m1, [a]1, [a]2), from which it sends
(mgo, m1,[al1) to the challenger. It gets back C1 = Encrypt; (pk;, mo, [a]1). It can compute
the ciphertext Cr = Multiply(C1, Encrypty(pks, 1, [a2]2)), to be sent to the adversary. This
game is perfectly indistinguishable from the previous one: Prg,[E] = Prg,[E].

Game Go: The simulator interacts with a challenger in Expi;ld'cPa'l(A), where b = 1:

Er(E] - Pr[E] < AdVETPA (t+ by, + L),

where t,, is the time for one multiplication and t. the time for one encryption.

Game Gj: In this final game, the simulator plays the role of the challenger in the experiment

Exp?;'CPa'l(A), where b = 1. This game is perfectly indistinguishable from the previous

one: Prg,[E] = Prg,[E].
One can note, that in this last game, Prg,[E] = Pr {Expg'f'c"a'l(ft) = 1}, hence

Pr {Exp?ﬁ“cPa_l(A) = 1} —Pr [Exp?;_Cpa_O(A) = 1} < Adv?;'CPa(t +tm +te),

which concludes the proof, since it works exactly the same way for Ga. 0

32 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

3.1.5 Re-Encryption

We have three efficient encryption schemes able to compute homomorphic operations and sup-
porting multiple users. When a result should be available to a unique user, a classical technique
called proxy re-encryption [BBS98] is to re-encrypt to this target user: this is a virtual decryp-
tion followed by encryption under the new key. With Freeman’s approach, and our formalism,
this is just a change of basis in the exponents: we can re-encrypt a message encrypted under a
private key pk? into another encryption for a private key pk? by using a special secret key called
re-encryption key rk?~%.

Below we describe REKeygen, that creates the re-encryption key from the secret keys and

REEncrypt, the function to re-encrypt a ciphertext, but under a different basis.

REKeygen,(sk?,sk%): For s = 1,2, from two different secret keys sk? = P, and
skZ = P/, associated respectively to the two public keys pk? and pkg, compute
B,,B, € GlLy(Z,) such that P, = B;'UB, and P, = B, 'UB/, and output
rk?*b = R, = B; !B/, the secret re-encryption key. From the re-encryption keys
rk¢~% = R + REKeygen, (sk%,sk?) and rk$ % = Ry + REKeygen,(skg, skb), we will
consider rk%? = (rk§~" rk4=?), as the matrix Ry actually is R; ® Ra.

REEncrypt, (rk? 7% Cy): To re-encrypt a ciphertext C' = ([cs1]s, [Cs.2]s):

o fors= 17 27 output ([Cs,l]s : rk¢81—>b’ [CS,Q]S : rk?éb);

o for s =T, output ([cr1]7 - (rk‘f_ﬂ’ ® rk‘2’_>b), [eralT - (rk‘f_ﬂ’ ® rk‘21_>b)).

We stress that the basis a is modified with the re-encryption process, into aRs or a(R; ®Rg),
which could leak some information about the re-encryption key. But as explained above, the
randomization process can provide a new ciphertext that computationally hides it, under DDH
assumptions. However, this requires this basis a to be part of the ciphertext as it cannot be a
constant.

Correctness of Re-Encryption. The correctness of the re-encryption is based on a change
of basis that transforms an element in the kernel of P, in an element in the kernel of P’: let
p € ker(P,) and p’ € ker(P),) because ker(P,) and ker(P?,) are of dimension 1 in Z2, there exist
a,b,k € Zy, such that p =k - (a,b) and o/, V', k' € Z,, such that p’ = k" - (¢/,"). We have:
p-tk=p-B7'B' =k(1,00B' = k(d,b) = p-rk=kk' 'p' =+'p’
for some 7’ € Z, and with that, the correctness follows, where rkg_ﬂ’ is denoted R: for s € {1,2},
REEncrypt, (k3 ~*, Encrypt,(pk, m, a,1)) = ([cs1]s - ki ", [es2]s - ki)
= ([maRs + rpsRsls, [aRs]s) = ([maRs + rr'pls, [aRs]s)
= Encrypt,(pk®, m,aR; rr)
For s =T,

REEncrypty(rk%%, Encrypty(pk%, m,a;r1, 1))

= ([eralr - (ki @ k™), [eralr - (ki @ k™))
((lma+p1®ra+r; @p2) - (R1 @Ra)]r, [a- (R1 @ Re)|r)
([ma(R1 ® R2) + p1R1 ® 1Ry + 1R ® poRo]7, [a - (R1 ® Ra)]7)
(fma(R1 ® R2) +rp] ® raRy + 1Ry @ rypyr, [a - (R1 ® Ry)]r)
([ma(R1 ® Ra) + pj @ riraRs + roriR; @ phlr, [a- (R1 @ Ra)|r)
Encrypty(pkf, m, a(R1 ® Ra);rhriRy, rirsRy)

3.1 - Freeman’s Approach 33

3.1.6 Verifiability

When a ciphertext is randomized or re-encrypted by a third party, one may want to be sure the
content is kept unchanged. Verifiability is thus an important property we can efficiently achieve,
with classical zero-knowledge proofs of discrete logarithm relations d¢ la Schnorr. Such linear
proofs of existence for k scalars that satisfy linear relations generally consist of a commitment
¢, a challenge e € Z, and the response r € Z’; (see Preliminaries 2.4.3). The non-interactive
variant just contains e and r, and thus k + 1 scalars.

Example 19. Let M € M2(Z,) and ([x]s, [y]s), ([x]s, [y']s) € G2. We will make the zero-
knowledge proof of existence of M such that both [y]s = [x]s - M and [y']s = [x]s - M, where
[x]s, [¥]s, [x]s and [y’]s are public, but the prover knows M. This is the classical zero-knowledge
proof of equality of discrete logarithms with matrices.

The prover chooses M’ & My(Z,) and sends the commitments [c]s = [x]s - M’ and [¢/]s =
[x']s - M to the verifier that answers a challenge e € Z,. The prover constructs its response
R = M’ — eM in Mjy(Z,) and the verifier checks whether both [c]s; = [x]|s - R + e[y]s and
[c/]s = [¥]s - R + e[y’]s, in G2. To make the proof non-interactive, one can use the Fiat-Shamir
heuristic with e generated by a hash function (modeled as a random oracle) on the statement
([x]s, [¥]s)s ([X']s, [¥']s) and commitments ([c]s, [c¢/]s). The proof eventually consists of (e, R).
From this proof, one can compute the candidates for ([c]s, [c']s), and check whether the hash
value gives back e.

Before entering into the details of the relations to be proven, for each function of our encryp-
tion scheme, we rewrite the EKeygen, and REKeygen, algorithms to prepare the verifiability of
Decrypt, and REEncrypt,. These new EKeygen, and REKeygen, algorithms consist of the origi-
nal EKeygen, and REKeygen, but with more elements in the output: they both output a public
version of the produced secret key plus a zero-knowledge proof of the correctness of the keys.
This significantly simplifies the relations to be proven afterwards for Decrypt, and REEncrypt,.
At the end of this section, we prove that adding those elements do not compromise the security
of the encryption scheme.

EKeygen, for Verifiability.

While the secret key is the projection Py, the verification key vskg consists of [Pg]s:

EKeygen,(param): For s € {1,2}. Tt chooses By & GLy(Z,), lets Py = B;UyB, and
ps € ker(P;) \ {0} and outputs the public key pk, = [ps]s, the private key sks = P
and vsks = [P;]s a verifiable public version of the secret key with the proof 7s:

{3sks € Ma(Zp),vsks # [0]s A vsks = [1]5 - sks A pk, - sks = [0]s}.

The proof m guarantees that all the keys are well-formed: vsk, is the exponentiation of a
2 x 2-matrix skg, for which the discrete logarithm of pk, is in the kernel. Hence, sk is not
full rank, and vsks # [0]s proves that sk is of dimension 1: a projection. As a consequence,
ms consists of 5 scalars of Z,, using the above non-interactive zero-knowledge technique a la
Schnorr.

From (vsky, vska), we consider vsky = vsk;evsksy. It satisfies vskr = [P1@Ps] 7 if (vsky, vska) =

([P1]1, [P2]2).

REKeygen, for Verifiability.

As above, while the secret re-encryption key is an invertible change of basis matrix rkgHb, the

verification key vrk?~? consists of [rk¢*],. However, in order to prove the matrix rk%=? is

34 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

invertible, one can show it is non-zero, and not of rank 1, which would mean that vrkg_ﬂ’ would
consist of a Diffie-Hellman tuple:

REKeygen, (sk?,sk%): For s = 1,2, from two different secret keys sk? = P, and sk’ = P,
associated respectively to the two public keys pk? and pkg, it computes By, B/, €
Ms(Z,)? such that P, = B;'UB, and P, = B, 'UB/,. Let rk¢?" = R7 =
B !B/, be the secret re-encryption key, vrkg_ﬂ’ = [rk‘;_ﬂ’]s be a verifiable public
version of the re-encryption key and [r/]s = A-[r12]s where X is such that 791 = X-rqq
(with r11, 712,791, r22 the components of rkg_ﬂ’, and 727

{3rk?™" € My(Z,),3\ € Zy,
vrks # [0]s A vrka70 = [1]4 - rk27% A pk? = pk® - rk@?
Als = N [riz]s Afra]s = A [ria]s A [# [rao]s}

It outputs (rk 7Y, vrk27?, [/]s, m70).

The proof 727" guarantees that vrk?7° is well-formed and, since in Mz(Z,), the matrices
are 0, or of rank 1 as a projection, or invertible: 773_”’ first checks it is not 0, and then not of
rank 1 either, as vrk?~? is not a Diffie-Hellman tuple.

The two checks vrk2™" = [0], and [], # [rao]s are just simple verifications, thus 72~ needs
6 scalars of Zj, as a proof d la Schnorr.

Similarly as for vskg, from (vrky,vrky), we consider vrky = vrky e vrko. So that, vrky =
[Rl & RQ]T if (vrkl,vrkg) = ([Rl]h [RQ]Q)
Now, we explain for each function, the relations to be proven:

The function Randomize;.

It takes a ciphertext Cs = ([cs,1]s, [€s,2]s) encrypted with a public key pk, and produces a
ciphertext Cf = ([c 1], [c} o]s) such that:

o for s € {1,2} and pk, = [ps]s, it exists a,r € Z, such that:

[C/s,l]s =a - ([es1]s + 7 [Ps]s) A [CIS,Q]S =a - [cs2ls
o for s =T and pky = ([p1]1, [P2]2), it exists o € Zy, 11,1 € Z2 such that:
/

[cr1]r = - ([era]r + [p1]1 @ [ra]a + [r1]1 @ [P2]2) A [cpolr = a - [cralr

These relations are equivalent to the linear relations:
o for s € {1,2}, it exists a, r € Z, such that:
[C/s,l]s =a-[csi]s # 7 [Ps]s A [C;,Q]s =a - [cs2]s
o for s =T, it exists a € Zyp,r1,12 € Zg such that:
[C/T,l]T =a-[cri|r* [pi]r-ra+ri - [pP2lr A [C/T,Q]T =a-[crolr

These proofs consist of 3 scalars of Z, for s € {1,2}, and 6 scalars of Z,, for s =T

The functions Add and Multiply.

They are public and deterministic thus everyone can check the operations.

3.1 - Freeman’s Approach 35

The function Decrypt,.

It takes a ciphertext Cs = ([cs1]s, [cs,2]s) encrypted with a public key pk, and produces its
decryption m such that:

o for s € {1,2} and pk, = [ps]s, it exists sky = Ps € My(Z,) such that:

[ps]s . Ps = [O]S A Ps 7é 0OA [cs,l]s : Ps =m- [Cs,2]s : Ps

o for s =T and pkp = ([p1]1, [P2)2), it exists sky = (P1,P2) € M1(Z,)? such that:

[pl]l P = [0]1 AN [pg]g Py = [0]2 APy 75 0APy 75 0
A\ [CT,l]T . (P1 X PQ) =m- [CT,2]T . (Pl X Pz)

Instead of proving these relations, the prover will use vskg for s € {1,2, T’} produced by EKeygen,
for verifiability and will make the proof of the relations:

o for s € {1,2}, it exists sky = Py € M3(Z,) such that:

[vsks]s = [1]s - Ps A ([es1]s =m - [es2]s) - Ps = [0]5
o for s =T, it exists skp = (P1,P2) € ./\/lz(Zp)2 such that:

vskr]r = [1]7 - (P1 @ P2) A ([eralr = m - [era]r) - (P1© P2) = [0]7
The linear proofs consist of 5 scalars of Z,, for s € {1,2} and 17 scalars of Z,, for s =T

The function REEncrypt,.

It takes a ciphertext Cs = ([cs1]s, [Cs2]s) encrypted with a public key pk? and produces a
ciphertext Cy = ([c s, [c§ o]s) encrypted with a public key pk® such that:

o for s € {1,2}, it knows rk?”" = Ry € GLy(Z,) such that:

([Cls,l]Sv [C;,Z]S) = ([CS,I]S ‘R, [Cs2]s - Rs) A ka = pks - Rs

o for s = T, pk§ = (pk{,pk§), pkf = (pk},pk}) and vrkp = ([Ra]1 ® [Raz), it knows
rk4? = (R1, Ra) € GLy(Z,)? such that:

([1), [eralr) = ([era]r - (R1 @ Ra), [era]r - (R1 ® Ry))
A pKy = (pkY, pk) = (pk{ - Ry, pk - Ro)

Instead of proving these relations, the prover will use vrks for s € {1,2,T} produced by
REKeygen, for verifiability and will make the proof of the relations below:

o for s € {1,2}, it knows rk?7® = R, € My(Z,) such that:

([Cls,l]& [CIS,Q]S) = ([es]s - R, [C8,2]s “Rs) A Vrk(slﬁb =[1]s - Ry

o for s =T, it knows rk% " = (R; ® Rg) € M4(Z,) such that:

([eralrs [€ra)r) = ([eralr - (R1 ® Ra), [era]r - (R1 ® Ry))
AvrkE? = [1]7 - (R1 @ Ry)

36 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

This proof needs 5 scalars of Z,, for s € {1,2} and 17 scalars of Z,, for s = T.

Proposition 20. For s € {1,2}, & with verifiability is still secure. More precisely, for any
adversary A running within time t,

AdVESP2(A) < 4 x AdVER (1),

Proof. The modified EKeygen, also outputs vsks and a zero-knowledge proof 7. This implies
that some games need to be added before the first game in the security proof of £ for Theorem 17:

Game Gq: In the first game, the simulator plays the role of the challenger in the experiment
Exp?sd'CPa_O(A), where b = 0:
S(k):
¢ param = (le GZa GT7P> 91,92, 6) «— Setup(ﬂ)
o (sks, pkg,vsks, ms) < EKeygen(param)
o mg, mi,|a]s < A(param, pk,)
o Cs=(mo-[a]s + 1 [ps]s, [a]s) « Encrypt,(pk,, mo, [a]s)
o b+ A(param, pk,, Cy)

We are interested in the event E: b’ = 1. By definition,

ErlB] = Pr [Exp® P 0(A) =1].

Game Gi: The first modification is to replace m¢ by its simulation, possible thanks to the
zero-knowledge property. This game is statistically indistinguishable from the previous
one, under the statistical zero-knowledge property of the proof d la Schnorr in the Random
Oracle Model.

Game Gy: Now the simulator takes as input a Diffie-Hellman tuple ([a]s, [b]s), with b =r-a
for some scalar r, and emulates EKeygen, by defining vsks the matrix defined by the two
vectors ([a]s, [b]s). Thanks to the Diffie-Hellman tuple this corresponds to the matrix
of a projection, and thus this game is perfectly indistinguishable from the previous one:
Prg,[E] = Prg, [E].

Game Gj3: The simulator now receives a random tuple ([a]s,[b]s): Prg,[E] — Prg,[E] <
Adv%ih (t). In this game, there is no information in vsks anymore and the zero-knowledge
proofs are simulated. In the original proof, sk is never used, thus we can plug the games
from the original proof here. To finish the proof we need to unravel the games of vsk, and
T in order to have:

Game G4: S(k):
o param = (G1,G2,Gr, p, g1, 92, €) - Setup(x)
o (sks, pkg, vsks, ms) < EKeygen (param)
e mg,my, [a]s < A(param, pk,)

o Cs=(my-[a]s+7[ps]s, [als) « Encrypty(pks, mo,[a]s)

o b — A(Param, pk57 CS)
the experiment Exp?sd_Cpa_l(A)~

Hence, we have:

Pr [EXP?Sd_Cpa_l(A) = 1} —Pr {Expi;sd{pa'o(A) = 1} <4 x Advﬁédsh (t).

3.2 - Optimized Version 37

Corollary 21. Ep with verifiability is still secure.

Proof. Similarly to the previous proof, the zero-knowledge proofs are replaced by their simula-
tions. Then, vsk; and vsky are replaced by random matrices in M(G1) and Mo (Gz) respectively.
Thus, vskr is also a random matrix. O

3.1.7 Distributed Decryption

When a third-party performs the decryption, it is important to be able to prove the correct
decryption, which consists of zero-knowledge proofs, as described in the previous Section 3.1.6.
However, this is even better if the decryption process can be distributed among several servers,
under the assumption that only a small fraction of them can be corrupted or under the control
of an adversary.

To decrypt a ciphertext in Gs with s € {1,2}, one needs to compute ([cs1]s - sks, [cs.2]s - Sks).
In a Shamir’s like manner [Sha79], one can perform a t-out-of-n threshold secret sharing by
distributing sk, such that sks = >";c; Arisks; with I C {1,...,n} a subset of t users, and for all
i €I, \i; € Zp and sk ; is the secret key of the party F;.

For s = T and with just the distribution of sk; and sko, it is also possible to perform a
distributed decryption, using the relation sk; ® skg = (sk; ® 1) x (1 ® sk). One can thus make
a two round decryption, first in G; and then in Gs.

Remark. Because the operations to decrypt or re-encrypt are the same, one can make dis-
tributed re-encryption in the same vein: in our applications, computations will be performed
on data encrypted under a controller’s key, where the controller is actually a pool of controllers
with a distributed decryption key. The latter will be used to re-encrypt the result under the
targer end-user’s key.

However, in this scheme, the secret key must be a projection matrix, which is not easy to
generate at random: for this key generation algorithm, a trusted dealer is required, which is not
ideal when nobody is trusted. This is the goal of the rest of the chapter, to show that we can
optimize this generic construction, and distribute everything without any trusted dealer.

3.2 Optimized Version

We presented the translation of Freeman’s approach with projection matrices. This indeed leads
to a public-key encryption scheme that can evaluate quadratic polynomials in Z,, under the
DDH assumption. However, because the secret key must be a projection matrix, the distributed
generation, while possible, is not as efficient as one can expect. We thus now propose a particular
instantiation of projections, which allows very compact keys and ciphertexts.

3.2.1 Instantiation

While in the generic transformation of Freeman, the secret key belongs to the whole projection
matrix space, our particular instantiation of projections means that the secret key will belong
to a proper sub-space of the projection matrix space. In addition, this will allow to generate
keys in a distributed manner, without any trusted dealer.

Indeed, it is possible to reduce by a factor two the size of the keys: for s € {1,2}, the
secret key is just one scalar and the public key one group element in Gs. For the keys, we will
consider orthogonal projections on ((1,x)), for any = € Z,. Thus, sk, can simply be described
by x € Z,, which is enough to define the projection. The public key pk, can simply be described
by g;* € Gs, which is enough to define (g;%,gs), as (—x,1) is a vector in the kernel of the
projection, to add noise that the secret key will be able to remove.

38 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

More precisely, we can describe our optimized encryption schemes, for s € {1,2,T}, as
Es : (Setup, EKeygen,, Encrypt,, Decrypt,) with a common Setup (as the index s indicates the
group, in this section, elements of Gy will not be denoted in Fraktur font):

Setup(k): Given a security parameter k, it runs and outputs

param = (G1, Gz, Gr,p, g1, g2, €) < G(K).

EKeygen,(param): For s € {1,2}. It chooses x4 & Z, and outputs the public key
pky = g5 % and the private key sky = z5. From (pky,sk;) < EKeygen,(param)
and (pk,,sks) < EKeygen,(param), one can consider pky = (pkq, pky) and skp =
(ski,ska), which are associated public and private keys in Gr.

Encrypt,(pk,,m): For s € {1,2}, to encrypt a message m € Z, using public key pk,, it
chooses r & Z,, and outputs the ciphertext

Cs = (csp = gi" - Pk}, cs2 = g5) € G2

For s = T, to encrypt a message m € Z, using public key pky = (pkq, pksy), it
chooses 111,712,721, 722 & Zé and outputs the ciphertext

cr1 = e(g1,92)" - e(g1, pky)"t - e(pky, g2)"™t,
cr2 = e(g1,92)™ - e(pky, g2)"2, 4
C = ’ S G
T crs = e(g1,pky)™ - e(g1, g2)™", T
cra = e(gi,go)2tr2

Decrypt,(sks, Cs): For s € {1,2}, given Cgs = (cs,1,¢s2) and the private key sk, it com-
putes d = cs1 - czkg and outputs the logarithm of d in basis gs. For s = T', given

— J— 3 _ Sk2 Sk1 Sk1-5k2
Cr = (cr1,¢1,2,¢1,3, ¢T,4) and skp = (sky, ska), it computes d = ¢ Cr5 Ty ey

and outputs the logarithm of d in basis e(g1, g2).

In G; and (g, this is actually the classical ElGamal encryption. We essentially extend it to
G, to handle quadratic operations:

Add(Cy, CY) just consists of the component-wise product in Gg;

Multiply(Cy, Cy) for Cy = (c11 = g™ - pki',e12 = g7') € Gf and Cy = (c21 = g5 -
pky?, co0 = gh?) € G3, consists of the tensor product:

COr = (e(c11,c2.1),e(c11,ca2),e(c12, 1), e(c12,c20)) € GF.

Randomize,(pk,, Cs) is, as usual, the addition of a random ciphertext of 0 in the same
group G;. For s € {1,2}: Given a ciphertext Cs = (¢, 1, ¢s2) with its public key pk,,
it chooses r & Zp and outputs (cs 1 - pky, cs2 - g7); while for s = T, a public key pkp
and a ciphertext (cr1,cr.2,¢13,c14), it chooses 141, 7hq, 7,75 & Z, and outputs
(e - (g1, pka) 11 - e(pky, g2)™21, crp - €(g1, g2)" - e(pky, g2)"22, crs - (g1, pkg) 12 -
e(g1,92)™, cra - (g1, g2) 12 1722).

3.2 - Optimized Version 39

3.2.2 Security Properties

Whereas the correctness directly comes from the correctness of Freeman’s construction, pre-
sented in the Section 3.1, and verification is straightforward, the semantic security comes from
the classical ElGamal encryption security, under the DDH assumptions, for the basic schemes
in G1 and Go:

Theorem 22. For s € {1,2}, & is IND-CPA under the DDH assumption in Gs: for any
adversary A running within time t, Adv:srfsd‘cpa (A) <2 x Advh(t).

Corollary 23. & is IND-CPA under the DDH assumptions in G1 or Gs.
Proof. The semantic security for ciphertexts in G comes from the fact that:
Encrypty(pky, m) = Multiply(Encrypt; (pky, m), Encrypty(pks, 1))
= Multiply(Encrypt; (pk;, 1), Encrypty(pky, m))

Indeed, with this relation, each ciphertext in G; can be transformed into a ciphertext in G
(idem with a ciphertext in G2). Let A be an adversary against IND-CPA of &r, in Gr.

Game Gg: In the first game, the simulator plays the role of the challenger in the experiment
Exp?;{pa'o(A), where b = 0:
o param = (G, Go, Gr, p, g1, g2, €) < Setup(k)
o (ski,pk;) < EKeygen;(param),(sko, pky) < EKeygen,(param)
o mg,my < A(param, (pky, pks)); Cr = Encryptr((pky, pky), mo)
o [<« A(param, (pky, pks), C7)
We are interested in the event E: b’ = 1. By definition,

o ind-cpa-0 _
gg[E] =Pr {ExpgT (A) = 1} :

Game Gi: The simulator interacts with a challenger in Exp?ld'Cpa'O(A), where b = 0. It
thus first receives param, pk; from that challenger, generates pky, by himself to provide
(pky = (pkq, pks)) to the adversary. The latter sends back (mg,m1) the simulators for-
wards to the challenger. It gets back C7 = Encrypt,(pky,mp). It can compute Cp =
Multiply(C1, Encrypty(pks, 1)), to be sent to the adversary. This game is perfectly indistin-
guishable from the previous one: Prg, [E] = Prg,[E].

Game Ga: The simulator interacts with a challenger in Expi;ld{pa'l(A), where b = 1:
Pr[E] — Pr[E] < AdVi P (¢ 4+ 4 -1, +4-1,),
G2 G1 1
where ¢, is the time for one pairing and t. the time for one exponentiation.

Game G3: In this final game, the simulator plays the role of the challenger in Expign;fl'q)a'1 (A),
where b = 1. This game is perfectly indistinguishable from the previous one: Prg,[E] =

PI‘G2 [E]
One can note, that in this last game, Prg,[E] = Pr {Expg‘f'Cpa‘l(,A) = 1}, hence
AdvESP(A) < AVECPAUt 41, + 4 t,),
which concludes the proof, since it works exactly the same way for Go. O

We stress that the security of £ only requires the DDH assumption in one of the two groups,
and not the SXDH assumption (which means that the DDH assumption holds in both G; and
Ga).

40 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

3.2.3 Decentralized Homomorphic Encryption

Our main motivation was a decentralized key generation and a distributed decryption in order
to be able to compute on encrypted data so that nobody can decrypt intermediate values but the
result can be provided in clear to a target user. We now show that our optimized construction
allows both decentralized key generation without a trusted dealer and distributed decryption.
They are both quite efficient. We also show this is possible to do proxy re-encryption in a
distributed way, without any leakage of information.

Decentralized Key Generation

In fact, a classical decentralized t-out-of-n threshold secret sharing allows to generate the shares
of a random element and it seems hard (if one expects efficiency) to use it to generate the shares
of a structured matrix, such as projections required in the generic construction, because its
elements are not independently random. In our specific construction, the secret keys in G; and
Go are now one scalar and one can perform a classical t-out-of-n threshold secret sharing: each
player i generates a random polynomial P; of degree t—1 in Z,[X], privately sends x; ; = P;(j) to
player j, and publishes g5 Pi(o); each player ¢ then aggregates the values into sk; = >~ z;; = P(i),
for P =}, P;, which leads to a share of x = P(0), and the public key is the product of all the
public values.

Distributed Decryption

In order to decrypt Cs = (cs,1,¢s,2) in Gy or Gg, each player in a sub-set of ¢ players sends its

contribution czg, that can be multiplied with Lagrange coefficients as exponents to obtain the

mask c§k2 = pk;". To decrypt Cr = (cr.1,¢r2,¢1,3,cT,4) in G, one can first use the shares of

sk sk sko sk -sko
sk to compute cr and Cr and then the shares of sko to compute cr and cry - Under the
DDH assumptions in G1, Gy and G, one can show that the intermediate values czki, or c%lfg,

)

c?,'fi, cf_,t‘%, and c?,Eka do not leak more than the decryption itself. Of course, classical verifiable

secret sharing techniques can be used, for both the decentralized generation and the distributed
decryption. This can allow, with simple Schnorr-like proofs of Diffie-Hellman tuples, universal
verifiability.

Distributed Re-encryption

Besides a distributed decryption, when outsourcing some computations on private information,
a distributed authority may want to re-encrypt the encrypted result to a specific user, so that
the latter can get the result in clear, and nobody else. More precisely, we assume the input
data were encrypted under the keys pky, pky, and pky = (pky, pky), which leads, after quadratic
evaluations, to a resulting ciphertext under the key pk;, for which the distributed authorities,
knowing a t-out-of-n additive secret sharing (ski;,skg;); of (ski,sks), will re-encrypt under
PKr = (PKy, PK2) for the target user. Of course, such a re-encryption can be performed using
multi-party computation, but we will show an efficient way to do it.

We start with the re-encryption of cs = (¢s,1 = g7 - pk}, ¢s.2 = g5): player i chooses 77 & Lo,
computes a; = czk2“ . PK? and 3; = gzg, and outputs (a;, ;). Then, anybody can compute, for
the appropriate Lagrange coefficients \;’s,

Cs = (Cs1 = cs1 % [[] = glpkigl ™ - PKL = g™ - PKL G0 = [[B = g%

with 7/ = 3> \;r, where the sum is on the ¢t members available.
For s = T, given a ciphertext ¢; = (.1, ¢r2, €13, ¢T,4), Player i chooses u; & Zp, and first

computes and sends «ag; = c;lfz" -e(g1,92) ". With a linear combination for the appropriate

3.2 - Optimized Version 41

Lagrange coefficients \;’s, anybody can compute, ag = [] aél = c:,Lfi1 e(g1, g2) ™", with implicit

— T ; / / / /
u =3 Ajuj. Then each player i chooses 71y ;, 719 ;, 7% ;5792 4, Vi & 7, and computes

ko i o ’ i r
a]_ Z == 0;22 . G(PK]_, 92)7‘2171 6(91792)T11,1+u . G(PK]_, 92)T22,z

k1.4 o o r ’
i = C;—‘é . e(gl, PKQ)TH’Z = (gl’ PK2)T12,1 . e(gl’ 92)T21,z+v
Qqi = 043 . (PKl gg) @ 0; = (91792)T12 T2

Again, with linear combinations for the appropriate Lagrange coefficients \;’s, anybody can
compute, with 7% = 35 A\l for 4,k € {1,2}, and v = 3= N

a1 = 03522 e(PK1;92)r/21 Cra = e(gl,QQ)T'11+u . e(prgQ)rgg
Qg = Cj% e(g1, PKQ)TIU Crs = e(g1, |:>|,<2)7“’12 _6(91792)7‘51+U
g = 2 - e(g1, PKa)" - e(PKy, g2)" Cra = e(g1, go) 12722

Then, Cr1 = cr1 X cranas = e(g1, 92)™ - e(g1, PKQ)”/H’L“ -e(PKq, gQ)T51+”, so that the ciphertext
Cr = (Cr1,Crp2,Cr3,Cr4) is a re-encryption of ¢ under PKy.

For random scalars, the re-encryption algorithms (which is just a one-round protocol in G
and G2, but 2-round in Gr) generate new ciphertexts under appropriate keys that look perfectly
fresh. In addition, one can claim:

Theorem 24. The above distributed protocols for re-encryption do not leak additional informa-
tion than the outputs of the non-distributed algorithms.

Proof. The goal of this proof is to show that the distributed protocol to re-encrypt a ciphertext
under PKy does not leak more information than a direct encryption under PKg. For s € {1,2},
one is given ¢; = Encrypts(m, pky;7) = (cs,1,¢52) and Cg = Encrypts(m, PKg; R) = (Cs1,Cs2),
two ciphertexts of the same message m under pk, and PK; respectively. One can then note that
Cs1/csy = PKE/pkl = 5 /C350.

The Re-Encryption in G, for s € {1,2}.

Game Go: In the first game, the simulator just receives ¢; = (cs1,¢s2), and plays the real
protocol using the t-out-of-n distributed keys (sks, Z)Z to provide the keys to the corrupted
users and to generate the values o; = cSks ‘ PKS and B; = gs , on behalf of the non-
corrupted players. We assume that among t players, £ are honest and t — ¢ are corrupted.
The latter are assumed to receive the secret keys sk, ; and to generate their own outputs
(cui, Bi). The view of the attacker consists of the set of all the honest (a, 3;).

Game G;: The simulator is now given ¢s = (cs,1,¢s2) and Cs = (Cs 1, Cs2) that encrypt the
same message. We want, for the appropriate Lagrange coefficients \;

Cs,l'Ha;\i CS,QZHB@')\Z"
/

Hence, the simulator can take, for all the honest players except the last one, 7}

& Zy, to
compute o; = cS 5 PKs and 3; = gs . For the last honest player, from all the honest-user
shares and corrupted user shares, one sets

= sl/csl Ha 1/>\£ 52 Hﬁ 1/>\Z
1£L i#L
Then, for the t players:] ozi = czkﬁ PK;/ and [] B;\i = g;"', for v = > A\irl and with the
implicit 7y = (R — 3,20 Air;) /M. So 7" = R. The view of the attacker remains exactly the
same.

42 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

Game Gj: In this game, the simulator also takes as input a Diffie-Hellman tuple (A = ¢", B =
PKY) with (gs, PKs): it first derives enough independent pairs (A;, B;) = (g - AY:, PKYi .
BYi), for random z;,y;, for all the non-corrupted players (excepted the last one), and
computes a; = ci('” - By, B; = A;. Since (gs, PKs, A, B) is a Diffie-Hellman tuple, the view
is perfectly indistinguishable from the previous one.

Game Gj: In this game, the simulator now receives a random tuple (A, B), which makes all
the (A;, B;) independent random pairs, the rest is unchanged: under the DDH assumption
in Gg, the view is computationally indistinguishable.

Game Gy4: This is the final simulation, where all the honest shares («;, ;) are chosen at
random, except the last ones (ay, ¢) that are still computed as above to complete the
values using ¢; and Cj: the view is perfectly indistinguishable from the previous one and
does not leak information.

As a consequence, we have proven that there is a simulator (defined in the last game) that
produces a view indistinguishable from the real view, with just the input-output pairs. This
proves that nothing else leaks. O

The Re-Encryption in Gr.

The proof follows the same path as in the previous proof: one is given two ciphertexts cp =
EncryptT(m, (pkl, pk2); 11,712,721, 7“22) and CT = EncryptT(m, (PKl, PKQ); R11, R12, Rgl, RQQ)
of the same message m under pky and PKp respectively. One needs to simulate all the
o4, 24, 034, Qg i, B4, Y4, 03 for all the non-corrupted players. Since cr and Cr encrypt the same
message, and we want

N A\ Ai A A
Cri=cra- Hoﬁfz‘ T Qg Cro = Hﬁi ' Crs= H%’ ’ Cra= H5i '

the simulator can take, for all the honest players except the last one, 11, ;, 7o, 75y 4 79 4» i, Vi <
Zy, to compute, in the first round:

k i —U;)\z
azi=cpy' - e(gr,g2) " asy < Gr ag =[] o5}
and in the second round, for all but the last honest player

Skgﬂ;
Q4 = CT,2 - €

PKj, 92)T21’i B = 6(917 92)7’11,2‘"‘“1' . €(PK1, 92)7"22,1'
g1, PKg)" 11 Vi = e(g1, PKa)" 12 - e(gy, ga) 214"

ska,i i rro Al .
agi =g " e(PKy, gg)"” b = e(g1, g2) 12224

~~

Skl’i
Q2 = CT,S - €

and for the last honest player:

azy & Gr Be = (Cra x 1_[57;_/\1')1/&Z
i

age & Gr ve = (Cr,3 % HVi_Ai)l/AZ
i

8¢ = (Cra x] ;)1
£

3.3 - Applications 43

which implies implicit values for r}, ;, 75 s, 751 4> Thy 4> U, V¢ because the above system is invert-

ible, where X, Y, and Z are the constant values introduced by cgh(j, for some 1, j:

log By 0 1 0 0 —ski 1 0\ (e
logw 0 0 SkQ 1 0 0 -1 7"’12!
logdy, | |0 0 1 0 1 0 0[],
M ogane | T X[Tlo 0 0 0 sk —1 oy
log ag ¢ Y 0 0 O 0 1 0 Up
log ava,¢ Z 1 00 0 0 0 v

Then it is possible to set: oy = (Cr1/(cr - aoay) X ITize al_’z’»\")l/)‘f.

First, this is clear that the as;’s do not leak anything as they contain random masks
e(g1,92)"". Then, to prove that all the oy, a2, i, Bi, 7,6 do not leak information, one
can perform a similar proof as above for G, by using the DDH assumption in both G; and Gs.
Indeed, each element is masked using a pair either (g5, PK5) or (g7, PK’), for some random r. If
one wants to have an indistinguishability under the SXDH assumption (and thus only one DDH
assumption in one group), one could add more masks. But this does not make sense to have
one key compromised and not the other one, for the same user. Hence, we tried to make the
re-encryption as efficient as possible.]

We stress that for the re-encryption in G; or Gg, one just needs the DDH assumption in
this group Gs. But for the re-encryption in Gr, one needs the DDH assumption in both Gy
and Gz (the so-called SXDH assumption). We could rely on only one of the two, by adding
masking factors, but this does not really make sense for a user to have his private key sk; being
compromised without sk (or the opposite).

In addition, zero-knowledge proofs can be provided to guarantee the re-encryption is honestly
applied: they just consist in proofs of representations, when gzks'i
s € {1,2} and all indices 1.

are all made public, for

3.2.4 Efficiency

In the concrete case where we have n servers able to perform a distributed protocol as described
above, each of them has two scalars corresponding to a secret key for the encryption in G; and
a secret key for the encryption in Go. We recall that a ciphertext, in G; or Go, is composed of
two group elements, and a ciphertext in G is composed of four group elements. A recipient,
that wants the result of either a decryption or a re-encryption with the help of ¢ servers, has to
perform a few exponentiations. The table below details the number of exponentiations for each
player involved in the distributed protocols.

per server | recipient
distributed decryption in G1/Gy 1 t
in Gp 4 4t
distributed re-encryption in Gi/Go 3 t
in G 13 Tt

3.3 Applications

Boneh, Goh, and Nissim proposed two main applications to secure evaluation of quadratic poly-
nomials: private information retrieval schemes (PIR) and electronic voting protocols. However,
the use of our decentralized scheme for electronic voting is much more preferable than the BGN

44 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

scheme, as there is no way to trust any dealer in such a use-case. We propose two more ap-
plications that are related to the group testing and the consistency model in machine learning.
Our applications are particularly useful in practice in a decentralized setting, as they deal with
sensitive data. Interestingly, the use of distributed evaluation for quadratic polynomials in these
applications is highly non-trivial and will be explained in the last section.

3.3.1 Encryption for Boolean Formulae

In this part, we detail the specific case of the evaluation of 2-DNF.

First, as explained in [BGNO05], a way to guarantee the ciphertexts are encryption of inputs
in {0, 1}, the verification can be done with our scheme (or the one of BGN or Freeman) with the
additional term Add;(Multiply(Cy,,Add(Cy;,C—1)), multiplied by a random constant, so that it
adds zero if inputs are correct, or it adds a random value otherwise. This introduces a quadratic
term, just for the verification. This is at no extra cost if the Boolean formula is already quadratic,
which will be the case of our applications.

Every Boolean formula can be expressed as a disjunction of conjunctive clauses (an OR of
ANDs). This form is called disjunctive normal form (DNF) and, more precisely, k-DNF when
each clause contains at most k literals. Thus, a 2-DNF formula over the variables z1,...,x, €
{0,1} is of the form

(li1 Nlio) with ;1,00 € {x1,Z1,...,Tn, Tn}.

-

Il
—

)

The conversion of 2-DNF formulae into multivariate polynomials of total degree 2 is simple:
given @(x1,...,x,) = Viz1 (i1 A ¥ 2) a 2-DNF formula, define ¢(z1,...,2n) = >t (Yin X ¥i2)
where y; j = £;; if 4;; € {z1,..., 25} or y;; = (1 — £; ;) otherwise. In this conversion, a true
literal is replaced by 1, and a false literal by 0. Then, an OR is converted into an addition, and an
AND is converted into a multiplication. A NOT is just (1 — x) when = € {0,1}. ¢(x1,...,zy)
is the multivariate polynomial of degree 2 corresponding to @(z1,...,x,). As just said, this
conversion works if for the inputs, we consider 1 € Z, as true and 0 € Z, as false, but for the
output, 0 € Z, is still considered as false whereas any other non-zero value is considered as true.

To evaluate the 2-DNF in an encrypted manner, we propose to encrypt the data and to
calculate the quadratic polynomial corresponding to the 2-DNF as seen above by performing
Adds and Multiplys. Because the result of the 2-DNF is a Boolean, when a decryption is per-
formed, if the result is equal to 0, one can consider it corresponds to the 0-bit (false) and else,
it corresponds to the 1-bit (true).

Hence, when encrypting bits, we propose two different encodings before encryption, depend-
ing on the situation: either the 0-bit (false) is encoded by 0 € Z,, and the 1-bit (true) is encoded
by any non-zero integer of Zy; or the 0-bit (false) is encoded by 0 € Z; and the 1-bit (true) is
encoded by 1 € Z,. With this second solution, it offers the possibility to perform one NOT on
the data before Adds and Multiplys by the operation 1 — z. However, one has to be aware of
making Randomize before decryption to mask the operations but also the input data in some
situations: for example, if an Add is performed between three 1s, the result 3 leaks information
and needs to be randomized.

Because one just wants to know whether the result is equal to 0 or the result is different
from 0, we do not need to compute the logarithm: we can decrypt by just checking whether

Cs1- ci,l}j =15 ornot (for s =T, if cp; - 03522 . cg'fé) c;g’h-skz =17).

3.3.2 Group Testing on Encrypted Data

In this application we assume that a hospital collects some blood samples and wants to check
which samples are positive or negative to a specific test. Group testing [Dor43] is an efficient

3.3 - Applications 45

technique to detect positive samples with fewer tests in the case the proportion of positive cases
is small. The technique consists in mixing some samples, and to perform tests on fewer mixes.
More precisely, we denote X = (x;;) the matrix of the mixes: z;; = 1 if the i-th sample is in
the j-th mix, otherwise z;; = 0. The hospital then sends the (blood) mixes to a laboratory for
testing them: we denote y; the result of the test on the j-th mix.

If a patient (its sample) is in a mix with a negative result, he is negative (not infected). If
a patient (its sample) is in a mix with a positive result, we cannot say anything. However, for
well-chosen parameters, if a patient is not declared negative, he is likely positive. Thus, for a
patient 4, the formula that we want to evaluate is =F;(X,y), which means the patient’s test is
positive (infected) or not, for F;(X,y) = V;(z;; A—y;). The latter is indeed true if there is a mix
containing a i-th sample for which the test is negative, and this should claim patient ¢ negative
(false). The matrix X of the samples needs to be encrypted since the patient does not want the
laboratory to know his result. Because of the sensitiveness of the data, the result of the tests
needs to be encrypted too. But the patient will need access to his own result.

In this scenario, the hospital computes for all i,j, Cy,, € G?, the encryption of x;5, and
the laboratory computes for all j, Cg: € G3, the encryption of 7j. Then, they both send the
ciphertexts to an external database. With our homomorphic encryption scheme, to compute
—F;, we can publicly evaluate the following formula: C; = Randomize(Add;(Multiply(Cy,;, Cy)).
Anybody can publicly verify the computations and if it is correct, a pool of controllers perform
a distributed re-encryption of the result of patient ¢ under his key PK;. In this way, the patient
cannot decrypt the database or the result of the tests directly, but only with the help of a pool
of controller. The goal of the controllers is to limit access to the specific users only. Under
an assumption about the collusions among the controllers, nobody excepted the users will have
access to their own results.

3.3.3 Consistency Model on Encrypted Data

Another famous application is machine learning, where we have some trainers that fill a database
and users who want to know a function of their inputs and the database. For privacy reasons,
trainers do not want the users to learn the training set, and users do not want the trainers to
learn their inputs. As in the previous case, we will involve a pool of distributed controllers to
limit decryptions, but the controllers should not learn anything either.

Suppose a very large network of nodes in which some combinations should be avoided as
they would result to failures. When a failure happens, the combination is stored in a database.
And before applying a given combination, one can check whether it will likely lead to a failure,
and then change. For example, the network can be a group of people where each of them can
receive data. But, for some specific reasons, if a subgroup A of people is knowing a file a, the
subgroup B must not have the knowledge of a file b. This case of application can be viewed as
a consistency model [Sch14] which can be formally described as: the input is a vector of states
(each being either true or false), and if in the database all the j-th states are true a new input
needs to have its j-th state to be true; if all the j-th states in the database are false, the new
input needs to have its j-th state to be false; otherwise the j-th state can be either true or false.
As a consequence, if we denote the i-th element of the database as a vector x; = (x;;); and
the user’s vector by y = (y;), that vector y is said consistent with the database if the following
predicate is true:

A ((Aﬂz’j Ayi) vV (NG AT;) VY (Vizig A Vz’@')) :

J
Let Xj = NiT4j, Y} = NiT4j, and Zj = V5 A V5. We define F(Xl, vy Xom, y) the formula we
want to compute on the encrypted inputs:

Fxt%my) = A (X5 A) V(Y ATV Z5).

J

46 3 - Decentralized Fvaluation of Quadratic Polynomials on Encrypted Data

By definition, X;, Y}, and Z; are exclusive, as X; means the literals are all true, ¥; means the
literals are all false, and Z; means there are both true and false literals. So we have: X;VZ; = 7]
and Y; V Z; = Y] Thus, we have

SF(x1, . %m,y) = V(G V) A (X V).

J

Now, we see how the encryption and the decryption is performed to obtain the result of an
evaluation. First, we explain how the trainers can update the database, when adding a vector
Xm,. The values X; are updated into X j’ as

/ " m-l Xj = 21_11 Tij if Tmj = true
Xi = z/:\l iy = Z/:\l Tig N Tmj = { false otherwise
which is easy to compute for the trainer, since it knows x,, in clear, even if X; is encrypted:
the trainer can dynamically compute C'x; the encryption of X;, when adding a new line in the
database, by just making a Randomize if z,; is true (to keep the value X; unchanged), or by
replacing the value by a fresh encryption of 0 otherwise. Similarly, the trainer can update Cly;,
the encryption of ¥;. On the user-side, he can compute C,; and Cy the encryptions of his inputs
y; and 7; respectively. Then, everyone and thus the controllers can compute:

C; = Randomize (Add; (Multiply(Add(Cy;, C;), Add(Cx;, Cy,))))

Because of the Multiply, Cy; and Cy; must be ciphertexts in Gy, while Cx; and Cy; must be
ciphertexts in Gy. To allow a control of the final decryption, a pool of controllers re-encrypt for
the user in a distributed way.

Chapter

4
I Linearly-Homomorphic
Signatures

This chapter introduces the building blocks of the two following ones: the Linearly-Homomorphic
Signatures. For readability, it presents results coming from the two papers [HPP20, HP20).

Chapter content

4.1 Definition, Properties and Security 0000 47
4.2 Our One-Time LH-Sign Scheme 50
4.3 FSH LH-Sign Schemet 51
4.4 Square Diffie-Hellman 0 0 ittt v v v v v oo 53
4.5 SqDH LH-Sign Scheme o oo e 56

4.5.1 A First Generic Conversion, 56

4.5.2 A Second Generic Conversion 57

The notion of homomorphic signatures dates back to [JMSW02], with notions in [ABCT12],
but the linearly-homomorphic signatures, that allow to sign vector sub-spaces, were introduced
in [BFKWO09], with several follow-up by Boneh and Freeman [BF11b, BF11a] and formal security
definitions in [Frel2].

We begin in a first section with the formal definition of linearly-homomorphic signature
scheme, then, we will introduce a new property for linearly-homomorphic signature scheme:
the tag randomizability. It will be the key element in our use-cases. Finally, we provide the
security definition, so-called unforgeability in case of signatures. In fact in the Preliminaries
we presented a weaker version of LH-Sign scheme without any tag called One-Time. The first
construction proposed in Section 4.2 is a One-Time linearly-homomorphic signature while the
two other constructions in Section 4.3 and in Section 4.4 are full fledged (not one-time). In the
last section 4.5, we provide two generic conversions from a One-Time scheme to a full fledged
one.

4.1 Definition, Properties and Security

Our definition of linearly-homomorphic signature scheme is inspired by the formal definition
from Libert et al. [LPJY13], but with a possible private key associated to a tag:

Definition 25 — Linearly-Homomorphic Signature Scheme (LH-Sign)
A linearly-homomorphic signature scheme with messages in M € G", for a cyclic group
(G, x) of prime order p, some n € poly(k), and some tag set 7, consists of the seven
algorithms (Setup, SKeygen, NewTag, VerifTag, Sign, MultiplySign, VerifSign):

Setup(1%): Given a security parameter s, it outputs the global parameter param, which
includes the tag space T;

SKeygen(param,n): Given a public parameter param and an integer n, it outputs a key

48 4 - Linearly-Homomorphic Signatures

pair (sk,vk). We will assume that vk implicitly contains param and sk implicitly
contains vk;

NewTag(sk): Given a signing key sk, it outputs a tag 7 and its associated secret key 7;

VerifTag(vk, 7): Given a verification key vk and a tag 7, it outputs 1 if the tag is valid
and 0 otherwise;

Sign(sk, 7, M): Given a signing key, a secret key tag 7 and a vector-message M = (M;); €
G", it outputs the signature o under the tag 7;

MultiplySign(vk, 7, (w;, M;, 0;)f_,): Given a public key vk, a tag 7 and £ tuples of weights
w; € Z, and signed messages M; in oy, it outputs a signature o on the vector
M =T['_, M¥ under the tag 7;

VerifSign(vk, 7, M, 0): Given a verification key vk, a tag 7, a vector-message M and a
signature o, it outputs 1 if VerifTag(vk,7) = 1 and o is also valid relative to vk and
7, and 0 otherwise.

Note that we talk about linearly homomorphic signature with combinations component-wise
in the exponents as we will consider a multiplicative group (G, x) and messages directly in G
instead of Z,. Moreover, this definition is more related to the notion of linearly homomor-
phic structure preserving signatures as the evaluated function is not provided in input of the
verification algorithm unlike definitions as in [GVW15, CFN18] where the evaluated function
matters.

The tag in MultiplySign allows linear combinations of signatures under the same tag but
excludes any operation between signatures under different tags. The latter exclusion will
be formalized by the unforgeability. However, the former property is the correctness: for
any keys (sk,vk) < Keygen(param,n), for any tags (7,7) « NewTag(sk), if for i = 1,...,¢,
o; = Sign(sk, 7, M;) are valid signatures and o = MultiplySign(vk, 7, {w;, M;, o;}¢_,) from some
scalars w;, then both

VerifTag(vk,7) = 1 VerifSign(vk, 7, M, o) = 1.

Our definition includes, but is more relaxed than, [LPJY13] as we allow a secret key as-
sociated to the tag, hence the NewTag algorithm: in such a case, the signer can only sign a
message on a tag he generated himself. When there is no secret associated to the tag, one can
actually consider that 7 = 7 is enough to generate the signature (in addition to sk). Whereas the
MultiplySign algorithm generates a signature under the same tag, we do not require to keep the
same tag in the unforgeability notion below, this will allow our tag randomizability. However,
we expect only signatures on linear combinations of messages already signed under a same tag,
as we will formalize in the security notion.

Homomorphic Properties

From the definition of linearly homomorphic signature, we have the following property:

Property 26 (Message Homomorphism). Given several vector-messages with their signatures,
MultiplySign generates the signature of any linear combination of the vector-messages.

In addition, one can introduce a new algorithm RandTag associated to a new property for
linearly-homomorphic signature schemes:

4.1 - Definition, Properties and Security 49

RandTag(vk, 7, M, 0): Given a verification key vk, a tag 7 and a signature o on a vector-
message M = (M;); € G", it outputs a new tag 7’ and ¢’ a new signature on the
new tag 7’ of M still valid under the verification key vk.

Property 27 (Tag Randomizability). For any vector-message M = (M;); € G", key pair
(sk,vk) < SKeygen(param,n), tag (7,7) < NewTag(sk), valid signature o < Sign(sk,7, M),
and (7',0') + RandTag(vk, 7, M, o) the two following distributions are indistinguishable:

Do = {(vk,7,M,0)} Dy = {(vk, 7", M, 0")}.

Libert et al. [LPJY13] proposed a LH-Sign construction which security relies on the Simulta-
neous Double Pairing assumption, which is implied by the linear assumption in the symmetric
case. In our use cases, the tag will be linked to the identity of a user. Hence, the tags need
to be randomizable to provide privacy. However, we do not know how to build it in the stan-
dard model. Thus, we choose to focus on constructions secure in the generic bilinear group
model [Sho97, BBG05, Boy08].

Notations and Constraints

Since we will mainly work on sub-vector spaces of dimension 2 (in a larger vector space), we
will denote o = Sign(sk, (M, M")), with the verification check VerifSign(vk,o, (M, M’)) =1, a
signature that allows to derive a valid ¢’ for any linear combinations of M and M’. In general,
o can be the concatenation of o1 = Sign(sk, M) and o9 = Sign(sk, M), but some joint random
coins may be needed, and some common elements can be merged (the tag).

We will also be interested in signing affine spaces: given a signature on M and IN, one
wants to limit signatures on M x N® and 1 x IN?. This is possible by expanding the messages
with one more component: for M = (g, M) and N = (1, N), linear combinations are of the
form (g°, MQNE). By imposing the first component to be g, one limits to o = 1, and thus to
(9, MNB) =M x Wﬂ, while by imposing the first component to be 1, one limits to o = 0, and
thus to (1, N%) = .

Unforgeability

Whereas linear combinations are possible under the same tag, other combinations (non-linear
or under different tags) should not be possible. This is the unforgeability notion.

Definition 28 — Unforgeability for LH-Sign
For a LH-Sign scheme with messages in G", for any adversary 4 that, given tags and
signatures on messages (M;); under tags (7;); both of its choice (for Chosen-Message
Attacks), outputs a valid tuple (vk,7, M, o) with 7 € T, there must exist (w;)ier_,, where
I, is the set of messages already signed under some tag 7' € {7;};, such that M =
[lic; , M7" with overwhelming probability.

Again, because our version is relaxed compared to [LPJY13], we do not exclude the adversary
to be able to generate valid signatures under new tags. The linear-homomorphism for signatures,
also known as signatures on vector-spaces, requires that the adversary cannot generate a valid
signature on a message outside the vector spaces spanned by the already signed messages. Tags
are just a way to keep together vectors that define vector spaces. The adversary can rename a
vector space with another tag, this is not a security issue. On the opposite, we will exploit this
feature for unlinkability with the additional randomizability property on tags.

50 4 - Linearly-Homomorphic Signatures

4.2 Our One-Time LH-Sign Scheme

As in [LPJY13] and presented in the Example 12, we can consider a weaker notion of linearly-
homomorphic signature: a one-time linearly-homomorphic signature (OT-LH-Sign), where the
set of tags is a singleton 7 = {e}. In this case, the algorithms NewTag and VerifTag can be
dropped, as well as the 7 and 7.

We will consider a simplified variant of one-time linearly-homomorphic signature of Libert
et al. [LPJY13] that can only be proven in the generic bilinear group model even if their scheme
was originally built in the standard model.

Our One-Time linearly-homomorphic signature scheme with messages in M € G7, for some
n € poly(k) consists of the five algorithms (Setup, SKeygen, Sign, MultiplySign, VerifSign):

Our One-Time LH-Sign Scheme

Setup(17): Given a security parameter &, let (G1,Ga, G, p, g, g, €) be an asymmetric bi-
linear setting, where g and g are random generators of G and G respectively. We
set param = (Gy, Go, Gp,p, 9,9, €);

SKeygen(param,n): Given the public parameters param, one randomly chooses sk; = s; &
Ly, for i = 1,...,n, which defines the signing key sk = (sk;)7_;, and the verification
key vk = (g;)i-o for g; = g° and go = g;

Sign(sk, M = (M;);): Given a signing key sk = (s;); and a vector-message M = (M;); €
T, one sets 0 = [M € Gy;

MultiplySign(vk, (w;, M, a,,;)le): Given a verification key and ¢ tuples of weights w; € Z,
and signed messages M; in oy, it outputs o = [[0}7%;

VerifSign(vk, M = (M;);,0): Given a verification key vk, a vector-message M, and a sig-
nature o, one checks whether the equality e(c, go) = [[i-; e(M;, g;) holds or not.

If a message-signature is valid for a verification key vk, then it is also valid for the verification
key vk’ = vk®, for any «, as e(o, go) = [[1~; e(M;, g;) implies e(o, g5) = [e(M;, g%).

However, for two different verification keys vk and vk’, and signatures o and o’ of M:
17 e(M;, 05 - g)°) = [Ty e(Mi, g) - e(M;, 65)% = e(0,93) - (o, g°), s0 0" = o0’ is a valid
signature of M under vk” = vkovk'? if g6 = go-

Hence, one can ask for a similar property on the keys than on the messages:

Property 29 (Key Homomorphism). Given a vector-message with signatures under several
keys, it is possible to generate the signature of this vector-message under any linear combination
of the keys.

MultiplyKey (M, (w;, vk;, 04)¢_;): Given a message M and ¢ tuples of weights w; € Zy, and
signatures o; of M under vk;, it outputs a signature ¢ of M under the verification
key vk = [T¢_q vk&.

Our scheme only supports the relaxed version:

Property 30 (Weak Key Homomorphism). Given a vector-message with signatures under sev-
eral keys (with a specific restriction, as a common go in our case), it is possible to generate the
signature of this vector-message under any linear combination of the keys.

Eventually, one needs to prove the unforgeability of our scheme:

4.3 - FSH LH-Sign Scheme 51

Theorem 31 (Unforgeability). Let us consider an adversary A in the generic bilinear group
model. Given valid pairs (M j,0;); under a verification key vk (M;’s possibly of adversary’s
choice, for Chosen-Message Attacks), when A produces a new valid pair (M, o) under the same
verification key vk, there exist (aj); such that M =], M?J

Proof. The adversary A is given (M; = (M, ;);, 0;); which contains group elements in G1, as
well as the verification key vk = (gg)r in Go. Note that in the generic bilinear group model,
programmability of the encoding allows to simulate the signatures for chosen messages, which
provides the security against Chosen-Message Attacks.

For any combination query, the simulator will consider the input elements as independent
variables X ;, V;, and &, to formally represent the discrete logarithms of M ; and o; in basis g,
and g in basis gg = g. As usual, any new element can be seen as a multivariate polynomial in
these variables, of degree maximal 2 (when there is a mix between G; and Go group elements).
If two elements correspond to the same polynomial, they are definitely equal, and the simulator
will provide the same representation. If two elements correspond to different polynomials, the
simulator will provide random independent representations. The view of the adversary remains
unchanged unless the actual instantiations would make the representations equal: they would
be equal with probability at most 2/p, when the variables are set to random values. After N
combination queries, we have at most N?/2 pairs of different polynomials that might lead to
a collision for a random setting with probability less than N?/p. Excluding such collisions,
we can thus consider the polynomial representations only, denoted ~. Then, for the output
(M = (My)g,0), one knows oy, j i, Bk j, Vi,j, 0, such that:

MkNZak,]zX]z“‘Zﬂk,] UNZVJ,Z'XJJ—’_Z&J'VJ"
4yi Jst J

As ((M;;)i, 04); and ((My)k, o), are valid input and output pairs, we have the following relations
between polynomials:

Vi=> X;i6; S viXii+ Y 5Vi=> (Z o jiXji + Z/Bk,jvj) S
5 G j K\ i j

=Y i XSk + Y Br;ViSi
eoji kg

Hence, the two polynomials are equal:

2'731ij+2 — Q4 54 ij6 = Z ak]zX]sz+ZBk]V6k
k#i,j,i k,j

which leads, for all ¢, j, to v;; = 0 and 0; = a; 5, and for k # 4, oy, j; = 0 and B ; = 0. Hence,
M, ~ Z 5 Xk and o ~ 37, ;V;, which means that we have (J;); such that My = []; M . and

4.3 FSH LH-Sign Scheme

n [LPJY13], the authors proposed a full-fledged LH-Sign by adding a public tag during the
signature. In our constructions, tags will be related to identities of users, and so, some kind of
randomizability will be required for anonymity, which is not possible with their scheme. Instead,
we will consider the scheme proposed in [FHS19], which is a full-fledged LH-Sign version of our
previous scheme. We can describe it as follows, using our notations:

52 4 - Linearly-Homomorphic Signatures

FSH LH-Sign Scheme

Setup(17): Given a security parameter &, let (G1,Ga, G, p, g, g, €) be an asymmetric bi-
linear setting, where g and g are random generators of G; and Go respectively. The
set of tags is T = G1 x Go. We then define param = (G1, G, G, p, g,9,¢;T);

SKeygen(param,n): Given the public parameters param, one randomly chooses sk; = s; &
Ly, for i = 1,...,n, which defines the signing key sk = (sk;);, and the verification
key vk = (gi)iLo for g; = g™ and go = g;

NewTag(sk): Tt chooses a random scalar R < Z, and sets 7 = (11 = g%/ %, 1 = g(l)/R) and
7 =R;

VerifTag(vk, 7): Given a verification key vk = (g;)7_, and a tag 7 = (71, 72), it checks

whether e(71, go) = e(g, 72) holds or not;

Sign(sk, 7, M = (M;);): Given a signing key sk = (s;); and a vector-message M = (M;); €
G, together with some secret tag 7, one sets o = ([]; M;*)7;

MultiplySign(vk, 7, (w;, M, 0;)¢_;): Given a verification key vk, a tag 7 and £ tuples of
weights w; € Z, and signed messages M in oy, it outputs o = [Jo;";

VerifSign(vk, 7, M = (M;);,0): Given a verification key vk = (g;);, a vector-message M =
(M;);, and a signature o under the tag 7 = (71, 72), one checks if the equalities
e(o,m) = [Ii=; e(M;, gi;) and e(r1, go) = e(g,) hold or not.

When the secret keys for tags are all privately and randomly chosen, independently for each
signature, unforgeability has been proven in [FHS19], under Chosen-Message Attacks, in the
generic bilinear group model. The intuition is the following: first, under the Knowledge of
Exponent Assumption [Dam92, HT98, Grol0], from a new pair (71, 72), on the input of either
(g9,9) or any other honestly generated pair (g, gp), one can extract the common exponent 1/R
in the two components. Then, one can see o as the signature with the secret key (Rs;);, with

/R

the generator g(l) , instead of gg in the previous construction.

However, if one knows two signatures ¢ and ¢’ on M and M’ respectively, under the same
tag 7 = (71, 72) with private key 7, and the same key vk, then o%¢’ fis a valid signature of
MO‘M’B, still under the same tag 7 and the same key vk: this is thus a LH-Sign, where one can
control the families of messages that can be combined.

Our LH-Sign has the tag randomizability property, with the algorithm RandTag defined by:

RandTag(vk, 7, M, 0): Given a verification key vk, a tag 7 = (71, 72) and a signature o on
a vector-message M = (M;); € G, it chooses y1 € Zy and outputs 7" = (7'11/”, 721/”)

and adapts o/ = o*.

Indeed, from a signature ¢ on M under the tag 7 = (71, 72) for the key vk, ¢’ = o# is a new
signature on M for the same key vk under the tag 7 = (7’11 /n , 721 /n), perfectly unlinkable to T,

as this is a new random Diffie-Hellman tuple in basis (g, go) with 7 = u7, for gg in vk.

As already explained above, we will essentially work on sub-vector spaces of dimension 2:
we will thus denote o = (01,02) = Sign(sk, 7, (M, M’)), under the tag 7 = (71, 72), where
o1 = Sign(sk, 7, M) and oy = Sign(sk, 7, M), for a common private key R = 7 which led to

T = (71, T2).

4.4 - Square Diffie-Hellman 53

4.4 Square Diffie-Hellman

This section is a preamble to the next one in which we will propose a new construction of
LH-Sign scheme. We define here the useful building blocks: the Square Diffie-Hellman tuples,
an extractability assumption that holds in the generic bilinear group model and two important
theorems using Square Diffie-Hellman tuples.

Assumptions

We first begin be presenting the needed assumptions:

Definition 32 — Square Discrete Logarithm (SDL) Assumption

In a group G of prime order p, it states that for any generator g, given y = ¢* and z = gIQ,
it is computationally hard to recover x.

Definition 33 — Decisional Square Diffie-Hellman (DSqDH) Assumption
In a group G of prime order p, it states that for any generator g, the two following
distributions are computationally indistinguishable:

Deqan(9) = {(9, 9%, 9%), & & Z,} Di(g) = {(9,9%,9"), v,y & Zp}.

It is worth noticing that the DSqDH Assumption implies the SDL Assumption: if one can
break SDL, from g, ¢, gx2, one can compute x and thus break DSqDH.
A fortiori, this implies indistinguishability between the two distributions

Dsqdh(G) = {(gang.gz2)7g <$; va <$; ZP} DS(G) = {(91792)93) <$; G3}

Below, for proofs, we will need to explicitly extract linear combinations, hence the additional
assumption that holds in the generic bilinear group model:

Definition 34 — Extractability Assumption
The extractability assumption states that given n vectors (M; = (M, ;););, for any ad-
versary that produces a new vector M = (M;); such that M = [, M ?j , there exists an
extractor that outputs («;);.

Proof for Square Diffie-Hellman Tuples

As an SqDH-tuple (1; = h, 7 = h", 73 = h#) € G} is a Diffie-Hellman tuple (71,72, 72, 73), one
can use a Schnorr-like proof:

« The prover chooses a random scalar r & Zyp, and sets and sends U < 7{, V < 73;
o The verifier chooses a random challenge e & {0, 1}*;

o The prover sends back the response s = e7 4 r mod p;

o The verifier checks whether both 77 =75 x U and 75 = 7§ x V.

This provides an interactive zero-knowledge proof of knowledge of the witness 7 that (71,72, 73)
is an SqDH-tuple.

54 4 - Linearly-Homomorphic Signatures

Groth-Sahai Proof for Square Diffie-Hellman Tuples. If you just need a proof of validity
of the tuple, this is possible, using the Groth-Sahai methodology [GSO08], to provide a non-
interactive proof of Square Diffie-Hellman tuple: in the asymmetric pairing setting, one sets a
reference string (0171, 012,021, 0272) € G%, such that (01,1, 012,021, 0272) is a Diffie-Hellman tuple.

Given a Square Diffie-Hellman tuple (7, = h, 72 = h™, 73 = h™°) € G, one first commits 7:
Com = (c = v} v} ,0 = 0] ,g7v!',), for a random p ¢ Z,, and one sets m = 71" and 75 = 74,
which satisfy

e(r1,¢) = e(m2,021) - e(m1,01,1) e(11,0) = e(12,022 - g) - e(m1,012)
e(ro,¢) = e(73,021) - e(m2, 01,1) e(12,0) = e(713,022 - g) - e(m2,012)

The proof proof = (¢,0, 71, m2), when it satisfies the above relations, guarantees that (71,72, 73)
is a Square Diffie-Hellman tuple. This proof is furthermore zero-knowledge, under the DDH
assumption in Go: by switching (0171, 012,021,0 X 22) into a Diffie-Hellman tuple, one can
simulate the proof using the trapdoor in the reference string.

Moreover, one can apply a batch verification [BFI*10], and pack them in a unique one with
random scalars x11, 21,2, 22,1, 22,2 & Lp:

e(m %, eTT) = ey T 0y 0y 570 2) (Y 0y 075

One thus just has to compute 13 exponentiations and 3 pairing evaluations for the verification,
instead of 12 pairing evaluations.

In addition, the proof can be updated using p,_,,s such that 7/ = 7°~—+" and randomized using
p & Z,: Com' = (¢ =c- U’fjl,b’ =0 U’f:Q), in addition 7} = 7" . 7/* and 7} = ©h=7 . H.

Restricted Combinations of Vectors

When one wants to avoid any combination, and just allow to convert a signature of M into
a signature of M, while they are all of the same format, one can use expanded vectors (as
in Section 4.1), by concatenating a vector that satisfies this restriction: from multiple distinct

(non-trivial) Square Diffie-Hellman tuples (g;, g;", gzv 1'2), a linear combination that is also a Square
Diffie-Hellman tuple cannot use more than one input tuple. We prove it in two different cases:
with random and independent bases g;, but possibly public w;’s, or with a common basis g; = g,
but secret w;’s.

We stress that in the first theorem, the w;’s are random and public (assumed distinct), but
the bases g;’s are truly randomly and independently generated.

Theorem 35. Given n valid Square Diffie-Hellman tuples (g;,a; = g;"*,b; = a;*), with w;, for
random g; & G* and w; <& Z;, outputting (;)i=1,..n such that (G = [lgi", A = [la;",B =
[165") is a valid Square Diffie-Hellman, with at least two non-zero coefficients o, is computa-
tionally hard under the DL assumption.

Intuitively, from Square Diffie-Hellman tuples where the exponents are known but random
and the bases are also known and random, it is impossible to construct a new Square Diffie-
Hellman tuple melting the exponents.

Proof. Up to a guess, which is correct with probability greater than 1/n?, we can assume that
a1, a9 # 0. We are given a discrete logarithm challenge Z, in basis g. We will embed it in either
g1 or g2, by randomly choosing a bit b:

e if b=0: set X = Z, and randomly choose v < Zy, and set Y = g

o if b=1: set Y = Z, and randomly choose u & Zy, and set X = g"

4.4 - Square Diffie-Hellman 55

We set g1 + X (= g%), g2 < Y (= ¢"), with either v or v unknown, and randomly choose
Bi € Zy, for i = 3,...,n to set g; + g% . Eventually, we randomly choose w;, for i = 1,...,n
and output (g;,a; = g;*,b; = ;") together with w;, to the adversary which outputs (@;)i=1,..n
such that (G =[]g¢/", A =[lay = G¥,B =[]b;" = A") for some unknown w. We thus have
the following relations:

n n
(oqu + v + Z 0@'&') - = qpuwy + avwsy + Z o, Biw;
=3 i=3

n n

2 2 2

<a1uw1 + agvwg + E aiﬁiwi> - = qquwi + avw; + E o fiw;
=3 i=3

If we denote T = Y7 5 B, U = S i fw;, and V = " 4 o Bw?, that can be computed,
we deduce that:

(quw; + agvwy + U)? = (aqu + agv + T)(ajuw? + asvwi + V)
which leads to
arag(w} — w3 uv 4+ a1 (V — 20wy + Tw?)u + ag(V — 2Uws + Twi)v + (TV — U?) =0
We consider two cases:
1. K = az(w? —w3)v +V — 2Uw; + Tw? = 0 mod p;
2. K = as(w? —w3)v+V —2Uw; + Tw? # 0 mod p;

which can be determined by checking whether the equality below holds or not:

g~ (V-2UwiTwd)/ (a2 (wi—ui)) _ y,

One can note that case (1) and case (2) are independent of the bit b.

o If the case (1) happens, but b = 0, one aborts. If b = 1 (which holds with probability
1/2 independently of the case) then we can compute v = —(V — 2Uw; + Tw?)/(ao(w? —
w2)) mod p which is the discrete logarithm of Z in the basis g.

o Otherwise, the case (2) appears. If b = 1 one aborts. If b = 0 (which holds with probability
1/2 independently of the case), v is known and we have a1 Ku + as(V — 20wy + Tw3)v +
(TV — U?) = 0 mod p, which means that the discrete logarithm of Z in the basis g is
u=—(ag(V = 2Uwy + Tw3)v + (TV — U?))/(c1 K) mod p.

O]

In the second scenario, the basis is common (for all i, g; = g), but the w;’s are secret, still
random and thus assumed distinct.

Theorem 36. Given n valid Square Diffie-Hellman tuples (g,a; = g, b; = a;”") for any g € G*
and random w; <& Z;, outputting (c;)i=1,...n such that (G =[g*, A = [lai", B =T[b") is a
valid Square Diffie-Hellman, with at least two non-zero coefficients ay, is computationally hard
under the SDL assumption.

Lemma 37. Given any fized value o € Zy, and n valid Square Diffie-Hellman tuples (g,a; =
g by = a;’), for any g € G and random w; € Z,, outputting (0;)i=1,.n Such that o =
Yo aiw;, with at least one non-zero coefficient oy, is computationally hard under the SDL
assumption.

56 4 - Linearly-Homomorphic Signatures

Proof of the lemma. Up to a guess, which is correct with probability greater than 1/n, we can
assume that aq # 0. We are given a square discrete logarithm challenge (g, Z1 = g%, Zs = 922),
in basis g. We set a; < Z1, by + Zs, and randomly choose w; & Ly, for i = 2,...,n to set
(a; < g",b; < a;"). We then output (g,a;,b;), i = 1,...,n, to the adversary which outputs
(0)i=1,..n and « such that ayz + Y ;"o aw; = . At this stage, we solve the square discrete
logarithm problem by returning z = (o — Y ;" 5 aw;) /c; mod p. O

Proof of the theorem. Again, up to a guess, which is correct with probability greater than 1/n,
we can assume that oy # 0. We are given a square discrete logarithm challenge (g, Z1 = g%, Zo =
gZQ), in basis g. We set a1 < Z1, as < Zs, and randomly choose w; & L, for i =2,...,n to
set (a; < ¢g"i,b; = a;""). We then output (g,a;,b;), i = 2,...,n, to the adversary that outputs
(@j)i=1,...n such that (G =[] g%, A =]a}" = G¥,B =[]b;" = A") for some unknown w. We

thus have the following relations:

n n
(Zai> -w:OqZ‘l-ZOliwi (
i=1

n n
a; | - w? = a122 + Z oziw?
i=2 =1

=2

7

which leads to
n 2 n n
<a1z + Z aiwi> = <041 + Z oei> X <a1z2 + Z aiwi2> .
i=2 =2 i=2
If we denote T = Y7 5 cyw;, U = Y 5y, and V = 3", qyw?, that can be computed from
above scalars, we have (a2 +T)? = (a1 + U) - (an2z? + V), and thus
Uai2? —2Taqz + (a1 +U)V — T? = 0 mod p.

Using Lemma 37 on the n — 1 tuples (g,a;,b;), for i = 2,...,n, the probability that T =
Yoo ajw; = 0 is negligible, unless one can break the SDL Assumption. So we have T # 0, with
two cases:

1. If U # 0 then, because computing square roots in Z, is easy, one can solve the above
quadratic equation for z that admits solutions, and obtain two solutions for z. By testing
which one satisfies g* = Z1, one can find out the correct z and thus solve the SDL problem.

2. If U = 0, one can compute z = (a;V —T?)/(2Ta1) mod p and thus solve the SDL problem.
0

Randomizable Tags

As in the Definition 27, we can randomize the tags together with the messages: but just in a
computational way, and not in a statistical way. Indeed, from a message-signature (M, o) for
a tag 7 = (71,72,73,), one can derive the signature for the message M’ = M® for the tag
7= (1, 18", 75, 7'), where 7’ can be adapted from 7 and «. The triple (7{*, 75, 75') in the tag is
not uniformly random, as w has not changed, but it is computationally unlinkable to (71,72, 73)
under the DDH assumption.

4.5 SqDH LH-Sign Scheme

In this section, we provide a generic transformation to convert a OT-LH-Sign to LH-Sign, using
Square Diffie-Hellman tuples (g, "%, g“’?) for the tags. We thus obtain a new construction of
linearly homomorphic signature with randomizable tags.

4.5.1 A First Generic Conversion

4.5 - SqDH LH-Sign Scheme 57

First Generic Conversion from OT-LH-Sign to LH-Sign
Let X = (Setup, SKeygen, Sign, MultiplySign, VerifSign) be a OT-LH-Sign, we complete it
into X = (Setup’, SKeygen’, NewTag’, VerifTag’, Sign’, MultiplySign’, VerifSign’) as follows:

Setup’(1%): Tt runs Setup(1®) to obtain param and adds the tag space param’ =
(param, Z; x G*);

SKeygen'(param’,n): It runs SKeygen(param,n + 3);

NewTag'(sk): It chooses a random scalar w & Z,, and a random group element h &G,
and sets 7 =7 = (w, h);

VerifTag'(vk, 7): It checks whether 7 = (w, h) € Z; x G or not;

Sign’(sk, 7 = (w, h), M): Tt extends M into M’ with the three additional components
(h,h®,h*") and signs it as o = Sign(sk, M’);

MultiplySign’(vk, 7, {w;, M;,0;}¢_): Tt simply computes o = [, and 7/ = (w,h/ =
[L; h*%);

VerifSign'(vk, 7 = (w, h), M,0): Tt first extends M into M’ with the Square Diffie-
Hellman tuple (h, h", h“’z) and checks whether VerifSign(vk, M’, o) = 1 or not.

One can note that the MultiplySign’ provides a signature under a new tag 7/, but this is
still consistent with the definition of the LH-Sign. However, randomizability of the tag is not
possible.

Theorem 38. If X is OT-LH-Sign then X’ is LH-Sign under the DL assumption and the ex-
tractability assumption (Definition 34).

Proof. Since the tags are fully public, any NewTag'-query is answered by a random pair (w;, g;),
and a Sign’-query is answered by simply forwarding a Sign-query to the X security game. Re-
ceiving the forgery (vk,7 = (w,G), M, o), one first generates M’ from M and 7 and checks
the validity, which means, according to the unforgeability of X, that there exist (a;); such that
M’ = [[M*. The above extractability assumption provides these coefficients («;);. If we
just keep the 3 last components of each extended messages and the tags, we have square Diffie-
Hellman triples (gi,a; = g;",b; = a;"*);, for random g¢; and w; (but possibly equal when the
same tag is used several times), and the triple (G =[] g¢;", A = G =[[a;*,B = A¥ =[] b")
extracted from the forgery. By combining the identical tags together, and so by summing in
B the «;’s that correspond to the same triples (g;,a;,b;), we have (G = Hg?j,A = GY =
I1 afj,B =AY =] bjﬁ.j), for random and distinct triples (g;,a;,b;);. From Theorem 35, under
the DL assumption, at most one coeflicient is non-zero: none or fB;, and so at most one tag
is represented: none or (gs,as,by). Hence M is either (1,...,1) or [[M for i such that

(givaiabi) - (gJuaJ7bJ)‘]

4.5.2 A Second Generic Conversion

Second Generic Conversion from OT-LH-Sign to LH-Sign
Let X = (Setup, SKeygen, Sign, MultiplySign, VerifSign) be a OT-LH-Sign, we complete it
into X’ = (Setup’, SKeygen’, NewTag’, VerifTag’, Sign’, MultiplySign’, VerifSign’) as follows:

Setup/(1%): Tt runs Setup(1%) to obtain param and adds the tag space param’ =
(param,G3 x IT). Note that we need the group G to be extended to a bilinear
setting (G, Ga, Gr,p, g, g, e) for the proofs;

58 4 - Linearly-Homomorphic Signatures

SKeygen'(param’,n): It runs SKeygen(param,n + 3);

NewTag/(sk): It chooses a random scalar w & Zy and sets 7 = w and T = (g, gw,gw2,7r),
where 7 is a zero-knowledge proof of valid square Diffie-Hellman tuple for

(9.9%,9");
VerifTag’(vk, 7): It checks the proof 7 on (g, g%, g*");

Sign’(sk,7 = w, M): Tt extends M into M’ with the three additional components
(gygw,g“ﬁ), and signs it as o = Sign(sk, M');

MultiplySign’(vk, 7 = (11, 72, 73, 7), {wi, M;,0:}_,): Tt computes o = []; o w =Y w
and 7" = (71,75, 7%,7") with 7’ the updated proof of valid square Diffie-Hellman
tuple;

VerifSign’(vk, 7 = (71,72, 73,m), M,0): Tt first checks whether VerifTag'(vk,7) = 1 or
not, if the tag is valid, it extends M into M’ with 7 and checks whether
VerifSign(vk, M’, o) = 1 or not.

Note that for the MultiplySign’ to be possible, one needs an homomorphic zero-knowledge
proof of valid square Diffie-Hellman tuple, as the Groth-Sahai techniques [GS08] allow in a
bilinear setting: let (vi1,v1,2,v2,1,v22) € G% be a Diffie-Hellman tuple, for a Square Diffie-
Hellman tuple (g, A = g%, B = A%) € G one can generate a commitment of w, Com = (¢ =
vy 0] 1, d = v¥quy 9g") € G3, and the proofs proof = (@ = gh, ¥ = A*) € G2. The proof 7
thus consists of the pair (Com, proof), and is homomorphic. It is well-known to be perfectly-
sound, and for the zero-knowledge property, one just has to switch from the Diffie-Hellman
tuple (v1,1,v1,2,v2,1,v2,2) to a random tuple (vy, 1, v1,2, V2,1, V2,2) because they are computationally
indistinguishable under the DDH assumption in Go, or statistically indistinguishable in the
generic group model. The latter assumption will be required for the security analysis below.

Theorem 39. If X' is OT-LH-Sign then X' is LH-Sign, in the generic group model.

Proof. Let us consider an adversary that asks several tags (7;); and signatures (o;); on messages
(M;); and tags of its choice, and eventually produces a forgery (7, M, o) with probability €. A
forgery means that

o the tag is valid, and so the proof 7 is accepted;
e the signature is valid;
e M is not in the spans of the messages signed under the same tag.

First, as the signature X’ is based on the OT-LH-Sign X' thanks to the concatenation of the
message and (71,72, 73) in the tags, we know that necessarily M’ (the completion of M with
the triple in the tag) is a linear combination of the extended messages involved in the signing
queries, unless one has broken the unforgeability of Y, which can just happen with negligible
probability.

As a consequence, the triple (71,72, 73) in the tag of the forgery is a linear combination of
the Square Diffie-Hellman triples in the signing queries, with probability &’ = ¢ — negl():

o either (71,72, 73) is not a Square Diffie-Hellman tuple;
o or (11,72,73) is a Square Diffie-Hellman tuple.

In the former case, where (11, 72,73) is not a Square Diffie-Hellman tuple, then we break the
perfect soundness of Groth-Sahai proofs, as all the proofs for the honest tags have been generated

4.5 - SqDH LH-Sign Scheme 59

honestly. Hence, the latter case should happen with probability greater than e” = &’ — negl():
(11,72, 73) is both a linear combination of the input triples but still a Square Diffie-Hellman
tuple, with probability greater than &”. Then, the Theorem 36 shows that (71, 72,73) is one
of the input triples to a power « (or possibly (1,1,1)). However, to apply this theorem, we
are given random Square Diffie-Hellman tuples as input and we should be able to generate the
proofs of validity. To this aim, we switch the Groth-Sahai proofs in perfectly hiding mode: we
replace a Non Diffie-Hellman tuple by a Diffie-Hellman tuple in the CRS, which is statistically
indistinguishable to a generic adversary, as its probability to make the difference is N/p?, where
N is the number of group operations. So after this switch, from a list of Square Diffie-Hellman
tuples, we simulate the proofs, and the adversary outputs a tuple (71, 72, 73) that is both a linear
combination of the input triples but still a Square Diffie-Hellman tuple, with probability greater
than ¢” — N/p?. As we are considering a forgery, several tags should be involved, which is
excluded by the Theorem 36: " is negligible, and so ¢ is negligible too. O

Universal Tag

Whereas only messages signed under the same tag can be combined, a message signed under the
tag 70 = (1,1,1,), where m = (1,1, 1) is a proof for w = 0 with x = 0 in the commitment Com,
can be combined with any message. Such a tag (1,1,1,7), which was not in T, is a universal
tag. Indeed, multiplied to any Square Diffie-Hellman tuple, this is still a Square Diffie-Hellman
tuple. This does not contradict the Theorems 35 and 36, as they only deal with non-trivial
Square Diffie-Hellman triples.

60

4 - Linearly-Homomorphic Signatures

Chapter

5)
I MixNet

This chapter is based on the paper [HPP20] published in the proceedings of the International
Conference on Practice and Theory of Public-Key Cryptography, PKC 2020.

Chapter content

5.1 Owur Scheme: General Description 62
5.2 Owur Scheme: Full Description 0000, 64
5.3 Scalability e e e e e e e 66
5.3.1 Constant-Size Proof o oo 67
5.3.2 Efficiency e 67
5.4 Security Analysis. e e e e e e 68
5.4.1 Proof of Soundness L oo 68
5.4.2 Proof of Privacy: Unlinkability 71
5.4.3 Proof of Correctness 76
5.5 Applications i i i i i i e e e e e e e e e e e e e e e 78
5.5.1 Electronic Voting L 78
5.5.2 Message Routing Lo 79

In the two main techniques of Mix-Networks, Furukawa and Sako [FS01] make proofs of
permutation matrices and Neff [NefO1] considers polynomials which remain identical with a per-
mutation of the roots. The former approach with proof of permutation matrices is more classical,
with many candidates. Groth and Lu [GLO07] proposed the first non-interactive zero-knowledge
(NIZK) proof of shuffle without random oracles, using Groth-Sahai proofs with pairings [GS08]
but under an hypothesis proven in the generic bilinear group model. Even with that, computa-
tions are still very expensive because the overhead proof is linear in Nn, where n is the number of
ciphertexts and N the number of mixing rounds. In addition, they needed a Common Reference
String (CRS) linear in n. More recently, Fauzi et al. [FLSZ17] proposed a new pairing-based
NIZK shuffle argument to improve the computation for both the prover and the verifier, and
improved the soundness of the protocol. However they still had a CRS linear in the number of
ciphertexts, and the soundness holds in the generic bilinear group model.

In this chapter we apply the construction of OT-LH-Sign and LH-Sign seen in the previous
chapter to build a new mix-network. In our shuffle, each ciphertext C; (encrypted vote in the
ballot, in the context of electronic voting) is signed by its sender and the mix-server randomizes
the ciphertexts {C;} and permutes them into the set {C/} in a provable way. The goal of the
proof is to show the existence of a permutation IT from {C;} to {C!} such that for every i,
C}Y(i) is a randomization of C;. Then, the output ciphertexts can be mixed again by another
mix-server. The unforgeability of the signature schemes will essentially provide the soundness
of the proof of correct mixing: only permutations of ballots will be possible.

In a first step, we provide a high-level description of our construction to give the intuitions of
our new method. However, this high-level presentation suffers several issues which are detailed.
Then, the second section 5.2 provides the solutions with the full scheme. At this point, the
global proof of mixing, after several mix-servers, is linear (and verification thus has a linear

62 o - MizNet

cost) in the number of mix-servers. Therefore in a third step 5.3, we explain how to obtain a
constant-time overhead for the proof to publish, and thus for the verification. We detail the
security analysis in Section 5.4 with the three parts: soundness, unlinkability and correctness.
Eventually, we conclude with some applications in Section 5.5.

5.1 Our Scheme: General Description

We first provide a high-level description of our mix-net in Figure 5.1. As said above, the
goal of this presentation is just for the intuition: there are still many problems, that will be
highlighted and addressed in the next sections. We need two signature schemes:

o any OT-LH-Sign scheme (Setup,Keygen,Sign,MultiplySign,VerifSign), with additional MultiplyKey,
that will be used to sign ElGamal ciphertexts in Gq: the ciphertexts C; and the signatures
o; belong to G and are verified with the user’ verification keys vk; = (gx)x in Go;

o and any LH-Sign with randomizable tag scheme (Setup®, Keygen®, NewTag", RandTag",
VerifTag®, Sign®, MultiplySign*, VerifSign*) that will be used to sign users’ verification
keys vk; in Go: the signatures X; also belong to Go and are verified with Certification
Authority’s verification key VK = (gx)x in Gy.

CA = Certificate Authority, ; = User;, §; = Mix-Server;

Keys
, (SK, VK) <+ Keygen™() Authority LH-Sign signing key
CA’s keys: (EK,DK) < EKeygen() Authority homomorphic encryption key
U;’s keys: (ski, vk;) < Keygen() User OT-LH-Sign signing key
CA signs vk;: (7, 7)) < NewTag*(SK) X; < Sign*(SK, 7;, vk;)
Ciphertext for randomization: Cy <— Encrypt(EK, 1)

Initial ballots (for i =1,...,n)
C; < Encrypt(EK, M;) User’s ballot encryption
U; generates: { ;0 < Sign(sk;, Cp) User’s signature on randomization
oi1 < Sign(sk;, C;) User’s ballot signature
BBOX(O) = (Cm U@o, 0'2'71, Vki7 Ei, Ti)i

Mix (j-th mix-server, for i =1,...,n)
From BBox\—1) = (Cs,04,0,0i,1,Vki, X3, 75)i, S makes, for all i:
Randomization of the ballot:
Ci=0C;-Co¥ ofy = MultiplySign(vki, {(7j.i, Co, 7i0), (1, Ci, 0i1) })
Randomization of the keys:
vk = (vk;)% X = MultiplySign*(VK, 7, (o, vks, X))

1
(VK, 7/, vki, 21) = RandTag*(VK, 7, vk;, 57)

’ e

Adaptation of the signatures:

0'21-70 = MultlpIyKey(CO, (Oéj,vki,di70))

oi1 = MultiplyKey(C1, (aj, vki, 07 1))
/

BBoxY) = (Cly), 072y 00 Trrey.10 VK 11G)» Ztrays Th)i

Figure 5.1: High-Level Description (Insecure Scheme)

5.1 - Our Scheme: General Description 63

Each user U; generates a pair (sk;,vk;) < Keygen() to sign vectors in G;. U; first encrypts his
message M; under an ElGamal encryption scheme, with encryption key EK and signs it to obtain
the signed-encrypted ballot (C;, 0;1) under vk;. Obviously, some guarantees are needed.

In order to be sure that a ballot is legitimate, all the verification keys must be certified by the
system (certification authority CA) that signs vk; under SK, where (SK, VK) < Keygen*(), into
Y;. Then, anyone can verify the certified keys (vk;, Y;); are valid under the system verification
key VK. Since we want to avoid combinations between verification keys, we use LH-Sign with
randomizable tags to sign the verification keys with a tag 7 per user U;.

Because of encryption, M; is protected, but this is not enough as it will be decrypted in the
end. One also needs to guarantee unlinkability between the input and output ballots to guarantee
anonymity of users. As the ballot boxes contain the ciphertexts, as well as the verification keys,
the ballots must be transformed in an unlinkable way, then they can be output in a permuted
way.

To have C! unlinkable to C;, C/ must be a randomization of C;. With an ElGamal encryption,
it is possible to randomize a ciphertext by multiplying by an encryption of 1. Thus, anyone can
compute an encryption Cyp of 1, and as we use an OT-LH-Sign scheme, from a signature o; o of Cy
under the user’s key, one can adapt o; 1 by using the message homomorphism (Property 26) with
MultiplySign to obtain o7 ;. In the same way, vk, and 7/ must be randomizations of respectively
vk; and ;. If vk, = vk{, its signature must be derived from X; with MultiplySign* and 7/ is
obtained with the randomizable tag (Property 27) with RandTag*. Eventually, as we change
the verification key, Uzl',o and 0271 must be adapted, which is possible thanks to the weak key
homomorphism (Property 30) with MultiplyKey.

Then one generates a random permutation II to output a new ballot-box with permuted

randomized ballots (vk’H(i),Zh(i), h(i)’ah(i),wg;](i),l)i'

Difficulties

The above high-level scheme gives intuitions of our main approach. However, to get the required
security, we still face a few issues that will be explained below and which motivate the full scheme
described in the next section.

Expanded Vectors. From the signatures o;9 and 051 with an OT-LH-Sign scheme, anyone
can compute o = MultiplySign(vk;, {(c, Co,0i0), (8,Ci,0i1)}) for any a, 5. As explained in