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Abstract

This thesis aims to increase the heterogeneity of pedestrian interactions in a virtual
urban environment. The interactions focus on collision avoidance and street crossing.
My first contribution consists in allowing the pedestrian agents to avoid the collisions
by adapting their behavior according to the neighbor agents with which they interact.
Simulations show the expected adaptation during the avoidance interactions by in-
creasing or decreasing the avoidance effort depending on the behavior of the perceived
neighbors. Then, in the cases of unidirectional flows, the pedestrian agent will seek to
overtake their slower neighbors. Based on the position, the speed, and the size of the
neighbors, the pedestrian agent will consider particularly the neighbor in front of them
(called the leader), who constraints them the most. Therefore, my second contribution
combines a collision avoidance model with a queuing model by considering the leader
differently from the rest of the perceived neighbors. These two contributions rely on
the perception of the perceived neighbors’ physical characteristics (size, position, and
speed). However, the temporal dimension (how long the agent has been in a situa-
tion) and the social influence from the neighbors behaviors are important factors in
decision-making.

My main contribution is the development of a decision model for street crossing,
which considers the waiting time on the sidewalk of the pedestrian agent and the actions
of his neighbors (to cross or wait). The model is assessed under two scenarios, 1) a
street crossing with a pedestrian light, without road traffic, and 2) a street crossing
with traffic without a pedestrian light. The model is based on three assumptions.
The first one is that waiting time is an important factor in the decision to cross. On
one hand, we assume that a pedestrian agent is willing to wait a certain amount of
time before crossing (a sort of patience) and beyond that, the pedestrian will want
to cross even at a red light. On the other hand, we assume that the waiting time
plays a role in the perception of the vehicle in front of which the pedestrian plans
to cross. Indeed, literature shows that the time-to-contact with an oncoming vehicle
can be overestimated or underestimated before the crossing decision. The next two
hypotheses are based on Rosenbloom’s work, who suggests that a pedestrian waiting
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at a red light may be influenced by those crossing and those waiting. Combining
these two hypotheses forms what we call the social influence, which will modulate both
the patience of the pedestrian agent and his perception of the time-to-contact of the
oncoming vehicles.

In a first study, the simulations show that pedestrians supposed to cross at the
red light may wait for the green light, influenced by waiting neighbors. Conversely,
neighbors crossing at the red light will encourage the agent to cross during the red
light, leading to a different decision compared to being alone in this situation. More-
over, pedestrians with similar characteristics (patience, speed) and perceiving the same
situation (color of the pedestrian light and number of neighbors) but arriving at the
crossing location at different times, will make different decisions.

In the second study, crossing in front of road traffic, the combination of social
influence and waiting time will induce a bias in the perception that may lead the
pedestrian agent to overestimate or underestimate the time-to-contact with the vehicle.
The pedestrian agent may thus decide to wait when he could normally cross, missing
an opportunity; he also may decide to cross when the situation does not allow it, which
leads to an inadequate decision.

Keywords : Pedestrian modeling and simulation, heterogeneous collision avoid-
ance, social influence, waiting time, street crossing, transgression of traffic rules, inad-
equate crossing decision
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Résumé

Les simulations de piétons seraient plus réalistes si les comportements des piétons
étaient similaires à ceux observés dans une situation réelle. De nombreuses simula-
tions de piétons manquent ainsi d’hétérogénéité dans les comportements produits en
raison des simplifications des modèles, ce qui diminue leur réalisme. Cette thèse vise
à augmenter l’hétérogénéité des interactions des piétons en milieu urbain. Les inter-
actions traitées sont l’évitement des collisions et la traversée des rues. Ma première
contribution consiste à donner aux agents piétons la possibilité d’éviter les collisions
en s’adaptant au contexte rencontré, c’est-à-dire en fonction des agents voisins perçus
avec lesquels l’agent piéton peut interagir. Le modèle proposé conduit à des simulations
dans lesquelles on observe une adaptation du comportement de l’agent durant les inter-
actions d’évitement, par une augmentation ou une diminution de l’effort d’évitement en
fonction du comportement du voisin perçu. Mais, l’interaction d’évitement ne se limite
pas aux rencontres de type face à face, elle existe également dans des flux monodirec-
tionnels dans lesquels l’agent piéton va chercher à doubler ses voisins plus lents. En se
basant sur la position, la vitesse et la taille des voisins, l’agent piéton va tenir compte
plus particulièrement du voisin devant lui qui le contraint le plus, nommé leader, quand
il existe. Ma seconde contribution a ainsi consisté à combiner un modèle d’évitement
de collision avec un modèle de file d’attente en considérant différemment le leader du
reste des voisins perçus. Ces deux contributions reposent sur une analyse des voisins
perçus et des seules données dites physiques (taille, position, vitesse). Ainsi, l’aspect
temporaire des situations rencontrées et les actions des voisins ne sont pas considérés.
Pourtant, la dimension temporelle, depuis combien de temps l’agent est dans cette sit-
uation et l’influence sociale provenant des voisins perçus sont des facteurs importants
dans les prises de décision d’un agent piéton dans ses déplacements. Pour illustrer
ces phénomènes d’influence sociale et de temporalité d’une situation, ma contribution
principale porte sur le développement d’un modèle de prise de décision pour la traver-
sée rue qui considère le temps d’attente sur le trottoir de l’agent piéton et les actions
de ses voisins, qui attendent, ou qui traversent. Dans un premier temps, le modèle sera
utilisé pour une traversée de rue au feu piéton rouge, sans trafic routier, puis dans un
second temps pour une traversée de rue face à un trafic routier et sans feu, situation
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pour laquelle l’interaction avec le véhicule sera surestimée ou sous-estimée en fonction
du temps d’attente et de l’influence sociale.

Le modèle ainsi développé repose sur trois hypothèses. La première est que le
temps d’attente est un facteur important dans la prise de décision de traverser. D’un
côté, nous supposons qu’un agent piéton est prêt à attendre ou dépenser un temps
donné avant de vouloir traverser, que nous appelons patience, et qu’au-delà le piéton
voudra traverser même au feu piéton rouge. D’un autre côté, nous supposons que le
temps d’attente joue un rôle dans la perception du véhicule devant lequel il envisage
de traverser. Les deux hypothèses suivantes reposent les travaux de Rosenbloom qui
suggèrent qu’un piéton qui attend au feu piéton rouge peut être influencé par ceux qui
traversent devant lui, suggérant ainsi qu’il y a des opportunités pour traverser, mais
également par ceux qui attendent, l’encourageant ainsi à attendre le feu piéton vert.
La combinaison de ces deux hypothèses forme ce que nous appelons l’influence sociale
; influence sociale qui va moduler la patience de l’agent piéton et sa perception de
l’arrivée du véhicule devant lequel il envisage de traverser.

Dans une première étude, les simulations montrent que les piétons supposés tra-
verser au feu piéton rouge peuvent attendre le feu vert en raison de voisins qui at-
tendent, et réciproquement, des voisins traversant au feu rouge vont influencer l’agent
à traverser alors qu’il aurait attendu le feu piéton vert s’il avait été seul dans cette
situation. On peut noter également que des agents piétons similaires en termes de
caractéristiques propres (patience, vitesse) et percevant la même situation (couleur du
feu, nombre de voisins traversant et nombre de voisins en attente) mais arrivant sur le
bord du trottoir à différents moments vont prendre des décisions différentes (traverser
ou attendre) conduisant ainsi à une production de comportements hétérogènes et non
nécessairement prédictibles dans le cas où un sujet humain interagirait avec des piétons
virtuels, les uns et les autres pouvant s’influencer mutuellement. Dans la seconde étude
de traversée face à un trafic routier, les résultats montrent des comportements jusqu’à
présent peu fréquents dans le cadre des simulations de piétons. Ainsi, aux comporte-
ments de traversée et aux refus de traversée justifiés du point de vue de la sécurité
routière, l’agent piéton peut décider d’attendre alors qu’il pourrait traverser manquant
ainsi une opportunité, mais également peut décider de traverser alors que la situation
ne le permet pas, ce qui le conduit à prendre une décision inadaptée à la situation. Le
modèle repose une comparaison temporelle entre le temps nécessaire à l’agent piéton
pour traverser et le temps d’arrivée au point de conflit du véhicule devant lequel l’agent
envisage de traverser. La combinaison de l’influence sociale et du temps d’attente va
constituer un biais sur la perception du temps d’arrivée du véhicule. C’est l’utilisation
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de ce biais qui peut conduire l’agent piéton à surestimer l’arrivée du véhicule et peut
le conduire à prendre une décision inadaptée, ou à sous-estimer l’arrivée du véhicule
l’amenant à attendre plus longtemps et peut-être manquer ainsi une opportunité de
traverser. Pour ces deux études, les résultats sont comparés à la littérature disponible
pour déterminer la pertinence du modèle et de la démarche.

Mots clé : Modélisation et simulation piétonne, évitement de collision hétérogène,
influence sociale, temps d’attente, traversée de rue, transgression des règles de circula-
tion, décision de traversée inadaptée.
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Chapter 1

Introduction

1.1 Overview

Research on pedestrian modeling is multidisciplinary, involving cognitive science, vir-
tual reality, social science, and transportation. It is not a new topic; many scientists
have been working on the subject since the late 1950 s [Coh18]. Most models developed
during that period were macroscopic, where an aggregate term describes the dynamics
of pedestrian flow [Hoo+14]. In 1974, Henderson formalized the crowd to an average
velocity from all pedestrians composing the crowd. Then, represents the movement of
the crowd as continuous, like the movement of fluids [Hen74]. I use the definition of
the crowd from [TDP15] in this thesis. It describes an aggregation of individual pedes-
trians at the same location, but each pedestrian has distinct proprieties. Then, in the
mid 1980s, a new class of models comes into play, that are the pedestrian microscopic
models. [Hoo+14] presented the microscopic models as a flow of pedestrians, described
at individual levels. Gipps developed the first pedestrian microscopic model, where
each pedestrian has its proprieties, was developed in 1985 [GM85]. He uses a cellular
automaton for this first pedestrian simulation, and he discretized the environment into
different pedestrian-sized cells [GM85].

In 1995, Helbing developed a social force model (SFM) [HM95], which was the
first collision avoidance pedestrian model, inspired by Henderson’s work. The SFM
is a forced-base model composed of several forces to allow the pedestrians to reach
their destinations and avoid collisions with other pedestrians and obstacles. The SFM
also is considered a pioneer in pedestrian models, leading to various derivations of the
model, including the creation of new models. As a such were the velocity-based models,
Reciprocal Collision Avoidance for Real-Time Multi-Agent Simulation (RVO2), in 2011
[VDB+11]. Moreover, the number of works published on pedestrian models started to
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grow after 1995s, probably because of the increase in computation power in that period,
in table 1.1.

A model is a simplification of reality [Don+08]. The model can be used to test
hypotheses [KMP11], or to simulate pedestrian behaviors. One of the advantage of
simulation is the possibility to work on dangerous situations, such as underestimating
the arriving time of an oncoming vehicle and crossing in front of this vehicle.

Although walking is the oldest form of transportation that ever existed, pedes-
trian behaviors receive less interest than vehicular traffic [She+21]. [Dıa02] proposed a
pedestrian street crossing model based on questionnaires designed for drivers. [TGD14]
developed a model of macroscopic pedestrian flow, derived from a vehicular traffic
model, to exhibit emerging behavior. Furthermore, crowd simulations have more in-
terest than pedestrian simulations (see table 1.1). [Lem+12; RRW14] extended leader
following in cars to leader-following in pedestrians. In some works, pedestrians are
considered a perturbation and delay to the traffic flow [Wan+21].

Table 1.1: Google Scholar search comparison results of all work published on each
designated date, when the keywords “pedestrian simulation”, “crowd simulation” and
“vehicle simulation” are used, (Consulted in December, 2021).

keyword 1960 1970 1980 1990 1995 2000 2005 2010 2015 2020
“Pedestrian simulation” 1 2 9 20 27 63 257 947 2380 4140
“Crowd simulation” 3 3 3 9 17 65 416 1780 4540 7720
“Vehicle simulation” 11 41 203 463 554 758 1320 2770 5950 11300

1.2 Pedestrian simulation challenges

Microscopic pedestrian simulations still have many challenges to overcome, explaining
the number of published works in this field that still increases. Many existing pedes-
trian simulations are drastic simplifications of the real situation [Don+08]. Pedestrian
simulations use rules or mathematical formulations, and the pedestrian agent in each
simulation uses the same rules or the same mathematical formulations. The differ-
ences between agents are mostly related to their individual characteristics, such as
speed, destination, or perception distance. Moreover, pedestrian agents process only
physical information such as their neighbors’ position, speed, or shape. These sim-
plifications lead to homogeneous interaction behavior, and simulating heterogeneous
behavior would lead to a more realistic crowd [Guy+11; LLB11].
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The simplification also can lead to symmetrical interactions. For example, pedes-
trians anticipate and avoid collisions the same way [Cur+13]. Real pedestrians do not
always avoid collisions the same way with each other. Maybe because of time reaction
differences, cultural reasons, or the preferences. Moreover, pedestrians interactions are
not limited to collision avoidance; they can also follow and overtake another slower
pedestrian.

Wooldridge presents an agent as an autonomous entity with objectives and re-
acting to the perception of the environment [Woo99]. In the context of crowds, a
pedestrian has an objective, which may be to reach a destination, and the perception
of another pedestrian who may cause a collision may create a collision avoidance reac-
tion. In many situations, this reaction is rarely planned, leading to an adaptation to
the situation. There are different ways to react to the environment, and individuals can
react differently even to the same situation perceived. This variability of individuality
could help to increase the heterogeneity of the crowd.

1.3 Street crossing

It is recommended to walk an average of 10, 000 steps a day [TL+11]; however, walk-
ing is not always safe, especially when crossing streets. Most accidents involving
pedestrians happen during street crossings, when the pedestrians are exposed to ve-
hicles [KSG09; Lav+09]. Indeed, crossing a street is a complex task. A pedestrian
has to make a quick decision, and a wrong crossing behavior could lead to a dangerous
situation, even an accident.

Pedestrians are the most vulnerable road users because they do not have a car body
and helmet to protect them from others. They also have lower inertia than vehicles,
which means they can maneuver more easily. However, they do not have flashing lights
or horns to prevent others, increasing the risk of an accident. In addition, not all
pedestrians follow the traffic rules.

Pedestrians can have different crossing behaviors. Some of them violate the traffic
rules. The violation rates in major European cities, like Paris, Brussels, and Hamburg,
are around 20 to 25% [Die19]. Traffic violations are more likely to lead to an accident
[Lav+09] than rule-compliant behavior, and around 39% of the pedestrian accidents
at marked crosswalks occur during red light violation [Die19].

Pedestrians are influenced by neighbors in their decision during street crossings
[Ros09; FKK10]. Few simulated street crossing models consider the social influence.
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[FKK10; Yan+06] simulated pedestrians influenced from neighbors to cross, but they
did not implement the influence from neighbors to wait.

1.4 Objective and application domains

The behaviors of real pedestrians are often heterogeneous and vary according to the
situations. Pedestrians do not always behave the same way for the same situation.
However, the behaviors of pedestrians developed in most models lack variety [TM12].
This is because many existing pedestrian models consider few contextual information,
leading to homogenous behaviors. The temporal dimension (how long the pedestrian
has been in a situation) and the social influence from the neighbor’s behaviors are
important factors in street crossing decisions. Thus, the objective of this thesis is to
limit the gap between what is observed in real situation and what is developed in the
models. To reach that goal, I propose to increase the heterogeneity of the interaction
of pedestrians in urban environments.

Producing heterogeneous pedestrian behaviors can increase the realism of simu-
lations. The application domains of this thesis are to populate a scene with virtual
and convincing pedestrians. Then, the developed tools can be given to researchers in
experimental psychology to experiment with more realistic pedestrians in a controlled
environment. For example, to propose virtual pedestrians crossing at the red light
in front of an autonomous vehicle in order to study the behavior of the driver or a
passenger [RAB21].

1.5 Contribution

In the first part, I developed the interaction between pedestrians. I start with the face-
to-face interaction during collision avoidance. My first contribution is giving pedestri-
ans the ability to adapt the collision avoidance based on perception of neighbors, so
they can avoid and anticipate differently. But, the interaction between pedestrians is
not limited to collision avoidance.

I extended the collision avoidance with the following behavior, so pedestrians can
avoid and overtake someone with slower speed named leader, depending on the situa-
tion. Thus, my second contribution consists of combining a collision avoidance model
with a queuing model, and considering different interaction between the leader and the
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rest of the neighbors. Interaction in an urban environment also implies pedestrians
interacting with a pedestrian light or road traffic during street crossings.

My main contribution is the development of a street crossing decision model. I
hypothesized that pedestrians are violating the traffic rules because they lose patience,
and they are influenced by the number of neighbors crossing and waiting. To illustrate
this situation, I implemented a street crossing scenario with a pedestrian light without
road traffic. If pedestrians arrive during a red light, they start to wait and can be
influenced by the neighbor’s decision to violate or comply with the traffic laws. My third
contribution is the utilization of social influence, which is the behaviors of neighbors
(crossing/waiting) to modulate the patience. Then, the pedestrians decide to cross if
their patience runs out.

Street crossing also imply an interaction with road traffic. I hypothesized that
pedestrians have an inaccurate crossing decision because they biased the estimation of
the time-to-contact of an oncoming vehicle, and the bias is based on waiting time and
the social influence. To illustrate this scenario, I implemented a street crossing with
road traffic without a pedestrian light. If pedestrians perceive an approaching vehicle,
the pedestrians can overestimate or underestimate the time-to-contact of the oncoming
vehicle. My fourth contribution is the development of the bias on the time-to-contact of
an oncoming vehicle. These two situations lead to an adaptation of crossing decisions
based on the situation, and they would have a different decision if they were alone,
leading to heterogeneous interaction behaviors.

1.6 Plan

Chapter 2 reviews the literature on pedestrian models, pedestrian behaviors, and dif-
ferent data on pedestrians.

Chapter 3 develops the problem statement. Using the literature review on pedestrians
models, and the behavior of pedestrians, I propose to bridge the gap. In this chapter,
I specify the direction of the thesis, and the approach used.

Chapter 4 develops my two contributions to increasing the heterogeneity during colli-
sion avoidance between pedestrians. The first contribution gives pedestrians the pos-
sibility to adapt the collision avoidance based on the perception of the neighbors. The
second contribution combines the collision avoidance with a queuing model.
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Chapter 5 presents my main contributions to the development of an agent-based model
for street crossing. The model uses the social influence from the actions of neighbors,
and the pedestrian agent waiting time for crossing decision. My third contribution will
be for a street crossing model at a red light without road traffic. My fourth contribution
will be for a street crossing facing road traffic and without a pedestrian light.

Chapter 6 describes the first scenario for implementing the street crossing model at
a red light without road traffic, and the second scenario for implementing the street
crossing facing road traffic and without a pedestrian light. I also present the initial
condition setup for the two scenarios.

Chapter 7 shows the simulations results of the street crossing model for the two sce-
narios.

Chapter 8 concludes the work presenting a summary, describing the major contribu-
tions, and some limitations of the contributions. Then, I proposed some short-term
and long-term perspectives.



7

Chapter 2

State of the art

In the current pedestrian model, the heterogeneity of interactions and the variety of
possible behaviors are limited. These limitations reduce the realism of pedestrian
simulations. My objective is to increase the heterogeneity of the pedestrians behaviors.
This literature review presents different simulations and models used for pedestrian
interactions. The interactions can be between pedestrians or between the pedestrians
and the urban environment. Then, I present the agent-based approach, which is those I
will use. In the third section, I present some data and characteristics of real pedestrian
behavior.

2.1 Pedestrian interaction models and simulations

This section presents models of the interaction between pedestrians. I identified three
types of interactions: collision avoidance, group behavior, and the leader-following. A
fourth interaction can be described between pedestrians and the urban environment
during the street crossing.

2.1.1 Collision avoidance

Since 1950, some pedestrian models have been built, but these are mainly statistical
models to improve the environmental design [Coh18]. In 1974, Henderson developed
a fluid-based model [Hen74]. He formalized the crowds using the Maxwell-Boltzmann
velocity space of gas law and the theory of conservation of mass. The first microscopic
model emerged in 1985. Different categories of models were then built after this date,
starting from rule-based in 1987 [Rey87], force-based in 1995 [HM95], velocity-based
in 1998 [FS98], and vision-based 2010 [Ond+10].
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In 1985, Gipps developed a cell-based model [GM85]. It was the first microscopic
model where each pedestrian had its characteristics. He used a cellular automaton
(CA). CA was developed by John von Neumann in 1948, for the objective of simulating
artificial life [BCE97]: CA follows four principles. First, the space is divided into two-
dimensional uniform cells. Second, each cell can only have one state at a time (dead or
alive). Third, the state of any cell depends on the state of its closest neighbors. Finally,
the definition of uniform transition rules to move from one cell to another cell [BCE97].
Gipps discretized the environment into uniform cells, and each cell has a pedestrian’s
size. However, the displacement of an adjacent cell limits pedestrian displacement.

In 1987, Reynolds developed a rule-based model, also called Boids. Boids are
composed of three rules, each defined for specific reactions. The first rule is separation
for collision avoidance. The second is for alignment, making the agent follow the same
direction. The last rule is cohesion, which allows the agents to stay together. (Figure
2.1).

Figure 2.1: Illustration of the three Boids’ rules model[BDD09].

Reynolds developed the Boids model initially to simulate a group of wild animals
for computer graphics. In 1999, he extended the model for pedestrians [Rey+99].
He created a virtual environment with human-animated characters. He also extended
the model by introducing the leader-follower concept, where the follower stays close
to and follows a leader. The leader has a destination, and the group follows. The
model produces a relative realistic displacement of a group and synchronization of
each individual without centralized information. However, each agent in this model
perceives the position and velocity of all other agents, which is physically impossible
for a pedestrian, especially if the group has a hundred or a thousand individuals. This
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model may be good for simulating a group of pedestrians with a defined leader, but it
is not suitable to simulate an individual pedestrian with their destination.

In 1995, Helbing developed the first collision avoidance model from a concept of
Henderson in 1974, combined with Lewin’s social behavior [Coh18]. SFM is a forced-
based model, and it is composed of several forces (attraction to destination, repulsion to
avoid collision with other pedestrians, another repulsion to avoid obstacles) [HM95]. A
new acceleration is computed at each time step from several opposite forces to move the
agent to a new position. This model is a pioneer in transportation research and crowd
simulation. It led to different derivatives of SFM and other models, such as velocity-
based models. This model works well in medium or high pedestrian densities, but it
produces less realistic behavior at lower densities by moving backyards with negative
velocity [Stu+19]. The model only considers the position of other agents around to
compute the acceleration. Thus, the agent cannot anticipate the future position of
other agents, and collision avoidance cannot always be correct. For instance, an agent
moving in the same or opposite direction or not moving at all is considered the same.
Thus, the agent always reacts the same way, even if the other agents around him do
not represent any collision risk. [ZIK11] adds velocity to the input of the SFM model
to predict future collision threats, and the agent may have a different interaction if the
neighbors are moving in the same or opposite direction.

In 1998, Fiorini introduced a velocity-based model for static and dynamic disk-
shaped robots. The model is called Velocity Obstacle (VO), and uses linear program-
ming to approximate the trajectories of other robots. It expects the other robots to
have a constant displacement, which leads to their future positions [FS98]. To avoid
colliding with B1, A chooses a velocity VA. VA should be located outside the cone
of collision CCA,B1 , also known as the velocity obstacle. This is shown in figure 2.2,
which is between VA and VB1 . Each robot takes a velocity outside the combined velocity
obstacles associated with each robot.
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Figure 2.2: Cone collision CCA,B1 between two robots A and B1 by [FS98].

VO offers several advantages; it can deal with high-speed objects and anticipate
collisions. Nevertheless, VO has a few limitations. It is computationally expensive to
explore the velocity obstacles of all other objects. An undesirable oscillation in the
trajectory can happen in certain situations [BLM08]. The oscillations happen when
robots have a strong variation of the velocity direction at every step. Consider a robot
RA with a preferred velocity VRA

and a required velocity VV O, to avoid colliding with
another robot RB. The oscillation occurs when the velocity of RA is switched between
the two velocities (VRA

and VV O) successively, leading to a change of velocity cap at
each time step.

In 2002, Daamen and her colleagues developed a model based on the three-level
theory approach [CHD14]. Their goal was to standardize a single microscopic model.
Under the name NOMAD, the project was developed over 12 years [CHD14]. Instead
of focusing mostly on the operational level, as most collision avoidance models do, they
integrated three distinct levels: strategic, tactical, and operational. The first level is
strategic and is used to list and select activities. The second level is tactical and is
used to select an alternative activity different from initially planned, such as deciding
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to follow someone. The last level is operational and is used to calculate the physical
movement of the pedestrian during its displacement (new speed and position).

In 2008, Van Den Berg developed the Reciprocal Velocity Obstacles (RVO model)
[BLM08], extended from VO to resolve the oscillation problem. He modifies the selec-
tion of velocity during collision avoidance. Instead of selecting a velocity outside the
velocity obstacle VV O, when a collision is imminent, he selects the velocity between
the actual velocity and VV O. RVO is a pioneer in gaming and in computer graphics.
In 2011, a velocity-based model for pedestrian simulation called Optimal Reciprocal
Collision Avoidance (ORCA) was developed from the same authors [VDB+11].

In 2010, Ondrej and Pettré developed a vision-based approach for pedestrian sim-
ulation. Inspired by work from cognitive science, he said that pedestrians rely on
visual information for locomotion [Ond+10]. They used a bottom-up approach, and
the agent pedestrian reacted to perceived obstacles. The information processed from
the perceived objects is the bearing angles and the time-to-collision. As a response, the
agent pedestrian can turn the obstacles or decelerate. This model has certain limita-
tions regarding its cost of computation. They extend their work from a velocity-based
model, and they use the position and velocity from neighbors to compute the bearing
angle. Thus, they create more computation than a basic velocity-based model.

In 2011, Guy used a Personality Trait Theory to increase the heterogeneity of the
behaviors of crowds during collision avoidance [Guy+11]. The number of personality
treated were six: aggressive, impulsive, assertive, active, shy, and tense. As results,
the aggressive ones take the straightest path and avoid less the collision with other
pedestrians of different personalities. Conversely, the shy ones avoid more the collision
compared to the other pedestrians with different personalities.

From 1950s to 2010s is a long period, but the gap between the major works is
rather long. Most of the models cited above use physical information (position, ve-
locity, and size) to perform collision avoidance. That limits the consideration of the
social context. Velocity-based models can handle better collision avoidance than other
force-based models, allowing an anticipation of a possible collision. The anticipation
allows a correction of a possible detected collision. Thus, pedestrians to react differ-
ently to another pedestrian moving in the same, opposite direction, or if the pedestrian
is stationary. Velocity-based models are also cheaper than vision-based models. Nev-
ertheless, the interaction between pedestrians is not limited to collision avoidance; for
instance, they can also walk in groups or follow each other.
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2.1.2 Group behavior

[Ave77] describes a crowd as an aggregation of individuals in groups, and isolated
individuals. A group can have different proprieties, such as individual characteristics,
group size, relationships among groups, and influences among group members [QH10].
Different works have been developed on the subject since Reynolds.

In 1987, Reynolds developed the Boids model, well known for group behaviors
[Rey87]. This model works for both group and pedestrian simulation.

In 2010, Moussaid developed a model for groups. They observed that crowds are
frequently an aggregation of individual pedestrians, and in most situations, pedestrians
are walking in small groups as friends or couples. Pedestrians favor positions that allow
verbal and social communication [Mou+10]. To maintain visual contact, they change
positions and follow a certain spatial pattern rather than turning their heads [Mou+10].
The dynamic positions also depend on the size of the group. With three people walking
together, they tend to follow a “V-like” shape, and the person in the middle is a little
behind the two others. When the group is composed of four people, the positions
change to form a “U-like” shape, where the two persons in the middle are a little
behind the first and fourth person in the group [Mou+10], they developed this model
from the SFM.

In 2011, Karamouzas developed another pedestrian group behavior using a velocity-
based model [KO11]. They state that the velocity-based model performs better than
the SFM for collision avoidance. When confronted with different densities (low or
medium) in their model, a group can change shape. Pedestrians can avoid collisions
with groups as one entity, rather than avoiding each member individually.

In 2016, Lemercier and Auberlet extended the collision avoidance with group in-
teraction [LA16]. The particularity of this model is the group composition. The groups
are not based on a special relationship among the group members, but on the posi-
tion and velocity of each pedestrian. Agents moving with approximately the same
speed and velocity are considered by others as a group. Thus, if an agent perceives a
group, the agent avoids the whole group as an entity. This concept of an occasional
group is interesting since, in many situations, pedestrians do not know if pedestrians
are walking together are a real group or not, but they just avoid them as a cluster
of pedestrians. This model focuses more on improving the interaction during collision
avoidance than considering a social group. Nevertheless, the model has a limitation re-
garding its implementation. The group identification is centralized, but not individual
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to each agent.

2.1.3 Leader-following

Leader-following interactions receive less interest than group dynamics or collision-
avoidance interactions. In many situations, pedestrian-following interaction models
are derived from vehicular traffic models [RRW14].

In 2014, Rio and Warren developed six pedestrian leader-follower models extended
from vehicular traffic models [RRW14]. Then, they used their six models to experiment
with subjects by asking the subjects to follow a leader, and the leader altered its
speed during the experiment. The six models tested were: 1) speed matching between
leader and follower, 2) constant distance, 3) constant speed, 4) time-to-contact, 5)
ratio (based on the inverse of the time-to-contact), and 6) a linear combination of
speed and distance. They found a better performance for the speed matching model
and hypothesized that pedestrians are better at matching speeds in normal conditions
(normal pedestrian speed) and within a few meters. Their models were tested for special
circumstances, such as waiting in a queue and not overtaking the leader. However, in
real situations, pedestrians can follow and overtake someone.

In 2016, Lemercier and Auberlet combined a collision-avoidance model (ORCA)
with a queuing model [Lem+12]. Unlike pure queuing models, where a pedestrian just
follows another pedestrian in front of him, the pedestrian can overtake. Thus, this
model is suitable for an urban environment. In this model, a pedestrian can follow
another pedestrian in front of him, moving in the same direction but slower. In this
case, the pedestrian does not consider the one in front of him the same as the rest of
the neighbors. This model is an improvement of the collision avoidance model.

2.1.4 Street crossings

[DC11; ZWM18] used logistic regression to predict the crossing decision. [FKK10] use
the decisions of the neighbors to build a probabilistic model for the crossing decision.
In this model, the closer the acting neighbor, the higher the probability of following.
They do not use many variables: the model relies on the positions and decisions of
their neighbors. However, the crossing decision is more complex than that. [May+15]
developed a binary logit model. They use the personal characteristics, spatial factors,
and neighbors’ decisions to make the crossing decision. Models with several parameters
are difficult to reproduce in different situations.
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Many street crossing models combine various factors: physical (gap [YPT13]),
environmental (presence of illegal parked cars [Dom+15]), and social (behaviors of
neighbors [FKK10]). However, the results are difficult to generalize to different crossing
locations or countries. For example, according to [Lav+09], the configuration of the
environment can impact the crossing decision. Social culture also can have an impact
on the crossing behaviors [Pel+17]. Most of the models presented above are based on
data at specific crosswalks. Moreover, relying uniquely on data also has its limitations.
To collect data, the experimenters isolate the variables they want to study in many
situations.

The models cited above are not developed for simulations. [FKK10] developed
a street crossing simulation using the distance between crossing neighbors. [FKK10]
found with their model that a person was more likely to cross 1.5− 2.5 times if their
neighbors had started to cross.

[Yan+06] developed a street crossing simulation and pedestrian crossing at a
pedestrian light. The simulations produce law-obeying and opportunistic pedestri-
ans. The distribution of gaps was extracted from a video recording. Decisions are
based on a gap comparison between the arriving time of an oncoming vehicle and the
time needed by pedestrians to reach a safe position. At the beginning of the simula-
tion, they generate a proportion of law-obeying and opportunistic pedestrians. The
opportunistic behavior is based on the observation of pedestrian crossing during red.
This work, however, has limitations regarding its implementation, all pedestrians who
were waiting on red become opportunists after seeing someone crossing at red.

2.1.5 Synthesis of pedestrian models and simulations

The development of pedestrian simulation has increased since 1950. The first models
were mostly macroscopic [Coh18], where the dynamics of pedestrian flow is described
by an aggregate term [Hoo+14]. The development of the first microscopic simulation
was in 1985 and the first pedestrian collision avoidance model was in 1995. Most of
the crowd navigation models process the new position based on physical information
(position, velocity, and size), limiting the behavior variability. Thus, pedestrians react
the same if another pedestrian with the same physical characteristics (position, speed,
and size) is perceived in this situation. Regarding the interaction between pedestrians:
the group and leader-follower receive less attention. Most group models use social
interaction, but the social interaction is often limited to the members of each group,
and each member has a fixed group. Most leader-follower models are extensions of
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leader-follower models in vehicular traffic and focus on the queuing situation. The
queuing situation is not very adaptable for the urban environment.

Another way to simulate pedestrians is to use a data-driven model. A data-driven
model has different principles compared with traditional knowledge-based model. This
last one model requires understanding pedestrian behaviors in order to model it, but a
data-driven does not [Son+18]. The two models have a limitation: a knowledge-based
may lead to a bias from the modeler [Son+18], and a data-driven may lead to a bias
from the data inputs. Moreover, the data-driven model works only with a certain
amount and a certain quality of data. An alternative to the pure data-driven methods
is the Reinforcement Learning (RL), which consists of finding the optimal behavior
to the situation [LL18]. RL uses a data-driven approach to find the action and then
correct it in order to reach the optimal behavior [LL18]. Nevertheless, even if RL can
find the optimal behavior for the situation, pedestrians in the real world do not always
follow the optimal behavior. For example, pedestrians can decide to wait, even if they
have time to cross in front of an oncoming vehicle [LC07]. Or, in another situation,
pedestrians can decide to cross, even if they do not have time to cross in front of an
oncoming vehicle [oxley2005crossing.]

Regarding the street crossing models, most use data from a limited number of
crosswalks for the interactions between pedestrians and the urban environment during
street crossings. This allows identifying some factors affecting pedestrians’ decisions,
but limits the generalization of the results to different crosswalks. Besides, few street
crossing models have been developed for simulation. [Yan+06; FKK10] developed a
pedestrian street crossing simulation and pedestrians can influence each other to cross
the street and break the traffic rules, but they cannot influence each other to wait
and follow the traffic rules. [LBM55; Ros09] observed that some pedestrians could see
someone following the traffic rules and be influenced to follow them as well.

2.2 Agent-based approach

A crowd is described as a composition of individuals at the same location [TDP15].
Woodridge defined an agent as “a computer system that is situated in some environ-
ment, and that is capable of autonomous action in this environment in order to meet
its design objective” [Woo99]. Thus, each individual can be considered to be an agent.
Different other definitions of an agent exist. Ferber defines an agent as an autonomous
entity, capable of perceiving the environment and reacting according to its capability
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[FW99]. The main idea of agent-based modeling is the ability of an agent to per-
ceive, interact and decide according to situations. The agent approach is considered
to be closer to the reasoning in real situations [KMP11], where everyone has a certain
autonomy in their actions.

2.2.1 Agent characteristics

An agent is autonomous in its activities to meet its objective [Woo99]. The agent is
flexible if it has these three characteristics: 1) reactivity to perceive and respond to
a dynamic environment. 2) Pro-activeness to have goal-directed behaviors. 3) Social
ability to interact with other agents [Woo99]. An agent has a perception capacity to
observe the environment, a repertoire of actions to react to his perception, and a specific
goal. Not all the action in the repertoire should be applied in all situations [Woo99].
Ferber defined the action as the response to the stimulus perceived [FW99]. The agent
should be capable of balancing the goal-directed behavior and the pro-activeness of
the environment. A pure goal-directed behavior would reach its goal but would be too
rigid in a dynamic environment, and a pure pro-activeness would not reach its goal.

2.2.2 Agent interactions

The agent approach is based on the interaction between agents [Don+08]. The in-
teraction is a succession of semantic actions resulting from stimuli perceived in the
environment [KMP11]. The interaction is not limited to verbal communication; it can
also be physical. For instance, agents in the ORCA model interact with each other
without explicit communication, but through position, velocity, and size [VDB+11].

Intelligent behavior can emerge from interactions [Woo99]. Intelligent behav-
ior, which is also called emerging behavior, is not conditioned by a central approach
[Mou+12]. The Boids model was the first producing emergent behaviors from the inter-
actions of individual agents [Rey87]. Pedestrian behaviors are complex, each pedestrian
can have different goals, but they share the same environment. Thus, they have to in-
teract with each other. Nevertheless, pedestrians do not always behave the same way,
which makes their behaviors complex. Helbing presented that pedestrian behavior is
not chaotic, as everyone follows their individual objectives [Hel+01]. Some regulari-
ties may happen in some situations, where pedestrians self-organized. Helbing defines
self-organization as non-predefined pedestrian interaction, without prior communica-
tion or planning, that gives rise to spontaneous patterns [Hel+01]. Self-organization is
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illustrated by the formation of lanes, when a bidirectional flow of pedestrians in a lane
meets and pedestrians from each direction follows a spontaneous lane [MHT11].

Agent interactions are not limited to physical characteristics (positions, velocity,
and space available). Lhommet and Lourdeaux developed an emotion contagion model
using personality and special relationship, and implemented the contagion model in
the context of crowd crisis-simulation [LLB11]. They described the emotional theory
as the state of an agent affected by the actions of another agent or an event. Thus,
the decision of each agent is affected by the emotion coming from the perception of the
others.

2.2.3 Computation model and scheduling

Agent-based is an approach for building a model. A computer simulation is a produc-
tion of behavior from the model [Don+08]. Different programming languages exist,
leading to different ways of implementing the same model. The same programming
language is used in some situations but with different scheduling, leading to different
results. Regarding scheduling, three approaches exist.

The first approach is sequential. Each agent moves sequentially from the other.
The advantage of this approach is the absence of collision. Each agent cannot move
to the same position at the same time. The disadvantage of this approach is that the
sequential movement of each agent does not reflect the real-world situation, where each
individual is more likely to move in parallel.

The second approach is pseudo-parallel. Each agent computes its position sequen-
tially and moves together at the same time. To illustrate, let us have three agents A1,
A2 and A3 compute their positions at time t, and the three agents could select the
same position at time t. The ORCA model uses this approach. That means a collision
could occur. However, the collision risk is reduced by the anticipation capacity of the
ORCA model.

The last one is parallel. Each agent moves in parallel. This approach could be
realized using a thread to allow each agent’s position computation in parallel. This last
approach could also lead to collisions because two agents can simultaneously choose
the same position. The advantage of this approach is the similarity with a real-world
situation.
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2.3 Pedestrian behavior

Different factors can affect the decision of pedestrians. Regarding the behavior during
street crossing decisions, it can be impacted by cultural or environmental factors. I
focus on some pedestrian physical capacities and some social factors affecting crossing
decisions in the following.

2.3.1 Pedestrian speeds variation

Pedestrians are more flexible compared to other road users [Lav+09]. They can adjust
their speed, run, or step back [Jay+20]. Pedestrians have different speeds during the
street crossing or a simple walk. To illustrate, they tend to have a higher speed when
crossing a street than when doing a simple walk [IN08; KWC14; Bro+13; Rus+18;
Pet+15]. They also walk faster when crossing during a red light than when crossing
during a green light [IN08; KWC14; Bro+13; Rus+18; Pet+15].

Pedestrians adjust their speed as needed and can walk faster or run, according to
the situation [Zhu+20]. For example, when the light turns red just when they arrive,
some may speed up and cross at the beginning of the read cycle [Vir98]. Or, when
they are almost finished crossing, they tend to decrease their speed [KWC14].

Depending on the context, for example, after waiting a long time on the sidewalk,
they tend to have a higher speed, presumably to compensate for the delay [IN08]. A
pedestrian alone walks faster compared to a group [IN08; Pet+15]. Pedestrians also
tend to walk faster when crossing wider streets compared to narrower streets [FBT06;
GN].

The speed can vary depending on physical characteristics. Young pedestrians cross
the street faster than older ones [FBT06]. Men cross faster than women [FBT06].

2.3.2 Perception characteristics

Pedestrians perceive the majority of the information from traffic through visual input
[FD20]. Pedestrians can perceive up to 8 millions bit/s, but process only 7 bit/s
[FD20]. In cases of attention overload, humans can ignore helpful information [GS04].
Thus, pedestrians can process limited information. According to [SO03], a human can
only process from 4 to 10 information simultaneously.
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Pedestrians sometimes process the distance rather than the time gap between two
vehicles to decide to cross, especially when they are constrained by time [LC07]. It is
probably more difficult to estimate the speed than the distance of an oncoming vehicle.

Each pedestrian has a distance limit for perceiving the speed of an oncoming
[YS21]. The distance depends on the height of the pedestrian. The taller the pedestrian,
the longer the distance. As an illustration, a pedestrian 1.5 m tall can perceive an
oncoming vehicle moving at 80 km/h at about 60 m, and a pedestrian 2 m tall can
perceive an oncoming vehicle moving at 80 km/h at about 70 m (in the figure 2.3).

Figure 2.3: The relation between the maximal distance of the oncoming vehicle, and
the height of the pedestrian, for three vehicle speeds, according to [YS21].

Pedestrians can perceive a limited number of objects simultaneously, and they can
estimate the speed of an oncoming vehicle up to a certain distance. These perception
limitations could lead to an inadequate crossing decision.

2.3.3 Social influence during street crossings

Seeing someone crossing the street can influence pedestrians’ decisions. [DMM05]
found that even if pedestrians are not traveling together, they can be influenced by the
crossing decision of others. When pedestrians arrive at an intersection with a pedestrian
light, they are regulated by traffic rules. They are supposed to cross during green and
wait during red. But not everyone follows the traffic rules, and some cross even if the
pedestrian light color is red. Then, when someone crosses, it may encourage other
pedestrians to follow [Ros09]. Some pedestrians may think that if someone is crossing,
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then it is safe [FKK10]. Knowing that someone is breaking the rules increases the
likelihood of infractions [LBM55]. This can create a cascade of decisions not adapted
to the situation, starting from the decision of one person [FKK10]. [Har91] explain this
phenomenon by saying that pedestrians delegate responsibility to a group and that
they are more cautious alone. In some situations, pedestrians use other people as a cue
and do not look at a pedestrian light [Har91]. Influence from neighbors also works in
the opposite direction. Seeing someone waiting increases the conformity of pedestrians
to follow the rules [Ros09]. More people will conform to the traffic rules if they see
someone who has already conformed to the traffic rules [LBM55].

Social influence can come from both familiar and unfamiliar neighbors [FKK10].
But the power of influence depends on the person perceived[LBM55]. [LBM55] hy-
pothesized that high-status persons who violate the rules influence more, leading to
more violations, than low-status persons. Conversely, a high-status persons who wait
leads to more people who conform to the rules. Their experiments confirm the first
hypothesis, but not the second, since the conformance was already high. Their results
could mean that the influence of crossing or conforming pedestrians does not have the
same power. They also found that when someone violates the traffic rules, and the per-
son who violates is perceived as low or high-status, then the violation always increases.
Still, the violation is higher with high status.

More recently, [GP01] conducted an experimentation in France, following the re-
sults of [LBM55]. The experimentation was done in the street with low traffic volume
and few risks for pedestrians. A confederate waits on a sidewalk, and when ten pedes-
trians arrive, the confederate crosses the street. To produce the situation with low and
high status, the confederate wears different clothes representing the two situations (suit
/ dirty clothes). Two observers counted the number of waiting and crossing pedestrians
to collect the data. As a result, in the control group, the violation rate was about 15
%, and in the cases of high, low, and medium, the violation was 54.5 %, 9.3 %, and
17.9 %, respectively. Their results indicate higher violations for high status compared
to the control group, and the opposite for low status. The results for the low status are
different in the two experiments; the violation rate decreased with low status crossing
the street in the last experiment.

2.4 Observation of pedestrian behaviors

Data collection on pedestrian behavior can be done in two approaches: during an
experiment or natural observation. For the first approach, participants are asked to
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follow a protocol, and the experimenter observes the participants’ behaviors. The first
approach can be conducted through a physical experiment, virtual reality, online or
mixed methods. In the second approach, participants may not be aware of the exper-
imentation, and the experimenter directly collects behaviors. This second approach
can be realized with video cameras or an observation grid. In what follows, I present
different observed pedestrian behaviors. The first observation concerns the behaviors
during collision avoidance. The rest of the observations concern the behaviors during
street crossings.

2.4.1 Physical experiment for collision avoidance

Olivier investigated the collision avoidance between two human walkers during an ex-
perimentation [Oli+12]. Two pedestrians were invited to move simultaneously from
the diagonal position of the experimental area. When the two starts moving, they do
not see or hear the footsteps of each other. She starts to see each other when they
pass a 3 meter wall long (Figure 2.4). She found that walkers can accurately esti-
mate the distance and the time of the collision and adapt their walk. However, the
estimation might not always be accurate in real situations, where pedestrians can be
distracted. This experiment has the advantage of a high control of the situation. The
experimenter can isolate the defined variables. This approach has a limitation, the
experimenter could not find the motivation of pedestrians, and one way to identify the
motivation is to ask pedestrians.
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Figure 2.4: Description experimentation realized by [Oli+12]. Two pedestrians P1
(disk gray) and P2 (disk black) start moving from the diagonal of an experimental area,
and meet at the central position of the experimental area.

2.4.2 Questionnaires

Granie developed a questionnaire for pedestrians to measure their behaviors [GPG13].
She and her colleagues found that about 21.09% of her participants admit violating a
pedestrian light. Among the reasons reported was that they forgot to check because
they were thinking something else or wanted to join their group. 7.73% of the partici-
pants have lapsed and made violations accidentally. The total violation rate was about
28.82%, which is close to the average violation rate in Lille (France) 32% [Dom+15].
Self-reports, however, can lead to a social-desirability bias [CAR15], where pedestrians
want to give a response that is viewed favorably. Granie said that it is better to use
questionnaires as a complementary tool [GPG13]. The questionnaire does not consider
the impact of the environment, unlike direct observation [GPG13]. Direct observation
can be realized during video analysis or experimenting with virtual reality.

2.4.3 Video recording analysis

Video analysis is broadly used for analyzing pedestrian behaviors. It can be used to
estimate the waiting time before crossing a street. Different data on waiting times
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are available in the literature, depending on the configuration of road. For example,
pedestrians wait a shorter time in the case of unmarked compared to marked crossing
[ZW11]. [ZW11] found that pedestrians wait a shorter time (around 3 s), but never more
than 25 s, and [ZRA19] found between 1 to 6 s. In the case of crossing at a marked
crosswalk, [DMM05] found that 63.7% of pedestrians wait for at least 20.8 s. The two
situations indicate that pedestrians wait a shorter time when crossing at unmarked
interactions. At an unmarked street, pedestrians tend to wait more actively, looking
for new information, and wait for the next available gap to cross [ZW11]. If a pedestrian
fails to cross at his first attempt, he will wait longer before the second attempt [SMM18].
[Bro+13] observed seven similar intersections in Sherbrooke (Canada), with only the
red phase varying from one place to another. They found that a longer duration leads
to higher violations rates. People tend to wait less time when the vehicle flow is low
[Ham01].

[KO03] observes that after waiting for more than 20 s, pedestrians start taking
more unsafe crossings and violate the traffic rules. During rush hour, there was a record
number of crossing violations [CSH11; Guo+11; KWC14], suggesting that pedestrians
have less patience to wait the pedestrian light turns to green. Younger pedestrians
tend to wait a shorter than older pedestrians [Nol+08]. Trip purpose impacts patience
[Guo+11]. Younger pedestrians, for example, frequently have a specific purpose, such
as going to work, and have less patience than older pedestrians. A group of pedestrians
is found to wait a longer time than an individual [Guo+11; Ham01].

The configurations of the crossing location can impact the patience of pedestrians.
The patience required at an intersection with a pedestrian light is longer than the
patience required at an intersection with no pedestrian light. With a pedestrian light,
pedestrians are constrained by social rules, and with no pedestrian light, pedestrians
cross when a gap is available. The pedestrian’s patience is also not the same.

Regarding the pedestrian’s waiting time recorded, it lacks a description of the
situation around the pedestrian during the crossing decisions. Using a camera to record
the waiting time based on the subtraction of the arriving time and crossing time is not
enough to describe how long a pedestrian would accept to wait. I suppose patience
and waiting time are different. Waiting time is the time spent by a pedestrian on a
sidewalk, and patience is the time he accepts to wait.

Video recording can also be used to visualize pedestrian violation rates. Different
crossing violation rates have been observed in different sites and countries. The crossing
violation can be different in different countries: 15% in Israel [Ros09]. In China, the
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average is about 23.3%, and the rate may be 66.7% at certain intersections [Yan+06].
The average is about 39.88% in mid-block crosswalks in Beijing during peak-hour
[Guo+11].

Regarding the average violation rates, a gender difference is found in Japan and
France: men are around 40.6%, and women are around 25.7% [Pel+17], averaged from
different sites. The number of lanes varies from 1 to 6, and the car speed on each site
was limited to 50 km/h. The violation rates are different in France (41.9%) and Japan
(2.1%).

These different observations indicate that the crossing violation can vary depend-
ing on several factors. In some countries, it can be as low as 2.1%, and in some areas, it
can reach 66.7%. These differences between countries are associated by [Pel+17] with
cultural differences. In cities like Hong Kong, for example, violating the red light can
lead to a fine if caught by a police [Zhu+22b]. On the other hand, it is just a warning
for some countries, like Ireland [Ros09].

Using a video camera to observe pedestrian behaviors has the advantage of avoid-
ing desirability bias. Pedestrians may not be aware of the situation, and they would
not act to please an experimenter. Nevertheless, this technique has a certain limitation:
it cannot produce motivational factors.

2.4.4 Observation using grid

Dommes combines observation grid and questionnaires to study the human red light
crossing motivation [Dom+15]. She established observation of 15 urban crosswalks in
Lille (France). Each urban crosswalk was marked, with a pedestrian light, in two-
way streets, with no pedestrian refuge islands. Pedestrians were unaware of the first
observation phase and were asked using a questionnaire after finishing the crossing. The
observation consisted of identifying if they made a violation, the waiting position, the
speed, and the crossing path. As a result, an average violation rate of about 32% was
found. She also found that violations were planned behavior rather than opportunistic.

2.4.5 Experiment street crossings in virtual environment

[Oxl+05] experimented street crossing using video. Subjects were invited to press a
button if they found the gap was large enough to cross. They proposed several gaps,
between 1 to 13 s, and a car speed of 40, 60, and 80 km/h. As a result, they observed
that about 19% of young (20 to 30 years old) and adult (60 to 70) pedestrians selected
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a negative margin (between 0 and −2 second). For older pedestrians, 70 to 80 years
old, about 70% selected a negative margin gap (between 0 and −10 second).

The gap theory is often used during street crossings. According to [PYG09], every
pedestrian has a critical gap used for street crossings. [LC09] has set up experiments
on pedestrian street crossings. 78 pedestrians were invited to cross a street in a virtual
environment with virtual vehicles. The street was one-way with a width of 4.2 m, and
participants were invited to cross between two oncoming vehicles at the same speed.
The scenario was the same for all crossings: the total number of vehicles was three,
and the participants were asked to cross between the two last vehicles; the vehicles
did not interact with pedestrians. The participants were split into three groups: 26
young people, 26 adults, and 26 older people. Each group had a balanced distribution
of women and men. The experimenter set up the speed of the car’s at 40, 50, and 60
km/h. For each speed, the time between the two oncoming cars (gap) varied between
1 and 8 seconds, leading to 8 gaps in total. Therefore, all the participants experienced
8 gap ×3 vehicle speeds = 24 situations. Each pedestrian was positioned at the edge of
the sidewalk, and for each situation, they decided if they could cross or not. If they can
cross, the crossing time was measured. As a result, about 17% of pedestrians missed
opportunities to cross. The average gap selected by all pedestrians was 3.756 s.

2.4.6 Synthesis of pedestrian observation behaviors

Different technics exist to collect data on pedestrian behavior. [Oli+12] found that
pedestrians can estimate the collision with another pedestrian accurately. But the
estimation might be different if the subjects are distracted or influenced. During a
queuing experiment, [RRW14] found that the follower pedestrians were better in speed
matching. Regarding street crossings, some pedestrians violating the traffic rules, some
say wanted to follow their friend [GPG13]. According to [Dom+15], violating the
traffic rules is mainly a planned behavior rather than an opportunistic one. Violation
rate varies at different crosswalks. Pedestrians wait a shorter time when crossing at
unmarked crosswalks compared to marked crosswalks [ZW11]. Pedestrians also wait
more actively at unmarked crosswalks compared to without crosswalks. Regarding the
gap selected during street crossing with road traffic, some pedestrians selected unsafe
gap [Oxl+05] and some others miss the crossing [LC09].
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2.5 Conclusion

I could see the discrepancy between models, simulations, and observed behaviors from
this literature review. Crowd models focus mainly on collision avoidance and use as
physical input information, limiting the consideration of the contextual situation. For
the case of groups, most models are focused on social interaction, and the groups are
already defined at the beginning of the simulation. For the case of leader-following,
most models focus on the queuing situation.

Regarding street crossings, most models are focused on identifying the street cross-
ing factors. These models often rely on data from a limited number of crosswalks.
Observations and experimental data on street crossing show that pedestrians have het-
erogeneous behaviors. Pedestrians have different waiting times, and some pedestrians
violate the traffic rules. But waiting times and the violation rates observed are often
measured empirically, leaving the contextual situation unknown. During experimen-
tation with street crossings, [Oxl+05; LC09] found pedestrians have an inaccurate
estimation of the gap between vehicles. Some existing simulation models for street
crossing mainly consider motivating the crossing, not the factor encouraging the wait-
ing. I will start from this literature review and develop in the problem statement in
the next chapter the approach I will follow during my PhD.
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Chapter 3

Problem statement

This thesis aims to increase the realism of pedestrian interactions in virtual environ-
ments. Interaction can be between pedestrians in a crowd in which they can avoid each
other or follow someone, for example. I use the crowd definition of [TDP15], that a
crowd is an aggregation of autonomous pedestrians near the same location. It can also
be between pedestrians and the urban environment during street crossings. To achieve
my goal of improving the realism of pedestrian’s interactions, I propose several ways
to consider and to compute interactions, which increase the behavioral heterogeneity
of the crowds.

3.1 Pedestrian behaviors

In a real situation, pedestrians do not avoid collisions with each other identically.
Pedestrians may have an accurate anticipation of the time of collision between them
[Oli+12], but only if they are fully attentive. Depending on several factors, pedestrians
can anticipate collision differently. These factors can be the size of personal space (a
friendly person required less space than those who are less friendly [EH73]), the atten-
tional state (a pedestrian wearing a headphone is less attentive than those who do not
wear anything [CSH11]), or the physical constraints (older people have longer reaction
time than younger ones [Fug+00]). These different factors contribute to heterogeneous
pedestrian’s interactions.

The interaction between pedestrians is not limited to collision avoidance. In some
situations, they can follow someone in a crowd. For instance, a pedestrian in a crowd
does not always interact in the same way with all of his neighbors, especially if someone
in front of him is walking more slowly than him [LA16]. Thus, pedestrians in a crowd
can avoid collisions, follow someone else, or combine the two methods.
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From a pedestrian perspective, avoiding collisions or following someone is not an
objective. In many situations, they have destinations to reach, like going to university.
On their route, they can avoid a collision, follow someone, or cross a street. Pedestrians
have heterogeneous street crossing behaviors, when crossing with a pedestrian light or
with road traffic. Observations from the literature indicates different violation rates
at signalized intersections across different cities. According to these observations, the
violation rates are most of the time lower than 50%, meaning that the majority of
pedestrians follow the traffic rules.

During an experimentation for street crossing with road traffic in a virtual environ-
ment, [Oxl+05] observed pedestrians had inadequate decisions and selected a gap that
could lead to a collision. They found that about 19% of young and adult pedestrians
had a margin gap (between 0 and −2 second). During another experimentation, [LC09]
observed that around 15% of young and adult pedestrians missed crossing opportuni-
ties. These results show that pedestrians do not always select an accurate decision
when crossing with road traffic.

3.2 Pedestrian models

There is a discrepancy between the observed behavior of real pedestrians and the devel-
oped pedestrian models. Many models have been developed since 1950, and they can be
categorized as rule-based [Rey87], force-based [HM95], and velocity-based [VDB+11].
These models mainly address collision avoidance, possibly due to its higher constraint.
Furthermore, pedestrian models process mainly physical information, such as position,
velocity, or size. This limits the consideration of the contextual situation.

Some of these models are drastic simplifications of the real situation [Don+08].
An example of simplification is that in a given model, each agent uses the same mech-
anism for collision avoidance. The mechanism can be a mathematic formulation, equa-
tion, or some rule. This simplification can lead to a symmetric collision avoidance
[Cur+13]. For instance, the ORCA model expects pedestrians to avoid half of the
collision [VDB+11].

Some models individualize the action of each agent. [Der+19] was interested in
the impact of social factors during collision avoidance in face-to-face interaction. They
selected three factors: sex, speed, and distraction. They used the ORCA model to
simulate pedestrians, moving from opposite sides in a narrow sidewalk and meeting in
the middle of the sidewalk. The sidewalk is not wide enough to allow the crossing,
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and one of them must step down when they meet. According to their results: speed
and attention contributed the most for stepping down from the sidewalk. [Cur+13]
was interested in breaking the symmetry during collision avoidance and allowing each
agent to manage their collision. For that, they extended the ORCA model by adding a
concept of priority. The one with lower priority avoided more than the one with lower
priority.

To avoid collisions, one strategy may be to follow someone walking in the same
direction. In many situations, the pedestrians leader-following models are extensions
of vehicle’s leader-following models. In most of the cases, these models are used in
queuing situations, and pedestrians are not supposed to overtake each other. In urban
environments, a pedestrian may follow and then overtake someone. Lemercier and
Auberlet combined a queuing model with ORCA for crowds [LA16]. In their model,
a pedestrian agent processes the position, speed, and size of its neighbors. Then, the
pedestrian agent will particularly take into account the front neighbor who is the most
constraining.

In an urban environment, pedestrians do cross streets. Several models are avail-
able for pedestrian street crossing. Many of these models use the behaviors of pedes-
trians from cameras [FKK10], questionnaires [GPG13; Dıa02] or both sources [YS13;
Dom+15]. These approaches limit the replicability of the models for different cross-
walks from those where the data was collected. In the case of crossing with road traffic,
many models use the gap theory. According to [PYG09], each pedestrian has a critical
time gap for street crossing. Few street crossing models are used for simulation, and
fewer simulate social influence. [Yan+06] simulated law obeying and opportunistic
pedestrians for street crossing. However, in these simulations, the influence to comply
with the traffic rules are not considered.

My first contribution to this research was to provide the pedestrians the possibil-
ity of avoiding collisions by adapting to the context encountered, i.e., according to the
perceived neighboring pedestrians with which he can interact. The proposal leads to
simulations in which we observe the agent behavior adaptation while avoiding interac-
tions, by an increase or a decrease in the avoidance effort according to the behavior of
the perceived neighbor.
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3.3 Contributions

From a literature review on the observation of pedestrian behaviors and on simulation
models, I started by working on the interaction between pedestrians by giving them
possibility to avoiding collisions by adapting to the context encountered, based on
perception of the neighbors. My first contribution is to allow pedestrians to manage
anticipation and collision avoidance. This method results in asymmetrical interactions
with neighbors. The simulations shown are demonstrated by simulating two pedestrians
with the same speed starting to move from the two opposite sides of a corridor. They
avoid collision when they meet at the central position of the corridor. The major result
of this simulation is that pedestrians adapt their collision avoidance.

Lemercier extended ORCA with a queuing model [LA16]. In this model, the
pedestrian perceives position, velocity, and size information from his neighbors. Then,
from the neighbor’s position, velocity and size, a pedestrian P may found a pedestrian
leader PL that constraint him in his displacement, and processes PL differently from
the rest of the neighbors. In this context, my contribution was to enrich the model
of [LA16], by defining several other interactions between the pedestrian, the potential
leader, and the rest of the neighbors. I have implemented a model and simulated
a unidirectional crowd in a corridor composed of several pedestrians with different
speeds. As a result, when a pedestrian finds a leader, he behaves according to the
defined interaction. This combination of collision avoidance and “following” behavior
creates heterogeneous observable behaviors. Pedestrians also adapt their behaviors
according to the situation.

To go further in pedestrian interactions, I allow pedestrians to consider social
information in addition to physical information. They can perceive the actions of their
neighbors and be influenced by them, leading to a temporary change in their behavior.
In some situations, they can behave differently over a period of time, for example they
become impatient and violate the traffic rules. Regarding street crossing scenario,
pedestrians can also be influenced by the behaviors of neighbors (crossing/ waiting).
[KO03] found that some pedestrians start violating the pedestrian light after waiting
around 20 seconds, meaning they have different behavior before and after 20 seconds.

I started to work on street crossings based on social influence. According to
[Har91], pedestrians do not behave the same way when they are alone or surrounded
by other pedestrians. Researches on social influence shows that crossing pedestrians
influence others to cross, and reciprocally, waiting pedestrians encourage others to
follow the traffic rules [Ros09; FKK10].
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I hypothesized that these violations are related to the pedestrian’s patience, which
can be considered the time excepted time by a pedestrian to spend on the sidewalk.
Then, I hypothesized that patience can be modified by the behaviors of neighbors so
that the patience is not constant. My contribution is the development of a crossing
decision model based on patience and social influence.

In other scenarios, pedestrians cross with road traffic, and I use time-to-contact
for the crossing decision. Observations of pedestrian’s behavior show that they can
make an inaccurate crossing decision. This may be due to the misinterpretation of
the pedestrian’s crossing time or the time-to-contact of an oncoming vehicle. [IN08]
found that pedestrians base their crossing decision on the pedestrian’s crossing time,
pedestrian’s waiting time, and the interpretation of the perception of the oncoming
vehicle. I supposed that estimating the time-to-contact of an oncoming vehicle is more
difficult than estimating the crossing time, since the oncoming vehicle is moving. Thus,
I hypothesized that a pedestrian can have an inaccurate perception of the oncoming
vehicle. I propose a model where the estimation of the time-to-contact is biased by
social influence and waiting time, allowing some pedestrians to make unsafe crossing
and to miss some opportunities, as is found in real life.

3.4 Conclusion

The objective of this thesis is to increase the heterogeneity of pedestrian interactions.
The observations of pedestrian behaviors present more variability in their behaviors
during pedestrian interactions or with the urban environment, than what is found in
most models. To reach the objectives, my first work consists in developing the inter-
actions between pedestrians during collision avoidance and leader-following behavior.
My second and main work is the development of pedestrian interactions with the urban
environment during street crossing. In this second part, pedestrians can cross the street
with different scenarios with a pedestrian light or with road traffic. For the first sce-
nario, the pedestrian bases its crossing decision on patience during red lights, and the
patience is modulated by social influence. For the second scenario, the pedestrian bases
its crossing decision on time-to-contact is modulated by social influence and waiting
time.
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Chapter 4

Heterogeneous collision avoidance

models

Different models address the interactions between pedestrians. These models are
mainly working on the collision avoidance. However, models are often a simplifica-
tion of the real situation [Don+08]. One example of simplification is the utilization by
each agent of the same formula or equation, leading to asymmetric collision-avoidance
behavior. This is not common in real situations because of different factors, such as
different reaction times, attention, or size of personal space. Another example of simpli-
fication is that most models are developed for one situation, such as collision avoidance
or leader-following. However, these interactions can be found in the same crowds.

In this chapter, I present two ways to increase the heterogeneity for the collision-
avoidance interactions. In the first section, I gave each pedestrian more ability to
anticipate and avoid collisions with each other. This approach led to asymmetric
collision avoidance in space-time dimensions.

In the second section, I defined several interactions between the pedestrian, the
leader, and the neighbors. The pedestrian can follow, avoid a collision, or follow and
avoid collisions. This approach leads to an adaptation of the behavior according to the
situation.

4.1 Asymmetric collision avoidance model

In most pedestrian simulations, pedestrians avoid each other the same way. For exam-
ple, the ORCA model is based on the symmetry and translation invariant [BLM08].
This section aims to allow each pedestrian to manage their collision avoidance and
anticipation, during a face-to-face interaction (Figure 4.1). To reach that objective, I
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broke the symmetry of the interaction on the anticipation and on the collision avoid-
ance.

Figure 4.1: Illustration of a face-to-face interaction between two pedestrians.

I based the proposed model from two works. The first work was interested in break-
ing the symmetry during collision avoidance. [Cur+13] extended the ORCA model by
adding a concept of priority. Then, a pedestrian with lower priority avoids more than
those with higher priority. The second work was interested in the impact of social
factors during collision avoidance in face-to-face interaction. [Der+19] simulated two
pedestrians moving toward each other on a narrow sidewalk, and one must step down
to let the other pedestrian pass. To allow one of them to let pass the other, different
anticipation times was set for the two pedestrians using the ORCA model.

My contribution consists in enriching the ORCA model by combining the priority
model and the anticipation model. This combination corresponds to the two questions:
when and how to avoid the collision. To evaluate the model, I check that the proposed
model has the same characteristics as the original ORCA model, i.e., no collision and
no oscillation.

4.1.1 Collision avoidance with ORCA model

ORCA is a pedestrian simulation model, which allows pedestrians to avoid collisions
and reach their destinations. It allows the pedestrians to reach their destination and
avoid collision with each other. The model ORCA is extended from the VO model
[FS93], which is developed for robots. In the ORCA and VO models, each agent uses
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neighbors, velocity, position, and size to compute its new velocity. To illustrate the
collision avoidance with the default ORCA model. Suppose two pedestrians P1 and
P2 with the same characteristics (disk shape with 0.6 meter of radius and perception
distance of 10 meter). P1 and P2 are initially at the two opposites ends of the corridor,
with 20 meter distance from each other (in figure 4.2). They start to move toward
each other at the same time. Then, they start to perceive each other and begin to
avoid simultaneously. In the central position of the corridor (X = 0), they reach their
maximal collision avoidance and the distance between the two is 1.2 meters, which is
also the sum of their sizes. Moreover, the shapes of their trajectories are perfectly
symmetric.

Figure 4.2: Illustration of the symmetric interaction of the trajectories of pedestrian
P1 and P2, with the ORCA model. P1 and P2 have the same characteristics (disk shape
with diameter of 0.6 meter and perception distance of 10 meter). The continuous line
is P1 and the dashed line is P2. P1 and P2 moves toward each other inside a corridor
with 20 meter distance from each other. P1 from left to right, P2 moves in the opposite
direction.

Equation 4.1 presents the formulation of the collision avoidance in the ORCA
model between two pedestrians P1 and P2 (Equation 4.1). The model has several
parameters. u is the minimal change needed for P1 to avoid collision with P2 and
reciprocally for P2 to avoid P1. The 1

2 in u means the two agents share equally the
minimal change during the collision avoidance. The minimal change also means that
the two agents will touch each other. vopt

1 is the optimized velocity of P1 that allow
the collision avoidance. n is the number of agents. tH is the time horizon when the
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agent starts to proceed to the collision avoidance. More details about the descriptions
of the parameters are available in the original version of the ORCA model [VDB+11].

ORCAtH
1|2 = {v|

(
v−

(
vopt

1 +
1
2.u

))
.n ≥ 0} (4.1)

4.1.2 Asymmetric anticipation and collision avoidance model

The model I proposed is based on the formulation of the collision avoidance in 4.1, but I
transferred to the agent the Shared Effort (SE) parameter. It is set to 1

2 in the ORCA
model for each pedestrian. In the proposed model, it is split individually between a
pair of pedestrians SE1 and SE2, during a collision avoidance:

ORCAtH
1|2 = {v|

(
v−

(
vopt

1 + SE.u
))

.n ≥ 0} (4.2)

This breaks the symmetry for collision avoidance between pedestrians P1 and P2,
if they have different SE values. Furthermore, giving P1 and P2 different values of
tH will break the symmetry for the anticipation of collision avoidance. Pedestrians
will start to avoid each other at different times. Figures 4.3 illustrates an asymmetric
interaction between P1 and P2. The question “when?” corresponds with the parameter
tH , and the question of “how?” corresponds with the parameters SE.

When ? f(tH)

How ? f(SE)

Figure 4.3: Collision avoidance using SE and tH .
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4.1.3 Asymmetry measurement

To quantify the asymmetry produced by the proposed model, I measure the distance
between the two pedestrians P1 and P2 when they crossed each other. I use the same
configuration used during the presentation of the trajectory symmetry of the original
ORCA model (Figure 4.1.1). I identify their Y positions on y-axis, then I consider the
interaction symmetric if |Y1| = |Y2|, in figure 4.4.

Y(m)

X(m)

P1

P2

0

Y1

Y2

(a) Symmetrical interaction.

Y(m)

X(m)

P1

P2

0

Y1

Y2

(b) Asymmetrical interaction.

Figure 4.4: Comparison interaction between P1 and P2, during collision avoidance.

I implemented the model by simulating two pedestrians moving in the opposite
direction with the same individual characteristics: the preferred speed Vpref = 1.5 m/s,
the maximal distance of perception (10 m). The pedestrians have a 2D disc shape with
a diameter of 0.6 m. At first, the pedestrians are 20 m from each other. The simulation
time is discrete with uniform discrete steps. At each step, each agent computes the
information [KMP11]. The simulation stops when they finish crossing each other, and
the time step is set to 10 steps for one second, leading to a simulation of 13.3 simulated
seconds if the trajectory is straight.

4.1.4 Identification oscillations

To assess the proposed model if it respects the two characteristics of the ORCA model,
which are oscillating-free and collision-free models. Oscillation happens when pedes-
trians avoid collision with each other, and one of them switches between two directions
(velocity to avoid collision and preferred velocity); successively over a period of time
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[BLM08]. I started checking the oscillations by simulating two pedestrians with dif-
ferent values of SE, and set tH = 3 for the two pedestrians. In the formulation of
the ORCA model, a variable u is defined to be the smallest change needed to avoid
a collision between two pedestrians (in 4.1). Then they propose to divide the u by
half, so each pedestrian takes half of the collision. I suppose an oscillation is more
likely to occur with high SE. The pedestrians can react strongly, to avoid the collision;
then, in the next step, they select their preferred speed because there is no more risk
of collision; but the risk appears again in the next step. Thus, why I simulated two
pedestrians with high SE values, 0.9 for both, and decreased it by 0.1 for each new
simulation. Then, I plot the velocity on the y-axis to see if the velocity has a constant
value (Figure 4.6), which would mean that there is no oscillation.

(a) SE = 0.9. (b) SE = 0.8.

(a) SE = 0.7. (b) SE = 0.6.

Figure 4.6: Identification oscillations between P1 and P2. The two pedestrians have
the same tH = 3 s, and various SE = {0.9, 0.8, 0.7, 0.6}.

The velocity on Fig 4.6 shows oscillations for SE = 0.9 and 0.8. The difference
between the max and min values is high at the beginning of the interaction, decreasing
and disappearing when the interaction ends. The variability is higher with high SE,
and this variability corresponds to the oscillations.

To quantify the oscillations, I define when the oscillations can be considered negli-
gible. For that, I count how many times the velocity moves from one value to another



4.1. Asymmetric collision avoidance model 39

one in two successive time steps, corresponding to a change of direction. Then, I iden-
tify the maximum and minimum values of the velocity. Considering that the average
pedestrian speed is approximately 1.2 m/s [FBT06], I choose that if the difference
between two successive velocities is greater than 0.1 m/s, in formula 4.3. Below 0.1
m/s, the change is too small compared to the average pedestrian speed.

|Vy(t)− Vy(t+ 1)| > 0.1 (4.3)

If two pedestrians cross paths and choose the same side to avoid each other, it
can lead to a collision. When this happens, the two pedestrians try to choose different
sides. If both pedestrians choose the same side several times, it is called in [BLM08]
as a dance. I suppose, it can be a dance if the pedestrians repeat the selection of sides
more than three times. In this situation, I also considered the selection of velocity
more than three times to be an oscillation as well (Eq. 4.4). Using this formulation, I
found in my results (Figure 4.6) that the oscillation is acceptable when (SE ≤ 0.7).

|Vy(t)− Vy(t+ 1)| > 0.1
|Vy(t+ 1)− Vy(t+ 2)| > 0.1
|Vy(t+ 2)− Vy(t+ 3)| > 0.1

(4.4)

4.1.5 Identification collisions

I simulated two disk-shaped pedestrians P1 and P2, with the same radius R1 and R2.
Comparing R1 +R2 and the distance between P1 and P2, allows checking a collision
(Eq. 4.5). Moreover, since the trajectories are smooth only if after SE ≤ 0.7, then I
test the model only for SE ≤ 0.7.

is_collision =

True, if
√
(Y2 − Y1)2 + (X2 −X1)2 ≤ R1 +R2

False, otherwise
(4.5)

Following the same reasoning, a collision is more likely to happen with a low SE.
Thus, why, I started the simulation with SE = 0.1 for both pedestrians, then increased
the SE by 0.1 until 0.7; leading to a total of 28 combinations. On the other hand, I
simulate with two values of tH . With the default value, tH = 1 second, and another
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tH = 3 seconds. I collected the distance and the position of P1 and P2, when they
meet each other.

The figure 4.7 presents the distance between P1 and P2 when they meet. A collision
happens when the distance between the two pedestrians is less than 1.2 m. The results
show a small interpenetration, about 10 cm max, with tH1,2 = 1 s (SE1 = 0.6_SE2 =

0.6), (SE1 = 0.6_SE2 = 0.7) and (SE1 = 0.7_SE2 = 0.7), in square dots. The
interpenetration is small compared to the size of the two pedestrians of 120 cm. These
results indicate a larger distance avoidance with a small SE. This means that the
choice of SE impacts the choice of the velocity, and if the two pedestrians have a small
SE, then they select velocities less direct to the destination for the two pedestrians.
Conversely, if the two pedestrians have high SE, they select velocities more directly to
the destination for the two pedestrians. However, if P1 and P2 have different SE, the
one with lower SE will select the velocity more directly to the destination.

No collisions when tH1,2 = 3 s, in star dots, and the distance between the two
pedestrians are almost the same for all values of SE, with an average of (|Y1|+ |Y2| ≈
1.21 m). These results mean, if the two pedestrians have higher anticipation tH1,2 > 1
s, they will have time to avoid each other. If the pedestrians detect a collision, they
will have time to correct the trajectory on time.

Figure 4.7: Distance between P1 and P2 when they met, with different initial condi-
tions: tH1,2 = 1 s in square dots, tH1,2 = 3 s in star dots, and (SE1,SE1) ∈ [0.1, 0.7].

4.1.6 Adaptation behaviors

Figure 4.8 shows two different interactions between two pedestrians: the first in a
continuous line (P1 and P2 have the same tH , but different SE), the second in a
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dashed line (P1 and P2 have different tH and SE).

When the two pedestrians have the same tH , they start avoiding the collision si-
multaneously. The pedestrian with higher SE (P1 in continuous blue) takes the velocity
less directly to the destination and avoids the collision more than P2, in continuous
red.

When tH and SE are different, the one with the higher tH (P2 in dashed red)
takes the velocity less directly to the destination and avoids the collision more than
the one with the lower tH (P1 in dashed blue). Thus, the one with higher anticipation
always avoids more the collision. If one pedestrian has higher SE and lower tH , it
starts avoiding the collision lately because the time for the pedestrian to avoid the
collision is short, so it does not allow the pedestrian with low tH to avoid on time.

Figure 4.8: Trajectories of two pedestrians interacting with each other. The first
interaction with continuous line {P1(SE1 = 0.7, tH1 = 1) and P2(SE2 = 0.1, tH2 = 1)}
and the second with dashed line {P1(SE1 = 0.7, tH1 = 1) and P2(SE2 = 0.1, tH2 =
3)}. For the two interactions: the blue pedestrian moves from left to right, and the
red in the opposite direction.

The figure 4.9 presents another illustration of the adaptation of pedestrians. I used
the asymmetric measurement, in section 4.1.3, to compare 7 interaction between two
pedestrians P1 and P2. I measured the absolute value of Y position of P1 and P2 when
they meet, on the y-axis, and different value of SE of P2 on the x-axis. P1 parameters



42 Chapter 4. Heterogeneous collision avoidance models

are set to tH = 1 and SE1 = 0.5 each time. P2 has different set of parameters for
the 7 interactions, the anticipation is set to tH = 1, and different value of SE each
time (SE2 ∈ [0.1, 0.2, ..., 0.7]). The results show as expected P1 and P2 avoid evenly
(|Y1| = |Y2|) with the default parameter value SE1 = SE2. When the two have
different SE values, they avoid each other differently. What is interested in this figure
is that, even P1 has the same set of parameters, P1 reacts differently depending on
the behavior of P2. With SE2 ≤ 0.4, P1 avoid more than with his default parameter
because P2 does not avoid enough. With SE2 = 0.7, P1 avoids less than with his
default parameter value because P2 already avoid enough. P1 and P2 has different SE
values when SE2 = 0.6, and SE2 = 0.5 but they avoid each other with approximately
the same, meaning that the difference is not significant enough to create a difference.

Figure 4.9: Asymmetric measurement between two pedestrians P1 and P2. The
crossing was repeated 7 times, with P1 having the same parameters (tH = 1,SE1 = 0.5)
and P2 with different SE values (tH = 1,SE2 ∈ [0.1, 0.2, ..., 0.7]).

4.1.7 Conclusion on asymmetrical collision avoidance

I presented in this section an asymmetric collision avoidance model that can increase
the heterogeneity of pedestrian interactions. Each agent can have different anticipation
or collision avoidance intensities. I based the heterogeneity of anticipation on work on
social collision avoidance [Der+19]. The asymmetry of collision avoidance on a work
interested in breaking the symmetry during collision avoidance [Cur+13]. I identified
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the presence of oscillations or collisions with the model. The oscillation can happen if
the two pedestrians have SE > 0.7. This means the value of SE impacts the selection
of the velocity. Another major result is the capacity of adaption of pedestrians. One
pedestrian may potentially avoid but decide not to do if the other pedestrians already
avoided him. Conversely, one pedestrian can avoid more than its potential if the
other does not avoid enough. These results have been published at an international
conference on computer animation and social agents [RAB19].

My work opens different perspectives. It would be interesting to implement this
agent model in the context of a crowd. However, I did not have data to set the model’s
parameters SE and tH . Data on the interactions of different individuals would help
in that situation. For example, pedestrians can have different behaviors depending on
the person to avoid. For example, older pedestrians tend to have a longer reaction
time than younger pedestrians [Fug+00]. This model has the potential to adapt to
contextual situations. However, the adaptation is based on the physical perception of
neighbors, which are position, velocity, and size. That means the agent is not interested
in whom the pedestrian is. To allow an agent to adapt its behavior to the contextual
situation, the agent should process the other agents differently, depending on their
status, age, and sex.

Furthermore, the interactions between pedestrians are not limited to collision
avoidance. Pedestrians can follow each other and avoid a collision at the same time.
In the next section, I present a model for crowd simulation, where an agent can have
different interactions with the neighbors.

4.2 Collision avoidance and leader-following model

In the context of crowds, pedestrian interactions are not limited to collision avoidance.
They can follow a person, even if they do not know the person [LA16]. However,
pedestrians’ leader-following mode is usually a pure queuing model, where pedestrians
do not overtake. Lemercier extended the collision avoidance model (ORCA) with a
pure queuing model [Lem+12]. As a result, pedestrians can follow a leader if they are
found and avoid collisions simultaneously, depending on the situation.

My work enriches the collision avoidance interactions of the model developed by
Lemercier. In their model, when a pedestrian finds a leader, the pedestrian computes
the minimal acceleration produced by the queuing and collision avoidance models. My
contribution is to propose another interaction between the pedestrian, the Leader, and
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the neighbors. I propose another computation of the accelerations of the pedestrian
from the collision avoidance and queuing models. This definition of new accelerations
leads to different interactions.

I start this section by presenting Lemercier’s model, which I use as a reference.
Then, I present my acceleration-based model. I implement the model in the context of
crowds, and I compute a fundamental diagram to describe the propriety of the crowd
produced.

4.2.1 Collision avoidance and queuing model

Lemercier was interested in improving the variety of behaviors during collision avoid-
ance [LA16]. He extended the collision avoidance model ORCA [VDB+11] with a
queuing model [Lem+12]. A pedestrian P proceeds with simple collision avoidance if
no particular neighbor constrains his displacement. Otherwise, if a neighbor constrains
his displacement, P combines the collision avoidance and the queuing model. This
particular neighbor is considered as a “Leader”.

To combine the two models, they set the acceleration of P to the minimal acceler-
ation produced between the ORCA and the queuing model (Figure 4.10). They decom-
posed the acceleration on the x-axis and the y-axis. ORCA is a velocity-based model,
and they derivate the velocity for the acceleration produced by ORCA (aORCAx , aORCAy).
On the other hand, the queuing model is not developed for overtaking, so the queuing
model only produces a one-dimensional acceleration (afollow). Thus, the acceleration
produced by the queuing model is compared with aORCAx .
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Figure 4.10: Computation of the acceleration at a time t from the acceleration of
ORCA and the queuing model, if a leader is found, based on [LA16]. ax is computed
from the mixed model; however, the acceleration on y-axis is always from ORCA
ay = aORCAy . Then, the acceleration is used for computing the new velocity.

P identifies the Leader PLeader, presenting the greatest constraint among the other
pedestrians in his neighborhood. The conditions for that are:

• P and PLeader follow the same direction, PLeader is the in front of P .

• PLeader has a lower speed than P .

• PLeader should be closer than a certain distance Dx.

• The distance (Dy) between the central positions of P and PLeader must be less
than the sum of the radii of the Leader and the follower.

• The angle formed by the velocities of P and PLeader is smaller than ϵαf .

If a neighbor meets these conditions, then the neighbor becomes the Leader. If
several neighbors meet these conditions, then the closest neighbor becomes the Leader.
Figure 4.11 illustrates the distance of perception of an agent P and the two distances Dx
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and Dy for the identification of the Leader. The intersection between these distances
presents a space for the potential leaders if the pedestrians inside this area have a
slower speed than P and if the angle between the two velocities is smaller than ϵαf .

Pedestrian (P)

Leader found

Neighbor

Pedestrian outside
the perception 

Dy

Dx

Dy

Potential leader 

Environment

Space for potential
leaders 

Perception distance 

Figure 4.11: Perception of neighbors and identification of a leader. The potential
Leader is inside the intersection between Dx and Dy. The pedestrians are attributed
to a defined area depending on the position of their center. A yellow pedestrian P
perceived several neighbors in blue. P has a potential leader in green and identifies
the Leader in red among the green, based on closest distance. The gray pedestrians
are outside the perception of P .

4.2.2 Acceleration-based model

The proposed model computes the acceleration from the collision avoidance and queu-
ing models. However, instead of selecting the minimum acceleration between the areas
computed by the ORCA and the queuing model, I propose different possible combina-
tions of the accelerations.

1. Minimal acceleration: it is the “following” model developed by [LA16]. Pedes-
trians avoid collision and follow a leader if they find one. In this case, the acceler-
ation is the minimum value between the acceleration computed from the collision
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avoidance model and the following model (Algorithm 1). The minimum accelera-
tion implies that the agent wants to satisfy the strongest constraint between the
ORCA and the Leader following behavior.

Algorithm 1: Acceleration of the “minimal acceleration” model.
1 if LeaderFound = True then

2 ax(t)← min(aORCAx(t), aF ollow(t))

3 else

4 ax(t)← aORCAx(t)

5 end

2. Smallest acceleration: this model is developed by considering the accelera-
tions from the two models, as the “minimal acceleration” model; however, the
acceleration is computed as the smallest absolute value of the two accelerations
(Algorithm 2). Taking this smallest value leads to a small slope, so pedestrians
can minimize the speed variation.

Algorithm 2: Acceleration of the “smallest acceleration” model.
1 if LeaderFound = True then

2 if |aORCAx(t)| < |aF ollow(t)| then

3 ax(t)← aORCAx(t)

4 else

5 ax(t)← aF ollow(t) // takes the smallest between |aORCAx(t)| and |aF ollow(t)|

6 end

7 else

8 ax(t)← aORCAx(t)

9 end

3. Maximal acceleration: this model computes the maximal acceleration between
aORCAx(t) and aF ollow(t), when the pedestrians have a leader (Algorithm 3). In
this situation, pedestrians can follow a leader but stay as short of time as possible.
This situation is more likely to occur during rush hours, such as at a metro station,
when most pedestrians rush, and crowd density is high. Movement is limited,
and pedestrians follow someone because they don’t see an opportunity and pass
as soon as an opportunity arises.
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Algorithm 3: Acceleration of the “maximal acceleration” model.
1 if LeaderFound = True then

2 ax(t)← max(aORCAx(t), aF ollow(t))

3 else

4 ax(t)← aORCAx(t)

5 end

4. Pure following: in this model, when a leader is found, the pedestrians use the
acceleration from the Leader (Algorithm 4). This situation is more likely to occur
when pedestrians are distracted by other tasks, such as checking a smartphone.
So, when they find a leader, they use him as a shield to complete their task.

Algorithm 4: Acceleration of the “pure following” model.
1 if LeaderFound = True then

2 ax(t) = aF ollow(t)

3 else

4 ax(t)← aORCAx(t)

5 end

5. ORCA: serves as a reference [VDB+11]. Pedestrians in this model do not pay
special attention to a particular neighbor and treat everyone the same. In this
situation, the acceleration is therefore computed by the ORCA model (Algorithm
5).

Algorithm 5: Acceleration of the “standard ORCA” model.
/* This model is not based on the presence or not of a leader. */

1 ax(t)← aORCAx(t)

4.2.3 Simulation

A one-way pedestrian flow is simulated inside a corridor 10 m × 30 m. The pedestrians
are randomly positioned at t = 0 and move from left to right. They are spawned on
the left side of the corridor when they reach the right end, and this method keeps the
number of pedestrians and the density constant during the simulation. The pedestrians
may accelerate at the end of the corridor because they do not see anyone in front of
them. Therefore, I use an artifact: pedestrians always perceive other pedestrians in
front of them when they are at the end of the corridor, keeping their speed constant.
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For each simulation, I ran simulations with 6 different numbers of pedestrians,
ranging from 100 to 600. Each simulation lasts 300 simulated seconds, with a fixed
step of 0.1 s. Above 600 pedestrians, the available space inside the corridor is not
enough given the representation of pedestrians as non-deformable discs. Moreover, if
the space is full about 40 to 65%, then a stop-and-go phenomena can emerge [MHT11].
The stop-and-go happens when the speed of pedestrians follows the shape of waves,
and the emergence of stop-and-go is a cue to indicate that the space is too full [SPS10].
Regarding my configuration, with 600 pedestrians, the space is covert at about 56.52%.

I use a normal distribution for the pedestrian’s speed with an average speed of
1.4 m/s [FBT06; KPN96], and a standard deviation of 0.3 m/s (large enough to
produce some variability). All pedestrians have the same size radius of 0.6 m, the
same perception distance up to 10 m, and simultaneously process up to 10 neighbors.
The model parameter ϵαf = π/6 is the maximal angle between the velocity of the
pedestrian and of his potential Leader. Dx is set to 1.5 m, the distance between the
centers of two agents. Because the radius of pedestrians is 0.3 m, the distance Dy is
below 0.6 m.

4.2.4 Illustration of pedestrian trajectories

Figure 4.12 present an illustration of the trajectory of 400 pedestrians. On the left,
the model with minimal acceleration (Algorithm 1) and on the right the model with
maximal acceleration (Algorithm 3). This illustration shows that pedestrians with
minimal acceleration are homogenous and tend to follow a lane. On the other hand,
the pedestrians with maximal acceleration have more heterogeneous trajectories. The
trajectories are not straight, meaning that they overtake more often.

(a) Minimal acceleration (b) Maximal acceleration

Figure 4.12: Illustration of pedestrian’s trajectories produced by two models (Al-
gorithm 1 on the left and algorithm 3 on the right). 400 pedestrians are randomly
positioned inside a 10 m × 30 m corridor. The pedestrians are moving from left to
right.
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4.2.5 Description of pedestrians using fundamental diagrams

The fundamental diagram (FD) describes the relationship between speed, density, and
flow. The FD is very popular in vehicular traffic modeling and for pedestrian work
with emerging behaviors [SPS10; MHT11]. I compute the FD in this work to describe
the propriety of the simulated flow of pedestrians.

At lower density, the pedestrians can move at their comfortable speed [Xia+16].
I suppose this leads to a higher and more heterogeneous speed. In this situation, the
average speed is expected to reach its initial value of µ = 1.4 m/s. At higher pedestrian
density, each one is constrained to adapt their speed to the slowest pedestrian in the
flow [Mou19], leading to a more homogeneous speed. The normal distribution N (µ =

1.4m/s, std = 0.3m/s) used to generate the speeds has a standard deviation of 0.3
m / s, and that leads to the estimation that 99 % of the speed will be higher than
Vmin = 0.5 m/s (in formula 4.6). Thus, I suppose that the average speed will be
around this minimal value in a dense crowd.

V =

Vµ = 1.4m/s

Vmin = µ− (std× 3)
(4.6)

I construct the FD in these simulations from the speed of pedestrians inside an
area AF D with dimensions 2.5 m × 10 m, positioned at 17.5 m from the end of the
corridor. The idea of choosing a subarea was to avoid the two edges of the corridor with
possible perturbations during the spawning. The width is 2.5 m, which corresponds to
the size of 4 pedestrians in a queue (see figure 4.13).

0 3017.5
Area (AFD) to collect

the speed  for FD

Corridor

20
0

10
Pedestrian inside AFD

Pedestrian outside  AFD

Figure 4.13: Area AF D (2.5× 10) inside the corridor where the fundamental diagram
collects the speed. The corridor is 30 m × 10 m. AF D is positioned at 17.5 m from the
end of the corridor. A pedestrian is counted inside AF D depending on the position of
its center.
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The FD from the five proposed models is compared to another FD with a similar
scenario (Figure 4.14). [Xia+16] simulated flow of unidirectional pedestrians inside a
corridor of 10 m × 3 m. Each pedestrian has a radius of 0.2 m, and are distributed
randomly over three rows inside the corridor. Their density is from 0.1 to 5 ped/m2,
and each simulation lasts 100 s.

The figure 4.14 shows that at lower density, the pedestrian’s speeds are close to the
mean of the initial distribution; then, it decreases with increasing density, which is the
expected form of a fundamental diagram. Model 1 (minimal acceleration) has a slower
speed than the other models because it uses the minimum acceleration between the
collision avoidance and the following models. Unlike other models, pedestrians with
model 1 almost stop moving above 2 ped/m2. On the other hand, the model 3 (maximal
acceleration) has a higher speed compared to the other models, which makes sense since
this model uses the maximum acceleration between the “collision avoidance”, and the
“following” models. Furthermore, models 2 (minimal acceleration), 4 (pure following),
and ORCA have the same characteristics, significantly above 1 ped/m2. Finally, the
addition of new rules increases the diversity of behaviors, but it does not change the
global characteristics of the crowd.
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Figure 4.14: Fundamental diagrams for the five proposed models and the model used
for comparison [Xia+16].
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4.2.6 Conclusion in collision avoidance and leader-following

In this section, I have presented 5 models derived from the works of [LA16]. The model
extended the collision avoidance with queuing behavior. Pedestrians can have two in-
teractions during the same simulation. If a pedestrian finds a leader, the pedestrian
moves from the minimal acceleration produced by the collision avoidance and the queu-
ing. My contribution consists of allowing the pedestrian to have different interactions
when a leader is found. Thus, instead of using only the minimal acceleration between
the two models, I have compared 5 rules. 1) the model developed by Lemercier, used
as a reference. 2) the smallest acceleration. This allows the pedestrians to maintain
their actual speed. 3) the maximal acceleration. This allows the pedestrians to follow
someone, but as short as possible. 4) the acceleration from queuing model. This al-
lows pedestrians to follow someone. 5) the ORCA model was used as a reference. To
compare these 5 models, I compute a Fundamental Diagram (FD). The FD simulated
are compared to another result [Xia+16] with similar initial conditions. As a result,
the shape of the 6 FD has the same tendency: the speed decreases when the density
decreases, which is the standard shape of FD. Moreover, the trajectory between the
minimum and maximum acceleration shows more heterogeneous pedestrian trajecto-
ries with maximum acceleration. The results of this work have been published in the
international conference on multi-agent system [RAB20]. Nevertheless, the proposed
models have certain limitations. The modification of the velocity on the X-axis can lead
to a selection of a new velocity that is not permitted by ORCA, and can lead to colli-
sions. However, ORCA is an anticipation model, making the possibility that an agent
correct the new velocity selected in the next step, if collisions are anticipated. More-
over, no collisions are observed during all the simulations, probably because the time
step was small enough.The perspective of this work would be to find a new permitted
velocity that is closest to the velocity proposed by one of my models.

4.3 Conclusion

In this chapter, I proposed two models to increase the heterogeneity of pedestrian
interactions. I give each pedestrian to adapt the collision avoidance based on the
perception of neighbors. Each pedestrian can anticipate and avoid a collision differently
from another pedestrian can adapt its collision avoidance, according to the potential
of the other pedestrian. The model, however, has limitations. The adaptation results
from physical characteristics (positions and velocities of the other agents). Then an
agent with the same position and velocity will be processed the same.
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The second model is based on the accelerations produced by the ORCA model
and by a queuing model [Lem+12]. In this model, I allow the agent to behave differ-
ently from its neighbors. The agents process the position and velocity of other agents.
However, an agent leader can be identified and processed differently. Pedestrians can
both follow and avoid collisions. I presented 5 types of interactions between the pedes-
trian, the Leader, and the neighbors. 3 among the 5 presented are the contributions,
which are the smallest, the maximal and the pure following. Pedestrians in this model
can adapt their behavior according to the contextual situation. This model also has
limitations. Each pedestrian uses the same interaction model during the simulation.
The adaptation is based on the physical characteristics of neighbors, and the agent
does not consider the social situation. Moreover, the behaviors of the agents are not
impacted by the time.

The pedestrian interaction is not limited to the interaction between pedestrians.
They interact with road traffic during street crossings. Moreover, they can be influ-
enced by social influence to conform to a certain behavior, and their behaviors also
are impacted by the time they spend on the crossing location. Someone who has just
arrived at a crossing location may have different behavior than someone who already
waits for a longer period. My main contribution in this thesis is developing a street
crossing model based on social influence, and I present this model in the next chapter.
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Chapter 5

A pedestrian crossing decision

model based on social influence

Tolmie developed computer-based training for street crossings [TTF02]. He described
the street crossing as a series of four steps taken by a pedestrian. The first step is
identifying a safe place on the sidewalk. Then, the second step is the awareness of the
contextual situation. This may be the presence of a pedestrian light or of oncoming
vehicles. The third step is the estimation of the gap. The last step is the anticipation of
the behavior of the oncoming vehicle, assuming the vehicle will have a constant speed,
for instance. In this chapter, I propose a model for pedestrian street crossing. This will
address the second and third steps, which are the awareness of the situation around the
crossing location and the time estimations (crossing time and time-to-contact with an
oncoming vehicle). I use an agent-based approach to develop a street crossing decision
model, where the decision takes social information and waiting time into account.

I start with a presentation of the overall model and the description of the agent
pedestrian. Then, I implement the model under two crossing scenarios. The first
scenario is a crossing with a pedestrian light and without road traffic. In this situation,
pedestrians may cross the street during a red light if they lose patience. Observations
of pedestrian behavior show that some pedestrians violate the traffic rules, and that
they do not cross immediately when they arrive at a crossing location. This could
mean that pedestrians have limited patience, impacting their crossing decisions. The
literature review also shows that pedestrians can influence each other, and they do
not always behave the same way alone or with people around. This leads to different
crossing behaviors depending on the contextual situation. Therefore, I propose a model
where the patience of pedestrians is modulated depending on the behavior of neighbors
(crossing or waiting). When their patience runs out, the pedestrians cross the street
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at a red light. The modification of patience can lead to compliance with the rules if
patience increases and violation if patience decreases.

The second crossing scenario is composed of a crosswalk with road traffic and
without a pedestrian light. In this situation, pedestrian agents cross the street using
estimation of time-to-contact as the main cue for the crossing decision. Experiments
realized by [Oxl+05; LC09] show that pedestrians can select an unsafe gap, and they
can also miss a crossing when they have enough time to pass. These two experiments
show that pedestrians can misjudge the gap. [IN08] formulate the crossing decision on
road traffic as a trade-off between crossing time, waiting time, and the representation
of the time-to-contact of an oncoming vehicle. I choose to modify the interpretation of
the time-to-contact of the oncoming vehicle, using social influence and waiting time.
A modification (bias) of the estimated time-to-contact is expected to produce several
types of behavior, some of which cannot be produced by a standard street crossing
model, such as unsafe or missing crossing opportunities.

5.1 Agent pedestrian definition

I use an agent approach to model the crossing decisions of pedestrians. I use the ORCA
navigation model to navigate pedestrians to their destinations while avoiding collisions
with their neighbors while crossing the street. I added a crossing decision model to the
navigation model, where pedestrians can make a trade-off between their characteristics
(patience, speed, etc.) and social influence from neighbors’ behaviors.

An agent pedestrian P uses the decision model only for crossing streets and moves
into the virtual environment using a navigation model. P does not update its cross-
ing decision once it decides to cross. I based the crossing decision on physical and
social information. The physical information considered is the color of a pedestrian
light or the time-to-contact of an oncoming vehicle, and the social information is re-
stricted to the behavioral status of neighbors (crossing, waiting) (section 5.1.2). The
social information is processed using a formula combining the number of crossings and
waiting neighbors (section 5.2). The social information can then modify the decision
of the agent pedestrian. The action of one agent pedestrian affects the environment,
modifying the decision of neighbors in the neighborhood.
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5.1.1 Agent pedestrian perception

I define an agent pedestrian with a complete awareness of its neighborhood. The
pedestrian can perceive the exact position and velocity of neighbors and vehicles, as
well as the pedestrian light colors and the actions of neighbors within their perception
range.

Pedestrians have a memory limitation to process information simultaneously. Hu-
man eyes can perceive more information than the brain can process [FD20]. [SO03]
found that people process around 7 plus or minus 3 information simultaneously, leading
to an approximation value between 4 to 10. I limit the number of information perceived
simultaneously by the pedestrians in the model. I also limit the perception distance
for neighbors (ZP ed), and road traffic (ZCar), see figure 5.1.

To approximate the distance ZP ed, Hall in his work about proxemics found that
7.6 meters is an estimate of the public distance [Hal+68]. This is the largest distance
between pedestrians, no matter their relationship (intimate, personal, or public). I
suppose this is the approximate distance where pedestrians start to process information
from another pedestrian. This distance can also depend on the sidewalk’s width and
on the width of the street. A pedestrian standing on a sidewalk, for instance, should
see the width of the street for estimating his crossing time.

For the case of ZCar, [SF09] estimated that the visual angle threshold for the
perception of the time-to-contact with an oncoming vehicle is about 0, 17°/s. [YS21]
found that for an average male pedestrian around 1.54 meters, a distance around 62.7
meters is needed to perceive an oncoming vehicle moving at 80 km/h. To implement
ZP ed and ZCar, I define two discs centered at the center of the physical body of the
pedestrian (Figure 5.1). ZCar is larger than ZP ed.
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Figure 5.1: The two perception zones of a pedestrian. ZCar is the largest disk, used
for the perception of cars. ZP ed is the intermediate disc used for the perception of
neighbors and the pedestrian light colors. The smaller disc represents the physical
body.

5.1.2 Definition of social information

The decision model processes both physical and social information simultaneously for
crossing decisions. Developing a model for simulation which processes social informa-
tion is not common; it can consider the behaviors of others [GVT02], or their social
status [LBM55]. I choose to use the definition of social influence by [GVT02], who
limits the social information to a description of the action of neighbors. I start by
describing the activities of pedestrians during and before street crossings. They can
walk, wait, stop, move, or cross. They can also mix wait-walk, wait-idle, and cross-walk
(table 5.1). The activities are composed of two actions, which I defined as the status of
pedestrians. The first action represents what the pedestrian physically does (idle and
walk) and what he cognitively does (wait and cross).

The first status (walk/wait) is for pedestrians who are walking on the sidewalk,
waiting to cross, and trying to reach the position where they want to wait. The sec-
ond status (idle/wait) occurs when a pedestrian arrives at a crossing location on the
sidewalk where he wishes to wait. The last status (walk) corresponds to a pedestrian
moving to the crossing location. The last status (walk/cross) pertains to pedestrians
who are crossing the street. These statuses allow characterizing the pedestrian’s sit-
uation during the simulations. More behavioral classes, such as running or steeping
back, can be added as new statuses in the future. However, in this work, I limit the
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social information to the most important in the sub-actions associated with pedestrian
status: cross and wait.

Table 5.1: Pedestrian behavior status during a simulation.

Action Status Description

wait (walk/wait)
The pedestrian arrives at a crossing location and walks with-
out crossing the street.

wait (idle/wait) A pedestrian arrives at a sidewalk and does not move.
cross (walk/cross) The pedestrian crosses the street.

(walk)
A pedestrian is not on the crossing location and is not cross-
ing the street. This situation occurs when the pedestrian
walks towards the crossing location.

5.2 Social influence modeling

5.2.1 Hypotheses about social influence

According to [Ros09; FKK10], when arriving at a crossing location with a pedestrian
light, and if the pedestrian light color is red, illegal crossing pedestrians influence the
agent to cross (H1). Reciprocally, seeing someone waiting encourages the agent to
follow the traffic rules (H2). These two aspects of social influence can be described as
“conformism” because people are influenced by what other people do. This leads to
the model hypothesis:

H1 crossing neighbors influence the agent to cross;

H2 waiting neighbors encourage the agent to wait.

5.2.2 Formulation of social influence

To implement the model hypothesis, I define the influence ∆i(t) received from the
behaviors of neighbors, using a linear combination of the number of waiting pedestrians
N i

W (t) and crossing pedestrians N i
C(t) perceived by an agent pedestrian i at time t.

To combine H1 and H2, I weight N i
W (t) and N i

C(t) with two social parameters pW

and pC , respectively.

∆i(t) = pW ×N i
W (t)− pC ×N i

C(t) (5.1)
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pW and pC are associated with the social influence of waiting and crossing pedes-
trians and should be set according to existing evidence. For instance, pedestrians might
be more rule-followers in some locations (country, city, neighborhood, crosswalk, etc.),
and in this case, pW would be higher than pC . In another locations, pedestrians might
be more compliant with the traffic rules, so the weights would be more balanced be-
cause pedestrians can follow someone crossing or waiting. In the following, the social
parameters remain constant throughout the simulation, and all agents have the same
pW and pC values, for the model’s simplicity.

5.2.3 Approximation of social influence value

To illustrate the formulation of the social influence ∆, I define a pedestrian P i who
can simultaneously perceive up to ten neighbors, because of limited perception [SO03].
These neighbors can have a “crossing” or “waiting” status (table 5.1), leading to 10×10

2
possible combinations. The table 5.2 shows a matrix with the values of ∆ computed
from the possible combinations. Two examples are given (matrices M1 and M2) with
different values for pW and pC . For M1 (table 5.2.1), pW = pC = 0.5, I give the same
importance to the neighbors who are waiting and to those who are crossing, which can
serve as a reference. In a real situation, during red light crossings, often NW is greater
than NC . Thus, to allow the pedestrians to violate the traffic rules, pC should be
greater than pW , and I give greater importance to crossing pedestrians than to waiting
pedestrians. Then, I use M2, pW = 0.1 < pC = 0.9 for M2 (table 5.2.2).

M1 is symmetric because pW = pC , so that ∆ = 0 on the diagonal. When there is
more waiting than crossing pedestrians, ∆ > 0. For M2, the matrix is not symmetric.
The number of positive and negative values of ∆ is not the same. It depends on the
difference between pW and pC . As pW < pC , M2 has more negative values.

If pW and pC have small values, this leads to small ∆ values and reduces the
impact of social influence. Otherwise, If pW and pC have large values, this leads to
large ∆ values and increases social influence.

M1 and M2 present different possible values of ∆. However, an agent pedestrian
may not encounter all these possible values.



5.3. Street crossing decision model 61

Table 5.2: Social influence values for a pedestrian at the sidewalk, perceiving up
to ten pedestrians. The cell color is green when ∆ > 0, which is a positive influence
encouraging waiting; it is red when ∆ < 0, meaning a negative influence which could
lead to a rule violation. The cell is blue when there is no social influence (∆ = 0). The
white cells are not explored because NC +NW > 10.

NC\NW 0 1 2 3 4 5 6 7 8 9 10
0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
2 −1 −0.5 0 0.5 1 1.5 2 2.5 3
3 −1.5 −1 −0.5 0 0.5 1 1.5 2
4 −2 −1.5 −1 −0.5 0 0.5 1
5 −2.5 −2 −1.5 −1 −0.5 0
6 −3 −2.5 −2 −1.5 −1
7 −3.5 −3 −2.5 −2
8 −4 −3.5 −3
9 −4.5 −4
10 −5

5.2.1: ∆ values for the social parameters pC = 0.5 and pW = 0.5.

NC\NW 0 1 2 3 4 5 6 7 8 9 10
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
2 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1
3 −2.7 −2.6 −2.5 −2.4 −2.3 −2.2 −2.1 −2
4 −3.6 −3.5 −3.4 −3.3 −3.2 −3.1 −3
5 −4.5 −4.4 −4.3 −4.2 −4.1 −4
6 −5.4 −5.3 −5.2 −5.1 −5
7 −6.3 −6.2 −6.1 −6
8 −7.2 −7.1 −7
9 −8.1 −8
10 −9

5.2.2: ∆ values for the social parameters pC = 0.9 and pW = 0.1.

5.3 Street crossing decision model

5.3.1 Framework for a street crossing decision model

This section presents the framework for the street crossing decision model. The frame-
work includes the proprieties of an agent pedestrian P , the environment, and the
interface linking the agent pedestrian and the environment.

Crossing decisions imply the interaction of P with the urban environment and
the neighbors. The urban environment includes a pedestrian light, crossing locations,
crosswalks, vehicles, sidewalks, and streets.
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Between the urban environment and the internal mechanism of the agent, the
model uses an interface. The interface contains the perception of the urban environment
and the actions of other agents. Then, the actions of P changes the current state of
the urban environment as perceived by neighbors.

P receives information from perception and processes the information using two
models: the first for the crossing decision-making and the second for navigation. If P
is at a crossing location, P uses the decision-making model at each time step, until he
crosses. This model receives the number of neighbors waiting and crossing, the width
of the street, the information from oncoming vehicles (position/speed), and the light
traffic color (red/green), if any. Then, it processes the information for deciding to cross
or to wait.

P used the navigation model if the decision is to cross or if P is not at a crossing
location. This model receives information inputs from the neighbors (position, velocity,
and size), and a predefined destination. Then, it processes a new velocity and position
to reach a destination and avoid collisions with neighbors.

AGENT
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INTERFACEPerception

Update

ENVIRONEMENTtraffic lights

neighbors

street

sidewalk

Navigation model

new
speed

new
position

Operational

wait cross

Decision making model
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- neighbors size
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- traffic light colors
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location 
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TRUE FALSE

Figure 5.2: Framework for pedestrian street crossing.
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5.3.2 Crossing decision categorization

Street crossing implies an interaction between pedestrians and the urban environment.
To simplify the model, I limit the urban environment to road traffic and a pedestrian
light. The interaction between pedestrians and the urban environment can be described
by four possible scenarios.

The first scenario is the situation where the street has no pedestrian light and no
road traffic. This is equivalent to no interaction with the urban environment and does
not require a decision model.

The second scenario is composed of a street with a pedestrian light without road
traffic. In this situation, the traffic rules apply, but some pedestrians violate it. Obser-
vations of pedestrian behavior indicate that pedestrians wait some time before crossing.
I hypothesized that it is because of patience limitation, modulated by the influence from
neighbors.

The third scenario is without a pedestrian light and has road traffic. Pedestrians
have to estimate their crossing time (TPed) and the time-to-contact (TTC) with the
oncoming vehicles for crossing decision. An agent pedestrian P can estimate its TPed
based on its speed and the crosswalk width, and estimate the TTC based on the speed
and velocity of an oncoming vehicle. Pedestrians are not constrained by traffic rules in
this scenario but by the possible oncoming vehicles. The existence of some pedestri-
ans with unsafe crossings (negative margin) [Oxl+05], may indicate that pedestrians
can misestimate TTC or TPed. Estimating a moving object is more difficult than
a static object. Thus, I hypothesized that pedestrians could misestimate the TTC.
Moreover, pedestrians cannot unlimitedly estimate the TTC of incoming vehicles, so I
limit the perception to a maximal distance α. If an incoming vehicle exceeds the dis-
tance α (Figure 5.1), the pedestrian does not perceive the incoming vehicle and crosses
immediately.

The fourth scenario is a street crossing with road traffic and with a pedestrian
light. This combines the behavior of the second and third scenarios sequentially. In
this scenario, the pedestrian is expected to wait longer than in the third scenario
because pedestrians are constraints by both the traffic rules and the presence of possible
oncoming vehicles.

Figure 5.3 implement the four possible interactions in an urban environment.
Then, among the four scenarios, I have assessed in more details the second and third
scenarios in this work. The two scenarios are described in figure 5.4.
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Figure 5.3: Street crossing decision model.
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Figure 5.4: Description scenarios selected for the street crossing decision model.

5.4 Patience and social influence

The waiting time is often measured empirically using cameras, for example [ZWM18].
Literature review on social influence indicates that seeing someone crossing or waiting
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may impact the crossing decisions. [Har91] attributes the phenomena of following
someone crossing as a delegation of responsibility, leading to a decision less cautious
in a group than alone. Various violation rates are observed in several intersections or
cities [Dom+15; Die19]. The influence of neighbors to conform to their behavior may
indicate that patience can be modified depending on social influence. Thus, I have
hypothesized that patience is not constant and can depend on social influence. I base
the crossing decision on patience when a pedestrian crosses at a pedestrian light color
red to produce this behavior. The patience value then can evolve depending on social
influence, and the pedestrian decides to cross when it runs out.

5.4.1 Hypotheses

I define my street crossing model based on hypotheses H1 and H2 on social influence
(section 5.2). The literature review also indicates that after waiting around 20 seconds,
some pedestrians become impatient and want to violate the traffic rules [KO03]. Thus,
I hypothesized that they have some level of patience, and when the patience runs out,
they may violate the traffic rules. Therefore, I suppose a pedestrian has an individual
level of patience (H0). As a pedestrian can be influenced to cross or to wait, I suppose
the pedestrian’s patience can evolve depending on the social situation and may lead to
a violation when the patience runs out.

H0 pedestrians have a patience limit;

H1 crossing neighbors influence the agent to cross;

H2 waiting neighbors encourage the agent to wait.

5.4.2 Patience mechanism

Arriving at the sidewalk, an agent pedestrian P perceives the traffic color light. If the
traffic color is green, then P crosses. Otherwise, if the traffic color is red, P waits, and
crosses when the pedestrian light turns to green or when P ’s patience runs out (in this
case, P violates the traffic rules).

During the red light, P starts to wait, his waiting time (WT ) increases every time
step TS, starting from 0. The modified patience MIP is initialized to MIP (0) = IP .
Then, the crossing decision happens when (WT > MIP ).

Modeling patience is not something common in street crossing simulations. A
reference is needed to compare the results. It is why I have considered modeling
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standard patience, with a restriction of the patience and social influence model, where
∆ = 0, leading to a null influence (ψ = 1). The figure 5.5 presents the crossing decision
with the standard patience model and with the patience and social influence model.
In the two situations, an agent pedestrian can violate the traffic rules, but the agent
pedestrian with the standard patience model would behave the same, no matter the
neighbors’ behaviors.

  Initialization 
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Figure 5.5: Patience model modified by social influence. A pedestrian crosses if the
pedestrian light color is green, or if its patience runs out (WT > MIP ). The social
influence modifies the patience with ψ, and if ψ = 1 the model corresponds to the
standard patience.

5.4.3 Impact of social influence on patience

When pedestrians start waiting, their patience MIP is modified due to the neighbor’s
influence. To express the modification, I use the linear combination ∆, which integrates
into a single value the number of crossings and waiting (see formula 5.1). ∆ is computed
at time step t, and the influence ψ is computed from ∆ in such a way that ψ > 1 when
(∆ > 0), ψ < 1 when (∆ < 0), and ψ = 1 when (∆ = 0):
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ψi(t) =

[
1 + ∆i(t)

100

]
(5.2)

MIP i(t) is computed from MIP i(t− 1) and modified by ψ (formula 5.3). This
modification allows MIP i(t) changing during the waiting phase. Due to Eq. 5.2, ψ
is close to 1, so the evolution of MIP i(t) is not too quick. If (ψ < 1), then MIP

decreases, and if (ψ > 1), then MIP increases. If (ψ = 1), then MIP remains
constant, as in the standard patience model at time t:

MIP i(t) = MIP i(t− 1)× ψi(t) (5.3)

To explore the possible values of ψ, let us suppose a pedestrian P can perceive up
to 10 crossing or waiting neighbors, forming a matrix M with 10×10

2 = 50 possibilities
(Figure 5.6). The cells show the values of ψ, with the parameter pC = 0.9 and
pW = 0.1, using the matrix M2, with more weight on the crossing pedestrians than on
the waiting ones (section 5.2.3).

Figure 5.6 shows that ψ ranges between 0.91 to 1.01, and most values are close to
1, meaning that the evolution of MIP is not too quick. In this example, if only one
neighbor is crossing, then MIP will not decrease (define by a blue rectangle). At least
MIP will be constant if nine neighbors are waiting and one crossing.
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Figure 5.6: Computation of the influence ψ =
[
1 + ∆

100

]
used to modify the individual

patience, when the number of neighbors perceived is limited to ten, pC = 0.9 and
pC = 0.1.

5.4.4 Limitation patience threshold

The definition of patience allows patience to evolve depending on the situation, follow-
ing the value of ψ ∈ [0.910, 1.01] for the case of 10 perceived neighbors. Over a period
of time, with a continuous value of ψ, the patience can increase to an extreme value
quickly. Thus, I limit the increase of the patience.

Considering the duration of short cycle (green and red) pedestrian lights’ at about
60 seconds [NAC], MIP can exceed largely this 60 seconds duration. To illustrate that
situation, suppose a pedestrian P i with initial patience MIP i(0) = 40 seconds, con-
tinuously perceiving 8 waiting neighbors, which leads to ψi = 1.008. If the simulation
step is fixed to TS = 0.1 second, then MIP i can reach 88.74 seconds after 10 seconds
waiting, which is relatively high. Thus, I limited the increase by defining a threshold
PT in percentage. PT prevents the individual patience to be higher than threshold
T = IP × PT (algorithm 6, line 1 to 5).
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Algorithm 6: Patience and social influence.
1 T i ← IP i × PT ; // Processd only during the initialization process.

/* Patience Threshold (PT ) in %, PT > 100 %, PT is a parameter model. */

2 MIP i(t)←MP i(t− 1)×
[
1 + ∆i(t)

100

]
;

3 if MIP i(t) > T i then

4 MIP i(t)← T i

5 end

6 if
[
WT i(t) > T i

]
then

7 cross()
8 else

9 if
[
(MIP i(t) < IP i)AND (MIP i(t) < WT i(t)

]
then

10 cross() ; // The waiting time reaches the MIP i, then cross.

11 else

12 WT i(t)← WT i(t− 1) + TS ; // Wait

13 end

14 end

5.4.5 Illustration of the evolution of patience

The figure 5.7 illustrates the evolution of patience of one pedestrian, influenced by
several neighbors. In this figure, the waiting time is on the x-axis, and the difference
MIP −WT is on the y-axis. When MIP < WT , the pedestrian crosses the street.
In this example, MIP −WT decreases straight from the beginning. This period may
correspond to a situation where the number of neighbors crossing or waiting is not
changing. After about 4.3 seconds, MIP −WT decreases more quickly. It means that
some more pedestrians are crossing. The evolution of patience would be different if the
pedestrian is alone or with the standard patience reference model (with ∆ = 0).
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Figure 5.7: Patience evolution comparison of the standard (dashed line) and of
the social influence model (continuous line). The pedestrian crosses the street when
MIP < WT .

5.4.6 Conclusion on patience and social influence

The proposed model of agent pedestrians’ bases the crossing decisions on patience when
crossing on a crosswalk with a pedestrian light and during red lights. I developed the
pedestrians’ patience with hypotheses based on observed pedestrian behavior. The
hypotheses are that a pedestrian can be influence by crossing neighbors to violate the
traffic rules (H1). Or, conversely, a pedestrian can be influenced by waiting neighbors
to comply with the traffic rules (H2). My approach combines both H1 and H2 in a
single formulation of social influence ∆. ∆ can be positive when the influence to comply
with traffic rules is greater than the motivation to cross. Conversely, ∆ can be negative
when the motivation to violate is greater than the influence to wait. I use ∆ to modify
the patience of a pedestrian, while the pedestrian waits during red lights. The MIP

can evolve until MIP < WT ; then, the pedestrian may violate the pedestrian light.
This modification of patience is expected to produce some pedestrians violating and
complying with the traffic rules. In the next section, I present the time-to-contact
model, where pedestrians cross a street with road traffic and without a pedestrian
light.

5.5 Time-to-contact biased by social influence

This section considers a street crossing scenario with only road traffic, without a pedes-
trian light. Suppose a pedestrian P arrives at a crossing location and perceives an on-
coming vehicle. In that case, he compares the time-to-contact TTC with the oncoming
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vehicle to its crossing time TPed, and crosses if TPed < TTC. If P does not perceive
any oncoming vehicles, P crosses immediately.

Many works on street crossings use the gap theory: pedestrians estimate if they
can cross between two vehicles [Oxl+05; LC09]. In this work, I use time-to-contact
for the crossing decision. This allows pedestrians to interact only with one oncoming
vehicle. To use the time-to-contact, pedestrians estimate the speed and position of an
oncoming vehicle, the length of the crosswalk, and their speed. Estimating a moving
object is more difficult than estimating a static object, and the estimation can be
inaccurate.

This section shows how to use the time-to-contact for crossing decisions when
pedestrians perceive an oncoming vehicle. The estimation of the time-to-contact can
be inaccurate. If pedestrians do not perceive any oncoming vehicle, then they cross
immediately. To develop this time comparison model, I start by presenting the decision
process, the selection of perception inputs, and the formulation of the influence of the
contextual situation.

5.5.1 Vehicle perception

The perception of information is a composition of three steps executed by pedestrians
before crossing a street: selection, projection, and identification.

a) Selection of the vehicles presenting a constraint for crossing a street. P has a
perception field and can perceive oncoming and outgoing vehicles. The oncoming
vehicles move towards the pedestrians, and the oncoming ones represent the constraint
for crossing decisions. If no oncoming vehicle is perceived, then pedestrians can cross
immediately. Figure 5.8 illustrates P perceiving vehicles in its perception range. Four
vehicles are in the perception range, the oncoming ones are in red.
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Figure 5.8: Pedestrian perception vehicle range from the crossing location, in gray
rectangle. The two oncoming vehicles are in red, and the two outgoing vehicles are in
green.

b) Projection of the future position of a vehicle (V P ) among the oncoming vehicles
that would not be a constraint for crossing because its rear bumper will reach the
conflict area before P . To proceed, is shown in figure 5.8, P perceiving four vehicles,
and two are the anticipation ones. P compares the arriving time of the rear bumper
TTC_rear to his time of arrival at the nearside of an oncoming vehicle TPed_near,
for each oncoming vehicle, from the nearest position. [TTF02] described this process of
projecting the of the position of the oncoming vehicle in the four stages before crossing
a street. [LC09] also observed some pedestrians start to cross before the rear bumper
of an oncoming vehicle passes the pedestrians’ positions.
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Figure 5.9: Identification of the anticipation vehicle from an oncoming vehicle that
would not present a constraint for crossing. The condition is verified by comparing
TTC_rear < Tped_near. The two green vehicles are not supposed to be a constraint
for crossing, and the furthest vehicle is the anticipation, in dark green.
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c) Identification of the vehicle to interact with (V I), presenting the first constraint for
the crossing decision of P . This vehicle would be the first vehicle after the anticipation
vehicle, if any. If TTC_rear > Tped_near, then it is the vehicle to interact with for
the crossing decision. See in figure 5.10 illustrates the vehicle red to be the vehicle to
interact with.
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Figure 5.10: Identification of the vehicle (in dark red) to interact with by comparing
TTC_rear > Tped_near.

5.5.2 Trade-off between waiting and crossing

When pedestrians arrive at a crossing location with no road traffic, the goal is to cross
as soon as the situation allows. The situation allows when no oncoming vehicle is
perceived, or an oncoming perceived is perceived but far enough allowing the pedes-
trians to cross. For the case of perceiving an oncoming vehicle, this vehicle is the
one identified during the perception phase in 5.5.1. The pedestrians have to compare
their crossing time (TPed) to the time-to-contact of the front bumper of the oncoming
vehicle (TTC) for crossing decision.
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Figure 5.11: Definition of the pedestrian crossing time (TPed) and the time-to-
contact of the front bumper of the oncoming vehicle (TTC) for crossing decision. The
pedestrian crosses the street if TTC ≥ TPed, or wait otherwise.

If everyone had a perfect perception of the environment, and pedestrians can
accurately estimate their TPed and the TTC. Then, a standard comparison time
would suffice to describe street crossings. However, [Oxl+05] observed that some
pedestrians selected a time that would lead to a collision. Another experiment observed
some pedestrians missed crossing opportunities [LC09]. The two observations indicate
that pedestrians can have an inaccurate estimation of time, which can lead to an
overestimation or underestimation of the crossing decision.

The inaccurate estimation can be caused by multiple factors, such as environmen-
tal (presence of an illegal parked vehicle [Dom+15]), physiological (perception limits
[SO03]), or social (influence to conform to the behaviors of others [FKK10]). I limit
this work to social factors. Moreover, pedestrians can have an inaccurate estimation
of TPed and TTC. For the model’s simplicity, I choose to address TTC because it is
more difficult to estimate.

[IN08] found that the pedestrian’s crossing decision is based on a trade-off be-
tween the crossing time, the waiting time, and the perception of the oncoming vehicle.
[IN08] also presented that faulty perception leads to inadequate crossing decisions.
Furthermore, an agent with inaccurate perception of the environment is more convinc-
ing [LLB11]. Thus, I propose modifying the perception of the time-to-contact of an
oncoming vehicle by a bias β, which combines the waiting time and the social influence
due to the neighbors’ behavior. The modification of the TTC allows some variability
in the crossing decisions. The variability can lead to unsafe, safe crossings or missed
opportunities.
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β × TTC ≥ TPed (5.4)

5.5.3 Modified perception of time-to-contact

The bias β is based on the social influence of neighbors and on the pedestrian’s waiting
time. H1 and H2 are observed both with and without a pedestrian light. I supposed
they are also relevant when pedestrians interact with road traffic. Nevertheless, pedes-
trians may not follow a crossing neighbor without estimating a possible collision with
an oncoming vehicle.

I express β using the same formulation of the neighbor’s influence ∆, as before
in formula 5.1, and the waiting time WT . To counterbalance ∆ and WT , I use two
parameters a and b to weight WT and ∆ (formula 5.5).

X = b× ∆− a×WT (5.5)

Using two parameters a and b allow weighting importance for each of the two
factors WT and ∆. Then, the combination of the two factors is introduced into a
sigmoid function, and limited by a threshold c, to compute β (formula 5.6).

β =
2× (1− c)
1 + e−X

+ c (5.6)

Let us take a closer look at the formulation of β. The sigmoid and the numerator
value 2 allow β being between c and 2− c and the values of the parameter c are between
0 and 2, illustrated in figure 5.12. If β > 1, the crossing decision is overestimated. In
the opposite case, if β < 1, the crossing decision is underestimated. If β = 1, then the
crossing decision is not biased.
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Figure 5.12: Domain definition of the bias β. β ∈ [c, 2− c], c ∈ [0, 2].

∆ can have positive or negative values. WT on the other hand, only has positive
values and increases linearly. Thus, depending on the sign of the two β parameters
(a and b), ∆ can reinforce or counterbalance the impact of WT . Since WT increases
linearly, it is possible to identify three phases. The first phase is when pedestrians just
arrived. X depends mainly on ∆ at the beginning. The second phase is when WT

increases and counterbalances ∆, in the computation of X. The last phase happens if
the pedestrians wait longer, WT has more importance than ∆, and X depends mainly
on WT .

Algorithm 7 implements the crossing decision using the bias β on the perception on
the TTC. The β allows a pedestrian to have an inadequate decision. The inadequate
is an unsafe decision if TTC < TPed, or is a missed crossing if TTC ≥ TPed.

Algorithm 7: Time-to-contact biased model.
1 X = b× ∆− a×WT

2 β = 2×(1−c)
1+e−X + c

3 if β × TTC ≥ TPed then

4 cross()
/* IF TTC ≥ TPed, THEN it is a safe crossing */

/* IF NOT, THEN it may be an unsafe crossing //β > 1 */

5 else

6 wait() ; // β × TTC < TPed

/* IF TTC ≥ TPed, THEN it may be a missed crossing //β ≤ 1 */

/* IF NOT, THEN it is impossible to cross, speed not enough */

7 end
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Figure 5.13 presents the four possible crossing decisions for pedestrians perceiving
an oncoming vehicle. The pedestrians have two options, whether crossing or waiting,
based on the comparison of TTC and TPed. If the pedestrians decide to cross (β ×
TTC ≥ TPed), the crossing decision can be “safe” or “unsafe” based on the comparison
of the difference between TTC and TPed, as I named the margin. The decision is
“unsafe” if the margin (TTC − TPed < 0) and “safe” in the opposite case. The
“unsafe” decision can only happen if β > 1.

If the pedestrians decide to wait (β × TTC < TPed), the crossing decision can
be “missed” or “impossible” based on the comparison of the difference between TTC

and TPed. The decision is “missed” if the pedestrians can cross (TTC ≥ TPed),
but due to social influence, the decision is to wait. The “missed” can only happen if
β < 1. The decision is “impossible” if pedestrians do not have the crossing time enough
(TTC < TPed) without being hit by the oncoming vehicle.

Decision

Waiting Crossing

Missed Impossible SafeUnsafe

β . TTC ≥ TPed β . TTC < TPed 

 TTC ≥ TPed TTC < TPed  TTC ≥ TPed TTC < TPed 
β > 1 β < 1 

Figure 5.13: Expected behavior output. Missed opportunities and unsafe crossings
can only happen using the bias β. Missed opportunities happen only if β < 1, and
unsafe crossings if β > 1.

5.5.4 Illustration of the bias β

Figure 5.14 illustrates the evolution of β for five pedestrians arriving at different times
at the crossing location. β starts when WT = 0, until the pedestrians cross the street
(red star). When ∆ is constant, the situation on the crossing location is stationary; no
new pedestrian is coming or crossing. If ∆ is constant, β is roughly linear because WT

evolves linearly.

The evolution of β can be described in three phases. During the first phase, WT is
low and β mainly depends on ∆. Unlike WT , ∆ is not linear. During the second phase,
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WT increases, and β depends on WT and ∆. During the last phase, WT becomes
relatively higher than ∆, and β depends mainly on WT .

Figure 5.14: Illustration of the evolution of β for five pedestrians waiting at the
crossing location.

To analyze the formulation of β, I initialized the three parameters with (a = 1, b =
1, c = 0), where I used these values for simplification. Then I initialized the parameters
for ∆ with (pC = 0.7, pW = 0.3). Then I compute Xlow for a low value of WT = 0.3 s
and Xhigh for a high value of WT = 30 s.

X =


X = ∆−WT

Xlow = ∆− 0.3

Xhigh = ∆− 30

(5.7)

β =
2

1 + e−X
(5.8)

With this simplified formulation, let us explore four different scenarios (A, B, C,
and D), which can be experienced by a pedestrian P (in the figure 5.15). If ∆ > 0, then
the pedestrian is influenced to wait; otherwise, the pedestrian is influenced to cross.
For the two situations (A and B), both have ∆ > 0, but WT is low for A and high for
B. In these situations P is influenced to wait; but in A, P just arrived, and in B, P
already waits for a long time. In the two last situations (C and D), both have ∆ < 0,
but WT is low for C and high for D. In these situations P is influenced to cross; but
in C, P just arrived, and in D, P already waits for a long time.
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Figure 5.15: Illustration of the four scenarios A, B, C, and D.

My objective with this illustration is to test the potentiality of the model to
simulate various scenarios. I expected that if these four scenarios can be covered with
this model, then it can work for scenarios in between.

I computed two matrices 10× 10 for low and high WT, for a pedestrian who can
perceive up to 10 pedestrians. Then, Xlow, Xhigh, βlow and βhigh are computed using
equation 5.8. Figure 5.16(a) shows the matrix for βlow. The values of βlow can be
below or above one, this means that the pedestrian can overestimate or underestimate
the perception of TTC.

Figure 5.16(b) shows the matrix for βhigh. The values of βhigh are always 0,
which means the pedestrians are only overestimating the perception of TTC. Thus,
for the four scenarios, three scenarios A, B, and C can be simulated with the chosen
parameters. Regarding the case of D, pedestrians cannot underestimate the crossing
after waiting a longer time, with the selected set of parameters.

To identify the β values for the four scenarios, I use the two matrices, in figure
5.16. A low ∆ is located in the bottom left of the matrices, and a high ∆ is located
in the top right. Scenarios A and C uses the matrix with low WT , in figure 5.16(a),
giving their values βA = 1.87 and βC = 0.0. Scenarios B and D uses the matrix with
high WT , in figure 5.16(b), giving their values βB = 0 and βD = 0. These results
show that the same value (βB = βC) can produce two different behaviors at different
moments of time (WTlow and WThigh).
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(a) β values for Xlow = ∆− 0.3 s.

(b) β values for Xhigh = ∆− 30 s.

Figure 5.16: βlow and βhigh values with low and high WT computed. With β (a = 1,
b = 1, c = 0, pC = 0.7 and pW = 0.3).
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5.5.5 Conclusion on time-to-contact biased by social influence

Street crossing is not a simple time comparison of crossing time and time-to-contact of
an oncoming vehicle. If pedestrians accurately estimate these times, no accidents and
no missed opportunity crossings would occur. Results from experimental observations
show that pedestrians can have inadequate crossing decisions. Different factors can
be the cause of the inaccuracy. I hypothesize the factors can be the social influence
and the waiting time. To formalize my hypothesis, I use a trade-off between crossing
time, waiting time, and the perception of the oncoming vehicle formalized by [IN08]. I
proposed that the perception of the time-to-contact of an oncoming vehicle is modified
based on waiting time and social influence.

This modification produces variability in the pedestrian’s street-crossing behavior,
and the model can produce several behaviors such as having a safe or unsafe crossings,
having missed crossings. Unsafe and missed crossings could not be produced in a stan-
dard time comparison model. I also assess the model using simple scenarios, without
running any simulations, to observe the model’s potential. The model can produce
situations where a pedestrian with a low waiting time can be influenced to wait or
influenced to cross. With a longer waiting time, the pedestrian can be influenced to
wait. To allow the pedestrian to wait longer and be influenced to cross, a different set
of parameters is needed.

5.6 Conclusion

This chapter presented the street crossing model under two scenarios: crossing with
a pedestrian light and without road traffic, and crossing with road traffic without a
pedestrian light. The model considers the social influence and the waiting time for
the crossing decisions. This choice is expected to produce several crossing behaviors.
Pedestrians can violate the pedestrian light if their neighbors influence them, or they
become impatient after waiting some time. They can also decide to comply with the
traffic rules when seeing someone waiting, also observed by [Ros09]. In some other
situations, pedestrians can decide to cross even if an oncoming vehicle is approaching
or wait even if they can cross safely, behaviors also observed by [Oxl+05; LC09]. Thus,
the model is expected to produce behaviors that are observed in the literature, with
more behavioral variability than existing models I present in chapter 7, the results of
the simulation of the model. Before simulating the model, I present the scenario and
initial conditions requirements in the next chapter.
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Chapter 6

Street crossing scenario description

Following the four steps taken by pedestrians before crossing a street [TTF02], a pedes-
trian starts by identifying the crossing location on a sidewalk, selecting the information,
deciding to cross, and physically crossing the street. In the chapter 5, I developed a
street crossing decision model. This chapter 6 aims to describe the corresponding
scenarios, virtual environment and the initialization parameters, required to simulate
the street crossing model. The street crossing decision model is performed under two
scenarios: in section 6.1, the pedestrians interact with a pedestrian light and without
road traffic. Then, I simulated an intersection with a controlled and marked crosswalk.
In this scenario, pedestrians followed an itinerary, moved to a defined crossing loca-
tion on the sidewalk, selected information from the pedestrian light colors and from the
behavior of neighbors (crossing/ waiting), decided and physically to cross the street.
The pedestrian light has two colors (red and green), and a crossing is considered illegal
if a pedestrian decides to cross while the traffic color is red; otherwise, it is a legal
crossing. To run the simulations, I set different values for each pedestrian’s speed and
individual patience, leading to different waiting times and crossing decisions. To see
the impact of the collective situation on individual decisions, I created populations
with homogeneous and mixed pedestrians (in terms of speeds), and with low and high
pedestrian flow. To analyze the consistency of the generated pedestrian’s speed and
individual patience values, I confront these values with the duration of the traffic light
colors (green and red).

For the second scenario in section 6.2, the pedestrians interact with road traffic and
without a pedestrian light. Then, I simulated an uncontrolled crosswalk environment
in this scenario, corresponding to a mid-block intersection. Road traffic is composed
of vehicles moving in a one-way direction at a constant speed, even if someone was
crossing. As in the previous scenario, the pedestrians follow an itinerary, move to a
defined crossing location, select information from the oncoming vehicle and the crossing
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behaviors of neighbors, and then physically cross the street. In these simulations,
pedestrians have the individual speed set up from a normal distribution, leading to
different crossing decisions. Vehicles are randomly distributed with different inter-
vehicle distances along their itinerary, and they are set up with three constant speeds
(40, 50 and 60 km/h), leading to constant gaps between vehicles. To analyze the
consistency of the generated pedestrian’s speed and the inter-vehicle distances values,
I confronted these values with the width of the street.

6.1 Street crossing scenario with a pedestrian light

6.1.1 Scenario description

Pedestrians followed a predefined itinerary. When pedestrians reached a defined cross-
ing location (waiting zone), which was a zone inside the sidewalk, they started to select
information from the pedestrian light and the crossing behaviors of their neighbors. If
the pedestrian light color was green, pedestrians cross. Otherwise, they started waiting
and move inside the waiting zone. Once they have decided to cross, the pedestrians
physically crossed the street, and they do not update their decision. Their behavioral
status was changed to “crossing”.

The pedestrian light has two colors, red and green, with different duration for each
color, turning in a loop (color cycle) during the simulation. A crossing was labeled as
illegal if a pedestrian crossed while the light traffic color was red; otherwise, it was
labeled as a legal crossing. Then a legal crossing may happen when someone arrived
during the green phase or when someone arrived during the red phase and waited for
the next green to cross.

6.1.2 Virtual environment

The pedestrians follow an itinerary in a loop, and the itinerary has a distance about
67.64 m, depending on the position of pedestrians on the sidewalk when they crossed
the street, in figure 6.1). The pedestrian light was near this waiting zone: it appears as
a red-colored square with a dotted line (on figure 6.1). Pedestrians can cross directly
from the start of the waiting zone if the light is green. If the light is red, they move
inside the waiting zone to find a spot to wait. If a crossing opportunity arises when
they reach the spot, they can cross. When they finished crossing the street, they go to
the beginning of the itinerary and make a new lap.
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The dimension of the waiting zone is 2.4 m × 6.72 m, which was a rectangular
area inside the sidewalk. It contained two rows of 10 positions, each position can
comprise up to two pedestrians, leading to a maximum capacity of 40 pedestrians
waiting simultaneously. The maximum surface capacity was around 0.405m2 for one
pedestrian, corresponding to a high density with a level of service F in Fruin’s work
[Fru71].
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Figure 6.1: Virtual environment for the street crossing scenarios with a pedestrian
light. The pedestrians follow a closed-loop itinerary, they cross the controlled interac-
tion from the waiting, then pedestrians continue for another lap on the itinerary.

6.1.3 Initial conditions

A pedestrian is perceived by other pedestrians as a 2D disc, and all pedestrians have the
same diameter size (0.4 m). The pedestrian also has the same information related to
its perception characteristics: the maximum number of neighbors perceived was set to
ten and within a radius of ten meters with angles up to 360 degrees (using both visual
and auditory information [Lav+09]). The sum of the width of the waiting zone (2.4
m) and the street (7.19 m) is 9.59 m, and the length of the sidewalk is 6.72 m. Thus,
10 m is enough for a pedestrian to perceive neighbors on the sidewalk and crossing the
street. Pedestrians have individual patience (IP ) and personal speed (V Ped) generated
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from a normal distribution. According to [Liv10], a normal distribution can be used
to represent human characteristics. [FBT06] observed the average speed for younger
and older pedestrians at a two-way street intersection, comparable with my selected
virtual environment. The younger pedestrians had an average of 1.45 m/s compared
to 1.16 m/s for the older pedestrians. The average waiting time of pedestrians at a
controlled intersection was recorded. According to the literature, pedestrians became
less patient after 20 s of waiting, and only 25% wait more than 60 s [UFT04]. [IN08]
also found that pedestrian’s impatience becomes noticeable after 15 s. Therefore, I
used a minimum waiting time of 20 s:

IP =

IPmin = 20 s

IPT hird quartile < 60 s
(6.1)

I created two populations, first one was homogeneous H and another one was
with a mixed M population in terms of speed. I used the average speed of younger and
older pedestrians from [FBT06] to build normal distributions for the two populations.
I simulated the homogeneous population using only the older pedestrian’s speed (1.16
m/s) and a low standard deviation of 0.05 m/s, to make the population homogeneous.
The SD = 0.05 leads to a maximal and minimal pedestrian speed of vmin = 1.01 and
vmax = 1.31:

homogenous =


v ∈ N (µ = 1.16m/s,SD = 0.05m/s)

vmin = 1.01m/s

vmax = 1.31m/s

(6.2)

For the mixed population, I used the average speed (1.3 m/s) from the younger
(1.16 m/s) and older pedestrians (1.45 m/s), with a larger standard deviation (0.3 m/s).
I chose a larger SD to give more variability, since a mixed population combines the
younger and older pedestrians. Moreover, younger pedestrians have larger variability
in terms of speed than the older ones [IN08]. For SD = 0.3 m/s, the minimal speed
can be as low as 0.4 m/s, and as high as 2.2 m/s. A threshold was applied for the
speed to be between 0.8 and 2 m/s
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mixed =


v ∈ N (µ = 1.3m/s,SD = 0.3m/s)

vmin = 0.8m/s

vmax = 2m/s

(6.3)

I did not find quantitative data in the literature about the average individual
patience of younger and older pedestrians, so I used the same distribution for both
homogeneous and mixed populations. I hypothesized the mean IP to be 40 s, with a
minimum value set to 20 s and the 75th percentile set to 60 s from [UFT04]. I selected
an SD = 8 s, so the average individual patience can reach the minimal value and
exceed the 75th percentile:

(homogenous andmixed) =


IP ∈ N (µ = 40 s,SD = 8 s)

IPmin = 20 s

IPmax = 64 s

(6.4)

In the model, the number of perceived neighbors impacted on the collective situ-
ation, and the collective situation impacted on the individual decision. To study the
relationship between collective situations and individual decisions, I simulated differ-
ent levels of pedestrian flow. A low flow was simulated with 10 pedestrians in a loop,
following the itinerary, leading to an average flow of one pedestrian every 6.76 m. A
high flow was simulated with 40 pedestrians, with an average flow of one pedestrian
every 1.69 m.

Pedestrians cross at an intersection with a pedestrian light, with a cycle duration
of 45 seconds for the red phase and 15 seconds for the green phase, leading to a complete
cycle of 60 s. The red duration adheres to MUTCD’s recommendation for minor streets:
the green phase should last more than 7 seconds [NAC]. MUTCD is a document from
the Federal Highway Administration of the United States.

At the beginning of each simulation, the pedestrians are randomly positioned along
the itinerary but outside the waiting zone and the crosswalk. Each simulation lasts
600 s, ten complete cycles. The pedestrians follow the itinerary (67.64 m) in a loop,
with the same walking and crossing average speeds of 1.16 and 1.3 m/s for H and M

population, and altered by the pedestrian light colors, leading to several laps between
six and ten, with a median of seven for H and eight for M .
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The simulation time step is fixed with 0.1 s, and the simulation starts at a red
light. To avoid a particular case, each simulation is repeated three times, leading to
3 repetitions × 2 of populations (homogeneous and heterogeneous) ×2 pedestrian flows
(low and high), for a total of 12 simulations.

The preferred speeds and individual patience values are given for all distributions
(figure 6.2). The colored red zone in each figure represents the length of the red light
phase. It can be used as a global indicator of the number of pedestrians who are
expected to cross at red lights if pedestrians arrive at the start of the red phase and
if social influence does not alter their patience. The pedestrians below this colored
red zone are more likely to violate the pedestrian light. The number of pedestrians
with IP > 45s is 19 (resp. 49) for n = 10 (resp. n = 40), which leads to violation
rates of 31.67% (resp. 20.41%). These percentages correspond to the violate rates if
pedestrians arrive at the beginning of the red phase and if social influence does not
modify their patience.
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Figure 6.2: Individual patience and desired pedestrian’s speed used for the simula-
tions. Pedestrians are categorized with homogeneous and mixed population, and with
low and high pedestrian flow. The horizontal dotted line in each figure represents the
duration of the red light phase.
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6.2 Street crossing scenario with road traffic

This section presents the second scenario for pedestrian street crossing with road traffic
and without a pedestrian light. The crossing location corresponds to an uncontrolled
crosswalk at a mid-block intersection. To implement the street crossing model with
this scenario, I present the scenario, the description of the virtual environment and the
initial condition requirement in this section.

6.2.1 Scenario description

Pedestrians have different individual speeds and follow a predefined itinerary for pedes-
trians. The pedestrians follow the itinerary in a loop, and they are spawned to the
initial position when they reach the end of the itinerary, forming the loop.

Pedestrians start perceiving oncoming vehicles when they reach the crossing lo-
cation on the itinerary. If a pedestrian does not perceive any oncoming vehicle, he
can cross immediately. Otherwise, they compare the time-to-contact of the oncoming
vehicle to their crossing time, leading to a crossing decision. Pedestrians have the same
walking and crossing speed and do not change their decisions once they start crossing.

The road traffic comprises vehicles with a constant speed, and the vehicles do
not interact with pedestrians. The inter-distance between vehicles is different, using a
uniform distribution. The vehicles follow a predefined itinerary for vehicles itinerary.
The itinerary is also in a loop, making the vehicles lap in an infinite loop.

6.2.2 Virtual environment description

The crossing location is positioned on a mid-block street 188 m length and with two
lanes with a width of 4.1 m each (Figure 6.3). At this crossing location, a pedestrian
can perceive up to 60 m. It is described as the maximal distance for a normal pedestrian
to accurately estimate the speed of an oncoming vehicle [YS21]. In this scenario, I only
consider one lane, and pedestrians based their decision on the width of one lane.

Figure 6.3: Crossing point position on the road.
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Pedestrians follow 4 successive positions in their itinerary: (P0) a position behind
the crossing location, (P1) the crossing location, (P2) the sidewalk on the other side
of the street, and (P3) a position in the front of the sidewalk (Figure 6.4). When the
pedestrians reach P3, they are spawned to P0.

Figure 6.4: Pedestrian itineraries.

Regarding the road traffic, the vehicles follow an itinerary of 752 m, composed of
three roads (R1 = 188 m, R2 = 188 m and R3 = 376 m). The crossing is only on one
lane, so the vehicle moves in one direction, from right to left. The crossing location is
positioned on the road R3, in figure 6.5.
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Figure 6.5: Presentation from eagle View of virtual environment.

6.2.3 Initial conditions

I ran three distributions of pedestrian speeds and three distributions of gaps. Then, I
used the six distributions to simulate the standard and biased time-to-contact models,
leading to a total of 18 simulations. Each simulation lasts 600 simulated seconds, with
a fixed time-step of 0.1 s. Finally, I removed the first 100 s as a warm-up for the data
analysis.

6.2.4 Pedestrian perception setup

I set the perception of neighbors as in section 6.1.2, with maximal perceived neighbors
set to 10, and a maximal distance set to 10 meters. Regarding the perception of the
oncoming vehicle, the maximal perception distance is set to 60 meters (AP2), based on
the perception limit of a moving vehicle [YS21]. I do not limit the number of vehicles
inside the AP2 area, since the number of oncoming vehicles inside AP2 would not be
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greater than ten in these simulations. To illustrate it, let us consider a vehicle speed
of 40 km/m, which is close to the average vehicle speed on an arterial road in an
urban city in France (42, 3 km/h in 2020) [ONI20], with an inter-vehicular time of one
second. A vehicle’s length of five meters would lead to a total of four vehicles, inside
the 60 meters of perception distance. Each pedestrian processes the neighbors and the
oncoming vehicles are based on the closest distance.

6.2.5 Pedestrian speed distribution

To compare the results of these simulations with experimental data, I set up the sim-
ulated pedestrian’s speed with the subjects’ speed during experimentation for street
crossing realized by [LC09]. [LC09] developed a street crossing experimentation, and
they invited subjects to cross a street between two oncoming vehicles with a constant
speed.

Table 6.1 shows the results of the gap selected by all participants. The results
indicate that young pedestrians choose approximately the same gap, with different
vehicle speeds. Young male pedestrians were very consistent when they estimated the
gap. Thus, to avoid the possible ambiguity between distance and speed as the visual
cue used to take a decision, I chose the average speed of young male pedestrians in
these simulations.

Table 6.1: Average gap selected by subjects during street crossing experimentation
realized by [LC09].

40 km/h 50 km/h 60 km/h Mean
avg(s) std(s) avg(s) std(s) avg(s) std(s) avg(s) std(s)

Women 3.51 1.3 3.24 1.1 3.25 1 3.34 1.1
20-30

Men 3.26 1.3 3.20 1.4 3.22 1.1 3.23 1.2

60-70
Women 4.14 0.9 3.71 1 3.53 0.7 3.79 0.9

Men 4.17 1 3.78 0.9 3.53 0.9 3.83 1

70-80
Women 4.68 1.7 3.95 1.2 3.65 1 4.09 1.4

Men 4.73 1.3 4.23 1.2 3.83 1 4.26 1.2

Table 6.2 presents the crossing time of pedestrians. The average crossing time for
men pedestrian is 3.97 s, and the street width is 4.2 m; this leads to an average speed
of 1.06 m/s. Then, with a standard deviation of 0.4 s, the lowest and highest crossing
times are 3.97 - (0.4× 3) = 2.77 s and 3.97 + (0.4× 3) = 5.17 s. That leads to the
lowest and highest pedestrian speed of 0.81 m/s and 1.51 m/s.
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Table 6.2: Average crossing time by subject during street crossing experimentation
was realized by [LC09], with the width of the street 4.2 m.

40 km/h 50 km/h 60 km/h Mean
avg(s) std(s) avg(s) std(s) avg(s) std(s) avg(s) std(s)

20-30
Women 3.95 0.6 3.93 0.6 3.89 0.5 3.92 0.6

Men 3.98 0.4 3.96 0.4 3.96 0.4 3.97 0.4

60-70
Women 4.49 0.3 4.52 0.3 4.55 0.3 4.52 0.3

Men 4.18 0.4 4.23 0.4 4.24 0.4 4.21 0.4

70-80
Women 4.53 0.2 4.57 0.2 4.61 0.2 4.57 0.2

Men 4.44 0.4 4.58 0.4 4.65 0.4 4.55 0.4

In the following, I used the normal distribution in (equation 6.5) for the distribu-
tion of pedestrian speed. Then, I limited the pedestrian speed to 0.81 m/s and 1.51
m/s, according to their crossing times in [LC09].

V


V ∈ N (µ = 1.06m/s, std = 0.15m/s)

Vmin = 0.81m/s

Vmax = 1.51m/s

(6.5)

For the sake of generality, three distributions of speed were used, and each distri-
bution for a different simulation. Figure 6.6 shows the speeds of the 10 pedestrians for
the three distributions VMax1, VMax2, and VMax3.

Figure 6.6: Pedestrian speed VMax for the three distributions VMax1, VMax2, and
VMax3.
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6.2.6 Gap distribution

[IN08] observed the gap selected by pedestrians when the pedestrians crossed a street
of 7 m. [IN08] also found that 92% of the pedestrians would cross if the gap between
vehicles exceeds 7 s, and no one would cross if the gap was below 1.5 s.

Computing gaps between two vehicles requires the speeds and the distances be-
tween two successive vehicles. During their experimentation on pedestrian street cross-
ings, [LC09; Oxl+05] used three vehicle speeds: 40, 50, and 60 km/h, and each time
the vehicle has constant speed.

I need a minimal and maximal values of gap to run a uniform distribution of
gaps. The maximal distance perception of an oncoming vehicle was set to 60 m,
and I chose the three vehicle speeds 40, 50, and 60 km/h used by [LC09] in their
experimentation. From the minimal and maximal gaps presented by [IN08], I identified
the travel distance for each gaps from the minimal value 1.5 s until the travel distance
exceeded the 60 m. Since [IN08] had a wider road (7 m) compared to the width of the
road in my simulation (4.1 m), I reduced the minimal gap to 1 s. Table 6.3 presents
the travel distance with the three vehicle speeds and with the different values of gaps.
Then, I collected the first gap when the travel distance exceeded 60 m. 6 s for 40 km/h
and 5 for 50 and 60 km/h. I use 5 and 6 s for the maximal value of the gap for each
vehicle speeds.

Table 6.3: Identification travel distance for different gaps (1, 1.5, 5, and 6 s) and
different vehicle speeds (40, 50, and 60 km/h). 60 m is the maximal perception distance
of an oncoming vehicle.

vehicle speed 1 s 1.5 s 5 s 6 s
40 km/h ≈ 11.11 m/s 11.11 m 16.67 m 55.55 m 66.66 m > 60 m
50 km/h ≈ 13.89 m/s 13.89 m 20.84 m 69.45 m > 60 m 83.34 m >> 60 m
60 km/h ≈ 16.67 m/s 16.67 m 25.01 m 83.35 m > 60 m 100.02 m>> 60 m

I run three samplings from uniform distributions of the gaps using the minimal
and maximal value of gaps chosen, selected for each vehicle speed, in table 6.3. Figure
6.7 presents the three samplings of the inter-distance inter− dist1, inter− dist2 and
inter−dist3 for the three different VCar 40, 50 and 60 km/h. Each gap in the sampling
has an ID gapi on the horizontal axes. The number of gapi + 1 lead to the number
of vehicles during a simulation. The vertical axis is the inter-vehicular distance. The
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horizontal red line in each figure is the maximal distance of perception on an oncoming
vehicle (60 m).

The number of vehicles is not the same for every sampling, since it depends on the
space available on the vehicle itinerary and the distance between them. The samplings
for 40 km/h indicate that most inter-vehicular distances are lower than 60 m. It means
that each pedestrian should find a gap for crossing. For 50 and 60 km/h, the inter-
vehicular distance can be above 60 m. In this case, pedestrians would not see the
oncoming vehicle and cross immediately.

(a) VCar = 40 km/h.

(b) VCar = 50 km/h. (c) VCar = 60 km/h.

Figure 6.7: Inter vehicular distance for VCar = 40, 50 and 60 km/h, for the three
inter-distance samplings dist1, dist2 and dist3. x-axis is the ID of each gaps during
the sampling, and y-axis is the inter-vehicular distance.

6.3 Conclusion

This chapter presents the scenario, design, and initial condition requirements for the
street crossing model implementation. The street crossing model is simulated under two
scenarios: the first one scenario is with a pedestrian light and without road traffic, and



96 Chapter 6. Street crossing scenario description

the second one scenario is with road traffic and without a pedestrian light. The value
of individual patience can produce a portion of pedestrians violating the pedestrian
light, as required in the first scenario. Regarding the second scenario, each pedestrian
would find an adequate gap for crossing. The model and the virtual environment have
been developed, and agent parameters are set. Thus, I can run the simulations and
present the results in the next chapter.
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Chapter 7

Street crossing simulations

In the last two chapters (5 and 6), I developed a street crossing model and presented
a scenario to assess the model. In this chapter, I present the results of the simulations,
addressing the objective of increasing the heterogeneity of pedestrian behaviors during
street crossings. The street crossing model is developed under two scenarios: the first
is a street crossing with a pedestrian light and without road traffic, and the second
scenario is a street crossing with road traffic but without a pedestrian light.

In the first scenario in section 7.1, pedestrians base their decision to cross on the
perception of the light traffic color and the perception of their neighbors’ behaviors
(crossing/ waiting). The perception of neighbors’ behavior influence pedestrians, lead-
ing to a modification of patience. The pedestrian decides to cross the street at some
moment of time to break the traffic laws. Thus, I propose a function that combines
the number of crossing and waiting neighbors; this function modifies the individual’s
patience.

In the simulations, when exploring the crossing decision of pedestrians arriving at
the crossing location at the red light, some of the pedestrians who violated the traffic
rules had individual patience longer than the remaining red light duration. This means
they are initially expected to cross at the green light and would not have crossed at the
red if they have not been influenced, so they were negatively influenced. Conversely,
some of the pedestrians who crossed at the green light had individual patience shorter
than the duration of the remaining red lights. This means they are initially expected to
cross on red and would have crossed on red if they had not been influenced, so they were
positively influenced. In my simulations, most pedestrians were positively influenced.
To analyze the consistency of the results, I compared the crossing decision in my
model and with a standard patience model, where individual patience is constant, and
pedestrians cross at red lights if their individual patience runs out. I also compared the
violation rates produced by the model with violation rates published in the literature,
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which indicates fewer illegal crossings than legal crossings. In the initial version of
the model, the social influence function, which modifies the individual patience, does
not allow the simulation with different time steps, limiting the usability of the model
for real-time simulation. Thus, I developed a new function in the context of a group
crossing in virtual reality.

Regarding the scenario with interaction with road traffic and without a pedestrian
light in section 7.2. In this scenario, the vehicles do not interact with pedestrians. I as-
sume that the model’s hypothesis demonstrated in the scenario with a pedestrian light
is still valid without a pedestrian light: seeing someone crossing or waiting influences
pedestrians on their decisions. Moreover, pedestrians do not have patience but waiting
time. Without patience, a pedestrian crosses immediately when a crossing opportunity
arise. They also behave differently depending on how long they wait on the sidewalk.
For crossing decisions, pedestrians compare the estimation of the time-to-contact with
an oncoming vehicle (TTC) with their estimation of crossing time (TPed). Then,
the estimation of the time-to-contact of the oncoming vehicle is modified based on
the waiting time of the pedestrians and the behaviors of neighbors (social influence).
This modification of TTC leads to several types of behavior: crossing safely, crossing
unsafely, missing the crossing, and crossing impossible.

In my simulation, some pedestrians decided to cross even though they did not
have the speed required to do so safely. Some others missed the crossing, even though
they had the speed required to cross safely. To analyze the consistency of my results,
I compared my results with different works with similar initial conditions. First, I
compare the gap observed by pedestrians when they decide to cross with the results
of gap selected by pedestrians at a street crossing experimentation realized by [LC09].
Then, I compared the percentage of unsafe crossing decisions with an observation
realized by [Jay+20]. Finally, I compare the negative margin during the unsafe crossing
decision with the result of an experimental street crossing realized by [Oxl+05].

7.1 Street crossing: scenario with a pedestrian light

7.1.1 Crossing violation rate

Pedestrians have individual patience (IP ) initialized with normal distribution. When
pedestrians wait at the crossing location, their modified patience by social influence
(MIP ) is initialized with IP . MIP can evolve depending on the social situation, but
the increase is limited by a parameter model patience threshold (PT ). After waiting
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some time (WT ), pedestrians decide to cross if MIP < WT , or the light traffic color
turns to green. The pedestrian light turns in a loop (color cycle), with 45 s of red and
15 s of green, and a violation occurs if the pedestrian crosses at the red light.

Table 7.1 presents the crossing violation rates for all simulations. “Expected” is the
decision based on the difference between the individual patience (IP ) and the remaining
red light duration when a pedestrian arrived in the waiting zone. “Observed” refers
to the decision made by pedestrians when they cross. “V1” represents the violation
percentage of all pedestrian crossings (crossing on red VS crossing on green). “V2” the
violation rate restricted to pedestrians arriving at red lights and compared those who
crossed and those who did not. P is the standard patience model, and SI is the social
influence and patience model. SI1 is for the defined weight for waiting and crossing:
pC = 0.5 and pW = 0.5. SI2 is for pW = 0.1 and pC = 0.9. The modified individual
patience MIP i(t) is initialized with the individual patience IP i, and limited by a
model parameter threshold PT :

MIP i ≤ IP i × PT (7.1)

Table 7.1: Crossing rate violations for all simulations. The standard patience model
is denoted P , while the social influence model is denoted SI, with PT representing the
patience threshold. SI1 is the social influence model with parameter for pC = 0.5 and
pW = 0.5, and SI2 for pC = 0.9 and pW = 0.1. H and M refer to the homogeneous
and mixed population. n refers to the number of simulated pedestrians

Expected Observed

Pop Models PT

(%)
Red phase only

PV (%)
Global
V1 (%)

Red phase only
V2 (%)

n=10 n=40 n=10 n=40 n=10 n=40

H

P 23.96 34.33 9.50 18.46 23.96 34.33

SI1
110 31.27 33.53 9.03 11.98 24.57 22
120 33.16 33.87 7.46 6.91 20.53 13.45

SI2
110 28.16 31.75 12.23 14.08 32.65 26.31
120 29.17 34.39 10.83 10.08 27.08 20.25

M

P 6.91 14.52 5.28 9.67 6.91 14.52

SI1
110 8.77 14.73 5.09 6.74 6.71 10.03
120 8.25 15.10 3.12 4.90 4.12 7.44

SI2
110 8.70 15.09 5.09 8.45 6.65 12.52
120 7.23 15.35 2.74 9.92 3.61 14.23



100 Chapter 7. Street crossing simulations

“Expected” is the decision resulting from the difference between the individual’s
patience and the remaining time of the red light when pedestrians begin to wait at
the crossing location. The “Expected” is the result with the standard patience model
or when ∆ = 0. The percentage of violation (PV ) is the result of the total expected
in red and the total expected in green. “Observed” is the percentage violation. V1

percentage violation when comparing the number of pedestrians crossing at a red light
and the crossing at green lights. V2 is the percentage violation when comparing the
number of pedestrians crossing and waiting at red lights.

Before presenting my results, I analyze the consistency of my results by comparing
the “Expected”, and the “observed” V2 decision with the standard patience model,
where the patience is constant. The results show the same violation rates for both.

To verify the assumption that the patience can evolve, I compare whether the
patience changed when they cross. The comparison of the violation rates between
“Expected”, and the V2 indicates lower V2 values, meaning the individual patience
is modified, and the pedestrians are more influenced by waiting pedestrians rather
than crossing pedestrians. These results are consistent with the observation realized
by [Ros09] that waiting pedestrians have greater power than crossing pedestrians. In
other words, a positive influence can have more impact than a negative influence.

According to the literature review, the percentage of rule-followers is lower than
rule-breakers in real life. For example, the violation rates in major European cities are
around 20 to 25% [Die19]. The average expected violation for all my simulations is
21.412%. The observed violation for all simulations is 16.594%, lower than the average,
so that it can correspond to a neighborhood with more rule-following pedestrians.
Moreover, the violation rate is low compared to the initial conditions: the average
waiting time is about 40 s and the red light length (45 s). However, the violation also
depends on the arrival time on the sidewalk.

To see the impact of the collective situation, I compare the violation rates for
the homogeneous H and the mixed M population. The two populations have different
speeds. The H population has a lower average and lower standard deviation speed, and
the M population has a higher average and higher standard deviation speed (section
6.1.3). The results indicate that the H population has greater violation rates than
the M population. Indeed, the pedestrian’s speed in the H population has a small
standard deviation (SD = 0.05 m/s). This leads to the formation of groups walking
at approximately the same speed, which leads to higher violation if someone in the
group has low individual patience and the patience threshold is not large enough to



7.1. Street crossing: scenario with a pedestrian light 101

maintain the impatient pedestrian for waiting. On the other hand, there was a larger
standard deviation (SD = 0.3 m/s) in the M population. This condition leads to more
individual crossings, and the more impatient pedestrians have less influence on other
pedestrians.

As expected, the model parameters have an impact on the violation rates. In-
creasing the threshold PT decreases the violations in V1 and V2 for most simulations.
This is because pedestrians wait longer and have more positive influence on each other.
Moreover, the violation rate decreases less in population H than in population M ,
for the same condition. Indeed, people in population M are more likely to cross alone
than people in population H, so the change in PT does not greatly alter the decision to
cross. Parameters pC and pW also impact the crossing violation rate. By giving more
weight to the crossing than waiting pedestrians (pC > pW ), people are more likely to
follow someone crossing illegally.

The difference between the violation rate V2 and the violation rate “Expected”
indicates the individual’s patience is modified in the social influence model. Pedestrians
tend to wait longer than what would have happened if they were alone. The present
results do not show whether a pedestrian wanted to violate the traffic law and decide
to wait, or wanted to wait and decide to violate. I present this discrepancy in behaviors
in the following.

7.1.2 Impact of social influence on crossing decision

When social influence modifies pedestrians’ individual patience, they may have different
expected and observed decisions. To quantify the difference between the two decisions,
I denote “R” for the pedestrian light color red and “G” for green, and the combination
of the two letters forms the two decisions. The combination leads to the creation of
four classes: “RR”, “RG”, “GR” and “GG”. The descriptions of each class are in table
7.2. The percentages of all simulations in each of the four classes (“RR”, “RG”, “GR”,
and “GG”) are shown in the tab 7.3.

Table 7.2: Denotation of the expected and observed crossing decisions in table 7.2.

Label Description
Green-Green (GG) Crossing at the green light expected, observed crossing at the green light
Green-Red (GR) Crossing at the green light expected, observed crossing at the red light
Red-Red (RR) Crossing at the red light expected, observed crossing at the red light

Green-Red (RG) Crossing at the red light expected, observed crossing at the green light
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Table 7.3: Proportion of crossing violations for each crossing class: RR, RG, GR,
GG for each experimental condition of the Social Influence model, for all simulations.

Pop Models PT

(%)
RR
(%)

GR
(%)

GG
(%)

RG
(%)

n=10 n=40 n=10 n=40 n=10 n=40 n=10 n=40

H

P 23.96 34.33 0 0 76.04 65.67 0 0

SI1
110 21.41 22 3.16 0 65.57 66.47 9.87 11.53
120 17.16 13.45 3.37 0 63.47 66.13 16 20.43

SI2
110 20.76 21.68 11.89 4.63 59.95 63.62 7.4 10.07
120 16.67 16.46 10.42 3.8 60.42 61.82 12.5 17.93

M

P 6.91 14.52 0 0 93.09 85.48 0 0

SI1
110 6.71 10.03 0 0 91.23 85.27 2.06 4.71
120 4.12 7.44 0 0 91.75 84.9 4.13 7.66

SI2
110 6.65 11.31 0 1.2 91.3 83.71 2.05 3.78
120 3.61 8.38 0 5.89 92.77 78.76 3.62 6.97

mean (P ) 15.44 24.43 0 0 84.46 75.58 0 0
mean (SI) 12.14 13.84 3.61 1.94 77.06 73.84 7.2 10.39

The results show that the sum of GR + RG > 0% for the social influence and
patience model, and GR + RG = 0% for the standard patience model. This means that
the patience has been modified for SI. Moreover, the sum of GR + RG is lower than
the sum of RR + GG for SI model. This means that pedestrians who have different
expected and observed crossing decisions are a minority. However, if a pedestrian has
the same expected and observed crossing decision, it does not mean the pedestrian has
not been influenced. It means the pedestrian has not been influenced enough.

The model’s parameters impact the proportion of crossing violations. The number
of violations is higher with SI2 than with SI1, with a higher weight on the influence
of crossing pedestrians. For instance, with 40 pedestrians, the mean RR is 13.23%
with SI1, and 14.46% with SI2. More importantly, the proportion of pedestrians who
predict they will wait (based solely on patience) and then cross rises from GR = 0.00%
with SI1 to GR = 3.88% with SI2. The proportion of crossing violations also seems
to depend on the PT threshold: there are more crossing violations with a lower PT .

Looking at the crossing classes, several trends can be highlighted. First, the
GG percentage is always lower in the homogeneous population (between 60% and
70%), compared to the mixed population (between 80% and 90%), meaning that the H
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population appears to be more rule compliant than the M population; they have lower
speed and have a lower number of crossings compared to the M population.

The percentage of RR violations with the P model is always greater than with the
SI model, indicating that waiting pedestrians influence more than crossing pedestrians
in the SI model (SI1 and SI2). The differences between the two models are higher
with 40 simulated pedestrians than with 10 simulated pedestrians, due to the greater
impact of social influence on a higher number of neighbors. The GR is always zero in
the P model, as expected.

Presenting the percentage of all simulations that differ between the expected and
observed crossover decisions helps quantify the impact of the model globally. In the next
section, I present some illustrations of the impact of social influence at an individual
level.

7.1.3 X/Time diagrams of crossing pedestrians

The crossing decisions of pedestrians are impacted by the pedestrian light colors and the
behaviors of their neighbors (crossing/ waiting). If the pedestrian light color is green
when they arrive, the pedestrians cross. Otherwise, they wait until their individual
patience runs out. Figure 7.1 shows an example of X/Time representation of pedestrians
crossing the street from the waiting zone (bottom of the figure) to the other side of the
street (top of the figure). The time represented is one cycle of the pedestrian light (45
s for red and 15 for s green), which is used as a background for the figure. The waiting
zone’s dimensions are 6.20× 2.40m2, and the street’s width is 7.19m2. The vertical
axis is oriented to the opposite sidewalk, and the origin is set to the roadside near the
waiting zone. The horizontal axis is set to the simulation time. Pedestrians are waiting
at a red light are placed in two rows inside the waiting zone, described in section 6.1.2.
Pedestrians crossing at a green light have their trajectory colored in green.
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(a) Crossing at the end of a red light.
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(b) Crossing at the beginning of a red light.

Figure 7.1: X/Time diagrams of crossing pedestrians. The vertical axis represents
the spatial position X of pedestrians, and the horizontal axis is the simulation time.
The color of the light (green or red) are displayed as a background of the figure. The
origin of the vertical axis is set to the roadside near the waiting zone. The trajectories
of the pedestrians start from the waiting zone, when they decide to cross, and each
plot represents the trajectory of an individual. The color of the trajectories depend on
the colors of the pedestrian light colors, when pedestrians decide to cross: green for
pedestrians starting to cross at a green light and red for pedestrians starting to cross
at a red light. If pedestrians cross at a green light, and they arrived a green light,
then I named their crossings “CrossGreenDirect”, and their trajectories is plotted in
a continuous green line. Otherwise, their crossing are indirect if they arrived at a red
light and cross at a green light “CrossGreenNonDirect”, and their trajectories is plotted
in a dashed green line.

Figure 7.1 illustrates different situations of crossings during different cycles (red
and green phase) of a simulation that last 600 seconds and have 10 cycles in total. Three
situations of crossing can happen. For the first situation, the pedestrians arrived at
a red light and crossed at the red light “CrossRed”. For the second situation, the
pedestrians arrived at a red light and crossed at a green light “CrossGreenNonDirect”.
For the last situation, the pedestrians arrived at a green light and crossed immediately
“CrossGreenDirect”.

Figure 7.1(a) illustrates several pedestrians crossing. The presence of “CrossGreen-
NonDirect” indicates that several pedestrians are waiting together while the pedestrian
light color is red. Then, some of them decide to violate the traffic rules, and others
decide to wait for the green light. This is interesting to see different pedestrians take
opposite decisions (wait or cross) based on the perception of the same situation. Thus,
they have different interpretation of the perceived situation. It is possible because
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each pedestrian has his patience, and the modification of the patience is based on the
patience at t− 1 and the social influence.

Figure 7.1(b) illustrates several pedestrians crossing together at the end of a green
light. Some of these pedestrians have not finished crossing at the green light and
continue at the red light (top left of the figure). At the same time, several other
pedestrians arrived at the beginning of the red light and perceived these pedestrians
crossing at the red light. This perception of pedestrians crossing at the red light
influenced the new coming pedestrian to violate the traffic rules, leading them to cross
at the beginning of the red light.

The X/Time diagram illustrates the individual decisions of pedestrians, and it
shows when the pedestrians decide to cross and what color the pedestrian light is when
they start to cross. The observation trajectories of pedestrians are consistent with the
model’s hypotheses, and these behaviors can be observed in a real situation. For one
situation, some pedestrians can violate the pedestrian light after waiting 20 seconds
[KO03]. For another situation, [Lip+13] found that pedestrians are more likely to
violate the traffic laws with countdown for the first and last 4 seconds. In this sce-
nario, there is no countdown, but seeing several pedestrian crossings may indicate to
pedestrians coming onto the sidewalk that the color has just turned red, increasing the
violation rate. Alternatively, [IN08] presented that pedestrians do not necessary be-
come impatient after waiting a longer time, they may become more compliant because
they know the pedestrian light will turn to green soon. The X/Time does not illustrate
the evolution of individual pedestrians waiting on the sidewalk.

7.1.4 Evolution of patience modified by social influence

When pedestrians arrive at the crossing location at red lights, they can perceive the
crossing and waiting neighbors. This perception leads to a social influence that modifies
their patience MIP . Crossing neighbors influence them to violate the traffic rules and
decrease MIP . Waiting neighbors motivate them to wait and increase MIP . Then,
the pedestrians decide to cross if MIP < WT , meaning they lose patience.

Figure 7.2 illustrates the evolution of MIP of several waiting pedestrians for the
patience and social influence model for 10 and 40 pedestrians. MIP i(0) starts from
its initial value, the individual patience IP i at waiting time WT i(0) = 0, and stops
when MIP < WT , meaning the pedestrian loses patience. Individual patience can
increase or decrease according to the situation. The threshold PT limits the increase.
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Thus, I denote the results with “WT>T”, if the pedestrians reach their threshold when
crossing at red, and “WT>MIP” for the rest of the crossings.

If MIP reaches the threshold “WT>T”, MIP does not have a visible decrease
anymore. This is due to the situation encountered by pedestrians, where the influence
is mostly positive. Moreover, I limit the increase in MIP using the patience threshold
T , so the MIP cannot have a too large values. Regarding the decrease, I do not allow
the pedestrians to cross between their individual patience (IP ) and (T ) (section 5.4.4).
Thus, MIP is outside (IP ) and (T ) for “WT>MIP”, then pedestrians tend to have
shorter patience. In the other case, when MIP is inside (IP ) and (T ), pedestrians have
longer patience.

These results show to allow patience to evolve. It can increase or decrease depend-
ing on the social situation. Pedestrians can have several crossing behaviors. Some wait
for shorter waiting times, and others for longer waiting times. In a certain situation,
pedestrians are influenced to cross, and they almost cross (MIP − IP ≈ 0), but other
pedestrians influence them to wait (Figure 7.2(b)). This behavior is difficult to com-
pare in a real situation. To my knowledge, no work supposes that patience can evolve.
In most situations, it is the waiting time that is measured.
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(a) Number of simulated pedestrians 10.
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Figure 7.2: Illustration of the evolution of the patience modified by the social in-
fluence MIP , with 10 (on the left) and 40 (on the right) simulated pedestrians, with
the parameters of SI2, PT = 120, and the homogeneous population H. The pedestrian
violates the pedestrian light if MIP < WT .

The formulation of individual patience has a limitation. It is not independent of
the time step. I use a time step of 0.1 second for all simulations, and the result is not
reproducible with different time steps. The non-player character (NPC) pedestrians
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should be simulated in real-time for virtual reality applications. The pedestrian be-
havior should be the same at different time steps. This problem is addressed in the
next section.

7.1.5 Influencing a group of NPC pedestrians to cross

Other pedestrians influence pedestrians in this simulation for their crossing decisions.
To go further with the interaction, I wanted to see what happens if a person could
influence the behaviors of the simulated pedestrians. To reach this goal, I have to make
sure that the model can be simulated in real-time and produce the same behaviors with
different time steps TS. The actual model could not produce the same evolution of
patience with different TS. Thus, I have to create a new formulation.

The individual patience IP i(t+ TS) depends on its precedent value IP i(t), and
on the social influence ∆. I assume that patience of pedestrians is not linear, and it
can evolve depending on ∆. If ∆ > 0 then pedestrians are influenced to wait; and
If ∆ < 0, pedestrians are influenced to cross. If ∆ = 0, pedestrians are supposed to
have constant patience. An exponential function meets this condition: it can receive
negative or positive values, increasing with a positive value and decreasing with a
negative value. Then, I weight the exponential to limit the evolution by a model
parameter n. I tested empirically several values of n, and I could achieve the shape of
the evolution of individual patience from the previous results with n = 7. The equation
is:

IP i(t+ TS) = IP i(t)× e(
∆i(t)×T S

n ) (7.2)

I have developed a new scenario to test this new function. A group of NPC
pedestrians accompanied by one bot controlled by an experimenter are waiting on the
sidewalk. The bot is triggered by the experimenter to cross, influencing the rest of the
group to cross (in figure 7.5). The NPCs and the bot have the same characteristics
(speed, size, distance perception, and number of perceived neighbor maximal). The
NPCs have individual patience, and the bot does not have individual patience since
the experimenter triggers it.
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(a) NPCs and bot waiting at the sidewalk. (b) The bot and a few NPCs start crossing.

Figure 7.3: Scenario simulation with nine pedestrians (bot and eight NPCs).

The individual patience of the NPCs is scripted using an arithmetic progression,
where the difference between two consecutive IP is the parameter α. The experimenter
chooses the number of NPCs (N) in the group, including the bot, and the individual
patience IP i of the first NPC in the group (ω):

IP 1 = ω

IP 2 = IP 1 + α

....
IPN = IPN−1 + α

(7.3)

The evolution of the individual patience was simulated with the new function,
with different fixed time steps 0.01, 0.02 and 0.1 second, and the last one with variable
time step, in real-time (Figure 7.4). In real-time, the time step is not fixed. It depends
on the resources available on the computer and the duration of the execution of each
step.
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Figure 7.4: Comparison evolution of MIP −WT of two NPC pedestrians (P 2 and
P 7) from the group of pedestrians, with different TS values: 0.01 s, 0.02 s, 0.1 s and
real-time.

Figure 7.4 shows that the crossing behavior of the group changes depending on
the parameters set and not on different time steps. In figure 7.5(a), the whole group
crossed almost at the same time. The individuals in the second group crossed more
sequentially in figure 7.5(b). The crossing time difference between the first, the second,
and the third pedestrian was more than one second. This time difference is similar to
the reaction time to the traffic signal, which is within one second according to [Fug+00].

(a) N = 5, α = 2, ω = 5 (b) N = 5, α = 4, ω = 5

Figure 7.5: An illustration of the X/Time diagrams of four NPCs (red plots) and the
bot (blue plots) a street.
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The new formulation was tested with different time steps, using a scenario of a
group of pedestrians crossing a street. The evolution of individual patience shows
the same evolution with different time steps. Pedestrians behave differently in street
crossing scenarios depending on the parameter values. This scenario could manage a
group of pedestrians, and this could help social scientists experiment with pedestrian
behavior. The results of this work were presented at an international [RAB21].

7.1.6 Conclusion from the scenario with a pedestrian light

My objective is to increase the heterogeneity of pedestrian’s interaction, so they can
adapt their behaviors according to the situations. In this first scenario in 6.1, pedestri-
ans cross a street with a pedestrian light, and they base their crossing decision on the
pedestrian light colors and the neighbor’s behavior (crossing/ waiting). To achieve the
objective, I have developed a patience model in which the neighbors’ behaviors modify
the individual patience of pedestrians. The model hypothesis is that crossing pedes-
trians influence pedestrians to cross, and waiting pedestrians encourage pedestrians
to wait. If the pedestrians were not influenced, this would lead to a crossing deci-
sion sooner or later than expected. Based on the difference between the individual’s
patience and the red light remaining, a crossing decision can be expected when the
pedestrians arrive at the crossing location and compare with when pedestrians cross
the street. As a result, some pedestrians cross at red lights, although they are expected
to cross at green lights; conversely, some cross at green lights. This means that the
behavior simulated with this model is consistent with the hypothesis. Moreover, the
percentage of crossing violations is similar to some observations of pedestrian behav-
ior. The violation rate produced is approximately 16, 594%, which is not far from the
violation rate in the major European countries, which is between 20 to 25%.

Street crossings also include interaction with road traffic. I present in the following
section the results of the street crossing model under the second scenario. A street
crossing with road traffic and without a pedestrian light.

7.2 Street crossing: scenario with road traffic

In this second scenario, pedestrians cross a street with road traffic and without a pedes-
trian light. The road traffic is composed of several vehicles with a constant speed and
different constant gaps between vehicles. The pedestrians base their crossing decision
on the comparison of the time-to-contact and the crossing time if an oncoming vehicle
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is perceived; they cross immediately if not. [Oxl+05; LC09] found during their exper-
iment that pedestrians can have an inadequate crossing decisions. This inadequation
of estimation can be caused by several factors (physiological, environmental, contex-
tual, or social). In the proposed model, I suppose the influence from the behaviors of
neighbors and the waiting time create a bias for the perception of the time-to-contact
of an oncoming vehicle. The bias leads to four crossing behaviors (safe, unsafe, missed,
and impossible), and these crossing behaviors are observed during experimental works
[Oxl+05; LC09].

I start this section by comparing the gap observed by pedestrians during a sim-
ulated street crossing and the gap selected by pedestrians during an experimentation,
realized by [LC09]. Then, I show that different crossing behaviors emerge in the simu-
lations. Finally, the evolution of social influence and the bias on the crossing decisions
while waiting to cross is illustrated.

7.2.1 Time-to-contact

The Gap is often used during pedestrian street crossings [Oxl+05; LC09]. Pedestrians
estimate the time between two vehicles and their crossing time to decide to cross.
[LC09] experimented with pedestrian street crossings with road traffic, constant vehicle
speed, and without a pedestrian light. They invited pedestrians to cross a street in a
virtual reality environment when they found the gap is enough. They proposed each
pedestrian 8 different gaps (gapLC09) and 3 vehicle speeds. gapLC09 were between 1
and 8 seconds, and the vehicle speeds were 40, 50, and 60 km/h. Then, they collect the
gap selected by pedestrians (gapselect). During their experimentation, every pedestrian
follows the same protocol.

The proposed time-to-contact model does not use the gap for crossing decisions. It
compares the time-to-contact with an oncoming vehicle (TTC) and the crossing time
of a pedestrian (TPed) for crossing decision. To compare the gap from simulations
using my model and a gap model, I collect the gap observed gapobs by pedestrians in
the simulations when they decide to cross. Then I compare the gapobs with the gapselect

of [LC09].

In my simulations, pedestrians can cross in two situations. The first situation is
when an oncoming vehicle is perceived, leading to a crossing “with interaction” with the
oncoming vehicle. The second situation is “free of interaction” because no oncoming
vehicle is perceived. Pedestrians can have gapobs only if they cross with interaction
and a leaving vehicle exits. Figure 7.6 shows the process of collection of the gapobs.
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Figure 7.6: Process of collection of the gap observed

I compare the number of gaps observed and the crossings with interaction to see
if it is statistically significant. Table 7.4 presents the total number of crossing, crossing
with interaction with an oncoming vehicle, gapobs, and crossing free of interaction.
This table shows that almost all pedestrians crossings with interactions have a gap
observed.

Table 7.4: Number of crossings, crossing with interactions, gap observed, and crossing
free of interaction for all simulations.

vCar
(km/h)

total crossing with interaction with interaction
and gap observed

free of
interaction

40 939 326 324 613
50 994 287 276 707
60 1104 167 164 937

Before comparing the gaps, let us look into the environment’s configuration in my
simulations and in [LC09] experimentation. Firstly, the width of the street for the
two situations is approximately ≈ 4.2 m. Secondly, the crossing speed in these simula-
tions are obtained from the crossing times of pedestrians during their experimentation,
N (µ = 1.06m/s, std = 0.15m/s). Finally, the vehicle speeds are the same for the
two situations (40, 50, and 60 km/h). The difference between the two situations is the
gaps proposed to pedestrians. In this simulation, different gaps are proposed to the
pedestrians. Between 1 and 6 seconds at 40 km/h, and between 1 and 5 seconds at
50 and 60 km/h. I use a uniform distribution for the gaps used to initialize the road
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traffic along the itinerary, and the average gaps are about 3.5, 2.8, and 2.98 seconds
for 40, 50, and 60 km/h. In their experimentation, they propose to each pedestrian 8
gaps between 1 to 8 seconds.

They did not have any unsafe decision, where a pedestrian selected a gap that led
to a collision. In my simulation, some pedestrians had unsafe crossing decisions. Thus,
I split my results into three groups. The first group includes the gapobs observed with
the bias β on the time-to-contact (“global” that is, with all the data). The second
group includes the gapobs observed with the bias β, restricted to the safe crossing
decisions (“safe”). The last group includes the gapobs observed with the time-to-contact
“standard” model (unbiased). The average gaps for the three groups and the gaps from
[LC09] are available in table 7.5.

Table 7.5: Comparison of the average gapobs in simulations and gapselect in experi-
mentation.

40 km/h 50 km/h 60 km/h all speeds km/h
µ (s) std (s) µ (s) std (s) µ (s) std (s) µ (s) std (s)

[LC09] 3.26 1.3 3.20 1.4 3.22 1.1 3.23 1.2
Standard 4.13 0.86 3.44 0.5 2.88 0.39 3.48 0.58
Global 4.34 1.12 3.59 0.73 3.06 0.8 3.66 0.88
Safe 4.52 1.0 3.74 0.57 3.41 0.65 3.89 0.74

The average gaps show that “safe” biased crossings have the highest gaps values.
It is expected because most pedestrians overestimate the TTC during safe crossings.
“global” also higher than “standard” unbiased gaps, meaning that pedestrians tend to
be more cautious when using the bias on the perception on TTC. At the general level,
“standard”, “global”, and “safe” indexes tend to be higher than the gapselected from
[LC09]. This difference may be due to the distribution of gaps proposed to pedestrians.
They proposed 8 gaps between 1 to 8 seconds, and participants were invited to cross
with each of the 8 gaps. In my simulations, pedestrians have proposed gaps from a
uniform distribution and may not experience the small gaps. According to [IN08],
pedestrians can start to cross with a gap of 1.5 seconds. This leads to higher gaps in
my simulations.

Let us examine the gaps in more details. Figure 7.7 presents the cumulative values
of the gaps. In this figure, the x-axis is the gap, and the crossing decision probability
is on the y-axis. The curve increases from 0 to 1 crossing probability, based on the gap
selected by participants. Probability 0 means no pedestrians are crossings, probability
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1 means all pedestrians are crossings. The continuous line is the curve computed from
[LC09], and the dashed line from the simulation (standard in triangle, global β in
square, and safe crossings in triangle), in table 7.5. I also present in this figure the
results for my simulations at 40, 50, and 60 km/h.

Overall, the shapes of the curves are similar. They start to increase around 2
seconds and reach the maximal probability around 5 seconds. No one can cross when
the gap is lower than 1.5 seconds, and 92% of the pedestrians cross when the gap
reaches 7 seconds [IN08]. All simulations and the experimentation have approximately
the same high probability above 5 seconds. In my simulations, pedestrians did not
necessarily encounter low gap situations, decreasing the probability for a gap lower
than 5 seconds. Then, the probability increases because the average gapobs for 40
km/h is around 4 seconds, so most pedestrians cross around the 4 seconds (table 7.5).
For 50 and 60 km/h, the gapobs has a low standard deviation, and the curves do not
increase gradually like the other curve with different vehicle speeds.

(a) Vehicle speed of 40 km/h. (b) Vehicle speed of 50 km/h.

(c) Vehicle speed of 60 km/h.

Figure 7.7: Comparison of the cumulative gap from [LC09] and our simulations. The
gapobs shows the average of all simulations. The gaps are sorted by the three vehicle’s
speeds.
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7.2.2 Presentation of the different crossing behaviors

In this model, I use a bias β to modify the perception of the time-to-contact TTC of
the pedestrian during a street crossing decision. The model allows pedestrians to have
four types of crossing behaviors: “safe”, “unsafe”, “missed”, and “impossible”. The two
first: “safe” and “unsafe” are defined based on the margin from the difference between
TTC and TPed, when a pedestrian decides to cross. If TTC > TPed, then it is “safe”,
and otherwise, it is “unsafe”. The two last: “missed”, and “impossible” are related to
the capacity of pedestrians to cross. If a pedestrian decides to wait but TTC > TPed,
it is a missed crossing; otherwise, it is an impossible crossing.

To check whether these four behaviors can be found in the simulations, with the
proposed model, I decompose the crossing condition TTC × β ≥ TPed, using variables
T = T P ed

T T C and β (Table 7.6). This gives to a 2D representation of each 4 crossing
behaviors, with a definite definition domain. The “safe” behavior happens only if two
conditions are meet: 1 ≥ β > T (E) and β > 1 > T (F). Intuitively, “safe” crossing
would be (F), since the pedestrians overestimate when β is below one; but when an
oncoming vehicle is further away TTC >> Tped, even an underestimation would not
lead to an unsafe crossing. The second “unsafe” behavior happens with only one
condition β > T > 1 (A), during an underestimation of the TTC. The third behavior,
“missed” is possible with one condition: 1 ≥ T > β (D). The fourth (“impossible”)
happens for two conditions: T > β > 1 (B) and T > 1 > β. “impossible” and “safe”
behaviors can happen with both β ≤ 1 and β > 1.

Table 7.6: Classification of the situations A to F, depending on T = T P ed
T T C and

β ∈ [βmin, βmax].

Situation Behavior T β Domain
A unsafe

T > 1
β > 1 β > T > 1

B impossible (β > 1) β > 1 T > β > 1
C impossible (β ≤ 1) β ≤ 1 T > 1 ≥ β

D missed
T < 1

β ≤ 1 1 ≥ T > β

E safe (β ≤ 1) β ≤ 1 1 ≥ β > T

F safe (β > 1) β > 1 β > 1 > T

The four crossing behaviors lead to 6 situations. To illustrate these 6 situations
over a 2D representation β on x-axis and T = T P ed

T T C on y-axis (Figure 7.8); let consider
β between βmin and βmax. The figure is divided by a diagonal line, separated by the
decision to cross (safe or unsafe), or not to cross (missed or impossible).
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Figure 7.8: Representation of the 6 situations from A to F in a 2D dimensional
representation, using axis β and T .

Now, let us apply this formulation to my simulations, with β ∈ [0.5, 1.5]. As we
can see in the figures 7.9(a), 7.9(b), and 7.9(c) all six situations are available and are
in the expected position. The different values of β create the two crossing behavior
“missed” and “unsafe” not available for a standard time-to-contact unbiased model, in
figure 7.9(d), with the standard model, β = 1, leading to homogenous one dimensional
representation.

(a) 40 km / h. (b) 50 km / h.
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(c) 60 km / h. (d) Unbiased.

Figure 7.9: Pedestrian behaviors for all simulations using the 6 situations in terms
of β and T .

7.2.3 Unsafe crossing decisions

According to the model’s hypotheses, pedestrians are expected to have sometimes un-
safe crossing decisions in these simulations. An unsafe decision happens if β > 1, in
situation (A) in section 7.2.2. The value of β depends on two factors: the waiting time
WT and the social influence ∆.

Figure 7.11 shows several unsafe crossing decisions during the simulations. As
expected, the simulations show that the bias β is lower than one for unsafe crossings,
and the greater the β, the greater the negative margins, in figure 7.10(b).

Regarding the factor ∆ alone, the neighbors influence the pedestrian to cross if
∆ < 0 and the neighbors influence the pedestrian to be more cautious if ∆ > 0. The
neighbors do not influence the pedestrians if ∆ = 0. However, WT and ∆ are used to
compute β. Thus, even with ∆ < 0, some pedestrians still can miss the crossings, in
figure 7.10(a).

I quantify unsafe decisions by measuring the margin (TTC − TPed). If TTC <

TPed, then it is an unsafe decision. Pedestrians in my simulations have negative
margins up to −1.25 seconds (Figure 7.11). This margin is close to the negative margin
observed by [Oxl+05] and up to −2 seconds for young and adult pedestrians.

The unsafe decisions in these simulations happen within the first 4 seconds of
waiting (Figure 7.11(a)). As the longer the waiting time increases, the number of unsafe
crossings decreases. Related to these results, several works observed that pedestrians
become impatient after waiting a longer time, and wanted to cross [Bro+13; IN08].
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Alternatively, [DK70] observed that some pedestrians chose safer gaps after waiting a
longer time.

(a) ∆ as a function of margin (b) β as a function of margin

(a) WT as a function of margin

Figure 7.11: ∆, β, and WT during unsafe crossing decision, for all simulations. Unsafe
crossing decisions happen if TTC − Tped < 0.

Why does the unsafe crossing only happen during the first 4 seconds? To respond
to this question, I may first point out that an unsafe crossing decision only happens if
β > 1. To understand what happens, I used a simplified formulation of β = 2

1+e−X ,
with c = 0, for the identification of the conditions. If β < 1, then e−X < 1, and X

combines ∆ and WT . This leads to WT > b
a × ∆, with a = 0.8 and b = −0.5 in

my simulations. If 10 neighbors are crossings, it leads to ∆ = −7. Then, the unsafe
crossings happen before WT = 4.4 seconds, for the defined set of parameters in this
simulation.

I have compared the unsafe decision with [Jay+20], that was interested in street
crossing violations and hesitation behaviors, and this happens when a pedestrian crosses
a street and realizes that they incorrectly estimated the necessary time to cross during
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their crossing. Then, the pedestrians run or steps back to the sidewalk (they modify
their initial crossing decisions). The authors used natural observation of pedestrians
crossing the street at rush hour, with pedestrians uninformed of the purpose of the
work, to avoid bias. They compare different results from two cities (in France and
Japan). They found 5 % and 10 % of hesitation (modified their decisions) in France and
Japan. I have compared unsafe crossing decisions in my simulations to the hesitations
in [Jay+20]. I measured the percentage of unsafe decisions (Table 7.7). The percentage
of unsafe decision is around 11.03% for 40, 50, and 60 km/h.

Table 7.7: Percentage of unsafe crossing. For all simulations

Vehicle speed 40 km/h 50 km/h 60 km/h
Free 613 707 937
Safe 52 187 33
Unsafe 92 89 131
Unsafe (%) 12.15% 9.05% 11.89%
Total 757 983 1101

Figure 7.12 illustrates a few pedestrians who just started waiting and were influ-
enced by neighbors to cross. If β × TTC − TPed > 0, then the pedestrian cross. If
TTC − TPed < 0, the pedestrians do not cross the street. My objective in this illus-
tration is to compare the unsafe and unbiased decisions of the same pedestrians. The
unsafe crossing for each pedestrian is a red star, and the decision if the pedestrians
were unbiased in a black square. This illustration shows that these pedestrians would
cross if their perceptions were unbiased.
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Figure 7.12: Illustration of a few pedestrians waiting and influenced to cross by their
neighbors, and deciding to take an unsafe crossing decision. The red star represents the
unsafe, biased perception, and the black square represents the corresponding unbiased
perception.

7.2.4 Missed crossing decision

In to the situation D in section 7.2.2, a missed crossing may happen if β ≤ 1. ∆ as a
function of β is plotted in figure 7.13(a), and ∆ as a function of WT in figure 7.13(b).

Figure 7.13 shows some pedestrians influenced to cross, but still missed oppor-
tunities, because β depends on ∆ and WT , not only on ∆. The figure 7.13(b) shows
that the number of missed crossing decisions is different with the three different vehicle
speeds. At 40 km/h, some missed crossings happen after waiting more than 30 seconds.
At 50 km/h, some missed crossings happen after waiting 17.5 seconds due to the en-
vironment’s configuration. The vehicles follow the same itinerary for the three vehicle
speeds and have approximately the same gaps. Thus, the number of vehicles follow-
ing the itinerary decreases if the speed increases, reducing the potential interaction
between a pedestrian and an oncoming vehicle.
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(a) ∆ as a function of the β. (b) ∆ as a function of the WT .

Figure 7.13: ∆ as a function of β and ∆ as a function of WT , during missed crossings.

To illustrate a missed crossing decision, let us see the case of one pedestrian P who
waits for 30.3 seconds. His ∆ evolution is plotted in figure 7.14(a) showing a negative
value starting from −2, and then increasing, corresponding to a situation where P is
influenced to cross. His ∆ stabilized at WT = 5 seconds, corresponding to a stabiliza-
tion of the number of neighbors crossing and waiting. The first blue dots appear after
WT = 7 seconds. These blue dots correspond to missed crossings. If the perception
of P was unbiased, he would have crossed at the first missed crossing, at WT = 7
seconds. P missed five opportunities before crossing at WT = 33 seconds. When
P crosses the street, his ∆ drops, meaning several pedestrians are crossing together,
corresponding to a pedestrian not perceiving any oncoming vehicle, or an oncoming
vehicle is perceived, but at a large enough distance to allow the crossing.

Figure 7.14(b) corresponds to the β of P . It drops quickly and reaches its minimal
value of 0.5, after WT = 7.5 seconds, and stabilizes until the end. Reaching its lowest
value means the pedestrian becomes very cautious and overestimate the TTC in this
situation.

Figure 7.14(c) compares the biased missed crossings (blue dots) and the decision if
the perception was unbiased (red dots). Each line corresponds to an interaction with an
oncoming vehicle, and the line decreases when the oncoming vehicle approaches. A new
decreasing line appears when pedestrians perceive another oncoming vehicle, forming
a saw toothed waveform. I only plot dots for the missed crossing and the unbiased
crossings in this illustration. Thus, if the interaction with an oncoming vehicle is
impossible, I do not plot a point at the beginning of the new decreasing line. A
pedestrian missed a crossing if β × TTC − TPed < 0, and the illustration shows that
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the blue dots are only on the negative side. Then, since it is a missed crossing, a
pedestrian would cross if his perception of the TTC was unbiased.

The figure 7.14(d) shows the missed and impossible crossings encountered by P ,
while he was waiting. A crossing is impossible if TTC−TPed < 0, and seven situations
meet this condition (black dots). The rest five dots in blue are missed crossings. Then,
P has 13 interactions with oncoming vehicles before crossing the street.

(a) ∆ evolution. (b) β evolution.

(c) Decision comparison. (d) Missed and impossible crossing.

Figure 7.14: An illustration of missed and impossible crossing by one pedestrian
waiting for 33.8 seconds.

7.2.5 Evolution of social influence during the waiting phase

Figure 7.15 shows two illustrations of the evolution of ∆ for some pedestrians during
the waiting phase. The first illustration is on the left; some pedestrians are waiting for
a shorter waiting time, reaching approximately 12 seconds. The second illustration is
on the right; some pedestrians are waiting for a longer waiting time, reaching about
32 seconds. Each plot represents the ∆ of one pedestrian, starting from WT = 0
until the decision to cross. The figure shows that ∆ can have positive and negative
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values during the waiting phase, meaning that the social influence can evolve during
the waiting phase.

(a) Shorter waiting time before crossing. (b) Longer waiting time before crossing.

Figure 7.15: Two illustrations of the evolution of the ∆ of several waiting pedestrians.
Each plot represents the situation of one pedestrian, and at the end of each line, that
pedestrian crosses the street.

7.2.6 Evolution of the bias before crossing

The bias β is computed from ∆ and WT . Figure 7.16 illustrates the β values obtained
from the previous illustration ∆, in figure 7.15. Each plot represents a β for one waiting
pedestrian, every time-step until the pedestrian crosses. The β parameters used for all
simulations are a = 0.8, b = −0.5, and c = 0.5.

The illustrations show some variability in β, during the first 6 seconds, then the β
stabilized later until the crossing. This illustrates that ∆ has less impact on β after the
first 6 seconds, and WT has a stronger influence over ∆ after this stabilization because
after 6 seconds ∆ still have variability in figure 7.15, but does not impact much β.

(a) Shorter waiting time before crossing. (b) Longer waiting time before crossing.

Figure 7.16: Two illustrations from the results of the evolution of β of several waiting
pedestrians, using ∆ from figure 7.15. Each plot represents one pedestrian, until he
crosses the street.



124 Chapter 7. Street crossing simulations

To understand why after 6 seconds, β becomes relatively constant, even if ∆
changes, I illustrate two situations with two extreme values of ∆. I select a low value
∆low = −6, and a high value ∆high = 1. Then, I use the two values of ∆ with WT = 10
seconds (greater than 6 seconds) to compute β. I found similar values of beta in the
two situations:

X


X = b× ∆− a×WT

X(∆low) = −1.8

X(∆high) = −5.3

(7.4) β


β = 2×(1−c)

1+e−X + c

β(∆low) = 0.51

β(∆high) = 0.5

(7.5)

7.2.7 Conclusion from the scenario with road traffic

In this second scenario, the pedestrians cross a street with road traffic and a with-
out a pedestrian light. The vehicles follow the same itinerary, do not interact with
pedestrians, and have a constant speed.

The pedestrians base their crossing decision on comparing the time-to-contact and
the crossing time if an oncoming vehicle is perceived. Pedestrians can have an inaccu-
rate estimation of the time to cross. Experimental work finds that some pedestrians
have inadequate crossing decisions [Oxl+05; LC09]. I suppose it can be caused by
a bias in the perception of the time-to-contact, and the bias is based on the social
influence from neighbors and on the waiting time.

The bias produces several crossing behaviors (safe, unsafe, missed, or impossible).
A pedestrian can only have safe or impossible behaviors with a standard time-to-contact
model. Pedestrians adapt their behavior according to the situation. Pedestrians can
decide to cross, even if they do not have the speed to cross safely because the situation
influences them to cross. Conversely, pedestrians can decide to wait, even if they have
the speed to cross safely because the situation influences their decision to wait. Thus, a
pedestrian would have different behavior if he is alone or in the presence of neighbors.
Moreover, a pedestrian would not behave the same regardless of the time. A pedestrian
would have different behavior after waiting some time on the sidewalk.

To estimate to the consistency of the simulations, I compared the gapobs observed
by simulated pedestrians during their street crossing with the gapselect selected by
pedestrians during an experiment realized by [LC09]. The gapselect and the gapobs

have the same tendency. I also compare the unsafe decision with another experimental
work [Oxl+05]. They found a negative margin between [−2, 0] seconds for young and
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adult pedestrians, while in the simulations, the margin is between [−1.25, 0] seconds.
I have also compared the percentage of hesitation during the street crossing. [Jay+20]
found some pedestrians misevaluate their timing and cross, and during the crossing
they realize their misevaluation. In their results, [Jay+20] found about 5 and 10 % of
pedestrians have hesitation behaviors. I compared these hesitations to unsafe decisions,
and my percentage of unsafe decisions is about 11.03% for all simulations.

7.3 Conclusion

To improve the heterogeneity of behaviors during street crossings, I hypothesized that
the patience value can evolve based on social influence such that a pedestrian decides
to violate the pedestrian light, if the patience runs out during a red light. This mod-
ification of patience allows a pedestrian to violate or to comply with the traffic law,
depending on to the social influence. These hypotheses are observed in the behaviors
of pedestrians, in the simulations. Then, I made another hypotheses that pedestri-
ans could have a bias on the perception of oncoming vehicles during street crossings,
leading to inaccurate decisions. The simulations show that some simulated pedestrians
have inaccurate decisions, and these inaccurate decisions are consistent with several
observations of pedestrian behavior during experimental works and field observations.
Thus, the two hypotheses are observed in the behaviors of pedestrians during the street
crossing simulations.





127

Chapter 8

Conclusion and perspectives

Section 8.1 summarizes the contributions realized during this thesis. Section 8.2 devel-
ops the contributions realized. Section 8.3 presents some limitations, and section 8.4
presents the long-term and short-term perspectives.

8.1 Summary

Pedestrian simulations would be more realistic if their behaviors were similar to those
observed in real-life situations. However, many of these simulations lack behavioral
heterogeneity due to the simplifications of models, diminishing their realism. This
thesis aims to increase the heterogeneity of the interactions between pedestrians dur-
ing collision avoidance and street crossing decisions. My first contribution consists in
adapting collision avoidance to the situation perceived by pedestrians. My second con-
tribution combines collision avoidance with a queuing model by considering a leader in
front of a pedestrian who constrains the pedestrian more than the rest of the neighbors.
These contributions are based on the perceived physical characteristics of pedestrians
(size, position, speed). However, temporal situation (how long the agent has been in
a situation) and social information (actions of perceived neighbors) can impact the
behaviors of pedestrians. A pedestrian agent with the same physical characteristics
but different temporal situations or social influences may decide differently. My main
contributions consist in developing a street crossing model that considers the waiting
time and social influence from perceived neighbors. The model is assessed under two
scenarios: 1) a street crossing with a traffic light without road traffic, and 2) a street
crossing with only road traffic. The results show behaviors that are not frequent in the
context of pedestrian simulations but are often observed in real-life situations, such as
decisions to violate or comply with the traffic rules or an inadequate crossing decisions
with oncoming vehicles. These decisions would be different if the pedestrians arrived
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differently on the sidewalk or received different social influence. I have proposed four
contributions to increase the heterogeneity of pedestrians. The contributions presented
several activities of pedestrians: avoiding collisions, following someone, and crossing a
street with a pedestrian light or with road traffic. The results show a consistency of
the simulated behaviors with behaviors observed in the literature.

8.2 Major contributions

Work 1 gives to pedestrians the possibility to adapt collision avoidance based on the
perception of neighbors. Related to this topic, [Der+19] was interested in face-to-
face collision avoidance interactions. They found that the one with higher attention
avoids the collision. I, therefore, assume that higher attention means greater anticipa-
tion of the collision avoidance. Reciprocally, lower attention means lower anticipation.
[Cur+13] was interested in breaking the symmetry during collision avoidance interac-
tions. They give priority to pedestrians, and the one with lower priority avoids more
than the one with higher priority. My contribution is the combination of the colli-
sion avoidance effort and the anticipation of pedestrians. Thus, each agent can have
different anticipation and collision avoidance, leading to asymmetric interactions. I
have implemented the model by simulating two pedestrians moving toward each other
in a corridor and avoiding when they meet. The result shows that pedestrian agents
can adapt to the situation. A pedestrian agent can avoid another agent more than its
capacity if the other agent does not avoid enough. Conversely, a pedestrian agent can
avoid another agent below its capacity if the other agent avoids enough. The ORCA
model is used for collision avoidance in this work.

Work 2 combines a collision avoidance and a queuing model. [LA16] was interested
in diversifying the collision avoidance by extending the ORCA model with a queuing
model. The ORCA and the queuing model are used to compute pedestrians’ accel-
eration in their model if the pedestrian finds a neighbor (leader) who constrains the
pedestrian the more. The acceleration is the minimum computed by the two mod-
els. If no leader is found, then the ORCA model is used. My contribution consists in
enriching this model by defining three different interactions between the pedestrian,
the leader, and the rest of neighbors. Instead of using only the minimum acceleration
from the ORCA and the queuing model, I defined: (1) the maximal, (2) the smallest,
(3) or pure queuing. The simulations show that pedestrians adapt their behaviors
according to neighbors’ situations. I computed fundamental diagrams to see if the
simulated crowds follow the property of standard crowds, consisting of higher average
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speed at lower pedestrian density and lower average speed at higher pedestrian density.
The fundamental diagrams show that increasing the heterogeneity does not modify the
propriety of the simulated crowd.

Work 3 uses the patience of the agent and social influence from the behaviors of per-
ceived neighbors to modulate crossing decisions at a street with a pedestrian red light
without traffic. [KO03] found that some pedestrians begin to violate the traffic signal
after waiting about 20 seconds, which can be assimilated to the fact that pedestrians
have limited patience for waiting at a red light and violate the pedestrian light if they
lose patience. [Ros09] found that crossing decisions may be related to social influence.
The author hypothesized that seeing someone crossing influences a pedestrian to cross
(H1), and seeing someone waiting influences a pedestrian to wait (H2). My contribu-
tion consists of computing a social influence factor consistent with H1 and H2, using
a linear combination of the number of crossing and waiting neighbors, and using the
social influence to modify the patience at each time step. Then, the social influence
can increase patience, and pedestrians may wait longer than if they had been alone in
this situation. Conversely, the social influence can decrease patience, and pedestrians
may wait longer than if they had been alone in this situation. The violation rate pro-
duced with the model is consistent with those observed in the literature. This model
is pretty simple regarding the formulation. I use a linear combination to combine two
hypotheses, and the model can produce heterogeneous crossing behaviors, which can
be observed and compared to real behaviors. This model also is modular regarding
the implementation. I developed the crossing decision model at the tactical level using
ORCA at the operational level. I expect to have a similar result with another op-
erational model, such as SFM. Nevertheless, the first formulation of patience cannot
be used for a real-time simulation. Therefore, I developed another formulation of pa-
tience used to simulate a group of non-player-character (NPC) pedestrians influenced
by a bot controlled by an experimenter. This new formulation allows the model to be
scalable and reproducible under different time-steps, including real-time, which can be
considered as a criterion of the robustness of the model according to [Don+08].

Work 4 uses the waiting time of the pedestrian agent and social influence from the
behaviors of neighbors to modulate crossing decisions with road traffic without a pedes-
trian light. [Oxl+05; LC09] found that pedestrians can have inadequate decisions;
some pedestrians have unsafe crossings and others have missed. I hypothesized that
the inadequate decisions could be caused by a bias in estimating the time-to-contact
(TTC) of oncoming vehicles. My contribution is the development of the bias, using the
waiting time and social influence from the perceived neighbors. This bias leads to an
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inaccurate estimation of the TTC, and then to an inadequate decision. The pedestrian
agent may thus decide to wait when he can cross, missing an opportunity; he also
may decide to cross when the situation does not allow it. The results are consistent
with the behaviors observed by [Oxl+05; LC09] when comparing the negative mar-
gin during unsafe decisions and the gaps between vehicles observed during crossings.
The percentages of unsafe decisions are consistent with those observed by [Jay+20].
Thus, the model can produce inadequate decisions consistent with the behavior of real
pedestrians.

8.3 Limits

1. The adaptation behavior is based only on physical information (velocity, position,
and size) in work 1 and 2, meaning that two different agents with the same
perceived physical characteristics will be processed the same.

2. I have only launched three distributions for setting the pedestrian speed and the
gap between vehicles because the model does not have any randomness (work
1 and 2). To have a better statistical power, more distributions should be per-
formed.

3. I have set the number of neighbors perceived by an agent pedestrian to ten
neighbors because of human limitation to process several items simultaneously
[SO03] (work 1, 2, 3, and 4). The selection of the neighbors perceived is based
on their nearest positions. If more neighbors are waiting on the sidewalk and the
waiting neighbors are closer than the crossing neighbors, a pedestrian may not
see crossing neighbors.

4. I empirically configured the weight parameters pC and pW used to compute the
social influence ∆ (work 3). The same is true for the parameters a, b, c for the
calculation of the bias β (work 4). A sensitivity analysis of these parameters
would be useful.

5. Street crossing could be roughly classified in four configurations (Figure 8.1). The
first is with a pedestrian light without road traffic (A), the second situation is with
a pedestrian light with road traffic (B), the third situation is without a pedestrian
light with road traffic (C), and the last situation is without a pedestrian light
without road traffic (D). The model should be assessed for the configuration (B).
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With pedestrian light
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Without pedestrian light
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Figure 8.1: Crossing situations for a global street crossing model.

8.4 Perspectives

8.4.1 Short-term

Regarding limit 3, a perspective is to build a meta-agent, similar to one developed by
[LA16], during group collision avoidance. Several pedestrians would be considered as
one group in this situation, allowing perceiving more than ten neighbors and respecting
the human limitation.

Regarding limit 5, my objective is to have a general street crossing model with
the four situations in figure 8.1. The perspective is to implement (B) situation. (B)
situation combines (A) and (C). Another perspective is to allow a pedestrian to define
the crossing location. For example, a pedestrian walking on the sidewalk toward the
crossing location, may find an opportunity to cross, and cross before arriving, at the
crossing location. This crossing behavior also known as jaywalking. [Wan+10] modeled
pedestrian’s gap acceptance during jaywalking. They use three factors in their model:
the gap time, age of the crossing pedestrian, and the number of crossing pedestrians.

I compared the results of the simulations from experimental and observation work.
Another way to evaluate the reliability of simulated NPC pedestrians is to develop
a virtual experiment using videos and a questionnaire. One way to realize that is
to develop a video of several scenarios and use a questionnaire to ask participants
whether the street crossing made by the NPCs are plausible or not, compare their
own experience, for example. [Der+19] developed videos of two pedestrians moving
toward each other in a narrow sidewalk. The size of the sidewalk is only large for one
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pedestrian, and one of them has to step down when they meet. Then they developed
a questionnaire asking participants which one of the pedestrians would step down.

An unsafe decision in this model would lead to a collision after they decide to cross
because the pedestrians and the oncoming vehicle has a constant speed. However, the
driver may have different behaviors (to accelerate, to decelerate, or stop). I would
consider the interaction between the driver and pedestrian as a perspective of this
model. For example, [Zhu+22a] developed a game theory model between the decision
of the driver to yield and the pedestrian to cross. Moreover, this model is developed
to decide to cross, and agents do not change their decision when they start crossing.
But in many situations, the crossing is a continuous process. Pedestrians adjust their
speed according to the reaction of the oncoming vehicle. For example, [Jay+20] found
some pedestrians running to finish their crossing to compensate for an unsafe decision.

8.4.2 Long-term

An agent pedestrian can be influenced by his neighbors in his decision to cross. To sim-
plify my model, I have limited the influence to pedestrian behavior (crossing/waiting).
To enrich the model, different other factors could be considered. [LBM55; GP01] found
that the status of the neighbors can have different influences on the agent pedestrian.
A high-status pedestrian can influence more than a low-status one. The distance be-
tween the neighbors and the agent pedestrian also could impact the influence [FKK10].
Moreover, in most situations, the crosswalk is bidirectional, and pedestrians can cross
from both sides of the street. In this work, I have only considered the influence of
neighbors on one side, while the presence of other pedestrians on the opposite side can
reduce the cautiousness of pedestrians, according to [Har91].

I developed a social influence model for street crossings, but the concept could
be implemented in different situations, such as a leader following. Instead of selecting
a leader only based on physical characteristics, one could use social status or social
influence.

Regarding street crossing with a pedestrian light, pedestrians cross immediately
when the light turns green, which is impossible for real pedestrians. [Fug+00] founds
that pedestrians have a reaction time of around one second when the pedestrian light
changes color, and the reaction time is longer for older pedestrians than for younger
ones. Thus, the perspective is to include this reaction time in the model.
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The street crossing model can be used to experiment with street crossings in VR
environment. I have already used this model to implement a scenario of a group of
NPC pedestrians influenced by a bot [RAB21]. It would be interesting to see if NPCs
can influence humans, or if human players can influence NPCs.
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