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Résumé en français 

 

Introduction 

La récente Loi pour la Transition Energétique et la Croissance Verte (LTECV) de 

2015 a introduit un nouvel outil de pilotage de la politique énergétique française, appelé 

Programmation Pluriannuelle de l’Energie (PPE). Celle-ci exprime les grandes orientations et 

les priorités des pouvoirs publics en matière de technologies et d’investissements afin de 

décarboner l’ensemble des secteurs d’activité. Elle s’inscrit dans le cadre du Paquet Européen 

Energie-Climat 2030, lequel impose aux Etats membres un objectif de 20% d’énergies 

renouvelables (ENR) dans la consommation finale en 2020, et 27% en 2030.  

À la suite de la catastrophe de Fukushima et afin de diversifier le mix électrique 

nationale, la sortie partielle du nucléaire est devenue un enjeu de taille de la transition 

énergétique française, avec une place à part dans la PPE. Plus précisément, cette dernière a 

fixé l’objectif de ramener la part du nucléaire dans la production totale d’électricité à 50% 

d’ici 2035. Deux scénarios proposés par RTE ont été retenus dans la PPE de 2017 (voir [1]), à 

savoir les scénarios « Volt » et « Ampère ». Le scénario « Volt » préconise un fort 

développement des investissements dans les ENR (116 GWe en 2035), ainsi qu’une sortie 

modérée du nucléaire avec la fermeture de seulement 9 réacteurs de 900 MWe, celle-ci étant 

conditionnée par les perspectives d’exportations. Le scénario « Ampère » soumet 

explicitement la sortie du nucléaire au rythme des investissements dans les ENR. La décision 

de fermer une centrale ne sera ainsi prise que si la perte de production de l’unité mise hors 

service peut être compensée, en moyenne, par la production des nouvelles capacités 

renouvelables. Bien qu’aucun besoin d’investissements dans des centrales thermiques de 

pointe ne soit identifié, l’équilibre du système électrique dans le scénario « Ampère » requiert 

des capacités d’interconnexion croissantes avec les voisins européens, ainsi qu’un fort 

développement de la gestion active de la demande et de l’efficacité énergétique. 

La transformation du secteur électrique, associée au développement des énergies 

renouvelables (ENR), soulève de nombreux défis économiques, techniques, politiques et 

sociaux. En effet, le système électrique doit assurer en permanence l’équilibre en l’offre et la 
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demande, or le caractère intermittent de la production d’électricité renouvelables, tributaire 

des conditions météorologiques, requiert une flexibilité croissante de la part du système et des 

moyens de production conventionnels (thermiques et hydraulique), qui doit accompagnée par 

un investissement massif dans les technologies de stockage.  

Contrairement aux centrales électriques classiques, la production des ENR est non 

pilotable et intermittente. Cette absence de « pilotabilité » nécessite des unités de production 

flexibles en back-up et éventuellement l’utilisation du stockage pour assurer la stabilité du 

réseau. Les conditions météorologiques deviennent un facteur déterminant du volume et de la 

dynamique de la production d'électricité. La demande résiduelle (DR), qui correspond à la 

différence entre la consommation d'électricité et la production des ENR, est la mesure 

pertinente à prendre en compte pour évaluer l'impact de la pénétration des ENR sur les 

besoins de flexibilité des centrales pilotables. L'augmentation des capacités ENR est 

généralement associée à une plus grande volatilité de la DR. Une modélisation correcte de ses 

dynamiques est donc essentielle pour estimer correctement les besoins en flexibilité du futur 

système électrique. La flexibilité étant liée à la gestion des variations de la DR, des méthodes 

formelles de modélisation de ses trajectoires sont nécessaires pour définir la combinaison 

d’investissements optimale tant sur le plan économique que technique. L'élaboration d'un 

ensemble de trajectoires de DR correspondant aux pires des cas, notamment les plus volatiles 

et chaotiques, est essentielle pour garantir des niveaux de fiabilité et de sécurité du système 

élevés en cas de forte pénétration des ENR. À court terme, les centrales conventionnelles 

ayant des rampes de puissance faibles et des niveaux de production minimum élevés 

pourraient être incapables d'adapter leur production aux fluctuations rapides de la DR. On 

s'attend à ce que les batteries et les véhicules électriques (VE) jouent un rôle important dans la 

gestion des ENR et la flexibilité du système, en stockant l'excédent de production des ENR 

durant les périodes de faible demande et en le restituant pendant les périodes de pointe de 

consommation. Bien que leurs coûts actuels empêchent pour l'instant un déploiement à grande 

échelle, ces technologies devraient générer une valeur ajoutée importante provenant d'une 

large gamme de services auxiliaires avec des externalités positives, qui doivent être prises en 

compte dans leur tarification (voir [2]-[3]). 

La problématique des centrales nucléaires joue un rôle unique dans la transition 

énergétique française. Tandis que la part du nucléaire dans la production électrique n’était que 

de 8% en 1973, les chocs pétroliers des années 1970 ont considérablement accéléré le 

programme électronucléaire français, basé sur la technologie des réacteurs à eau pressurisée 
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(REP). Suivant le Plan Mesmer, le premier REP est raccordé au réseau à Fessenheim, en avril 

1977. Correspondant à une puissance installée totale de 55 GWe, 54 réacteurs nucléaires 

supplémentaires sont construits entre la fin des années 1970 et le début des années 1990, pour 

un coût de construction estimé à 65 milliards d’euros (en euros courants de 2012, voir [4]). 

Bien que critiqué pour les risques d’accidents majeurs et le problème des déchets nucléaires, 

le nucléaire pourrait jouer un rôle central dans l’atténuation du changement climatique (voir 

[5]). L’électricité d’origine nucléaire n’est pas émettrice de CO2 et pourrait donc s’inscrire 

dans le futur mix électrique aux côtés des ENR. Par ailleurs, [6] estime que les coûts de 

remplacement des réacteurs déclassés par des technologies alternatives pourraient être 

extrêmement élevés, surtout si les ENR sont le principal substitut. Enfin, en raison du faible 

coût variable du nucléaire, [7] estime que son abandon progressif pourrait plus que quadrupler 

les coûts totaux de production d’électricité, ainsi que faire augmenter les émissions de CO2. 

Repousser la fermeture de certaines centrales pourrait enfin permettre de gagner du temps, 

afin de permettre l’émergence et la maturation de technologies alternatives (hydrogène, fusion 

nucléaire), ainsi que la diminution des coûts d’investissements des ENR. Toutefois, cette 

stratégie pourrait aggraver le risque d’ « effet falaise », correspondant à l’effondrement de la 

capacité de production d’électricité après la fermeture rapide de plusieurs réacteurs nucléaires, 

avec des risques potentiellement élevés de rupture d’approvisionnement électrique.  

Par ailleurs, l’essentiel des coûts des énergies renouvelables étant fixes et leurs coûts 

marginaux quasiment nuls, l’introduction de capacités ENR a tendance à faire baisser le prix 

de l’électricité sur le marché spot, ce qui menace à la fois la rentabilité des centrales 

conventionnelles, nécessaires à l’équilibre de marché lorsque la production ENR est 

insuffisante, mais aussi celle des ENR en créant paradoxalement les conditions contraires à 

leur propre rentabilité. Selon le design actuel des marchés de gros de l’électricité (de type 

EPEX SPOT), les offres de production sont soumises au gestionnaire de réseau de transport 

(GRT, correspondant à RTE en France), qui les classe par ordre croissant sur la base de leurs 

coûts marginaux selon la règle dite du « merit order ». Le prix spot se trouve à l’intersection 

des courbes d’offre et de demande, et correspond en théorie au coût marginal de la dernière 

unité de production appelée par le GRT. Comme les ENR ont un coût de production quasi nul, 

elles sont appelées les premières et elles contribuent ainsi à faire baisser le prix spot en 

poussant hors du marché les centrales de pointe plus coûteuses. Ce phénomène, connu sous le 

nom de « merit order effect » (voir [8]), nuit à la viabilité financière à long terme de 

l’ensemble des unités de production, y compris les ENR. Par un effet d’« auto 
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cannibalisation » [9], celles-ci contribuent à décourager les investissements nécessaires à leur 

propre expansion. Il est donc nécessaire de mettre en place des mécanismes de soutien hors-

marché, tels que le FiT et le FiP, afin de de rémunérer correctement les ENR et inciter les 

futurs investisseurs. Ces mécanismes génèrent toutefois une charge budgétaire importante (5.5 

milliards d’euros en France en 20181), et laissent de côté la question du déficit structurel des 

centrales électriques conventionnelles.  

Ce problème, connu sous le nom de « Missing Money » (voir [10]), n’est toutefois pas 

causé mais seulement aggravé par la pénétration croissante des ENR. Le design du marché 

spot ne permettant pas aux prix de dépasser un seuil légalement fixé (égal à 3000 €/MWh sur 

la bourse EPEX SPOT et pris pour référence dans cette thèse), la rente de rareté nécessaire 

pour couvrir les coûts opérationnels et variables de certains producteurs n’est pas intégrée 

dans le prix. Adapter le design du marché afin d’accroitre l’efficacité du signal prix est donc 

une direction prometteuse (voir [11]), notamment par la tarification en temps réel de la 

disponibilité et de la rareté (dans les situations où les capacités de production sont 

insuffisantes pour garantir une sécurité d’approvisionnement élevée) des ressources. Les ENR 

déplaçant la valeur de l’électricité de la production d’énergie vers les services de réserve et 

services auxiliaires, valoriser en temps réel les besoins en réserves pourrait également 

contribuer à restaurer l’efficacité du signal prix. Une adaptation des règles institutionnelle du 

marché spot semble donc nécessaire pour capturer les bénéfices économiques des 

technologies ENR (voir [12]), mais aussi corriger les défauts des marchés spot tel qu’ils 

existent actuellement en France et en Europe. 

Ce travail de thèse est divisé en quatre chapitres, qui peuvent se lire de manière 

indépendante. Toutefois, les méthodes et modèles présentés dans les deux premiers chapitres 

constituent la base formelle requise pour comprendre les modèles d’investissement et de 

dispatching utilisés tout au long de ce travail. En raison de la complexité informatique des 

modèles ainsi que du temps nécessaire à leur résolution, les analyses empiriques et 

applications fournies dans ce travail sont circonscrites à la région Auvergne-Rhône-Alpes, 

choisie pour sa représentativité du mix national.  

Les chapitres I et II adoptent une structure très similaire, avec d’abord la présentation 

théorique d’une méthode originale puis son application dans un second temps. Celles-ci 

permettent de modéliser les dynamiques de DR et déterminer les pires trajectoires (entendues 

 
1 Commission de la Régulation de l’Energie (CRE), 2018 
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comme succession de valeurs d’un processus aléatoire) possibles, afin de déterminer les 

besoins en capacité de production et en flexibilité permettant de garantir un niveau de fiabilité 

et de stabilité maximal du futur système électrique, pour différents niveaux de pénétration 

ENR. Chacune des méthodologies est appliqué à un modèle d’optimisation du système 

électrique, intégrant les contraintes thermiques et les contraintes de stockage de chaque unité 

de production. L’emploi d’un cadre identique, dans l’application des méthodes introduites 

dans chaque chapitre, permet une comparaison fine des avantages et inconvénients associés à 

chacune d’entre elles.  

Le chapitre III s’intéresse aux paradoxes et contradictions inhérentes à la transition 

énergétique et la politique nucléaire française. On note que la totalité de la littérature étudiant 

la sortie du nucléaire ainsi que la pénétration des ENR s’appuie sur la constitution de 

scénarios, dans lesquels les décisions d’investissement sont fixées et exogènes. Utilisant une 

version améliorée du modèle d’investissement et de dispatching présenté dans les premiers 

chapitres, la décision de fermer ou prolonger les centrales nucléaires de plus de 40 ans est 

modélisée de façon endogène, de même que le niveau d’investissement dans les ENR. Nos 

résultats viennent confirmer la grande majorité des analyses existantes, et suggèrent 

qu’aucune base économique (ni écologique) ne vient justifier la fermeture à court-terme de 

centrales nucléaires. 

Enfin, le quatrième et dernier chapitre est consacré à l’analyse des futurs revenus des 

différents types de producteurs d’électricité, dans un mix avec une forte proportion d’ENR. 

Ceci permet d’étudier un ensemble de designs de marché et de mécanismes de rémunération 

originaux, et de voir comment ceux-ci transforment la distribution des prix spot et la 

rémunération associée aux différentes technologies de production présentes dans le mix.  

 

Chapitre I - Un modèle d’optimisation structurel et robuste du 

système électrique avec autocorrélation de la demande résiduelle   

Le premier chapitre s’intéresse tout d’abord à l’élaboration d’un modèle 

d’optimisation robuste intégrant l’ensemble des contraintes opérationnelles et thermiques des 

moyens de production conventionnels, ainsi que les contraintes associées aux différents 

moyens de stockage disponibles. La modélisation de ces contraintes au niveau des centrales 

permet d’analyser de façon détaillée et précise comment un mix de production donné peut 
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s’adapter à une demande résiduelle de plus en plus volatile. En effet, la formulation robuste 

du modèle permet de déterminer l’ensemble de décisions d’investissement, mais aussi de 

production (le dispatching), permettant de garantir à moindre coût la fiabilité et la stabilité du 

système électrique dans un ensemble de conditions extrêmes. Cette approche s’inscrit dans le 

cadre de l’optimisation robuste ([13]), qui cherche à résoudre un problème d’optimisation en 

prenant en compte l’incertitude relative aux paramètres du modèle. Plus précisément, 

l’optimisation robuste cherche à minimiser les coûts totaux qui peuvent être observé lorsqu’un 

ensemble de paramètres, lesquels prennent leurs valeurs dans un ensemble d’incertitude borné 

(voir [14]), prend les valeurs les plus élevées (ou les plus faibles) possibles. Cette approche 

garantit la faisabilité des contraintes associées au problème d’optimisation pour toutes les 

valeurs de paramètres dans l’ensemble d’incertitude.  

Toutefois, l’incertitude associée aux paramètres du modèle a reçu un traitement 

essentiellement statique dans la littérature existante, à l’exception de [15] qui propose un 

ensemble d’incertitude dynamique pour un problème d’optimisation multi-période. En 

utilisant les méthodes de l’Analyse en Composantes Principales (ACP) et la régression 

polynomiale, ce chapitre propose une méthode d’approximation robuste des variations d’un 

processus aléatoire entre plusieurs périodes, conditionnellement aux valeurs qu’il peut 

prendre. Cette méthode est appliquée à la DR, laquelle correspond à un vecteur aléatoire avec 

trois composantes (la demande d’électricité, la production solaire et la production d’origine 

éolienne), et qui peut donc s’exprimer comme un processus aléatoire en trois dimensions. 

L’ACP permet ici de décorréler chacune des composantes de la DR et d’étudier séparément 

leurs dynamiques. Associé à une méthode de binning, la régression polynomiale permet 

d’estimer les quantiles associés à la distribution des variations de chaque composante, 

conditionnellement à son niveau. Un intervalle de prévision est également fourni pour les 

variations estimées, dont la précision peut être configurée en fonction de la qualité et de la 

structure de l’échantillon utilisé pour l’estimation. On peut ainsi définir une approximation 

continue des variations de la DR et l’inclure directement au modèle d’optimisation robuste. 

Ceci permet de définir un ensemble de trajectoires extrêmes de DR, telles que celle-ci prend 

la série de valeurs les plus élevées, les plus basses ou les plus variables possibles.  

En appliquant cette méthode à la région Auvergne-Rhône-Alpes, les analyses 

suggèrent que la prise en compte de la variabilité de la DR dans le modèle d’optimisation 

augmente fortement le niveau optimal d’investissement dans les technologies de stockage et 

les centrales de pointe. Toutefois, bien que moins flexibles, les mix électriques dominés par le 
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nucléaire présentent systématiquement de meilleures performances en termes de coût de 

production moyen, tant dans des conditions d’opération extrêmes que normales. Ils sont 

également moins émetteurs de CO2, mais présentent des coûts fixes très élevés, ce qui peut les 

rendre plus sensible à des prix spot faibles en cas de forte croissance des ENR. Enfin, les 

résultats obtenus suggèrent que, comme la pression sur les centrales nucléaires risque 

d’augmenter avec la croissance des ENR, un mix basé sur le nucléaire peut rapidement 

devenir trop coûteux et inefficace, même si les réacteurs sont utilisés dans une moindre 

mesure pour le suivi de charge.  

 

Chapitre II - Optimisation du mix électrique dans le cas d’une 

forte pénétration des énergies renouvelables : Une méthode 

robuste basée sur l’inférence bayésienne et la théorie des graphes 

 La méthodologie introduite au chapitre I, bien que flexible et paramétrable, n’offre 

toutefois pas la garantie théorique que les trajectoires les plus volatiles, générées par le 

modèle théorique, correspondent effectivement à la séquence de valeurs de DR la plus 

variable qui soit possible. En d’autres termes, la première méthode proposée dans cette thèse 

propose un extremum conditionnel, ou encore local, mais ne garantit pas que les trajectoires 

trouvées constituent un extremum global2. Le chapitre II propose ainsi une approche 

complémentaire permettant de dépasser cette limite, mais est toutefois plus difficile à mettre 

en pratique à cause de besoins élevés en termes de données. Par ailleurs, il n’a pas été possible 

d’obtenir une reformulation du modèle d’optimisation intégrant cette méthode 

complémentaire, ce qui pourra faire l’objet de recherches futures.  

 Cette seconde méthode s’appuie sur les outils de l’inférence bayésienne, ainsi que de 

concepts de base issus de la théorie des graphes. En m’appuyant sur la terminologie de 

l’optimisation robuste, j’introduits le concept de « l’ensemble des certitudes », défini pour un 

processus aléatoire en référence à un couple de paramètres strictement positifs (𝜖,𝑀), où 𝜖 est 

inférieur ou égal à 1. La construction de cet ensemble requiert tout d’abord l’ajustement des 

données à un modèle théorique (multivarié), par l’utilisation d’outils issus des statistiques 

 
2 L’usage du terme extremum est justifié par le fait qu’une séquence de points (ici, la valeur de la RD à chaque 

pas de temps) n’est rien d’autre qu’un unique point dans un espace multidimensionnel. 
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bayésiennes. Du fait de la complexité de l’approche développée et de la difficulté 

computationnelle liée à son implémentation, une version simplifiée en est présentée pour 

faciliter sa compréhension. Le modèle estimé est ensuite utilisé pour déterminer, pour 𝑀 

observations du processus aléatoire modélisé, le sous-ensemble des trajectoires ayant une 

probabilité supérieure ou égale à 1 − 𝜖 d’être observées au moins une fois.  

 Ensuite, un opérateur mathématique original, nommé « opérateur de chemin », est 

introduit. Il permet d’écrire de manière rigoureuse, sous forme matricielle, l’ensemble des 

chemins discrets possibles associés à plusieurs ensembles de sommets dans un graphe. Plus 

précisément, pour deux ensembles de sommets avec chacun 𝐾 sommets, il permet de 

représenter les 𝐾2 chemins possibles entre chaque paire de sommets issus des deux 

ensembles, ainsi que le poids associé à chaque arrête. Cet opérateur sert de base théorique à la 

conception d’un algorithme permet de trouver en temps polynomial le sous ensemble des 

trajectoires d’un processus aléatoire qui maximisent une fonction objectif donnée. Il offre 

également la garantie théorique que la trajectoire correspondant à l’optimum global est 

incluse dans ce sous-ensemble. Cet algorithme est appliqué à la DR, et permet de déterminer 

les trois trajectoires qui respectivement maximisent et minimisent globalement la somme des 

valeurs prises par le processus, mais aussi maximisent ses variations. 

 Enfin, cette seconde méthode est appliquée à un modèle d’optimisation de 

l’investissement et du dispatch, identique à celui présenté au Chapitre I, toujours dans le cas 

de la région Auvergne-Rhône-Alpes. Des résultats très similaires sont trouvés, bien que 

légèrement moins prudents concernant les besoins en flexibilité ainsi que la part des capacités 

de pointe, de type turbine à gas à cycle-combiné et thermique à flamme, nécessaires pour 

assurer l’équilibre en cas de forte pénétration des ENR. 

 

Chapitre III – Les paradoxes de la transition énergétique et de la 

politique nucléaire françaises : une analyse technico-économique 

Contrairement à la majorité des analyses, ce chapitre propose un modèle dans lequel 

les décisions relatives au niveau investissement dans les ENR et à la politique nucléaire sont 

définies de manière endogène. En effet, la littérature existante étudie généralement ces 

questions par la constitution des scénarios exogènes de sortie du nucléaire et de progression 
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des ENR dans le mix électrique. Une version améliorée du modèle d'optimisation introduit 

dans les chapitres précédents est construite, prenant en compte les capacités initiales déjà 

présentes dans le mix. On identifie ensuite un sous-ensemble des réacteurs nucléaires 

candidats pouvant être mis hors service. Les réacteurs sont contraints à être fermés par paires, 

chacune d’entre elles étant associé à une décision binaire : payer un ensemble 

d’investissements de maintenance pour prolonger la durée de vie des réacteurs, ou bien payer 

les coûts de déclassement et retirer les réacteurs du mix. Les conclusions obtenues confirment 

la plupart des résultats trouvés dans la littérature : une sortie rapide du nucléaire est 

susceptible d'augmenter de manière significative les coûts du système et les émissions de 

carbone. Aucune justification économique n'est trouvée pour la sortie immédiate du nucléaire, 

car le remplacement des réacteurs déclassés par des investissements dans les énergies 

renouvelables est toujours sous-optimal en termes de coûts totaux, même si les coûts de 

prolongation du nucléaire sont plus élevés que les estimations initiales ou si les coûts 

d'investissement et les coûts fixes des énergies renouvelables diminuent fortement. Le 

remplacement des réacteurs nucléaires par un ensemble de turbines à gaz à cycle combiné 

(CCGT) est économiquement optimal mais incompatible avec l'objectif de réduction des 

émissions de CO2. Ce chapitre fournit également une analyse approfondie des performances 

opérationnelles de divers types de mix électriques dans des conditions opérationnelles 

extrêmes et représentatives. Afin de rendre la comparaison la plus complète possible, 4 mix 

sont sélectionnés : 2 mix sans diminution des capacités nucléaires avec pénétration des ENR 

faible et modéré, et 2 mix avec diminution d’un quart de flotte nucléaire, avec également un 

niveau faible et modéré de capacité ENR.  On constate que l'abandon partiel du nucléaire peut 

menacer la stabilité du système mais pourrait permettre de conserver le nucléaire comme 

principale technologie produisant en base en cas de forte pénétration des ENR. Les coûts 

d'exploitation et les émissions de carbone augmentent considérablement lorsqu’on remplace 

des réacteurs déclassés par des centrales à cycle combiné, même en ajoutant une part élevée 

d’ENR dans le mix électrique. La question de la gestion des déchets nucléaires et des 

conditions de sécurité suffisantes, en ce qui concerne les réacteurs prolongés, n'entre toutefois 

pas dans le cadre de cette analyse. 
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Chapitre IV – Vers de nouveaux designs des marchés de 

l’électricité : assurer l’efficacité et la rentabilité des producteurs 

en cas de forte pénétration des ENR 

Ce quatrième et dernier chapitre propose une analyse détaillée des futurs revenus, en 

cas de pénétration importante des ENR, perçus par les différentes technologies de production 

disponibles dans le mix français. L’introduction d’outils méthodologiques originaux permet 

d’étudier la structure des distributions jointes optimales de production et de prix spot, 

spécifiques à chaque technologie, qui seraient nécessaires pour la couverture totale des coûts 

fixes et variables annuels. Cela fournit une base pour analyser plusieurs propositions de 

réforme et designs originaux du marché spot, et la façon dont ils peuvent répondre aux 

problèmes actuels de rentabilité des producteurs mieux que le marché spot français. Plus 

précisément, il s'agit d'étudier comment la tarification de la rareté, comme dans [16], et un 

mécanisme d’enchères sur la base des coûts moyen pour les ENR (voir [17]), impactent le 

dispatching optimal, mais aussi la distribution des prix spot et la structure des revenus des 

producteurs. L’application de tels designs de marché peut toutefois contribuer à fortement 

désavantager les ENR et faire monter les prix à des niveaux politiquement inacceptables. Le 

modèle du Contract-for-Difference (CfD) est également étudié comme une alternative 

possible au FiP. Les résultats sont mitigés : les avantages du CfD dépendent de la corrélation 

de la production rémunérée par contrat et du prix spot. Enfin, en s’appuyant sur le concept 

d'"assureur en dernier ressort" proposé dans [18], ce chapitre se clôt par l’étude des prérequis 

théoriques et des outils nécessaires pour la mise en place d'un mécanisme assurantiel 

superposé au marché de gros, basé sur les préférences révélées par les consommateurs en 

matière de fiabilité et de stabilité du système électrique. Une mesure adéquate de la valeur 

attribuée à l'électricité par chaque consommateur pourrait être une étape nécessaire au bon 

fonctionnement futur des marchés de l'électricité. Inciter les individus à révéler leurs 

préférences en matière de fiabilité et de stabilité, par le biais de mécanismes de type 

assurantiels, pourrait à la fois contribuer à combler le fossé du "Missing Money" et rapprocher 

le coût de l'électricité payé par les consommateurs de leurs évaluations individuelles, 

améliorant ainsi l'équité dans le partage des coûts du système.  
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Glossary  

 

Definitions: 

Baseload: The minimum level of load that a power supply system must serve over a given 

period.  

Curtailment: The voluntary reduction of output below the maximum possible load factor of a 

wind or solar generation unit, in order to balance the electric system. 

Electric load: The amount of power that is required by the electric system and must be 

supplied by generation units. 

Electricity mix: The repartition of different energy sources in the total electricity generation 

fleet. 

Load factor: A measure of the utilization rate, i.e. the instantaneous proportion of its nominal 

power that a generator uses when supplying electricity to the grid. 

Residual demand: The difference between the electric load and the volume of electricity 

produced by renewable energy sources, i.e. photovoltaic and wind power units. 

Spot market: A trading platform where generators and retailers (or, directly, electricity 

customers) submit orders for selling/buying power. The market operator matches supply and 

demand and determines the equilibrium spot price. 

Spot price: The equilibrium price at which selling and buying bids for power are exchanged. 

 

Abbreviations: 

ARMA: Auto-Regressive Moving-Average 

CfD : Contract-for-Difference 
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CCGT: Combined-Cycle Gas Turbine 

RD: Residual demand 

GT: (Oil-fired) Gas Turbine 

FiT: Feed-in-Tariff  

FiP: Feed-in-Premium 

LOLP: Loss of Load Probability 

LTECV: Loi Relative à la Transition Energétique pour la Croissance Verte du 17 août 2015 

PPE : Programmation Pluriannuelle de l’Energie 

RES: Renewable Energy Sources 

VOLL: Value of Lost Load 
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Introduction 

 

The recent French Law for the Energy Transition and Green Growth (LTECV, 2015) 

has introduced a new tool for steering the energy policy called Programmation Pluriannuelle 

de l’Energie (PPE). The PPE expresses the main orientations and priorities of public 

authorities in the management of energy sources in order to meet the energy policy targets set 

by the law. The PPE comes within the scope of the European Paquet Energie-Climat 2030, 

which sets for member states a target of 20% of renewable energy in the final consumption of 

2020 and 27% in 2030. France proved even more ambitious as it enshrined in the LTECV 

targets corresponding to 23% and 32% for 2020 and 2030 respectively. In the wake of the 

Fukushima accident and to diversify the electricity mix, the partial phasing out of nuclear is 

also a central stake in the French energy transition. More precisely, the PPE has set the 

objective of bringing the share of nuclear to 50% of total electricity production by 2035. Two 

main scenarios have been retained in the PPE (see [1]), namely the “Volt” and the “Ampere” 

scenarios.  

In essence, the energy transition of electric production systems can be described as the 

progressive replacement of existing power plants by new technologies using solely the 

potentially unlimited forces of the sun, wind, tides and gravity to produce electricity. 

Investment in new storage technologies, to complement renewable energy sources (RES), also 

plays a pivotal role. Conventional power plants indeed rely on exhaustible fossil fuels and 

reject carbon dioxide into the atmosphere, massively contributing to climate change. On the 

contrary, wind and solar plants produce at almost zero cost carbon-free electricity. This bright 

picture of renewables is however rapidly tarnished by several technical and economic issues 

linked to their very nature. 

Contrary to conventional power plants, their production is non-dispatchable and 

intermittent. This lack of dispatchability requires flexible production units as back-up and 

possibly electricity storage to ensure the stability of the network. Weather becomes a 

prominent determinant of the volume and dynamics of electricity supply. Residual demand 

(RD), which corresponds to the difference between electricity consumption and RES 
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generation, is the relevant metric to consider when assessing the impact of RES penetration on 

flexibility requirements from dispatchable units. A higher RES capacity is usually associated 

with a higher RD volatility. A proper modelling of RD dynamics is thus pivotal to correctly 

estimate flexibility requirements of the future electric system. As flexibility pertains to the 

management of RD variations, formal methods for modeling the trajectories3 of RD are 

necessary to define the optimal future generation mix. Deriving a set of worst-case RD 

trajectories, especially the most variable ones, is crucial for guaranteeing a higher level of 

system reliability under strong RES penetration. In the short-term, conventional plants with 

low ramping rates and high minimum production levels could be unable to adapt their 

production to quick residual demand fluctuations. Batteries and electric vehicles (EV) are also 

expected to play a significant role in storing RES and ensuring system flexibility, by storing 

RES production surplus in low-demand periods and releasing it in peak-demand periods. 

Though their current costs prevent large deployment for the moment, these technologies 

should generate significant value added from a large range of ancillary services with positive 

externalities, that should be taken into account in their pricing (see[2]-[3]).  

Nuclear holds a specific place in the French energy transition, because of its dominant 

share in the electricity mix. While nuclear accounted for only 8% of the electricity production 

in 1973, the first petrol shock drastically accelerated the French electronuclear program based 

on Pressurized Water Reactors (PWR). Following the Mesmer Plan, the first PWR was 

connected to the grid at Fessenheim in April 1977. 54 additional reactors, corresponding to a 

cumulated power of 55 GWe, were built by 1990 for an estimated total construction cost of 

65€ billion in 2012 euros (see [4]). In 2019 in France, 70.6% of electricity was produced by 

nuclear power plants. While it is pointed out for the risks of major accidents, such as in 

Fukushima, and the issue of nuclear waste management, [5] suggests nuclear may be a central 

player in climate change mitigation. A large body of literature also shows that the total costs 

of phasing out of nuclear and replacing decommissioned reactors by alternative technologies 

might be extremely costly, especially if RES are the main substitute technologies ([6]). As 

nuclear electricity has low variable costs, [7] show that nuclear phase out may significantly 

increase total system costs, in addition to CO2 emissions. On the one hand, postponing nuclear 

phase out may allow for alternative technologies to emerge and RES sectors to decrease 

investment costs. Yet, on the other hand, it may worsen the “cliff effect”, corresponding to the 

collapse of generation capacity following a rapid nuclear phase out, with potentially high risks 

 
3 Trajectories are throughout defined as a sequence of values for a random process. 
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for security of supply. The adequate timing of both nuclear phase out and RES capacity 

investment thus depends on a series of economic, ecological, and political factors regarding 

the risks and costs associated to available options. 

Because of their capital-intensive nature (see [8]), RES have dire consequences on the 

functioning of the spot market and the determination of the spot price of electricity. Under the 

current market design, generation bids are submitted to the Transmission System Operator 

(TSO) and are ranked by increasing production cost to form a supply curve, based on the 

“merit order rule”. The spot price is found at the intersection of the supply and demand 

curves, and thus corresponds to the marginal cost of the market clearing power plant. Yet, as 

renewable technologies have quasi-null costs of production, they are called first by the market 

operator and depress the spot price by pushing the more expensive production units out of the 

market. In the case of high penetration of renewables, this phenomenon, known as the “merit 

order effect” (see [9]), may harm the long-term financial viability of back-up units that remain 

necessary for periods with quasi null RES production. Moreover, by depressing spot prices, 

RES discourage investments required for their own expansion. This calls for off-market 

subsidy mechanisms (such as the Feed-in-Tariffs – FiT, Feed-in-Premiums – FiP) to properly 

remunerate RES, which generate high additional costs borne by electricity customers and 

taxpayers. However, considering the significant budgetary burden represented by RES (5.5€ 

billion in France in 20184), adapting the market design to increase the efficiency of the price 

signal is a promising option. However, although RES penetration reduces the profitability of 

all power plants, the structural remuneration deficit of electricity generator, known as the 

“Missing Money” issue (see [10]), is not caused but only worsened by RES. As the wholesale 

market design does not allow prices to spike above a legal threshold, the rarity annuity 

required to cover fixed costs is not received by peaking generators. [11] identifies this issue as 

one of the major elements questioning the economic efficiency of liberalized electricity 

markets.  

It can be argued that RES shift the value of the electricity market from energy to 

reserve and ancillary services, which requires adapting market design as exposed in [12]. 

Flexibility becomes a central element of the stability of future electric systems and needs to be 

rewarded as a system service. Following the guidelines from the European Commission 

expressed in [13], accurately pricing real-time resource availability and scarcity conditions 

 
4 Commission de Régulation de l’Energie (CRE), 2018 
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(corresponding to situations when the system is short on generation capacity), coupled with 

the introduction of a real-time market for reserve capacity, might help restoring the efficiency 

of short-term electricity markets. Institutional and market design adaptation is thus required to 

capture the economic benefits of RES technologies (see [14]) but also correct the flaws of the 

current wholesale French electricity market, which was originally designed for conventional 

dispatchable production units.  

This thesis deals with several of the aspects mentioned above, from original methods 

for modeling RD dynamics in a robust optimization framework, to an in-depth investigation 

of the future remuneration issues of electricity generators under significant RES penetration 

and alternative market designs and subsidy mechanisms. Most of the work carried out in the 

thesis is both theoretical and empirical. It is divided into four chapters that can be read 

independently, although the methods presented in the first two chapters constitute the formal 

basis for understanding the investment and dispatching models used throughout this work. 

Because of the high computational complexity and resolution time of the models built in this 

thesis, the empirical analysis provided in this thesis focus on the French region Auvergne-

Rhône-Alpes. 

In the first chapter, I propose a robust structural model of the electric system 

incorporating the autocorrelation of RD. More precisely, my model is formulated as a robust 

Mixed Integer Linear Programming (MILP) model, integrating storage and commitment 

constraints at the individual plant level. Then, using Principal Component Analysis and 

polynomial approximation, I estimate the order statistics of the variations of RD between 

successive time periods, conditional on its level. This framework allows the estimation of a 

continuous approximation function, which shape and prevision interval can be tightly 

configured depending on the quality and structure of the training dataset. Moreover, we can 

directly include it to a dynamic robust optimization model. This allows defining a set of 

limiting, or “worst-case”, residual demand trajectories. In an application to the case of 

Auvergne Rhône-Alpes, we show that hedging against trajectories with extremely high short-

term variability globally increases the optimal storage and peaking capacities. Although they 

are less flexible, nuclear based electricity mixes consistently have better performance in terms 

of average generation costs and CO2 emissions. However, our results suggest that, as the 

stress on nuclear plants may increase with renewable penetration, a nuclear-based mix may 

rapidly become too costly and inefficient for high renewable capacities.  
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In chapter II, I develop an original and complementary robust approach built from 

Bayesian inference methods and tools from graph theory. Using terminology from robust 

optimization (see [15]), I introduce the data-driven concept of “certainty set”, which includes 

the set of paths of a random process that are observed with a probability superior to a given 

threshold over a limited number of trials. Then, using an original mathematical operator 

named the “path operator”, I design a polynomial-time algorithm allowing me to find the 

trajectories, followed by a random process, which maximize globally a given objective 

function. Like in chapter I, I derive a subset of worst-case RD but with the theoretical 

guarantee that the trajectory maximizing the objective globally is included in the it. However, 

contrary to the method introduced in chapter I, this one has high data requirements and could 

not be directly reformulated to be included in an optimization model. Using the same 

empirical framework on Auvergne-Rhône-Alpes, I find similar results to chapter I, although 

slightly less conservative regarding flexibility and minimum peaking capacity requirements 

under strong RES penetration. 

In the third chapter, I investigate the paradoxes of the French energy transition and 

nuclear policy, from an economic and technical perspective. RES investment and nuclear 

policy decisions are defined as endogenous variables, contrary to the existing literature which 

investigates exogenous nuclear and RES scenarios. Applying an enhanced version of the 

optimization model introduced in previous chapters, I select a subset of candidate nuclear 

reactors to be decommissioned by pairs. My findings confirm most results found in the 

literature: phasing out nuclear rapidly is likely to significantly increase both system costs and 

carbon emissions. No economic justification is found for the immediate phasing out of 

nuclear, as replacing decommissioned reactors by RES investment is always suboptimal in 

terms of total costs, even under higher nuclear prolongation costs or lower investment and 

fixed costs for renewables. Replacing nuclear reactors by combined-cycle gas turbines 

(CCGT) is economically optimal but incompatible with the objective of decreasing CO2 

emissions. I also provide a thorough analysis of the operational performances of various 

electricity mixes under both extreme and representative operational conditions. I find that 

partial nuclear phase out may threaten system stability but might allow to keep nuclear as the 

main ‘baseload’ technology under high RES penetration. The operational costs and carbon 

emissions drastically increase when replacing decommissioned reactors by CCGT plants, 

even when adding a high share of RES in the mix. The issues of nuclear waste management 
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and safety conditions, regarding prolonged reactors, are however outside of the scope of this 

chapter. 

Finally, in the fourth and last chapter, I provide a detailed analysis of the future revenues of 

technologies available in the French mix under significant RES penetration. Then, I study the 

optimal joint production and spot prices distribution that would be required for each type of 

generator to cover its annual fixed and variable costs. This provides a basis for analyzing how 

some new market designs may better address these cost-effectiveness issues than the current 

French wholesale spot market. More precisely, I investigate how scarcity pricing, like in [16], 

and average cost bidding for RES (see [17]), impact the optimal dispatching, spot prices 

distribution and remuneration patterns of generators. As these designs, if not finely tuned, 

may fail to provide sufficient remuneration, or may require lengthy institutional 

transformations, I also investigate the Contract-for-Difference (CfD) as an alternative to the 

FiP. Finally, following the “insurer-of-last-resort” design proposed in [18], I also investigate 

theoretical grounds for an insurance overlay on the wholesale spot market based on 

customers’ revealed preferences for reliability and system stability. Adequately measuring the 

value attributed to electricity by different customers might be a necessary step towards future 

well-functioning electricity markets. Incentivizing individuals to reveal their preferences for 

reliability and stability, through insurance-type mechanisms, may both help bridging the 

“Missing Money” gap and bring the electricity cost paid by customers closer to their 

individual valuations, thus improving equity in system cost-sharing.  
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Chapter I: 

A robust structural model of the electric 

system with significant share of intermittent 

renewables under auto-correlated residual 

demand 

 

 

 

Abstract – In this paper, we propose a robust structural investment and dispatch model 

of electric systems, including commitment and storage constraints, with auto-correlated 

residual demand. We associate it to a novel approach to robust optimization focusing on 

uncertain parameter trajectories. Using Principal Component Analysis, we approximate 

conditional order statistics for the distribution of residual demand variations using 

parametric polynomial approximation. This flexible method allows us to derive a set of 

extreme trajectories maximizing the level and variability of residual demand. Finally, we 

apply our dynamic robust model to the electric system of the French region Auvergne 

Rhône-Alpes and discuss the implications in terms of investment decisions and cost 

performance. 

Keywords – Optimal electricity mix; Robust optimization; Dynamic uncertainty; Renewable 

energy 
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1. Introduction 

Robust optimization provides a natural modeling technique for quantifying uncertainties 

affecting future weather and electric systems. Increasing the penetration of renewables 

increases the volatility of residual demand [1], which in turns requires higher system 

flexibility through technical solutions including battery and electric vehicle storage, gas fired 

power plants, demand-side management (DSM) and curtailment [2]. As underlined by [3], 

reserves are increasingly used to cover fluctuations of power output as the share of 

renewables increase, which may require stochastic decision-making tools. In the absence of 

reliable probabilistic description of the joint distribution of residual demand at various point 

of time and locations in the grid, robust optimization provides a non-probabilistic tool 

allowing to minimize the dispatch and recourse cost under the worst-case realization of the 

uncertainty.  

First introduced by [4], robust optimization provides a non-probabilistic formulation of 

uncertainty as in [5]. The uncertainty set, defined in the real space, corresponds to the set of 

values the uncertain parameters can take (see [6]-[7]). Recent developments introduce 

correlation between uncertain parameters (see [8]-[9]) and dynamic uncertainty sets for multi-

period optimization problems (see [10]). For each time period, the value of the uncertain 

parameter determines the set of values included in the uncertainty set corresponding to the 

following period. Proposing a similar dynamic approach, our method allows us, like in [11], 

to model distributional asymmetries of the uncertain parameters. However, contrary to the 

traditional robust approach, our method does not explicitly require the definition of 

uncertainty sets. 

First, we propose a robust structural model of the electric system including transmission, 

thermic constraints and storage with auto correlated and spatially cross-correlated residual 

demand parameters. Then, similarly to [12], we use Principal Component Analysis in order to 

capture correlations between residual demand parameters and create a decorrelated vector by 

projection along principal components. Then, we generate a set of bins for the training data 

and estimate the order statistics of the “differential” distribution of the decorrelated vector, 

defined as the conditional distribution of its first-difference, using a tailored parametric 

polynomial regression. Our method can be related to quantile regression and autoregressive 

models but allows greater flexibility in the usage of the training data when it is sparse. Section 

II presents the formulation of our structural electric system model. Our polynomial regression 
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method is described in Section III. Then, our model is applied in Section IV to the case of the 

French region Auvergne Rhône-Alpes, with interesting results regarding flexibility 

requirements for electricity mixes with strong renewable penetration, before concluding in 

Section V.  

 

2. Formulation of the structural model of the electric system  

Modern electric systems including renewable generation technologies can be broken down 

into a series of simple components: the electric load, renewable production units, dispatchable 

production units with thermal limits, storage units and a transmission network. For simplicity, 

we consider a single region and neglect transmission constraint in the following model. 

 

2.1. Formulation of the model 

The structural cost-minimization problem for an electricity generation system, neglecting 

spatial transfers and transmission network, can then be defined as follows: 

  min
𝑼,𝒒,𝜿,𝒛

∑(𝐴𝑗 + 𝑐𝑗
𝐹𝑂𝑀)𝑈𝑗

𝑗>1

+∑(𝐴𝑔 + 𝑐𝑔
𝐹𝑂𝑀)𝐷𝑔𝑈𝑔

𝑔

+ (𝐴𝑒 + 𝑐𝑒
𝐹𝑂𝑀)𝑈𝑒

+ Θ(∑∑(∑(𝑐𝑔
𝑉 + 𝜋𝐶𝑂2𝐸𝑔)𝑞𝑔𝑠𝑡 + 𝑐𝑔

𝑆𝑇𝑈𝑃𝑧𝑔𝑠𝑡
𝑔

+∑𝑐𝑗
𝜅𝜅𝑗𝑠𝑡

𝑗

)

𝑡∈𝒯𝑠∈𝒮

)                                          (𝟏) 

Such that : 

𝜉1𝑠𝑡̅̅ ̅̅ ̅ + 𝜉1𝑠�̂�𝜂1𝑠𝑡 − 𝜅1𝑠𝑡 −∑((𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ + 𝜉𝑗𝑠�̂�𝜂𝑗𝑠𝑡)𝑈𝑗 − 𝜅𝑗𝑠𝑡)

𝑗>1

−∑𝑞𝑔𝑠𝑡
𝑔

+ 𝑒𝑠𝑡
+ − 𝑒𝑠𝑡

− ≤ 𝛾                                             (𝟐) 

−𝜉1𝑠𝑡̅̅ ̅̅ ̅ − 𝜉1𝑠�̂�𝜂1𝑠𝑡 + 𝜅1𝑠𝑡 +∑((𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ + 𝜉𝑗𝑠�̂�𝜂𝑗𝑠𝑡)𝑈𝑗 − 𝜅𝑗𝑠𝑡)

𝑗>1

+∑𝑞𝑔𝑠𝑡
𝑔

− 𝑒𝑠𝑡
+ + 𝑒𝑠𝑡

− ≤ 𝛾                                          (𝟑) 

𝑢𝑔𝑠𝑡 − 𝑢𝑔𝑠𝑡−1 = 𝑧𝑔𝑠𝑡 − 𝑣𝑔𝑠𝑡                                                                                                                               , ∀𝑔 ∈ 𝒢  (𝟒𝒂) 

𝑧𝑔𝑠𝑡 + 𝑣𝑔𝑠𝑡 ≤ 1                                                                                                                                                    , ∀𝑔 ∈ 𝒢  (𝟒𝒃) 

𝜔𝑔𝑠𝑡
1 = 𝑞𝑔𝑠𝑡 − 𝜔𝑔𝑠𝑡

2                                                                                                                                                 , ∀𝑔 ∈ 𝒢  (𝟓) 

𝜔𝑔𝑠𝑡
1 − 𝜔𝑔𝑠𝑡−1

1 ≤ 𝑟𝑔                                                                                                                                              , ∀𝑔 ∈ 𝒢  (𝟔𝒂) 
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𝜔𝑔𝑠𝑡−1
1 − 𝜔𝑔𝑠𝑡

1 ≤ 𝑟𝑔                                                                                                                                             , ∀𝑔 ∈ 𝒢  (𝟔𝒃) 

𝜔𝑔𝑠𝑡
1 ≤ 𝑈𝑔𝐷𝑔 (𝑞𝑔 − 𝑞𝑔)                                                                                                                                   , ∀𝑔 ∈ 𝒢  (𝟕𝒂) 

𝜔𝑔𝑠𝑡
1 ≤ 𝑢𝑔𝑠𝑡K                                                                                                                                                        , ∀𝑔 ∈ 𝒢  (𝟕𝒃) 

𝜔𝑔𝑠𝑡
2 ≤ 𝑈𝑔𝐷𝑔𝑞𝑔                                                                                                                                                       , ∀𝑔 ∈ 𝒢  (𝟖) 

𝜔𝑔𝑠𝑡
2 = 𝑈𝑔𝐷𝑔𝑞𝑔 − (1 − 𝑢𝑔𝑠𝑡)K + 𝑠𝑔𝑠𝑡                                                                                                              , ∀𝑔 ∈ 𝒢  (𝟗) 

𝑠𝑔𝑠𝑡 ≤ (1 − 𝑢𝑔𝑠𝑡)K − 𝑈𝑔𝐷𝑔𝑞𝑔 + 𝑢𝑔𝑠𝑡K                                                                                                         , ∀𝑔 ∈ 𝒢  (𝟏𝟎) 

𝑢𝑔𝑠𝑡 ≥ ∑ 𝑧𝑔𝑠𝑡
𝑡′>𝑡−𝑀𝑗

𝑈

                                                                                                                                         , ∀𝑔 ∈ 𝒢  (𝟏𝟏𝒂) 

1 − 𝑢𝑔𝑠𝑡 ≥ ∑ 𝑣𝑔𝑠𝑡
𝑡′>𝑡−𝑀𝑗

𝐷

                                                                                                                                 , ∀𝑔 ∈ 𝒢  (𝟏𝟏𝒃) 

𝜅𝑗𝑠𝑡 ≤ (𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ + 𝜉𝑗𝑠�̂�𝜂𝑗𝑠𝑡)𝑈𝑗                                                                                                                                   , ∀𝑗 ∈ 𝒥 (𝟏𝟐) 

𝑒𝑠𝑡 = 𝑒𝑠𝑡−1 + √𝜂𝑒𝑒𝑠𝑡
+ −

𝑒𝑠𝑡
−

√𝜂𝑒
                                                                                                                                             (𝟏𝟑) 

𝑒𝑠𝑡 ≤ 𝑒𝑈𝑒                                                                                                                                                                                 (𝟏𝟒) 

𝑒𝑠𝑡 ≥ 𝑒𝑈𝑒                                                                                                                                                                                 (𝟏𝟓) 

𝑒𝑠𝑡
+ ≤ 𝑙𝑠𝑡(𝑒𝑈𝑒 − 𝑒𝑠𝑡)                                                                                                                                                             (𝟏𝟔) 

𝑒𝑠𝑡
− ≤ (1 − 𝑙𝑠𝑡)(𝑒𝑠𝑡 − 𝑒𝑈𝑒)                                                                                                                                                 (𝟏𝟕) 

𝑢𝑔𝑠𝑡 ∈ {0 ,1}                                                                                                                                                         , ∀𝑔 ∈ 𝒢  (𝟏𝟖) 

𝑣𝑔𝑠𝑡 ∈ {0 ,1}                                                                                                                                                          , ∀𝑔 ∈ 𝒢  (𝟏𝟗) 

𝑧𝑔𝑠𝑡 ∈ {0 ,1}                                                                                                                                                          , ∀𝑔 ∈ 𝒢  (𝟐𝟎) 

𝑙𝑠𝑡 ∈ {0 ,1}                                                                                                                                                                              (𝟐𝟏) 
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2.2. Description of the model 

2.2.1. Indices and sets 

We define the set 𝒯 used to index hours of the week, with element 𝑡 ∈ 𝒯, and the set of 

seasons 𝒮 with element 𝑠 ∈ 𝒮. We define the set of residual demand components 𝒥, where the 

first element of 𝒥 corresponds to the electric load and the remaining elements are available 

renewable technologies. Residual demand can be expressed as a linear combination of electric 

load and production from renewable generation units. The latter can be decomposed into 

subsets 𝒲 ⊂ 𝒥 and 𝒫 ⊂ 𝒥, which respectively denote wind and photovoltaic technologies.  

The set of thermal generation units is noted 𝒢, with unit 𝑔 ∈ 𝒢. The set 𝒢 can be decomposed 

into the subsets of nuclear units 𝒩 ⊂ 𝒢, combined cycle gas turbines (CCGT) 𝒞1 ⊂ 𝒢, and 

gas turbines (GT) 𝒞2 ⊂ 𝒢. 

 

2.2.2. Investment variables and parameters 

For each unit 𝑔 ∈ 𝒢, we define the binary building decision 𝑈𝑔 ∈ {0; 1}. The parameter 𝐷𝑔 ≥

0 corresponds to the “block” size of unit 𝑔, or equivalently, its nominal power. For simplicity, 

we assume 𝐷𝑔 is equal for all units of the same technology. Each unit 𝑔 ∈ 𝒢 is characterized 

by minimum and maximum output levels 𝑞𝑔 ≥ 0 and 𝑞𝑔 ≥ 0, in addition to maximum ramp-

up and ramp-down capacities 𝑟𝑔 ≥ 0 and 𝑟𝑔 ≥ 0. The commitment status of 𝑔 is constrained 

by minimum uptime 𝑀𝑔
𝑈 ≥ 0 and minimum downtime 𝑀𝑔

𝐷 ≥ 0. Finally, each thermal 

generation unit is characterized by a ratio of CO2 emissions per unit output 𝐸𝑔, expressed in 

ton per unit generated. 

We define the investment level for 𝑗 ∈ 𝒥 as 𝑈𝑗 ≥ 0, with the convention that 𝑈1 = 1, and note 

𝑼 = (𝑈𝑖)1≤𝑖≤|𝒥| the vector of installed capacities for residual demand components. We define 

the level of investment in storage as 𝑈𝑒 ≥ 0. We assume the variables 𝑈𝑗 and 𝑈𝑒 are 

continuous, while 𝑈𝑔 is binary.  

Renewable technologies, thermal generation technologies and storage respectively have 

annuitized unit investment costs 𝐴𝑗 , 𝐴𝑔 and 𝐴𝑒, with 𝐴𝑗 , 𝐴𝑔, 𝐴𝑒 ≥ 0. Similarly, both renewable 
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and thermal generation technologies exhibit yearly fixed and operation maintenance (FOM) 

costs 𝑐𝑗
𝐹𝑂𝑀, 𝑐𝑔

𝐹𝑂𝑀 and 𝑐𝑒
𝐹𝑂𝑀, with 𝑐𝑗

𝐹𝑂𝑀, 𝑐𝑔
𝐹𝑂𝑀, 𝑐𝑒

𝐹𝑂𝑀 ≥ 0.  

 

2.2.3. Operational variables and parameters 

For any season 𝑠 ∈ 𝒮 and hour 𝑡 ∈ 𝒯, we define the uncertain capacity factor 𝜉𝑗𝑠𝑡 = 𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ +

𝜉𝑗𝑠�̂�𝜂𝑗𝑠𝑡 ∈ ℝ
+ for 𝑗 = 1, and 𝜉𝑗𝑠𝑡 = 𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ + 𝜉𝑗𝑠�̂�𝜂𝑗𝑠𝑡 ∈ [0,1] for 𝑗 > 1, with nominal or average 

value noted 𝜉𝑗𝑠𝑡̅̅ ̅̅ ̅ and standard deviation 𝜉𝑗𝑠�̂�. The parameter 𝜂𝑗𝑠𝑡 follows a random variable 

with zero mean and standard deviation equal to one. The variable 𝜅𝑗𝑠𝑡 ≥ 0 is equal to volume 

of curtailed production for renewable technology 𝑗 ∈ 𝒥. Using this notation, 𝜅1𝑠𝑡 can naturally 

be interpreted as the volume of non-served load (VOLL). 

We define the variable 𝑞𝑔𝑠𝑡 ≥ 0, equal to the production of generation unit 𝑔 ∈ 𝒢. For any 

hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮, 𝜔𝑔𝑠𝑡
2 ≥ 0 corresponds to the minimum-production level of 

generator 𝑔 ∈ 𝒢, while 𝜔𝑔𝑠𝑡
1 ≥ 0 is an auxiliary variable equal to the generation volume above 

minimum-production level. We introduce the scalar Κ ≫ 0 and define the slack variable 

𝑠𝑔𝑠𝑡 ≥ 0. 𝑢𝑔𝑠𝑡, 𝑣𝑔𝑠𝑡 and 𝑧𝑔𝑠𝑡 are all binary variables respectively corresponding to the 

commitment state, start-up and shut-down decision of generator 𝑔 ∈ 𝒢. 

The variable 𝑒𝑠𝑡 ≥ 0 corresponds to the stock of electricity stored in hour 𝑡 and season 𝑠, 

while 𝑒𝑠𝑡
+ ≥ 0 and 𝑒𝑠𝑡

− ≥ 0 are flux variables respectively equal to the quantity of electricity 

stored and released. 𝜂𝑒 is the round-trip efficiency of the battery storage technology, with 0 ≤

𝜂𝑒 ≤ 1, such that √𝜂𝑒 can be interpreted as the efficiency of charge or discharge. Finally, 𝑒 

and 𝑒 respectively correspond to the maximum and minimum state of charge, and 𝑙𝑠𝑡 

corresponds to the charging state of storage devices, with 𝑙𝑠𝑡 equal to one when batteries store 

electricity. 

We respectively note 𝑐𝑔
𝑉 ≥ 0 and 𝑐𝑔

𝑆𝑇𝑈𝑃 ≥ 0 the variable and start-up costs of the unit 𝑔 ∈ 𝒢. 

We note 𝑐𝑗
𝜅 ≥ 0 the curtailment cost of renewable technology 𝑗 ∈ 𝒥, where 𝑐1

𝜅 corresponds to 

the Value of Lost Load (VOLL). Finally, we define the price of a carbon ton as 𝜋𝐶𝑂2 ≥ 0. 
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2.3. Description of the model equations 

Each constraint must hold for each hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮. The expression in (1) 

corresponds to the sum of the annuitized investment costs of the electricity mix and short-

term generation, start-up, load-shedding and curtailment costs. We introduce a scaling 

parameter Θ equal to the number of weeks per season, so the total variable costs are expressed 

on an annual basis. (2) and (3) correspond to the upper and lower limits of the primary 

frequency control constraint: net generation, which is the sum of electricity generation minus 

electric load and storage, must lie in the interval [−𝛾, 𝛾]. We may further define 𝛾 = 𝜄∆𝑓, 

where 𝜄 is proportional to the physical inertia of the electric system and ∆𝑓 corresponds to the 

maximum feasible absolute deviation of frequency from its nominal value.  

(4a) to (11b) together formalize, as a set of linear constraints, the commitment state, starting-

up decisions and output limits for dispatchable generators. We combine the “big-M” method 

with the use of slack variables in order to linearize minimum generation level constraints5. 

(12) constrains the volume of electricity curtailed (respectively non-served load) to be inferior 

or equal to the generation of renewable technology 𝑗 ∈ 𝒥 (respectively inferior or equal to the 

electric load). Finally, (13) to (17) correspond to the power balance of the storage technology, 

with constraints on the state of charge lower and upper limits and upper bounds on electricity 

inflows and outflows, in addition to charging status.  

 

3. Dynamic robust reformulation of the optimization model 

For clarity of presentation, we drop the seasonal subscript 𝑠 within Section III. For each 𝑡, we 

define the random vector 𝜼𝑡 = (𝜂1𝑡, … , 𝜂𝑛𝑡)
𝑇 ∈ ℝ(1×𝑛), where 𝑛 is the number of uncertain 

parameters. We set 𝑛 = |𝒥|, so the first component of 𝜼𝑡 corresponds to electric load. We 

assume that the random process {𝜼𝑡}𝑡∈𝒯 is (weakly) stationary. Using the variance-covariance 

matrix of  𝜼𝑡, we compute its corresponding matrix of eigenvectors 𝚽 so that 𝝁𝑡 = 𝚽𝑇𝜼𝑡 has 

a diagonal variance-covariance matrix, ie has uncorrelated components.  

 
5 For Κ big enough, 𝜔𝑔𝑠𝑡

1 ≤ 𝑈𝑔𝐷𝑔 (𝑞𝑔 − 𝑞𝑔) if 𝑢𝑔𝑠𝑡 is equal to 1 and 𝜔𝑔𝑠𝑡
1 ≤ 0 otherwise. Similarly, 𝜔𝑔𝑠𝑡

2 =

𝑈𝑔𝐷𝑔𝑞𝑔 − (1 − 𝑢𝑔𝑠𝑡)K + 𝑠𝑔𝑠𝑡 if 𝑢𝑔𝑠𝑡 is equal to 1 and 𝜔𝑔𝑠𝑡
2 = 0 otherwise. Indeed, if 𝑢𝑔𝑠𝑡 = 0, as 𝜔𝑔𝑠𝑡

2  is 

positive by definition and 𝑠𝑔𝑠𝑡 ≤ K − 𝑈𝑔𝐷𝑔𝑞𝑔, we necessarily have 𝑠𝑔𝑠𝑡 = K − 𝑈𝑔𝐷𝑔𝑞𝑔 so 𝜔𝑔𝑠𝑡
2  is null. On the 

contrary, if 𝑢𝑔𝑠𝑡 = 1, we must have 𝑠𝑔𝑠𝑡 = 0 as 𝑠𝑔𝑠𝑡 is positive. 
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3.1. Decorrelation procedure of the autocorrelated vector and 

motivation for using polynomials 

We start by defining the variance-covariance matrix of 𝜼𝑡 as 𝚺𝜂 ∈ ℝ
𝑛×𝑛. We define 𝚲 ∈

ℝ𝑛×𝑛 the matrix of its eigenvalues and 𝚽 ∈ ℝ𝑛×𝑛 the corresponding matrix of eigenvectors. 

Then, using the orthogonality of 𝚽, we have 𝚽𝑇 = 𝚽−1 so that: 

                                        𝚺𝜂𝚽 = 𝚽𝚲⟺ 𝚽𝑇𝚺𝜂𝚽 = 𝚽𝑇𝚽𝚲 = 𝚲 ∈ ℝ𝑛×𝑛                                  (𝟐𝟐) 

Our transformed random vector 𝝁𝑡 = 𝚽
𝑇𝜼𝑡 has the following diagonal variance-covariance 

matrix, noted 𝚺𝜇: 

                                                           𝚺𝜇 = 𝚽
𝑇𝚺𝜂𝚽 = 𝚲 ∈ ℝ𝑛×𝑛                                                     (𝟐𝟑) 

It is possible to show that for any lag value 𝑝 ∈ ℕ, the autocovariance matrix of 𝝁𝑡 of order 𝑝, 

noted 𝑲𝑝 = 𝔼(𝝁𝑡𝝁𝑡−𝑝) is diagonal. As 𝚺𝜇 is diagonal, we have by construction 

cov(𝜇𝑖𝑡, 𝜇𝑗𝑡) = 0, ∀(𝑖, 𝑗) ∈ [1, 𝑛]
2, 𝑖 ≠ 𝑗. We start by assuming that cov(𝜇𝑖𝑡, 𝜇𝑖,𝑡−𝑝) ≠ 0 and 

cov(𝜇𝑖𝑡, 𝜇𝑗,𝑡−𝑝) ≠ 0. Then, there exists a couple (𝜙𝑗𝑗,𝑝, 𝜙𝑖𝑗,𝑝) ∈ (ℝ
∗)2 such that: 

                                                           𝜇𝑗𝑡 = 𝜙𝑗𝑗,𝑝𝜇𝑗,𝑡−𝑝 + 휀𝑗,𝑡−𝑝                                                     (𝟐𝟒𝒂) 

                                                           𝜇𝑖𝑡 = 𝜙𝑖𝑗,𝑝𝜇𝑗,𝑡−𝑝 + 휀𝑖,𝑡−𝑝                                                      (𝟐𝟒𝒃) 

We can reformulate the above equations as follows: 

                           𝜇𝑖𝑡 = 𝜙𝑖𝑗,𝑝𝜙𝑗𝑗,𝑝
−1 (𝜇𝑗𝑡 − 휀𝑗,𝑡−𝑝) + 휀𝑖,𝑡−𝑝 = 𝜙𝑖𝑗,𝑝𝜙𝑗𝑗,𝑝

−1 𝜇𝑗𝑡 + 휀𝑖,𝑡−𝑝
′                      (𝟐𝟓) 

Where 휀𝑖,𝑡−𝑝
′ = 휀𝑖,𝑡−𝑝 − 𝜙𝑖𝑗,𝑝𝜙𝑗𝑗,𝑝

−1 휀𝑗,𝑡−𝑝. By assumption, 𝜙𝑖𝑗,𝑝𝜙𝑗𝑗,𝑝
−1 ≠ 0 so cov(𝜇𝑖𝑡, 𝜇𝑗𝑡) ≠ 0. 

We reach a contradiction, so cov(𝜇𝑖𝑡, 𝜇𝑗𝑡) = 0 ⟹ cov(𝜇𝑖𝑡, 𝜇𝑗,𝑡−𝑝) = 0. There exists a 

diagonal matrix 𝝓 = diag(𝜙𝑖𝑖)𝑖≤𝑛 ∈ ℝ
𝑛×𝑛 and a vector 𝝐𝑡−1 ∈ ℝ

𝑛×1 such that we have the 

following VAR(1) model: 

                                                                 𝝁𝑡 = 𝝓𝝁𝑡−1 + 𝝐𝑡                                                                 (𝟐𝟔) 

Using a similar VAR model, [10] build an adaptive uncertainty set where the random vector is 

equal to a linear combination of its previous values plus an error term, which is subjected to a 

budgeted uncertainty set.  
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As {𝜼𝑡}𝑡∈𝒯 is stationary by assumption, we further drop the subscript 𝑡. For all 𝑖 ≤ 𝑛, we 

define the real-valued random variables ∆𝜇𝑖 and 𝜇𝑖. We call the distribution of ∆𝜇𝑖 the 

“differential” distribution of 𝜇𝑖. We assume that their relationship is non-linear, which makes 

linear autoregressive models unfit as we would have 𝔼(𝜖𝑖𝑡𝜖𝑖𝑡′) ≠ 0 for 𝑡 ≠ 𝑡′. Non-linear 

autoregressive models using data mining algorithms such as ARMAX may provide superior 

forecasting performances, as shown in [13]. GARCH processes and non-linear ARMA-

GARCH models might also be used to capture dynamic changes in the mean and volatility of 

the process when the variance of the error term changes over time (see [14] for a 

comprehensive evaluation).  

We further assume the variance of ∆𝜇𝑖 is a (possibly non-linear) function of 𝜇𝑖. Although the 

above-cited methods may be used to simulate a collection of trajectories for 𝜇𝑖 and identify a 

subset of extreme trajectories, such an approach may be cumbersome in practice. We propose 

a different approach where we estimate the bounds within which the uncertain random 

variable 𝜇𝑖 can vary between successive periods. For any value of 𝑞 ∈ [0,1], we seek to 

compute for any 𝜇𝑖 the value 𝛽𝑞(𝜇𝑖) that verifies:  

                                                𝛽𝑞(𝜇𝑖) = inf
𝑧
 {𝑧 ∈ ℝ|𝐹∆𝜇𝑖|𝜇𝑖(𝑧) ≥ 𝑞}                                              (𝟐𝟕) 

𝐹∆𝜇𝑖|𝜇𝑖(𝑧) = ℙ(∆𝜇𝑖 ≤ 𝑧|𝜇𝑖) is the cumulative distribution function of the random variable 

∆𝜇𝑖|𝜇𝑖, corresponding to the distribution of ∆𝜇𝑖 conditional on 𝜇𝑖. Thus, assuming 𝜇𝑖 is 

continuous, we can define a set of application 𝜑𝑖
𝑞
, 0 ≤ 𝑞 ≤ 1, such that 𝜑𝑖

𝑞(𝜇𝑖) corresponds 

to the value of the 𝑞th quantile of ∆𝜇𝑖 conditional on 𝜇𝑖. Using polynomial regression, we can 

approximate the set of application 𝜑𝑖
𝑞
, 0 ≤ 𝑞 ≤ 1 such that the polynomial 𝑃𝑛𝑖

𝑞(𝜇𝑖) verifies: 

                                        𝑃𝑛𝑖
𝑞(𝜇𝑖) = arg min

𝑃∈ℝ
𝑛
𝑖
𝑞[𝜇𝑖]

 ‖𝑃 − 𝜑𝑖
𝑞(𝜇𝑖)‖∞,[inf𝜇𝑖,sup𝜇𝑖]                                  (𝟐𝟖) 

Then, there exists sets of real coefficients (𝔞𝑖𝑛
𝑞
)
𝑛≤𝑛𝑖

𝑞  such that: 

                                                                𝑃𝑛𝑖
𝑞(𝜇𝑖) = ∑𝔞𝑖𝑛

𝑞

𝑛𝑖
𝑞

𝑛=0

𝜇𝑖
𝑛                                                           (𝟐𝟗) 
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3.2. Estimation of the polynomial approximation for the distribution of 

∆𝝁𝒊 

We estimate the transformed random vector 𝝁𝑡 and the set of parameters (𝔞𝑖𝑛
𝑞 )

𝑛≤𝑛𝑖
𝑞  using a 

training sample 𝑆 of size 𝑁, such that 𝑆 = {(𝜼𝑚)1≤𝑚≤𝑁}. In order to mitigate the expected 

sampling error for extreme values of ∆𝜇𝑖 conditional on 𝜇𝑖, we cut the interval [inf 𝜇𝑖, sup 𝜇𝑖] 

into |ℬ𝑖| bins of equal length. For each bin 𝑏𝑖 ∈ {1, … , |ℬ𝑖|}, we note 𝑁𝑏𝑖 the number of 

observations included into the bin 𝑏𝑖, with ∑ 𝑁𝑏𝑖𝑏𝑖
= 𝑁. For any 𝑚 ∈ {1,… ,𝑁𝑏𝑖}, ∆𝜇𝑖𝑚

𝑏𝑖  

corresponds to the 𝑚th observation for the random variable ∆𝜇𝑖 within bin 𝑏𝑖. For any 𝑞 ∈

[0,1], we define the empirical 𝑞th quantile value ∆𝜇𝑖
(𝑏𝑖,𝑞) such that, with ∆𝜇𝑖1

𝑏𝑖 ≤ ⋯ ≤ ∆𝜇𝑖𝑚
𝑏𝑖 ≤

⋯ ≤ ∆𝜇𝑖𝑁𝑏𝑖
𝑏𝑖 : 

                            ∆𝜇𝑖
(𝑏𝑖,𝑞) = inf

∆𝜇𝑖

∆𝜇
𝑖1

𝑏𝑖≤∆𝜇𝑖≤∆𝜇𝑖𝑁𝑏𝑖

𝑏𝑖

{∆𝜇𝑖 ∶
1

𝑁𝑏𝑖
(∑ 𝟙{∆𝜇𝑖𝑚

𝑏𝑖 ≤ ∆𝜇𝑖}

𝑁𝑏𝑖

𝑚=1

) ≥ 𝑞}             (𝟑𝟎) 

By noting 𝜎∆𝜇𝑖
𝑞

 the empirical sampling error of the 𝑞th quantile of ∆𝜇𝑖 estimated from the 

training sample, the expected sampling error 𝜎
∆𝜇

𝑖

(𝑏𝑖,𝑞)
 of any quantile 𝑞, 0 ≤ 𝑞 ≤ 1, can be 

expressed as 𝜎
∆𝜇

𝑖

(𝑏𝑖,𝑞)
≅ 𝐾 (|𝑞 −

1

2
|) 𝜎∆𝜇𝑖

𝑞 𝑁𝑏𝑖
−
1

2, where 𝐾 (|𝑞 −
1

2
|) is a function6 satisfying 

𝐾(0) ≥ 1 and 𝐾′ (|𝑞 −
1

2
|) ≥ 0. Then, by noting 𝑀𝑏𝑖

 the median value of the bin 𝑏𝑖, we 

estimate the following systems of equations: 

                                                                      𝒀𝑞 = 𝑿𝑞𝑨𝑞 + 𝝐𝑞                                                           (𝟑𝟏) 

, where: 

𝒀𝑞 =

(

 
 

∆𝜇𝑖
(1,𝑞)

∆𝜇𝑖
(2,𝑞)

⋮

∆𝜇𝑖
(|ℬ𝑖|,𝑞)

)

 
 

, 𝑿𝑞 =

(

 
 
 
1 𝑀1 𝑀1

2 ⋯ 𝑀1
𝑛𝑖
𝑞

1 𝑀2 𝑀2
2 ⋯ 𝑀2

𝑛𝑖
𝑞

⋮ ⋮ ⋮ ⋱ ⋮

1 𝑀|ℬ𝑖|
𝑀|ℬ𝑖|
2 … 𝑀|ℬ𝑖|

𝑛𝑖
𝑞

)

 
 
 

, 𝑨𝑞 =

(

 
 

𝔞𝑖0
𝔞𝑖1
𝔞𝑖2
⋮

𝔞𝑖𝑛𝑖
𝑞
)

 
 

, 𝝐𝑞 =

(

 
 

𝜖0𝑞
𝜖1𝑞
𝜖2𝑞
⋮

𝜖|ℬ𝑖|𝑞)

 
 

 

 
6 These properties simply reflect that fact that the expected sampling error increases for quantiles distant from 

the median. 
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Yet, as the number of observations per bin 𝑏𝑖 is expected to be non-constant, the MCO 

assumption of constant variance of the error terms is violated. Assuming the 𝜖𝑏𝑖𝑞 are normally 

distributed, we introduce a diagonal weighting matrix 𝑾𝑞, with diagonal entry 𝜔𝑏𝑖,𝑏𝑖 =

(𝜎
∆𝜇

𝑖

(𝑏𝑖,𝑞)
2 )

−1

. The MCO estimators are then equal to:  

𝑨�̂� = (𝑿𝑞
𝑇𝑾𝑞𝑿𝑞)

−1
𝑿𝑞
𝑇𝑾𝑞𝒀𝑞 

The standard errors associated to each estimated coefficient 𝔞𝑖𝑛
�̂�

 are given by the following 

expression:  

                                       𝜎
𝔞𝑖𝑛
�̂� = √

𝒀𝑞𝑇𝒀𝑞 − �̂�𝑞𝑇𝑿𝑞𝑇𝑾𝑞𝑿𝑞𝑨�̂�

|ℬ𝑖| − 𝑛𝑖
𝑞 − 1

 × √(𝑿𝑞𝑇𝑾𝑞𝑿𝑞)𝑛+1
−1

                         (𝟑𝟐) 

(𝑿𝑞
𝑇𝑾𝑞𝑿𝑞)𝑛+1

−1
 is the 𝑛 + 1-th diagonal element of the matrix (𝑿𝑞

𝑇𝑾𝑞𝑿𝑞)
−1

. We observe that 

both expressions for standard error decrease with the number of bins |ℬ𝑖|. Simultaneously, 

increasing |ℬ𝑖| decreases the number of observations per bins, which mechanically increases 

𝜎
∆𝜇

𝑖

(𝑏𝑖,𝑞)
. If 𝜎

∆𝜇
𝑖

(𝑏𝑖,𝑞)
≈ 𝜎

∆𝜇
𝑖

(𝑏𝑖′,𝑞)
 for any couple (𝑏𝑖, 𝑏𝑖′) ∈ ℬ𝑖

2, then all weight coefficients in 

matrix 𝑾𝑞 decrease in similar proportions. Yet, if 𝜎
∆𝜇

𝑖

(𝑏𝑖,𝑞)
≠ 𝜎

∆𝜇
𝑖

(𝑏𝑖′,𝑞)
, bins with a large error 

will have a low weight in the estimation of the polynomial coefficients and the polynomial 

approximation may thus be poorly reliable for forecasting limiting variations of Δ𝜇𝑖 within 

these bins intervals. In order to maximize the reliability of our approximation polynomials for 

all bins intervals, we chose the number of bins |ℬ𝑖|
∗ which minimizes the variance of 𝑁ℬ𝑖. 

Assuming that the number of observations is higher around the mean value of Δ𝜇𝑖 (ie small 

variations occur more frequently than large ones), the number of observations is inversely 

proportional to the distance to the mean value Δ𝜇𝑖̅̅ ̅̅̅. Under this behavioral assumption, quantile 

estimates corresponding to extreme values of Δ𝜇𝑖 will be associated to a higher standard error. 

This feature will be captured by the prediction intervals of the estimated polynomial 𝑃𝑛𝑖
𝑞(𝜇𝑖)̂ . 

Indeed, using the propagation of uncertainty method, the standard error of 𝑃𝑛𝑖
𝑞(𝜇𝑖)̂  can be 

expressed as follows: 
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       𝜎𝑃
𝑛𝑖
𝑞(𝜇𝑖)̂ = √∑𝜎

𝔞𝑖𝑛
�̂�
2

𝑛
𝑖
𝑞

𝑛=0

𝜇𝑖
2𝑛 = √∑

𝒀𝑞𝑇𝒀𝑞 − �̂�𝑞𝑇𝑿𝑞𝑇𝑾𝑞𝑿𝑞𝑨�̂�

|ℬ𝑖|∗ − 𝑛𝑖
𝑞 − 1

× (𝑿𝑞𝑇𝑾𝑞𝑿𝑞)𝑛+1
−1

𝑛
𝑖
𝑞

𝑛=0

𝜇𝑖
2𝑛     (𝟑𝟑𝒂) 

Assuming normality of the coefficients estimators  𝑨�̂�, ie 𝑨�̂� ∼ 𝑁 (𝑨𝑞 , 𝜎∆𝜇𝑖
𝑞 (𝑿𝑞

𝑇𝑾𝑞𝑿𝑞)
−1
), 

we can compute exact confidence intervals and prediction intervals. We define 𝜎∆𝜇𝑖
𝑞

 the 

standard error associated to the estimation of the 𝑞th quantile of ∆𝜇𝑖. Considering the 

polynomial 𝑃𝑛𝑖
𝑞(𝜇𝑖)̂  as a linear combination, the variance of the predicted values 𝑃𝑛𝑖

𝑞(𝜇𝑖)̂  are 

given by: 

                              𝜎∆𝜇𝑖
𝑞 + 𝑿𝑇  

𝒀𝑞
𝑇𝒀𝑞 − �̂�𝑞

𝑇𝑿𝑞
𝑇𝑾𝑞𝑿𝑞𝑨�̂�

|ℬ𝑖|∗ − 𝑛𝑖
𝑞 − 1

× (𝑿𝑞
𝑇𝑾𝑞𝑿𝑞)

−1
𝑿                               (𝟑𝟑𝒃) 

We define 𝑿 = (1, 𝜇𝑖, 𝜇𝑖
2, … , 𝜇

𝑖

𝑛𝑖
𝑞

)
𝑇

∈ ℝ(𝑛𝑖
𝑞
+1)×1. The prediction interval for the value of the 

𝑞th quantile of ∆𝜇𝑖, conditional on 𝑿, can thus be expressed as: 

  𝒰𝑖(𝑞, 𝛼, |ℬ𝑖|
∗|𝑿) = [𝑨�̂�𝑿 ± 𝑡1−𝛼

2
;|ℬ𝑖|

∗−𝑛𝑖
𝑞 × √𝜎∆𝜇𝑖

𝑞
+ 𝑿𝑇  

𝒀𝑞
𝑇𝒀𝑞 − �̂�𝑞

𝑇𝑿𝑞
𝑇𝑾𝑞𝑿𝑞𝑨�̂�

|ℬ𝑖|
∗ − 𝑛𝑖

𝑞
− 1

× (𝑿𝑞
𝑇𝑾𝑞𝑿𝑞)

−1
𝑿]         (𝟑𝟒) 

𝑡1−𝛼
2
;|ℬ𝑖|

∗−𝑛𝑖
𝑞 is the upper critical value of a Student distribution with |ℬ𝑖|

∗ − 𝑛𝑖
𝑞
 degrees of 

liberty for quantile 1 −
𝛼

2
.  

The prediction interval is wider than the confidence interval as it accounts for the fluctuations 

of Δ𝜇𝑖. Our prediction intervals can be interpreted as follows: if we observe the variation of 

Δ𝜇𝑖 conditional on 𝜇𝑖 and repeat the experiment, the 𝑞th quantile of the distribution of 

variations will be included in the prediction interval 𝒰𝑖(𝑞, 𝛼, |ℬ𝑖|
∗|𝑿) in 1 − 𝛼% of the cases. 

Taking 𝛼 = 0.05, there is only a probability of 5% that ∆𝜇𝑖
𝑞 ∉ 𝒰𝑖(𝑞, 𝛼, |ℬ𝑖|

∗|𝑿). Assuming 

that the prediction error is normally distributed around the mean predicted value, it is 

straightforward to see that: 

                                           ℙ(∆𝜇𝑖 ≤ sup𝒰𝑖(𝑞, 𝛼, |ℬ𝑖|
∗|𝑿)) = 𝑞 −

𝛼

2
                                        (𝟑𝟓𝒂) 

                                      ℙ(∆𝜇𝑖 ≥ inf𝒰𝑖(1 − 𝑞, 𝛼, |ℬ𝑖|
∗|𝑿)) = 1 − 𝑞 +

𝛼

2
                               (𝟑𝟓𝒃) 

So we have: 
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              ℙ(∆𝜇𝑖 ∉ [inf𝒰𝑖(1 − 𝑞, 𝛼, |ℬ𝑖|
∗|𝑿) ; sup𝒰𝑖(𝑞, 𝛼, |ℬ𝑖|

∗|𝑿)]) = 2 − 2𝑞 + 𝛼          (𝟑𝟓𝒄) 

Finally, we can provide “worst-case” lower and upper bounds for 𝜑𝑖
𝑞
 using the following 

empirical approximation: 

𝜑𝑖
�̂�(𝛼, |ℬ𝑖|

∗|𝑿) = �̂�𝑞𝑿

+ (−1)𝟙{𝑞≥
1
2
}𝑡
1−
𝛼
2
;|ℬ𝑖|

∗−𝑛𝑖
𝑞 × √𝜎∆𝜇𝑖

𝑞
+ 𝑿𝑇  

𝒀𝑞
𝑇𝒀𝑞 − �̂�𝑞

𝑇𝑿𝑞
𝑇𝑾𝑞𝑿𝑞𝑨�̂�

|ℬ𝑖|
∗ − 𝑛𝑖

𝑞
− 1

× (𝑿𝑞
𝑇𝑾𝑞𝑿𝑞)

−1
𝑿     (𝟑𝟔𝒂) 

And: 

                                                         𝜑𝑖
0.5̂(𝛼, |ℬ𝑖|

∗|𝑿) = �̂�𝑞𝑿                                                          (𝟑𝟔𝒃) 

As this empirical approximation is computed for each season, we define 𝜑𝑖𝑠
�̂� (𝛼, |ℬ𝑖|

∗|𝑿) as the 

approximation function corresponding to season 𝑠 ∈ 𝒮 and further note the corresponding 

matrix of eigenvectors 𝚽𝑠. Our method actually mimics a polynomial quantile regression, as 

we model the conditional dependence of quantiles of the endogenous variable Δ𝜇𝑖. However, 

as the density of the dependent variable is expected to be higher around its mean value, 

conditional quantiles of Δ𝜇𝑖 associated to extreme values of 𝜇𝑖 are expected to be highly 

noisy. This would likely bias the conditional quantile regression estimator.  

Our binning strategy allows us to decrease the overall variance of the sample conditional 

quantiles of Δ𝜇𝑖. Then, using weights reduces the influence of bins with high conditional 

quantile variance on the estimator value. Finally, the larger prediction interval associated to a 

bin with lower weight accounts for its smaller contribution to the estimation of the polynomial 

and the higher probability of forecasting error for values included in the bin. Though 

parametric, our method allows us to account for differences in the density of observations, 

especially for extreme values, so we provide robust predictions of the conditional interval 

within which our unknown parameter can vary. 
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3.3. Dynamic robust reformulation of the optimization model 

As there may exist no single set of dispatching decisions which simultaneously verify thermal 

constraints for all worst-case trajectories, we introduce superscripts L, H and V which 

respectively index dispatching variables associated to the lower, upper and most volatile 

conditional trajectories of residual demand. Applying the above results, the optimization 

model becomes: 

min
𝑼,𝒒,𝜿,𝒛

∑(𝐴𝑗 + 𝑐𝑗
𝐹𝑂𝑀)𝑈𝑗

𝑗>1

+∑(𝐴𝑔 + 𝑐𝑔
𝐹𝑂𝑀)𝑈𝑔

𝑔

+ (𝐴𝑒 + 𝑐𝑒
𝐹𝑂𝑀)𝑈𝑒

+
Θ

𝑁𝑅
(∑∑(∑(𝑐𝑔 + 𝜋

𝐶𝑂2𝐸𝑔)(𝑞𝑔𝑠𝑡
𝐻 + 𝑞𝑔𝑠𝑡

𝐿 + 𝑞𝑔𝑠𝑡
𝑉 ) + 𝑐𝑔

𝑆𝑇𝑈𝑃(𝑧𝑔𝑠𝑡
𝐻 + 𝑧𝑔𝑠𝑡

𝐿 + 𝑧𝑔𝑠𝑡
𝑉 )

𝑔𝑡∈𝒯𝑠∈𝒮

+∑𝑐𝑗
𝜅(𝜅𝑗𝑠𝑡

𝐻 + 𝜅𝑗𝑠𝑡
𝐿 + 𝜅𝑗𝑠𝑡

𝑉 )

𝑗

))                                                                                                        (𝟑𝟕) 

such that (4a)-(21) hold for each subset of dispatching decision variables and : 

𝜉1̅𝑠𝑡 + 𝜉1̂𝜋1𝑠𝑡
+ − 𝜅1𝑠𝑡

𝐻 −∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
+ )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝐻 )

𝑗>1

−∑𝑞𝑔𝑠𝑡
𝐻

𝑔

+ ∆𝑒𝑠𝑡
+𝐻 − 𝑒𝑠𝑡

−𝐻 ≤ 𝛾                                 (𝟑𝟖𝒂) 

−𝜉1̅𝑠𝑡 − 𝜉1̂𝜋1𝑠𝑡
+ + 𝜅1𝑠𝑡

𝐻 +∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
+ )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝐻 )

𝑗>1

+∑𝑞𝑔𝑠𝑡
𝐻

𝑔

− ∆𝑒𝑠𝑡
+𝐻 + 𝑒𝑠𝑡

−𝐻 ≤ 𝛾                              (𝟑𝟖𝒃) 

𝜉1̅𝑠𝑡 + 𝜉1̂𝜋1𝑠𝑡
− − 𝜅1𝑠𝑡

𝐿 −∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
− )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝐿 )

𝑗>1

−∑𝑞𝑔𝑠𝑡
𝐿

𝑔

+ ∆𝑒𝑠𝑡
+𝐿 − 𝑒𝑠𝑡

−𝐿 ≤ 𝛾                                  (𝟑𝟗𝒂) 

−𝜉1̅𝑠𝑡 − 𝜉1̂𝜋1𝑠𝑡
− + 𝜅1𝑠𝑡

𝐿 +∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
− )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝐿 )

𝑗>1

+∑𝑞𝑔𝑠𝑡
𝐿

𝑔

− ∆𝑒𝑠𝑡
+𝐿 + 𝑒𝑠𝑡

−𝐿 ≤ 𝛾                               (𝟑𝟗𝒃) 

𝜉1̅𝑠𝑡 + 𝜉1̂𝜋1𝑠𝑡
𝑉 − 𝜅1𝑠𝑡

𝑉 −∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
𝑉 )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝐿 )

𝑗>1

−∑𝑞𝑔𝑠𝑡
𝑉

𝑔

+ ∆𝑒𝑠𝑡
+𝑉 − 𝑒𝑠𝑡

−𝑉 ≤ 𝛾                                  (𝟒𝟎𝒂) 

−𝜉1̅𝑠𝑡 − 𝜉1̂𝜋1𝑠𝑡
𝑉 + 𝜅1𝑠𝑡

𝑉 +∑((𝜉�̅�𝑠𝑡 + 𝜉𝑗𝑠�̂�𝜋𝑗𝑠𝑡
𝑉 )𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝑉 )

𝑗>1

+∑𝑞𝑔𝑠𝑡
𝑉

𝑔

− ∆𝑒𝑠𝑡
+𝑉 + 𝑒𝑠𝑡

−𝑉 ≤ 𝛾                              (𝟒𝟎𝒃) 

𝝅𝑠𝑡
+ = 𝝅𝑠𝑡−1

+ +𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

+ )                                                                                                                  (𝟒𝟏𝒂) 

𝝅𝑠𝑡
− = 𝝅𝑠𝑡−1

− +𝚽𝑠
−𝑇𝝋1−�̂�

𝑠
(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
− )                                                                                                             (𝟒𝟏𝒃) 

𝝅𝑠𝑡
𝑉 = 𝝅𝑠𝑡−1

𝑉 + (𝟏(𝑛×1) −𝒘𝑠𝑡) ∘ (𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) + 𝒘𝑠𝑡 ∘ (𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 ))    (𝟒𝟏𝒄) 
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−∆�̅�𝑠𝑡 ∘ 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

𝑞
 ̂ (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼

≤ ∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼 +𝑴 ∘ (𝟏(𝑛×1) −𝒘𝑠𝑡)                 (𝟒𝟐𝒂) 

−∆�̅�𝑠𝑡 ∘ 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼

≥ ∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼 −𝑴 ∘ 𝒘𝑠𝑡                                       (𝟒𝟐𝒃) 

𝒘𝑠𝑡 ∈ [0 ; 1]
(𝑛×1)                                                                                                                                                                  (𝟒𝟑) 

𝚽𝑠
𝑇 ∘ 𝝅0

+ ≥ 𝚿+                                                                                                                                                                   (𝟒𝟒𝒂) 

𝚽𝑠
𝑇 ∘ 𝝅0

− ≤ 𝚿−                                                                                                                                                                   (𝟒𝟒𝒃) 

𝚽𝑠
𝑇 ∘ 𝝅0

𝑉 = 𝚿𝑉                                                                                                                                                                    (𝟒𝟒𝒄) 

As three different worst-case scenarios, or “trajectories”, are simultaneously considered in the 

cost function, we divide the variable costs by 𝑁𝑅 = 3  and multiply them by the scaling factor 

Θ in (37), so the variable part of the expression corresponds to the average yearly variable 

cost.  

(41a) and (41b) model the dynamics of the uncertain positive and negative projected vectors 

𝝅𝑠𝑡
+  and 𝝅𝑠𝑡

− , where 𝝅𝑠𝑡
+ − 𝝅𝑠𝑡−1

+  corresponds to the maximum positive variation conditional 

on 𝝅𝑠𝑡−1
+  with probability inferior or equal to 𝑞 −

𝛼

2
. This means that, for each time period, 

there is a probability inferior to 1 − 𝑞 +
𝛼

2
 that the observed variations of the uncertain 

parameters are larger than 𝝅𝑠𝑡
+ − 𝝅𝑠𝑡−1

+ . The same reasoning applies to the largest negative 

variation of the uncertain parameters. (41C) is a weighted sum of the maximum and minimum 

variations possible given the couple (𝑞, 𝛼), where 𝑤𝑖𝑠𝑡 = 1 if 𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ) is 

superior or equal to the absolute value of 𝝋𝑠
1−�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ). Thus, our model chooses 

the direction of the variation such that for each parameter, the total absolute variation of its 

nominal and uncertain parts is maximized. By noting that, for any pair (𝑎, 𝑏) ∈ ℝ2, 𝑎 ≥

|𝑏| ⟺ −𝑎 ≤ 𝑏 ≤ 𝑎, we have the following term by term system of inequalities: 

∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

+ )) ∘ 𝑼

≥ |∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

− )) ∘ 𝑼|                                                  (𝟒𝟓) 

⟺ {
−∆�̅�

𝑠𝑡
∘ 𝑼 − (𝝃

𝑠𝑡
̂ ∘ 𝚽𝑠

−𝑇𝝋
𝑠
𝑞 ̂ (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼 ≤ ∆�̅�

𝑠𝑡
∘ 𝑼 + (𝝃

𝑠𝑡
̂ ∘ 𝚽𝑠

−𝑇𝝋
𝑠
1−�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼

∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠𝑡
̂ ∘ 𝚽𝑠

−𝑇𝝋𝑠
�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼 ≥ ∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠𝑡

̂ ∘ 𝚽𝑠
−𝑇𝝋𝑠

1−�̂� (𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼   
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The operator ∘ corresponds to the Hadamard product. We note ∆�̅�𝑠𝑡 = �̅�𝑠𝑡 − �̅�𝑠𝑡−1. By 

definition, we have 𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ) ≥ 𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 ) so we are only 

interested in the first inequality. Then, by defining the vector 𝒘𝑠𝑡 ∈ [0 ; 1]
(𝑛×1), the latter can 

be reformulated as the following equivalent system of constrains, corresponding to (42a-42b): 

{
−∆�̅�𝑠𝑡 ∘ 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
𝑞 ̂ (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼 ≤ ∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
1−�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )) ∘ 𝑼 +𝑴 ∘ (𝟏(𝑛×1) −𝒘𝑠𝑡)  

−∆�̅�𝑠𝑡 ∘ 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

𝑞 ̂ (𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼 ≥ ∆�̅�𝑠𝑡 ∘ 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

1−�̂� (𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) ∘ 𝑼 −𝑴 ∘ 𝒘𝑠𝑡                         
 

We use the “big-M” method where 𝑴 ∈ ℝ𝑛×1 and 𝑴 ≫ 𝟎𝑛×1. Finally, equations (44a)-(44c) 

control the initial values of the uncertain vectors 𝝅0
+, 𝝅0

− and 𝝅0
𝑉, where 𝚿+, 𝚿− and 𝚿𝑽 are 

adjustable positive vectors included in ℝ𝑛×1. As 𝚽𝑠
𝑇 is a matrix of parameters, we may 

equivalently formulate a set of constraints controlling the initial values taken by the projected 

parameters. 

Under this model formulation, we can derive for each point of time the value of the uncertain 

vector that maximizes residual demand, conditional on its previous value. Similarly, we 

compute the trajectory of the uncertain vector than minimize residual demand values, and the 

trajectory which maximizes its variations in absolute terms. As each possible value for 

variation can be associated to a positive probability, it is possible to compute the joint 

probability of any trajectory of the uncertain vector. We may further introduce a probabilistic 

threshold so that we restrict ourselves to the worst-case residual demand trajectories which 

satisfy it. We propose in Appendix a linear programming approach in order to derive the 

worst-case set of trajectories with a minimum probability of occurrence superior or equal to a 

given threshold. The variability-maximizing trajectory of uncertain parameters is computed 

using a quadratic formulation, which can easily be reformulated into an equivalent linear 

form. 

However, the above model formulation maximizes the variability of the uncertain parameters 

separately. There is no theoretical guarantee that it simultaneously maximizes the total 

variability of residual demand. Yet, by noticing that ∀𝑖 ≤ 𝑛, 𝜑𝑖𝑠
�̂� (𝛼, |𝓑|∗|𝑿𝑡) ≥

𝜑𝑖𝑠
1−�̂�(𝛼, |𝓑|∗|𝑿𝑡), we can deduce that 𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇 𝝅𝑠𝑡

𝑉 )𝑇𝑼 corresponds to the largest 

positive variation of residual demand in 𝑡. Similarly, 𝝋𝑠
1−𝑞 ̂ (𝛼, |𝓑|∗|𝚽𝑠

𝑇 𝝅𝑠𝑡
𝑉 )𝑇𝑼 yields the 

largest negative variation of residual demand. Thus, it bowls down to only comparing the 

absolute values of two terms. Again, as we are interested in the total absolute variation of the 
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residual demand, we must account for its average variation. As previously, we can 

reformulate the resulting inequality in order to evacuate the absolute term: 

|∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇 𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼| ≥ |∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
1−𝑞

 ̂ (𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 ))
𝑇

𝑼|    (𝟒𝟔) 

⟺ {
−∆�̅�𝑠𝑡

𝑇 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 ))
𝑇

𝑼 ≤ ∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
1−�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼   

∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑡−1
𝑉 ))

𝑇

𝑼 ≥ ∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
1−�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼      

                       

By introducing the binary variable 𝑤𝑠𝑡, we have 𝑤𝑠𝑡 = 1 when (46) holds true with: 

{
 

 −∆�̅�𝑠𝑡
𝑇 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼 ≤ ∆�̅�𝑠𝑡
𝑇 𝑼+ (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
1−�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼+𝑀(1 − 𝑤𝑠𝑡)                    

−∆�̅�𝑠𝑡
𝑇 𝑼− (𝝃�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼 ≥ ∆�̅�𝑠𝑡
𝑇 𝑼+ (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋
𝑠
1−�̂� (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼−𝑀𝑤𝑠𝑡                                 

 

Thus, we can replace equations (40a),(40b), (40c) and (41c)-(43) by the following subset of 

constraints:  

𝜉1̅𝑠𝑡 − 𝜅1𝑠𝑡
𝑉 −∑(𝜉�̅�𝑠𝑡𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝑉 )

𝑗>1

+ 𝜗𝑠𝑡 −∑𝑞𝑔𝑠𝑡
𝑉

𝑔

+ ∆𝑒𝑠𝑡
𝑉 ≤ 𝛾                                                                                (𝟒𝟕𝒂) 

−𝜉1̅𝑠𝑡 + 𝜅1𝑠𝑡
𝑉 +∑(𝜉�̅�𝑠𝑡𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝑉 )

𝑗>1

− 𝜗𝑠𝑡 +∑𝑞𝑔𝑠𝑡
𝑉

𝑔

− ∆𝑒𝑠𝑡
𝑉 ≤ 𝛾                                                                            (𝟒𝟕𝒃) 

𝜗𝑠𝑡 = (1 − 𝜔𝑠𝑡) (𝝃𝑠�̂� ∘ (𝚽𝑠
−𝑇𝝋𝑠

𝑞
 ̂ (𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 )))

𝑇

𝑼

+ 𝜔𝑠𝑡 (𝝃𝑠�̂� ∘ (𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )))

𝑇

𝑼                                                                        (𝟒𝟖) 

𝝅𝑠𝑡
𝑉 = 𝝅𝑠𝑡−1

𝑉 + (𝟏(𝑛×1) −𝝎𝑠𝑡) ∘ (𝚽𝑠
−𝑇𝝋𝑠

�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 )) + 𝝎𝑠𝑡

∘ (𝚽𝑠
−𝑇𝝋𝑠

1−�̂�(𝛼, |𝓑|∗|𝚽𝑠
𝑇𝝅𝑠𝑡−1

𝑉 ))                                                                                                     (𝟒𝟗) 

−∆�̅�𝑠𝑡
𝑇 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼

≤ ∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
1−�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼 +𝑀(1 − 𝑤𝑠𝑡)                                    (𝟓𝟎𝒂) 

−∆�̅�𝑠𝑡
𝑇 𝑼 − (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼

≥ ∆�̅�𝑠𝑡
𝑇 𝑼 + (𝝃𝑠�̂� ∘ 𝚽𝑠

−𝑇𝝋𝑠
1−�̂�(𝛼, |𝓑|∗|𝚽𝑠

𝑇𝝅𝑠𝑡−1
𝑉 ))

𝑇

𝑼 −𝑀𝑤𝑠𝑡                                                 (𝟓𝟎𝒃) 

𝑤𝑠𝑡 ∈ [0; 1]                                                                                                                                                                             (𝟓𝟏) 
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This formulation however raises some issues regarding the modeling of load-shedding and 

curtailment. As residual demand is now modelled at the aggregate level, the maximum 

volumes of generation and load that can be curtailed for each component of residual demand 

cannot be computed directly anymore. Indeed, residual demand can be interpreted as a 

multilinear function, which is unlikely to be bijective. We leave this issue open for further 

research. 

 

4. Application to the case of Auvergne-Rhône-Alpes 

4.1. Estimation of the model parameters 

In the following section, we apply the above model to the case of the French region Auvergne 

Rhône-Alpes. This administrative region is located in the South-East of France and enjoys 

strong solar irradiation compared to the national average. It is the first French region in terms 

of electricity generation. In addition, it accounts for roughly 11.6% of French GDP, while its 

mean share of national electricity load equals to 13.8%. 

We assume no initial generation capacities in order to better disentangle the impact of each 

worst-case trajectories on investment decisions. For convenience, we further assume that no 

investment occurs in hydroelectric production. Moreover, we constrain the variable for 

capacity investment to take only discrete values for nuclear, gas turbines (GT) and combined 

cycle gas turbine plants (CCG), and continuous values for other production and storage 

technologies. Nuclear investment is performed by blocks of 1.6 GW, corresponding to the 

rated power of the EPR Flamanville plant (the most recent nuclear power project in France), 

while CCG investments are made by blocs of 0.45 GW, which is equal to the average nominal 

power of General Electric’s 9HA.01/.02 gas turbine. Finally, GT investments are performed 

by blocks of 0.3 GW. Flexibility and cost assumptions for generation units can be found in 

Table 1.A and Table 1.B. in Appendix. We set the price of CO2 to 50 €/t. We use a discount 

factor of 5% for the computation of annuities corresponding to investment costs. Finally, 

following the CRE (CRE, 2018)7, we choose a VOLL equal to 13 000 €/MWh. 

 
7 Public consultation from the French Energy Regulatory Commission (CRE), Public consultation No. 2018-015 

of 20 December 2018 on the investment request relating to the Celtic project, including a cross-border cost 

allocation  
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When considering the technical characteristics of generation technologies presented in Table 

1.A., one actually notices that ramping rates are high enough for each online generation unit 

to very its output entirely between its minimum and maximum generation level within an 

hour. Indeed, as the model is defined with an hourly time resolution, nuclear plants may vary 

their production by up to 100% of their rated power between successive time periods. Thus, 

ramping constraints are actually not binding. 

Using RTE database on the electricity consumption, solar and wind power generation on the 

period 2013-20188, we start by normalizing each variable by subtracting its mean and 

dividing by its normal deviation, both defined at the hourly level. The normalized variables 

can be interpreted as the number of standard deviations by which the original variable 

deviates from its mean. Then, we use the eigenvector matrix of the variance-covariance 

matrix of residual demand components in order to obtain a set of three decorrelated variables. 

 

4.1.1. Performance analysis of the polynomial approximation  

The illustrations provided in the subsection are restricted to the case of Winter only, as it 

exhibits the highest values of residual demand. However, we apply our methodology for all 

seasons. We thus have to compute a total of 12 “worst-case” trajectories, i.e. 3 trajectories for 

each season. 

Using this new set of projected variables, we estimate the optimal number of bins for each 

residual demand component. Figures 1.A., 1.B. and 1.C. plot the number of bins against the 

variance of the number of observations per bins for electricity demand, photovoltaic and wind 

power data respectively. In all three figures, the variance of the number of observations per 

bin is a strictly decreasing function of the number of bins. Unsurprisingly, as we define bins 

of equal length, the average number of observations per bins decreases. Yet, we can notice 

from Figure 1.A.  that the variance of 𝑁𝑏𝑖 for demand exhibits a steeper decrease that in the 

case of photovoltaic and wind power.  

 
8 Consumption and generation data was not available for years beyond 2018. 
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Figure 1.A.: Variance of the number of per bin observations against the number of bins 

(Demand) 

 

Recalling the inverse relationship between the number of bins and the standard deviation of 

our polynomial regression estimators, we chose a number of bins such that increasing it by 

one unit would not significantly decrease the variance of 𝑁𝑏𝑖. This ensures that increasing the 

number of bins would most likely increase the standard error of our estimators without 

improving the average accuracy of the empirical quantile estimate within each bin. Setting 

|𝒥| = 3 with 𝑖 = 1 for electricity load, 𝑖 = 2 for photovoltaic power and 𝑖 = 3 for wind 

power, we chose |ℬ1| = 60 and |ℬ2| = |ℬ3| = 50. 
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Figure 1.B.: Variance of the number of per bin observations against the number of bins 

(Photovoltaic) 

 

Figure 1.C.: Variance of the number of per bin observations against the number of bins 

(Wind power) 
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Then, for each 𝑖 ∈ 𝒥 and 𝑏𝑖 ∈ ℬ𝑖, we estimate the empirical 𝑞th quantile of Δ𝜇𝑖, in addition to 

its standard error and the empirical median value of 𝜇𝑖, for 𝑞 = 0.95. Then, we estimate the 

equations (25a) and (25b), setting 𝑛𝑖
∗ between 3 and 4 for all residual demand components. 

We finally compute the prediction interval associated to each set of estimators resulting from 

our polynomial regressions, setting 𝛼 = 0.05. Figures 2.A., 2.B. and 2.C. respectively plot 

the polynomial fit corresponding to the 𝑞th and 1 − 𝑞th quantiles, with prediction interval, for 

demand, photovoltaic and wind capacity factors. 

Figure 2.A. shows a mean-reversing tendency for strongly negative values of the projected 

uncertain deviation of demand. This tendency is robust as the prediction intervals of both 

polynomial fitting curves are strictly positive. On the contrary, the convergence of the 

polynomial fitting curves for the 𝑞th and 1 − 𝑞th quantiles for high positive values indicates 

the possibility of a sustained regime of high demand, as there is a probability superior or equal 

to 𝑞 that Δ𝜇1 is positive for 𝜇1 around 3.  

  

 

Figure 2.A.: Upper and lower quantile polynomial approximation for electricity demand 

Note: The blue dots correspond to the empirical 𝑞th quantile (left figure) and 1 − 𝑞th quantile (right 

figure) associated to the median empirical value of each bin. It can be read as follows: for a projected 

uncertain deviation of demand equal to 0, Δ𝜇1 ∈ [−0.35,0.5] approximately with a probability 2𝑞 −

1 − 𝛼.  
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Similar observations can be made for Figures 2.B. and 2.C.. A mean-reversing behavior can 

be observed for extremely low levels of photovoltaic load factor, yet no straightforward 

conclusions can be drawn regarding the sign of Δ𝜇2 when 𝜇2 increases. This tendency is 

against robust as both prediction intervals are positive for extreme negative values of 𝜇2. 

Wind capacity factor exhibits a slightly different behavior. While the prediction intervals are 

both strictly positive for extreme left-tail values, the probability of observing a sustained 

regime of extremely high wind capacity factor, corresponding to the right tail of 𝜇3, is quasi 

null. Indeed, the values in both prediction intervals are mostly negative for 𝜇3 superior or 

equal to 2.5, which implies Δ𝜇3 must be decreasing. This suggests extreme values of wind 

capacity factor may only occur as temporary spikes and not as a stable state.  

  

 

Figure 2.B.: Upper and lower quantile polynomial approximation for photovoltaic capacity 

factor  

 

It may finally be noticed that our prediction intervals behave as expected: their width 

generally increases with the distance with respect to the median projected uncertain deviation, 

which translates the higher sampling error for extreme bins as they contain on average less 

observations than bins closer to the median. Moreover, the average width of prediction 

intervals decreases when estimating polynomial approximations of variations for more 

intermediate values of 𝑞. Figures 3.A., 3.B. and 3.C. in Appendix respectively plot the 

polynomial fit corresponding to the 𝑞th and 1 − 𝑞th quantiles for demand, photovoltaic and 

wind capacity factors, with 𝑞 = 0.75. For all residual demand components, we observe a net 

decrease in the width of the prediction interval in the neighborhood of extreme values. 
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Finally, the fact that almost all empirical quantile values are included into prediction intervals 

is an indicator of good performance. 

  

 

Figure 2.C.: Upper and lower quantile polynomial approximation for wind capacity factor 

 

4.1.2. Dynamics and convergence regimes of worst-case residual demand 

trajectories 

We now turn to the study of the dynamics of equations (36a) and (36b). As polynomial 

regression provides a smooth approximation curve of Δ𝜇𝑖 that cancels for some values, we 

can expect 𝝅𝑡
+ and 𝝅𝑡

− to converge to steady-states.  

Figures 4.A., 4.B. and 4.C. respectively plot the trajectories, or sequences, generated by (36a) 

and (36b), for various starting values for projected demand, photovoltaic and wind capacity 

factors. We set 𝑞 = 0.95.9 We first note that for all projected variables, the trajectories 

converge to a unique trajectory whatever the starting value.  

 
9 The software R does not allow us to predict future values of 𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑇𝝅𝑡−1

𝑉 ) for other values than those 

included in the training sample. In order to circumvent this issue, we observe that ∃𝜆 ∈ [0,1], 𝜋𝑖
+ = 𝜆𝑀

𝜋𝑖
+
+ +

(1 − 𝜆)𝑀
𝜋𝑖
+
− , where 𝑀

𝜋𝑖
+
+  and 𝑀

𝜋𝑖
+
−  are the nearest bin median values such that 𝑀

𝜋𝑖
+
− ≤ 𝜋𝑖

+ ≤ 𝑀
𝜋𝑖
+
+ . We impose 

𝜆 = 1 if 𝜋𝑖
+ > sup𝑀𝑏𝑖

 and 𝜆 = 0 if 𝜋𝑖
+ < inf𝑀𝑏𝑖

. Then, by linearity of the prediction interval, we have 

𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑇𝝅𝑡−1
𝑉 ) = 𝜆𝝋�̂� (𝛼, |𝓑|∗|𝚽𝑇𝑀

𝜋𝑖
+
+ ) + (1 − 𝜆)𝝋�̂� (𝛼, |𝓑|∗|𝚽𝑇𝑀

𝜋𝑖
+
− ). We apply the same 

approximation method for 𝝋1−�̂�(𝛼, |𝓑|∗|𝚽𝑇𝝅𝑡−1
𝑉 ). 
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Figure 4.A.: 𝑞 worst-case convergence patterns for 𝜋1𝑡
+  and 𝜋1𝑡

−  

Note: The left figure (resp. right figure) corresponds to the demand-maximizing (resp. demand minimizing) 

trajectory when Δ𝜇1 is equal to the value of the 𝑞th  (resp. 1 − 𝑞th) empirical quantile of its conditional 

distribution. 

 

We observe from Figures 4.A. and 4.B. that for any starting value, the projected uncertain 

deviation converges towards an upper and lower trajectory respectively within less than 20 

hours. Interestingly, the sequence of projected deviations generated by equation (36b) starting 

from extremely low values monotonically increases, while higher starting values generate 

non-increasing sequences. This implies that, in our framework, there exist no stable 

trajectories such that the projected demand and solar capacity factor parameters remain at 

their minimum observable level. 

  

Figure 4.B.: 𝑞 worst-case convergence patterns for 𝜋2𝑡
+  and 𝜋2𝑡

−  
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Wind capacity factor exhibits a slightly different behavior. We observe from Figure 4.C. that 

(36a) generates decreasing sequences for the highest starting values, while (37b) generates 

cyclical sequences for any initial value. This implies that the lowest trajectory of the wind 

capacity factor exhibits a reversive behavior and cannot take its most extreme values for 

successive periods. This can translate the “spiking” behavior of wind generation. Overall, our 

approach is thus likely to generate less conservative solutions than a static robust 

methodology.  

  

Figure 4.C.: 𝑞 worst-case convergence patterns for 𝜋3𝑡
+  and 𝜋3𝑡

−  

 

The same convergence analysis can be carried out for equation (36c). Figures 5.A., 5.B. and 

5.C. respectively plot the trajectories generated by (36c) for various starting values for 

projected demand, photovoltaic and wind capacity factors respectively. When letting the value 

of the projected deviation vary such that we maximize its absolute variations between 

successive time periods, we observe the convergence towards “oscillatory regimes” for wind 

and solar units. We note the emergence of stable trajectories for which the projected deviation 

displays a cyclic pattern and its moving average tends towards a constant value. Quite 

strikingly, all sequences rapidly converge towards oscillatory regimes within a small number 

of steps and for any starting value. 

On the contrary, the projected deviation for demand exhibits a chaotic behavior overall, with 

cyclical sequences for a subset of starting values only. 
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Figure 5.A.: 𝑞 worst-case convergence patterns for 𝜋1𝑡
𝑉  

 

Yet, recalling that for each time step, our algorithm selects the maximum absolute variation 

possible, conditional on the value of the deviation from the mean for each parameter, there is 

no guarantee that the sequences generated by such chaotic or oscillatory regimes actually 

correspond to the theoretical trajectories maximizing variability within all possible 

trajectories. 

The same calculations are carried for all four seasons, keeping constant the chosen values for 

parameters 𝑞 and |ℬ𝑖|
∗. 
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Figure 5.B.: 𝑞 worst-case convergence patterns for 𝜋2𝑡
𝑉  

 

Figure 5.C.: 𝑞 worst-case convergence patterns for 𝜋3𝑡
𝑉  
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4.2. Baseline simulation results 

We compare the investment levels and cost performance of the optimal mix obtained when 

hedging against a variety of extreme trajectories. We respectively note L, H and V the 

trajectories for which residual demand takes its lowest, highest and most volatile values. 

When hedging only against H or against the couple of trajectories L and H, we set 𝑁𝑅 

respectively equal to 1 and 2. Hedging against L,H and V consists in simultaneously hedging 

against all types of worst-case trajectories, with 𝑁𝑅 = 3. We respectively refer to these three 

different hedging strategies as investment scenarios 𝐼1, 𝐼2 and 𝐼3. As the variability of residual 

demand variability increases with renewable capacities, we may reasonably assumed that 

without any constraints on renewable capacity, it may be less costly to minimize investment 

in renewable capacity, so that additional costs required for enhancing system flexibility are 

avoided. In order to clearly observe the effects of renewable penetration on investment levels 

and cost performance, we constraint the wind and photovoltaic capacities to be equal to 𝑺 

GWe, where 𝑺 ∈ {0; 2; 4; 6}. 

  

Figure 6: Extreme residual demand trajectories for Winter (left) and Summer (right), 𝑞 =

0.95 

Note: The red, green and blue plain curve corresponds to trajectory H, L and V for 𝑺 = 6. The dotted lines 

correspond to residual demand trajectories for 𝑺 = 2. 

 

As illustrated in Figure 6, our method provides an interval for the set of values within which 

residual demand can fluctuate. As there exists a unique trajectory maximizing variability for 

each initial residual demand value, we compute the corresponding trajectory for different 

initial values and select the one with the maximum variability. In an extreme fashion, the 
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difference between the green dotted and plain lines strikingly shows how increasing 

renewable capacities reshapes the residual demand curve and increases the depth of the “duck 

dive” [15], which describes the timing imbalance between peak load in the evening and the 

solar generation peak in the afternoon. The difference between successive peaks and valleys 

on the green plain curve translates into a ramp need of approximately 10 GW within a few 

hours, for both seasons. This indicates an adequate generation mix under high renewable 

penetration requires production units with high ramping capacities and low minimum 

production levels, associated with an active management of renewable output, including 

energy storage, curtailment, and demand response. Finally, the rapid oscillations of the blue 

curves, which reflect residual demand short term variability, make visible the need for 

generation units with both moderate to high ramping capacities and low minimum uptime and 

downtime. 

The optimal investment levels corresponding to a robustness level of 𝑞 = 0.95 are reported in 

Table 2.A. First, the nuclear capacity is superior when hedging against trajectory H only 

(scenario 𝐼1), while the investment in storage capacity is generally significantly lower 

compared to scenarios 𝐼2 and 𝐼3. Second, the optimal nuclear capacity decreases with 

renewable penetration, while the sum of CCGT and GT capacities increase in almost all 

scenarios. This confirms a higher renewable penetration requires higher generation flexibility 

from conventional plants, which translates into higher investment in peaking units with low 

minimum generation level and high ramping rates. 
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𝒒 = 𝟎. 𝟗𝟓 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 2.7 12.15 9.45 2.7 12.15 10.8 

Gas turbine 0 0 2.7 0 0.9 0 

Nuclear 19.2 9.6 9.6 19.2 9.6 12.8 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 3663.06 8472.327 8454.993 3541.751 3392.070 6388.972 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 6.75 14.85 10.8 5.4 12.15 12.15 

Gas turbine 0 0.9 1.8 0 1.8 0.9 

Nuclear 16 6.4 9.6 16 9.6 9.6 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 2890.556 5030.130 9575.962 7302.519 3534.021 6928.550 

 

Table 2.A.: Optimal investment level by technology for various levels of renewables capacity 

(in GWe) 

Note: For any level of 𝑺, the investment levels corresponding to column 𝐼1 (resp. 𝐼2) are obtained when hedging 

against the highest residual demand trajectory (resp. when hedging both against the lowest and highest residual 

demand trajectories).  

 

Finally, no clear pattern regarding the complementarity or substitutability of storage and 

peaking units can be identified. While CCGT and storage capacities move in opposite 

directions in 𝐼1, a weak positive correlation may be observed for 𝐼2 and 𝐼3 when 𝑺 ≥ 2 GWe. 

This complementarity is explained by the fact that, while higher capacities in battery storage 

allow the smoothing of highly variable renewable production, thermal peaking technologies 

remain necessary as the capacity factors of wind and solar units are quasi null in H. This 

pattern of substitutability and complementarity of peaking units and storage, conditional on 

residual demand trajectories, generates a non-linear relationship between the level of 

renewable penetration and the required level of peaking capacities. 
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𝒒 = 𝟎. 𝟗𝟓 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 75.48 47.07 46.11 

Average unit cost (week H, €/MWh) 9.907 8.282 8.282 12.01 35.33 27.74 33.51 36.56 38.20 27.73 33.54 43.72 

Average unit cost (week L, €/MWh) 8.359 8.361 9.916 8.303 12.14 8.322 8.373 8.303 12.15 8.322 8.373 8.303 

Average unit cost (week V, €/MWh) 8.296 8.304 8.286 8.330 28.78 20.31 12.37 16.35 28.77 20.30 12.37 16.35 

𝑺 = 𝟐  

Total investment costs (B€) 79.65 50.48 61.76 

Average unit cost (week H, €/MWh) 9.817 8.282 7.928 12.03 35.15 27.73 30.76 36.56 26.01 16.12 21.02 27.78 

Average unit cost (week L, €/MWh) 6.971 6.116 7.966 7.043 7.847 6.611 8.674 6.686 6.973 5.668 6.541 5.500 

Average unit cost (week V, €/MWh) 7.784 7.810 7.775 8.130 24.98 16.97 9.642 15.25 15.42 7.757 7.775 8.094 

𝑺 = 𝟒  

Total investment costs (B€) 84.28 44.54 54.77 

Average unit cost (week H, €/MWh) 16.87 8.282 10.03 19.14 44.11 39.39 37.76 45.78 35.01 27.73 28.02 38.69 

Average unit cost (week L, €/MWh) 5.626 8.621 19.36 6.001 9.889 6.673 15.37 4.533 5.626 4.016 7.929 4.058 

Average unit cost (week V, €/MWh) 7.292 7.301 7.268 7.945 32.44 26.67 21.03 28.62 21.14 13.54 7.248 14.70 

𝑺 = 𝟔  

Total investment costs (B€) 77.82 58.67 58.88 

Average unit cost (week H, €/MWh) 16.57 8.282 7.606 19.10 34.79 27.73 25.27 36.56 34.79 27.73 25.27 36.56 

Average unit cost (week L, €/MWh) 4.666 26.86 39.44 17.33 4.823 29.58 45.18 20.43 4.453 27.07 39.31 17.69 

Average unit cost (week V, €/MWh) 6.780 6.885 6.735 7.694 17.54 12.22 7.033 12.40 17.49 10.93 6.736 11.81 

 

Table 2.B.: Total investment costs and average unit cost by worst-case trajectory for various 

levels of renewables capacity (in GWe) 

Note: For each column 𝐼1, 𝐼2 and 𝐼3, sub-columns respectively correspond to the average unit cost obtained for 

Winter, Spring, Summer and Autumn.  

 

Table 2.B. summarizes the average unit generation cost, in €/MWh, and the total investment 

cost, in billion €, associated to each optimal mix presented in Table 2.A. When hedging 

against H only in scenario 𝐼1, the significantly higher nuclear capacity entails consistently 

higher investment costs compared to 𝐼2 and 𝐼3. Yet, as we assume nuclear plants to have a 

higher minimum generation level and uptime/downtime compared to peaking units, mixes 

with significant nuclear capacities may not be flexible enough to accommodate large residual 

demand fluctuations if they are not adapted to the level of renewable capacities. The 

minimum generation level may be too high to keep plants running during periods with high 

renewable generation, leading to generation surpluses, curtailment or even infeasibilities (i.e. 

blackouts). 
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Surprisingly, in terms of average unit cost, the optimal mixes obtained in 𝐼1 consistently 

outperforms the more flexible ones obtained in the 𝐼2 and 𝐼3 investment scenarios, for all three 

types of worst-case trajectories. Although the average unit cost for trajectory H increases with 

renewable penetration and for all seasons, it remains almost 60 % lower on average. While the 

average unit cost for trajectory L is higher for low renewable penetration levels, compared to 

values found for 𝐼2 and 𝐼3, this difference seems to vanish for high renewable capacities.  

However, we may expect that a higher share of nuclear may result in higher curtailment levels 

for trajectory L. This is not confirmed by our simulations. When taking 𝑺 = 6, 17.3%, 17% 

and 7% of total wind generation is curtailed in Spring, Summer and Autumn respectively. 

Regarding photovoltaic generation, 29.5% of production is curtailed in Spring, 38.2% in 

Summer and 28.3% in Autumn. By comparison, respectively 22.3%, 19.9% and 9.1% of wind 

output is curtailed for 𝐼2, while 26.4%, 43.8% and 32.4% of photovoltaic generation is 

curtailed. Finally, although 𝐼3 is by construction the most flexible generation mix for any level 

of renewable penetration, 16.6%, 15.7% and 7.3% of wind generation are curtailed and 

photovoltaic curtailment levels remain above 30%. In theory, more flexible generation mixes 

with higher peaking capacities would result in lower curtailment levels as they can better 

accommodate rapid fluctuations of renewable output than nuclear plants. However, 

curtailment may be the less costly option overall, as renewable demand dynamics may require 

a succession of start-ups and shutdowns to accommodate their variability, which would be 

very costly for CCGT and GT technologies. In conclusion, we observe a clear trade-off 

between high fixed-low variable costs and low fixed-high variable costs mixes, depending on 

the targeted level of system flexibility. 

However, comparing generation mixes in terms of cost performance over a sample of extreme 

scenario, with a potentially low probability of occurrence, has little relevance in terms of 

average cost performance. In order to approximate the yearly distribution of production cost 

associated with a given capacity mix, we approximate the yearly Net Load Duration Curve 

(NLDC) with a 4-week sample drawn from a set of 52 weeks, corresponding to a full year of 

demand and renewable production data. We then scale up the sample, so it matches the 

number of hours contained in one year, and sort the resulting residual demand distribution by 

decreasing order so we obtain an Approximate NLDC. This method is introduced in [16]. We 

select the sample of weeks (one week for each season) that minimizes the distance between 

the NLDC and Approximate NLDC, measured in terms of Root-Mean-Square-Error (RMSE) 

and normalized RMSE. Using 2018 as a reference year for our cost analysis, our optimal 4-
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week sample has a RMSE of 93.53 and a normalized RMSE of 0.46 %, which corresponds to 

a highly accurate approximation. The approximate average yearly unit cost of generation is 

presented in Table 2.C.  

𝒒 = 𝟎. 𝟗𝟓 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.320 20.41 20.83 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 7.836 17.97 9.994 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.417 27.15 14.74 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.881 13.00 12.61 

 

Table 2.C.: Approximate yearly average unit cost for various levels of renewables capacity 

(in GWe) 

 

Again, for all levels of 𝑺, the optimal mix corresponding to the investment scenario 𝐼1 

outperforms other ones in terms of production cost performance. Moreover, while the 

approximate average unit generation cost decreases with renewable penetration, no clear trend 

can be observed for 𝐼2 and 𝐼3. The latter performs better than 𝐼2 but remains on average twice 

as costly as 𝐼1. 

Overall, optimal generation mixes obtained when hedging against all three types of worst-case 

trajectories systematically exhibit lower investment costs, as they include a high share of 

peaking units with low overnight costs. However, these mixes systematically exhibit higher 

average unit production costs, both for extreme and representative trajectories, in addition to 

higher curtailment levels. In the absence of CO2 emission targets, our results entail a trade-off 

between investment and FOM costs on the one side, and production costs on the over side. 

Their respective importance depends on the life-duration of generation units, the probability 

of occurrence of extreme weeks and the distribution of costs between consumer categories.  
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4.3. Sensitivity analysis 

4.3.1. Sensitivity to nuclear technical assumptions 

As stated above, ramping constraints are not binding when using an hourly time step. While 

extremely volatile residual demand trajectories remain feasible with a large share of nuclear 

power in the mix, this may not be the case anymore using a minute time step. Moreover, as 

underlined in [17], a higher RES penetration increases the frequency of extreme nuclear 

power ramps and annual required shut downs/start-up events, which may eventually damage 

reactors. 

Even though nuclear plants can technically be operated in load-following mode (see [18]), 

nuclear plants are traditionally operated in ‘baseload’ mode with low to moderate output 

variations. In order to capture the effect of this operation mode on investment and dispatching 

decisions, we constrain the absolute nuclear power ramp of each individual plant, denoted 

𝒓𝑵𝑼𝑪, to be inferior to 25% and 15% of the difference of the maximum and minimum 

generation level. The optimal investment and cost performance results are shown in Table 

3.A., 3.B, 3.C. and Table 4.A., 4.B. and 4.C. respectively.  

A comparison between Table 3.A. and Table 2.A. immediately shows that, for investment 

scenario 𝐼1, the capacity of CCGT and GT units increases for any level of renewable 

penetration. This confirms that nuclear units were previously used in load-following and 

peaking modes. Except for null values of renewable penetration, the installed capacities of 

storage and peaking units are also generally higher for 𝐼2 and 𝐼3. 

However, for any given investment case, a clear negative correlation between peaking units 

and storage capacities can be noted: an increase in storage capacities is associated with a 

decrease in peaking capacities. This negative correlation is even more marked in Table 4.A. 

in Appendix. This suggests that the magnitude of the elasticity of substitution between storage 

and peaking technologies (CCG and GT) depends of the technical characteristics of other 

technologies available in the mix.  
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𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟐𝟓 % 

𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 6.75 12.150 8.1 6.75 12.150 10.8 

Gas turbine 0 0 1.8 0 0.9 1.8 

Nuclear 16 9.6 12.8 16 9.6 9.6 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 8112.999 6219.146 7992.364 4399.080 9431.786 13850.776 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 6.75 12.150 14.85 6.75 12.15 12.15 

Gas turbine 0 0.9 0.9 0 0.9 0.9 

Nuclear 16 9.6 6.4 16 9.6 9.6 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 4573.590 6419.424 6609.16 2890.556 9320.521 10627.595 

 

Table 3.A.: Optimal investment level by technology for 𝒓𝑵𝑼𝑪 = 25% and various levels of 

renewables capacity (in GWe) 

 

The results in Table 3.A. confirm the idea that, in the absence of affordable Carbon Capture 

and Storage (CCS) technologies, diminishing the share of CO2 emitting capacities would be 

economically optimal from a social planner perspective only if mature, clean and flexible 

alternative dispatchable technologies are available10.  

In terms of physical constraints, the degree of substitutability of storage and peaking 

technologies is limited by a specific subset of residual demand sequences, which correspond 

to prolonged periods of low renewable generation, during which a minimum peaking capacity 

remains necessary. The substitutability of storage and peaking technologies must also be 

evaluated by the ability of storage units to balance residual demand variations at all time. The 

optimal storage capacity should indeed allow system balance for any residual demand 

trajectory. If storage technologies are too costly or do not allow system balance by 

 
10 Demand-side management, which is not treated in this paper, is a special case, as its elasticity of substitution 

with storage is a possible time-varying function of the correlation (and cross-correlations) of demand and 

renewable generation. If the correlation is negative, a share of demand (which is expected to be high) during low 

renewable generation periods may be transferred to high generation ones with lower demand. 
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compensating its variations in most situations, flexible peaking technologies remain 

necessary. The sequence of values taken by residual demand is greatly relevant to evaluate the 

feasibility of any storage decision sequence. This limitation is not explicitly accounted for in 

our model formulation but can easily be alleviated by adding an extra constraint on the 

moving average of residual demand net of storage inflows and outflows. 

Moreover, our methodology maximizes residual demand variability locally, conditional on the 

value of residual demand, but offers no guarantee that it globally maximizes its total 

variability along its trajectory. Our model allows investment decisions hedging against 

residual demand trajectories that maximize short-term conditional volatility only. This 

limitation shall be the topic of the next chapter.  

Table 3.B. and 4.B. (see in Appendix) both show that even by decreasing nuclear units 

ramping rate, the average unit generation cost of nuclear based mixes remains unambiguously 

lower for all seasons, all investment cases and all levels of renewable penetration. Yet, 

decreasing nuclear flexibility increases the utilization rate of CCGT and GT units, which 

increases the average unit cost as they have higher marginal cost. Moreover, this flexibility 

loss translates into higher curtailment rates for 𝐼1 compared to alternative investment 

scenarios. For trajectory L, with a nuclear ramping rate of 25% and 𝑺 = 6, 22.8%, 13.5% and 

2.2% of wind generation are curtailed in Spring, Summer and Autumn respectively. 

Furthermore, 24.2% of photovoltaic production is now curtailed in Spring, 49.2% in Summer 

and 46.2% in Autumn. By comparison, respectively 16.2%, 14.5% and 5.2% of wind output is 

curtailed for 𝐼3, while 28%, 31.4% and 25.2% of photovoltaic generation is curtailed. 

As nuclear flexibility diminishes, the costs of renewable integration become comparatively 

higher for a mix with a high share of nuclear capacity. For scenario 𝐼1, the decrease in nuclear 

flexibility is not counterbalanced by adaptation to low residual values trajectories, which 

results in higher curtailment rates for all seasons. However, for any level of renewable 

penetration, the economic performance of nuclear based mixes remains better, except for 

trajectory L, which consistently exhibits a higher average unit generation cost due to higher 

curtailment rates. 

Finally, Table 3.C. and Table 4.C. in Appendix clearly show that, even when restricting 

nuclear units to strictly ‘baseload’ operation mode, nuclear based mixes remain on average 

the least expensive investment choice in terms of average unit cost.  
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𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟐𝟓 % 

𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 67.25 46.69 56.82 

Average unit cost (week H, €/MWh) 17.09 8.282 14.10 19.06 35.33 27.73 33.51 36.56 26.20 16.13 23.77 28.69 

Average unit cost (week L, €/MWh) 8.291 8.322 8.382 8.303 15.25 8.322 8.383 8.303 8.291 8.322 8.382 8.303 

Average unit cost (week V, €/MWh) 8.287 8.306 8.288 8.295 28.77 20.36 12.76 16.42 17.49 8.620 8.288 8.295 

𝑺 = 𝟐  

Total investment costs (B€) 70.54 51.50 51.58 

Average unit cost (week H, €/MWh) 16.91 8.282 12.05 19.06 35.15 27.73 30.77 36.56 35.19 27.73 30.76 37.89 

Average unit cost (week L, €/MWh) 6.972 6.258 9.511 5.502 6.949 5.185 6.637 5.502 6.949 5.180 6.412 5.502 

Average unit cost (week V, €/MWh) 7.784 7.784 7.818 8.130 24.95 16.82 8.742 14.80 24.95 16.74 8.844 14.79 

𝑺 = 𝟒  

Total investment costs (B€) 74.47 54.89 44.80 

Average unit cost (week H, €/MWh) 16.73 8.282 9.803 19.06 34.97 27.73 28.02 36.56 44.11 39.39 37.76 45.52 

Average unit cost (week L, €/MWh) 5.628 7.524 16.47 4.698 5.770 5.859 13.06 5.392 9.511 6.694 13.03 5.238 

Average unit cost (week V, €/MWh) 7.292 7.303 7.312 7.914 21.14 13.60 7.623 13.27 32.44 26.63 21.08 28.62 

𝑺 = 𝟔  

Total investment costs (B€) 78.09 59.29 59.51 

Average unit cost (week H, €/MWh) 16.82 8.282 8.125 19.14 34.79 27.73 25.27 36.56 34.79 27.73 25.27 36.56 

Average unit cost (week L, €/MWh) 5.113 30.59 46.54 21.63 8.884 25.76 33.97 15.79 4.703 25.05 36.14 38.72 

Average unit cost (week V, €/MWh) 6.802 6.950 6.806 7.768 17.51 10.54 6.817 11.77 17.45 10.27 6.770 11.78 

 

Table 3.B.: Total investment costs and average unit cost by worst-case trajectory for 𝒓𝑵𝑼𝑪 =

25% and various levels of renewables capacity (in GWe) 

𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟐𝟓 % 

𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.443 20.93 11.51 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 7.869 17.63 17.57 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.354 14.95 27.12 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.911 12.46 12.35 

 

Table 3.C.: Approximate yearly average unit cost for 𝒓𝑵𝑼𝑪 = 25% and various levels of 

renewables capacity (in GWe) 
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4.3.2. Sensitivity to robustness parameter 𝒒 

We can finally study the sensitivity of our results to the degree of robustness of our model, 

controlled by parameter 𝑞. By definition, for 𝑞 = 1, the set of extreme residual demand 

trajectories, defined by our simulation method, includes trajectories with the most extreme 

variations and is thus expected to be the most conservative. The conservativeness of solutions 

can then be diminished by decreasing 𝑞, but the proportion of infeasible trajectories might 

increase. The value of 𝑞 can be chosen by defining a probabilistic threshold so that values of 

𝑞 that generate trajectories with a joint probability below this threshold are ruled out.  

We set 𝑞 = 0.75. The optimal investment levels are shown in Table 5.A.. We note that for 

scenario 𝐼1, the capacity of CCGT increases while the capacity of nuclear decreases for low 

renewable penetration. As the cost advantage of nuclear technology decreases with the 

required volume of generation, CCGT become comparatively less costly, in terms of total 

overnight and generation costs. Unsurprisingly, the total installed capacity decreases for all 

investment case and level of renewable penetration.  

𝒒 = 𝟎. 𝟕𝟓 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 4.050 9.45 6.75 4.050 12.15 9.45 

Gas turbine 0 0 0 0 0 0.9 

Nuclear 16 9.6 12.8 16 6.4 9.6 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 1131.393 6680.721 10858.910 1211.035 13952.555 9866.306 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 4.050 13.5 9.45 4.050 10.8 9.45 

Gas turbine 0 0 0.9 0 2.7 0.9 

Nuclear 16 6.4 9.6 16 6.4 9.6 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 4081.681 2184.314 984.991 4317.095 3287.598 10798.593 

 

Table 5.A.: Optimal investment level by technology for 𝑞 = 0.75  and various levels of 

renewables capacity (in GWe) 

These observations translate into lower investment costs for all mixes, as shown in Table 

5.B.. Simultaneously, the average unit generation costs associated with trajectory L are 
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generally lower compared to Table 2.B., while the unit cost associated with trajectory H are 

consistently higher. The lower share of nuclear and storage capacities translates into a higher 

utilization rate of peaking units during high demand periods, while less curtailment is 

necessary during periods with strong renewable generation. 

This finally translates into higher approximate average unit costs for all investment cases and 

renewable installed capacity level. A higher degree of conservativeness, associated to a higher 

𝑞, thus automatically results in higher total installed capacities and investment costs, but may 

result in better unit cost performance depending on the mix composition. 

𝒒 = 𝟎. 𝟕𝟓 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 64.04 44.73 55.56 

Average unit cost (week H, €/MWh) 14.84 7.617 14.94 12.58 32.60 22.55 33.85 28.86 23.40 11.41 24.07 20.08 

Average unit cost (week L, €/MWh) 8.649 8.847 11.62 8.661 14.66 8.877 11.48 8.601 8.633 8.816 9.201 8.601 

Average unit cost (week V, €/MWh) 8.462 8.379 8.837 7.783 26.95 20.64 17.15 12.86 15.68 8.372 8.837 7.765 

𝑺 = 𝟐  

Total investment costs (B€) 67.96 39.74 49.53 

Average unit cost (week H, €/MWh) 14.83 7.616 12.39 13.88 41.80 34.21 40.45 37.65 32.60 22.54 30.69 28.86 

Average unit cost (week L, €/MWh) 7.455 6.924 26.38 6.508 22.11 5.931 6.218 5.983 7.818 5.931 10.16 5.983 

Average unit cost (week V, €/MWh) 7.522 7.792 8.326 7.337 34.24 30.09 28.96 24.28 22.92 16.62 13.53 9.805 

𝑺 = 𝟒  

Total investment costs (B€) 72.35 42.68 51.94 

Average unit cost (week H, €/MWh) 14.51 7.598 9.554 12.20 41.66 34.21 37.31 37.57 34.22 22.54 27.57 29.45 

Average unit cost (week L, €/MWh) 6.194 5.352 12.32 5.000 13.83 16.98 15.80 5.395 6.963 7.237 20.08 17.17 

Average unit cost (week V, €/MWh) 6.985 7.172 7.778 6.859 30.21 26.09 25.57 21.05 19.06 13.38 11.50 9.504 

𝑺 = 𝟔  

Total investment costs (B€) 76.30 45.81 57.50 

Average unit cost (week H, €/MWh) 14.48 7.598 11.13 12.20 49.59 34.21 34.20 42.78 32.60 22.54 24.45 28.86 

Average unit cost (week L, €/MWh) 5.548 21.31 37.95 16.00 8.731 21.93 39.72 16.96 4.970 16.60 25.43 11.21 

Average unit cost (week V, €/MWh) 6.467 6.804 7.263 6.412 26.19 22.36 21.99 18.04 15.11 9.481 7.360 6.399 

 

Table 5.B.: Total investment costs and average unit cost by worst-case trajectory for 𝑞 =

0.75 and various levels of renewables capacity (in GWe) 
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𝒒 = 𝟎. 𝟕𝟓 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.757 20.92 11.47 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 8.369 30.70 17.62 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.360 27.22 15.64 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.932 23.86 12.34 

 

Table 5.C.: Approximate yearly average unit cost for 𝑞 = 0.75 and various levels of 

renewables capacity (in GWe) 

 

5. Conclusion 

This paper presents an original approach to robust optimization, that does not require the 

definition of any uncertainty set contrary to more traditional approaches. As the dynamics of 

robustness have received little attention so far, we approximate the variations of uncertain 

parameters between successive periods using a flexible polynomial approximation method. 

This framework allows the estimation of a continuous approximation function, the shape of 

which and prevision interval can be tightly configured depending on the quality and 

distribution of the training data. This allows defining a set of limiting residual demand 

trajectories. However, the variability maximizing trajectory only maximizes locally the 

variations of residual demand. We leave for further research the definition a solution for 

determining the trajectory which globally maximizes residual demand trajectory over its full 

length.  

Finally, we showed the usefulness of our enriched robust optimization method with an 

application to the case of Auvergne Rhône-Alpes. Hedging against trajectories with extremely 

high short-term variability globally increased the optimal storage and peaking capacities. Our 

results show that mixes with a high share of nuclear globally performed generally 

economically better, with significantly lower variable costs than theoretically more “flexible” 

and adapted mixes. Still, due to the significant share of CCGT and GT capacities, more 

“flexible” have lower investment and fixed costs. Moreover, our results suggest that, as the 

stress on nuclear plants may increase with renewable penetration, a nuclear-based mix may 
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rapidly become too costly and inefficient for high renewable capacities. In the absence of low 

cost and non-CO2 emitting alternative peaking technology, increasing renewable penetration 

while significantly decreasing the share of carbon emitting capacities seems economically 

suboptimal and technically difficult without harming the stability of the electric system 

balance or requiring frequent curtailment. Yet, the increase in curtailment costs associated to 

higher renewable penetration may provide a cost-effective strategy to maintain a significant 

nuclear base load production, thereby keeping the average generation cost low. Moreover, we 

show that curtailment does not necessarily decrease with peaking capacities: the high start-up 

costs of CCGT and GT turbines may make curtailment more cost-effective and increase 

balancing costs if they must be turned on and off more often.  

Yet, decreasing the share of conventional generators may decrease the physical inertia of the 

electric system, which may further increase the likelihood of frequency deviations and 

damage to low flexibility units. Moreover, our methodology does not take into account very 

short-term ramping limitations and residual demand uncertainty. This would question the 

observed advantages of nuclear based mixes. Intensive demand-side management and 

hydrogen based inter-seasonal storage, in addition to stability solutions such as synchronous 

condensers, fast frequency responses and grid-forming converters [19] offer a panel of 

promising options to be studied in further research.  
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6. Appendix 

Appendix to 3.3.: 

We define the matrix 𝝅0→|𝒯|
+ = (𝝅0

+, 𝝅1
+, … , 𝝅|𝒯|

+ ) ∈ ℝ𝑛×(|𝒯|+1)  and the probability threshold 

𝜌 > 0 such that we must have: 

ℙ(𝝅0→|𝒯|
+ ) =∏ℙ(𝝅𝑡′

+)

|𝒯|

𝑡′=0

= ℙ(𝝅0
+)∏ℙ(𝝅𝑡′

+|𝝅𝑡′−1)

|𝒯|

𝑡′=1

≥ 𝜌                                                                                     (𝟓𝟐𝒂) 

For clarity and without loss of generality, we drop the subscript 𝑠 corresponding to seasons. 

Using the Frechet’s inequality twice, we have: 

ℙ(𝝅0→|𝒯|
+ ) =∏ℙ(𝝅𝑡′

+)

|𝒯|

𝑡′=0

≥ max(0, ∑ ℙ(𝝅𝑡′
+ )

|𝒯|

𝑡′=0

− |𝒯|) ≥ max(0, ∑ max(0,∑ℙ(𝜋𝑖𝑡′
+ )

𝑛

𝑖=1

− (𝑛 − 1))

|𝒯|

𝑡′=1

− |𝒯|)   (𝟓𝟐𝒃) 

Without loss of generality, assuming that for 𝜋𝑡
+ strictly positive, we have for any real vector 

𝝐 that ℙ(𝝅𝑡
+|𝝅𝑡−1) ≤ ℙ(𝝅𝑡

+ + 𝝐|𝝅𝑡−1) ⟺ 𝝐 ≥ 0. We introduce auxiliary variables ð𝑖𝑡
+  such 

that we have the following set of constraints for all 𝑖 ≤ 𝑛: 

𝜋𝑖𝑡
+ = 𝜋𝑖𝑡−1

+ + ð𝑖𝑡
+                                                                                                                                                                    (𝟓𝟑) 

ð𝑖𝑡
+ ≤ 𝜆𝑖0𝑡𝚽𝑖,∗

−𝑇𝝋0̂(𝛼, |𝓑|∗|𝚽𝑖,∗
𝑇 𝝅𝑡−1

𝑉 )

+ ∑ 𝜆𝑖𝑞𝑡 (𝚽𝑖,∗
−𝑇𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ) − 𝚽𝑖,∗

−𝑇𝝋𝑞−|𝒬|
−1̂ (𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ))

𝑞∈𝒬\{0} 

                                   (𝟓𝟒) 

max(0, ∑ (max(0,∑(1 − ∑ 𝜆𝑖𝑞𝑡′|𝒬|
−1

𝑞∈𝒬\{0} 

)

𝑛

𝑖=1

− (𝑛 − 1)))

|𝒯|

𝑡′=0

− |𝒯|) ≥ 𝜌                                                (𝟓𝟓) 

𝜆𝑖𝑞𝑡 ∈ [0; 1]                                                                                                                                                                            (𝟓𝟔) 

𝚽𝑖,∗
𝑇  corresponds to the 𝑖-th line of 𝚽𝑇. Using the monotonicity of ℙ(𝝅0→|𝒯|

+ ), the probability 

of any given trajectory will decrease when 𝝅0→|𝒯|
+  increases. However, due to the 

multidimensionality of  𝝅0→|𝒯|
+ , there exists an infinity of “worst-case” vectors which saturate 

(55). To see this, we can reformulate (55) as follows: 
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max(0, ∑ (max(∑(1 − ∑ 𝜆𝑖𝑞𝑡′|𝒬|
−1

𝑞∈𝒬\{0} 

)

𝑛

𝑖=1

− (𝑛 − 1)))

𝜏

𝑡′=0

+ ∑ (max(0,∑(1 − ∑ 𝜆𝑖𝑞𝑡′|𝒬|
−1

𝑞∈𝒬\{0} 

)

𝑛

𝑖=1

− (𝑛 − 1)))

|𝒯|

𝑡′=𝜏+1

− |𝒯|) ≥ 𝜌                                        (𝟓𝟕) 

An increase in the left-hand side is associated with a decrease in the right-side one. In order to 

define the sequence {ð𝑖𝑡
+}𝑡∈𝒯 that maximizes the vector length of 𝝅0→|𝒯|

+ , we solve the 

following linear binary optimization problem: 

max
ð
∑∑ð𝑖𝑡

+

|𝒯|

𝑡=1

𝑛

𝑖=1

 

s.t. (53)-(56) hold. Likewise, the trajectory {ð𝑖𝑡
−}𝑡∈𝒯 that minimizes the vector length of 𝝅0→|𝒯|

−  

is the solution to the following linear optimization problem: 

min
ð
∑∑ð𝑖𝑡

−

|𝒯|

𝑡=1

𝑛

𝑖=1

 

s.t. (56) holds and: 

𝜋𝑖𝑡
− = 𝜋𝑖𝑡−1

− + ð𝑖𝑡
−                                                                                                                                                                    (𝟓𝟖) 

ð𝑖𝑡
− ≥ 𝜆𝑖0𝑡𝚽𝑖,∗

−𝑇𝝋1̂(𝛼, |𝓑|∗|𝚽𝑖,∗
𝑇 𝝅𝑡−1

𝑉 )

+ ∑ 𝜆𝑖𝑞𝑡 (𝚽𝑖,∗
−𝑇𝝋1−�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ) − 𝚽𝑖,∗

−𝑇𝝋1−𝑞+|𝒬|
−1̂ (𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ))

𝑞∈𝒬\{0} 

                          (𝟓𝟗) 

max(0, ∑ (max(0,∑(1 − ∑ 𝜆𝑖𝑞𝑡′|𝒬|
−1

𝑞∈𝒬\{0} 

)

𝑛

𝑖=1

− (𝑛 − 1)))

|𝒯|

𝑡′=0

− |𝒯|) ≥ 𝜌                                                (𝟔𝟎) 

In a similar fashion, we can express the trajectory {ð𝑖𝑡
𝑉 }𝑡∈𝒯 that maximizes the variability of 

the vector 𝝅0→|𝒯|
𝑉  such that ℙ(𝝅0→|𝒯|

𝑉 ) as the solution of the following quadratic optimization 

problem: 

max
ð
√∑∑ð𝑖𝑡

𝑉 2

|𝒯|

𝑡=1

𝑛

𝑖=1

 

s.t. (56) holds and: 

𝜋𝑖𝑡
𝑉 = 𝜋𝑖𝑡−1

𝑉 + ð𝑖𝑡
𝑉                                                                                                                                                                    (𝟔𝟏) 
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ð𝑖𝑡
𝑉 ≤ 𝜆𝑖𝑚𝑡𝚽𝑖,∗

−𝑇𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗
𝑇 𝝅𝑡−1

𝑉 )

+ ∑ 𝜆𝑖𝑞𝑡 (𝚽𝑖,∗
−𝑇𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ) − 𝚽𝑖,∗

−𝑇𝝋𝑞−|𝒬|
−1̂ (𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ))

𝑞∈𝒬\𝒬𝑚
−  

                               (𝟔𝟐𝒂) 

ð𝑖𝑡
𝑉 ≥ 𝜆𝑖𝑚𝑡𝚽𝑖,∗

−𝑇𝝋�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗
𝑇 𝝅𝑡−1

𝑉 )

+ ∑ 𝜆𝑖𝑞𝑡 (𝚽𝑖,∗
−𝑇𝝋𝑚−�̂�(𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ) −𝚽𝑖,∗

−𝑇𝝋𝑚−𝑞+|𝒬|
−1̂ (𝛼, |𝓑|∗|𝚽𝑖,∗

𝑇 𝝅𝑡−1
𝑉 ))

𝑞∈𝒬\𝒬𝑚
+  

               (𝟔𝟐𝒃) 

max

(

 
 
0, ∑

(

 
 
max

(

  
 
∑

(

 
 
(𝑚 − ( ∑ 𝜆𝑞𝑡′|𝒬|

−1

𝑞∈𝒬\𝒬𝑚
−  

+ ∑ 𝜆𝑞𝑡′|𝒬|
−1

𝑞∈𝒬\𝒬𝑚
+  

))

)

 
 

𝑛

𝑖=1

− (𝑛 − 1)

)

  
 

)

 
 

|𝒯|

𝑡′=0

− |𝒯|

)

 
 
≥ 𝜌  (𝟔𝟑) 

𝑚 − ( ∑ 𝜆𝑞𝑡|𝒬|
−1

𝑞∈𝒬\𝒬𝑚
−  

+ ∑ 𝜆𝑞𝑡|𝒬|
−1

𝑞∈𝒬\𝒬𝑚
+  

) ≥ 0                                                                                                          (𝟔𝟒) 

 

Where we define the subsets 𝒬𝑚
+ ⊂ 𝒬 and 𝒬𝑚

− ⊂ 𝒬 such that 𝒬𝑚
+ ∩ 𝒬𝑚

− = ∅ and 𝒬𝑚
+ ∪ 𝒬𝑚

− ∪

𝑞𝑚 = 𝒬, with 𝑞𝑚 corresponding to the median. As 𝜆𝑞𝑡 = 0 for the subset of quantiles that 

does not maximize the objective function in period 𝑡 ∈ 𝒯, (64) may be redundant. Yet, in 

order to ensure proper behavior of the model, we further impose (64) so that ð𝑖𝑡
𝑉  is always 

associated to a positive probability. 

 

 

 

 

 

 

 

 

 

 



 

68 
 

Appendix to 4: 

 

Technology Minimum generation 

level (% nominal 

power) 

Ramping rate (% of 

nominal power/min) 

Minimum 

uptime/downtime 

(hours) 

Average CO2 

emission factor 

(ton/MWh) 

Combined cycle gas turbine 20 20 0 0.352 

Gas turbine 15 8 2 0.777 

Nuclear 50 2-5 10 0 

 

Table 1.A.: Technical characteristics of main thermal technologies  

Sources : Gonzalez-Salazar et al. (2018), IAEA (2018), Schill et al. (2016), IEA (2015), Schröder et al. (2013), 

EC JRC (2010), RTE Bilan Electrique 2019 (RTE, 2019) 

 

Technology Overnight cost 

(€/kWe) 

Annual fixed & 

maintenance costs 

(€/kWe) 

Unit variable cost 

(€/MWh) 

Unit starting cost 

(€/MWh) 

Average lifetime 

(years) 

Combined cycle gas turbine 754 20 45 235 30 

Gas turbine 400 6.4 135 542.8 30 

Nuclear 3800 137 8 90 60 

Photovoltaic 669 19 0 0 25 

Wind power 1284 45 0 0 20 

Battery storage 169 5.1 0 0 10 

 

Table 1.B.: Cost assumptions for generation technologies for 2021  

Sources : Le Cout des ENR en France, ADEME (2016) ; CRE (2018) ; “Coûts et rentabilité du grand 

photovoltaïque en métropole continentale”, CRE (2019) ; IEA (2015) ; “Current and Prospective Costs of 

Electricity Generation until 2050”, DIW (2013) ; OECD/IEA-NEA (2015) 
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Appendix to 4.1.1. : 

  

 

Figure 3.A.: Upper and lower quantile polynomial approximation for electricity demand for 

𝑞 = 0.75 

  

 

Figure 3.B.: Upper and lower quantile polynomial approximation for photovoltaic capacity 

factor for 𝑞 = 0.75 
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Figure 3.C.: Upper and lower quantile polynomial approximation for wind capacity factor for 

𝑞 = 0.75 
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Appendix to 4.3.1.: 

𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟏𝟓 % 

𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 2.7 12.15 8.1 6.75 12.150 14.85 

Gas turbine 0 0 0 0 0.9 0 

Nuclear 19.2 9.6 12.8 16 9.6 6.4 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 3743.083 10434.345 11884.191 2890.556 4511.516 7044.852 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 2.7 12.150 10.8 5.4 14.850 13.5 

Gas turbine 0 0.9 0.9 0 1.8 2.7 

Nuclear 19.2 9.6 9.6 16 6.4 6.4 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 2444.324 5503.534 8590.854 5035.049 2277.660 2335.401 

 

Table 4.A.: Optimal investment level by technology for 𝒓𝑵𝑼𝑪 = 15% and various levels of 

renewables capacity (in GWe) 
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𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟏𝟓 % 

𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 75.63 47.70 56.75 

Average unit cost (week H, €/MWh) 9.899 8.282 8.282 12.05 35.33 27.73 33.51 36.56 26.20 16.16 23.77 27.90 

Average unit cost (week L, €/MWh) 8.320 8.373 9.799 8.306 24.93 8.389 8.400 8.306 8.291 8.324 8400 8.306 

Average unit cost (week V, €/MWh) 8.298 8.375 8.366 11.35 28.77 20.25 12.61 16.34 17.49 8.297 8.291 8.295 

𝑺 = 𝟐  

Total investment costs (B€) 70.28 50.67 40.61 

Average unit cost (week H, €/MWh) 17.03 8.282 12.27 19.14 35.15 27.73 30.76 36.56 44.29 39.39 40.51 45.35 

Average unit cost (week L, €/MWh) 6.975 7.020 10.42 6.557 7.524 6.079 13.05 6.178 18.63 6.340 6.943 5.510 

Average unit cost (week V, €/MWh) 7.823 8.014 9.172 8.170 24.95 16.95 9.971 15.21 36.27 30.19 24.94 30.19 

𝑺 = 𝟒  

Total investment costs (B€) 83.22 54.74 54.60 

Average unit cost (week H, €/MWh) 9.823 8.306 7.579 12.16 34.97 27.73 28.02 36.56 35.01 27.73 28.02 38.87 

Average unit cost (week L, €/MWh) 5.923 9.459 21.19 6.819 5.635 11.44 15.66 4.462 5.883 5.240 9.732 4.499 

Average unit cost (week V, €/MWh) 7.303 7.398 7.354 7.973 21.14 13.68 7.955 13.44 21.29 13.70 7.525 13.27 

𝑺 = 𝟔  

Total investment costs (B€) 77.44 48.34 47.69 

Average unit cost (week H, €/MWh) 16.56 8.282 7.900 19.10 43.93 39.39 35.01 45.69 44.81 39.39 35.01 50.60 

Average unit cost (week L, €/MWh) 5.346 28.98 60.54 19.42 7.136 28.74 41.88 19.00 9.053 46.11 77.82 22.24 

Average unit cost (week V, €/MWh) 6.808 6.895 6.845 7.702 28.62 23.49 20.61 27.06 28.62 25.03 17.69 27.10 

 

Table 4.B.: Total investment costs and average unit cost by worst-case trajectory for 𝒓𝑵𝑼𝑪 =

15% and various levels of renewables capacity (in GWe) 

 

𝒒 = 𝟎. 𝟗𝟓 

𝒓𝑵𝑼𝑪 = 𝟏𝟓 % 

𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.323 21.67 11.46 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 8.324 17.87 30.70 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.439 14.97 15.45 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.974 23.80 23.97 

 

Table 3.C.: Approximate yearly average unit cost for 𝒓𝑵𝑼𝑪 = 15% and various levels of 

renewables capacity (in GWe) 
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Chapter II: 

Optimization of electricity mix with high 

penetration of renewables: A robust 

methodology derived from Bayesian inference 

and graph theory 

 

 

 

Abstract – In this paper, we propose a two-part approach to robust optimization to 

derive the set of worst-case trajectories of any random process. First, we approximate its 

distribution using a set of concurrent multivariate distributions and tools from Bayesian 

inference. This allow us to introduce the “(𝝐,𝑴) certainty set”, which corresponds to the 

set of paths for the random process which have a probability greater than 𝟏 − 𝝐 to be 

observed at least once after 𝑴 trials. Second, using elementary matrix algebra and 

graph theory, we use the “(𝝐,𝑴) certainty set” to derive in polynomial time a family of 

“worst-case” trajectories, including the most volatile path that can be generated by the 

random process. We apply this robust approach to an investment and dispatching model 

of the electric system of the French region Auvergne Rhône-Alpes, formulated as a 

MILP with commitment constraints. 

Keywords- Optimal electricity mix; Robust optimization; Uncertainty; Bayesian inference; 

Graph 

 

 

 

 

 



 

76 
 

1. Introduction 

Due to the necessarily incomplete nature of sampling, some rare events can be attributed a 

null probability although they are theoretically possible. Our prior knowledge of an uncertain 

parameter is encoded in the assumptions we make in assigning probabilities to its possible 

outcomes. This pivotal issue was given consideration by [1], in his famous “sunrise problem”. 

When having very little prior knowledge of a system, Laplace’s rule of succession assigns a 

non-null probability that the sun will not rise tomorrow, which decreases with each new 

observation of sunrise. Still, in a Bernoulli trial process where a given event has a probability 

𝑛−1, 𝑛 > 0, the limit probability that the event is not observed after 𝑛 trials has been shown to 

tend to 𝑒−1 as 𝑛 → +∞. Thus, it does not seem reasonable to assign a priori a null probability 

to a given possible but never occurring event subjected to uncertainty. Similarly, an event 

with an a priori positive probability may never occur in a finite sequence of trials.  

Stochastic optimization (SO) and robust optimization (RO) are two of the main traditional 

approaches to optimization under uncertainty (see [2]), along with chance-constrained 

programming ([3], [4]). First introduced by [5], SO is a risk-neutral approach which seeks to 

optimize the expected value of the objective function over a given probability distribution of 

the uncertain parameters (see [6]-[7]). The combinations of successive values than can be 

taken by parameters are usually modeled using a scenario tree. Parameters can both exhibit 

exogenous and endogenous uncertainty, the latter being decision dependent as in [8]. 

However, this method requires assumptions about the underlying joint distribution of the 

parameters in addition to accurately measuring it, which is likely to introduce measurement 

errors. Introduced by [9], RO seeks to optimize the objective function under the worst-case 

scenario over a pre-defined uncertainty set. In order to avoid over-conservative solutions, 

recent work focused on the development of more elaborate uncertainty sets of parameters 

([10]-[11]), introducing uncertainty budgets, asymmetries in the distribution of uncertainties 

as in [12] and correlated uncertainties ([13]-[15]). However, to the noticeable exception of 

[16], which introduce dynamic uncertainty sets, the uncertainty remains essentially modeled 

as a static phenomenon. Our paper aims at addressing this shortfall by constructing a robust 

optimization approach of uncertain dynamical systems. 

The state of knowledge of an uncertain system can also be described using the Bayesian 

framework. This approach has strong ties with optimization, as it allows us to quantify how 

the observed information for this system influences the optimal decision (see [17]). Bayesian 
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statistics particularly apply to robust optimization (RO) and distributionally robust 

optimization (DRO), which seeks to optimize the objective under the worst-case distribution 

of uncertain parameters with an ambiguity set satisfying some statistical criterion. With the 

aim of improving computational efficiency, [18] analyzes the Bayesian networks constructed 

with a Bayesian optimization algorithm to extract the patterns of non-robust solutions and 

discard them. In order to circumvent limitations of moment based DRO, the authors in [19] 

define a likelihood robust optimization method associated to an accessible distribution set that 

contains only distributions which make the observed data reach a given likelihood threshold. 

In this respect, DRO methods may yield over-conservative results as extreme realizations of 

the uncertain parameters with positive probability may never occur with certainty within a 

quasi-finite time horizon. In a similar fashion, [20] introduces a novel Bayesian robustness 

guarantee, which allows the author to define an asymptotical optimal set as the smallest 

convex set satisfying this guarantee. These Bayesian near-optimal ambiguity sets are tractable 

and significantly smaller than the traditional ambiguity sets.  

Using tools from Bayesian inference and Bayesian Model Averaging, we define a “local” 

posterior probability distribution associated to each value of the uncertain dynamical system, 

described by the random process {𝝃𝑡}𝑡∈𝒯, for a set of concurrent theoretical models. Our 

method is thus essentially data-driven and develops the intuition that hedging against specific 

events, with a very low probability of almost-surely occurring within the optimization period, 

may be suboptimal. Indeed, for a given probability distribution 𝒫 associated to a random 

variable 𝝃𝑡 ∈ 𝚵𝑡 ⊆ ℝ, the probability associated to each value 𝜉 ∈ 𝚵𝑡 is traditionally 

described by a singleton. Yet, the probability ℙ𝒫(𝝃𝑡 = 𝜉) of observing 𝜉 can be better 

described as the expected value of an infinite Bernoulli process, where ℙ𝒫(𝝃𝑡 = 𝜉) is the 

theoretical probability of observing 𝜉 if 𝝃𝑡 follows the probability distribution 𝒫. As the 

number of trials tends to infinity, the proportion of successes tends to ℙ𝒫(𝝃𝑡 = 𝜉). However, 

as illustrated in the above “sunrise problem”, there is a non-null probability that an event with 

a positive probability is never observed when the number of trials tends to infinity. To 

quantify this phenomenon, we define for any sample of size 𝑀 ≫ 0 the smallest set of events 

that occur almost-surely with probability 1 − 𝜖 with 0 ≤ 𝜖 ≤ 1. We call this set the “(𝜖,𝑀)-

certainty set”. This original concept and the method associated to its computation are 

described in Section II.  
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In Section III, we use our “(𝜖,𝑀)-certainty set” to formulate a set of trajectories that can be 

taken by the random process {𝝃𝑡}𝑡∈𝒯. This allows us to formulate a dynamic definition of 

robustness, which corresponds to the optimal policy that minimizes an objective function 

when the uncertain random process follows its “worst-case” trajectories. For any {∆𝑘𝝃𝑡}𝑡∈𝒯, 

where ∆𝑘𝝃𝑡 = 𝝃𝑡 − 𝝃𝑡−𝑘 , 𝑘 ∈ ℕ, the set of worst-case trajectories corresponds to the subset of 

paths for which {∆𝑘𝝃𝑡}𝑡∈𝒯 reaches the greatest number of local maxima (or minima) within a 

given time window. Under this formulation, the worst-case trajectories of {∆𝝃𝑡}𝑡∈𝒯 

correspond to the subset of paths which maximize (or minimize) the first-difference of the 

initial random process {𝝃𝑡}𝑡∈𝒯. Similarly, the worst-case trajectories of {𝝃𝑡}𝑡∈𝒯 either 

maximize or minimize the level of {𝝃𝑡}𝑡∈𝒯. Using basic matrix algebra and a newly 

introduced “path operator”, we propose a polynomial time algorithm, named the “𝑁-Summit 

Algorithm”, which allows us to compute the subset of all “worst-case” trajectories for a given 

couple (𝑀, 𝜖). 

Finally, Section IV proposes an empirical application of the methods introduced in the 

previous sections to the case of the French Region Auvergne Rhône-Alpes.  We formulate a 

robust multiple time-scale investment and dispatching model with unit commitment 

constraints, formulated as a MILP, and provide some sensitivity analysis. We compare our 

main findings to those of Chapter I before concluding in Section V. 

 

2. Definition of the “(𝝐,𝑴) certainty set” 

We define the real-valued random variable 𝝃𝑡 ∈ ℝ, and the corresponding random process 

{𝝃𝑡}𝑡∈𝒯, where 𝒯 is a set of successive time periods indexed by 𝑡. We further consider 𝒯 as 

the set of hours in a week, so it has cardinal |𝒯| = 168. No assumptions are required about 

the stationarity of {𝝃𝑡}𝑡∈𝒯. {𝝃𝑡}𝑡∈𝒯 may equivalently be partitioned as the union of shorter 

random processes such that, for instance: 

                                                        {𝝃𝑡}𝑡∈𝒯 = ⋃ {𝝃𝑡, 𝝃𝑡+1}

𝑡∈𝒯\{|𝒯|}

                                                      (𝟏𝒂) 

This partition allows us to approximate the behavior of {𝝃𝑡}𝑡∈𝒯 by investigating the statistical 

properties of its shorter components. We assume the true support 𝚵𝑡 of 𝝃𝑡 is unknown. For 
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each 𝑡 ≥ 0, we observe the sample 𝒮𝑁,𝑡 with 𝑁 ≥ 0 observations, 𝑁 ∈ ℕ, that we define as 

follows: 

                                   𝒮𝑁,𝑡 = {(𝜉1,𝑡, 𝜉1,𝑡+1), (𝜉2,𝑡, 𝜉2,𝑡+1), … , (𝜉𝑁,𝑡, 𝜉𝑁,𝑡+1)}                                 (𝟏𝒃) 

By abuse of notation, we define 𝒮𝑁,𝑡 ∩ 𝒮𝑁,𝑡+1 = {𝜉1,𝑡+1, 𝜉2,𝑡+1, … , 𝜉𝑁,𝑡+1}, since the second 

element of each pair in 𝒮𝑁,𝑡 corresponds to the first element of each pair included in 𝒮𝑁,𝑡+1. 

By definition, 𝒮𝑁,𝑡 is finite so there exists a sample 𝒮𝑁,𝑡′ such that 𝒮𝑁,𝑡 ⊆ 𝒮𝑁,𝑡′. 𝒮𝑁,𝑡 is 

therefore a subsample of 𝒮𝑡′, for which we can infer statistical properties by resampling with 

replacement 𝒮𝑡 using bootstrapping. In the following section, we fit the empirical distribution 

of {𝝃𝑡}𝑡∈𝒯 with theoretical distribution from a set of concurrent models using tools from 

Bayesian inference. 

 

2.1. Multivariate model specification 

For any 𝑡 ≥ 0, we define the vectors 𝝃𝑡→𝑡+1 = ( 𝜉𝑡
𝜉𝑡+1

) and 𝝁𝑡→𝑡+1 = (
𝔼(𝜉𝑡)

𝔼(𝜉𝑡+1)
). For clarity of 

the exposition, we approximate the partial random process 𝝃𝑡→𝑡+1 using the unique model 

ℳ𝑡. We assume that ℳ𝑡 is a bivariate normal distribution which parameters need to be 

estimated. The joint density function of a bivariate normal distribution with mean vector 

𝝁𝑡→𝑡+1 and variance-covariance matrix 𝚺𝑡→𝑡+1 is equal to: 

           𝑓𝝁𝑡→𝑡+1,𝚺𝑡→𝑡+1(𝝃𝑡→𝑡+1) =
1

2𝜋√|𝚺𝑡→𝑡+1|
𝑒−

1
2
[(𝝃𝑡→𝑡+1−𝝁𝑡→𝑡+1)

𝑇𝚺𝑡→𝑡+1
−1 (𝝃𝑡→𝑡+1−𝝁𝑡→𝑡+1)]           (𝟐) 

|𝚺𝑡→𝑡+1| is the determinant of the variance-covariance matrix. We define the vector of 

parameters 𝜽𝑡 = (𝔼(𝜉𝑡), 𝔼(𝜉𝑡+1), 𝜎𝜉𝑡
2 , 𝜎𝜉𝑡+1

2 , 𝜌𝑡→𝑡+1𝜎𝜉𝑡𝜎𝜉𝑡+1) = (𝜽𝑖�̂�)𝑖≤𝐼, where 𝜎𝜉𝑡
2  is the 

variance of 𝜉𝑡 and 𝜌𝑡→𝑡+1 is the coefficient of correlation between 𝜉𝑡 and 𝜉𝑡+1. 𝐼 is the number 

of parameters used for the specification of ℳ𝑡. For conveniency, we note the density of the 

bivariate normal distribution associated to parameters 𝜽𝑡 as 𝑓𝜽𝑡(𝝃𝑡→𝑡+1).  

Using consumption and generation records for the region Auvergne Rhône Alpes over the 

period 2013-201811, Figure 1.A. displays the distribution of residual demand values for 

various hours in Winter, with an installed solar and wind capacity of 2 GWe each. For each 

 
11 From RTE Eco2mix, https://www.rte-france.com/eco2mix 
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couple of hours 𝑡 and 𝑡 + 1, residual demand values are normalized by removing the 

geometric median. We notice a strong positive correlation for residual demand value from 

consecutive hours. The density of the scatter plot decreases with the distance from the 

geometric median. This suggests a bivariate normal distribution with a positive coefficient of 

correlation is an accurate model specification for 𝒮𝑁,𝑡.  

  

  

 

Figure 1.A.: Residual demand scatter plot with 2 GWe of wind and photovoltaic installed 

capacity, in Winter 

Note: Each point corresponds to a couple of residual demand values for 𝑡 and 𝑡 + 1. This figure shows the 

distributions of residual demand values for 12 p.m. (top-left), 6 a.m (top-right), 12 a.m (bottom-left) and 6 p.m 

(bottom-right).  

 

 

 



 

81 
 

  

  

 

Figure 1.B.: Residual demand scatter plot with 6 GWe of wind and photovoltaic installed 

capacity, in Winter 

 

We notice from Figure 1.B. that the width of the scatter plot, which corresponds to the 

diffusion of residual demand couples, increases with wind and photovoltaic installed capacity. 

However, it does not seem that the coefficient of correlation between the distribution of 

consecutive residual demand changes with installed capacities, at least for the subset of hours 

selected in the graph. Finally, we see from Figure 1.C. in Appendix that the scatter plots 

follow closely similar diffusion patterns in Summer, with a higher concentration of 

observations around the median. This confirms our bivariate Gaussian approximation of the 

diffusion of residual demand for successive periods of time is relevant for all seasons. We 

introduce the “expected sample” concept and estimate the vector of parameters which 

maximizes its posterior distribution (for tractability issues, we do not compute the full 

posterior distribution).  
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2.2. Inference of the optimal model parameters 

Before bootstrapping 𝒮𝑁,𝑡, we first discretize the uncertain vector space by building a grid 

approximation. For (𝛼, 𝛽) ∈ ℤ2 and real increment Δ𝛼,𝛽 > 0, we define the square: 

                             𝚵𝑡(𝛼, 𝛽) = {(𝜉𝑡, 𝜉𝑡+1) ∈ ℝ
2|
𝛼Δ𝛼,𝛽 ≤ 𝜉𝑡 < (𝛼 + 1)Δ𝛼,𝛽
𝛽Δ𝛼,𝛽 ≤ 𝜉𝑡+1 < (𝛽 + 1)Δ𝛼,𝛽

}                          (𝟑) 

We verify that ⋃ 𝚵𝑡(𝛼, 𝛽)(𝛼,𝛽)∈ℤ2 = ℝ2. Without loss of generality and for tractability issues, 

the reunion of squares 𝚵𝑡(𝛼, 𝛽) can be defined on a subset of ℝ2. Then, for any random 

sample of size 𝑁, we define the probability 𝑝𝑁(𝛼, 𝛽) as the share of observations included in 

𝚵𝑡(𝛼, 𝛽): 

                               𝑝𝑁,𝑡(𝛼, 𝛽) = 𝑁−1{(𝜉𝑡, 𝜉𝑡+1) ⊆ 𝒮𝑁,𝑡|(𝜉𝑡, 𝜉𝑡+1) ⊂ 𝚵𝑡(𝛼, 𝛽)}                            (𝟒) 

The choice of square size Δ𝛼,𝛽 is both dependent on the number of observations 𝑁 and the 

variance of the sample scatter plot (measured for instance with respect to its geometric 

median). It is straightforward to see that for any pair (𝛼, 𝛽) ∈ ℤ2, 𝑝𝑁,𝑡(𝛼, 𝛽) is non-decreasing 

with Δ𝛼,𝛽 since the size of the square 𝚵𝑡(𝛼, 𝛽) increases with Δ𝛼,𝛽. Yet, 𝑝𝑁,𝑡(𝛼, 𝛽) becomes 

less informative as the uncertainty regarding the exact location of observations in the space of 

values increases. Thus, we can choose Δ𝛼,𝛽 as a decreasing function of 𝑁 and of the variance 

of 𝝃𝑡→𝑡+1. 

We then use bootstrap resampling to measure how the proportion of observations included in 

each subspace 𝚵𝑡(𝛼, 𝛽) varies when resampling from the original sample. We note 

𝑝𝑁,𝑡(𝛼, 𝛽)𝛾 the share of observations included in 𝚵𝑡(𝛼, 𝛽) associated to sample 𝛾 and Γ ∈ ℕ∗, 

𝛾 ≤ Γ, the total number of bootstrap samples which are drawn. This allows us to define the 

expected probability of observations made in the square 𝚵𝑡(𝛼, 𝛽) as: 

                                                      𝔼 (𝑝𝑁,𝑡(𝛼, 𝛽)) = Γ−1∑𝑝𝑁,𝑡(𝛼, 𝛽)𝛾

Γ

𝛾=1

                                          (𝟓) 

The total number of possible resampling with replacement is exactly (2𝑁−1
𝑁
), which grows 

exponentially with 𝑁. However, increasing the number of bootstrap samples does not increase 

the amount of information available from the original sample. [21] suggests that increasing 

the number of bootstrap resamples above 100 does not significantly improve the estimated 
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standard errors. Finally, we may similarly “bootstrap” the sample behavior by defining an 

“expected sample”, which mimics the asymptotic behavior of the original sample when the 

number of bootstrap resamples tends to infinity. For each subspace 𝚵𝑡(𝛼, 𝛽), its average value 

𝚵𝑡(𝛼, 𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is repeated in the expected sample a number of times equal to the expected number 

of observations found in  𝚵𝑡(𝛼, 𝛽) after Γ boostrap resamples. We formally define the 

expected sample as: 

                               𝔼[𝒮𝑁,𝑡] = ⋃ 𝔛𝛼,𝛽,𝑡
(𝛼,𝛽)∈ℤ2

                       (𝟔) 

𝐼 (N𝔼 (𝑝𝑁,𝑡(𝛼, 𝛽))) is the expected number of observations made in the square 𝚵𝑡(𝛼, 𝛽), 

rounded to the nearest integer. 𝚵𝑡(𝛼, 𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (
(2𝛼+1)Δ𝛼,𝛽

2
,
(2𝛽+1)Δ𝛼,𝛽

2
) corresponds to the 

coordinates of the intersection of the diagonals of 𝚵𝑡(𝛼, 𝛽), which is interpreted as the 

average value of observations made in 𝚵𝑡(𝛼, 𝛽).  

The multiset 𝔛𝛼,𝛽,𝑡 = 〈𝚵𝑡(𝛼, 𝛽), 𝐼 (N𝔼 (𝑝𝑁,𝑡(𝛼, 𝛽)))〉 can be defined as the set in which the 

element 𝚵𝑡(𝛼, 𝛽) has multiplicity 𝐼 (N𝔼 (𝑝𝑁,𝑡(𝛼, 𝛽))). The expected sample 𝔼[𝒮𝑁,𝑡] is simply 

the union of the multisets associated to each grid cell. 

Our concept of expected sample allows us to better capture the uncertainty pertaining to the 

original sample. For instance, assume that the probability 𝑝𝑁,𝑡(𝛼, 𝛽) associated to a given 

subspace equals 0.2 when using the initial sample, but 𝑝𝑁,𝑡(𝛼, 𝛽)𝛾 varies between 0.15 and 

0.30 when generating bootstrap resamples. This means that for some samples, the share of all 

observations included in 𝚵𝑡(𝛼, 𝛽) may vary from 15% to 30%, or equivalently, that we can 

formulate a probability distribution associated to the proportion of all observations found in 

𝚵𝑡(𝛼, 𝛽). The expected sample takes advantage of this uncertainty by associating to each 

square 𝚵𝑡(𝛼, 𝛽) its expected number of observations. This can be seen as a limiting case to the 

set of bootstrap resamples generated by resampling. 

Finally, for each bootstrap sample 𝛾, we note the corresponding vector of parameters 𝜽𝑡𝛾
̂ =

(𝜽𝑖𝑡𝛾
̂ )

𝑖
, which allows us to define the empirical parameter space 𝚯�̂� =⊗𝑖 [⋀ 𝜽𝑖𝑡𝛾

̂
𝛾 , ⋁ 𝜽𝑖𝑡𝛾

̂
𝛾 ] 

and derive the empirical joint distribution of the model parameters on 𝚯�̂�, noted 𝑝(𝜽�̂�). We 

note 𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡) the likelihood of 𝜽𝑡 ∈ 𝚵�̂� with respect to the expected sample. For 



 

84 
 

tractability issues, we do not compute the full posterior distribution of 𝜽𝑡 but chose its 

maximum a posteriori estimator, noted 𝜽𝑡
∗. The maximum a posteriori estimation (MAP) 

corresponds to the mode of the posterior distribution. It estimates the optimal set of 

parameters which maximizes the posterior distribution of the estimated quantity based on the 

observations. By noting 𝑝(𝜽𝑡|𝔼[𝒮𝑁,𝑡]) the posterior probability of 𝜽𝑡 ∈ 𝚯�̂�, the MAP set of 

parameters 𝜽𝑡
∗ formally writes as: 

                                𝜽𝑡
∗ = arg max

𝜽𝑡∈𝚯�̂�

𝑝(𝜽𝑡|𝔼[𝒮𝑁,𝑡]) = arg max
𝜽𝑡∈𝚯�̂�

𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡)𝑝(𝜽𝑡)                (𝟕𝒂) 

The likelihood 𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡) is estimated using 𝑓𝜽𝑡(𝝃𝑡→𝑡+1) as our model follows a bivariate 

normal distribution. As the marginal likelihood 𝑝(𝔼[𝒮𝑁,𝑡]) is independent from 𝜽𝑡, we have: 

                 𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡)𝑝(𝜽𝑡) ∝
𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡)𝑝(𝜽𝑡)

𝑝(𝔼[𝒮𝑁,𝑡])
=

𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡)𝑝(𝜽𝑡)

∫ 𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡′)𝑝(𝜽𝑡′)𝑑𝜽𝑡′
        (𝟕𝒃) 

The density of a bivariate Gaussian distribution with parameters 𝜽𝑡
∗ is equal to 𝑓𝜽𝑡∗(𝝃𝑡→𝑡+1). In 

order to diminish the computational cost, we discretize the parameter space 𝚵�̂� using a 

Bayesian-grid approximation. We can further define the probability 𝑓(𝛼, 𝛽|𝜽𝑡
∗) of being in the 

square 𝚵𝑡(𝛼, 𝛽), formally defined noted as 𝑓(𝛼, 𝛽|𝜽𝑡
∗) = ℙ((𝛼Δ𝛼,𝛽 ≤ 𝜉𝑡 < (𝛼 + 1)Δ𝛼,𝛽) ∩

(𝛽Δ𝛼,𝛽 ≤ 𝜉𝑡+1 < (𝛽 + 1)Δ𝛼,𝛽)), using the bivariate Gaussian cumulative distribution 

function, noted Φ𝜽𝑡
∗(𝑥, 𝑦), where (𝑥, 𝑦) ∈ ℝ2. Simple computations yield the following 

expression: 

𝑓(𝛼, 𝛽|𝜽𝑡
∗) = (Φ𝜽𝑡

∗ ((1 + 𝛼)Δ𝛼,𝛽 , 𝛽Δ𝛼,𝛽) − Φ𝜽𝑡
∗(𝛼Δ𝛼,𝛽 , 𝛽Δ𝛼,𝛽)) 

                                                × (Φ𝜽𝑡
∗(𝛼Δ𝛼,𝛽 , (1 + 𝛽)Δ𝛼,𝛽) − Φ𝜽𝑡

∗(𝛼Δ𝛼,𝛽 , 𝛽Δ𝛼,𝛽))                    (𝟖) 
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2.3. Formal expression of the “(𝛜,𝐌)-certainty set” 

For 𝑀 ∈ ℕ fixed and any couple (𝛼, 𝛽) ∈ ℤ2, we define the associated Poisson parameter  

𝜆(𝛼, 𝛽|𝑀) = 𝑀𝑓(𝛼, 𝛽|𝜽𝑡
∗). The probability that 𝑚 ∈ ℕ observations are made in the square 

𝚵𝑡(𝛼, 𝛽), with 𝑚 ≤ 𝑀, is assumed to follow a Poisson distribution Pois(𝜆(𝛼, 𝛽|𝑀)). It is 

formally expressed as follows: 

                                     𝑝𝜆(𝛼, 𝛽|𝑀),𝑡
(𝑚) =

𝑀𝑚𝑓(𝛼, 𝛽|𝜽𝑡
∗)𝑚

𝑚!
𝑒−𝑀𝑓(𝛼, 𝛽|𝜽𝑡

∗
)                                   (𝟗) 

If the model specification is correct, 𝑓(𝛼, 𝛽|𝜽𝑡
∗) can be interpreted as the probability of the 

observation (𝜉𝑡, 𝜉𝑡+1) of being included in the subspace 𝚵𝑡(𝛼, 𝛽). However, the concept of 

probability is only valid asymptotically. In finite sample settings, the probability that an event 

with non-null asymptotic probability is never observed is positive. Considering the event 

(𝜉𝑡, 𝜉𝑡+1) ∈ 𝚵𝑡(𝛼, 𝛽), 𝑓(𝛼, 𝛽|𝜽𝑡
∗) may be interpreted as the limit probability of success 

associated to this event, when the number of trials tends to infinity. Letting 𝑀 ≫ 0 be the 

total number of trials, the number of successes can accurately be approximated by a binomial 

distribution of parameter 𝑓(𝛼, 𝛽|𝜽𝑡
∗). The finite-sample “behavior” of the probability 

𝑓(𝛼, 𝛽|𝜽𝑡
∗) can thus be described by a distribution. More precisely, for Δ𝛼,𝛽 small enough, we 

can further approximate this distribution with a Poisson distribution of parameter 𝜆(𝛼, 𝛽|𝑀).  

Then, for any subspace 𝚵𝑡(𝛼, 𝛽) and threshold 𝜖, 0 ≤ 𝜖 ≤ 1, we can compute the number of 

trials necessary for 𝑚 observations to be included in 𝚵𝑡(𝛼, 𝛽) with probability 1 − 𝜖. In the 

context of rare event modeling, we can compute the minimum number of trials 𝑀𝜖
∗(𝛼, 𝛽) such 

that at least one observation is included in 𝚵𝑡(𝛼, 𝛽) with probability 1 − 𝜖. This is formally 

expressed as follows: 

𝑀𝜖,𝑡
∗ (𝛼, 𝛽) = arg min

𝑀
{𝑀 ∈ ℕ |𝑝𝜆(𝛼, 𝛽|𝑀),𝑡

(𝑚 > 0) ≥ 1 − 𝜖} 

              ⟺ 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) = arg min

𝑀
{𝑀 ∈ ℕ |1 −

𝑀0𝑓(𝛼, 𝛽|𝜽𝑡
∗)0

0! 𝑒−𝑀𝑓(𝛼, 𝛽|𝜽𝑡
∗
) ≥ 1 − 𝜖}              

              ⟺ 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) = arg mi n

𝑀
{𝑀 ∈ ℕ |𝑒−𝑀𝑓(𝛼, 𝛽|𝜽𝑡

∗
) ≤ 𝜖}                                              (𝟏𝟎) 

If 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) > 𝑀, there is a probability at least 1 − 𝜖 that no observations are made in the 

square 𝚵𝑡(𝛼, 𝛽) after exactly 𝑀 trials. Equivalently, for 𝜖 ≪ 1, it is quasi-certain that the 

event “(𝜉𝑡, 𝜉𝑡+1) ∈ 𝚵𝑡(𝛼, 𝛽)” does not occur at least once after 𝑀 observations.  
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We can eventually define the “(𝜖,𝑀)-certainty set”, 𝒞𝑀,𝜖,𝑡, which is equal to the reunion of all 

subspaces 𝚵𝑡(𝛼, 𝛽) for which the event “(𝜉𝑡, 𝜉𝑡+1) ∈ 𝚵𝑡(𝛼, 𝛽)” occurs at least once after 𝑀 

trials: 

                                                            𝒞𝑀,𝜖,𝑡 = ⋃ 𝚵𝑡(𝛼, 𝛽)

(𝛼,𝛽)∈ℤ2

𝑀𝜖
∗(𝛼,𝛽)≤ 𝑀

                                                (𝟏𝟏𝒂) 

By definition, 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) decreases with 𝜖 and with 𝑓(𝛼, 𝛽|𝜽𝑡

∗)12. This has two main 

implications for the behavior of the “(𝜖,𝑀)-certainty set”: first, for fixed 𝑀 > 0, square 

subspaces with a higher probability of including sample observations are more likely to be 

included in the set. This captures the intuitive fact that a lower number of trials is necessary to 

observe at least once events with a high asymptotic probability. Moreover, if the event 

“(𝜉𝑡, 𝜉𝑡+1) ∈ 𝚵𝑡(𝛼, 𝛽)” fails to occur after 𝑀 trials with 𝑀 ≫ 𝑀𝜖
∗(𝛼, 𝛽), this might indicate 

that the theoretical model use in the computation data generating process is poorly specified. 

Second, this implies that the size of 𝒞𝑀,𝜖,𝑡 increases with 𝜖, which can reformulated as 𝜖′ ≥

𝜖 ⟺ 𝒞𝑀,𝜖′,𝑡 ⊇ 𝒞𝑀,𝜖,𝑡. These elementary properties are illustrated in the following section. 

They imply that, in order to keep the size of 𝒞𝑀,𝜖,𝑡 constant when 𝜖 → 1, we must have 𝑀 →

+∞ for subspaces where 𝑓(𝛼, 𝛽|𝜽𝑡
∗) is strictly positive. 

The concept of “(𝜖,𝑀)-certainty set” is an intuitive concept that can easily be generalized. 

For instance, in ℝ3, the square approximation becomes a cubic approximation. In higher 

dimensions, any sequence of uncertain parameters of length |𝒯| ∈ ℕ∗ can be approximated 

using a multivariate distribution, where the real space ℝ𝑇 is partitioned into a set of 

hypercubes in |𝒯| dimensions. However, the computation of the likelihood 𝑝(𝔼[𝒮𝑁,𝑡]|𝜽𝑡) 

would be increasingly costly as the number of permutations of 𝜽𝑡 increases exponentially 

with the size of 𝜽𝑡. We leave this issue for further research.  

Furthermore, for a given model ℳ𝑡 and corresponding vector of model parameters 𝜽𝑡, we 

may compute its full posterior distribution 𝑝(𝜽𝑡|𝔼[𝒮𝑁,𝑡],ℳ𝑡) in order to better account for 

parameter uncertainty, which may increase the risk of incorrect model specification. Its 

computation may rapidly become intractable in high dimensions though. We may also directly 

 
12 The proof is straightforward as the logarithm is an increasing function and we have, for 0 ≤ 𝜖 ≤ 1: 

𝑒−𝑀𝑓(𝛼, 𝛽|𝜽𝑡
∗
) ≤ 𝜖 ⟺ −𝑀𝑓(𝛼, 𝛽|𝜽𝑡

∗) ≤ ln 𝜖 ⟺ 𝑀 ≥ −
ln 𝜖

𝑓(𝛼, 𝛽|𝜽𝑡
∗)
≥ 0 
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express 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) as a function of 𝜽𝑡 and ℳ𝑡, noted 𝑀𝜖,𝑡

∗ (𝛼, 𝛽|𝜽𝑡 ,ℳ𝑡). Then, given a set of 

candidate models 𝓜𝑡 = {ℳ𝑡
1,ℳ𝑡

2, … ,ℳ𝑡
ℓ}, we directly compute the posterior probability 

𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖)) of observing at least one observation in 𝚵𝑡(𝛼, 𝛽) after 𝑀 trials. In a similar 

fashion to Bayesian Model Averaging, we weight the posterior probability 

𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖|ℳ𝑡
𝑙)) by the posterior probability of model ℳ𝑡

𝑙, noted 𝑝(ℳ𝑡
𝑙|𝔼[𝒮𝑁,𝑡]), for each 

ℳ𝑡
𝑙 ⊆𝓜𝑡

13. Then, for a given positive probability threshold 𝑝𝒞 ≤ 1, we compute the 

reunion of all subspaces of 𝚵𝑡(𝛼, 𝛽) such that 𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖)) is superior or equal to 𝑝𝒞: 

                                                       𝒞𝑀,𝜖,𝑡 = ⋃ 𝚵𝑡(𝛼, 𝛽)

(𝛼,𝛽)∈ℤ2

𝑝(𝜇𝛼,𝛽(𝑀,𝜖))≥ 𝑝
𝒞

                                             (𝟏𝟏𝒃) 

Intuitively, 𝒞𝑀,𝜖,𝑡 corresponds to the reunion of all events that have an expected probability of 

being observed at least once superior to 𝑝𝒞 after exactly 𝑀 trials. Our method may be 

interpreted as a Bayesian application of the “law of truly large numbers” [22]. Once 𝒞𝑀,𝜖,𝑡 is 

estimated for all 𝑡 ∈ 𝒯\{|𝒯|}, we can use this information to formulate the set of possible 

trajectories of the partial random process for any pair (𝝃𝑡, 𝝃𝑡+1). Then, using simple matrix 

algebra and graph theory concepts, we propose an original algorithm allowing us to estimate 

the most extreme and volatile trajectories that can be observed for the full random process 

{𝝃𝑡}𝑡∈𝒯. 

 

 
13 We define the function 𝜇𝛼,𝛽(𝑀, 𝜖|𝜽𝑡 ,ℳ𝑡

𝑙) equal to 1 if 𝑀𝜖,𝑡
∗ (𝛼, 𝛽|𝜽𝑡 ,ℳ𝑡

𝑙) ≤ 𝑀 and 0 otherwise. Then, for a 

given model ℳ𝑡
𝑙 , the probability 𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖|ℳ𝑡

𝑙)) is equal to: 

𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖|ℳ𝑡
𝑙)) = ∫𝜇𝛼,𝛽(𝑀, 𝜖|𝜽𝑡′,ℳ𝑡

𝑙)𝑝(𝜽𝑡′|𝔼[𝒮𝑁,𝑡],ℳ𝑡
𝑙)𝑑𝜽𝑡′ 

Finally, we take the weighted sum over all concurrent models in 𝓜𝑡 = {ℳ𝑡
1,ℳ𝑡

2, … ,ℳ𝑡
ℓ} to obtain the 

probability that at least one observation is made in 𝚵𝑡(𝛼, 𝛽) for the couple (𝑀, 𝜖): 

𝑝 (𝜇𝛼,𝛽(𝑀, 𝜖)) =∑𝑝(𝜇𝛼,𝛽(𝑀, 𝜖|ℳ𝑡
𝑙)) × 𝑝(ℳ𝑡

𝑙|𝔼[𝒮𝑁,𝑡])

ℓ

𝑙=1

 



 

88 
 

3. Definition of a path generation algorithm for constructing 

the set of worst-case trajectories 

3.1. Motivation and main notations 

Set 𝑄 ∈ ℕ∗. We start by discretizing the “𝜖-certainty set” so that we can formulate a finite set 

of trajectories, or paths, of the uncertain vector. A trajectory corresponds to a tuple that has 

each element included in the “(𝜖,𝑀)-certainty set”. For instance, we consider the couple 

(𝜉𝑡, 𝜉𝑡+1) ∈ ℝ
2 is an eligible trajectory if (𝜉𝑡, 𝜉𝑡+1) ∈ 𝒞𝑀,𝜖,𝑡. 

More generally, any trajectory (𝜉𝑡, 𝜉𝑡+1… , 𝜉𝑡+𝑇+1) ∈ ℝ
𝑇+1 of length 𝑇 + 2, 𝑇 ≥ 0, is eligible 

if (𝜉𝑡+𝜏, 𝜉𝑡+𝜏+1) ∈ 𝒞𝑀,𝜖,𝑡+𝜏 for any 𝜏 ∈ {0,… , 𝑇}. Then, for any 𝑡 ≥ 0, we partition 𝒞𝑀,𝜖,𝑡 into 

exactly (𝑄 + 1) subsets of equal length. Setting 𝜉𝑡
− = inf  {𝜉𝑡|(𝜉𝑡, 𝜉𝑡+1) ∈ 𝒞𝑀,𝜖,𝑡} and 𝜉𝑡

+ =

sup {𝜉𝑡|(𝜉𝑡, 𝜉𝑡+1) ∈ 𝒞𝑀,𝜖,𝑡}, we generate for each 𝑡 the set of equally spacd discrete values 𝑽𝑄
𝑡  

such that:  

                                     𝑽𝑄
𝑡 = {𝑣𝑖

𝑡|𝑣𝑖
𝑡 = 𝜉𝑡

− + 𝑖𝑄−1(𝜉𝑡
+ − 𝜉𝑡

−), 𝑖 ∈ {0, … , 𝑄} }                             (𝟏𝟐) 

In terms of graph theory, 𝑽𝑄
𝑡  corresponds to a set of (𝑄 + 1) vertices. For any pair of subsets 

(𝑽𝑄
𝑡 , 𝑽𝑄

𝑡+1), we are interested in computing all possible pairs, or “paths”, of successive 

vertices. In the case of robust optimization, we may wish to know which “path” generates the 

highest or lowest residual demand trajectories. We propose an original method for estimating 

both the set of trajectories for which residual demand takes its most extreme values, but also 

the set of trajectories with the most volatile behavior. In terms of graph theory, the most 

volatile trajectory exactly corresponds to the longest path, as the variations of its level are 

maximized.  The set of all possible combinations is finite and can be expressed using the 

Cartesian product as follows: 

                         𝑽𝑄
𝑡 × 𝑽𝑄

𝑡+1 =

(

 
 

(𝑣1
𝑡, 𝑣1

𝑡+1) (𝑣1
𝑡, 𝑣2

𝑡+1) ⋯ (𝑣1
𝑡 , 𝑣𝑄+1

𝑡+1 )

(𝑣2
𝑡 , 𝑣1

𝑡+1) (𝑣2
𝑡 , 𝑣2

𝑡+1) ⋯ (𝑣2
𝑡 , 𝑣𝑄+1

𝑡+1 )

⋮ ⋮ ⋱ ⋮
(𝑣𝑄+1

𝑡 , 𝑣1
𝑡+1) (𝑣𝑄+1

𝑡 , 𝑣2
𝑡+1) ⋯ (𝑣𝑄+1

𝑡 , 𝑣𝑄+1
𝑡+1 ))

 
 
               (𝟏𝟑) 

We count (𝑄 + 1)2 possible pairs. Following the same logic, for any (𝑇 + 2)-uplet of subsets 

(𝑽𝑄
𝑡 , 𝑽𝑄

𝑡+1, … , 𝑽𝑄
𝑡+𝑇+1), there exists (𝑄 + 1)𝑇+1 possible simple “paths” with (𝑇 + 2) vertices 

from the set of vertices 𝑽𝑄
𝑡  to 𝑽𝑄

𝑡+𝑇+1. In terms of graph theory, the resulting graph can be 
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interpreted as the union of 𝑇 undirected complete bipartite graphs, as illustrated in Figure 2 

below. 

 

Figure 2: A complete bipartite graph  

 

The above graph is fully connected. Each possible pair of vertices (𝑣𝑖
𝑡 , 𝑣𝑗

𝑡+1), 1 ≤ 𝑖, 𝑗 ≤ 𝑛 

belonging to consecutive sets (𝑽𝑄
𝑡 , 𝑽𝑄

𝑡+1), is connected by an edge with a positive weight. We 

may define the weight associated to the edge (𝑣𝑖
𝑡, 𝑣𝑗

𝑡+1) as the distance between the two 

vertices, which we note ℓ(𝑣𝑖
𝑡, 𝑣𝑗

𝑡+1) = |𝑣𝑖
𝑡 − 𝑣𝑗

𝑡+1| ∈ ℝ+. Then, we define the length of a 

given “path” as the sum of the weights associated to its edges. For any 𝑡 < |𝒯|, we define the 

matrix of weights associated to the pair of sets (𝑽𝑄
𝑡 , 𝑽𝑄

𝑡+1) as follows: 

              𝑋𝑡 =

(

 
 

 ℓ(𝑣1
𝑡, 𝑣1

𝑡+1) ℓ(𝑣1
𝑡, 𝑣2

𝑡+1) ⋯ ℓ(𝑣1
𝑡, 𝑣𝑄+1

𝑡+1 )

ℓ(𝑣2
𝑡 , 𝑣1

𝑡+1) ℓ(𝑣2
𝑡 , 𝑣2

𝑡+1) ⋯ ℓ(𝑣2
𝑡 , 𝑣𝑄+1

𝑡+1 )

⋮ ⋮ ⋱ ⋮
ℓ(𝑣𝑄+1

𝑡 , 𝑣1
𝑡+1) ℓ(𝑣𝑄+1

𝑡 , 𝑣2
𝑡+1) ⋯ ℓ(𝑣𝑄+1

𝑡 , 𝑣𝑄+1
𝑡+1 ))

 
 
∈ ℝ(𝑄+1)×(𝑄+1)     (𝟏𝟒) 

 

3.2.Formulation and complexity of the 𝑵-Summits Algorithm 

As 𝑄 and 𝑇 increase, the number of all possible “paths” grows exponentially, which may 

rapidly make the computation of their set intractable. Similarly, finding the longest “path” in a 

weighted graph, that is the graph which maximizes the sum of weights of its edges, is NP-
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hard. However, instead of directly searching for the simple path of maximum length in a 

complete multipartite graph, we may instead drastically reduce the set of candidate paths, with 

the guarantee that the longest path is included within this set. We propose such a solution, 

which generates the subset in polynomial time.  

Our method is constructed based on intuitions derived from a new operator, that we call “path 

operator”, which allows us to generate the set of all discrete paths of maximum length 𝑄𝑇, 

with their corresponding length, associated to a given graph with 𝑄𝑇 vertices. Our operator 

exhibits nice recursive properties. However, because of its rather technical formulation, we let 

the reader refer to the Appendix for a full description. In this section, we consider without loss 

of generality a fully connected graph with non-null weights. By taking advantage of the 

peculiar structure of our “path operator”, we identify and build an algorithm for finding the 

longest path in a multipartite complete graph in polynomial time. Using backward induction, 

we simultaneously compute the longest path originating for each vertex of each set of 

vertices. This allows us to keep the set of candidate paths of constant size, as the latter only 

varies with 𝑄′. Due to the parallel nature of our algorithm, we call it the “𝑁-Summits 

Algorithm”. 

For simplicity and without loss of generality, we consider the (𝑚 + 2)-uplet of sets 

(𝑽0, 𝑽1, … , 𝑽𝑚+1). For 𝑚 > 0 and 𝑖 ≤ 𝑚, we define the matrix Ω𝑖 ∈ ℝ(𝑄′×𝑄′) as follows: 

    Ω𝑖 =

(

 
 

𝑋1,1
𝑚−𝑖 + supΩ1,∗

𝑖−1 𝑋1,2
𝑚−𝑖 + supΩ2,∗

𝑖−1 ⋯ 𝑋1,𝑄′
𝑚−𝑖 + supΩ𝑄′,∗

𝑖−1

𝑋2,1
𝑚−𝑖 + supΩ1,∗

𝑖−1 𝑋2,2
𝑚−𝑖 + supΩ2,∗

𝑖−1 ⋯ 𝑋2,𝑄′
𝑚−𝑖 + supΩ𝑄′,∗

𝑖−1

⋮ ⋮ ⋱ ⋮
𝑋𝑄′,1
𝑚−𝑖 + supΩ1,∗

𝑖−1 𝑋𝑄′,2
𝑚−𝑖 + supΩ1,∗

𝑖−1 ⋯ 𝑋𝑄′,𝑄′
𝑚−𝑖 + supΩ𝑄′,∗

𝑖−1
)

 
 
∈ ℝ+

(𝑄′×𝑄′)
   (𝟏𝟓) 

Where Ω0 = 𝑋𝑚 and Ω𝑗,∗
𝑖  corresponds to the elements on the 𝑗-th line of Ω𝑖. Let us denote by 

𝕋(Ω𝑖) the set of all paths generated by recursively applying Ω𝑖′ from 0 to 𝑖, 𝑖′ ≤ 𝑖. Finally, for 

𝑗 such that 1 ≤ 𝑗 ≤ 𝑄′ and 𝑖 ≤ 𝑚, we note 𝕋(Ω𝑗,∗
𝑖 )

+
 the 𝑖 + 2-uplet that maximizes Ω𝑗,∗

𝑖  and 

define the ordered set 𝕋(Ω𝑖)
+
= (𝕋(Ω1,∗

𝑖 )
+
, … , 𝕋(Ω𝑄′,∗

𝑖 )
+
). We can recursively express 

𝕋(Ω𝑖) under matrix form using the Cartesian product: 

                                                         𝕋(Ω𝑖) = 𝑽𝑚−𝑖 × 𝕋(Ω𝑖)
+
                                                          (𝟏𝟔) 

Where 𝕋(Ω0) = 𝑽𝑚 × 𝑽𝑚+1. We note 𝔓𝑖′=𝑚−𝑖
𝑚+1 𝑽𝑖′ the set of all paths with (𝑖 + 2) vertices 

from  Then, we can express the following central result: 
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Fundamental theorem: For any path with (𝑖 + 2) vertices 𝓉𝑖 = (𝑣
𝓉𝑚−𝑖
𝑖
𝑚−𝑖 , … , 𝑣

𝓉𝑚
𝑖
𝑚 , 𝑣

𝓉𝑚+1
𝑖
𝑚+1) ∈

𝔓𝑖′=𝑚−𝑖
𝑚+1 𝑽𝑖′ such that 𝓉𝑖 ∉ 𝕋(Ω𝑖), then the length of 𝓉𝑖 is inferior or equal to the length of the 

longest path included in 𝕋(Ω𝑖) , ie ℓ(𝓉𝑖) ≤ supΩ𝑖. 

Proof: 

The property is trivial for 𝑖 = 0, since by definition, for any (𝑗, 𝑘) ∈ {1, … , 𝑄′}2, we have 𝑋𝑗,𝑘
𝑚 ≤ sup𝑋𝑗,∗

𝑚 =

supΩ𝑗,∗
0 , which implies that 𝑋𝑗,𝑘

𝑚 ≤ sup𝑋𝑚 so ℓ(𝓉0) ≤ supΩ0. 

For any 𝑗 ∈ {1, … , 𝑄′}, assume that 𝑣𝑗
𝑚−𝑖 ∈ 𝓉𝑖 ⟹ ℓ(𝓉𝑖) ≤ supΩ𝑖𝑗,∗. For any couple (𝑗, 𝑘) ∈ {1, … , 𝑄′}2 and 𝑖 >

0, we have by definition: 

𝑋𝑗,𝑘
𝑚−(𝑖+1) + supΩ𝑘∗,

𝑖 ≤ sup(𝑋∗,𝑘
𝑚−(𝑖+1) + supΩ𝑖𝑘,∗) = sup𝑋∗,𝑘

𝑚−(𝑖+1) + supΩ𝑖𝑘,∗ ≤ supΩ
𝑖+1 

As this condition is true for any couple, then for any trajectory 𝓉𝑖+1 ∉ 𝕋(Ω𝑖+1), ∃(𝑗′, 𝑘′) ∈ {1, … , 𝑄′}2 such that 

for (𝑣𝑗′
𝑚−𝑖−1, 𝑣𝑘′

𝑚−𝑖) ∈ 𝓉𝑖+1. It follows that: 

ℓ(𝓉𝑖+1) ≤ ℓ ((𝑣𝑗′
𝑚−𝑖−1, 𝑣𝑘′

𝑚−𝑖)) + supΩ𝑖𝑘′,∗ ≤ sup𝑋∗,𝑘′
𝑚−(𝑖+1) + supΩ𝑖𝑘′,∗ ≤ supΩ

𝑖+1 

Thus, we have 𝓉𝑖+1 ∉ 𝕋(Ω𝑖+1) ⟹ ℓ(𝓉𝑖+1) ≤ supΩ𝑖+1. 

 

For any 𝑚 > 0 and 𝑖 ≤ 𝑚, we can recursively compute the matrix Ω𝑖 and the associated path 

matrix 𝕋(Ω𝑖) with the guarantee that the longest path with 𝑖 + 1 edges is included in 𝕋(Ω𝑖). 

For any 𝑗 ∈ {1,… , 𝑄′}, computing the supremum of Ω𝑗,∗
𝑖  requires at most 𝑄′ operations. 

Computing supΩ𝑗,∗
𝑖  for all 𝑗 ∈ {1, … , 𝑄′} thus requires at most 𝑄′2, plus 𝑄′2 additions in order 

to compute each element of Ω𝑖. Thus, computing matrix Ω𝑚 has a total time complexity of 

𝒪(2𝑚𝑄′2). Computing 𝕋(Ω𝑖) requires exactly the same set of operations, least the 

identification of 𝕋(Ω𝑖)
+
= (𝕋(Ω1,∗

𝑖 )
+
, … , 𝕋(Ω𝑄′,∗

𝑖 )
+
) as the matrix coordinates of the tuples 

maximizing each row of Ω𝑖 are identical to the coordinates of supΩ𝑗,∗
𝑖  for all 𝑗 ∈ {1,… , 𝑄′} . 

Finally, identifying the maximum value of Ω𝑖 requires 𝑄′2 comparisons. Thus, the total time 

complexity of our algorithm for finding the longest path with 𝑚 + 2 vertices is equal to 

𝒪(𝑄′2 + 2𝑚𝑄′2 +𝑚𝑄′2), which is equal to 𝒪(𝑄′2(1 + 3𝑚)). A graphical illustration of the 

𝑁-Summit Algorithm is provided in Figure 3.  
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Figure 3: Illustration of the 𝑁-Summit Algorithm with 3 sets of vertices 

Note: For any set of vertices 𝑉1, 𝑉2 and 𝑉3, the black dotted lines correspond to all possible edges between all 

vertices of two consecutive sets. The red plain lines represent the longest edges starting from each vertex of 𝑉𝑖 

for consecutive sets (𝑉𝑖, 𝑉𝑖+1), 𝑖 = {1,2}. 

 

4. Application to the case of Auvergne-Rhône-Alpes 

In the following section, we use the methodology described introduced in Sections I and II to 

the case of the French region Auvergne Rhône-Alpes. This administrative region is located in 

the South-East of France and enjoys strong solar irradiation compared to the national average. 

In addition, it accounts for roughly 11.6% of French GDP, while its mean share of national 

electricity load equals to 13.8%. 

4.1. Estimation of the model parameters 

We model the regional electric system using a robust investment and dispatching model with 

unit commitment constraints, formulated as a MILP. Neglecting transmission and distribution 

constraints, it includes short-term thermal constraints with commitment state, start-up and 

shut-down decisions, minimum and maximum generation levels, in addition to minimum 

uptime and downtime for operating plants. For conveniency, the mathematical formulation of 

the model, with the full description of notations and equations, is provided in Appendix. It is 

𝑉1 𝑉2 𝑉3 
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formulated using multiple time scales (diurnal, weekly and seasonal) with an hourly time 

resolution. 

We assume no initial generation capacities in order to better disentangle the impact of each 

worst-case trajectories on investment decisions. For convenience, we further assume that no 

investment occurs in hydroelectric capacity. Moreover, we constrain the investment variables 

to take only discrete values for nuclear, gas turbines (GT) and combined cycle gas turbine 

plants (CCG), and continuous values for renewable energy sources (RES) and storage 

technologies. Nuclear investment is performed by blocks of 1.6 GW, corresponding to the 

rated power of the EPR Flamanville plant (the most recent nuclear power project in France), 

while CCG investments are made by blocs of 0.45 GW, which corresponds to the average 

nominal power of General Electric’s 9HA.01/.02 gas turbine. Finally, GT investments are 

performed by blocks of 0.3 GW. Flexibility and cost assumptions for generation units can be 

found in Table 1.A and Table 1.B. in Appendix. We set the price of CO2 to 50€/t. We use a 

discount factor of 5% for the computation of annuities corresponding to investment costs. 

Finally, following the CRE (CRE, 2018)14, we choose a VOLL equal to 13 000 €/MWh. 

When considering the technical characteristics of generation technologies presented in Table 

1.A., one actually notices that ramping rates are high enough for each online generation unit 

to very entirely between its minimum and maximum generation level. Indeed, as the model is 

defined with an hourly time resolution, nuclear plants may vary their production by up to 

100% of their rated power between successive time periods. Thus, ramping constraints are 

actually not binding without adding operational restrictions on nuclear units. 

Still using the RTE database on the electricity consumption, solar and wind power generation 

on the period 2013-2018, we apply for all four seasons our methodology. For each hour of the 

day, the number of observations 𝑁 in the training sample goes from 541 in Winter and 546 in 

Autumn to 552 in Spring and Summer. 

 

 

 

 
14 Public consultation from the French Energy Regulatory Commission (CRE), Public consultation No. 2018-015 

of 20 December 2018 on the investment request relating to the Celtic project, including a cross-border cost 

allocation 
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4.1.1. Estimation of the “(𝝐,𝑴)-certainty set” 

In the context of this application, the random vector 𝝃 corresponds to residual demand (RD). 

RD can be considered as a linear combination, equal to the electricity demand minus 

renewable generation. Thus, there exists a unique 𝝃 for each combination of wind and 

photovoltaic capacities. We set wind and solar capacities to be respectively equal to 𝑺 GWe, 

where 𝑺 ∈ {0; 2; 4; 6}.  

In order to clearly disentangle how the couple(𝜖,𝑀) affects the shape of the “(𝜖,𝑀) certainty 

set”, we fix 𝑺 = 2. For a given increment Δ𝛼,𝛽, we restrict the set within which the 

normalized residual demand couples (𝜉�̃�, 𝜉𝑡+1̃ ) can take values to the restricted square 

subsample 𝚵𝑅(𝑥, 𝑦) such that, for 𝑥 ≤ 𝑦 and 𝑥 ≡ 0 (mod  Δ𝛼,𝛽), 𝑦 ≡ 0 (mod  Δ𝛼,𝛽): 

       ⋃ 𝚵𝑡(𝛼, 𝛽)

(𝛼,𝛽)∈{𝑥Δ𝛼,𝛽
−1 ,𝑦Δ𝛼,𝛽

−1 }
2

= 𝚵𝑅(𝑥, 𝑦) = {(𝜉�̃�, 𝜉𝑡+1̃ )|
𝑥 ≤ 𝜉�̃� ≤ 𝑦

𝑥 ≤ 𝜉𝑡+1̃ ≤ 𝑦
, 𝑡 ∈ 𝒯} ⊂ ℝ2       (𝟏𝟕) 

We choose Δ𝛼,𝛽 = 80, 𝑥 = −8 × 103 and 𝑦 = 6 × 103. 

We compute the “(𝜖,𝑀)-certainty set” for size parameters (𝜖,𝑀) varying over a large range 

of values. Keeping 𝜖 constant, Figure 4.A. shows that the size of 𝒞𝑀,𝜖,𝑡 increases 

monotonically with 𝑀, which confirms our theoretical intuition. As 𝜖 = 10−6, 1 − 𝜖 ~ 1. 

This allows us to state that, for instance, we can be almost certain that the couple of residual 

demand values (7000,7000) at 12 p.m in Winter will not occur at least once for a number of 

trials lower than 108. Equivalently, we observe that the minimum number of trials 𝑀 required 

to observe at least once the couple of values (15 000, 15 000) with certainty is below 106. 

Similar patterns for Summer can be observed in Figure 4.B. in Appendix. 
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Figure 4.A.: “(𝜖,𝑀)-certainty set” at 12 p.m in Winter keeping 𝜖 fixed 

Note: We set 𝜖 = 10−6. We set 𝑀 respectively equal to 106 (top-left), 107 (top-right), 108 (bottom-left) and 

109 (bottom-right). 

 

As expected, we observe from Figure 4.C. that the size of the “(𝜖,𝑀)-certainty set” 

increases with 𝜖. As 𝜖 gets higher, the probability of observing at least once a given event, for 

𝑀 fixed, increases as 𝑀𝜖,𝑡
∗ (𝛼, 𝛽) gets smaller for all (𝛼, 𝛽) ∈ ℤ2. Thus, the probability of 

never observing any event also decreases for an increasing 𝜖.  

We set 𝑀 = 109 and 𝜖 = 10−6 and estimate 𝒞𝑀,𝜖,𝑡 for all 𝑡 ∈ {0, … ,23} ⊂ 𝒯 and all seasons. 

As 𝒯 exhibits diurnal cyclicality (i.e. the sequence of hours repeats each day), we make the 

simplifying assumption that for a given 𝑡 ∈ {0,… ,23} and season, 𝒞𝑀,𝜖,𝑡 is identical for all 

days of the week. This may be refined in further work as residual demand is likely to exhibit 

different dynamic patterns during the week and the weekend. For each season and each 𝑡 ∈ 𝒯, 

we compute the set 𝒞𝑀,𝜖,𝑡 corresponding to each value of 𝑺. 
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Figure 4.C.: “(𝜖,𝑀)-certainty set” at 12 p.m in Winter keeping 𝑀 fixed 

Note: We set 𝑀 = 106. We set 𝜖 respectively equal to 10−6 (top-left), 10−5 (top-right), 10−4 (bottom-left) and 

10−3 (bottom-right). 

 

4.1.2. Estimation of the worst-case set of residual demand trajectories 

Using the methodological framework introduced in Section II, we discretize the “(𝜖,𝑀)-

certainty sets” for each 𝑡 into 𝑄 segments of equal length, such that 𝑽𝑄
𝑡  contains exactly 𝑄 + 1 

values or “edges”. We set 𝑄 = 10 and 𝑚 = |𝒯| − 2, such that we estimate worst-case RD 

trajectories with a length equal to one full week.   

We respectively denote by H, L and V the sequences of values that maximize, minimize and 

maximize the variability of RD. We count a maximum number of (𝑄 + 1)|𝒯| possible residual 

demand trajectories, that is 11168. However, there exists some pairs of vertices (couples of 

residual demand values) that are not linked by any edge, i.e. it is not possible to observe the 

corresponding sequence of vertices. We observe that for any couple (𝑽𝑄
𝑡 , 𝑽𝑄

𝑡+1), each vertex 
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from 𝑽𝑄
𝑡  shares on average 5 edges with 𝑽𝑄

𝑡+1. This restricts the total number of possible 

residual demand trajectories to roughly 5168. 

We apply the 𝑁-Summit Algorithm to each season. The elapsed CPU time for computing 

trajectory V is estimated to 0.55 seconds. In order to compute trajectories H and L, we first 

replace each element ℓ ((𝑣𝑗
𝑖, 𝑣𝑘

𝑖+1)) in matrix 𝑋𝑖 by the term ℓ ((𝑣𝑗
𝑖 , 𝑣𝑘

𝑖+1)) = 𝑣𝑗
𝑖 − 𝑣𝑘

𝑖+1 ∈ ℝ. 

Then, finding H consists in finding the trajectory which maximizes residual demand values, 

or equivalently that increases the most in the interval [0, 𝑚]. Similarly, computing L is 

equivalent to finding the residual demand trajectory that decreases the most, which requires in 

addition replacing the supremum by the infimum in the definition of Ω𝑖. The elapsed CPU 

times for computing L and H are both estimated to 0.75 seconds.  

Figure 5 shows the set of worst-case trajectories estimated for all seasons and various levels 

of renewable installed capacity. It can be noted for all seasons that higher RES penetration 

increases the diurnal variability of RD, following the generation pattern of photovoltaic units. 

Moreover, we observe that the depth of the “duck dive”, described in [23], which describes 

the timing imbalance between the evening peak load and the afternoon solar generation peak, 

strongly increases in Spring and Summer. This translates a ramp need of more 10 GWh within 

a few hours, both in the morning around 9 a.m. and in the afternoon around 7 p.m. This 

indicates the adequate production mix would require production units with steep ramping 

capacities and low minimum production levels, associated with an active management of 

renewable output, including energy storage, curtailment and demand response. 

Yet, our method models RD at the aggregate level and thus does not allow to separately 

observe the values of demand nor RES generation. This makes the exact computation of 

maximum possible levels of load shedding or curtailment impossible in practice. Using a 

simple approximation heuristic, we first generate the vector of values of RD that would have 

been observed in the training sample for each value taken by 𝑺. Then, for each worst-case 

trajectory, we match each component with the observation in the generated vector which 

minimizes their squared distance. This allows us to attribute to each value of the worst-case 

trajectory a 3-uplet of electricity demand, wind and solar capacity factors found in the training 

sample. Finally, we gradually modify the values of demand in each 3-uplet in the direction 

that reduces the most the total mean squared distance with the worst-case trajectory until it 

falls below a given threshold. We shall further refine this approximation heuristic in further 

research. 
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Figure 6: Extreme residual demand trajectories for all seasons 

Note: The red, green and blue plain curves respectively correspond to trajectory H, L and V for 𝑺 = 2. The 

dotted lines correspond to residual demand trajectories for 𝑺 = 6. The top-left (resp. top-right, bottom-left and 

bottom-right) corresponds to residual demand worst-case trajectories in Winter (resp. Spring, Summer and 

Autumn). 

 

4.2. Baseline simulation results 

We compare the investment levels and cost performance of the optimal mix obtained when 

hedging against a variety of extreme trajectories. We throughout compare our results to those 

obtained in Chapter I. When hedging only against H or against the couple of trajectories L+ 

H, we set 𝑁𝑅 respectively equal to 1 and 2. Hedging against L+H+V consists in hedging 

against all types of worst-case trajectories. Like in the previous chapter, we will refer to these 

three different hedging strategies as scenarios 𝐼1, 𝐼2 and 𝐼3. Similarly, in order to clearly 

observe the effects of renewable penetration on investment levels and cost performance, we 

constraint the wind and photovoltaic capacities to be respectively equal to 𝑺 GWe, where 𝑺 ∈

{0; 2; 4; 6} as previously. 



 

99 
 

 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 6.75 12.15 9.45 2.7 13.5 10.8 

Gas turbine 0 0.9 0 0 0 2.7 

Nuclear 16 9.6 12.8 19.2 9.6 9.6 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 2970.199 2564.256 9311.854 1619.789 1838.806 3755.732 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 5.4 13.5 10.8 4.05 13.5 9.45 

Gas turbine 0 0.9 0 0 0.9 0.9 

Nuclear 16 6.4 9.6 16 6.4 9.6 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 7705.299 5204.875 6565.825 10868.865 2680.999 14821.713 

 

Table 2.A.: Optimal investment level by technology for various levels of renewables capacity 

(in GWe) 

Note: For any level of 𝑺, the investment levels corresponding to column  

𝐼1 (resp. 𝐼2) are obtained when hedging against the highest residual demand trajectory (resp. when hedging both 

against the lowest and highest residual demand trajectories).  

 

We first observe from Table 2.A. that nuclear installed capacity is consistently higher in 

investment scenario 𝐼1. Under this scenario, peaking capacity globally decreases while storage 

capacity increases with higher RES penetration. For all investment scenarios, we observe a 

roughly decreasing trend in peaking capacities with U-shaped evolution of storage capacities. 

Compared to Chapter I, we note CCGT and GT capacities are significantly lower for all 

investment scenario and do not necessarily increase with renewable penetration. This suggests 

that, in the presence of storage technologies, there exists no clear linear relationship between 

renewable penetration and the level of required peaking capacities. Still, the decreasing share 

of nuclear translates higher requirements for flexible generation units with low minimum 

generation level and high ramping rates.  

Table 2.B. shows the total investment cost and average unit generation costs for each worst-

case weekly trajectory associated to each investment scenario. First, despite the increase of 

investment costs generated by imposed renewable penetration, the total investment costs show 
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no positive clear trend. We also note investment costs are systematically higher for nuclear 

based mixes: mixes found in 𝐼2 (resp. 𝐼3) have between 41 % and 64 % (resp. 16% and 58%) 

lower investment costs.  

 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 66.39 46.43 57.33 

Average unit cost (week H, €/MWh) 19.80 13.18 11.00 12.64 36.98 32.77 31.03 32.28 28.39 22.78 20.48 22.13 

Average unit cost (week L, €/MWh) 8.311 8.313 8.344 8.320 10.05 8.313 9.045 8.320 8.311 8.313 8.344 8.320 

Average unit cost (week V, €/MWh) 11.99 8.953 8.511 9.956 28.59 25.86 20.04 24.59 17.92 11.45 8.745 12.93 

𝑺 = 𝟐  

Total investment costs (B€) 79.17 50.87 50.24 

Average unit cost (week H, €/MWh) 11.65 8.182 8.117 8.246 36.62 31.95 29.78 31.94 38.12 31.95 29.78 31.94 

Average unit cost (week L, €/MWh) 6.912 6.419 7.341 6.359 6.912 6.419 6.765 6.243 6.912 6.370 6.765 6.238 

Average unit cost (week V, €/MWh) 8.036 8.295 8.074 9.086 26.15 22.84 18.03 22.83 25.86 19.81 17.33 21.95 

𝑺 = 𝟒  

Total investment costs (B€) 73.98 52.49 53.54 

Average unit cost (week H, €/MWh) 17.84 10.29 8.055 11.71 44.75 40.90 39.21 41.72 35.64 30.66 28.31 31.53 

Average unit cost (week L, €/MWh) 5.673 4.404 4.972 4.439 7.663 4.547 4.972 4.439 5.470 4.404 4.972 4.439 

Average unit cost (week V, €/MWh) 8.144 7.917 7.361 7.737 35.33 30.09 26.11 33.55 24.79 18.87 14.90 22.44 

𝑺 = 𝟔  

Total investment costs (B€) 77.40 47.03 58.18 

Average unit cost (week H, €/MWh) 16.17 8.377 8.002 11.55 44.02 39.78 37.89 41.67 34.71 29.25 26.53 31.60 

Average unit cost (week L, €/MWh) 4.014 3.305 3.653 3.758 4.014 3.788 4.704 3.758 4.014 2.829 3.653 3.758 

Average unit cost (week V, €/MWh) 7.461 7.068 6.736 7.239 33.85 25.70 22.08 27.91 22.94 12.23 7.401 14.74 

 

Table 2.B.: Total investment costs and average unit cost by worst-case trajectory for various 

levels of renewables capacity (in GWe) 

Note: For each column 𝐼1, 𝐼2 and𝐼3, sub-columns respectively correspond to the average unit generation cost for 

various worst-case trajectories for Winter, Spring, Summer and Autumn, from the left to the right. Example: the 

average unit cost in Spring when hedging against H only, for  𝑺 = 2, is equal to 8.182 €/MWh. 

 

Using average unit generation cost as a proxy for long-term spot prices, we note that for all 

worst-case trajectories, mixes with significant nuclear capacities clearly outperform more 

flexible ones. Except for the week L, for which lower minimum generation constraints in 𝐼2 

and 𝐼3 allow slightly lower average unit cost, the generation cost advantage of nuclear based 

mixes increases with RES capacities. For 𝑺 = 0 and worst-case week H, the yearly average 

unit cost associated to investment scenario 𝐼1 represents only 42% (resp. 59%) of the average 
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cost associated to 𝐼2 (resp. 𝐼3). For 𝑺 = 6, these ratios further decrease to 27% and 36% 

respectively. Still, like in Chapter I, we note the cost performances associated to 𝐼3 are in all 

cases significantly better than that of scenario 𝐼2. This confirms the economic relevance of 

hedging against the most volatile residual demand trajectories in terms of optimal investment 

decision. 

However, comparing generation mixes in terms of cost performance over a sample of extreme 

scenario, with a potentially low probability of occurrence, has little relevance in terms of 

average cost performance. We can thus approximate the yearly distribution of production cost 

associated with a given generation mix. 

Like in Chapter I, we approximate the yearly Net Load Duration Curve (NLDC) with a 4-

week sample drawn from a set of 52 weeks, corresponding to a full year of demand and 

renewable capacity factor data. We use the same subset of representative weeks and method 

than in Chapter I. The approximate average yearly unit costs of generation are presented in 

Table 2.C.  

 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.631 21.19 11.51 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 7.849 18.14 17.94 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.380 27.14 14.91 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.887 23.89 12.25 

 

Table 2.C.: Approximate yearly average unit cost for various levels of renewables capacity 

(in GWe) 

 

Again, nuclear based mixes associated to 𝐼1 outperform other mixes in terms of average 

generation unit costs. Moreover, average yearly unit costs decrease with renewable 

penetration, while no such trend can be identified more mixes corresponding to 𝐼2 and 𝐼3. 

Under these investment scenarios, the decrease in total variable costs entailed by a higher 
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share of RES generation share fails to compensate the high variable costs of CCGT and GT, 

which utilization rate increase with renewable penetration.  

Overall, simultaneously hedging against H, L and V exhibits significant advantages in terms 

of total costs and long-term marginal cost. Still, despite higher investment and fixed costs, 

nuclear based mixes consistently exhibit lower average unit generation costs, both for extreme 

and representative trajectories. In the absence of CO2 emission targets, our results entail a net 

trade-off between these two categories of costs, which depends on the life-duration of 

generation units, distribution of fixed costs among consumers by retailers, probability of 

occurrence of extreme weeks and the distribution of costs between consumer categories.  

However, we show this difference in cost structure does not result in a significant difference 

in retail prices as nuclear based mixes can allocate their investment costs over a higher 

number of operating years. Taking the case 𝑺 = 6 and a reference average life duration of the 

whole mix of 40 years, the total investment cost of 77.4 billion euros in scenario 𝐼1 

corresponds to an annuity of roughly 4.5 billion euros. For an annual demand of 100 GWh, 

equally sharing the annuitized investment costs among consumers would result in a 45 

€/MWh add-up. Neglecting network costs, retail costs and additional taxes, the approximate 

average retail cost would be close to 52 €/MWh. In comparison, the annuitized investment 

corresponding to 𝐼3 is equal to 3.8 billion euros approximately, taking an average life duration 

of 30 years because of the significant share of CCGT and GT units. This results in an 

approximate yearly retail price of 50 €/MWh.  

The generation costs of flexible mixes would however be more sensitive to the price of gas 

and potentially be more volatile. Within a general equilibrium framework, a high electricity 

generation price would increase the cost of goods using electricity as an input and lower the 

disposable income of households. This would both likely lower the cost competitiveness of 

domestic goods and decrease domestic consumption, with negative consequences on social 

welfare that are not accounted for in our framework.  

Still, the true flexibility options of nuclear may be overestimated, which may result in higher 

than expected operational costs in order to accommodate fluctuations from renewable output. 
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4.3.  Sensitivity analysis 

Like in the previous chapter, ramping constraints are not binding using an hourly time step. 

Moreover, as underlined in [24], increasing renewable penetration increase the frequency of 

extreme nuclear power ramps and annual required shutdowns/start-up events. These may 

cause frequent physical damage to the equipment and shorten the expected lifetime of plants. 

Again, we constrain the absolute nuclear power ramp of each individual plant, denoted 𝒓𝑵𝑼𝑪, 

to be inferior to 25% or 15% of the difference between the maximum and minimum 

generation level. The optimal investment and cost performance results are shown in Table 

3.A., 3.B, 3.C. and Table 4.A., 4.B. and 4.C. respectively.  

First, we notice the optimal CCGT capacity does globally not increase in 𝐼1 and remains 

stable with high renewable penetration. Surprisingly, the overall storage capacity is also lower 

than when letting the hourly ramping rate of nuclear units unconstrained. This suggests a 

more efficient use of storage units, used in association to nuclear units to mitigate the loss in 

generation flexibility by reallocating nuclear production in time. 𝐼2 and 𝐼3 yield very similar 

findings to those in Chapter I: the share of CCGT and GT significantly increases in the 

optimal mix, while optimal storage capacities strongly decrease for high values of renewable 

penetration.  

We notice in Table 3.B. that constraining nuclear flexibility preserves the cost advantage of 

nuclear based mixes. Lowering ramping capability of nuclear units increases the average unit 

generation cost for all types of mixes and all worst-case trajectories except L. This reflects the 

higher utilization rate of peaking units, in addition to an increase in the number of start-ups 

and shutdowns required to compensate the loss of nuclear flexibility. These two effects add up 

significant costs for mixes with large CCGT and GT capacities. 
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𝒓𝑵𝑼𝑪 = 𝟐𝟓 % 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 2.7 12.150 13.5 5.4 12.15 14.85 

Gas turbine 0 0 0 0 0 0 

Nuclear 19.2 9.6 9.6 16 9.6 6.4 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 3175.161 4976.634 5081.780 2381.078 1838.806 5359.475 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 4.05 13.5 12.15 4.05 13.5 13.5 

Gas turbine 0 0 2.7 0 0.9 1.8 

Nuclear 16 9.6 6.4 16 6.4 6.4 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 4978.830 1891.511 1577.625 2753.524 4486.686 3206.784 

 

Table 3.A.: Optimal investment level by technology for 𝒓𝑵𝑼𝑪 = 25% and various levels of 

renewables capacity (in GWe) 

 

The same conclusions apply to Table 3.C., as the increase in yearly average unit cost is 

markedly higher for CCGT and GT based mixes than for nuclear based ones. The exact same 

patterns can be observed in Tables 4.A., 4.B. and 4.C. in Appendix when further decreasing 

nuclear ramping capabilities.  
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𝒓𝑵𝑼𝑪 = 𝟐𝟓 % 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 75.53 46.48 47.52 

Average unit cost (week H, €/MWh) 13.03 8.282 8.278 8.293 37.77 33.78 31.52 31.96 37.72 33.79 31.52 31.96 

Average unit cost (week L, €/MWh) 8.296 8.362 8.306 8.410 8.296 8.362 8.306 8.305 8.296 8.362 8.306 8.305 

Average unit cost (week V, €/MWh) 8.460 8.382 8.347 9.007 29.69 27.02 19.97 22.15 29.73 27.02 20.01 22.06 

𝑺 = 𝟐  

Total investment costs (B€) 69.18 49.86 40.33 

Average unit cost (week H, €/MWh) 19.45 12.59 9.836 12.40 36.62 31.92 29.78 31.94 35.19 27.73 30.76 37.89 

Average unit cost (week L, €/MWh) 6.914 6.373 6.768 6.245 6.914 6.424 6.779 6.555 6.949 5.180 6.412 5.502 

Average unit cost (week V, €/MWh) 11.19 9.103 8.195 12.37 26.14 20.89 18.03 23.37 24.95 16.74 8.844 14.79 

𝑺 = 𝟒  

Total investment costs (B€) 72.50 54.79 42.64 

Average unit cost (week H, €/MWh) 17.91 10.30 8.055 12.01 35.61 30.66 28.30 31.53 51.15 40.91 39.21 41.72 

Average unit cost (week L, €/MWh) 5.470 4.787 4.972 4.442 5.506 5.693 5.463 4.442 8.611 6.640 5.686 4.442 

Average unit cost (week V, €/MWh) 9.085 10.34 8.261 8.209 25.60 22.99 17.86 23.28 36.02 30.99 27.78 34.14 

𝑺 = 𝟔  

Total investment costs (B€) 76.03 47.33 47.48 

Average unit cost (week H, €/MWh) 16.17 9.587 8.002 12.18 43.85 39.78 37.89 41.67 43.92 39.78 37.89 41.67 

Average unit cost (week L, €/MWh) 4.018 4.077 4.580 3.853 4.017 3.915 4.528 3.758 4.017 4.143 4.471 3.759 

Average unit cost (week V, €/MWh) 10.69 12.50 8.922 7.850 33.81 25.23 21.19 27.67 33.84 26.02 21.77 27.97 

 

Table 3.B.: Total investment costs and average unit cost by worst-case trajectory for 𝒓𝑵𝑼𝑪 =

25% and various levels of renewables capacity (in GWe) 

 

 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.328 21.02 20.99 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 7.996 18.13 17.94 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.365 15.44 27.24 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 7.144 23.82 23.88 

 

Table 3.C.: Approximate yearly average unit cost for various levels of renewables capacity 

(in GWe) 
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As an additional test, we let the installed capacity of renewables vary freely and investigate 

how the optimal generation mix varies with the price of CO2. Two main trends can be 

identified from Table 5.A.: the total peaking capacity of CCGT and GT units is strictly 

decreasing with carbon price, while battery storage capacity monotonically increases with it, 

which compensates the flexibility loss entailed by lower peaking capacities. Increasing CO2 

price globally increases total renewable capacities although RES penetration remains very 

low. As photovoltaic generation exhibits diurnal pattern and CCGT capacities decrease, wind 

power provides a more sustained minimum generation level to supplement peaking generation 

at nighttime.  

 𝝅𝑪𝑶𝟐 = 0 𝝅𝑪𝑶𝟐 = 50  𝝅𝑪𝑶𝟐 = 100  𝝅𝑪𝑶𝟐 = 150 

Combined cycle gas turbine 13.5 9.45 5.4 4.05 

Gas turbine 2.7 0.9 0 0 

Nuclear 6.4 9.6 16 16 

Wind 0.568 0 0.353 1.195 

PV 0 0 0.803 0.047 

Battery storage 2048.989 4372.142 7331.214 9336.769 

 

Table 5.A.: Optimal investment level by technology for various values of carbon price (in 

€/ton) 

 

The significant drop in average unit costs for all worst-case trajectories in Table 5.B. can be 

attributed to the absence of GT units in the optimal mix for carbon prices superior to 50 €/ton. 

The extremely high average unit cost for Winter in week H for a price of 50 €/ton corresponds 

to repeated periods of load shedding, with negative macroeconomic consequences on 

economic activity and social welfare. For higher CO2 prices, the generation cost increase for 

carbon emitting technologies is more than compensated by their decreasing share in the 

optimal mix and generation dispatch.  
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 𝝅𝑪𝑶𝟐 = 0 𝝅𝑪𝑶𝟐 = 50 

Total investment costs (B€) 36.65 44.70 

Average unit cost (week H, €/MWh) 36.94 31.52 30.81 31.38 1871 32.77 31.03 32.28 

Average unit cost (week L, €/MWh) 17.99 13.62 8.640 9.948 9.587 8.319 77.28 8.339 

Average unit cost (week V, €/MWh) 29.15 26.08 24.29 26.86 28.36 29.28 19.23 24.43 

 𝝅𝑪𝑶𝟐 = 100 𝝅𝑪𝑶𝟐 = 150 

Total investment costs (B€) 67.10 66.99 

Average unit cost (week H, €/MWh) 23.43 14.08 10.57 13.29 19.24 8.238 8.258 8.264 

Average unit cost (week L, €/MWh) 8.011 7.830 7.880 7.833 7.628 7.921 9.231 7.347 

Average unit cost (week V, €/MWh) 11.51 8.796 8.211 12.53 8.184 8.190 8.206 9.579 

 

Table 5.B.: Total investment costs and average unit cost by worst-case trajectory various 

values of carbon price (in €/ton) 

 

Finally, Figure 5.C. displays the approximate yearly average unit generation cost as a 

function of CO2 price. They exhibit a strong negative correlation. Because CCGT capacities 

decreases and its utilization rate is much lower in representative than in extreme residual load 

scenarios, the increase in variable cost for emitting technologies is more than compensated by 

their decreasing share in optimal generation. Surprisingly, increasing carbon price thus tends 

to lower the spot price by fostering low-carbon technologies with very low marginal costs. 

The share of fixed costs increases in the cost structure of the optimal mix. 

 𝝅𝑪𝑶𝟐 = 0 𝝅𝑪𝑶𝟐 = 50 

Approximate average unit cost (€/MWh) 25.55 21.05 

 𝝅𝑪𝑶𝟐 = 100 𝝅𝑪𝑶𝟐 = 150 

Approximate average unit cost (€/MWh) 8.318 8.140 

 

Table 5.C.: Approximate yearly average unit cost for various values of carbon price (in €/ton) 
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5. Conclusion 

In this methodological paper, we introduced a variety of original concepts aiming at modeling 

worst-case possible trajectories for a random process with unknown distribution.  

First, using Bayesian probability tools, we formalized the concept of “certainty set”, which 

corresponds to the set of values which are observed with quasi-certainty within a given 

number of trials. This intuitive concept can easily be generalized to the multivariate case, in 

addition to using the full posterior distribution associated to the parameters of the random 

vector, in order to formulate a distribution of possible “certainty sets”. This is expected to 

reduce the results conservativeness but may significantly increase computational costs. For a 

fixed number of periods over which the objective function is computed, the “certainty set” 

provides a flexible tool in order to select the subset of parameter values that have a probability 

superior to a given threshold to occur at least once.  

Second, using elementary graph theory and matrix algebra, we introduced a new operator 

called the “path operator”. It exhibits nice recursive properties and allows us to derive a 

polynomial-time algorithm that offers the guarantee to include the trajectory of our random 

process that maximizes a given criterion within a very reduced set of candidate trajectories. 

This allows us to compute the set of worst-case trajectories which globally maximize (or 

minimize) the values and variability of residual demand. This nicely complements the 

approach of Chapter I, which offered no guarantee that the worst-case trajectories provide a 

global maximum for the selected criterion. 

Third, we applied our methodology using a MILP investment and dispatch model with storage 

and unit commitment constraints to the case of Auvergne Rhône-Alpes. We confirm the 

intuition from Chapter I that electricity mixes with a high share of nuclear power globally 

perform better than more “flexible” mixes in terms of average generation cost. The resulting 

retail costs for both types of mixes are however similar but ignore the macroeconomic effects 

and welfare losses from higher generation costs. We also note that the alternative method 

presented in this chapter provided less conservative results, with significantly lower peaking 

and storage installed capacities. Yet, like in Chapter I, we did not account for very short-term 

ramping limitations or residual demand uncertainty and assume the physical inertia of the 

electric system is constant. We leave for further research the investigation of the impact of 

alternative technologies such as intensive demand-side management, hydrogen based inter-
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seasonal storage, in addition to stability solutions such as synchronous condensers, fast 

frequency responses and grid-forming converters [25]. 
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6. Appendix 

Appendix to 2.1.: 

  

  

 

Figure 1.C.: Residual demand scatter plot with 2 GWe of wind and photovoltaic installed 

capacity, in Summer 

Note: Each point corresponds to a couple of residual demand values for 𝑡 and 𝑡 + 1. This figure show the 

distributions of residual demand values for 12 p.m. (top-left), 6 a.m (top-right), 12 a.m (bottom-left) and 6 p.m 

(bottom-right).  
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Appendix to 3.2.: Introduction of the “path operator” 

Let us consider a set of vertices 𝑽𝑖 = (𝑣1
𝑖 , … , 𝑣𝑄′

𝑖 ), 1 ≤ 𝑖 ≤ 𝐼 (let 𝐼 = |𝒯| for simplicity) 

where 𝑽𝑖 includes 𝑄′ vertices. We set 𝑄′ = 𝑄 − 1. Considering any (𝑚 + 2)-uplet of 

consecutive sets (𝑽𝑖, 𝑽𝑖+1, … , 𝑽𝑖+𝑚+1), 0 ≤ 𝑚 ≤ 𝐼 − 𝑖 − 1, we want to define the set of all 

simple paths of length 𝑚 in the graph 𝐺𝑚 = (⋃ 𝑽𝑖+𝑗𝑚+1
𝑗=0 , ⋃ 𝑽𝑖+𝑗 × 𝑽𝑖+𝑗+1𝑚

𝑗=0 ). We call this 

operator 𝔓 and note the set of all paths from 𝑽𝑖 to 𝑽𝑖+1 as 𝑽𝑖 𝔓 𝑽𝑖+1. 

For any pair (𝑽𝑖, 𝑽𝑖+1), we simply have 𝑽𝑖 𝔓 𝑽𝑖+1 = 𝑽𝑖 × 𝑽𝑖+1. However, this simple pattern 

vanishes for any 𝑚-uplet of consecutive sets where 𝑚 strictly greater than 0. For instance, for 

𝑚 = 1, we can represent the set of paths under the following matrix form: 

 𝑽𝑖 𝔓 𝑽𝑖+1𝔓 𝑉𝑖+2 =

(

 
 

(𝑣1
𝑖 , 𝑣1

𝑖+1, 𝑣1
𝑖+2) (𝑣1

𝑖 , 𝑣1
𝑖+1, 𝑣2

𝑖+2) ⋯ (𝑣1
𝑖 , 𝑣𝑄′

𝑖+1, 𝑣𝑄′
𝑖+2)

(𝑣2
𝑖 , 𝑣1

𝑖+1, 𝑣1
𝑖+2) (𝑣2

𝑖 , 𝑣1
𝑖+1, 𝑣2

𝑖+2) ⋯ (𝑣2
𝑖 , 𝑣𝑄′

𝑖+1, 𝑣𝑄′
𝑖+2)

⋮ ⋮ ⋱ ⋮
(𝑣𝑄′

𝑖 , 𝑣1
𝑖+1, 𝑣1

𝑖+2) (𝑣𝑄
𝑖 , 𝑣1

𝑖+1, 𝑣2
𝑖+2) ⋯ (𝑣𝑄

𝑖 , 𝑣𝑄′
𝑖+1, 𝑣𝑄′

𝑖+2))

 
 
∈ ℝ

(𝑄′×𝑄′
2
)(𝟏𝟖) 

By defining the row-vector 𝑰𝑄′ = (1,1, … ,1) ∈ ℝ
(1×𝑄′), we can rewrite the above expression 

recursively as: 

              𝑽𝑖  𝔓 𝑽𝑖+1𝔓 𝑽𝑖+2 = [(𝑽𝑖  𝔓 𝑽𝑖+1)⨂𝑰𝑄′] × [𝑽
𝑖+2⨂𝑰𝑄′] = [(𝑽𝑖  ×  𝑽𝑖+1)⨂𝑰𝑄′] × [𝑽

𝑖+2⨂𝑰𝑄′]            (𝟏𝟗) 

Where ⨂ is the Kronecker product and the set 𝑽𝑖+2 is expressed as a row vector such that we 

have 𝑽𝑖+2⨂𝑰𝑄′ = (𝑣1
𝑖+2, 𝑣1

𝑖+2, … , 𝑣1
𝑖+2, 𝑣2

𝑖+2, … , 𝑣2
𝑖+2, … , 𝑣𝑁′

𝑖+2, … , 𝑣𝑁′
𝑖+2) ∈ ℝ(1×𝑄′

2). We note 

that the “path operator” is not commutative: 

                               𝑽𝑖+1𝔓 𝑽𝑖+2𝔓 𝑽𝑖 = [(𝑽𝑖+1 𝔓 𝑽𝑖+2)⨂𝑰𝑄′] × [𝑽
𝑖⨂𝑰𝑄′] ≠ 𝑽

𝑖  𝔓 𝑽𝑖+1𝔓 𝑽𝑖+2                           (𝟐𝟎) 

We can deduce a general recursive expression for the set of simple paths generated by any 

(𝑚 + 2)-uplet (𝑽𝑖 , 𝑽𝑖+1, … , 𝑽𝑖+𝑚+1), with 𝑚 ≥ 1, as: 

             𝔓𝑗=0
𝑚+1𝑽𝑖+𝑗 = [[[[(𝑽𝑖  ×  𝑽𝑖+1)⨂𝑰𝑄′] × [𝑽

𝑖+2⨂𝑰𝑄′]]⨂𝑰𝑄′] × … ] × [𝑽
𝑖+𝑚+1⨂(⊗𝑗=1

𝑚 𝑰𝑄′)]               (𝟐𝟏) 

The “path operator” can easily be applied to the computation of the length associated to each 

possible path for a given (𝑚 + 2)-uplet of vertices. We write ℓ ((𝑣𝑗
𝑖 , 𝑣𝑘

𝑖+1)) = |𝑣𝑗
𝑖 − 𝑣𝑘

𝑖+1| the 

length of the edge linking the couple of vertices (𝑣𝑗
𝑖 , 𝑣𝑘

𝑖+1) and define 𝔓𝑗=0
𝑚 ℓ(𝑉𝑖+𝑗) as the 
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matrix giving the lengths of all paths generated by the (𝑚 + 2)-uplet of sets 

(𝑽𝑖, 𝑽𝑖+1, … , 𝑽𝑖+𝑚+1). By noting that the length of any path is additive, ie 

ℓ ((𝑣𝑗
𝑖 , 𝑣𝑘

𝑖+1, 𝑣𝑙
𝑖+2)) = ℓ ((𝑣𝑗

𝑖 , 𝑣𝑘
𝑖+1)) + ℓ ((𝑣𝑘

𝑖+1, 𝑣𝑙
𝑖+2)), we can decompose the length of any 

path using the following  square matrix:: 

         𝑋𝑖 = ℓ ((𝑽𝑖  𝔓 𝑽𝑖+1)) =

(

  
 

ℓ ((𝑣1
𝑖 , 𝑣1

𝑖+1)) ℓ ((𝑣1
𝑖 , 𝑣2

𝑖+1)) ⋯ ℓ ((𝑣1
𝑖 , 𝑣𝑄′

𝑖+1))

ℓ ((𝑣2
𝑖 , 𝑣1

𝑖+1)) ℓ ((𝑣2
𝑖 , 𝑣2

𝑖+1)) ⋯ ℓ ((𝑣2
𝑖 , 𝑣𝑄′

𝑖+1))

⋮ ⋮ ⋱ ⋮

ℓ ((𝑣𝑄′
𝑖 , 𝑣1

𝑖+1)) ℓ ((𝑣𝑄′
𝑖 , 𝑣2

𝑖+1)) ⋯ ℓ ((𝑣𝑄′
𝑖 , 𝑣𝑄′

𝑖+1)))

  
 
∈ ℝ+

(𝑄′×𝑄′)
        (𝟐𝟐) 

Similarly, we may expend this notation to paths with more than 2 edges. For 𝑚 = 1, we have 

for instance: 

       𝔓
𝑗=0
1 ℓ(𝑽𝑖+𝑗) = ℓ((𝑽𝑖 𝔓 𝑽𝑖+1𝔓 𝑽𝑖+2)) =

(

  
 

ℓ((𝑣1
𝑖 , 𝑣1

𝑖+1, 𝑣1
𝑖+2)) ℓ((𝑣1

𝑖 , 𝑣1
𝑖+1, 𝑣2

𝑖+2)) ⋯ ℓ ((𝑣1
𝑖 , 𝑣𝑄′

𝑖+1, 𝑣𝑄′
𝑖+2))

ℓ((𝑣2
𝑖 , 𝑣1

𝑖+1, 𝑣1
𝑖+2)) ℓ((𝑣2

𝑖 , 𝑣1
𝑖+1, 𝑣2

𝑖+2)) ⋯ ℓ ((𝑣2
𝑖 , 𝑣𝑄′

𝑖+1, 𝑣𝑄′
𝑖+2))

⋮ ⋮ ⋱ ⋮

ℓ ((𝑣𝑄′
𝑖 , 𝑣1

𝑖+1, 𝑣1
𝑖+2)) ℓ ((𝑣𝑄′

𝑖 , 𝑣1
𝑖+1, 𝑣2

𝑖+2)) ⋯ ℓ ((𝑣𝑄′
𝑖 , 𝑣𝑄′

𝑖+1, 𝑣𝑄′
𝑖+2)))

  
 
      (𝟐𝟑) 

We propose find a closed-form expression for  the set of lengths associated to all simple paths 

over the 𝑚 + 2-uplet (𝑽1, 𝑽2, … , 𝑽𝑚+2), 𝑚 ≥ 1, expressed under matrix form: 

          𝔓𝑖=1
𝑚 ℓ(𝑽𝑖) = 𝑋1⨂(⊗𝑗=1

𝑚−1 𝑰𝑄′) +∑[(⊗𝑗=1
𝑖−2 𝑰𝑄′)⨂vec(𝑋

𝑖)⨂𝑰𝑄′
𝑇 ⨂(⊗𝑗=1

𝑚−𝑖 𝑰𝑄′)]

𝑚

𝑖=2

∈ ℝ+
(𝑄′×𝑄′

𝑚
)
         (𝟐𝟒) 

𝑰𝑄′
𝑇  corresponds to the transpose of 𝑰𝑄′ and we impose the convention (⊗𝑖=1

𝑗
𝑰𝑄′) = 1 ∈

ℝ(1×1) for 𝑗 < 𝑖. We note vec(𝑋𝑖) the result of the vectorization operation of matrix 𝑋𝑖. We 

can give a more general expression for the set of lengths associated to all simple paths 

generated by the (𝑚 + 2)-uplet of consecutive sets (𝑽𝑗 , 𝑽𝑗+1, … , 𝑽𝑚+𝑗+1): 

     𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) = 𝑋𝑗⨂(⊗𝑗′=1
𝑚−1 𝑰𝑄′) + ∑ [(⊗

𝑗′=1

𝑖−(𝑗+1)
𝑰𝑄′)⨂vec(𝑋

𝑖)⨂𝑰𝑄′
𝑇 ⨂(⊗

𝑗′=1

𝑚+𝑗−1−𝑖
𝑰𝑄′)] ∈ ℝ

+(𝑄
′×𝑄′

𝑚
)

𝑚+𝑗−1

𝑖=𝑗+1

    (𝟐𝟓) 

 

Despite its intricate formulation, the path operator exhibits nice recursive properties which 

allow it to be computed both forward and backward for a given (𝑚 + 2)-uplet of vertices 

(𝑽𝑗 , 𝑽𝑗+1, … , 𝑽𝑗+𝑚+1). This is summarized in the following property: 
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Property 1: It is possible to build the matrix 𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) recursively, both forward and 

backward, by noting that: 

𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) = ℓ(𝔓𝑖=𝑗
𝑚+𝑗−2

𝑽𝑖)⨂𝑰𝑄′ + (⊗𝑗′=1
𝑚−2 𝑰𝑄′)⨂vec(𝑋

𝑚)⨂𝑰𝑄′
𝑇  

And:  

𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) = 𝑋𝑗⨂(⊗𝑗′=1
𝑚−1 𝑰𝑄′) + vec ((𝔓𝑖=𝑗+1

𝑚+𝑗
ℓ(𝑽𝑖))

𝑇
)⨂𝑰𝑄′

𝑇  

Proof:  

We start by proving the forward recursive decomposition of 𝔓𝑖=𝑗
𝑚 ℓ(𝑽𝑖), which can be reformulated as follows by 

linearity of the Kronecker product: 

𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) = [𝑋𝑗⨂(⊗𝑗′=1
𝑚−1 𝑰𝑄′) + ∑ [(⊗𝑗′=1

𝑖−(𝑗+1)
𝑰𝑄′)⨂vec(𝑋

𝑖)⨂𝑰𝑄′
𝑇 ⨂(⊗𝑗′=1

𝑚+𝑗−1−𝑖
𝑰𝑄′)]

𝑚+𝑗−1

𝑖=𝑗+1

]⨂𝑰𝑄′ 

= [𝑋𝑗⨂(⊗𝑗′=1
𝑚−1 𝑰𝑄′) + ∑ [(⊗𝑗′=1

𝑖−(𝑗+1)
𝑰𝑄′)⨂vec(𝑋

𝑖)⨂𝑰𝑄′
𝑇 ⨂(⊗𝑗′=1

𝑚+𝑗−2−𝑖
𝑰𝑄′)]

𝑚+𝑗−2

𝑖=𝑗+1

]⨂𝑰𝑄′ − (⊗𝑗′=1
𝑚−2 𝑰𝑄′)⨂vec(𝑋

𝑚+𝑗−1)⨂𝑰𝑄′
𝑇  

= ℓ(𝔓𝑖=𝑗
𝑚+𝑗−2

𝑽𝑖)⨂𝑰𝑄′ + (⊗𝑗′=𝑗
𝑚−2 𝑰𝑄′)⨂vec(𝑋

𝑚)⨂𝑰𝑄′
𝑇  

We prove the recursive backward decomposition property by noting that 𝔓𝑖=𝑗
𝑚 ℓ(𝑽𝑖) can be expressed as the sum 

of two matrices: 

𝔓𝑖=𝑗
𝑚+𝑗−1

ℓ(𝑽𝑖) =

(

 
 

𝑋1,1
𝑗
+ 𝑋1,1

𝑗+1
+⋯+ 𝑋1,1

𝑗+𝑚
𝑋1,1
𝑗
+ 𝑋1,1

𝑗+1
+⋯+ 𝑋1,2

𝑗+𝑚
⋯ 𝑋1,𝑄′

𝑗
+ 𝑋𝑄′,𝑄′

𝑗+1
+⋯+ 𝑋𝑄′,𝑄′

𝑗+𝑚

𝑋2,1
𝑗
+ 𝑋1,1

𝑗+1
+⋯+ 𝑋1,1

𝑗+𝑚
𝑋2,1
𝑗
+ 𝑋1,1

𝑗+1
+⋯+ 𝑋1,2

𝑗+𝑚
⋯ 𝑋2,𝑄′

𝑗
+ 𝑋𝑄′,𝑄′

𝑗+1
+⋯+ 𝑋𝑄′,𝑄′

𝑗+𝑚

⋮ ⋮ ⋱ ⋮

𝑋𝑄′,1
𝑗

+ 𝑋1,1
𝑗+1

+⋯+ 𝑋1,1
𝑗+𝑚

𝑋𝑄′,1
𝑗

+ 𝑋1,1
𝑗+1

+⋯+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋𝑄′,𝑄′
𝑗

+ 𝑋𝑄′,𝑄′
𝑗+1

+⋯+ 𝑋𝑄′,𝑄′
𝑗+𝑚

)

 
 
= 𝑨+ 𝑩 

Where 𝑋𝑘,𝑙
𝑗

 corresponds to the element on the 𝑘-th row and 𝑙-th column of matrix 𝑋𝑗 and: 

𝑨 =

(

 
 

𝑋1,1
𝑗

𝑋1,1
𝑗

⋯ 𝑋1,1
𝑗

𝑋1,2
𝑗

𝑋1,2
𝑗

⋯ 𝑋1,𝑄′
𝑗

𝑋2,1
𝑗

𝑋2,1
𝑗

⋯ 𝑋2,1
𝑗

𝑋2,2
𝑗

𝑋2,1
𝑗

⋯ 𝑋2,𝑄′
𝑗

⋮ ⋮ ⋱ ⋯ ⋯ ⋯ ⋯ ⋮

𝑋𝑄′,1
𝑗

𝑋𝑄′,1
𝑗

⋯ 𝑋𝑄′,1
𝑗

𝑋𝑄′,2
𝑗

𝑋𝑄′,2
𝑗

⋯ 𝑋𝑄′,𝑄′
𝑗

)

 
 
∈ ℝ+

(𝑄′×𝑄′𝑚)
 

𝑩 =

(

 
 

𝑋1,1
𝑗+1

+⋯+ 𝑋1,1
𝑗+𝑚

𝑋1,1
𝑗+1

+⋯+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋𝑄′,𝑄′
𝑗+1

+⋯+ 𝑋𝑄′,𝑄′
𝑗+𝑚

𝑋1,1
𝑗+1

+⋯+ 𝑋1,1
𝑗+𝑚

𝑋1,1
𝑗+1

+⋯+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋𝑄′,𝑄′
𝑗+1

+⋯+ 𝑋𝑄′,𝑄′
𝑗+𝑚

⋮ ⋮ ⋱ ⋮

𝑋1,1
𝑗+1

+⋯+ 𝑋1,1
𝑗+𝑚

𝑋1,1
𝑗+1

+⋯+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋𝑄′,𝑄′
𝑗+1

+⋯+ 𝑋𝑄′,𝑄′
𝑗+𝑚

)

 
 
∈ ℝ+

(𝑄′×𝑄′𝑚)
 

Finally, we note matrices 𝑨 and 𝑩 can simply be re-written as follows: 

𝑨 = 𝑋𝑗⨂(⊗𝑗′=1
𝑚−1 𝑰𝑄′) 
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𝑩 = vec ((𝔓𝑖=𝑗+1
𝑚+𝑗−1

ℓ(𝑽𝑖))
𝑇
)⨂𝑰𝑄′

𝑇  

Where 𝔓𝑖=𝑗+1
𝑚+𝑗−1

ℓ(𝑽𝑖) is equal to: 

𝔓𝑖=𝑗+1
𝑚+𝑗−1

ℓ(𝑽𝑖) =

(

 
 

𝑋1,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,1
𝑗+𝑚

𝑋1,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋1,𝑄′
𝑗+1

+ 𝑋𝑄′,𝑄′
𝑗+2

…+ 𝑋
𝑄′,𝑄′

𝑗+𝑚

𝑋2,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,1
𝑗+𝑚

𝑋2,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋2,𝑄′
𝑗+1

+ 𝑋𝑄′,𝑄′
𝑗+2

…+ 𝑋𝑄′,𝑄′
𝑗+𝑚

⋮ ⋮ ⋱ ⋮

𝑋𝑄′,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,1
𝑗+𝑚

𝑋𝑄′,1
𝑗+1

+ 𝑋1,1
𝑗+2

…+ 𝑋1,2
𝑗+𝑚

⋯ 𝑋𝑄′,𝑄′
𝑗+1

+ 𝑋𝑄′,𝑄′
𝑗+2

…+ 𝑋𝑄′,𝑄′
𝑗+𝑚

)

 
 
∈ ℝ+

(𝑄′×𝑄′(𝑚−1)) 

 

We can also easily derive an upper bound for the maximum length included in 𝔓𝑖=1
𝑚 ℓ(𝑽𝑖), as 

expressed in the following property: 

Property 2: ∀𝑚 ≥ 1, sup𝔓𝑖=1
𝑚 ℓ(𝑽𝑖) ≤ ∑ sup𝑋𝑖𝑚

𝑖=1  

Proof: 

We first note that ∀𝑚 ≥ 2, we necessarily have the following inequality: 

sup𝔓𝑖=1
𝑚 ℓ(𝑉𝑖) ≤ sup𝔓𝑖=1

𝑚−1ℓ(𝑉𝑖) + sup𝑋𝑚 

Then, by induction: 

sup𝔓𝑖=1
𝑚 ℓ(𝑉𝑖) ≤ sup𝔓𝑖=1

𝑚−1ℓ(𝑉𝑖) + sup𝑋𝑚 ≤ sup𝔓𝑖=1
𝑚−2ℓ(𝑉𝑖) + sup𝑋𝑚+1 +sup𝑋𝑚 

⟹ sup𝔓𝑖=1
𝑚 ℓ(𝑉𝑖) ≤∑sup𝑋𝑖

𝑚

𝑖=1
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Appendix to 4.1.: Technical characteristics and cost assumptions: 

 

Technology Minimum generation 

level (% nominal 

power) 

Ramping rate (% of 

nominal power/min) 

Minimum 

uptime/downtime 

(hours) 

Average CO2 

emission factor 

(ton/MWh) 

Combined cycle gas turbine 20 20 0 0.352 

Gas turbine 15 8 2 0.777 

Nuclear 50 2-5 10 0 

 

Table 1.A.: Technical characteristics of main thermal technologies  

Sources : Gonzalez-Salazar et al. (2018), IAEA (2018), Schill et al. (2016), IEA (2015), Schröder et al. (2013), 

EC JRC (2010), RTE Bilan Electrique 2019 (RTE, 2019) 

 

Technology Overnight cost 

(€/kWe) 

Annual fixed & 

maintenance costs 

(€/kWe) 

Unit variable cost 

(€/MWh) 

Unit starting cost 

(€/MWh) 

Average lifetime 

(years) 

Combined cycle gas turbine 754 20 45 235 30 

Gas turbine 400 6.4 135 542.8 30 

Nuclear 3800 137 8 90 60 

Photovoltaic 669 19 0 0 25 

Wind power 1284 45 0 0 20 

Battery storage 169 5.1 0 0 10 

 

Table 1.B.: Cost assumptions for generation technologies for 2021  

Sources : Le Cout des ENR en France, ADEME (2016) ; CRE (2018) ; “Coûts et rentabilité du grand 

photovoltaïque en métropole continentale”, CRE (2019) ; IEA (2015) ; “Current and Prospective Costs of 

Electricity Generation until 2050”, DIW (2013) ; OECD/IEA-NEA (2015) 
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Investment and dispatching model with commitment constraints  

Formulation of the model: 

The cost-minimization problem for our electric system, neglecting spatial transfers and 

transmission network, is defined as a MILP as follows: 

  min
𝑼,𝒒,𝜿,𝒛

∑(𝐴𝑗 + 𝑐𝑗
𝐹𝑂𝑀)𝑈𝑗

𝑗>1

+∑(𝐴𝑔 + 𝑐𝑔
𝐹𝑂𝑀)𝐷𝑔𝑈𝑔

𝑔

+ (𝐴𝑒 + 𝑐𝑒
𝐹𝑂𝑀)𝑈𝑒

+
Θ

𝑁𝑅
( ∑ ∑∑(∑(𝑐𝑔

𝑉 + 𝜋𝐶𝑂2𝐸𝑔)𝑞𝑔𝑠𝑡
𝔭
+ 𝑐𝑔

𝑆𝑇𝑈𝑃𝑧𝑔𝑠𝑡
𝔭

𝑔

+∑𝑐𝑗
𝜅𝜅𝑗𝑠𝑡

𝔭

𝑗

)

𝑡∈𝒯𝑠∈𝒮𝔭∈{𝑳,𝑯,𝑽}

)                   (𝟐𝟔) 

Such that : 

𝜉1𝑠𝑡
𝔭
− 𝜅1𝑠𝑡

𝔭
−∑(𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝔭
)

𝑗>1

−∑𝑞𝑔𝑠𝑡
𝔭

𝑔

+ 𝑒𝑠𝑡
+ 𝔭 − 𝑒𝑠𝑡

− 𝔭 ≤ 𝛾                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟐𝟕) 

−𝜉1𝑠𝑡
𝔭
+ 𝜅1𝑠𝑡

𝔭
+∑(𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝔭
)

𝑗>1

+∑𝑞𝑔𝑠𝑡
𝔭

𝑔

− 𝑒𝑠𝑡
+ 𝔭 + 𝑒𝑠𝑡

− 𝔭 ≤ 𝛾                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟐𝟖) 

𝑢𝑔𝑠𝑡
𝔭
− 𝑢𝑔𝑠𝑡−1

𝔭
= 𝑧𝑔𝑠𝑡

𝔭
− 𝑣𝑔𝑠𝑡

𝔭
                                                                                              , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟐𝟗𝒂) 

𝑧𝑔𝑠𝑡
𝔭
+ 𝑣𝑔𝑠𝑡

𝔭
≤ 1                                                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟐𝟗𝒃) 

𝜔𝑔𝑠𝑡
1 𝔭

= 𝑞𝑔𝑠𝑡
𝔭
−𝜔𝑔𝑠𝑡

2 𝔭
                                                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟎) 

𝜔𝑔𝑠𝑡
1 𝔭

− 𝜔𝑔𝑠𝑡−1
1 𝔭

≤ 𝑟𝑔                                                                                                          , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟏𝒂) 

𝜔𝑔𝑠𝑡−1
1 𝔭

− 𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑟𝑔                                                                                                          , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟏𝒃) 

𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑈𝑔𝐷𝑔 (𝑞𝑔 − 𝑞𝑔)                                                                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟐𝒂) 

𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑢𝑔𝑠𝑡
𝔭
K                                                                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟐𝒃) 

𝜔𝑔𝑠𝑡
2 𝔭

≤ 𝑈𝑔𝐷𝑔𝑞𝑔                                                                                                                      , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟑) 

𝜔𝑔𝑠𝑡
2 𝔭

= 𝑈𝑔𝐷𝑔𝑞𝑔 − (1 − 𝑢𝑔𝑠𝑡
𝔭
)K + 𝑠𝑔𝑠𝑡

𝔭
                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟒) 

𝑠𝑔𝑠𝑡
𝔭
≤ (1 − 𝑢𝑔𝑠𝑡

𝔭
)K − 𝑈𝑔𝐷𝑔𝑞𝑔 + 𝑢𝑔𝑠𝑡

𝔭
K                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟓) 

𝑢𝑔𝑠𝑡
𝔭

≥ ∑ 𝑧𝑔𝑠𝑡
𝔭

𝑡′>𝑡−𝑀𝑗
𝑈

                                                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟔𝒂) 
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1 − 𝑢𝑔𝑠𝑡
𝔭

≥ ∑ 𝑣𝑔𝑠𝑡
𝔭

𝑡′>𝑡−𝑀𝑗
𝐷

                                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒢  (𝟑𝟔𝒃) 

𝜅𝑗𝑠𝑡
𝔭
≤ 𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗                                                                                                                               , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑗 ∈ 𝒥 (𝟑𝟕) 

𝑒𝑠𝑡
𝔭
= 𝑒𝑠𝑡−1

𝔭
+√𝜂𝑒𝑒𝑠𝑡

+ 𝔭 −
𝑒𝑠𝑡
− 𝔭

√𝜂𝑒
                                                                                                              , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟑𝟖) 

𝑒𝑠𝑡
𝔭
≤ 𝑒𝑈𝑒                                                                                                                                                    , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟑𝟗) 

𝑒𝑠𝑡
𝔭
≥ 𝑒𝑈𝑒                                                                                                                                                    , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟒𝟎) 

𝑒𝑠𝑡
+ 𝔭 ≤ 𝑙𝑠𝑡

𝔭 (𝑒𝑈𝑒 − 𝑒𝑠𝑡
𝔭 )                                                                                                                              , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟒𝟏) 

𝑒𝑠𝑡
− 𝔭 ≤ (1 − 𝑙𝑠𝑡

𝔭 )(𝑒𝑠𝑡
𝔭
− 𝑒𝑈𝑒)                                                                                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟒𝟐) 

𝑢𝑔𝑠𝑡
𝔭

∈ {0 ,1}                                                                                                                            , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ 𝒢  (𝟒𝟑) 

𝑣𝑔𝑠𝑡
𝔭
∈ {0 ,1}                                                                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ 𝒢  (𝟒𝟒) 

𝑧𝑔𝑠𝑡
𝔭
∈ {0 ,1}                                                                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ 𝒢  (𝟒𝟓) 

𝑙𝑠𝑡
𝔭
∈ {0 ,1}                                                                                                                                                 , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟒𝟔) 

 

Description of the model: 

Indices and sets: 

We define the set 𝒯 used to index hours of the week and the set of seasons 𝒮. Residual 

demand can be expressed as a linear combination of electric load and production from 

renewable generation units. We define the set of residual demand components 𝒥, where the 

first element of 𝒥 corresponds to the electric load and the remaining elements are available 

renewable technologies. These can be decomposed into subsets 𝒲 ⊂ 𝒥 and 𝒫 ⊂ 𝒥, which 

respectively denote wind and photovoltaic technologies.  

The set of units of thermal generation technologies is noted 𝒢, with unit 𝑔 ∈ 𝒢. The set 𝒢 can 

be decomposed into the subsets of nuclear units 𝒩 ⊂ 𝒢, combined cycle gas turbines (CCGT) 

𝒞1 ⊂ 𝒢 and gas turbines 𝒞2 ⊂ 𝒢. 
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Investment variables and parameters: 

For each unit 𝑔 ∈ 𝒢, we define the binary building decision 𝑈𝑔 ∈ {0; 1}. The parameter 𝐷𝑔 ≥

0 corresponds to the “block” size of unit 𝑔, or equivalently, its electricity output capability. 

For simplicity, we assume 𝐷𝑔 is equal for all units of the same technology. Each unit 𝑔 ∈ 𝒢 is 

characterized by minimum and maximum output levels 𝑞𝑔 ≥ 0 and 𝑞𝑔 ≥ 0, in addition to 

maximum ramp-up and ramp-down capacities 𝑟𝑔 ≥ 0 and 𝑟𝑔 ≥ 0. The commitment status of 𝑔 

is constrained by minimum uptime 𝑀𝑔
𝑈 ≥ 0 and minimum downtime 𝑀𝑔

𝐷 ≥ 0. Finally, each 

thermal generation unit is characterized by a ratio of CO2 emissions per unit output 𝐸𝑔, 

expressed in ton per unit generated. 

We define the installed capacity of 𝑗 ∈ 𝒥 as 𝑈𝑗 ≥ 0 with the convention that 𝑈1 = 1 and note 

𝑼 = (𝑈𝑖)1≤𝑖≤|𝒥| the vector of installed capacities for residual demand components. We define 

the installed capacity of storage as 𝑈𝑒 ≥ 0. We assume the variables 𝑈𝑗 and 𝑈𝑒 are 

continuous, while 𝑈𝑔 is binary. 

Renewable technologies, thermal generation technologies and storage respectively have 

annuitized unit investment costs 𝐴𝑗 , 𝐴𝑔 and 𝐴𝑒, with 𝐴𝑗 , 𝐴𝑔, 𝐴𝑒 ≥ 0. Similarly, both renewable 

and thermal generation technologies exhibit yearly fixed and operation maintenance costs 

𝑐𝑗
𝐹𝑂𝑀, 𝑐𝑔

𝐹𝑂𝑀 and 𝑐𝑒
𝐹𝑂𝑀, with 𝑐𝑗

𝐹𝑂𝑀, 𝑐𝑔
𝐹𝑂𝑀, 𝑐𝑒

𝐹𝑂𝑀 ≥ 0. 

 

Operational variables and parameters: 

For any hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮, we define the uncertain capacity factor 𝜉𝑗𝑠𝑡 ∈ ℝ
+ for 

𝑗 = 1 and 𝜉𝑗𝑠𝑡 ∈ [0,1] for 𝑗 > 1. The variable 𝜅𝑗𝑠𝑡
𝔭 ≥ 0 is equal to volume of curtailed 

production for renewable technology 𝑗 ∈ 𝒥. Using this notation, 𝜅1𝑠𝑡
𝔭

 can naturally be 

interpreted as the volume of non-served load (VOLL).  

We define the variable 𝑞𝑔𝑠𝑡
𝔭 ≥ 0 equal to the production of generation technology 𝑔 ∈ 𝒢. For 

any hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮, 𝜔𝑔𝑠𝑡
2 𝔭

≥ 0 corresponds to the minimum-production level of 

generator 𝑔 ∈ 𝒢, while 𝜔𝑔𝑠𝑡
1 𝔭

≥ 0 is an auxiliary variable equal to the generation volume 

above minimum-production level. We set the scalar Κ ≫ 0 and define the slack variable 
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𝑠𝑔𝑠𝑡
𝔭 ≥ 0. 𝑢𝑔𝑠𝑡

𝔭
, 𝑣𝑔𝑠𝑡

𝔭
 and 𝑧𝑔𝑠𝑡

𝔭
 are all binary variables respectively corresponding to the 

commitment state, start-up and shut-down decision of generator 𝑔 ∈ 𝒢. 

The variable 𝑒𝑠𝑡
𝔭 ≥ 0 corresponds to the stock of electricity stored in hour 𝑡 and season 𝑠, 

while 𝑒𝑠𝑡
+𝔭 ≥ 0 and 𝑒𝑠𝑡

−𝔭 ≥ 0 are flux variables respectively equal to the quantity of electricity 

stored and released. 𝜂𝑒 is the round-trip efficiency of the battery storage technology, with 0 ≤

𝜂𝑒 ≤ 1, such that √𝜂𝑒 can be interpreted as the efficiency of charge or discharge. Finally, 𝑒 

and 𝑒 respectively correspond to the maximum and minimum state of charge, and 𝑙𝑠𝑡
𝔭

 

corresponds to the charging state of batteries, with 𝑙𝑠𝑡
𝔭

 equal to 1 when batteries store 

electricity. 

We respectively note 𝑐𝑔
𝑉 ≥ 0 and 𝑐𝑔

𝑆𝑇𝑈𝑃 ≥ 0 the variable and start-up costs of the unit 𝑔 ∈ 𝒢. 

We note 𝑐𝑗
𝜅 ≥ 0 the curtailment cost of renewable technology 𝑗 ∈ 𝒥, where 𝑐1

𝜅 corresponds to 

the Value of Lost Load (VOLL). Finally, we define the price of a carbon ton as 𝜋𝐶𝑂2. 

 

Description of the equations: 

Each constraint must hold for each hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮. We define the set of worst-

case trajectories {𝑳,𝑯, 𝑽}, where 𝜉𝑗𝑠𝑡
𝔭

 is the value of the uncertain capacity factor for 𝑗 ∈ 𝒥, 

𝑡 ∈ 𝒯, 𝑠 ∈ 𝒮 and trajectory 𝔭 ∈ {𝑳,𝑯, 𝑽}. As there may exist no single set of dispatching 

decisions which simultaneously verify thermal constraints for all worst-case trajectories, our 

formulation ensures each operational constrain must hold in addition for any 𝔭 ∈ {𝑳,𝑯, 𝑽}. 

As three different worst-case scenario or “trajectories” are simultaneously considered in the 

cost function, we divide the variable costs by 𝑁𝑅 = 3  and multiply them by the scaling factor 

Θ equal to the number of weeks per season in (26), which corresponds to the scaled sum of 

annuitized investment costs and generation, start-up, load-shedding and curtailment costs. 

This ensures that the variable part of the expression still corresponds to the average yearly 

variable cost. (27) and (28) correspond to the upper and lower limits of the primary frequency 

control constraint: net generation, which is the sum of electricity generation minus electric 

load and storage, must lie in the interval [−𝛾, 𝛾]. We may further define 𝛾 = 𝜄∆𝑓, where 𝜄 is 

proportional to the physical inertia of the electric system and ∆𝑓 corresponds to the maximum 

absolute deviation of frequency from its nominal value.  
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(29a) to (36b) together formalize as a set of linear constraints commitment state, starting-up 

decisions and output limits for dispatchable generators. We combine the “big-M” method with 

the use of slack variables in order to linearize minimum generation level constraints15.  

(37) constraint the volume of electricity curtailed (respectively non-served load) to be inferior 

or equal to the generation of renewable technology 𝑗 ∈ 𝒥 (respectively inferior or equal to the 

electric load). Finally, (38) to (42) correspond to the power balance of the storage technology, 

with state of charge lower and upper limits, upper bounds on electricity inflows and outflows 

in addition to charging status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
15 For Κ big enough, 𝜔𝑔𝑠𝑡

1 𝔭
≤ 𝑈𝑔𝐷𝑔 (𝑞𝑔 − 𝑞𝑔) if 𝑢𝑔𝑠𝑡 is equal to 1 and 𝜔𝑔𝑠𝑡

1 𝔭
≤ 0 otherwise. Similarly, 𝜔𝑔𝑠𝑡

2 𝔭
=

𝑈𝑔𝐷𝑔𝑞𝑔 − (1 − 𝑢𝑔𝑠𝑡
𝔭
)K + 𝑠𝑔𝑠𝑡

𝔭
 if 𝑢𝑔𝑠𝑡

𝔭
 is equal to 1 and 𝜔𝑔𝑠𝑡

2 𝔭
= 0 otherwise. Indeed, if 𝑢𝑔𝑠𝑡

𝔭
= 0, as 𝜔𝑔𝑠𝑡

2  is 

positive by definition and 𝑠𝑔𝑠𝑡
𝔭
≤ K − 𝑈𝑔𝐷𝑔𝑞𝑔, we necessarily have 𝑠𝑔𝑠𝑡 = K − 𝑈𝑔𝐷𝑔𝑞𝑔 so 𝜔𝑔𝑠𝑡

2  is null. On the 

contrary, if 𝑢𝑔𝑠𝑡
𝔭

= 1, we must have 𝑠𝑔𝑠𝑡
𝔭
= 0 as 𝑠𝑔𝑠𝑡

𝔭
 is positive. 
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Appendix to 4.1.1.: 

 

  

  

 

Figure 5: “(𝜖,𝑀)-certainty set” at 2 p.m in Summer keeping 𝜖 fixed 

Note: We set 𝜖 = 10−6. We set 𝑀 respectively equal to 106 (top-left), 107 (top-right), 108 (bottom-left) and 

109 (bottom-right). 
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Appendix to 4.3.: 

𝒓𝑵𝑼𝑪 = 𝟏𝟓 % 𝐼1 𝐼2 𝐼3 𝐼1 𝐼2 𝐼3 

 𝑺 = 𝟎 𝑺 = 𝟐 

Combined cycle gas turbine 2.7 12.15 9.45 4.05 10.8 12.15 

Gas turbine 0 0.9 0.9 0.9 1.8 2.7 

Nuclear 19.2 9.6 9.6 19.2 9.6 6.4 

Wind 0 0 0 2 2 2 

PV 0 0 0 2 2 2 

Battery storage 4038.346 8475.958 4372.142 1977.009 4440.072 2852.374 

 𝑺 = 𝟒 𝑺 = 𝟔 

Combined cycle gas turbine 5.4 14.85 12.15 4.05 13.5 16.2 

Gas turbine 0 0.9 2.7 0 0.9 0 

Nuclear 16 6.4 6.4 16 6.4 3.2 

Wind 4 4 4 6 6 6 

PV 4 4 4 6 6 6 

Battery storage 4845.312 1920.791 6336.033 4414.305 2680.909 5507.048 

 

Table 4.A.: Optimal investment level by technology for 𝒓𝑵𝑼𝑪 = 15% and various levels of 

renewables capacity (in GWe) 
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𝒓𝑵𝑼𝑪 = 𝟏𝟓 % 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Total investment costs (B€) 75.68 47.43 44.70 

Average unit cost (week H, €/MWh) 12.95 8.282 8.278 8.294 37.77 33.78 31.52 31.96 1871 32.77 31.03 32.28 

Average unit cost (week L, €/MWh) 8.299 8.375 8.308 8.317 8.299 8.323 8.308 8.315 9.587 8.319 77.28 8.339 

Average unit cost (week V, €/MWh) 9.340 8.679 8.362 11.29 29.68 28.18 19.82 22.85 28.36 29.28 19.23 24.43 

𝑺 = 𝟐  

Total investment costs (B€) 80.61 49.99 38.95 

Average unit cost (week H, €/MWh) 16.91 8.282 8.105 10.06 38.05 31.95 29.78 31.94 54.71 41.96 40.34 42.09 

Average unit cost (week L, €/MWh) 6.972 6.258 9.511 5.502 6.921 6.382 6.780 6.250 14.79 8.186 6.781 6.267 

Average unit cost (week V, €/MWh) 9.784 10.84 8.818 8.130 25.81 19.58 16.90 22.81 36.77 31.46 28.73 33.05 

𝑺 = 𝟒  

Total investment costs (B€) 73.50 44.01 43.44 

Average unit cost (week H, €/MWh) 17.84 10.32 8.055 12.06 44.49 40.90 39.21 41.72 50.13 40.90 39.21 41.72 

Average unit cost (week L, €/MWh) 5.668 5.169 5.118 4.448 8.406 10.49 6.335 4.449 7.549 4.954 4.974 4.448 

Average unit cost (week V, €/MWh) 10.36 13.55 10.70 10.19 35.44 31.11 27.74 34.12 35.34 29.90 26.36 33.50 

𝑺 = 𝟔  

Total investment costs (B€) 76.31 47.03 37.02 

Average unit cost (week H, €/MWh) 16.17 9.158 8.002 11.99 44.02 39.78 37.89 41.67 53.12 50.32 49.24 51.75 

Average unit cost (week L, €/MWh) 4.025 3.902 4.295 3.764 4.364 5.596 7.726 3.888 14.14 7.280 6.448 9.313 

Average unit cost (week V, €/MWh) 11.44 14.14 10.37 8.486 33.85 27.38 22.46 28.04 44.77 36.68 34.21 40.79 

 

Table 4.B.: Total investment costs and average unit cost by worst-case trajectory for 𝒓𝑵𝑼𝑪 =

15% and various levels of renewables capacity (in GWe) 

 𝐼1 𝐼2 𝐼3 

𝑺 = 𝟎  

Approximate average unit cost (€/MWh) 8.314 20.85 21.05 

𝑺 = 𝟐  

Approximate average unit cost (€/MWh) 7.996 17.89 30.72 

𝑺 = 𝟒  

Approximate average unit cost (€/MWh) 7.454 27.23 27.12 

𝑺 = 𝟔  

Approximate average unit cost (€/MWh) 6.992 23.93 37.50 

 

Table 4.C.: Approximate yearly average unit cost for various levels of renewables capacity 

(in GWe) 
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Chapter III:  

Exploring the Paradoxes of the French Energy 

Transition and Nuclear Policy: A Techno-

Economic Analysis 

 

 

Abstract – In this chapter, we propose a thorough analysis of the contradictions between the 

three main objectives of the French energy transition: partially phasing out nuclear by 2035, 

increasing renewable capacity and reducing carbon emissions to achieve carbon neutrality by 

2050. Applying an enhanced version of the optimization model introduced in previous chapters, 

our findings confirm most results found in the literature: phasing out nuclear rapidly is likely to 

significantly increase both system costs and carbon emissions. Investments in renewables and 

nuclear policy decisions are however endogenous, contrary to the existing literature which 

investigates exogenous nuclear and RES scenarios. No economic justification is found for the 

immediate phasing out of nuclear, as replacing decommissioned reactors by RES investment is, 

in all investigated cases, suboptimal in terms of total costs. 

Keywords- Nuclear policy; Renewables; France; Phase out 
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1. Introduction 

Introduced in the LTECV in 2015, the PPE expresses the main orientations and priorities of 

the French public authorities in the management of energy sources to meet the energy policy 

targets set by the law. Its content and objectives are re-examined every 5 years. The PPE 

comes within the scope of the European Paquet Energie-Climat 2030 and 3 × 20 European 

directive, which set a target of 20% from renewable energy sources (RES) in the final 

electricity consumption of Member states in 2020 and 27% in 2030. France proved even more 

ambitious, as it enshrined in the LTECV final consumption targets of 23% and 32% for 2020 

and 2030 respectively. Two main scenarios have been retained in the PPE (see [1]), namely 

the “Volt” and the “Ampere” scenarios. The “Volt” scenario advocates a strong development 

of RES investment (116 GWe in 2035) and a mild phase out of nuclear with a total shutdown 

of 9 reactors 900 MWe, conditional on economic and exports prospects. The scenario assumes 

France remains a strong exporter, based on significant interconnexion capacities and 

competitive generation costs. The “Ampere” scenario explicitly conditions the extend of 

nuclear phase out to the pace of RES capacity increase. Decommission decisions are made 

only when RES production means generate on average as much as decommissioned reactors. 

Although no additional investment in thermal plants is predicted, system balance requires 

increasing interconnexion capacities and demand-side management as well as energy 

efficiency.  

The PPE encapsulate quantitative objectives to diversify the French electricity mix, by 

bringing the share of nuclear to 50% of total electricity production by 2035. While the last 

version of the PPE, published in April 2020, confirmed this objective, it insisted on the 

necessity to put into service new reactors should the share of nuclear remain set to 50% by 

2050. Moreover, in its examination of the recent Climate law16, the French Senate voted an 

article conditioning the phasing out of nuclear to the production of RES and low-carbon 

electricity in equivalent volumes, such that sufficient reserve margins are available at all time 

to guarantee the security of supply. Although the progressive phase out of nuclear is legally 

enacted, the conditions and precise schedule for its proceeding remain hot topics. 

The French electricity mix is strongly dominated by nuclear production. It supplies on 

average 75% of demand, allowing for a very low-carbon production on average. In 2019, 

 
16 https://www.assemblee-nationale.fr/dyn/15/textes/l15b3875_projet-loi 
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French nuclear plants accounted for 70.6% of total national production, with approximately 

380 TWh. Nuclear plants are mostly used in ‘baseload’ mode, although their technical 

characteristics theoretically allow load-following operations. According to [2], pressurized-

water reactors currently in service in France can vary their output, from 100% to 50% of their 

rated power, up to twice a day, with ramping rates ranging from 2% to 5% of nominal 

capacity per minute. However, the capacity of nuclear to accommodate increasing RES 

capacities and volatile residual demand is a debated topic. Designing scenarios of nuclear and 

renewable penetration levels, [3] estimate the impact of load-following operations on nuclear 

production cost. Under a 50% share of wind and solar generation in the mix, the nuclear 

annual load factor decreases as low as 40%, with significant profit losses in the long run. A 

progressive shutdown would permit lower nuclear production costs from 2030 to 2050, even 

at reduced load factors, while contributing to load following and giving deciders more time 

before choosing the most sustainable technologies. They further advocate modulating the use 

of nuclear power instead of modulating production to keep high load factors, by using excess 

nuclear energy to produce valuable energy carriers such as hydrogen or heat.   

Nuclear phase out is also expected to generate a significant increase in CO2 emissions. 

Investigating different nuclear policy options from a French perspective, [4] document 

significant a CO2 increase for all nuclear exit scenarios with a large drop in electricity exports 

from 2025. All scenarios induce sustained capacity investment, in order to compensate for the 

“cliff effect” created by the phasing out of nuclear reactors. They also find a downturn in 

system reliability and inertia reserves following nuclear exit (see [5], [6]). Using a system 

dynamics approach, [7] also find that early phasing out of nuclear contributes to a significant 

increase in fossil-fuel generation capacity, with important drawbacks regarding security of 

supply and dependency on imports. The authors stress the need for increased imports to 

control carbon emissions and show delaying shut down would benefit the technical 

development of RES. [8] reach similar conclusions regarding the case of German nuclear 

phase out.  

Finally, the total costs of both decommissioning and replacing nuclear reactors by alternative 

generation technologies proves to be extremely costly. [9] find that the costs of nuclear phase 

out depend crucially on the phase out policy design, reaching a maximum of 76€ billion (in 

2010 euros), most of which are borne by the French system with limited repercussions in the 

rest of the European system. Costs are also found to be higher when phase out occurs 

immediately after the decommissioning decision without any transition period. Interestingly, 



 

132 
 

the costs of policy uncertainty are low, which suggests a clear nuclear policy commitment 

provides little benefit. Replacing ageing nuclear reactors by EPR type or SMR reactors is a 

possible option. The French Small Modular Reactor (SMR) Nuward, developed as a joint 

project by EDF, the CEA, TechnicAtome and Naval Group, should be commercialized by 

2030. With a projected unit capacity of 340 MW and estimated investment cost of 1€ billion, 

[10] elaborate on the possible replacement of 900 MW decommissioned nuclear reactors by 

SMR units, conditional on cost and safety conditions. [11] show the SMR would provide a 

reliable primary source of electricity generation in a flexible nuclear hybrid energy system 

and stabilizes short-term and long-term costs. However, due to political preferences in favor 

of nuclear phase out (although the public opinion appears quite mixed, see [12]), this paper 

does not consider alternative nuclear technologies nor replacement with last generation 

nuclear reactors. RES are thus a privileged investment option. [13] finds that, in terms of total 

costs, nuclear power is more expensive than wind power and natural gas in the absence of 

carbon pricing. Yet, nuclear remains a relatively affordable technology and its “pros and cons 

(…) revolve around its contribution to climate change mitigation”.  

The quasi totality of literature investigates the French energy transition and nuclear policy by 

the elaboration of a set of scenarios. Each scenario corresponds to the combination of a 

specific trajectory of nuclear phase out, depending on the exogenous rate at which capacity is 

decommissioned, in addition to an investment trajectory for RES. Each scenario might be 

attributed a probability, allowing stochastic optimization approaches like in [9]. We adopt a 

different methodology, where both the RES investment level and nuclear policy decisions are 

endogenous. Applying an enhanced version of the optimization model introduced in previous 

chapters, we include initial installed capacities for each type of technology. Then, we select a 

subset of candidate nuclear reactors to be decommissioned by pairs, with a binary decision for 

each pair: either prolonging the life duration of reactors by paying prolongation costs or 

removing reactors from the nuclear fleet by paying decommissioning costs. Our findings 

confirm most results found in the literature: phasing out of nuclear rapidly is likely to 

significantly increase both system costs and carbon emissions. No economic justification is 

found for the quick phasing out of nuclear, as replacing decommissioned reactors by RES 

investment is always suboptimal in terms of total costs, even under higher nuclear 

prolongation costs or lower investment and fixed costs for renewables. When imposing a 

minimum threshold for the number of decommissioned reactors, we find that massive 

investment in combined-cycle gas turbines (CCGT) is economically optimal but incompatible 
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with the objective of decreasing CO2 emissions. Our results suggest a significant reduction of 

French ‘baseload’ electricity demand is a key condition for making nuclear phase out cost-

effective. We also provide a thorough analysis of the operational performances of various 

electricity mixes under both extreme and representative operational conditions. We find that 

partial nuclear phase out may threaten system stability but might also allow the keep nuclear 

in a stable ‘baseload’ mode under high RES penetration. The operational costs and carbon 

emissions drastically increase when replacing phase out nuclear by CCGT plants, even when 

adding a high share of RES in the mix. The issue of nuclear and safety conditions regarding 

prolonged reactors is however outside of our scope.  

The methodology, hypothesis and data used in this analysis are presented in Section II. 

Section III analyses the repartition of the costs of optimal generation mixes between 

operational, fixed and nuclear policy costs. Section IV provides a complete investigation of 

how the electric system behaves for extreme and normal operating conditions, under various 

nuclear phase out and RES penetration levels. Finally, we conclude in Section V. 

 

2. Methodology 

2.1. Motivation 

Like in the previous chapters, our analysis focuses on the French region Auvergne-Rhône-

Alpes. In addition to its significant share in the French national GDP and in the national 

electricity demand, it is the first region in terms of electricity production. In 2019, it 

accounted for 22% of national production, with 22.3% from RES including hydroelectric 

generation (see [14]). This also makes Auvergne-Rhône-Alpes the first producer of electricity 

from renewable sources in 2019, also including hydroelectricity. However, within a total of 

119 TWh generated by the region in 2019, 85.8 TWh and 27.3 TWh were generated by 

nuclear and hydroelectric utilities respectively. By comparison, the cumulated generation 

from wind and photovoltaic units amounted to 2.4 TWh. Equivalently, respectively 72% and 

23% of total electricity production were generated by nuclear and hydroelectric units, with 

less than 3% originated from photovoltaic, wind and bioenergy production units. Auvergne-

Rhône-Alpes is also the first French region in terms of nuclear capacity: with 13.4 GWe of 

nuclear installed capacities, the region accounts for 21% of the total French nuclear fleet. 
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More specifically, the region counts 12 CPO/CPY type and 2 P4/P’4 type nuclear reactors. 

They respectively have rated power of 900 MWe and 1300 MWe. 

The region Auvergne-Rhône-Alpes enjoys a strongly positive net balance of electricity trade: 

with a positive trade balance of 49.4 TWh, the region has positive exports to Occitanie, 

Bourgogne-Franche-Comté and Provence-Alpes-Côte-d’Azur, in addition to Italy and 

Switzerland. Over the 2013-2018 period, the average net exports to Italy and Switzerland 

respectively represented 2047 MWh and 1495 MWh. Related to the average regional 

generation, net exports to Italy and Switzerland represent approximately 15.9 % and 11.7 % 

respectively. Related to total physical exports, these figures increase to 39.2 % and 28.7 %. 

This suggests that almost 68 % of all physical exchanges are carried out with these two 

countries, representing approximately 33.6 TWh in 2019, assuming this ratio remained 

constant.  

This makes this region a much relevant laboratory for studying the impacts of nuclear phasing 

out, both in terms of optimal electricity mix and effects on electricity exchanges with 

European neighbors. However, the latter topic shall not be investigated in this chapter. Based 

on the PPE, a subset of oldest CPO/CPY type is selected as candidates for being closed in 

order to bring the share of nuclear power in the mix to less than 50% by 2035.  

 

2.2. Main parameters and assumptions 

Still following the PPE, we constrain nuclear reactors to be closed by pairs. We do not take 

into account the decennial visit planning established by the Autorité de Sûreté Nucléaire 

(ASN), as it would require considering complementarities in the maintenance schedule of 

nuclear units across French regions. Within the subset of potential candidate reactors, we 

identify Tricastin 2 and 3, which have their visits in 2021 and 2022, while Bugey 5 and 3 

respectively have their fourth visit in 2021 and 2023. Finally, the decennial visits Cruas 3 and 

1 are planned for 2025 and 2024, while Cruas 2 and 4 respectively will be visited in 2026 and 

2027. We leave for further research the inclusion of the nuclear maintenance schedule in an 

optimal investment model applied to France. 
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2.2.1. Technology and initial capacities 

We make the realistic assumption that the hydroelectric potential is fully saturated in 

Auvergne-Rhône-Alpes so no additional capacity investment can occur for hydroelectric units 

and hydroelectric pumped-storage units. Similarly, we assume that no investment in new 

nuclear capacity can occur for political grounds. Like in previous chapters, we constrain the 

investment variable to take only discrete values for thermal dispatchable technologies, and 

continuous values for renewable and storage technologies. Investments in CCGT are made by 

blocs of 0.45 GW, which is equal to the average nominal power of General Electric’s 

9HA.01/.02 gas turbine. GT investments are performed by blocks of 0.3 GW.  

However, unlike previous chapters, initial regional capacities are included in the optimal 

investment model. The reported figures correspond to capacities reported in 2020-2021. As 

stated above, Auvergne-Rhône-Alpes is the first French region in terms of nuclear capacity 

with 13.4 GWe. It also gathers a significant share of French hydroelectric capacity, which can 

be broken up into 8.331 GWe of hydroelectric capacity and 3.310 GWe of pumped-storage 

hydroelectric capacity. We assume the initial CCGT capacity is equal to 450 MWe, 

corresponding to one turbine. Finally, the vector of initial RES capacities17, noted 𝑼0 ∈

(ℝ+)2, is equal to 0.583 GWe of wind turbines and 1.19 GWe of photovoltaic generation 

units. 

 

2.2.2. Cost assumptions 

We keep the same technical and cost assumptions made in previous chapters. Technology-

wise thermal constraints and cost assumptions can be found in Table 1.A and Table 1.B. in 

Appendix. We assume for simplicity that all investments in conventional technologies made 

before 2021 have been fully amortized, so annuities are null for this subset of technologies. 

Still following the CRE (CRE, 2018)18, we choose a VOLL equal to 13 000 €/MWh. The 

CO2 price for 2021 is obtained from the EU ETS Phase IV (2018), where the baseline price 

 
17 The figures are directly obtained from the trimestral Panorama de l’Electricité Renouvelable from RTE and 

Enedis at the regional scale. 

18 Public consultation from the French Energy Regulatory Commission (CRE), Public consultation No. 2018-015 

of December the 20th of 2018, on the investment request relating to the Celtic project, including a cross-border 

cost allocation 
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trajectory corresponds to the final agreement reached by the European Parliament, Council 

and Commission. However, as shown by recent developments, the EU ETS carbon price has 

steadily increased throughout 2021 to reach 60 €/ton for the first time19. We thus provide 

sensitivity analysis with the CO2 price varying in the 50-150 €/ton interval. Like in previous 

chapters, we use a reference discount rate of 5% to compute annuities for investments.  

As we are interested in measuring how the optimal future electricity mix reacts to demand 

parameters, we provide some approximate projections for the future distribution of the total 

demand addressed to Auvergne-Rhône-Alpes. Using a structural decomposition approach, we 

model changes in the electricity demand distribution as being driven by sector-wise energy 

efficiency and economic growth rates (replaced by demographic growth rates in the case of 

residential demand). Average yearly demographic growth rate projections are obtained from 

INSEE Omphale 2017. Yearly efficiency growth rates for residential, professional (i.e. 

services) and industrial electricity consumers were computed using energy efficiency indexes 

on the 2000-2017 period from the ODYSEE-MURE database. For simplicity, we assume a 

uniform GDP growth rate of 1% for all sectors. Finally, the hourly share of each sector in the 

total electric load are computed using aggregated consumer data, segmented by sector and 

power slice, from ENEDIS20. Details and calculations are provided in Appendix. Electric 

vehicles (EVs) are also expected to significantly transform the structure of electricity 

consumption. We use the technical characteristics of the Renault Zoe as a benchmark for EV, 

with an average electric consumption of 0.12-0.20 kWh/km and an average battery size of 50 

kW with a round trip efficiency of 90 %. The number of EVs is derived from the median RTE 

scenario for the evolution of EVs in France, scaled by the share of Auvergne-Rhône-Alpes in 

the total number of vehicles in France [15]. EVs driving patterns and expected driven distance 

are estimated from [16]. We add the future expected electricity demand from EVs to the 

projected electricity consumption to get the total projected electricity demand distribution.  

The estimation of the costs of nuclear phasing out is a much harder issue: several competing 

methodologies have been proposed by EDF and the French Cour des Comptes. Yet, the 

former may have incentives to understate the true costs of nuclear operations and maintenance 

in order to capture public subsidies and investments projects, especially as the closure of 

nuclear plants and construction of new nuclear plants in France is a hot topic. An estimation 

 
19 https://www.reuters.com/article/eu-carbon-idUSL1N2Q10EP 

20 https://data.enedis.fr/pages/accueil/?id=init 
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of the costs of the “Grand Carénage” program initiated by EDF on the 2014-2030 period can 

be obtained from [17]. In the wake of the Fukushima nuclear catastrophe, the “Grand 

Carénage” program is an industrial project aiming at reinforcing the safety of French nuclear 

units, increasing plant availability and expanding the exploitation of the French nuclear fleet 

beyond 40 years. The investment and maintenance expenditures are estimated to 100€ billion 

on the period 2014-2030, with an average of 1.7€ billion per reactor (in current 2014 euros). 

Correcting for inflation, we estimate the remaining cost for the period 2021-2030 to 1.015€ 

billion. As pointed by [17], this investment program is expected to have a limited impact on 

the cost of nuclear electricity: a 50% increase in investment costs would only lead to a 5% 

increase in production costs. Yet, by comparison, a 50% decrease in nuclear production would 

double production costs. The industrial project initiated by EDF thus relies of the objective of 

avoiding a decrease in the production of the existing nuclear fleet. However, maintenance 

investments would only be economically justified if they can be amortized by sufficiently 

prolonging the life duration of nuclear plants. A large share of the costs included in the 

“Grand Carénage” could be avoided by decommissioning plants reaching 40 years or 

performing cheaper investments that would allow prolonging existing plants for a shorter 

duration.  

Similarly, the evaluation of the actual decommissioning costs of nuclear reactors remains a 

difficult issue. According to [18], EDF lacks the technical know-how to dismantle its oldest 

nuclear reactors, while its costs evaluations rely on overoptimistic assumptions on the level of 

economies of scale and pooling of resources necessary for dismantling operations. More 

precisely, EDF does not include the following elements in the computation of provisions 

required for decommission expenditures: reconditioning of the site; deconstruction of 

underground structures; evacuation of burned fuel during the early decommissioning phase 

and social costs of decommissioning. On this basis, EDF estimates per reactor 

decommissioning costs between 350€ and 500€ million. Yet, by comparison, Engie 

provisioned approximately 1.3€ billion per reactor for its nuclear plant in Belgium. In 

Germany, E.ON estimates the dismantling cost of a 1 GWe reactor around 1.2€ billion. Thus, 

we set the decommissioning cost per reactor to 1€ billion, which is likely to provide a lower 

bound for actual future costs while preserving the order of magnitude. The dismantling of a 

reactor can be decomposed into three main phases. The first one, corresponding to the 

evacuation of radioactive and hazardous material, takes between 3 to 6 years. The 

dismantlement of equipment and tank is the second phase and takes between 10 and 15 years. 
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Eventually, the sanitation of the site takes up to 5 years. On average, EDF estimates the full 

expected dismantling duration to 15 years.   

 

2.3. Investment and dispatch model design 

We use the robust investment and dispatching model presented in Chapter II with some 

significant modifications. In order to account for the multiple time scales driving residual 

demand patterns, it is modeled using both seasonal and hourly time resolution. As previously, 

we distinguish the set of RES units 𝒥 from the set of thermal units 𝒢, which level of 

generation is not stochastic except when plant failure occurs. The set 𝒥 can be decomposed 

into the subsets of wind and photovoltaic units. Similarly, the set 𝒢 can be partitioned into the 

subset of nuclear units, combined-cycle gas turbines (CCGT), gas turbines (GT), 

hydroelectric plants and hydroelectric pumped-storage plants. Each individual plant in 𝒢 is 

constrained by its commitment state, start-up and shut-down decisions, minimum uptime and 

down time, ramping limits, and maximum and minimum generation level. As previously 

stated, our model includes initial installed capacities, which investment costs are assumed to 

be fully amortized for dispatchable units.  

As we focus on the specific role of nuclear phasing-out in the transition to a low-carbon 

electric generation system, we further divide the subset of nuclear plants between candidate 

and non-candidate plants for decommissioning. Phasing-out is implicitly considered as a 

“negative” investment, with lifetime equal to the full duration of decommissioning operations. 

Similarly, maintenance investments which increase the duration of candidate plants are 

considered as regular capacity investments with lifetime equal to the subsequent increase. 

This approach allows us to model endogenous nuclear policy decisions using a classic 

investment framework. 

We make the very simplifying assumption that maintenance investments for ageing nuclear 

plants occur instantaneously with no physical duration required. Accounting for this issue in 

the context of optimal prolongation planning would require a multiannual framework in order 

to define the optimal prolongation and decommissioning schedule allowing to satisfy supply-

demand balance for all periods at minimum total cost. In essence, this could easily be 

achieved by introducing an additional set of time index corresponding to years, in addition to 

dynamic capacity constraints. This would however drastically increase the model complexity 
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and computational cost. Still, our model allows us to quantify the costs and benefits of long-

term decisions regarding the share of nuclear within the generation mix. 

Finally, we introduce electric vehicles (EVs) as an additional storage technology. We assume 

the number of EVs and the behavior of drivers are exogenous parameters. We model EVs at 

the fleet level by approximating its aggregate characteristics and constraints. For each time 

period, we model its aggregate behavior by computing the expected driving distance and 

electric consumption of the fleet, in addition to the expected share of EVs in circulation. This 

allows us to approximate the electric demand needed to satisfy the driving requirements of the 

fleet and the share of vehicles available for transfers with the grid.  

The full mathematical formulation of the model, in addition to the complete description of the 

variables and parameters used, is provided in Appendix. 

 

2.4. Choice of the optimal “security” level and representative weeks 

The security level of the French electric system is defined by a failure criterion, which 

corresponds to an average annual duration of failure of three hours owing to imbalances 

between supply and electric load. This indicates that, over all possible scenarios and 

accounting for interconnexions, the expected annual duration for which part of the electric 

load is cut because of system imbalances must be inferior to three hours (French Energy 

Code, Art. D141-12-6). However, this security criterion defines no constraint regarding either 

the frequency nor the scale of load shedding events.  

Expressed in probabilistic terms, the French security criterion corresponds to approximately 

0.035 % of the total number of hours within a full year. This provides us with a rough 

benchmark for choosing the appropriate robustness level for our investment model. Using the 

(𝜖,𝑀)- certainty set methodology introduced in Chapter II, we choose the minimal value of 

𝑀∗ for 𝜖 fixed such that the probability of load shedding is lower or equal to 0.035 %. 

We start by investigating the distribution and order statistics of residual demand for various 

levels of RES installed capacity. We note 𝑹𝑼 the residual demand cumulative distribution 

function associated to the vector of wind and solar installed capacities 𝑼 ∈ (ℝ+)2. For 0 ≤

𝑞 ≤ 1, 𝑹𝑼(𝑞) corresponds to the value of the 𝑞-th quantile of 𝑹𝑼. In order to observe how 
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renewable penetration affects 𝑹𝑼 and its order statistics, we gradually increase wind and 

photovoltaic capacities from 𝑼0 to 5 GWe. 

Table 1.A. shows order statistics for the distribution of residual value over the period 2013-

2018. Strikingly, the lower order statistics decrease faster with RES capacities than the higher 

ones. While the maximum residual demand value decreases by only 2.7% when increasing 

wind and photovoltaic capacities from 𝑼0 to 5 GWe, the median and first decile respectively 

decrease by 12.5% and 18.9%. The minimum residual demand value becomes negative for 

wind and solar installed capacities superior to 3 GWe, which requires investment in storage or 

demand-side management technologies to absorb the electricity surplus. However, even with 

higher RES installed capacities, negative residual demand values have a probability of 

occurrence lower than 0.001. The expected net gain from investment in storage is thus likely 

to be quite low. Similarly, there are roughly 0.1% chances that residual demand takes values 

beyond 20 GWh. Additional capacity to supply the peak load might be inefficient 

economically and in terms of generator utilization. In this respect, peak shaving strategies 

may yield significant benefits for the grid operator and end-users (see [19]). 

  

Quantile value of 𝑹𝑼 associated to 𝑞 

 

Probability threshold 𝑞 𝑼0 𝑼 = (2,2)𝑇 𝑼 = (3,3)𝑇 𝑼 = (4,4)𝑇 𝑼 = (5,5)𝑇 

0 2413 965 - 210 - 1384 - 2559 

0.001 4684 4258 3739 3075 2349 

0.01 6196 5751 5287 4768 4189 

0.1 8841 8410 8023 7610 7166 

0.25 10506 10077 9704 9306 8897 

0.5 12363 11926 11543 11171 10812 

0.75 14277 13836 13495 13173 12849 

0.9 16201 15759 15443 15145 14848 

0.99 19136 18797 18552 18333 18123 

0.999 20440 20186 20044 19891 19738 

1 21709 21348 21233 21148 21120 

 

Table 1.A.: Residual demand order statistics under increasing wind and photovoltaic 

generation capacities (in MWh) 

Note: Example: The value associated to the first decile when wind and solar capacities are both equal to 3 GWe 

is equal to 8023 MWh. 
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Table 1.B. presents extreme order statistics for the distribution of residual demand, 

corresponding to the subset of values within the first and last deciles. The negative 

relationship between the value of 𝑞 and the variation of 𝑹𝑼(𝑞) under increasing RES 

penetration appears even more clearly. The distribution of residual demand appears 

increasingly right-skewed, with most of the total variance being caused by 𝑹𝑼(𝑞) values for 

𝑞 < 0.01. We further observe that negative residual demand values and values beyond 20 

GWh both have a probability of occurrence strictly lower than 0.05%. Thus, the optimal 

(𝜖,𝑀)- certainty set for hour 𝑡 ∈ 𝒯, noted 𝒞𝑀,𝜖,𝑡, is not required to include the full distribution 

of residual demand to respect the French security criterion. 

  

Quantile value of 𝑅𝑈 associated to 𝑞 

 

Probability threshold 𝑞 𝑼0 𝑼 = (2,2)𝑇 𝑼 = (3,3)𝑇 𝑼 = (4,4)𝑇 𝑼 = (5,5)𝑇 

0 2413 965 - 210 - 1384 - 2559 

0.0005 4510 4028 3429 2723 1880 

0.001 4684 4258 3739 3075 2349 

0.005 5581 5135 4677 4147 3540 

0.01 6196 5751 5287 4768 4189 

0.99 19136 18797 18552 18333 18123 

0.995 19620 19335 19126 18925 18751 

0.999 20440 20186 20044 19891 19738 

0.9995 20756 20497 20293 20153 20028 

1 21709 21348 21233 21148 21120 

 

Table 1.B.: Extreme residual demand order statistics under increasing wind and photovoltaic 

generation capacities (in MWh) 

 

Setting 𝜖 = 0.001, we compare the certainty sets corresponding to 𝑀 ∈ {103, 106, 109}. A 

higher value of 𝑀 corresponds to a higher robustness level as the probability that extreme 

residual demand values are included in the (𝜖,𝑀)- certainty set increase. Figure 1.A. plots 

the residual load duration curve with wind and photovoltaic equal to their initial capacities. 

For each value of 𝑀 we compute the probability that residual demand over the period 2013-
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2018 would have lied outside the set defined by the union of all certainty sets, noted 𝒞𝑀,𝜖21 

For 𝑀 = 109, residual demand is inferior to the upper bound in all cases, while it is inferior to 

the lower bound in only 0.36% of cases. As was to be expected, the level of security 

diminishes with lower values of 𝑀. For 𝑀 = 106, there are 0.025 % chances (resp. 0.63%) 

that residual demand is superior or equal to the upper bound (resp. inferior or equal to the 

lower bound). 

 

Figure 1.A.: Residual demand duration curve with wind and photovoltaic capacities equal to 

𝑼0 

Note: The red (resp. green and blue) dotted curves corresponds to the lower and upper bounds computed of the 

union of certainty sets 𝒞𝑀,𝜖 for 𝑀 = 109 (resp. 𝑀 = 106 and 𝑀 = 103). 

 

Similarly, we plot in Figure 1.B. the residual load duration curves corresponding to RES 

capacities ranging from 2 GWe to 5 GWe. Strikingly, the level of security associated to each 

value of 𝑀 globally increases with RES capacities. This suggests our method performs 

 
21 We compute the share of all observations such that residual demand is superior (resp. inferior) to the 

maximum (resp. minimum) value across all certainty sets 𝒞𝑀,𝜖,𝑡, 𝑡 ∈ 𝒯. 
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increasingly well for increasing levels of renewable penetration. With 2 GWe of installed 

capacities, residual demand has only 0.009 % chances (resp. 0.43% chances) to be above the 

upper bound (resp. below the lower bound) of 𝒞𝑀,𝜖. For 4 GWe, these figures respectively 

decrease to 0.005 % and 0.37 %. As the French security criterion only restricts the number of 

hours during which at least one electric load is cut,  𝑀 = 106 is a sufficient robustness level 

as the hours with extremely low residual demand can be addressed through RES curtailment. 

The fact that a significant proportion of low residual demand values remains outside 𝒞𝑀,𝜖 

suggests fitting data with only a binomial normal distribution model is not optimal. Indeed, 

residual demand is increasingly skewed to the left with higher RES penetration, which 

suggests fitting the data with a skewed normal distribution or a logistic distribution would be 

more appropriate. However, fitting multidimensional data with several concurrent model 

exhibits high computational costs, as explained in Chapter II. 

 

Figure 1.B.: Residual demand duration curve with wind and photovoltaic capacities ranging 

from 2GWe to 5 GWe 

 



 

144 
 

We can also control the level of security of our mix with respect to extreme variations of 

residual demand. We verify in Figure 2.A. and Figure 2.B. (see in Appendix) that 𝑀 = 106 

also guarantees a very high level of system flexibility against residual demand extreme 

variations. With initial wind and photovoltaic capacities, residual demand variations have 

only 0.001 % chances to be superior to the most extreme positive variations in 𝒞𝑀,𝜖, and are 

inferior to the most extreme negative variations in 𝒞𝑀,𝜖 in all cases. Thus, 𝑀 = 106 should 

both guarantee a sufficient level of robustness in terms of security of supply and system 

flexibility. 

Finally, as in previous chapters, we select a subset of representative weeks in order to 

approximate the representative systems costs and operational behavior associated to a given 

generation mix.  

Still using the RTE database on electricity consumption, solar and wind generation for the 

period 2013-2018, we approximate seasonal Net Load Duration Curves (NLDC), with a 2-

week sample of representative weeks for each season. The number of observations 𝑁 in the 

training sample goes from 541 in Winter and 546 in Autumn to 552 in Spring and Summer. 

Figure 2.A. below plots the seasonal NLDCs and the approximate NLDCs obtained by 

scaling up the number of hours in the 2-week samples to match a full year. Our strategy yields 

highly accurate performances, with Root-Mean-Square-Error below 1% for all seasons. 
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Figure 2.A.: Net Load Duration Curves and 2-week approximation, by season 

Note: The red plain lines correspond to the NLDC observed for each season, while the blue dotted lines 

correspond to the NLDCs obtained by scaling the sample of hours from representative weeks. 

 

Finally, we take historic carbon emissions measured over the 2013-2018 period in Auvergne-

Rhône-Alpes as a benchmark for assessing performances in terms of CO2 emissions. Table 

2.B. reports the observed distribution. Overall, the region Auvergne-Rhône-Alpes has very 

low carbon emissions compared to the national average, with respectively 5.7 g/kWh and 

48.38 g/kWh over the same period.  
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Figure 2.B.: Distribution of regional CO2 emissions and average CO2 emissions over the 

2013-2018 period 
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3. Optimal capacity mix and cost analysis 

The analysis provided in this section investigates the optimal regional capacity mix under 

various parameters which affect the total cost of nuclear and RES, but also influence total 

system cost.  

3.1.  Optimal capacity mix with endogenous nuclear decommissioning        

decisions 

We investigate the sensitivity of the optimal capacity mix to a set of technical and cost 

parameters. We focus on parameters which are likely to have a significant impact on the 

decision of decommissioning nuclear reactors, either by directly changing the costs of phasing 

out, or by indirectly changing the opportunity cost of keeping nuclear units in the generation 

mix. We divide the set of parameters selected for sensitivity analysis into two categories: 

- Nuclear-related parameters: reactor prolongation unit cost; reactor decommissioning 

unit cost; reactor total decommissioning time (in years). 

- Non-nuclear-related parameters: RES investment and maintenance costs; future 

electricity demand distribution; carbon cost. 

The general conclusion from the following simulations is that nuclear phasing out is never 

optimal in terms of total system cost. In all cases, the prolongation of the full fleet of 12 

CPO/CPY type reactors minimizes both total annual fixed costs, which are decomposed into 

annuities, fixed operation & maintenance (FOM) costs, and operational costs. 
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3.1.1. Sensitivity to nuclear-related parameters 

 Baseline + 𝟏𝟎 % + 𝟑𝟎 % + 𝟓𝟎 % 

Combined cycle gas turbine 3.15 2.7 2.7 2.7 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 

Wind 0.665 2.386 4.158 3.136 

PV 1.190 4.961 1.190 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 1.056 2.150 1.536 

 

Table 2.A.: Optimal capacity by technology with varying prolongation costs (in GWe)  

 

Table 2.A. shows that, while the optimal nuclear capacity remains constant, increasing 

nuclear prolongation costs shifts the optimal mix towards more RES and battery storage 

capacities. From a social-planner perspective, the increase in nuclear prolongation costs is 

mitigated by decreasing operational costs, which is allowed by feeding RES generation into 

the grid at zero marginal cost. However, this mitigation strategy becomes less effective as 

prolongation costs increase beyond a certain threshold: the additional RES investment and 

FOM costs required to increase renewable production is not anymore mitigated by lower 

operational costs. The total RES and battery storage capacity thus follow an inverse U-shaped 

curve.  

 Baseline − 𝟏𝟎 % − 𝟑𝟎 % − 𝟓𝟎 % 

Combined cycle gas turbine 3.15 3.15 3.15 2.7 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 

Wind 0.665 0.612 0.591 3.670 

PV 1.190 1.190 1.262 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 0 1.801 2.081 

 

Table 2.B.: Optimal capacity by technology with varying decommissioning costs (in GWe)  
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On the opposite, we see from Table 2.B. that the total RES and battery storage capacity 

globally increases when decommissioning costs decrease beyond a certain level. For a 50% 

lower costs, battery storage and RES capacities both increase, while CCGT capacities 

decrease by one installed unit. This suggests battery storage can effectively complement the 

variability of renewable generation when sufficient RES capacities are installed, thus partially 

substituting to CCGT units. Although the blend of renewables and storage operates as 

‘baseload’, a significant share of peaking units remain necessary for ensuring system balance 

in high residual demand episodes.  

Table 2.C. finally shows how the optimal capacity mix varies when extending the total 

decommissioning time from 15 years to a maximum of 35 years. Assuming that the 

decommissioning expenditures are allocated over a longer period, we expect the 

corresponding annuities to decrease. However, this seems to have little impact on the optimal 

capacity mix. Wind and battery storage are the only technologies with additional investments. 

However, their capacities both follow an inverted U-shaped curve, with no new investment 

when extending decommissioning operations to 35 years. 

 Baseline +𝟓 +𝟏𝟎 +𝟏𝟓 +𝟐𝟎 

Combined cycle gas turbine 3.15 3.15 3.15 3.15 3.15 

Gas turbine 0 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 13.4 

Wind 0.665 0.583 1.396 1.033 0.583 

PV 1.190 1.190 1.190 1.190 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 3.310 

Battery storage 1.384 4.516 0.797 0.499 0 

 

Table 2.C.: Optimal capacity by technology with varying total decommissioning time (in 

GWe) (in years)  

 

It may be noted from Table 2.A. to 2.C. that as the optimal nuclear capacity remains 

unchanged, the optimal total nuclear retirement and prolongation cost is unaffected by 

changes in parameters. However, from a mathematical perspective, changing cost coefficients 

in the objective function mechanically changes the First-Order Conditions (FOC) Lagrangean, 

in addition to the optimal value of the multipliers. Put differently, changing the value of the 

parameters modify the shadow price associated to constraint (2) in the investment model (see 
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Appendix). This suggests mixes with low RES-low battery storage capacities and mixes with 

a high RES-high battery storage are equivalent optimal solutions in terms of total costs, 

independently of nuclear policy cost parameters. 

 

3.1.2. Sensitivity to non-nuclear-related parameters 

We focus our attention on parameters likely to affect the opportunity cost of maintaining a 

strong share of nuclear in the generation mix. The French nuclear fleet has traditionally been 

used in ‘baseload’ mode22, which means it generates a rather high and stable level of output 

throughout the year. Before analyzing the optimal capacity mix for the set of chosen 

parameters, it is fruitful to study how nuclear contributes to total regional production. Figure 

3.A. shows that, over the 2013-2018 period, the average ratio of nuclear generation to the total 

electricity demand addressed to Auvergne-Rhône-Alpes (including neighboring regions) is 

equal to 76.3 %, which is very close to the national average. More specifically, it indicates 

that the average share of nuclear in total generation (excluding pumping) oscillates between 

60% and 90%, while in never drops below 40 % overall. In terms of volume, average nuclear 

generation is equal to 9.5 GWh roughly, and remains superior to 7.1 GWh in 90 % of hours.  

 
22 We define the ‘baseload’ as the minimum electricity demand addressed to the grid over a given time frame (in 

our case, 2013 to 2018). 



 

151 
 

 

Figure 3.A.: Share and moving-average ratio of nuclear to electricity demand, from 2013 to 

2018 

Note: The blue plain curve corresponds to the moving-average share of nuclear generation, which computed 

with a sliding window equal to 15 days. The red line corresponds to the average share computed over the whole 

period. 

 

Phasing out of nuclear to replace decommissioned units by RES or gas-fired generation units 

is thus tantamount to changing the very baseload generation technology in the mix.  

Our costs projections trends for RES are extrapolated from [20] and [21]. Based on 2016-

2019 trends, we assume a 12 % yearly reduction rate of overnight costs and 9% reduction rate 

of annual FOM costs for solar panels. These trends are however estimated from the evolution 

of the cost structure of utility-scale solar, which may overestimate the decrease in residential 

and commercial photovoltaic. Moreover, we expect the costs reduction in the solar sector to 

be less pronounced in the future as the industry gets increasingly mature. We assume the wind 

turbine industry is more established, with a yearly overnight and FOM cost reduction rate of 

1%. Our results can thus be considered as an illustration of the sensitivity of nuclear decisions 

to the costs of renewable technologies. 
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Table 2.D. displays the optimal generation mix corresponding to projected investment and 

FOM costs for renewables in 2025, 2030 and 2035. We note a slight decrease in CCGT 

capacities, while the total RES installed capacities increase from 1.773 GWe in the baseline 

situation (corresponding to 2021 reference costs) to 15.29 GWe under projected costs for 

2035. The battery storage capacity is roughly multiplied by 2 but does not increase 

monotonically with renewable capacities, which illustrates non-linearities in the 

complementarities between RES and storage. Finally, even when multiplying total RES 

capacity by more than 8, the optimal nuclear capacity remains unaffected. 

 Baseline 2025 

 

2030 

 

2035 

 

Combined cycle gas turbine 3.15 3.15 2.7 2.7 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 

Wind 0.665 0.583 0.583 2.825 

PV 1.190 1.190 11.79 12.47 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 2.311 3.493 2.760 

 

Table 2.D.: Optimal capacity by technology with varying investment and fixed costs for 

renewables (in GWe)  

 

As underlined above, nuclear is traditionally operated as ‘baseload’ technology, which implies 

the optimal number of operating hours over a typical year is very high. Decreasing the 

number of hours for which nuclear generation is the least costly option should increase the 

opportunity cost of prolonging the whole nuclear fleet if a fraction of reactors become 

unutilized or have a low utilization rate. Thus, we expect decreasing demand to be a factor in 

favor of nuclear phase out. Using a simple heuristic based on sectoral decomposition of 

demand (see in Appendix), we approximate the future electricity demand distribution using 

forecasts for GDP and demographic growth rates and sectoral energy efficiency projections. 

While leaving the optimal ‘baseload’ nuclear capacity unchanged, we see from Table 2.E. 

that investment in new CCGT units decreases with electricity demand. While we note an 

apparent substitution between CCGT units and a blend of RES with battery storage units for 

2025 and 2030, all three types of investment see their level decrease in 2035. While the total 
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regional generation capacity decreases (from 31.4 GWe in the baseline case to 28.4 GWe 

under 2035 demand distribution), it is economically optimal to decrease total operational costs 

by reducing investment in CCGT units rather than replacing nuclear units by renewables. 

We observe from Figure 3.B. in Appendix that, according to our projections, the decrease in 

demand is more pronounced for higher quantiles. The reduction in the peak load is thus 

expected to be more pronounced than the reduction in the ‘base load’. Over the subset of 

representative hours, the 9th decile of the distribution decreases from 15.87 GWh in 2021 to 

14.25 GWh in 2035 (- 10.2 %), while the 1st decile only decreases from 8.94 GWh to 8.04 

GWh (- 10 %). The exact same trends can be observed for the sample of worst-case weeks. 

The more marked reduction of peaking demand explains the observed decrease in new 

peaking CCGT units. However, the heuristic used for constructing future demand distribution 

implicitly assumes the impact of structural parameters, especially energy efficiency gains, 

uniformly modify the demand distribution.  

 Baseline 2025 

 

2030 2035 

Combined cycle gas turbine 3.15 2.25 1.8 1.35 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 

Wind 0.665 2.625 1.835 0.583 

PV 1.190 1.190 1.190 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 4.751 0.275 0 

 

Table 2.E.: Optimal capacity by technology under future projected electric demand 

distributions (in GWe) 

 

Although our approach accounts for variations in the structure of electricity demand by 

computing sectoral shares on an hourly basis (for instance, residential customers account for 

41% of load at 9 a.m. against 50% for the evening peak at 8 p.m.), energy efficiency measures 

are likely to affect differently consumption usages and load dynamics depending on the type 

of measures (for instance, cavity wall insulation, loft insulation, more efficient heating 

bowler, see [22]). Still, our analysis suggests that only energy efficiency measures 
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diminishing significantly the ‘baseload’ uses of electricity are likely to create optimal 

economic and technical conditions for phasing out of nuclear.  

Increasing carbon price does not challenge our previous conclusions. Table 2.F. clearly 

shows that increasing CO2 price does not even reduce the optimal level of new CCGT 

investments but fosters the development and use of storage and RES generation to mitigate 

the higher cost of gas-powered peaking units. The optimal nuclear capacity remains equal to 

its initial level as increasing carbon price only affects operational costs of peaking 

technologies. We may argue that it makes nuclear even more cost competitive as a ‘baseload’ 

generator. 

 Baseline 𝝅𝑪𝑶𝟐 = 𝟓𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟎𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟓𝟎 €/𝒕 

Combined cycle gas turbine 3.15 3.15 3.15 3.15 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 13.4 13.4 

Wind 0.665 0.583 1.386 0.583 

PV 1.190 2.868 1.273 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 0.177 0.489 2.570 

 

Table 2.F.: Optimal capacity by technology with varying carbon price (in GWe)  

 

3.2. Optimal capacity mix with constrained nuclear phasing out 

decisions 

To put into perspective the above results, we now impose a minimum number of pairs of 

reactor to be decommissioned. Unsurprisingly, the optimal number of decommissioned 

reactors always equals the lower bound imposed to the investment model.  

Table 3.A. shows that phased out nuclear capacity is mainly replaced by investments in 

CCGT units. The total RES installed capacity does not vary linearly with nuclear capacity, 

reaching a maximum value of 5.5 GWe roughly for 2 pairs of decommissioned reactors. 

Beyond 3 pairs of decommissioned reactors, CCGT becomes the second most important 

technology in the mix. With 3 and 4 pairs of decommissioned reactors, CCGT accounts for 

respectively 22% and 32 % of total capacities respectively. By comparison, solar and wind 
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capacities only account for 6.5% and 5.9% of total install capacity. According to [23], high 

capital costs of renewable technologies tend to encourage the use of fossil fuels. Low to 

moderate capacity factors for renewables require a high volume of new capacity to replace 

decommissioned reactors, which translate into extremely high investment and fixed costs 

which favor less capital-intensive technologies. The authors find that only a combination of 

carbon pricing and low RES investment costs achieves significant investment in RES 

capacity. While a combination of 50 USD carbon price and 3% WACC (Weighted-Average 

Cost of Capital) leads to significant emission reductions, a 100 USD carbon price combined 

with a 25 % WACC has virtually no impact. It seems however that WACC reduction has the 

largest impact in terms of emissions reduction, as carbon pricing is effective only if capital 

costs are low. 

 1 𝟐 𝟑 𝟒 

Combined cycle gas turbine 4.5 6.3 8.1 9.9 

Gas turbine 0 0 0 0 

Nuclear 11.6 9.8 8 6.2 

Wind 1.608 4.269 1.222 0.629 

PV 1.190 1.190 1.190 1.190 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 4.059 0 6.653 1.277 

 

Table 3.A.: Optimal capacity by technology with imposed minimum number of pairs of 

decommissioned nuclear reactors (in GWe) 

 

Table 3.B. further shows that lower investment and FOM costs for renewables 

(corresponding to projected costs for 2025 and 2030) increase the optimal RES capacity 

without affecting the optimal investment level in CCGT units. Overall, our results suggest that 

a fraction of CCGT is substituted to decommissioned nuclear and operates as ‘baseload’, 

while investments in renewables and battery storage are used to mitigate the consequent 

increase in electricity generation cost.  
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 𝝅𝑪𝑶𝟐 = 𝟓𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟎𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟓𝟎 €/𝒕 2025 

 

2030 

 

Combined cycle gas turbine 6.3 6.75 6.3 6.3 6.3 

Gas turbine 0 0 0 0 0 

Nuclear 9.8 9.8 9.8 9.8 9.8 

Wind 4.269 0.583 1.278 0.911 1.267 

PV 1.190 1.190 1.190 2.689 6.639 

Hydroelectric 8.331 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 3.310 

Battery storage 0 7.900 1.997 3.821 2.471 

 

Table 3.B.: Optimal capacity by technology with varying carbon price and investment and 

fixed costs for renewables (in GWe) 

Note: For all cases, we impose a minimum of 2 pairs of nuclear reactors to be decommissioned, i.e. 4 reactors. 

 

When considering operational and FOM costs from the perspective of the French nuclear 

operator only, it appears from Figure 4.A. that FOM costs associated to the nuclear fleet 

decrease with the number of decommissioned pairs of reactors. In other words, phasing out 

the maximum number of nuclear units is economically optimal in terms of total FOM costs. 

However, closing nuclear reactors diminishes the maximum available capacity and thus may 

entail a revenue loss for the nuclear operator. Using panel data for the hourly day-ahead spot 

market corresponding to the French trading zone BZNFR, over the period 2015-201823, we 

find an average profit of nuclear generation equal to 34.6 €/MWh. The total annual profit 

earned for each MWe of installed nuclear capacity is estimated to 209 k€ approximately. 

Thus, ceteris paribus, decommissioning a pair of reactors would have entailed an annual 

profit loss of 376 M€ over the period. By comparison, decommissioning a pair of reactors 

reduces total annual fixed costs by 317 M€ in the baseline case and respectively 343 M€, 396 

M€ and 448 M€ by increasing prolongation costs by 10%, 30% and 50%. Thus, from the sole 

perspective of the nuclear operator, this simple analysis suggests that for prolongation costs 

high enough, phasing out of nuclear would reduce the net annual total costs (total FOM and 

operation costs minus generation revenue) associated to the nuclear fleet. Moreover, we 

assumed initial nuclear investment costs have been fully amortized so annuities corresponding 

to these costs are null beyond 40 years of activity. As underlined by [13], many cost items, for 

 
23 https://transparency.entsoe.eu/ 
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instance “hidden development counts” initially buried in the State’s account, may contribute 

to inflate the true total costs of nuclear. A careful evaluation thus suggests that nuclear shut 

down would be beneficial for the nuclear operator, provided dismantling costs have been 

provisioned to meet back-end commitments. 

 

Figure 4.A.: Annual fleet FOM and nuclear policy costs under increasing nuclear 

prolongation cost 

Note: The red plain line corresponds to decommissioning costs. The green dashed (resp. dotted) line corresponds 

to the prolongation costs (resp. FOM costs) of non-decommissioned reactors, while the green plain line is equal 

to their sum. Finally, the black plain line is equal to the sum of all costs.   

 

By comparison, Table 4.B. shows the rate at which total cost per reactor closed goes down as 

dismantling costs diminish. Decreasing dismantling costs by 10%, 30% and 50% reduces total 

annual fixed costs associated to the remaining nuclear capacity, for each decommissioned 

pair, by 336 M€, 375 M€ and 413 M€. EDF, the owner and operator of the French nuclear 

fleet, estimated a unit dismantling cost of 320 €/kWe regarding a plant of four 900 MWe 
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reactors. Equivalently, the estimated cost per 900 MWe reactor amounts to approximately 290 

M€, which remains much smaller than the dismantling cost after a 50% decrease. Allocating 

the costs over a 15-year dismantling period suggests that nuclear phasing out is indeed 

optimal for the fleet operator. 

 

Figure 4.B.: Annual fleet FOM and nuclear policy costs under decreasing dismantling cost 

 

However, from the perspective of a social planner, the gains associated to a partially phased 

out nuclear fleet remain too low to compensate the extremely high investment costs required 

to replace decommissioned reactors by RES generation units. Using a simple heuristic, we 

may compute all combinations of wind and photovoltaic capacity required to replace 1 GWe 

of nuclear capacity. Given a set of consecutive generation periods 𝜏 in the interval [𝜏−, 𝜏+], 

with (𝜏−, 𝜏+) ∈ (ℕ+)2, 𝜏− < 𝜏+, we compute the minimum RES capacity such that for any 

interval [𝜏, 𝜏+] ⊆ [𝜏−, 𝜏+], the cumulated RES generation is superior or equal to the 

cumulated generation corresponding to 1 GWe of nuclear capacity. Formally, using notations 

given in Appendix and noting 𝑈1 (resp. 𝑈2) the photovoltaic (resp. wind) installed capacity, 
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the RES capacity required to replace the whole nuclear fleet amounts to solving the following 

problem: 

                         min
𝑈2∈ℝ+

𝑈2 : 

(

 
 ∫(𝜉𝑡

1𝑈1 + 𝜉𝑡
2𝑈2)𝑑𝑡

𝜏

𝜏−

≥ ∫(∑ 𝑞𝑔𝑡
𝑔∈𝒩

)𝑑𝑡

𝜏

𝜏−

, ∀𝜏 ∈ [𝜏−, 𝜏+]

𝑈1 ∈ ℝ
+

)

 
 
             (𝟏) 

𝜉𝑡
1 (resp. 𝜉𝑡

2) corresponds to the photovoltaic (resp. wind) capacity factor in 𝑡 ∈ [𝜏−, 𝜏+]. In 

order to compute each combinations of 𝑈1 and 𝑈2, we arbitrarily fix 𝑈1 exogeously. For 

simplicity, we assume the storage capacity required to allocate renewable generation between 

successive periods is avaiable. By linearity assumption, we may directly compute the set of 

combinations of wind and photovoltaic capacity required to replace 1 GWe of nuclear 

capacity. Taking historic profiles for nuclear generation, wind and solar capacity factors over 

the period 2013-2018, we plot the resulting optimal combinations in Figure 5 below.  

Our results help better understand the relatively higher share of wind capacity compared to 

solar capacity in the optimal mix. While approximately 3.7 GWe of wind capacity and no 

solar capacity, with the adequate storage capacity, can satisfy the same cumulative profile 

than 1 GWe of nuclear capacity, 18.7 GWe of photovoltaic are required if wind capacity is 

null. Consequently, the minimum required wind capacity (resp. photovoltaic capacity) to 

replace 2 nuclear reactors when photovoltaic (resp. wind) capacity is null is equal to 6.7 GWe 

(resp. 33.7 GWe). Under 2021 overnight costs, we find the cost minimizing combination 

comprises 0 GWe of solar installed capacity, for a total annuity cost of 692€ millions 

neglecting storage investment costs. By comparison, we estimate the sum of the annuitized 

prolongation cost and FOM costs for 2 nuclear reactors to 510€ millions roughly. Unless the 

wind turbine industry experiences a strong cost reduction in the following decade (or a sharp 

increase in average capacity factor), our results show replacing nuclear reactors by renewables 

is strongly sub-optimal in terms of costs. Furthermore, throughout the previous analysis, the 

storage investments required for absorbing additional renewable generation are likely to be 

underestimated, as Auvergne-Rhône-Alpes has significant pumped-storage hydroelectric 

capacity. The high volume of electricity from hydroelectric sources may also contribute to 

underestimate the optimal number of CCGT units required to replace decommissioned nuclear 

units. Overall, it appears clearly throughout our analysis that an early phasing out of nuclear, 

at least before 2030, is not justified on the basis of costs. 
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Figure 5.: ‘Isoquant’ line of photovoltaic and wind capacity combinations equivalent to 1 

GWe of nuclear capacity 

 

The French Agency for the Energy Transition (ADEME) estimates the onshore wind 

potential, for Auvergne-Rhône-Alpes, to 20 GWe for old-generation turbines and 13.3 GWe 

for new-generation ones24. The total regional photovoltaic potential is estimated to 52.1 GWe, 

which can be decomposed into 31 GWe for residential, 15 GWe for commercial and 6.1 GWe 

for utility-scale photovoltaic. With an estimated 6.7 GWe of old-generation wind capacity to 

replace a pair of 900 MWe nuclear reactors, at most 3 pairs of reactors may be replaced by 

wind turbines. Overall, at most 4 pairs of nuclear reactors could be fully replaced by a 

combination of wind and photovoltaic at suboptimal investment costs. These results suggest 

that replacing a higher number of nuclear reactors by a blend of RES might require importing 

electricity from other French regions with higher wind and solar potentials, possibly 

triggering additional network reinforcement investments.  

 

 
24https://librairie.ademe.fr/recherche-et-innovation/2881-mix-electrique-100-renouvelable-analyses-et-

optimisations.html 
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3.3. Cost repartition comparisons 

As already underlined above, photovoltaic and wind are capital-intensive technologies with 

null variable costs. Similarly, nuclear is characterized by high investment and maintenance 

costs but generates carbon-free electricity at a very low variable cost (we estimated the fuel 

cost to 8 €/MWh). On the contrary, peaking technologies such as CCGT have low capital but 

high generation costs, increasing with carbon price.  

We expect the share of fixed costs to increase with RES penetration, especially if the nuclear 

capacity remains equal to its initial value. Under the assumption that all annuities have been 

paid for nuclear and hydroelectric units, Table 4.A. shows that a majority of annual costs 

correspond to FOM and nuclear policy costs. While increasing RES penetration slightly 

decrease both worst-case and representative operational costs, these gains are counterbalanced 

by increasing annuities, FOM and nuclear policy costs. Over a representative year, total 

operational costs only represent 14 % of all costs, while FOM costs and nuclear policy costs 

respectively account for 48% and 32% of the total. Increasing nuclear prolongation costs 

further increases the share of fixed costs: under a 50% cost increase, the share of total 

operational costs drops to 10% while the costs of nuclear prolongation represent 

approximately 39% of the total.  
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 Baseline +𝟏𝟎 % + 𝟑𝟎 % + 𝟓𝟎 % 

Objective function (B€) 5.103 5.802 6.039 6.196 

Total overnight costs (B€) 2.036 7.882 6.310 4.899 

Worst-case operational costs (B€) 0.207 0.183 0.189 0.191 

Representative annual operational costs (B€) 0.691 0.577 0.582 0.603 

Annuities (B€) 0.320 0.755 0.675 0.557 

Combined cycle gas turbine 0.132 0.110 0.110 0.110 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.068 0.246 0.428 0.323 

PV 0.090 0.376 0.090 0.090 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.030 0.023 0.047 0.034 

Yearly FOM costs (B€) 2.343 2.519 2.494 2.445 

Combined cycle gas turbine 0.063 0.054 0.054 0.054 

Gas turbine 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 

Wind 0.030 0.107 0.186 0.140 

PV 0.034 0.144 0.034 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.007 0.005 0.011 0.008 

Nuclear retirement and prolongation costs (B€)  1.577 1.735 2.051 2.366 

 

Table 4.A.: Cost allocation by technology and operational conditions with varying 

prolongation costs  

Note: All costs figures correspond to the optimal capacity mixes presented in Table 2.A.. The worst-case costs 

are computed over the subset of worst-case weeks for each season only, while the representative operational 

costs are computed over the subset of representative weeks and scaled so that they are expressed on a yearly 

basis.  

 

Similar observations, with a dominant share of fixed costs, can be drawn for the allocation of 

costs when increasing the lentgh of the dismantling period or decreasing decommissionning 

costs. We refer to Table 4.B. and Table 4.C. in Appendix for a comprehensive presentation 

of the cost allocation. For almost all cases, we note an increase in total annual system costs 

with respect to the baseline optimal mix. 
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 Baseline 2025 2030 2035 

Objective function (B€) 5.103 5.095 5.309 5.252 

Total investment costs (B€) 2.036 2.087 5.789 6.576 

Worst-case operational costs (B€) 0.207 0.206 0.177 0.156 

Representative annual operational costs (B€) 0.691 0.663 0.554 0.489 

Annuities (B€) 0.320 0.246 0.544 0.599 

Combined cycle gas turbine 0.132 0.132 0.110 0.110 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.068 0.058 0.055 0.252 

PV 0.090 0.056 0.303 0.177 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.030 0.050 0.076 0.060 

Yearly FOM costs (B€) 2.343 2.331 2.421 2.454 

Combined cycle gas turbine 0.063 0.063 0.054 0.054 

Gas turbine 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 

Wind 0.030 0.025 0.024 0.109 

PV 0.034 0.022 0.116 0.068 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.007 0.012 0.018 0.014 

Yearly nuclear retirement and prolongation costs (B€)  1.577 1.577 1.577 1.577 

 

Table 4.D.: Cost allocation by technology and operational conditions with varying investment 

and fixed costs for renewables 

 

As illustated in Table 4.D., the increase in RES penetration following lower investment and 

FOM costs allows for significantly lower operational costs, both in the worst-case and 

representative weeks. Compared to the baseline, the operational and annual representative 

costs corresponding to 2035 projected costs are roughly 25% and 29% lower respectively. 

Yet, the same comparison reveals a 87% increase in annuities and 5% in yearly FOM costs. 

As previously, an increasing share of total annual costs are fixed, with representative annual 

operational costs accouning for only 10% of annual system costs. Overall, we note that the 

value of the objective function is higher or roughly equal to the baseline case in all 

simulations. 
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 Baseline 2025 2030 2035 

Objective function (B€) 5.103 5.311 4.952 4.708 

Total investment costs (B€) 2.036 4.441 2.333 6.447 

Worst-case operational costs (B€) 0.207 0.174 0.153 0.148 

Representative annual operational costs (B€) 0.691 0.585 0.568 0.560 

Annuities (B€) 0.320 0.552 0.351 0.194 

Combined cycle gas turbine 0.132 0.088 0.066 0.044 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.068 0.270 0.189 0.060 

PV 0.090 0.090 0.090 0.090 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.030 0.104 0.006 0 

Yearly FOM costs (B€) 2.343 2.429 2.362 2.296 

Combined cycle gas turbine 0.063 0.045 0.036 0.027 

Gas turbine 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 

Wind 0.030 0.117 0.082 0.026 

PV 0.034 0.034 0.034 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.007 0.024 0.001 0 

Yearly nuclear retirement and prolongation costs (B€)  1.577 1.577 1.577 1.577 

 

Table 4.E.: Cost allocation by technology and operational conditions under future projected 

electric demand distributions 

 

Table 4.E. shows reducing electricity demand allows for both reducing annual operational 

and fixed costs. Although higher wind capacities increase total annuities for the cases 

corresponding to 2025 and 2030 projected demand, results suggest that a sufficient and 

uniform reduction in electricity demand mecanically decrease the total operating costs, with a 

smaller utilization of CCGT units (with high variable costs) as peaking demand also 

diminishes. Our results show similar annual system costs for the baseline optimal mix (4.93 

billion €) and the one corresponding to 2030 demand distribution (4.86 billion €), although 

the latter has both a higher RES penetration and less CO2-emitting generation units. However, 

even in the absence of subsidies to renewables, reducing electricity demand without 

significantly decreasing total fixed cost is likely to increase the average electricity price, as 
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annuities and annual FOM costs are now allocated over a smaller volume of generation. 

While decreasing the electricity spot price, some consumers may bear a larger share of the 

system fixed costs depending on how the latter are allocated. This issue is however outside 

the scope of this chapter and left for further research.  

Finally, Table 4.F. shows the impact of increasing carbon price on the repartition of costs for 

the corresponding optimal mixes. For 𝜋𝐶𝑂2 equal to 50€/t and 100€/t, the small reduction in 

representative annual operational costs is negated by higher annuities and FOM costs 

following investment in additional RES generation units. Simultaneously, worst-case 

operational costs steadily increase with carbon price. This is the consequence of the system 

balance being mainly ensured by CCGT generation, especially in high RD situations.  

 Baseline 𝝅𝑪𝑶𝟐 = 𝟓𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟎𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟓𝟎 €/𝒕 

Objective function (B€) 5.103 5.265 5.333 5.348 

Total overnight costs (B€) 2.036 3.520 2.900 2.130 

Worst-case operational costs (B€) 0.207 0.208 0.233 0.251 

Representative annual operational costs (B€) 0.691 0.654 0.670 0.689 

Annuities (B€) 0.320 0.414 0.382 0.338 

Combined cycle gas turbine 0.132 0.132 0.132 0.132 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.068 0.060 0.143 0.060 

PV 0.090 0.218 0.096 0.090 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.030 0.004 0.011 0.056 

Yearly FOM costs (B€) 2.343 2.373 2.364 2.345 

Combined cycle gas turbine 0.063 0.063 0.054 0.063 

Gas turbine 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 

Wind 0.030 0.026 0.062 0.026 

PV 0.034 0.083 0.037 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.007 0.001 0.002 0.013 

Nuclear retirement and prolongation costs (B€)  1.577 1.577 1.577 1.577 

 

Table 4.F.: Cost allocation by technology and operational conditions with varying carbon 

price 
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A higher CO2 price has virtually no effect on the repartition of system costs between  

operational and fixed costs: while annual representative operational costs represent 14% of 

total costs in the baseline case, they respectively represent 13% and 13.9% for carbon costs 

equal to 50€/t and 150€/t. Overall, for all the optimal mixes considered above, FOM costs 

represent the major part of annual system costs, in addition to nuclear retirement and 

prolongation costs which consistently account for above 30% of the total.   

Imposing a partial nuclear phase out significantly modifies the repartition of system costs. As 

shown in Table 4.G., annuitized nuclear policy costs decrease by 70 M€ with each pair of 

closed reactors, while nuclear fixed costs decrease by 246 M€. While nuclear accounts for 

approximately 78% of annual FOM costs in the baseline case, its share decreases to 65% and 

57% with respectively 2 and 4 pairs of decommissioned reactors. Although it remains one of 

the main contributors to system costs, the sum of nuclear fixed and policy costs accounts for 

54% and 37% with 9.8 GWe and 6.2 GWe of installed nuclear capacity, compared to 69% in 

the baseline case.  

Lastly, our results document a significant increase in both worst-case and representative 

annual operational costs. While closing 4 pairs of reactors multiplies worst-case costs by more 

than 2, the representative annual cost increases by 230%. This compares to the findings of 

[24], who simulate Japan’s optimal future power generation mix under various nuclear and 

CO2 regulations policies. They find a complete nuclear phase out and 80% reduction in 

carbon emissions entail a quadruple increase in power generation costs. Technical innovation 

and severe reduction in RES investment costs are shown to be pivotal conditions to guarantee 

the economic efficiency of a sustainable power supply. Although the optimal capacity mixes 

found by imposing a minimum level of nuclear phase out are clearly incompatible with CO2 

reduction targets, at least from a cost-minimization perspective, this suggests the existence of 

a trade-off between an extremely capital-intensive mix based on high RES capacities with low 

operational costs, and a low capital-intensive mix based on CCGT turbines with high 

generation costs and a significant increase in carbon emissions. Similar observations in terms 

of cost allocation can be made for Table 4.H. in Appendix, for varying carbon costs and 

investment and fixed costs for renewables. 

The additional cost of carbon capture and storage (CCS) technologies, with the subsequent 

reduction in CO2 emissions, should thus be considered and put into balance with the costs of 

replacing ageing nuclear reactors by a blend of renewables and storage, especially in worst-
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case situations with unstable weather or prolonged periods of low renewable production. 

However, one should also consider the dependency of France to foreign gas imports. 

Although 50% of the imported gas comes from Europe, with 43% from Norway and 11% 

from the Netherlands, 21% of the total is imported from Russia25. France gas imports have 

increased by 11% in 2019, which 55% and 39% higher imports from Qatar and Nigeria26. 

Although this diversification strategy limits of the risks of supply rupture, France remains 

subject to geopolitical risk and dependent from non-EU countries, in addition to the price risk. 

As documented by the French CRE, the +12.6% increase in gas prices in October 2021 in 

France uniquely reflects the impact higher gas price on the supply costs of Engie27. Properly 

quantifying the gains from energy independency is thus pivotal for estimating the actual gains 

from decreasing the share of fossil-fuel generation units in the electricity mix. However, as it 

has been shown in the first chapters of this thesis, ensuring system balance in worst-case 

situations with strong RES penetration requires maintaining a fraction of peaking units. 

Finally, although this topic has received little attention yet, it has recently been estimated that 

one third of French gas imports directly come from the Arctic zone28. Increasing French 

dependence on gas imports is thus likely to accelerate the exploitation of fragile polar 

territories and contradicts the French public objectives of environmental preservation. A 

striking example is the 10% direct financial participation of TotalEnergies in the Arctic LNG 

2 Project in Russia, while the grant of an export guarantee by the French Public Bank of 

Investment (BPI) to TotalEnergies is currently debated29. However, the official reluctance to 

financially back-up this project may not deter Total-Energies from actively pursuing the 

project development as it may yield significant exports revenue. 

 

 

 

 
25 https://www.grdf.fr/installateurs/atouts-gaz/consommation-gaz-france 

26 https://www.connaissancedesenergies.org/le-gaz-consomme-en-france-vient-principalement-de-russie-120222 

27 https://www.cre.fr/Actualites/la-cre-constate-une-nouvelle-hausse-du-cout-du-gaz-naturel-importe-entrainant-

une-hausse-des-tarifs-reglementes-de-vente-de-gaz-naturel-pour-le-moi 

28 See Mikaa Mered, “Une analyse stratégique et géopolitique des filières de l’hydrogène”, Alters Media, n°4, 

October 2021 

29https://www.lemonde.fr/economie/article/2021/09/09/la-france-en-passe-de-renoncer-a-soutenir-un-mega-

projet-gazier-dans-l-arctique_6094080_3234.html 
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 1 𝟐 𝟑 𝟒 

Objective function (B€) 5.300 5.599 5.706 5.928 

Total investment costs (B€) 4.715 8.804 7.371 7.061 

Worst-case operational costs (B€) 0.247 0.295 0.434 0.576 

Representative annual operational costs (B€) 0.721 0.845 1.605 2.375 

Annuities (B€) 0.544 0.814 0.736 0.647 

Combined cycle gas turbine 0.199 0.287 0.375 0.464 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.166 0.440 0.126 0.065 

PV 0.090 0.090 0.090 0.090 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.089 0 0.145 0.028 

Yearly FOM costs (B€) 2.179 2.067 1.723 1.489 

Combined cycle gas turbine 0.090 0.126 0.162 0.198 

Gas turbine 0 0 0 0 

Nuclear 1.589 1.343 1.096 0.849 

Wind 0.072 0.191 0.055 0.028 

PV 0.034 0.034 0.034 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.021 0 0.003 0.007 

Nuclear retirement and prolongation costs (B€)  1.507 1.437 1.367 1.297 

 

Table 4.G.: Cost allocation by technology and operational conditions with imposed minimum 

number of pairs of decommissioned nuclear reactors 
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4. Comparative analysis of operational performances  

Following the analysis of optimal capacity mix and cost allocation performed above, we now 

study the operational performances of a subset of mixes both in extreme and representative 

RD conditions. As already mentioned, reducing nuclear generation capacities may shift the 

generation mode of units traditionally used in peak or semi-peak mode, such as hydroelectric 

and CCGT units, to ‘baseload’. Inversely, the introduction of significant RES generation may 

both push nuclear into more frequent load-following operations and increase the recourse to 

flexible generation units to address abrupt RD variations.  

To clearly illustrate and disentangle the effects of partial nuclear phase out and increasing 

RES penetration on operational system performances, we choose a subset of 4 optimal mixes 

obtained in Section 3. Table 5 summarizes the optimal capacity for each technology 

associated to each of the selected mixes. The optimal mixes n°1 and n°2 correspond to the 

optimal mixes with endogenous nuclear policy under baseline case and under 2030 projected 

investment and FOM costs for RES. Similarly, optimal mixes n°3 and n°4 correspond to 

optimal mixes with a compulsory minimum of 2 pairs of decommissioned reactors under 

baseline case and under 2030 projected RES costs. 

 Optimal 

mix n°1 

Optimal 

mix n°2 

Optimal 

mix n°3 

Optimal 

mix n°4 

Combined cycle gas turbine 3.15 2.7 6.3 6.3 

Gas turbine 0 0 0 0 

Nuclear 13.4 13.4 9.8 9.8 

Wind 0.665 0.583 4.269 1.267 

PV 1.190 11.79 1.190 6.639 

Hydroelectric 8.331 8.331 8.331 8.331 

STEP 3.310 3.310 3.310 3.310 

Battery storage 1.384 3.493 0 2.471 

 

Table 5: Subset of optimal capacity mixes by technology for operational performances 

analysis 
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4.1. Worst-case weeks performances 

As explained in the first two chapters of this thesis, worst-case weeks are constructed such 

that either RD variations are maximized over the simulation period, or RD level is maximized 

or minimized. The analysis of these extreme situations captures a series of key elements, 

including the share of each technology in total output under each extreme scenario, in addition 

to its contribution to maintaining system stability and controlling RD variations, both in 

relative and absolute terms. All these measures are expressed as probability distributions, 

computed over the subset of worst-case hours. We keep notations from Chapters I and II and 

respectively note H, L and V the worst-case weeks corresponding to the maximum, minimum 

and most variable residual load trajectories. Similarly, we keep the same color coding such 

each value associated to H (resp. L and V) is represented in red (resp. green and blue).  

 

4.1.1. Energy contribution  

Table 6.A. shows the average nuclear share in total generation is equal to 71% in worst-week 

H, against 65% and 75% in worst-weeks L and V. For 90% of hours, with wind power 

accounting for less than 6% of total output in L, nuclear and hydroelectric generation 

respectively provide at least 50% and 15%. Highest nuclear shares are observed for V, which 

suggests it is operated quite rigidly during extremely variable RD events, with the largest 

variations being absorbed by pumped-storage hydroelectric and hydroelectric generation 

units. Except for H, CCGT units remain offline, which suggests worst-case trajectory H may 

be overly conservative with respect to the real-life duration of episodes of sustained high RD 

with no renewable generation. 

Compared to the optimal mix n°1, we note from Figure 6.B. that distribution of nuclear share 

in total generation is shifted downwards in L by roughly 20%, indicating a significant 

proportion of RES replaces nuclear as ‘baseload’ in low RD events. Results also show an 

additional but small participation of CCGT to total generation in L and V, contributing up to 

8% of total output in less than 5% of hours, corresponding to system-balancing operations. As 

flexibility requirements grow with RES capacity, CCGT units are increasingly utilized to 

meet residual load variations although hydroelectric remains the major stabilizer.  
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Figure 6.A.: Energy contribution by technology (worst-case weeks, optimal mix n°1) 
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Figure 6.B.: Energy contribution by technology (worst-case weeks, optimal mix n°2) 
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The upward shift of the hydroelectric generation curve in L and V indicate a much stronger 

participation to total generation under high or chaotic RES generation conditions.  As solar 

production may contribute up to 100% of total generation, flexible technologies in addition to 

storage units play a much more active role in serving total electricity load. 

Unsurprisingly, Figure 6.C. shows that the average share of nuclear falls to only 52% in H 

and 44% in L, as a large fraction of nuclear is being displaced by wind generation. As 

expected, CCGT is mainly operated as ‘baseload’, with a share in total generation between 

20% and 38% in H during 90% of hours, and a significant contribution to production in V. 

The participation profile of hydroelectric units remains much alike the one corresponding to 

the mix n°1. Finally, we note an increasing participation of pumped-storage and EVs, both in 

terms of volume of electricity charged and discharged and volume of operating hours.  

Finally, compared to mix n°3, we note from Figure 6.D. that the average share of nuclear in 

total generation in L is slightly higher, as the diurnal variability of photovoltaic capacity 

factors only displaces nuclear generation during daylight hours. Overall, even partially phased 

out, nuclear and hydroelectric generation units remain the major contributors to total 

generation in L and V. We further note higher renewable penetration increases the 

participation of CCGT units for load-following operations in V, while battery storage and 

EVs only participate to total generation in less than 20% of operating hours.  
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Figure 6.C.: Energy contribution by technology (worst-case weeks, optimal mix n°3) 
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Figure 6.D.: Energy contribution by technology (worst-case weeks, optimal mix n°4) 
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4.1.2. Contribution to system stability 

As expected from its moderate hourly ramping rate and high minimum generation level, 

nuclear is shown in Figure 7.A to be mainly operated in ‘baseload’ mode in the absence of 

significant RES penetration in optimal mix n°1. Extreme variations of output correspond to 

start-ups and shutdowns, with the average absolute hourly variation equal to 196 MWh and 

325 MWh in L and V respectively. With an average nuclear generation of 8.92 GWh over the 

subset of worst-case hours, the above figures correspond to only 4.4% and 7.2% of the 

production range over the minimum generation threshold. The significant shares in total 

variations, superior to 50% (resp. inferior to -50%) in roughly 30% of hours, indicate nuclear 

power is mostly used to address small RD variations when nuclear units are not producing at 

maximum capacity in L and V. 

This partial rigidity of nuclear production, with virtually no variations of output in H, is 

compensated by a very active role of hydroelectric generation units and CCGT units to a 

lesser extent. The hourly variations of output span regularly between 5500 MWh and -6000 

MWh, which indicates hydroelectric is operated both in load-following and peaking mode, as 

the main contributor to “upward” and “downward” system stability over the whole spectrum 

of RD variations. The almost flat curves with left and right peaks for CCGT, pumped-storage 

hydroelectric and battery storage correspond to sporadic and brutal RD variations in V (yet 

occurring in less than 5% of hours), or for ensuring system balance a few hours in H as 

hydroelectric units address almost 100% of RD variations the remaining time. 
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Figure 7.A.: Hourly output variation in MWh, by technology (worst-case weeks, optimal mix 

n°1) 
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Figure 8.A.: Share in total variation by technology (worst-case weeks, optimal mix n°1) 
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Under optimal mix n°2, the average absolute hourly output variation of nuclear slightly 

increases but remains low, with 209 MWh and 362 MWh in L and V. Even under extremely 

variable RD in V, nuclear variations remain between –600 MWh and 600 MWh more than 

90% of operating hours. We observe that the significant penetration of photovoltaic only 

partially requires using nuclear units for load-following operations, which is allowed by the 

flexibility services mainly provided by hydroelectric units for all worst-case weeks. It also 

follows from a more active participation of battery storage to absorbing large RD variations. 

Finally, the utilization of EVs increases to 40% of operating hours and contributes to system 

stabilization over a large span of small RD variations.  

Compared to optimal mix n°1, CCGT increasingly contributes to providing rapid and large 

downward output variations in H, while pumped-storage units are now used to actively 

manage large inflows and drops of renewable generation in L. Our findings are consistent 

with [25], who find that flexible generation is increasingly valuable and required as the RES 

penetration in the mix increases. Different business plans to reward ancillary services, which 

are increasing provided by flexible generation and storage units, may thus be developed to 

capture gains from their increasing participation to system stability. However, as underlined 

by the authors, the European hydroelectric sector is currently under financial stress, mostly 

because of a surplus of must-run capacity. The partial phase out of nuclear would thus be 

expected to increase electricity prices in high RES generation periods, by shifting residual 

demand distribution upwards. However, although the decrease in must-run generation might 

increase the average RD, the expected increase in spot prices may also be imputed to new 

investments in CCGT units and their more active role in providing system flexibility. 
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Figure 7.B.: Hourly output variation in MWh, by technology (worst-case weeks, optimal mix 

n°2) 
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Figure 8.B.: Share in total variation by technology (worst-case weeks, optimal mix n°2) 
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The phasing out of 4 nuclear reactors in optimal mix n°3 does not significantly alter our 

previous conclusions. Nuclear is operated in an even more rigid way compared to mix n°1, 

with its average absolute hourly variation of output equal to 139 MWh and 23 MWh in L and 

V. As nuclear production now represents a lower share of total renewable generation, its 

flexibility requirements are equally lower. Indeed, the decision to operate nuclear flexibly 

depends on a series specific technical factors : following [26], the grid system operator needs 

not require nuclear units to operate flexibly if nuclear capacity accounts for a limited fraction 

of total installed capacities or is significantly lower than the minimum residual demand. 

However, the growth of RES capacities, combined with a limited or no decrease in nuclear 

capacity, may significantly lower the minimum residual demand and increase the frequency of 

nuclear load-following operations. Thus, under increasing RES penetration in the mix, partial 

nuclear phase out is an option consistent with the choice of maintaining nuclear operating in 

‘baseload’ mode. However, as pointed above, this requires substituting other technologies as 

‘baseload’ during low RES generation periods This might contribute to increase electricity 

generation costs and carbon emissions if no alternative clean and low-carbon technology is 

available. 

Compared to optimal mix n°1, Figure 7.C. shows both increased participation of CCGT and 

pumped-storage hydroelectric to system stability against very large RD variations. 

Consistently with the above remarks, the proportion of operating hours for pumped-storage 

hydroelectric units increases especially in V, with an absolute share in total variations above 

50% (for variations larger than 1 GWh) more than 30% of operating hours. 
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Figure 7.C.: Hourly output variation in MWh, by technology (worst-case weeks, optimal mix 

n°3) 

 



 

184 
 

 

 

 

Figure 8.C.: Share in total variation by technology (worst-case weeks, optimal mix n°3) 
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As expected by comparing optimal mixes n°4 and n°2, Figures 7.D and 8.D show the 

absolute hourly variation of nuclear output under partial phase out remains quite low on 

average, even under significant RES penetration (80 MWh and 201 MWh in L and V). 

Related to average nuclear generation (6963 MWh), this corresponds to at most 5.8% of the 

whole production range over the minimum threshold. By comparison and with an average 

generation of 7681 MWh, the mean nuclear variation with mix n°2 equals 7.5% of the 

available production range. Our findings thus confirm the intuition that diminishing must-run 

nuclear capacities allows accommodating larger shares of RES. Moreover, as nuclear load-

following operations resulting from RES priority dispatch may reduce its average load factor, 

maintaining a large nuclear capacity under significant RES penetration may increase average 

nuclear generation costs. Accordingly, decreasing nuclear capacity at the same pace that RES 

capacity grows might help keeping nuclear unit generation costs low, by maintaining high 

average load factors.  

However, as shown by [27], the number of extreme nuclear power ramps and amplitude 

variations, as well as the annually required total start-ups and shutdowns, increase with RES 

penetration and even with partial nuclear phase out. They find that beyond a 30% share of 

photovoltaic and wind in the mix, nuclear may not technically face load-following 

requirements without additional flexibility options. As pointed by the authors, this entails a 

trade-off regarding the French energy transition by 2030: either partially phasing out nuclear 

capacity to target a ‘baseload’ operating mode, which entails a higher share of fossil-fuel units 

in the mix, or maintaining a high nuclear capacity with more frequent load-following 

operations and lower load factors. Again, Auvergne-Rhône-Alpes is a very specific case as its 

large hydroelectric capacities allow accommodating large shares of RES generation without 

changing nuclear operating mode. However, consistently with the authors’ findings, a large 

fraction of decommissioned nuclear is replaced by CCGT in ‘baseload’ operations, while the 

latter also increasingly contributes to system balancing operations under higher RES 

penetration. We further note that more volatile RD increases the total annual number of start-

ups and shutdowns for peaking units, which is likely to significantly increase operational 

costs and carbon emissions due to ignition.  
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Figure 7.D.: Hourly output variation in MWh, by technology (worst-case week, optimal mix 

n°4) 
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Figure 8.D.: Share in total variation by technology (worst-case weeks, optimal mix n°4) 
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Under reduced renewables investment and FOM costs, wind and photovoltaic in mix n°2 and 

n°4 account for a significant share of installed capacities, with 28% and 21% respectively. 

Although these moderate levels of RES penetration increase flexibility requirements for other 

generation units, solar and wind generation remain relatively low contributors to total residual 

load volatility.  

Because of their lack of dispatchability and intermittent nature, renewables are generally 

considered in the literature as the main source of gaps between electricity demand and supply. 

This approach implicitly considers that load variations are exogenous and “socially” 

acceptable, in the sense that supply must match demand in real time except when system 

security requires activation of reserves. Under this paradigm, renewables are criticized as the 

dynamic pattern of their resources hardly match the dynamics of load. Demand side 

management (DSM) does not question this paradigm, although it may help controlling 

demand to match real-time supply, using available resources more efficiently and can even 

account for resource-constraints in supply (see [28]). However, even under moderate RES 

penetration levels (between 20% and 30%), we find electricity demand is actually the main 

contributor to residual load volatility. 

Providing an objective measurement of the contribution of each RD component to its total 

instability is difficult. Indeed, any RD component may contribute to system stability or 

instability conditionally on how it varies relatively to remaining components. For instance, if 

renewable generation varies in the same direction than electricity demand, it amplifies RD 

variations so both electricity demand and renewable generation contribute to increasing 

system instability. On the contrary, if renewable generation varies in the opposite direction to 

electricity demand and contributes to lower the absolute RD variation, renewable generation 

is said to help maintaining system balance.  

Using notations given in Appendix, we formally define the total RD variation between 𝑡 ∈ 𝒯 

and 𝑡 − 1 ∈ 𝒯 as follows (we neglect the index for seasons): 

                     ∆𝝃𝑡
𝔭 = (𝜉1𝑡

𝔭 −∑ 𝜉𝑗𝑡
𝔭 𝑈𝑗

𝑗>1

)− (𝜉1𝑡−1
𝔭 −∑ 𝜉𝑗𝑡−1

𝔭 𝑈𝑗
𝑗>1

) = ∆𝜉1𝑡
𝔭 −∑∆𝜉𝑗𝑡

𝔭 𝑈𝑗
𝑗>1

                 (𝟑𝟓) 

Then, we can define the RD variation that would have been observed if the variation of 

demand was null. Formally, this counterfactual residual demand variation can be expressed 

as: 
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                                                                            ∆𝝃𝑡
𝔭𝐷 =∑∆𝜉𝑗𝑡

𝔭 𝑈𝑗
𝑗>1

                                                              (𝟑𝟔𝒂) 

Similarly, for any subset 𝒲 ⊂ 𝒥 and 𝒫 ⊂ 𝒥, we can define the corresponding counterfactual 

RD variations: 

                                                                ∆𝝃𝑡
𝔭𝒲 = ∆𝜉1𝑡

𝔭 −∑∆𝜉𝑗𝑡
𝔭 𝑈𝑗

𝑗∈𝒫

                                                          (𝟑𝟔𝒃) 

                                                                ∆𝝃𝑡
𝔭𝒫 = ∆𝜉1𝑡

𝔭 −∑ ∆𝜉𝑗𝑡
𝔭 𝑈𝑗

𝑗∈𝒲

                                                           (𝟑𝟔𝒄) 

Finally, we introduce a new “stability” metric indicating to which extend each RD component 

contributes to system balance or imbalance. Intuitively, if any RD component varies in the 

opposite direction from remaining components but increases total absolute RD variation, such 

behavior must be captured by our metric as contributing to system instability. Formally, the 

“stability” metrics respectively associated to electricity demand, wind power generation and 

photovoltaic generation in 𝑡 ∈ 𝒯 are defined as: 

                                                             𝐿𝑡
𝔭𝐷 =

1 − 𝑒−∆𝝃𝑡
𝔭
(∆𝝃𝑡

𝔭𝐷
)
−1

1 + 𝑒
−∆𝝃𝑡

𝔭
(∆𝝃𝑡

𝔭𝐷
)
−1                                                      (𝟑𝟕𝒂) 

                                                             𝐿𝑡
𝔭𝒲 =

1 − 𝑒−∆𝝃𝑡
𝔭
(∆𝝃𝑡

𝔭𝒲
)
−1

1 + 𝑒−∆𝝃𝑡
𝔭
(∆𝝃𝑡

𝔭𝒲
)
−1                                                    (𝟑𝟕𝒃) 

                                                             𝐿𝑡
𝔭𝒫 =

1 − 𝑒−∆𝝃𝑡
𝔭
(∆𝝃𝑡

𝔭𝒫
)
−1

1 + 𝑒−∆𝝃𝑡
𝔭
(∆𝝃𝑡

𝔭𝒫
)
−1                                                      (𝟑𝟕𝒄) 

It is straightforward to see that for any value ∆𝝃𝑡
𝔭 (∆𝝃𝑡

𝔭𝐷)
−1

∈ ℝ, we have −1 ≤ 𝐿𝑡
𝔭𝐷 ≤ 1. The 

same remark applies to both metrics 𝐿𝑡
𝔭𝒲

 and 𝐿𝑡
𝔭𝒫

. Taking the example of electricity demand, 

four cases can be distinguished for the description of each “stability” metric: 

- ∆𝝃𝑡
𝔭 (∆𝝃𝑡

𝔭𝐷)
−1

> 1: Electricity demand variations amplify RD instabilities and 

contribute to “additive” system instability. In this case, the “stability” metric 

associated to electricity demand verifies 𝐿𝑡
𝔭𝐷 >

𝑒−1

1+𝑒
. 
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- 0 ≤ ∆𝝃𝑡
𝔭 (∆𝝃𝑡

𝔭𝐷)
−1

≤ 1: Electricity demand mitigates total RD variations without 

changing the sign of ∆𝝃𝑡
𝔭
. It contributes to “additive” system stability and its metric 

verifies 0 ≤ 𝐿𝑡
𝔭𝐷 ≤

𝑒−1

1+𝑒
. 

- 0 ≥ ∆𝝃𝑡
𝔭 (∆𝝃𝑡

𝔭𝐷)
−1

≥ −1: Electricity demand mitigates total RD variations and 

changes the sign of ∆𝝃𝑡
𝔭
. We say it contributes to “subtractive” system stability and its 

metric verifies 0 ≥ 𝐿𝑡
𝔭𝐷 ≥

1−𝑒

1+𝑒
. 

- ∆𝝃𝑡
𝔭 (∆𝝃𝑡

𝔭𝐷)
−1

< −1: Electricity demand variations are superior in absolute terms to 

renewable generation variation and move in the opposite direction. They contribute to 

“subtractive” system instability and their metric verifies 𝐿𝑡
𝔭𝐷 <

1−𝑒

1+𝑒
. 

The same four cases and thresholds apply to the “stability” metrics associated to wind 

generation 𝐿𝑡
𝔭𝒲

 and photovoltaic generation 𝐿𝑡
𝔭𝒫

. For each metric, the distance with respect to 

the origin is proportional to the contribution to total residual load instability. To give some 

orders of magnitude, 𝐿𝑡
𝔭𝐷 ≈ 0.75 indicates demand correspond to 50% of total residual load 

variations, or alternatively, amplifies RES generation volatility by a factor 2. 𝐿𝑡
𝔭𝐷 ≈ 0.9 and 

𝐿𝑡
𝔭𝐷 ≈ 0.96 correspond to 66% and 75% shares in total “upward” RD volatility, while 𝐿𝑡

𝔭𝐷 =

1 indicates all RD variation is caused by electric load fluctuations. Negative values of 𝐿𝑡
𝔭𝐷

 

provide a different picture, as for 𝐿𝑡
𝔭𝐷 <

1−𝑒

1+𝑒
 , electricity demand moves in the opposite 

direction from RES generation and is greater in absolute terms. In this case, we interpret 

𝐿𝑡
𝔭𝐷 ≈ −0.75 as the fact that residual load variability would be twice smaller without electric 

load variations and would change sign. For instance, if ∆𝝃𝑡
𝔭 < 0, this indicates stabilizing 

demand would yield a higher but less volatile RD volume addressed to the grid. 
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Figure 9.A.: Residual demand components contribution to system stability/instability (worst-

case weeks, optimal mix n°1) 

Note: The upper and lower black dotted lines respectively correspond to the threshold values 
𝑒−1

2+2𝑒
 and 

1−𝑒

2+2𝑒
. The 

above graphs read as follows: for instance, taking the case of worst-case L, photovoltaic generation contributes 

to moderate “upward” system instability in approximately 25% of operating hours, while it brings “upward” 

system stability almost 20% of time.  

 



 

192 
 

 

 

Figure 9.B.: Residual demand components contribution to system stability/instability (worst-

case weeks, optimal mix n°2) 
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As shown in Figure 9.A., electric load is the main contributor to system instability for all 

worst-case situations. It is almost the sole contributor to “additive” and “subtractive” system 

instability in respectively 40% and 45% of operating hours. While the effect of demand on 

both types of stability is quite uniformly distributed in H, we notice demand fluctuations 

annihilate RES output variations in V in more than 65% of hours, which could equivalently 

indicate RES generation is too low to compensate demand fluctuations during episodes of 

extreme residual load variability. Photovoltaic and wind generation both moderately amplify 

residual load fluctuations in all cases for roughly 35% of operating hours, and have no effect 

or a stabilizing effect the remaining time.  

With 28% of RES in total installed capacities, clearly dominated by photovoltaic capacity 

(27%), residual load fluctuations in mix n°2 remain mostly driven by electric load variations. 

Figure 9.B. shows that demand still accounts for 100% of “additive” and “subtractive” 

system instability in more than 65% of all operating hours. However, contrary to mix n°1, 

electricity demand mitigates residual load fluctuations in L, mainly driven by photovoltaic 

dynamics, during approximately 40% of time. 

Quite surprisingly, solar generation fluctuations drive total residual load variations during a 

very small fraction of time. 𝐿𝑡
𝔭𝒫

 is above 0.99 only 5% of all operating hours, meaning 

situations where photovoltaic generation is the only source of instability are quite rare. 

Moreover, 𝐿𝑡
𝔭𝒫

 is comprised between -0.75 and 0.75 for approximately 75% of operating 

hours, meaning in contributes to less than two thirds of total variations most of the time. The 

average absolute value of 𝐿𝑡
𝔭𝐷

 in H, L and V respectively equals 0.86, 0.66 and 0.83. By 

comparison, the mean absolute value of 𝐿𝑡
𝔭𝒫

 is found equal to 0.49, 0.62 and 0.54. Although 

photovoltaic generation contributes, on average, to amplifying electric load fluctuations, 

demand remains the major contributor to RD instability even under significant RES 

penetration. 

Most of the above conclusions apply to results in Figure 9. C.. With more than 4 GWe of 

installed capacity in optimal mix n°3, wind power contributes to “additive” instability above 

20% of operating hours. However, a careful analysis shows it contributes to more than 66% of 

total fluctuations less than 5% of hours in H and V and 15% in L. Moreover, wind generation 

mostly contributes to “additive” system stability in more than 40% of worst-case hours on 

average. Overall, this suggests wind turbines possess the technical ability to provide ancillary 
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services to the grid, although traditionally not allowed to provide such services. As evidenced 

by Rebello et al. (2020), commercially available wind turbines may provide ancillary services 

and participate in the regulation market with gains larger that the energy income loss due to 

curtailment.  

Finally, Figure 9.D. provides very similar results to those obtained for optimal mix n°2. 

Overall, it appears that even with moderate RES penetration in the electricity mix, electric 

load remains the major contributor of residual demand instability that must be addressed by 

the generation system. We note that partial nuclear phase out, lowering the share of 

synchronous generation units in the mix, and increasing RES penetration together participate 

to decrease the system inertia.  

It suggests that DSM and shifting of electricity usages (technically and socially feasible), to 

periods with high generation resource availability, would efficiently participate to decrease 

flexibility requirements and thermal stress on both load-following and peaking units.  

A more stable electric load would indeed diminish the requirements for fast-ramping 

generation units as well as the number of start-up and shut-down operations during extreme 

situations, thus contributing to decrease the average generation cost. Moreover, proper pricing 

of demand fluctuations in terms of ancillary service cost may be considered in addition to a 

time-varying price equal to supply instantaneous marginal cost to achieve social optimality 

(see [29]). However, from an operational perspective, a distinction should be made between 

residual load components based on the level of uncertainty associated to their respective 

forecasts. Short-term wind power fluctuations may exhibit less predictable dynamics, 

although wind generation forecasting errors approach the performances of demand forecasting 

(see [30] for a comprehensive review of state-of-the-art wind forecasting methods). Moreover, 

stabilizing electric load might release flexible plants from load-following operations and make 

them available to for the management of renewable generation, thus decreasing the volume of 

additional investments in CCGT and storage units to accommodate higher RES shares. 

Finally, a closer management of demand fluctuations would be consistent with keeping 

nuclear in ‘baseload’ operation mode, even under increasing RES penetration. We leave these 

remarks for further research. 
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Figure 9.C.: Residual demand components contribution to system stability/instability (worst-

case weeks, optimal mix n°3) 
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Figure 9.D.: Residual demand components contribution to system stability/instability (worst-

case weeks, optimal mix n°4) 
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4.1.3. Operational cost and spot price profile 

As demand goes up, increasingly expensive generation units must be added to the optimal 

dispatch following the implementation of the “merit-order rule”. Subsequently, the worst-case 

week H is characterized by higher average generation costs, while L has the lowest generation 

cost thanks to larger shares of renewable production injected at zero marginal cost. However, 

a thorough comparison of the costs associated to each optimal mix yields some valuable 

insights about the effects of partial nuclear phase out. 

 

Figure 10.A..: Weighted operational cost and spot price distributions (worst-case weeks,, 

optimal mix n°1) 

 

Even under extremely high residual load situations, corresponding to H, the average weighted 

operational cost for mix n°1 remains below 11.5 €/MWh, while it falls to 6.63 €/MWh and 

6.02 €/MWh in V and L. The comparison with the distribution of spot prices show that, 

except for a small fraction of operating hours (less than 0.3%), the market spot price is equal 

to nuclear marginal costs in L and V and to CCGT marginal costs (approximately 61 €/MWh) 

in H.  

The comparison with Figure 10.B. shows that even in high renewable generation periods, 

corresponding to L, spot prices are now equal to CCGT marginal cost in more than 20% of 

operating hours, while the average weighted operational cost decreases by 37%. The average 

spot price of electricity increases while its weighted generation cost decreases. Finally, we 

note the occurrence of negative prices between -5.7 €/MWh and -100 €/MWh in 1.5% of 

hours. 
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Figure 10.B..: Weighted operational cost and spot price distributions (worst-case weeks, 

optimal mix n°2) 

 

Partially phasing out nuclear with low replacement investments in RES leads to significant 

increases in average generation costs and electricity price. The average weighted operational 

cost increases to 20.1 €/MWh in H and 7.75 €/MWh in V, while it decreases to 3.81 €/MWh 

in L. Figure 10.C. shows the spot market reaches the VOLL (which may be replaced by the 

+3000 €/MWh price cap legally imposed on the French EPEX SPOT) in H for approximately 

25% of operating hours. We may consider spot price as a proxy for reserve scarcity, which 

indicates that even under a robust optimization strategy, the operational reserves in H are 

quasi-null for a quarter of hours. In case of unforeseen residual demand variation or plant 

failure, the market operator is forced to proceed to load shedding. This suggests minimum 

reserve constraints should be added to our robust framework, even though it is tailored to 

respect the French security of supply criterion.  

 

Figure 10.C..: Weighted operational cost and spot price distributions (worst-case weeks, 

optimal mix n°3) 
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Increasing the share of renewables in optimal mix n°4 helps suppressing scarcity events by 

restoring sufficient reserves. By comparison with mix n°3, Figure 10.D. shows a 1% lower 

average weighted operational cost in V, while the average spot price distribution is slightly 

modified: while its average value decreases by 19%, the occurrence probability of spot prices 

above 60 €/MWh is multiplied by more than 3 (20.4% against 5.7% of hours for mix n°3) 

 

Figure 10.D..: Weighted operational cost and spot price distributions (worst-case weeks, 

optimal mix n°4) 

 

Overall, the partial phase out of nuclear entails a moderate increase in worst-case weighted 

operational costs, expect for high residual load week H where we note an almost 100% 

increase. Yet, the average spot price significantly increases (except in L), which translates the 

increasing participation of CCGT units with high marginal costs to ‘baseload’ generation and 

load-following operations with more frequent start-ups and shut downs under higher RES 

penetration in mix n°4. 

 

4.2. Representative weeks performances 

Having investigated the behavior of a regional mix with partially phased out nuclear under 

extreme operational conditions, we now analyze how each type of technology operates in 

representative conditions. In addition to measuring how increasing RES penetration and 

partial nuclear phase out impact energy contribution and utilization of all units, we compute 



 

200 
 

the distribution of carbon emissions and carbon intensity associated to each of the selected 

optimal mixes.   

 

4.2.1. Energy contribution and utilization rates 

With a mean production of 8.903 GWh, Figure 11.A. shows a 73% average nuclear 

participation in the electricity production in mix n°1, with a quite stable share between 60% 

and 80% more than 80% of operating hours. With an average utilization rate at about 66%, 

nuclear capacity is under-utilized accounting for its mean annual availability rate of 80%. 

Hydroelectric maintains a high contribution above 20% for most hours, and significantly 

participates to covering ‘baseload’ with an average share of 36%. The participation of CCGT 

units is clearly restricted to a few hours of the year for balancing operations, with 

participation sharply increasing over zero for less than 9% of hours.  

As more renewable capacity is added in mix n°2, we note from Figure 11.B., that the nuclear 

mean participation share and utilization rate further decrease to 59% and 55%. As in 

extremely residual load situations, a large fraction of ‘baseload’ generation is displaced by 

renewable generation. Solar power participates on average to 15% of total production, with 

contributions above 30% in only 20% of all hours however and a low average utilization rate. 

CCGT utilization declines sharply, with a non-null participation to total output in less than 1% 

of hours. Our modeling approach of worst-week H may thus be overly conservative and 

overestimate the potential number of consecutive hours with high RD. Hydroelectric 

generation is also partially replaced by renewables, with an average share falling to 24% 

although it maintains a 40% participation in 20% of hours. Overall, the electricity mix 

remains dominated by nuclear generation, followed by a blend of RES and hydroelectric. In 

both mix n°1 and mix n°2, storage technologies are used only a small fraction of time (less 

than 20% of hours) and are increasingly used with higher RES penetration. 
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Figure 11.A.: Energy contribution and utilization rate by technology (representative weeks, 

optimal mix n°1) 
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Figure 11.B.: Energy contribution and utilization rate by technology (representative weeks, 

optimal mix n°2) 
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By comparison, Figure 11.C. shows that nuclear production remains significant even with 

partial phasing out. It can be observed that while its mean production decreases by almost 

17%, its average participation declines to 61%. As expected, the average utilization rate rises 

from 66% to 75%, which is consistent with the findings of [75]. This amelioration suggests 

either the initial regional nuclear fleet is over-capacitated, or that ‘baseload’ operation mode 

does not allow nuclear to capture the full potential of its large operational range, as load-

following operations are traditionally performed by other generation technologies. The 

participation of CCGT increases sharply with respect to mix n°1, although its utilization rate 

remains consistently under 30%. A significant share of peaking capacity is thus clearly under-

utilized in normal operational conditions. Hydroelectric remains the second largest contributor 

to total output, with a mean share of 23%, while wind power only contributes 9% on average.  

Increasing RES capacity has no effect on the average nuclear participation and utilization rate, 

which remain stable around 60% and 75%. Interestingly, the decrease in must-run inflexible 

generation does not increase flexibility requirements even with higher RES penetration. 

Figure 11.D. shows the average CCGT participation remains constant around 4%. Overall, 

most load-following operations are performed by hydroelectric plants while the contribution 

of storage and pumped-storage hydroelectric remain small. However, as our model assumes 

no uncertainty regarding future residual demand values, no unforeseen generation surplus or 

deficit can occur, which is likely to underestimate the utilization and participation of these 

units to real-time balancing operations.  

Consistent with the literature cited above, our findings show the French energy transition 

could benefit from phasing out nuclear capacity as new RES generation capacity is added in 

the mix. Indeed, we find a lower nuclear share in total capacity is associated with a higher and 

more stable utilizations of generation units. Moreover, the decline in must-run inflexible 

nuclear generation helps increasing the overall flexibility of the mix, allowing for less 

frequent use of CCGT for balancing operations when renewable generation is high. However, 

as pointed above, CCGT remains pivotal for ensuring supply-demand equilibrium when 

renewable generation is quasi null or when residual load is extremely volatile.  
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Figure 11.C.: Energy contribution and utilization rate by technology (representative weeks, 

optimal mix n°3) 
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Figure 11.D.: Energy contribution and utilization rate by technology (representative weeks, 

optimal mix n°4) 
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4.2.2. Operational cost, spot price and carbon emissions profile 

 

Figure 12.A.: Weighted operational cost and spot price distributions (representative weeks, 

optimal mix n°1) 

 

Figure 12.A. shows extremely high prices associated to scarcity conditions in less than 1% of 

operating hours, with spot price lower than 10 €/MWh the remaining time. The average spot 

price is about 13.5 €/MWh, more than twice the mean weighted generation cost, equal to 5.98 

€/MWh. 

Under optimal mix n°2, the VOLL is attained in roughly 0.9% of operating hours, indicating a 

slight amelioration of supply security and system reliability while including higher shares of 

RES in the electricity mix. Excluding the subset of hours during which spot price equals the 

VOLL, we find from Figure 12.B. that the average value drops to 2.20 €/MWh. This drop is 

driven by the extremely low participation of CCGT to total output, with spot prices taking 

values between 2 €/MWh and 10 €/MWh in less than 10% of hours. Finally, the mean 

weighted generation decreases to 4.82 €/MWh. As expected, with nuclear must-run capacities 

equal to their initial value, renewable penetration pushes spot prices down. 
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Figure 12.B.: Weighted operational cost and spot price distributions (representative weeks, 

optimal mix n°2) 

 

Partially phasing out nuclear capacities significantly decreases system reliability, as shown in 

Figure 12.C., with a VOLL being attained in almost 14% of hours. This is a clear indicator 

for insufficient security of supply, as no load-shedding occurs in the optimal dispatch. The 

low CCGT utilization rates suggest capacities are far from being used at maximum capacity 

and scarcity might thus be addressed by integrating reserve constraints into our model. 

However, as our optimization model minimizes total dispatching costs, this hints at the sharp 

increase in operational costs driven by replacing decommissioned nuclear by CCGT in 

‘baseload’ mode, as the model only operates the minimum number of units required to ensure 

system balance and keeping reserves online might drastically increase operational costs. The 

rise of average electricity price, equal to 28.2 €/MWh over the subset of spot prices lower 

than the VOLL, follows from the higher participation of peaking units in ‘baseload’ 

operations. While high CCGT marginal costs drive a sharp increase in prices, the significant 

nuclear energy contribution allows the average weighted generation costs to remain quite low 

at 6.31 €/MWh. 
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Figure 12.C.: Weighted operational cost and spot price distributions (representative weeks, 

optimal mix n°3) 

 

Increasing RES penetration in optimal mix n°4 allows the number of scarcity events to drop 

to less than 0.4% of operating hours. Yet, in comparison with optimal mix n°3, Figure 12.D. 

shows the average spot price increases by almost 11% to reach 31.2 €/MWh. As the system 

adapts to RES penetration and decommissioned nuclear capacity is replaced by CCGT units, a 

higher participation of costly peaking units is required to serve a more volatile residual load. 

It contributes to a moderate increase of the average weighted operational cost, equal to 7.49 

€/MWh, as the generation cost structure remains dominated by nuclear, hydroelectric and 

RES. In the context of increasing RES penetration and nuclear phase out, the expected 

profitability of generation units may, on the one hand, be improved by the increase in system 

flexibility and upward shift of residual load, but on the other hand diminish as the number of 

hours requiring fast-response production may subsequently drop in representative operational 

conditions. We shall investigate this issue in the next chapter of this work. 
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Figure 12.D.: Weighted operational cost and spot price distributions (representative weeks, 

optimal mix n°4) 

 

The total amount of carbon emissions is directly linked to the participation of CCGT units in 

the electricity mix. No gas turbine investments occur in our model, which implies all CO2 

emissions related to electricity generation are caused by CCGT. As underlined above, 

Auvergne-Rhône-Alpes is characterized by a very low carbon intensity compared to the 

national average.  

Figure 13.A. shows positive carbon emissions only during a small fraction of the year, 

corresponding to CCGT interventions for system security operations. We find an average 

carbon intensity of 6.3 g/kWh, which is very close to the historic 5.7 g/kWh used for model 

calibration. With higher RES penetration, total annual carbon emissions drop from 11 334 

tons in mix n°1 to 2514 tons in mix n°2. Although CCGT remains necessary for system 

balance in periods of extreme residual load dynamics, Figure 13.B. in Appendix shows the 

drop of its utilization in representative weeks allows to divide average carbon intensity by 42, 

with 0.136 kg/MWh. 
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Figure 13.A.: Carbon emissions and carbon intensity distributions (representative weeks, 

optimal mix n°1) 

 

Partially replacing ‘baseload’ nuclear generation by CCGT in optimal mix n°3 inevitably 

generates a stark increase in both total carbon emissions and carbon intensity. We see from 

Figure 13.C. a staircase-like curve for carbon emissions, which attain total annual emissions 

superior to 275 thousand tons of CO2. Compared to optimal mix n°1, the average carbon 

intensity is multiplied by 3, with a value of 14.94 g/kWh. Although carbon intensity remains 

much lower than the national average, this result may not be transposed to other French 

regions as hydroelectric capacity might participate to underestimate the required CCGT 

investments to compensate nuclear phase out and accommodate increasing RES penetration at 

the national scale. Moreover, this would mechanically increase total French carbon emissions 

and thus contradict reduction targets. Finally, Figure 13.D. in Appendix shows an even higher 

carbon intensity although greater RES penetration in mix n°4, with 15.59 g/kWh. Clearly, 

although regional emissions remain below the national average, replacing decommissioned 

reactors by a CCGT to satisfy a share of ‘baseload’ generation does not align with national 

commitment to reduce carbon emissions. If more nuclear reactors are to be closed in the 
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coming decade, our results entail a pivotal trade-off between either controlling carbon 

emissions by massively investing in RES generation units, at extremely high capital costs and 

provided sufficient potential is available in the region, or replacing a significant share of 

decommissioned nuclear capacity by CCGT units, which is optimal in terms of system costs 

but would contribute to increasing CO2 emissions.  

 

Figure 13.C.: Carbon emissions and carbon intensity distributions (representative weeks, 

optimal mix n°3) 
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5. Conclusion and policy implications 

 

No techno-economic analysis has indicated that the 50 % target for the share of nuclear is an 

optimum, so much regarding the cost of electricity than regarding the security of supply30. 

Such policy decision does neither rely on objective environmental targets nor on a 

minimization of the costs paid by electricity customers. It most likely results from a political 

compromise inscribed in the LTECV of 2015. This is confirmed by our findings, which show 

that phasing out of nuclear in the medium-term is clearly suboptimal in terms of system costs. 

If the risk levels associated to the prolongation of nuclear reactors reaching 40 years is low 

and socially acceptable, prolonging the nuclear fleet is the optimal solution, at least until 

2030, to keep both CO2 and electricity generation costs low. As suggested by [3], nuclear may 

be used as a “buffer” to give deciders, electricity customers and technologies time to adapt. 

First, it would allow RES sectors to get more mature and continue to decrease investment and 

FOM costs through innovation. Second, it might give electricity customers and society more 

time to develop new energy efficient technologies, and more environment-friendly behaviors 

regarding energy consumption. As the French electricity consumption structured itself along 

the development of the nuclear fleet since the 1970s, it could make sense to first change 

electricity consumption patterns and habits before reducing the nuclear fleet, which 

historically contributed to their emergence. Finally, delaying nuclear phase out may be 

beneficial to the development of alternative clean technologies, such as hydrogen and nuclear 

fusion.  

However, the static approach adopted in this chapter did not allow us to investigate the “cliff 

effect” mentioned in introduction, which would be even more pronounced if the 

decommissioning of most reactors is postponed to the early 2030s. This would indeed require 

the simultaneous startup and integration to the grid of a significant number of new generation 

units, with potentially high risks of delay and extreme costs, should prolonged nuclear units 

be abruptly shut down for safety reasons. Progressively decommissioning nuclear reactors 

during the coming decade might thus lower these risks, but is suboptimal in terms of system 

costs and may increase carbon emissions as we have shown. This dilemma should, in our 

opinion, be the central topic of the French future nuclear policy.  

 
30 https://www.lemonde.fr/economie/article/2018/05/12/energie-une-reduction-du-nucleaire-a-50-serait-l-

amorce-d-une-dynamique-de-pertes-d-apprentissage-technologique-et-industriel_5297976_3234.html 
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6. Appendix 

Appendix to 2.1.: Technical characteristics and cost assumptions 

 

Technology Minimum generation 

level (% nominal 

power) 

Ramping rate (% of 

nominal power/min) 

Minimum 

uptime/downtime 

(hours) 

Average CO2 

emission factor 

(ton/MWh) 

Combined cycle gas turbine 20 20 0 0.352 

Gas turbine 15 8 2 0.777 

Nuclear 50 2-5 10 0 

Hydroelectric  5 15 0.1 0 

Hydroelectric pumped storage  5 15 0 0 

 

Table 1.A.: Technical characteristics of thermal technologies  

Sources : Gonzalez-Salazar et al. (2018), IAEA (2018), Schill et al. (2016), IEA (2015), Schröder et al. (2013), 

EC JRC (2010), RTE Bilan Electrique 2019 (RTE, 2019) 

 

Technology Overnight cost 

(€/kWe) 

Annual fixed & 

maintenance costs 

(€/kWe) 

Unit variable cost 

(€/MWh) 

Unit starting cost 

(€/MWh) 

Average lifetime 

(years) 

Combined cycle gas turbine 754 20 45 235 30 

Gas turbine 400 6.4 135 542.8 30 

Nuclear 3800 137 8 90 40 

Hydroelectric 3200 32 0 5 80 

Photovoltaic 669 19 0 0 25 

Wind power 1284 45 0 0 20 

Battery storage 169 5.1 0 0 10 

 

Table 1.B.: Cost assumptions for generation technologies for 2021  

Sources : “Le Cout des ENR en France”, ADEME (2016) ; “La politique de développement des énergies 

renouvelables”, Cour des Comptes (2013) ; CRE (2018) ; “Coûts et rentabilité du grand photovoltaïque en 

métropole continentale”, CRE (2019) ; IEA (2015) ; “Current and Prospective Costs of Electricity Generation 

until 2050”, DIW (2013) ; OECD/IEA-NEA (2015) 
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Appendix to 2.3.: Investment and dispatching model with endogenous 

nuclear policy and commitment constraints 

Formulation of the model: 

The cost-minimization problem for our electric system, neglecting spatial transfers and 

transmission network, is defined as a MILP as follows: 

  min
𝑼,𝒀,𝒒,𝜿,𝒛

∑(𝐴𝑗 + 𝑐𝑗
𝐹𝑂𝑀)𝑈𝑗

𝑗>1

+ ∑ (𝐴𝑔 + 𝑐𝑔
𝐹𝑂𝑀)𝐷𝑔𝑈𝑔

𝑔∈𝒞1,𝒞2

+ ∑ 𝑐𝑔
𝐹𝑂𝑀𝐷𝑔𝑈𝑔

𝑔∈𝒩

+ ∑ 𝛾1𝑌𝑔 + 𝛾2(1 − 𝑌𝑔)

𝑔∈𝒩𝑑

+
Θ

𝑁𝑅
( ∑ ∑∑(∑(𝑐𝑔

𝑉 + 𝜋𝐶𝑂2𝐸𝑔)𝑞𝑔𝑠𝑡
𝔭
+ 𝑐𝑔

𝑆𝑇𝑈𝑃𝑧𝑔𝑠𝑡
𝔭

𝑔∈𝒢

+∑𝑐𝑗
𝜅𝜅𝑗𝑠𝑡

𝔭

𝑗

)

𝑡∈𝒯𝑠∈𝒮𝔭∈{𝑳,𝑯,𝑽}

)                          (𝟏) 

Such that : 

𝑈𝑔 = 1 − 𝑌𝑔                                                                                                                                                         , ∀𝑔 ∈ 𝒩
𝑑   (𝟐) 

𝜉1𝑠𝑡
𝔭
− 𝜅1𝑠𝑡

𝔭
− (∑(𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝔭
)

𝑗>1

) − ( ∑ 𝑞𝑔𝑠𝑡
𝔭

𝑔∈𝒩,𝒞1,𝒞2,ℋ1

) + 𝑒𝑠𝑡
+ 𝔭 − 𝑒𝑠𝑡

− 𝔭 + ( ∑ 휀𝑔𝑠𝑡
+ 𝔭

− 휀𝑔𝑠𝑡
− 𝔭

𝑔∈ℋ2

) + ∆𝑠𝑡
+ 𝔭 − ∆𝑠𝑡

− 𝔭

≤ 𝛼                                                                                                                            , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}  (𝟑𝒂) 

−𝜉1𝑠𝑡
𝔭
+ 𝜅1𝑠𝑡

𝔭
+ (∑(𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗 − 𝜅𝑗𝑠𝑡

𝔭
)

𝑗>1

) + ( ∑ 𝑞𝑔𝑠𝑡
𝔭

𝑔∈𝒩,𝒞1,𝒞2,ℋ1

) − 𝑒𝑠𝑡
+ 𝔭 + 𝑒𝑠𝑡

− 𝔭 − ( ∑ 휀𝑔𝑠𝑡
+ 𝔭

− 휀𝑔𝑠𝑡
− 𝔭

𝑔∈ℋ2

) + ∆𝑠𝑡
+ 𝔭

− ∆𝑠𝑡
− 𝔭≤ 𝛼                                                                                                                , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}  (𝟑𝒃) 

𝑢𝑔𝑠𝑡
𝔭
− 𝑢𝑔𝑠𝑡−1

𝔭
= 𝑧𝑔𝑠𝑡

𝔭
− 𝑣𝑔𝑠𝑡

𝔭
                                                                          , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟒𝒂) 

𝑧𝑔𝑠𝑡
𝔭
+ 𝑣𝑔𝑠𝑡

𝔭
≤ 1                                                                                                 , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟒𝒃) 

𝜔𝑔𝑠𝑡
1 𝔭

= 𝑞𝑔𝑠𝑡
𝔭
− 𝜔𝑔𝑠𝑡

2 𝔭
                                                                                         , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟓) 

𝜔𝑔𝑠𝑡
1 𝔭

−𝜔𝑔𝑠𝑡−1
1 𝔭

≤ 𝑟𝑔                                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞
1, 𝒞2,ℋ1  (𝟔𝒂) 

𝜔𝑔𝑠𝑡−1
1 𝔭

−𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑟𝑔                                                                                      , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞
1, 𝒞2,ℋ1  (𝟔𝒃) 

𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑈𝑔𝐷𝑔 (𝑞𝑔 − 𝑞𝑔)                                                                              , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞
1, 𝒞2,ℋ1  (𝟕𝒂) 

𝜔𝑔𝑠𝑡
1 𝔭

≤ 𝑢𝑔𝑠𝑡
𝔭
K                                                                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟕𝒃) 

𝜔𝑔𝑠𝑡
2 𝔭

≤ 𝑈𝑔𝐷𝑔𝑞𝑔                                                                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞
1, 𝒞2,ℋ1  (𝟖) 
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𝜔𝑔𝑠𝑡
2 𝔭

= 𝑈𝑔𝐷𝑔𝑞𝑔 − (1 − 𝑢𝑔𝑠𝑡
𝔭
)K + 𝑠𝑔𝑠𝑡

𝔭
                                                         , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟗) 

𝑠𝑔𝑠𝑡
𝔭
≤ (1 − 𝑢𝑔𝑠𝑡

𝔭
)K − 𝑈𝑔𝐷𝑔𝑞𝑔 + 𝑢𝑔𝑠𝑡

𝔭
K                                                      , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟏𝟎) 

𝑢𝑔𝑠𝑡
𝔭

≥ ∑ 𝑧𝑔𝑠𝑡
𝔭

𝑡′>𝑡−𝑀𝑗
𝑈

                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟏𝟏𝒂) 

1 − 𝑢𝑔𝑠𝑡
𝔭

≥ ∑ 𝑣𝑔𝑠𝑡
𝔭

𝑡′>𝑡−𝑀𝑗
𝐷

                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟏𝟏𝒃) 

𝑞𝑔𝑠𝑡
𝔭

≤ Γ𝑔𝑠
0 −∑(𝑞𝑔𝑠𝜏

𝔭
− 𝐼𝑔𝑠𝜏)

𝑡−1

𝜏=0

                                                                                        , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ ℋ1  (𝟏𝟐) 

Γ𝑔𝑠
0 ≤ Γ𝑔𝑠̅̅ ̅̅ +∑(𝑞𝑔𝑠𝜏

𝔭
− 𝐼𝑔𝑠𝜏)

𝑡−1

𝜏=0

                                                                                          , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ ℋ1  (𝟏𝟑) 

𝜅𝑗𝑠𝑡
𝔭
≤ 𝜉𝑗𝑠𝑡

𝔭
𝑈𝑗                                                                                                                               , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑗 ∈ 𝒥 (𝟏𝟒) 

𝑒𝑠𝑡
𝔭
= 𝑒𝑠𝑡−1

𝔭
+ √𝜂𝑒𝑒𝑠𝑡−1

+ 𝔭
−
𝑒𝑠𝑡−1
− 𝔭

√𝜂𝑒
                                                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟏𝟓) 

𝑒𝑠𝑡
𝔭
≤ 𝑒𝑈𝑒                                                                                                                                                    , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟏𝟔) 

𝑒𝑠𝑡
𝔭
≥ 𝑒𝑈𝑒                                                                                                                                                    , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟏𝟕) 

휀𝑔𝑠𝑡
𝔭
= 휀𝑔𝑠𝑡−1

𝔭
+ √𝜂𝜀휀𝑠𝑡−1

+ 𝔭
−
휀𝑠𝑡
− 𝔭

√𝜂𝜀
+ 𝐼𝑔𝑠𝑡                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ ℋ

2  (𝟏𝟖) 

휀𝑔𝑠𝑡
𝔭
≤ 휀𝑔𝐷𝑔𝑈𝑔                                                                                                                      , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ ℋ

2  (𝟏𝟗) 

휀𝑔𝑠𝑡
𝔭
≥ 휀𝑔𝐷𝑔𝑈𝑔                                                                                                                      , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ ℋ

2  (𝟐𝟎) 

휀𝑔𝑠𝑡
+ 𝔭

≤ 𝑙𝑔𝑠𝑡
𝔭
휀𝑔
+𝐷𝑔𝑈𝑔                                                                                                             , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ ℋ

2  (𝟐𝟏) 

휀𝑠𝑡
− 𝔭 ≤ (1 − 𝑙𝑔𝑠𝑡

𝔭
)휀𝑔

−𝐷𝑔𝑈𝑔                                                                                                   , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ ℋ
2  (𝟐𝟐) 

∆𝑠𝑡
𝔭
= ∆𝑠𝑡−1

𝔭
+ √𝜂∆∆𝑠𝑡−1

+ 𝔭
−
∆𝑠𝑡−1
− 𝔭

√𝜂∆
− (1 − 𝜉𝑠𝑡−1

Δ )𝜓𝑡−1→𝑡𝑘
∆𝑁∆                                                   , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}  (𝟐𝟑) 

Δ𝑠𝑡
𝔭
≤ Δ𝑘∆𝑁Δ                                                                                                                                            , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟐𝟒) 

Δ𝑠𝑡
𝔭
≥ Δ𝑁Δ + (1 − 𝜉𝑠𝑡

Δ )𝜓𝑡→𝑡+1𝛿
∆𝑁∆                                                                                                  , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} (𝟐𝟓) 

Δ𝑠𝑡
+ 𝔭

≤ ∆+𝑁Δ𝜉𝑠𝑡
Δ                                                                                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}  (𝟐𝟔) 
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Δ𝑠𝑡
− 𝔭 ≤ ∆−𝑁Δ𝜉𝑠𝑡

Δ                                                                                                                                       , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}  (𝟐𝟕) 

𝑢𝑔𝑠𝑡
𝔭

∈ {0 ,1}                                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈  𝒩, 𝒞1, 𝒞2,ℋ1 (𝟐𝟖) 

𝑣𝑔𝑠𝑡
𝔭
∈ {0 ,1}                                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟑𝟎) 

𝑧𝑔𝑠𝑡
𝔭
∈ {0 ,1}                                                                                                     , ∀𝔭 ∈ {𝑳,𝑯, 𝑽} , ∀𝑔 ∈ 𝒩, 𝒞1, 𝒞2,ℋ1  (𝟑𝟏) 

𝑙𝑔𝑠𝑡
𝔭

∈ {0 ,1}                                                                                                                           , ∀𝔭 ∈ {𝑳,𝑯, 𝑽}, ∀𝑔 ∈ ℋ2  (𝟑𝟐) 

𝑌𝑔 ∈ {0 ,1}                                                                                                                                                            , ∀𝑔 ∈ 𝒩 (𝟑𝟑) 

 

Description of the model: 

Indices and sets 

We define the set 𝒯 used to index hours of the week and the set of seasons 𝒮, with elements 

𝑡 ∈ 𝒯 and 𝑠 ∈ 𝒮 respectively. We also define the set of worst-case trajectories {𝑳,𝑯, 𝑽}, with 

element 𝔭 ∈ {𝑳,𝑯, 𝑽}. Finally, we introduce the set of residual demand components 𝒥, where 

the first element of 𝒥 corresponds to the electric load and the remaining elements are 

available renewable technologies (wind and photovoltaic technologies in our case). These can 

be decomposed into subsets 𝒲 ⊂ 𝒥 and 𝒫 ⊂ 𝒥, which respectively denote wind and 

photovoltaic technologies. 

The set of units from thermal and dispatchable generation technologies is noted 𝒢, with unit 

𝑔 ∈ 𝒢. The set 𝒢 can be decomposed into the subsets of nuclear units 𝒩 ⊂ 𝒢, combined cycle 

gas turbines (CCGT) 𝒞1 ⊂ 𝒢 and oil-powered gas turbines (GT) 𝒞2 ⊂ 𝒢, hydroelectric 

generation units ℋ1 ⊂ 𝒢 and eventually hydraulic pumped storage units ℋ2 ⊂ 𝒢. We further 

define the subset of nuclear units that are potential candidates for being decommissioned 

𝒩𝑑 ⊂ 𝒩. Because they do not have thermal constraints, we consider a single generation unit 

(equal to the aggregation of all individual units) for each renewable demand component 𝑗 ∈

𝒥. 
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Investment variables and parameters  

For each unit 𝑔 ∈ 𝒢, we define the binary building decision variable 𝑈𝑔 ∈ {0; 1}. The 

parameter 𝐷𝑔 ≥ 0 corresponds to the “block” size of unit 𝑔, or equivalently, its electricity 

output capability. For simplicity, we assume 𝐷𝑔 is equal for all units of the same technology. 

Each unit 𝑔 ∈ 𝒢 is characterized by minimum and maximum output levels 𝑞𝑔 ≥ 0 and 𝑞𝑔 ≥

0, in addition to maximum ramp-up and ramp-down capacities 𝑟𝑔 ≥ 0 and 𝑟𝑔 ≥ 0. The 

commitment status of 𝑔 is constrained by minimum uptime 𝑀𝑔
𝑈 ≥ 0 and minimum downtime 

𝑀𝑔
𝐷 ≥ 0. Finally, we define the installed capacity of storage as 𝑈𝑒 ≥ 0. For any 𝑔 ∈ 𝒩𝑑, 𝑌𝑔 is 

a binary variable equal to 1 if the nuclear unit 𝑔 is decommissioned. Finally, each thermal 

generation unit is characterized by a ratio of CO2 emissions per unit output 𝐸𝑔, expressed in 

ton per unit generated. 

We note the investment level for each residual demand component 𝑗 ∈ 𝒥 as 𝑈𝑗 ≥ 0 with the 

convention that 𝑈1 = 1 and note 𝑼 = (𝑈𝑖)1≤𝑖≤|𝒥| the vector of installed capacities for residual 

demand components. We define the investment level in battery storage capacities as 𝑈𝑒 ≥ 0. 

We assume the variables 𝑈𝑗 and 𝑈𝑒 are continuous, while 𝑈𝑔 is binary. Renewable 

technologies, thermal generation technologies and battery storage respectively have 

annuitized unit investment costs 𝐴𝑗 , 𝐴𝑔 and 𝐴𝑒, with 𝐴𝑗 , 𝐴𝑔, 𝐴𝑒 ≥ 0. Similarly, both renewable 

and thermal generation technologies exhibit yearly fixed and operation maintenance costs 

𝑐𝑗
𝐹𝑂𝑀, 𝑐𝑔

𝐹𝑂𝑀 and 𝑐𝑒
𝐹𝑂𝑀, with 𝑐𝑗

𝐹𝑂𝑀, 𝑐𝑔
𝐹𝑂𝑀, 𝑐𝑒

𝐹𝑂𝑀 ≥ 0. Finally, 𝛾1 ≥ 0 and 𝛾2 ≥ 0 respectively 

denote the annuitized unit cost of phasing and prolongation of a nuclear units included in 𝒩𝑑. 

 

Operational variables and parameters  

For any season 𝑠 ∈ 𝒮, hour 𝑡 ∈ 𝒯 and trajectory 𝔭 ∈ {𝑳,𝑯, 𝑽}, we define the uncertain 

capacity factor 𝜉𝑗𝑠𝑡 ∈ ℝ
+ for 𝑗 ∈ 𝒥, where 𝜉1𝑠𝑡 ∈ ℝ

+ corresponds to electricity demand and 

𝜉1𝑠𝑡 ∈ [0,1] for 𝑗 > 1. The variable 𝜅𝑗𝑠𝑡
𝔭 ≥ 0 is equal to volume of curtailed production for 

renewable technology 𝑗 ∈ 𝒥. Using this notation, 𝜅1𝑠𝑡
𝔭

 can naturally be interpreted as the 

volume of non-served load (VOLL). 
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We define the variable 𝑞𝑔𝑠𝑡
𝔭 ≥ 0, which corresponds to the production of generation unit 𝑔 ∈

𝒢. For any hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮, the 𝜔𝑔𝑠𝑡
2 𝔭

≥ 0 corresponds to the minimum 

generation level of plant 𝑔 ∈ 𝒢, while 𝜔𝑔𝑠𝑡
1 𝔭

≥ 0 is an auxiliary variable equal to the 

generation volume above minimum-production level. We set Κ ≫ 0 and define the slack 

variable 𝑠𝑔𝑠𝑡
𝔭 ≥ 0. 𝑢𝑔𝑠𝑡

𝔭
, 𝑣𝑔𝑠𝑡

𝔭
 and 𝑧𝑔𝑠𝑡

𝔭
 are all binary variables respectively corresponding to the 

commitment state, start-up and shut-down decision of generator 𝑔 ∈ 𝒢.  

The volume of electricity that can be produced by hydroelectric generation units is upper 

bounded by both the generation capacity of each generation unit 𝑔 ∈ ℋ1, but also by the level 

of its reservoir. We note Γ𝑔𝑠
0 ≥ 0 the initial storage level of the reservoir for unit 𝑔 ∈ ℋ1 and 

Γ𝑔𝑠̅̅ ̅̅ ≥ 0 its maximum storage level, for each season 𝑠 ∈ 𝒮. 𝐼𝑔𝑠𝜏 ∈ ℝ
+ is a random variable 

corresponding to exogenous energy inflows (typically water received from precipitations and 

thaw) received by unit 𝑔 ∈ ℋ1 in 𝑠 ∈ 𝒮 and 𝑡 ∈ 𝒯. For simplicity, we neglect these inflows 

and set 𝐼𝑔𝑠𝜏 = 0. Moreover, we make the simplifying assumption that each hydroelectric 

generation unit is operated independently, and its operational decisions have no impact on 

other units, in particular on the storage level of each individual reservoir. 

We must clearly distinguish storage from battery units, electric vehicles and pumped storage 

units. The variable 𝑒𝑠𝑡
𝔭 ≥ 0 (resp. 휀𝑔𝑠𝑡

𝔭 ≥ 0 and Δ𝑔𝑠𝑡
𝔭 ≥ 0) corresponds to the stock of 

electricity stored in batteries (resp. in pumped-storage units and EVs) in hour 𝑡 and season 𝑠, 

while 𝑒𝑠𝑡
+𝔭 ≥ 0 (resp. 휀𝑔𝑠𝑡

+ 𝔭
≥ 0 and Δ𝑠𝑡

+ 𝔭
≥ 0) and 𝑒𝑠𝑡

− 𝔭 ≥ 0 (resp. 휀𝑔𝑠𝑡
− 𝔭 ≥ 0 and Δ𝑠𝑡

− 𝔭 ≥ 0) are 

flux variables respectively equal to the quantity of electricity stored and released by batteries 

(resp. pumped storage units and EVs). 𝜂𝑒 is the round-trip efficiency of the battery storage 

technology, with 0 ≤ 𝜂𝑒 ≤ 1, such that √𝜂𝑒 can be interpreted as the efficiency of charge or 

discharge. Finally, 𝑒 ≥ 0 and 𝑒 ≥ 0 respectively correspond to the maximum and minimum 

state of charge. In order to decrease the computational complexity of the model, we make the 

simplifying assumption of atomicity of individual battery storage units, so that on aggregate 

batteries can both charge and discharge at the same time. No binary commitment variable is 

thus required.  

Similarly, for any 𝑔 ∈ ℋ2, √𝜂𝜀, 휀𝑔 ≥ 0 and 휀𝑔 ≥ 0 correspond to the round-trip-efficiency, 

maximum and minimum state of charge. 휀𝑔
+, 0 ≤ 휀𝑔

+ ≤ 1, and 휀𝑔−, 0 ≤ 휀𝑔
+ ≤ 1, respectively 

denote the maximum pumping and generation power ratio of unit 𝑔 of size 𝐷𝑔. Similarly to 
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hydroelectric generation units, we assume the level of energy inflows received by pumped-

storage units is neglectable, i.e. 𝐼𝑔𝑠𝜏 = 0. The binary variable 𝑙𝑔𝑠𝑡
𝔭

 corresponds to the charging 

state of 𝑔 ∈ ℋ2, with 𝑙𝑔𝑠𝑡
𝔭

 equal to 1 when unit 𝑔 pumps electricity. 𝑙𝑔𝑠𝑡
𝔭

 corresponds to the 

charging state of pumped-storage unit 𝑔 ∈ ℋ2, with 𝑙𝑔𝑠𝑡
𝔭

 equal to 1 when the unit is storing 

electricity.  

We adopt a slightly different modeling of electric vehicles in order to account for specific 

transportation constraints. Like other storage technologies, we define √𝜂∆, Δ ≥ 0 and Δ ≥ 0 

the round-trip efficiency, maximum and minimum state of charge of EVs respectively. 𝑘∆ is 

the average battery size of individual vehicles and 𝑁∆ is equal to the total number of electric 

vehicles. Parameters ∆+, 0 ≤ ∆+≤ 1, and ∆−, 0 ≤ ∆+≤ 1, correspond to the maximum 

charging and discharging power ratio of individual electric vehicles. The parameter  

𝜉𝑠𝑡
Δ , 0 ≤ 𝜉𝑠𝑡

Δ ≤ 1, is equal to the expected share of EVs which is parked in 𝑠 ∈ 𝒮 and 𝑡 ∈ 𝒯. 

The difference 1 − 𝜉𝑠𝑡
Δ  can therefore be interpreted as the coefficient of availability of the EV 

fleet, while 𝜉𝑠𝑡
Δ𝑁∆ corresponds to the expected number of EVs in circulation in 𝑠 ∈ 𝒮 and 𝑡 ∈

𝒯. Finally, 𝜓𝑡→𝑡+1 ≥ 0 is equal to the expected distance driven by EV drivers between 

successive hours 𝑡 and 𝑡 + 1 and 𝛿∆ ≥ 0 is the average consumption per unit of distance. The 

quantity (1 − 𝜉𝑠𝑡
Δ )𝜓𝑡→𝑡+1𝛿

∆𝑁∆ thus corresponds to the total expected volume of electricity 

required for satisfying EVs driving requirements between 𝑡 and 𝑡 + 1. We neglect 

transportation duration, which is a quite simplifying assumption as in reality travelling cars 

cannot connect and participate to the grid. In order to mitigate this issue, we assume the share 

of travelling EVs between 𝑡 and 𝑡 + 1 cannot connect to the grid during this time interval. 

However, our aggregate approach implicitly allows transfers between individual electric 

vehicles. Yet, a more accurate modelling would dramatically increase the computational cost 

of our model. We leave these remarks open for further research.  

We respectively note 𝑐𝑔
𝑉 ≥ 0 and 𝑐𝑔

𝑆𝑇𝑈𝑃 ≥ 0 the variable and start-up costs of the unit 𝑔 ∈ 𝒢. 

The parameter 𝑐𝑗
𝜅 ≥ 0 corresponds to the curtailment cost of renewable technology 𝑗 ∈ 𝒥, 

where 𝑐1
𝜅 is the Value of Lost Load (VOLL). Finally, we define the price of a carbon ton as 

𝜋𝐶𝑂2 ≥ 0. 
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Description of the model equations 

Each constraint must hold for each hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮. As there may exist no single 

set of dispatching decisions which simultaneously verify thermal constraints for all worst-case 

trajectories, specific variables are defined for each 𝔭 ∈ {𝑳,𝑯, 𝑽} so our formulation ensures 

each operational constrain must hold for each worst-case trajectory. 

As three different worst-case scenario or “trajectories” are simultaneously considered in the 

cost function, we divide the variable costs by 𝑁𝑅 = 3  and multiply them by the scaling factor 

Θ equal to the number of weeks per season in (1), so the variable part of the expression still 

corresponds to the average yearly variable cost. (2) simply translates the fact that the capacity 

of nuclear unit 𝑔 ∈ 𝒩𝑑 is set to zero if it is decommissioned. (3a) and (3b) correspond to the 

upper and lower limits of the primary frequency control constraint: net generation, which is 

the sum of electricity generation minus electric load and storage, must lie in the interval 

[−𝛼, 𝛼].  

(4a) to (11b) together formalize as a set of linear constraints commitment state, starting-up 

decisions and output limits for dispatchable generators. More precisely, (4a) and (4b) link 

commitment status of each thermal plant with its start-up and shut-down decisions. 

Decomposing total generation as the sum of minimum generation 𝜔𝑔𝑠𝑡
2 𝔭

 and extra generation 

𝜔𝑔𝑠𝑡
1 𝔭

, we combine the big-M method with the introduction of slack variables (5) to (11b) to 

account for mechanical inertia and thermal limitations of plants included in 𝒢. (12) and (13) 

model the dynamics of the storage level of each hydroelectric generation unit in ℋ1, while 

(14) imposes an upper bound to the volume of curtailment for each unit 𝑗 ∈ 𝒥, equal to the 

generation (or load in the case of electricity demand) of the unit. 

The set of equations (15)-(17) represent the power balance of battery storage (similarly to 

renewable technologies, battery storage is treated as a single aggregate unit) with upper and 

lower bounds on its state of charge and electricity inflows and outflows. Similarly, equations 

(18)-(22) an identical set of constraints imposed to each STEP unit, with additional on the 

charging and discharging state of each unit 𝑔 ∈ ℋ2. 𝑙𝑔𝑠𝑡
𝔭

 equal to 1 indicates that unit 𝑔 ∈ ℋ2 

is in pumping mode. Finally, (25)-(29) impose similar constraints to EVs, with the exception 

that the minimum state of charge for each 𝑡 ∈ 𝒯 is now equal to (1 − 𝜉𝑠𝑡
Δ )𝜓𝑡→𝑡+1𝛿

∆𝑁∆. 

Equivalently, charging and discharging decisions at each hour must leave enough charge to 

satisfy expected driving requirement for the next hour. 
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Appendix to 2.4.: 

 

Figure 2.A.: Residual demand variations duration curve with wind and photovoltaic 

capacities equal to 𝑼0 

 

Figure 2.B.: Residual demand variations duration curve with wind and photovoltaic 

capacities ranging from 2GWe to 5 GWe 
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Appendix to 3.1.2.: Approximation of future electricity demand distribution 

 

We approximate the future distribution of electricity demand using a structural decomposition 

model. Similar to [31], we decompose the changes in electricity demand patterns in terms of 

contributions from final consumer sectors. We distinguish four sectors: industry, transport, 

services and residential consumers. We assume changes in the non-residential electricity 

consumption are driven by GDP growth, which is assumed to be equal across all economic 

sectors for simplicity, while changes in residential electricity consumptions are driven by 

demographic growth. Finally, the consumption of all sectors is driven by sector-specific 

energy efficiency growth rate. We define the set of years 𝒴 with element 𝑦 ∈ 𝒴 and the set of 

final consumer sectors ℱ with element 𝑓 ∈ ℱ. The economic growth rate (replaced by the 

demographic growth rate in the case of the residential sector) of sector 𝑓 ∈ ℱ in year 𝑦 ∈ 𝒴  

is noted 𝜓𝑓𝑦
1 . Similarly, sector-specific energy efficiency growth rate in year 𝑦 ∈ 𝒴 is noted 

𝜓𝑓𝑦
2 . Finally, the share of sector 𝑓 ∈ ℱ in total electricity consumption in hour 𝑡 ∈ 𝒯 is noted 

𝜗𝑓𝑡. We assume for simplicity that is does vary with year and season. By construction, it 

verifies ∑ 𝜗𝑓𝑡𝑓 = 1. 

Recalling the definition of electricity demand in hour 𝑡 ∈ 𝒯 and season 𝑠 ∈ 𝒮 as the random 

variable 𝝃1𝑠𝑡
𝔭 ∈ 𝚵1𝑠𝑡

𝔭
, we define the transformation 𝐻𝑦(𝑥) such that for 𝑦 > 0: 

                                              𝐻𝑦(𝝃1𝑠𝑡
𝔭 ) = ∑(𝜗𝑓𝑡𝝃1𝑠𝑡

𝔭 [∏(
𝜓𝑓𝑦′
1

𝜓𝑓𝑦′
2 )

𝑦

𝑦′=1

])

𝑓∈ℱ

                                     (𝟑𝟒𝒂) 

𝑦 = 0 corresponds to the reference year used for evaluating the parameters 𝜗𝑓𝑡, 𝜓𝑓𝑦
1 , 𝜓𝑓𝑦

2  and 

the distribution function of 𝝃1𝑠𝑡
𝔭

. Then, for any year 𝑦 > 0, electricity demand follows the 

random variable 𝐻𝑦(𝝃1𝑠𝑡
𝔭 ) such that 𝐻𝑦(𝝃1𝑠𝑡

𝔭 ) ∈ 𝐻𝑦(𝚵1𝑠𝑡
𝔭 ) = {𝐻𝑦(𝝃1𝑠𝑡

𝔭 )|𝝃1𝑠𝑡
𝔭 ∈ 𝚵1𝑠𝑡

𝔭 }. If 

parameters are identical for each 𝑦 ∈ 𝒴, the above expression simplifies to:  

                                                      𝐻𝑦(𝝃1𝑠𝑡
𝔭 ) = ∑𝜗𝑓𝑡𝝃1𝑠𝑡

𝔭 (
𝜓𝑓0
1

𝜓𝑓0
2 )

𝑦

𝑓∈ℱ

                                              (𝟑𝟒𝒃) 
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Figure 3.B.: Future worst-case and representative total electricity demand distributions 

Note: The navy (resp. blue, light-blue and green) line corresponds to the baseline electricity demand distribution 

for 2021 (resp. projected electricity demand distribution for 2025, 2030 and 2035). 
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Appendix to 3.3.: 

 

 Baseline − 𝟏𝟎 % − 𝟑𝟎 % − 𝟓𝟎 % 

Objective function (B€) 5.103 5.101 5.138 5.487 

Total overnight costs (B€) 2.036 1.734 2.088 5.671 

Worst-case operational costs (B€) 0.207 0.210 0.205 0.188 

Representative annual operational costs (B€) 0.691 0.664 0.661 0.592 

Annuities (B€) 0.320 0.285 0.328 0.623 

Combined cycle gas turbine 0.132 0.132 0.132 0.110 

Gas turbine 0 0 0 0 

Nuclear 0 0 0 0 

Wind 0.068 0.063 0.061 0.378 

PV 0.090 0.090 0.096 0.090 

Hydroelectric 0 0 0 0 

STEP 0 0 0 0 

Battery storage 0.030 0 0.039 0.045 

Yearly FOM costs (B€) 2.343 2.333 2.345 2.472 

Combined cycle gas turbine 0.063 0.063 0.063 0.054 

Gas turbine 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 

Wind 0.030 0.027 0.027 0.164 

PV 0.034 0.034 0.037 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 

Battery storage 0.007 0 0.009 0.011 

Nuclear retirement and prolongation costs (B€)  1.577 1.577 1.577 1.577 

 

Table 4.B.: Cost allocation by technology and operational conditions with varying 

decommissioning costs 
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 Baseline +𝟓 +𝟏𝟎 +𝟏𝟓 +𝟐𝟎 

Objective function (B€) 5.103 5.206 5.203 5.176 5.083 

Total overnight costs (B€) 2036 2.450 2.874 2.359 1.697 

Worst-case operational costs (B€) 0.207 0.206 0.201 0.209 0.206 

Representative annual operational costs (B€) 0.691 0.663 0.641 0.650 0.664 

Annuities (B€)  

Combined cycle gas turbine 0.132 0.132 0.132 0.132 0.132 

Gas turbine 0 0 0 0 0 

Nuclear 0 0 0 0 0 

Wind 0.068 0.060 0.144 0.106 0.060 

PV 0.090 0.090 0.090 0.090 0.090 

Hydroelectric 0 0 0 0 0 

STEP 0 0 0 0 0 

Battery storage 0.030 0.099 0.017 0.011 0 

Yearly FOM costs (B€)  

Combined cycle gas turbine 0.063 0.063 0.063 0.063 0.063 

Gas turbine 0 0 0 0 0 

Nuclear 1.836 1.836 1.836 1.836 1.836 

Wind 0.030 0.026 0.062 0.046 0.026 

PV 0.034 0.034 0.034 0.034 0.034 

Hydroelectric 0.267 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 0.106 

Battery storage 0.007 0.023 0.005 0.003 0 

Nuclear retirement and prolongation costs (B€)  1.577 1.577 1.577 1.577 1.577 

 

Table 4.C Cost allocation by technology and operational conditions with varying total 

decommissioning time 
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 𝝅𝑪𝑶𝟐 = 𝟓𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟎𝟎 €/𝒕 𝝅𝑪𝑶𝟐 = 𝟏𝟓𝟎 €/𝒕 2025 2030 

Objective function (B€) 5.599 5.707 6.152 5.398 5.308 

Total investment costs (B€) 5.222 6.083 5.640 6.214 7.268 

Worst-case operational costs (B€) 0.295 0.442 0.512 0.325 0.293 

Representative annual operational costs (B€) 0.845 1.416 1.494 1.055 0.874 

Annuities (B€) 0.814 0.632 0.553 0.600 0.631 

Combined cycle gas turbine 0.287 0.309 0.287 0.287 0.287 

Gas turbine 0 0 0 0 0 

Nuclear 0 0 0 0 0 

Wind 0.087 0.060 0.132 0.091 0.119 

PV 0.090 0.090 0.090 0.139 0.171 

Hydroelectric 0 0 0 0 0 

STEP 0 0 0 0 0 

Battery storage 0.105 0.173 0.044 0.083 0.054 

Yearly FOM costs (B€) 2.067 1.723 1.943 1.953 1.972 

Combined cycle gas turbine 0.126 0.135 0.126 0.126 0.126 

Gas turbine 0 0 0 0 0 

Nuclear 1.343 1.343 1.343 1.343 1.343 

Wind 0.038 0.026 0.057 0.039 0.052 

PV 0.034 0.034 0.034 0.053 0.065 

Hydroelectric 0.267 0.267 0.267 0.267 0.267 

STEP 0.106 0.106 0.106 0.106 0.106 

Battery storage 0.024 0.040 0.010 0.019 0.013 

Nuclear retirement and prolongation costs 

(B€)  

1.437 1.437 1.437 1.437 1.437 

 

Table 4.H.: Cost allocation by technology and operational conditions with varying carbon 

price and investment and fixed costs for renewables 

Note: For all cases, we impose a minimum of 2 pairs of nuclear reactors to be decommissioned. 
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Appendix to 4.2.2.: 

 

Figure 13.B.: Carbon emissions and carbon intensity distributions (representative weeks, 

optimal mix n°2) 

 

Figure 13.D.: Carbon emissions and carbon intensity distributions (representative weeks, 

optimal mix n°4) 
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Chapter IV:  

Towards future electricity market designs: 

Ensuring cost-effectiveness and efficiency 

under significant RES penetration 

 

 

Abstract – In this last chapter, we investigate the remuneration issues of both conventional 

and RES generators under significant RES penetration. Then, we study the optimal 

joint distribution of production and spot prices that would be required for each type of 

generator to cover its annual fixed and variable costs. This provides a basis for 

analyzing how original market designs may better address these cost-effectiveness issues 

than the current French wholesale spot market. We analyze how an average cost 

bidding rule for RES, and scarcity pricing, by valuing more accurately real-time 

resources and operational constraints, may address the “Missing Money” issue and 

impact the remuneration of generators, in addition to the distribution of spot prices. 

Finally, we investigate the theoretical basis for an efficient Contract-for-Difference and 

compare its performances and costs with the FiP. Following the “insurer-of-last-resort” 

design, we also investigate theoretical and methodological grounds for an insurance 

overlay on wholesale market, based on customers’ revealed preferences for reliability 

and system stability. 

 

Keywords- Renewable energy, electricity markets, Missing Money, scarcity price, subsidies 
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1. Introduction 

 

With a growing share in electricity mixes, renewable energy sources (RES) are increasingly 

pointed out for depressing spot market prices and harming the long-term financial viability of 

incumbent generators, especially capitalistic ones like nuclear. Although the debt of a group 

such as EDF must be considered over the long-term to account for the high lifetime and 

amortization duration of investments, its official debt reached 42€ billion in June 202031. As 

pointed by [1], most historic European utilities, such as E.ON and RWE, lost more than 50% 

of their capitalized value between 2015 and late 2016.  

Under the existing spot market design, generation bids are submitted to the TSO and are 

ranked following the “merit order rule”. RES technologies, with a quasi-null marginal cost of 

generation, are called first by the market operator and depress the spot price by pushing the 

more expensive production units out of the market. This phenomenon is known as the “merit 

order effect” and is well-studied in several countries. [2] show a significant negative effect on 

spot prices in addition to wealth transfer from generators to consumers.  Furthermore, they 

find that the negative impact of RES penetration on the distribution of spot prices decisively 

depends on how fast surplus must-run thermal capacities are phased out. This is in accordance 

with the findings of [3], who show that the growth rate of RES investments and the rate of 

must-run units withdrawal are key components in examining the magnitude and duration of 

the “paradox of the energy transition”. Using a two-state Markov switching model, [4] show 

that a higher RES capacity induces a negative marginal effect on spot prices, which is 

stronger in relatively high-prices regimes. They also measure how both wind and solar 

generation significantly impact the distribution of spot prices, in particular the frequency and 

expected duration of low-prices and high-prices regimes.  

These depressed prices call for subsidy mechanisms, such as the FiT and FiP, to adequately 

remunerate RES generators and incentivize investment. However, the cost burden represented 

by these subsidies is significant and generates inefficiencies. As explained by [5], electricity 

customers pay a higher price for electricity that is sold at a loss upstream. Moreover, as the 

FiP provides a variable total income, it does not suppress the price risk borne by RES 

generators, especially as RES penetration increases price volatility. Alternative subsidy 

 
31 https://www.transitionsenergies.com/edf-dette-42-milliards-euros-realite-bien-plus/ 
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mechanisms, such as the Contract-for-Difference (CfD), which may also be adequate for 

nuclear capacity investments, might provide a more stable source of revenue while 

simultaneously lowering the tax burden. 

However, such off-market mechanisms do not restore the solvency of conventional 

technologies such as nuclear or combined-cycle gas turbines. Adapting the market design to 

increase the efficiency of the price signal is thus a preferable direction in the long-term.  

Although RES penetration reduces the profitability of all power plants, the structural 

remuneration deficit of electricity generator, known as the “Missing Money” issue [6], is not 

caused but only worsened by RES. Following [7], RES integration does not modify the 

fundamental economic principles behind market design. As the wholesale market design does 

not allow prices to spike above a legal threshold, the rarity annuity required to cover fixed 

costs is not received by peaking generators. Furthermore, RES shift the value of the electricity 

market from energy to reserve and ancillary services, which requires adapting the market 

design. As flexibility becomes a central element of the stability of future electric systems, it 

needs to be rewarded as a system service. Accurately pricing real-time resource availability 

and scarcity is thus pivotal in order to restore the efficiency of the price signal. However, such 

design reform is expected to be incomplete without a real-time and comprehensive valuation 

of electricity by different customers.  

In Section 2, we investigate the remuneration issues of both conventional and RES generators 

under significant RES penetration. Then, we analyze in Section 3 how average cost bidding 

rule for RES, and scarcity pricing, by valuing more accurately real-time resources and supply 

constraints, impact the remuneration of generators and the distribution of spot prices. In 

Section 4, we investigate the theoretical basis for an efficient CfD and compare its 

performances and costs with the FiP. Following the “insurer-of-last-resort” design proposed 

in [8], we also investigate theoretical grounds for an insurance overlay on wholesale market 

based on customers’ revealed preferences for reliability and system stability. Conclusions and 

policy recommendations are given in Section 5. 
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2. Market remuneration analysis under marginal-cost bidding 

2.1. Econometric model for day-ahead equilibrium price 

The mechanism by which the spot market is set in wholesale electricity markets is called the 

“merit-order” rule. The cheapest offers are thus selected first by the TSO, such as RES, 

hydroelectric and nuclear generation, followed by more expensive bids made by peaking-units 

for instance. In theory, the equilibrium price is set at the marginal cost of the last generation 

unit selected by the TSO in its optimal dispatch. 

In the following analysis, we use the optimization model presented in Chapter III, applied to 

the subset of 8 representative weeks (2 weeks for each season), and fix capacities to their 

optimal levels corresponding to mix n°2. The dual variables of the demand-balance can be 

interpreted as shadow prices and correspond to the marginal cost of the last production unit 

selected to ensure balance of supply and demand. Thus, they provide a good approximation 

for the theoretical spot price. However, the resulting distribution of spot prices is very flat, 

and its values are often too low compared to historic prices observed on the EPEX Spot 

market. In order to obtain a more realistic simulation of market revenues under future 

electricity mixes and high RES penetration, we couple our optimization model with a simple 

econometric model linking spot prices, residual demand and market fundamentals, such as 

dispatched generation volumes by technology and carbon price. 

Using 2015 RTE and French EPEX Spot data, [5] quantify the loss of economic value 

induced by the introduction of RES on historic conventional producers. Overall, they find a 

negative price effect of RES on conventional generators of 2.7 billion euros and a negative 

volume effect of 0.2 billion euros over 2015. Their results are based on a simple OLS 

regression model: their regressors include the average daily level, in addition to the deviation 

of hourly values from the daily average, for electric load, solar and wind generation. A 

different set of coefficients is estimated for each season separately. Adopting a similar 

approach, we use national spot price data with hourly resolution over the period 2015-2019 

from ENTSO-E32. We merge the vector of spot prices with database on consumption and 

generation from RTE over the same period and defined at the national scale. Observations are 

indexed by subscript 𝑚, 0 ≤ 𝑚 ≤ 𝑁, where 𝑁 is the total sample size. We divide it into four 

season-based subsets. We consider a linear specification of the relationship between spot 

 
32 https://transparency.entsoe.eu/ 
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prices and market fundamentals, which includes in our case residual demand-based metrics 

and dispatched generation volume for each thermal technology.  For each season 𝑠 ∈ 𝒮 and 

observation 𝑚, we note 𝑹𝑼𝑠𝑚
̅̅ ̅̅ ̅̅ ̅ the average daily RD, ∆𝑹𝑼𝑠𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅ the deviation of hourly RD from 

its daily average, and ∆𝑹𝑼𝑠𝑚 the hourly variation of RD.  

To avoid confusion with notations adopted in the previous chapters, we define 𝔗𝒢 the set of 

thermal technologies, with element 𝔱𝒢 ∈ 𝔗𝒢33. We further define the subset of carbon-emitting 

thermal technologies 𝔗𝒢′ ⊆ 𝔗𝒢, and the superset 𝔗, with element 𝔱 ∈ 𝔗 and 𝔗𝒢 ⊂ 𝔗, such 

that 𝔗 includes both thermal and renewable technologies34. We define the aggregated 

generation of thermal technology 𝔱𝒢 in season 𝑠 and observation 𝑚 as 𝑄𝑠𝑚
𝔱𝒢

. Finally, we define 

the dummy variable 𝑋𝑠𝑚
𝔱𝒢

 equal to 1 if 𝑄𝑠𝑚
𝔱𝒢 > 0, which are multiplied by the carbon price 

𝜋𝑠
𝐶𝑂2. The linear regression model has the following form: 

𝑃𝑠𝑚 = 𝛾𝑠 + 𝛾1𝑠𝑹𝑼𝑠𝑚
̅̅ ̅̅ ̅̅ ̅ + 𝛾2𝑠∆𝑹𝑼𝑠𝑚

̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝛾3𝑠∆𝑹𝑼𝑠𝑚 + ∑ 𝜃𝔱𝒢𝑠𝑄𝑠𝑚
𝔱𝒢

𝔱𝒢∈𝔗𝒢

+ ∑ 𝜇𝔱𝒢𝑠𝑋𝑠𝑚
𝔱𝒢

𝔱𝒢∈𝔗𝒢′

𝜋𝑠
𝐶𝑂2 + 𝜖𝑠𝑚 (𝟏) 

𝛾𝑠 is a fixed parameter capturing the effect of seasonality, while 𝜇𝔱𝒢𝑠 captures how carbon-

emitting technologies influence the spot price depending on the price of carbon. Finally, we 

note the error term 𝜖𝑠𝑚. The above model is estimated via OLS. We note 

(𝛾�̂�, 𝛾1�̂�, 𝛾2�̂�, 𝛾3�̂�, (𝜃𝔱𝒢�̂�)
𝔱𝒢∈𝔗𝒢

, (𝜇𝔱𝒢�̂�)
𝔱𝒢∈𝔗𝒢

) the vector of estimated coefficients. 

Our approach follows a two-step procedure and allows the computation of the spot prices 

distribution corresponding to a given set of optimal production values. For each type of 

technology 𝔱𝒢 ∈ 𝔗𝒢, we note 𝑄𝑠𝑡
𝔱𝒢
∗

∈ ℝ+ the optimal aggregated volume of electricity 

generation in season 𝑠 ∈ 𝒮 and 𝑡 ∈ 𝒯. Similarly, 𝑋𝑠𝑡
𝔱𝒢
∗

is the optimal commitment state of 𝔱𝒢. 

The vector of optimal values is first computed for Auvergne-Rhône-Alpes by applying our 

optimization model to our set of representative weeks. Then, we plug the equilibrium residual 

 
33 Recall that 𝒢 is the set of individual thermal units. We have by definition 𝔗𝒢 = 𝒢, but 𝔗𝒢 =

{𝒩, 𝒞1, 𝒞2,ℋ1,ℋ2}, where 𝒩,𝒞1, 𝒞2,ℋ1,ℋ2 are respectively the subset of nuclear plants, combined-cycle gas 

turbines, oil-powered gas turbines, , hydroelectric units and  pumped-storage hydroelectric defined in the above 

chapters.  

34 We have 𝔗 = {𝒩, 𝒞1, 𝒞2, ℋ1,ℋ2, 𝒫,𝒲}, where 𝒫 and 𝒲 are respectively the subset of photovoltaic and 

wind power generation units. 
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demand, generation and commitment values in (1) to estimate the “recomputed” spot price 

𝑃𝑠�̂�, for each 𝑠 ∈ 𝒮 and 𝑡 ∈ 𝒯: 

  𝑃𝑠�̂� = 𝛾�̂� + 𝛾1�̂�𝑹𝑼𝑠𝑡
∗̅̅ ̅̅ ̅̅ + 𝛾2�̂�∆𝑹𝑼𝑠𝑡

∗̅̅ ̅̅ ̅̅ ̅̅ + 𝛾3�̂�∆𝑹𝑼𝑠𝑡
∗ + ∑ 𝜃𝔱𝒢 �̂�𝑄𝑠𝑡

𝔱𝒢
∗

𝔱𝒢∈𝔗𝒢

+ ∑ 𝜇𝔱𝒢 �̂�𝑋𝑠𝑡
𝔱𝒢
∗

𝔱𝒢∈𝔗𝒢′

                          (𝟐) 

However, the above model is estimated over national data. The shares of each technology in 

total regional production may not be comparable to their shares at the national scale. The 

same remark applies to RD. We define 𝜔𝑹 < 1 the average share of RD from Auvergne-

Rhône-Alpes in total national RD. Similarly, we note 𝜔𝔱𝒢 < 1 the share in national capacities 

of technology 𝔱𝒢 ∈ 𝔗𝒢 installed in Auvergne-Rhône-Alpes. The weighted recomputed spot 

price is defined as follows: 

𝑃𝑠�̂� = 𝛾�̂� +𝜔𝑹
−1(𝛾1�̂�𝑹𝑼𝑠𝑡

∗̅̅ ̅̅ ̅̅ + 𝛾2�̂�∆𝑹𝑼𝑠𝑡
∗̅̅ ̅̅ ̅̅ ̅̅ + 𝛾3�̂�∆𝑹𝑼𝑠𝑡

∗ ) + ∑ 𝜔𝔱𝒢
−1𝜃𝔱𝒢 �̂�𝑄𝑠𝑡

𝔱𝒢
∗

𝔱𝒢∈𝔗𝒢

+ ∑ 𝜇𝔱𝒢 �̂�𝑋𝑠𝑡
𝔱𝒢
∗

𝔱𝒢∈𝔗𝒢′

        (𝟑) 

The estimated coefficients are reported in Table 1. As spot prices display significant 

interannual variability, we add yearly dummies for robustness. As shown in Figure 1., the 

prices predicted by our model closely follow the short-term and long-term trends of historic 

prices. However, it fails to capture price spikes and drops, especially negative prices. Our 

simple model also does not account for the formation of price regimes and their transition 

dynamics. Although it accounts for very short-term hourly and daily dynamics of residual 

demand, it does not intend to provide a forecasting tool either. Markov regime-switching 

models [4], threshold panel models with a smooth transition or autoregressive models (see 

[9]) provide richer specifications of the non-linear relationship between spot price and market 

fundamentals. Our results however try to give a complete picture of the price distribution 

associated to a given generation dispatch in representative operational conditions.  
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       Regression Coefficients (S.E.) 

Variable    Winter  Spring  Summer Autumn 

Residual demand variables (in MWh) 
(Reported coefficients are multiplied by 103)  

𝑹𝑼𝑠𝑚
̅̅ ̅̅ ̅̅ ̅     1.228*** 0.562*** 0.660***          1.304*** 

      (0.026)  (0.023)  (0.026)             (0.029) 

∆𝑹𝑼𝑠𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅     1.214*** 0.123*** 0.272***          1.095*** 

      (0.038)  (0.028)  (0.027)             (0.041) 

∆𝑹𝑼𝑠𝑚     0.819*** 0.759*** 0.719***          0.968*** 

      (0.034)  (0.030)  (0.026)  (0.035) 

  

      

      Generation variables (in MWh) 
(Reported coefficients are multiplied by 103 for each 𝔱𝒢 ∈ 𝔗𝒢) 

Nuclear                          - 0.232***          0.683*** 0.038           - 1.315*** 

     (0.037)              (0.030)  (0.025)  (0.035) 

Oil                          10.11***        - 1.927***         - 0.672             3.724*** 

     (0.031)  (0.553)  (0.546)  (0.457) 

Gas (CCGT)         0.612*** 0.545*** 2.606***          0.197* 

     (0.082)  (0.073)  (0.073)  (0.097) 

Hydroelectric                       - 1.585*** 1.092***        - 0.762***        - 1.053*** 

     (0.063)  (0.062)  (0.051)  (0.074) 

Pumped-storage turbines  1.456*** 2.315*** 2.875***          3.530*** 

     (0.106)  (0.080)  (0.083)  (0.112) 

 

Carbon price × Gas (CCGT) 0.835*** 2.127*** 1.842*** 1.883*** 

     (0.051)  (0.097)  (0.052)  (0.165) 

 

Carbon price × Oil   NA  NA  NA  NA 

 

 

Year Dummies   Yes  Yes              Yes  Yes 

 

Intercept             - 22.20***         - 44.54***         - 7.322***          26.18*** 

                 (1.632)             (1.432)  (1.024)              (1.737) 

Number of observations 

 

Adjusted 𝑅2 (in %)               76.41  69.41  83.77  75.33 

       

            

 

Table 1: Estimated regression coefficients, by season 

Note: NA = Non-Available 
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Figure 1: Predicted spot prices versus historic observed spot prices, from 2015 to 2019 

Note: Each red dot corresponds to an observation in our sample of spot prices. For each graph, the blue line 

corresponds to the sequence of predicted spot prices. 

 

2.2. Price-production joint patterns analysis 

For each technology 𝔱 ∈ 𝔗, we note its hourly load factor 𝑢𝑠𝑡
𝔱 , 0 ≤ 𝑢𝑠𝑡

𝔱 ≤ 1, which is simply 

equal to the total generation 𝑄𝑠𝑡
𝔱  divided by optimal installed capacity 𝐶𝔱

∗. To avoid confusion 

with the index for hours 𝑡 , we write 𝔱 in the exponent. 𝑢𝑠𝑡
𝔱  is equivalent to the average 

utilization rate computed across all generation units of technology 𝔱 ∈ 𝔗. Figure 2 plots the 

optimization model dual values (“model spot price”) against the distribution of spot prices 

recomputed with our econometric approach. We notice the recomputed spot prices 

distribution closely follows the distribution of the model spot prices, but is systematically 

higher, with price spikes above the marginal cost of CCGT units a few hours in the year. 

Finally, the probability of negative spot prices is significantly higher than in the optimization 

model, occurring in 6.1% of hours. 
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Figure 2: Model and recomputed spot price distribution 

 

Figure 3.A.: Spot price and load factor patterns for the remuneration of nuclear units 

Note: The green (resp. the red) dots correspond to couples of positive (resp. negative) spot price and load factor 

values. As we select 2 representative weeks for each season in our modeling approach, each point thus represents 

approximately 6.5 hours in a full year. 
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As shown by Table 3.A., the cumulated net market revenue of the regional nuclear fleet over 

a full year equals 1.214€ billion. With a total generation of 64 TWh and without including 

annuities and FOM costs, nuclear generation units make an average unit profit of 18.93 

€/MWh. With 1.836€ billion in FOM costs and 1.577€ billion of reactor prolongation cost, the 

nuclear operator makes a loss of 2.199€ billion, or equivalently, covers only 36% of total 

annual costs. Given the above volume of generation, a minimum spot price of 53.21 €/MWh 

is required to break even. While the average load factor represents 55% of installed capacities, 

we note it increases with the spot price and reaches an average 64% for prices above 30 

€/MWh. However, 97% of generated electricity is sold for a price below the break-even price, 

which indicates the average prices are generally too low for nuclear to be cost-effective. 

 

Figure 3.B.: Spot price and load factor patterns for the remuneration of CCGT units 

 

The remuneration pattern of CCGT units draw a completely different picture. Table 3.B. 

shows that their average hourly load factor is null 98.9% of hours. Moreover, within the few 

hours during which CCGT units are operated, the average hourly load factor remains below 

30%, with an average of 19%. With a mean unit profit of 40 €/MWh, the annual volume of 
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generation is however too low to ensure a proper remuneration. With 0.164€ billion in FOM 

costs and annuities, the CCGT operator only covers 1.1 % of total annual costs. It may be 

argued that our econometric model does not capture price spikes and thus contributes to 

underestimate the market remuneration of peaking units. Indeed, as already noted in Table 

2.A., the price ceiling of 3000 €/MWh is attained a few hours in our optimization model, 

indicating tight supply conditions. Taking the model spot price distribution instead of the 

recomputed distribution, we find a total market revenue of 35.1€ millions. This remains 

however too low to break-even, as the minimum price required for the observed levels of 

generation is superior to 3532 €/MWh, above the legal price ceiling. Recalling our robust 

methodology applied in Chapter III, this suggests the number of operating hours and load 

factor of peaking units required to ensure security of supply in very high RD periods is too 

low in representative operational conditions to ensure cost recovery. 

 

Figure 3.C.: Spot price and load factor patterns for the remuneration of photovoltaic units 

 

As shown in Figure 3.C., the total cumulative market revenue of photovoltaic increases very 

sharply for intermediate price values to reach 0.220€ billion. Because of the diurnal pattern of 

solar generation, photovoltaic units have an average hourly load factor of only 14.98%. Yet, it 
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increases to 30.42% during daylight hours, which can be explained by the south location of 

Auvergne-Rhône-Alpes and its strong solar irradiation. Still, with an average unit profit of 

14.38 €/MWh, the operator of photovoltaic unit covers 52 % of annuities and annual FOM 

costs. While the break-even price is quite low (approximately 27 €/MWh), the negative 

correlation between solar production and spot prices prevents the photovoltaic operator to 

benefit from high price episodes. Indeed, while the average hourly load factor equals 20.7 % 

for spot prices below 30 €/MWh, it falls to 5.02 % above this threshold. This illustrates the 

self-cannibalizing effect (see [10]) of RES already mentioned in the literature: by decreasing 

the marginal cost of electricity, RES push spot prices down and undermine the conditions 

necessary for their own cost-effectiveness. 

 

Figure 3.D.: Spot price and load factor patterns for the remuneration of wind units 

 

Similar conclusions can be made for the market remuneration of wind generation units. With 

a total cumulated generation of 1.366 TWh, the operator of wind turbines fails to achieve cost 

recovery. With an average unit profit of 24.77 €/MWh, wind units only cover 41% of their 

annual total fixed costs. While they enjoy a higher average hourly load factor than 

photovoltaic units, equal to 27.2%, we find a minimum break-even spot price of 60.8 €/MWh 
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for wind turbines. Following the assumptions made in Chapter III, the costs of photovoltaic 

units are expected to decrease much faster than those of wind turbines, as the latter is assumed 

to be a more mature sector. Moreover, while wind generation does not seem to significantly 

decrease spot prices due to its reduced share in the electricity mix (slightly more than 1% of 

the total installed capacity), wind turbines are far more likely to operate under low to 

moderate spot price regimes than under high ones (above 40 €/MWh). 

[11] suggest a higher CO2 price could help RES generators become economically viable 

without requiring subsidies. The authors stress that the carbon price necessary for wind power 

to become profitable is significantly higher than the price required for making wind 

generation competitive based on levelized costs. However, following the above results, it 

appears that photovoltaic and wind generation is quasi null under the high spot prices regime 

observed when CCGT units participate to production.  

Still, as future RD values are known, there is no uncertainty related to demand and RES 

production in our model, so reserve requirements are null. We would expect CCGT total 

generation to be higher, because of its participation in system balancing operations and 

reserve capacity especially. 

 

2.3. ‘Missing-money’ diagnosis 

As illustrated in the previous section, the remuneration patterns and related issues are very 

specific to each technology. While spot prices are on average too low to cover nuclear costs, 

we showed both the price ceiling and their very reduced number of operating hours prevent 

CCGT units to break even. It may thus be valuable to analyze the specific causes and 

remedies to insufficient market remuneration for each type of technology present in the mix.  

For each technology 𝔱 ∈ 𝔗, we note 𝐹𝔱 ≥ 0 the sum of total annual FOM costs and annuities. 

By definition, a generation technology is profitable if the cumulative market revenue received 

during the year is superior to the sum of 𝐹𝔱 and its operational costs. Assuming variable costs 

and carbon emission factors are equal for all units of a given technology, we further define 

𝑉𝔱 ≥ 0 the variable cost of 𝔱 ∈ 𝔗. Using notations from previous chapters, we can decompose 

𝑉𝔱 as the sum of fuel costs 𝑐𝔱
𝑉 ≥ 0 and CO2-related emission costs 𝜋𝐶𝑂2𝐸𝔱, where 𝐸𝔱 is 

measured in tons/MWh, such that 𝑉𝔱 = 𝑐𝔱
𝑉 + 𝜋𝐶𝑂2𝐸𝔱. Without loss of generality, we neglect 
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non-convex start-up costs for simplicity. Finally, we note the total number of hours within a 

year 𝐻. 

For each couple of spot market price 𝜆 ∈ ℝ and average load factor 𝑢𝔱, there exists a value 

Ψ𝔱(𝜆, 𝑢
𝔱) ∈ ℝ such that 𝑢𝔱𝐶𝔱

∗𝐻Ψ𝔱(𝜆, 𝑢
𝔱)(𝜆 − 𝑉𝔱) ≥ 𝐹𝔱, with Ψ𝔱(𝜆, 𝑢

𝔱) ≥ 𝐹𝔱 (𝑢
𝔱𝐶𝔱
∗𝐻(𝜆 − 𝑉𝔱))

−1

. 

It is straightforward to see that Ψ𝔱(𝜆, 𝑢
𝔱) → +∞ when 𝑢𝔱 → 0 or 𝜆 →+ 𝑉𝔱, and Ψ𝔱(𝜆, 𝑢

𝔱) = −∞ 

when 𝜆 ≤ 𝑉𝔱. The quantity 𝐻Ψ𝔱(𝜆, 𝑢
𝔱) can naturally be interpreted as the minimum number of 

hours within a year that is necessary to gain a market revenue at least equal to 𝐹𝔱 if the spot 

market price and average load factor remain equal to 𝜆 and 𝑢𝔱. Furthermore, we note that for 

values such that 0 ≤ Ψ𝔱(𝜆, 𝑢
𝔱) ≤ 1, Ψ𝔱(𝜆, 𝑢

𝔱) can be interpreted as the probability of making 

non-negative profits given 𝜆 and 𝑢𝔱. Then, it is possible to define the “sufficient remuneration 

set”, noted ℨ𝔱
Ψ, as the set of all triplets (𝜆, 𝑢𝔱, Ψ𝔱(𝜆, 𝑢

𝔱)) such that : 

                            ℨ𝔱
Ψ = {

𝜆 ∈ ℝ
𝑢𝔱 ∈ [0,1]

Ψ𝔱(𝜆, 𝑢
𝔱) ∈ ℝ

|Ψ𝔱(𝜆, 𝑢
𝔱) ≥ 𝐹𝔱 (𝑢

𝔱𝐶𝔱
∗𝐻(𝜆 − 𝑉𝔱))

−1

}                              (𝟒) 

ℨ𝔱
Ψ simply corresponds to the set of all combinations of spot market price, utilization rate and 

joint annual probability of occurrence such that the expected net market remuneration exceeds 

yearly FOM costs and annuities. For a constant utilization rate 𝑢𝔱, a lower number of 

operating hours is required to achieve cost-recovery if the spot price 𝜆 is high than if it is low. 

Similarly, if 𝜆 is kept constant, then generation units of technology 𝔱 ∈ 𝔗 must be operated at 

a higher average load factor 𝑢𝔱 over the year if the joint probability Ψ𝔱(𝜆, 𝑢
𝔱) is low. 

We can easily prove the convexity of the set ℨ𝔱
Ψ. Let us define the triplets (𝜆1, 𝑢1

𝔱 , Ψ𝔱(𝜆, 𝑢
𝔱)1) 

and (𝜆2, 𝑢2
𝔱 , Ψ𝔱(𝜆, 𝑢

𝔱)2) such that (𝜆1, 𝑢1
𝔱 , Ψ𝔱(𝜆, 𝑢

𝔱)1) ∈ ℨ𝔱
Ψ and (𝜆2, 𝑢2

𝔱 , Ψ𝔱(𝜆, 𝑢
𝔱)2) ∈ ℨ𝔱

Ψ. 

Thus, by definition of ℨ𝔱
Ψ, 𝑢1

𝔱Ψ𝔱(𝜆, 𝑢
𝔱)1(𝜆1 − 𝑉𝔱) ≥

𝐹𝔱

𝐶𝔱
∗𝐻

 and 𝑢2
𝔱 𝐶𝔱

∗𝐻Ψ𝔱(𝜆, 𝑢
𝔱)2(𝜆2 − 𝑉𝔱) ≥

𝐹𝔱

𝐶𝔱
∗𝐻

. 

For any couple (𝛼1, 𝛼2) ∈ [0,1]
2 such that 𝛼2 = 1 − 𝛼1, we can use the above expression to 

see that 𝛼1𝑢1
𝔱Ψ𝔱(𝜆, 𝑢

𝔱)1(𝜆1 − 𝑉𝔱) + (1 − 𝛼1)𝑢2
𝔱Ψ𝔱(𝜆, 𝑢

𝔱)2(𝜆2 − 𝑉𝔱) ≥
𝐹𝔱

𝐶𝔱
∗𝐻

. Thus, the weighted 

triplet 𝛼1(𝜆1, 𝑢1
𝔱 , Ψ𝔱(𝜆, 𝑢

𝔱)1) + (1 − 𝛼1)(𝜆2, 𝑢2
𝔱 , Ψ𝔱(𝜆, 𝑢

𝔱)2) is included in ℨ𝔱
Ψ so ℨ𝔱

Ψ is 

convex.  

For each 𝔱 ∈ 𝔗, we estimate the empirical joint distribution of its average hourly load factor 

and spot prices. As both variables are continuous, we split the intervals in which observed 
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spot prices and load factor take values into a finite number of bins and approximate the 

empirical frequency of each couple of spot price and load factor. Similarly, we approximate 

the “sufficient remuneration set” ℨ𝔱
Ψ by constructing a grid-approximation for each 

technology. Then, we can compare the empirical joint probability of load factor and spot price 

combinations with the set of combinations that would be required for each technology to 

cover its total costs. This allows us to investigate how the distribution of spot prices and 

dispatch decisions should be transformed to allow generators to break-even, without resulting 

to off-market compensation mechanisms such as capacity markets. The “sufficient 

remuneration set” may be associated to optimal transport notations to yield fruitful intuitions. 

In terms of graphical interpretation, if the “sufficient remuneration set” and empirical joint 

distribution intersect at least once, then the nuclear operator earns sufficient revenue to cover 

her total annual costs. Thus, we may use ℨ𝔱
Ψ to determine the minimum transformation of the 

joint density of generation and price that would be required to ensure cost-effectiveness. 

Figure 4.A. shows both the estimated joint distribution of nuclear load factor and market spot 

price. We first note the “sufficient remuneration set” does not appear in the figure: for each 

value of spot price and load factor represented, Ψ𝔱(𝜆, 𝑢
𝔱) is consistently superior to 40%. As 

already suggested above, under strong RES penetration, nuclear generation units would 

mainly be operated with load factors below 60% and spot prices below 50 €/MWh. Two 

directions can be suggested to improve nuclear remuneration: the first one consists in moving 

the probability mass in red, corresponding to moderate load factors (below 60%) to high load 

factor region, by increasing the utilization of units. However, this would require drastically 

increasing the number of hours with moderate to high prices during which nuclear operates at 

full capacity, which only correspond to period of tight supply conditions. This high utilization 

of nuclear capacities may be incompatible with operational and thermal constraints, that must 

be respected by the nuclear operator and the TSO. The second direction, which may be more 

“realistic”, consists in increasing the spot price for high load factor values. Indeed, for a load 

factor above 70%, while a minimum of 6982 hours of operations are necessary to recover 

costs for a spot price above 60 €/MWh, it falls to 3950 hours (45% of the year) when the latter 

increases to 100 €/MWh. 
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Figure 4.A.: Empirical load factor and spot price joint distribution for nuclear 

Note: Each dot corresponds to a bin combining discretized values of load factor and spot price.  

 

Again, the joint pattern of spot price and hourly load factor for CCGT draws an entirely 

different picture. Figure 4.B. shows that hourly load factors are null too often over the year to 

compensate for the high average unit profit when CCGT plants are dispatched. Again, the 

“sufficient remuneration set” is not represented. Increasing the participation of CCGT units, 

i.e. the joint probability of non-null load factors, is a first option to increase market revenue. 

With a spot price above 95 €/MWh (which corresponds to the average price observed when 

CCGT is dispatched), at least 14839 hours and 5002 hours of operations are required to cover 

total annual costs with hourly load factors above 10% and 30% respectively. Following the 

“merit-order” rule, dispatching CCGT a higher number of hours would increase average 

annual spot price, thus potentially benefiting to other technologies if load requirements are 

high. Yet, it may also significantly increase the electricity cost to final customers, in addition 

to expanding carbon emissions. A second option would then consist in letting spot prices 

spike when CCGT participates to supply, if it is consistent with scarcity conditions justifying 

price increases beyond the marginal cost of CCGT. However, this would require lifting the 

price ceiling of 3000 €/MWh and may expose unhedged electricity customers, if their bill is 

indexed on real-time spot prices, to potential price spikes.   
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Figure 4.B.: Empirical load factor and spot price joint distribution for combined-cycle gas 

turbines 

 

Compared to nuclear and CCGT, Table 4.C. shows the joint distribution of spot price and 

hourly load factor for photovoltaic generation is much “closer” to the “sufficient remuneration 

set” for the operator of solar panels. We might further define the distance between the 

empirical joint distribution and ℨ𝔱
Ψ using metrics like the Euclidian or the Hausdorff distance. 

This is however outside the topic of this chapter and might be left for further research. 

Contrary to dispatchable technologies, the probability mass corresponding to high load factors 

cannot be displaced as it is exogenous for RES. Indeed, RES load factors are determined by 

weather conditions and can only be adjusted downward using curtailment. Thus, it is only 

possible to move the probability mass to the right by increasing the spot price for values 

corresponding to positive hourly load factors. Interestingly, we note that under the stark 

decrease in photovoltaic investment and FOM costs assumed in our model for 2030, only 

moderate modifications might be necessary to achieve cost-effectiveness. Indeed, given a load 

factor above 30% and spot price above 50 €/MWh, a minimum of 2386 hours is necessary to 

earn a sufficient market remuneration. Taking a spot price above 60 €/MWh drives this 

number down to 1974 hours (22% of the year), which suggests the annual costs could be 
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amortized within slightly more than 24 weeks (3948 successive hours as no production occurs 

at night) with average load factor conditions and moderately high spot prices. 

 

Figure 4.C.: Empirical load factor and spot price joint distribution for solar 

Note: The multicolor grid corresponds to the grid approximation of the “sufficient remuneration set” for the 

nuclear operator. 

 

Similar conclusions can be drawn from Table 4. D.. However, the significantly higher 

annuities and FOM costs of wind turbines, even under the cost assumptions made in Chapter 

III, require a much larger shift of the marginal price distribution to the right compared to the 

case of photovoltaic. The generation of wind turbines is quasi null for spot prices superior to 

50 €/MWh, with small load factors below 20%.  We further note that the load factor of wind 

turbines is superior to its average value, equal to 27%, approximately 46% of the year. Yet, 

maintaining a minimum spot price above 112 €/MWh roughly half of the year would be 

necessary ensure cost-effectiveness.  
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Figure 4.D.: Empirical load factor and spot price joint distribution for wind power 

 

In the above analysis of photovoltaic and wind operator remuneration patterns, we assumed 

the marginal distribution of load factors is fixed, i.e. the probability mass cannot be moved 

towards higher load factor regimes. This is however untrue in the presence of storage, as it 

allows the transfer of RES generation from periods with high load factors to periods with low 

ones, and inversely. Considering Figure 4.D., a strategic operator equipped with both wind 

power and storage units would maximize her profit by storing electricity produced during low 

load factor and low price periods, and sell it during high price periods to inflate her total load 

factor. The convexity of ℨ𝔱
Ψ is in this case a key property to define the set of equivalent 

optimal storage strategies. This is however outside the scope of this research, as the social 

planner approach considered in our optimization model does not account for the allocation of 

generation and storage assets between different operators and customers, who may install 

residential or commercial photovoltaic for instance. 

We further investigate the optimal transformation of spot price distribution which would 

allow cost-effectiveness more each technology with minimum “transport” of probability mass. 

We propose two complementary approaches. For each technology 𝔱 ∈ 𝔗, we note Ω𝑄𝔱∗ the 

sorted set of optimal generation volumes obtained after solving our optimization model (it 
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may be sorted in decreasing or increasing order). Noting Ω𝜆∗ the set of observed spot price 

values, 𝜆𝔱
∗(𝑄𝔱

∗): Ω𝑄𝔱∗ ↦ Ω𝜆∗ corresponds to the optimal spot price observed when the optimal 

generation of 𝔱 ∈ 𝔗 equals 𝑄𝔱
∗ ∈ Ω𝑄𝔱∗

35. We further define the transport map 𝜈𝔱(𝑄𝔱
∗): Ω𝑄𝔱∗ ↦ ℝ, 

which associates to each value 𝑄𝔱
∗ a (possibly negative) price add-up 𝜈𝔱(𝑄𝔱

∗), such that 𝜆− ≤

𝜈𝔱(𝑄𝔱
∗) ≤ 𝜆+, with (𝜆−, 𝜆+) ∈ ℝ2. These bounds define the maximum quantity of spot price 

probability mass that can be removed or added for each value 𝑄𝔱
∗. For instance, for 𝜆+ = 5 

and 𝜆− = −𝜆+, the maximum price variation must be inferior to 5 €/MWh and superior to – 5 

€/MWh. Finally, the total probability mass of the new price distribution must be equal to the 

mass of the initial one. 

Under the first approach we investigate the optimal transport map that maximizes profits for 

each technology 𝔱 ∈ 𝔗, where (𝜆−, 𝜆+) are fixed. Formally, this can be written as the 

corresponding problem: 

                   max
𝜈𝔱

∫ 𝑄𝔱
∗ (𝜈𝔱(𝑄𝔱

∗) + 𝜆𝔱
∗(𝑄𝔱

∗)) 𝑑𝑄𝔱
∗

Ω𝑄𝔱
∗

 ∶    (
∫ 𝜈𝔱(𝑄𝔱

∗)𝑑𝑄𝔱
∗

Ω𝑄𝔱
∗

= 0 

𝜆− ≤ 𝜈𝔱(𝑄𝔱
∗) ≤ 𝜆+

)                    (𝟓) 

Figures 5.A. and 5.B. reveal interesting similarities regarding the spot prices distribution 

maximizing nuclear and solar market remuneration. Both new distributions move mass from 

low to high price regimes, without significantly altering distribution tails. This transformation 

is however more important for nuclear, as the average nuclear load factor increases with spot 

price. For 𝜆+ equal to 20 €/MWh, the average unit spot price for values above 22 €/MWh 

increases by 13.66 €/MWh. Overall, we find that the average unit price paid for nuclear 

electricity increases from 26.93 €/MWh to 32.33 €/MWh, for 𝜆+ equal to 20. 

Contrary to nuclear, the extreme values for negative prices are slightly higher under optimal 

distributions for solar. For 𝜆+ equal to 20, the average unit spot price paid by electricity 

customers for photovoltaic generation increases from 14.48 €/MWh to 34.48 €/MWh. 

However, we can prove lower values of 𝜆+ are sufficient to ensure photovoltaic cost-

effectiveness. 

 

 
35 For example, if the spot price is equal to 15 €/MWh when 𝑄𝔱

∗ = 500 MWh and to 30 €/MWh when 𝑄𝔱
∗ =

1000 MWh, then we note 𝜆𝔱
∗(500) = 15 and 𝜆𝔱

∗(1000) = 30. 
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Figure 5.A.:  Profit-maximizing transport maps of the initial spot price distribution for 

nuclear 

Note: The plain blue line corresponds to the original spot price distribution. The orange, (resp. dark-orange, 

orange-red and red) dotted line corresponds to the optimal price distributions respectively obtained with 𝜆+ 

equal to 5 (resp. 10, 15 and 20), and 𝜆− = −𝜆+. 
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Figure 5.B.:  Profit-maximizing transport maps of the initial spot price distribution for 

photovoltaic 

 

In the second approach, we reformulate the above problem as a minimization one, which 

consists in finding for each technology the optimal transport map that minimizes the 

maximum distance between the initial and the new spot price distribution while ensuring cost-

effectiveness for each 𝔱 ∈ 𝔗. Given the pair of variables (𝜆𝔱
−, 𝜆𝔱

+) ∈ ℝ2 such that 𝜆𝔱
− ≤ 𝜆𝔱

+, we 

minimize the distance 𝜆𝔱
+ − 𝜆𝔱

− for each technology. Again, we consider the set of optimal 

generation values Ω𝑄𝔱
∗ which is fixed and exogenous. This is formally equivalent to the following 

optimization problem: 

                              min
𝜆𝔱
+,𝜆𝔱

−
∑𝜆𝔱

+ − 𝜆𝔱
−

𝔱

: 

(

 
 
 
 
∫ 𝑄𝔱

∗ (𝜈𝔱(𝑄𝔱
∗) + 𝜆𝔱

∗(𝑄𝔱
∗))𝑑𝑄𝔱

∗

Ω𝑄𝔱
∗

≥ 𝐹𝔱 

∫ 𝜈𝔱(𝑄𝔱
∗)𝑑𝑄𝔱

∗

Ω𝑄𝔱
∗

= 0 

𝜆𝔱
− ≤ 𝜈𝔱(𝑄𝔱

∗) ≤ 𝜆𝔱
+ )

 
 
 
 

                               (𝟔) 

As shown in Figure 6.A., the optimal spot price distribution for the nuclear operator entails 

an average 129 €/MWh increase of the initial spot price distribution, for values above 26 
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€/MWh. While the average spot price remains unchanged by definition, the average unit price 

paid by customers to the nuclear operator starkly increases to 60.75 €/MWh. Thus, 

multiplying by almost three the price paid for nuclear electricity would be necessary at least 

50% of the year, under already moderate to high price regimes. The extremely flat left-portion 

of the new price curve suggest that long-term contracts, such as Contracts for Difference, 

would be justified to guarantee a stable high revenue to the nuclear operator without having to 

modify the spot price market. This issue is further investigated in the next Section. 

 

Figure 6.A.: Optimal spot price transportation map required for ensuring nuclear cost-

effectiveness 

Note: The blue line is obtained by taking the difference between the optimal spot price distribution and the 

initial one. 

 

Figure 6.B. confirms the findings already foreshadowed by our previous results: moderate 

modifications of the spot price distribution would be required to make photovoltaic generation 

cost-effective, assuming investment and FOM costs strongly decrease. Indeed, the optimal 

values for 𝜆𝔱
− and 𝜆𝔱

+ corresponding to solar technology are respectively equal to 7.400 

€/MWh and 13.82 €/MWh. The average unit price paid by customers to the photovoltaic 

operator increases from 14.48 €/MWh to 27.08 €/MWh. The 8.14 €/MWh price difference 
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(corresponding to a total of 0.029€ million), might be compared to the level of premiums paid 

to photovoltaic producers under subsidy mechanisms such as the Feed-in-Tariff and Feed-in-

Premium. This may provide a benchmark for assessing the relative costs efficiency of revenue 

support mechanisms against market-based solutions modifying the price paid to generators for 

their energy. 

 

Figure 6.B.: Optimal spot price transportation map required for ensuring photovoltaic 

cost-effectiveness 
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3. Alternative price-formation mechanisms for adequate 

resource and scarcity pricing 

In this section, we quickly review the main limits of current electricity market and 

compensation mechanism designs, in addition to the issues that they raise regarding the 

remuneration of producers. Then, we investigate the theoretical basis of a mixed-bidding rule 

for RES and of scarcity price, before analyzing their impact on the spot prices distribution and 

generator remuneration. 

 

3.1. Limits of classical market and off-market remuneration designs 

3.1.1. A review of market design objectives and main challenges 

Following [12], electricity market design rests on two key objectives: short-run efficiency, 

consisting in making the best use of existing resources provided truthful bidding and no 

market distortions, and long-run efficiency by providing proper incentives for long-term 

investments.  

However, as shown by [13], setting the volumetric price of electricity equal to its short-run 

social marginal cost will not raise sufficient revenue to cover utilities’ total cost, in addition to 

avoiding the debate about which costs are fixed. The idea that economic efficiency is 

maximized when price equals short-run marginal cost can be invalidated by the existence of 

externalities, market power of sellers and failure to cover fixed costs. The optimal pricing 

mechanism would require real-time pricing with a scarcity signal, which in principle would 

generates sufficient revenue for producers to cover their variable costs. As put by [14], when 

the demand for electricity generation exceeds available resources, it is required that prices 

exceed the marginal cost of the peaking unit in order to justify its investment. In a well-

functioning market, the spot price increases up to the Value of Lost Load (VOLL) in scarcity 

conditions when peaking unit cannot fully cover the electricity load. This sends a signal to 

customers, which allows peaking units to cover their fixed costs if the value of scarcity is 

translated in the electricity price. This may however fail to occur if electricity customers 

cannot react to real-time market conditions, making the demand curve inelastic, or if the spot 

price is capped. This may indeed protect consumers from price spikes and protect the market 

from price manipulations, which can result from strategic capacity retention from generators 
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with market power. More specifically, reflecting the real-time scarcity conditions might 

significantly increase the price of electricity in underinvestment conditions. Consequently, 

alternative mechanisms are required to cover the fixed costs of generators and remunerate 

investment.  

As an alternative, average-cost pricing, which is inclusive of both variable and fixed costs, 

appears at first as an equitable solution. Yet, on equity grounds, it seems doubtful that a 

customer A consuming twice as much electricity as a customer B should contribute twice as 

much to fixed costs. The introduction of a fixed charge, which is independent of the quantity 

consumed, provides an attractive way to minimize deadweight loss. Tiered pricing (known as 

block-pricing) can allocate more of the additional revenue needed to high-demand consumers, 

with the price per kWh increasing or decreasing with each “tranche”. Yet, tiering pricing 

implies above average-cost pricing for low-quantity customers, who face a very high marginal 

price and may respond by inefficiently self-restricting their consumption. Overall, [15] shows 

that increasing block-pricing, mostly prevalent in U.S. residential tariffs, has modest 

redistributive effects, with many low-income households being made worst-off by this tariff 

structure. Overall, the author estimated the introduction of increasing-block pricing in one 

California utility increased deadweight loss by 3% of the revenues received from customers 

compared to average-cost pricing. The adequate definition of blocks and corresponding tariffs 

also requires the regulator to measure the value associated to each use of electricity by each 

category of customers, which is non-trivial. 

The short-run efficiency requirement for the wholesale electricity markets must also allow 

generators to cover their operational costs. The latter include not only generation costs, but 

also non-convex costs such as start-up costs. While US day-ahead markets allow generators to 

simultaneously bid an energy offer curve, start-up and minimum-energy costs, generators on 

the French EPEX Spot Day-Ahead market only submit orders reflecting their willingness to 

sell a given volume for all price ticks between minimum and maximum prices of each 

auction. Generators must then internalize start-up and minimum-energy costs in their offers, 

based on their expectations of how concurrent bids might be scheduled, which would often 

distort the energy offer curve. 

Out of market make-whole payment mechanisms, such as uplift payments and side payments, 

may thus be required to cover non-convex operating costs not reflected in the marginal cost 

and yield the maximum attainable social welfare. Side payments are allocated by computing 
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the difference between daily operating costs and market remuneration. They are implemented 

in some power markets such as the PJM and NY-ISO which include a revenue sufficiency 

guarantee. Price-uplifts are computed ex post, i.e. after the daily unit commitment decisions 

are made, and correspond to the minimum additional payment such that online power plants 

recover their operating costs. We refer to [16] for an application of those two payment 

mechanisms to a MILP dispatching model. However, as pointed by (see [17]), make-whole 

payments may create price discrimination among market participants and generate inadequate 

market signals. This suggests price signals do not adequately reflect operational costs and 

may impact long-term investment decisions as in [18]. [19] present a novel and exact 

methodology for reformulating a revenue and network-constrained day-ahead market model, 

expressed as a mixed-integer nonlinear bilevel program, as an equivalent single level MILP 

with bilinear terms. They formulate a general price-based market clearing procedure. By 

taking locational marginal prices as decision variables, the authors provide a non-

discriminatory model which maintain desirable economic properties of marginal pricing. 

Their framework is however developed for deterministic market clearing procedures. [20] 

address this shortcoming with a stochastic market clearing algorithm and locational marginal 

prices accounting for revenue-sufficiency constraints. This new framework may prove 

especially relevant under increasing share of RES in the electricity mix.  

The latter also requires adequate valuation of real-time resources and flexibility requirements, 

which would justify simultaneously dispatching reserves and energy while accounting for 

RES uncertainty ([21]-[22]). One may question the market priority legally given to RES 

generators, which are guaranteed to be dispatched. Indeed, under alternative bidding rules 

such as average cost bidding, RES would be likely to dispatched after hydroelectric and 

nuclear units, which might mitigate the ancillary costs associated to renewable priority. 

 

3.1.2. Capacity markets and their limits 

Introduced in 2017, the French capacity market aims both at encouraging adequate investment 

in generation and demand response capacities, while incentivizing changes in consumer 

behavior during peak hours and providing sufficient revenue to peaking units with very low 

load factors36. After estimating power requirements for a set of peak hours (labelled as PP2 

 
36 See https://www.powernext.com/french-capacity-guarantees-rte 
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hours), RTE allocates capacity certificates (each certificate representing 0.1 MW) to 

generators and demand-side management operators, corresponding to the capacity they can 

make available during these specific hours. Suppliers are then required to acquire enough 

capacity certificates to serve all their customers consumption during peak periods. RTE, with 

the support of the EEX Group, is responsible for the operation of the capacity market and the 

registry of capacity guarantees. Investment and fixed costs are thus treated as a discrete 

product, namely “capacity”.  

Similarly to a FitBit, [23] show the number of MWs purchased in a capacity auction neglects 

factors determining the location and type of new investments to be made for meeting a 

predefined reliability target. First, purchasing years in advance undifferentiated MWs does not 

reflect customer or policy preferences about desired types of generation. Regional resource 

adequacy requirements may better reflect the preferences of end-users and local natural 

resources used in the construction and operation of new generation units. Moreover, it may 

fail to consistently address its two objectives, i.e. supplying “Missing Money”, required for 

resources owners to cover their fixed costs, and providing an efficient “price signal” to 

incentivize the development of new capacity. Furthermore, the indirect nature of the capacity 

mechanism makes its evaluation difficult. Generators may both receive revenue from selling 

capacity certificates and from sales in the energy-markets, so measuring the exact contribution 

of the capacity mechanism to the cost recovery may be tricky and subject to political 

manipulations. It might be difficult to strike an equitable and efficient balance between the 

benefits offered to investors by capacity mechanisms and the long-term investment risks 

shifted back to consumers. Capacity mechanisms offer limited scope to value certified 

resources based on their flexibility. 

According to [24], capacity markets administered by a central agency are a third-best option. 

They require monitoring practices to ensure certified capacities perform when needed, and 

penalties if capacity providers fail to fulfil their obligations. A well-designed capacity 

mechanism should also accommodate all capacity-equivalent resources equitably (which is 

currently not the case), to better acknowledge the value of relatively more flexible resources 

with respect to less flexible ones. Finally, it should supplement rather than substitute more 

efficient options. Indeed, capacity mechanisms remunerate generators based on their quantity 

of capacity but not the quantity of energy they produce. They are disconnected from real-time 

operational constraints and payments to certified capacities do not reflect their actual 

contribution to system flexibility and reliability. Adjusting the energy and balancing services 
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markets, so they accurately reflect the real-time cost of these services and supply scarcity, 

would contribute to remunerate generators based on the real-time energy and reserve levels 

they provide to the electric system, but also incentivize investment if the system is often short 

of generation capacity. This is the purpose of scarcity pricing, which restores flexibility in 

electricity load by pricing reserves based on the expected cost of lost load. 

 

3.2. Ensuring adequate resource pricing: bidding renewables based on 

their average cost 

3.2.1. Definition and formal framework  

Under short-term marginal pricing, the injection of renewable generation in the grid has 

priority and renewable operators are compensated by the Transmission System Operator 

(TSO) if system balance requires curtailing their production. However, as reminded by [25], 

RES erase dispatchable production intermittently but do not substitute to them. Investing in 

additional RES capacity is thus economically justified only if the cost of renewable energy is 

lower than the marginal cost of dispatchable units and reduce carbon emissions. As proven by 

the author, this requires comparing RES on the basis of their average production cost 

(including investment and FOM costs) to the marginal cost of generation electricity with 

dispatchable technologies. The classic “merit-order rule” can be modified to a mixed-bidding 

rule, such that RES generators bid their production based on their average cost, while 

dispatchable units still submit bids based on marginal costs. 

If non-dispatchable renewable generators bid their production according to their average 

costs, the latter may be higher than the marginal cost of dispatchable conventional 

technologies during low capacity factor periods, and thus push renewable producers down the 

“merit-order” curve. On the opposite, renewable producers would have high probability be 

dispatched first by the market operator when their production is high, as it would decrease 

their average cost. Under this new bidding rule, RES generators bear the costs of curtailment 

and are not compensated anymore by the TSO. 

While the author computes average costs taking the annual expected load factor, the time 

basis for this computation may be chosen to match the statistical variations of the generation 

patterns of each renewable technology. Under the assumption that annuities and FOM costs 

can be allocated uniformly in time, they may computed on a seasonal, weekly or even hourly 

basis. Indeed, the author implicitly assumes the capacity factor of each renewable technology 
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to be constant and independent of the time basis used for its computation. A shorter time basis 

may better reflect the real-time generation costs of solar and wind units. Annual average costs 

may fail to capture the economic gains associated to high capacity factor periods, which 

cancel out with low production periods when taking the yearly average. Still, using average 

cost on short computation time windows is technically challenging as this measure can only 

be obtained ex post. Average-costs computed on the basis of past generation, for whatever 

computation window, may not exactly correspond the present average cost. An adequate 

measure of average costs for bidding renewable operators would rely on forecasted 

generation, with computation error decreasing with the length of the time basis and the 

inverse of the volatility of generation.  

As in the previous chapters, we assume 𝝃𝑗𝑡 is a random variable with real positive values, 

with 𝝃𝑗𝑡 ∈ 𝚵𝑗𝑡. We define the average generation on an annual basis cost for technology 𝑗 ∈

𝒫 ∪𝒲 in hour 𝑡 ∈ 𝒯 as: 

                                         Ξ𝑗 = 𝐹𝑗𝐶𝑗 (𝜃𝐶𝑗𝔼(𝜉𝑗))
−1

= 𝐹𝑗 (𝜃𝔼(𝝃𝑗𝑡))
−1

                                         (𝟕𝒂) 

We may respectively define it on a seasonal, weekly and hourly basis: 

                                Ξ𝑗𝑠 =
𝐹𝑗𝐶𝑗
|𝒮|

(𝜃𝑠𝐶𝑗𝔼(𝜉𝑗𝑠))
−1

=
𝐹𝑗
|𝒮|

(𝜃𝑠𝔼𝑠(𝝃𝑗𝑡))
−1

                                         (𝟕𝒃) 

                                Ξ𝑗𝑠
𝑘 =

𝐹𝑗𝐶𝑗
|𝒮𝒦|

(𝜃𝑘𝐶𝑗𝔼(𝜉𝑗𝑠
𝑘 ))

−1

=
𝐹𝑗
|𝒮𝒦|

(𝜃𝑘𝔼𝑠,𝑘(𝝃𝑗𝑡))
−1

                               (𝟕𝒄) 

                                Ξ𝑗𝑠𝑡
𝑘 =

𝐹𝑗𝐶𝑗
|𝒮𝒦𝒯|

(𝜃𝑡𝐶𝑗𝔼(𝜉𝑗𝑠𝑡
𝑘 ))

−1

=
𝐹𝑗

|𝒮𝒦𝒯|
(𝜃𝑡𝔼𝑠,𝑘,𝑡(𝝃𝑗𝑡))

−1

                     (𝟕𝒅) 

In the above formulation, 𝔼𝑠(𝝃𝑗𝑡) corresponds to the expectation of 𝝃𝑗𝑡 taken in season 𝑠, 

with probabilities computed over the corresponding subperiod. The same rationale applies to 

𝔼𝑠,𝑘(𝝃𝑗𝑡) and 𝔼𝑠,𝑘,𝑡(𝝃𝑗𝑡). We introduce the scaling parameters (𝜃, 𝜃𝑠 , 𝜃𝑘 , 𝜃𝑡) such that 

expected generation coincides with the length of the period over which (Ξ𝑗 , Ξ𝑗𝑠 , Ξ𝑗𝑠
𝑘 , Ξ𝑗𝑠𝑡

𝑘 ) are 

computed37. The objective function in the dispatching optimization problem becomes: 

 
37 Formally, we have 𝜃 = |𝒮𝒦𝒯|, 𝜃𝑠 = |𝒮𝒦𝒯||𝒮|−1 = |𝒦𝒯|, 𝜃𝑘 = |𝒮𝒦𝒯||𝒮𝒦|−1 = |𝒯| and 𝜃𝑘 = 1. 
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      min
𝒒,𝜿,𝒛

∑∑(∑(𝑐𝑔
𝑉 + 𝜋𝐶𝑂2𝐸𝑔)𝑞𝑔𝑠𝑡 + 𝑐𝑔

𝑆𝑇𝑈𝑃𝑧𝑔𝑠𝑡
𝑔∈𝒢

+ 𝑐1
𝜅𝜅1𝑠𝑡 +∑Ξ(𝜉𝑗𝑠𝑡𝐶𝑗 − 𝜅𝑗𝑠𝑡)

𝑗>1

)

𝑡∈𝒯𝑠∈𝒮

     (𝟖) 

Where Ξ = Ξ𝑗 , Ξ𝑗𝑠 , Ξ𝑗𝑠
𝑘 , Ξ𝑗𝑠𝑡

𝑘 . 

Figure 7 shows that the recomputed spot price increases to 31.53 €/MWh, against 24.51 

€/MWh under the classic marginal-cost bidding rule. Comparing the spot price distributions, 

the probability of negative prices under our mixed bidding rule decreases from 0.061 to 0.026, 

while the probability of prices above 80 €/MWh increases from 0.010 to 0.098. Overall, the 

mixed bidding rule with an annual computation basis both shifts the price distribution up and 

reduces the occurrence of negative prices. This is the direct result of extremely high 

curtailment rates for both photovoltaic and wind power production: over a full year, solar 

generation is almost fully curtailed (with a curtailment rate of 99.99%), while 92.48% of wind 

generation is cut. The more frequent occurrence of high spot prices translates the higher 

participation and utilization rate of CCGT turbines to generation.   

 

Figure 7:  Model and recomputed spot price distributions, annual computation basis 
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We can see from Figure 8.A. that the cumulated nuclear revenue strongly increases compared 

to the reference case in Section 2. Compared to the marginal-cost bidding rule, the total 

annual revenue increases by 64%, reaching 1.988€ billion. The increase in total revenue can 

be split into a 0.182€ billion price effect and 0.592€ billion volume effect.  Indeed, with a 

higher total generation equal 80 TWh, the average profit per unit sold picks up to 24.82 

€/MWh. The nuclear still makes a loss of 1.415€ billion euros but covers 58% of her yearly 

expanses, which is 22% more than under simple marginal-cost bidding. This average load 

factor improves to 69%. Given this overall higher electricity generation, the break-even price 

falls to 42.65 €/MWh. Although 81% of nuclear generation is sold for an inferior spot price, 

the higher number of operational hours, combined with higher average load factor and spot 

price, significantly improved the profitability of nuclear generation. 

 

Figure 8.A.: Spot price and load factor patterns for the remuneration of nuclear units under 

mixed bidding rule, annual computation basis 

 

The remuneration of CCGT units also significantly improves under our mixed bidding rule. 

Figure 8.B. shows that cumulative market remuneration is multiplied by more than 12 with 

respect to the reference marginal-cost bidding rule. The number of operating hours also 
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significantly increases as is positive during 12.1% of the year. The average hourly load factor 

during operating hours also climbs to 23%. The break-even price of CCGT drops to 245.7 

€/MWh, which is below the legal price ceiling but remains very high because of the low 

utilization of CCGT capacities, even under mixed-bidding rule. The CCGT operator still only 

covers 15% of her total annual costs. While spot prices remain too low to ensure cost-

effectiveness by producing only a few hours per year, this new bidding rule may significantly 

increase carbon emissions. As such, it may thus be poorly compatible with CO2 emission 

targets if the average cost bid by RES generators is more expensive than the marginal cost of 

CCGT units.  

 

Figure 8.B.: Spot price and load factor patterns for the remuneration of nuclear units under 

mixed bidding rule, annual computation basis 

 

As shown in Figures 8.C. and 8.D., the market remuneration of photovoltaic and wind 

production units collapses under this new bidding rule. Indeed, on an annual computation 

basis, the average costs of solar and wind generation are respectively equal to 80.37 €/MWh 

and 62.63 €/MWh. This explains the quasi full curtailment of solar generation units, as their 
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annual average cost is even higher than the marginal cost of CCGT, equal to 55.5 €/MWh 

under the carbon cost assumptions made in Chapter III. Choosing an annual basis for RES is 

thus likely to completely exclude them from participating in the optimal mix, while strong 

curtailment levels are obviously inefficient in economic terms considering their null marginal 

cost.  

 

Figure 8.C.: Spot price and load factor patterns for the remuneration of photovoltaic units 

under mixed bidding rule, annual computation basis 

 

Although the main objective of the mixed bidding rule is to better relate and compare the 

respective values of renewable and dispatchable resources, this market design both fails to 

include RES in the optimal dispatch. It also increases the average price of electricity and 

requires off-market compensation mechanisms to cover the quasi-totality of investment and 

FOM costs. Dispatchable technologies, such as nuclear and CCGT, are better-off while 

renewable generators and electricity customers are clearly worse-off.  

Moreover, while computing RES average cost on an annual basis facilitates computations, it 

fails to accurately reflect real-time resources availability. Because of the intermittency of 

renewables, their load factor is variable and exhibits cyclical patterns both at the daily and 
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seasonal scales. Accurately reflecting the real-time value of renewables is required to properly 

evaluate the economic benefits of investing in renewables. Thus, in order to illustrate how the 

choice of a different computation basis for RES average cost impacts the optimal dispatch 

under mixed-bidding rule, we now take photovoltaic and wind average cost on a weekly basis. 

 

Figure 8.D.: Spot price and load factor patterns for the remuneration of wind power units 

under mixed bidding rule, annual computation basis 
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Figure 9:  Model and recomputed spot price distributions, weekly computation basis 

 

Looking at the distribution of model spot prices, Figure 9 shows the number of hours during 

which the dual values of the model are above 8 €/MWh increases by almost 15%, while the 

maximum value diminishes from 80 €/MWh to less than 70 €/MWh. These changes are 

mainly driven by the average cost patterns of RES, which range from 49.46 €/MWh to 163.5 

€/MWh for solar generation, and 40.76 €/MWh to 88.25 €/MWh for wind generation. 

However, 96% solar production is still curtailed, while the curtailment rate of wind generation 

units slightly decreases to 87%. An infra-daily computational basis is required to neutralize 

the diurnal pattern of photovoltaic, as it doubles the average cost when taking a lower 

resolution. Finally, we note the recomputed spot price curve is mostly below the model 

marginal price, which suggests our econometric model may fail to capture how average cost 

bidding may impact the equilibrium spot price. More elaborate models integrating market 

fundamentals and submitted bids, with an explicit modeling of the mixed-bidding rule, might 

be required to correct this feature.  



 

269 
 

With a total generation of also 80 TWh and cumulated net market revenue equal to 1.307€ 

billion, Figure 10.A. shows nuclear generation units make an average profit of 16.35 €/MWh 

(without including FOM costs and annuities). The 0.093€ billion difference with total market 

revenue obtained under the traditional marginal-cost bidding rule can be decomposed between 

a negative -0.089€ billion price effect and a 0.182€ billion volume effect. Indeed, compared to 

the reference case, average unit profit is 2.58 €/MWh lower. Nuclear generation increases but 

is sold at a smaller price. The total revenue is also 0.681€ billion lower than under annually 

computed average RES costs, for a similar total generation volume. While solar generation is 

likely to be fully curtailed in Winter because of its low capacity factor, it contributes to 

significantly lower spot prices in Spring and Summer.  

Independently of the observed load factor, nuclear units have 73% chances to operate for 

prices below 30 €/MWh, that is they are quite unlikely to be dispatched during periods with 

high prices. In terms of cumulated annual generation, 70% of generated electricity is sold for 

a price under 30 €/MWh.  

Figure 10.B. in Appendix shows CCGT units are not started-up a single hour, yielding a null 

market remuneration. Finally, even though choosing a weekly computation basis slightly 

reduces curtailment, the utilization rates of photovoltaic and wind installed capacities, net of 

curtailment, remain extremely low. The annual average load factors of solar and wind units 

are respectively equal to 1% and 3.7%, with total generation of 678 GWh and 190 GWh. 

Although Figures 10.C. and 10.D. (also in Appendix) display a slight increase in cumulative 

market revenues compared to the case of annual average costs, the higher number of operating 

hours for RES units is offset by the lower spot price paid to generators. 

 

3.2.2. Limits of the average cost based mixed-bidding rule  

Three kinds of limits can be identified from the previous results: first, while mixed-bidding 

rule may significantly restore margins of dispatchable generators, it is likely to generate high 

curtailment rates for wind and solar production. Introducing this new market rule per se 

would generate sunk costs for RES investments made ex ante. To minimize inefficiencies, 

real-time computation of average costs would be required, with some assumptions on the 

allocation of annual FOM costs and annuities. Only a part of total annual fixed costs 

(annuities for instance) could be used in the computation of the average cost if RES 
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generators already benefit from off-market subsidy mechanisms. Finally, the positive 

externality of RES, which reduce CO2 emissions, might be accounted for in the computation 

of average costs and the cost comparison with dispatchable units. Yet, this mixed bidding 

mechanism may be difficult to implement. [26] advocates considering the storage cost of non-

dispatchable renewables as a negative externality, that would be proportional to the installed 

capacity of renewable generators and added to the marginal cost of renewable technologies. 

This option is further explored in [27]. 

Second, the mechanism of average cost bidding may unavoidably introduce estimation errors 

due to the stochastic nature of renewable generation. It is likely to generate perverse effects. 

Indeed, while average costs are estimated on historic generation data, the expected load factor 

used for submitting bids relies on forecasts, as it is computed before the realization of RES 

generation. On the one hand, the shorter the time frame used for computing Ξ, the closer the 

reported costs of renewable generation is from their real-time costs. On the other hand, real-

time measurement is more likely to generate large estimation errors than when renewable 

capacity factors are measured over longer periods. Under the assumption that {𝝃𝑗𝑡}𝑡≥0 is 

cyclostationary and the (𝝃𝑗𝑡, 𝝃𝑗𝑡+1, … 𝝃𝑗𝑡+𝑇), 𝑇 > 0, are iid with mean 𝜇𝝃𝑗 and variance 𝜎𝝃𝑗
2  

(after correcting for diurnal and seasonal non-stationarity and potentially non-Gaussian 

distribution (see [28])), the normalized variable 𝒁𝑗 = (𝝃𝑗𝑇
̅̅ ̅̅ − 𝜇𝝃𝑗) 𝜎𝝃𝑗

−1𝑇−
1

2 converges in law 

towards a normal distribution with zero mean when 𝑇 → +∞38. Thus, the expected value of 

𝝃𝑗𝑡 will tend towards its average annual or seasonal value if it is computed over enough 

observations. Relaxing the assumption that the (𝝃𝑗𝑡, 𝝃𝑗𝑡+1, … 𝝃𝑗𝑡+𝑇) are iid, we might model 

the normalized random process {𝒁𝑗}𝑡≥0using an ARMA model to show that it is eventually 

mean-reverting with normal forecasting errors with zero mean. Under these assumptions, the 

expectations of 𝒁𝑗 and 𝝃𝑗𝑡 computed over a sufficiently high number of observations 

coincides with their mode.  Computing the expected average generation cost over the year or 

seasons might thus decrease the estimation error. We refer to [29] for a comprehensive review 

of forecasting methods used for renewable and especially wind power predictions.  

We note (𝔼(𝝃𝑗𝑡)
̃ ,𝔼𝑠(𝝃𝑗𝑡)

̃ ,𝔼𝑠,𝑘(𝝃𝑗𝑡)
̃ ,𝔼𝑠,𝑘,𝑡(𝝃𝑗𝑡)

̃ ) the vector of expected load factors reported 

by the producer of renewable generation unit 𝑗 ∈ 𝒥. The vector of estimation error can be 

 
38 We define 𝝃𝑗𝑇

̅̅ ̅̅ =
𝝃𝑗𝑡+𝝃𝑗𝑡+1+⋯+𝝃𝑗𝑡+𝑇

𝑇
 as the sample average corresponding to the sample of observations  
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decomposed into a random error vector 𝜺𝑗 = (휀𝑗 , 휀𝑗𝑠 , 휀𝑗𝑠
𝑘 , 휀𝑗𝑠𝑡

𝑘 ) and systematic error vector 

𝜼𝑗 = (𝜂𝑗 , 𝜂𝑗𝑠, 𝜂𝑗𝑠
𝑘 , 𝜂𝑗𝑠𝑡

𝑘 )39. By assumption, the expected random error is null, i.e. 𝔼(휀𝑗) =

𝔼(휀𝑗𝑠) = 𝔼(휀𝑗𝑠
𝑘 ) = 𝔼(휀𝑗𝑠𝑡

𝑘 ) = 0. Similarly, if the measurement process is unbiased and the 

producer of renewable generation unit 𝑗 ∈ 𝒥 truthfully reports expected generation, we have 

𝔼(𝜂𝑗) = 𝔼(𝜂𝑗𝑠) = 𝔼(𝜂𝑗𝑠
𝑘 ) = 𝔼(𝜂𝑗𝑠𝑡

𝑘 ) = 0. The verification of the cost estimates provided by 

the RES generators may be difficult. Under a high-resolution computation basis, the deviation 

of RES load factors from their average value is likely to be both more frequent and larger than 

under a low-resolution basis. Many observations, adjusted for diurnal and seasonal patterns in 

RES load factors, might be required to detect systematic false reporting of load factor and 

eventually average production cost. As verification is only possible ex post, RES generators 

would be incentivized to underreport their average cost to maximize their probability of being 

dispatched. The optimal choice of reporting would be weighted by the expected imbalance 

cost that might be paid by the RES operator as her observed generation deviates from her 

reported forecasts. This may result in increased system instability and balancing costs, with no 

obvious gains for RES generators as they would have to buy electricity in the balancing 

market to compensate for their generation deficit.  

Finally, this mixed-bidding rule may generate inequalities within RES generators. It is also 

likely to disincentivize investment. Indeed, assuming one MWe has the same load factor 

distribution for successive generations (resulting from innovations) of a given technology, 

older generations are more likely to be curtailed that newer ones. Therefore, we expect new 

entrants to push incumbent RES operators down the “merit-order” curve. Such pricing system 

would thus require increasing subsidies paid to incumbent generators, which could raise 

issues of fairness between entrants and incumbents, but also significantly increase the tax 

burden for consumers. On the one hand, average cost bidding could provide incentives for 

technical innovation and lowering the total costs of renewables. On the other hand, 

investments with long payback periods may fail to break-even if the entry rate of new entrants 

 
39 The estimated error for the expected generation under each various computation basis can respectively be 

defined as follows: 

𝐶𝑗 (𝔼(𝝃𝑗𝑡)
̃ −𝔼(𝝃𝑗𝑡)) = 휀𝑗 + 𝜂𝑗     , 𝐶𝑗 (𝔼𝑠(𝝃𝑗𝑡)

̃ −𝔼𝑠(𝝃𝑗𝑡)) = 휀𝑗𝑠 + 𝜂𝑗𝑠                                                                    

𝐶𝑗 (𝔼𝑠,𝑘(𝝃𝑗𝑡)
̃ −𝔼𝑠,𝑘(𝝃𝑗𝑡)) = 휀𝑗𝑠

𝑘 + 𝜂𝑗𝑠
𝑘      , 𝐶𝑗 (𝔼𝑠,𝑘,𝑡(𝝃𝑗𝑡)

̃ −𝔼𝑠,𝑘,𝑡(𝝃𝑗𝑡)) = 휀𝑗𝑠𝑡
𝑘 + 𝜂𝑗𝑠𝑡

𝑘                                             
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into the electricity market is too rapid. Moreover, geographical sites with lower expected 

capacity factors would consistently exhibit high average costs, which would only make most 

productive sites financially viable in the absence of subsidies, and further disincentive 

investment. 

At a microeconomic scale, such bidding system may disincentivize investment in RES units. 

Indeed, if investors anticipate decreasing investment costs, they expect the average cost of 

future RES technologies to decrease. As previously noticed, the risk of failing to break-even 

both increases with the rate of entry of new participants and the rate at which investment and 

FOM costs decrease. Investors would thus have an incentive to delay capacity investments, as 

units with higher investment and FOM costs would be more likely to be curtailed. Yet, these 

effects may be mitigated under the assumption that productivity of sites diminishes with 

installed capacities. We leave these theoretical remarks open for further research. A finely 

tuned mechanism, simultaneously accounting for the entry rate of new capacities, the 

evolution of investment costs and seasonal patterns, thus seems to be a promising alternative 

to marginal-cost pricing to ensure a higher remuneration to generators. A two-market solution 

as the one proposed by [30], which differentiate electricity market price based on the source 

of generation, might also be explored. 

 

3.3. Ensuring adequate scarcity pricing: implementation of an 

operating reserves demand curve 

Fundamentally, the US Standard Market Design is characterized by coordination, allowing 

markets to trade various products consistent with real-time operational constraints, and the 

anchoring of forward markets against real-time prices (see [22]). As the total amount of 

capacity imposes a limit on the joint provision of reserve capacity and energy, the profit 

margins on the energy-only and reserve markets should be equal, resulting in a non-arbitrage 

condition. As a result, energy and reserve dispatches are optimized simultaneously in the US. 

By comparison, the European market design segments markets between energy-only and 

reserve markets. Thus, asset owners decide how to auction their production of energy or 

provision of reserves based on the anticipated opportunity cost of participating in each 

market. The trading of energy and reserves is thus not co-optimized, and day-ahead and real-

time markets are weakly coupled. However, as underlined by [31], simultaneously clearing 
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energy and reserves in the same auction would add significant computational complexity to 

the market, in additional to data collection requirements and new organizational challenges.  

Yet, as a high RES penetration significantly increases uncertainty in real-time operations, 

adequately valuing reserves and flexibility sources is pivotal. Renewables shift market value 

from energy to reserves, thus requiring an evolving design market closer to real-time scarcity 

and operational constraints. A combination of scarcity pricing with a real-time reserve market, 

co-optimized with the energy dispatch, seems to be a promising direction to both better 

integrate RES and mitigate the “missing-money” problem.  

Following [32], the Operating Reserve Demand Curve (ORDC) addresses the scarcity pricing 

requirement by introducing flexibility in reserve capacity procurement. It is based on a 

combination of the VOLL and the Loss of Load Probability (LOLP), which corresponds to the 

probability that load will be curtailed in tight supply conditions, given a certain level of 

reserve capacity carried by the system. For a given reserve capacity 𝑅𝑡 ≥ 0, a positive LOLP 

indicates that there is a positive probability that that system imbalance exceeds 𝑅𝑡. As the 

LOLP decreases with the volume of reserves, adding more reserves decreases the probability 

of system unbalance, which translates in a lower incremental value of reserves. According to 

[32], the ORDC has various interesting properties. First, it increases reliability by reflecting 

immediate supply conditions. Second, it is compatible with an “energy only” market design 

and forward-markets, and may incentive the development of the latter as customer would seek 

to hedge against high scarcity prices. ORDC would not automatically translate into higher 

prices as investment in responsive generation and demand-side management (DSM) devices 

may lower average costs. Finally, scarcity pricing may incentivize flexible demand 

participation and developing energy-efficiency, especially for electricity usages observed in 

peak demand periods. 

The first step in computing an ORDC requires the estimation of the probability of failure 

associated to each generation unit in the mix. For simplicity, we assume that each generation 

unit belonging to technology 𝔱 ∈ 𝔗 has the same rate of failure. We use the historic 2015-

2019 dataset from EDF listing, for each individual plant the duration and type of each event 

associated its provisional unavailability. We compute the share of hours during which each 

technology has at least one generation unit unavailable because of unforeseen failure. The 

resulting probability of failure for nuclear (resp. CCGT, hydroelectric and pumped-storage 

hydroelectric) units is equal to 4.22% (resp. 2.65%, 0.91% and 3.67%).   
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Then, we compute the probability associated to each possible discrete level of non-available 

power in the mix. Considering the failure associated to each individual generation unit as the 

result of a Bernoulli trial, we can use iterated convolution products to progressively construct 

the non-available power probability curve as shown in Figure 10. For instances, let us 

consider two generation units, with rated power 𝐶1 and 𝐶2 and probability of failure 𝑞1 and 

𝑞2. Then, there exist four possible combinations of available power, namely 𝐶1 + 𝐶2, 𝐶1, 𝐶2 

and 0 MW, with respective probabilities of occure (1 − 𝑞1)(1 − 𝑞2), 𝑞2(1 − 𝑞1), 𝑞1(1 − 𝑞2) 

and 𝑞1𝑞2. We make the assumption that probabilities of failure are independent across 

generation units. For two units of the same technology 𝔱 ∈ 𝔗, 𝐶1𝔱 = 𝐶2𝔱 and 𝑞1𝔱 = 𝑞2𝔱, so 

failure events are symmetric across plants. We note the LOLP has both first and second 

derivatives decreasing, indicating the probability of non-available power rapidly decreases 

and approaches zero for values superior to 3 GW.  

 

Figure 10: Non-available power cumulative distribution, sorted in decreasing order 

 

As a reminder, the total thermal installed capacity in our optimal mix (neglecting RES and 

battery storage capacity) equals 27.74 GWe. While the probability of 1 GW (3.6% of total 

installed capacity) being non-available is quite high with roughly 50% chances of occuring, 

the non-availability of more than 3GW (10.8 % of capacities) is smaller than 2.6%. Overall, 
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we find a 99.9% probability that at least 79% of capacities are available. Indeed, as we 

assumed failure events are independent, the joint probability of simultaneous failures rapidly 

becomes negligeable although it remains strictly positive. For instance, we find a 2.23 ×

10−14 probability that at least 50% of total capacities are unavailable.  

The final step in the computation of the ORDC requires using the non-available power 

probability distrbution to model the LOLP associated to a given level of reserves 𝑅𝑡, and 

integrate it within the dispatch model. First, we approximate the non-available power 

probability distribution using a piecewise linear approximation. We chose the set of line 

segments that minimize the squared distance with the original distribution, and note 𝑙(𝑋)̃ the 

approximate probability associated to 𝑋 GW of non-available power. We note 𝑄𝑡
+ the 

maximum aggregate power that can be supplied in 𝑡 ∈ 𝒯, which is the computed by summing 

the maximum aggregate power than can be served by each online units for 𝔱 ∈ 𝔗, accounting 

for ramping limits. Finally, the value of reserves, or scarcity price, can be defined as a 

function of residual demand 𝑹𝑼𝑡
∗, maximum aggreate available power and reserve capacity, as 

follows: 

           𝑉𝑡
𝑅(𝑄𝑡

+, 𝑹𝑼𝑡
∗) = (𝑉𝑂𝐿𝐿 −⋁𝑉𝔱

𝔱∈𝔗

) × 𝑙(𝑄𝑡
+ − 𝑹𝑼𝑡

∗)̃ ≈ 𝑉𝑂𝐿𝐿 × 𝑙(𝑄𝑡
+ − 𝑹𝑼𝑡

∗)̃             (𝟗𝒂) 

If the difference 𝑄𝑡
+ − 𝑹𝑼𝑡

∗
 is small, the probability that system imbalance exceeds available 

reserves is large. Supply is tight as the system is short of capacity in case of unforeseen plant 

failures, which uplifts the value of reserves.  On the contrary, if 𝑄𝑡
+ −𝑹𝑼𝑡

∗
 is large, the 

probability that more than 𝑄𝑡
+ − 𝑹𝑼𝑡

∗
 GW is non-available due to sudden failure is small, 

which drive the price of reserves down. We may further add minimum reserve requirements 

𝑅 ≥ 0, such that 𝑙(𝑋)̃ = 1 for 𝑋 ≤ 𝑅. The scarcity price now writes as follows: 

  𝑉𝑡
𝑅(𝑄𝑡

+, 𝑹𝑼𝑡
∗|𝑅) ≈ 𝑉𝑂𝐿𝐿 × (𝟙{𝑄𝑡

+ − 𝑹𝑼𝑡
∗ ≤ 𝑅} + 𝟙{𝑄𝑡

+ − 𝑹𝑼𝑡
∗ > 𝑅} × 𝑙(𝑄𝑡

+ − 𝑹𝑼𝑡
∗)̃ )   (𝟗𝒃) 

𝟙{𝑄𝑡
+ − 𝑹𝑼𝑡

∗ ≤ 𝑅} is equal to 1 if 𝑄𝑡
+ − 𝑹𝑼𝑡

∗ ≤ 𝑅 and 0 otherwise. The objective function in 

the dispatching optimization problem becomes: 

      min
𝒒,𝜿,𝒛

∑∑(∑(𝑐𝑔
𝑉 + 𝜋𝐶𝑂2𝐸𝑔)𝑞𝑔𝑠𝑡 + 𝑐𝑔

𝑆𝑇𝑈𝑃𝑧𝑔𝑠𝑡
𝑔∈𝒢

+∑𝑐𝑗
𝜅𝜅𝑗𝑠𝑡

𝑗∈𝒥

+ 𝑉𝑡
𝑅(𝑄𝑡

+, 𝑹𝑼𝑡
∗|𝑅) × (𝑄𝑡

+ − 𝑹𝑼𝑡
∗))

𝑡∈𝒯𝑠∈𝒮

       (𝟏𝟎) 
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(10) introduces some non-linearities in the objective function, as the optimal level of reserves 

and the subsequent scarcity price are both functions of the commitment decisions of 

dispatchable units that can provide reserves (for simplicity, we assume that only dispatchable 

units can offer reserve capacity). This problem might be formulated as a Mixed-Integer Non-

Linear Problem (MINLP) and solved with GAMS using the solver BARON. However, the 

computational complexity of this problem makes it intractable, even for small instances of the 

model. We thus leave the reformulation and resolution of this problem under a tractable form 

for further research. 

Yet, by first solving for the optimal dispatching like in Section 2, it is possible to compute ex 

post the subsequent volumes of spinning reserves and the corresponding scarcity prices using 

(9b). Although reserves and prices are not included in the decisions variables and are 

exogenous, this provides information on the periods for which supply is tight. Figure 11.A. 

plots both the values obtained for reserve capacity and scarcity prices for Winter and Summer. 

While the average scarcity prices are high in both seasons, with 180.8 €/MWh and 131 

€/MWh in Winter and Summer respectively, the occurrence of price spikes is quite rare. 

Indeed, in both Winter and Summer, scarcity prices remain below the average values roughly 

94% of hours and exceed 10 €/MWh in only 22% of them. We verify in Figure 11.B. and 

11.C. (see in Appendix) that the number of scarcity price spikes, as well as the average 

scarcity price, both increase with the minimum reserve capacity requirement. 

In a model with endogenous computation of scarcity prices and reserves, we would expect the 

energy price to spike more frequently, but simultaneously take generally lower values, thus 

creating a favorable environment for investment in resources providing reserve capacity and 

flexibility services. As explained by [22], the existence of a real-time market for reserve 

capacity is a necessary condition for scarcity prices to back-propagate to the day-ahead energy 

market. Because of the non-arbitrage condition between energy and reserve markets, the 

scarcity price add-up, corresponding to the real-time value of reserve capacity, inflates the 

energy price. During the settlement of reserve imbalances, the agent selling reserves must buy 

back, at the real-time scarcity price, the amount of reserves sold to the TSO in the day-ahead 

reserve market. This condition ensures the backpropagation of scarcity prices to day-ahead 

reserve and energy markets. However, although the European Commission encourages the 

introduction of such mechanisms, most European countries have recently favored the choice 

of capacity markets. With ORDC scarcity prices computed since October 2019, Belgium is a 

noticeable European exception. Yet, the high prices potentially resulting from an ORDC, at 
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least in the short-run, may be politically unacceptable. Reaping the benefits of the latter would 

require the development of more active DSM practices, in addition to long-term forward 

contracts transferring the price risk from consumers to electricity retailers. 

 

Figure 11.A.: Reserves and scarcity price, with no minimum reserve requirement 

 

4. Alternative off-market compensation mechanisms  

The Feed-in-Tariff (FiT) and Feed-in-Premium (FiP) are the two main subsidy schemes for 

renewables currently applied in France. For each kWh injected in the grid, the FiT contract 

guarantees the recipient a fixed tariff in €/MWh, generally superior to the average market 

price and fixed in advance. The tariff guarantees the contract recipient a normal profitability. 

In France, renewable producers with a FiT contract have a legal obligation to sell all their 

production to national electricity suppliers (EDF and local distribution companies). 

Introduced by the LTECV in 2015, the FiP offers the recipient a complementary revenue, on 

top of the spot price, equal to the difference between a reference tariff, in €/MWh, and a 

reference market price. The latter is usually set to the monthly average spot price. If the FiP 

recipient earns a market revenue superior to the contracted reference price, she may refund the 
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difference. The FiP contract is allocated either through guaranteed contracts or tender 

procedures conditional on the technology and installation size. The contract duration for the 

FiT and FiP spans from 12 to 20 years depending on technolog types and maturity. Legal 

dispositions relative to both the FiT and FiP are stipulated in the French Energy Code (Art. R. 

314-1, R. 314-14). 

Like the FiP, Contracts-for-Difference (CfD) guarantee the producer a stable revenue during 

the contract duration. In addition to capacity certificates, RTE provides long-term tenders (in 

French “Appel d’offres long term”, AOLT) which offer visibility on future revenue for new 

capacities, thus theoretically encouraging investment40. Tenders are organized by the Ministry 

of Energy four years prior to the delivery year. Candidates with offer prices below the 

equilibrium tender price, or “strike price”, are awarded a Contract-for-Difference (CfD). If the 

“strike price” is above the market price, the selected candidate receives the difference. On the 

opposite, it pays the difference to a dedicated fund. CfDs are only made available to new 

capacities which do not benefit from alternative support mechanism, which are committed to 

make a contracted amount of power available during PP2 hours. The Hinkley Point C nuclear 

plant located in Sommerset (England), composed of two EPR-type reactors for a total of 3.2 

GWe, will benefit from a CfD with a “strike price” of £92.50 (2012 prices) for a 35 year term 

from its date of commissioning41.  

Interesting similarities and differences between the FiP and the CfD can be noted [33]. First, 

similarly to the FiP, the CfD entails a choice between taxpayers and electricity customers to 

fund the difference between the “strike price” and the reference market price. Charging the 

taxpayer is equivalent to granting public subsidy to generators with a FiP contract or a CfD. 

On the contrary, making the customer pay the extra may be costly if market prices are durably 

low, with potential negative macroeconomic effects. Second, generators remain exposed to 

market prices as the bulk of their remuneration comes from sales on the spot market. 

However, for a given volume of electricity injected into the grid, the total revenue is fixed 

under the CfD while it is variable under the FiP. The premium may be negotiated ex ante or 

ex post, but the latter exposes the producer to a greater risk as she ignores the future premium 

when injecting electricity. On the contrary, ex ante negotiation may result in a premium too 

low to generate sufficient remuneration if the future spot prices or generation are lower than 

 
40 https://www.services-rte.com/fr/decouvrez-nos-offres-de-services/participez-au-mecanisme-de-capacite/appel-

d-offres-long-terme.html 

41 https://www.gov.uk/government/collections/hinkley-point-c 
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expected. The premium may also be defined as a function of the capacity installed in MWe. It 

is independent of the quantity of electricity injected into the grid and allows the generator to 

cover a share of its fixed cost. Again, the capacity premium of the FiP can be computed ex 

ante or ex post, where the former decreases the risk of not amortizing the investment, while 

the latter allows the computation of the exact remuneration complement required for the 

generator to cover her costs.  

The CfD might be particularly well-suited for technologies with high investment and FOM 

costs, such as nuclear and RES technologies, as it allows a stable income while letting the 

generator exposed to the spot price signal. We provide a formal analysis of the optimal “strike 

price” and CfD design, in addition to the structure of costs paid by the public authority issuing 

the contract. We show the CfD generally provides a higher remuneration than the FiP, but at a 

higher cost for the issuer. Accounting for the joint distribution of spot prices and generation, 

although rather technical, is shown to be pivotal to design an efficient and cost-effective 

remuneration mechanism. 

 

4.1. Contract for Difference: theoretical implications and practical 

implementation 

We define the subset of eligible technologies/generation units 𝒟 ⊆ 𝒫 ∪𝒲 ∪ 𝒢 based on 

some measurable criteria. The issuer of the CfD, which is a public entity, compensates the 

contract holder if the market price received is below a contracted “strike price” 𝐾𝔱 ≥ 0. In 

exchange for bearing the price risk, the issuer may in exchange receive a share of abnormal 

profits made when the spot price is above 𝐾𝔱. The CfD thus smoothes the market revenue 

received by the contract holder, for a given production profile. In the following subsection, 

random variables are written in bold to avoid confusion. 

We define the random variable 𝚼𝑷,𝑲𝖙 = 𝑷 + (𝐾𝔱 −𝑷)
+ − 𝜌(𝑷 − 𝐾𝔱)

+, where 𝜌 ≤ 1 

corresponds to the share of extra profits received by the CfD issuer. We further define the 

functions of random variables ℎ1(𝑸𝔱, 𝚼𝑷,𝑲𝖙) = 𝑸𝔱𝚼𝑷,𝑲𝖙 and ℎ2(𝑸𝔱, 𝑷) = 𝑸𝔱𝑷. We assume the 

spot price 𝑃 is generated by a random variable 𝑷 defined on the probability space 

(Ω𝑷,𝒜𝑷, ℙ𝑷). Similarly, the total volume of electricity 𝑄𝔱 injected in the grid by units of 

technology 𝔱 ∈ 𝒟 is assumed to follow a random variable 𝑸𝔱 with probability space 



 

280 
 

(Ω𝑸𝔱 , 𝒜𝑸𝔱 , ℙ𝑸𝔱). We respectively note their densities 𝑔𝑷 and 𝑔𝑸𝔱, cumulative distribution 

functions 𝐺𝑷 and 𝐺𝑸𝔱, and finally their expected values 𝔼ℙ𝑷[𝑷] and 𝔼ℙ𝑄𝑔[𝑸𝔱]. Furthermore, 

we define the joint probability distribution 𝑷 × 𝑸𝔱 with probability space (Ω𝑷 × Ω𝑸𝔱 , 𝒜𝑷 ×

𝒜𝑸𝔱 , ℙ𝑷 × ℙ𝑸𝔱), with joint density 𝑔𝑷,𝑸𝔱, joint cumulative distribution 𝐺𝑷,𝑸𝔱 and expectation 

𝔼ℙ𝑷×ℙ𝑸𝔱
[𝑷𝑸𝖙]. The participation constraints for each eligible technology 𝔱 ∈ 𝒟 can be written 

as follows: 

                                      𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ1(𝑸𝔱, 𝚼𝑷,𝑲𝔱)] − 𝔼𝑸𝔱[𝑸𝔱]𝑐𝔱

𝑉 − 𝐹𝔱 ≥ 0                                      (𝟏𝟏𝒂) 

                                        𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ1(𝑸𝒈, 𝚼𝑷,𝑲𝔱)] ≥ 𝔼𝑸𝔱,𝑷[ℎ2(𝑸𝔱, 𝑷)]                                        (𝟏𝟏𝒃) 

Then, it can be proven that the optimal 𝐾𝔱
∗ satisfies the following constraint: 

         𝐾𝔱
∗ ≥

𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1 − (1 − 𝜌)(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱]

(𝐺𝑷(𝐾𝔱)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱] + 𝜌(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱])
         (𝟏𝟐𝒂) 

Moreover, we show that the above expression greatly simplifies when the totality of abnormal 

profits is received by the emitter of the CfD, i.e. 𝜌 = 1: 

                                                         𝐾𝔱
∗ ≥ 𝑐𝔱

𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱
[𝑸𝔱]

−1                                                         (𝟏𝟐𝒃) 

Proof: See Appendix (Proof 1) 

 

Choosing an appropriate reference period for computing the expected generation is delicate. 

As the representative sample of weeks is selected to approximate the RD distribution over the 

period 2013-2018 in Auvergne-Rhône-Alpes, we take it as baseline. We compare the resulting 

optimal “strike price” for each technology with the “strike prices” found when respectively 

taking 2014-2018, 2015-2018, 2016-2018, 2017-2018 and 2018 as reference computation 

periods. Using (12b), Table 1 shows the corresponding “strike prices” for photovoltaic and 

wind generation unit: 
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Computation period Photovoltaic (in €/MWh) Wind (in €/MWh) 

2013-2018 (Baseline) 30.95  66.08 

2014-2018 30.15 66.13 

2015-2018 29.62 66.28 

2016-2018 29.90 66.00 

2017-2018 29.81 65.19 

2018 30.14 67.55 

 

Table 1: Optimal “strike price” values for different computations periods 

 

As the assumed reduction in investment and FOM costs for 2030 is much larger for 

photovoltaic units than wind turbines, “strike prices” for solar units are consistently more than 

50% smaller than those for wind turbines, even with diurnal seasonality. The total annual 

fixed costs (corresponding to the sum of annuities and FOM costs) per MWe are equal to 

35.54€ thousand and 135.5€ thousand for solar and wind power units respectively. For 

simplicity, we assume the reference tariff used for computing the FiP is also equal to the 

“strike price”. We set 𝜌 = 1. 

Figure 12.A. plots the cumulative annual revenue for one MWe of photovoltaic capacity, 

both with CfD and FiP subsidy mechanisms. For all computation periods, we note the total 

remuneration under CfD is consistently higher than under FiP. In the baseline case, total 

annual remuneration under CfD completely covers fixed costs and is 18% higher than under 

FiP. While the total remunerations are very similar in Winter, most of the gap in total 

remuneration between CfD and FiP originates in Spring. Because of the large share of 

photovoltaic capacity in the mix, high volumes of solar production push down prices during 

the day, which are lower than during night hours. While CfD exactly compensates the low 

price per MWh received by photovoltaic generators, the average price used in the FiP is 

mechanically higher than spot prices during the day and yields a lower revenue. 
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Figure 12.A.: Cumulative total revenue per MWe of installed solar, under both CfD and FiP 

Note: The plain black (resp. dark blue, blue, clear blue, cyan and green) line corresponds the cumulative sum of 

total revenues, including both market remuneration and CfD remuneration, when taking the computation period 

2013-2018 (resp. 2014-2018, 2015-2018, 2016-2018, 2017-2018 and 2018). The dotes lines correspond the same 

information with a FiP instead of a CfD. The red dotted line corresponds to the total annual fixed costs, while the 

vertical black dotted lines mark out seasons. 

 

Because the “strike price” for wind units is high for all computation basis, most of the revenue 

of wind generators is derived from subsidies. As shown in Figure 12.B., the FiP yields a 

slightly higher total remuneration than the CfD. In the baseline case, the CfD brings a 3.5% 

lower total revenue than the FiP and allows positive profits. Indeed, wind production basically 

exhibits an inverse pattern with respect to solar production: it is lower during the day, 

especially in Spring and Summer, and higher at night. Using a FiP thus increases the add-up 

received for electricity generated during the night when spot prices are high, while the 

difference between the “strike price” and spot price received under the CfD is small. 
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Figure 12.B.: Cumulative total revenue per MWe of installed wind power, under both CfD 

and FiP 

 

The choice of a CfD or a FiP as a complementary remuneration scheme thus depends on the 

impact of the recipient on the market price: the comparative advantage of the CfD in terms of 

total remuneration becomes more preeminent as RES penetration increase and drive prices 

down. However, as shown in the case of wind generation units, technologies which 

production level is positively correlated with prices may reap higher benefits from a FiP. 

However, the positive profits earned under the FiP may lead to contract renegotiation if the 

abnormal returns are too high with respect to some reference profit rate. Moreover, while the 

CfD brings a fixed total revenue, generators under FiP receive a variable revenue and are thus 

subjected to a higher risk of not covering their total fixed costs. Finally, the computation of a 

fair FiP for each RES requires to know the future aggregate renewable capacity during 

contract duration, and to precisely estimate its impact on the expected generation of each RES 

technology and on the spot prices distribution (see [34]). The CfD is simpler as it only 
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requires knowledge about the future expected generation of renewables, which is quite simple 

if they are guaranteed priority dispatch. 

Yet, the CfD holder is insured against price uncertainty but remains subject to quantity risk. In 

the above formulation, the optimal value of 𝐾𝑔 is determined using estimated values for ℙ𝑸𝔱 

and ℙ𝑷, which are measured based on available data. We note ℙ𝑸𝔱
𝐾  and ℙ𝑷

𝐾 the distributions 

used for the estimation of 𝐾𝑔
∗. The duration of the contract must encompass a period long 

enough for the ex post distribution of 𝑸𝔱 and 𝑷 to converge to ℙ𝑸𝔱
𝐾  and ℙ𝑷

𝐾. Indeed, if the 

distribution of 𝑸𝔱 observed ex post, i.e. after the CfD is signed, differs from ℙ𝑸𝔱
𝐾 , the 

contracted “strike price” may be too high or too low, thus yielding losses or abnormal profits 

to the contract holder. Moreover, if the total annual remuneration is below the annual fixed 

costs, the CfD issuer might fail to break-even without ex post contract renegotiation. We 

illustrated how the choice of the initial computation period influences total annual 

remuneration in Figure 12.C.  and 12.D. in Appendix. 

It is also possible to give a formal definition of the optimal contract design for the CfD issuer. 

Assuming the public authority proposes a CfD contract to each eligible technology 𝔱 ∈ 𝒟, it 

seeks to minimize the expected total cost associated to CfDs while satisfying the participation 

constraint for each technology, where 𝑊(�⃗⃗� ) is the cost function of the CfD issuer and �⃗⃗� =

(𝐾𝔱)𝔱∈𝒟. By defining the function ℎ3(𝑸𝔱, 𝚼𝑷,𝑲𝔱) = 𝑸𝔱(𝚼𝑷,𝑲𝔱 − 𝑷), we have the following 

optimization program: 

                                         min
�⃗⃗� 
 𝑊(�⃗⃗� ) =∑(𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ3(𝑸𝔱, 𝚼𝑷,𝑲𝔱)])

𝔱∈𝒟

                                         (𝟏𝟑) 

s. t.  𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ1(𝑸𝔱, 𝚼𝑷,𝑲𝔱)] − 𝔼ℙ𝑸𝔱

[𝑸𝔱]𝑐𝔱
𝑉 − 𝐹𝔱 ≥ 0 

The CfD issuer minimizes the total annual volume of subsidies allocated to recipients, under 

the constraint that they recover their total annual costs. The above formulation does not span 

for the full contract duration and thus implicitly assumes that the joint distribution ℙ𝑷 × ℙ𝑸𝔱 

is identical across years. For 𝜌 = 1, the optimal annual transfer to each 𝔱 ∈ 𝒟 simply 

corresponds to the product of the optimal “strike price” 𝐾𝔱
∗ and the expected generation minus 

its expected market revenue. By plugging the value of 𝐾𝔱
∗ in the expression of 𝑊(�⃗⃗� )

∗
, we 

further show that the optimal monetary transfer made to each CfD recipient simplifies to the 

difference between expected annual total costs and market revenue. Formally, we show that: 
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       𝑊(�⃗⃗� )
∗
=∑(𝐾𝔱

∗𝔼ℙ𝑸𝔱
[𝑸𝔱] − 𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ2(𝑸𝔱, 𝑷)])

𝔱∈𝒟

=∑(𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] + 𝐹𝔱 − 𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ2(𝑸𝔱, 𝑷)])

𝔱∈𝒟

      (𝟏𝟒) 

 

Proof: See Appendix (Proof 2) 

 

Figure 13 decomposes the cumulative annual cost of CfD and FiP per installed MWe, both 

for photovoltaic and wind power units. With a total of 96.73€ thousand, the cost of CfD for 

wind units if more than 4 times higher than for solar units (21.56€ thousand). While the 

cumulated costs of CfD and FiP are quite similar for wind power, the total cost of CfD is 67% 

higher than under a FiP for photovoltaic. The correlation between production and spot prices, 

in addition to the impact of generated volumes of each eligible technology, both have a 

significant influence on the respective costs of CfD and FiP paid by the public authority. 

Choosing a value 𝜌 < 1 may lower the optimal “strike price”, thus increasing the probability 

that the CfD recipient reimburses a share of abnormal returns to the public authority. 

However, setting 𝜌 < 1 requires knowing the joint distribution of production and spot prices 

for all recipient technologies, in addition to future distributions and installed capacities during 

the contract duration. This may be difficult to implement as it relies on high data 

requirements, complex electricity market modelling and a full knowledge of future 

investments. We leave this issue for further research. 

The concept of CfD may be extended to other applications. [35] propose a Carbon Contract 

for Difference (CCfD), applicable to investors in pilot commercial-scale low carbon projets. 

Following [36], the CCfD would guarantee producers of ultra-low-carbon materials a carbon 

“strike price” 𝐾𝐶𝑂2, such that at the end of any given period, the investor receives the 

difference between 𝐾𝐶𝑂2 and the average EU ETS carbon price over the period for each ton of 

avoided CO2 from her project. If the average EU ETS price is significantly above 𝐾𝐶𝑂2, then 

the allocation rule of the abnormal profits between the emitter of the CCfD contract and the 

investor must be determined in the contract design. In return for bearing the downside risk in 

relation to carbon price, the CCfD emitter would receive a contracted share of the extra 

profits. Proposing a CfD to carbon emitting generation units, such as CCGT, for investing in 

Carbon Capture and Storage (CCS) technologies, might significantly contribute to reducing 

the risk associated to such investments. Moreover, especially if the price of CO2 is high, CCS 
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technologies would increase the utilization rate and load factor of CCGT plants, eventually 

increasing their market revenue. We leave these remarks for further research.  

 

Figure 13: Cumulative annual cost of CfD and FiP for wind power and photovoltaic, under 

both CfD and FiP 

  

4.2. Designing a customer preference-based insurance overlay on wholesale 

electricity markets 

As illustrated in the case of scarcity pricing, adequately valuing the reliability and flexibility 

services provided by generators is an important feature of an efficient wholesale electricity 

market. Although such market design is expected to uplift energy prices, it questions the 

actual value that electricity customers attribute to their consumption. In this respect, if the 

willingness to pay of a customer is below the scarcity price, this would suggest her 

preferences for power reliability are overestimated by the market operator. The VOLL, which 

is an aggregate measure, might fail to reflect the diversity of individual preferences regarding 

power supply.  
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As underlined by [8], existing capacity mechanisms require that the central authority infers 

customer preferences for reliability, which may be especially challenging in practice. They 

propose an “insurer-of-last-resort model”, functioning as a risk overlay on top of wholesale 

energy-only markets. While reliability refers to the ability of the generation and transmission 

system to satisfy electricity demand, security corresponds to the resilience of the system to 

unforeseen disturbances and frequency deviations. The theoretical basis for the “insurer-of-

last-resort” model is the provider insurance model proposed by [37]. Insured customers pay a 

premium to the central insurer (mandated by the TSO), which compensates the insured agents 

in the event of power outage. Estimating the individual valuations for power reliability and 

stability by revealed preferences is theoretically possible if a complete insurance market is 

available, allowing customers to voluntarily participate to the market and elect the level of 

coverage that maximizes their utility. For instance, customers with a high VOLL choose a 

high coverage and thus pay a high premium. The central issuer can then engage in loss-

limiting activities such as investing in new generation resources or provide missing money to 

incumbent generators. It weights the costs of additional capacity contracting and payments to 

generators making losses against the benefits resulting from lower reliability transfers made to 

insured customers. Finally, to mitigate potential free-riding issues, [8] propose that customers 

who decline to participate in insurance market would be automatically eligible for 

disconnection by the TSO in case of reliability event. This may however generated fairness 

issues. Alternative incentive mechanisms, such as Grove’s schemes and Vickrey auctions (see 

[38]), may incentivize customers to participate to the insurance scheme and truthfully reveal 

their preferences.  

This approach is justified by the assumption that power reliability and stability are quasi-

public goods as in [39]. It can be argued that power reliability is a partial non-rival good, as 

the consumption of electricity by some customers does not reduce the consumption of others. 

Yet, in tight supply conditions, a large deviation from subscribed power may threaten system 

stability, which may reduce the consumption of all electricity customers in case of power 

outage. Although there is a limited ability to measure the infinitesimal impact of customers on 

system stability, reliability and stability may not be separable, at least for hours with tight 

reserves. In this respect, the individual VOLL, under its current definition, may fail to reflect 

potentially time-dependent joint preferences for reliability and system stability. 

Following [40], the individual costs associated to power outages can be derived either from 

direct methods (blackout studies as in [41], willingness to pay/avoid power outage, scenario 
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ranking) using questionnaires or interviews, or indirect computation methods 

(macroeconomic approaches, production function estimation as [42], average household 

income, revealed preferences approach). A new and more complex measure would however 

be required to accurately value preferences. Time-differentiation, that is the assumption of 

heterogenous valuations depending on the hour of power outage, would be critical as it relates 

preferences for reliability to stability. Indeed, for leisure and economic activities that require a 

stable and uninterrupted electricity supply for several consecutive time periods (hours or even 

days, for instance for solving an optimization program), the value of stability increases with 

the duration of the activity. On the contrary, reliability may be more valuable during peak 

hours, during which customers require a significant power but over a short period of time. 

Estimating the frequency of power outages is also insufficient to correctly value customer 

preferences. For instance, extremely frequent power interruptions during a few hours per year 

are clearly not equivalent to less frequent but regular power interruptions throughout the year. 

Thus, the new measure would require the knowledge of the annual distribution of power 

interruptions and their dynamics, using for instance survival analysis tools, by considering the 

reliability events as a counting process. 

Equipped with this new measurement tool, the central insurer would then propose to 

customers a complete menu of coverage and premiums, corresponding to various the types of 

preferences. It would run counterfactual long-run dispatching analysis to determine the 

optimal level and allocation of premiums between generators, so that it that minimize the 

compensation transfers made to insured customers during power shortage events. We leave 

these theoretical remarks and modelling issues for further research. 

 

5. Conclusion and policy implications 

By aggravating the existing “Missing Money” problem by depressing spot prices, the growing 

penetration of RES in the electricity mix requires the adaptation of the market design to better 

address these new challenges. It has been shown that a higher renewable production increases 

spot price volatility, which may further deter future investments by inflating the price risk. 

Better accounting for resources availability and scarcity, though mixed-bidding rules and 

ORDC as investigated in this chapter, may contribute to better reflect real-time operational 

conditions, and value flexibility and reserve capacities more accurately. Yet, average cost 
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bidding for RES may generate significant curtailment and economic inefficiencies. A fined-

tune rule, based on a fraction of annual costs and real-time computation of RES load factors, 

may yield better economic performances, and preserve investment incentives in RES 

technologies. Scarcity pricing based on the construction of an ORDC may help restoring the 

efficiency of the price signal on day-ahead and real time wholesale markets, but may generate 

politically inacceptable price spikes. Its implementation in France would also require the 

introduction of a real-time reserve capacity market, which turns to be quite unlikely in the 

short-run with the introduction of a capacity market in 2017. 

Subsidy mechanisms thus remain necessary to ensure the cost-effectiveness of RES 

technologies, but may also prove adapted to other capital-intensive technologies such as 

nuclear. We have shown that, under certain conditions, the CfD may perform better than the 

FiP in terms of total remuneration provided to the contract recipient, but it is expected to 

generate a significantly higher tax burden imposed on electricity customers and taxpayers. 

Diminishing the volume of subsidies while preserving economic efficiency of the CfD would 

require high data requirements and intricate modelling of future electricity markets.  

Overall, adequately measuring the value attributed to electricity by individual customers 

might be a necessary step towards future well-functioning electricity markets. Incentivizing 

individuals to reveal their preferences for reliability and stability, through insurance-type 

mechanisms, may both help bridging the “Missing Money” gap and bring the electricity price 

paid by customers closer to their individual valuations, thus improving equity in  system cost-

sharing.  
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6. Appendix 

Appendix to 2.2.: 

 

Figure 10.A.: Spot price and load factor patterns for the remuneration of nuclear units under 

mixed bidding rule, weekly computation basis 

 

Figure 10.B.: Spot price and load factor patterns for the remuneration of CCGT units under 

mixed bidding rule, weekly computation basis 
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Figure 10.C.: Spot price and load factor patterns for the remuneration of photovoltaic 

generation units under mixed bidding rule, weekly computation basis 

 

Figure 10.D.: Spot price and load factor patterns for the remuneration of photovoltaic 

generation units under mixed bidding rule, weekly computation basis 
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Appendix to 3.3.: 

 

Figure 11.B.: Reserves and scarcity price, with minimum reserve requirement of 500 MW 

 

Figure 11.C.: Reserves and scarcity price, with minimum reserve requirement of 1000 MW 
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Appendix to 4.1.: 

Proof 1: 

We reformulate the initial condition in terms of integrals:  

𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ1(𝑸𝔱, 𝚼𝑷,𝑲𝖙)] − 𝔼ℙ𝑸𝔱

[𝑸𝔱]𝑐𝔱
𝑉 − 𝐹𝔱 ≥ 0 

⟺∬ 𝑄𝔱Υ𝑃,𝐾𝔱𝑑ℙ𝑸𝖙,𝑷(𝑄𝔱, 𝑃)
Ω𝑸𝔱×Ω𝑷

− 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                      

⟺∬ 𝑄𝔱Υ𝑃,𝐾𝔱𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃𝑑𝑄𝔱
Ω𝑸𝔱×Ω𝑷

− 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                             

It is straightforward to see that as ∫|𝑄𝔱Υ𝑃,𝐾𝔱𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝑔)|𝑑𝑃𝑑𝑄𝔱 < +∞, we can use Fubini’s theorem to see that 

the optimal “strike price” must verify the following inequality: 

⟺∫ [∫ 𝑄𝔱Υ𝑃,𝐾𝔱𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷

𝑑𝑃 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                  

⟺∫ 𝐾𝔱 [∫ 𝑄𝔱𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷<𝐾𝔱

𝑑𝑃 + ∫ [∫ 𝑄𝔱((1 − 𝜌)𝑃 + 𝜌𝐾𝔱)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

𝑑𝑃 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱

≥ 0                                                                                                                                                                                          

⟺∫ 𝐾𝔱 [∫ 𝑄𝔱𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷<𝐾𝔱

𝑑𝑃 + ∫ [∫ 𝑄𝔱((1 − 𝜌)𝑃 + 𝜌𝐾𝔱)𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

𝑑𝑃

− 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                                                       

⟺∫ 𝐾𝔱𝑔𝑷(𝑃)𝔼ℙ𝑸𝔱|𝑷=𝑃
[𝑸𝔱|𝑷 = 𝑃]𝑑𝑃

Ω𝑷<𝐾𝔱

+∫ 𝜌𝐾𝔱𝑔𝑷(𝑃)𝔼ℙ𝑸𝔱|𝑷=𝑃
[𝑸𝔱|𝑷 = 𝑃]𝑑𝑃

Ω𝑷>𝐾𝔱

+ (1 − 𝜌)∫ 𝑄𝑔𝑃𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃𝑑𝑄𝔱
Ω𝑷>𝐾𝔱

− 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                                                       

⟺𝐾𝔱𝐺𝑷(𝐾𝔱)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱] + 𝜌𝐾𝔱(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱] + (1 − 𝜌)(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱]

− 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                                                       

⟺𝐾𝔱(𝐺𝑷(𝐾𝔱)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱] + 𝜌(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱])

≥ 𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1 − (1 − 𝜌)(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱]                                                           

⟺ 𝐾𝑔 ≥
𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1 − (1 − 𝜌)(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱]

(𝐺𝑷(𝐾𝔱)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱] + 𝜌(1 − 𝐺𝑷(𝐾𝔱))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱])
                                                                          

 

For 𝜌 = 1, we can easily verify that 𝐾𝔱
∗ ≥ 𝑐𝔱

𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱
[𝑸𝔱]

−1 such that it yields a null expected profit for 

technology 𝔱 ∈ 𝒟:  

𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ1(𝑸𝔱, 𝚼𝑷,𝑸𝖙)] − 𝔼ℙ𝑸𝔱

[𝑸𝔱]𝑐𝔱
𝑉 − 𝐹𝔱 ≥ 0 



 

294 
 

⟺∫ [∫ 𝑄𝔱Υ𝑃,𝐾𝔱𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃
Ω𝑷

]
Ω𝑸𝔱

𝑑𝑄𝔱 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                  

⟺∫ [∫ 𝑄𝔱(𝑃 + (𝐾𝔱 − 𝑃)
+ − (𝑃 − 𝐾𝔱)

+)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃
Ω𝑷

]
Ω𝑸𝔱

𝑑𝑄𝔱 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                    

⟺𝐾𝔱∫ 𝑄𝔱 [∫ 𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃
Ω𝑷

]
Ω𝑸𝔱

𝑑𝑄𝔱 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                     

⟺ 𝐾𝔱∫ 𝑄𝔱𝑔𝑸𝔱(𝑄𝔱)
Ω𝑸𝔱

𝑑𝑄𝔱 − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                                             

⟺ 𝐾𝔱𝔼ℙ𝑸𝔱
[𝑸𝔱] − 𝑐𝔱

𝑉𝔼ℙ𝑸𝔱
[𝑸𝔱] − 𝐹𝔱 ≥ 0                                                                                                                                                               

⟺ 𝐾𝔱 ≥ 𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1                                                                                                                                                                                   

 

By plugging 𝐾𝔱
∗ = 𝑐𝔱

𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱
[𝑸𝔱]

−1, we have: 

∫ [∫ 𝑄𝔱Υ𝑃,𝐾𝔱𝑑ℙ𝑷,𝑸𝔱(𝑃, 𝑄𝔱)
Ω𝑷

]
Ω𝑸𝔱

− 𝑐𝔱
𝑉∫ 𝑄𝔱𝑑ℙ𝑸𝔱(𝑄𝔱)

Ω𝑸𝔱

− 𝐹𝔱 

= ∫ 𝑄𝔱 (𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1) [∫ 𝑑ℙ𝑷(𝑃)

Ω𝑷

]
Ω𝑸𝔱

𝑑ℙ𝑸𝔱(𝑄𝔱) − 𝑐𝔱
𝑉 ∫ 𝑄𝔱𝑑ℙ𝑸𝔱(𝑄𝔱)

Ω𝑸𝔱

− 𝐹𝔱                                                                                 

= (𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1) 𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝐹𝔱                                                                                                                                       

= 0                                                                                                                                                                                                                                           
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Figure 12.C.: Cumulative total revenue per MWe of installed solar, under various 

computation basis 

Note: The plain black (resp. dark blue, blue, clear blue, cyan and green) line corresponds the cumulative sum of 

total revenues, including both market remuneration and CfD remuneration, when taking the computation period 

2013-2018 (resp. 2014-2018, 2015-2018, 2016-2018, 2017-2018 and 2018). Only the 168 last hours of the set of 

representative weeks are represented.  
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Figure 12.D.: Cumulative total revenue per MWe of installed wind power, under various 

computation basis 

 

 

Proof 2: 

𝑊(�⃗⃗� )
∗
=∑(𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ3(𝑸𝔱, 𝚼𝑷,𝑲𝔱)])

𝔱∈𝒟

 

=∑(∬ 𝑄𝔱((𝐾𝔱
∗ − 𝑃)+ − 𝜌(𝑃 − 𝐾𝔱

∗)+)𝑑ℙ𝑸𝔱,𝑷(𝑄𝔱, 𝑃)
Ω𝑸𝔱×Ω𝑷

)

𝔱∈𝒟

                                                                                                                    

=∑(∬ 𝑄𝔱((𝐾𝔱
∗ − 𝑃)+ − 𝜌(𝑃 − 𝐾𝔱

∗)+)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃𝑑𝑄𝔱
Ω𝑸𝔱×Ω𝑷

)

𝔱∈𝒟

                                                                                                           

=∑(∫ [∫ 𝑄𝔱(𝐾𝔱
∗ − 𝑃)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱

Ω𝑄𝔱

]
Ω𝑷<𝐾𝔱

∗
𝑑𝑃 − 𝜌∫ [∫ 𝑄𝔱(𝑃 − 𝐾𝔱

∗)𝑔𝑷,𝑸𝔱(𝑃,𝑄𝔱)𝑑𝑄𝔱
Ω𝑄𝔱

]
Ω𝑷>𝐾𝔱

∗
𝑑𝑃)

𝔱∈𝒟
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=∑(∫ 𝐾𝔱
∗ [∫ 𝑄𝔱𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱

Ω𝑸𝔱

] 𝑑𝑃
Ω𝑷<𝐾𝔱

∗
− 𝜌𝐾𝔱

∗∫ [∫ 𝑄𝔱𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱
Ω𝑸𝔱

] 𝑑𝑃
Ω𝑷>𝐾𝔱

∗
𝔱∈𝒟

−∫ [∫ 𝑄𝔱𝑃𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱
Ω𝑸𝔱

] 𝑑𝑃
Ω𝑷<𝐾𝔱

∗
+ 𝜌∫ [∫ 𝑄𝔱𝑃𝑔𝑸𝔱|𝑷=𝑃(𝑄𝔱|𝑃)𝑔𝑷(𝑃)𝑑𝑄𝔱

Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

∗
)                  

=∑(𝐾𝔱
∗∫ 𝑔𝑷(𝑃)𝔼ℙ𝑸𝔱|𝑷=𝑃

[𝑸𝔱|𝑷 = 𝑃]𝑑𝑃
Ω𝑷<𝐾𝔱

∗
− 𝜌𝐾𝔱

∗∫ 𝑔𝑷(𝑃)𝔼ℙ𝑸𝔱|𝑷=𝑃
[𝑸𝔱|𝑷 = 𝑃]𝑑𝑃

Ω𝑷>𝐾𝔱
∗

𝔱∈𝒟

−∫ [∫ 𝑄𝔱𝑃𝑔𝑷,𝑸𝔱(𝑃,𝑄𝔱)𝑑𝑃𝑑𝑄𝔱
Ω𝑸𝔱

] 𝑑𝑃
Ω𝑷<𝐾𝔱

∗
+ 𝜌∫ [∫ 𝑄𝔱𝑃𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃𝑑𝑄𝔱

Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

∗
)                                        

=∑(𝐾𝔱
∗𝐺𝑷(𝐾𝔱

∗)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱
∗] − 𝜌𝐾𝔱

∗(1 − 𝐺𝑷(𝐾𝔱
∗))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱

∗] − 𝐺𝑷(𝐾𝔱
∗)𝔼ℙ𝑸𝔱 ,ℙ𝑷

[ℎ2(𝑸𝔱, 𝑷)|𝑷 <  𝐾𝔱
∗]

𝔱∈𝒟

+ 𝜌(1 − 𝐺𝑷(𝐾𝔱
∗))𝔼ℙ𝑸𝔱 ,ℙ𝑷

[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱
∗])                                                                                                           

=∑(𝐾𝔱
∗(𝐺𝑷(𝐾𝔱

∗)𝔼ℙ𝑷[𝑷|𝑷 <  𝐾𝔱
∗] − 𝜌(1 − 𝐺𝑷(𝐾𝔱

∗))𝔼ℙ𝑷[𝑷|𝑷 >  𝐾𝔱
∗]) − 𝐺𝑷(𝐾𝔱

∗)𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ2(𝑸𝔱, 𝑷)|𝑷 <  𝐾𝔱

∗]

𝔱∈𝒟

+ 𝜌(1 − 𝐺𝑷(𝐾𝔱
∗))𝔼ℙ𝑷×ℙ𝑸𝔱

[ℎ2(𝑸𝔱, 𝑷)|𝑷 >  𝐾𝔱
∗])                                                                                                          

 

The above result greatly simplifies for 𝜌 = 1: 

𝑊(�⃗⃗� )
∗
=∑(∬ 𝑄𝔱((𝐾𝔱

∗ − 𝑃)+ − (𝑃 − 𝐾𝔱
∗)+)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑃𝑑𝑄𝔱

Ω𝑸𝔱×Ω𝑷

)

𝔱∈𝒟

 

=∑(∫ [∫ 𝑄𝔱(𝐾𝔱
∗ − 𝑃)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱

Ω𝑸𝔱

]
Ω𝑷<𝐾𝔱

𝑑𝑃 −∫ [∫ 𝑄𝔱(𝑃 − 𝐾𝔱
∗)𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱

Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

𝑑𝑃)

𝔱∈𝒟

                                               

=∑(∫ 𝑄𝔱𝐾𝔱
∗𝑑𝑄𝔱

Ω𝑸𝔱

− (∫ [∫ 𝑄𝔱𝑃𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱
Ω𝑸𝔱

]
Ω𝑷<𝐾𝔱

∗
𝑑𝑃 +∫ [∫ 𝑄𝔱𝑃𝑔𝑷,𝑸𝔱(𝑃, 𝑄𝔱)𝑑𝑄𝔱

Ω𝑸𝔱

]
Ω𝑷>𝐾𝔱

∗
𝑑𝑃))

𝔱∈𝒟

                                        

=∑(𝐾𝔱
∗𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝔼ℙ𝑷×ℙ𝑸𝔱
[𝑷𝑸𝖙])

𝔱∈𝒟

                                                                                                                                                                 

=∑((𝑐𝔱
𝑉 + 𝐹𝔱𝔼ℙ𝑸𝔱

[𝑸𝔱]
−1)𝔼ℙ𝑸𝔱

[𝑸𝔱] − 𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ2(𝑸𝔱, 𝑷)])

𝔱∈𝒟

                                                                                                                     

=∑(𝑐𝔱
𝑉𝔼ℙ𝑸𝔱

[𝑸𝔱] + 𝐹𝔱 − 𝔼ℙ𝑷×ℙ𝑸𝔱
[ℎ2(𝑸𝒈, 𝑷)])

𝔱∈𝒟
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