
HAL Id: tel-03814937
https://theses.hal.science/tel-03814937

Submitted on 14 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning radiance fields : from global illumination to
generative models

Stavros Diolatzis

To cite this version:
Stavros Diolatzis. Learning radiance fields : from global illumination to generative models. Graphics
[cs.GR]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4041�. �tel-03814937�

https://theses.hal.science/tel-03814937
https://hal.archives-ouvertes.fr

Apprentissage de champs de radiance: de l’éclairage

global aux modèles génératifs

Stavros Diolatzis
Inria Sophia Antipolis-Méditerannée

Présentée en vue de l’obtention du
grade de docteur en Informatique
d’Université Côte d’Azur
Dirigée par : George Drettakis

Soutenue le : 24/06/2022

Devant le jury composé de :
Frederic Precioso, Professor, Inria & Université Côte

d’Azur

George Drettakis, Research Director, Inria &

Université Côte d’Azur

Matthias Zwicker, Professor, University of Maryland

Hendrik Lensch, Professor, Eberhard Karls Univer-

sity Tübingen

Tobias Ritschel, Professor, University College

London

Apprentissage de champs de radiance: de l’éclairage
global aux modèles génératifs

Learning Radiance Fields: From Global Illumination
to Generative Models

Jury:
Président du jury / President of the jury
Frederic Precioso, Professor, Inria & Université Côte d’Azur

Rapporteurs / Reviewers
Matthias Zwicker, Professor, University of Maryland

Hendrik Lensch, Professor, Eberhard Karls University Tübingen

Examinateur / Examiner
Tobias Ritschel, Professor, University College London

Directeur de thèse / Thesis supervisor
George Drettakis, Research Director, Inria & Université Côte d’Azur

Acknowledgements

I would like to thank all the people who helped and supported me for the duration of this

thesis. First I would like to thank my supervisor George Drettakis who always believed

in me and was there to support me with ideas and insight for each one of the projects I

worked on. Even though, like in every thesis, there were times where things didn’t work

out, he always was on my side and helped me overcome these difficulties.

I would also like to thank my partner Marina for her love and support during this

PhD. While spending the Covid-19 lockdowns with me during the different deadlines

was probably not ideal she was always there to hear me complain about my results and

always make me see the bright side. Thank you Marina.

I thank my mother for her constant support through every stage of my life and for

encouraging me to pursue my dreams even if it meant spending the majority of my time

very far away.

Finally I would like to thank all the members of the GraphDeco group past and

current. All of you are bright people and great researchers. We got to share the burden

of doing a PhD and help each other and I thank you for being there.

Résumé

La création d’images réalistes de scènes virtuelles est un processus qui implique de simuler

les interactions de la lumière, ce qui est fait traditionnellement par des méthodes de tracer

de chemins et de Monte Carlo, la lumière étant transmise et réfléchie avant d’atteindre

la caméra virtuelle. Ce processus est largement utilisé dans différents secteurs tels que

le cinéma, les jeux vidéo, les simulations physiques et la conception architecturale. Les

méthodes de Monte Carlo, dans un contexte de tracer de chemins, peuvent gérer des effets

d’éclairage complexes, mais les images résultantes sont bruitées ; pour réduire le bruit il

faut simuler des chemins supplémentaires. Ce calcul peut être coûteux ; de nombreuses

recherches ont été menées pour le rendre plus efficace et plus précis. Si, par le passé, les

méthodes se sont concentrées sur l’amélioration de la qualité d’échantillonnage du tracer

de chemins, les réseaux neuronaux ont récemment gagné en popularité comme moyen de

rendre des scènes synthétiques ou capturées. Cette évolution vers un pipeline de rendu

augmenté par les réseaux de neurones se reflète dans les méthodes proposées dans cette

thèse où de plus en plus d’aspects du rendu sont traités par les réseaux de neurones. Un

élément clé de cette tâche est le choix de la représentation de la scène, avec de nombreuses

alternatives proposées. Nous démontrons que les champs de radiance sont une bonne

solution car ils peuvent être utilisés pour réduire le bruit dans le tracer de chemins

traditionnel et être appris efficacement par les réseaux neuronaux. Tout d’abord, nous

proposons une méthode permettant d’injecter notre connaissance des matériaux de la

scène dans une approximation des champs de radiance afin d’améliorer l’échantillonnage,

en particulier dans les scènes comportant des matériaux brillants. Ensuite, nous montrons

que lors de l’apprentissage d’un réseau pour représenter les champs de radiance pour des

scènes variables, un échantillonnage uniforme des configurations de la scène conduit à de

mauvais résultats. Au lieu de cela, nous explorons activement l’espace des configurations

de scènes possibles et utilisons le réseau pour rendre de manière interactive des scènes

variables avec des effets complexes, tels que les caustiques. Même si nous utilisons un

réseau pour le rendu final, notre vecteur explicite de représentation de la scène préserve

le contrôle artistique sur les objets, les matériaux et les émetteurs de la scène. Enfin, nous

développons un modèle génératif pour les matériaux à méso-échelle avec une structure

et une apparence complexes. Ici, nous utilisons des champs de radiance volumétriques et

nous conditionnons notre réseau à des paramètres de géométrie et d’apparence pour un

contrôle artistique des matériaux représentés, ce qui est crucial dans notre contexte.

Mots-clés: Tracer de chemins, Monte Carlo, rendu neuronal, champs de radiance

Abstract

Creating realistic images of virtual scenes is a process that involves simulating light

interactions, traditionally through path tracing and Monte Carlo methods, as light gets

transmitted and reflected before reaching the virtual camera. This process is being used

extensively in different industries such as movies, video games, physical simulations and

architectural design. Monte Carlo methods, in a path tracing context, can handle complex

lighting effects but the resulting images are plagued with noise which is reduced by

simulating additional paths. This can be computationally expensive and a lot of research

has gone into making it more efficient and accurate. While methods in the past have

focused on improving the sampling quality of path tracing, recently neural networks have

gained popularity as a way to render synthetic or captured scenes. This shift towards a

neural augmented rendering pipeline is reflected in the methods proposed in this thesis

where increasingly more aspects of rendering are handled by neural networks. A key

component in this task is the scene representation of choice with many alternatives being

proposed. We demonstrate how radiance fields are a good fit as they can be used to reduce

noise in traditional path tracing and also be learned efficiently by neural networks. First

we propose a method to inject our knowledge of the scene materials in an approximation

of radiance fields to improve sampling, especially in scenes with glossy materials. Next

we show that when training a network to represent radiance fields for variable scenes,

uniform sampling of the scene configurations leads to poor results. Instead we actively

explore the space of possible scene configurations and use the network to interactively

render variable scenes with hard effects, such as caustics. Even though we use a network

for the final rendering, our explicit scene representation vector preserves artistic control

over the scene’s objects, materials and emitters. Finally we develop a generative model

for mesoscale materials with complex structure and appearance. Here we use volumetric

radiance fields and we condition our network on geometry and appearance parameters

for artistic control of the materials represented, which is crucial in our context.

Keywords: Path Tracing, Monte Carlo, Neural Rendering, Radiance Fields

Contents

Contents vii

1 Introduction 1
1.1 Representing & Rendering Synthetic Scenes 6

1.2 Contributions . 7

1.3 Funding and Publications . 9

2 Background 11
2.1 Radiometry . 11

2.2 Radiance Fields & Rendering Equations 12

3 Previous Work 15
3.1 Traditional Path Tracing . 15

3.2 Neural Rendering & Radiance Fields . 18

3.3 Generative Neural Radiance Fields . 21

3.4 Summary . 22

4 Practical Product Path Guiding Using Linearly Transformed Cosines 23
4.1 Practical Product Path Guiding . 24

4.2 Results and Evaluation . 32

4.3 Limitations and Future Work . 39

4.4 Conclusions . 40

5 Active Exploration for Neural Global Illumination of Variable Scenes 43
5.1 Related Work . 45

5.2 Overview . 47

5.3 Explicit Encoding and On-the-fly Data Generation 48

5.4 Active Data Space Exploration . 50

5.5 Training and Self-Tuning Sample Reuse 54

5.6 Results, Analysis and Comparisons . 57

5.7 Future Work, Limitations and Conclusion 70

6 MesoGAN: A Generative Model for Mesoscale Materials 73
6.1 Related Work . 75

6.2 Method . 76

6.3 Results . 86

viii CONTENTS

6.4 Comparisons . 87

6.5 Conclusions . 88

7 Conclusions 89
7.1 Lessons learned . 90

7.2 Future directions . 91

A Chapter 5 appendix 95
A.1 Selected Views . 95

A.2 Comparison to CNSR . 96

A.3 Comparison to ANF . 97

A.4 Comparison to GT . 97

A.5 Network Architecture . 99

A.6 MCMC States Lifespan . 100

A.7 Sample Reuse Derivation . 100

C h a p t e r 1

Introduction

Computer graphics is an integral part of any application that requires visualization of

synthetic or captured content. From architectural design to movies, video games and

physical simulations, creating images of synthetic scenes is part of many industries with

different restrictions and requirements. Computer graphics research develops the theory

behind light transport simulation, so that the results are accurate, and proposes efficient

algorithms to minimize computation. This thesis is focused on physically based rendering

where the generated images must look as realistic as possible. Many challenges arise

in this task, from creating physically based material models to modeling geometry and

efficiently computing the final image. An example of the complex interactions that light

can go through before reaching the camera are visible in the generated image of Figure 1.1.

For complicated scenes, such as this one, generating a single image can take up to tens of

hours of computation.

The well-established way to solve light transport problems has been through the

use of Monte Carlo methods [54]. These methods, while being very general in terms of

effects that they can handle, suffer from noise in the generated images. This noise needs

more computation to be reduced, sometimes requiring hours to become imperceptible.

It is also very hard to filter out since it can vary from pixel to pixel depending on the

underlying effect. This means that in many cases the only option for getting a noiseless

image is more computation.

This was the state of rendering for many years, where methods were trying to improve

performance by generating images with less noise for the same time budget. Even small

improvements in the generated noise were important since applications such as movies

render hundreds of thousands of images in total. Two major events changed this over the

3 years of this PhD. First, the resurgence of neural networks in the form of deep learning

and neural representations. Second, the development of dedicated ray-tracing hardware

that made real-time path tracing possible. Neural networks have been used more and

more in the rendering pipeline, augmenting some of its parts and replacing others. They

2 Chapter 1. Introduction

Figure 1.1: An image generated by a modern path tracer. To render this image the interactions of

light with the scene must be simulated, including multiple transmissions and reflections before

it reaches the sensor. Image from [95] .

also play a big role in real-time path tracing, solving issues that arise due to the limited

computing budget. This work is testament to this shift to a neural augmented rendering

pipeline and the methods presented reflect this.

Neural Networks in Rendering. Some of the earliest applications of shallow neural

networks in computer graphics included denoising [47] and shading/rendering [94].

Deeper neural networks were introduced a few years later, thanks to improvements

in GPU hardware and machine learning frameworks, again for denoising [3][12] and

shading [79] but with much better performance (Figure 1.2). The introduction of hardware

based path tracing in combination with this improved denoising made real time path

tracing a reality albeit for simpler effects.

At the beginning of this thesis the first neural rendering methods were introduced,

using neural networks directly to generate the final image, in both inverse [34] and

forward tasks [25]. Neural rendering very quickly became an active and vast research field

with every part of the traditional rendering pipeline being tested against the performance

of neural networks. Early attempts at neural rendering for forward tasks were limited to

low resolutions and simple scenes but improvements introduced in follow-up work and

Chapter 1. Introduction 3

Figure 1.2: Deep neural networks can be trained to remove noise inherent in images generated

using Monte Carlo methods. Image from [3].

in this thesis show that neural rendering offers some clear advantages over path tracing

with denoising. Looking into the future, a neural augmented rendering pipeline could be

the way forward to inject more complex effects in real-time path tracing.

One important advantage of neural rendering methods is that in many cases it doesn’t

need explicit modeling of geometry. This is a big advantage especially for objects where

creating realistic geometry is challenging. Faces for example are extremely hard to model

since they are very important in our interactions as humans and even the smallest detail

can make a synthetic face look fake or unsettling. Another class of objects that is hard to

model are mesoscale materials such as fur, grass or vegetation. In nature these materials

have very complex geometry and their arrangement is stochastic which means that

modeling one exemplar and repeating it is not an option. An important body of work

and the next frontier for rendering such objects is Generative Adversarial Networks

(GANs). These models involve a training scheme that is centered around a zero-sum

game between a generator and a discriminator. GANs were introduced in 2014 [26] and

in the following years the quality and resolution of their results improved rapidly [49].

The introduction of StyleGAN [50], close to the start of this PhD, established GANs

as a powerful rendering tool for faces by demonstrating unprecedented quality and,

4 Chapter 1. Introduction

Figure 1.3: Images of faces generated by StyleGAN [50]. Styles from each column and row can

be combined to create new realistic images that inherit features from both.

inspired by style transfer literature, the use of styles to control different aspects of the

final appearance. StyleGAN was improved in multiple following iterations [51][52], each

one introducing higher quality and less artifacts. The missing component for GANs

to be introduced in traditional pipelines was explicit camera control. Many methods

tackled this issue by trying to disentangle pose from the latent space [82][61] but a more

appealing approach was using generative models to learn volumetric representations

that are rendered into images through an explicit volumetric path tracing step [99][15].

Finally, it is interesting to look at the evolution of neural network architectures in

computer graphics throughout the years of this PhD. In earlier years and for tasks such

as denoising, convolutional neural networks and their variants were the main choice

of architecture. At the time, networks were mainly seen as learnable image operations,

where convolutions can be very efficient. This changed when new methods used neural

networks as representations of occupancy grids [70], SDFs [85] and others. In such cases

Multilayer Perceptrons (MLPs) became popular as now the input was no longer a 2D

image but a tensor of positions, directions etc. The concept of using an MLP as an implicit

representation by overfitting to a single scene/object was introduced under many different

Chapter 1. Introduction 5

contexts [70; 85; 104]. NeRF [71] showed the potential of such an implicit representation

in computer graphics to render novel views of a captured scene. It demonstrated that an

MLP can be trained to represent color and density for each point in the scene, and this

very compact representation can be combined with volume path tracing for impressive

results. This work also brought attention to the importance of encoding the input [107]

to assist the network in creating high frequency details.

Context & Research Questions. All these breakthroughs impacted and inspired

different aspects of the methods contained in this thesis; but our view is different compared

to a lot of work in the field of neural rendering. We focus only on the forward physically

based rendering scenario. In this scenario we have distinct advantages but also different

expectations from neural rendering. One of the biggest advantages is the explicit control

over the synthetic data generation. We are not restricted by capturing the real world and

all the challenges this entails. Instead we are aware of the exact geometry, materials and

details of our scenes. In addition, since the forward problem has been studied for decades

in order to simulate it, we have extensive knowledge of its workings and a plethora of

previous methods that have attempted to solve it. This provided inspiration and insight

about how to solve the light transport problem but with the extra capabilities of neural

networks. On the other hand, neural rendering needs to either compete with traditional,

and now real-time, path tracing or it has to be able to become part of it to improve it.

Another important requirement, unique to our scenario, is that our methods are targeted

towards creating synthetic content and providing explicit control over the outcome to

the creators is crucial. This is especially challenging with networks since many aspects of

their workings involve intermediate latent spaces where extra effort is necessary to find

semantic meaning. For us, artistic control is non negotiable and it needs to be explicit

to meet the requirements of the target applications. These insights led to the research

questions we addressed in this thesis, which we present next:

• How can we use the explicit nature of a radiance field representation to improve

sampling by combining it with our knowledge of the scene materials?

• How can we efficiently train a network to learn an accurate radiance field represen-

tation in scenes modifiable by artists?

• How can GANs be used to learn a distribution of volumetric radiance fields repre-

6 Chapter 1. Introduction

senting 3D neural textures of mesoscale materials in the context of traditional path

tracing while retaining artistic control?

1.1 Representing & Rendering Synthetic Scenes

A synthetic scene is typically defined by geometry, materials, emitters and cameras

(Figure 1.4). Geometry is traditionally defined through triangular meshes which are

modeled by artists or reconstructed from captured content. Materials are defined through

different models that try to approximate how matter reacts to light. These models

are represented by a Bidirectional Scattering Distribution Function (BSDF) for surfaces

or a Bidirectional Transmittance Distribution Function for volumes. These functions

give the amount of light reflected depending on the directions of the ray before and

after the interaction with the material. Each surface point is associated with a material

which defines its final appearance, varying from diffuse to more glossy and specular.

Different types of emitters are placed in the scene which can be point lights, area lights

or environment maps simulating distant incoming light from the broader environment

but also complex light fixtures. Finally we place a camera to define the viewpoint from

which the scene will be rendered.

+

Geometry

Camera

Emiers

Materials

Path Traced Image

=

Figure 1.4: A traditional representation of a scene includes geometry, materials, emitter and

cameras. The components of this representation define the look of the rendered image, which

we produce by tracing thousands of paths from the camera into the virtual scene.

In order to create the image for a given camera in a synthetic scene we need to

calculate how much energy is reflected towards the sensor from each visible point in the

scene. This quantity, known as radiance, is estimated through path tracing, by shooting

virtual rays from the camera into the scene. The scattering events during this process

Chapter 1. Introduction 7

are sampled at random using Monte Carlo methods, involving choices for the reflected

direction, chosen material component, point on a light source to connect to and others.

While these choices are random they can be importance sampled using our knowledge of

the scene’s materials, geometry, light sources etc. For example, the most common way to

do importance sampling is using the scene materials which are available at the points of

intersection. Light coming from the directions around the glossy lobe of a material will

contribute more to the final image so shooting rays in those directions is more efficient.

But this form of importance sampling is missing the global state of the scene where

a lot of light might be coming from less important directions, resulting in significant

contribution.

In the scope of this thesis we assume that, for a given scene, the light distribution has

reached an equilibrium and is constant over time. In this case each point in the scene is

receiving a constant amount of radiance from each direction. This can be represented by

what we will later define as a radiance field in Section 2.2. By building representations of

radiance fields we can improve rendering in multiple ways. Coarse approximations can

be used to effectively importance sample the directions of paths and guide them towards

light sources, thus reducing noise. More accurate representations allow us to compute

how much light is reflected into the camera, creating the image directly. Radiance fields in

volumes can also describe geometry implicitly, making them a very flexible and powerful

representation.

1.2 Contributions

The goal of this thesis is to propose three different ways in which radiance fields can

improve rendering performance. First we utilize more traditional data structures such as

octrees and quatrees for our radiance field approximation. We show how these structures

can be combined with our knowledge of the scene materials for improved sampling.

Next we move to neural networks which we train in a precomputation step to build

our approximations. These approximations are of much higher quality than when using

traditional data structures. This allows us to use the trained neural network to render the

image, replacing a traditional path tracer. In this context we demonstrate how efficient

data generation has a big impact on the quality of the learned representation. Finally

we turn our attention to materials with complex geometry and demonstrate that they

can be represented and rendered through a generative model approximating volumetric

8 Chapter 1. Introduction

radiance fields.

The contributions of this thesis are:

• In Chapter 4 we present Practical Product Path Guiding using Linearly Transformed

Cosines. In this method we build an approximation of the incoming radiance

field, similar to previous work, but we combine it with information about the

surface material during sampling, thus improving performance and reducing noise.

To achieve this we use Linearly Transformed Cosines as a way to compute the

material’s response over a spherical polygon. This along with optimizations in the

form of precomputation and vectorization allow us to perform product sampling

on-the-fly with minimal overhead.

• In Chapter 5 we present Active Exploration for Neural Global Illumination of

Variable Scenes. We demonstrate that neural networks can be used to turn rasterized

geometry buffers into global illumination images even for scenes with variability.

To describe the current state of the scene we create an explicit representation

vector that describes the state of variables at inference. This leads us to define

the space of all possible configurations in which some parts are more difficult to

render than others. As a result we propose to explore this space by using Markov

Chain Monte Carlo and rendering images that better help the network converge.

At test time we can handle very complex effects such as caustics, at interactive

rates, which cannot be captured by real time path tracing with denoising. Our

scene representation vector also ensures explicit control of objects, materials and

emitters which is crucial in a production environment.

• In Chapter 6 we present Meso-GAN: A Generative Model for Mesoscale Materials.

Mesoscale materials such as fur, grass etc. can be quite expensive to render due

to their very complex geometry. We propose the use of a Generative Adversarial

Network trained on synthetic data for these types of materials to generate 3D

neural textures on an infinite plane. For a given object our method allows the

creation of a high resolution neural texture that is lifted into 3D and is ray marched

to generate the final image. These neural textures include stochastic detail, retain

explicit artistic control over their appearance and can be integrated into a path

tracer through the use of shell mapping.

Chapter 1. Introduction 9

1.3 Funding and Publications

The work in this thesis was funded by the ERC Advanced Grant No.788065 FUNGRAPH
1
.

The Meso-GAN project was partially conducted when the author was interning at Nvidia.

The work in this thesis has led to two first author publication in international venues

and a first author project still under review:

• Practical Product Path Guiding using Linearly Transformed Cosines [23]

Eurographics Symposium on Rendering 2020

• Active Exploration for Neural Global Illumination of Variable Scenes [24]

ACM Transactions on Graphics (TOG)

• Meso-GAN: A Generative Model for Mesoscale Materials

In preparation

1https://project.inria.fr/fungraph

https://project.inria.fr/fungraph

C h a p t e r 2

Background

In this chapter we will describe the basic metrics of light transport, set up some important

conventions to avoid ambiguities, review the rendering equations and finally define what

we consider a radiance field. We will also distinguish different types of radiance fields

before we explore how we use them in the following methods.

2.1 Radiometry

The main quantity emitted from light sources is energy (E) [J]. How this energy is

distributed depends on the scene configuration and changes from scene to scene. The

energy carried by a photon can be computed from its wavelength λ by:

E =
hc

λ
, (2.1)

where h is Planck’s constant and c is the speed of light in a vacuum.

A related quantity is radiant flux (Φ) [W = J
s
] (also known as power), which measures

the amount of energy per unit time:

Φ =
dE

dt
(2.2)

In this work we consider that our scenes are in an equilibrium and as such the energy

distribution over time is constant.

Since the incident radiant flux changes from surface to surface we are interested in

the metric of irradiance (I) [
W
m2], defined as the amount of radiant flux for a unit of area:

I =
dΦ

dA
(2.3)

Irradiance measures the total flux arriving on an infinitesimal surface from all directions.

Since we are also interested in how radiant flux is changing for different directions

we arrive at the main metric that we will be attempting to estimate, radiance (L) [
W

m2sr
]:

12 Chapter 2. Background

L =
dΦ

dA⊥dω
(2.4)

For computing radiance we consider incoming radiant flux for a unit of solid angle

(steradian) and a unit of area perpendicular to that direction. This means that we need to

project the infinitesimal area dA onto the perpendicular plane of direction dω.

2.2 Radiance Fields & Rendering Equations

Lo Li

x

Figure 2.1: For an intersection point x we consider the radiance that is reflected towards the

viewpoint as outgoing Lo. We name the radiance that arrives from a light source or other surfaces

incoming Li.

It is important to establish a convention (Figure 2.1) when we refer to radiance, distin-

guishing between it arriving on a surface and leaving from it, to avoid confusion when

we examine surface interactions. Since in path tracing we are interested in radiance that

is leaving the surface towards our viewpoint, we will refer to this direction as outgoing

radiance Lo. For the radiance arriving onto a surface from a direction ωi we will use the

term incoming radiance Li.

A radiance field
1

describes the distribution of outgoing or incoming radiance for

a given scene. We define it as a scalar field L(x, ω) that associates each point in a 5

dimensional space, (V ×S2
) where V represents positions and S2

the sphere of directions,

1
Similar to our definition of radiance fields are the terms light fields and plenoptic function [62].

The main difference between a light field and radiance field is that the former assumes that there are no

occluders in the space around a main object, while a radiance field has no such restriction. The plenoptic

function describes the same as what we call a volumetric radiance field but it is also associated with a light

stage capturing setup that allows for some simplifications.

Chapter 2. Background 13

with a scalar representation of radiance. In the case of volumes it is common to add an

extra scalar to the field which describes the medium’s characteristics at each point x.

If a scene contains only surfaces and we assume there is no medium in between these

surfaces then the scalar field is defined on the subset space that includes all positions

on the surfaces C ⊂ V . Also in the case of surfaces we only consider the hemisphere of

directions where the interaction happens, so the radiance field is defined in C ×H2
.

Depending on whether we are considering radiance leaving a surface or arriving

on a surface we define the incoming and outgoing radiance fields Li(x, ω) and Lo(x, ω).
The main difference between the two fields is that the outgoing radiance field Lo(x, ω)
includes the interaction of all arriving light with the material of the point x as it gets

reflected. So it implicitly includes a description of the material at the point of intersection.

The radiance field Li(x, ω) only considers light arriving on the surface before it has

interacted with it. A representation of an outgoing radiance field is more powerful since

once computed we can create any novel view of the current scene configuration by

sampling it on an image plane.

The outgoing and incoming radiance fields are associated through the rendering

equation [46] when we consider only surfaces:

Lo(x, ωo) = Le(x, ωo) +

∫
H2

Li(x, ωi) ρ(x, ωo, ωi) cos θi dωi, (2.5)

where Lo is outgoing radiance in direction ωo towards an observer and Le is the emitted

radiance at the point x towards wo. The BSDF ρ describes how much light is reflected

towards direction ωo from direction ωi depending on the material at point x. The integral

is over the hemisphere of directionsH2
around the point x, and θi is the angle between

the normal n at that point and direction ωi.

Moving from surfaces to volumes we need to characterize the mediums that light

interacts with. A medium can interact with photons by absorbing or scattering them.

One coefficient is assigned to each of these interactions, the absorption σa [m−1
] and

the scattering coefficient σs [m−1
] representing the probability density of each event

per unit of distance. In our work we will not consider emissive media and as such will

use only the scattering coefficient. The scattering coefficient σs can be used to compute

the transmittance function T (x1, x2) by integrating the loss of energy due to scattering

between two points x1,x2:

14 Chapter 2. Background

Lo
Li

x

xs

xm

Lm
Ls

L

Figure 2.2: For a query point x and an intersection point xs we consider the incoming Li and

outgoing radiance Lo as before. Now we also need to consider the radiance Ls that scattered

towards the observer by the medium for any point xm between the query point x and the

intersection point xs.

T (x1, x2) = exp−τ(x1,x2), τ(x1,x2) =

‖x2−x1‖∫

0

σs(x)dx (2.6)

Since now we take mediums into account, we need also examine the interactions

at any point xm between the query point x and the intersection point with the surface

xs, as shown in Figure 2.2. These interactions are described by the volume rendering

equation [16]

L(x, ωo) = T (x,xs)Lo(xs, ωo) +

s∫

0

T (x,xm)σs(xm)Ls(xm, ωo)dx, (2.7)

where T (x,xs)Lo(xs, ωo) describes radiance arriving from the surface and the integral

over distance between x and xs determines the total radiance scattered from the medium

towards the viewpoint. Since σs describes the medium’s interaction with light at each

point x it can be considered as part of an extended volumetric radiance field L(x, ωo)
+

.

This extended radiance field can be used to render an image by using quadrature methods,

such as ray marching, or it can be used for importance sampling in Monte Carlo methods.

C h a p t e r 3

Previous Work

The methods presented in this thesis are related to multiple different research fields and

in this chapter we will discuss the most relevant to our work. We will first review related

work from traditional path tracing and the use of radiance fields in path guiding and

precomputation methods. Then we move to neural networks in rendering for inverse

and forward problems and finally to neural networks as generative models.

3.1 Traditional Path Tracing

Unidirectional or ‘simple’ path tracing [46] is the algorithm in which paths are traced

from the camera towards the scene and connected to emitters. Throughout the years

many other variants of this basic method have been developed to improve sampling in

cases of hard paths. These include bidirectional path tracing (BDPT) [111], metropolis

light transport (MLT) [113], primary sample space MLT [53], manifold exploration [42]

and others. All these variants improve drastically upon path tracing in some situations

but at the same time introduce artifacts (splotchiness in MLT) and/or complexity (con-

necting paths in BDPT), as seen in Figure 3.1, which makes their use situational. The

robustness and simplicity of unidirectional path tracing is the reason why it still is the

standard method for rendering realistic physically based images in the film and visual

effects industry [54]. An alternative option to improve the efficiency of path tracing

is importance sampling. In the path tracing context, Monte Carlo integration involves

randomly sampling and evaluating the integrand in the rendering equation (Equation 2.5).

The sampling distribution or ‘strategy’ in this process affects the variance of the estimator,

i.e., the noise in the resulting image. Importance sampling is the process of creating and

sampling a distribution that approximates the integrand. The closer the sampling distri-

bution is to the actual integrand the less variance and fewer samples needed to generate

a noiseless image. Finding a sampling distribution that is both a good approximation and

that can be sampled efficiently is challenging. In the rendering equation the factors that

can be importance sampled are the incoming radiance Li and the cosine weighted BSDF.

16 Chapter 3. Previous Work

Although sampling based on the local cosine-weighted BSDF has been used since the

conception of Monte Carlo rendering, doing so proportionally to the incoming radiance

Li is intricate since it requires solving the light transport problem itself.

=

Multiplexed MLT Ref.MMLT

a)

b)

Figure 3.1: a) The images on the left are the result of connecting different vertices of the light and

camera path in BDPT. All these images must be carefully weighted using multiple importance

sampling to form the image on the right. Image from [111]. b) The splochiness inherent in MLT

is visible on the diffuse walls of the living room and artifacts that MLT can produce are pointed

with arrows on the right. Image from [10].

Radiance field approximations have been used to introduce importance sampling

according to Li, i.e., to guide camera or light paths in a series of methods called Path

Guiding. Vorba et al.’s method [115] iteratively built approximations of the radiance and

importance fields by using Gaussian Mixture Models (GMMs) in a training step. However,

the training step was computationally expensive and it was hard to evaluate the amount

of training required, i.e., whether the current distributions were sufficiently converged.

Reibold et al. [91] proposed the use of an outlier rejection algorithm to determine paths

in a scene with high variance and apply guiding using GMMs only to those paths. In

Chapter 3. Previous Work 17

this way the expensive guiding was used only where necessary. Another approach to

overcome the computational expense was proposed by Müller et al. [74], who used a

Spatial Directional tree (SD-tree) to efficiently approximate the incoming radiance field.

The SD-tree consisted of a binary tree for the 3D spatial subdivision and a quadtree for 2D

directional variation. This representation was refined by repeatedly rendering the scene

with exponentially more samples. Dahm and Keller [20] used a similar data-structure but

with a different update policy based on Q-learning. Path guiding has also been expressed

in the primary sample space [31].

Path guiding made sampling according to Li possible and added an extra sampling

strategy to the options for importance sampling. When multiple sampling strategies are

available they can be combined through multiple importance sampling (MIS), introduced

by Veach and Guibas [112]. This combination of strategies works well when each strategy

is a good approximation of the integrand for some part of the integral. However in some

cases none of the strategies are ideal, for example BSDF sampling and path guiding in

cases of glossy surfaces with complex visibility. In those cases creating and using a single

strategy that approximates the total integrand, i.e., the product of incoming radiance and

the BSDF can significantly improve sampling quality. Product sampling was originally

used for direct illumination [18][17]. The product was also used to select cosine lobes used

to represent the incident radiance field for indirect illumination computation [6], or with

spherical harmonics to importance sample environment maps [43]. The GMM approach

of Vorba et al. [115] was extended to compute product GMM importance sampling [36].

Radiance fields have also been used as a way to precompute and store global illu-

mination that can be efficiently queried at runtime. Ward et al. [116] were among the

first to suggest this to speedup rendering. In this work they considered only diffuse

surfaces allowing them to ignore the directional component and store the total incoming

irradiance in a spatial cache. This cache was used to infer the outgoing radiance by inter-

polating the values from neighboring points whenever possible. Photon mapping [44]

can also be seen as an attempt at building a radiance field approximation to generate

realistic images efficiently. In this method, Jensen [44] populated the scene with photons

in a preprocessing stage and used density estimation [103] to approximate incoming

radiance. In radiance caching, Krivánek et al. [58] expanded the approach from Ward

et al. [116] by introducing the directional component using spherical harmonics and by

proposing an efficient interpolation scheme using illumination gradients. This enabled

18 Chapter 3. Previous Work

Figure 3.2: Caching radiance (top row) can be used to render novel viewpoints without path

tracing and noise (bottom row) that is inherent in Monte Carlo methods. Image from [58]

interpolation for glossy materials such as the ones shown in Figure 3.2. More recently

light probes [68; 96] have been used in a similar context by placing them in a scene and

precomputing the incoming radiance for each one. At rendering time, information from

the probes is used to interactively render a scene with global illumination. In all these

cases dynamic scenes (moving objects or lights) are problematic since changes in the

scene geometry affects the scene’s radiance field. When such scenes are handled they are

restricted to diffuse materials [66].

3.2 Neural Rendering & Radiance Fields

Radiance fields received a lot of attention recently as a scene representation in neural

rendering, especially in the context of inverse problems, i.e., capturing and rendering

real scenes. Sitzmann et al. [104] used neural networks to implicitly represent the scene

by learning to associate any world space coordinate with a high dimensional feature

vector. Here the networks are not forced to represent radiance but can encode any

information necessary into the high dimensional vector. This vector was turned into

an image through a learned ray marcher implemented as a LSTM network. NeRF [71]

took a different approach by replacing the learned ray marching with explicit volumetric

ray marching and the high dimensional feature vector with radiance and density, as

Chapter 3. Previous Work 19

(x,y,z,θ,ϕ)

FΘ
(RGBσ)

5D Input
Position + Direction

Output
Color + Density

Volume
R endering

Ray 1σ

σ

R endering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

Ray 2

Figure 3.3: The training pipeline proposed by NeRF [71] where a network is trained to represent

the 5 dimensional outgoing volume radiance field. The learned volumetric radiance field is

rendered by using quadrature in the form of ray marching.

shown in Figure 3.3. These learned volumetric radiance fields proved to be a powerful

representation enabling high quality novel view renderings after training on images

of a real scene. The explicit rendering aspect and the robustness of the method led to

many follow ups. One important follow up was the work by Barron et al. [5] which

proposed a multi-scale representation for NeRF that supports filtered queries and results

in anti-aliased renderings at all scales. A more detailed review of related neural rendering

techniques is provided by the survey from Tewari et al. [108].

Figure 3.4: Scenes used by Eslami et al. [25] where a neural encoder compresses observations

into a scene representation vector. This vector is used by the decoder to generate novel views of

the scene. Image from [25].

In the context of rendering synthetic scenes, neural networks and radiance fields

have been used for neural shading/rendering and neural importance sampling.

Ren et al. [93] used neural networks to inject global illumination into rasterized

G-buffers. These networks can be seen as outgoing radiance field representations since

they are trained to approximate it at any point in a scene, given information about

20 Chapter 3. Previous Work

the geometry and materials. A later approach used neural networks in screen-space,

rather than in world space, by learning shading effects including indirect lighting [78].

More recently, Eslami et al. [25] trained an encoder decoder network on variable scenes.

Observations are encoded into a scene representation vector, which is then used to render

the scene. The encoder, decoder and scene representation vector implicitly represent

the scene including the radiance distribution, materials and geometry. This is a much

more challenging task than learning only the radiance field and as a result the scenes

used were simplistic and the training resolution low (Figure 3.4). Granskog et al. [28]

expanded on this idea by using G-buffers to help the networks with explicit geometry

and by enforcing structure on the neural scene representation. Baatz et al. [1] learned

neural radiance fields to represent meso-scale structures such as fur or grass, a method

that we will expand on.

The Neural Radiance Cache by Mueller et al. [77] is another case of a learned outgoing

radiance field representation. In their method they use a small fully fused neural network

which enables fast training and inference. This network is trained in an online fashion

in a real-time path tracing context. Training neural networks to approximate incoming

radiance can also be achieved by enforcing them to be consistent according to the

rendering equation (Equation 2.5). This approach is demonstrated by Hadadan et al. [32]

who minimize the rendering equation residual using a neural network.

[115] [72] [76] Li [115] [72] [76] Li [115] [72] [76] Li

Figure 3.5: Different approximations of the incoming radiance field, from explicit approaches [115;

72] to learned ones [76]. The images on the bottom row visualize the directional component of

the incoming radiance field for the red and orange points in each scene. Figure from [76].

The use of neural networks for importance sampling has been proposed in multiple

Chapter 3. Previous Work 21

different contexts from unidirectional path tracing [76; 4] to primary sample space [122].

These networks are trained to approximate the incoming radiance field or even the full

product with the BSDF for product importance sampling. A visualization of the rep-

resentation learned through traditional data structures and neural methods is shown

in Figure 3.5. The main requirement, and a challenge, when designing a network for

importance sampling is that it needs to be easily invertible which is not the case with tra-

ditional architectures. The computational overhead of the forward pass and the inversion

can diminish the benefits of the improved sampling. For that reason neural importance

sampling is best suited for scenes with complex illumination where traditional importance

sampling fails.

3.3 Generative Neural Radiance Fields

GRAF π-GAN

StyleNeRF EG3D

Figure 3.6: The evolution of the results in generative radiance field methods from GRAF [99] to

π-GAN [15], StyleNeRF [30] and EG3D [14].

Generative models and more specifically GANs [27] are capable of learning how to

generate a distribution of images for a class of objects. StyleGAN [50] and its follow

ups [51; 52] demonstrated that GANs can be trained to reproduce faces with remark-

able quality and details. The introduction of volumetric radiance fields following the

methodology of NeRF into the GAN training scheme led to results with lower quality but

explicit camera control, an important step towards incorporating generative models in

rendering. GRAF [99] and π-GAN [15] were the first methods to propose the introduction

of radiance fields in generative models with differences in the proposed architectures.

22 Chapter 3. Previous Work

More recently StyleNeRF [30] improved on the quality of the results by using components

from StyleGAN 2 which were proven to be effective at creating detailed imagery due to

its convolutional nature. While previous methods used ray marching of the radiance field

to compute the final image StyleNeRF proposed to ray march in feature space creating a

feature map that is then translated into an image by a StyleGAN generator. While this

improved the results it introduced view inconsistencies due to the operations in image

space. Another approach at generative radiance fields is the one by Chan et al. [14] which

also uses a StyleGAN2 generator before and after the raymarching. The StyleGAN 2

generator is tasked with creating a triplane representation which is used to query features

at each ray marching step. This gets translated into a low resolution image and some extra

features by an MLP decoder. The extra features are used to generate a high resolution

image through a superresolution module that follows the architecture of StyleGAN 2.

The low and high resolution images are fed to the discriminator with the goal of ensuring

that they look realistic and consistent with each other. While this approach brought the

quality of the generated results on par with StyleGAN 2 and 3 it again came at the cost

of view consistency. A collection of results from the mentioned methods is shown in

Figure 3.6.

3.4 Summary

We have reviewed the use of radiance fields in related work and demonstrated how

they have been used in many different fields and with different goals. We draw inspiration

from the extensive history of radiance fields from traditional path tracing to generative

models and now we will present the different ways in which we apply them in our

methods.

C h a p t e r 4

Practical Product Path Guiding Using Linearly
Transformed Cosines

Müller et al. 2017 Ours

MAE:0.097 MAE:0.082

Figure 4.1: Equal-time comparisons (2 minutes). Our method reduces noise compared to Müller

et al. [74], by efficiently guiding paths based on the product of the BSDF and incoming radiance

at each path vertex. We show Mean Absolute Error (MAE).

In this chapter we will present how to augment radiance field approximations on-the-

fly and efficiently, by using material information to improve sampling. More specifically

in our method we combine the benefits of the practical path guiding technique of Müller

et al. [72] with those of product importance sampling. We already discussed how path

guiding can use approximations of incoming radiance to provide efficient importance

sampling in path tracing. Usually path guiding is combined with BSDF sampling through

multiple importance sampling which provides the best sampling quality from the two

strategies. This is not sufficient when neither sampling strategy is a good approximation

of the integrand. In such cases product-based sampling can provide significant gains.

Product-based sampling has been introduced in path guiding by Herholz et al. [36] as

an extension of the method by Vorba et al. [115]. This increases sampling efficiency, but

also involves expensive precomputation inherited from the method it builds on. Our

approach combines the computational benefits of practical path guiding and the sampling

efficiency of product importance sampling.

Similar to Müller et al. [74], our technique relies on a spatial-directional tree (SD-tree),

24 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

to represent the continuously updated incoming radiance field. In prior work, this data

structure provided estimates of radiance integrals over spherical sets that were required

to drive a hierarchical sampling scheme. However, it is unclear how this could generalize

to the product case: direct tabulation of the product of BSDF and incident radiance is

clearly infeasible due to the prohibitive increase in dimensionality from 5D (C ×H2
) to

7D (C × H2 × H2
), where C represents positions on surfaces and H2

the hemisphere

of directions. Hierarchical sampling techniques that approximate the product at each

level of the data structure [18] seem more promising but require estimates of BSDF

integrals over spherical sets, which are not generally available in closed form. While

these integrals could be estimated numerically, the resulting costs would likely diminish

the benefits of product guiding. Our technique addresses this problem by providing an

efficient approximation of the necessary integrals using Linearly Transformed Cosines

(LTCs). Our choice is motivated by the observation that LTCs have been shown to be

efficient for similar integrals required in the context of shading for polygonal lights [35].

Directly using LTCs for practical product sampling requires many integral evaluations

during the hierarchical sample warping process, which unfortunately tends to negate

the benefits of product guiding. To overcome this problem we introduce two main

optimizations, one based on parallelisation and the other on precomputation. In addition,

we show how to further improve results by carefully using multiple importance sampling

and Russian roulette. We achieve on average 15-20% increase in computation speed for

the same quality compared to previous work for our set of test scenes, both with practical

guiding [74] and learning-based product sampling [36].

4.1 Practical Product Path Guiding

We use the SD-tree structure of practical path guiding [74] as our incoming radiance

field representation.

This 5D spatial-directional tree is partitioned as shown in Fig. 4.2. Each node of the

spatial subdivision tree (a) contains a quadtree which is stored in 2D directional space

(b), parameterized by cos θ and ϕ. Each node of the quadtree can be thought of as a

spherical polygon in the global sphere of directions with surface normal n. In the original

method [74] these nodes record the total incident radiance Li(x, ωi) at each iteration

of the guiding process. This incident radiance is then used to sample directions in the

next iteration. Sampling relies on a hierarchical warping scheme that requires recursive

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 25

a) 3D space b) 2D directional space c) Global sphere
of directions

d) Local sphere
of directions

e) Lo cal cosine distribution
sphere of directions

Figure 4.2: Given an intersection point p we find the voxel in the a) spatial subdivision that

includes it and the corresponding b) directional quadtree. This node spans a region of directions

in the c) global sphere of directions with surface normal n. Using the transformation T T
we

transform this spherical polygon to the d) local sphere of directions with normal the axis z.

Finally the LTC linear transformation M−1
takes the polygon to the e) local cosine distribution

sphere of directions.

estimation of probabilities while descending in the quadtree of directions [67].

The main challenge when sampling the product Li(x, ωi) ρ(x, ωo, ωi) cos θi, taking

into account both the cosine-weighted BSDF and discretization of Li, is that the BSDF

varies with respect to position and outgoing direction ωo. This implies that the sampling

distribution must be re-generated at every shading point. Tabulation and normalization

of the product distribution further require costly evaluation of the product at the finest

level of the SD-tree.

We introduce a separability approximation to make this process more practical. In

particular, we assume that

∫

Ωi

Li(x, ωi) ρ(x, ωo, ωi) cos θidωi ≈
[∫

Ωi

Li(x, ωi)dωi

]
·

[∫

Ωi

ρ(x, ωo, ωi) cos θidωi

]

within spherical polygons Ωi. This expression is approximate in particular when Ωi covers

a large solid angle, and it becomes more accurate under refinement. Our method samples

this expression hierarchically in a coarse-to-fine manner, requiring many evaluations of

spherical integrals over the BSDF, of the form

D =

∫

Ω

ρ(x, ωo, ωi) cos θi dωi, (4.1)

hence we seek an efficient approximation. Naturally, too approximate of an estimate

may even increase variance, thus a suitable tradeoff between performance and accuracy

is key.

26 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

Three possible options to accomplish this could be analytic integration, a numerical

solution or a conservative estimation of the integral. Analytic solutions exist only for

cosine-like distributions, which would limit us to diffuse materials. Numerical approaches,

such as Monte Carlo integration, would be too slow to yield accurate results since they

require many samples for each bounce of the path. A conservative estimate such as the

one used by Estevez and Lecocq [19] would be problematic for the size of the spherical

polygons, up to half a hemisphere, in the first levels of the quadtree. Instead, we use

Linearly Transformed Cosines [35] which enable an analytical solution for more complex

distributions, and have been demonstrated to be efficient for the integrals of the form of

Eq. (4.1). We achieve this by transforming from a local sphere of directions Fig. 4.2(d) to

a local cosine distribution sphere of directions (e).

Although LTCs admit a cheap integration scheme over spherical sets, the recursive

nature of our method increases overhead and diminishes gains from product sampling in

practice. We first discuss how we perform the product path guiding, and then present

optimization strategies that exploit the parallelizable nature of the computations and the

precomputation of frequently used factors. Finally we discuss how multiple importance

sampling and Russian roulette can be used to further improve results.

4.1.1 LTC-based Product Sampling

We next discuss LTC fitting for the BSDF, discuss our product sampling approach

and the technical specifics required for LTC-based product sampling.

LTC fitting for the BSDF at a shading point. Most realistic materials can be repre-

sented with a mixture of diffuse and glossy components, with varying roughness. For

the diffuse components we use an LTC with an identity transformation M = I . For the

glossy components we precompute a table of fitted LTCs over varying roughness α and

incoming elevation angle θ, with 128 bins for each. Given a ray intersection point p, the

BSDF at that intersection point with roughness α and the outgoing direction elevation

angle θ we fetch the corresponding LTC.

The LTC is stored in local space; a linear transformation M that defines the LTC

takes points from the local cosine distribution to the local current BSDF distribution

(Fig. 4.2(e) to (d)). Since the quadtrees store incoming radiance in global coordinates we

need to apply the transformation T , a rotation of the axis, to take the LTC from local to

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 27

global coordinates (Fig. 4.2(d) to (c)). As a result, in our representation, the LTC has a

new linear transformation M ′ = TM .

To integrate the BSDF over a spherical polygon using the LTC, we apply the inverse

linear transformation (M ′)−1 = M−1T T
to the vertices of the spherical polygon and

analytically integrate the cosine distribution over it.

The integration of the BSDF using a fitted LTC uses the closed form expression

described by Baum et al. [7]:

E(p1, ..., pn) =
1

2π

n∑
i=1

cos−1(⟨pi, pj⟩)⟨
pi × pj
pi · pj

,

00
1

⟩ (4.2)

where pi are the polygon vertices. This expression assumes that the integration

domain lies within the upper hemisphere. Otherwise, it must be clipped over the horizon.

Product sampling. During path generation, given a path vertex p we descend in the

binary spatial tree and find the corresponding directional quadtree (Fig. 4.2(a) to (b)).

Similar to Müller et al. [74], we use a hierarchical sample warping scheme proposed

by McCool and Harwood [67] to generate samples that follow the desired distribution.

During traversal, we estimate the probability to move to a child node k of a given internal

node, and repeat this recursively until we reach a leaf node. Within the leaf node we

sample uniformly.

In Müller et al.’s method each node stores estimated incoming radiance L̂i. At a given

level of the quadtree, their sampling algorithm chooses between the four sibling nodes

vj, j = 1..4. Each such node k stores the incoming radiance L̂k
i , and the relative value

L̂k
i∑4

j=1 L̂
j
i

determines the probability to move to it next. Sampled directions thus follow

the distribution of the incoming radiance field Li(x, ωi), one of the components of the

integrand (Eq. 2.5). For the other component of the integrand, BSDF sampling generates

directions following ρ(x, ωo, ωi) cos θi and the two strategies are combined using MIS.

Our algorithm is summarized in Algorithm 1. Our path guiding method directly

takes the product of the cosine-weighted BSDF into account. We thus need to compute

the probability to descend into part of the quadtree based on the product of the BSDF

integral D and the incoming radiance, using the LTCs for fast integration of D.

28 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

Technical specifics for LTC-based product sampling. The LTC representation

described above allows us to integrate ρ(x, ωo, ωi) ·cos θi over the four spherical polygons

at each quadtree level.

During the hierarchical sampling process, the probability to move to a given child in

the quadtree is given by the product of these values Dj, j = 1..4 and the stored values

L̂j
i , j = 1..4. For child k, the probability is:

Pk =
Dk L̂

k
i (x, ωi)∑4

j=1 Dj L̂
j
i (x, ωi)

. (4.3)

where L̂k
i is an estimate of the corresponding spherical integral of incoming radiance.

This probability is used in the traversal of the sample warping scheme, thus generating

samples that follow the full (product) integrand.

Algorithm 1: Quadtree product sampling

if isNodeLeaf() then
uniformlySampleWithinNode()

end
Π← 0;

for i← 1 to 4 do
v← getQuadVertices();

for j← 1 to 4 do
vj ← canonicalToCartesian(vj);
vj ← (M ′)−1

* vj ;
normalize(vj);

end
Di← ltcIntegrateQuad(v);

Li← getStoredRadianceSum(i);

Πi← Di *Li;

Π← Π + Πi;

end
Pk ← Πk

Π
, k = 1, ..., 4;

chooseNodeWithProbabilities(P)

Discussion. Since the SD-tree stores the incoming radiance in global spherical coordi-

nates over a spatial subdivision, the normals are averaged over this space. As a result

sampled directions can be in the wrong hemisphere, terminating path generation. With

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 29

product sampling this only happens when the leaf node lies on the horizon and the

uniform sample generated within falls below the horizon, which is quite rare. In addition

there is a chance that the product of the BSDF and the incoming radiance is 0 over the

entire sphere of directions. In such cases we sample according to the BSDF since this

means that no incoming radiance has been recorded in the local hemisphere for this

surface normal.

4.1.2 Optimization Strategies

In practice, using LTC fitting during recursive sampling adds computational overhead

that tends to negate the benefits of product path guiding. The specific computation

required for our new method enables two optimizations: First, we can evaluate per-node

integrals in parallel using vectorization. Second, common factors can be precomputed.

These two optimizations improve the performance of our approach compared to previous

methods, as we show in the results (Sec. 4.2).

4.1.2.1 Parallel Processing

Clipping the polygon against the horizon results in a variable number of vertices (3 to 5)

and requires branching code which impacts performance. Hill and Heitz [37] propose an

approximation of this process by using the vector form factor of the unclipped polygon,

i.e., Eq. 4.2 without the z axis dot product:

F = E(p1, ..., pn) =
1

2π

n∑
i=1

cos−1(⟨pi, pj⟩) (4.4)

From F we can compute the angular extent and elevation angle of a sphere that

has the same form factor as the unclipped polygon. We use the precomputed ratio

of the clipped sphere’s form factor to the unclipped one to scale the polygon’s form

factor accordingly. With this approximation, the BSDF integration requires Eq. 4.1 to

be evaluated four times for each node (once for each pair of vertices), for four child

nodes at each level (Algorithm 1). This computation represents the additional overhead

compared to the sampling in Müller et al. [74], and is a good candidate for vectorization.

We perform these 16 computations at once on an AVX512 enabled CPU. The rest of the

process involves fetching the stored L̂j
i values so no further vectorization was possible

there. Note that any optimization to other parts of the method from Müller et al. [74]

would also benefit our solution.

30 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

4.1.2.2 Precomputation

Another way to reduce the overhead of the product sampling is by precomputing the

diffuse vector form factors F (see Eq. 4.4 above). When a material is diffuse the corre-

sponding LTC has M = I so the total inverse linear transformation applied to the quad

vertices is given by: (M ′)−1 = T T
. T is an orthogonal transformation and as such we

can apply it to the resulting vector form factor instead of applying it to the vertices and

then doing the computation. Given this observation, we precompute and store the vector

form factors F for the five first levels of a quadtree with a total memory footprint of

256KB. For these levels we can avoid the arc cosine, dot and cross product in Equation

4.1. This increases performance for all diffuse and multiple component materials with a

diffuse component with minimal storage cost.

4.1.2.3 Discussion

Heitz et al. [35] mention that LTCs do not approximate the target distribution well in cases

of incident grazing angles and high roughness materials. To avoid fireflies due to error

in such cases we switch to path guiding without the BSDF LTC integration. Specifically

we do this for cases of outgoing directions with local elevation angle 85° ≥ θ ≥ 90°.

Moreover, if the material roughness is above a 0.5 threshold, we conservatively treat the

material as diffuse when performing the product computation.

4.1.3 Optimization of MIS

Our product path guiding depends on the accuracy of the incoming radiance represen-

tation and of the LTC integration. In some cases the LTC representation (e.g., very shiny

materials and/or grazing angles), these representations may not provide the best result.

On the other hand the SD-tree approximation is coarse and even after many refining

iterations it fails to capture all the details of the incoming radiance field. To overcome this

issue, we combine our method with BSDF sampling using multiple importance sampling

(MIS) as a defensive sampling strategy [36; 75].

We use the approach of Müller et al. [72], that learns the probability to either sample

the BSDF or path guide based on the performance of each sampling technique. Specifically,

we run an optimization step to learn the α value (see below), for the sampling probability

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 31

0.1
Fa

ct
o

Müller et al. 2017

B
SD

F
r

Ours

0.
0

Figure 4.3: The proportion of BSDF sampling learned with ADAM for our product sampling and

for Müller et al. [74]. Red regions show part of the scene where the guiding is used less than

BSDF sampling. Our approach is more robust because it considers the product, thus lowering

usage of BSDF sampling.

p(ωo|x, ωi) for the outgoing direction ωo from position x and incoming direction ωi

p(ωo|x, ωi) = (1− α)pg(ωo|x, ωi) + αpbsdf (ω|x, ωi) (4.5)

where pg is the probability defined by our product guiding, and pbsdf is the BSDF sampling

probability. Note that for Müller et al.’s approach, pg does not consider the incoming

direction ωi during sampling. We use the methodology of Müller et al. [75] to find α, i.e.,

we use the ADAM optimizer with the same parameters and optimize the Kullback-Leibler

(KL) divergence as it is more robust to outliers [75].

It is interesting to visualize the learned α value for our product method compared

to the original practical path guiding [72] (Figure 4.3). Observe that our α values are

lower compared to Müller et al.’s, which indicates that guiding reduces the need for BSDF

sampling as a defensive strategy. In particular, we rely more on our path guiding strategy

on glossy surfaces (i.e., wooden floor) or in regions with normal variations (i.e., thin

objects like the windows’ frames). This is visible as more blue in the figure, indicating

that BSDF sampling is used less in these regions with our approach.

4.1.4 Russian Roulette

As observed in previous work [36], product sampling increases average path length.

This is because with product sampling we do not generate paths towards the light source

if the BSDF value (and thus the path contribution) are low, in contrast to previous methods

32 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

that only take incoming radiance into account. In these cases, our technique introduces a

tradeoff between path length and higher contribution. In practice, we perform Russian

roulette for all paths on length two and higher, using Adjoint-driven Russian roulette [114]

(without splitting) where pixel estimates are directly stored in the spatial binary tree

nodes. This approach was originally proposed by Müller et al. [74].

4.2 Results and Evaluation

Figure 4.4: The six scenes used in our tests. From left to right: Bathroom, Living Room, Glossy

Kitchen, Pink Kitchen, Attic and Necklace.

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 33

We implemented our method in the Mitsuba [40] renderer, and used the Enoki

library [41] for parallelization with AVX-512 acceleration. We have published the source

code of our method
1
, including the Enoki optimization, for open research use.

We use L1 difference for the metrics shown in the main paper. For other metrics,

please refer to the additional material. We choose this specific metric as it is less prone to

overweight fireflies compared to square error metrics such as L2. Guiding methods may

increase variance in important but undiscovered areas. To remove these few remaining

fireflies we could use an outlier removal method [125].

We ran evaluations on a set of six test scenes shown in Fig. 4.4: Bathroom, Living

Room, Glossy Kitchen, Pink Kitchen, Attic and Necklace. Some of these are variants of

scenes used in previous work [74; 36]. We were unable to compare with GMM [36] on

Pink Kitchen and Bathroom due to specific issues
2

with materials in these scenes. All

reference images are computed with several hours of computation by averaging several

independent runs of practical path guiding or by high sample count path tracing. We set

the maximum path length to 10. To generate the results for comparisons, the authors

have kindly provided their own implementations of the corresponding methods. All

results are generated with implementations in Mitsuba [40], with 40 threads on a dual

Intel Gold 6148 Skylake at 2.4Ghz, with dual AVX-512 units.

We disabled next-event estimation for all the techniques. Next-event estimation can

be an ineffective sampling strategy in scenes with a highly occluded light source if no

importance cache is used; this is the case for most of our test scenes. More generally,

guiding techniques store the direct illumination directly inside the cache. Moreover,

storing the direct and indirect illumination when doing the product guiding has the

advantage of taking the BSDF at the shading point into account.

As our technique uses online learning, we combine all the iterations using the inverse

variance scheme [72]. We also use a box filter and stochastic filtering when splatting a

contribution on the directional and spatial data structure respectively.

We first present statistics illustrating the contribution of each of our optimizations

to the efficiency of our technique. We discuss our experiments with a Monte Carlo

alternative to LTCs. We then compare to the product GMM [36] approach and to practical

path guiding [74]. We also compare to unguided path tracing to illustrate which part of

1
https://gitlab.inria.fr/sdiolatz/practical-product-path-guiding

2
Some of the materials generated from our in-house 3DS Max to Mitsuba exporter (of type Phong)

resulted in crashes during the GMM fitting phase.

34 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

Table 4.1: Sampling cost of generating 64 sample per pixel for different scenes. These timings

include all costs, which includes ray intersection and our guiding procedure. Our optimized

version reduces the sampling cost by around 30− 35 % making our technique practical.

Scene Naive Optimized Optimized

AVX

Living-room 26.30 20.92 (79 %) 16.54 (62 %)

Pink Kitchen 53.60 44.22 (82 %) 32.94 (61 %)

Attic 64.04 54.47 (85 %) 41.93 (65 %)

Bathroom 58.28 48.13 (82 %) 36.91 (76 %)

Glossy Kitchen 20.12 17.90 (88 %) 13.69 (68 %)

Necklace 12.79 11.84 (92 %) 8.95 (69 %)

the light transport is difficult to sample.

Product optimization. We summarize the performance results of our technique with

our different optimization strategies in Table 4.1 for various scenes. The naive version uses

accurate polygon clipping and no diffuse precomputation (Section 4.1.2.2). The optimized

version uses all optimizations listed in Section 4.1.2, except for parallel processing. We

used the Enoki library [41] to achieve parallel processing using AVX-512 to compute

the integrals at each level of the quad-tree in parallel. The scenes are ordered from the

most diffuse to the most glossy one. For these results, no Russian roulette was used. We

did not observe any noise increase when using the sphere form factor approximation to

make our code branchless. Note that using AVX-512 instruction is a crucial optimization

to making the technique even more computationally effective.

LTC vs Monte Carlo integration. An alternative to LTCs for the BSDF integration is

a Monte Carlo approach, which we experimented with. To avoid repeating the integral

estimation process for each node during traversal we created a temporary quadtree which

we filled with N equal energy samples using BSDF sampling. We added a constant 5%

of the total energy to all the nodes to ensure we explored nodes that, due to the low

number of samples, haven’t received any energy. The two quadtrees, temporary BSDF

quadtree and incoming radiance quadtree, shared the same structure and the product of

their values determined the traversal. For N = 64 and for same quality results the Monte

Carlo integration approach was 9 times slower than the LTC approach.

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 35

Comparison with product GMM [36]. To achieve a fair comparison, we do not use

Russian roulette since it was not available in the reference implementation of the product

GMM method. We also set the BSDF sampling probability to 0.25 for both the techniques.

As also noticed by Müller et al. [74] the GMM training implementation does not scale

up with a high number of threads, while the other two methods do. To provide a fair

comparison we trained radiance GMM with 8 threads and assumed perfect linear scaling

of speedup to 40 threads to take training time into account. We do 30 training passes

with 2M photons or importons emitted per pass. We use default parameters for the rest

of the algorithm.

Reference PT Herholz et al. 2016 Ours

MAE 0.0187 0.0083 0.0059

MAE 0.248 0.0460.046

G
lo

ss
y

K
it

ch
en

N
ec

kl
ac

e

Figure 4.5: Equal-time comparison between standard uni-directional path tracing (PT), product

GMM [36] and our product for the Necklace (5 minutes) and Glossy Kitchen (10 minutes). Due to

the online nature and more robust radiance representation, our technique can generate images

with lower noise. However, the GMM product can be better at capturing fine lighting details due

to its high directional resolution. The training time for GMM is 61 and 194 seconds respectively.

Figure 4.5 shows the comparison of Product GMM [36] and our technique. Due to

the online nature which uses all the samples combining different iterations using inverse

variance and a more robust irradiance representation, our algorithm can perform more

samples per pixel and achieve lower error. Still GMMs are usually better at capturing

36 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

10−1×1

10−2×2

10 1200 10 1200

10−3×8

10−1×4

10−3×7

10−2×3

10−2×3

10−1×3

Herholz et al. 2016 Ours(α=0.25) Path Tracing

Living Room

NecklaceGlossy Kitchen

Attic

Figure 4.6: L1 convergence graph for 4 scenes between product GMM [36] and our product

without Russian roulette and fixed BSDF sampling probability. We show the average and variance

over 5 runs of each technique.

fine highlights like caustics, due to a denser cache. However, due to GMM Expectation

Maximization instability, GMM techniques can generate artifacts in some regions, like

on the silver ring in Necklace scene. L1 convergence graphs are shown in Figure 4.6.

Overall our method is more efficient, however for the Glossy Kitchen scene performance

is similar or better at later iterations.

Comparison with Practical Path Guiding [74]. We compared our product guiding

with Müller et al. [74] by enabling all the improvements presented in [72]. Here all the

BSDF improvements (Section 4.1.3) and ADRRS (Section 4.1.4) are enabled.

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 37

Reference PT Müller Ours

Li
vi

ng
 R

oo
m

MAE 0.434 0.101 0.091

MAE 0.034 0.026 0.023

B
at

h
ro

om

Figure 4.7: Equal-time comparison between standard uni-directional path tracing (PT), Müller et

al. [74] and our product for the Living Room (2 minutes) and Bathroom (3 minutes) scenes.

We also present graphs of error convergence for the three methods shown in Figure 4.8

for the six test scenes. We see that our method almost always has lower error, converging

faster than the previous solutions. On average, we are 15% faster for the same quality.

Figure 4.7 shows equal-time comparison for two scenes.

Overall, we observed that our method is particularly helpful in two cases: (1) on

glossy surfaces where our guiding reduces noise since the effect of the product is more

pronounced than elsewhere (2) on diffuse surfaces where we can clamp the irrelevant

directions. Overall, even if our computation is more expensive (due to the multiple LTC

integrations), we almost always see improvement in the level of noise, compared to

previous work.

38 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

10−1×1 10−1×6

10−2×2

10 1200 10 1200

10−3×8 10−2×3

10−1×4

10−2×3

10−1×4

10−3×7

10−2×3

10−2×3

10−1×3

10−1

Living Room

Tim e (sec) Tim e (sec)

Müller et al. 2017 Ours Path Tracing

Attic Bathroom

Pink Kitchen

Glossy Kitchen Necklace

Figure 4.8: L1 convergence graph for our six scenes, compared to [74] and simple path tracing.

We show the average and variance over 5 runs of each technique.

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 39

4.3 Limitations and Future Work

Our method shows improvement in most of the scenes we tested, with more sig-

nificant gains for scenes with many glossy/rough materials. It is however not without

limitations that we discuss next, followed by directions for future work.

4.3.1 Limitations

For scenes with moderate to high complexity in geometry and materials, our product

guiding is generally advantageous. However, for some simple scenes the overhead of

path guiding may not be worthwhile. This is especially true for product guiding that

involves a significantly higher overhead than simple strategies such as BSDF sampling,

even though the tradeoff needs to be considered for all guiding methods. Despite recent

work (e.g., [91; 9]), there is currently no easy way to identify “difficult paths” for which

product guiding is guaranteed to be cost effective.

In our current approach, guiding is not used in some specific cases, e.g., for deter-

ministic sampling techniques such as glass material. However, the treatment of such

light interactions, e.g., the decision to reflect or refract could result in paths with high

contribution where guiding could be beneficial. It is unclear how to adapt our data

structures to effectively guide such sampling decisions, without storing the complete

path [91].

Our separability approximation introduced in Sec. 4.1 performs adequately in our

test scenes but in theory it still has failure cases. We could construct such a failure case

with two checkerboard functions illustrated in Fig. 4.9. A similar scenario could arise

with complex materials with multiple glossy lobes that don’t overlap with the incoming

radiance in some directions. In that case our method would overestimate the product

value and allocate samples in regions of low importance.

Finally, one key element for the efficiency of our approach is the use of LTC to

integrate the BSDF contribution over a node of the quadtree. This works well for some

materials such as the GGX model we used in our tests, but the current LTC fitting

procedure may need to be adapted for other models. In addition, the expense of our

product approach is proportional to the number of LTCs needed to integrate for a given

BSDF, making the treatment of complex materials more challenging.

40 Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines

∫ = ∫ =∫a) b)

Figure 4.9: An artificial failure case for our separability approximation. a) The integral of the

product of these two functions is zero but our approximation by a product of integrals b) gives a

non zero value.

4.3.2 Future Work

In future work, we would like to further investigate the interaction between MIS and

path guiding. For now we are using ADAM to optimize the BSDF selection probability.

However, this BSDF selection probability is given for a spatial cell and does not take into

account the incoming direction. It will be interesting to investigate if a more elaborate

approach providing a finer BSDF selection probability can give better results. Finally,

it is not clear how to incorporate such an optimization procedure with recent MIS

techniques [29; 48].

Recent techniques restrict guiding to regions where necessary by storing complete

paths [91], in contrast to a cache of all paths such as the SD-tree we use. Developing a

method that combines the ability of the former to treat very hard paths and the full path

expressivity of the latter is an exciting direction for future work.

A possible future research direction would be to build a data structure based in

primary sample space for sampling a point on the emitter given a position in space.

However, to apply our product approach, it would be necessary to know the light source

geometry in terms of polygonal shapes to apply LTC integration.

Finally, both practical and product path guiding could be used in the context of

volume rendering, e.g., by adapting LTC integration to support phase functions.

4.4 Conclusions

We have presented a new product based path guiding technique, that makes the

incoming radiance field approximation material-aware in an efficient manner. The key

element of our approach is the use of Linearly Transformed Cosines allowing on-the-fly

integration of the BSDF during hierarchical importance sampling, i.e., when recursively

traversing the quadtree representation of the directional component of the subdivision.

To make the approach cost effective, we introduce two main optimizations, using paral-

lelization and precomputation, and also exploit the benefits of MIS and Russian roulette to

Chapter 4. Practical Product Path Guiding Using Linearly Transformed Cosines 41

further improve performance. We have demonstrated how our new approach is beneficial

on a set of six test scenes, and we have also presented an analysis of the benefits of each

of our optimizations.

While working on this project we witnessed the importance of representing radiance

fields to speed up rendering. We also saw how traditional data structures cannot represent

complex radiance fields accurately even after hours of refining. Due to this limitation

ours and previous work [36] always use BSDF sampling as a defensive sampling strategy.

Finishing this project we started exploring other alternative representations for radiance

fields that would allow us to use radiance fields for inference instead of sampling.

C h a p t e r 5

Active Exploration for Neural Global
Illumination of Variable Scenes

V
ea

ch
 D

o
or

Ground Truth Ours

MAPE: 0.042

Sp
ac

es
h

ip

Ground Truth

VariablesInteractive Rendering

Ours

MAPE: 0.036

Figure 5.1: We introduce a neural rendering method that allows interactive navigation in a

scene with dynamically changing properties, i.e., viewpoint, materials and geometry position

and full global illumination effects. With our Active Exploration we can train a neural network

efficiently to learn global illumination for all the configurations of these variable properties,

allowing interactive rendering at runtime. Left to right: ground truth path traced images; our

prototype interactive neural renderer, running at 4-6 fps with a variation of each scene and

the variable parts of the scene depicted in red; each variable property (light intensity, camera

position, object rotation, etc.) is controlled by an interactive slider (please see video).

In our search for a more powerful representation we focused our attention on neural

networks, with the goal of learning a high quality outgoing radiance field representation

which can be queried at runtime to form the image. We demonstrate how a network

can be trained efficiently to represent the outgoing radiance field of a variable scene

with moving objects, emitters, viewpoint and changing materials. Altering the scene

composition affects the distribution of radiance and for some configurations complex

44 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

lighting effects can appear. For example placing an emitter over a glass bottle will create

a caustic meaning that the radiance field will vary rapidly for that spatial region. These

effects are harder to learn for a network because of their high frequency content and due

to the low probability to be observed when the scene configuration is chosen at random.

We propose an alternative to this uniform sampling of the scene configurations and show

how sampling of training data in this case is very important.

We explored how recent methods [25; 28] are trained on large numbers of rendered

images for variable scenes. Uniformly sampling the space of these path-traced images

is expensive; in the case of a high-dimensional space D containing all the possible

configurations of a variable scene each with a different outgoing radiance field distribution,

it quickly becomes unmanageable. To address this limitation, we introduce an Active

Exploration strategy, that guides sampling to parts of the space D where the radiance

field is more complex and harder to represent with a neural network.

We demonstrate the efficiency of our Active Exploration approach on a neural ren-

derer, by training a generator network that can interactively render global illumination

with dynamic modifications (moving viewpoint, lights, objects etc.). Training time varies

from minutes to hours, depending on the scene variability, complexity and available hard-

ware. To represent a variable scene (see Fig. 5.1), we use an explicit representation with a

vector v of variable parameters that precisely define an instance of the possible scene

configurations in D enabling fine control of each parameter and interactive rendering.

We interleave training with on-the-fly generation of the data it needs. Uniformly

sampling the space of parameters to generate the data for training does not allow the

network to achieve satisfactory visual quality, especially when increasing the dimensions

of D, because in many cases light transport has hard, localized effects that have low

probability of being observed.

Our Active Exploration method finds samples best suited for training but also locally

explores these regions of D which is crucial in our context especially for enabling high

resolution training (5.5.2), compared to Active Learning (see Sec. 5.1). For this we use a

Markov Chain Monte Carlo (MCMC) approach, with small and large steps and a custom

acceptance policy.

Despite our focused Active Exploration, training data generation – i.e., ground truth

path-tracing – is still expensive; it is thus beneficial to reuse such rendered samples during

training. For best results, we introduce a self-tuning sample reuse strategy that optimizes

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 45

the probability for training sample reuse, further reducing training time.

Active Exploration, together with sample reuse and resolution enhancement allow

us to train our neural renderer network very efficiently. In contrast, uniform sampling

converges to a low quality solution, while our guided exploration of the training space

allows us to significantly improve visual quality, especially for reflections and hard light

paths. Therefore our renderer is well suited for interactive rendering of effects such as

complex caustics or specular-diffuse-specular paths, that are not handled by other real

time methods.

In summary our contributions are:

• A novel Active Exploration approach, interleaving training with on-the-fly genera-

tion of training data, together with an adaptively increasing resolution method.

• A self-tuning sample reuse approach, further optimizing training time and storage.

• A neural renderer that allows direct control of parameters for global illumination

and interactive inference, based on an explicit scene parameterization.

We demonstrate our system that allows interactive modifications of lighting, geom-

etry, materials and viewpoint (at 4-6 fps in our prototype Python implementation, see

Fig. 5.1 and video). We have released all data and our reference implementation
1
.

5.1 Related Work

We review and discuss some aspects of deep learning that inspired our Active Explo-

ration and training sample reuse methods.

5.1.1 Machine Learning

Our on-the-fly data generation, Active Exploration and training sample reuse ap-

proach do not have obvious equivalents in related work to our knowledge. However,

several sub-fields of machine learning explore ideas with some similarities; we review

these briefly.

Active Learning. Parallels can be drawn between our on-the-fly training data gen-

eration and Active Learning, where the data generation (labeling) is done procedurally

to decrease cost. As reviewed by Settles [101] in Active Learning an algorithm chooses

1https://gitlab.inria.fr/fungraph/active-exploration

https://gitlab.inria.fr/fungraph/active-exploration

46 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

when a data sample needs to be labeled, i.e., to be given the ground truth. Active learning

has been applied to convolutional neural networks [100] and generative adversarial

networks [124]. Different metrics can be used to define the importance of each sample;

some are related to our metrics to identify the most important samples during Active

Exploration (Sec. 5.4.1). Our context of working with synthetic scenes allows us to expand

on Active Learning and introduce Active Exploration. We not only identify hard samples

for training but we also use mutations to propose new hard samples which helps with

catastrophic forgetting [55] and overfitting.

Curriculum Learning. Importance sampling methods with Stochastic Gradient de-

scent have been developed under the general curriculum learning framework [11]. They

learn the probability distribution of choosing a training sample and use it for importance

sampling. Similarly Hazan et al. [33] learn a distribution for picking training data. In

contrast to such methods, we know the exact dimensions of our data space and can

sample them at will, making the task easier.

Recent work investigates issues with adaptive sampling, and the cost of using the

ideal target function [106], and provide guarantees about the quality of sampling given

limited information on the gradients. There have been some techniques that use self-

augmentation with synthetic rendering to overcome the lack of labeled or real-world

ground truth data [56; 64]; the goal is to match the synthetic and real distributions, which

implies different design choices from our context.

Compared to all these methods the major difference is that we have a forward problem,

and thus have full knowledge of the parameters that define the space of training data

and their dimensions. We can thus sample any part of this space on-the-fly. This aspect

of the space of training data makes it amenable to an MCMC exploration method, which

is not the case of static, pre-captured training datasets.

Learning and MCMC. MCMC methods have been used in Bayesian learning from the

early days of neural networks [80]. More recently, Stochastic-Gradient MCMC has been

proposed [117; 120] with various applications [63]. We also use MCMC for deep learning,

but in a different context: since we solve a forward problem and can generate training

samples on-the-fly, we use an MCMC approach inspired by Metropolis-Hastings to guide

the sampling process.

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 47

XML

Scene XML

Auxiliary Buffers Patches

Training Time Inference Time

Optimizer

Active Exploration

Auxiliary Buffers

Scene XML

Sample Reuse

Generator
 Network

GT Patch
Neural Prediction

4-6 FPS

XML

Requested
configuration

from

D

v v

D

Figure 5.2: Overview of our approach. Left: During training we define a scene and the set of

variable parameters via an xml file resulting in an explicit scene representation vector v. Using

Active Exploration we guide the configurations of the variable scene towards more difficult

instances that are important for the PixelGenerator network. Right: After 5-18 hours of training –

depending on the complexity of the variable parameters and quality required – we can interactively
request any variation of the scene with visual dynamic changes in illumination, move objects,

the viewpoint and modify materials.

5.2 Overview

Our goal is to significantly improve the efficiency of the training process in neural

renderers that are trained on synthetic rendered data by introducing Active Exploration

of the high-dimensional sample space and re-using these samples. With this scheme we

are able to efficiently train our neural renderer which provides explicit control of the

scene parameters and has constant rendering performance regardless of the difficulty in

the underlying lighting effect.

We represent the scene variability by an explicit scene parameter vector v (Fig. 5.2),

which defines the space D of all possible configurations of the scene; thus any v ∈ D cor-

responds to an individual scene configuration. Our goal is to train a network to take a

specific v and the set of corresponding G-buffer images (normals, albedo, etc.) as input,

and generate full global illumination images (Inference Time in Fig. 5.2).

When training the network some visually significant effects are very localized in the

high dimensional space D. Finding sufficiently useful samples in D to train our network

for those effects is very unlikely using uniform sampling and our limited budget. It

becomes more unlikely as the dimensionality of D grows.

Since we are solving a forward problem, we can generate ground truth training

samples on-the-fly using a fast path-tracer. A training batch will be 16 samples each

consisting of a 32x32 patch of ground truth, path-traced image, each patch in the batch

48 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

corresponding to a different configuration of the vector v. Each patch is sampled by a

different Markov Chain and rendered in parallel. Using patches allows more efficient

exploration ofD. In terms of pixels generated, this is equivalent to an image of resolution

128x128.

Even though our path tracer is fast, the cost of generating a training batch is still

high. We thus reuse training samples as much as possible. We introduce a sample reuse

strategy that further improves the speed of training. Training times vary from 5-18

hours depending on the complexity of the variable parameters and the quality required.

Once trained, the generator network allows interactive rendering of dynamic global

illumination effects (Fig. 5.2, right) for the variable scene, e.g., interactively navigating in

the scene, opening the door, change lighting etc. (please see video).

5.3 Explicit Encoding and On-the-fly Data Generation

We explain the explicit scene representation, the generator network and the on-the-

fly data generation process, used in our neural rendering algorithm, before presenting

the actual Active Exploration approach in Sec. 5.4.

5.3.1 Explicit Scene Representation

Previous methods [25][28] use an encoder network to create a neural scene represen-

tation vector of a scene configuration.

However, this representation lacks interpretability and editability. In addition, render-

ing a new scene configuration requires new observations (i.e., ground truth renderings)

to be generated, since the parameters of the scene representation have no explicit inter-

pretation or “meaning”, and thus the renderings are needed to generate the new neural

scene representation vector.

We focus on variable scenes, commonly used in production [102]. Given that we

know explicitly which parts of a scene are variable and how much they can vary, we avoid

training an encoder network to represent this variability and instead create the scene

representation vector from the scene definition. As a result all fixed properties are stored

in the generator and associated with a set of rasterized G-buffers, while scene variability

is compactly represented in the explicit vector. This vector contains the normalized values

of the variable scene parameters for a given scene instance.

Consider a variable Cornell box scene (Fig. 5.3). Here we vary the two vertical wall

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 49

1 .0 0 .0 0 .0 0 .0 0 .0 1 .0 0 .8 0 .5 0 .2 0 .5 0 .5 0 .5

Short Box X-ZAlbedo Right Wall

Albedo Le Wall Tall Box X-Z Light X-Z

Figure 5.3: The explicit scene representation vector v that defines this instance of the variable

Cornell box scene.

albedos, positions of the boxes and light source position, and define the ranges of these

parameters.

The normalized parameter values make up the explicit scene representation vector v

(Fig. 5.3). The scene representation vector along with the camera position and lookat

vector are repeated along the width and height dimension to be the same size as the

G-buffers, and also passed to the neural network. Since our generator operates on a per

pixel basis, this repeated vector injects the global scene information to all pixels.

5.3.2 Network Architecture, Buffers and Training Data

We optimize a modified PixelGenerator architecture [28; 104] (a Multilayer Perceptron

network with skip connections) to map the inputs for each pixel to the final pixel color

value. We choose this over a convolutional neural network such as a UNet since [28]

has demonstrated the PixelGenerator architecture to perform better at upscaling. Unless

stated otherwise, we use 512 hidden features and 8 hidden layers. For the optimization

we use the ADAM [57] optimizer with learning rate 1× 10−4
.

For the G-buffers, we provide all the information a traditional path tracer would

require to evaluate the rendering equation of path tracing (Equation 2.5). We create

first-intersection G-buffers with the world position of the intersection x, normal of the

surface n, reflectance and roughness of the BSDF ρ and outgoing direction ωo. The normal

and material information help the network understand the existing correlations between

these signals and outgoing radiance Lo.

We optimize the neural generator to map this input to the value of the integration

over the hemisphere. Emission is also computed as a first-intersection buffer and is passed

through to the output directly.

50 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

The world position x conditions all the other inputs since it is where the integration

happens. For this reason we precondition the PixelGenerator to the position G-buffer by

passing it alone through the first network layer. In subsequent layers all the buffers are

concatenated with the global information of the scene representation vector and passed

to the network; this is similar in spirit to NeRF [71] that inputs only position to the first

layers. We experimented with Fourier features [107], but this resulted in artifacts due to

the noise in the training data. We show the effect of this choice in Sec. 5.6.3.

5.4 Active Data Space Exploration

For a given variable scene, we will optimize a neural generator using on-the-fly

synthetic training data; we describe the training process and loss in Sec. 5.5. This training

data is generated within the space D of all possible configurations of the scene.

D

v1 v2

v3

Figure 5.4: A point vi in the data space D defines a scene instance out of all the possible

configurations of the variable scene.

Each point in this space is defined by the values of the scene variables of the explicit

scene representation vector v. Since the scene variables are normalized, the data space

D can be seen as a hypercube, see Fig. 5.4.

A uniform random sampling of this high-dimensional space converges to a local

minimum with low quality (see Sec. 5.6.3).

To overcome this difficulty, we propose Active Exploration of the space D of training

samples. The ability to generate on-the-fly training samples defined by the explicit vector

v offers great flexibility, allowing us to interleave sample generation and training.

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 51

The high-level goal is to find a sampling strategy that will find samples in D that

maximize the progress of training and locally explore these pockets of importance.

We introduce a MCMC exploration strategy that guides sampling of D, towards scene

configurations where the network struggles to recreate global illumination. MCMC is

well suited to searching such high-dimensional spaces, and has proven its utility both in

learning [117] and illumination [113].

The Markov Chain is initialized with a state picked uniformly from the hypercube

of the data space u = u0 ∈ D, i.e., a random configuration of the variable scene. The

next proposed state is sampled from the proposal distribution v ∈ T (ui → v). Similar

to the Primary Sample Space exploration [53] we balance global and local exploration

of the space with large and small steps, by choosing large steps with probability pLS.

Specifically:

T (ui → v) =

U() with probability pLS = 0.3

Perturb(ui) else

(5.1)

5.4.1 Markov Chain Exploration

The data space D can have arbitrarily high dimension, depending on how much

variability exists in the scene. Our goal is to generate training samples that follow the

distribution of sample importance, i.e., the impact of the sample on training. In MCMC

terminology, our target function f and corresponding target distribution p should be

defined so that the sampling process produces samples that maximize benefit for training.

The high dimensional space of D, with pockets of importance, is ideal for a MCMC

random walk exploration.

The hypercube of our data spaceD has a very similar structure to the primary sample

space [53] and we take inspiration from the exploration choices of that method. The

Metropolis-Hastings algorithm defines a proposal distribution T (ui → v) from a given

state ui to a proposed state v. The target distribution p is defined such that new states

should be proposed and accepted for the Markov Chain to have a stationary distribution

(i.e., the distribution at convergence) proportional to the target function.

Our goal is to define a target distribution that will guide the training process to

samples that accelerate training. Previous work has suggested different metrics of sample

importance [121]. Two common such metrics are the training loss or the norm of the

52 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

gradients after a backward pass, which we combine in our target function.

Our experiments showed that if only the loss is used, MCMC doesn’t take into account

where the network can improve the most.

However, the product of the loss and the norm works well, see Fig. 5.17. Since we

use ADAM [57], instead of the norm of the gradients we use the norm of the total step to

take into account the momentum and RMSprop [110].

Small Step Large Step

U ()Perturb(u)i

Figure 5.5: Visualization of the impact of a small and large step on a variable scene. In small steps

(left) minor perturbations are applied – here the light source, furniture positions and materials

have been altered slightly. In large steps (right), major changes have been applied to the scene

(position of furniture, albedo of objects etc.).

The small step involves applying normally distributed perturbations to each compo-

nent of ui. A visualization of the impact of these steps on the final rendering is shown in

Fig. 5.5. Since the proposal distribution is symmetric, meaning T (u→ v) = T (v→ u),
the acceptance probability of the proposed state similar to the Metropolis-Hastings

algorithm is:

α(ui → v) = min

(
1,

p(v)
p(ui)

)
(5.2)

The acceptance probability transforms the Markov Chain’s stationary distribution to the

target distribution. In our case we have a) an evolving target distribution that b) changes

based on the samples we provide.

In our experiments, the acceptance probability of Eq. 5.2 does not converge to the

target distribution fast enough, i.e., before it has changed. For this special case we propose

instead a more aggressive acceptance policy:

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 53

α(ui → v) =




1 if p(v) > p(ui)

0 else

(5.3)

This acceptance probability has the desirable property that the more we remain in a state

the more the target function – which is related to the error – decreases for this state. If

we assume that the network can represent this state, then it will learn from it, meaning

that the gradients and error will decrease, allowing a new proposed state to be accepted.

If there are states that cannot be represented (e.g., pixel perfect reflections) the gradients

will guide the MCMC towards states that still have room for improvement avoiding the

issue of getting stuck.

1 6 12 18 24 30

Target

MCMC Samples

Ours

Uniform

Training Iteration

z

x

Predict reflection

zx

Figure 5.6: We test our method in this simple example to verify the convergence of the samples

generated by Active Exploration. In this scene the variable parameters are the X-Z placement of

a Bunny figure in an empty room (left). We fix the viewpoint to always look into the mirror and

ask our generator to predict the reflection. The Bunny appears in the reflection for only a specific

range of X values. We plot the target function (loss times gradients) for different X-Z values of

the Bunny position (the heatmap can be seen as a top down view of the room) through training

iterations, on the right. We show that the 2D histogram of Bunny placement from our Active

Exploration, after a burn in period, starts following the distribution of the target function. As a

result the reflection of the Bunny, when it is placed at the center of the room, starts appearing

much sooner compared to uniform sample generation.

In the initial phase of data generation, known in the literature as the burn-in phase,

the Markov Chain the samples do not follow the target distribution. To alleviate this

issue we use 16 Markov Chains in parallel, one for each patch rendered, leading to a

shorter burn-in phase. This can be seen in Fig. 5.6 ‘MCMC Samples”.

We evaluate our proposed acceptance policy and the sample distribution in a simple

scenario shown in Figure 5.6 and by disabling sample reuse. Here the 2D variable

54 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

parameter is the position of a Bunny figure in a room with a mirror at the center of its

wall. We task the generator with predicting the reflection (viewpoint is fixed to always

look into the mirror). For this case the static reflection of the walls is learned quite easily

but the variable reflection needs the Bunny to be placed in view of the mirror. Our method

correctly does so and leads to its reflection (when the bunny is placed at the center of the

room) appearing much faster compared to Uniform sampling.

5.5 Training and Self-Tuning Sample Reuse

For training, we use the combination of L1 and structural dissimilarity loss, as in

Granskog et al. [28]. Since rendering is still slow it is beneficial to reuse samples as much

as possible. We next discuss our self-tuning sample reuse and resolution enhancement

methods.

5.5.1 Self-tuning Sample Reuse

Traditional supervised deep learning typically uses a fixed sized pre-computed dataset

and runs optimization steps many times on batches, running through the entire dataset

several times. Each such run is referred to as an epoch, resulting in the reuse of each data

point many times.

In our case, we are generating training samples on-the-fly, and thus we do not have

the notion of epochs. However, sample generation is costly (typically 2.5 sec for the 16

32x32 patches), and it is thus important to reuse training samples as much as possible,

to speed up training, and also prevent the network from forgetting over the course of

training. We do this by introducing a new self-tuning sample reuse strategy based on the

divergence between the loss of newly seen data points and those already seen, to achieve

a balance between overfitting and training speed.

Inspired by these observations, we achieve this balance by tracking two different

losses Lossnew and Lossexist, i.e., the loss of newly generated, unseen samples and the loss

of the previously generated samples that were already used to train the network. Both

are tracked using an exponential moving average to lessen the effect of the stochasticity

of the optimization process. When Lossexist starts decreasing faster than Lossnew, thus

diverging from it, our model is starting to over-fit (as new data is performing worse than

previously generated data). In this case we need new samples to augment the size of our

dataset. This can be done by decreasing ps, i.e., reusing with a lower probability.

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 55

We start training on-the-fly, generating and storing a new sample for the first 100

samples. After this short initialization, for each new step we randomly decide to reuse a

previously generated sample, or generate and store a new one. The decision is made based

on a Bernoulli distribution with a self-tuning probability ps over steps s, representing

the probability of reusing a training sample.

We build probability ps to satisfy two goals. First we would like ps to be as high

as possible, so that we save as much computation as possible. But if it is too high, or

even equal to 1, we would over-fit to the already generated samples and stop exploring

the space of parameters. Thus ps should also be sufficiently low to avoid over-fitting.

Over-fitting is usually measured by the difference of performance of a model between a

training and validation dataset.

We propose a mechanism with a single parameter to control ps:

ps = σ(Lossexist − Lossnew + β) (5.4)

where σ represents the sigmoid function and β is the parameter controlling the reuse

probability when both losses are equal. This formulation decreases the probability of

reusing a sample when Lossexist is lower than Lossnew. Intuitively the above equation is

derived by associating the losses to negative log-likelihood of probability distributions

parameterized by the ground truth. More details can be found in Appendix A.7. Since one

component of the MCMC target function maximizes the loss (see Sec. 5.4.1) we use only

large step samples to keep track of both Lossexist and Lossnew. In all our experiments

β is set to 4.6, to have ps = 0.99 when Lossnew = Lossexist. When a sample is reused

we build a batch of training images from the stored patches. We use the previous loss

of the sample as a weight, i.e., setting the probability of selecting a patch proportional

to its last recorded loss. We update the weight of a sample whenever it is reused, using

the network loss on that sample in the current iteration. This allows hard samples to be

reused more often and discards those for which the network performs well, leading to

better adequacy between reuse and MCMC.

5.5.2 Resolution of Training Images

One of the main advantages of using a PixelGenerator for the generator architecture,

as demonstrated by [28], is its performance during inference on much higher resolutions

than that used for training. Shading effects that depend heavily on G-buffers such as

textured diffuse materials benefit from buffer upscaling, providing improved quality.

56 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

That is less true for high frequency view dependent effects, such as reflections, that

are typically small, and band-limited by the resolution of training images. Our goal is

to progressively reduce the area each training sample covers, allowing the model to

gradually focus on such effects.

We adopt a multi-resolution approach to address this. We start training with 32x32

patches extracted from 128 by 128 pixel images with a 90◦ field of view. Note that the

MCMC controls the respective patch position on the image plane and that we only render

the patch pixels. We then progressively increase the resolution of the images used to

select the 32x32 patches; we found that doing so by 4 pixels every 2000 iterations worked

well, all the way up to 600 by 600 which is closer to our target resolution. This shrinks the

area of the patch on the sensor and allows the network to observe finer details in hard

regions, such as reflections, during training. This process is made possible by the MCMC

exploration, due to its ability to locally explore the scene configuration through the small

steps, and to adapt to this progressive change in resolution. On the other hand, adopting

such a multi-resolution approach with uniform sampling of D results in worse overall

results as it decreases the probability of observing a given point in the scene. This makes

sampling even less efficient (see Fig. 5.7) resulting in lower perceived image quality.

UniformOurs +Multi-res +Multi-resGround Truth

Figure 5.7: Ablation study for adaptive resolution MCMC vs Uniform training. Ours and Uniform:

the resolution is always 128x128. Multi-res: we progressively increase training resolution up to

600x600.

We show results for several variable scenes. We also present comparisons to previous

work and analyze the various design decisions of our solution through ablation studies

and quantitative evaluation.

We have implemented our system in Python interfaced to Mitsuba 2 [84] which we

use to render global illumination and G-buffers. We use between 200 and 24,000 samples

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 57

per pixel for ground truth renderings, depending on the scene see Table 5.1.

Sphere
Caustic

Living
Room

BathroomBedroom
Scene

Veach
Door

Spaceship Veach
Egg

spp 200 400 400 600 800 1200 24000

Table 5.1: Samples per pixel used for each scene during training.

We allow transformation of geometry and lights, material editing and viewpoint

changes, including discrete events (e.g., changing between different materials, objects

appearing/disappearing).

Our prototype implementation runs at 4-6 fps at inference/rendering time (900x900

resolution on a NVIDIA 3090 GPU), allowing interactive exploration of dynamic global

illumination in variable scenes with potential applications in architecture, design, games,

etc.

Currently we only show results with a forward path tracer (the only integrator

available in Mitsuba 2). However, our method is agnostic to the type of integrator and if

we used a different renderer, we could train with bi-directional path tracing, Metropolis

or any other method.

5.6 Results, Analysis and Comparisons

In this section we will demonstrate results in multiple variable scenes, analyze our

main design choices in the method and compare to state-of-the-art denoising and neural

shading methods.

5.6.1 Results

We present results of our method on several modified scenes from the Bitterli

dataset [8]; the viewpoint is variable in all 7 scenes except Sphere Caustic, Figures 5.1

and 5.8.

For the Bathroom scene, we added a showerdoor with variable roughness; additional

variables are the intensity and position of the light source (total 8 dimensions). For the

Living Room scene, we added blinds on the windows that can open and close; additional

variables include the light intensity (7 dimensions). For the Bedroom scene, we have

simulated variable sunlight with a distant source coming in through the window (6

dimensions). We present a modified version of the Veach Door scene, where the variable

58 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

Ve
ac

h
Eg

g
Ba

th
ro

om
Sp

he
re

 C
au

st
ic

Li
vi

ng
 R

oo
m

Be
dr

oo
m

Ground Truth Neural Prediction Interactive Navigation & Scene Manipulation

Figure 5.8: Results of our method for 5 different scenes each with different variations. Note how

we can capture view changes (all but row 2) reflections, approximate caustics, global illumination

etc. all at interactive rates. The scene variables include: material albedos and roughness (Sphere

Caustic, Bathroom), moving and rotating objects (Veach Door, Living Room) and time of day

Bedroom.

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 59

is the opening door (6 dimensions). We also have a modified Cornell Box, Sphere

Caustic with variable wall colors and a large sphere that can move in the scene and

vary in roughness, for a fixed viewpoint (11 dimensions). The Spaceship scene contains

3 variable emitters, 2 on the ceiling and one in the cockpit and variable viewpoint (8

dimensions). Finally in the Veach Egg scene we can vary the position of the glass egg

and the spotlight emitter (9 dimensions). We show several configurations of each scene

in Fig. 5.8 and Fig. 5.1.

0.031 0.00230.010.0012

0.079 0.20 0.0245

Ours

0.0141Veach Egg

Sphere Caustic

0.048 0.02200.040.0068Living Room

0.033 0.00890.030.0029Bathroom

0.074 0.05120.050.0149Bedroom

DSSIM MAPE MAE LPIPSScene

Table 5.2: Quantitative results using 4 metrics for the configuration shown in Figure 5.8.

We train the scenes for 5-18 hours on a single NVIDIA RTX 6000. If training speed

is important, we obtain a reasonable first approximation after a few hours, but longer

training is required if we want to be very close to ground truth (see Fig. 5.9).

B
ed

ro
om

Data Generation + Training Time: 5 hours 11 hours 18 hours Ground Truth

MAPE: 0.137 0.087 0.075

Figure 5.9: Results of our method after increasing hours of training. Depending on the application

if speed is valued over quality, our method yields plausible results after a few hours of training

and data generation. For the best quality possible our method requires around 18 hours in the

Bedroom scene.

60 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

Different application scenarios have different hardware resources. If the target

platform is a modern desktop computer with a ray tracing GPU, specular interactions can

be traced and not inferred. In this case our method needs 30 minutes for acceptable results;

more training is required to achieve the highest possible quality as seen in Fig. 5.10.

Ground Truth

Data Generation + Training Time:

Ours + Path Tracing

30 minutes

B
ed

ro
om

Positions Buffer

Figure 5.10: When ray tracing hardware is available our method benefits by tracing all specular

bounces during the buffer generation, as in the positions buffer shown. This means that with

only 30 minutes of data generation and training our method learns the non specular shading for

the Bedroom scene. The harder high frequency details on the carpet still need full training to

appear.

Our solution shows good temporal stability. The results show that we can capture a

wide variety of light transport effects: global illumination (Living Room with different

blind positions; Fig. 5.8), soft shadows, glossy (or even partially specular) reflections

(Living Room, transmission (Bathroom), caustics, (Sphere Caustic, Spaceship, Veach

Egg) etc. A major strength of our approach is that we can render very hard light paths

with good quality at interactive rates, e.g., the caustic in Spaceship (Fig. 5.1, or the shadow

from the caustic in Veach Egg, Fig. 5.14, last row). The quantitative results in Tab. 5.2

show that we achieve low error rates in all scenes.

5.6.2 Comparisons

The most significant comparison we will present is to Uniform sampling, since this

clearly reveals the advantage of our active exploration approach. We also compare to

Compositional Neural Scene Representations (CNSR) [28], since we share similar inputs

and some goals. The comparison mainly shows the benefits of our Active Exploration,

explicit scene representation, and sample reuse in terms of training and inference speed.

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 61

Finally a compelling alternative to our method for real time rendering of dynamic scenes

is Real Time Path Tracing plus denoising. We compare with the state of the art denoising

method of [38], further illustrating that our method is one of most efficient solutions

for interactive rendering of hard light transport configurations, that require a very high

sampling rate to be captured by path-tracing.

5.6.2.1 Comparison to Uniform sampling.

Uniform Ours Ground Truth

Li
vi

n
g

R
o

om
V

ea
ch

 E
gg

Figure 5.11: We compare our active exploration MCMC method vs. Uniform sampling of the

spaceD trained for the same time. We see that Uniform search running for the same time cannot

produce sharp shadows, reflections and caustics.

To evaluate the effect of MCMC active exploration our first comparison is to a simple

uniform sampling baseline (in Fig. 5.11). To simulate uniform sampling, we replace our

MCMC method with large steps only, that are always accepted; note that this baseline

62 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

includes our sample reuse method, but not resolution adaptation since it gives worse

results (Sec. 5.6.3). As we can see, for the same computation time, active exploration

achieves sharper reflections, caustics and shadows, thanks to the guiding sampling it

affords. We tried to obtain equal quality with the uniform sampling, however this naive

approach converges to a low quality local minimum. The results shown in Fig. 5.11 were

generated with the best quality this approach could achieve; after this point in training

the loss does not decrease. In all cases, our method provides sharper results, generally

much closer to the ground truth. This is confirmed with quantitative analysis in Tab. 5.3.

Ours 0.0116 0.065 0.22 0.0477

0.076 0.07380.25Uniform 0.0147

Living Room
Ours 0.0141 0.079 0.20 0.0245

0.162 0.28 0.0652Uniform 0.0241

Veach Egg

DSSIM MAPE MAE LPIPSScene

Table 5.3: Quantitative results using 4 metrics for the configuration shown in Figure 5.11.

We also show quantitative results in Fig. 5.12 using the Mean Absolute Percentage

Error (MAPE), DSSIM [65], Mean Absolute Error (MAE) and LPIPS [119] error metrics

and a graph with the evolution of error over time. Since our main goal is to handle

difficult lighting configurations, we select 10 frames from each path of each scene which

correspond to such cases, and evaluate our method against ground truth; we show the

selected frames for each scene in Appendix A.1.

5.6.2.2 Comparison to CNSR

We compare our method to Compositional Neural Scene Representations [28] (CNSR)

using the variable ArchViz scene, the more complex of the two datasets used in CNSR; Our

implementation of this scene has 71 dimensions. For best-effort same quality comparison

we use a pretrained model provided by the authors. Note that the ArchViz dataset

‘consists of variations of a living room with a dining area” [28]. Both the pretrained

model of Granskog et al. [28] and ours are trained on identical data involving variations

of this scene. We recreated the ArchViz variable scene in our framework as closely as

possible, using publicly available resources [28]. The CNSR pretrained model is trained

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 63

Veach Door

.014

.012

2 10 18

Bedroom

.018

.014

.010

2 10 18

Hours

Living Room

.030

.024

.018
2 10 18

0.0097

0.0160

0.0458

0.0791

DSSIM MAPE

Ours

D
SS

IM

0 .10580.0212

0.0180 0.0892

DSSIM MAPE

0.0135

0.0117 0.0712

0.0752

DSSIM MAPE

Uniform

Ours Uniform

Figure 5.12: Quantitative evaluation of our method and ablations compared to ground truth

(graphs start at 2h of training.)

on a dataset of 9000 sample points. Each point includes 16 batches of 3 observations at

64x64 resolution and a query image at the same resolution, trained for 1M iterations.

The high complexity of this scene’s variations (constrained, specific configurations,

e.g., the teapot appears at a specific position on the table etc.) challenges our base method;

we show results using 256 features/layer and without resolution enhancement. This

gives blurrier results (on a par with Granskog et al. in terms of quality) but avoids high

frequency artifacts. Our method achieves the same qualitative results with 36 hours of

both training and rendering. In comparison Granskog et al. [28] needs 11 days of only

training (accounting for hardware differences), and an unspecified amount of rendering

time to generate the data.

We also retrain CNSR on three of our scenes, providing same time comparisons on

Living Room, Bedroom and Veach Door. For this we used the publicly available code

provided by the authors to train on data generated by our framework. As in the case of

the ArchViz scene we use 16 batches of 3 observations at 64x64 resolution and a query

image at the same resolution to train their model.

The results of the same quality ArchViz and same time Living Room comparisons

with Granskog et al. [28] are shown in Fig. 5.13. Additional examples are shown in the

Appendix A.2. Our method achieves much sharper results that are significantly closer to

64 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes
A

rc
h

V
iz

Ground Truth

Ground Truth Ours Output Observations

Li
vi

n
g

R
o

om

Training Time: 24 hours 11 days

Output OutputGround Truth Observations

18 hours 18 hoursTraining:Data Generation +

Granskog et al. 2020Ours

Granskog et al. 2020

4 days
MAPE: 0.082 0.823 0.655

Output

Figure 5.13: Same quality (top) and same time (bottom) comparison with Granskog et al. [28].

We show result of ArchViz for same quality as ours using the pretrained network provided by

the authors in their rendering framework. We also show Living Room for same time as ours

by training their method on our variable scene in our rendering framework. The 3 path traced

observations required by Granskog et al. [28] are shown on the right in both cases.

the ground truth.

We want to note that this comparison is provided only as an indication of the efficiency

of our approach, since the goals of the two methods differ in several ways.

5.6.2.3 Comparison to ANF

We compare with the recent Affinity of Neural Features (ANF) denoising method [38] in

Figure 5.14. For a fair comparison we take the pretrained model provided by the authors

and fine tune it in each specific scene, using the authors original implementation. Since

our method uses a different renderer than ANF (Mitsuba 2 vs PBRT v3), we give the same

budget in terms of pixels generated during fine tuning. Also we fine tune the pretrained

ANF model using sequences of 8 frames in random paths as in the original method.

Fine-tuning improves temporal stability (please see videos), and sometimes improves

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 65

visual quality (e.g., sharper results for Spaceship). Finally during inference we provide an

8 samples-per-pixel (spp) input image along with all the buffers required (albedo, depth,

etc.).

Ground Truth Input 8 sppOutput
Işık et al. 2021

Sp
ac

es
h

ip
Li

vi
n

g
R

o
om

V
ea

ch
 E

gg

OutputFinetuned Output

MAE: 0.0230.023

0.050 0.0520.040

0.010 0.102

0.306

0.021 0.028 0.021 0.178

Ground Truth
Ours

MAE:

MAE:

Figure 5.14: Same time comparison with Işık et al. [38], fine-tuned on our scenes. Note how

our neural renderer captures hard light paths, e.g., caustics (Spaceship) or even shadows from

caustics (Veach Egg) that are almost completely missing from the path-tracing + denoising

solution.

66 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

Our method demonstrates better temporal stability especially in parts of the scene

where the noise in the input is higher such as the reflections in the Spaceship and Veach

Egg scenes. ANF manages to successfully reconstruct parts of the scene where there is

a big correlation between the input buffers and the final color, such as diffuse walls in

Living Room, and parts where the light effect exists in the noisy input, highlights on

the floor in Living Room. The limitation of ANF is clear in cases of complex light effects

that do not appear in the noisy input due to the low spp and where the input buffers do

not help, such as the red caustic in Spaceship, the bottle caustic in Living Room and the

complex shadow of the glass egg Veach Egg.

Spaceship

Ours 0.0155 0.047 0.001 0.0176

0.068 0.023 0.0693Işık et al. 2021 0.0461

DSSIM MAPE MAE LPIPSScene

0.067 0.023 0.0659+ Finetuned 0.0483

Living Room

Ours 0.0074 0.051 0.040 0.0287

0.096 0.052 0.0691Işık et al. 2021 0.0164

0.109 0.050 0.0722+ Finetuned 0.0205

Veach Egg

Ours 0.0170

0.071

0.021

0.0758

0.082

0.0765Işık et al. 2021 0.0182

0.081 0.027

0.0844

+ Finetuned 0.0194

0.021

Table 5.4: Quantitative results using 4 metrics for the configuration shown in Figure 5.14.

These effects have a significant impact on the observed realism of the scene. However,

they are completely missing from the path-traced+denoising solution, despite these effects

being present in the ground truth images used for fine-tuning (provided in Appendix A.3).

Quantitative results are shown in Tab. 5.4; our method outperforms Işık et. al. [38] in

Spaceship and Living Room. For Veach Egg, two metrics give our method a lower score,

even though we clearly capture indirect effects that are completely missing in Işık et. al.

This illustrates one of the major strengths of our approach: the only way to render

such hard light transport in a path-tracing context is to dramatically increase the number

of samples per pixel. In contrast, our method encodes light transport in the neural

network and uses the explicit scene representation vector to get information about such

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 67

effects, such as the position of the glass egg or the cockpit light. As a result, we achieve

interactive rendering with all effects present for the same training time.

5.6.3 Evaluation

We first study the effect of the number of variable dimensions, then present other

ablations concerning different design choices of our method.

Sa
lo
n
-1
0-
di
m

Hours

U
ni

fo
rm

O
ur

s
D

SS
IM

-

D
SS

IM

Uniform Ours Ground Truth

Sa
lo
n
-5
-d
im

4 8 16

.003

.005

Salon-10-dim
Salon-25-dim

Salon-9-dim
Salon-7-dim
Salon-5-dim

Figure 5.15: Study of the number of dimensions on the effectiveness of our approach on the

Salon scene. Left: we show the difference between the loss using the uniform approach and

our method; the graph starts at 4h of training. In general, the benefit of our method increases

with the number and complexity of the variable elements in the scene, but some elements

are more important: despite going from 10 to 25 dimensions the difference of gain between

Salon-10-dim and Salon-25-dim – which only involves albedo changes – is smaller than adding

a single important dimension such as light position (difference from Salon-7-dim to Salon-9-dim.

Right, for low dimensions (bottom row, Salon-5-dim) our method slightly improves the glossy

highlight on the TV compared to uniform sampling; however, once the dimensions increase (top

row, Salon-10-dim), we capture a many effects completely missed by the uniform, namely the

TV and floor glossy highlight as well as the detailed shadows of the teapot on the table.

Study of number of variable dimensions. We investigate the impact of the number

of scene variables on our results. We trained our method and the uniform approach

described above on 5 increasingly variable variants of the Salon scene. The first variant

– Salon-5-dim – only varies viewpoint (5 dimensions), Salon-7-dim adds a movable

set of furniture on the floor (7 dimensions). In Salon-9-dim the light source moves on

the ceiling (9 dimensions). In Salon-10-dim the roughness of the wooden floor is also

variable (10 dimensions). To demonstrate that some variables have a bigger impact on

training time than others, e.g., light source position compared to changing albedo, we

68 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

introduce Salon-25-dim which also varies the albedos of the furniture and walls (25

dimensions). In Fig. 5.15 we see that while for Salon-5-dim the difference in validation

loss between our method and the uniform sampling is small, Salon-10-dim demonstrates

that the benefit of our method increases with higher numbers of variable dimensions.

For this case, uniform search almost completely misses the important highlight on the

glossy wooden floor due to the very specific configuration of parameters that create it.

As a result Active Exploration is crucial for scenes with many variable elements, such as

the ones used in production.

w/o PreconditioningGround Truth Ours

Figure 5.16: Position Preconditioning allows the generator to ignore the high frequencies of the

wood texture when it forms the shadows and caustic, resulting in better quality.

DSSIM MAPE MAE LPIPSScene

Ours 0.0141 0.079 0.20 0.0245

0 .098 0 .25 0 .03930.0184w/o Preconditioning
Living Room

Table 5.5: Preconditioning improves the quantitative performance (see also Figure 5.16).

Ablation: preconditioning on position. In Fig. 5.16 we show the difference in

results between our full method and an ablation where position is concatenated with

all other dimensions and fed directly to the network. We see clearly that the position

preconditioning greatly improves overall performance. In the Living Room scene the

albedo buffer for the table has high frequency variations due to the wood texture. Without

the preconditioning it is hard for the PixelGenerator to learn to ignore this information

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 69

when shading the caustic and the shadow of the bottle. Quantitative results in Tab. 5.5

confirm this choice.

DSSIM MAPE MAE LPIPSScene

Uniform 0.0241 0.162 0.28 0.0652

0.117 0.05730.38+Multi-res 0.0250

Ours

0.0141 0.079 0.20 0.0245

0.135 0.23 0.05900.0201

+Mutli-res
Living Room

Table 5.6: Quantitative results illustrating the effect of resolution on error.

Ablation: increasing resolution. We next study the effect of progressively increasing

resolution during training (Sec. 5.5.2). In Fig. 5.7, we compare to an ablation where we

do not increase resolution during training. We can see that the increase in resolution

allows our active exploration to resolve high frequency effects such as reflections and

shadows (lamp on the left) much more effectively. The corresponding quantitative results

in Tab. 5.6 confirm the improvement in quality.

Ground Truth Ours Loss Based Ground Truth Ours Loss Based

Figure 5.17: Use of the loss alone for the target function results in blurrier results.

DSSIM MAPE MAE LPIPSScene

Ours 0.0141 0.079 0.20 0.0245

0.085 0.22 0.03060.0149Loss Based
Living Room

Table 5.7: Quantitative results using 4 metrics illustration the benefit of our choice of target

function (see in Figure 5.17).

Ablation: target function. In Fig. 5.17 and Tab. 5.7, we see that using only the loss

for the target function degrades quality, since the training process gets stuck in local

70 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

minima. The MCMC finds configurations that cannot be improved anymore, such as the

mirror reflection, and does not accept other states where the network could still improve,

such as the bottle caustic. As a result the latter is lacking detail.

5.7 Future Work, Limitations and Conclusion

Despite providing interactive global illumination in dynamic scenes, our method is

not without limitations; we discuss these below together with some avenues for future

work before concluding.

Rendering using our unoptimized Python implementation currently runs at 4-6

fps, including a 15ms overhead for generating G-buffers in Mitsuba – which could

be performed with hardware acceleration – and an unoptimized inference step. We

are confident that significant speedup can be achieved with further optimization. We

chose to learn all light paths, including mirror reflections. While we achieve acceptable

results in many cases, high-frequency effects may not be reproduced exactly. However,

our approach can be used in a hybrid setting, using real-time ray-tracing for specular

interactions as seen in Fig. 5.10, overcoming this issue. If the use of path tracing is not an

option, Neural Textures such as the ones used in [109] could improve reflections in cases

where the G-Buffers do not provide any meaningful information.

The Active Learning literature has explored many different metrics for deciding the

value of each sample. In this work we explored two functions that can be efficiently

computed in a single GPU training scenario but there are alternatives. In a multi GPU

training scenario one option is to use a query by committee. Different copies of the model

could be trained in parallel in each GPU and whenever a large step is performed all the

models could be evaluated on the proposed state. Using the prediction variance of all the

models’ answers can be a good fit for a target function as it shows there is uncertainty

on what the result should be. Additionally Bayesian Neural Networks [80] with explicit

access to uncertainty metrics could possibly be an option for our Active Exploration in

the future.

One aspect we would like to explore in future work is how to take into account

the importance/difficulty of each scene variable. From our tests different variables can

have a different impact on the scene’s global illumination and can be harder/easier to

represent by the generator. In general, variables that create or control high frequencies,

such as reflections and shadows, are much harder to learn than variables such as the

Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes 71

color of emitters or objects. Explicit injection of this knowledge using some form of

Importance Sampling could help reduce training times and improve quality. Another

property of the variables that we do not handle explicitly is the difference in their ranges.

Since we normalize each variable the network needs to learn to scale the normalized

values accordingly to match their impact on the final rendering. For instance for two

rotatable objects that can be rotated 360
◦

and 15
◦

respectively the network in both cases

will receive values between 0 and 1 even though the first object will create much higher

frequency shadows in that range. Finding a way to adapt the MCMC mutations to such

range differences per variable could increase the efficiency of Active Exploration.

The types of variables we demonstrated can have a big impact on the overall appear-

ance of our scenes but they are simple to represent with a few floats (rotation, translation,

roughness etc). In future work we would like to expand our method to variables that

are difficult to represent such as the parametric deformations in [105]. We believe that

finding inventive ways to represent such variability (such as using the keyframe as a

parameter) is a promising avenue of future research.

We still can require up to 18 hours of training time for a given scene, depending on

the required quality and the number of variable parameters. As discussed earlier, the

network architecture used can play a significant role in the quality of the results; it is

possible that different architectures will further improve quality and thus training speed.

Another possible extension could be to train with a set of variable parameters and allow

fine-tuning of the network, e.g., allowing fast addition of a new object etc. Evidently, use

of a faster path-tracer could also accelerate training.

In future work, we believe our Active Exploration approach has significant promise for

any neural rendering method (e.g., [2]) that trains on synthetic data, allowing potentially

significant reduction in training time and improvements in quality.

One limitation by design for our method is that we cannot handle thousands of

variables. The scene representation vector is repeated to match the size of the G-Buffers

so that the generator, which operates on a per pixel basis, is aware of the global state of

the scene. For example, given 5000 variables (such as a variable texture) we would need to

create a tensor of size 128x128x5000 that would be unmanageable in terms of memory. In

such cases there is a need to encode this information in a different way, possibly through

an encoder neural network. Our method, as shown in Figure 5.18, can work with 128

variables with similar training times (18 hours) but the quality is lower than in simpler

72 Chapter 5. Active Exploration for Neural Global Illumination of Variable Scenes

Ours

C
h
es
s

Ground Truth Interactive Navigation & Scene Manipulation

Figure 5.18: The Chess scene tests the limits of our method with 128 variables. Each chess piece

can be moved on the board, lifted and captured. Our method still gives plausible results but is

missing some shadows and highlights.

scenes (some missing highlights and shadows).

In conclusion, we introduced a resolution-aware Active Exploration method that

guides the sampling of the training data space, and a self-tuning sample reuse method

that enables interleaved on-the-fly data generation and training.

Our neural renderer, combined with our explicit scene instance parameterization

vector, uses these contributions to capture hard light transport effects, allowing interactive

exploration with full global illumination, including all light paths.

Using these elements we can render variable scenes after 5-18 hours of training,

depending on scene and variation complexity and the quality required, including indirect

lighting, shadows, transmission, glossy effects etc. Looking forward, we believe that our

main contributions can be used beyond the precomputation scenario presented here:

Active Exploration and self-tuning reuse could be used for future solutions that can

provide data online, e.g., with real-time path tracing.

C h a p t e r 6

MesoGAN: A Generative Model for Mesoscale
Materials

Ours ConditioningGround Truth

Length↑
↑ SaturationFID: 17.8

Path Tracer Integrationa)

Shell Mapping

Arbitrary Extent

b)

c)Ground Truth

Figure 6.1: Our method combines the strengths of StyleGAN and volumetric neural field

rendering to generate a 3D mesoscale texture that can be mapped to objects and used in a path

tracer (c). We train on datasets of synthetic patches (a); our method can generate textures that

have artistic parameters (such as fur saturation and length) which can be used to create shell

maps of arbitrary extent (b)

In this chapter we expand on the concept of using neural networks to represent a

single radiance field with variations. Our goal is to introduce a generative model for

volumetric radiance fields which represents different classes of mesoscale materials such

as fur, grass etc, that can be used directly in a path tracer. Our model, Meso-GAN, builds

on top of previous 3D aware generative models to create infinite 3D neural textures with

high quality, explicit artistic control and stochastic detail.

While micro- and macroscale structures can be well represented using statistical and

geometrical models, representing the visuals at the transition—the mesoscale appearance—

remains a challenge. The challenge stems from the need to sufficiently resolve visual

details at a fraction of memory storage and authoring load of geometrical models. We

propose to strike the right balance between visual accuracy and storage, and between

74 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

artistic control and authoring load, using a data-driven volumetric model based on

generative adversarial networks.

Our work is inspired by the realism and visual diversity of image generators like

StyleGAN 3 [52]. These generators reproduce the rich mesoscale details and irregularities

that are key to photo-realism. Unfortunately, their reliance on screen-space processing

precludes their use as material primitives in light transport simulators such as path

tracing. Operating with independent rays means there is no access to local neighborhood

information which is necessary for operations such as convolutions. For rendering

purposes, one could instead operate directly in world space using models based on

volumetric neural fields [98; 13]. However, these approaches do not yet deliver the

necessary visual fidelity. We posit this stems from the fact that scene content is generated

for independent point queries, which hinders exploitation of spatial correlations. Our

goal is therefore to design a generator that can initially leverage information from the

entire neighborhood, while still relying only on independent point queries at rendering

time, while providing explicit artistic control.

We base our method on the recently proposed geometry-aware GANs [14] and NeRF

textures [1]. Expanding on these methods we

We introduce a novel approach for generating 3D neural textures that can be easily

incorporated into a modern path tracer with explicit control over their appearance and

geometry. Our method builds on elements from the recently proposed geometry-aware

GANs [14] and NeRF textures [1] which we adapt and expand to achieve our goal. First

we discuss how to adapt the StyleGAN 3 generator into an infinite texture generator with

no seams. This is necessary to create a single consistent high resolution texture instead

of repeating a single low resolution exemplar. This infinite texture cannot be lifted into

3D in the same way as previous methods suggested so instead we propose an alternative

novel representation.

With these components our approach works well but for low resolutions; our restric-

tion of using independent point queries at inference do not allow us to use upsamplings

and convolutions after the ray marching step to achieve higher resolutions. Such op-

erations also harm the view consistency of the results which is crucial for our goal of

integrating our method into path tracing. Treating this by increasing the ray marching

resolution leads to memory issues. Previous methods have handled this by either dis-

carding the gradients for some parts of the image [123] or by rendering patches [99].

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 75

While this enables training in higher resolutions it results in longer training times and

lower quality. Instead we introduce a mipmapping approach and allow the network to

observe the materials from close up, thus learning the details while keeping the training

resolution and training times low.

Once trained, our material model represents an entire distribution of mesoscale

structures. Given a 3D model we apply our neural textures using a shell mapping

approach by extruding the surface of the model. Once rays from the path tracer hit the

extruded surface we switch to ray marching, evaluating our model conditioned on the

incoming light direction. As a result the rendered mesoscale materials have a realistic

appearance with global illumination effects and stochastic details.

Similarly to other neural materials [1; 59], we do not address energy conservation,

reciprocity, or importance sampling; these are left for future work. Our work is ex-

ploratory: we present a prototypical neural material that features generative modeling.

This is a significant advancement as it aims at capturing an entire distribution of materials

rather than a single instance, and at providing means to draw unique infinite support

material samples from the distribution to combat repetitive artifacts.

6.1 Related Work

We already reviewed related work to the generative aspect of our method in Sec-

tion 3.3. Here we will discuss how conventional and neural models have represented

mesoscale materials in the past.

6.1.1 Conventional models of mesoscale appearance

Mesoscale materials, such as fur and granular media, are extremely complex in their

appearances. In addition to this, they are often challenging to accurately capture and

model, requiring different methods for each type. In graphics, fur is often modeled

using geometric curves, where each curve represents a strand of fur. Alpha-masked

triangle meshes are commonly used for modeling vegetation, such as plants and grass,

whereas granular media is often represented using large numbers of instanced volumetric

primitives [69; 73]. Volumetric primitives have also found some use in representing leaves

and fur [45; 22; 81]. Each representation has its own weaknesses such as poor filtering

(levels of detail) or high memory consumption. The lack of a single versatile mesoscale

primitive to handle all these cases robustly is apparent.

76 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

6.1.2 Neural material models

Recent years have seen the emergence of neural bidirectional texture function (BTF)

models [21] suitable for representing mesoscale structures [88; 89]. Such neural models

can be extended to perform filtered queries for robust level-of-detail rendering [59]. BTFs

however operate strictly in texture space, resulting in ‘vanishing” mesoscale structures

when seen from the side. Instead, we opt to model the mesoscale structure as a volume.

6.2 Method

We will first review the concept of neural radiance fields and their applications and

then discuss the core components of our method.

6.2.1 Neural Radiance Fields

We have defined a volumetric outgoing radiance field as a scalar field Lo(x, ω) where

x ∈ V3
and ω ∈ S2

. Mildenhall et al. [71] proposed to represent the extended volumetric

radiance field L(x, ωo)
+

, which includes the scattering coefficient σs∀(x, ω)1
, using an

MLP. The parameters of the MLP are optimized to represent this field fθ : (x, ω)→ L+
o

given a number of ground truth images.

Once optimized, the learned representation L+
o can be used to compute the radiance

arriving at the sensor following the volume rendering equation (Equation 2.7). This value

is estimated using quadrature in the form of ray marching. A ray r(t) = o + td is shot

through each pixel and the network is queried at regular intervals along each ray. In this

way the network learns to represent the appearance but also the geometry of the given

scene.

Tancik et al. [107] showed that if NeRF is trained by mapping (x, ω) directly to the

outgoing radiance L+
o it converges to a blurry result. They proposed to encode the input

position x using Fourier frequencies in the form of:

γ(x) = [sin(x), cos(x), · · · , sin(2R−1x, cos(2R−1x)], (6.1)

and accordingly the direction ω, where R is the number of frequencies used for the

encoding.

1
The term used in NeRF is volume density.

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 77

6.2.2 Overview

Neural Renderer

Decoder
Volume

Rendering

Pixel Color

Color
Density

Path Tracer

Shell Mapping
UV tracing

u, v, z

StyleGan3
DiscriminatorMapping

Network

Artist Parameters

Inference

StyleGAN3
Generator

Fixed

Learned

z

z1

Fourier Frequencies
 Injection

Feature Plane
Mipmap

Camera Parameters

Figure 6.2: Overview of our method.

Our goal is to train a generative model on meso-scale content with the following

restrictions:

• The model needs to be able to generate an infinite 3D neural texture of mesoscale

materials without any seams, with high quality, view consistency (when the camera

moves) and without aliasing.

• With the target application of incorporating our method into a path tracer, con-

volutions, upsamplings with interpolation and any other type of image space

neighborhood operation cannot be used during the ray marching step.

• Explicit conditioning of the appearance and geometry of the generated neural

texture is essential, including conditioning on the incoming light direction to

enable global illumination rendering through path tracing.

All these requirements create a unique scenario in which no previous method can suc-

ceed. Our main contribution is our training pipeline which involves our infinite texture

StyleGAN 3 [52] generator, a texture space single plane representation and a multi scale

training procedure. We also demonstrate how our neural primitives can be conditioned

and textured onto any given model through shell mapping. This model can then be placed

in path traced scenes and support all global illumination effects. An overview of our

method is shown in Figure 6.2.

78 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

Boundary Effect

NeRF-Tex Ours

Figure 6.3: Our patch of mesoscale material generated by Blender compared to NeRF-Tex [1]. In

NeRF-Tex the patch is defined at the base of the material allowing it to grow outside of it and

have boundary effects. In our case the patch defines a bounding box where all the material is

contained within.

6.2.3 Data Generation

We generate our synthetic datasets using Blender by placing a camera randomly on

a hemisphere looking at the target mesoscale material. Similar to NeRF-Tex [1] we create

a patch of the material which is rendered from different viewpoints. Additional patches

are placed around the main patch to simulate the effect of surrounding geometry. There

are three main differences in our data generation compared to NeRF-Tex. The first is that

since we are training a generative model the structure of the material is randomized in

each instance. In NeRF-Tex the dataset included multiple views of the same mesoscale

material instance. While there were some parameters that could control the geometry of

the patch, having a parameter that controls the structure cannot be handled as we show

in Section 6.3.

The second is in the way that the patch of materials is created. In NeRF-Tex, given

a patch of a specific size the material was created so that its base is within the bounds

of the patch. This means that fur, for example, could extend outwards and over these

bounds. In their method this was desirable as it helped with the seams when repeating

an exemplar on a model. In our case we treat each instance as a 3D crop of an infinite

volume in the tangent direction. As such we crop everything outside of a predefined

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 79

bounding box, see Figure 6.3.

Finally with the target application of integrating our model into a modern path tracer

we generate high dynamic range images. Since training the network directly on the HDR

images has been demonstrated to be problematic [60] we tonemap the images using the

x
x+1

tonemapping function proposed by Reinhard et al. [92]. At inference we invert the

tonemapping to generate our renderings with high dynamic range.

6.2.4 Infinite StyleGAN 3 Generator

The StyleGAN 3 generator uses a Fourier feature map as its building block, following

previous work [118] that showed GANs benefit from explicit spatial bias to create patterns

contained in natural images. This Fourier feature map defines, by definition, a naturally

spatial infinite plane. In StyleGAN 3 the frequencies of this feature map are sampled

randomly but kept constant throughout training. A learned affine transformation allows

the generator to translate this map so that it can learn specific patterns such as eyes once,

and then use it to create faces in different parts of the image.

Building Block Feature Plane 3D Neural Texture

Figure 6.4: Once trained, the StyleGAN generator transforms patterns in the Fourier feature map

bulding block into patterns of the mesoscale material in the feature plane. We demonstrate this

for two random instances of a building block. Notice how the structure of fur changes.

80 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

In our scenario StyleGAN 3 is tasked with generating textures where there is no

high level structure to the small scale patterns as in the case of faces. That means that

our generator doesn’t need explicit spatial bias to learn these high distance correlations.

With this observation in mind we randomize the sampled frequencies of our building

block in each training iteration. This forces the network to translate local patterns in the

Fourier feature map into patterns that exist in the target material, as shown in Figure 6.4.

Once trained our generator can be queried with an arbitrarily high resolution building

block and it will generate an accordingly large plane with no seams or repetition.

6.2.5 Fourier Frequencies Injection

In the original StyleGAN [50], noise injections were introduced to help with the

stochastic elements when generating faces, such as hair, beards etc. The argument was

that the network wouldn’t need to learn these effects and instead could utilize inputs of

noise to generate them. This was removed with StyleGAN 3 since they targeted a natural

transformation hierarchy, i.e., each pixel generated being dependent only on the previous

coarser features. While this change was reported as FID-neutral for faces where these

stochastic effects are only part of the whole image, this is not the case for our mesoscale

materials. For materials such as fur the generator is struggling to create random hair

strands even after long training. To help with this we reintroduce this stochasticity in

the form of random Fourier Features. At each layer the Fourier Feature map contains

frequencies between the cutoff frequency of the previous layer and the current cutoff

frequency.

6.2.6 Generative 3D Neural Textures

We take advantage of the generative capabilities of StyleGAN 3 and combine them

with the explicit camera control of volumetric rendering, adapted to our scenario of 3D

texture synthesis. EG3D proposed a triplane representation to lift the StyleGAN output

into 3D. The StyleGAN generator was used to create three orthogonal feature planes

which were queried during ray marching and the result decoded by a small decoder

network.

In our infinite plane context the triplane approach of [14] is problematic. The three

orthogonal planes are generated from the same building block and even though they are

treated as separate planes they share a lot of information. Our 3D neural textures are

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 81

infinite only in the tangent directions to the surface. The vertical axis has a finite range

and so the planes cannot be generated in the same way. The naive approach of splitting

the StyleGAN generator into two components, one for the infinite plane and one for the

two perpendicular, introduces memory and performance issues during training. Instead

we use our infinite plane approach to generate only one tangent feature plane. For a

queried position p = (x, y, z) we bilinearly interpolate features from the tangent plane

using (x, y) and encode z using Fourier frequencies γ(z). The plane features and encoded

height are concatenated and passed through a small MLP decoder network which outputs

radiance and density. The decoder uses the encoded height information to lift the tangent

feature plane into 3D with high frequency details. We use volume rendering to compute

the final image which is fed to the discriminator.

6.2.7 Mipmap Based Multi Scale Training

No Mipmapping OursMulti-Scale Dataset

Figure 6.5: When we train on a multi-scale dataset (show on the left) the network is not aware

of the scale when queried. This results in aliasing as shown on the right. Our mipmapping

approach on the feature planes removes the aliasing issue.

As we mentioned in the restrictions of our target applications, during inference we do

not have access to a neighborhood which is necessary for operations such as convolutions

or upsamplings with interpolation. Our outputs also need to be view consistent without

flickering artifacts. The maximum training resolution of the raymarched images, before

GPU memory becomes an issue, is 128x128. EG3D overcomes this restriction by using a

convolutional super resolution module to generate a high resolution image. While this

step provides high resolution details it does so in a view inconsistent way.

82 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

In order to keep the same training resolution but learn the appearance of our materials

in more detail we use a multi scale dataset by allowing the camera to move closer to

the patch (see Figure 6.5). Training on this multiscale dataset with the ray marching

formulation of NeRF leads to aliasing when the material is rendered from far away and

blurriness when it is rendered close up.

Since we shoot only one ray through the center of each pixel we are not taking into

account the physical size of the pixel. Normally this would introduce aliasing but since

the network is trained on filtered images it incorporates this filtering in its outputs. This

works well when the dataset is single scale, meaning the ground truth images are from

a constant distance. As Barron et al. [5] showed when NeRF is trained on a multi scale

dataset the network cannot adapt its filtering based on the camera distance. This results

in aliasing and over blurring. We follow Barron et al.’s methodology to solve this issue

by considering cones instead of rays, the footprint of which we approximate using 3D

gaussians. These Gaussians, with mean γ and covariance matrix Σ, are used to adapt the

Fourier frequencies used when encoding the input:

γ(µ,Σ) =

[
sin(µ)exp(−1

2
diag(Σ))

cos(µ)exp(−1
2
diag(Σ))

]
(6.2)

This encoding scales down the magnitude of the frequencies based on the footprint of

the cone segment. When the cone footprint is big the high frequencies are scaled down

while when it is small the high frequencies remain unchanged.

We use this integrated encoding for the queried height z to filter frequencies based on

the distance of the camera. For the feature plane we apply a mipmapping approach. We

create a stack of mipmaps by applying different low pass filters. We then use the footprint

of the projected 3D Gaussian to trilinearly interpolate between the two closest mipmap

scales. The 3D Gaussian projected onto the plane is an ellipse (x, y) = (a cos t, b sin t).

We approximate with a circle of radius r where r = min(a, b). The size of the circle is

used to choose the mipmap with the corresponding pixel size.

This enables the feature plane to include high frequency detail, used when the camera

is placed close to the object, and it suppresses aliasing for faraway shots (Figure 6.5).

Without filtering the introduces high frequency into the feature plane; thus it is penalized

due to aliasing in the image. With mipmapping the generator can add details for the up

close shots which get filtered when the object is viewed from far away. In that way we

are no longer restricted by the resolution of the ray marched image but by the resolution

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 83

of the StyleGAN generated plane which can be much higher.

6.2.8 Integration into a path tracer

The goal of our approach is rendering the material primitives within a path tracer. In

this section, we first describe the interaction with path tracing and then how we condition

the model on explicit parameters to enable artistic control. Afterwards, we explain how

to instance the learned infinite generative neural field onto arbitrary 3D objects.

Path tracing interaction. To facilitate integration into a path tracer, we choose radi-

ance as the radiometric quantity and relate the outgoing to incident radiance via a small

amount of numerical integration (ray marching) and neural predictions.

The radiance Lo(x, ω) outgoing from a point on the boundary is defined as the

amount of incident flux that hits the boundary, propagates through the shell, and exits at

(x, ω). Lo is a sum of two terms: scattered and uncollided radiance, where the scattered

radiance reads:

Ls =

∫ b

0

T (x, y)σt(y)α(y)

∫
A

∫
H2

f(y, ω, z, ω′)Li(z, ω
′)dω′dzdt, (6.3)

where b is the distance (through the shell) to the intersection of ray (x,−ω) with the

boundary, T (x, y) is transmittance, σ(y) and α(y) are extinction coefficient and albedo

at point y = x− tω, A is the boundary area, H2
is the upper hemisphere at boundary

point z, f(z, ω′, y, ω) is a transport function quantifying all light traveling from z to y in

directions −ω′
and ω, respectively, and Li(z, ω

′) is incident radiance at the boundary.

We introduce a simplifying assumption to facilitate pretraining the neural model

without accounting for macroscale geometric variations. We assume that the shell volume,

which is relevant for evaluating the triple integral, is small in comparison to macroscale

variations (same assumption as in NeRF-Tex). This allows us to locally treat point sources

of illumination as distant, i.e., producing parallel, spatially invariant incident radiance

Li(ω
′) and assume the shell forms a slab receiving light through the top and bottom sides

only.

Incorporating the assumption and reorganizing yields:

Ls =

∫ b

0

T (x, y)σt(y)α(y)

∫
H2

Li(ω
′)

∫
A

f(y, ω, z, ω′)dzdω′dt, (6.4)

84 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

We train our neural model to approximate the albedo-weighted transport function

integrated over the boundary: α(y)f(y, ω, z, ω′)dz, denoted ρ, and extinction coefficient

σ(y). The remaining two integrals are evaluated numerically: Li(ω
′) is estimated by

tracing a single path from x, the remaining terms are computed via ray marching.

The uncollided term equals to radiance incident at other side of the boundary attenu-

ated by transmittance through the shell. In practice, we randomly estimate either the

uncollided or scattered term proportional to transmittance.

Conditioning. As artistic control is crucial in our generative neural primitives, we

include additional input parameters to enable modifying their appearance using intuitive

parameters. Since we use synthetic data we have access to these parameters from our

dataset in the form of labels. The parametric control, which is learned from the dataset,

is split into 2 categories: geometry and appearance.

Geometry Conditioning

Increasing length

Appearance Conditioning

Changing color

Figure 6.6: Our neural 3D textures can be controlled by intuitive parameters controlling the

geometry and appearance of the material. Here we show an instance of fur with varying length

and color.

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 85

StyleGAN’s generator is conditioned on different styles w which get generated by

a mapping network. The mapping network is an MLP which maps a noise vector z to

the style latent spaceW . The geometric conditioning parameters, such as fur length,

should change the contents of the feature plane and as such they condition the StyleGAN

generator. The geometric parameters are passed to the mapping network and affect

the latent styles w which are responsible for the final structure of the tangent place.

Appearance parameters should affect only the final color of the decoded features. For

that reason they are concatenated along with the features and encoded height before

being fed to the shallow MLP decoder. Incoming light direction is treated as appearance

conditioning which is important to enable relighting. In this way our primitives can

appear natural in different locations in a scene and various lighting conditions. All the

conditioning labels are also fed to the discriminator which helps with disentanglement.

Similar to previous work we also feed the camera position as an extra label to the

discriminator which helps accelerate training.

Extruded Shell

Base Surface

Figure 6.7: Given a base surface mesh and a target length we extrude the surface to create a

shell. We visualize the texture coordinates to show how they are affected by the extrusion.

Shell mapping. Our infinite neural texture primitive can be applied onto arbitrary

3D meshes through a shell mapping procedure. First, we generate a feature map of a

86 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

desired resolution that is attached to the object. Then, we assign a shell map [86] to the

mesh with a specific height, visualized in Figure 6.7. To construct the shell map, we

extrude the triangle faces of the mesh along the normal direction and tell the renderer to

perform intersections against these during rendering. When an intersection occurs, we

look up the corresponding UV-coordinates and height of the intersection point and then

ray marching is initiated. At each ray marching step within the shell, we compute the 2D

UV coordinates and height to fetch generated features from the StyleGAN3-produced

tangent feature planes (Figure 6.8). These are then passed to the MLP to output a density

and a radiance value similar to NeRF that can be used for volumetric integration.

Figure 6.8: The feature map outputs from the StyleGAN3 generator are applied to a mesh

through a shell map. The features from the maps are looked up based on the height of the query

point in the shell map and the UV-coordinates.

6.3 Results

We show preliminary results of our shell mapping approach on a Shell model. In

order to demonstarte the benefits of our generative model we render the same model

with a single high resolution 3D neural texture with no seams and with repeating the

same low resolution 3D neural texture. As is shown in Figure 6.9 our method can create a

single 3D neural texture that spans the uv space of the model. As a result the resulting fur

has stochastic effects such as clumps and gaps with no seams. In comparison repeating

the same exemplar results in repetitive artifacts and lower quality.

Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials 87

Ours No Infinite Plane

Figure 6.9: Comparison of our infinite texture approach to the naive solution of repeating an

examplar over the surface of a model.

6.4 Comparisons

In this section we compare our approach to two alternative 3D generative methods,

π-GAN [15] and Style-NeRF [30], and show how in our context they fail to satisfy the

requirements we defined in Section 6.2.2. We train all methods on the same Carpet

dataset to convergence and show the results in Figure 6.10. From the results it is clear that

mesoscale material are harder to represent compared to faces due to the lack of landmarks

or structured nature. As a result π-GAN performs poorly with wavy artifacts and blurry

structure. Style-NeRF can reach high quality due to the image space operations which

don’t require an accurate representation of the material in the 3D volumetric radiance

field. As stated before, these image space operations cannot be used in a path tracing

context and they also come at the cost of view consistency. As is highlighted by the

red circle in Figure 6.10 which tracks the same point between the images, in the case of

Style-NeRF as the camera moves the structure of the material changes. Eventually the

point highlighted disappears. Our method in comparison has better quality than π-GAN

and the view consistency lacking from Style-NeRF.

We also compare to NeRF-Tex [1] to demonstrate the advantages of a generative

method. For this comparison we train our method and NeRF-Tex with an increasing

number of parameters for the Carpet dataset. The results shown in Figure 6.11 demon-

strate the advantages of our generative model. As the number of parameters increases

NeRF-Tex fails to learn all the different appearances that can appear and instead generates

a very blurry result. In contrast our method can handle all these parameters without

losing out on quality.

88 Chapter 6. MesoGAN: A Generative Model for Mesoscale Materials

Ours

C
ar

pe
t

π-GAN

Ground Truth Style-NeRF

Figure 6.10: Comparison of our method against π-GAN [15] and Style-NeRF [30]. The red circle

tracks the same 3D point between views to help with evaluating view consistency.

OursOursOursOurs
Length, Saturation +Roughness, Hue +Braid+ Lean, Lean Angle

Length, Saturation +Roughness, Hue
+Braid

Random Seeds+ Lean, Lean Angle

N
er

fT
ex

O
ur

s

Figure 6.11: Comparison of our method against NeRF-Tex [1]

6.5 Conclusions

We have presented a method for generative neural 3D texture primitives which can

simulate the appearance of mesoscale materials and be incorporated into a traditional

rendering pipeline. Our infinite plane generator solves the issue of seams when texturing

a model while the generative aspect of our method introduces realistic stochastic detail

into the results. This takes the quality of neural radiance field primitives one step closer

to production level. The incorporation of our model into a path tracer requires per pixel

operations and view consistency which we achieve through our mipmapping multi scale

training scheme. Our comparisons to NeRF-Tex show the advantages of learning neural

radiance fields in a generative way without sacrificing artistic control. We believe that

generative, neural 3D textures are a versatile tool for rendering the complex geometries

of mesoscale materials while being efficient and easily editable.

C h a p t e r 7

Conclusions

This thesis reflects the evolution of research in computer graphics in the past few years.

While the main research goal in the context of physically based rendering has remained

the same, i.e., render realistic images as efficiently as possible, the tools and methodology

applied have changed drastically. In this thesis we explored, discussed and expanded

upon some of the breakthroughs that took place in its span. Neural networks, real-time

path tracing and generative models have created new and exciting opportunities for

computer graphics and we hope our work inspires future methods in these directions.

In the first part of the thesis we worked with explicit representations of radiance

fields to improve sampling. We set out to augment these representations with material

information in an efficient way without increasing the already high dimensionality of

the problem. We achieve this through on-the-fly integration of complex materials over

spherical polygons while using the practical spatial directional tree to represent the

incoming radiance field.

After working with explicit radiance field representations and seeing first hand their

limitations, in the second part of the thesis, we switch to using neural networks to learn

the radiance field. Compared to the explicit structures we do not build an approximation

on-the-fly but precompute the radiance field. We trained them to represent outgoing

radiance fields for variable scenes, and highlighted the issue of lengthy training in

previous methods even for simple scenes.

To answer our research question of efficiently training these networks with artistic

control we presented Active Exploration with an explicit scene representation. Active

Exploration guides data generation towards scene configurations with complex radiance

fields while our explicit scene representation approach allows us to control all the variable

aspects of the scene. We believe Active Exploration is just the first step towards more

efficient data generation and training which is crucial so that neural rendering research

becomes more accessible and has a smaller impact on the environment.

Moving to generative models, we demonstrated that the representation power of

90 Chapter 7. Conclusions

neural networks goes beyond representing a single radiance field. These models allow

us to learn a distribution of radiance fields that represent a class of objects. Doing so

with explicit camera control requires the use of volumetric radiance fields to implicitly

learn geometry and appearance from generated images. We have explored how this can

have multiple benefits in the case of hard to render mesoscale materials. Once trained

our models can generate and render 3D neural textures while retaining artistic control

of parameters such as color, fur length, curliness etc. We incorporate our models in a

traditional path tracer combining the strengths of each component.

7.1 Lessons learned

In the three projects presented, there is a transition from traditional path tracing to

neural rendering. The first project gave us a lot of insight about the process of creating

a realistic image with path tracing and the underlying light transport problem. This

experience was necessary to successfully tackle the challenges of infusing the rendering

pipeline with neural networks. This is reflected in the inspiration we drew from Markov

Chain Monte Carlo methods for our Active Exploration and in our design choices for

Meso-GAN with the goal of integrating it into path tracing. We believe that a deep

knowledge of computer graphics literature is crucial for the future of neural rendering

as it can be used to inject strong priors into networks. For example in our Meso-GAN

pipeline we use a volume rendering step to create explicit camera control in the neural

rendering. Without this volume rendering step regaining control of the camera position

after training is much harder and would result in view inconsistencies. Using such explicit

steps to set constraints in the training procedure can unlock the true potential of neural

networks and for that strong computer graphics background is key.

The unifying aspect of using radiance fields in all three projects is a good opportunity

to observe the evolution of our representations. In the first project the SD-tree had enough

representation power to be used for importance sampling but it was also very restrictive

due to its memory footprint. The radiance fields used in the second project showed the

true potential of neural representations. A single MLP was capable of representing all

the possible radiance fields for a variable scene and with accuracy much higher than the

SD-tree for a static scene. The neural volumetric radiance fields used in Meso-GAN are

even more expressive as they include the complex geometry and materials of the scene.

We will continue to explore the representation capabilities of neural networks as we are

Chapter 7. Conclusions 91

persuaded we are not yet close at reaching their limitations.

A final aspect is our focus on to artistic control. When we transitioned to using

neural networks for rendering we observed that in many cases previous work treated

it as optional. As computer graphics is a tool used to create content and art, we must

attempt to restrict and condition our models to control the appearance and feel of the

final outcome. On the other hand implicit or latent representations have an important

role as descriptions of ambiguous and high level concepts. The efficient combination of

implicit and explicit representations is key to creating practical methods with the creators

in mind.

7.2 Future directions

We already presented some future directions in the conclusion of each method but

here we will discuss some high level future directions and goals.

A teddy bear on a skateboard in
 times square

A small kitchen with a low ceilingA living area with a television
 and a table

Figure 7.1: Results from Dalle 2 [90]; generated images in the top row and the given text prompt

at the bottom. Each of the examples have hard to render effects complete with specular and

glossy reflections, global illumination and bokeh effects.

Versatile embeddings for rendering in computer graphics. A recent development

that could have a huge impact on the future of computer graphics is rapid improvement

of text to image neural generators. This improvement comes after the development of

high quality embeddings between text and images [87]. CLIP, standing for Contrastive

Language-Image Pre-training, is a model that is trained on 400 million pairs of images

92 Chapter 7. Conclusions

and descriptive text with the goal of generating a description from a single image. Follow-

up work demonstrated that the embeddings generated by CLIP are very powerful and

versatile and they can be used to perform the inverse operation of generating images

from text [90] with unprecedented quality, such as the examples in Figure 7.1. This is

ground breaking and it opens the door for creating content through text prompts which

is very intuitive. From the point of view of computer graphics the main questions that

we would need to answer is how to inject explicit and in particular 3D control in this

pipeline. This could be achieved by combining volumetric radiance fields with these

embeddings, as already attempted [39] or by disentangling pose from the latent space of

CLIP. Training for such a task is a big bottleneck with many methods using the pretrained

CLIP model, but in order to adapt CLIP to our contexts, retraining might be unavoidable.

In such cases optimizing the training procedure with an extension of Active Learning

could bring sufficient gains in computation times and also reduce the environmental

impact of such methods.

Scene-scale generative models. Until now generative models have been restricted to

specific types of objects such as faces, cars or in our case mesoscale materials. Recent

research has shown that GANs can be trained to represent broader and more varied

collections of objects in 2D [97]. Expanding this to 3D by using volumetric radiance

fields could be possible to create a generative model that can render realistically novel 3D

scenes. In the context of computer graphics this could be used to handle complex lighting

effects without the need to retrain for each scene as is done in our method in Chapter 5.

Since the generative model could represent the radiance field of any (within a limit) scene

conditioning it to an artist created scene would give us the outgoing radiance distribution

without any extra training. The conditioning could be achieved either through an encoder

or by using pretrained embeddings such as the ones from CLIP. Should such a latent

embedding be used it could be necessary to introduce an intermediate step where the

explicit artistic control is injected to ensure that the level of control is not reduced.

Differentiable rendering. A lot of work has gone recently into computing the gradi-

ents of path traced images relative to changes in the scene parameters. Such gradients

can be used in many different scenarios, for example to optimize geometry to match a

captured scene [83], making the geometry modeling process much more intuitive. This

process, known as differentiable path tracing, is quite intricate since path tracing involves

Chapter 7. Conclusions 93

computing integrals with many discontinuities. We believe that in the future neural

renderers that are differentiable by construction could provide an avenue for computing

global illumination gradients over scene parameters. This is possible, albeit in a very sim-

ple scenario, in the method presented in Chapter 5 where we can compute the gradients

of the global illumination relative to the rotation of the door in the Veach Door scene.

In the limit we could imagine our explicit representation vector including the positions of

all geometry vertices in a scene. If we then were able to train this configuration for many

different shapes, we could optimize a starting shape based on target multiview images.

The main challenge in such a direction would be memory constraints and proposing

efficient data generation algorithms.

Concluding, this is a fascinating period for computer graphics research with an

auspicious future to which we are eager to continue contributing.

Ap p e n d i x A

Chapter 5 appendix

A.1 Selected Views

We show the chosen views that we use in our quantitative evaluation in Figure A.1.

B
ed

ro
om

Li
vi

n
g

R
o

om
V

ea
ch

 D
oo

r

Figure A.1: The chosen views, which correspond to scene configurations with complex illumina-

tion effects, that were used for the ablations.

96 Appendix A. Chapter 5 appendix

A.2 Comparison to CNSR

We show additional results for same quality and same time comparisons against

CNSR [28] in Figure A.2.

18 hours 18 hoursTraining Time:Data Generation +

V
ea

ch
 D

o
or

A
rc

h
V

iz

Ground Truth

Ground Truth Output Output Observations

B
ed

ro
om

Training Time: 24 hours 11 days

Output OutputGround Truth Observations

Granskog et al. 2020Ours

Granskog et al. 2020Ours

Figure A.2: Additional same quality and same time results with CNSR [28].

Appendix A. Chapter 5 appendix 97

A.3 Comparison to ANF

In Figure A.3 we display a sample of ground truth images used during the finetuning

of the ANF [38] pretrained model on our scenes. Please observe how the complex caustic

effects that the models fail to reproduce, even after fine tuning, exist in the ground truths.

The amount of noise in the ground is equivalent to that in ours but our model is able to

both learn these effects and average out the noise in world space during training.

V
ea

ch
 E

gg
Sp

ac
es

h
ip

Li
vi

n
g

R
o

om

Figure A.3: Sample ground truth images used for fine tuning ANF on our scenes.

A.4 Comparison to GT

In Figure A.4 we provide difference images for the comparison of our method to

ground truth, using the MAPE metric, to help with visual inspection.

98 Appendix A. Chapter 5 appendix

V
ea

ch
 E

gg
Ba

th
ro

om
Sp

h
er

e
C

au
st

ic
Be

dr
oo

m

Ground Truth Ours MAPE

Li
vi

n
g

R
o

om

Figure A.4: Comparison of our method to ground truth with additional difference images, using

the MAPE metric, for visual inspection.

Appendix A. Chapter 5 appendix 99

A.5 Network Architecture

3
512

13

8

512
13

3

v

v

Figure A.5: The architecture of our generator. The positional buffer is shown in red, all the

G-Buffers in orange, the explicit scene representation vector v in blue and the output in white.

The architecture of our generator is the Pixel Generator proposed by Granskog et

al. [28] with a preconditioning on position (Fig. A.5). The Pixel Generator is an MLP (we

use leaky ReLU activations) with skip connections on every layer. We map the position

buffer (red) from 3 to 512 channels and then we concatenate all the G-buffers (orange) and

explicit vector v (blue) at each layer. The total hidden layers are 8 with 512 hidden features.

In Figure A.6 we show that using a smaller network can provide acceptable results and

lower inference speed, resulting in 13 FPS in our prototype Python implementation.

Ground Truth Ours

Hidden Features: 512

Hidden Features: 128

Figure A.6: Using 128 hidden features results in acceptable results and higher frame rates, but

lower quality compared to using 512.

100 Appendix A. Chapter 5 appendix

A.6 MCMC States Lifespan

23 18 18 16Lifespan:

14 14 11 11Lifespan:

Figure A.7: The 8 longest lifespan MCMC states when training on the Living Room scene.

In order to evaluate what type of effects our Active Exploration focuses on, we visual-

ize the MCMC states with the longest lifespan (consecutive times being the current state)

for the Living Room scene in Figure A.7. We observe that our Active Exploration spends

more time on effects that require more training to be represented such as reflections,

glossy highlights and shadows. During training only the red patch would be rendered

and used for training, here we render the whole image for visualization purposes.

A.7 Sample Reuse Derivation

Given the two options to either reuse or generate a new sample with respective

likelihood lexist and lnew, a simple Bernoulli distribution that respect the likelihood ratio

has a probability p of reusing defined by:

p =
lnew

lexist + lnew

This Bernoulli distribution can further be skewed as to favor the reuse case by dividing

the likelihood of the reuse case lexist by α:

Appendix A. Chapter 5 appendix 101

p =
lnew

lexist
α

+ lnew

For instance setting alpha to 99 skews the probability distribution so that for equal

likelihood p = 99
100

We then assume that the losses Lossnew and Lossexist represent the negative log-

likelihood of the network output with respect to a probability distribution parameterized

by the ground truth, which for the L2 loss case would be a Normal distribution centered

around the ground truth value and for the L1 loss is a Laplace distribution also centered

around the ground truth value. We thus have:

σ(Lossexist − Lossnew + β) =
eLossexist−Lossnew+β

1 + eLossexist−Lossnew+β

σ(Lossexist − Lossnew + β) =
e−Lossnew

e−Lossexiste−β + e−Lossnew

σ(Lossexist − Lossnew + β) =
lnew

lexist
eβ

+ lnew

Which inspired our reuse strategy.

Bibliography

[1] Hendrik Baatz, Jonathan Granskog, Marios Papas, Fabrice Rousselle, and Jan Novák.

Nerf-tex: Neural reflectance field textures. In Eurographics Symposium on Rendering.

The Eurographics Association, June 2021. 20, 74, 75, 78, 87, 88

[2] Hendrik Baatz, Jonathan Granskog, Marios Papas, Fabrice Rousselle, and Jan Novák.

Nerf-tex: Neural reflectance field textures. In Eurographics Symposium on Rendering

(DL-only track). The Eurographics Association, June 2021. 71

[3] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-predicting convolutional

networks for denoising monte carlo renderings. ACM Trans. Graph., 36(4):97–1,

2017. 2, 3

[4] Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. Offline deep importance

sampling for monte carlo path tracing. In Computer Graphics Forum, volume 38,

pages 527–542. Wiley Online Library, 2019. 21

[5] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo

Martin-Brualla, and Pratul P. Srinivasan. Mip-nerf: A multiscale representation

for anti-aliasing neural radiance fields. ICCV, 2021. 19, 82

[6] Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. A significance

cache for accelerating global illumination. Comput. Graph. Forum, 31(6):1837–1851,

2012. doi: 10.1111/j.1467-8659.2012.02099.x. 17

[7] Daniel R Baum, Holly E Rushmeier, and James M Winget. Improving radiosity

solutions through the use of analytically determined form-factors. ACM Siggraph

Computer Graphics, 23(3):325–334, 1989. doi: 10.1145/74334.74367. 27

[8] Benedikt Bitterli. Rendering resources, 2016. https://benedikt-bitterli.me/resources/.

57

104 BIBLIOGRAPHY

[9] Benedikt Bitterli and Wojciech Jarosz. Selectively Metropolised Monte Carlo light

transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH

Asia), 38(6), November 2019. doi: 10.1145/3355089.3356578. 39

[10] Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. Reversible jump

metropolis light transport using inverse mappings. ACM Transactions on Graphics

(TOG), 37(1):1–12, 2017. 16

[11] Guillaume Bouchard, Théo Trouillon, Julien Perez, and Adrien Gaidon. Online

learning to sample. arXiv preprint arXiv:1506.09016, 2015. 46

[12] Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. Interactive reconstruction

of monte carlo image sequences using a recurrent denoising autoencoder. ACM

Transactions on Graphics (TOG), 36(4):1–12, 2017. 2

[13] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.

pi-GAN: Periodic implicit generative adversarial networks for 3d-aware image

synthesis. In arXiv, 2020. 74

[14] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De

Mello, Orazio Gallo, Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis, Tero

Karras, and Gordon Wetzstein. Efficient geometry-aware 3d generative adversarial

networks. volume abs/2112.07945, 2021. URL https://arxiv.org/abs/2112.

07945. 21, 22, 74, 80

[15] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein.

pi-gan: Periodic implicit generative adversarial networks for 3d-aware image

synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 5799–5809, 2021. 4, 21, 87, 88

[16] Subrahmanyan Chandrasekhar. Radiative transfer. Courier Corporation, 2013. 14

[17] Petrik Clarberg and Tomas Akenine-Möllery. Practical product importance sam-

pling for direct illumination. In Computer Graphics Forum, volume 27, pages

681–690. Wiley Online Library, 2008. doi: 10.1111/j.1467-8659.2008.01166.x. 17

https://arxiv.org/abs/2112.07945
https://arxiv.org/abs/2112.07945

BIBLIOGRAPHY 105

[18] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-Möller, and Henrik Wann Jensen.

Wavelet importance sampling: efficiently evaluating products of complex functions.

In ACM SIGGRAPH 2005 Papers, pages 1166–1175. 2005. doi: 10.1145/1073204.

1073328. 17, 24

[19] Alejandro Conty Estevez and Pascal Lecocq. Fast product importance sampling of

environment maps. In ACM SIGGRAPH 2018 Talks, pages 1–2. 2018. doi: 10.1145/

3214745.3214760. 26

[20] Ken Dahm and Alexander Keller. Learning light transport the reinforced way, 2017.

17

[21] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. Re-

flectance and texture of real-world surfaces. ACM Trans. Graph., 18(1):1–34, jan

1999. ISSN 0730-0301. doi: 10.1145/300776.300778. URL https://doi.org/10.

1145/300776.300778. 76

[22] Philippe Decaudin and Fabrice Neyret. Volumetric billboards. Computer Graphics

Forum, 28(8):2079–2089, 2009. doi: 10.1111/j.1467-8659.2009.01354.x. 75

[23] Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and

George Drettakis. Practical product path guiding using linearly transformed

cosines. In Computer Graphics Forum, volume 39, pages 23–33. Wiley Online

Library, 2020. 9

[24] Stavros Diolatzis, Julien Philip, and George Drettakis. Active exploration for neural

global illumination of variable scenes. ACM Transactions on Graphics, 2022. URL

http://www-sop.inria.fr/reves/Basilic/2022/DPD22. 9

[25] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos,

Marta Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor,

et al. Neural scene representation and rendering. Science, 360(6394):1204–1210,

2018. 2, 19, 20, 44, 48

[26] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,

https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778
http://www-sop.inria.fr/reves/Basilic/2022/DPD22

106 BIBLIOGRAPHY

editors, Advances in Neural Information Processing Systems, volume 27. Curran

Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/

file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. 3

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014. 21

[28] Jonathan Granskog, Fabrice Rousselle, Marios Papas, and Jan Novák. Compositional

neural scene representations for shading inference. ACM Transactions on Graphics

(TOG), 39(4):135–1, 2020. 20, 44, 48, 49, 54, 55, 60, 62, 63, 64, 96, 99

[29] Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek.

Variance-aware multiple importance sampling. ACM Transactions on Graphics

(TOG), 38(6):1–9, 2019. doi: 10.1145/3355089.3356515. 40

[30] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based

3d-aware generator for high-resolution image synthesis. CoRR, abs/2110.08985,

2021. URL https://arxiv.org/abs/2110.08985. 21, 22, 87, 88

[31] Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. Primary sample

space path guiding. In Eurographics Symposium on Rendering, volume 2018, pages

73–82. The Eurographics Association, 2018. doi: 10.2312/sre.20181174. 17

[32] Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. Neural radiosity. arXiv

preprint arXiv:2105.12319, 2021. 20

[33] Elad Hazan, Tomer Koren, and Nati Srebro. Beating sgd: Learning svms in sublinear

time. In Advances in Neural Information Processing Systems, pages 1233–1241, 2011.

46

[34] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and

Gabriel Brostow. Deep blending for free-viewpoint image-based rendering. 37(6):

257:1–257:15, 2018. 2

[35] Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. Real-time polygonal-

light shading with linearly transformed cosines. ACM Transactions on Graphics

(TOG), 35(4):41, 2016. doi: 10.1145/2897824.2925895. 24, 26, 30

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/2110.08985

BIBLIOGRAPHY 107

[36] Sebastian Herholz, Oskar Elek, Jiřı́ Vorba, Hendrik Lensch, and Jaroslav Křivánek.

Product importance sampling for light transport path guiding. In Computer

Graphics Forum, volume 35, pages 67–77. Wiley Online Library, 2016. doi:

10.1111/cgf.12950. 17, 23, 24, 30, 31, 33, 35, 36, 41

[37] Steven Hill and Eric Heitz. Advances in real-time rendering. real-time area lighting:

a journey from research to production. InACMSIGGRAPH 2016 Courses, SIGGRAPH

16, 2016. 29

[38] Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël

Gharbi. Interactive monte carlo denoising using affinity of neural features. ACM

Transactions on Graphics (TOG), 40(4):1–13, 2021. doi: 10.1145/3450626.3459793.

URL https://doi.org/10.1145/3450626.3459793. 61, 64, 65, 66, 97

[39] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole.

Zero-shot text-guided object generation with dream fields. arXiv preprint

arXiv:2112.01455, 2021. 92

[40] Wenzel Jakob. Mitsuba renderer, 2010. URL http://www.mitsuba-renderer.

org. 33

[41] Wenzel Jakob. Enoki: structured vectorization and differentiation on modern

processor architectures, 2019. URL https://github.com/mitsuba-renderer/

enoki. 33, 34

[42] Wenzel Jakob and Steve Marschner. Manifold exploration: a markov chain monte

carlo technique for rendering scenes with difficult specular transport. ACM Trans-

actions on Graphics (TOG), 31(4):58, 2012. doi: 10.1145/2185520.2185554. 15

[43] Wojciech Jarosz, Nathan A. Carr, and Henrik Wann Jensen. Importance sampling

spherical harmonics. Computer Graphics Forum (Proceedings of Eurographics), 28

(2), April 2009. doi: 10.1111/j.1467-8659.2009.01398.x. 17

[44] Henrik Wann Jensen. Importance driven path tracing using the photon map.

In Rendering Techniques 95, pages 326–335. Springer, 1995. doi: 10.1007/

978-3-7091-9430-0 31. 17

https://doi.org/10.1145/3450626.3459793
http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org
https://github.com/mitsuba-renderer/enoki
https://github.com/mitsuba-renderer/enoki

108 BIBLIOGRAPHY

[45] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures. SIGGRAPH

Comput. Graph., 23(3):271–280, July 1989. ISSN 0097-8930. doi: 10.1145/74334.74361.

75

[46] James T Kajiya. The rendering equation. In ACM SIGGRAPH computer graphics,

volume 20, pages 143–150. ACM, 1986. doi: 10.1145/15922.15902. 13, 15

[47] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. A machine learning

approach for filtering monte carlo noise. ACM Trans. Graph., 34(4):122–1, 2015. 2

[48] Ondřej Karlı́k, Martin Šik, Petr Vévoda, Tomáš Skřivan, and Jaroslav Křivánek. Mis

compensation: optimizing sampling techniques in multiple importance sampling.

ACM Transactions on Graphics (TOG), 38(6):1–12, 2019. doi: 10.1145/3355089.

3356565. 40

[49] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,

2017. 3

[50] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 4401–4410, 2019. 3, 4, 21, 80

[51] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of StyleGAN. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

June 2020. 4, 21

[52] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In Proc.

NeurIPS, 2021. 4, 21, 74, 77

[53] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. A simple

and robust mutation strategy for the metropolis light transport algorithm. In

Computer Graphics Forum, volume 21, pages 531–540. Wiley Online Library, 2002.

15, 51

BIBLIOGRAPHY 109

[54] Alexander Keller, Luca Fascione, Marcos Fajardo, Iliyan Georgiev, Per Christensen,

Johannes Hanika, Christian Eisenacher, and Gregory Nichols. The path tracing

revolution in the movie industry. In ACM SIGGRAPH 2015 Courses, pages 1–7. 2015.

1, 15

[55] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher

Kanan. Measuring catastrophic forgetting in neural networks. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 32, 2018. 46

[56] Hyeongwoo Kim, Michael Zollhöfer, Ayush Tewari, Justus Thies, Christian Richardt,

and Christian Theobalt. Inversefacenet: Deep monocular inverse face rendering.

In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4625–4634, 2018. 46

[57] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In 3rd International Conference for Learning Representations, 2015. 49, 52

[58] Jaroslav Krivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radi-

ance caching for efficient global illumination computation. IEEE Transactions on

Visualization and Computer Graphics, 11(5):550–561, 2005. 17, 18

[59] Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ra-

mamoorthi. NeuMIP: Multi-resolution neural materials. ACM Transactions on

Graphics (Proc. SIGGRAPH 2021), 40(4), 2021. 75, 76

[60] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras,

Miika Aittala, and Timo Aila. Noise2noise: Learning image restoration without

clean data. arXiv preprint arXiv:1803.04189, 2018. 79

[61] Thomas Leimkühler and George Drettakis. Freestylegan: Free-view editable portrait

rendering with the camera manifold. arXiv preprint arXiv:2109.09378, 2021. 4

[62] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the 23rd

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’96, page 31–42, New York, NY, USA, 1996. Association for Computing Machinery.

ISBN 0897917464. doi: 10.1145/237170.237199. 12

110 BIBLIOGRAPHY

[63] Chunyuan Li, Andrew Stevens, Changyou Chen, Yunchen Pu, Zhe Gan, and

Lawrence Carin. Learning weight uncertainty with stochastic gradient mcmc

for shape classification. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5666–5675, 2016. 46

[64] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Modeling surface appearance from

a single photograph using self-augmented convolutional neural networks. ACM

Transactions on Graphics (ToG), 36(4):1–11, 2017. 46

[65] A. Loza, L. Mihaylova, N. Canagarajah, and D. Bull. Structural similarity-based ob-

ject tracking in video sequences. In 2006 9th International Conference on Information

Fusion, pages 1–6, 2006. doi: 10.1109/ICIF.2006.301574. 62

[66] Zander Majercik, Jean-Philippe Guertin, Derek Nowrouzezahrai, and Morgan

McGuire. Dynamic diffuse global illumination with ray-traced irradiance fields.

Journal of Computer Graphics Techniques Vol, 8(2), 2019. 18

[67] Michael D McCool and Peter K Harwood. Probability trees. In Graphics Interface,

volume 97, pages 37–46, 1997. 25, 27

[68] Morgan McGuire, Mike Mara, Derek Nowrouzezahrai, and David Luebke. Real-

time global illumination using precomputed light field probes. In Proceedings of

the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages

1–11, 2017. 18

[69] Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner,

Markus Gross, and Wojciech Jarosz. Multi-scale modeling and rendering of granular

materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 34(4), July

2015. doi: 10/gfzndr. 75

[70] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and

Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function

space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4460–4470, 2019. 4, 5

[71] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi

Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for

view synthesis. In ECCV, 2020. 5, 18, 19, 50, 76

BIBLIOGRAPHY 111

[72] Thomas Müller. “practical path guiding” in production. In ACM SIGGRAPH Courses:

Path Guiding in Production, Chapter 10, pages 18:35–18:48, New York, NY, USA,

2019. ACM. doi: 10.1145/3305366.3328091. 20, 23, 30, 31, 33, 36

[73] Thomas Müller, Marios Papas, Markus Gross, Wojciech Jarosz, and Jan Novák.

Efficient rendering of heterogeneous polydisperse granular media. ACM Trans.

Graph., 35(6):168:1–168:14, November 2016. ISSN 0730-0301. doi: 10.1145/2980179.

2982429. 75

[74] Thomas Müller, Markus Gross, and Jan Novák. Practical path guiding for efficient

light-transport simulation. In Computer Graphics Forum, volume 36, pages 91–100.

Wiley Online Library, 2017. doi: 10.1111/cgf.13227. 17, 23, 24, 27, 29, 31, 32, 33, 35,

36, 37, 38

[75] Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

Neural importance sampling. ACM Trans. Graph., 38(5), 2019. ISSN 0730-0301. doi:

10.1145/3341156. 30, 31

[76] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

Neural importance sampling. ACM Trans. Graph., 38(5):145:1–145:19, October 2019.

ISSN 0730-0301. doi: 10.1145/3341156. 20, 21

[77] Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. Real-time

neural radiance caching for path tracing. arXiv preprint arXiv:2106.12372, 2021. 20

[78] O. Nalbach, E. Arabadzhiyska, D. Mehta, Seidel. H-P., and T. Ritschel. Deep shading:

Convolutional neural networks for screen space shading. Computer Graphics Forum

(Proc. EGSR), 36(4), 2017. 20

[79] Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel, and Tobias

Ritschel. Deep shading: convolutional neural networks for screen space shading.

In Computer graphics forum, volume 36, pages 65–78. Wiley Online Library, 2017. 2

[80] Radford M Neal. Bayesian learning for neural networks. Springer Verlag, 1996. 46,

70

[81] F. Neyret. Modeling, animating, and rendering complex scenes using volumetric

textures. IEEE Transactions on Visualization and Computer Graphics, 4(1):55–70,

1998. doi: 10.1109/2945.675652. 75

112 BIBLIOGRAPHY

[82] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang

Yang. HoloGAN: Unsupervised learning of 3d representations from natural images.

In The IEEE International Conference on Computer Vision (ICCV), Nov 2019. 4

[83] Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse rendering

of geometry. ACM Transactions on Graphics (TOG), 40(6):1–13, 2021. 92

[84] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: A

retargetable forward and inverse renderer. ACM Transactions on Graphics (TOG),

38(6):1–17, 2019. 56

[85] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven

Lovegrove. Deepsdf: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 165–174, 2019. 4, 5

[86] Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. Shell maps.

In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, page 626–633, New York, NY,

USA, 2005. Association for Computing Machinery. ISBN 9781450378253. doi:

10.1145/1186822.1073239. 86

[87] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-

hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.

Learning transferable visual models from natural language supervision. In Interna-

tional Conference on Machine Learning, pages 8748–8763. PMLR, 2021. 91

[88] Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. Neural BTF

compression and interpolation. Computer Graphics Forum (Proc. Eurographics), 38

(2):235–244, March 2019. doi: 10.1111/cgf.13633. 76

[89] Gilles Rainer, Abhijeet Ghosh, Wenzel Jakob, and Tim Weyrich. Unified neural

encoding of BTFs. Computer Graphics Forum (Proc. Eurographics), 39(2):167–178,

July 2020. doi: 10.1111/cgf.13921. 76

[90] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.

Hierarchical text-conditional image generation with clip latents. arXiv preprint

arXiv:2204.06125, 2022. 91, 92

BIBLIOGRAPHY 113

[91] Florian Reibold, Johannes Hanika, Alisa Jung, and Carsten Dachsbacher. Selective

guided sampling with complete light transport paths. ACMTransactions on Graphics

(TOG), 37(6):1–14, 2018. doi: 10.1145/3272127.3275030. 16, 39, 40

[92] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic

tone reproduction for digital images. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages 267–276, 2002. 79

[93] Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.

Global illumination with radiance regression functions. ACM Trans. Graph., 32(4),

July 2013. ISSN 0730-0301. 19

[94] Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining

Guo. Global illumination with radiance regression functions. ACM Transactions on

Graphics (TOG), 32(4):1–12, 2013. 2

[95] Damien Rioux-Lavoie, Joey Litalien, Adrien Gruson, Toshiya Hachisuka, and Derek

Nowrouzezahrai. Delayed rejection Metropolis light transport. ACM Transactions

on Graphics, 39(3), April 2020. doi: 10.1145/3388538. 2

[96] Simon Rodriguez, Thomas Leimkühler, Siddhant Prakash, Chris Wyman, Peter

Shirley, and George Drettakis. Glossy probe reprojection for interactive global

illumination. ACM Transactions on Graphics (SIGGRAPH Asia Conference Proceed-

ings), 39(6), December 2020. URL http://www-sop.inria.fr/reves/Basilic/

2020/RLPWSD20. 18

[97] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to

large diverse datasets. arXiv preprint arXiv:2202.00273, 2022. 92

[98] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. GRAF: Generative

radiance fields for 3d-aware image synthesis. In Advances in Neural Information

Processing Systems (NeurIPS), 2020. 74

[99] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative

radiance fields for 3d-aware image synthesis. Advances in Neural Information

Processing Systems, 33:20154–20166, 2020. 4, 21, 74

http://www-sop.inria.fr/reves/Basilic/2020/RLPWSD20
http://www-sop.inria.fr/reves/Basilic/2020/RLPWSD20

114 BIBLIOGRAPHY

[100] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks:

A core-set approach. arXiv preprint arXiv:1708.00489, 2017. 46

[101] Burr Settles. Active learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 2009. 45

[102] Dario Seyb, Peter-Pike Sloan, Ari Silvennoinen, Michał Iwanicki, and Wojciech

Jarosz. The design and evolution of the uberbake light baking system. ACM

Transactions on Graphics (TOG), 39(4):150–1, 2020. 48

[103] Peter Shirley, Bretton Wade, Philip M Hubbard, David Zareski, Bruce Walter, and

Donald P Greenberg. Global illumination via density-estimation. In Eurographics

Workshop on Rendering Techniques, pages 219–230. Springer, 1995. 17

[104] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representa-

tion networks: Continuous 3d-structure-aware neural scene representations. In

Advances in Neural Information Processing Systems, 2019. 5, 18, 49

[105] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable precomputed

radiance transfer. ACM Transactions on Graphics (TOG), 24(3):1216–1224, 2005. 71

[106] Sebastian U Stich, Anant Raj, and Martin Jaggi. Safe adaptive importance sampling.

In Advances in Neural Information Processing Systems, pages 4381–4391, 2017. 46

[107] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin

Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.

Fourier features let networks learn high frequency functions in low dimensional

domains. NeurIPS, 2020. 5, 50, 76

[108] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-

Brualla, T. Simon, J. Saragih, M. Nießner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y.

Zhu, C. Theobalt, M. Agrawala, E. Shechtman, D. B Goldman, and M. Zollhöfer.

State of the Art on Neural Rendering. Computer Graphics Forum (EG STAR 2020),

2020. 19

[109] Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering:

Image synthesis using neural textures. ACM Transactions on Graphics (TOG), 38(4):

1–12, 2019. 70

BIBLIOGRAPHY 115

[110] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 2012. 52

[111] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In

Photorealistic Rendering Techniques, pages 145–167. Springer, 1995. doi: 10.1007/

978-3-642-87825-1 11. 15, 16

[112] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for

monte carlo rendering. In Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, pages 419–428. ACM, 1995. doi: 10.1145/218380.

218498. 17

[113] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceedings of

the 24th annual conference on Computer graphics and interactive techniques, pages

65–76, 1997. 15, 51

[114] Jiřı́ Vorba and Jaroslav Křivánek. Adjoint-driven russian roulette and splitting in

light transport simulation. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

doi: 10.1145/2897824.2925912. 32

[115] Jiřı́ Vorba, Ondřej Karlı́k, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. On-

line learning of parametric mixture models for light transport simulation. ACM

Transactions on Graphics (TOG), 33(4):101, 2014. doi: 10.1145/2601097.2601203. 16,

17, 20, 23

[116] Gregory J Ward, Francis M Rubinstein, and Robert D Clear. A ray tracing solution

for diffuse interreflection. In Proceedings of the 15th annual conference on Computer

graphics and interactive techniques, pages 85–92, 1988. 17

[117] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin

dynamics. In Proceedings of the 28th international conference on machine learning

(ICML-11), pages 681–688. Citeseer, 2011. 46, 51

[118] Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and Chen Change Loy. Positional

encoding as spatial inductive bias in gans. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13569–13578, 2021. 79

116 BIBLIOGRAPHY

[119] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The

unreasonable effectiveness of deep features as a perceptual metric. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 586–595,

2018. 62

[120] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon

Wilson. Cyclical stochastic gradient MCMC for bayesian deep learning. arXiv

preprint arXiv:1902.03932, 2019. 46

[121] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling

for regularized loss minimization. In international conference on machine learning,

pages 1–9, 2015. 51

[122] Quan Zheng and Matthias Zwicker. Learning to importance sample in primary

sample space. In Computer Graphics Forum, volume 38, pages 169–179. Wiley

Online Library, 2019. 21

[123] Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. CIPS-3D: A 3D-Aware Generator

of GANs Based on Conditionally-Independent Pixel Synthesis, 2021. 74

[124] Jia-Jie Zhu and José Bento. Generative adversarial active learning. arXiv preprint

arXiv:1702.07956, 2017. 46

[125] Tobias Zirr, Johannes Hanika, and Carsten Dachsbacher. Re-weighting firefly

samples for improved finite-sample monte carlo estimates. In Computer Graphics

Forum, volume 37, pages 410–421. Wiley Online Library, 2018. doi: 10.1111/cgf.

13335. 33

	Contents
	Introduction
	Representing & Rendering Synthetic Scenes
	Contributions
	Funding and Publications

	Background
	Radiometry
	Radiance Fields & Rendering Equations

	Previous Work
	Traditional Path Tracing
	Neural Rendering & Radiance Fields
	Generative Neural Radiance Fields
	Summary

	Practical Product Path Guiding Using Linearly Transformed Cosines
	Practical Product Path Guiding
	Results and Evaluation

	Active Exploration for Neural Global Illumination of Variable Scenes
	Related Work
	Explicit Encoding and On-the-fly Data Generation
	Active Data Space Exploration
	Training and Self-Tuning Sample Reuse
	Results, Analysis and Comparisons
	Future Work, Limitations and Conclusion

	MesoGAN: A Generative Model for Mesoscale Materials
	Related Work
	Method
	Results
	Comparisons

	Conclusions
	Lessons learned
	Future directions

	Chapter 5 appendix
	Selected Views
	Comparison to CNSR
	Comparison to ANF
	Comparison to GT
	MCMC States Lifespan
	Sample Reuse Derivation

