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Trois essais sur la vulnérabilité des institutions

financières et leur réaction stratégique aux chocs

Résumé

Le secteur des assurances joue un rôle crucial dans les économies avancées comme dans

les économies en voie de développement. Les vagues de faillites au Japon dans les années

1990 au sein de ce secteur, ainsi que les renflouements à grande échelle dans le sillage

de la crise financière de 2008, ont démontré la vulnérabilité de cette industrie aux chocs

macroéconomiques.

Dans cette thèse, d’abord nous construisons une base de données unique sur les défaillances

d’assurance dans quatre grands pays au cours des 40 dernières années. Nos résultats montrent

que la présence d’actifs à revenu fixe dans le portefeuille joue un rôle d’atténuation du risque

pour les sociétés d’assurance-vie, tandis que cet effet n’est pas présent pour les organismes

du secteur non-vie. Inversement, nous trouvons des preuves que l’efficacité opérationnelle

est importante pour les organismes d’assurance non-vie, mais pas pour le secteur vie. Dans

notre deuxième chapitre, nous dévoilons des incitations à la fusion créées par Solvabilité II,

ainsi qu’une série de réformes spécifiques à la France. Nos résultats suggèrent une absence

d’arbitrage réglementaire lié à la conception de Solvabilité II. De plus, contrairement aux

autres organismes cibles, les assureurs exposés aux réformes du secteur de la santé n’ont pas

été confrontés à des problèmes de rentabilité ou de solvabilité au moment de leur fusion,

indiquant une anticipation des effets de la réforme avant leur matérialisation. Enfin, nous

quantifions l’effet de la politique monétaire sur la probabilité de faire défaut sur un crédit

immobilier à taux variable. En particulier, nos résultats révèlent qu’une augmentation de

100 pb des paiements trimestriels induite par les variations de l’Euribor 3 mois augmente la

probabilité de défaut d’environ 5%.

Mots Clés : Insolvabilité des assurances, prédiction de défaut, fusions et acquisitions,

réformes réglementaires, transmission de la politique monétaire
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Three essays on the vulnerability of financial

institutions and their strategic reaction to shocks

Abstract

The insurance industry plays a crucial role in both developing and advanced economies.

Waves of failures in Japan in the 1990s as well as large-scale bailouts in the wake of the

Great Recession demonstrated the vulnerability of this industry to macroeconomic shocks.

In this thesis, we first construct a unique data-set of insurance failures in four large coun-

tries over the last 40 years. Our estimates show that portfolio composition (particularly, the

presence of fixed income instruments) plays a risk-mitigating role for life insurance firms,

while no such effect appears for non-life firms. Conversely, we find evidence that operating

efficiency matters for non-life firms, but not life sector firms. In our second chapter, we

discuss the merger incentives provided by Solvency II, as well as a series of French-specific

health sector reforms. Our results suggest an absence of regulatory arbitrage linked to the

design of Solvency II. Further, unlike other target undertakings, insurers exposed to the

health-sector reforms were not experiencing profitability or solvency problems at the time of

their merger, indicating an anticipation of the reform’s effects before their materialization.

Finally, in our last chapter, we quantify the extent to which monetary policy asymmetrically

affects variable-rate mortgages. In particular, our results reveal that a 100 bp increase in

quarterly payment induced by variations in the 3-month Euribor increases the probability

of default by around 5%.

Keywords: Insurance insolvency, default prediction, mergers and acquisitions, regula-

tory reform, monetary policy transmission
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Introduction

Les organismes d’assurance jouent un rôle fondamental dans la gestion des risques au sein

des économies. Arena (2008) montre comment la présence d’activité en assurance vie et non-

vie a un impact positif sur la croissance économique dans 56 pays. Les effets bénéfiques des

marchés d’assurance robustes sont nombreux et varient selon les juridictions. Lorsqu’ils

intègrent les pays en développement, ces marchés permettent souvent de mutualiser les

risques et facilitent les transactions pour les agents averses au risque. Ils servent également

à stabiliser les revenus des ménages, en plus de jouer un rôle clé en tant qu’intermédiaire

financier. En tant que premier marché de l’assurance en Europe continentale1, la France est

particulièrement dépendante de ce secteur. En 2019, les assureurs français ont souscrit e 150

milliards de primes d’assurance-vie, e 109 milliards de primes non-vie, supportant ensemble

e 3.02 trillions d’actifs totaux. Avec un ratio de solvabilité de 267% à l’échelle du marché,

les organismes ont été plus que capables de faire face aux perturbations financières, même

pendant le cycle de la crise économique de Covid-19.

Parmi les assureurs français, figure un groupe d’importance systémique, auquel s’ajoutent

d’autres assureurs de taille importante appartenant à des groupes bancaires (ainsi appelés

bancassureurs). Le débat s’intensifie entre les décideurs et les universitaires concernant le

caractère systémique des marchés de l’assurance. Étant donné que les architectes de la

politique macroprudentielle sont chargés de comprendre les liens d’un système financier de

plus en plus complexe et interdépendant, les assureurs accordent une attention renouvelée

aux activités spécifiques liées aux entreprises. Un volet de la littérature universitaire (voir

Harrington (2009), Billio et al. (2012) ou Cummins and Weiss (2014)) soutient l’idée que

ces entreprises sont exposées au risque de marché émanant d’autres institutions (telles que

les banques), bien qu’elles ne soient pas ou peu susceptibles de provoquer à elles seules un

évènement d’instabilité financière. Les assureurs vie sont typiquement considérés comme

vulnérables aux crises intra-sectorielles en raison du risque de levier et de liquidité, tandis

que les assureurs non-vie et dommages sont vulnérables aux crises de réassurance résultant

1ACPR (2019)

15



Introduction

de l’exposition au crédit de la contrepartie. Surtout, ce sont les activités “non essentielles”

(telles que la vente de produits dérivés) qui auraient le potentiel de causer un événement

systémique, à l’instar des instruments de credit default swaps (CDS) vendus par le groupe

américain AIG avant la crise financière de 2007-2008. Dans l’ensemble, cependant, à quelques

exceptions près, comme le groupe néerlandais Aegon, le secteur de l’assurance est resté à la

périphérie de cette crise.

Toutefois, les faillites de groupes d’assurance japonais dans les années 90 (voir Bernard

et al. (2014)) et pendant la crise financière de 2008, ainsi que les difficultés du groupe

américain AIG, ont montré que ces institutions étaient vulnérables aux chocs. En 2010, le

Conseil de stabilité financière (FSB) a demandé à l’Association internationale des contrôleurs

d’assurance (IAIS) d’élaborer un processus pour identifier les groupes d’assurance à l’échelle

mondiale dont la détresse ou la défaillance désordonnée, en raison de leur taille, de leur

complexité et de leur interconnexion, entrâıneraient des perturbations du système financier

mondial et de l’activité économique. Une première méthodologie est développée et publiée

en 2013, avant d’être appliquée pour l’identification des “Globally Systemically Important

Insurers” (G-SIIs) en 2013, 2014 et 2015. Au cœur de cette méthodologie se trouve une

approche basée sur les activités, qui donne plus de poids aux activités dites “non tradition-

nelles, non-assurance” (NTNI) pour les raisons évoquées ci-dessus. En novembre 2019, l’IAIS

a adopté le “cadre holistique” pour l’évaluation et l’atténuation du risque systémique dans

le secteur de l’assurance, fondé sur un exercice récurrent de surveillance mondiale qui vise à

limiter l’accumulation du risque systémique ex ante.

L’identification d’indicateurs avancés—l’objectif du premier article de cette thèse—reste

important dans une perspective microprudentielle (conformément au mandat de l’Autorité

de Contrôle Prudentiel et de Résolution, l’institution d’accueil dans le cadre de cette thèse)

indépendamment du potentiel d’effets de contagion. Une supervision appropriée ainsi qu’une

intervention rapide peuvent à la fois maintenir la confiance des consommateurs et protéger

les assurés en cas d’un éventuel transfert de portefeuille ou liquidation. En 2014, l’Autorité

européenne des assurances et des pensions professionnelles (EIOPA) a commencé à collecter

des informations sur les défaillances ou les “quasi-défaillances” d’organismes d’assurance au

sein de l’Espace économique européen. Cette base de données, qui comprend 180 cas en-

tre 1999 et 2016, vise à comprendre à la fois les causes probables ainsi que leur impact plus

général au sein du marché national concerné. Le rapport analytique (publié en 2018) a donné

plusieurs conclusions importantes. Premièrement, il a révélé que le risque le plus courant

concernait des problèmes internes ou des contraintes de gouvernance qui sont difficiles à
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définir ou même à repérer, comme la capacité de gestion. Ces éléments sont problématiques

pour le superviseur ; même si les diverses dimensions du Pilier II de Solvabilité II cherchent à

renforcer la gouvernance et la gestion des risques, la supervision reste essentiellement quan-

titative et axée sur les données. Un deuxième point à retenir de cette étude est le manque de

corrélation forte des défaillances avec les cycles économiques: seulement 37% des déficiences

du secteur de la vie sous la fenêtre d’étude de 17 ans se sont produites pendant la période

2008-2009. Ensemble, ces résultats appellent à une meilleure compréhension de la dynamique

des défaillances d’assurance, en particulier dans un contexte d’incertitude macroéconomique

persistante. Tel est l’objectif du premier chapitre de cette thèse.

En outre, la concurrence des institutions financières au sein de l’Espace économique eu-

ropéen n’a cessé de s’intensifier, laissant potentiellement les entreprises encore plus vulnérables

aux chocs. En effet, un processus d’intégration est observée depuis un certain nombre de

mesures phares qui visaient à unifier ce marché, autrefois caractérisé par des marchés na-

tionaux souvent “protégés” avec une forte fragmentation nationale. Suite à l’introduction

de plusieurs directives sur les assurances entre 1987 et 1994 permettant aux compagnies

d’assurance de concevoir leurs produits et d’exercer une activité dans tout l’Espace économique

européen sous une licence unique, ce marché a en effet connu une transformation importante.

Les évaluations initiales de ce changement dans la structure du marché ont révélé une con-

vergence de l’inefficacité des firmes à travers des frontières (voir Mahlberg and Url (2000)

ou Beckmann et al. (2003)) ainsi qu’une intégration accrue du marché. Cette tendance est

également confirmée par des études ultérieures (par exemple, Cummins et al. (2017)).

L’harmonisation entre les pays de l’Union européenne s’est poursuivie en 2016 avec

l’entrée en vigueur des réformes réglementaires Solvabilité II, qui ont transformé la surveil-

lance du secteur assurantiel en un régime fondé sur les risques et cohérent avec le marché

(“market-consistent”). Le cadre précédent (“Solvabilité I”)—fondé sur une directive eu-

ropéenne de 1973 pour l’assurance non-vie et de 1979 pour l’assurance vie—avait le mérite

d’homogénéiser les principes réglementaires au sein du marché européen, mais reposait sur

des exigences de fonds propres trop simplistes qui ne reflétaient pas les véritables expositions

(ou mécanismes de diversification) auxquelles était confronté un assureur donné.

La question des effets plus importants de cette régulation reste peu étudiée dans la

littérature et fait donc l’objet du deuxième chapitre de cette thèse. En effet, en réaction à

la directive Solvabilité II de 2009, de nombreux observateurs pensaient que cette harmon-

isation et cette convergence transfrontalière donneraient lieu à un phénomène distinct : la
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concentration. Alors que le principe de la libre prestation de services du marché unique de

l’UE peut, en théorie, supprimer certaines barrières pour des bases de clients plus larges,

les acteurs plus importants peuvent bénéficier de rendements d’échelle croissants pour mieux

tarifer les plus petits organismes—en particulier ceux qui ne sont pas en mesure de supporter

les coûts de mise en conformité associés au nouveau régime réglementaire Solvabilité II.

Outre la réforme précitée, le marché français a également connu une transformation

réglementaire dans un secteur d’activité spécifique: les contrats de complémentaire de santé.

L’accord national interprofessionnel (ANI)—signé en 2013 avant d’entrer en vigueur en

2016—oblige tout employeur à proposer des contrats individuels ou collectifs à chaque salarié.

Parallèlement, une clause dite de désignation a été déclarée inconstitutionnelle avant d’être

supprimée2 du projet de loi ANI. Ensemble, ces réformes ont élargi le marché et ont intensifié

la concurrence entre les acteurs, exerçant une pression soutenue sur les entreprises ayant des

liens historiquement protégés avec des industries données.

Ces évolutions réglementaires ont effectivement cöıncidé avec une décroissance du nom-

bre d’organismes d’assurance actifs en France. Entre 2011 et 2019—période au cours de

laquelle les réformes ont d’abord été négociées avant d’entrer en vigueur—le nombre total

d’entreprises d’assurance agréées sur le marché français est passé de 1 074 à 695. Il est

essentiel, tant pour les autorités de la concurrence que pour les superviseurs prudentiels,

de comprendre la nature de ces fusions-acquisitions. D’une part, les gains d’efficacité as-

sociés aux grandes firmes peuvent dans certains cas être répercutés sur les consommateurs

sur le marché des produits; en revanche, une concentration plus élevée entrâıne souvent des

prix (primes) plus élevés (voir, par exemple, Trish and Herring (2015) pour une étude sur

le marché de l’assurance santé aux États-Unis). D’autre part, au-delà de la question de

la concentration du marché, nous pouvons tester la présence d’un arbitrage réglementaire

potentiel et documenter les effets indésirables de ces réformes qui ont transformé le secteur

de l’assurance au cours de la dernière décennie.

Enfin, le troisième chapitre de cette thèse redécouvre le thème de la prédiction de défaut

abordé dans le premier article, appliqué cette fois aux prêts immobiliers. Parallèlement aux

contrats d’assurance vie et non-vie, les prêts au logement constituent une interconnexion

importante des ménages dans le système financier. La dette immobilière est effectivement la

2Le groupe de sénateurs UMP qui a adapté la législation ANI pour supprimer la clause de désignation
a estimé qu’elle ”serait de nature à entraver le libre jeu de la concurrence entre les différents organismes
d’assurance.” Dispofi (2015)
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principale source d’endettement des ménages dans tous les pays de la zone euro (voir Finance

and Network (2016)). De plus, une relation de crédit à long terme implique des frais de loge-

ment récurrents, qui représentent une part importante du budget mensuel d’un ménage. La

situation financière est donc très dépendante des conditions de crédit, notamment des taux

d’intérêt. Par conséquent, ces taux ont un impact important sur les contraintes budgétaires,

l’épargne, la consommation et l’accumulation de richesse au cours de leur cycle de vie. Dans

cet article, une analyse est donc menée sur l’interaction entre la fragilité financière des

ménages et la politique monétaire.

Les taux d’intérêt sur les prêts immobiliers proposés aux ménages français ont forte-

ment baissé au cours des dernières décennies, passant de 6% au début des années 2000 à

un record historiquement bas de 1,2% fin 2019,3 grâce à l’action de la politique monétaire

expansionniste de la BCE. Cet environnement a largement facilité l’accès à l’achat du loge-

ment, stimulant la demande de crédit dans ce secteur.

Comme mentionné ci-dessus, les taux d’intérêt sont le principal canal de transmission

directe de la politique monétaire aux finances des ménages. Ainsi, la politique monétaire

expansionniste a des effets directs sur le coût du capital pour les nouveaux emprunteurs, qui

bénéficient d’une amélioration des conditions d’octroi de leurs crédits immobiliers. Il existe,

cependant, une hétérogénéité quant à la façon dont les cohortes de prêts existantes sont

exposées à ce canal de transmission de la politique monétaire. En effet, les taux directeurs

ont un impact sur les paiements d’intérêts pour les ménages ayant des dettes immobilières

en cours (ainsi que les ménages ayant des actifs à court terme (Ampudia et al. (2018))).

Alors que les détenteurs de prêts à taux fixe ne voient aucun changement, ces ménages qui

ont souscrit un prêt à taux flottant peuvent gagner en pouvoir d’achat suite à une réduction

des taux directeurs.

7% du stock de crédits immobiliers en cours en France suivent des échéances révisables

ou variables, même si 97% des nouveaux crédits en France sont à taux fixe (ACPR (2017)).

En fonction du contexte macroéconomique, certains emprunteurs peuvent choisir de refi-

nancer leur prêts pour réduire les remboursements futurs et, in fine, minimiser les coûts

d’investissement. Cette stratégie a été particulièrement pratiquée entre 2016 et 2017 en

France, où environ 30% des nouveaux prêts étaient des renégociations de contrats existants.

Cependant, Mian et al. (2013) montrent que les ménages très endettés sont souvent inca-

pables de refinancer leur emprunt à un taux inférieur en raison de leur situation financière

3Banque de France, nouveaux crédits immobiliers aux particuliers, annuel taux d’intérêt.
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vulnérable. Cela peut empêcher les ménages de certaines catégories socio-professionnelles

de bénéficier des conditions favorables sur le marché du crédit. En conséquence, il existe

d’importantes frictions de transmission de la politique monétaire vers le stock de prêts au

logement en raison de la prédominance des prêts à taux fixe et de la capacité de refinance-

ment limitée pour les ménages très endettés. Ainsi, une partie fragile de la population reste

exposée aux futurs changements de politique monétaire.

Compte tenu de l’environnement actuel de taux d’intérêt extrêmement bas, il est na-

turel de s’interroger sur la future hausse attendue des taux directeurs. L’effondrement de

Countrywide Financial en 2008 a montré qu’une augmentation des paiements sur les prêts

sophistiqués peut déclencher une vague de défauts. Par conséquent, certaines questions se

posent aujourd’hui quant à l’effet négatif direct qu’un changement sur les taux directeurs

pourrait avoir dans un avenir proche, surtout dans les pays où les prêts à taux variable

dominent le marché.

Présentation et organisation de la thèse

Le marché européen de l’assurance (et, a fortiori, le marché français) s’est profondément

transformé au cours de la dernière décennie. Suite à la mise en place du marché unique

européen, la concurrence transfrontalière a renforcé la nécessité d’un cadre prudentiel unifié.

Après environ une décennie de négociations, la réforme Solvabilité II est entrée en vigueur,

harmonisant les pratiques mais cöıncidant avec une vague de fusions—en particulier parmi

les petites entreprises. Parallèlement, une série de fusions spécifiques à la France dans des

secteurs ciblés a encore accru la concurrence intermarchés, accentuant la tendance à élargir

la taille des marchés et le choix des consommateurs.

Notre thèse s’inscrit dans ce contexte et cherche à comprendre les effets de ces réformes

et à évaluer les déterminants des vulnérabilités dans ce secteur tout en tenant compte de

l’évolution des contextes juridictionnels. Nous projetons également l’étude des déterminants

du défaut sur un secteur spécifique—celui des prêts au logement. A l’instar du chapitre qui

étudie les organismes d’assurance, nous utilisons une base de données unique pour essayer

de démêler les contributeurs macroéconomiques au défaut des caractéristiques idiosyncra-

tiques. En effet, il est important aujourd’hui de comprendre les répercussions—ou l’absence

de celles-ci— des chocs macroéconomiques sur la fragilité financière des entreprises et des

ménages, car des incertitudes persistent quant à la croissance économique future et aux
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changements à venir de la politique monétaire.

Le premier chapitre vise à identifier les mécanismes de l’insolvabilité des assurances dans

différentes juridictions à l’aide d’une base de données unique assemblée à la main. En raison

de ce que l’on appelle “l’inversion du cycle de production” dans le secteur des assurances, les

faillites surviennent souvent en raison de décisions de gestion prises des années en amont de

la manifestation d’une défaillance. Ce chapitre explore cette question en mettant en évidence

les différentes dynamiques du défaut selon les secteurs ainsi que selon les pays.

Ensuite, le deuxième chapitre analyse deux réformes réglementaires qui ont transformé le

marché français de l’assurance. Nous montrons que la conception de chaque réforme a donné

des incitations distinctes à l’activité de fusion-acquisition, selon les branches d’activités d’un

organisme. En effet, au cours de la dernière décennie, le nombre d’entreprises agréées en

France diminué d’un tiers. Ce chapitre révèle donc le rôle de la fragilité financière con-

cernant la probabilité d’être impliqué dans une fusion, et il explore également le potentiel

d’arbitrage réglementaire.

Enfin, le dernier chapitre a pour objectif de quantifier la mesure dans laquelle la nature

d’un crédit immobilier expose les ménages à une vulnérabilité financière à travers le risque

de taux d’intérêt. Cette question revêt aujourd’hui une importance accrue—en particulier

dans les juridictions où les instruments à taux variable détiennent une part de marché plus

élevée—étant donné l’incertitude quant à la persistance des mesures dites “d’assouplissement

quantitatif” prises par les banques centrales en réponse à la crise du Covid-19.

Différences sectorielles sur les marchés assurantiels

Ce chapitre aborde la question des défaillances des organismes d’assurances en estimant

un nombre d’indicateurs avancés à partir d’une base de données unique sur quatre pays

développés. Le secteur de l’assurance est une composante essentielle du système financier au

niveau international, ainsi la défaillance d’une firme et souvent plus coûteuse en comparaison

à d’autres institutions financières (voir Grace et al. (2003)). De plus, en finançant l’économie

réelle par des investissements à long terme et en facilitant la mutualisation des risques en-

tre les différents assurés, l’assurance contribue à la croissance des secteurs financier et non

financier. Compte tenu de l’importance de ces fonctions clés, la prévention de l’insolvabilité

dans le secteur de l’assurance constitue une mission complexe mais essentielle du contrôle
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prudentiel.

Plantin and Rochet (2007) ainsi que EIOPA (2018) montrent que la faillite des compag-

nies d’assurance est souvent due à une mauvaise prise de décision—allant de la négligence à

la fraude—plusieurs années avant la faillite proprement dite. L’existence d’une dynamique

particulière au sein de ce secteur peut en être la cause; en effet, une entreprise d’assurance

reçoit une prime en amont de la matérialisation du risque couvert, c’est-à-dire du service

effectué. Cette “inversion du cycle de production” est un des mécanismes essentiels sous-

jacents à la plupart des opérations d’assurance par lesquelles les entreprises peuvent être

amenées à des prises de risques non-soutenables sur le long-terme. Ce décalage des incita-

tions peut s’avérer problématique en termes de stabilité financière.

D’autres mécanismes peuvent également entrâıner la faillite d’un assureur, comme une

mauvaise gestion, une composition de portefeuille risquée, une croissance rapide ou insta-

ble, et des conditions macroéconomiques. La cause des difficultés diffère souvent selon la

ligne d’activité de l’assureur en question—une dimension importante qui constitue un ap-

port du premier chapitre de cette thèse. Aujourd’hui, le risque d’insolvabilité des compagnies

d’assurance pourrait se manifester à nouveau, dans la mesure où les assurances sont con-

frontées à une pression et à une incertitude accrue dans un contexte de taux d’intérêt bas

(ou négatifs), ainsi qu’à l’émergence de nouveaux risques, y compris ceux liés au changement

climatique et à la Covid-19. L’objectif de cet article est donc d’enrichir la littérature sur la

prévision des défaillances d’assurance en déterminant des indicateurs avancés ou des facteurs

contributifs qui peuvent aider les autorités de supervision à identifier les vulnérabilités et à

agir en conséquence, afin de réduire les conséquences négatives d’une défaillance.

Les apports de cet article sont nombreux. Tout d’abord, nous avons assemblé une base

de données internationale qui fusionne les données relatives aux bilans et aux comptes de

résultats ainsi que des informations sur 263 cas de défaillance de compagnies d’assurance aux

États-Unis, au Royaume-Uni, au Japon et en France au cours des 30 dernières années. Ces

cas de faillites sont comparés à un panel beaucoup plus large d’institutions solvables dans

ces pays sur la même période. Ensuite, contrairement à de nombreux travaux qui ne traitent

souvent qu’un seul secteur, le chapitre analyse les spécificités des défaillances des secteurs vie

et non-vie et constate des différences dans la dynamique de leurs insolvabilités. En utilisant

différentes spécifications de type logit à effet fixe et des modèles de survie paramétriques,

ces analyses fournissent la preuve que la nature des actifs joue un rôle déterminant dans la

prévision des défaillances d’assurance vie, tandis que le compte de résultat est le critère clé

22



Introduction

pour les assureurs non-vie. Par ailleurs, l’article met en évidence des différences à travers

les pays : nos résultats suggèrent un rôle plus important de l’inefficacité opérationnelle en

assurance non-vie en France et un impact moins positif de l’investissement en dette en as-

surance vie au Japon. Ces deux résultats sont liés à des différences de fonctionnement des

juridictions nationales que nous expliquons en détail à l’aide des études de la littérature

juridique.

La composition des actifs (telle que mesurée par la part des instruments à revenu fixe

dans le portefeuille d’investissement total) prédit de manière statistiquement significative la

défaillance des assureurs vie, tandis que l’(in-)efficacité opérationnelle (frais d’exploitation et

d’administration sur le total des primes émises) ne semble jouer aucun rôle. Le contraire est

vrai dans le secteur non-vie: la composition des actifs—très importante dans le secteur vie—

semble ne jouer aucun rôle dans le secteur non-vie, tandis que l’efficacité opérationnelle est

un prédicteur important de défaillance pour toutes les spécifications. La rentabilité (mesurée

par le ROA) prédit les défaillances jusqu’à trois ans à l’avance dans le secteur non-vie, mais

seulement un an à l’avance dans le secteur vie, ce qui peut s’interpréter comme une indication

que l’effet des chocs négatifs sur la rentabilité diminue à mesure que la durée d’engagement

augmente. L’article vérifie aussi que, sur cet échantillon, les entreprises d’assurance de pe-

tite taille ont un risque de défaut plus important que les plus grandes—un résultat qui est

confirmé dans EIOPA (2018). Tous ces résultats ont des implications pour la mise en œuvre

du contrôle prudentiel que nous aborderons en conclusion.

Réforme réglementaire et structure du marché

Ce chapitre étudie la structure du marché français de l’assurance, et sa transformation

au cours de la dernière décennie suite à l’introduction d’une série de réformes réglementaires.

Ces dernières ont impacté de manière hétérogène différentes branches d’activité et, par

conséquent, ont donné des incitations uniques à effectuer des activités de fusion-acquisition

en fonction de la spécialisation de différents organismes.

Nous montrons d’abord la diminution significative du nombre d’organismes depuis le

début de notre échantillon (précisément, une baisse de l’ordre de 35% des assureurs agréés

de 2011 à 2019). Cependant, en raison des parts de marché modestes de ces firmes, les

indices de concentration du marché dans la quasi-totalité des métiers restent très faibles et

présentent peu de variation tout au long de l’historique de l’échantillon.
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Nous discutons ensuite des répercussions des différentes réformes, en commençant par les

incitations aux fusions et acquisitions données par Solvabilité II. Deux types de fusions sous

Solvabilité II peuvent être imaginés. Si les coûts de mise en conformité ont une composante

de coût fixe, les assureurs de petite taille par rapport à la moyenne du marché pourraient

être affectés de manière asymétrique étant donné le seuil d’éligibilité bas (e 5 million de

primes ou e 25 million de provisions techniques). Par conséquent, on pourrait s’attendre à

ce que des fusions se produisent entre des organismes similaires—c’est-à-dire des assureurs

exerçant les mêmes activités—afin de combiner plus efficacement les coûts fixes et de réaliser

des économies d’échelle. Par ailleurs, comme la formule standard récompense une diver-

sification des expositions aux différents modules risques, cette réforme pourrait conduire

précisément au type de fusion inverse : afin de profiter d’un effet de diversification dans la

réglementation, un assureur pourrait être tenté de fusionner avec un assureur spécialisé dans

différentes branches d’activité (ou ayant des expositions aux risques différentes des siennes).

Nos données reflètent une prédominance des fusions “traditionnelles”, c’est-à-dire celles qui

cherchent à réaliser des économies d’échelle dans des secteurs d’activité similaires. Ceci est

cohérent avec une absence d’arbitrage réglementaire.

Nous analysons ensuite une réforme spécifique à la santé (la loi ANI) et constatons une

forte vague de fusions dans ce secteur. En utilisant une nouvelle base de données de 256 fu-

sions au sein du marché français de 2011 à 2019—et en exploitant le fait que seul un segment

du marché français était exposé à cette loi, contrairement à Solvabilité II—nous montrons

que les organismes cibles dans ce métier n’ont pas été motivés par des soucis de rentabilité

ou de solvabilité, à la différence des fusions au sein d’autres branches d’activité. Ce résultat

est cohérent avec le fait que les entreprises anticipent la réforme avant la matérialisation de

ses conséquences.

Transmission de la politique monétaire aux ménages

Dans ce troisième chapitre, nous évaluons la transmission de la politique monétaire aux

ménages à travers un canal particulier: les mensualités sur les prêts immobiliers à taux

variables. En effet, une variation du taux directeur génère des mouvements asymétriques

dans la partie variable de ces paiements qui, à leur tour, affectent la probabilité de défaut

de l’emprunteur. Précisément, sur la période 2004-2015, nous cherchons à quantifier l’effet

d’un choc sur le montant des paiements (induit par un changement de politique monétaire)

24



Introduction

sur la propension d’un ménage à faire défaut sur son prêt immobilier. Nous analysons

également le rôle de la stabilité de l’emploi et de la classe socio-économique, en exploitant

une base de données propriétaire d’environ 5 millions de lignes de crédit au logement ac-

cordées aux ménages sur le marché français entre 1994 et 2015. Afin de mesurer les chocs

de politique monétaire, nous reconstruisons des tableaux d’amortissement théoriques pour

toutes les lignes de crédit de notre échantillon, en décomposant les mensualités pour isoler

la composante en intérêts.

De plus, certaines caractéristiques uniques de nos données et de notre juridiction nationale

nous permettent d’isoler les défaillances involontaires ou stratégiques, ce qui constitue un

intérêt supplémentaire de notre étude pour la littérature académique. Par ailleurs, comme

nous observons de manière exogène des notes de risque de crédit (calculées de manière

cohérente par une institution tierce) et des caractéristiques exhaustives supplémentaires des

ménages, nous sommes en mesure de comparer les profils de risque des emprunteurs pairs ou

quasi-pairs qui sont différemment exposés aux chocs de politique monétaire en fonction de

leur type de prêt (taux ajustable contre taux fixe).

Notre étude a plusieurs attributs inédits. Tout d’abord, ce papier est, à notre connais-

sance, le premier à évaluer les effets de la politique monétaire sur le défaut immobilier pour

la juridiction française (le second pour l’Europe). Ceci est particulièrement important dans

l’environnement actuel de taux d’intérêt extrêmement bas et d’incertitude quant aux varia-

tions futures (rehausses, notamment). Deuxièmement, nous exploitons une base exhaustive

dans laquelle le défaut stratégique est effectivement absent, isolant ainsi mieux l’effet sur le

défaut non-volontaire. Les conséquences de cette isolation sur nos estimations sont probable-

ment matérielles; dans une étude américaine, Gerardi et al. (2017) constatent que 38% des

ménages en défaut sont capables d’effectuer leurs versements hypothécaires sans réduire leur

consommation. Les différences propres à la juridiction française offrent ainsi une opportunité

unique de se pencher sur la fragilité financière des ménages, ce qui distingue notre étude par

rapport à la littérature précédente.

Troisièmement, nous utilisons une base de données exceptionnellement grande, couvrant

la durée de vie de près de 5 millions de prêts en France. Cette information très granu-

laire nous permet de saisir la fragilité financière (et d’autres caractéristiques) spécifique aux

ménages, ainsi que d’autres facteurs qui pourraient motiver un ménage à souscrire un type de

prêt plutôt qu’un autre. En conséquence, nous sommes en mesure de comparer l’exposition

des prêts fixes et ajustables à l’intervention de la politique monétaire, tout en limitant le
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problème de sélection. Enfin, notre étude peut donner un aperçu de la situation des pays

européens voisins (avec des institutions par ailleurs similaires) où les prêts à taux variable

sont plus répandus, où les institutions financières favorisent davantage leur adoption (voir

Albertazzi et al. (2018)).

Ce chapitre apporte de multiples résultats à la littérature. Dans un premier temps, ces

travaux documentent les effets asymétriques des changements de taux directeurs sur la sta-

bilité financière des emprunteurs de logements en cours. Nous constatons qu’une hausse de

1pp des taux d’intérêt augmente la probabilité de défaut des ménages de 45%. Ce résultat

correspond à des défauts non stratégiques et ne concerne que les emprunteurs à taux variable

ou “flottant”, dont les mensualités fluctuent avec les taux directeurs. De plus, nous confir-

mons le rôle important de la stabilité de l’emploi contre les épisodes de défaut, en particulier

pendant les périodes de politique monétaire restrictive.
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Chapter 1

Why Do Insurers Fail? A Comparison

of Life and Non-life Insolvencies

Using a New International Database

Abstract

Plantin and Rochet (2007) document how insurers often engage in risk-shifting years before

the materialization of a failure. This paper empirically examines this claim by testing the

mechanisms of insurance insolvency across different jurisdictions, using a first-of-its-kind

international database assembled by the authors which merges data on balance sheet and

income statements together with information on impairments over the last 30 years in four

big countries (France, Japan, the UK and the US). Employing different fixed effects logistic

specifications and parametric survival models, the paper presents evidence of profitability

as a leading indicator of failures, as well as the higher likelihood of failure by smaller firms.

Further, we find an intrinsic asymmetry between the life and non-life insurance sectors. In

the life sector, asset mix is highly significant in predicting an impairment, while operating

inefficiency plays no role. In the non-life sector, the opposite proves true. Moreover, the

paper highlights differences across countries: we note a stronger reaction to operational

inefficiency in non-life insurance in France and a less positive impact of debt investment in

life insurance in Japan. Both results are linked to differences in the functioning of insurance

markets.

* * *

This chapter is an adaptation of a collaboration with Olivier de Bandt, which is currently

under a second round of review at the Journal of Risk and Insurance, following a request

for revisions. The work has also been published in the EconomiX Working Paper Series

(EconomiX WP 2020-15).
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1 Introduction

As highlighted in Plantin and Rochet (2007), the failure of insurance companies often

takes place due to bad decision making—ranging from negligent to fraudulent—several years

preceding an actual failure. This issue, which stems from the so-called “inversion of the

production cycle” in insurance (whereby firms collect premiums in advance of the realization

of risks and the disbursement of funds to customers), is problematic from a supervisory

point of view. Indeed, when insurers do fail, insolvency is quite costly; the resolution of

an insurance company is three to five times more expensive than that of other financial

institutions (see Grace et al. (2003)). Are there differences across countries in terms of

supervisors’ ability to identify doomed insurers before it is too late?

While historically less exposed to systemic crises, it was an insurer (AIG) who was at the

center of a $200 billion rescue package from the United States government in the immediate

aftermath of the 2007-2008 financial crisis. Additionally, Dutch insurer Aegon required a

$3.7 billion bailout from its government during the same period, while a dangerous wave of

life insurance failures helped magnify financial shocks in Japan following the Lost Decade.

Today, the question of insurance insolvency has regained relevance as undertakings face

increased pressure and uncertainty in the low (or negative) interest rate environment. The

International Association of Insurance Supervisors (IAIS) has continued its pursuit of a

formula for the identification of Globally Systemically Important Insurers (G-SIIs); new

methodologies were released in 2013 and 2016 (see IAIS (2016)). Further, the emergence of

new threats from climate change, which is projected to increase the frequency and severity

of extreme weather events,1 has captured the attention of insurers and policymakers within

the financial system.

Still, the debate surrounding the systemic contribution of insurance remains open. Har-

rington (2009) emphasizes the lack of systemic footprint in traditional insurance activities,

while Mühlnickel and Weiß (2015) demonstrates the systemic significance of mergers, non-

traditional financing activities and business line diversification. While insurance liabilities

are less “runnable” compared with banking, insurance risks do nonetheless exhibit some cor-

relation with economic cycles. In the property and casualty sector, risk protection decreases

during recessions, potentially driving up claims from policyholders. In the life insurance sec-

tor, surrenders are affected by the macroeconomic environment (see, e.g., Geneva Association

(2012)), increasing during adverse economic conditions (the emergency fund theory relates

surrenders to higher unemployment). In addition, upward shocks to long-term interest rates

1Several insurance defaults have been associated with natural catastrophes, such as Hurricane Andrew in
the US in 1992.
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lead policyholders to look for higher alternative returns at times where insurers themselves

face capital losses on their fixed income portfolios. In the presence of such behavior, mi-

croprudential intervention becomes more important to help prevent contagion effects from

spreading across firms.

In 2018, the European Insurance and Occupational Pensions Authority (EIOPA) pub-

lished a study which utilizes questionnaire survey responses from 31 national supervisory

authorities to understand the presumed cause of 180 cases of fragility or “near-misses” in

different European jurisdictions (see EIOPA (2018)). The mostly qualitative work docu-

ments how, in the non-life sector, the top declared risks involve the evaluation of technical

provisions, corporate governance and management. In the life sector, the top three reported

risks are management, investment risk and market risk—in line with the literature’s empha-

sis on the linkages between life insurance and financial markets. Most events occur during

or after the financial crisis of 2007-2008. Only 48% of cases represent failed firms, including

firms that have been partially resolved.

In addition, in the academic and policy debate, very few papers investigate to what extent

regulatory frameworks over the world may explain certain differences in terms of insurance

insolvencies. While US insolvencies are well-documented, the question remains less studied

outside of the US and when monographs are available on certain jurisdictions, either actual

defaults are unknown and the explained variable is the solvency ratio (e.g., Rauch and Wende

(2015) for Germany, and Chen and Wong (2004) for Asia) or they fail to compare with other

regions (Eling and Jia (2018) concentrate on the EU only).

An important contribution of the paper is the construction of an international database

of insurance failures, to which we apply several empirical strategies and provide some ex-

planations for differences across countries. Our database is larger than those produced by

the insurance insolvency prediction literature. EIOPA (2018) contains 180 EU cases from

1999-2016, while Leverty and Grace (2012) contains 256 U.S. cases from 1989-2000. In com-

parison, our database includes 437 impairment cases in four big countries (France, Japan, the

UK and the US). Eling and Jia (2018) use a large insolvency database composed of both life

and non-life insurers, but concentrates on Europe and includes several small countries with

specific insurance systems (Denmark, Ireland, etc). We use our database to test a certain

number of hypotheses on how these events take place, which helps predict future insur-

ance failures on the basis of available financial data, highlighting similarities and differences

between countries.

In the paper, we investigate several dynamics and intuitions provided by previous lit-

erature, including some case studies, regarding the relative importance of the asset and

liability sides of an insurer’s balance sheet for the sake of forecasting its default—and how
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this changes across sectors and countries. We additionally contribute to the evaluation of

the potential impact of supervision, in the sense that we measure the true predictive power

of the indicators collected by supervisors vis-à-vis future defaults. We find evidence that

while such indicators matter, their predictive power changes depending on the nature of the

business at hand, and the country in which a firm operates.

In addition to the construction of our database, the second major contribution of the

paper to the literature is to confirm practitioners’ and supervisors’ view—which had never

been clearly verified by the academic literature for failure prediction in insurance—that

life and non-life sectors behave very differently, with portfolio choice having an important

impact for life and operational inefficiency in non-life. We are able to better highlight these

differences by separating analysis by sector using a single, common database. Further, we find

that macroeconomic variables do not play a very significant role in determining insolvency.

The significance of determinants, moreover, varies across jurisdictions: operating inefficiency

appears more critical in French jurisdiction, while the asset composition (debt instruments)

did not afford the same protection as elsewhere with respect to Japanese insurance failures.

Finally, we acknowledge that many different types of behavior may explain insolven-

cies. Nonetheless, investors and supervisors alike must condition their decision making on

available financial reporting. Seminal academic work such as Altman (1968) and Shumway

(2001) precisely attempt to shed light on how simple financial ratios can be used by such

parties. Applying this empirical approach to insurance, we seek to use historical data to

help understand the following questions:

• While the years directly preceding an insurance impairment will see lower net income

levels, do losses occur suddenly (through, i.e., a sudden spike in claims) or instead to

they occur more gradually through time?

• What is the relative weight of macroeconomic determinants in insurance failures, as

opposed to purely idiosyncratic, firm-level characteristics?

• While an increase in premiums by an insurer may be a sign of better performance,

increasing market shares may also reveal underpricing or “gambling for resurrection”

for a low profitability firm. Do failing firms experience a spike in premiums prior to

collapse?

• What is the relationship between reinsurance ceded and the stability of equity/own

funds? Without knowing detailed information about reinsurance treaties, do ceded

premiums lower the volatility of net income relative to written premiums, or may it

create reinsurance risk due to the complexity of the arrangements?

• Governance problems within insurance firms are often mentioned as a major source of

insolvencies, and (as discussed below) various estimation techniques are used in the
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literature to capture a firm’s operating inefficiency. Financial supervisors, however,

typically concentrate on simple ratios. Can operating and administrative expenses

capture a firm’s governance quality?

• How do insolvency determinants vary according to a country’s institutional or juris-

dictional framework?

The remainder of the paper is organized as follows: Section 2 reviews the existing lit-

erature, section 4 presents the novel dataset and some summary statistics, and section 5

outlines our expected results. Section 6 details our econometric approaches and expected

results. Sections 7 reports our results and robustness checks, and 8 concludes.

2 Review of the Literature

The early insurance insolvency literature dealt mainly with the predictive performance of

regulatory ratios and ratings. Ambrose and Seward (1988) use a multivariate linear discrim-

inant analysis approach in which A.M. Best ratings are combined with information given

by financial statements. The authors find significant predictive power in the premiums-to-

surplus ratio, the loss ratio and time spent settling claims; the expense ratio, return on equity

(or, in some jurisdictions, “surplus” for insurers) and return on assets were not significant

predictors. Cummins et al. (1995) document the inadequacy of NAIC’s RBC ratios, finding

predictive power “very low” without additional regressors. Cummins et al. (1999) later com-

pare the accuracy of the next generation of indicators—NAIC’s so-called Financial Analysis

and Surveillance Tracking (FAST) audit ratio system—with the classic risk-based capital

(RBC) prudential measures. The authors find that while the “FAST” system dominates

RBC ratios, predictive power remains low overall without additional inputs.

The more recent literature on insurance insolvency is related to four considerations:

(i) efficient management and corporate governance, (ii) industrial organization, (iii) the

macroeconomic environment, risk appetite and portfolio choices, and (iv) profitability. We

review the literature in each area.

First, different measures of “efficiency” or management quality have been proposed by

academic studies. Leadbetter and Dibra (2008) show that management quality and risk

appetite have been responsible for Canadian property-casualty insolvencies, although the

authors posit that an adverse macroeconomic environment is often what pushes a company

over the edge. Leverty and Grace (2010) examine two methods for measuring output in

property-liability insurer efficiency studies. The authors find that efficient “value-added

approach” firms are less likely to go insolvent, while firms characterized as efficient by the
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“flow” approach are generally more likely to fail. In a later study, Leverty and Grace (2012)

find the managerial ability of CEOs to be inversely related to the amount of time a firm

spends in distress, the likelihood of a firm’s failure and the cost of failure. Zhang and

Nielson (2015) incorporate state-specific factors on a U.S. database of property-casualty

failures, finding that insurers with low business-line diversification, fewer failed Insurance

Regulatory Information System ratio tests and membership in a larger group are less likely

to become insolvent. Most recently, Eling and Jia (2018) show how “technical efficiency” is

associated with financial health across the entire European sector.

Second, market structure is shown to matter. The earlier literature focused on a possible

tradeoff between competition and financial stability, arguing that less market concentration

(increased competition) increased the occurrence of firm failure, particularly in the non-

life industry. Browne and Hoyt (1995) find non-life insolvency to be significantly tied to

low market concentration—more insurers lead to slimmer margins and more failures—and

further estimate the industry-wide combined ratio to have predictive power for insolvency.

EIOPA (2018) documents a similar trend: most detections of non-life insolvency are small

firms with low market share, which, the authors point out, mirrors the structure of the

EU insurance market. In contrast, the more recent literature, notably Cummins et al.

(2017), shows how increased competition throughout the EU pushes firms towards greater

efficiency, improving the financial health of the sector. Zhang and Nielson (2015) also argue

that highly concentrated insurers exhibit higher insolvency risk. Studying the period 1994

to 2008, Cheng and Weiss (2012) show that insolvencies in the property-liability insurance

industry are positively correlated to the industry-wide Herfindahl index of premiums written.

This is consistent with Panzar-Rosse analysis (see Shaffer and Spierdijk (2015)) often used

in banking which tends to show that, unlike competitive firms which are able to protect

profits by increasing prices when costs are rising, less competitive markets respond more

slowly, implying profits may be more sensitive to any shocks on costs that would magnify

their inefficiencies, leading to an increase in insolvencies. We will later investigate to what

extent insolvencies may be higher in more concentrated, hence less competitive, insurance

markets.

Third, the health of insurance companies often fluctuates with the macroeconomic envi-

ronment. The life insurance industry is widely understood to exhibit more interconnection

with the macroeconomy, depending on the degree of liquidity of liabilities and the subsequent

financial nature of the business. 37% of life insurers in EIOPA’s 17-year study experienced

their failure or near-miss in the 2007-2008 window (see EIOPA (2018)). Browne et al. (1999)

shows how life insurers are sensitive to long-term interest rates, personal income, unemploy-

ment, stock markets and also the number of insurers present in the industry. In addition to
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firm size, Chen and Wong (2004) finds asset returns to be a high-ranking factor explaining

insurance company distress in both life and non-life sectors of the Asian insurance market.

Unlike property-casualty insurance, however, life policyholders may be able to withdraw

funds to invest elsewhere. Kim (2005) explains surrender as a function of several economic

variables, finding that increases in the interest rate often lead to disintermediation.2 Un-

employment, GDP growth rates, seasonal effects and policy age appear important as well.

Cheng and Weiss (2012) analyse the macroeconomic factors involved in non-life insolvency,

ultimately reaffirming the relevance of interest rate changes and market concentration. Rus-

sell et al. (2013) also tests the sensitivity of life insurance surrender to macroeconomic

variables, finding a positive correlation to interest rate levels and a negative relation with

income levels and interest rate spreads.

Connected to that, several papers show that insurance portfolio choices matter. Existing

literature stresses the role of changes in asset mix for defaulting undertakings, linked to

attempt to escape from difficulties by reshuffling assets (see, e.g., Carson and Hoyt (1995)).

However, investment structure also plays a role—in particular, investing in less volatile

assets such as sovereign or corporate bonds is likely to reduce the risk of insolvency. This

is in line with insurance regulation designed to protect insurance policyholders. Lee and

Urrutia (1996) find that the ratio of market value of invested bonds to total admitted assets

is a significant variable to predict non-life insurance insolvency in 1980-1991. Similarly,

using P/C insurers’ insolvency data from 1998 to 2008, Zhang and Nielson (2015) document

that the share of assets invested in bonds is significantly lower for firms which eventually

experience insolvency.

Fourth and finally, the link between profitability and failure has been addressed by several

authors in the literature. Eling and Jia (2018) show how, while ROE is weakly associated

with health, its volatility positively correlates with the probability of failure. Bernard et al.

(2016) use internal firm-level data from the French Prudential Supervision Authority to

derive leading indicators of insurance distress. Although the econometric analysis yields few

significant results, low levels of reserves and weak profitability appear to precede financial

vulnerability.

3 Jurisdictional and Institutional Heterogeneity

The database allows us to investigate to what extent insurance company insolvencies

may have different determinants across countries. Several factors can help explain this phe-

2Interestingly, in recent years, policyholders’ sensitivity to the interest rate has seemed to diminish,
implying substantial inertia in savers’ behavior.
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nomenon: the legal environment regarding insolvency, supervisory activism, market struc-

ture, and finally differences in contract-level guarantees.

Regarding the first dimension, insolvency regulations may differ across countries, and

especially in the insurance industry as many such companies often receive a special treatment

because of the sector’s regulated status and the importance of insurance to the rest of the

economy. Firstly, insolvency procedures can include out of court arrangements, which often

remain confidential but are common in the UK and in the US. Secondly, they may involve

proceedings under the supervision of courts, including so-called rehabilitation (notably in the

US and Japan, as well as administration in the UK, and so-called “redressement judiciaire” in

France). Finally, a firm can enter liquidation. Court decisions across countries may strike a

different balance between the different stakeholders, however: while the UK is more creditor

friendly, France and Japan are debtor friendly, with the US somewhere in the middle (see

Asai (2021), Simon Beale (2021), Joanna Gumpelson (2021), and Alan Kornberg (2021)).

This is also consistent with the view that some countries like the UK or the US might be less

reluctant to allow insurance firms to fail than in continental Europe and Japan (see Eling

and Jia (2018) for the EU).

Regarding the second dimension, continental European countries often experience more

prudential activism from public authorities, which attempt to alleviate market pressures,

while the UK has a more market oriented approach which is more protective of policyhold-

ers. Overall, such factors may be indistinguishable from the previous dimension discussed

above. Ultimately, the hypothesis to test for both cases is therefore whether economic de-

terminants may have more explanatory power to predict insolvencies in US and UK than

in France and Japan. In the empirical analysis, we test the role of shocks on firms’ profits

to predict insolvencies. Note, however, a possible caveat, in the sense that market-oriented

countries may undergo more out-of-court settlements, so that the insolvencies defined by

court proceedings or regulatory intervention may result from market failures. A detailed

analysis of asset transfers by insurers close to insolvency would overcome this issue, but

is beyond the scope of the current article. Nevertheless, a first hypothesis to test is the

following:

• Hypothesis 1: ROA provides a better signal of insolvencies in more market-oriented

countries

The third insolvency dimension mentioned above—market structure—may also imply

differences in terms of response of insolvencies. Specifically, the different countries under

study exhibit clear difference in terms of market concentration. As shown in Figure 1.16,

the Herfindal-Hirschman Index is bigger in France than elsewhere, providing evidence of a
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less competitive environment. This figure reflects the distribution of gross premiums across

a given country’s market in a given year. As discussed above, in line with the analysis

conducted in Shaffer and Spierdijk (2015), we test the hypothesis that a shock on an insurance

firm’s costs has a larger effect on insolvencies in less competitive environments (namely, in

France or Japan, versus in the US).

• Hypothesis 2: Shocks to operational inefficiency matter more for insolvencies in

countries where insurance markets are less competitive

The last dimension addressed above is product differentiation. While investing in less

volatile assets like bonds is likely to reduce P/C insolvencies (Lee and Urrutia (1996), Zhang

and Nielson (2015)) the question explored here is whether it may hold for life insurance as

well and similarly across national jurisdictions. Indeed, using OECD data, Gründl et al.

(2017) show that countries differ markedly: the share of insurance assets invested in bonds

is lower in Asia than in Europe and US. In addition, insurers may invest in risky bonds,

while offering generous guarantees on yields to policyholders as in Japan, which ultimately

turned detrimental to financial stability with the failure of many life insurance companies in

the late 1990s and early 2000s. This leads us to test the following hypothesis and investigate

possible differences across countries:

• Hypothesis 3: Bond portfolio investments offer protection to insurance companies

Note that due to data constraints, we compare France and the United Kingdom with

the US in our analysis of the non-life sector, and Japan to the US in our analysis of the

life sector. As discussed below, our results allow us to reject Hypothesis 1. Indeed, ROA

exhibits a stronger effect in the US than France and Japan, but the effect is not statistically

significant. Hypothesis 2 is verified for non life insurance in France, while Hypothesis 3 is

verified in all countries, with the important exception of Japan.

4 Data

After explaining how the data were assembled to create a new international database on

insurance impairments, we provide a few summary statistics.

4.1 Constructing an International Database of Impairments

To build an international database on impairments, we extend to other countries of sim-

ilar level of financial development (France, Japan and the UK) the approach followed in
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the insurance insolvency literature in the US (especially on P/C insurance), which typically

measures insolvency at the date of public intervention. Such a procedure ranges from action

taken by courts, to intervention from the regulator as it it triggers the suspension of new

business, to the most severe case dimension being the liquidation of the insurance company.3

BarNiv and McDonald (1992) on P/C insurance, for instance, define insolvency including

liquidation, receivership, conservatorship, restraining orders and rehabilitation. The authors

note that all mergers or acquisitions of insurers which cause disappearance of the companies

should not be regarded as distress or insolvency. Cummins et al. (1999) measure insurance

insolvency in the non-life industry by the first public regulatory order involving a company.

Any formal state regulatory order including restrictions on management, conservation, re-

habilitation, or liquidation was treated as a failure. These US failures were reported to

the National Association of Insurance Commissioners (NAIC). Leverty and Grace (2012)

define insolvent insurers as those affected by a formal regulatory action in the form of pro-

ceedings for conservation of assets, rehabilitation, receivership, or liquidation. Zhang and

Nielson (2015) use A.M. Best’s definition of insolvency: a company is financially impaired

when the first official action is taken by the insurance department in its state of domicile,

whereby the insurer can no longer conduct normal insurance operations. State actions in-

clude supervision, rehabilitation, liquidation, receivership, conservatorship, cease-and-desist

order, suspension, license revocation, administrative order, or any other action that restricts

a company’s freedom to conduct business normally. For Eling and Jia (2018), failure events

include ceased operations, in liquidation or liquidated, in runoff, portfolio transfer, inactive,

and insolvent insurance firms. However, M&As were excluded

The data for this study has been gathered from several sources, including guaranty fund

associations,4 the National Association of Insurance Commissioners, the UK Prudential Reg-

ulation Authority (PRA), internal French Prudential Supervision Authority (ACPR) data,

AM Best and Bloomberg. The failure events or, as we term them, “impairments” are strictly

defined as either a regulatory intervention of a local supervisor (leading to the suspension of

the insurance licence, which may only be temporary with a subsequent recovery) or the start

of court proceeding in the form of rehabilitation or liquidation. With rare exceptions, these

actions prevent firms in question from underwriting new business. The only jurisdiction in

which firms could be allowed to underwrite new business following a supervisory intervention

3In many cases, the start of court proceedings allows the regulator to withdraw the license to underwrite
business. For instance, in France, liquidation is possible either after the withdrawal of the license by the
supervisor (liquidation is automatic for insurance companies but not for reinsurance companies), or in case
of suspension of payments. For other types of procedures, the supervisor is informed and a mutual agreement
is sometimes required.

4Examples include the National Organization of Life and Health Insurance Guaranty Assocations (NOL-
GHA), Property and Casualty Insurance Compensation Corporation (PACICC), Assuris and Protektor.
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is the United States. Of the 1,465 firms which entered receivership through 2016, only 9 were

recorded as being authorized to write or rewrite new business. Simple profit warnings or

supervisory audits without actions limiting activity are not considered as impairments, nor

are firms who enter run-off without knowing the motivation for this status. Lastly, M&As

are excluded, as well as portfolio transfers, as we concentrate on cases where markets or

supervisory authorities failed or did no intend to intervene ex-ante.

Moreover, there are different ways to define an insurance company failure from an eco-

nomic point of view. The scope of financial troubles leading to a failure could range from

market warnings, substantial losses, partial suspension of activities or withdrawal of agree-

ment by the supervisor, with liquidation being the most extreme consequence. It is important

to note that, as we have defined an impairment, some impaired firms in our database may

eventually return to financial health, although in practice few do, and those who survive

only do so thanks to a major restructuring or large-scale government bailout. We consider

this definition helpful from a supervisory point of view, as it allows us to predict (and thus,

hopefully, help prevent) any case that was destabilizing enough to prompt intervention, as

opposed to just those cases which fit a specific legal definition (which may change across

jurisdictions). Indeed, only considering liquidating firms would ignore cases of firms which

were acquired following a supervisory intervention.

Following collection from the sources mentioned above purely regarding the impairments,

our database contained 1,607 cases across life and non-life sectors. We include all major in-

solvencies described in Michelle Brennan (2013) or Baranoff (2015) as well as many others.

These company-events are matched with available historical financial data for these compa-

nies. The latter data (principally, SNL datasets, described below) are also used to define

a control sample of companies. Our study focuses on solo undertakings, excluding groups

to the greatest extent possible. Such information was not always provided by our sources,

requiring manual cross-checking. A main motivation to exclude groups was to isolate failing

firms from a conglomerate, which can often fail either due to one unhealthy firm, or due to

non-insurance related financial troubles. We were therefore especially careful to exclude the

parent company of any individual firm in our sample.

In order to be as comprehensive as possible, we used standard sources for historical fi-

nancial data. This includes SNL Market Intelligence, the Prudential Regulation Authority

(Bank of England) for UK cases, the Financial Services Agency for Japanese cases and the

French Prudential Supervision and Resolution Authority for French cases. We do not, how-

ever, have historical balance sheet and income statement data for all of the 1,000+ identified

cases of impairments. Taking the intersection of these impairments with the available series

of historical financial data, we were left with 495 “impairments” out of 8,893 total companies
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in our database. An additional data-treatment step consisted of determining the de facto

date of failure for cases in which failure year provided by our sources surpassed the last avail-

able year of financial data. In such limited number of cases, we associated the failure event

with the last available firm-year data observation. We further note that the available data

led us to concentrate on firms’ risk management leading up to a failure, without addressing

the issue of final dividend payouts to policyholders after, for example, a liquidation.

Finally, we cleaned the database of abnormal values, notably by dropping companies

below $1 million in total assets and trimming values outside of the 1.5 and 98.5 percentiles,

similar to Eling and Jia (2018) and Cummins et al. (1995), to correct for noise in our data

which yielded economically implausible values in key ratios. The dataset remains quite

extensive with well over 50,000 (company-year) observations. Our final database contains

287 property and casualty (PC) impairments and 150 life and health (LH) failures, totaling

437 across both, although we note that the number of impairment cases (i.e. impaired

companies) included in most regressions (notably our baseline regression) is 263 (183 PC

and 80 LH). This loss of cases in our estimates is due a lack of correspondence between the

available financial data of a firm in SNL and the year of its failure. To our knowledge, this

figure remains the largest unique dataset of its type for large countries in an academic study

with a global perspective.

Macroeconomic data on 10-year government bond yields and the output gap were taken

from the OECD Economic Outlook database. Figures 1.1 and 1.2 show how the output gap

and long-term interest rates have evolved through time in the countries in our sample. We

adopt the output gap as a continuous measure of the macroeconomic cycle, while we use the

long-term interest rate due to its linkages with the typical insurer’s balance sheet.

4.2 Summary Statistics, Impaired vs. Healthy

Below, we report a few summary statistics regarding companies which at some point

become impaired, as compared to the control group of companies who remain healthy in our

database.

As shown in Tables 1.1 through 1.3, financial ratios for impaired companies are on average

quite different from those of healthy companies. Table 1.3 shows such t-tests broken down

by firm type (implying separate tables for non-life and life insurers). Data on total assets

has been converted in USD in Table 1.1, while the data used for the ratios in Table 1.2 have

been left in reported currency. A few striking conclusions can be drawn from these t-tests.

First, Table 1.1 shows that failing companies generally tend to be smaller across all four

countries, a stylized fact also shown in EIOPA (2018). We also confirm from our database
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the intuition that performance, as measured by ROA and ROE, is lower for firms which

eventually fail. The latter group of companies exhibits more dispersion across all insurers

in our study. Further, these performance measures are much less stable amongst firms that

fail; indeed, the volatility of ROE is over twice as big for failing firms, even after trimming

outliers as previously described.

Averaging over all periods, firms which fail appear to invest less in fixed income invest-

ments such as bonds, and slightly more in real estate. We also see that failing firms spend

greater amounts in operating and administrative expenses, expressed as a share of written

premiums.

While we have collected impairments as far back as 1975, the bulk of our balance sheet

data for US firms begins in 1996 (our UK, Japanese and French data begin in 1986, 1987 and

1992, respectively). We choose to only report in these histograms cases for which we have

available financial data, and therefore which will be included (depending on the specification)

in our regression results. We report histograms for the failures by distinguishing between

US and non-US cases in Figures 1.3 and 1.4.

Figure 1.5 provides evidence of the cyclical nature of impairments, with spikes in the US

in the mid 1980, in the early 1990 associated with Hurricane Andrew, and in 2001 following

the September 11th attacks (see Cheng and Weiss (2012) for more on the role of hurricane

exposure in the non-life industry). Many studies, as mentioned above, also relate these waves

with the increasing entry into the sector at the time. There are also spikes in impairments

around the 2007 Financial Crisis for US and non-US cases (as in EIOPA (2018), for the

latter, using a more restricted dataset).

5 Expected Results

In order to explain insurance failures, we refer to “insurance ruin theory”, as explained

by Plantin and Rochet (2007), which leads to imposing capital requirements to ensure that

equity E is such that

E ≥ 2
√
A2

1σ
2
r +R2σ2

x

where A1 is the risky asset in which the insurer invests the premiums collected, σ2
r is the

standard deviation of the return on the risky assets held by the insurer, R the amount

of reserves or technical provisions and σ2
x, the standard deviation on the unit cost for the

insurer (as percentage of reserves, which measure to what extent initial reserves may diverge

from the ex-ante assessment). The insurer defaults if this condition is not met. Such an

equation assumes independence between technical and financial risk. In addition, extending
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to different risks, as well as diversification across risks leads to a formula close to the US

Risk Based Capital or the Solvency II definition of the Solvency Capital Required. In such

a formula, defaults occur when equity is too low, if assets face capital losses in case of a

sudden increase in interest rates, or if reserves are not properly assessed.

According to another approach, where a portfolio ofN risks is introduced (see also Plantin

and Rochet (2007)), the insurer fails if E +N(1 + ρ) ≤ (S̃1 + S̃2 + ...+ S̃N), where ρ are the

premiums collected on each of the N risks (they are assumed to be similar, without loss of

generality, with mean normalized to one and standard deviation of σ)). Using Chebyshev’s

inequality, this leads to:

Pr(default) ≤ Nσ2

(E +Nρ)2

Defaults can therefore be avoided by increasing equity E, or N the number of risks, or tariffs

ρ, or by decreasing σ through, e.g., reinsurance. However, such a formula does not take

into account the risks associated with an uncontrolled increase in the size of the portfolio.

Furthermore, moral hazard or adverse selection needs to be taken into account, in order to

ensure that shareholders and managers implement the appropriate internal risk control, and

do not “gamble for resurrection” if they do not have enough “skin in the game”, or if their

stakes decrease over time.

In our database, Impairmentjit stands for an impairment of company j, in country i

at time t. The determinants of impairments are individual financial indicators (balance

sheet, P&L, etc) as well as macroeconomic variables (interest rates, output gap, as indicated

above). Regarding financial variables, we use:

• Return on assets (Net income/Total assets),

• Return on equity (Net income/Total equity),

• Total assets (in log),

• Share of fixed-income instruments in total investments,

• Loss ratio (Claims/Gross Premiums),

• Portion of gross premiums ceded to reinsurers,

• Operating inefficiency (Operating expenses/Gross premiums), labelled as OpExp,

• Growth rate in gross written premiums,

The values used for the log of total assets (to control for size) have been converted to

USD. Since all other variables are ratios, values have been left in reported currency. Note

that we have chosen to use gross premiums so as to avoid a bias in the ratio (used to capture

the size of the flow of business in a year) due to the choice of a firm to cede risks to a third
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party.5

Below, we map the expected sign for each parameter estimated in our baseline empirical

analysis.

5Ambrose and Seward (1988) use (acquisition expenses + administrative expenses)/Gross premiums;
Chen and Wong (2004) use a similar ratio.
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Variable Impact on

impairments

Hypotheses

ROA (−) Insurers running losses are more likely to become insolvent.

Size (−) Bigger firms (measured by the log of total assets) can better

absorb shocks, and the law of large numbers should result in

lower underwriting risk for larger firms.

Capital/Reserves (−) Firms with higher risk-based capital have a low failure rate.

DebtIns (−) Fixed-income assets are often held to maturity by insurers, and

are generally considered less risky.

LossRatio (+) Higher loss ratios erode PC insurers’ bottom lines and own

funds; higher values indicate lower financial health.

Reins (−) Depending on the reinsurance treaty, ceding premiums to a

reinsurer can serve to transfer risk, lowering an insurer’s

exposure.

OpExp (+) Cost-inefficient firms mismanage their resources and perhaps

engage in risky behavior to attempt to remain competitive.

PremGrowth (−/+) (+) For longer lags, fast growing companies can lack

underwriting prudence, and collect such volume precisely due to

underpricing risks. An endangered firm may grow their business

in order to gamble for resurrection. (−) On the other hand, in

the short run, disreputable firms may struggle to collect

premiums (e.g., following an A.M. Best downgrade), or may face

surrenders, accelerating a failure.

IntRate (−/+) (−) level has a negative effect on failures: higher interest rate

levels provide higher returns for long-term bonds popular among

insurers; (+) changes or upward movements may lead to

disintermediation for certain life insurance contracts, as

policyholders surrender to exploit higher interest rates available

elsewhere.

OutputGap (−) To the extent that insurance risks (or the market risk borne in

their investments) are correlated with recessions, macroeconomic

crises pose a threat to insurers; in addition, personal financial

distress associated with higher unemployment may lead policy

holders to surrender.
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6 Econometric Approaches

The empirical analysis is based on logistic regressions where we explain the likelihood of

default events using a set of economic and financial determinants. We additionally estimate

duration models in which the explanatory variables (depending on parametric definition)

either help extend or serve to reduce a company’s survival time in the sample. As logistic

and duration models are very close, the second one may be viewed as a robustness check of

the former; see Allison (1984) for a review of survival analysis.

6.1 Fixed Effect Logistic Regression

In logistic regression, we assume the probability of an impairment can be written as

follows:

ln(
pi,j,t

1− pi,j,t
) = βi,tγi,t−k + δi,tθi,j,t−k + αi + αt + εi,j,t−k (1.1)

where the log-odds of becoming impaired at date t become a linear function of our

explanatory variables (with k ≥ 1).

γi,t represents a vector of macroeconomic factors for country i, namely the long-term

interest rate and the OECD output gap. αi is the country fixed-effect for country i, while αt

is the time fixed effect for year t . θi,j,t represents a vector of individual financial variables.

Further, we estimate predictive margins to evaluate our logit results in a more intuitive

fashion. Instead of a covariate’s effect on the log odds, this transformation gives us:

∂Pr(Impairment = 1|X1 = x)

∂X1

=
∆P

∆X1

or, the effect on the predicted probability following a discrete change in an explanatory

variable, X1.

This can be done in a number of ways. The approach we adopt is to plot incremental

jumps (e.g., 2.5pp jumps in ROA, from -10% to +10%) in a given variable, and calculate

marginal effects using different “predictive margins” for each of these values. Computation-

ally, this consists of calculating a predicted probability of failure (p̂) for each observation

after universally replacing ROA by the given value, while leaving the rest of the observed

values for other variables unchanged6 By differencing theses predictive margins obtained at

two different given ROA values, we are able to understand the impact on the probability of

failure due to a discrete change in this variable, keeping other variables at their observed

6This is known as “average marginal effects.” Values for p̂ are then averaged across all observations, and
a “predictive margin” for this ROA value is yielded.
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values. For reference, we have additionally included such marginal effects where other co-

variates have been held at their mean values, which in practice does not severely impact our

values.

6.2 Survival Analysis

To proceed with the parametric estimation of a survival model, we first assume survival

time T to follow a certain distribution:

S(t) = P (T > t) =

∫ ∞
t

f(u)du

The baseline distribution f(t) in our estimations will be the Weibull distribution (al-

though we test others as robustness checks):

f(t) = λptp−1exp(−λtp)

This will yield, respectively, the following survival function:

S(t) = exp(−λtp)

and the hazard function (h(t) = −dS(t)
dt

) becomes in that particular case:

h(t) = λptp−1

If p = 1, the model becomes the exponential function with constant risk over time. p > 1

means risk increases over time, while it decreases through time with p < 1.

There exist two families of such so-called parametric survival models: proportional haz-

ards (PH) models and Accelerated Failure Time (AFT) models. In PH models, the covariates

are assumed to have a multiplicative effect on the hazard function. PH regression thus esti-

mates the effect of exp(−xjβ) on the “hazard ratio”, either accelerating or decelerating (≶

1) time to failure for each insurer:

hi(t) = ptp−1exp(β′xj) (1.2)

where xj is a vector of covariates, β is a vector of regression coefficients.

In the AFT framework, the dependent variable is the (log of) the survival time:

logtj = xjβ + zj (1.3)
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where zj is the error term with a specified density. A one unit increase in the covariates

decelerate or accelerate the time to failure.

In our setup, we measure survival time as the number of one-year periods a firm has sur-

vived relative to its origin—assumed to be the year in which its historical data series begins.

At each period, a firm will either experience a failure (in which case its terminal survival

time becomes known), or it will be considered “censored”, meaning that the observation

window ended before the indivual experienced the event. This type of data is referred to as

“right-censored.” The likelihood function to be estimated for such data is written as follows:

L =
N∏
i=1

[f(Ti)]
Ci [S(Ti)]

1−Ci

Non-censored observations thus contribute directly to the chosen density f(Ti), while

censored observations intervene in the survival function S(Ti), contributing the information

that a firm’s terminal survival time Ti is at least later than the current measurement period

t. In this way, all information from both impaired and never-impaired firms are taken into

account in the estimation procedure.

For parametric estimations of proportional hazards models, one typically reports hazard

ratios instead of traditional coefficients; if the hazard ratio for a predictor is close to 1,

then its effect is null. Hazard ratios are below one for variables which are “protective”

or “healthy” (extend life), while values above are associated with increased risk. As with

a logistic regression, all of the parameters are estimated taking the other predictors into

account. Instead of hazard ratios, we here directly report traditional parameter estimates,

which represent the increase in the expected relative hazard for each one unit increase in the

predictor, holding other predictors constant. Positive coefficients therefore are associated

with shorter survival in the sample, and vice versa.

Note that in the Accelerated Failure Time (AFT) specifications, the interpretation of

coefficients changes considerably, since the dependent variable is no longer the hazard rate

but the survival time. With this approach, positive coefficients delay failure (as opposed to

increasing the hazard rate under the PH metric), while negative ones accelerate failure. It

should also be emphasized that such estimates can accelerate or decelerate time to failure

without necessarily affecting the hazard rate, which can yield certain intuitive advantages

to the approach depending on the specification.
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7 Results

For our baseline logistic regression specifications, we include a single (interacted) country-

year fixed effect, similar to Eling and Jia (2018), to account for the macroeconomic context

and other jurisdiction-specific characteristics of a given country. Firm-level fixed effects

could not be used for this type of analysis as it would drop the entirety of our control sample

(i.e., those firms which never experience a failure since there is no variation to be explained

in yit (meaning Pr(Default))). We later explicitly include macroeconomic variables (the

output gap and the interest rate) as robustness checks, and further show specifications using

separate time and country fixed effects.

Our analysis is split across the two sectors owing to their innate differences: Tables 1.4

and 1.6 report our results for the non-life sector, while Tables 1.7 and 1.9 report our life

sector results. Separating the two sectors allows us to provide various contributions to the

academic literature. We later discuss the ways in which these determinants vary across

national jurisdictions.

7.1 Non-life sector

In this section, we will discuss our results that pertain only to the non-life sector, found

in Tables 1.4 and 1.6.

We first note that profitability, measured by ROA—used widely in the literature as a

measure of firm performance—, is strongly significant across all columns, as is ROE, for

both approaches (logit or survival). At the margin, we find that a one standard deviation

increase in ROA decreases the probability of default by 0.28 percentage points in absolute

terms, or 0.23pp when holding other covariates at their means. Zhang and Nielson (2015)

also use ROE as measure of profitability, similarly finding that higher levels help prevent

failure, as the literature suggests for ROA. Higher loss ratios appear to weakly decrease

survival (for a given level of ROA), implying that claims management and proper pricing

help for the continutation of insurance firms. The significance of the loss ratio confirms the

findings of Ambrose and Seward (1988) while again challenging Lee and Urrutia (1996) with

a much more complete and current dataset.

We also note that the coefficient for operating inefficiency is positive and significant across

all specifications. This result confirms Zhang and Nielson (2015), who find a significantly

higher expense ratio on a sample including 98 insolvent property and casualty firms, and

Leverty and Grace (2012) who show how managers can be responsible for running ineffi-

cient (and thus more failure-prone) firms. Our result remains novel given the breadth of

our data and the choice of variable to instrument for operating inefficiency (OpExp variable

48



Chapter 1 – Why Do Insurers Fail?

in the tables). While our ratio (administrative and operating costs over premiums) is less

complex than other techniques found in the literature (such as the Data Envelope Analysis

approach in, for instance, Cummins et al. (2010)), our approach is of increased practical

interest to supervisors, who typically evaluate simple ratios to guage the health of under-

takings. Evaluated at the margin across all observed values, we find that a one standard

deviation increase in our operating inefficiency measure (i.e., 23 percentage points (pp.)) in-

creases the probability of default by 0.15 pp. As shown in Figures 1.8 and 1.9, this absolute

increase in Pr(Default) should be understood as a deviation from the unconditional firm-

year probability of default of 0.5pp. Relative to this baseline probability, such an movement

increases the probability of failure by 30%. When holding other covariates at their sample

mean values, this amount drops slightly to 0.11pp.

Looking to the asset side, we see that the share of debt instruments in a firm’s investment

portfolio, controlling by the other explanatory variables, is far outside of statistical signifiance

in the property and casualty sector, directly challenging Lee and Urrutia (1996). Overall this

result underscores the relative importance of the liability side of the balance sheet in this

sector; due to the faster production cycle and shorter liability duration, a firm’s efficiency

(in settling claims, for example) is of paramount importance for its survival. After splitting

this sector off from the life sector, portfolio choice does not appear to play a significant role

in predicting failure.

Perhaps unsurprisingly, after inclusion of our country and time fixed effects, our macroe-

conomic variables lose all significance: the long term interest rate is the only significant

variable (see column (3) as compared to column (4)). In our estimates, we find weak ev-

idence of higher levels of ceded premiums to reinsurance being associated with a higher

probability failure in the non-life sector. This is in line with Leadbetter and Dibra (2008)

which show reinsurance to be a contributing factor to insurance insolvency for 26 percent

of the insolvencies in Canada during the 1960–2005 period. Two explanations are provided

by the authors: complex inter-group arrangements, and over-reliance on reinsurance assets

that became more difficult to renew at some occasions. In our case, we interpret this as a

self-selection effect, whereby less healthy insurers observe their risk levels, and attempt to

share more of this risk with a third party. Our t-tests confirm a well-documented fact that

reinsurance is more popular in the property-casualty sector than in the life sector. Finally,

we find that a lower loss ratio (claims/premiums) helps survival.

We also note that size matters for almost all our specifications, with a negative sign.

This captures the fact, ceteris paribus, smaller firms tend to have a less diversified portfolio

of activities and are more likely to fail in comparison to larger undertakings.

Finally, our parametric survival model results are largely in line with our logit results:
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operating inefficiency significantly predicts failure, asset mix is not important and strong

firm performance (ROA, ROE and loss ratio) intuitively prevents insolvency.

Cross Country: France & UK vs US

As discussed above, differences across countries may be associated with supervisory ac-

tivism that may pay more attention to certain specific indicators, or differences in market

structure. In the second case, more competitive markets imply that any shock on costs is

immediately passed on to policyholders via pricing, keeping margins constant. Conversely, in

a market with monopoly power, firms do not adjust prices in response to shocks but instead

reduce their margin—and as a consequence, such cost shocks may be more destabilizing.

As seen in Table 1.5, where we interact the ROA variable with country dummies (for

France and UK), the role of profitability does not appear to vary across jurisdictions, as

the country interaction terms are not significant (implying the absence of differences across

countries). However, repeating the same experiment for operating inefficiency, by adding

country dummies interacted with that variable, we find a significant and positive coefficient

for France (6.37), which should be added to the baseline effet on the log-odds (1.31); the

coefficient is positive as well for the UK (2.13) but outside of statistical significance. Overall,

we can conclude that operational inefficiency matters most in the French case, and (to a lesser

extent) in the UK. These results are consistent with Figure 1.16: less competitive insurance

markets with lower resistance to shocks appear to be more vulnerable. When firms do fail in

such jurisdictions, management problems can be laid bare, as suggested here by our results.

Note, moreover, that this may also reveal more activist supervision as regulators intervene

more strongly to shocks to operating costs.

7.2 Life sector

As previously stated, by dividing the two sectors, we are able to emphasize their inherent

differences. Our baseline life sector results can be found in Tables 1.7 and 1.9. In the life

sector, we see that our firm profitability measures play a lesser role; ROA is more weakly

significant in Tables 1.7 and 1.9. At the margin, a one standard deviation increase in ROA

decreases the firm-year probability of default by 0.24 percentage points (0.18 with other

covariates at their means, see Figure 1.12), compared with 0.28pp in the non-life sector.

One explanation for this small contrast with the non-life sector is the fact that profits and

losses in the life insurance sector can be smoothed out over several years,7 implying less

7In France, the Provision pour participation aux bénéfices allows insurers to distribute investment profits
to policyholders up to eight years after their realization.
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importance for the profitability of one given year. Non-life firms, however, have no such

smoothing mechanism helping them to remain competitive in bad times. The duration of

the liability side is typically much lower in this sector, as well, regardless of jurisdiction.

Lastly, reinsurance appears to play no role in firm survival for life companies.

The most striking difference from the non-life sector is the importance of asset mix:

the higher the share of debt instruments in total investments, the lower the probability of

failure. This confirms our prior intuition that the asset side—and subsequent exposure to

financial cycles—plays a larger role for life insurers. At the margin, a one standard deviation

increase in the share of debt instruments in a life insurer’s portfolio (i.e., 24 pp) decreases

the probability of failure by approximately 0.23 pp (virtually unchanged when holding other

covariates at the mean, see Figure 1.13). Operating inefficiency appears to play no role, in

stark contrast to the results for the property and casualty sector.

Overall, we broadly understand these differences to imply a heavier relative importance

of market risk in the life industry, compared to the relatively larger factors of underwriting

risk and efficient claims management in non-life. This result confirms that life insurance—a

sector with a longer liability-side duration—is ultimately more exposed to macroeconomic

conditions, while providing a simple intuition that has not directly been addressed in the

literature; Cheng and Weiss (2012) explore bond portfolio duration, but not fixed-income

instruments as a portion of the total asset mix. This is also purely a study of non-life

insurers, and thus unable to highlight this marked difference regarding insolvency across

these different business lines. Finally, as for the non-life sector, most of our country-year

fixed effects are significant (particularly in crisis years), reflecting the importance of country-

specific macroeconomic conditions across all sectors.

As a means of model selection, we report the Akaike Information Criterion (AIC) as

well as Receiver Operating Characteristic (ROC) curves. The ROC curves tell us, for a

given level of sensitivity (or, rate of true positives) what rate of false positives (1-specificity)

we must tolerate. For example, in the property-casualty logit with contemporaneous lags,

a threshold of our indicator (the p̂ of our estimation) which catches almost 90% of true

insolvencies must come at the expense of a false alarm almost 25% of the time. While this

underlines the difficulty of insolvency prediction, our Area Under the Curve (AUC) is in line

with, although slightly higher than, the current literature (0.87, against 0.86 in Eling and

Jia (2018)).

The AUC in ROC analysis serves as a measure of how good our estimated model is at dis-

criminating between failures and non-failures. An AUC of 0.5 represents a model which is no

better than a random guess, while an AUC of 1 corresponds to a flawless predictor. Including

both the cases of false positives and false negatives (Type I and Type II errors), an AUC
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of 0.87 corresponds to a model which yields an 87 % chance of successfully distinguishing

between impaired and non-impaired firms.

Cross Country: Japan vs US

In this subsection, we compare the case of Japan (for which we have more exhaustive

data for life insurance) to the US case. As seen in Table 1.8, we again notice no different

role of profitability, in line with the non-life sector results. However, the effect of portfo-

lio composition deteriorates in the Japanese jurisdiction, as evidenced by the statistically

significant (positive) dummy variable. Baranoff (2015) points to the role of high interest-

bearing guarantees on life insurance contracts which were, in this case, linked to market

rates. Bernard et al. (2014) also stress that, in the years preceding the wave of Japanese

insurance failures, guarantees offered by these institutions were greater than government

bond yields. Arguably, such a result should be investigated further, as it may depend on the

macroeconomic environment (in particular, whether interest rates are decreasing—leading

to capital gains on bonds, provided bonds are measured at market value—or increasing).

7.3 Further Analysis and Robustness Checks

We have included three additional tables as a means to both explore additional dimensions

and reaffirm the robustness of our previous results. We first provide, in Tables 1.10 and 1.11,

additional lags for our explanatory variables. While this serves as a robustness check, it also

helps us understand the timeline of a failure and gives an idea of the predictive power of

these ratios through time.

Indeed, Figures 1.10 and 1.11 visually demonstrate the significance of these key variables

through additional lags in non-life insurance. In this sector, a profitability shock signifi-

cantly increases the probability of failure as many as three years in advance, indicating a

notable sensitivity to profitability shocks which may prove hard to correct. The coefficient

for operating inefficiency only gains significance in the second year leading up to a failure,

suggesting that managers can perceive and correct for inefficiencies before they prove fatal.

In other words, a firm’s profitability three years ago matters for their financial health, while

misdeeds related to management are not necessary impactful in a permanent manner.

Similar analysis is conducted in the life sector. Additional lags plotted in Figures 1.14

and 1.15 exhibit a contrast with those of the non-life sector. Here, ROA is only meaningful

at the first lag; the second and third lags are firmly outside of statistical significance. The

stronger leading indicator in this sector is the portfolio composition variable, which retains

significance up to three years prior. We interpret this as a confirmation that profits and losses
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are more easily smoothed in the life insurance industry due to its longer liability duration,

lessening the importance of past ROA shocks.

Indeed, these results also outline the long-term nature of life insurance; indeed, a life

insurance firm, with liability duration of ten or more years, may survive a profitability shock

so long as their investment income does not falter. Non-life insurers, however, may struggle

to recover from a bad surprise to the liability side, given the quicker speed at which they

must settle their claims and inability to smooth losses through time.

Next, in Table 1.12, we test various alternative specifications. Given the relatively strong

presence of smaller firms in our database, we tested whether our results could be driven by

these small, somewhat idiosyncratic players (e.g., mutual insurers) whose broader pertinence

could be questioned. By excluding firms below $10 and $20 million thresholds (see column

2-3 for non-life insurance, and 5 for life insurance), the previous results are unchanged, so

that we can conclude that the results displayed in Tables 1.4 through 1.9 are robust to size.

Further, given that we work mainly with ratios relative to levels of premiums, one may worry

that our results are driven by a large drop or hike in the denominator of these ratios. By

controlling for premium growth, our key ratios (operating inefficiency in non-life, and debt

instruments in life) remain significant.

Finally, we carry out several additional checks in Table 1.13. In this table, we carry out

the same analysis shown in Tables 1.4 and 1.7 but in the form of a single pooled regression.

The interaction term in column 5 confirms our central life-sector result—(i.e., that portfo-

lio composition matters for this sector but not non-life)—while our result with respect to

operating inefficiency holds in column 6, albeit at the 10% significance level. ROA remains

significant in the presence of these interaction dummies in the pooled regression. Further, we

have created a distinct profitability variable that we introduce into several of each specifica-

tions. As mentioned previously, most of the insurance default prediction literature evaluates

the role of profitability (e.g., via ROA or ROE) as well as operating inefficiency. However,

unprofitable firms may struggle to bring in premium revenue, which may lead to capturing

the same financial fragility through two different variables (see notably Eling and Jia (2018)).

We therefore orthogonalize ROA with respect to operating inefficiency, by simply regressing

ROA on operating inefficiency and introducing the residual as a new (orthogonalized) ROA

variable (displayed in tables below as ROA∗). When using this variable, we observe that the

OpExp variable gains in significance and magnitude while other coefficients naturally remain

unchanged. Additionally, we carried out this same analysis (ROA∗t−1 instead of ROAt−1 for

the regressions in Tables 1.5 and 1.8. This does not change the significance of our results.8

8These results are available upon request.
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8 Conclusion

In this article, we present evidence of the intrinsic differences between the life and non-

life insurance sectors using a unique dataset of so-called “impairments” manually assembled

by the authors. Applying logistic regression and parametric survival analysis to a dataset

containing 150 life failures and 287 property and casualty failures in four different countries,

we show that the asset side plays a determinant role in predicting life failures, while the

liability side (and the income statement) are the most important criteria for non-life insurers.

Asset mix (as captured by the part of fixed income instruments in the total investment

portfolio) significantly predicts failure for life insurers, while operating inefficiency (operating

and administrative expenses over total written premiums) appears to play no role at all.

The opposite is true in the non-life sector: asset mix—highly significant in the life sector

estimates—appears to play no role at all in non-life, while operating inefficiency is significant

across all specifications.

We understand this stark contrast to be a consequence of the differences in balance

sheet structure between the two sectors. Life insurers can spread profits and losses out

over the course of several years, in line with their longer liability structure. Depending on

the branch of activity, non-life insurers may have much shorter liability structures, meaning

mismanagement (or, one or two bad years) may be enough to sink the firm given the ability

of policyholders to lapse contracts more frequently. None-life insurers have no smoothing

mechanism to remain profitable in bad years, leaving them vulnerable to profitability shocks,

while life insurance contracts can often work like a savings instrument with less of a role for

active or efficient claims management.

Importantly, beyond the results which confirm the literature on a more comprehensive

database, we are able to draw conclusions regarding cross-country differences as the coef-

ficients vary across not only sectors but national jurisdictions. Our results suggest that

operating inefficiency also matters more in jurisdictions with more concentrated markets

(e.g., France), where firms may need to reduce their margins in response to a shock and

whose profits may have been protected by their increased ability to set prices. In the non-

life sector, we find that the protection afforded to insurers with a greater share of debt

instruments can be mitigated in a jurisdictional context where unsustainable guarantees are

offered to policyholders.

Regarding the policy and supervisory implications of our research, we provide evidence

that insurance insolvencies do not come abruptly, as our indicators have some forward-

looking properties. Insolvencies are predicted with a 3-year lag for ROA and 2-year lag for

operating expenditure in P/C insurance. In the life sector, ROA predicts failure with a
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1-year lag and the share of bond assets has predictive power with a 3-year lag. On the other

hand, we do not find a confirmation that an acceleration of premium leads to difficulties

a few years later. Macroeconomic variables play some role, confirming the literature, but

it is not substantial and mainly concentrated on the level of interest rates. Here, such a

variable is more a conditioning variable than one which highlights a transmission channel

of vulnerabilities, as it may simply express the concentration of defaults at the beginning of

our sample period.

A major contribution of this work is to uncover differences across countries, with a more

significant effect of operational inefficiency (measured by operational expenditure ratio) in

France characterized by more concentrated market. In addition, while we also confirm the

protecting role of bond investments for life insurance, this is not supported by the Japanese

case, stressing the limitations of such a ratio when guarantees on yield play a big role as was

the case in Japan during the 1990-2000 period.
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9 Figures

Figure 1.1: Output Gaps (Deviations of Actual GDP from Potential GDP as a % of Potential
GDP, by Country.

Note: This figure aims to provide information about the macroeconomic context of each
country by showing the evolution of the output gaps of each country throughout the
entirety of our sample. Most countries experience a busts in the early 1990s and 2008,
while Japan’s economy stagnated inbetween these two busts during the so-called Lost
Decade. Source: OECD.
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Figure 1.2: Long-term Interest Rates (Government Bonds Maturing in Ten Years) by country.

Note: This figure aims to provide information about the macroeconomic context of each
country by showing the evolution of the long-term interest rates (government bonds
maturing in 10 years) for each country throughout the entirety of our sample. Interest
rates exhibit an essentially monotonic downward slope from higher rates in the 1990s to
today’s near-zero low rate environment. Source: OECD.
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Figure 1.3: Histogram of Impairments in the United States

Note: This figure shows the frequency of impairments for all collected cases for the United
States. A well documented increase in entry (coupled with a lack of adequately risk-based
solvency requirements) lead to a large wave of firms amongst smaller firms in the late
1980s. While this country represents our richest data source, jurisdictional differences also
lead to a higher number of failures compared with Europe, where portfolios are often
transferred from struggling to healthy firms to avoid a full liquidation.
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Figure 1.4: Histogram of Impairments in Japan, France and the UK

Note: This figure shows the frequency of non-US cases in our sample (France, Japan and
UK). As in the US, we observe a spike around the year 2000, as well as a few notable larger
scale failures (or, impairments requiring government bailout packages) around the 2008
crisis.
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Figure 1.5: Histogram of Life versus Non-Life Impairments

Note: This figure shows the frequency of impairments by sector of activity. Life failures
appear more correlated with financial cycles, with peaks around the bust of the dot-com
bubble of 2000-2001 and the 2008 financial crisis.
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Figure 1.6: Receivership Operating Characteristic (ROC) Curves in the Non-Life sector,
Specification (1).

Note: The figure plots the true positive rate (sensitivity) as a function of the false
positive rate (1− specificity) for our first logic specification in Table 1.4. Intuitively, the
logistic regression first estimates a p̂ ∈ (0, 1] for each observation. Each point on this graph
represents the trade-off in catching true impairments versus misdiagnosing a healthy firms
for this specification. The greater the area, the better the overall predictive power of the
model. Our area under the curve (AUC) of ≈ 0.83 is in line with previous literature.
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Figure 1.7: Receivership Operating Characteristic (ROC) Curves in the Life sector, Speci-
fication (1).

Note: The figure plots the true positive rate (sensitivity) as a function of the false
positive rate (1− specificity) for our first logic specification in table 1.7. Intuitively, the
logistic regression first estimates a p̂ ∈ (0, 1] for each observation. Each point on this graph
represents the trade-off in catching true impairments versus misdiagnosing a healthy firm
for this specification. The greater the area, the better the overall predictive power of the
model. Our area under the curve (AUC) of ≈ 0.84 is in line with previous literature.
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Figure 1.8: Predictive Margins: ROA (Non-life)

Note: This figure shows the average predicted probability of failure, p̂ for Logit models, if
all observations had the indicated ROA levels (while holding other covariates at their
sample means). The dot is the mean probability on the y-axis for a given level of ROA on
the x-axis. 2 Standard errors are provided above and below the mean estimate. We observe
a clear negative relationship between ROA and Pr(Default), although higher ROA values
exhibit tighter confidence intervals compared with lower ones.
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Figure 1.9: Predictive Margins: Operating Inefficiency (Non-life)

Note: This figure shows the average predicted probability of failure, p̂ for Logit models, if
all observations had the indicated Operating Inefficiency levels (while holding other
covariates at their sample means). The dot is the mean probability on the y-axis for a
given level of Operating Inefficiency on the x-axis. 2 standard errors are provided above
and below the mean estimate. We observe a positive relationship between Operating
Inefficiency and Pr(Default), although with very large confidence intervals.
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Figure 1.10: Additional Lags: ROA (Non-life)

Note: This figure shows the coefficient values (and 95 % confidence intervals) for a key
variable of interest (ROA) by lag. In the non-life sector, ROA is a significant predictor of
failure up to three years in advance of the event, implying a fragility to profitability shocks.
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Figure 1.11: Additional Lags: Operating Inefficiency (Non-life)

Note: This figure shows the coefficient values (and 95 % confidence intervals) for a key
variable of interest (Operating Inefficiency) by lag. In the non-life sector, this variable
becomes significant two years before the failure event.
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Figure 1.12: Predictive Margins: ROA (Life)

Note: This figure shows the average predicted probability of failure, p̂ for Logit models, if
all observations had the indicated ROA levels (while holding other covariates at their
sample means). The dot is the mean probability on the y-axis for a given level of ROA on
the x-axis. 2 Standard errors are provided above and below the mean estimate. We observe
a clear negative relationship between ROA and Pr(Default), although higher ROA values
exhibit tighter confidence intervals compared with low ones. Confidence bands for this
measure are universally higher in the life sector, demonstrating the importance of other
variables.
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Figure 1.13: Predictive Margins: Portfolio Composition (Life)

Note: This figure shows the average predicted probability of failure, p̂ for Logit models, if
all observations had the indicated Debt instrument share level (while holding other
covariates at their sample means). The dot is the mean probability on the y-axis for a
given level of Debt instrument share on the x-axis. 2 Standard errors are provided above
and below the mean estimate. We observe a clear negative relationship between the
predominance of fixed income instruments and Pr(Default), although large confidence
intervals render it difficult to analyze at the margin.
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Figure 1.14: Additional Lags: ROA (Life)

Note: This figure shows the coefficient values (and 95 % confidence intervals) for a key
variable of interest (ROA) by lag. In the life sector, ROA is a significant predictor of failure
only in the year before the event, reflecting the sectors ability to smooth profitability shocks
over several periods. This sector overall appears less vulnerable to profitability shocks.
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Figure 1.15: Additional Lags: Portfolio Composition (Life)

Note: This figure shows the coefficient values (and 95 % confidence intervals) for a key
variable of interest (Debt Instruments Share) by lag. In the life sector, the share of fixed
income instruments in an insurer’s portfolio is a significant predictor of failure even three
years before the event, underscoring such instruments’ resilience to financial cycles. Life
insurers tend to hold such instruments to maturity, therefore receiving a contractually
agreed upon return for the life of the instrument.
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Figure 1.16: Average HHI Per Country, By Line of Business (Gross Premiums)

)

Note: These figures show the average HHIs values, calculated on the database based on
SNL data by year and by line of business (life / non-life) as captured by gross premiums
over the course of the available sample by country. For instance, the first bar from the left
shows the average yearly HHI values of the life insurance industry in France in our dataset.
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10 Tables

Table 1.1: Summary Statistics with T-test, Impaired vs. Healthy Firms (All Countries).

(1) (2) (3)
Impaired Healthy Difference

mean sd mean sd b t
Avg T.A. 783,237 4,412,327 2,535,669 18,310,035 1,752,432∗∗∗ (5.01)
Avg T.A. (US) 231,992 1,180,281 1,645,429 12,488,521 1,413,437∗∗∗ (8.34)
Avg T.A. (Other) 6,009,040 12,906,406 43,880,341 83,438,740 37,871,301∗∗∗ (5.15)
Observations 263 6,974 7,236

Note: This table of summary statistics shows a t-test of main variables comparing target
(acquired) companies to the rest of the market. These firms, like acquirers, appear slightly
larger than average (and more diversified across lines of business), although still
significantly smaller than acquirers on average.
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Table 1.2: Summary Statistics of Financial Ratios, Impaired vs. Healthy Firms (All coun-
tries).

(1) (2) (3)
Impaired Healthy Difference
mean sd mean sd b t

ROA -0.02 0.05 0.02 0.05 0.04∗∗∗ (13.00)
ROE -0.05 0.16 0.04 0.13 0.09∗∗∗ (8.67)
ROA Volatility 0.06 0.04 0.05 0.04 -0.02∗∗∗ (-6.68)
ROE Volatility 0.19 0.11 0.13 0.10 -0.06∗∗∗ (-9.17)
Loss Ratio 0.50 0.22 0.42 0.20 -0.08∗∗∗ (-4.95)
Reinsurance Ceded 0.32 0.21 0.32 0.23 -0.01 (-0.52)
Debt Investments 0.77 0.27 0.85 0.22 0.08∗∗∗ (4.77)
Equity Investments 0.17 0.22 0.17 0.26 -0.00 (-0.15)
Real Estate Investments 0.07 0.15 0.03 0.11 -0.04∗∗∗ (-4.43)
Operating Inefficiency 0.37 0.22 0.36 0.32 -0.01 (-0.45)
Observations 263 6593 6856

Note: In the table, figures are displayed as decimals (e.g., 0.05 represents an ROA of 5%).
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Table 1.3: Summary Statistics of Financial Ratios, Impaired vs. Healthy Firms, Separated
by Sector.

(1) (2) (3)
Impaired Healthy Difference
mean sd mean sd b t

ROA -0.02 0.05 0.02 0.04 0.04∗∗∗ (10.28)
ROE -0.04 0.13 0.03 0.10 0.08∗∗∗ (8.30)
ROA Volatility 0.07 0.04 0.04 0.03 -0.03∗∗∗ (-9.38)
ROE Volatility 0.18 0.11 0.11 0.08 -0.08∗∗∗ (-9.33)
Loss Ratio 0.50 0.22 0.41 0.20 -0.09∗∗∗ (-5.05)
Reinsurance Ceded 0.34 0.20 0.32 0.24 -0.03 (-1.55)
Debt Investments 0.77 0.26 0.83 0.21 0.06∗∗ (3.12)
Equity Investments 0.17 0.20 0.18 0.25 0.02 (0.98)
Real Estate Investments 0.06 0.13 0.02 0.08 -0.04∗∗∗ (-4.21)
Operating Inefficiency 0.38 0.17 0.36 0.24 -0.02 (-1.26)
Observations 183 3358 3541

(1) (2) (3)
Impaired Healthy Difference
mean sd mean sd b t

ROA -0.03 0.06 0.02 0.06 0.05∗∗∗ (7.52)
ROE -0.05 0.23 0.05 0.16 0.10∗∗∗ (3.90)
ROA Volatility 0.05 0.05 0.05 0.05 -0.00 (-0.45)
ROE Volatility 0.21 0.11 0.15 0.12 -0.07∗∗∗ (-4.88)
Reinsurance Ceded 0.13 0.19 0.17 0.19 0.04 (1.32)
Debt Investments 0.75 0.28 0.86 0.24 0.11∗∗∗ (3.46)
Equity Investments 0.17 0.24 0.15 0.26 -0.03 (-0.96)
Real Estate Investments 0.09 0.18 0.04 0.14 -0.05∗ (-2.43)
Operating Inefficiency 0.34 0.32 0.36 0.46 0.02 (0.55)
Observations 80 3217 3297

Note: Non-life firms are shown above, and life firms are shown below.
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Table 1.4: Logistic Regression Estimates (Non-life Sector).

(1) (2) (3) (4) (5) (6) (7)

ROAt−1 -10.86∗∗∗ -10.81∗∗∗ -10.51∗∗∗ -10.86∗∗∗ -10.87∗∗∗

(-9.37) (-9.39) (-9.28) (-9.37) (-9.42)

ROEt−1 -3.531∗∗∗ -3.531∗∗∗

(-9.16) (-9.16)

Size -0.122∗ -0.124∗ -0.104∗ -0.122∗ -0.121∗ -0.163∗∗ -0.163∗∗

(-2.42) (-2.51) (-2.19) (-2.42) (-2.42) (-3.13) (-3.13)

DebtInst−1 -0.243 -0.344 -0.615 -0.243 -0.314 -0.373 -0.373
(-0.72) (-1.04) (-1.94) (-0.72) (-0.94) (-1.07) (-1.07)

LossRatiot−1 1.192∗∗ 1.153∗∗ 1.516∗∗∗ 1.192∗∗ 1.129∗∗ 0.897 0.897
(2.73) (2.67) (3.63) (2.73) (2.61) (1.93) (1.93)

Reinst−1 1.767∗∗∗ 1.744∗∗∗ 2.072∗∗∗ 1.767∗∗∗ 1.713∗∗∗ 1.790∗∗∗ 1.790∗∗∗

(3.83) (3.84) (4.65) (3.83) (3.76) (3.77) (3.77)

OpExpt−1 1.286∗∗ 1.273∗∗ 1.387∗∗∗ 1.286∗∗ 1.267∗∗ 1.420∗∗ 1.420∗∗

(3.01) (3.01) (3.30) (3.01) (2.98) (3.25) (3.25)

10Y RIntRatet−1 0.518∗∗∗ 2.819 -0.147 3.558
(6.88) (0.33) (-0.08) (0.41)

∆10Y RIntRatet−1 -0.0185 -1.132 0.0289 -1.473
(-0.17) (-0.37) (0.03) (-0.48)

OutputGapt−1 -0.0207 2.173 -1.368 3.020
(-0.50) (0.18) (-0.97) (0.25)

Country-Year Fixed Effect Yes No No Yes No Yes Yes
Year Fixed Effect No Yes No No Yes No No
Country Fixed Effect No Yes No No Yes No No
AIC 1,726.6 1,736.6 1,771.2 1,726.6 1,739.8 1,626.1 1,626.1
Pseudo R2 0.146 0.142 0.122 0.146 0.144 0.137 0.137
Observations 28,801 28,930 32,059 28,801 28,930 28,685 28,685

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table displays the results for different specifications of equation 1.1, which
models the probability of failure in the non-life sector. The different columns vary in terms
of explanatory variables and fixed effects as described in the bottom of the table.
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Table 1.5: Cross-country Logistic Regression Estimates (Non-Life Sector).

(1) (2) (3)

ROAt−1 -10.51∗∗∗ -10.55∗∗∗ -10.83∗∗∗

(-9.28) (-9.29) (-9.61)

France ×ROAt−1 19.76
(0.55)

UK ×ROAt−1 4.279
(0.23)

Size -0.104∗ -0.104∗ -0.119∗

(-2.19) (-2.18) (-2.44)

DebtInst−1 -0.615 -0.617 -0.424
(-1.94) (-1.94) (-1.32)

LossRatiot−1 1.516∗∗∗ 1.521∗∗∗ 1.296∗∗

(3.63) (3.63) (3.12)

Reinst−1 2.072∗∗∗ 2.068∗∗∗ 1.882∗∗∗

(4.65) (4.62) (4.28)

OpExpt−1 1.387∗∗∗ 1.377∗∗ 1.313∗∗

(3.30) (3.27) (3.10)

France ×OpExpt−1 6.368∗∗∗

(5.02)

UK ×OpExpt−1 2.134
(1.53)

10Y RIntRatet−1 0.518∗∗∗ 0.522∗∗∗ 0.459∗∗∗

(6.88) (6.87) (6.23)

∆10Y RIntRatet−1 -0.0185 -0.0199 -0.0305
(-0.17) (-0.18) (-0.29)

OutputGapt−1 -0.0207 -0.0212 -0.00465
(-0.50) (-0.51) (-0.11)

Country-Year Fixed Effect No No No
Year Fixed Effect No No No
Country Fixed Effect No No No
AIC 1,771.2 1,774.7 1,758.4
Pseudo R2 0.122 0.122 0.130
Observations 32,059 32,059 32,059

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This table compares life sector failure dynamics across European and US
jurisdictions.
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Table 1.6: Parametric Survival Analysis Estimates with Time-Varying Covariates (Non-Life
Sector).

(1) (2) (3) (4) (5) (6) (7)

ROA -12.137∗∗∗ -12.276∗∗∗ 8.663∗∗∗ -12.093∗∗∗ 8.663∗∗∗

(1.112) (1.096) (1.215) (1.087) (1.093)
Size -0.106 -0.162∗∗ -0.176∗∗ -0.092 0.076∗ -0.106∗ 0.076∗

(0.054) (0.059) (0.058) (0.053) (0.038) (0.050) (0.036)
DebtIns -0.646 -0.900∗ -0.858∗ -0.739∗ 0.503∗ -0.702∗ 0.503∗

(0.340) (0.378) (0.373) (0.333) (0.248) (0.339) (0.248)
LossRatio 2.112∗∗∗ 2.100∗∗∗ 2.307∗∗∗ 2.182∗∗∗ -1.561∗∗∗ 2.179∗∗∗ -1.561∗∗∗

(0.383) (0.449) (0.427) (0.374) (0.310) (0.350) (0.279)
Reins 2.899∗∗∗ 2.990∗∗∗ 3.031∗∗∗ 2.881∗∗∗ -2.085∗∗∗ 2.910∗∗∗ -2.085∗∗∗

(0.422) (0.472) (0.458) (0.418) (0.362) (0.375) (0.335)
OpExp 1.498∗∗∗ 1.330∗∗ 1.178∗ 1.375∗∗∗ -0.995∗∗ 1.389∗∗∗ -0.995∗∗∗

(0.405) (0.476) (0.467) (0.399) (0.305) (0.338) (0.260)
OutputGap 0.062 0.072 -0.004 -0.017 0.007 -0.009 0.007

(0.126) (0.136) (0.051) (0.049) (0.034) (0.041) (0.029)
IntRate 0.603∗∗∗ 0.650∗∗∗ 0.696∗∗∗ 0.430∗∗∗ -0.457∗∗∗ 0.638∗∗∗ -0.457∗∗∗

(0.149) (0.158) (0.110) (0.090) (0.063) (0.098) (0.055)
ROE -4.047∗∗∗ -3.967∗∗∗

(0.368) (0.355)

Model Cox PH Cox PH PH PH AFT PH AFT
Distribution Weibull Exponential Weibull Weibull Weibull
Cluster? No No No No No Firm Firm
AIC 1,558.1 1,252.4 757.4 894.6 887.5 887.5 887.5
Observations 33,376 33,196 33,196 33,376 33,376 33,376 33,376

Note: The table displays the estimated coefficients of Equations 1.2 and 1.3, which model
the probability of failures of non life-insurers. The underlying probability distribution,
estimated survival equation and error clustering specifications are indicated in the bottom
of the table.
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Table 1.7: Logistic Regression Estimates (Life sector).

(1) (2) (3) (4) (5) (6) (7)

ROAt−1 -8.973∗∗ -8.700∗∗ -9.029∗∗∗ -8.973∗∗ -9.015∗∗

(-3.28) (-3.20) (-3.81) (-3.28) (-3.29)

ROEt−1 -3.686∗∗∗ -3.686∗∗∗

(-5.82) (-5.82)

Size -0.127 -0.130 -0.0229 -0.127 -0.126 -0.151 -0.151
(-1.60) (-1.64) (-0.35) (-1.60) (-1.58) (-1.80) (-1.80)

DebtInst−1 -2.193∗∗∗ -2.167∗∗∗ -2.445∗∗∗ -2.193∗∗∗ -2.195∗∗∗ -1.790∗∗ -1.790∗∗

(-3.78) (-3.79) (-4.59) (-3.78) (-3.79) (-2.83) (-2.83)

Reinst−1 -0.411 -0.000736 -0.252 -0.411 -0.356 -0.755 -0.755
(-0.45) (-0.00) (-0.30) (-0.45) (-0.39) (-0.73) (-0.73)

OpExpt−1 0.00687 0.0418 0.172 0.00687 0.0162 0.153 0.153
(0.02) (0.10) (0.45) (0.02) (0.04) (0.34) (0.34)

10Y RIntRatet−1 -0.0428 -0.568 9.952 -1.038
(-0.25) (-0.56) (0.92) (-0.95)

∆10Y RIntRatet−1 -0.134 0.282 -15.65 0.996
(-0.56) (0.32) (-1.36) (0.97)

OutputGapt−1 0.0980 0.296 -0.0377 0.334
(1.14) (1.31) (-0.07) (1.46)

Country-Year Fixed Effect Yes No No Yes No Yes Yes
Year Fixed Effect No Yes No No Yes No No
Country Fixed Effect No Yes No No Yes No No
AIC 437.4 448.9 492.9 437.4 447.4 378.6 378.6
Pseudo R2 0.158 0.159 0.073 0.158 0.175 0.201 0.201
Observations 6,751 6,892 10,215 6,751 6,892 6,637 6,637

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The table displays the results for different specifications of equation 1.1, which
models the probability of failure in the life sector. The different columns vary in terms of
explanatory variables and fixed effects as described in the bottom of the table.
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Table 1.8: Cross-country Logistic Regression Estimates (Life Sector).

(1) (2) (3)

ROAt−1 -8.910∗∗∗ -9.268∗∗∗ -8.271∗∗∗

(-3.76) (-3.89) (-3.43)

Japan ×ROAt−1 23.79
(0.65)

Size -0.0580 -0.0641 -0.117
(-0.94) (-1.02) (-1.74)

DebtInst−1 -2.361∗∗∗ -2.350∗∗∗ -2.328∗∗∗

(-4.35) (-4.25) (-4.28)

Japan ×DebtInst−1 1.992∗∗

(2.80)

Reinst−1 -0.568 -0.553 -0.251
(-0.64) (-0.62) (-0.28)

OpExpt−1 0.194 0.205 0.164
(0.50) (0.53) (0.41)

10Y RIntRatet−1 -0.0756 -0.101 0.00734
(-0.45) (-0.60) (0.04)

∆10Y RIntRatet−1 -0.0815 -0.0597 -0.130
(-0.33) (-0.25) (-0.53)

OutputGapt−1 0.0671 0.0635 0.0593
(0.78) (0.74) (0.69)

Country-Year Fixed Effect No No No
Year Fixed Effect No No No
Country Fixed Effect No No No
AIC 485.7 486.7 481.5
Pseudo R2 0.073 0.075 0.086
Observations 10,716 10,716 10,716

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This table compares non-life failure dynamics across Japanese and US jurisdictions.
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Table 1.9: Parametric Survival Estimates with Time-Varying Covariates (Life Sector).

(1) (2) (3) (4) (5) (6) (7)

ROA -13.870∗∗∗ -14.035∗∗∗ 5.517∗∗∗ -14.035∗∗∗ 5.517∗∗∗

(1.973) (1.891) (1.314) (1.569) (1.382)
Size 0.027 -0.001 0.034 0.009 -0.013 0.034 -0.013

(0.063) (0.081) (0.063) (0.081) (0.025) (0.059) (0.025)
DebtIns -2.577∗∗∗ -3.245∗∗∗ -2.466∗∗∗ -3.291∗∗∗ 0.970∗∗∗ -2.466∗∗∗ 0.970∗∗

(0.532) (0.653) (0.538) (0.651) (0.293) (0.557) (0.337)
Reins -0.072 -0.496 -0.173 -0.402 0.068 -0.173 0.068

(0.834) (1.139) (0.841) (1.125) (0.330) (0.794) (0.315)
OpExp 0.321 0.225 0.292 0.291 -0.115 0.292 -0.115

(0.332) (0.411) (0.332) (0.406) (0.134) (0.338) (0.138)
IntRate 0.161 0.111 0.601∗∗ -0.088 -0.236∗∗∗ 0.601∗ -0.236∗∗∗

(0.307) (0.501) (0.232) (0.185) (0.063) (0.253) (0.063)
OutputGap -0.140 -0.114 0.019 0.149 -0.007 0.019 -0.007

(0.131) (0.186) (0.078) (0.117) (0.030) (0.083) (0.032)
ROE -2.564∗∗∗ -2.567∗∗∗

(0.773) (0.772)

Model Cox PH Cox PH PH PH AFT PH AFT
Distribution Weibull Exponential Weibull Weibull Weibull
Cluster? No No No No No Firm Firm
AIC 422.5 264.5 280.5 200.3 280.5 280.5 280.5
Observations 11,814 11,541 11,814 11,541 11,814 11,814 11,814

Note: The table displays the estimated coefficients of Equations 1.2 and 1.3, which model
the probability of failures of life insurers. The underlying probability distribution,
estimated survival equation and error clustering specifications are indicated in the bottom
of the table.
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Table 1.10: Additional Lags (Property-casualty Sector)

(T-3) (T-2) (T-1) (T)

ROA -8.395∗∗∗ -10.17∗∗∗ -10.81∗∗∗ -13.09∗∗∗

(-5.65) (-7.88) (-9.39) (-11.08)

DebtIns -0.747∗ -0.420 -0.344 -0.624
(-2.08) (-1.20) (-1.04) (-1.72)

OpExp 0.660 1.002∗ 1.273∗∗ 1.744∗∗∗

(1.21) (2.13) (3.01) (4.01)

Country FE and Year FE Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Pseudo R2 0.084 0.110 0.142 0.216
Observations 23,035 25,088 28,930 30,216

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.11: Additional Lags (Life Sector)

(T-3) (T-2) (T-1) (T)

ROA -1.362 -2.884 -8.156∗∗ -14.90∗∗∗

(-0.35) (-0.85) (-3.03) (-6.82)

DebtIns -1.556∗ -2.098∗∗∗ -2.121∗∗∗ -2.486∗∗∗

(-2.29) (-3.45) (-3.75) (-4.35)

OpExp 0.394 0.613 0.114 0.374
(0.91) (1.68) (0.28) (1.00)

Country FE and Year FE Yes Yes Yes Yes
Firm Controls Yes Yes Yes Yes
Pseudo R2 0.121 0.152 0.154 0.198
Observations 6,045 7,416 8,046 8,921

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.12: Robustness Checks

(1) (2) (3) (4) (5) (6) (7)

ROAt−1 -8.477∗∗∗ -7.839∗∗∗ -8.053∗∗∗ -8.428∗∗∗ -6.228∗ -6.228∗ -5.093
(-10.58) (-5.46) (-4.73) (-4.63) (-2.36) (-2.36) (-1.87)

DebtInst−1 -0.704∗∗ -0.110 -0.435 -0.479 -1.868∗∗ -1.868∗∗ -1.968∗∗∗

(-3.22) (-0.26) (-0.92) (-0.98) (-3.24) (-3.24) (-3.30)

OpExpt−1 1.819∗∗∗ 2.411∗∗∗ 2.111∗∗ 0.0568 0.0568 0.115
(3.33) (3.68) (2.93) (0.14) (0.14) (0.27)

PremGrowtht−1 -0.139 -0.0929
(-0.95) (-0.45)

Country FE and Year FE Yes Yes Yes Yes Yes Yes
Size All Above 10M Above 20M All Above 10M All All
Sector All PC PC PC LH LH LH
Firm Controls Yes Yes Yes Yes Yes Yes Yes
Pseudo R2 0.139 0.206 0.238 0.239 0.157 0.157 0.160
Observations 55,892 22,191 18,236 16,854 7,807 7,807 7,711

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.13: Pooled Regression

(1) (2) (3) (4) (5) (6)

Sector = Life 0.0420 0.0981 1.443∗∗ 1.443∗∗ 0.325 0.325
(0.20) (0.43) (2.65) (2.65) (1.10) (1.10)

ROAt−1 -12.70∗ -12.33∗ -12.01∗

(-13.07) (-13.49) (-13.03)

Life ×ROAt−1 3.438
(1.35)

ROA∗t−1 -12.69∗ -12.33∗ -12.01∗

(-13.01) (-13.49) (-13.03)

Life ×ROA∗t−1 3.263
(1.28)

DebtInst−1 -0.851∗∗ -0.851∗∗ -0.485 -0.485 -0.878∗∗ -0.878∗∗

(-2.90) (-2.90) (-1.44) (-1.44) (-2.99) (-2.99)

Life ×DebtInst−1 -1.886∗∗ -1.886∗∗

(-2.81) (-2.81)

OpExpt−1 0.738∗∗ 0.856∗∗ 0.646∗∗∗ 0.786∗∗ 1.268∗∗ 1.404∗

(2.77) (3.24) (2.37) (2.90) (3.10) (3.45)

Life ×OpExpt−1 -0.953+ -0.953+

(-1.68) (-1.68)

Firm-level Controls Yes Yes Yes Yes Yes Yes
Macro Variables Yes Yes Yes Yes Yes Yes
AIC 2,141.5 2,141.7 2,136.3 2,136.3 2,140.5 2,140.5
Pseudo R2 0.104 0.104 0.107 0.107 0.105 0.105
Observations 39,743 39,743 39,743 39,743 39,743 39,743

t statistics in parentheses
+ p < 0.1, ∗∗∗ p < 0.05, ∗∗ p < 0.01, ∗ p < 0.001
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Chapter 2

Mergers & Acquisitions Following
Regulatory Reform in the Insurance
Sector

Abstract

This paper studies how the structure of the French insurance market has transformed over
the past decade following the introduction of a series of regulatory reforms. We first discuss
the M&A incentives given by Solvency II’s standard formula, and document a predominance
of “traditional” mergers—i.e., those which seek to gain economies of scale within similar lines
of business. This is consistent with an absence of regulatory arbitrage. We then analyze a
health-specific reform (the ANI law) and note a large wave of mergers in this sector. Using a
novel data-set of 256 mergers within the French market from 2011-2019—and exploiting the
fact that only a segment of the French market was exposed to this law, unlike Solvency II—
we show that target companies in this business line were not associated with profitability or
solvency concerns, to the contrary of mergers within other branches of activity. This result is
consistent with firms anticipating the reform before the materialization of its consequences.
Finally, market concentration indices across nearly all business lines remain very low, despite
a large increase in M&A activity and an ever-decreasing stock of licensed undertakings in
France.

1 Introduction

Between 2011 and 2019, the total number of licensed insurance undertakings present

in the French market dropped from 1,074 to 695. During this period, several important

regulatory reforms shook insurance markets. In January of 2016, both a European-level

reform—Solvency II—and a series of French-specific health insurance reforms entered into

force. Many observers believed both reforms could disproportionately affect smaller or id-

iosyncratic firms, and indeed a wave of mergers was observed leading up to 2016: French

undertakings were the targets of over 500 acquisitions events across the aforementioned pe-

riod. Further, merger activity between health specialists (the players potentially exposed

to the effects of the ANI law) ceased entirely in the years following the reform’s entry into

force. How should these mergers be viewed in light of the regulatory context, and how has
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the French insurance market evolved as a consequence?

These reforms reshaped the French insurance market in differing ways. In 2016, following

approximately a decade of negotiations, Solvency II took effect across the European single

market. The objectives of the reform included the introduction of a risk-based and market-

consistent calculation of capital requirements for insurers, which previously was roughly

proportional to the size of an undertaking. The new standard formula drastically modified

the regulatory landscape across Europe, both for insurers using the standard formula and

those implementing an internal model.

After the adoption of the EU Directive in 2009, some observers anticipated that the

reforms would lead to a wave of M&A activity. Stoyanova and Gründl (2014) discussed

a possible cross-border consolidation in the non-life sector for players who were large and

sophisticated enough to assess the costs. Additionally, there were concerns regarding compli-

ance costs. A report published by the European Commission following various Quantitative

Impact Assessment (QIS) exercises estimated the one-off net cost of implementing Solvency

II for the whole EU insurance industry to be around e3 billion to e4 billion (European

Commission (2007)). Other observers indeed predicted a positive diversification effect of a

consolidation wave stemming from the reforms (see Carpenter (2011)).

Concurrently with Solvency II, several transformative regulatory developments reshaped

the private health insurance market in France. Importantly, this reform affected only a seg-

ment of the French insurance industry, unlike Solvency II which applied uniformly above the

eligibility threshold (discussed below). In 2013, the “ANI” law (Accord National Interpro-

fessionnel in French) was signed, targeting the provision of individual and collective health

insurance contracts. Following the entry into force of ANI, any company of any nature must

provide complementary or collective health insurance coverage to their employees. In connec-

tion with the 2013 ANI reform, a so-called “designation clause” was censored from the Social

Security Code by the French Constitutional Council for its overly restrictive nature. This

previous provision authorized professional organizations to impose a selected insurer (e.g.,

an occupation-specific mutual undertaking) to all companies in the sector. Together, these

reforms widened the market and increased competition across players—putting particular

pressure on firms with historically protected connections to given industries.

In the context of any regulatory reform, consolidation effects are particularly likely to

manifest if the reform affects firms differently according to their size. Article 4, Section

2 of the Solvency II Directive stipulates the criteria for exclusion from scope due to size:

undertakings with annual gross written premium income which does not exceed e5 million,

or undertakings whose technical provisions (gross of amounts recoverable from reinsurance

contracts and special purpose vehicles) does not exceed e25 million are exempt from the
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regulation. One could hypothesize several consequences from this design with respect to

Solvency II. First, if compliance costs have a fixed-cost component, undertakings that are

small relative to market’s median firm size could be asymmetrically affected given the very

low eligibility threshold. These firms may therefore feel an increased incentive to merge. In

this case, one would expect such mergers to occur between similar firms—i.e., firms engaging

in similar lines of business—in order to more efficiently combine overhead costs and gain

economies of scale. Predominance of this traditional type of merger would also be expected

following the 2013 ANI health sector reforms; faced with increased competition, similar firms

may seek to join forces in order to lower the overall cost per contract under management

within one specific business line (individual and collective health contracts).

In the case of Solvency II, the design of the capital requirements formula could also give

rise to a separate phenomenon: in addition to the question of potential compliance costs, the

content of the regulation itself provides incentives for M & A activity amongst eligible firms1

owing to the method of calculating capital requirements. Solvency II proposes a standard

formula to be applied by undertakings—the Solvency Capital Requirement (SCR)—which

corresponds generally to the capital required to meet obligations over the following year with

a probability of 99.5% throughout different stressed scenarios. This formula breaks down

risks by line of business (and other risk exposures), and subsequently provides a correlation

matrix between them. Naturally, the higher the correlation between two risks, the higher

the capital requirements will be.

This framework could lead to precisely the opposite type of merger; in order to take

advantage of a diversification effect in the regulation, an insurer could be tempted to merge

with a firm with different lines of insurance business or risk exposures. For instance, if the

business model of Firm 1 is dominated by line of activity A, whose risks are considered to be

only weakly correlated to those of activity B (in which firm 2 is present), a single merged firm

would enjoy a less than proportionate increase in capital requirements when compared to the

sum of Firm 1 and Firm 2’s separate requirements. Analysis of this question is important

from a supervisory or regulatory standpoint, as such cross-branch mergers could imply the

presence of regulatory arbitrage. Understanding the motivation behind a merger can help

explain subsequent outcomes on the product market. Indeed, undesirable changes in market

structure (e.g., those resulting from mega-mergers seeking to consolidate a specific market)

can have significant effects on the pricing and availability of products to consumers, while

healthy mergers in a competitive landscape can lower costs and improve efficiency. Lastly, a

wave of mergers motivated by regulatory arbitrage could have implications for the financial

1Given the structure and scale of most European insurance markets, the vast majority of undertakings
are indeed subject to the Solvency II Directive
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stability of the effected industry, and inform the design of future regulatory developments.

Analysis of the greater effects of insurance regulatory reform—both the risk-based and

market- consistent the Solvency II framework as well as the transformative ANI law—remains

an open question in the academic literature. Stoyanova and Gründl (2014) discusses the in-

centives of Solvency II in the non-life industry (which we will develop and test below in the

French market), but largely emphasizes geographically-motivated intra-European mergers.

Five years after its implementation, these ideas deserve further empirical examination; in-

deed, foreign entities (holdings, branches, subsidiaries) compromise only 32 of the 546 total

merger events identified in our unique database since 2011. Similarly, the effects of the 2013

ANI reforms have been subject to debate. Pierre and Jusot (2017) uses 2012 survey data

to estimate that the non-coverage rate would likely fall from 5% to under 4% following the

implementation of the bill, although the authors warn its welfare effects may be unevenly

distributed. To the best of our knowledge, no academic studies have evaluated the market

concentration effects since the law’s entry into force.

During the period of study, as outlined above, the French market has undergone several

significant transformations. The objectives of this paper are therefore multiple. We firstly

seek to describe the trend of mergers under the period of study in order to understand

the nature of companies involved. We further analyze the temporal dynamics of market

concentration indices in France, in light of the ever-reducing number of undertakings. Second,

we seek to understand the links between the mergers and the aforementioned reforms. We

exploit the fact that only a specific segment was exposed to the ANI law to understand how

the determinants to become a target differ for this subset of firms.

Using a proprietary data-set maintained by the French Prudential Supervisory and Reso-

lution Authority of the Bank of France initially containing 546 merger events from 2011-2019,

we first show that market concentration indices for nearly all business lines remain very low

in France, despite a 38% reduction in the number of licensed firms. This indicates that

most targets do not hold a sufficient market share ex-ante to alter outcomes to consumers

on the product market ex-post. Second, we show that 85% of mergers took place in similar

business categories, consistent with a predominance of “traditional” mergers over mergers

motivated by regulatory arbitrage. Lastly, we use various logistic regression specifications to

show that, unlike mergers within other branches of activity, target companies underwriting

over 50% of their premiums in health contracts (i.e., those firms exposed to the effects of

the ANI law) were not motivated by profitability concerns leading up to the merger. This

result is consistent with such firms anticipating the reform before the materialization of its

consequences.

The remainder of the paper is organized as follows: Section 2 reviews the existing liter-
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ature. Section 3 gives a description of the data sources and the construction of the novel

data-set, and reports descriptive statistics, notably by comparing which firms engage in

M&A activity with the rest of the market. Section 4 introduces the econometric strategy for

our main research questions above, and discusses results. Section 5 concludes.

2 Literature Review

Our paper is situated at the intersection of several strands of literature. This brief

review of academic studies is broken down along the following lines: papers analyzing the

effects of financial regulation (namely, risk-based capital requirements) and those studying

the effects—and determinants of—M&A activity.

2.1 Effects of Regulation

Over the last few decades, almost all developed countries have adopted risk-based reg-

ulatory regimes governing activity in the insurance sector. Conning and Company (1995)

document how the implementation of risk-based capital (RBC) requirements in the United

States property-liability insurance industry in 1994 contributed to market consolidation, as

financially constrained firms lacked adequate access to capital markets to comfortably com-

ply with the reform. A well-documented period of high-capitalization and relative stability

indeed followed the adoption of these standards.2

Evaluation of the effects of Solvency II is problematic for several reasons. Certain com-

ponents of the standard formula periodically face recalibration. Further, firms are heteroge-

neously exposed to these calibrations, since many (typically larger firms) use internal models,

independent from the so-called standard formula. Most important, negotiations for the re-

forms began in the early 2000s, with several rounds of quantitative impact assessments (QIS)

being carried before the passing of the Directive in 2009.3

One preliminary study of the initial effects of the introduction of the Solvency II reforms

(Kočović et al. (2017)) concludes that certain key metrics, like the risk margin, prove too

sensitive to interest rates, suggesting that the standard formula may be excessively conser-

vative. Douglas et al. (2017) document how Solvency II may incite life insurers to “de-risk”

their asset portfolios following drops in the risk-free rate (and subsequent rises in the risk-

margin). Nonetheless, five years after these regulations have taken effect, evaluation of their

2Figure 1.3 from the first chapter of this thesis demonstrates a lower frequency of US insurance impair-
ments around this time.

3See EIOPA (2010) for an assessment of the 5th QIS exercise, which compares own funds levels and
capital requirements of European insurers under Solvency II with those under the Solveny I regime.
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overall effects remains scarce in the academic literature.

2.2 Effects of M&A

Unbiased identification of the effects of mergers is notoriously problematic due to the ab-

sence of a meaningful counterfactual scenario. M&A effects using the traditional approach—

measuring short-term announcement returns—appear to differ in accordance with the form

of financing (Asquith et al. (1990)), the overall state of the market (see Shleifer and Vishny

(2003)) or the size of the target firm (Moeller et al. (2004)). Such a metric may also often

prove unreliable due to pressure from short-selling arbitrage activity (Mitchell et al. (2004)).

Overall, the longer-term effects of M&A remain an outstanding research question across

many sectors of the real economy. Mergers are sometimes praised for their capacity to channel

resources towards their most productivity outlets, yielding positive returns to scale. Still,

many articles challenge this central idea by underscoring the pitfalls of ill-conceived mergers;

those which perform poorly ex-post are often attributed to overconfident management (see

Malmendier and Tate (2008) and Malmendier and Tate (2005)). A novel approach is used

by one newer paper to identify the effects of mergers on firm performance. By analyzing

mergers with several tender offers (merger contests), Malmendier et al. (2018) treats the

“losing” firms as a counterfactual and finds that during the 3 years after the merger, losers

indeed outperform winners by 24% in stock returns. Moeller et al. (2004) similarly finds

negative announcement effects for acquiring firms.

The literature on M&A activity specific to the insurance sector is existent but less robust,

most likely owing to non-representative nature of publicly listed insurance firms compared

to the industry as a whole. Cummins et al. (1999) analyzes the relationship between mergers

and acquisitions, efficiency, and scale economies for life insurance. Decomposing efficiency

into several components, the authors show that mergers overall lead to increase firm efficiency

over time, producing a beneficial effect overall on the industry.

Boubakri et al. (2008) study whether mergers and acquisitions in the US property-liability

sector (particularly, a well-documented consolidation during the 1990s) creates or destroys

value in the long term. Indeed, as mentioned above, some managers may seek to create

a business empire beyond what is sustainable or rational, ultimately decreasing long-term

company valuation. Here, authors estimate that M&A activity in the non-life insurance

sector creates value in the long run, as measured by abnormal buy-and-hold stocks returns

of acquiring firms. Further, internal corporate governance mechanisms (e.g., CEO stock

participation or board independence) appear to help boost long-term productivity.

More closely related to our work is Cummins and Rubio-Misas (2019), who study the
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determinants of being involved in mergers and acquisitions using data from the Spanish in-

surance industry from 2000 to 2012. The authors find that firms are more likely to be targets

if they are less profitable and have higher premium growth rates. Composite insurers and

older firms were more likely to be involved as acquirers. Further, there remains uncertainty

regarding whether acquirers prefer under-performing firms (as suggested in Ly et al. (2017)

in the banking sector) or instead efficient targets (as suggested by Cummins et al. (1999) in

the US life insurance industry).

We now give an overview of our data by explaining our sources and providing summary

statistics before introducing our econometric strategy and results in Section 4.

3 Data Overview

Our historical records of M&A activity and our firm-level financial data have both been

collected the French Prudential Supervisory and Resolution Authority (ACPR) within the

Bank of France. In particular, records regarding M&A activity from the Legal Affairs De-

partment were matched with historical financial records accessed from within the Research

and Risk Analysis Department. Our proprietary data-set includes, in its rawest form, 548

merger events, excluding redundant transactions; the count reduces to 359 when removing

certain multi-firm events, such as a single insurer acquiring a series of different mutual insur-

ers in a single transaction. In our regressions below, we have also dropped mergers in which

one or more foreign players are involved (32 in total), as we do not dispose of any historical

financial data for these firms. We additionally note that financial data from Solvency II re-

porting begin only in 2016; we we therefore rely on French-specific prudential filings,4 linking

firm-level Solvency I-era data with identical data from the Solvency II era. Our econometric

estimations ultimately involve 256 unique merger events amongst French firms.

Finally, all variables have been trimmed at the 0.1th and 99.9th percentiles to rid our

data of noise or economically nonsensical values, particularly for financial ratios such as

ROA.

3.1 Descriptive Statistics

Table 2.1 reports the number of undertakings authorized to write business in France by

year, while Table 2.2 shows the number of insurers, mutual insurers and retirement or provi-

dence institutions5 who were involved in a merger as either an acquirer or a target throughout

4Etats nationaux spécifiques, or “ENS” in French.
5Institution de prévoyance in French.
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our sample period. The total number of active undertakings has decreased monotonically

from 1,129 in 2010 to 695 in 2019—a 38% decrease. While the number of insurers has fluc-

tuated, a marked decrease can be observed for mutual insurers, whose representation has

decrease from 719 in 2010 to 385 in 2019.

Figure 2.2 tabulates the frequency with which we observe each type pairing observed for

these mergers (non-life acquiring life, life acquiring mutual, etc). Mutual insurers acquiring

other mutual insurers accounts for 48% of M&A activity, while traditional insurers acquiring

other such insurers accounts for 36%. The darker diagonal in Figure 2.2 shows us that most

M&A activity in France observed over the past decades has been amongst similar insurer

types. We note that this is not sufficient to conclude that firms do not seek to benefit from

Solvency II’s diversification affects intra-branch. For instance, despite being present in the

same line general line of business, two non-life insurers could benefit from a merger (i.e., the

merger would yield lower capital requirements compared with the sum of the two separate

firms) were their risks to be diversified across the non-life module. However, for this chapter,

we were unable to access the data required to measure firms’ exposures and reconstruct

their different SCR values. For instance, the non-life module contains three sub-modules:

premium reserve, lapse, and CAT. While a premium-reserve SCR can be calculated using

historical data on premiums, lapse and CAT require granular contract-level data which would

make approximation impossible before 2016. Given these data-related hurdles, this question

has been left for future research.

The effect of the drop on the overall market structure is largely mitigated by the size of

the target firms. Figures 2.5 and 2.6 show the evolution of HHI values in the life/savings

and non-life sectors respectively throughout the life of our sample. Values below 0.15 are

generally considered as indicators of an unconcentrated industry; 0.15-0.25, a moderately

concentrated industry; and above 0.25, a highly concentrated industry. The life sector in

France, as shown in Figure 2.5, exhibits low levels of concentration. Different categories

of Euro savings contracts (a popular savings tool in France) and unit-linked contracts have

been grouped together given their relatively homogeneous nature; life insurers who offer

savings contracts generally propose a similar mix of such products. The majority of non-

life business lines are equally unconcentrated, with two important exceptions: transport

and surety contracts. The latter remains above 0.3 in 2019, indicating a high degree of

concentration, while the former has begun trending towards 0.10 as of 2019. In the surety

industry, we notably see one key merger in 2014 which was undertaken by a one of the few

dominant firms in order to acquire a peer firm operating in the same branch; around this

time we indeed begin to observe a sharp spike in the HHI.

We lastly discuss the profile of firms across the market in terms of their diversification
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across business lines. Perhaps owing in part to their size—which allows for the infrastructure

to undertake multiple lines of business, assuming a fixed-cost barrier to entry—both acquirers

and targets have more diversified activities (measured as the sum of the squared shares of

the French premium categories, per observation). Figures 2.3 and 2.4 report a histogram

of these measures, showing a greater business-line concentration in the non-life sector. This

measure—quantitatively the same as the application above but applied within and not across

firms—suggests a strong presence of “monoliner” firms in France.

3.2 Who Engages in M&A?

It is well documented that only a small segment of firms engage in M&A activity as an

acquirer, or become implicated as a target.6 Tables 2.3 and 2.4 provide summary statistics by

running t-tests comparing those firms which have acquired at least one other firm throughout

our sample life to those who have not, as well as those who have eventually be the target of

such an operation with those who have not.

Variables of interest include firm size (log of total assets), ROA (both overall and “techni-

cal”, meaning only linked to insurance activities and thus separate from investment profits),

equity, loss ratio, administrative efficiency (administrative expenses relative to gross premi-

ums written), and the share of premiums ceded to reinsurance. As discussed above, we have

also created a firm-level pseudo-HHI, which measures the concentration of a given firm’s

activity over a given year; a value of one would correspond to the case of a firm collecting

only one category of insurance premium. We have calculated this measure for each firm-year

observation, thus allowing for a firm to become more or less concentrated in its business lines

from one year to another.

There are several important takeaways from these summary statistics. We observe firstly

that firms which are involved in mergers, either as a target or an acquirer, are significantly

larger relative to rest of the market. This is notable, given the over-representation of mutual

insurers—typically smaller undertakings—among those engaging in M&A activity. Thus,

despite M&A’s prevalence amongst traditionally smaller undertakings, the subset of those

involved is nonetheless significantly higher than the full remainder of the industry. It should

further noted that target undertakings are significantly smaller than acquirers. Depending

on the motivation for the transaction, smaller players may indeed be less willing or able to

dedicate the necessary resources (legal costs in particular). Additionally, many smaller firms

are locally managed or historically linked to a geographic area, which may diminish the in-

centive to merge with an outsider. In general, the positive total asset difference for acquiring

6See Junni and Teerikangas (2019) for an overview of merger types and the different motives for them to
take place.

95



Chapter 2 – Mergers & Acquisitions Following Regulatory Reform

firms tends to corroborate our findings below of large firms staying large, perpetuating an

overall inertia in market structure.

Further, we observe acquiring firms to be more diversified across lines of business, less

capitalized and slightly more profitable (as captured by the loss ratio) than firms which do

not participate in the acquisition of other firms. Acquirers additionally appear very slightly

more profitable, exhibiting slightly lower ROA values and significantly lower loss ratios. The

characteristics of targets are also different compared to their peers. Importantly, target

insurers appear to have lower equity positions over their life in the sample. This supports

an apriori intuition that, instead of entering a restructuring plan and eventually liquidating

(as observed in the US jurisdiction), European firms struggling financially tend to transfer

their portfolios to healthier firms, avoiding a pure bankruptcy or liquidation procedure.

Nonetheless, such an effect remains little studied in the academic literature. Overall, these

two tables together lend support to the differential efficiency hypothesis, according to which

acquirers are more healthier and efficient than their targets.

4 A Regulatory Reform in the Health Sector

In 2013, the ANI reform was adopted by French legislators, set to enter into force in 2016.

Figure 2.7 shows the evolution through time of mergers taking place within this business line.

This figure demonstrates how health firms seem to have anticipated the passage of this law—

to such an extent that no M&A activity is observed after 2016, despite a continuing trend of

mergers amongst other types of players. Table 2.2 also helps demonstrated how the passage

of this law coincided with a considerable increase in M&A activity.

To study the effects of this law, we must analyze the health insurance firms affected by the

reform. In practice, non-life, life and mutual insurers alike often underwrite business across

several different business lines. To identify specialists in the health sector, we refer to the

premium categories provided in the French Insurance Code (Code des assurances). Premium

categories 20 and 21 represent, respectively, individual and collective contracts for physical

or bodily damages.7 As a rule of thumb, we consider as “health specialists” those firms which

underwrite over half of their business in the above premium categories. Other sensible ad-

hoc values were tested for this threshold and produced no material difference to the results.

This is predictable, given our descriptive statistics pertaining to firms’ diversification across

business lines; the vast majority of insurers present in this branch either underwrite health

contracts uniquely or not at all.

7Dommages corporels y compris garanties accessoires aux contrats d’assurance vie individuels et collectifs
in French.
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As discussed above, the ANI texts were adopted by the French legislature in 2013 and

took effect in 2016. Given that these reforms implied both 1) the obligation to offer a

complementary health contract to all employees and 2) granted employers the liberty to

choose the provider of the contract, these reforms significantly expanded the market and

amplified competition within the French jurisdiction. The economic implications of this

law’s design are such that certain firms not experiencing any financial difficulties today may

feel the need to join forces with other similar firms to insure a continuity of their activity

in anticipation of future difficulties. The three year delay between the law’s adoption and

its entry into force provides the industry with the opportunity to organize in exactly this

manner. Below, we will evaluate how the motivations of undertakings exposed to this law

appear to differ compare to undertakings whose activities were not affected by this reform.

4.1 Econometric Strategy

To test for evidence of the phenomenon described above, we rely on different logistic

regression specifications.

p(Targetj) =
eα+βjXi

1 + eα+βjXi
(2.1)

This equation expresses the probability that a firm of type j (j = Health, Non-Health,

etc...) becomes acquired as a logistic function of a vector of explanatory variables, X, for

each firm i in our panel. Rearranging away from an odds ratio representation, we could

express the probability function as a combination of the following explanatory variables:

p(Targeti) = αit + β1Log(TotalAssets)it + β2ROAit + β3Equityit + ηt + εit (2.2)

with ηt representing a year fixed effect dummy variable. The above is our baseline logistic

regression specification.

4.2 Discussion of Results

In this section, we discuss how mergers amongst health insurance specialists have dif-

ferent determinants than mergers within the rest of the French industry. In particular, we

empirically test the role of size, profitability and solvency when it comes to target firms, and

compare the significance of these determinants across firm types throughout our period of

study.
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Tables 2.5 and 2.6 reports coefficients from two logistic regression specifications. In the

first two columns (a pooled regression before the introduction of time fixed effects) we find

evidence that low profitability is generally associated with M&A target firms. This confirms

the analysis carried out in Cummins and Rubio-Misas (2019) on a sample of Spanish insurers

from 2000 to 2012 (before the Solvency II era). Next, column 3 runs the same regression

on only the subset of firms who could have engaged in a “health sector merger” as we

have defined it in this work—i.e., those underwriting 50% or more of their premiums in

this branch. Results in this column suggest that—unlike other targets (see column 4)—

health specialists felt compelled to merge without experiencing profitability problems the

year before the event. Table 2.6 demonstrates a similar phenomenon with equity (own funds

over total assets); among the pool of non-health specialists, mergers were often associated

with lower equity ratios. These results are robust to the inclusion of time fixed effects,

which capture any year-specific dynamics within the industry leading up to the reform.

We note that no special treatment was required for such mergers after 2016, since no such

events exist in our database (further evidencing the anticipation effects across the industry

irrespective of current financial health). Importantly, both subsets are of comparable size,

so the significance of these findings is unlikely to be driven by a few atypical observations.

Finally, as suggested by our descriptive statistics, we observe that larger firms are generally

more likely to become targets than smaller firms.

We additionally introduce multiple lags to our variable of interest to better understand

its temporal dynamics. Figure 2.8 plots the values and confidence intervals of different lags of

a single, multiple-lag logistic regression, comparing the role profitability in the case of health

insurers versus the rest of the market similarly to above. With additional lags added, this

figure confirms that low profitability values were only a significant concern for non-health

players—and when such problems did materialize, it was, on average, in the year directly

preceding the merger. Most often, this is the last year for which prudential reporting data

is available for such an undertaking.

These results imply a successful transmission of information from policymakers to the

industry, as well as a unique motivation for M&A in firms most exposed to this reform.

The three year grace period proved a boon to health insurers, who were able to organize

themselves before the materialization of financial problems stemming from increased com-

petition (in an already competitive, unconcentrated landscape). Such effects could indeed

be aggravated for those undertakings with historically protected connections to a given in-

dustry. Further, the law importantly did not appear to have a differential effect on smaller

undertakings; our evidence shows that it was larger firms who were more likely to become

targets, possibly due to the increased level of expertise and resources required to engage
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in M&A operations. Overall, such results imply that a grace period in the design of a

competition-enhancing regulatory reform can grant firms with the necessary time to opti-

mize their operations via an M&A channel, giving rise to mergers which (exceptionally)

occur without being accompanied by low ROA values or low solvency positions.

5 Conclusion

In this article, we used a novel proprietary data-set from the French Prudential Super-

visory and Resolution Authority to explore the nature of the rise in merger and acquisition

activity which has been observed since 2011.

We first commented on the stability in the market structure within the French jurisdic-

tion. In France, during the window of study (2011-2019), we observed a decrease in the

number of active insurance undertakings from 1,074 to 713. Discussions had begun for the

drafting of the ANI reforms in the beginning of this sample, and Quantitative Impact As-

sessment (QIS) exercises relating to Solvency II had already taken place before this sample

window, helping fix firms’ expectations and transmit information relating to the structure

and impact of the reforms. Despite the consistent flow of new mergers, the decrease in the

number of undertakings in the French market has had essentially no effect on market con-

centration measures: the market for life and savings insurers remains unconcentrated, and

only two niche branches in the non-life sector exhibit higher levels of concentration. The

remainder of the non-life market (like the life market) exhibits HHI values below 0.15.

We continued by assessing how the design of these two reforms may have given birth

to different types of mergers with different determinants. After discussing the design of

Solvency II, we documented how the vast majority of targets operate in similar business

lines as their acquirers (see Figure 2.2). This evidence tends to reject the idea of firms

taking advantage of the standard formula’s design by seeking out dissimilar firms with the

objective of jointly lowering capital requirements, in effect performing regulatory arbitrage.

Instead, it lends support to the predominance of more traditional mergers, in which firms

seek economies of scale within a given business line by merging with similar firms.

We then zeroed in on an additional French-specific regulatory reform—the ANI law. We

exploited the fact that only a portion of the French market was exposed to this law (while

the entire market, beyond a small eligibility threshold with respect to size, was exposed to

Solvency II). Using different logistic regression specifications, we found evidence that the

nature of health specialist mergers were different from the rest of M&A observed within the

insurance industry. Specifically, our results suggest that, unlike mergers in other business

lines, health mergers took place in the absence of profitability or solvency issues. Indeed,

99



Chapter 2 – Mergers & Acquisitions Following Regulatory Reform

while other M&A activity continued, activity in this branch ceased to exist as soon as the

ANI law entered into force, showing an effective anticipation of insurance undertakings in

advance of the law’s entry into force. Further, it reinforces the absence of strategic M&A

activity linked to the design of Solvency II, instead suggesting that the acquisition of most

insurers coincides with financial difficulties of the target.

100



References

Asquith, P., Bruner, R. F., Mullins, D. W., et al. (1990). Merger returns and the form of
financing. Sloan School of Management, Massachusetts Institute of Technology.

Boubakri, N., Dionne, G., and Triki, T. (2008). Consolidation and value creation in the
insurance industry: The role of governance. Journal of Banking & Finance, 32(1):56–68.

Carpenter, G. (2011). Succeeding Under Solvency II: Pillar One, Capital Requirements; Part
III – Conclusion. GC Capital Ideas.

Conning and Company (1995). The thinning of the herd: Mergers and acquisitions. Journal
of Risk and Insurance.

Cummins, J. D. and Rubio-Misas, M. (2019). Determinants of mergers and acquisitions:
Evidence from the insurance industry. Available at SSRN 3491165.

Cummins, J. D., Tennyson, S., and Weiss, M. A. (1999). Consolidation and efficiency in the
us life insurance industry. Journal of Banking & Finance, 23(2-4):325–357.

Douglas, G., Noss, J., and Vause, N. (2017). The impact of Solvency II regulations on life
insurers’ investment behaviour. Bank of England Working Paper.

EIOPA (2010). EIOPA Report on the Fifth Quantitative Impact Study (QIS5) for Solvency
II.

European Commission (2007). Accompanying document to the proposal for a directive of
the european parliament and of the council concerning life assurance on the taking-up and
pursuit of the business of insurance and reinsurance. Solvency II — Impact Assessment
Report.

Junni, P. and Teerikangas, S. (2019). Mergers and acquisitions. Oxford Research Encyclopedia
of Business and Management.
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6 Figures

Figure 2.1: Standard Formula provided by Solvency II.

Note: A breakdown of the different risks covered by the Solvency II standard formula for
calculating the Solvency Capital Requirement (SCR). The SCR is designed for an insurer to
meet its financial obligations over the next 12 months in an estimated 99.5% of outcomes.
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Figure 2.2: Frequency of Mergers by Acquirer-Target Type Pairings (cont’d).

Note: This figure shows the frequency with which each pairing of insurer types is observed
in M&A transactions. Mergers involving mutual insurers (representing 55% of the sample,
or 53% involving solely such undertakings) were re-classified into their effective type:
mutual firms which underwrite more than 80% of non-life (or life) premiums are considered
non-life (or life) undertakings. Firms whose business shares across these sectors fall
between 20 and 80 percent of total premiums are left as ”Mutual (Mixed)”. By further
segmenting these players, we see an even greater share of mergers (134 out of the 217 in
our base) in the non-life industry.
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Figure 2.3: Histogram of Firm HHI, Non-Life

Note: This figure presents a histogram of pseudo HHI values measuring the diversification
of activity within a given firm in the non-life industry. A value of 1 corresponds to a firm
which underwrites only one type of premium contract. Source: Banque de France/ACPR.

Figure 2.4: Histogram of Firm HHI, Life

Note: This figure presents a histogram of pseudo HHI values measuring the diversification
of activity within a given firm in the life/savings industry. A value of 1 corresponds to a
firm which underwrites only one type of premium contract. Source: Banque de
France/ACPR.
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Figure 2.5: HHIs of Insurance Premium Categories (Life/Savings)

Note: This figure shows the HHI for all French regulatory insurance categories through
time, from 2011-2019, for life/savings business lines. Categories 1, 2, and 8-13 are
considered as Savings contracts, 3 and 6 are considered Death Benefit contracts, and 4, 5
and 7 are grouped as ”Other Euro Contracts”. While market concentration in the health
insurance sector has increased in recent years following the aforementioned regulatory
reforms, the level remains very low. Indeed, no above group ever reaches an HHI above
0.10; values below 0.15 are said to indicate an unconcentrated industry. Source: Banque
de France/ACPR.
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Figure 2.6: HHIs of Insurance Premium Categories (Non-Life)

Note: This figure shows the HHI for all French regulatory insurance categories through
time, from 2011-2019, for non-life business lines. No groupings have been made, given the
relatively distinct nature of each type of premium collected. Two categories stand out with
values peaking over 0.25, indicating a highly concentrated industry: Transport and Surety,
the latter remaining over 0.3 in 2019. Source: Banque de France/ACPR.
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Figure 2.7: Health Mergers

Note: This figure shows the annual count of mergers in the French health sector through
time. The blue line plots mergers in which only the target specialized in health premiums
(¿50% of premiums underwritten in branches 20 and 21 of the French Insurance Code. In
total, 108 M&A operations were conducted in which the target firm was a health specialist;
the acquirer was also a health specialist in 90 of them. Overall this graph shows the degree
to which insurers may have anticipated the various regulatory reforms which took place in
2016—the observed wave of mergers abruptly ends as the reforms enter into force in 2016.
Source: Banque de France/ACPR.
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Figure 2.8: Health mergers vs others: ROA logit coefficients

Note: This figure shows multiple lags of a single logistic regression coefficients (multiple
lags) for the ROA variable controlling for firm size and with a time fixed effect. No lags are
significant, with the exception of the year before the merger event for non-health players.
Health players appear motivated to merge by factors independent from profitability, while
other undertakings appear to confirm the finding of previous literature with respect to
ROA problems and target firms. Source: Banque de France/ACPR.
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7 Tables

Table 2.1: Number of Insurance Undertakings Present in France, by Year
Type 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Insurers 329 327 318 309 299 281 273 267 263 263

Reinsurers 20 19 16 16 15 16 14 14 12 10

Foreign Branches 6 5 5 4 4 4 4 4 4 4

Insurance Undertakings 357 351 339 329 318 301 291 285 279 277

Providence Institutions 53 51 49 46 41 37 37 36 35 33

Mutual Insurers 719 672 630 599 550 488 446 420 399 385

Total Insurance Undertakings 1,129 1,074 1,018 974 909 826 774 741 713 695

Note: This table reports the number of insurance undertakings, by type, with regulatory
approval to operate in France from 2010-2019. Numbers have steadily decreased, resulting
in a 38% overall decrease in insurers in France over the past decade.

Table 2.2: Acquirers and Targets, By Type

Type Acquirer Target

Insurer 184 183

Mutual 158 141

IP 17 17

Note: This table shows the type of undertakings engaging in M&A activity. Mutual
insurers have been particularly active, although traditional insurers are over-represented
relative to their overall presence in the market.
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Table 2.3: Summary Statistics, ACQ vs Non-ACQ
(1) (2) (3)

Acquirers Rest of Market Difference
mean sd mean sd b t

Total Assets (Log) 12.04 2.63 9.35 2.68 -2.69∗∗∗ (-12.47)
Firm HHI, Life (Average) 0.68 0.23 0.78 0.22 0.10∗∗∗ (3.75)
Firm HHI, Non-Life (Average) 0.63 0.23 0.83 0.22 0.20∗∗∗ (9.64)
ROA (Average) 0.01 0.02 0.01 0.03 0.00∗ (2.02)
Technical ROA (Average) 0.02 0.04 0.04 0.07 0.02∗∗∗ (5.61)
Equity (Average) 0.39 0.27 0.53 0.27 0.14∗∗∗ (6.53)
Loss Ratio, Life (Average) 0.62 0.72 0.80 1.18 0.19 (1.90)
Administrative Fees to Premiums, Life (Average) 0.13 0.14 0.13 0.21 0.01 (0.35)
Share Reinsurance Ceded, Life (Average) 0.20 0.27 0.31 0.36 0.11∗∗ (2.88)
Loss Ratio, Non-Life (Average) 0.53 0.22 0.71 0.22 0.18∗∗∗ (9.55)
Administrative Fees to Premiums, Non-Life (Average) 0.13 0.11 0.09 0.12 -0.04∗∗∗ (-4.46)
Share Reinsurance Ceded, Non-Life (Average) 0.21 0.23 0.28 0.28 0.06∗∗ (2.88)
Observations 181 1195 1376

Note: This table of summary statistics shows a t-test of main variables comparing
acquirers to the rest of the market. These firms appear larger, more diversified across lines
of business, less capitalized and slightly more profitable (as captured by the loss ratio) than
firms which do not engage in the acquisition of other firms.

Table 2.4: Summary Statistics, TAR vs Non-TAR
(1) (2) (3)

Targets Rest of Market Difference
mean sd mean sd b t

Total Assets (Log) 10.98 2.67 9.43 2.78 -1.54∗∗∗ (-7.84)
Firm HHI, Life (Average) 0.69 0.22 0.78 0.22 0.09∗∗∗ (3.65)
Firm HHI, Non-Life (Average) 0.76 0.23 0.82 0.23 0.06∗∗ (2.98)
ROA (Average) 0.01 0.03 0.01 0.03 0.00 (0.61)
Technical ROA (Average) 0.03 0.05 0.04 0.07 0.01 (1.51)
Equity (Average) 0.44 0.28 0.53 0.27 0.09∗∗∗ (4.41)
Loss Ratio, Life (Average) 0.63 0.53 0.80 1.21 0.18∗ (2.05)
Administrative Fees to Premiums, Life (Average) 0.12 0.14 0.14 0.21 0.02 (0.88)
Share Reinsurance Ceded, Life (Average) 0.27 0.31 0.28 0.35 0.01 (0.20)
Loss Ratio, Non-Life (Average) 0.68 0.25 0.68 0.23 0.00 (0.11)
Administrative Fees to Premiums, Non-Life (Average) 0.13 0.12 0.09 0.12 -0.03∗∗∗ (-3.55)
Share Reinsurance Ceded, Non-Life (Average) 0.27 0.27 0.26 0.27 -0.01 (-0.39)
Observations 232 1144 1376

Note: This table of summary statistics shows a t-test of main variables comparing target
(acquired) companies to the rest of the market. These firms, like acquirers, appear slightly
larger than average (and more diversified across lines of business), although still
significantly smaller than acquirers on average. Target undertakings also appear to have
lower equity positions (measured by own funds relative to total assets) than their peers.
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Table 2.5: Profitability and Mergers, Logistic Regression

(1) (2) (3) (4)

Log(TotalAssets)t−1 0.0999∗∗∗ 0.0929∗∗∗ 0.0815 0.116∗∗∗

(4.64) (4.10) (1.63) (3.31)

ROAt−1 -5.142∗∗∗ -3.930∗∗∗ -2.408 -4.515∗∗∗

(-5.68) (-3.51) (-1.24) (-3.15)

Time FE? No Yes Yes Yes
Y-Variable All Targets All Targets Health Targets Non-Health Targets
Sample All Firms All Firms Health Firms Non-Health Firms
Pseudo R2 0.022 0.036 0.017 0.044
Observations 9,748 5,287 2,164 2,937

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table reports the coefficients from various logistic regression specifications,
focusing on ROA as an explanatory variable. Controlling for size (and gradually
introducing time fixed effects), these results suggest that—unlike other targets—health
specialists felt compelled to merge without having experienced profitability problems the
year before the event. This suggests a successful anticipation of the effects of the health
reform before its entry into force. Other mergers appear to confirm findings from previous
literature (such as Cummins and Rubio-Misas (2019)) which indicate that target firms
experience profitability concerns prior to their acquisition.
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Table 2.6: Profitability and Mergers, Logistic Regression

(1) (2) (3) (4)

Log(TotalAssets)t−1 0.105∗∗∗ 0.0775∗∗ 0.0942∗ 0.0475
(3.58) (2.48) (1.76) (1.07)

ROAt−1 -5.246∗∗∗ -3.894∗∗∗ -2.694 -4.286∗∗∗

(-5.66) (-3.36) (-1.36) (-2.83)

Equityt−1 0.0845 -0.211 0.380 -1.229∗∗

(0.28) (-0.69) (0.72) (-2.37)

Time FE? No Yes Yes Yes
Y-Variable All Targets All Targets Health Targets Non-Health Targets
Sample All Firms All Firms Health Firms Non-Health Firms
Pseudo R2 0.022 0.036 0.017 0.050
Observations 9,732 5,282 2,164 2,933

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table reports the coefficients from various logistic regression specifications,
including a solvency ratio (equity over assets) as a control variable. These results show
that, on the aggregate, variation in equity (measured as own funds over total assets) was
not an associated with merger activity one year before the event. However, when isolating
insurers exposed to the ANI reform, we see that target firms not exposed to this reform do
appear to be less capitalized in comparison to other firms. This result further emphasizes
that such mergers appear to have taken place before any financial difficulties occurred.
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Chapter 3

Monetary Policy and Housing Loan
Default in France

Abstract

The most direct channel of transmission of monetary policy to households is the modification
of ECB lending and deposit facilities rates. Outstanding borrowers with adjustable rate
loans face affordability conditions changes with important consequences on their financial
situation. In this paper, we study the impact of monetary policy changes on housing credit
default over the period 2004-2015. We use an extensive panel of French housing loans to
reconstruct amortization tables over the life of each loan and compute changes in quarterly
payments due to monetary policy action, later using hazard models to map changes in interest
rates to default. Importantly, our data set allows the assumption of the absence of strategic
default in our analysis, which isolates involuntary default in our estimates. First, we find
that a 100 bp increase in quarterly payment induced by variations in the 3-month Euribor
increases the probability of default by around 5%. Second, we identify employment stability
as a major insurance factor against rising policy rates during contractionary monetary policy
action. Finally, we provide evidence about the existence of a self-selection of riskier borrower
profiles into adjustable rate loans. The concern regarding payment size on adjustable-rate
loans is of heightened importance in a monetary policy context characterized by uncertainty
over the timing of a rate increase following a sustained period of low or negative rates.

* * *
This chapter is an adaptation of a collaboration with Barbara Castillo Rico, which has been
published in EconomiX Working Paper Series (EconomiX WP 2020-23).

1 Introduction

Expansionary monetary policy have direct effects on capital cost for new borrowers, who

benefit from improved lending conditions on their housing loans. There is heterogeneity,

however, regarding the extent to which existing cohorts of loans experience this channel

of monetary policy pass-through. Fixed-rate loan holders see no change, while holders of

adjustable rate loans face varying levels of interest payments and subsequently, income (Am-

pudia et al. (2018)). Some borrowers with fixed rates loan may choose to refinance, although
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rates need to move considerably before the decision becomes desirable, in addition to its

associated costs. Also, Mian et al. (2013) show that high indebted households are unable to

refinance to a lower rate due to their vulnerable financial situation. This prevents them to

benefit from favorable credit market conditions. In this way, changes in the current policy

rate asymmetrically affect holders of housing loans.

In this paper, we assess how monetary policy pass-through generates asymmetric pay-

ment size movements which affect the default probability of households’ housing credit in

France during the period 2004-2015. Precisely, we seek to quantify the effect of a monetary

policy-driven shock to payment size on the propensity of a household to default on a loan.

We also provide evidence about the role of employment stability and socioeconomic class.

We use a proprietary database of around 5 million housing credit lines granted to households

in the French market between 1994 and 2015. In order to measure monetary policy shocks,

we reconstruct theoretical amortization tables for all credit lines in our sample, decompos-

ing monthly payments into interest and principal components. We then use hazard model

techniques to estimate the delinquency rate in a panel data framework. Importantly, unique

features of our data and national jurisdiction allow us to isolate involuntary default. Fur-

ther, since we exogenously observe computed credit risk ratings and additional exhaustive

household features, we are able to compare peer borrower risk profiles which are unequally

exposed to monetary policy shocks due to their type of interest rate (adjustable versus fixed).

In this context, our study presents several novel contributions. Firstly, this paper is,

to our knowledge, the first paper to evaluate monetary policy and housing default for the

French jurisdiction, and second for Europe more generally. This is particularly important

in the current environment of extremely low interest rates and uncertainty regarding future

variations. The ECB holds an unprecedented expansionary monetary action in the Euro

zone with the aim at reaching its inflation target. This consists of record low policy rates

and several unconventional tools providing high liquidity to the system. The exceptional

environment of low rates may be claimed as risky for banks’ profitability and raises questions

about a future increase of policy rates. Our paper therefore aims to provide evidence about

the impact of changes on ECB action on household solvency and their risk of default.

Second, we exploit a credit register in which strategic default is effectively absent, thus

better isolating the effect of payment size on non-voluntary default. The mortgage default

literature delineates between two types of housing loan defaults: those related to the ability

to pay, and strategic defaults (see Whitley et al. (2004)). The nature of the housing loans

(exposure to interest rate, required collateral, etc.) and the nature of bankruptcy laws

are among the key factors which theoretically determine the prevalence of strategic default

across jurisdictions Jappelli et al. (2013). As explained in detail in section 4 and in an IMF
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on French housing prices and financial stability IMF (2013), the French context in effect

suppresses the risk of strategic default due notable to the absence of non-recourse loans.

The ramifications of this on our estimates are likely not trivial; in a US study, Gerardi et al.

(2017) find 38% of households in default are capable of making their mortgage payments

without reducing consumption. Thus, being able to disentangle non-voluntary from strategic

default represents a novel opportunity compared to previous literature.

Depending on their characteristics, our study may provide insight for neighboring Eu-

ropean countries (with otherwise similar institutions) where adjustable rate loans are more

prevalent, or where financial institutions further favor their adoption. As discussed in Alber-

tazzi et al. (2018), several European countries have a similar preference for fixed rate loans;

over 85% of housing loans in Belgium, Germany and the Netherlands are fixed rate. Con-

versely, banks in Portugal, Spain, Austria, and to a lesser extent, Greece and Italy exhibit a

tendency towards adjustable rate mortgages. Intuitively, the magnitude of our results should

amplify in countries whose housing market is more exposed to the Euribor interest rate risk.

Finally, our base is exceptionally extensive for France, covering the lifespan of nearly

5 million loans. This allows us to control for a subsequent vector of household and loan

characteristics in our estimations. In this way, we are able to capture the household-specific

financial fragility (and other traits) and other drivers of the decision to self-select into a

certain loan type. Further, we make use of an internal probability-of-default classifier which

is applied uniformly across all buyers, and takes into account all of a household’s financial

data made available to the bank at the time of the loan application. As a consequence, we

are able to compare the exposure to monetary policy action of fixed and adjustable loans

while limiting the econometric selection issue, being the first European paper to do so.

Similarly to Byrne et al. (2017) in Ireland, we find that a quarterly payment increase

of 100 basis points increases default probability by around 5%. Extrapolated to a concrete

change of 1pp on policy rates, the resulting increment on default probability for exposed

loans lies around 45%. We note that our results also hold when regressing our model only on

adjustable rate loans, which is in line with US literature.1 We additionally find, as expected,

that outstanding fixed rate loans are unaffected by monetary policy action. Further, we show

that employment stability represents a crucial insurance against periods of contractionary

monetary policy action, reducing the default risk by around 12%. The magnitude of this

result is in line with figures from Gerardi et al. (2013) on the effects of job loss. Finally, we

provide evidence consistent with the idea that riskier households self-select themselves into

floating rates loans, as suggested by previous literature.

This evidence is of more general importance for the design of monetary policy by cen-

1See, e.g., Fuster and Willen (2017), Keys et al. (2014), Tracy and Wright (2012) or Elul et al. (2010).
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tral banks and policy makers. On one hand, it may be desirable to lead the housing credit

market structure into a “safer” zone for households which is dominated by fixed rate loans.

However, this limits the transmission of monetary policy into the real economy, as only ad-

justable rate and new housing loans would be impacted by changes in policy rates (Ampudia

et al. (2018)). In periods of contractionary monetary policy, this represents an advantage

for indebted households that experience no increase in their loan payments. In expansion-

ary periods, however, the only way to take advantage of more favorable credit conditions

is through the refinancing of loans, which requires meeting a certain standard of creditwor-

thiness. Renegotiation is crucial for those households with the most vulnerable financial

situations, which are more often refused and therefore may not be able to reduce their risk

of default (Mian et al. (2013), Eggertsson and Krugman (2012), Abel and Fuster (2019)).

Notably, these results are particularly important in the low interest rate context, as rising

interest rates could trigger default for households with existing fragility.

The remainder of the paper is organized as follows: Section 2 reviews the existing liter-

ature, section 3 gives a description of the data and the manipulations done by the authors

to compute monetary policy shocks for each loan. Credit system and default evidence is

documented in section 4. Section 5 details our econometric approaches. Sections 6 and 7

report results and robustness checks, while section 8 concludes.

2 Literature Review

One reason housing default has garnered so much attention in recent years is its intercon-

nection with financial downturns, particularly the 2007-2008 Financial Crisis. Haughwout

et al. (2008) and Mian and Sufi (2009) document how the expansion of housing credit, par-

ticularly subprime loans, ultimately lead to the default wave which sparked the crisis. In

addition to a degradation of credit standards, households themselves undertook risky behav-

ior by borrowing against their home equity during periods of increasing housing price. Mian

and Sufi (2011) estimate home equity-based borrowing—equal to 2.8% of GDP pre-crisis—to

account for at least 34% of new defaults from 2006 to 2008.

Besides falling housing prices, other changes in macroeconomic conditions can also pose

a generalized risk. Mayer et al. (2009) show how increases in delinquency rates first began

to rise in states which experienced elevated unemployment rates leading up to 2007.2 While

spells of unemployment are geographically associated with falling housing prices, borrowers

2Ohio, Michigan, and Indiana were the first states to see big increases in delinquency rates, the authors
document. The default rate on subprime mortgages in these states was 14 percent at the beginning of 2007,
compared with 8.5 percent rate for the nation as a whole.
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who lose their job in thriving area are more likely to simply sell their house rather than

default. Nevertheless, as emphasized in Haughwout et al. (2008), much of the increase in

defaults (even at a local level) remains difficult to account for, even with rich individual level

explanatory data. Most papers emphasize the importance of the loan-to-value (LTV) ratio—

particularly, the case of negative equity. Elul et al. (2010) use LPS data on individual loans

coupled with borrower-level credit bureau information from Equifax to show how liquidity

shocks interact with negative equity. Following loans which originated in 2005 and 2006

until April 2009, the authors find that decreases in equity have an aggravated effect on

default probability for illiquid households—i.e., those with high rates of credit-card usage.

Furthermore, local unemployment shocks are found to be positively associated with default.

Lastly, the authors document that the presence of a second mortgage loan is also linked with

higher default risk.

Similarly, Gerardi et al. (2013) use a survey conducted on 8,690 households in 2009 which

suggests individual unemployment to be the strongest predictor of default. The authors find

that individual unemployment increases the probability of default by 5–13 percentage points,

all else equal, with a sample average default rate of 3.9 percent. These results globally suggest

that policies designed to promote employment would be more effective to fight mortgage

default than policies which ease loan repayment standards. Gerardi et al. (2017) confirms

this intuition, finding job loss to have an equivalent effect on the propensity to default as a

35% decline in equity, while Hsu et al. (2014) finds that states with generous unemployment

insurance experience less mortgage delinquency.

In addition to the role of job loss, there is an ongoing debate regarding the role played

by rising payments and adjustable mortgages in the 2007-2008 Financial Crisis. One side

stresses the idea that difficulties meeting payments were instrumental in the bursting of the

housing bubble. The predominant3 view in the aftermath of the Countrywide Financial

collapse holds that rising payments on sophisticated loans triggered a wave of foreclosures.

Several studies specifically address the question of changes in payment size via the interest

rate channel. Byrne et al. (2017) study the question of monetary policy pass-through to

housing loans in the Irish case by exploiting the heterogeneity across two different classes

of adjustable-rate loans with different exposures to interest rate movements. Using a data-

set which covers approximately 66% of the residential mortgage market, the authors show

a 1% reduction in installment to be associated with a 5.8% decrease in the probability of

default over the following year. They also find that negative equity has mitigated the ease

in repayment due to recent low rates, implying an interaction between monetary policy and

3Foote et al. (2012) believe adjustable-rate mortgages played only a limited role compared with informa-
tion asymmetry and irrational exuberance.
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asset price shocks.

Fuster and Willen (2017) show how interest rate reductions affect repayment behavior,

including for borrowers who are significantly underwater on their mortgages. The authors’

estimates imply that cutting a borrower’s payment in half reduces their hazard of becoming

delinquent by about 55 percent, an effect approximately equivalent to lowering the borrower’s

combined loan-to-value ratio from 145 to 95 (holding the payment fixed). This result is in

line with previous result of Elul et al. (2010), Tracy and Wright (2012) and Keys et al. (2014),

which emphasize an interaction between payment shocks and housing wealth. Li et al. (2011)

adopt a related but novel approach to the question by exploiting a 2005 U.S. bankruptcy

reform which made it more difficult for households to discharge credit card debt. By making

bankruptcy declaration more costly, fewer households could strategically declare bankruptcy

for other debts in order to focus on their mortgage payments. The authors document rises

in prime and subprime mortgage default rates of 23% and 14% respectively after the reform

yet before the financial crisis.

Surprisingly, there exist only a few papers that provide consistent results on the link

between payment size (particularly due to monetary policy changes) and default rates. A

main reason for this is the existence of difficulties on the identification of a pure treatment

effect due to the borrower selection problem. Since homeowners who demand (or resort to)

a variable rate loan may exhibit a greater (and unobserved) propensity to default compared

with those who hold a traditional fixed-rate loan, a group-specific estimator would experi-

ence problems of bias. Furthermore, disentangling non-voluntary payment delinquency from

strategic default is a difficult task in most of developed economies due to the existence of

bankruptcy rights. Moreover, this issue has been mainly studied in the US, where extensive

loan level data is more easily available. Thus, evidence for European countries is almost

nonexistent.

3 Data

We use proprietary data housed at the French Prudential Supervision Authority (ACPR)

of the Banque de France, which contains almost 4,700,000 housing credit lines underwritten

from 1994 to 2015 in France. This extensive loan-level data-set contains exhaustive informa-

tion about housing loans which are secured by an insurance guarantee agreement instead of

a traditional mortgage agreement. Mortgage agreements cover around 30% of total housing

loans according to the ACPR (2017), while the guarantee system approximately covers the

remaining two thirds. The latter involves a selection process which assures that the pool

of accepted applicants represent, on the whole, a less risky segment of the market. Any
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risks observed in this data-set should thus be afortiori a greater cause of concern for the

remainder of the market.

Credit lines are followed at the quarterly level from the quarter of origin until four possible

events: 1) natural end of maturity; 2) total repayment (either credit redemption or a full

principal pay-down); 3) default; or finally, 4) the end of the database visibility in the last

quarter of 2015. We have three time-varying variables per credit line: outstanding principal4,

current loan-to-value ratio (LTV) and delinquency status. Precisely, a loan is considered as

being in default after 90 days of non-payment.5 All other variables are recorded at the time

of loan formation, and therefore do not vary throughout time in our data. This includes loan

information such as maturity, loan size, the type of interest rate (fixed or variable), or the

downpayment rate, among others. Additionally, precise aspects of the borrower’s profile are

also specified, such as annual household income, debt-to-income ratios, the number of other

outstanding loans, as well as an internally calculated rating. The latter is a probability

of default (PD) rating which uses credit information to rate the household’ likelihood of

default over the course of the loan, and ranges for “A” to “D”.6 Finally, we also observe

several demographic characteristics: occupation category, borrower age, marital status and

postal code at loan origination.

Indeed, our database is fundamentally different from typical US cases, in that it only

contains non-mortgage housing loans in which the “strategic default” dimension is much

less present, as homeowners are not permitted to simply return the house to the bank.

Rather than abandon the home, borrowers in our base are covered by a third-party insurance

mechanism which works with borrowers to help them survive income shocks.

In addition, quarterly data on unemployment rates by département come from the French

Institut national de la statistique des études économiques (INSEE), and quarterly series of

Euribor index at different maturities has been gathered from the ECB’s Statistical Data

Warehouse. Finally, since our register of loans was not as exhaustive towards the beginning of

the sample period (1994-2003), particularly regarding adjustable loans, we decide to restrict

the period of study to 2004-2015. This period exhibits considerable variation with regards

to the Euribor rate, yielding an adequate window for our analysis.

4Capital restant du in French.
5Following the Basel III accounting conventions for default.
6An alternative rating is also provided: a loss-given-default (LGD) rating. This LGD rating additionally

considers the size of the loan and the extent of the bank’s exposure, and ranges from Segment 1 to Segment
3.
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3.1 Data Processing: Amortization Table and Interest Rate

An important limit of our original data set is the lack of direct information on interest

rates and related quarterly interest payments. This breakdown of monthly payments is

crucial for our identification strategy as interest rates and subsequent quarterly interest

payment variations constitute the direct shock of monetary policy to households.

In this section, we present our strategy to leverage available information to back out a

full amortization schedule of each household’s payments. We use one of the available time-

varying loan variables—the outstanding principal—to break down payments into principal

and interest components based on a theoretical amortization table. Further, we are able to

decompose the interest rate paid by adjustable rate loans into a basic Euribor component

and a risk premium/spread component. For simplicity, we will first present the case of fixed

rate loans as an example. Later, we will generalize the methodology to adjustable rate loans,

and further detail their particularities.

To begin, we rely on the following identity of a typical amortization schedule:

Mt = It + Pt

Mt being the total quarterly payment in period t, which is formed by the total interest

payment It and the total principal payment Pt. The difference on total quarterly payments

∆M over time is therefore defined as

∆M = ∆I + ∆P

where ∆M = Mt − Mt−1. ∆P can be easily calculated since we know the outstanding

principal (Principalt) at each period while ∆I is unknown. Nevertheless, being a fixed rate

loan schedule, we know that quarterly payments do not vary across periods (i.e., ∆M = 0).

Therefore, ∆P = −∆I.

The change in the quarterly payment allocated to interest pay-down can be expressed as

follows:

∆I = Principalt ×R− Principalt−1 ×R

= (Principalt−1 − Principalt−1 − Pt−1)×R

= −Pt−1 ×R

where R is the quarterly interest rate. Naturally, the latter does not vary throughout time

in the fixed-rate loan case.
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Therefore, for loans which demonstrate a regular repayment schedule (namely, constant

interest rate and quarterly payments), the quarterly interest rate is equal to the period-over-

period percentage variation in the principal payments:

R =
∆P

Pt−1

As a result, we obtain the exact interest rate R and can compute interest payments It (and

thus total quarterly payments Mt) for each period.

Nevertheless, this methodology is a priori inadequate for the computation of adjustable

rate payment schedules since the main assumption (∆M = 0) does not hold. By construction,

the monthly debt service of adjustable rate housing loans varies across periods according to

changes in their reference index. In particular, 70% of adjustable housing loans in France

are referenced to the Euribor (see ACPR (2017)). In practice, changes in monthly payments

can be updated at different frequencies (every month, 3 months, or 1 year, in general). In

our data-set, we observe neither the reference index of adjustable loans nor the frequency of

their adjustment. Thus, we are constrained to impose the structure of a typical case across

all loans.

Our approach is the following: first, we assume all adjustable rate loans to be indexed to

the 3-month Euribor. This is the most frequently used housing index according to Banque

de France data sources to which authors have access. Second, we assume that loan payments

are adjusted every 3 months. Finally, quarterly payment are referenced to previous quarter

Euribor levels, following a conventional French loan structure. Thus, we obtain the following

relationship:

∆Mt = Principalt ×Rt − Principalt−1 ×Rt−1 + ∆Pt

= (Principalt−1 − Pt−1)×Rt − Principalt−1 ×Rt−1 + ∆Pt

= Principalt−1 ×∆R− Pt−1 ×Rt + ∆Pt

Since Rt = S + Et−1, S being the (time invariant) spread and E the 3-month Euribor,

we obtain:

Rt =
Principalt−1 ×∆Et−1 + ∆Pt −∆Mt

Pt−1
(3.1)

Given the fact that ∆Mt 6= 0 for adjustable rate loans—and not directly observed in

our database—we need to rely on an alternative method to identify interest rates Rt within

this group. We circumvent this issue by exploiting periods of stable monetary policy—i.e.,

periods during which the 3-month Euribor moves very little (∆Et−1 ≈ 0) and we can assume

that ∆Mt ≈ 0. As shown in Figure 3.1, we have identified two main periods which respect
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this criteria: 2003q3 to 2005q3, where the maximum movement is 9 basis points; and 2012q4

to 2013q4, where the maximum movement is 4 basis points. We exploit these periods to

apply our above calculations, on the assumption the change in monthly payments due to

Euribor variation is essentially negligible. It is worth noting that most of our sample have

some period of life in our stable MP periods, thus allowing us to identify an interest rate

while excluding relatively few loans from the study (1.5% of the sample).

Further, we can back out the so-called spread, or risk premium, which is constant through-

out the entire lifespan of the loan. Once the spread is identified, the time-varying interest

rate Rt can be proxied for every quarter using the stable interest rate periods, and interest

payments It and total quarterly payments Mt can be calculated:

Mt = It + Pt

= Principalt ×Rt + Pt

Following these manipulations, we are able to measure relative changes on quarterly

payments resulting from exposure to monetary policy variations for each loan. This is what

we subsequently call our monetary policy shock MPshockt:

MPshockt =
∆M

Mt−1

A detailed example of this methodology is presented in appendix B.

3.2 Measurement Error

While both adjustable and fixed rates loans are granted in the housing market, France is

one of the countries with the highest share of fixed rates on housing loans in the Euro Area.

Although 97.9% of new housing loans are fixed-rate, outstanding loans exhibit a fixed-rate

representation of 93.2%—a legacy of the pre-crisis trend towards adjustable rates (see Faivre

et al. (2018)). This figure is similar in our total sample, with 10% of outstanding credit lines

being floating rate loans.

The methodology we presented in the previous section perfectly computes interest rates

for fixed rates loans, while in effect it approximates them for adjustable ones. While we

know that monetary policy shocks are equal to zero for fixed credit schedules, the analysis

presented in this paper depends on the proper measurement of changes on adjustable schemes

payments. In this section, we aim to provide evidence about the accuracy of our method and

the potential source of bias in posterior analysis. To this end, we simulate 780 adjustable

rate loan amortization tables consisting of different loan sizes, maturities and quarters of
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origin. This results in a large diversity of interest rates at origin. We use loan sizes between

e100,000 and e400,000, maturities between 10 and 25 years and interest rates between

1.2% and 5.3%, which is the interest rate range of the period of study. This simulation

results in 18,700 comparison points. The goal of this exercise is to apply our approximation

methodology presented in the previous section to an artificial sample of data for which we

have full information ex-ante, and evaluate the degree of inaccuracy of the results compared

to the “true” numbers of our synthetic data in terms of interest rates.

A plot showing the true (known ex-ante) interest rate values of our synthetic data and

our approximated values (i.e., the estimations given from our methodology) is shown in

Figure 3.2. The true values are higher than the approximations given by our methodology.

Specifically, the true rates are higher than the approximated rates in 92% of the cases.

Furthermore, 95% of the deviations from the true value are between 0.07pp and -0.5pp, the

median variation being -0.23pp. This implies that our methodology slightly underestimates

the true interest rate. This is confirmed in our sample of study (which is different from

the simulated group of loans discussed here). Figure 3.3 presents the mean interest rate at

origination as published by the Banque de France and the mean interest rate at origination

from our sample (the data used in our estimations) computed using our amortisation table

reconstruction method. We observe that our approximation of interest rates follows a very

similar trend than the official one, with a slightly lower level most of the time. This is in

line with the results of the simulation exercise, and in line with the apriori intuition that

our sample represents a less risky segment of the market.

Finally, we assess how the underestimation of interest rates is transmitted to the measure

of monetary policy shocks. This is our main concern, since the latter is our variable of

interest, while the interest rate is only the means to obtain it. Figure 3.4 presents the scatter

plot between the true (simulated) and the approximated quarterly payments changes (called

monetary policy shocks). We observe an almost 45 degree relationship between them, where

the median value difference is e0.88. Reassuringly, 95% of our simulated sample presents a

approximation error between e4 and e-4. This is considered as negligible, and proves the

validity of our methodology to compute changes in quarterly payments due to variation on

monetary policy rates.

Figure 3.5 shows how sensitive our methodology is to changes in interest rates for the

example of loans between 100k-150k and a maturity of 15 years. The figure reports the

mean computed variation of quarterly payments in the sub-sample of study and the 3-month

Euribor for floating rate loans between 2004 and 2015. As the graph illustrates, quarterly

payments on French ARL fall up to e460 on average compared to the previous quarter

during the period of expansionary monetary policy which followed the 2007 crisis.
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3.3 Weights

In addition to the concern of excluding observations using our interest rate derivation

technique, a certain percentage of our loans were not “well-behaved” in other ways; i.e., they

exhibited sporadic or unusual payments, were refinanced or contained other irregularities

which prevented us from backing out interest rates and quarterly payment changes. We

therefore exclude such cases as well, which were slightly more frequent for adjustable loans.

Working only with the resulting sample could lead to additionally biases in our estimates.

In particular, we risk underestimating the impact of monetary policy changes.7

Consequently, we use a set of user-constructed loan weights for all estimations, which aim

at being first and foremost representative of the type of interest rate (adjustable or fixed)

and the default distribution during the period. We assume each loan to begin with a weight

of 1 in the original data, since we work on true population (nearly five million loans) rather

than a sample. After losing certain observations within the adjustable rate loan population,

new weights are attributed to each observation. We proceed to calibrate the initial weights

to re-balance our sample towards the original population distribution at each quarter. The

“marginals” of the calibration (variables being calibrated) are equal to the distribution of

default at each quarter and the stock of loans according to the type of interest rate, also

on a per-quarter basis. The target population totals in the weight calibration are obtained

from the initial true population totals for the period of study. This allows us to adjust the

population at each quarter back to the original data’s distribution.

4 Default in France

The French context represents an interesting domain for research of this question for

several reasons. First, housing credit is 70% comprised of non-mortgage loans. Furthermore,

our database is comprised entirely of (non-mortgage) housing loans guaranteed by a third-

party insurer who covers the bank against losses in case of non-payment. In this type of

arrangement, the title of the asset in question is never held (and cannot be transferred to) the

lending institution, which complicates the process of housing debt discharge. Second, similar

to many European countries, private persons cannot benefit from non-recourse style debts.

At best, borrowers who cease repayment of their loans may apply via the Bank of France to

have their case considered by an over-indebtedness board.8 Applicants whose file is accepted

may benefit from a reduction in debt owed, however at the expense of significant (and often

permanent) loss of access to the banking system. Recourse to this measure is generally never

7See Appendix A for more detail about the potential bias.
8Commission de surendettement in French. More information available (in French) here.
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understood to be analogous to a strategic default. Together, these specificities imply that

strategic defaults are all but absent from our database, allowing us to better understand

(and better isolate) the role of changes in payment size in a world where households have

few alternatives but to meet their obligations at all cost.

Additionally, a recent report by the French Prudential and Resolution Authority of the

Bank of France indicated that the share of adjustable rate loans with episodes of payment

delinquency has sharply risen in recent years (see Figure 3.6). This evidence goes against the

mechanism of monetary policy transmission which we aim to test in this paper. This high-

lights the importance of multivariate analysis on the housing default question, particularly

accounting for self-selection issues.

Moreover, today’s monetary policy environment represents an interesting context to study

this question. 3-Month Euribor rates—the standard component of the interest rate of ad-

justable rate loans—have been below 1% since March 2012, and negative since May 2015.

Academics and investors alike have recently debated the prospect of a rise in interest rates in

the medium term. In 2019, top Federal Reserve officials signaled no need for further interest

rate decreases in the United States9, while the Bank of England indicated that a growth

rate of 1.5% may be sufficient to justify a rate increase10. Recent ECB research suggests

that, across countries, adjustable rate loans become more popular in the presence of higher

inflation, smaller correlation between unemployment and the short-term interest rate, higher

financial literacy of households and where MBS-related regulation is looser (see Albertazzi

et al. (2018)).

4.1 Descriptive Statistics

In Tables 3.1 and 3.2, we conduct simple t-tests on key variables which we later use

in our regressions. Table 3.1 compares loans which have defaulted with those which have

never defaulted across the entirety of the sample, while Table 3.2 compares adjustable and

fixed rate loans. We firstly observe that defaulting loans exhibit significantly higher values

for our credit rating metric, indicating higher risk. Additionally, defaulting loans have an

average down-payment rate of 10% and slightly over one other outstanding loan on average,

compared to 19% and 0.8 respectively for healthy loans. These figures are consistent with

the substantially higher annual interest rate that we observe for defaulting borrowers at

origination. We also note that loans which default are longer in duration than those which

do not, and that defaulters have significantly higher LTV ratios at origination. We see two

important takeaways from this fact. The first is the reality that a longer lifespan of a loan

9Derby (2019).
10Inman (2019).
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increases the exposure period and the opportunities to default. The second interpretation—

coupled with the fact that loans tend to default early in the lifespan—is that longer loans

stay in high LTV-value ranges for longer, which can discourage borrowers as they may feel

less at stake in the event of delinquency.

Regarding the type of interest rate, we note that both types of borrowers present sim-

ilar interest rates levels at origin (Table 3.2). Nevertheless, we observe several differences

which suggest that adjustable rate borrowers have riskier profiles than fixed rate ones. They

present higher LTV ratios, with substantially lower initial down-payment (13% vs 19% on

average). Borrowers with floating loans ask for substantially larger loans in size (24500€
larger on average) with significantly lower volume of down-payment at origin (3500€ lower

savings on average). Although adjustable rate borrowers present a 13% higher annual income

than fixed rate ones, their loan size is 20% higher on average. This results in a significantly

larger debt-to-income ratio. Previous research shows that higher income households are

more prone to choose adjustable schedules since they have higher income risk bearing ca-

pacity (Albertazzi et al. (2018), Brueckner and Follain (1988)). Moreover, ARL households

have a higher number of other outstanding debts at origin compared to FRL. These are

standard characteristics found on the literature for households selecting ARL. According to

Campbell and Cocco (2003), households with binding borrowing constraints are more likely

to choose the loan with the lower interest rate in order to reduce their initial payments and

indebtedness ratio. Intuitively, loans schedules which offer the lowest level of interest rate are

adjustable rate loans. This pattern is particularly true in periods of higher rates and house

prices. One reason is that the slightly lower interest rate at origin may makes the difference

between respecting banking financial ratios and criteria to be granted with a loan or being

refused (Paiella and Pozzolo (2007)). Moreover, financial literacy has been proved to play

an important role in understanding the risk of the two different contracts11 given households

characteristics (see Fornero et al. (2011)). This evidence highlights the riskier profile of ARL

borrowers and explains their substantially higher rating level on average. Thus, controlling

for an exhaustive set of variables which captures the difference on the risk profile of the bor-

rower is important to asses delinquency events. The existence of self-selection into adjustable

rate loans schedules by riskier borrower profiles could importantly bias the estimation of the

nature of the interest rates impact on default probability.

Additional insights are provided by Figures 3.7, 3.8 and 3.9. These graphs plot non-

parametric hazard functions—i.e., the instantaneous probability of default at each moment

through time, conditional on never having previously defaulted—broken down by different

buckets or categories. Firstly, figure 3.7 confirms our plain intuition that adjustable rate loans

11Unfortunately, this is not a variable that is available in our data set.
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are more likely to default throughout the entirety of their lives in the sample. Independently

of the fact that we evaluate a period of time with both contractionary and expansionary

monetary policy action, we observe floating loans defaulting more than fixed rate loans.

This is importantly related to the self-selection of riskier profiles into adjustable rate loans

and highlights the importance of accounting for this bias in order to be able to compare peer

loans.

Secondly, Figure 3.8 plots the default probability by credit default rating category and

shows the striking discriminatory ability of internal credit ratings. As expected, default

probability increases with the rating grade, indicating that risk D loans have almost twice

higher probabilities of payment delinquency than rate C, while A borrowers hardly ever

default at any time in the sample. This breakdown is also striking in Table 3.3, which shows

a cross-tabulation of defaults by rating class. While the average default rate of the sample

is 0.85%, borrowers rated as D have an average default rate of 4.36%, and A borrowers only

0.32%. The proper accuracy of the rating representing borrowers risk at origination is the

main hypothesis of our identification strategy and helps us assuming that we account for any

prior risk factor that would explain self-selection into adjustable rate loans. This is a very

important variable in our analysis. As previously mentioned, the relevance of LTV ratios

is confirmed in Figure 3.9. Default is related with high Loan-to-Value ratios, this is when

borrowers are most leveraged, having the lowest equity stake in the property.

Finally, we can see a common mode across all figures around the 3-4 year mark (and

falling monotonically thereafter), indicating that loans are most likely to default early on

(when LTV ratios are high). The probability of default after 10 years (having never defaulted

previously) is half that of 5 years. This evidence may be explained by low equity households

having more difficulties to refinance due to their tight financial situation. This may also

be consistent with borrowers losing hope if financial difficulties have persisted from the

beginning of the loan life.

5 Econometric Approach

The identification of the effect of payment size on housing loans default has often been

presented in the literature as a difficult issue for two main reasons. The first factor is the

presence of certain time-varying macroeconomic conditions which have important conse-

quences on the evolution of interest rates; interest rates rarely exhibit variations without

changes in underlying business cycles. Second, the cross-sectional heterogeneity in interest

rates (and thus monthly payments) may be simply explained by a selection bias; a borrower’s

risk of default at the loan origin explains the interest rate level of the loan, which in turn
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explains a significant part of payment heterogeneity and default at a given moment in time.

Furthermore, one expects households to self-select into fixed or adjustable rates according

to their characteristics, many of which may be unobservable. For example, borrowers with

poor credit history may self-select away from traditional products in which more risk is borne

by the lenders. Less risk-averse households with higher financial constraints may also chose

floating-rate loans more often in order to reduce their initial payments and indebtedness

ratio. As a consequence, we may observe floating loans to default more simply because such

households represent particular profiles. Together, these factors present a reverse-causality

issue, rendering pure cross-section and time-series analysis on interest rates to identify the

link between payment size and default problematic (see Fuster and Willen (2017) for more

discussion). Statistically consistent analysis would therefore require the means to control for

household selection effects and macroeconomic factors affecting loans granted conditions.

In order to overcome this difficulty initially pointed out by Yezer et al. (1994), our pre-

ferred empirical design would compare two borrowers with the same risk profile at origina-

tion and equivalent loan combinations except for the degree of exposure to monetary policy

changes. In other words, we would follow identical borrowers (and loans) that differ solely

on the nature of the interest rate: floating versus fixed rate. The borrower with a floating

loan would be exposed to changes on monthly payments due to monetary policy, while the

one with a fixed rate would be unaffected. Such an approach is possible thanks to our set of

exhaustive control variables on borrowers’ profiles and loan characteristics at origination.

Exploiting our rich loan- and household-level data, we thus include an extensive set of

loan and borrower characteristics at origin as controls. We notably leverage the existence of

a credit rating score, which is applied uniformly to households regardless of their loan choice

and will allow for the comparison of peer borrowers. We assume all residual differences in

risk profile across borrowers, unexplained by our controls, to be captured by this rating, an

approach employed notably by Jones and Sirmans (2015). These data capture for example,

the wealth holdings of borrowers and their portfolio structure, which importantly play a role

in the capacity to absorb income shocks with rate fluctuations. We thus assume that the

choice between adjustable and fixed rate type is mostly explained by exogenous factors other

than the risk profile, such as risk aversion level or financial literacy. This is our best attempt

to remedy the issue besides an experiment in which borrowers are randomly assigned with

different monthly payments.

We propose the following discrete time proportional hazard model panel estimation fol-
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lowing previous literature (Fuster and Willen (2017), Foote et al. (2012)):

Defaultit = β0 + β1MPshockit−1 + β2LTVit−1 + β3Controlsi0 + β5Unempdt−1 +αt +αd + εit

(3.2)

where we model the risk of default of loan i at time t as a function of two main variables of

interest: changes on quarterly payments due to a monetary policy shock MPshockit−1 (as

computed in section 3.1) and the housing equity position of the household over time LTVit−1.

The latter represents the outstanding principal over the current housing asset value at each

period, and is presented in different categories in order to allow for non linear effects. Unlike

Fuster and Willen (2017), we are able to directly measure the direct impact of ECB policy

action on household quarterly payments.

Furthermore, we control for an exhaustive vector of loan and borrower specific char-

acteristics at origination Controlsi0 which includes: loan maturity, loan-to-value, type of

housing project (main residence, secondary residence or investment), household income, the

number of total outstanding debts of the household and age of the borrowers. Accounting

for loan-level information is important because housing loans are differentiated goods priced

according to their attributes. For example, average interest rate of new housing loans varies

in loan maturity and loan size. Banks allocate higher rates to longer loans in order to pro-

tect themselves from future uncertainty, since their visibility of long-term events decreases

in length. Further, we expect banks to charge higher interest rates as the amount of the

exposure to exogenous risks increases (loan size). Typically, loans with higher LTV ratios at

origin represent riskier loans for the bank, often translating into higher borrowing costs. Cer-

tain loans which exhibit ratios above 1 (implying, e.g., a component of the loan intended for

a renovation project) are considered particularly vulnerable. Similarly, investment projects

may be perceived as riskier or more speculative than residential ones. Information regarding

indebtedness and affordability, as well as the credit history of the borrower, are additional

pieces of information used by lenders to asses borrower risk. As previously explained, in

addition to previous controls, including a direct objective measure of risk (credit rating)

exogenously evaluated by a third-party insurer institution ensures the control of selection

effects, as explained by Jones and Sirmans (2015).

Department-specific unemployment changes Udt−1 are also included to understand the

role of the job loss on loan delinquency. Time and department fixed effects are present

in our econometric specifications to help control for all geographic heterogeneity (besides

unemployment) and macroeconomic quarter-year-specific changes. These dummies help re-

move any structural differences in level of our variables, such as a lending premium present

throughout a relatively disadvantaged region, a local trend in housing prices or household

131



Chapter 3 – Monetary Policy and Housing Loan Default

income, or the overall health of the credit market in a region of the country. This facilitates

the assumption of exogenous monetary policy (driven at European level), which is assumed

to be uncorrelated to regional economic dynamics. Including time fixed effects is important

to account for time-varying economic conditions which have important consequences on the

evolution of interest rates. Unlike in previous literature, both are possible here thanks to

our unique measure of monetary policy shock at the loan level.

Lastly, discrete time proportional hazard models are conceived to explain transitions

from one state to another (regular state to default, in our case). This class of models is

particularly attractive as it is capable of handling so-called right-censored observations—in

our case, loans which exit the panel (and thus live beyond our ability to monitor them)

due to attrition or other reasons prior to experiencing default (see Allison (1982) for an

in-depth discussion on this technique and its applications in the social sciences). Since a

loan’s life may stop at some point previous to 2015 for various reasons explained in section

3, we work with an unbalanced panel of data for our baseline specification. Additional tests

are proposed in the robustness section 7.

6 Results and Discussion

Table 3.4 reports the results of a simplified version of Equation 3.2, in which we first

compare default probability between the two groups of interest: fixed and floating rate loans.

Columns 2 to 4 provide results for a set of different fixed effects and controls. For simplicity

in the interpretation of our results, we will focus on the effect of the variables of interest;

the rest of the coefficients are generally in line with previous literature. The table begins

with a simple loan type dummy showing that floating loans are 29% more likely to default

on average during the period of study, and that higher LTV buckets are indeed riskier, as

expected. Households starting a credit line with an underwater equity position (LTV ¿ 1)

present 3 times higher probabilities of default than those with a loan lower than 60% the value

of the housing asset (column 2). We then capture the monetary policy context by creating

dummies representing periods of expansionary and contractionary monetary policy, later

including our set of risk profile controls. We define a “contractionary” period as a quarter

which experienced a rise in the 3-months Euribor for at least two consecutive quarters.

As expected, for identical borrower profile and loan characteristics, floating loans default

around 30% less in periods of expansionary monetary policy (with decreasing interest rates)

compared to peer fixed loans. Entering a period of increasing rates (contractionary monetary

policy) raises the default probability by 13% for ARL on average, while it has no significant

impact for twin FRL. Further, in column 4, we note that including the set of controls
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inverts the coefficient of our rate type dummy (ADJ). This confirms the existence of self-

selection into variable rate loans of riskier profiles, and shows the importance of accounting

for selection effects. Our contractionary monetary policy dummy (and its interaction with

adjustable-rate loans) remains unchanged in sign. This result reinforces the validity of our

identification strategy.

Table 3.5 reports the main results of estimating equation 3.2 including different fixed

effects and controls. Our main result, as observed in column 3, is that a 1 percentage point

shock on quarterly payments last quarter increases the default probability by 5%. This

effect is significant at 0.1%. We give an idea of the economic magnitude of this result in

section 6.1. The nature of our data and the french regulation allows us to claim that this

result represents non-voluntary defaults. This implies that rising policy rates during periods

of ECB contractionary action has important consequences for households financial fragility,

which are not explained by own propensity to default for riskier households nor strategic

default. Borrowers of adjustable rate housing loans are exposed to changes on interest rates

and importantly react to those variations. This can be an important advantage during

periods of falling rates, but can become a substantial threat at the time of contractionary

monetary policy.

Contracting a loan with higher LTV levels at origination (or, alternatively, lower down-

payment rates) is associated with much higher default risk during the credit life. Taking

out a loan for more than the value of the home increases default risk by almost 40%, ac-

cording to our benchmark specification in column 3. Moreover, the housing equity position

at the moment of nonpayment plays a major role in explaining default. Looking to cur-

rent LTV buckets, we see a non-linear effect through time. In particular, reaching the last

20% of outstanding debt reduces the probability of delinquency by almost half compared

to households in an underwater position. One possible explanation for this phenomenon is

that more heavily indebted households encounter harsher financing conditions if they seek

to take out an additional loan or to refinance their original loan. Households with lower

LTV ratios therefore may default less often due to the relative ease at which they can access

new or better financing following an idiosyncratic shock. Furthermore, they may be willing

to undertake additional efforts at finding means to ensure the continuity of payments since

they are closer to the natural end of maturity.

The most discriminant control variable is the internal rating: each risk tranche monoton-

ically increases the probability of default, while the riskiest risk tranche is over 10 times more

likely to default, all else equal. This suggests the existence of additional borrower profile

features or soft information which are invisible for us, but required by lenders to evaluate

risk profile. As expected, higher household income helps survival in the sample, while other
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outstanding debts burden a household’s ability to repay, confirming an intuition provided by

Li et al. (2011). Primary residences are the ones defaulting the most, while rental properties

are less likely to default than primary residences and secondary residences, providing evi-

dence against reckless or speculative investment in this type of asset. This finding is further

in line with the fact that housing investment projects are evaluated by banks according to

their associated rental revenues, which remain an additional guarantee.12 Additionally, one

may expect more financially sophisticated borrowers with greater positions of wealth to make

housing investments.

The estimation of Equation 3.2 is replicated using a classic linear panel model with indi-

vidual fixed effects and weights. The objective is to provide an alternative estimation which

fully accounts for time-invariant latent characteristics of individuals which could explain

self-selection (e.g., risk aversion or education). Results are presented in the last column of

Table 3.8, and are equivalent to previous ones in terms of changes in quarterly payments,

loan to value rates and as controls.

6.1 Policy Rates and Default

The benchmark estimation presented in the previous section finds a significant relation-

ship between ongoing households’ housing loan payment schedules and default probability

in France. Nevertheless, this connection is driven by changes in interest rates to which loan

amortisation tables are indexed, as explained in section 3.1. In this section, we provide

evidence about the more direct link between policy rates themselves and payment schedules.

This additional exercise is important because the variation in the policy rate has not been

modelled to directly explain default in our main specifications presented previously, therefore

precluding the precise quantification of a concrete monetary policy change on the probability

of default. This exercise is therefore useful to clarify the transmission channel and highlight

its magnitude in order to analyze the effect that a change on policy rates would have on

delinquency events.

As follows, we study variations in quarterly payments, which themselves depend on the

policy rate (the 3-month Euribor).13 We therefore choose to estimate a linear relationship

between changes in the 3-month Euribor and the subsequent changes to the quarterly loan

payments for floating loans in our sample as follows:

MPshockit = λ0 + λ1∆Rit + λ2Principalit + υit (3.3)

12French banks deduct around 50% of expected rents from total debt payments in order to compute
affordability ratios.

13∆M = Principalt−1 ×∆R− Pt−1 ×Rt + ∆P
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While MPshockit represents the quarterly payment change between t and t − 1 of loan

i, ∆Rit is the change on interest rate of the loan schedule with the interest rate defined as

Rt = S + Et−1, with S being the (time invariant) spread and E the 3-month Euribor. By

definition, any change on interest rates is driven by changes in policy rates. Importantly, the

effect of a given policy rate change will have heterogeneous results on households payments

depending on the total outstanding principal of each loan in t. In order to account for the

possible disparities in loans structure over time, which may be explained by our sample

construction, we therefore include Principal as a control variable. We ultimately regress

different estimations for 4 different groups corresponding to quantiles of interest rates R

during the period of study in order to be capture different monetary policy environments.

The results of the estimation of Equation 3.3 for these four different quantiles of interest

rate levels are summarized in Figure 3.10. The plots represent the slope of each estimation

assuming a linear effect of policy rates changes on quarterly payments growth. As expected,

the higher the interest rate environment (quantile 4), the smaller the relative impact of a

given change on interest rates. Overall, a 100 basis point change on interest rates leads to a

quarterly payment growth between 7% and 9% on average.

Then, we use these magnitudes and test their impact on default from our baseline speci-

fication presented in column three of Table 3.5. Precisely, we compute the predicted margins

(i.e ˆPr(Default)) for different levels of MPshock (containing the range of rates obtained

in the previous step) holding all other explanatory variables at their sample means (except

for fixed effect dummies, which are kept at their observed values). This exercise provides us

with the predicted default rate in our sample for different assumptions of monetary policy

payment shocks between -10% and 10%. Results are presented in Figure 3.11.

Intuitively, we obtain higher delinquency rates for larger changes on quarterly payments.

The probability of default increases from ≈ 0.025%—when there is no change on quarterly

payment—to ≈ 0.04% when quarterly payment grows 10pp. This small magnitude of these

results in absolute terms is explained by the enormous size of our control sample (fixed rate

loans); indeed, loans with fixed payment schedules over their life represent around 90% of

our sample and are not impacted by changes in policy rates. This fact may in part explain

why the French delinquency rate is one of the lowest of the European Union in general (1.4%

in France vs 2% on average in European countries in 2017 according to the ACPR (2017)).

Moreover, we study a segment of the French market known to be less risky (loans which are

insured through a guarantee mechanism), which may further explain the resulting smaller

unconditional probability of default provided in this exercise.

For reference, we found that a 100 basis point rise on policy rates increases the quarterly

payments MPshock in 9% on average on an environment of low interest rates in the first
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step of this section. Subsequently, according to our baseline results presented in the previous

section, a rise of 9pp in the monetary policy shock to quarterly payment size can be translated

into an increase of default probabilities by around 45%, all else equal. This impact on

default probability is significant in relative magnitude. Nevertheless, it merits emphasising

that the large relative increase should be understood in conjunction with the small absolute

probabilities presented in Figure 3.11, since changes in policy rates only concern a small part

of the spectrum of ongoing loans (adjustable rate loans).

The evidence provided in this section suggests that changes in the 3-month Euribor may

have substantial consequences for households linked to variable payment schemes. However,

observed increases in the average overall delinquency rates may be small, given the strong

prevalence of fixed rate loans in France, making the detection of such defaults difficult to

detect. This is important since exposed households who choose adjustable rate loans are

known to represent a riskier segment of the population and to be particularly vulnerable

ex-ante. By quantifying the impact of a change on policy rates in loan quarterly payments,

we provide some elements about the magnitude of the monetary policy transmission onto the

housing sector according to different policy paths. While this exercise cannot be interpreted

as predictive for future events regarding monetary policy, they may be useful and provide

some insight on the direction of the consequences that may be expected. This can be

particularly relevant for countries and financial systems with an important share of variable

rate loans, openly exposed to policy changes.

6.2 Heterogeneous Effects of Monetary Policy

The results of our baseline specification are strong in magnitude and significance. In

this section, we test whether the identified effects are heterogeneously distributed across

the population according to certain borrower characteristics. Several interactions between

monetary policy shock and different loan and borrower characteristics are therefore presented

in Table 3.6.

First, we test for a possible interaction between our monetary policy shock and LTV

levels France (column 1), as suggested in US literature (e.g., Gerardi et al. (2017)). We thus

combine current LTV ratios and our measure of quarterly payments changes due to policy

action. We find no significant difference regarding the impact of monetary policy shocks on

housing loans delinquency depending on the level of equity. Households do, however, default

twice as much when LTV ratios are in their highest level; although their equity position

does not affect the way they face and absorb changes on interest rates. Here, we nonetheless

avoid associating this variable with strategic defaults for several reasons. Firstly, these loans
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are not mortgages, so borrowers cannot abandon their loans by surrendering their home

to banks. Further, the French jurisdiction differs from the American context regarding the

ability to engage in this practice, as well as regarding personal bankruptcy procedures, as

explained above. Lastly, high (and, especially, positive) LTV values are a necessary but

not sufficient condition for default; most voluntary defaults occur with high LTV values,

although not all high LTV defaults correspond to such cases.

Overall, our results are in line with the idea that declaring bankruptcy for housing debt

holders is not a choice but a forced result of a bad financial situation. Indeed, as discussed

above, since the forgiveness of housing accumulated debts in France requires a long adminis-

trative process with very strict criteria and an element of discretion regarding the granting of

bankruptcy status, we expect little effect of this phenomenon on our estimates. Additionally,

the fact that households more frequently default early in the life of the loan (when equity is

lower), regardless of changes in monthly payment shocks may imply that affordability is a

problem that is carried over from the beginning of the credit.

Importantly, we would like to asses how households react to quarterly payments changes

depending on their income level. Unfortunately, we do not observe income evolution in our

data and providing proper estimates about this question represents a difficult task. Nev-

ertheless, we tested a certain number of specifications which include an interaction term

between income14 at origin and our variable of interest (MPshock), with the aim at assum-

ing that the level of income at origination is similar during the entire period of study. This

strategy does not allow the analysis of changes in income, but only how relative changes on

loan payments affect the default probability depending on income level. First, we estimate

our benchmark model with our interaction of interest during the first 7 years of the loan

life.15 This alternative is quite imperfect because it is known that income at the beginning

of the working life highly evolve, creating estimation bias which depends on age. Second,

we restricted the sample to individuals who contracted the loan between 35 and 45 years

old and we observe their credit life only during this age window.16 This alternative relies

on the income literature showing that during this period of the life-cycle income stabilizes

(Mazumder (2005)). According to the literature, observing income at one of these points

is representative of the average income around the 40’s. Although more precise than the

first approach, this alternative also present weaknesses. Some individuals are only observed

14We test both income as continuous variable and in quantiles.
15Exemple: an individual aged 32 years old at origination till her 39 years old, and an individual aged 50

at loan origination till her 57 years old.
16Example: an individual aged 37 at loan origination till her 45 years old, and an individual aged 40 at

loan origination till her 45 years old. Individuals aged less than 35 or more than 45 at loan origination are
excluded.
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during a couple of years, and depending on weather you are 37 or 43 the income bias may

be still different. Finally, we adapt the last approach by restricting the sample to individ-

uals who contracted a loan between 35 and 38 years old, and we follow them till their 45.

This reduced the bias associated to the age of start and relies on the income stability hy-

potheses. Nevertheless, none of these alternative give significant results on the existence of

heterogeneous effects of quarterly payment changes depending on income levels. Thus, we

are unable to provide evidence regarding this issue and we believe further research must be

done, particularly using more adequate time-varying income data.

We additionally sought to test several hypotheses relative to the role of job loss in housing

loan default. Namely, we wanted to understand how unemployment shocks (at the depart-

ment level) interact with payment size shocks, and for which segment of the population these

effects play the most pronounced role. To test the latter idea, we chose the socioeconomic and

employment categories which we assume to be the be the most exposed to sectorial shocks.

We create a “Vulnerable” dummy which is equal to 1 for the worker/employee17 level em-

ployment status (as opposed to management-level employees). Table 3.7 reports how such

households make up 24.7% of our sample, yet account for 30.7% of defaults. Results are

presented in columns 2 to 4, the latter representing the most developed specification.

Interestingly, we find that simple payment shocks do not have a significant impact on

the delinquency probability of the less vulnerable employment segment, while belonging to

the more vulnerable segment of households increases default probability by 3.9% after a

100 basis points monetary policy shock. Nevertheless, facing a payment variation and an

unemployment shock both at the same time seems to play a role for both groups of interest.

The same monetary policy shock increases their default probability by 1.2% if it is combined

with a change on unemployment of the same magnitude. Nevertheless, this additional effect

is slightly lower for vulnerable households, who already accumulate the initial effect of the

monetary policy shock. As a consequence, vulnerable households’ likelihood of non-payment

increases by 4.5% if both events take place simultaneously. Furthermore, we find a specific

effect for “vulnerable” socioeconomic category which defaults 7.5% more on average com-

pared to the non-vulnerable households during the period of study. Finally, unemployment

seems to have no impact on default probability for any of the population groups on its own.

This is not surprising, as France provides a very robust unemployment subsidy system, which

further is consistent with the idea presented by Hsu et al. (2014) that states with generous

unemployment insurance experience less mortgage delinquency.

These results are of particular importance because they signal the high exposure of house-

holds to employment stability, which can increase the impact of a monetary policy shock (on

17Employé et ouvrier INSEE category
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default probability) by 7.5% compared to households who have been through the same shock

from an stable employment position. The magnitude of this result is in line with the those

of Gerardi et al. (2013), who find that unemployment shocks increases the probability of

default by 5-13pp. This evidence shows the existence of a heterogeneous impact of monetary

policy across the population.

7 Robustness

7.1 Non-random Renegotiation

A second issue to take into account is the non-randomness of early exit (or, alternatively,

the unbalanced nature) of our panel. As explained, we observe credit lines until the end of

their lives (whether they default or not), or alternatively until the moment of total repay-

ment due to a renegotiation or other reason (e.g. inheritance). The latter represents the end

of the credit line and is explained by the original wealth levels of the households, which are

accounted for using household characteristics at origination, the LTV and the credit rating.

Nevertheless, households renegotiating their loans will close their current credit line and start

a new one, which cannot be traced or precisely identified in the data. Thus, we stop ob-

serving a loan’s evolution at the time of a refinancing. This is potentially problematic, since

households leaving the sample due to renegotiation are expected to exhibit more creditwor-

thiness than those staying, who may have attempted to refinance but were refused (see Mian

et al. (2013) for a detailed discussion). As suggested by previous literature, the role of house

prices on the creditworthiness of households is not considered crucial in the French case, due

to the low share of mortgage loans within the mass of housing credit.18 More generally, our

data-set contains exclusively non-mortgage loans, although other characteristics explaining

households’ creditworthiness over time are unobservable, and as a result, the potential for a

self-selection problem remains.

For this reason, we seek to test our baseline specification against alternative setups which

serve to remedy these concerns. First, we restrict the sample to the first 7 years of life,

assuming a smaller likelihood for creditworthiness to change in the years immediately after

the initial loan was granted (column 1 of Table 3.8. Second, we restrict the sample to only

loans in their first 7 years of life with a loan maturity longer or equal to 20 years, which is the

most common loan maturity in France (column 2, Table 3.8). By restricting the length of

the loan we exclude shorter loans which are more likely to be refinanced. Finally, we exclude

fixed rate loans from our sample and we focus on a period of time in which renegotiation

18Only, 30% of new loans according to ACPR (2017).
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incentives are at their lowest for floating loans (column 3, Table 3.8). The latter are the years

of expansionary monetary policy. Fixed rate loans are excluded because their renegotiation

patterns are more complicated; they depend on the level of interest rates at each time

compared to the one at origination, and the number of years left to fully repay the loan

balance. Hence, we make the assumption that households with floating schedules have no

incentive to renegotiate during periods of falling rates, as long as policy rates expectations

follow the same trend.

On the other hand, holders of floating loans would like to renegotiate if they expect

interest rates to rise. As an additional test (seeking to exclude periods of high loan re-

negotiations), we run our baseline specification only on adjustable loans and excluding such

periods of increasing interest rates. While expectations dynamics are more complicated

than this, we consider this approach a plausible simplified version which is supported by the

forward guidance policy of the ECB. These tests are presented in Table 3.8. The magnitude

and significance of our main result remains virtually unchanged in the first two columns, and

decreases to 2% taking a sample of only adjustable rate loans during expansionary periods.

This result is significant only at the 10% confidence interval range. Further, by restricting

our sample, we see that the effect of negative equity is much more severe for adjustable-rate

loans; our Current LTV > 1 dummy jumps to its highest value in column 3. This result

suggests that the initial span of credit lines may have been affected by a selected attrition in

which households with better financial situations left the observed sample under a different

timing compared to remaining loans. The estimation of these alternatives allows us to test

the robustness of our specification in a more balanced setting. The results are shown to be

equivalent, suggesting no relevance on the unbalanced structure of the data at the origin of

our sample of loans.

8 Conclusion

In this paper, we investigate the effect of monetary policy on the propensity of a household

to involuntarily default on their housing loan. Using a confidential Banque de France data-

set of around 5 million housing loans, we reconstruct full amortization tables for each loan,

computing monetary policy driven changes on quarterly payments. We conclude that a

100 basis points variation in quarterly payment due to a change policy rate increases the

probability of default by 5%. Extrapolated to a concrete change of 1pp on policy rates, the

resulting increase on default probability for exposed loans lies around 45%. Further, due

to jurisdictional differences between France and other countries regarding bankruptcy laws

(as well as the absence of mortgage-style loans in our data), we are able to isolate purely
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involuntary defaults in our analysis. This desirable trait of our data helps to identify (and

control for) the determinants of default driven by financial distress, as opposed to voluntary

default from solvent households, which have different dynamics and causes. Conducting an

estimation on a database which contains both types may serve to obfuscate the true factors

explaining loan delinquency.

Additionally, as in previous literature, we identify a strong role of employment stability

against default risk during periods of contractionary monetary policy engaged by the ECB.

Finally, we provide ample evidence consistent with the existence of a self-selection of riskier

borrowers into floating rate loans schedules, as suggested in the literature. Our results are

robust to a set of alternate specifications which serve to remedy potential selection concerns.

While the magnitude of our coefficient decreases considerable in some cases, there remains

a positive and significant effect of the growth rate monetary policy shocks.

This evidence is of more crucial importance for policy makers, especially in a period

where many observers predict interest rates to rise in the short term as a result of the

long-lasting expansionary monetary policy, which has put on the spot financial institutions

position. Increasing policy rates in the years to come may have substantial negative effects

on households’ financial situations, leading to a wave of default events, although a total

welfare analysis of such a scenario is left for future research.
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9 Figures

Figure 3.1: Stable Monetary Policy Periods.

Figure 3.2: True vs Approximated Interest Rate (Simulated Loans)
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Figure 3.3: Average Interest Rate at Origination, by Quarter

Figure 3.4: True vs Approximated Monetary Policy Shock (Simulated Loans)

146



References

Figure 3.5: Average Change on Quarterly Payments (Adjustable Rate Loans)

Figure 3.6: Share of Doubtful Payment Outstanding Loans, by Loan Type
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Figure 3.7: Hazard Function, by Loan Type

Figure 3.8: Hazard Function, by Probability-of-Default Rating
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Figure 3.9: Hazard Function, by LTV Tranche

Figure 3.10: Predicted Quarterly Payment Growth (%), by 3-month Euribor Shocks
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Figure 3.11: Predicted Pr(Default), by Monetary Policy Shocks
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10 Tables

Table 3.1: Descriptive Statistics: T-test (Default vs Healthy)
(1) (2) (3)

Defaulted Healthy Difference
mean sd mean sd b t

Quarterly Payment (%) -0.02 0.89 -0.03 0.78 -0.00 (-1.61)
Annual Interest Rate (%, Origination) 4.23 1.02 3.95 1.07 -0.27∗∗∗ (-192.81)
Quarterly Total Payment (e) 2,509.09 1,919.27 2,521.18 1,726.06 12.09∗∗∗ (4.38)
Loan Size (Origination) 132,878.05 113,871.44 126,442.49 103,326.26 -6,435.56∗∗∗ (-41.41)
Loan Duration (Years, Origination) 18.45 4.90 16.88 5.05 -1.57∗∗∗ (-234.82)
Down-payment Rate (%, Origination) 9.62 17.73 18.56 22.89 8.94∗∗∗ (368.38)
Down-payment Amount (e, Origination) 10,291.91 24,162.93 19,151.75 30,433.05 8,859.83∗∗∗ (267.91)
DTI (Origination) 3.24 2.09 3.54 2.21 0.30∗∗∗ (104.00)
LTV (Origination) 0.90 0.18 0.81 0.23 -0.09∗∗∗ (-368.38)
Credit Rating (PD) 2.33 1.03 1.57 0.79 -0.76∗∗∗ (-536.37)
Number of Other Outstanding Debts (Origination) 1.01 1.28 0.80 1.16 -0.21∗∗∗ (-118.45)
Annual Income (Origination) 52,583.43 62,413.25 46,669.51 112,492.45 -5,913.91∗∗∗ (-68.82)
Average Age of Debtors (Origination) 39.02 9.27 39.05 9.54 0.04∗∗ (2.82)
Observations 540,029 74,446,744 74,986,773

Table 3.2: Descriptive Statistics: T-test (Adjustable vs Fixed)
(1) (2) (3)

Adjustable Fixed Difference
mean sd mean sd b t

Quarterly Payment (%) -0.40 3.06 0.00 0.00 0.40∗∗∗ (283.58)
Annual Interest Rate (%, Origination) 3.93 1.74 3.96 0.99 0.02∗∗∗ (29.58)
Quarterly Total Payment (e) 2,736.91 1,890.77 2,504.00 1,712.75 -232.91∗∗∗ (-267.64)
Loan Size (Origination) 148,752.75 127,903.75 124,341.01 100,468.90 -24,411.74∗∗∗ (-476.30)
Loan Duration (Years) 17.92 5.15 16.79 5.03 -1.13∗∗∗ (-538.16)
Down-payment Rate (Origination) 13.48 20.32 18.98 23.04 5.50∗∗∗ (655.60)
Down-payment Amount (e, Origination) 15,899.22 30,785.58 19,395.50 30,346.72 3,496.28∗∗∗ (278.95)
DTI (Origination) 3.68 2.33 3.53 2.20 -0.15∗∗∗ (-158.93)
LTV (Origination) 0.87 0.20 0.81 0.23 -0.05∗∗∗ (-655.60)
Credit Rating (PD) 2.07 0.99 1.53 0.76 -0.54∗∗∗ (-1,372.53)
Number of Other Outstanding Debts 0.94 1.23 0.79 1.16 -0.15∗∗∗ (-306.35)
Annual Income (Origination) 51,912.38 66,832.81 46,210.47 115,641.19 -5,701.91∗∗∗ (-193.04)
Average Age of Debtors (Origination) 39.54 9.47 39.00 9.54 -0.53∗∗∗ (-137.58)
Observations 6,598,403 68,387,839 74,986,242

Table 3.3: Share of Default Loans by Credit Ratings

Credit Rating (A) Credit Rating (B) Credit Rating (C) Credit Rating (D) Total

No Default
2,137,422 1,130,740 259,278 141,371 3,668,811

58.26 30.82 7.07 3.85 100.00
99.68 98.94 97.72 95.64 99.15

Default
6,929 12,111 6,036 6,446 31,522
21.98 38.42 19.15 20.45 100.00
0.32 1.06 2.28 4.36 0.85

Total
2,144,351 1,142,851 265,314 147,817 3,700,333

57.95 30.89 7.17 3.99 100.00
100.00 100.00 100.00 100.00 100.00
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Table 3.4: Default, Adjustable Loans and Contractionary Monetary Policy
(1) (2) (3) (4)

LTV (Origin) ∈ ¡ 0.6 Ref. Ref. Ref. Ref.

LTV (Origin) ∈ 0.6, 0.8 1.442*** 1.426*** 1.390*** 1.138***
(0.036) (0.035) (0.036) (0.031)

LTV (Origin) ∈ 0.8, 1 2.278*** 2.219*** 2.110*** 1.310***
(0.049) (0.048) (0.048) (0.033)

LTV (Origin) ¿ 1 3.253*** 3.107*** 2.966*** 1.359***
(0.068) (0.065) (0.064) (0.035)

Fixed Rate Ref. Ref. Ref. Ref.

Adjustable Rate (ADJ) 1.240*** 1.297*** 1.187*** 0.699***
(0.019) (0.020) (0.025) (0.015)

Expansionary MP Ref. Ref.

Contractionary MP 0.981 0.966
(0.018) (0.018)

ADJ × Contractionary MP 1.095** 1.128***
(0.037) (0.038)

Controls No No No Yes
Department Fixed Effect No Yes Yes Yes
Time Fixed Effect No Yes Yes Yes
Loans Types All All All All
Period 2004-15 2004-15 2004-15 2004-15
Pseudo R2 0.011 0.018 0.020 0.053
Observations 63,001,397 62,999,029 58,518,231 57,343,931

Controls include: maturity, quarter of the credit life, type of housing project,

rating, number of other outstanding debts, household age and department unemployment.

Exponentiated coefficients; Standard errors in parentheses

* p¡0.05, ** p¡0.01, *** p¡0.001
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Table 3.5: Loan Default: Impact of a Monetary Policy Shock
(1) (2) (3)

Quarterly Payment Growth (%) 1.023*** 1.039*** 1.050***
(0.007) (0.007) (0.006)

LTV (Origin) ∈ 0.6-0.8 1.434*** 1.388*** 1.143***
(0.036) (0.036) (0.032)

LTV (Origin) ∈ 0.8-1 2.422*** 2.086*** 1.307***
(0.052) (0.048) (0.034)

LTV (Origin) ¿ 1 3.712*** 2.970*** 1.375***
(0.076) (0.066) (0.036)

Current LTV ∈ 0.2-0.4 0.944*** 1.126***
(0.017) (0.022)

Current LTV ∈ 0.4-0.6 0.923*** 1.160***
(0.017) (0.027)

Current LTV ∈ 0.6-0.8 0.935*** 1.275***
(0.018) (0.034)

Current LTV ∈ 0.8-1 1.242*** 1.742***
(0.023) (0.050)

Current LTV ¿ 1 1.564*** 1.968***
(0.038) (0.066)

Credit Rating = B 2.913***
(0.047)

Credit Rating = C 5.642***
(0.112)

Credit Rating = D 10.046***
(0.208)

Number of Other Outstanding Debts 1.049***
(0.005)

Log(Household Income) 0.934***
(0.010)

Average Age of Debtors (Origination) 1.008***
(0.001)

Maturity 11-15 years 0.912***
(0.019)

Maturity 16-20 years 0.947**
(0.023)

Maturity ¿ 20 years 1.042
(0.029)

Rental Property 0.894***
(0.014)

Secondary Residence 0.927**
(0.029)

Age of Loan (in Quarters) 1.026***
(0.001)

Unemployment Rate Growth (%) 0.996*
(0.002)

Department Fixed Effect No Yes Yes
Time Fixed Effect No Yes Yes
Loans Types All All All
Period 2004-15 2004-15 2004-15
Pseudo R2 0.012 0.020 0.052
Observations 60,560,076 57,149,077 55,988,009

Exponentiated coefficients; Standard errors in parentheses

* p¡0.10, ** p¡0.05, *** p¡0.01

153



References

Table 3.6: Loan Default: Heterogeneous Effects of Monetary Policy
(1) (2) (3) (4)

Quarterly Payment Growth (%) 1.045** 1.044*** 1.015* 1.003
(0.021) (0.007) (0.008) (0.009)

Current LTV ∈ 0.2-0.4 1.126*** 1.123*** 1.127*** 1.124***
(0.022) (0.022) (0.022) (0.022)

Current LTV ∈ 0.4-0.6 1.160*** 1.156*** 1.162*** 1.158***
(0.027) (0.027) (0.027) (0.027)

Current LTV ∈ 0.6-0.8 1.275*** 1.270*** 1.277*** 1.272***
(0.034) (0.034) (0.034) (0.034)

Current LTV ∈ 0.8-1 1.742*** 1.733*** 1.738*** 1.730***
(0.050) (0.050) (0.050) (0.050)

Current LTV ¿ 1.0 1.969*** 1.958*** 1.959*** 1.950***
(0.066) (0.066) (0.066) (0.066)

Current LTV ∈ 0.2-0.4 × Quarterly Payment Growth (%) 1.004
(0.025)

Current LTV ∈ 0.4-0.6 × Quarterly Payment Growth (%) 1.001
(0.023)

Current LTV ∈ 0.6-0.8 × Quarterly Payment Growth (%) 0.994
(0.023)

Current LTV ∈ 0.8-1 × Quarterly Payment Growth (%) 1.019
(0.025)

Current LTV ¿ 1 × Quarterly Payment Growth (%) 1.041
(0.034)

Vulnerable 1.074*** 1.075***
(0.015) (0.015)

Vulnerable × Quarterly Payment Growth (%) 1.020 1.039**
(0.013) (0.017)

Unemployment Rate Growth (%) 0.996* 0.996* 0.997 0.999
(0.002) (0.002) (0.002) (0.003)

Unemployment Rate Growth (%) × Quarterly Payment Growth (%) 1.011*** 1.012***
(0.002) (0.002)

Vulnerable × Unemployment Rate Growth (%) 0.994
(0.004)

Vulnerable × Quarterly Payment Growth (%) × Unemp Rate Growth (%) 0.994*
(0.003)

Controls Yes Yes Yes Yes
Department Fixed Effect Yes Yes Yes Yes
Time Fixed Effect Yes Yes Yes Yes
Loans Types All All All All
Period 2004-15 2004-15 2004-15 2004-15
Pseudo R2 0.052 0.052 0.052 0.052
Observations 55,988,009 55,988,009 55,988,009 55,988,009

Controls include: maturity, quarter of the credit life, type of housing project,

rating, number of other outstanding debts, household age.

Exponentiated coefficients; Standard errors in parentheses

* p¡0.10, ** p¡0.05, *** p¡0.01
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Table 3.7: Descriptive Statistics: Vulnerable Households
No Vulnerable Vulnerable Total

No Default
2,762,027 906,784 3,668,811

75.28 24.72 100
99.22 98.94 99.15

Default
21,833 9,689 31,522
69.26 30.74 100
0.78 1.06 0.85

Total
2,783,860 916,473 3,700,333

75.23 24.77 100
100 100 100

Table 3.8: Loan Default: Robustness Checks
(1) (2) (3) (4)

Quarterly Payment Growth (%) 1.057*** 1.045*** 1.019* 0.0000216***
(0.007) (0.007) (0.010) (0.000)

Current LTV < 0.2 Ref. Ref. Ref. Ref.

Current LTV ∈ (0.2-0.4) 0.976 0.671*** 1.266*** 0.0000676***
(0.025) (0.035) (0.078) (0.000)

Current LTV ∈ (0.4-0.6) 1.016 0.667*** 1.126 0.0000865***
(0.028) (0.032) (0.088) (0.000)

Current LTV ∈ (0.6-0.8) 1.089*** 0.760*** 1.031 0.0001122***
(0.032) (0.036) (0.102) (0.000)

Current LTV ∈ (0.8-1.0) 1.587*** 1.177*** 1.536*** 0.0002413***
(0.049) (0.056) (0.183) (0.000)

Current LTV > 1.0 1.882*** 1.443*** 2.454*** 0.0003315***
(0.067) (0.076) (0.344) (0.000)

LTV (Origin) < 0.6 Ref. Ref. Ref. Ref.

LTV (Origin) ∈ (0.6-0.8) 1.196*** 0.917* 0.823** 0.0000127*
(0.040) (0.046) (0.075) (0.000)

LTV (Origin) ∈ (0.8-1) 1.342*** 0.955 1.038 0.0000371***
(0.041) (0.045) (0.086) (0.000)

LTV (Origin) > 1 1.410*** 1.000 0.899 0.0000618***
(0.043) (0.048) (0.076) (0.000)

Controls Yes Yes Yes Yes (OLS)
Time Fixed Effect Yes Yes Yes Yes (OLS)
Department Fixed Effect Yes Yes Yes Yes (OLS)
Loans Types First 7 Yrs First 7, 20+ years Adj Only All
Period 2004-15 2004-15 2004-15? 2004-15
Pseudo R2 0.060 0.057 0.064 0.053
Observations 44,757,278 20,375,829 1,828,000 87,147,867

Controls: maturity, quarter of the credit life, type of housing project, rating, number of other outstanding debts,

household age and department unemployment. Exponentiated coefficients. Standard errors in parentheses.

? During years of continuous falling policy rates. * 0.10, ** 0.05, *** 0.01
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A The Bias of Adjustable Rate Loans

A substantial number of adjustable credit lines are lost during the process of data cleaning
and amortization tables reconstruction. Thus, we do not work with the true population but a
sample of the original data. This is not problematic if a proper process of random selection
is applied. Nevertheless, this is not our case, since most of our discarded data refers to
adjustable loans, and fixed rate loans are mostly unaffected. The resulting sample is a non-
randomized fraction of the original data and it may bias subsequent estimation results on
default probability. The direction of the bias depends on the resulting defaults distribution.

Average default probabilities D conditional on the type of interest rate (Adjustable) in
the true population are equal to:

D|Adjustable=1 = β0 + β1

D|Adjustable=0 = β0

where the true population relationship is Dit = β0 + β1Adjustablei.
Using the non-random sample, the estimated equation of the true relationship is repre-

sented as:
Dit = β̂0 + β̂1Adjustablei + εit

where,
E(D|adjustable=0) = β̂0 = D|Adjustable=0

E(D|adjustable=1) = β̂0 + β̂1 6= D|Adjustable=1

The estimated expected value of default for fixed rate loans using the non-random sample
is equal to the true population average, which indicates that the estimates of β0 are unbiased.
Nevertheless, the expected default of adjustable loans differs from the true population mean.
Since β0 is consistently estimated, the source of bias must be a change on the distribution
of defaults for adjustable loans. In other words, defaults within the adjustable group are
not missing at random. In particular, comparisons between original data and the resulting
sample show that default probability of adjustable rate loans of our sample is lower than in
the original population, such that β̂1 and the subsequent odd ratio are underestimated:

β̂1 < β1

OddRatio =
β0 + β̂1
β0

<
β0 + β1
β0

B Reconstructing Amortisation Tables

In this appendix we aim at detailing the process of re-construction of amortisation tables
presented in section 3.1 with examples. We choose a 200,000e loan with 20 years maturity
and a starting interest rate of 4.1%. Then, we simulate a conventional loan payment table
for two different adjustment schedules: fixed and adjustable. Starting from a complete
information table, we do drop all elements which are not available in our real data set and
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we apply our reconstruction methodology step by step. We do simulate a loan in order to
be able to compare final computations with initial ones. Our lack of certain variables would
not have allowed such a comparison using our data set.

Fixed Rate Loans FRL Table 3.9 presents the complete amortisation table of the
chosen loan example for a fixed rate schedule computed as if we were the borrower. Interest
rate R and total payments M are constant over the entire loan life, such that the monetary
policy shock is always equal to 0.

Table 3.9: FRL amortisation table - 200k, 20 years, 4.1% started in 2004q1
Quarter Date Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 4.1 200,000.0 € 1,625.6 € 2,050.0 € 3,675.6 €
2 2004q2 4.1 198,374.4 € 1,642.3 € 2,033.3 € 3,675.6 € 0.0 €
3 2004q3 4.1 196,732.1 € 1,659.1 € 2,016.5 € 3,675.6 € 0.0 €
4 2004q4 4.1 195,072.9 € 1,676.1 € 1,999.5 € 3,675.6 € 0.0 €
5 2005q1 4.1 193,396.8 € 1,693.3 € 1,982.3 € 3,675.6 € 0.0 €
6 2005q2 4.1 191,703.5 € 1,710.7 € 1,965.0 € 3,675.6 € 0.0 €
7 2005q3 4.1 189,992.8 € 1,728.2 € 1,947.4 € 3,675.6 € 0.0 €
8 2005q4 4.1 188,264.6 € 1,745.9 € 1,929.7 € 3,675.6 € 0.0 €
9 2006q1 4.1 186,518.6 € 1,763.8 € 1,911.8 € 3,675.6 € 0.0 €
10 2006q2 4.1 184,754.8 € 1,781.9 € 1,893.7 € 3,675.6 € 0.0 €
. . . . . . . . . . . . . . . . . . . . . . . .
40 2013q4 4.1 122,537.1 € 2,419.6 € 1,256.0 € 3,675.6 € 0.0 €
41 2014q1 4.1 120,117.5 € 2,444.4 € 1,231.2 € 3,675.6 € 0.0 €
42 2014q2 4.1 117,673.0 € 2,469.5 € 1,206.1 € 3,675.6 € 0.0 €
43 2014q3 4.1 115,203.5 € 2,494.8 € 1,180.8 € 3,675.6 € 0.0 €
44 2014q4 4.1 112,708.7 € 2,520.4 € 1,155.3 € 3,675.6 € 0.0 €
45 2015q1 4.1 110,188.4 € 2,546.2 € 1,129.4 € 3,675.6 € 0.0 €
46 2015q2 4.1 107,642.2 € 2,572.3 € 1,103.3 € 3,675.6 € 0.0 €
47 2015q3 4.1 105,069.9 € 2,598.7 € 1,077.0 € 3,675.6 € 0.0 €
48 2015q4 4.1 102,471.2 € 2,625.3 € 1,050.3 € 3,675.6 € 0.0 €

Table 3.10 represents the exact information we do observe in our data. Hence, interest
rates and quarterly payments are omitted in order to simulate the exact data conditions we
face in our paper.

Table 3.10: FRL Amortisation Table - Step 0
Quarter Date Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 200,000.0 €
2 2004q2 198,374.4 €
3 2004q3 196,732.1 €
4 2004q4 195,072.9 €
5 2005q1 193,396.8 €
6 2005q2 191,703.5 €
7 2005q3 189,992.8 €
8 2005q4 188,264.6 €
9 2006q1 186,518.6 €
10 2006q2 184,754.8 €
. . . . . . . . . . . . . . . . . . . . . . . .
40 2013q4 122,537.1 €
41 2014q1 120,117.5 €
42 2014q2 117,673.0 €
43 2014q3 115,203.5 €
44 2014q4 112,708.7 €
45 2015q1 110,188.4 €
46 2015q2 107,642.2 €
47 2015q3 105,069.9 €
48 2015q4 102,471.2 €

We now apply the reconstruction process presented in section 3.1. Results are presented
in Table 3.11. First, we compute principal payments at each quarter Pt. Second, we apply
the following formula,

R =
∆P

Pt−1
(3.4)
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Table 3.11: FRL Amortisation table - Steps 1 and 2
Second First

Quarter Date Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 4.1 200,000.0 € 1,625.6 €
2 2004q2 4.1 198,374.4 € 1,642.3 €
3 2004q3 4.1 196,732.1 € 1,659.1 €
4 2004q4 4.1 195,072.9 € 1,676.1 €
5 2005q1 4.1 193,396.8 € 1,693.3 €
6 2005q2 4.1 191,703.5 € 1,710.7 €
7 2005q3 4.1 189,992.8 € 1,728.2 €
8 2005q4 4.1 188,264.6 € 1,745.9 €
9 2006q1 4.1 186,518.6 € 1,763.8 €
10 2006q2 4.1 184,754.8 € 1,781.9 €
. . . . . . . . . . . . . . .
40 2013q4 4.1 122,537.1 € 2,419.6 €
41 2014q1 4.1 120,117.5 € 2,444.4 €
42 2014q2 4.1 117,673.0 € 2,469.5 €
43 2014q3 4.1 115,203.5 € 2,494.8 €
44 2014q4 4.1 112,708.7 € 2,520.4 €
45 2015q1 4.1 110,188.4 € 2,546.2 €
46 2015q2 4.1 107,642.2 € 2,572.3 €
47 2015q3 4.1 105,069.9 € 2,598.7 €
48 2015q4 4.1 102,471.2 € 2,625.3 €

Finally, since we know the loan maturity and we computed the interest rate, we can
easily fill in remaining gaps using classic amortisation table formulas. The result of our
reconstructed table is presented in Table 3.12. As observed, we exactly reproduced the
original fixed rate loan schedule presented in Table 3.9, which evidences the validity of our
methodology to reconstruct missing information, interest rates and the monetary policy
shock in this case.

Table 3.12: FRL Amortisation Table - Step 3
Second First Third Third Third

Quarter Date Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 4.1 200,000.0 € 1,625.6 € 2,050.0 € 3,675.6 €
2 2004q2 4.1 198,374.4 € 1,642.3 € 2,033.3 € 3,675.6 € 0.0 €
3 2004q3 4.1 196,732.1 € 1,659.1 € 2,016.5 € 3,675.6 € 0.0 €
4 2004q4 4.1 195,072.9 € 1,676.1 € 1,999.5 € 3,675.6 € 0.0 €
5 2005q1 4.1 193,396.8 € 1,693.3 € 1,982.3 € 3,675.6 € 0.0 €
6 2005q2 4.1 191,703.5 € 1,710.7 € 1,965.0 € 3,675.6 € 0.0 €
7 2005q3 4.1 189,992.8 € 1,728.2 € 1,947.4 € 3,675.6 € 0.0 €
8 2005q4 4.1 188,264.6 € 1,745.9 € 1,929.7 € 3,675.6 € 0.0 €
9 2006q1 4.1 186,518.6 € 1,763.8 € 1,911.8 € 3,675.6 € 0.0 €
10 2006q2 4.1 184,754.8 € 1,781.9 € 1,893.7 € 3,675.6 € 0.0 €
. . . . . . . . . . . . . . . . . . . . . . . .
40 2013q4 4.1 122,537.1 € 2,419.6 € 1,256.0 € 3,675.6 € 0.0 €
41 2014q1 4.1 120,117.5 € 2,444.4 € 1,231.2 € 3,675.6 € 0.0 €
42 2014q2 4.1 117,673.0 € 2,469.5 € 1,206.1 € 3,675.6 € 0.0 €
43 2014q3 4.1 115,203.5 € 2,494.8 € 1,180.8 € 3,675.6 € 0.0 €
44 2014q4 4.1 112,708.7 € 2,520.4 € 1,155.3 € 3,675.6 € 0.0 €
45 2015q1 4.1 110,188.4 € 2,546.2 € 1,129.4 € 3,675.6 € 0.0 €
46 2015q2 4.1 107,642.2 € 2,572.3 € 1,103.3 € 3,675.6 € 0.0 €
47 2015q3 4.1 105,069.9 € 2,598.7 € 1,077.0 € 3,675.6 € 0.0 €
48 2015q4 4.1 102,471.2 € 2,625.3 € 1,050.3 € 3,675.6 € 0.0 €

Adjustable Rate Loans ARL Table 3.13 presents the complete amortisation table of
the chosen loan example for an adjustable rate schedule computed as if we were the borrower.
Interest rates Rt adjust every quarter following 3-month Euribor of the past quarter. Thus,
total payments M vary over the entire loan life, such that the monetary policy shock depends
on the magnitude of the change. For the sake of space, we only present a window of time
around the quarters of stable Euribor evolution. As previously, Table 3.14 presents the
example of the exact information we observe in our data set. Again, interest rates and
payments are unknown and we apply our methodology to approximate them.
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Table 3.13: ARL Amortisation Table - 200k, 20 years, 4.1% started in 2004q1
Quarter Date Euribor 3m t-1 Spread (S) Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 2.15 1.95 4.10 200,000.0 € 1,625.6 € 2,050.0 € 3,675.6 €
2 2004q2 2.06 1.95 4.01 198,374.4 € 1,658.5 € 1,988.7 € 3,647.2 € -28.4 €
3 2004q3 2.08 1.95 4.03 196,715.8 € 1,671.6 € 1,981.9 € 3,653.5 € 6.2 €
4 2004q4 2.12 1.95 4.07 195,044.2 € 1,681.2 € 1,984.6 € 3,665.8 € 12.3 €
5 2005q1 2.16 1.95 4.11 193,363.0 € 1,691.3 € 1,986.8 € 3,678.1 € 12.2 €
6 2005q2 2.14 1.95 4.09 191,671.7 € 1,712.2 € 1,959.8 € 3,672.0 € -6.1 €
7 2005q3 2.12 1.95 4.07 189,959.6 € 1,733.2 € 1,932.8 € 3,666.0 € -6.0 €
8 2005q4 2.13 1.95 4.08 188,226.4 € 1,749.1 € 1,919.9 € 3,669.0 € 3.0 €
9 2006q1 2.34 1.95 4.29 186,477.3 € 1,730.6 € 2,000.0 € 3,730.6 € 61.6 €
10 2006q2 2.61 1.95 4.56 184,746.7 € 1,703.6 € 2,106.1 € 3,809.7 € 79.1 €
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 2013q1 0.20 1.95 2.15 129,994.5 € 2,626.7 € 698.7 € 3,325.4 € -28.7 €
38 2013q2 0.21 1.95 2.16 127,367.7 € 2,639.4 € 687.8 € 3,327.2 € 1.8 €
39 2013q3 0.21 1.95 2.16 124,728.3 € 2,653.7 € 673.5 € 3,327.2 € 0.0 €
40 2013q4 0.22 1.95 2.17 122,074.7 € 2,666.6 € 662.3 € 3,328.9 € 1.7 €
41 2014q1 0.24 1.95 2.19 119,408.1 € 2,678.4 € 653.8 € 3,332.1 € 3.3 €
42 2014q2 0.30 1.95 2.25 116,729.7 € 2,685.1 € 656.6 € 3,341.7 € 9.6 €
43 2014q3 0.30 1.95 2.25 114,044.6 € 2,700.2 € 641.5 € 3,341.7 € 0.0 €
44 2014q4 0.16 1.95 2.11 111,344.3 € 2,733.1 € 587.3 € 3,320.4 € -21.3 €
45 2015q1 0.08 1.95 2.03 108,611.2 € 2,757.4 € 551.2 € 3,308.6 € -11.8 €
46 2015q2 0.05 1.95 2.00 105,853.9 € 2,775.0 € 529.3 € 3,304.3 € -4.3 €
47 2015q3 -0.01 1.95 1.94 103,078.8 € 2,796.0 € 499.9 € 3,295.9 € -8.4 €
48 2015q4 -0.03 1.95 1.92 100,282.9 € 2,811.8 € 481.4 € 3,293.2 € -2.7 €

Table 3.14: ARL Amortisation Table - Step 0
Quarter Date Euribor 3m t-1 Spread (S) Interest Rate (R) Outstanding Principal Principal payment (P) Interest payment (I) Total payment (M) MP shock
1 2004q1 2.15 200,000.0 €
2 2004q2 2.06 198,374.4 €
3 2004q3 2.08 196,715.8 €
4 2004q4 2.12 195,044.2 €
5 2005q1 2.16 193,363.0 €
6 2005q2 2.14 191,671.7 €
7 2005q3 2.12 189,959.6 €
8 2005q4 2.13 188,226.4 €
9 2006q1 2.34 186,477.3 €
10 2006q2 2.61 184,746.7 €
. . . . . . . . . . . .
37 2013q1 0.20 129,994.5 €
38 2013q2 0.21 127,367.7 €
39 2013q3 0.21 124,728.3 €
40 2013q4 0.22 122,074.7 €
41 2014q1 0.24 119,408.1 €
42 2014q2 0.30 116,729.7 €
43 2014q3 0.30 114,044.6 €
44 2014q4 0.16 111,344.3 €
45 2015q1 0.08 108,611.2 €
46 2015q2 0.05 105,853.9 €
47 2015q3 -0.01 103,078.8 €
48 2015q4 -0.03 100,282.9 €

We now apply the reconstruction process presented in section 3.1. Results are presented
in Table 3.15. First, we compute principal payments at each quarter Pt. Second, we apply
the following formula only in periods of stable monetary policy (highlighted in bold in the
second column),

Rt =
Principalt−1 ×∆Et−1 + ∆P −∆M

Pt−1
(3.5)

Importantly, we assume ∆M and ∆Et−1 to be closed to zero. Thus, we obtain an ap-
proximation of the interest rate for each period which is presented in column 6 (R temp). We
observe some differences on the interest rate approximation between quarters. Subsequently,
we compute the average interest rate of each time window (R mean).

Third, we compute the difference between the mean interest rate of the period and the
3-month Euribor in t-1. This gives us an approximation of the spread, which is presented
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in column 4 (S temp). Since we know that the spread is constant over the entire loan life,
we compute the mean using all spread approximations we just computed. The result is our
best approximation of the true spread and corresponds to the column 5 of Table 3.15. Now,
we can compute our time-varying approximation of interest rates following,

Rt = S + Et−1 (3.6)

Table 3.15: ARL Amortisation Table - Steps 1, 2 and 3
Third Third Second Second Third First

Quarter Date Et−1 S temp Spread (S) R temp R mean Interest Rate (R) Outstanding Principal Principal pmnt (P) Interest pmnt (I) Total pmnt (M) MP shock
1 2004q1 2.15 2.06 1.95 4.21 4.10 200,000.0 € 1,625.6 €
2 2004q2 2.06 2.15 1.95 8.10 4.21 4.01 198,374.4 € 1,658.5 €
3 2004q3 2.08 2.13 1.95 3.14 4.21 4.03 196,715.8 € 1,671.6 €
4 2004q4 2.12 2.09 1.95 2.32 4.21 4.07 195,044.2 € 1,681.2 €
5 2005q1 2.16 2.05 1.95 2.38 4.21 4.11 193,363.0 € 1,691.3 €
6 2005q2 2.14 2.07 1.95 4.95 4.21 4.09 191,671.7 € 1,712.2 €
7 2005q3 2.12 2.09 1.95 4.91 4.21 4.07 189,959.6 € 1,733.2 €
8 2005q4 2.13 2.08 1.95 3.67 4.21 4.08 188,226.4 € 1,749.1 €
9 2006q1 2.34 1.95 4.29 186,477.3 € 1,730.6 €
10 2006q2 2.61 1.95 4.56 184,746.7 € 1,703.6 €
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 2013q1 0.20 1.75 1.95 1.95 2.15 129,994.5 € 2,626.7 €
38 2013q2 0.21 1.74 1.95 1.93 1.95 2.16 127,367.7 € 2,639.4 €
39 2013q3 0.21 1.74 1.95 2.16 1.95 2.16 124,728.3 € 2,653.7 €
40 2013q4 0.22 1.73 1.95 1.95 1.95 2.17 122,074.7 € 2,666.6 €
41 2014q1 0.24 1.71 1.95 1.77 1.95 2.19 119,408.1 € 2,678.4 €
42 2014q2 0.30 1.95 2.25 116,729.7 € 2,685.1 €
43 2014q3 0.30 1.95 2.25 114,044.6 € 2,700.2 €
44 2014q4 0.16 1.95 2.11 111,344.3 € 2,733.1 €
45 2015q1 0.08 1.95 2.03 108,611.2 € 2,757.4 €
46 2015q2 0.05 1.95 2.00 105,853.9 € 2,775.0 €
47 2015q3 -0.01 1.95 1.94 103,078.8 € 2,796.0 €
48 2015q4 -0.03 1.95 1.92 100,282.9 € 2,811.8 €

Finally, once we approximate the spread S and the interest rate Rt, we can fill in the
payments information as we did previously. The full approximated amortisation table is
presented in Figure 3.16. If we compare our approximation to the original amortisation
table, we observe that differences start at the third decimal of the spread. Nevertheless, the
bias can be more important in magnitude depending on the loan size, maturity and date of
start. A more detail analysis of the bias and its sources is presented in section 3.2.

160



References

Table 3.16: ARL Amortisation Table - Step 4
Third Third Second Second Third First Four Four Four

Quarter Date Et−1 S temp Spread (S) R temp R mean Interest Rate (R) Outstanding Principal Principal pmnt (P) Interest pmnt (I) Total pmnt (M) MP shock
1 2004q1 2.15 2.06 1.95 4.21 4.10 200,000.0 € 1,625.6 € 2,051.5 € 3,676.6 €
2 2004q2 2.06 2.15 1.95 8.10 4.21 4.01 198,374.4 € 1,658.5 € 1,990.2 € 3,648.2 € -28.4 €
3 2004q3 2.08 2.13 1.95 3.14 4.21 4.03 196,715.8 € 1,671.6 € 1,983.4 € 3,654.4 € 6.2 €
4 2004q4 2.12 2.09 1.95 2.32 4.21 4.07 195,044.2 € 1,681.2 € 1,986.0 € 3,666.7 € 12.3 €
5 2005q1 2.16 2.05 1.95 2.38 4.21 4.11 193,363.0 € 1,691.3 € 1,988.2 € 3,679.0 € 12.2 €
6 2005q2 2.14 2.07 1.95 4.95 4.21 4.09 191,671.7 € 1,712.2 € 1,961.3 € 3,672.9 € -6.1 €
7 2005q3 2.12 2.09 1.95 4.91 4.21 4.07 189,959.6 € 1,733.2 € 1,934.3 € 3,666.9 € -6.0 €
8 2005q4 2.13 2.08 1.95 3.67 4.21 4.08 188,226.4 € 1,749.1 € 1,921.3 € 3,669.9 € 2.9 €
9 2006q1 2.34 1.95 4.29 186,477.3 € 1,730.6 € 2,001.4 € 3,731.5 € 61.6 €
10 2006q2 2.61 1.95 4.56 184,746.7 € 1,703.6 € 2,107.5 € 3,810.6 € 79.1 €
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 2013q1 0.20 1.75 1.95 1.95 2.15 129,994.5 € 2,626.7 € 699.7 € 3,326.0 € -89.7 €
38 2013q2 0.21 1.74 1.95 1.93 1.95 2.16 127,367.7 € 2,639.4 € 688.7 € 3,327.7 € 1.7 €
39 2013q3 0.21 1.74 1.95 2.16 1.95 2.16 124,728.3 € 2,653.7 € 674.5 € 3,327.7 € 0.0 €
40 2013q4 0.22 1.73 1.95 1.95 1.95 2.17 122,074.7 € 2,666.6 € 663.2 € 3,329.4 € 1.7 €
41 2014q1 0.24 1.71 1.95 1.77 1.95 2.19 119,408.1 € 2,678.4 € 654.6 € 3,332.6 € 3.3 €
42 2014q2 0.30 1.95 2.25 116,729.7 € 2,685.1 € 657.5 € 3,342.2 € 9.6 €
43 2014q3 0.30 1.95 2.25 114,044.6 € 2,700.2 € 642.4 € 3,342.2 € 0.0 €
44 2014q4 0.16 1.95 2.11 111,344.3 € 2,733.1 € 588.2 € 3,320.9 € -21.3 €
45 2015q1 0.08 1.95 2.03 108,611.2 € 2,757.4 € 552.0 € 3,309.0 € -11.8 €
46 2015q2 0.05 1.95 2.00 105,853.9 € 2,775.0 € 530.1 € 3,304.7 € -4.3 €
47 2015q3 -0.01 1.95 1.94 103,078.8 € 2,796.0 € 500.7 € 3,296.3 € -8.4 €
48 2015q4 -0.03 1.95 1.92 100,282.9 € 2,811.8 € 482.1 € 3,293.6 € -2.7 €
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Au lendemain de la crise financière, la littérature académique considérait les activités

“traditionnelles” de l’assurance comme étant toujours incapables de générer un événement

systémique à elles seules. Néanmoins, les renflouements à grande échelle pour des assureurs

comme AIG ou Aegon dans le sillage de 2008—ainsi que la vague de faillites japonaises au

cours de la décennie dite “perdue”—ont démontré que ce secteur était vulnérable aux chocs

macroéconomiques provenant de l’extérieur de ce secteur.

Cette idée s’est concrétisée dans plusieurs évolutions réglementaires importantes qui ont

transformé le marché européen de l’assurance depuis la grande récession, avec une atten-

tion particulière sur la mise en place d’exigences de fonds propres qui sont cohérentes avec

le marché (market-consistent) et fondées sur le risque (risk-based). En parallèle, d’autres

transformations réglementaires ont servi à ouvrir la concurrence pour certaines branches

d’activité spécifiques, intensifiant ainsi les pressions du marché notamment sur les organ-

ismes de petite ou moyenne taille.

Face à ces évolutions, l’objectif de cette thèse est de comprendre les effets des nouvelles

normes réglementaires sur le marché de l’assurance, et de mettre en évidence la dynamique

des défaillances lorsqu’elles se produisent. L’analyse de défaut est également au coeur du

dernier chapitre, qui porte sur les prêts au logement. L’analyse de ces trois questions—l’effet

des réformes réglementaires, la défaillance des organismes d’assurance et le défaut des prêts

immobiliers—constituent les trois chapitres de cette thèse.

Principaux Résultats, Implications de Supervision Pru-

dentielle et Possibles Extensions

Les résultats du premier chapitre présentent un intérêt particulier pour la supervi-

sion prudentielle des organismes d’assurance. Il est fondé sur une base de données unique
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construite manuellement pour identifier les déterminants des défaillances assurantielles, ses

dynamiques temporelles et ses différences d’une juridiction à l’autre.

Nos résultats empiriques reposent sur l’estimation des modèles logistiques avec divers

régimes d’effets fixes—ainsi que des modèles de survie—pour fournir de nouvelles contribu-

tions à la littérature sur l’insolvabilité des assureurs. Nous montrons que la composition du

portefeuille (en termes de classe d’actifs) est importante pour la prévention de l’insolvabilité

sur le marché de l’assurance vie, à la différence du marché de l’assurance non-vie. Les instru-

ments à revenu fixe contribuent ainsi à la survie de ces organismes. En revanche, l’efficacité

opérationnelle (mesurée par le ratio des frais d’exploitation et d’administration sur le total

des primes émises) ne joue aucun rôle dans le secteur vie mais apparâıt cruciale dans le

secteur non-vie. En rassemblant les institutions solvables et insolvables de plusieurs pays

dans une seule base de données, nous sommes en mesure de mieux isoler les différences entre

les secteurs ainsi qu’entre les juridictions nationales.

Pour les superviseurs, ce chapitre appelle à une attention accrue au risque de marché

pour les organismes d’assurance-vie, avec un accent particulier sur les placements en actions

ou en fonds d’investissement. En effet, ces instruments sont déjà soumis à des exigences de

fonds propres plus élevées dans la plupart des juridictions et ont généralement une moindre

présence dans le portefeuille des assureurs par rapport aux instruments de dette.

Cette analyse présente néanmoins plusieurs limites importantes. Premièrement, notre

base de données est un panel déséquilibré qui est influencé par la surreprésentation des en-

treprises américaines. Par ailleurs, la période d’étude constitue un environnement de baisse

quasi continue des taux d’intérêt ; dans ce cas particulier, les anciennes obligations gagnent

en valeur de marché à mesure que les taux baissent. Il est également plus difficile d’identifier

l’effet des variables macroéconomiques étant donné leur manque relatif de variation signi-

ficative, en particulier lorsque l’on travaille avec des données de bilan annuelles (à basse

fréquence). Les approches employées ici ne permettent pas de démêler cet effet mécanique

(bénéfique) des propriétés intrinsèques de ces actifs. Enfin, nous aurions aimé approfondir

l’analyse en menant une estimation des coûts de chaque défaillance ; cela nous aurait permis

de comprendre comment les décisions de gestion prises en amont peuvent soit atténuer soit

amplifier l’ampleur des défaillances lorsqu’elles se matérialisent. En raison d’un manque de

données suffisantes, cela a été laissé pour des recherches futures.

Le deuxième chapitre étudie la transformation du marché français de l’assurance du-
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rant la période de 2011 à 2019, au cours de laquelle plusieurs réformes réglementaires sont

entrées en vigueur. Un premier résultat de cet article consiste à montrer une prédominance

des fusions classiques , c’est-à-dire celles qui cherchent à réaliser des économies d’échelle au

sein des branches d’activités similaires. Ce résultat est cohérent avec une absence d’arbitrage

réglementaire ; les assureurs ne semblent pas rechercher d’autres assureurs aux profils de

risque opposés, dans le but de diversifier les risques et de bénéficier ainsi de la conception

de la formule standard de Solvabilité II. Nous analysons ensuite une réforme spécifique à la

santé (la loi ANI) et constatons une forte vague de fusions dans ce secteur. En exploitant le

fait que seul un segment du marché français était exposé à cette loi, nous montrons que les

assureurs “cibles” dans cette ligne d’activité n’étaient pas motivés dans l’immédiat par des

soucis de rentabilité, contrairement aux fusions au sein d’autres branches. Ce résultat pour-

rait s’expliquer par le fait que ces organismes avaient prévu la réforme avant la matérialisation

de ses conséquences. Enfin, nous montrons que, malgré une forte augmentation de l’activité

MA depuis 2011, les indices de concentration du marché restent très faibles dans la quasi-

totalité des lignes d’activité, impliquant que les assurés bénéficient toujours d’un marché

concurrentiel pour de nombreux types de contrats d’assurance.

L’analyse de cet article a également souffert de certaines contraintes liées à la disponi-

bilité des données. En effet, nous voulions dans un premier temps approfondir la question

des fusions intra-branches. S’il était possible de reconstituer les différentes composantes du

SCR avant l’ère de Solvabilité II, cela aurait permis d’identifier l’effet de l’entrée en vigueur

de ce règlement. Cependant, ces formules sont trop sophistiquées pour être approximées à

l’aide des données Solvabilité I disponibles. Ainsi, il a fallu se contenter d’un graphique de

corrélation montrant la prédominance des fusions inter-branches pour conclure sur la ques-

tion. Des extensions possibles à ce chapitre incluent l’utilisation d’une variable instrumentale

pour identifier l’exposition précise de chaque organisme au choc réglementaire (même si des

effets d’annonce des années en amont l’entrée en vigueur compliqueraient une telle approche).

Enfin, les données au niveau des contrats permettraient de comprendre si ces réformes (ou

les fusions qui ont eu lieu en parallèle) ont entrâıné des changements de prix sur le marché

des produits, ou bien une dégradation en qualité.

Le troisième chapitre aborde un marché distinct—les prêts au logement—mais reste

sur le thème de la prédiction de défaut. En particulier, nous étudions l’impact des change-

ments de politique monétaire sur le défaut des crédits immobiliers sur la période 2004-2015.

Le résultat principal consiste à démontrer qu’une augmentation de 100 points de base du

paiement trimestriel induite par les variations de l’Euribor 3 mois augmente la probabilité
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de défaut d’environ 5%. De plus, nous identifions la stabilité de l’emploi comme un facteur

d’assurance majeur contre ce type d’exposition au risque de taux d’intérêt inhérent aux prêts

à taux variable.

Plusieurs caractéristiques de notre jeu de données propriétaire renforcent la contribu-

tion de ce chapitre. D’abord, il présente une absence de défaut stratégique, ce qui isole le

défaut involontaire dans nos estimations. Ce trait diffère des données comparables générées

par la juridiction américaine, dans laquelle les ménages submergés trouvent souvent une

incitation à abandonner leur bien. En revanche, une limite de ces données réside dans la

sous-représentation des prêts à taux variable (l’objet même de l’étude). De plus, même si

nous disposons de la catégorie socio-économique des emprunteurs, notre variable capturant

la fragilité des catégories vulnérables reste quelque peu spéculative. Par ailleurs, cette anal-

yse pourrait être étendue au-delà de la France, en particulier dans les pays où la présence de

prêts variables est plus élevée, afin de mieux comprendre comment le défaut interagit avec

les taux de politique monétaire.
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