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Abstract

With intermittent Internet connectivity condition, traditional IoT deployment cannot
provide prompt real-time data analysis and responses to on-site users because steady
connection to the cloud cannot be achieved. In-network computation allows application
functions to be computed within the network directly on raw sensor data, and publish
real-time responses or alerts to users in the field. ActiveNDN is proposed to extend
Named Data Networking (NDN) with in-network computation by embedding functions
in an additional entity called Function Library, which is connected to the NDN forwarder
in each NDN router. Function calls can be expressed as part of the Interest names
with proper name prefixes for routing, with the results of the computation returned as
NDN Data packets, creating an ActiveNDN network. Our main focus is on performing
robust distributed computation, such as analysing and filtering raw data in real-time, as
close as possible to sensors in an environment with intermittent Internet connectivity and
resource-constrained computable IoT nodes. To deploy ActiveNDN for IoT in wireless
networks, the simple wireless broadcast with the NDN forwarding mechanism is used to
perform recursive function calls and to aggregate results on the return paths. In wireless
networks, inaccuracies in the computation results can occur due to packet collisions where
many nodes may happen to send packets at the same time, causing packets to lost. In
this context, three mechanisms are proposed, which include: randomizing aggregation
window sizes to avoid packet collision, retransmission of Interests to overcome the effect of
packet loss and using Interest exclude field to reduce traffic congestion. In this thesis, the
design of ActiveNDN is illustrated with a small prototype network as a proof of concept.
Extensive simulation experiments were conducted to investigate the performance and
effectiveness of ActiveNDN in large-scale wireless IoT networks. The real-time processing
capability of ActiveNDN is also compared with centralized edge computing approaches.
Finally, the ActiveNDN is demonstrated over the wireless sensor network testbed with
real-world applications that provide sufficiently accurate hourly PM2.5 predictions using
linear regression model. It shows the ability to distribute the computational load across
many nodes, which makes ActiveNDN suitable for large-scale IoT deployments.
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Résumé

En raison de l’intermittence de la connectivité internet, le déploiement traditionnel des
technologies de l’internet des objets (IoT) n’est pas en capacité de fournir une analyse
rapide des données en temps réel aux utilisateurs présents sur le terrain lorsqu’une con-
nexion stable au cloud ne peut être réalisée.

Le calcul dit "In-network" permet aux fonctions applicatives d’être calculées au sein
du réseau directement sur les données brutes des capteurs, et de publier des réponses ou
des alertes en temps réel aux utilisateurs présents sur le terrain.

"ActiveNDN" est proposé pour étendre le réseau de données nommé (NDN) avec le
calcul in-network ; en intégrant des fonctions dans une entité supplémentaire appelée
bibliothèque de fonctions, qui est connectée au transporteur NDN dans chaque routeur
NDN.

Les appels de fonction peuvent être exprimés comme une partie des noms d’Interest
avec des préfixes de dénomination propres pour le routage. Les résultats des calculs sont
renvoyés comme des paquets de données NDN, créant ainsi un réseau ActiveNDN.

Nous nous focalisons principalement sur l’exécution de calculs décentralisés robustes,
tels que l’analyse et le filtrage de données brutes en temps réel, réalisés aussi près que
possible des capteurs, dans un environnement avec une connectivité Internet intermittente,
avec des nœuds IoT aux ressources limitées.

Pour déployer ActiveNDN pour l’IoT dans les réseaux sans fil, une simple diffusion sans
fil avec un mécanisme de transfert NDN est nécessaire. La diffusion avec le mécanisme
de transfert NDN est utilisée pour effectuer des appels de fonction récursifs et agréger les
résultats sur les circuits de retour.

Dans les réseaux sans fil, des inexactitudes au niveau des résultats de calcul peuvent se
produire en raison de collisions de paquets, lorsque de nombreux nœuds peuvent envoyer
des paquets en même temps, entraînant la perte de paquets. Dans ce contexte, trois
mécanismes sont proposés, à savoir : la randomisation de la taille des fenêtres d’agrégation
pour éviter la collision des paquets, la retransmission des requêtes pour pallier à l’effet de
la perte des paquets ainsi que l’utilisation du champ d’exclusion des requêtes pour réduire
la congestion du trafic. Dans cette thèse, la conception d’ActiveNDN est illustrée par un
petit réseau prototype comme preuve de concept.

Des expériences de simulation poussées ont été menées pour étudier performance et
l’efficacité d’ActiveNDN dans les réseaux IoT sans fil à grande échelle. Les capacités de
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traitement en temps réel d’ActiveNDN sont également comparées aux approches central-
isées de calcul périphérique.

Enfin, l’ActiveNDN est appliqué à un banc d’essai de capteurs sans fil connectés, une
application au monde réel fournissant des prédictions horaires de particules en suspen-
sion dans l’air (désignées comme PM2.5) suffisamment précises en utilisant un modèle
de régression linéaire. C’est une démonstration concrète de la capacité à distribuer la
charge de calcul sur de nombreux nœuds, rendant donc ActiveNDN adapté aux projets
de déploiements à grande échelle d’objets connectés.
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1 Introduction

Many environmental monitoring applications, especially an emergency warning system,
are used to provide real-time or advance warning to people in affected areas as well as to
the relevant authorities. Real-time data is collected via sensors in these areas. Network
connectivity is required for such IoT monitoring applications. However, in many places,
Internet connectivity is unavailable or often interrupted when a disaster strikes. This is
especially true for monitoring applications in remote areas, such as forests, where sensors
are used to monitor fires. In such an environment, even an Internet connection may not be
available. Therefore, the deployment of such systems is usually based on wireless sensor
networks (WSN).

The main challenges of the current architecture of IoT monitoring applications are
interrupted Internet connection, unstable deployment, and limited computing power and
power consumption of the devices. Typical IoT systems with Internet infrastructure
collect data and upload it to the cloud servers for processing. Later, some systems pre-
process the collected data on the local or Fog servers and then send the information to
the remote Cloud. This system architecture may not be suitable for emergency alerts or
environmental monitoring systems. First, using a centralized cloud-based system may be
ineffective in a situation where Internet connectivity is interrupted because the system
cannot collect data and thus cannot warn or inform affected individuals in real time.
Second, Fog computing uses edge devices to perform computation and storage, which
then communicate with the cloud. This moves computing capacity to the edge of the
network, closer to the IoT devices, which means lower latency for the service. Therefore,
these edge servers need to be placed in a remote area to perform computations locally.
However, installing the devices in remote communities may not be sustainable due to the
collective power costs, the required IT capabilities, and the responsibility of maintaining
the servers that rest on a few people in whose homes the servers are installed. Therefore, it
is impractical to deploy such an architecture. Third, without a more powerful edge server,
an IoT device with limited computing power cannot perform computationally intensive
tasks. Therefore, a lightweight distributed computing model is required.

To address these issues, [Heidemann et al., 2001] describes in-network processing that
enables data aggregation at intermediate nodes in the network to provide real-time re-
sponses. The model is later referred to as in-network computation in [Giridhar & Kumar,
2006], where nodes in the network not only forward the collected data but also perform
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2 CHAPTER 1. INTRODUCTION

general computations.

Such a network becomes a network of computing nodes where data can be processed
closer to the source and users can receive timely, real-time responses and take appropriate
action on the network itself. In addition, network traffic can be reduced because raw data
is processed as it is routed within the network, and only the aggregated informative results
need to be transmitted as needed. In-network data processing has become more important
with the advent of time-critical processing applications. One of these is the Extended
Reality (XR), which is a combination of Virtual Reality (VR) and Augmented Reality
(AR). Real-time processing of localized information from multiple sensors and video feeds
from cameras can be achieved using the in-network data processing [Montpetit, 2019].

Currently, embedding computation on nodes in a network using the traditional host-
centric Internet protocol is performed as web services or microservices. However, a user’s
request for a service must be dynamically resolved to the IP address of the node execut-
ing the requested services. While the existing DNS (Domain Name System) can resolve
domain names to host addresses, but the complexity in mapping service locations and pro-
tocol layers makes it infeasible and unsuitable for time-critical applications. In addition,
the architecture can neither handle network disruptions nor mobility of the nodes.

On the contrary to the host-centric protocol, Named Data Networking (NDN) was pro-
posed by [Zhang et al., 2014] as an implementation of the Information-Centric Networking
(ICN) paradigm to network computing devices, ranging from IoT sensors, [Amadeo et al.,
2014a], small single-board computer devices, laptops, PDAs, to cloud servers, using names.
Instead of using an IP address to identify a host, NDN uses hierarchical naming to address
a piece of content so that it can be retrieved without a concern on an endpoint location or
the network topology. This makes NDN an ideal candidate for in-network computation.
NDN’s hierarchical naming scheme eliminates the complexity and overhead of mapping
content to a host’s IP address that traditional in-network computation schemes entailed.
Thus, NDN satisfies the characteristics and requirements of IoT applications [Shang et al.,
2017] by providing communication, in-network caching, mobility functions, and security.

In this work, we propose to augment NDN with sufficient computational capabilities
on IoT sensor nodes to perform the in-network computations. The network is assumed
to be composed of sensor nodes that have sufficient power supply, adequate local area
network, and limited computational and storage capacity, while the internet connectivity
may be intermittent or may not be available at all. When deploying IoT-based environ-
mental monitoring applications for rural communities, a fair distribution of the local data
processing computing load must be achieved. In such an environment, each IoT node with
a computing unit can perform the necessary computations, such as some basic statistical
or mathematical functions. Then the units can be orchestrated as building blocks to form
a complex application.
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1.1 Motivation

As natural disasters have hit the world with increasing frequency recently, the need for
real-time environmental monitoring and emergency warning systems is increasing. These
real-time IoT applications enable people to prepare and respond appropriately to man-
age an emergency situation more effectively; thus, they help mitigate the impact of the
incidents. However, there are challenges to implementing and deploying such a system,
as in many cases the system must be deployed in remote areas where unstable Internet
connectivity, maintainability of equipment, and practicality of deployment are issues.

In most remote areas, Internet connectivity is unavailable or may be disrupted due to
natural disasters. Using a cloud-based IoT system may be ineffective because the cloud
server may not be connected to the IoT sensors, so it cannot send an alarm or immediately
notify people in the area of incidents that are occurring. Therefore, the system must be
able to process data locally without relying on an Internet connection, and it must allow
people in the field to receive the alert information in real time.

The deployment of the system requires the cooperation of local residents. Residents
must be made aware of the benefits of the system to the entire community. However, the
cost of maintaining the equipment is a problem. This is a major issue for residents in
the deployment area, especially in rural communities where household income is minimal.
Setting up a data center or server is impractical because it can be costly to maintain, and
therefore may not be supported by residents. Ideally, the deployment of system devices
in a community needs to be equitably distributed among residents. Then the deployment
will be sustainable. To provide a local IoT computing service with minimal maintenance
responsibility that is distributed equitably among community residents, homogeneous
nodes of low-cost, sensor-equipped computing units can be deployed in each home in
the target community. This allows for a distributed computing mechanism among these
nodes, and maintenance costs are shared equitably among the residents of the deployment
area.

Finally, distributed data processing among low-cost computing units is unlikely to
enable high-precision computation or idempotent functions. However, the data processing
tasks of a real-time environmental monitoring or emergency warning system do not require
intensive computational loads or stateful computations. Therefore, the design of the
distributed computing platform for the monitoring system can be sufficiently lightweight
for the low-cost computing units.

1.2 Problem Statement

In remote rural areas, the IoT real-time incident warning system in the cloud or centralized
architecture is not suitable to perform the calculations for sensor data due to insufficient
Internet connectivity and maintenance cost in the community.
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Instead, the calculations can be performed in a decentralized manner by the locally
connected sensor nodes. There is a need for in-network computing technology that enables
sensor nodes to perform real-time distributed processing to analyse sensor measurements
within the network. However, due to the complexity of the mapping process between data
and host, in-network computation using the conventional host-centric Internet protocol
is not efficient. Named data networking (NDN) can be extended with the proposed
mechanisms to provide name-based routing for forwarding a function call request to the
desired function program on the closest node within a wireless sensor network.

The existing distributed computing platforms in Information-Centric Networking (ICN),
such as Named-Function Networking (NFN) [Tschudin & Sifalakis, 2014], RICE [Król
et al., 2018], and Compute First Networking (CFN) [Król et al., 2019], are designed for
generic computing with deterministic computation model. However, they are not suitable
for IoT network computation. NFN includes an expression evaluator in the forwarder
mechanism to embed a programming expression in the Interest name. RICE provides
naming and mechanisms to allow large program input parameters that may not be able
to include in the Interest name, e.g., image or video files, and to support long-running
computations. CFN provides a distributed scheduler to offload computations to the in-
active node by synchronizing node resources and scheduling information. These features
come with additional computation and network overhead tradeoffs.

In the IoT-based alarm systems, where only primitive sensor data is collected and
processed with simple numerical calculations. The complex functions mentioned above,
such as name expression evaluation, large function input processing, and job schedulers,
are not required for the systems and are too cumbersome to operate on these resource-
constrained IoT devices.

In summary, this thesis addresses a design of an IoT network that processes local data
and provides prompt, real-time responses to requests from users in the field while relying
on the limited computing power of the network.

1.3 Contributions

In this study, ActiveNDN is proposed to enable real-time distributed computation on IoT
devices with a simple NDN forwarding mechanism extended with an in-network compu-
tation mechanism to share computations among IoT nodes. ActiveNDN is designed to
provide computation programs as functions with minimal changes to the native NDN.
Each function can be called from the network to execute it and return the result via
primitive NDN messages. A running function can call another function locally or re-
motely on other nodes. The subsequent remote function call allows the computation to
be distributed across nodes, spreading the computation across the network. With this
lightweight design makes ActiveNDN backward compatible with native NDN while pro-
viding computation capabilities.
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In this work, several key challenges have been addressed to enable computation in IoT
WSN. Here, we focus on three of the above challenges: 1) intermittent Internet connec-
tivity, 2) the fair distribution of computational load. 3) the limited computational power
of IoT devices. Based on these constraints and requirements, ActiveNDN is proposed to
provide a locally distributed computing platform with in-network computation over the
NDN protocol for the network of IoT devices.

ActiveNDN is designed to use basic NDN protocol primitives to forward function calls
and results and distribute computation tasks in an IoT network. To enable communi-
cation, the Function Library is introduced to store and execute function programs in
ActiveNDN nodes. To deal with wireless network issues, three mechanisms are proposed,
including using a random aggregation window to avoid packet collisions, using retrans-
mission to recover from packet loss, and using Exclude field to reduce network congestion.
As opposed to a centralized system, ActiveNDN is proposed as an in-network computing
framework for the IoT in WSN to process data within the network itself, reduce network
traffic, and decrease response latency.

ActiveNDN has been implemented and demonstrated to enable in-network computing
in physical IoT networks. It is demonstrated with real-world applications to perform
real-time data analysis for air quality monitoring in a real system deployment in a rural
village.

1.4 Thesis Outline
The remaining chapters of this thesis are organized as follows: Chapter 2 provides a
comprehensive literature review of concepts and technologies essential to ActiveNDN, as
well as a detailed review of related work.

Then, Chapter 3 explains the design, architecture, and mechanisms of ActiveNDN with
the Function Library component to provide computation capability on NDN network. As
an example, a simple function program called FindMax is used to find the maximum
sensor value in the entire network.

Chapter 4 addresses the issues affecting computational accuracy in wireless sensor
networks and describes the proposed ActiveNDN mechanisms for wireless networks. Then,
the proof of concept is illustrated and the experiment and analysis results are presented.

In Chapter 5, the performance of the in-network computation model of ActiveNDN
and the centralized computation model are investigated and compared with simulations
and testbed experiments. A complex ActiveNDN calculation is also demonstrated with a
PM2.5 prediction application using linear regression analysis. The prediction accuracy is
validated in a real wireless sensor network.

Finally, a summary of the main conclusions of this thesis is provided in Chapter 6,
which lists the most relevant parts of this thesis that serve as motivation for future work
in this research area.



6 CHAPTER 1. INTRODUCTION



2 Literature Review

Our main goal in this thesis is to develop a computing platform for the Internet of Things
that allows local users to process sensor data in real time without relying solely on Internet
connectivity. In-network computation is a distributed computing technique that allows
the computation to be performed in the network. Instead of only forwards the data, the
network nodes can also be programmed to process the data before forwarding and thus
the network traffic and network latency can be reduced. However, implementing this
technique on the traditional internet protocol is not practical as the communication is
still relying on host addresses. A dynamic naming resolution is needed to tell the address
of the nearest node where the related service is available; however, it will create more
complexity and overhead to the system.

On the other hand, an Information-centric networking (ICN) is introduced to address
the naming issue in the conventional protocol. The network does not use an address of the
host where the resource is provided, but it uses a naming to identify the resource itself.
The ICN is independent of the endpoint location or network topology and thus make it a
potential candidate networking protocol for the in-network computation.

The goal of this chapter is to provide a comprehensive review of Internet of things ar-
chitectures, In-network computation and Information-Centric Networking. The method-
ology we adopt in this chapter is to first discuss the architecture in Internet of Things in
section 2.1. Consequently, In-network computation is introduced and the comprehensive
details of Information-Centric Networking is provided in section 2.2 and 2.3, respectively.
Then, the research works on distributed computation in ICN is presented and discussed in
section 2.4. Finally, all related works are synthesized, and the thesis approach is pointed
out in section 2.5.

2.1 Internet of Things

Internet of Things (IoT) is a computing paradigm where IoT devices, i.e. physical objects
embedded with sensors, actuators and processing capability, are connected to the Internet,
allowing them to exchange information and coordinate among each others to provide
services to the user. A typical IoT system can be consisted of three parts: devices,
network and processing.

7
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IoT devices are not just sensors but are growing into any objects in our daily life
embedded with computing unit and connected to the Internet, covering from phones,
wearables, office equipments to industrial machines. In 2017, Ericsson predicted that
globally, around 29 billion of these devices will be connected to the Internet by 2022
[Collela, 2017]. The data from these massive number of devices is need to be transferred,
stored, processed, and analysed efficiently.

To transfer data from these IoT devices to the place where the data can be collected
and processed, different IoT devices are needed to be connected to the Internet. For
enabling this connectivity, a network communication protocol, either wired or wireless,
is used. It is obvious that wireless-based protocols are more suitable for IoT as they
give mobility and flexibility to the IoT devices than wired connection. In general, for
a communication protocol to operate in IoT environments, it is usually required to be
lightweight despite to the device’s performance, to use low-energy as IoT devices may have
energy limitation, and to be robust for lossy and noisy network environment. Different
types of IoT system have some specific requirements that the protocols need to be followed,
or some requirements can be ignored. Common communication protocols used in IoT are
such as Wi-Fi, Bluetooth, IEEE 802.15.4, Z-Wave, LTE-Advanced, LoRa and cellular
networks.

On the higher level, the application protocol creates an abstraction layer to allow IoT
components connected through different communication networks to communicate to each
other. While the popular internet application protocol such as HTTP can be used for
IoT, but it is not lightweight, and so not suitable for the IoT devices. There are many
protocols that have been proposed for IoT, those include CoAP, MQTT, AMQP and DDS.
Different protocols can provide different features and have requirements. However, they
are all based on the conventional internet protocol.

In emergency warning or environmental monitoring IoT systems, such as [Arbib et al.,
2019] and [Poslad et al., 2015], IoT sensors are deployed in an area to collect data and
detect a hazardous situation. As the on-site users should be promptly notified with the
important information in an emergency, the ability to provide real-time information is an
essential requirement for this type of system. In forest fire monitoring scenario [Dubey
et al., 2019], IoT sensors can be deployed in the forest to collect data to the cloud server.
Then the data can be analysed using a complex computation model to detect forest fire,
and notification can be sent to people in the area. However, in such remote area, the
internet connectivity can be frequently disrupted or unavailable. The sensors or user’s
devices in the area may not be able to communicate with the internet server. Thus,
making the system unable to timely inform the users when the incident is detected.

In cloud-based IoT system, collected information from sensor nodes is sent to store
and process in the central cloud servers. This allows a number of IoT nodes and its data
to be managed from a single location with a well-established security parameters. The
system can provide powerful computation service as all the sensor data is available at
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one place. However, it may not be able to handle the massive growth in the number of
IoT devices, and more importantly, the processing service will be unavailable when the
connection to Internet is disrupted.

Opposed to the centralized cloud-based, the computation service can be pushed closer
to end-devices location to reduce the network traffic and latency. Edge Computing [Satya-
narayanan, 2017] is a broad term to describe a distributed computing architecture in which
computation is served closer to the network’s edge, i.e. closer to the user’s or IoT device’s
location. The computation task is performed at edge infrastructures, which are typically
implemented by deploying Edge servers on the network edge, resulting in lower latency
and network traffic where the server is deployed. However, using Edge computing does
not mean that it is required to work without the core cloud. In the most cases, the edge
server is used for supporting the cloud infrastructure by leveraging the locality of com-
putation to reduce latency and increase overall system capacity. Fog computing [Bonomi
et al., 2012] [Luan et al., 2016] is a type of computing in which the edge nodes become
an extension of the cloud server to support the scalability of IoT devices. Instead of only
performing computation in the cloud, the smaller computation nodes placed at the net-
work edge, such as an IoT gateway, can pre-process the data before sending the result to
the cloud. For example, ThingNet [Qiao et al., 2018] which is a demonstration platform
that uses application-level function chaining to distribute IoT data processing to the Edge
nodes.

Mist computing [Preden et al., 2015] further pushes the computation to the extreme
edge of the network, i.e. on to the actual sensor devices. The computation can be
performed locally by utilizing the built-in lightweight processing unit or microcontroller
on the device itself. But since the device’s processing power is limited, implementing the
system for it can be challenging.

As the sensor nodes are computation capable, it can pre-process its own sensor’s
measurement before deliver the result to a central server or a consumer. Furthermore, the
devices can communicate and perform simple aggregations locally in the device’s local
network without relying on to the external server. This technique can be referring to
In-network computation, in which the computation is distributed among devices in the
network.

2.2 In-network Computation

The in-network computation is a technique to perform distributed computing in a network,
aiming at reducing the cost and latency of network communication. At the beginning, the
ideas of enabling the network routers or network switches to be programmable to perform
customized computation on the packet was firstly defined as Active network [Tennenhouse
et al., 1997]. Later, a similar paradigm was widely applied in Wireless Sensor Networks
(WSN), the networks of resource-constrained sensor devices. The attempts to retrieve
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information from WSN intelligently was earlier appeared in [Bonnet et al., 2000] and
[Govindan et al., 2002]. In these works, sensor network are treated as a distributed
database of sensor data, where a user can send through the gateway an SQL-like command
to filter and aggregate the data collected from the sensors. The processes are performed in
the network while the result data is forwarding back to the user. A study from [Heidemann
et al., 2001] described in-network processing for WSN, that allows data aggregation to
be performed at intermediate nodes of the network and forwarding the result data back
to the gateway. TinyDB [Madden et al., 2005] was one of the very first platform which
demonstrated the in-network processing to query sensor data from a WSN as a distributed
database. Later, StonesDB [Diao et al., 2007] utilized the storage in WSN devices with
data management to provide historical data querying in the WSN distributed database.

The generic computation model was then added and referred to as in-network compu-
tation in [Giridhar & Kumar, 2006] where the network not only forwards data but also
able to perform generic computations. The network becomes a network of computing
nodes where data can be processed nearer to the source and real-time responses or ac-
tions can be taken timely and appropriately within the network itself. Moreover, the data
traffic is reduced as raw data is processed, and only meaningful results are transmitted
when needed.

Recently, in-network computation technique is also applied to the next-generation ap-
plication where localized information processing is time-critical. For example, in Extended
Reality(XR) which is a combination of virtual reality and augmented reality, the environ-
ment information and image processing can be performed in-network which significantly
reduces the latency [Montpetit, 2019]. Or, in industrial applications such as [Kunze et al.,
2021] where the computation of coordinate transformations for assembly robots can be
offloaded to the network devices.

Because the communication inside a WSN is usually self-contained with a fairly low-
level communication protocol, the in-network computation can be implemented in a par-
ticular network. However, being self-contained, an IoT gateway is required to allow the
sensors to send data to the Internet. Though, it is possible to embed the distributed
computation on IoT/WSN devices while using well-known IoT application protocol, it is
not efficient. This is due to the complexity in the mapping process, where a user’s request
needs to be dynamically resolved to an address of a host in which the related service is
available. While the existing DNS can resolve the domain-name to host address, it can
neither handle network disruptions nor address changes due to mobility.

2.3 Information-Centric Networking

During the past decade, the majority of internet usage has been shifting from end-to-end
communication into accessing information and service. As the conventional IP proto-
col was designed for the end-to-end communication, the Information-Centric Networking
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(ICN) is introduced as a future network paradigm to cope with new emerging usage re-
quirements. Opposing to traditional host-centric networking where the endpoint address
is used in communication such as Internet Protocol, ICN moves the current networking
perspective from determining the location where a content is kept, to describing what
is the content itself. The network is designed around the name of the content to al-
low the consumer, e.g. user or application, to retrieve the information efficiently from
the network. During the past decades, there are several research projects and practical
implementations on ICN which are reviewed as following:

2.3.1 DONA

DONA (Data-Oriented Network Architecture) [Koponen et al., 2007] was the first com-
pleted ICN, designed as a clean-slate naming and name resolution architecture to adapt
to the new requirements. The design uses flat naming, which is consisted of a hash of the
content producer’s public key and a label to identify a content. A hierarchical network of
name resolution nodes called Resolution Handler (RH) is introduced. The RH allows a
producer to register a name and allows a consumer to resolve the name into the producer’s
address.

2.3.2 PURSUIT

PURSUIT (Publish-Subscribe Internet Technologies) [Fotiou et al., 2012] was a project
attempted to research and develop an ICN architecture based on a publish-subscribe
protocol called Publish-Subscribe Internet Routing Paradigm (PSIRP). PSIRP uses a
rendezvous network to handle the content publishing, name resolution, and provide a
forwarding identifier for content transfer in a path-label forwarding network.

2.3.3 Networking of Information

Networking of Information (NetInf) [Dannewitz et al., 2013] uses a flat naming scheme
and a Name Resolution Service (NRS) for name registration and resolution. A hash of
the data or a public key of the content producer is used as a name of the content, allowing
the integrity or the ownership of the content to be verified using the name. The producer
can register the content names to the NRS. Then, a consumer can send a query to the
NRS to get a routing hint for the producer. The routing hint allows the consumer to
directly communicate with the producer on the lower-layer network for requesting and
transferring the content.

DONA, PURSUIT and NetInf proposed the name resolution layer where a named
request is resolved into traditional forwarding information such as a path or an endpoint
address, while the content transfer between producer to consumer is separately left to
the lower-layer protocol’s forwarding mechanism. This separation can increase system
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overhead to communicate between layers, so the designs are not suitable for the networks
of limited performance IoT devices. On the other hand, another clean-slate ICN approach,
called CCN, has merged the name resolution and packet forwarding into one layer.

2.3.4 Content-Centric Networking

Content-Centric Networking (CCN) [Jacobson et al., 2009] is an ICN protocol stack with
name-based forwarding and human-friendly hierarchical naming. Two types of packets
were introduced: Interest and Data packets, of which the Interest is a request packet and
the Data is a response packet containing the content that can satisfy a matching Interest.
Both packet types contain a hierarchical name, which allow them to be forwarded and
matched using the longest prefix matching. The Interest forwarding is decided by infor-
mation in the Forwarding Information Base(FIB) and the last-hop direction is recorded
in the Pending Interest Table(PIT) in each forwarding node. When the Interest meets a
matching Data, the Data will be forwarded back in the reverse path of the Interest using
the information recorded in the PIT and also being cached in the Content Store(CS) in
each node in the path to satisfy the future Interests. The CCN architecture has been
derived into many implementations using the similar mechanism. The major CCN imple-
mentations are such as CCNx, CCN-lite and NDN (Named Data Networking).

CCNx [Mosko et al., 2019] is a reference implementation from the original CCN speci-
fication.

CCN-lite [CCN-lite, ] is a lightweight implementation of CCN which can be run on a
microcontroller based on RIOT operating system.

NDN [Zhang et al., 2014] extends the CCN specification with extensible packets for-
mat and has modular design implementation, allowing functionality to be added without
breaking the architecture.

These three projects share the same core mechanism which is based on CCN; however,
they are architecturally designed with different goals. The CCNx is implemented as
protocol reference, but the development has not been continued for many years at the
time of writing of this thesis. The CCN-lite is specifically designed to be lightweight
to fit into a microcontroller. While it also supports NDN packet format, only the core
CCN/NDN functionalities are implemented. On the other hand, NDN’s platform is still
evolving and has customizable design. The platform also provides programming libraries
and tools for development and testing, such as PyNDN [NDN, ] for development in Python
language and ndnSIM [Mastorakis et al., 2017] simulator, which is based on the NS3 [NS3,
a] simulator. With these advantages, the extensible NDN is chosen as the base platform
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Figure 2.1 – NDN node architecture [NDN, ]

for developing a new in-network computation architecture for IoT and WSN. The full
detail of NDN is explained as follows:

2.3.5 Named Data Networking

Named Data Networking (NDN) [Zhang et al., 2014] is one of the ICN implementations
which uses hierarchical naming and named-based packet forwarding, extended from the
CCN protocol. A typical NDN node is shown in the Figure. 2.1 [NDN, ]. It contains
internal data tables for packets forwarding decision and an abstract communication layer
consisted of multiple Faces (i.e. interface), each for communicating with another compo-
nent such as a wireless link, an internet connection or an application.

A consumer can make a request to the network by sending an Interest packet con-
taining the name of the content through a forwarding Face of an NDN node. The Faces
are abstractions of communication channels that NDN forwarder exchanges NDN packets
with other components, nodes, or networks. NDN routes the Interest through nodes in
the network until a name-matched data object is found either in a cache or directly from
the producer. The matched data object will be forwarded back to the consumer as a Data
packet, while on the return path, NDN caches the Data in the intermediate nodes for
possible Interest resolutions in the future.

NDN Packet Forwarding

The Figure.2.2 [Zhang et al., 2014] shows the forwarding decision of NDN packets. When
an NDN node receives an Interest packet, the node’s NDN forwarder will search in the
Content Store (CS) for a cached Data packet. If the Interest name matches a cached
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Figure 2.2 – NDN packets forwarding [Zhang et al., 2014]

Data packet name, the forwarder can immediately reply with the cached Data by sending
the Data back to the same Face through which the Interest came in, without further
processing. In case there is no matching object in the CS, the NDN forwarder will continue
to forward the Interest packet by, first, it checks in the Pending Interest Table (PIT) for
an identical Interest packet; if found, it only records the Face which the packet came
from and then the redundant Interest can be discarded from further forwarding. If there
is no matching, then the NDN forwarder will record the Interest in its PIT together
with its incoming Face and, then, it will choose the nexthop Faces from the Forwarding
Information Base (FIB). The FIB is a table of records containing a hierarchical prefix
together with its corresponding nexthop Face, where the FIB entry with the longest prefix
match to the Interest will be chosen by the NDN forwarder. Each entry may have multiple
Faces for the NDN forwarder to select from; whether a Face is selected or not is depending
on the Forwarding Strategy. The Interest will be forwarded to the selected nexthop Face.
Such forwarding continues through each NDN node, until the Interest could locate the
requested object.

After locating the requested object in an NDN node, the node will send the Data back
to the consumer via the incoming Face of the particular Interest. Each node who received
the Data will look up for a PIT entry belonging to the matching Interest and forward
the Data via the corresponding Face, and thus the Data is forwarded in a reversed path
of the Interest back to the consumer. Additionally, on the return path, the forwarder in
each NDN node also caches the Data in its CS. This process continues until the consumer
is reached.

Apart from the name prefix, the NDN’s Interest packet can contain optional fields,
allowing different forwarding configuration per packet. Some important fields are the
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following: The Lifetime field defines a time duration of how long a PIT record for the
Interest will be valid. The Exclude field contains a list of name suffix of the Data which
is excluded from matching to the Interest. The CanBePrefix field allows choosing which
Data matching algorithm to be performed. The default value is true in which prefix
matching is selected, or if it is set to false, the exact matching is selected. TheMustBeFresh
field holds a boolean value which used when searching for Data in CS, If true, the Interest
will only match the Data that is in the fresh state.

The Data packet also have its optional fields, such as: FreshnessPeriod which specifies
how long the Data will be in the fresh state when it is cached in the CS.

The Interest forwarding uses the longest prefix matching in the FIB table to decide the
nexthop Face, the matching can results in multiple Faces. The Forwarding Strategy takes
a decision on how an Interest will be forwarded among the Faces. NDN provides built-
in forwarding strategies such as Best-route, Multicast, Access Router, ASF (Adaptive
Smoothed RTT-based Forwarding), NCC (Content-Centric Networking, CCN in reverse)
and Client Control. The Best-route strategy forwards an Interest to only one Face that
has the lowest cost from the longest prefix match, except the incoming Face which the
Interest is received. Particularly, this strategy is the default configuration of NDN stack.
The Multicast strategy forwards the Interest to all Faces given from the longest prefix
matching, except the incoming Face. The Access Router strategy improves Multicast
strategies to forward more effectively. The first Interest is forwarded to every Face given
from the longest prefix matching like in Multicast strategy. Then, it remembers the
Face that the first Data came in and will forward the subsequent Interest only to that
Face. Adaptive Smoothed RTT-based Forwarding (ASF) strategy selects a nexthop Face
that has the smallest SRTT (Smoothed Round-Trip Time), i.e. the round-trip time in
which the measurement’s anomaly is removed. NCC strategy is an implementation of the
default strategy of CCNx. This strategy is only provided as a backward compatibility
to the original CCN. The Client Control strategy is a strategy that allows the consumer
application to choose the forwarding nexthop of its Interest packet.

The NDN forwarding mechanism will work in the assumption that the Faces and the
prefix in FIB are configured in each node. The configuration can be manually for static
network. For dynamic network, NDN has routing protocol designed specially for it.

Named Data Link State Routing Protocol (NLSR) [Hoque et al., 2013] is a proactive
link-state routing protocol specially designed for NDN. It uses synchronization protocol
to propagate Link State Advertisement (LSA), calculates the shortest forwarding path of
each prefix and maintain FIB table. However, the NLSR is designed for an infrastructure
or a wired network where each Face is known to be connected to a specific neighbour
node. In ad-hoc wireless networks, the neighbour information is unavailable, thus NLSR
cannot be used in wireless network.
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NDN Forwarding in Wireless Networks

Unlike wired networks where the direction of forwarding can be determined because each
NDN Face is typically bounded to a network interface which dedicated to a point-to-
point connection to a neighbour node, the wireless networks have different properties: an
interface is multi-access, the communication medium is shared with multiple nodes, and
the network has dynamic topology. Firstly, a typical wireless node setup has one wireless
interface which is multi-access, providing broadcast transmission to multiple neighbours.
Without a discovery protocol, the information of the nearby neighbour nodes are usually
unknown, so the next hop neighbours could not be determined by a wireless NDN Face.
The second concern is that the wireless networks use shared-medium communication,
where there is only one node can take control over the medium channel to transmit
data. Having multiple nodes transmitting simultaneously is subjected to cause significant
interference, and collisions lead to packet loss. Some wireless protocols, such as Wi-
Fi, provide a collision avoidance mechanism, but they are not efficient for broadcast
traffic [Torrent-Moreno et al., 2006]. According to the native NDN design, reliable data
transfer is not provided in the forwarding layer, but it is forced to be handled in application
layer. Furthermore, with the mobility, the wireless network topology can be dynamically
changing. A connectivity between nodes can be created or loss all the time. From these
challenges, the primitive NDN forwarding will not be suitable to be used in wireless
network.

To handle NDN packet forwarding in wireless network, many works have been proposed
different forwarding techniques. According to a survey paper [Amadeo et al., 2015],
the techniques can be categorized into three types: Blind forwarding, Next-hop aware
forwarding and Provider aware forwarding. The review of NDN forwarding techniques is
summarized as follows:

Blind forwarding is a strategy, that simply floods the Interest to all nodes in the
network to find the desired Data. Every node relays the Interest until the matching
Data is found, then the Data will be forwarded back on the reverse path. This type
of forwarding does not need additional control traffic to maintain the FIB table. The
loop prevention is already provided by the NDN forwarding using PIT table, and thus a
node will drop the packet that is already seen. However, the flooding generates a lot of
traffic and packet collisions, which reduces the successful packet delivery rate. A number
of techniques are invented to avoid the packet collisions such as transmission deferring
which randomly defer a transmission, packet suppression which drop the packet if the
same packet is overheard by a number of time and packet retransmissions [Wang et al.,
2012]. These techniques are also practised in the other type of forwarding.

Next-hop aware forwarding is a type of broadcast forwarding scheme in which each
forwarder have to decide whether an Interest packet will be forwarded or not, based on
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some supplementary information, such as location, distance, previous forwarders, etc., to
reduce the flooding traffic. The forwarding continues until the matching Data is found,
then the Data will be forwarded back on the reverse path.

In BlooGO [Angius et al., 2012], the sender attaches the Interest packet with a bloom
filter containing the IDs of its neighbours. Any receiver will relay the packet only when
some of its neighbour are not included in the bloom filter. However, to maintain the list
of neighbour, each node is required to broadcast the beacon periodically to advertise its
node identifier to its neighbours.

Direction-Selective Dissemination [Lu et al., 2013] uses GPS location to divide the
neighbours into geographical quadrants, and the farthest neighbour from each quadrant
is selected as a next forwarder. In this scheme, a sender attaches the GPS location in
the Interest packet which the node will broadcast to the neighbours, then each receiver
reply with an acknowledgment packet with its GPS location back to the sender. The
sender selects the farthest neighbour from each quadrant as relay node and broadcast
the selection result to the neighbours, then the selected relay can broadcast the Interest
attached with its GPS location, and the process is repeated.

In Neighbourhood-Aware Interest Forwarding(NAIF) [Yu et al., 2013], an Interest
receiver node decides to forward or drop the packet based on probability calculated from
the number of overhearing the same Data packets which are broadcasted by its neighbours.
The more packet the node overhears, the lower the rate of forwarding, thus suppressing
unnecessary Interest flooding traffic.

V-NDN [Grassi et al., 2014] uses a deferring timer to delay the forwarding based on
the distance between the previous sender and the node. The closer to the sender, the
longer the delay, thus the farthest node will relay the packet first and so suppressing the
other waiting forwarder that overhears the packet. Each forwarder puts its GPS location
in the Interest packet to allow the other node to calculate distance.

Provider-aware forwarding is a type of forwarding scheme that incorporates self-
learning or routing protocol to maintain nexthop information, so the path to a data
provider is determined for each prefix.

Listen-First, Broadcast Later (LFBL) [Meisel et al., 2010] uses the distance-based self-
learning with next-hop aware forwarding technique to decide how to forward or drop the
Interest, allowing the Interest to forward to only in the direction to provider. Instead of
FIB, each node maintains an additional distance table using the hop counts information
piggybacked in the Interest and Data packets to track to the shortest path to consumer
and producer. Then, the distance table can be used in forwarding decision whenever the
information is available.

E-CHANET [Amadeo et al., 2013b] takes the distance-based learning approach, like
in LFBL, and extends it to handle dynamic mobility and to control transmission rate. By
adding provider node ID, hop count and node’s potential transmission rate to the Interest
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and Data packets before broadcasting, the receiver can maintain its own forwarding table
and decides the whether to forward the packet or not and defer each transmission based
on the collected information.

dd-NDN [Amadeo et al., 2013a] uses directed-diffusion technique to establish a path
from the consumer to the data source. Staring with a consumer node floods Interest
packet to the network until a matching Data is found. Then, while the Data is being
forwarded back to the consumer, the intermediate node maintains a next hop table which
collecting the node where the Data came from. From information in the table, a path
from a consumer to a data source is established for the future Interest.

Reactive Optimistic Name-based Routing(RONR) [Baccelli et al., 2014] simply floods
the Interest when there is no matching FIB entry and when the first Data is received.
Then, a FIB entry will be created to the previous Data sender, so the subsequent Interest
can match the FIB entry and will be sent to the nexthop by unicast.

Navigo [Grassi et al., 2015] further extends V-NDN with geographical forwarding on
vehicular network, using the Geographic Face (GeoFace), i.e. Face that represents a
geographical area, and road mapping information. Starting with no matching record in
FIB, a consumer’s Interest is broadcasted and relayed to all direction by the farthest
neighbour, as in V-NDN. When an Interest reaches the matching provider, the provider
attaches its geographical area information to the Data packet, which will be forwarded
back to the consumer. Along the way back, each intermediate vehicle node learns the
provider’s geographical area by mapping it with a GeoFace, and then the Data’s prefix
with the GeoFace is recorded to the FIB table. After the Data is delivered to the consumer,
a subsequent Interest is issued. The prefix of the Interest will match a FIB record, pointed
to a GeoFace which is mapped to the provider’s geographical area. The geographical
shortest path to the provider’s area is calculated using road map information. Then, the
Interest can be forwarded along the vehicles in the path, until the provider is reached.

In Dual-mode Interest forwarding (DMIF) [Gao et al., 2016], two forwarding modes:
flooding mode and directive mode, are chosen by the forwarding node whether the FIB
lookup result is miss or hit respectively. The FIB is also updated with information from
the returning Data, the nexthop is chosen by the lowest cost calculated from hop count
and available energy of the next hop node. A deferring timer and overhearing is also used
for suppressing broadcast packet transmission, resulting in lower network traffic.

HoPP(HoP-and-Pull) [Gündoğan et al., 2018] is a publish-subscribe forwarding scheme
for IoT network. HoPP uses Content Proxy nodes as rendezvous point to handle pro-
ducer’s prefix registration and packets relaying between consumer and producer. However,
by relying on the proxy nodes, the traffic will not go through the shortest path between
consumer and producer, but the path will be depended on the placement location of the
proxy nodes.

[Liang et al., 2020] proposes self-learning forwarding for wireless networks by adding
the announcing prefix in Data packet to populate FIB entry, and adding the unicast Face
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creation for better collision handling in MAC layer in wireless network. When an Interest
could not match any FIB record, a consumer will send the Interest with a discovery tag
to the network which the Interest will be broadcast and flooded to all nodes. A producer
who has the matching Data will return the Data attached with a prefix announcement
field. The intermediate nodes that forwards the Data back to the consumer will create an
unicast Face which is mapped to the address of the previous hop and add the announced
prefix in its FIB with a record points to the new Face, building a path to the producer
for the next Interest with the same prefix.

Though unicast may have better collision handling, however on sensor data gathering
use case, the sensor data is usually small and does not need very high throughput. To
collect data from multiple nodes, a broadcast Interest forwarding will work more efficient
as a node needs to be transmitted only once, but using unicast, the network traffic will be
significantly increased since one unicast Interest is sent and forwarded to each individual
node.

Learning-based Adaptive Forwarding Strategy(LAFS) [Djama et al., 2021] uses the
self-learning and adaptive forwarding mechanism for constrained wireless network. LAFS
has two mode Interest forwarding: deferred forwarding when FIB lookup miss and learned-
based forwarding when FIB lookup hit. A next-hop field is added to the Interest packet
to contain the node ID. By checking the next-hop with its ID, the receiver can process
the Interest if the ID is matched. When forwarding an Interest, if a FIB lookup miss,
the same deferring timer method is used in which the transmission of Interest is deferred
before transmission to all members or will be suppressed if the node receive the same
Interest during the deferring time. If the next-hop is found in the FIB, the ID of the
next-hop node is put in the Interest and transmit immediately. The Data packet is also
attached with the hop count and the sender fields. Each node in the Data forwarding
path update the matching FIB record’s nexthop if the new hop count ID lower and then
increase the hop count and update the sender to itself before forward it.

NOLSR [Guo et al., 2021] is a proactive link-state routing protocol for NDN mobile
ad-hoc network which maintains the forwarding prefixes in FIB table, so the normal
NDN Interest packet can be successfully forwarded to the producer. The NOLSR utilizes
MPR technique from OLSR [Jacquet et al., 2001], which limit the flooding relay nodes
when disseminating routing control information to avoid broadcast storm. By periodically
broadcast HELLO and LSA packets, the NOLSR nodes can discover their neighbours and
exchange prefix information to maintain the FIB records.

All the existing NDN forwarding design for the wireless network was designed to
forward an Interest to retrieve Data from one provider node. However, for the data
harvesting application, using these approaches, one Interest must be created for each
provider node. And to defer the forwarding, the NDN forwarder must be modified to a
great extent. In this work, we aim for the lightweight approach, so the simple broadcast
forwarding is used with the collision avoidance mechanism implemented in the application
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level.

NDN in IoT

NDN has been demonstrated to provide decentralized IoT infrastructure without relying
on cloud [Shang et al., 2016] to provide common IoT features, such as name-based com-
munication, device provision using NDN schematized trust and name-based rendezvous
point, allowing cooperative computation between the applications and devices [Shang
et al., 2017].

Recently, NDN has been studied and integrated into the existing IoT systems such
as, vehicular networks [Grassi et al., 2015], smart homes [De Silva et al., 2016], robot
networks [Dauphin et al., 2018], and healthcare monitoring [Saxena & Raychoudhury,
2019].

NDN has been compared to traditional host-centric IoT protocols. The work of [Bac-
celli et al., 2014] shows that CCN based protocol can have lower energy consumption
footprint than IPv6, RPL and 6LoWPAN protocol. In [Gündoğran et al., 2018], the
NDN’s in-network caching allows NDN to outperform CoAP and MQTT in successful
delivery rate on disruptive wireless multi-hop environment.

However, its design has difficulties on some IoT deployments, such as at the network
edge [Liang et al., 2020], where there are co-existing multiple types of communication,
cost of running traditional routing protocol, and dynamic network environment issues are
needed to be concerned.

One important process of IoT for environment monitoring system is data harvesting,
in which the data from many sensors are being gathered to be processed.

Data Harvesting with NDN

Wide-area environment monitoring system takes data from sensors deployed in the wide-
area to process and provide insights on the monitoring environment. To collect the data
from numerous sensors, data harvesting techniques is used. Typically, data can be col-
lected from the sensors using either push or pull method. NDN is natively support pull
method by sending an Interest to retrieve the Data, while the push method is also sup-
ported by additional synchronization protocol such as Psync [Zhang et al., 2017].

However, one downside of using NDN on data harvesting is: it was designed with
a ’one Interest per one Data object’ principle to control the amount of data transfer.
An Interest name can match and retrieve exactly one Data, as the name of a Data is
uniquely defined. This leaves the responsibility to the application to send multiple Interest
packets to retrieve multiple Data. It makes data harvesting in traditional NDN inefficient
regarding scalability, concerning that the network and device resources requirement will
be increased with the network size.



2.4. COMPUTATIONS IN ICN 21

In wireless network, multiple Data with the same prefix can be retrieved by a single
Interest using a mechanism proposed by [Amadeo et al., 2014b] which employing the
broadcast nature of radio transmission. By modifying NDN forwarding to not deleting
the PIT record after the satisfying Data is received, multiple Data can be forwarded
to the consumer until the PIT record expires. The mechanism was also designed to
handle communication problems in wireless networks by deferring Data transmission with
a random duration to avoid packet collisions, including packet re-transmissions to recover
from a packet loss, and utilizing the Exclude selector feature of NDN protocol to reduce
the redundant Data in the retransmission of Interest. However, the work only concerned
the data collection in one-hop communication.

The efficiency of data harvesting can be further improved by using the in-network
computation techniques, instead of just transferring all the raw data from the sensors to
the collector node, the data can be pre-processed or aggregated during the forwarding by
the relay nodes, so the size of data to be transferred is reduced. The idea of applying
in-network data aggregation in NDN was demonstrated in [Amadeo et al., 2018] and [Liao
et al., 2019]. In these work, a node in the network is allowed to send a request Interest
packet to all neighbours, similar to broadcast transmission. Each neighbour will continue
to forward it, until the Interest is flooded throughout the network and nodes at the end
return data back to the previous Interest sender. Each node will collect the data returned
from their neighbours and aggregate them before return it to their previous Interest
sender or parent node. This process repeats until the final result are back to the first
node. However, both of the proposed systems assume that the neighbour information is
available, allowing them to detect if a node has received data from all neighbours before
processing and returning the result. This may not be applicable for the wireless network
without discovery or routing protocol.

2.4 Computations in ICN

Performing additional processing of packets of data flow in the network before it is de-
livered to the destination has emerged as a new trend for developing future internet
architecture. The term of in-network computation has widely studied in the literature
with several domains such as network management in SDN [Arumaithurai et al., 2014],
data processing in IoT networks [Tschudin & Sifalakis, 2014] or service delivery in edge
computing [Braun et al., 2011]. Even though ICN was originally designed for content re-
trieval, there are many attempts to expand the ICN functionalities to support in-network
computation. The concept of ICN is applicable for decoupling the location of a particular
network function instance from the identity of the function it provides.

In [Arumaithurai et al., 2014], the Function-Centric Service Chaining (FCSC) has been
proposed by taking function identifiers as route-able prefixes. A named-based network
management protocol was introduced by using NDN-like hierarchical name forwarding
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to forward traffic packets through a chain of functions in the network. Traffic packets
that come into the network can be tagged by the border nodes by adding a header of
a hierarchical name which is a series of a chain of functions that the packet has to go
through, defined by network admin. For example: a packet tagged with a name "/Fire-
wall/funcA/funcB" means this packet is designated to a "Firewall" function then function
"funcA" and then function "funcB".

Named Function Networking(NFN) [Sifalakis et al., 2014] extends ICN/NDN architec-
ture by adding Lambda expression to the naming to orchestrate distributed data compu-
tations in the network with call-by-name; if fails, the positions in the Interest names can
be switched and call-by-value can be applied. With Lambda expressions, NFN can ma-
nipulate the forwarding by changing Interest prefix, allowing the Interest to be forwarded
to a different direction to search for function codes or data objects separately and when-
ever both the required code and object are found, an execution can take place according
to the resolution strategy ; an application layer with a lambda expression resolver, pusher
and evaluator is added. The NFN’s basic resolution strategy is called Find-or-Execute
(FoX) in which it first tries to find the cached result or later, if not found, execute the
computation. However, this strategy is not suitable for the IoT network as there is no
mechanism to prevent the computation to be performed in less powerful nodes, which is
not efficient.

For IoT edge network, PIOT [Ye et al., 2016] uses a specific name prefix to enable any
performance network node to publish its computation service and capture appropriate
Interests, execute and return the result, simplifying the general NFN computation model
to satisfy the computation requirements in IoT scenarios.

The functional chaining has been demonstrated to be working in NDN [Liu et al., 2016].
They apply on-the-fly processing, allowing an ordered set of functions to be executed
seamlessly. However, the ordered set of function chain is prespecified and static once they
are called, and so it can be disrupted in dynamic network environments.

Later, NFN also introduced three additional strategies for IoT [Scherb et al., 2018].
Firstly, EdgeFoX is a strategy for stationary network, like PIOT, prioritizing on push-
ing computations to the edge nodes that have higher computing resource by utilizing a
dedicated name prefix. The other two additional resolution strategies: Find-and-Execute
(FaX) and Find-or-Pull-and-Execute ((FoP)aX) are introduced for dynamic mobile IoT
networks. FaX is designed for short running computation in mobile IoT networks. Instead
of only searching for the data stored in network cache, it also starts a computation simul-
taneously and then take the result from whichever returns first. In this essence, the node
can still complete the task, even it is disconnected from the network. (FoP)aX is extended
from FaX with an ability to fetch the intermediate result from another running computa-
tion using their proposed R2C(Request-to-Computation) protocol. The R2C protocol is
useful in a long computational task, as it allows transferring the intermediate result of a
running computation from another node without having to wait for the whole computa-
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tion to finish. In this way, the function can start the processing from where the existing
intermediate result is found; thus, it does not have to redo the whole computation.

NDN uses reverse path forwarding to return the desired Data packet back to the
consumer, this requires the information in PIT record to maintain the Interest inquiry
until the Data is successfully delivered to the consumer. The Interest lifetime is used
for determining if a PIT entry is still valid or expired. However, different functions
take different amount of execution time for the computation and return the result Data.
Instead of using the fixed Interest lifetime, different timing techniques were proposed to
maintain the PIT record. The work of [Król et al., 2018] has categorized the dynamic
timing techniques for computation in ICN into 3 groups.

1) Network timescale: a consumer sends Interest with a short lifetime which is long
enough for network forwarding time or RTT and keep retransmit when timeout, until
the data arrives. If the computation takes longer time, the retransmission can create
unnecessary network traffic.

2) Application timescale: the Interest lifetime is set longer, as it is considered to cover
the expected computation time. If computation takes longer than expected, the consumer
needs to retransmit the Interest. However, if the requesting Interest is lost, it will cause
unnecessary waiting before the retransmission is triggered by a timeout.

3) Using Acknowledgement: this refers to a process of adding an Acknowledgment
message to the NDN protocol. A consumer can send Interest with specific lifetime and
then the producer/compute node will immediately respond with the Acknowledge mes-
sage. The Acknowledgment will extend the expiry time of Interest which is holding in
the PIT of nodes along the forwarding path until the computation is done and the re-
sponse Data is returned. However, with mobility scenario, the path between consumer
and producer may abruptly change during computing time.

The approach applied in this thesis is close to the Application timescale, in which
the Interest lifetime is set to be long enough to cover the computation. However, in
this scheme, the lifetime can be used as a deadline for telling a computation to terminate
earlier before the caller’s lifetime gets expired. It is useful for data harvesting in a dynamic
multi-hop wireless networks to specifying how far the computation request will be covered
without additional traffic overhead.

RICE [Król et al., 2018], an ICN computation scheme that minimizes time overhead of
retrieving the computed data, proposes by using the 4-ways handshake mechanism. This
allows a consumer to pass large-size parameters using call-by-name and the thunk name,
which is a routable prefix to allow retrieving a result from a specific computing node. The
4-way handshake works as following: First, a consumer sends Interest containing functions
prefix and the name of parameters to the network. While an Interest is forwarded, a
temporary entry containing a parameter’s prefix pointed to the Interest’s incoming Face
is appended to the FIB table in the intermediate nodes, creating a path for the computing
node to the consumer. After receiving the Interest, the computing node sends an Interest
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to fetch the parameters published by the consumer. Consequently, the consumer returns
the parameter as a Data packet back to the computing node. Finally, after receiving the
parameters, the computing node can immediately respond to the request with a Data
message containing the thunk name of the computation result and the estimated time to
complete the computation. The consumer can then send an Interest with the thunk name
to retrieve the result Data from the computing node.

Proposed by the same authors, Compute first Networking (CFN) [Król et al., 2019]
has a distributed scheduling mechanism to load-balance the computing resource between
nodes. Each computing node advertises free system resource information periodically
through broadcast mechanism. The distributed scheduler maintains and synchronizes
system resources information and the computation graph. Whenever a scheduler receives
a request, it can dispatch the computation to available nodes by looking at the amount
of free system resources.

RICE and CFN are suitable for in-network computation with support of both stateless
and stateful computation by using call-by-name function. However, for computing in a
sensor network, the data size is typically much smaller and the computation is lighter, so
maintaining the thunk name and computation graph can be too costly for a small task.

IoT-NCN [Amadeo et al., 2018] extends NDN to support IoT data processing at the
edge network. The computation requests can be resolved close to the IoT devices, to
limit the raw data traffic and reduce the latency. By adding a Service Table to NDN
architecture to store the name of available service in a node and using the priori known
network topology information, the Interest can be forwarded and computation will be
performed in the branching node in the network. This allows the data to be aggregated
in the network between the IoT devices and the requester. [Amadeo et al., 2019a] then
extends the IoT-NCN with a mechanism to allocate the computation to the optimal
node using the Service Execution Cost (SEC) calculated from the network cost distance
from the node to the data source and the availability of the processing capability of
the node. The SEC is piggybacked in the Interest and using acknowledgement messages
to signal the selection of the node with the lowest cost to preform execution. Further,
NDN-Fog [Amadeo et al., 2019b] proposed the allocation of the data processing to be
performed either at the edge network or remotely in the cloud to minimize the service
latency. Using the similar mechanism as the SEC, the estimated Service Processing Time
(SPT) is embedded in the Interest and propagated to find the optimal node to perform
the execution.

ICedge [Mastorakis et al., 2020] proposed mechanisms for Edge computing on NDN
where service discovery is provided. A dynamic self-learning forwarding is used to effi-
ciently forward the Interest to a computing node. In this regard, a naming abstraction
with Thunk allows a new Interest to be forwarded to the previous execution result.

IceFlow [Kutscher et al., 2021] is an ICN framework design of Dataflow-based compu-
tation, which coordinates the set of computing functions and data stream processing in a
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distributed Dataflow pipeline. However, the processing graph for Dataflow is needed to
be synchronized between nodes in the pipeline. The synchronization adds more overhead
and complexity to the system; thus it may not be suitable for IoT application.

2.5 Synthesis

In this thesis, we propose a computational platform for the Internet of Things (IoT) that
processes sensor data collected from IoT devices in real time to provide prompt responses
to local users without the Internet connection. A common approach to achieve this is to
deploy powerful nodes or edge servers in the local environment to centrally collect and
compute results from IoT sensors. Our approach is to distribute the computations among
the sensor nodes themselves by leveraging in-network computation. While the sensor data
is forwarded to the user, the intervening sensor nodes can compute and aggregate part of
the data and forward the partial result to the node near the user. In this way, the data
generated by the sensors can be processed in the network, and the user can get the result
in real time.

Computations in different nodes in the network can be invoked by function calls for-
warded through name-based forwarding in the NDN. The requesting Interest is forwarded
to the nearest computationally capable node, and the result data can be sent back in the
other direction. Several methods have been proposed in the NDN for NDN forwarding
in wireless sensor networks, such as neighbour-aware forwarding or provider-aware for-
warding, to efficiently retrieve data from a single node. To retrieve data from multiple
nodes, simple hop-by-hop broadcast forwarding is very effective and does not generate
additional computational and traffic overhead compared to the other methods. Interests
can be forwarded from one node to multiple neighbours, and all neighbour responses can
be collected on return. However, the native NDN is designed to receive only one record
per Interest. The Interest record is deleted from PIT as soon as the first record has satis-
fied it, so any data arriving later is discarded. To collect multiple data, the multi-source
technique can be used by keeping the Interest record on PIT until it expires, even if a
date is received. Another problem is the wireless communication environment with packet
collisions, unreliability, and congestion issues. To solve these problems, techniques such
as random transmission postponement, retransmission, and suppression of unnecessary
transmissions can be used, which were considered in the development of our proposed
architecture.

For orchestrating computations in the network, NFN has proposed the use of lambda
expressions as part of the names with resolvers for lambda expressions. We intend to keep
any constrained IoT device lightweight and low overhead while still being able to process
IoT data in real time. Instead of adding lambda expressions as a shim layer to NDN, we
use a simple function call-by-value in our proposed scheme, which can be implemented as
name prefixes in NDN. Since the function pusher and evaluator is done in the function
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program at the application level, the normal NDN naming scheme can be maintained, so
no separate lambda expression resolver is required.

The works closed to our proposal are RICE and CFN, which apply the call-by-name
and mechanism to provide both stateful and stateless computation. However, the idempo-
tent functions are less of concern for our target applications than the ability to share com-
putation among resource constrained nodes with a non-deterministic distributed compu-
tation model. In our proposed scheme, we keep our design as NDN backward-compatible,
with minimal change to be deployed in resource constrained conditions targeting on pro-
cessing basic sensor’s data which are small and simple enough, e.g. a number or a string,
on mobile nodes and unknown network topology.



3 ActiveNDN Architecture

IoT for Real-time incident warning system which requires immediate data and some com-
putational responses to assess the situation, some may propose edge computing or central-
ized computing using cloud-based infrastructure. However, the area affected by natural
disaster may not have internet infrastructure deployed or have poor internet connectivity.
Many IoT for Real-time incident warning systems in those remote or rural areas are de-
ployed in an ad-hoc manner, hence facing several challenges on intermittent connectivity
and unstable electricity supply. These brought a huge roadblock to apply the cloud-based
solution for such deployments. Not only those tiny IoT devices cannot send data out from
the affected area, but the devices are also eventually offline due to the electricity shortage.
Edge computing server cannot be deployed in the area either due to the same problem.
The lack of connectivity, power and maintenance, so the only applicable approach is to
distribute computational function into the device itself.

In traditional IP networks, to collect data or request computational service on a device,
the device’s address is required. However, managing the devices’ addresses in an ad-
hoc network of real-time IoT-based incident warning system is complicated. Researchers
have worked on Information-Centric Networking (ICN) for content delivery problem. In
particular, Named Data Networking (NDN), one of the ICN research projects, introduces
the name-based routing that decouples the location of the content sources. Each NDN
node can query the desired content or data directly by expressing the Interest message
without knowing the IP address of destination node. This turns the network of IoT
devices to be the distributed database. The integration of in-network computation and
NDN allows the user’s queries to be processed while giving the responses directly within
the local network configured at the remote edge. An NDN agent is assigned to collect
data from all relevant neighbour nodes while computing some useful functions. However,
the existing approaches of in-network computation in NDN are either lack of backward
compatibility with the native NDN implementation or requires extra modification for
NDN integration which is not lightweight enough for tiny IoT devices.

In this regard, the lightweight ActiveNDN architecture is proposed to enable the em-
bedded functions to be called and executed on IoT devices. This allows real-time in-
network computations which can provide timely responses suitable for an incident warn-
ing system. The design principles of ActiveNDN architecture and the mechanism of the
function call are explained in this chapter.

27
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3.1 Design Principle

The goal of ActiveNDN is to build a programmable framework by adding the computation
capability inside the IoT devices. The framework will allow the user to create their
IoT application service that controls and orchestrates activities across the devices in
the IoT network deployed in the challenged environment. ActiveNDN aims to provide
a computation capability to process stream of sensor data inside IoT devices in real-
time and allowing the in-network computation. The design principles of ActiveNDN are
summarized as following.

Design principle I: chain of functions Each ActiveNDN node is capable of storing
function programs and has the ability to locally execute or distribute the requested com-
putation to other nodes. ActiveNDN provides two types of function call: single function
and chain of functions.

In single function, the computation request (i.e. a function call) is executed locally
inside the node while computation results are returned to the requester. In case that
the request function call is not stored in the local repository, the node is responsible for
forwarding the request to other nodes who have the requested function in local repository.

To have a chain of functions, during the execution phase, a function can make data
requests and sub- computation requests (i.e. sub-function calls) to the internal function
stored in local repository or calling the external functions stored in other nodes. The
chain of calling creates a chain of function calls to build up the in-network computation
capability across several ActiveNDN nodes in the network.

The function execution capability set ActiveNDN to the ultimate design goal, which
is, allowing the user to program the network to orchestrate computation among the IoT
devices.

Design principle II: lightweight and fully distributed ActiveNDN is designed to
work in IoT sensors devices with limited computation resource, memory capacity and low
bandwidth ad-hoc connection. Connection from these IoT sensors to the Internet can be
intermittent or may not be available at all.

To allow computation in limited computation resources node, the ActiveNDN’s chain
of functions with in-network computation technique can distribute the computation tasks
evenly among the nodes in the network. Each ActiveNDN node can perform the necessary
computations, such as some basic statistical or mathematical functions. ActiveNDN works
with wireless ad-hoc network by taking advantage of broadcast forwarding and overhearing
in wireless network with the loop prevention in NDN forwarding. The function call can
traverse thought the network without additional discovery and routing protocol. With
NDN forwarding in wireless network and the in-network computation technique, each
node can do data aggregation, so the amount of data is decreased, and thus saving the
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storage space and network bandwidth.

Design principle III: NDN compatibility While there are existing works that has
already put in-network computation in ICN, such as NFN and RICE, however, their
designs modify the NDN forwarding mechanism in some greater extent, making them to
be unable to work seamlessly with native NDN. The NFN requires an additional layer
to process the lambda expression. In RICE, the mechanism to create the path from a
producer back to consumer is not existed in the native NDN mechanism.

ActiveNDN is designed to be backward compatible with the native NDN while intro-
ducing the computational capabilities with minimal modification to existing NDN. The
function identifiers for a function call are used as NDN prefix, making it routable by
NDN. To add computational capability to NDN, a Function Library (FL) is attached as
an external module to the native NDN. The FL module is a local repository for function
codes implemented on top of native NDN forwarder. It is responsible for function storage
and executing the function when it is requested. The detail of function library will be
explained in section 3.4.3.

3.2 Proposed ActiveNDN Architecture

The architecture of ActiveNDN is illustrated in Figure 3.1 that consists of three main
components: the NDN forwarder, the Data Repository (Repo), and the Function Library
(FL). Each component communicates to each other through the abstraction interface,
called Faces, inherited from native NDN architecture.

Face 2 Face 3

Face 0

Face 1

Face 4

NDN Forwarder
CS PIT FIB

Repository

Wireless network interface

Function Library.

/pm2.5 - Face 2

/findmax - Face 3
- Face 0
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content=X

Function /findmax
    ….
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    ….
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User's 
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Figure 3.1 – ActiveNDN Node and components
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To integrate the in-network computation capability over native NDN architecture, the
Function Library (FL) is proposed to be responsible for storing and executing function
codes. The FL is implemented on top of the native NDN forwarder where the intercon-
nection is handled by Face, an abstraction of the communication channel managed by the
native NDN Forwarder.

The operation of ActiveNDN is typically triggered from the users’ application, where
function requests are expressed following the NDN naming scheme (hierarchical naming)
and passed to NDN forwarder through an internal Face (e.g., Face 1). Inside the NDN
forwarder, it consists of three tables including Content Store (CS), Pending Interest Table
(PIT) and Forwarding Interest Table which are used for forwarding mechanism as men-
tioned in Chapter 2.3.5. In addition, the ActiveNDN is also integrated with a Repository
(Repo), a persistence storage to store sensor-produced data and to provide the data for
the functions in FL.

To describe ActiveNDN, a simplified scenario is chosen with one face per component
category. As shown in Figure 3.1, Face 2 is used for internal communication between
Repo and NDN forwarder while Faces 3,4 are configured for communication between
FL and NDN forwarder. The Face 1 is configured for communication with the user’s
applications, such as a web browser or scripting programming, and Face 0 is connected
with the physical network interface (e.g., Wi-Fi) to allow a node to transmit and receive
packets from/to other nodes in the network. In general, there can be a different number
of Faces in a node, such as multiple application Faces which each connects the NDN
Forwarder to a different application, since multiple different applications for different
tasks can be run simultaneously on a node, or multiple network Faces which each allows
the NDN Forwarder to forward packets to a different physical network interface.

On the startup of a node, the names of the embedded functions in the FL are registered
in FIB with associated interface numbers pointing to the Face of the FL or pointing to a
network interface Face to enable calling the function across nodes or both. For example, in
Figure 3.1), a function FindMax has configured a FIB entry: /findmax prefix, associated
with Face 3 and 0 which pointed to FL and to the network interface respectively, while a
Data name /pm2.5 associated with Face 2 and pointing to the Repo is registered in FIB.
In the current design, the decision of where functions or data reside is left to network
administrators to configure the network.

3.3 Operation of ActiveNDN

To request a computation from the network, an Interest with an embedded function call
is expressed by the consumer, e.g. the user, and sent to any ActiveNDN node in the
network, but preferably the nearest node from the consumer. An example of expressing
a computation request is illustrated in Figure 3.2 (1) where a user’s application takes a
request Interest from the consumer and forward the Interest to the NDN Forwarder via
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Figure 3.2 – ActiveNDN Operation

Face 1. This Interest is treated by the NDN forwarder as a normal NDN Interest packet.
First, the Interest is checked against the records in node’s CS and PIT, if it could not
find the matching record, then it is checked against the FIB. If the Interest’s name prefix
matches a function prefix entry in the FIB table, indicating that the requested function is
in the FL, the NDN forwarder will record the Interest in PIT, with Face 1 as the incoming
Face and Face 3 as the outgoing Face, and then forwards the Interest via Face 3 to the
FL to execute the function.

The FL extracts the function call parameters from the name in the Interest packet and
performs respective function initiation and execution, where all parameters are treated as
call-by-value to the called function. Each instance of a function execution is assigned a
nonce, which is a random number generated by the FL as an execution process identifier.
The nonce has a role for matching the callers and callees in a part of a function chain,
which will be described in more details in Section 3.5.2.

During its execution, the called function may initiate a request for a data object that
can be propagated over the network or from its Repo for the case of local sensor values.
To request data from the Repo, the function sends a new Interest packet requesting data
to the NDN forwarder then the Interest is forwarded to the Repo via Face 2, as shown
in Figure 3.2 (2). Then (3), the Repo can send the requested sensor readings back to
the NDN forwarder as Data packets, which are forwarded to the FL via Face 3. After
receiving the data packet, the requesting function in FL can continue its execution.

A function in an ActiveNDN can call functions in other nodes, as well as be applied
to sensor data in other nodes. The call can also be a call to the function itself, recursively
within the same node or distributed throughout the network. Similar to requesting data
from the Repo, an executing function can issue a function call by creating an Interest
packet and forwarding it to the NDN forwarder to perform further computation, either
by the same node or by other nodes in the network. The Figure 3.2 (4) shows an Interest
which is sent to initiate a function call on the other node. Then (5), the results returned
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by the function calls are forwarded to the requesting function or caller in FL to continue
its execution.

Each Interest has its lifetime, or Time-to-Live (TTL), and is only valid within a lifetime
period specified by the caller functions or by the consumer. The first time the function
execution is initiated by the consumer, it is called the anchor of the function call, where
the associated lifetime or time-to-live TTL0 is the scope of the consumer function call.

The computation initiated at the anchor is expected to return results within the valid-
ity range TTL0, i.e. TTL0 spans all subsequent function calls, including recursive calls,
and any response or data packet returned to the consumer after TTL0 expires is consid-
ered invalid and discarded. A function execution in FL terminates when its associated
TTL expires, whereupon it either returns a result as a data packet to its calling function
downstream, or does not respond in the case of an incomplete computation. When the
function completes and returns a result, its data packet is sent to the NDN forwarder
via Face 3, through which the function call was made, as shown in Figure 3.2 (6). From
there, the NDN forwarder removes the corresponding PIT entry, stores the result as data
in the CS, and forwards the data packet to the caller via Face 1, through which the user
request entered the node.

3.4 ActiveNDN Components

An ActiveNDN node consists of three main components: the NDN forwarder, the Data
Repository (Repo), and the Function Library (FL).

3.4.1 NDN Forwarder

The NDN forwarder is a core component that controls the forwarding of Interest and
Data packets between multiple Faces as specified by the NDN protocol [Zhang et al.,
2014]. Using the information from the PIT and FIB, the NDN forwarder can direct the
incoming Interest and Data packets between multiple NDN Faces, where each Face is
connecting to the other components to the NDN forwarder. In this way, the Interest
packet can be forwarded throughout the network, while the Data packet is returned via
a reverse path forwarding mechanism.

In ActiveNDN, the NDN forwarder can forward an Interest to the FL with a function
call if there is a pointer to the FL in its FIB record. A network administrator has a role to
add the function in FL and configure the function name prefixes with pointers to the FL’s
Face into the FIB. The Best-route forwarding strategy, which is a default configuration
in NDN setting [NDN, c], is adopted. The Best-route strategy selects one upstream Face
which has the lowest routing cost and forwards the Interest messages to the upstream.
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3.4.2 Data Repository

The Repository (Repo) was introduced in NDN as a persistent storage [Zhang et al., 2014].
In many IoT use cases, Repo can be used to store readings from electronic sensors, e.g.
temperature, humidity, or PM2.5, CO, CO2 concentrations, etc. To allow data retrieval
from the Repo, the name prefixes of sensor readings must be registered with the Repo’s
Face to the FIB. The Interest messages are directly forwarded to the Repo, in return, the
Repo will respond with matching Data messages embedded with sensor readings value.

For IoT applications, to obtain the latest sensor data from the Repo, the Psync [Zhang
et al., 2017] library is used, which enables synchronizations where the next reading from
the data stream is fetched for each data request. This allows any consumer to subscribe
for Data under a specific prefix from the Repo. By synchronizing state with Repo, the
subscribed consumer will receive the latest Data name and will be notified whenever the
producer publishes a new Data to the Repo. After the Repo received an Interest packet
from the NDN forwarder, it will prepare a Data packet corresponding to the request and
return it to the NDN forwarder. Apart from producing the recent/real-time data, the
Repo can also publish the historical data if it has storage capacity.

For example, when a consumer who wants to subscribe to a series of Data with prefix
/data/pm2.5 using Psync, it will send a Sync Interest in which name contains the Psync
prefix and two bloom filters, first one is Subscription List containing the prefixes which it
wants to subscribe, such as /data/pm2.5, and the latter is Producer State which is blank
for the first subscription. The Interest will be forwarded to the Repo, which will compare
the received Producer State with the internal one. If the consumer’s state is behind, it
immediately sends a Sync Reply Data, containing the updated names with the sequence
number of all subscribed prefixes, such as: /data/pm2.5/123 and the updated Producer
State. But if the consumer’s state is already up-to-date, it can keep the Sync Interest
in a pending list and so the Sync Reply will be sent later whenever a new Data under
the subscribed prefix is published. When the subscriber received the Sync Reply as a
notification, it can send an Interest with the latest sequence number /data/pm2.5/123 to
retrieve the latest Data from the Repo. It can then use the received Producer State to
update the subscription for the next data notification.

3.4.3 Function Library

The FL unit is introduced in ActiveNDN to provide a library of functions for in-network
computations. The network administrator is responsible for providing functions in FL to
serve its specific IoT applications. In a heterogeneous network, the network administrator
may consider different design criteria when assigning functions to different nodes in the
network. For example, if computational power is important, computationally intensive
functions should be placed in powerful nodes, while less powerful nodes can have lighter
functions. On the other hand, some applications running on multi-hops network can
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generate heavy traffic due to extensive data forwarding. Reducing the redundant traffic
is necessary by placing the data aggregation function on nodes located near the data
sources.

When FL receives an Interest packet with a request for a function in its library, it
initiates a local execution of the function and then attaches the execution results in a Data
packet that is returned to the caller. The executed function can make further function
calls by creating a new Interest packet, which can be an external call to any upstream
external nodes or an internal call to any functions within the same FL. For example, the
average function can call the functions sum and count within the same ActiveNDN node
and take the result, or the call can be sent to other nodes in the network. The anchor of
a function call will aggregate computation results of all subsequent calls into a final Data
packet and sends it back to the NDN forwarder to be forwarded to the consumer via a
Face specified in the corresponding PIT entry.

3.5 In-network Computation in ActiveNDN

ActiveNDN node provides computation by allowing the functions in FL to be called and
executed within the node. To call a function in ActiveNDN, the caller must create a
function-calling Interest and send it to any ActiveNDN node The name of the function to
be called and the input parameters of the call are embedded as the name of the Interest,
allowing NDN to forward the Interest to the FL where the function code is stored, then
the FL can execute the corresponding function.

The FL allows a function to be requested for computing Data or making sub a sub-
sequent request to call other related functions, which are stored in both internally and
externally.However, in native NDN, a unique name is required to identify a static con-
tent. Multiple Interests from different consumer which are sharing the same name will
be forwarded and matched to the same content, which is useful in reducing the latency
and traffic in content delivery application (e.g., CDNs). However, this feature is not ap-
propriate with the dynamic content (e.g., real-time IoT applications), as the computation
results are spatially and temporally updated depending on the location of ActiveNDN
node and execution time. With native NDN architecture, the ActiveNDN node will not
be able to identify the state of multiple function-calling Interests at the same name. To
enable the in-network computation capability, the caller and callee mapping is crucial for
a recursive function to make the returning function output delivered back to the correct
caller and to allow the caller to identify the output from different callees. This mapping
also prevents the data redundant in the computation, which is important for some type
of functions in which the data uniqueness is crucial. However, without identifiable state,
the mapping of the caller and callee are not available.

To map the caller and callee pair in ActiveNDN, we propose the use of nonce, a unique
random number appended to the Interest’s name and used as the identifier of the caller
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and callee. The range of random number is assumed to be large enough for a computation
period which can be assured that any request pair is unique. The FL generates a nonce
for each function call and will append it to the Interest name when the function makes a
sub-function call and to the output Data name. The ActiveNDN naming scheme utilizes
function name as a routable prefix with nonce to make the function-calling Interest and
the returning Data to be forwarded correctly.

3.5.1 Expressing Function Call in ActiveNDN

The function call in ActiveNDN is embedded in the Interest packet, and the returning
result from the function will be embedded in the Data packet.

A

Interest: /findmax/pm2.5/-999 lifetime=TTL0

Data: /findmax/pm2.5/-999/12345 content=30

ActiveNDN network B

Interest: /findmax/pm2.5/30/12345 lifetime=TTL1

Data: /findmax/pm2.5/30/12345/67890 content=30

Interest
Data

Figure 3.3 – Function call in ActiveNDN

For example, in Figure 3.3, node A makes a call to a function FindMax to find the
maximum PM2.5 with value higher than 30 and a caller in which nonce is set as 12345,
can be expressed into the name of an Interest as /findmax/pm2.5/30/12345, and a Data
packet which containing the result for the corresponding to this call, will have a name
/findmax/pm2.5/30/12345/67890 where the prefix is taken from a full Interest name and
the suffix 67890 is the nonce generated by the callee.

The name of function-calling Interest will have three components: the function iden-
tifier, calling parameters and nonce, embedded into this pattern:
/<function-identifier>/<parameters>/<caller-nonce>

From the example, the Interest /findmax/pm2.5/30/12345 has function identifier find-
max as its prefix, following with two parameters: pm2.5 and 30, and ending a caller-nonce:
12345.

The name prefix is important information for NDN to correctly forward the Interest,
so the function-calling Interest must take a function identifier as prefix, so NDN can
forward the Interest to an FL where the function is available to be executed. As an
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Interest can only have one prefix, ActiveNDN allows one function call per one Interest.
In this example, the function identifier is findmax, so the NDN will forward it to the FL
who registered the prefix /findmax in the FIB to itself for the FindMax function.

The function call parameters are embedded as a list of values, which are separated by
the hierarchical separator ‘/’. The parameters are pass by value to the function, where
the number and type of parameters are conforms to the function specification. In this
example, the parameter specification of the FindMax function is defined in the program
code, it has two variables: (sensor_name:string, max_value:integer). From the Interest
/findmax/pm2.5/30/12345, the two parameters are extracted in the same sequence order:
pm2.5 is the name of the sensor from which the data is to be obtained from which is
expressed by variable sensor_name, and 30 is the value for the variable max_value.

Lastly, a field called caller-nonce is used as an identifier for each function caller instance
and is explained in more detail in the Section 3.5.2. A nonce is generated by FL each time
an Interest received, before the function is called. The nonce is assigned and appended to
the name of the Interest created by the function process to distinguish different instances
of the function caller so that the results can be correctly returned to the respective callers.
However, as shown in Figure 3.3, the first anchor call from consumer /findmax/pm2.5/-
999, does not have the caller-nonce as the call is not made by the function in FL.

Apart from the name, the InterestLifetime [NDN, a] is a field that can be included in
the Interest to specify how long the Interest is valid. Consequently, in ActiveNDN, the
scope or TTL is used to determine when a function computation is expired or terminates;
a small TTL cause an immediate termination of a computation process. The TTL is
embedded in the Interest as the Interest lifetime. It is set to TTL0 by the consumer
for the first call or set by an anchor node, which means that the total time consumed by
subsequent function calls is within TTL0. It provides a scope for subsequent function calls,
namely, all the computations initiated by this function call must be completed within the
specified scope TTL for the results to be valid.

After the function finished its execution, the returning result from the function will be
embedded in a Data packet to be forwarded back to the caller. To allow NDN to correctly
forward the Data back to the caller, the Data must be matched to its corresponding
Interest. To match them, the Data packet returned from the function will have the
Interest name as its name prefix. Since some function call may have multiple callees,
to allow the caller to be able to differentiate Data between different callee, each callee
appends its nonce to the Data name. So, the name of each Data packet will be following
this pattern:
/<function-prefix>/<parameters>/<caller-nonce>/<callee-nonce>.

As shown in Figure 3.3, a Data packet which containing the result for the corresponding
to the Interest /findmax/pm2.5/30/12345, will have a name /findmax/pm2.5/30/12345
/67890 where the prefix is taken from a full Interest name and the suffix 67890 is the
nonce generated by the callee.
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This data name format, with the two nonce numbers, is adopted for all Data packets
in the ActiveNDN, whether it is being forwarded by the NDN forwarder or kept in the
cache in the CS.

3.5.2 Forwarding Function Calls in ActiveNDN

Functions can be invoked by referring to its name prefix, as described in 3.5.1. When
the FL receives an Interest with a function call, it takes the function, assigns a random
nonce to the call, and activates its execution. The function execution may initiate further
function calls to functions in other nodes as an external call or in the same node or
FL as an internal call. As shown in Figure 3.4, an external function call is forwarded
to other ActiveNDN nodes for execution through the Face 0, while an internal function
call initiates function execution by the FL. The Face is an abstraction interface of NDN
layer to communicate with other modules. As for this example, the Face 0 is set for
communication with the physical network interfaces (e.g., Wi-Fi), the Face 1 is used for
interacting with application layer, while both Face 3 and Face 4 are configured for FL.

Interest: /findav_i/pm2.5/ lifetime=TTL0

Data: /findav_i/pm2.5/0/24680 content=20,2
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Interest: /findmax/pm2.5/-999 lifetime=TTL

Data: /findmax/pm2.5/-999/12345 content=30

Data: /findav_i/pm2.5/1/24680/24680 content=10,1

Interest: /findav_i/pm2.5/1/24680 lifetime=TTL1

Data: /findmax/pm2.5/30/12345/67890 content=30

Interest: /findmax/pm2.5/30/12345 lifetime=TTL1

Internal Call

External Call

Interest
Data

Figure 3.4 – Internal and External function call

For an external call, an Interest is created with an external function call which the
prefix is either a function that is not existed in the local FL or the same function, appended
with the new nonce of the calling function and forwarded to the NDN forwarder via Face
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3. Then, with the longest prefix match on a FIB entry, the Interest is sent to the network
interface via Face 0. An entry is also created in the PIT with an incoming Face 3 and an
outgoing Face 0. Upon receiving the response from the network, the results or Data are
entered into the node via Face 0. If a matching PIT entry of the Data name is found, it
will be stored in CS and forwarded to the calling function within FL via Face 3.

For an internal call, similar actions take place, where a new Interest is created for the
call along with the calling function’s nonce and forwarded to the NDN forwarder. The
call should return to the same FL; therefore, the function prefix must be registered in
the FIB and point to Face 3, not Face 0. But with the mechanism in the Best-Route
Strategy [NDN, c] the forwarder does not route an Interest back to the incoming or
downstream Face, i.e. if a call is made from FL, the Interest cannot be routed back to
the FL. Therefore, to handle internal calls, a pseudo Face is introduced for FL so that
when an internal function call is made, it is sent to the forwarder via the pseudo Face,
e.g. Face 4 in order that the forwarder can forward the Interest back to FL via Face 3.

As mentioned in section 3.5.1, the nonce is used to identify function calls and to
represent a caller and callee pair in the Data packet. To pair them, FL assigns a nonce for
each activation of a function in its library, and FL keeps records of all nonces it generates.
For internal calls, the same nonce is kept, while for external calls, a new nonce is generated
and appended to the Interest name. When an Interest is forwarded to the FL, its nonce
is compared with those in the FL’s records. If it is found, it is an internal call and the
same nonce can be used throughout. Otherwise, it means it is an external call and the
FL generates a new nonce for the new activation for the called function.

From Figure 3.4, a Data packet returned from an external call, FindMax, can be: /find-
max/pm2.5/30/12345/67890 where 12345 is the caller and 67890 is the callee nonces,
while a Data packet from an internal call, FindAv_i, will return a data name: /fin-
dav_i/pm2.5/1/24680/24680 with two identical nonces.

3.5.3 Recursive Functions in ActiveNDN

The computation in ActiveNDN is considered as recursive network by nature where an
ActiveNDN node communicates with several nodes in the network to discover the com-
puting results and return to a requesting user. For instance, if all nodes in the network
have a common function (e.g., FindMax ) installed in the FL, a recursive program can be
distributedly executed throughout the network. With such power, the collection, aggrega-
tion, and filtering of data can be expressed simply as recursive functions whose execution
systematically traverses all nodes in the network. ActiveNDN allows recursion to be per-
formed internally within the same node or externally involving other neighbouring nodes
or the entire network, where recursive calls are expressed as an Interest name with a new
nonce and a new TTL smaller than the scope TTL0.

To use recursion over the network, the external call is performed in recursive. Using
the same external call mechanism illustrated in Figure 3.4, the Interest is forwarded by



3.5. IN-NETWORK COMPUTATION IN ACTIVENDN 39

the NDN forwarder to the network interface (Face 0) for broadcasting to the neighbouring
nodes. However, a normal FIB configuration may not applicable for external recursive
forwarding because the FIB record for the external recursive function has to be mapped
to two NDN Faces to FL (Face 3) and network interface (Face 0) which are needed for
incoming call and outgoing call respectively. For this, the nexthop cost for Face 3 is
set lower than Face 0. With the Best-Route Strategy [NDN, c] the NDN forwarder will
try to forward an incoming Interest to Face 3 first, as Face 3 has lower cost, except the
Interest generated by an executing function in the FL that came to the NDN Forwarder
via Face 3, will not be sent back to the same Face, thus Face 0 is automatically chosen.
The forwarding is repeated until the scope TTL timeout, each neighbour sends a Data
packet back to the calling function node, or if the TTL is exceeded, the computation
on that node is failed to complete. If successful, the Data is returned via the network
interface (Face 0), checked against the PIT, cached in the CS, and forwarded to the calling
function via Face 3 by the normal NDN forwarder; function execution can then continue
with the received Data packet. This call distribution enables all reachable nodes to be
traversed from the anchor, as long as the total execution time of all subsequent recursive
calls is within the initial scope TTL0 set in the user’s request. This mechanism allows
us to forward a request as Interest and perform simple recursive function calls within the
network without prior knowledge of routing information.

Algorithm 1 FindMax Algorithm
G← (V,E)
v ←initial vertex

1: function findmax(G, v, max_value)
2: if v.visited then
3: return max_value
4: end if
5: v.visited← True
6: if v.value← max_value then
7: max_value ← v.value
8: end if
9: G′ = G− v

10: for each w adjacent to v do
11: u ← findmax(G′, w, max_value)
12: if u > max_value then
13: max_value ← u
14: end if
15: end for
16: return max_value
17: end function
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An Algorithm 1 shows how recursion is performed on ActiveNDN with a FindMax
function on a wireless IoT network. The network is considered as a graph G with |V |
nodes and |E| edges, G = (V,E). This function has three inputs: G is the graph that the
function is working on, v is the current node that is going to check, and max_value is
the current maximum value found. Adapted from graph search algorithm, the FindMax
can be separated into three parts. First, line 2-4, it checks whether the current node v is
visited or not, if it is visited, the function terminates and returns current the max_value.
Second part, line 5-8, if the node has not been visited yet, it marks the node as visited,
then compares the node’s value with the current max_value and updates the value if the
new result is higher. In the last part, line 9-16, is used where the function recursively call
itself on every neighbour nodes. The function call itself with the current node parameter
changed to each neighbours of v (line 10-11). Each call on a neighbour will repeat the
same process which includes checking whether it is visited, comparing the node’s value to
themax_value, and calling its own neighbours, and thus the function is recursively called
into a deeper level until the graph is fully traversed. After the last node is called, the result
max_value will be returned to its caller, which it then compares all the results it has
received and return the result back to upper level (line 12-16). Finally, the first function
will take the results from all returning sub-function call and max_value, compare them,
and the maximum value is returned as the function result.

The Algorithm 1 can be transformed to an external recursive function in ActiveNDN,
as shown in Algorithm 2, where FindMax traverses an air quality IoT network to obtain
the maximum PM2.5 reading among all nodes in the network within a fixed time slice
TTL.
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Figure 3.5 – Recursion over network in ActiveNDN

The Algorithm 2 will be explained along with the scenario shown in Figure 3.5. Start-
ing from the first ActiveNDN node (node A in Figure 3.5) that receives the FindMax
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Algorithm 2 ActiveNDN FindMax Algorithm
Input to NDN forwarder:

Interest(/findmax/pm2.5/maxv/nonce [InterestLifetime = 1000])
Output from NDN forwarder:

Data(/findmax/pm2.5/maxv/nonce/callee_nonce)

A: Check if node has been visited by NDN forwarder :
1: if Data D with /findmax/pm2.5 prefix in CS then
2: return Data from CS /nonce/callee_nonce
3: end if
4: if Interest with /findmax/pm2.5 prefix in PIT then
5: return Nothing
6: end if

B: FindMax in the Function Library retrieves local data and do external
function calls :

7: new_nonce← GenerateRandomNumber()
8: TTL← ExtractLifetimeFromInterest(I)
9: Interest_expire← CURRENT_TIME + TTL

10: Send Ilocal ← Interest( /data/pm2.5 )
11: Receive Dlocal ← Data( Ilocal )
12: if Dlocal.payload > maxv then
13: maxv ← Dlocal.payload
14: end if
15: new_TTL← TTL ∗ reduction_rate
16: Broadcast Interest(

/findmax/pm2.5/maxv/new_nonce [InterestLifetime = new_TTL])

C: FindMax in the Function Library aggregates the returned data :
17: new_maxv ← maxv
18: while in new_TTL period do
19: Receive D ← Data(

/findmax/pm2.5/maxv/new_nonce/callee_nounce payload=x)
20: if D.payload > new_maxv then
21: new_maxv ← D.payload
22: end if
23: end while
24: return Data(

/findmax/pm2.5/maxv/nonce/new_nonce payload=new_maxv)
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Interest (i1 ) issued by a consumer, the function will recursively propagate to all reach-
able and not yet visited nodes or the entire connected graph or network. To check whether
a node has been visited (Algorithm 2 Part A), the incoming Interest is checked against
the CS and the PIT. If the requested data is found in the CS, the data value from the CS
is returned as a Data packet (line 1-3), and if an entry is found in the PIT, the Interest is
discarded (line 4-6). Otherwise, (Algorithm 2 Part B), it means that the node has never
been visited by the function, so the forwarder forwards the Interest to the FL and initiates
an execution of the requested function, in this case FindMax. The function retrieves the
data from local repository, compares and updates to the current max value (line 10-14).
Then (line 15-16), the function will propagate the next recursion level Interest (i2 for
node A node in Figure 3.5) to neighbour nodes (node B and node C in Figure 3.5). Then
during the TTL period (Algorithm 2 Part C), FindMax waits and receives the response
from the neighbours, and the final result is calculated and returned to consumer when
the duration ends. This is shown in Figure 3.5, where the node A receives the response
Data d5 and d6 from its neighbour nodes B and C, and returns result Data d7 to the
consumer.

As shown in Figure 3.5, multiple nodes can receive an Interest which is broadcasted
from a caller node, the caller node must collect multiple Data packets from multiple
receivers. At each recursion level, the calling node’s TTL or aggregation window is the
time in which returning Data packets from subsequent calls are aggregated. This window
is supposed to be large to have enough time for collecting the Data packets from all nodes.
The lifetime of the PIT entry is set to be equal to the TTL value to allow multiple Data
packets to be delivered from all callees, which is a modification to the original design of
NDN [Zhang et al., 2014].

To ensure that all callees return the Data packets within the scope of the anchor call,
the size of the aggregation window is reduced at each recursion level by multiplying the
incoming TTLi−1 by a reduction_rate of less than 1: TTLi = TTLi−1× reduction_rate
(line 14 of Algorithm 2). The simplified scale of TTL reduction is shown in Figure 3.6
where the TTL0 is the scope of the anchor call, and the TTL is reduced in each recursion
level. The total time of all calls must fall within the outermost range of the function call.
When the TTL becomes too small, the node can no longer forward a new Interest, which
means that the termination of the recursion is applied.

3.5.4 Function Scope and Aggregation Window

After an Interest which is sent by the anchor reaches a terminal node with no further call
forwarding, the Data will be returned to the caller of the terminal node. Then the caller
will perform a data aggregation computation, put the outcome into a Data packet and
forward it back to its parent caller; the process is repeated in the reverse Interest path
until the Data packet reaches the anchor which it then gives respond to consumer.

Before a node can return the result to its caller, it has to make sure that the returning
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Figure 3.6 – TTL in different recursion level

result is actually computed with most, if not all, data from the callees. However, when
network topology is unknown, it is not possible to know if the node itself is a terminal
node or how many callees that receive a call and if all callee has returned the result or
not.

As stated in 3.3, each Interest has its lifetime, TTL, the termination condition is
reached when the TTL of the Interest is insufficient for more computation thus TTL is
set to provide a time window for data aggregation at each level of the call.

The scope TTL is used as the time window where a function will wait for the data
to return, we call it the Aggregation Window. Aggregation window is particularly useful
when deploying ActiveNDN on a wireless network where the information of the network
topology is not available.

During the aggregation window, the node will accept the returning results from its
callees. When the window of any particular call ends, the caller node will immediately
finalize the remaining steps within the caller function, aggregate all the received data and
then send the result of its function computation to the upper-level caller. The outermost
duration, or the scope of the call, starts from the anchor of the function calls to specify
the top-level aggregation window that is applied to cover all computations generated by
the anchor.

Through the Interest lifetime, the node i tells its aggregation window to its callees
i + 1 to return a result before a deadline, TTLi, while each callee set a new aggregation
window TTLi+1 for its outgoing function calls to be smaller than the incoming Interest
lifetime: TTLi > TTLi+1 + Timecall + Timereturn where Timecall is the time from when
the Interest enters to the node until the time that the function is making a call and
Timereturn for the time taken in the data aggregation process. When the Timecall and
Timereturn are uncertain, the aggregation window sizes at each level of the recursive call
can also be reduced by multiplying the incoming TTL with a reduction rate of less than 1;
the total time taken by all calls must fall within the outermost scope of the function call.
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When the aggregation window become too small the node will not be able to forward new
Interest signifying the termination condition of the recursion.

3.6 Conclusion
In conclusion, ActiveNDN extends NDN to provide in-network computation for processing
IoT sensor data. ActiveNDN is designed with three principles: to have ability to make
chain of functions, to be lightweight and fully distributed, and to be backward compati-
bility with native NDN. Using NDN forwarding mechanism, a function can be called by
Interest with the function name as routable prefix, and the computation result is returned
as a Data packet. With using nonce to identify caller and callee and using TTL mecha-
nisms to specify the scope of the computation, a function program can make a recursive
function call to dispatch the execution to other nodes, allowing computation to be fairly
distributed to the sensors on the network. Thus, ActiveNDN allows the data collection,
aggregation and filtering in IoT application to be distributed and process directly on the
IoT sensor devices.



4 ActiveNDN in Wireless Sensor Net-
works

IoT application scenarios for environmental monitoring, smart metering or incident warn-
ing usually require a wireless networking with multi-hop communication. These deploy-
ments are commonly located in the rural or remote area where fixed network infrastructure
is less available. This specific environment is also called Wireless Sensor Networks (WSN),
where the IoT devices or sensor nodes establish wireless connection among themselves.

For ActiveNDN to serve in this kind of environment, each node in the network can
utilize the wireless broadcast transmission channel to distribute function calls over the
network and receives the computed results on the reverse path forwarding. However, the
communication in wireless network is not always reliable because of the nature of the
shared-medium communication channel, the effects from network congestion, interference
and packet collision lead to packet loss during the transmission. This can significantly
impact to the correctness of computation results from data processing because some im-
portant data collected from sensors are lost and excluded from the computation function.

In wireless environment, due to shared-medium communication channel, packet col-
lisions can become problematic when simultaneous broadcasting occur. Therefore, pro-
viding reliability of packet transmission is vital to improve the completeness of data
collection in wireless network conditions. In this essence, ActiveNDN requires additional
mechanisms to reduce packet collision, recover from packet loss and reduce network con-
gestion.

In this chapter, we demonstrate the use of ActiveNDN on IoT wireless sensors network
with an example of air quality monitoring network. The adjustment of function scope
and three mechanisms for improving data collection are proposed as follows; Random
Aggregation Window to reduce packet collision, Interest Retransmission to recover from
packet loss and Interest Exclude Selector to reduce traffic congestion. To prove that
ActiveNDN is applicable for the deployment in wireless sensor network, the prototype of
ActiveNDN is developed on IoT devices deployed in a laboratory setting with two simple
functions; FindAv_i and FindMax demonstrating the internal and external function calls
respectively. The performance evaluation with large-scale network are explored through
extensive simulations aiming at improving the correctness of data processing.

45
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4.1 ActiveNDN Mechanisms for Wireless Communica-
tion

To distribute computation in ActiveNDN, the function scope is an important parameter
which limits the function’s execution time. For a chain of function calls, the function
scope becomes the first aggregation window of the particular function call. It also defines
the coverage area of the wireless network that the broadcasting function call can reach.
To cover all nodes in the network, the function scope is supposed to be large, which can
induce unnecessary delay. However, if the function scope is too small, some nodes would
be excluded from the computation. This trade-off needs further investigation to optimize
the setting of function call.

On wireless sensor networks, packet loss, caused by packet collision, can happen regu-
larly as multiple nodes may transmit packets at the same time. Furthermore, overhearing
induced by shared wireless medium can be the cause of network congestion, as an unin-
tended node can receive and process the packet then transmit the result, which would
ultimately lead to unnecessary retransmissions and a high number of packet loss. In Ac-
tiveNDN, the reliability of data transmission is crucial as the in-network computation
process requires collaborative data from several nodes in the network. Therefore, missing
information from data transmission is a serious problem in ActiveNDN, as it can produce
incorrect computation results as an outcome. To overcome this challenge, three mecha-
nisms are proposed to support ActiveNDN in wireless sensor network scenario. To prevent
the packet collision, the Random aggregation window is introduced. Then, Interest re-
transmission aims to recover from the impact of packet loss. Lastly, since ActiveNDN
is based on broadcasting, the Interest Exclude Selector is applied to reduce unnecessary
transmission and minimize the chance of network congestion.

4.1.1 Random Aggregation Window

In ActiveNDN, collisions can happen when all neighbouring nodes make the recursive
function call or return their computation results from the recursion and deliver to the
caller node at the same time. To mitigate such incidence, a Random aggregation window
is applied in each function call. Each node individually calculates the new aggregation
window (aka. TTL) for a function call. Specifically, the first aggregation window (function
scope) will be set by the initiating node, then each subsequent callee node will apply a ran-
dom reduction rate to reduce the aggregation window. As a result, each ActiveNDN will
schedule to return their results at different times and thus naturally avoiding the packet
collision. Notice that using randomized reduction may change the network-coverage (i.e.
number of hops) of a recursive call. If necessary, the randomness have to be tuned re-
garding the network density to ensure that the function call can reach to every node in
the network.
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4.1.2 Interest Retransmission

With packet loss in the network, there is no guarantee that the Interest or a function
call sent by a node in the WSN can be received by the intended neighbours, nor is
guaranteed that the Data will be received by the caller. To proactively recover from the
undetectable packet loss, each ActiveNDN node will re-transmit the Interests or re-call
the same function call to retrieve Data that is missing from packet loss.

The retransmission will be scheduled to start after the aggregation windows of all
callees expire, with a randomized packet retransmission timer.

In each retransmission, the aggregation window of the retransmitted Interest is also
reduced proportional to the time that has passed since the previous transmission.

The Interest retransmission will stop when the aggregation window timer becomes less
than 10ms, which is the minimum forwarding interval of NDN forwarder that allows the
same Interest to be sent.

With the retransmission, many responses to a retransmitted Interest can be expected
because multiple neighbours receive the Interest and respond to it. Some of those re-
sponses may have had reached the caller on the previous requests, which can create
congestion in the network. Therefore, the next mechanism is required to alleviate such
problem.

4.1.3 Interest Exclude Selector

Redundant transmissions caused by overhearing where nodes may receive Interest/Data
not intended for them must be reduced. This can be even more critical when there are
many Interest retransmissions, a node will respond with a Data that is already received by
the retransmitting node. To prevent unnecessary duplicate transmissions of Data packets,
an NDN feature called the Interest exclude selector [NDN, a] is applied to filter out those
Data packets which have already been received by the requester.

As mentioned in Section 3.5.1, the name suffix of each Data packet has the unique
random number (i.e., nonce) of the creator. The requester can put all nonces, or suffixes,
of the Data packets that have already been received into the Exclude selector field of the
retransmitting Interest packet. The Data with its nonce listed in the Exclude selector
field will not be transmitted again, thus, suppressing unnecessary transmissions. This is
particularly useful when performing a retransmission of the Interest packets; duplicate
answers is suppressed at its sources.

4.2 Demonstrating ActiveNDN in Wireless Sensor Net-
work

This section demonstrates how ActiveNDN can be deployed in wireless sensor network
environment, with emphasizing the three proposed mechanisms for wireless communica-
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tion. The use case of ActiveNDN is illustrated by using a simple function, FindMax, to
find the maximum PM2.5 readings among sensors nodes. The scenario is divided into
two phases, including Interest traversal and Data aggregation. The two processes are
illustrated through an example of wireless sensor network that measures the air quality
(e.g., PM2.5 concentration) as shown in Figure 4.1 and 4.2. The topology comprised of
8 sensor nodes (N20, N30, N40, N50, N60, N70, N80 and N90) and a consumer (N0)
forming an ad-hoc wireless network, all are integrated with ActiveNDN functionalities.
The function FindMax is already added in the Function Library (FL) of each sensor node.
In addition, the FIB table of each node is also preconfigured with a name prefix /findmax
to route a FindMax Interest to the FL.

4.2.1 Interest Traversal

The Interest Traversal is a process to propagate the Interest packets to explore the results
from the recursive function call while building a network traversal graph. At the first step,
a customer (N0) triggers the operation by sending an Interest packet (INT) with a name
/findmax/pm2.5/-999 to query a maximum value of PM2.5 from all sensor nodes. The
first prefix (/findmax ) is defined as the name of the function call, while the second prefix
(/pm2.5 ) refers to an input parameter of the function. The third component (−999) is a
temporal negative value, which is used to compare with PM2.5 values from other nodes.
As mentioned in section 3.5.4, the first aggregation window size or function scope (TTL0)
is set by a caller or customer to limit the duration of waiting time. To implement this
feature on native NDN structure, the function scope is embedded in the Interest packet
via the lifetime field. This information informs a callee the time limit for returning the
data back within a defined scope. In this example, the function scope (TTL0) is specified
as 1000 ms to ask for the maximum PM2.5 reading from the network within a chosen
time slice.

Following in the second step, where the closest ActiveNDN node (N20) receives the
Interest packet from the consumer to query the maximum PM2.5 reading. The NDN
forwarder of N20 records an incoming Interest in its PIT table and forwards the prefix
/findmax to its Function Library (FL) while selecting the function FindMax for execution.
Now, N20 becomes the anchor of the function call with a scope of 1000 ms (TTL0) for
the entire computation. It reads a PM2.5 value from its persistent storage (Repo). Let
us suppose that the PM2.5 sensor in N20 gives a value 20µg/m3 which is higher than
an incoming PM2.5 value (−999) attached in the Interest packet. Thus, the FindMax
function updates the maximum PM2.5 value to 20. To further propagate the calls, the
function FindMax in N20 broadcasts its recursive call to all neighbours with a caller’s
nonce and a random size of aggregation window. With only the initial name prefix
/findmax/pm2.5/value, the callees (i.e., node receiving the function call) cannot identify
who is the caller. Therefore, a caller’s nonce (a randomly generated number, represented
as n20) is also attached in the name prefix. This allows the callees to identify different
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function calls and let the NDN forwarder to deliver the computation result back to the
caller correctly. Notice that each caller’s nonce must be unique within a duration of the
function scope, which can be achieved by having a very large randomize sample space
which minimize the possibility of getting the same nonce.

Consequently, the aggregation window defines how long a function call can wait
for a computed result. Having different aggregation window size for a function call in
each node will make the function to return result in different time, and so preventing
packet collision in the wireless networks. While the node N20 is an anchor of the call
where it is not likely to cause a collision as it is the only node who can return the Data
to the consumer. This node can have a constant aggregation window reduction rate.
For the sake of simplicity, the same reduction method is applied for every function call
throughout the demonstration. The aggregation window is reduced by multiplying the
input lifetime (TTL0) with a random reduction rate, which is randomized between range
[0.3, 0.7]. Assuming that, the randomization in this call gives a reduction rate of 0.543 as
a result and the new TTL becomes 543 ms. A new Interest packet with the name prefix
/findmax/pm2.5/20/n20/ appended with the current maximum PM2.5 value together
with a caller’s nonce (n20) and a new lifetime from the aggregation window size (543ms)
is created and forwarded back from FL to NDN Forwarder. Then the NDN forwarder
forwards the Interest packet to the wireless interface and broadcasts it to nearby nodes.
The FindMax function in N20 will wait for incoming Data packets from its neighbours
until the timing specified in aggregation window is expired.

The third step is proceeded by nodes located at the second hops away from the con-
sumer, which are N30, N40 and N50. Upon receiving the Interest packet from N20, the
NDN forwarder of each node records the Interest in their PIT tables and forward the
Interest packet to the FL, which it then calls the FindMax function. The function reads
a PM2.5 value from its persistent storage (Repo) with values of "30µg/m3", "40µg/m3"
and "50µg/m3", for nodes N30, N40 and N50 respectively. After updating the current
maximum PM2.5 value inside the FindMax function, each node creates a new Interest
packet with the same prefix, /findmax/pm2.5 while updating a new max value and the
new caller’s nonce. For this example, the new Interest packet of N30 is set as /find-
max/pm2.5/30/n30. As mentioned in section 4.1.1, the packet collision can be occurred,
if multiple nodes return the computed results simultaneously. Therefore, the Random
aggregation window is applied in this step by generating a new aggregation window
size which is randomly reduced from the incoming Interest’s lifetime. As a result, the new
aggregation windows of N30 (TTLN30), N40 (TTLN40) and N50 (TTLN50) are assigned
as 240 ms, 243 ms and 265 ms respectively. The new Interest packets of N30, N40 and
N50 are presented as 3.a, 3.b and 3.c while the TTL value is embedded in the lifetime
field of the Interest packet as shown in Figure 4.1. The Interest packets are broadcasted
by each node and due to the overhearing in wireless communication, all neighbour nodes
nearby can receive the Interest. For example, an Interest packet which is broadcasted
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from N50, will be received by N20, N40, N60, N70 and N80. However, the nodes where
the FindMax function is already started and is still waiting for result Data packets, i.e.
N20 and N40, will discard the Interest, as the /findmax/pm2.5 prefix can be found in
the PIT of these nodes.

At the fourth step, all three hops away nodes from the consumer (N10, N60, N70
and N80) receive the Interest packet from its upstream caller. Note that in this example,
there is an unreachable node N90 which cannot receive any Interest from any other node
on the network; thus it is not included in the computation. The FindMax operation is
repeated as the previous step while the new Interest packet is updated with new max
value, caller’s nonce and aggregation window size which is randomly reduced from the
upstream. The recursive function call will continue to propagate the Interest packets to
all reachable nodes or until the aggregation window becomes too small (lower than 10ms).
In other words, the recursion termination condition (no more adjacent node) is reached,
and the execution is returned to the upstream callers. The Interest propagation paths are
distributively recorded as the PIT entries on the nodes that took part in the recursion
can be viewed as an Interest traversal tree, as shown in Figure 4.1.

Figure 4.1 – Interest traversal tree of a recursive function call.

4.2.2 Data Aggregation

The data aggregation process is started when all neighbours nodes have already been
visited. The recursive function call starts aggregating from each leaf node which returns a
Data packet back to the anchor node (N20) following the reverse path of Interest traversal
tree as shown in Figure 4.2. In this example, node N80 which is a leaf node of the tree is
considered. When the aggregation window (TTLN80) is expired, N80 will transmit a Data
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Figure 4.2 – Data aggregation tree of a recursive function call.

packet /findmax/pm2.5/50/n50/n80 with the PM2.5 reading of "80µg/m3" to its caller
which is N50. The name of the Data packet is taken from the Interest and appended by
the node’s nonce, i.e. callee’s nonce (represented as n80).

With broadcast transmission, many responses to an Interest are expected from mul-
tiple neighbours who are callees. Thus, the PIT entry cannot be removed after the first
Data is received, but it has to be kept alive until TTL is expired to receive as many re-
sponses as possible. In the original design of NDN [NDN, ], it was designed to match one
Interest packet per one Data packet (1-to-1 Interest and Data matching) so unsolicited
and duplicated Data are avoided. The design is implemented with a mechanism: deleting
the matching PIT entry upon receiving an incoming Data, causing the next corresponding
incoming Data packets that are matching the same Interest to be discarded by the NDN.
Removal of this restriction was introduced in [Amadeo et al., 2014b] for IoT applications
for collecting data from multiple data sources. In this example, the caller node N50
should receive Data packets from its callees: N60, N70, and N80. In node N50, these
packets are checked if they are found to correspond to entries in the PIT table of N50
before forwarding to the pending FindMax function in the FL of N50.

Due to unreliability of wireless condition, the returning Data packet can be lost during
transmission. To handle the packet loss, ActiveNDN applies the Interest Retransmis-
sion mechanism by sending the Interest packet after the aggregation window of all callee
is expired, which can be estimated from the reduction rate. For instance, the node N50’s
aggregation window is 265ms, the maximum possible aggregation window of the callee can
be 265 × 0.7 = 185.5ms, where the multiplier 0.7 is the possible maximum value of the
random reduction rate. Notice that, network information is unavailable, the node N50
itself will not know the actual number of its callees, so the retransmission starts 185.5ms
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after the first Interest is sent and keep going until its aggregation window ends.
As the retransmitted Interest is broadcasted, all the callees will response with its

own Data packet, this includes the Data that has already receive by the caller which
is unnecessary and cause congestion. To suppress this unnecessary Data, the caller put
an Interest Exclude Selector which contains a list of name suffixes, i.e. the callee’s
nonce, of the already received Data packet, into the retransmitting Interest. In this
case, if N50 has already received Data from N60 and N70, it can retransmit an In-
terest /findmax/pm2.5/50/n50 exclude=n60,n70 which will not match the Data /find-
max/pm2.5/50/n50/n60 and /findmax/pm2.5/50/n50/n70, thus the transmissions from
N60 and N70 are suppressed.

The FindMax function in N50 ultimately selects the maximum value among all re-
ceived Data packets and returns the results as Data named /findmax/pm2.5/20/n20/n50
with the value "80µg/m3" via its NDN forwarder through the Network Interface to N20.

As a consequence, the node N20 computes the final FindMax and answers to the query
from all answers from reachable ActiveNDN nodes in the network. After processing all
incoming data in the same manner as in other nodes, the result obtained in N20 will be
transmitted to the consumer, as shown in Figure 4.2.

4.3 Implementing ActiveNDN Prototype

To prove that the design is applicable, the ActiveNDN proof-of-concept prototype is im-
plemented on real IoT devices and experimented in laboratory setting. An ActiveNDN
IoT prototype was developed with two functions: "FindMax" and "FindAv_i", as de-
scribed in Section 3.5.2, to demonstrate external and internal calls respectively. We put
"_i" at the end of a function name to indicate that the function is an internal recursive
function.

Figure 4.3 – An ActiveNDN node in the testbed
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A prototype of ActiveNDN node is developed on UDOO NEO FULL [UDOO, ], a
single board computer equipped with an NXP i.MX 6SoloX which is embedded with 2
cores CPU: an 1Ghz ARM Cortex-A9 core and a 200Mhz ARM Cortex-M4 core, 1GB
of RAM and 16 GB SD card storage. The PM sensor Plantower PMS7003 and external
802.11g Wi-Fi USB dongle Linksys WUSB54GC are also integrated to collect the PM2.5
value and create wireless ad-hoc connection respectively. Figure 4.3 shows the prototype
of an ActiveNDN developed on UDOO NEO board.

Wireless Interface
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(PyNDN)
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(PyNDN)

PM2.5 
Sensor

Wireless Interface

NFD

FL
(PyNDN)
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(PyNDN)
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Figure 4.4 – The node architecture of ActiveNDN prototype

We use NFD (Named Data Networking Forwarding Daemon) [NDN, b] as our NDN
Forwarder and use PyNDN library [NDN, ] to implement the Function Library (FL)
and Repository (Repo) as illustrated in Figure 4.4. In this prototype, two functions
are implemented: an external recursive function, FindMax which finds the maximum
data from the network and an internal recursive function, FindAv_i which calculates the
average value within an ActiveNDN node. The Repo is implemented to store the persis-
tent data and with publish-subscribe capability using the PSync (Partial-Synchronization
for NDN) [Zhang et al., 2017] from the PyNDN library. The Repo can respond to a
matched Data of the incoming Interest as a simple NDN Repository and also accepts
Psync-subscribe message and pushes an update to a subscriber whenever a new data
is added to the Repo. The PM sensor is configured to capture a PM2.5 value for ev-
ery one second. The reading value is recorded in the Data packet with name prefix
/data/pm2.5/(timestamp) and stored in the Repo.

Four ActiveNDN nodes are placed around a laboratory at 10-15 meters from each
other, which is too close for multi-hop experiment as every node can be reached within
a single transmission. To achieve a multi-hop network environment in this small area,
the Wi-Fi transmission power is lowered to 5 dBm to reduce the transmission range and
create a multi-hop scenario in the network, as shown in Figure 4.5.



54 CHAPTER 4. ACTIVENDN IN WIRELESS SENSOR NETWORKS

25 m

20
 m

Estimated lab. floor plan

ActiveNDN node

ActiveNDN node ActiveNDN node

ActiveNDN node

Wireless connectivity

Figure 4.5 – The nodes placement and wireless connectivity in test-bed

4.3.1 FindAv Internal Function

The FindAv_i is a function to find an average of a specific measurement, which is executed
locally within an ActiveNDN node. The function library is recursively called itself to get
a new update data while computing an average result. The function can be called by an
Interest:

/findav_i/(value_name)/(sequence_number)/(caller-nonce) lifetime=TTL

Two parameters are embedded in the Interest name: the name of the measurement to be
averaged and a sequence number of the last data that has been collected. The caller-nonce
is an optional component which can be either user define or automatically generated by
the FL. This caller-nonce will be used throughout the whole computation to return data
back to the appropriate caller. Notice that the FindAv_i is able to calculate the average
value of any measurement stated in value field, but in this proof-of-concept, only the
PM2.5 value is considered.

The function runs recursively within a node to retrieve the latest data from the Repos-
itory. The Interest is sent from the function in the FL and bounced back to call the same
function again.

In each call initiation, the lifetime of an Interest is decreased by the time that has
passed, which includes the time for processing and the time for retrieving the data from
the Repository. Since each function call invokes only one function in each local node (only
one callee), the aggregation window can be reduced by a constant value. The new Interest
can be updated with a new lifetime (TTLi) as follows:

TTLi = TTLi−1 − tlocal − treturn (4.1)

where TTLi−1 is the lifetime of incoming Interest i − 1. The tlocal is the time taken
from the arrival of the incoming Interest to the time of sending new Interest i to the NDN
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forwarder. This duration includes the time used in retrieving a new Data Repository,
which can take up to one second to waiting for a new value from the PM sensor. The
treturn is a compensation time for the delay of forwarding the Data back to the caller,
which is arbitrarily set to 100 ms. When the aggregation window is expired or the first
response Data is received, the function call will resume the execution and return the result
as Data packet back to its caller.

The function FindAv_i is tested on the testbed by sending an Interest packet with
name: /findav_i/pm2.5/0 lifetime=10000 from a consumer application to one of the
ActiveNDN node located in the laboratory. The pm2.5 specifies the function to take
average the PM2.5 values, and the sequence number, initialized as 0 informs the last
sequence of PM2.5 Data that it has collected. From the lifetime field, the function scope
is set as 10 seconds (10,000 ms). Thus, the function will recursively collect the average
PM2.5 values from an internal sensor over the next 10 seconds duration and then will
return a Data packet containing the average PM2.5 values and the number of samples.

i1 /findav_i/pm2.5/0 lifetime=10000
RepoData1: /data/pm2.5/%5E%8D%DC%8C content=12
i2 /findav_i/pm2.5/%5E%8D%DC%8C/8%B2%8A%B5 lifetime=9165
RepoData2: /data/pm2.5/%5E%8D%DC%8D content=12
i3 /findav_i/pm2.5/%5E%8D%DC%8D/8%B2%8A%B5 lifetime=8220
RepoData3: /data/pm2.5/%5E%8D%DC%8E content=12
i4 /findav_i/pm2.5/%5E%8D%DC%8E/8%B2%8A%B5 lifetime=6350
RepoData4: /data/pm2.5/%5E%8D%DC%8F content=12
i5 /findav_i/pm2.5/%5E%8D%DC%8F/8%B2%8A%B5 lifetime=5330
RepoData5: /data/pm2.5/%5E%8D%DC%90 content=12
i6 /findav_i/pm2.5/%5E%8D%DC%90/8%B2%8A%B5 lifetime=4262
RepoData6: /data/pm2.5/%5E%8D%DC%91 content=12
i7 /findav_i/pm2.5/%5E%8D%DC%91/8%B2%8A%B5 lifetime=3306
RepoData7: /data/pm2.5/%5E%8D%DC%92 content=12
i8 /findav_i/pm2.5/%5E%8D%DC%92/8%B2%8A%B5 lifetime=2361
RepoData8: /data/pm2.5/%5E%8D%DC%93 content=12
i9 /findav_i/pm2.5/%5E%8D%DC%93/8%B2%8A%B5 lifetime=1317
RepoData9: /data/pm2.5/%5E%8D%DC%94 content=12
i10 /findav_i/pm2.5/%5E%8D%DC%93/8%B2%8A%B5 lifetime=375

--i10 expires--
d9 /findav_i/pm2.5/%5E%8D%DC%93/8%B2%8A%B5/8%B2%8A%B5 content=12.0,1
d8 /findav_i/pm2.5/%5E%8D%DC%92/8%B2%8A%B5/8%B2%8A%B5 content=12.0,2
d7 /findav_i/pm2.5/%5E%8D%DC%91/8%B2%8A%B5/8%B2%8A%B5 content=12.0,3
d6 /findav_i/pm2.5/%5E%8D%DC%90/8%B2%8A%B5/8%B2%8A%B5 content=12.0,4
d5 /findav_i/pm2.5/%5E%8D%DC%8F/8%B2%8A%B5/8%B2%8A%B5 content=12.0,5
d4 /findav_i/pm2.5/%5E%8D%DC%8E/8%B2%8A%B5/8%B2%8A%B5 content=12.0,6
d3 /findav_i/pm2.5/%5E%8D%DC%8D/8%B2%8A%B5/8%B2%8A%B5 content=12.0,7
d2 /findav_i/pm2.5/%5E%8D%DC%8C/8%B2%8A%B5/8%B2%8A%B5 content=12.0,8
d1 /findav_i/pm2.5/0 content=12.0,9

Figure 4.6 – Sequence of Interest and Data message of FindAv internal
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The experiment was conducted for 10 seconds in which 9 samples of PM2.5 were read.
However, the measurement was conducted inside the laboratory, so the PM2.5 values
were remained at 12µg/m3 throughout the experiment. Figure 4.6 presents the sequence
of Interests and returning Data messages of the recursive function call from a node in the
testbed. The Interests: i1, i2, i3, ..., i10 calling the function FindAv_i are satisfied by
subsequent Data packets: d1, d2, d3, ..., d9 in respected order. The shown sequence of the
function can be explained as follows: The Interest i1, which is sent from the consumer to
the closest ActiveNDN node, initiates the call to the FindAv_i function in FL. After in-
voked by the call, the function then retrieves the latest PM2.5 measurement from the Repo
using Psync protocol, the received Data is shown as RepoData1. Then, the function cre-
ates an Interest i2 with a name pattern: /findav_i/pm2.5/(sequence_number)/(nonce) to
make a recursive call to itself. The sequence number in i2 is taken from the hexadecimal-
encoded timestamp of the retrieved RepoData1 (%5E%8D%DC%8C ). Since Interest i1
does not have a nonce, the FL randomly generated one which is 8%B2%8A%B5 in hex-
adecimal and associates it to this call. As an internal recursive function, the FindAv_i
uses this nonce through the whole of its following function call, including i2.

The Interest i2 is sent to call the same function, which means the process is repeated:
retrieving the PM2.5 data from Repository, and making a subsequent call. As the function
is calling itself recursively, the Interest i3, i4, i5, ..., i10 are then produced by each call
where the TTL are reduced successively.

Finally, the Interest i10 which has the smallest TTL gets timeout before a new Data
can be retrieved from Repository, the function which is called by i10 is terminated itself
without a reply. When i10 is expired, the function that creates i10 immediately resumes
execution and returns the Data d9. The Data d9, which contains the average PM2.5 value
and number of samples, satisfies Interest i9 and returns to the i9 caller. The i9 caller
function receives the Data and uses the information from d9 to calculate a new average
and return them as d8 Then, d8 that satisfies i8, is sent to the i8 caller which then returns
d7, and so on, until the Data d1 is returned to the consumer as the final result.

Regarding the result shown in Figure 4.6, the PM sensor can read the measurement
of PM2.5 at 1 sample per second. However, only 9 samples were collected in 10 seconds.
This is because the lifetime of each Interest is chosen to be reduced by a constant treturn =
100ms, to compensate the forwarding delay. This was made to complete the Data return
before the caller Interest timeout, or else the Data would have been dropped by the PIT
because of the timeout.

4.3.2 FindMax External Function

Next, the FindMax function, which is capable of finding the maximum value of any specific
measurement, is introduced. Similar to the FindAv_i function, this prototype focuses on
the PM2.5 sensor readings. However, the FindMax is designed for the external function
call where the Interest packets are sent out to other ActiveNDN nodes as described in
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Section 3.5.2 and Section 4.2. The function can be called by an Interest packet with a
name prefix:

/findmax/(value_name)/(max_value)/(caller-nonce) lifetime=TTL.

As an external function, the aggregation window (TTLi) is randomly reduced and
calculated by the following equation:

TTLi = TTLi−1 ∗ random(min,max) (4.2)

where the TTLi−1 is the aggregation window of the function call given by the lifetime
of incoming Interest while multiplying with the random function. In this experiment, the
boundary of random function (min and mix) is set between 0.3 and 0.7. The floor plan
with node’s locations and the expecting packets are shown in Figure 4.7.
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Figure 4.7 – Testbed node placement and visualized packets

An Interest packet with name prefix /findmax/pm2.5/-999 lifetime=10000 is injected
to the node A who is the anchor node of this call. Consequently, this Interest packet is
forwarded to the Function Library of node A to activate the function FindMax. With
Interest Traversal and Data Aggregation processes explained in section 4.2, the function
call is traversed recursively throughout the network while aggregating the maximum value
of PM2.5 from multiple nodes. As the function scope is set as 10,000 ms in the lifetime
field, the aggregated result will be returned within the time scope of 10 seconds.

The sequence of Interest and Data packets from the FindMax experiment is illustrated
in Figure 4.8. The Interest i1 which is sent to the node A, calls the FindMax function in
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i1 /findmax/pm2.5/-999 lifetime=10000

A receive i1
A's RepoData: /data/pm2.5/%5E%90%11%F6 content=35
A send i2 /findmax/pm2.5/35.0/%CB%F9%80%EC lifetime=4668

B receive i2
B's RepoData: /data/pm2.5/%5E%90%11%F7 content=37
B send i3 /findmax/pm2.5/37.0/%D8%BC%2A%3B lifetime=1844

C receive i3
C's RepoData: /data/pm2.5/%5E%90%11%F8 content=24
C send i4 /findmax/pm2.5/37.0/F%D1%15%D3 lifetime=325

D receive i3
D's RepoData: /data/pm2.5/%5E%90%11%F8 content=27
D send i5 /findmax/pm2.5/37.0/b%D6%BE%CA lifetime=125

-- i5 expires --
D send d3.1 /findmax/pm2.5/37.0/%D8%BC%2A%3B/b%D6%BE%CA content=37.0
B receive d3.1

-- i4 expires --
C send d3.2 /findmax/pm2.5/37.0/%D8%BC%2A%3B/F%D1%15%D3 content=37.0
B receive d3.2

-- i3 expires --
B send d2 /findmax/pm2.5/35.0/%CB%F9%80%EC/%D8%BC%2A%3B content=37.0
A receive d2

-- i2 expires --
A send d1 /findmax/pm2.5/-999 content=37.0

Figure 4.8 – Sequence of Interest and Data message of FindMax

the node. The called function takes the max_value from the Interest which is −999, then
retrieves the latest PM2.5 values from the Repo with the Psync protocol and compares
the new max_value which is 35µg/m3. Then, it generates a new nonce and build a new
Interest i2 then broadcast to neighbours. During this experiment, the 4 nodes provided
different PM2.5 readings which are 35µg/m3, 37µg/m3, 24µg/m3, and 27µg/m3 from
nodes A, B, C and D respectively. Node A which is the anchor node of this call returns
the correct maximum value which is 37µg/m3 when the function scope is expired (see the
last line of Figure 4.8)

Through the experiments with FindAv_i and FindMax, it has proven that the pro-
totype of ActiveNDN can operate properly with both internal and external recursive
function call. The calling sequence of the two functions correctly reproduced to what was
designed in section 3.5.2 and provided correct answers. Besides, the prototype has been
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implemented on the real IoT platform, which will be a base for further development with
complex applications.

4.4 Large-Scale Evaluation on Network Simulator
To understand how ActiveNDN operate in WSN at scale, its performance is evaluated
using the official NS3-based NDN simulator, called ndnSIM [Mastorakis et al., 2017].

4.4.1 Simulation Setup on ndnSIM

The performance of the proposed ActiveNDN is studied with a wireless network environ-
ment using the standard IEEE 802.11 Wi-Fi model on the NS3-based NDN simulator,
ndnSIM-2.7 [Mastorakis et al., 2017], with the standard IEEE 802.11 Distributed Coor-
dination Function (DCF) for CSMA/CA [NS3, b] and a constant bit rate of 1 Mbps in ad
hoc mode. The Range propagation loss model and Constant speed propagation delay model
are used to simulate the transmission range of 250 meters. Each node was configured with
a FL containing the FindMax function, as described in the example in section 3.5.3, and
a Repo which is publishing a PM2.5 value. The PM2.5 data in the Repo of each node is
uniquely defined once before each simulation. The simulated CPU/hardware processing
time is not included and assumed as zero in the simulation.

A consumer application sends an initial Interest packet to a random node to invoke
FindMax with a function scope of 10 seconds (TTL0) while reduction rate is set to a 50%
constant ratio; thus the new aggregation window is set to half of the incoming Interest
lifetime each time. The updated of new aggregation window of caller (TTLi) is calculated
as follows:

TTLi = TTLi−1 ∗ 0.5 (4.3)

where TTLi−1 is the previous caller’s aggregation window size (from the lifetime field
in the incoming Interest).

4.4.2 Validation of the Simulation

The implementation of simulation is validated on an ideal wireless network without wire-
less packet collision. To simulate the ideal wireless network without packet collision, the
NS3’s Wi-Fi model is modified to disable the packet collision.

With dynamic wireless networks and distributed computation on ActiveNDN, our
goal is to find correct results within a certain period of time. The FindMax function was
simulated with the most basic baseline configuration to compare the result correctness
between different network sizes of 50, 100, 200, 300, 400 and 500 nodes in which the nodes
are randomly distributed within the areas of 0.5, 1, 2, 3, 4 and 5 km2 respectively. The
FindMax function works recursively to find the maximum PM2.5 value in the network.
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For the simulation, each node in the network is assigned to produce a unique PM2.5
value and the value is to be used throughout the simulation. Each simulation is repeated
100 times with different random node placement. The evaluation targets to analyse three
performance metrics as follows; the percentage of correct results by counting the number of
experiments where the final answer of FindMax function is equal to the actual maximum
value of all nodes in the network, the Function Coverage set which is the number of nodes
reachable by the anchor nodes, and the Data Inclusion set, or nodes that contribute to
the computations that produce the final answers.

(a) 10,000ms function scope

(b) 200,000ms function scope (c) 500,000ms function scope

Figure 4.9 – Validation results with different function scope

The results of simulation are validated by comparing the actual values from each node
and the results of function FindMax running on ActiveNDN. The result of the validation
is shown in Figure 4.9. In Figure 4.9a, with a function scope configured as 10 seconds,
all three sets achieved 100% performance. Small percentages of incorrect answers and
discrepancies between the Function Coverage and Data Inclusion sets began to appear
when the network size exceeded 200 nodes and the scope window was increased to 500
seconds, after which the 100% performance could be achieved again. This means that
some nodes is unreachable if the function scope is set too small; or some nodes may be
completely isolated or out of range, as shown in Figure 4.1. Even if there is only one
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node in the network that cannot be reached by the propagation of the Interest, there
is a possibility that the computed answer may be incorrect, especially for FindMax. In
some cases, the FindMax function can still provide a correct answer, even if there are a
small subset of reachable nodes. This is because the nodes which are unreachable have
lower value than the reachable nodes, and thus the uncovered value is not effected to the
correctness of computation. However, this is not applicable for the function that requires
the high data inclusion, such as the finding average function (FindAv) where missing
data significantly impacts on the correctness of computation. On the other hand, the
large function scope setting could be considered when the network size is large. As shown
in Figure 4.9c, the function scope of 500,000 ms can achieve 100% of function coverage
and data inclusion, even if the network size is increased to 500 nodes.

The selection of function scope size is crucial as it effects to the accuracy of the result.
Even though, the function scope can be set with a large number to ensure that all nodes
are reached. However, the computation may suffer from long waiting time for collecting
an answer. Therefore, selecting an appropriate function scope to match with the network
size is crucial for the configuration of ActiveNDN. We further ensure the correctness of
our implementation by checking if the data for the computation are retrieved from the
network correctly by comparing the nodes in the Function Coverage and Data Inclusion
sets which return the raw sensor data, as already shown in Figure 4.9.

By disable the collision model in Wi-Fi simulation, the results confirms the implemen-
tation of ActiveNDN simulation is valid and shows that the TTL impacts the accuracy
of the computation in different network scale, which will be discussed later in section 4.5.

4.4.3 Performance Evaluation

In this section, the performance of ActiveNDN with baseline setting is evaluated and
compared with the three proposed mechanisms; random aggregation window, Interest
Retransmission and Interest exclude selector.

We measure the effect of packet collision to ActiveNDN in normal wireless condition
while comparing performance improvement from the proposed mechanisms.

The same baseline configuration is experimented with the same function scope size as
in the validation runs, but with a normal Wi-Fi model, where packet collisions can be
occurred. The packet loss rate is measured in each experiment by comparing the ideal
and actual total number of received packets. Since the Range propagation loss model for
limiting the transmission range is applied, the nodes located within the transmission range
is known from the distance between the transmitting node and the other nodes. The
ideal total number of received packets n(Rideal) is known by accumulating the number
of transmission multiply by the number of the nodes located within the transmission
radius of each corresponding transmission. The actual total number of received packets
n(Ractual) is accumulated from the actual number of node that received each transmission.
Finally, the measured packet loss rate is calculated from (n(Rideal)−n(Ractual))/n(Rideal)∗
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Table 4.1 – Overall measured packet loss rate (%)

Network size (nodes) 50 100 200 300 400 500
Baseline 76.88 74.45 70.73 68.51 67.70 66.31
Random AW 38.81 38.51 36.65 36.41 36.33 35.86
Random AW + RTX 14.68 14.75 16.51 18.41 19.68 20.22
Random AW + RTX + Exclude 15.02 16.50 18.62 21.10 22.72 23.30

100. Table 4.1 shows the packet loss rate with different settings of ActiveNDN while
varying the network size from 50 to 500 nodes. The baseline approach obtains the packet
loss up to 76.88%, which is not sufficient for ActiveNDN to compute an accurate result.
The approaches with three proposed wireless mechanisms have lower packet loss because
the packet collision is significantly reduced. The random aggregation window (Random
AW) significantly reduces the packet loss, down to 35.86%. An approach with Interest
retransmission (RTX) significantly increases the overall number of packet transmission
which also more successful as the transmissions are spread out in time leading to less
transmission. When including exclude selector (Exclude) in the Interest packet, the size
of the Interest packet increases. This makes the transmission to take longer time, which
slightly increase the chance of packet collision.

From the validation result discussed in Section 4.4.2, the Baseline configuration with-
out packet collision can achieve 0% incorrect answer in 50, 100 and 200 nodes network
size. In Figure 4.10, the dark blue histogram shows that once the collision was introduced
in the same simulation setting, due to packet loss, more than 95% of incorrect answers
is counted even for networks of size less 200 nodes. This is a very significant decline as
compared to the validation results. Nevertheless, after applying the three mechanisms for
wireless communication, the incorrect answers can be reduced down to 0%.

Figure 4.10 – Percentage of samples that give incorrect answers

These incorrect results are caused by: (1) the function scope is too small, so there
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Table 4.2 – Function coverage and Data inclusion

Network size (nodes) 50 100 200 300 400 500

Baseline Func. coverage (%) 98.56 99.08 99.54 98.55 95.02 88.55
Data inclusion (%) 5.70 3.76 2.54 1.38 1.17 0.79

Random AW Func. coverage (%) 98.58 99.10 99.59 98.75 96.12 90.88
Data inclusion (%) 97.56 95.23 91.94 83.38 74.49 66.89

Random AW.
+ RTX

Func. coverage (%) 100. 100. 99.94 99.00 96.37 91.20
Data inclusion (%) 99.78 99.46 96.57 86.84 78.21 69.83

Random AW.
+ RTX + Exclude

Func. coverage (%) 100. 100. 99.93 99.02 96.35 91.14
Data inclusion (%) 100. 99.94 97.67 89.82 81.25 72.93

are nodes that are unreachable within the specified time interval, as mentioned earlier,
and/or (2) packet loss due to packet collisions in the wireless networks. It is evident from
the differences between the set of nodes covered by the search, or Function Coverage set,
and the set of nodes contributing to the computation, or Data Inclusion set, as shown
in Table 4.2. These two sets of nodes were exactly the same when there was no packet
loss during the validation runs. To improve the correctness of computation results, three
mechanisms for wireless sensor network are applied in this simulation for further analysis
as following.

Optimizing the Random Aggregation Window

Adding a random reduction to adjust the aggregation window size (Random AW) reduces
the number of packet losses due to packet collisions, and thus reduces the probability of
having incorrect responses. To specify an aggregation window size TTLi for a function
call, a random reduction rate between 30 and 70 percent is applied to the incoming
aggregation window size TTLi−1 as follows:

TTLi = TTLi−1 ∗ random(0.3, 0.7) (4.4)

Whenever TTLi is less than 10 ms, the node will not transfer the Interest. For recursive
calls, at this point the recursion is terminated, and the values are returned to the parent
callers. Figure 4.10 shows that applying this mechanism leads to an improvement in result
accuracy of more than 90% compared to the baseline. This also indicates that Wi-Fi’s
CSMA/CA alone is not sufficient for collision avoidance when many ActiveNDN nodes
are transmitting simultaneously.

Impacts of Interest Retransmission

Interest retransmission (RTX) is introduced, aiming at alleviating the effect of packet
loss. The re-transmission timer is set to start re-transmitting the Interest after 70% of
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the outgoing aggregation window TTLi has lapsed to ensure that all callees have enough
time to respond. The re-transmitted Interest’s lifetime, or aggregation window, TTLi+1

is nested inside the outgoing TTLi. Re-transmitting Interests with a smaller aggregation
window can be successively repeated until the aggregation window is less than 10 ms.

Enabling the RTX (yellow histogram) can increase the number of correct results until
the network size reaches 200 nodes, as shown in Figure 4.10. From this investigation,
the RTX traffic causes packet collision, especially at the edge of the coverage when the
aggregation window is too small.

From our experiments, network coverage can be separated into two clusters: one is
closer to the anchor node and the second is a cluster located at the edge of function
coverage. Interest re-transmission gives more benefit for the cluster closed to the anchor,
where the aggregation window is large, the window size becomes more diverse between
node and more time for packet to be transmitted. However, at the edge cluster, the
aggregation window is small due to the multi-hop reduction, the re-transmission duration
is also small. By having multiple nodes’ retransmission within a small period, the channel
will become more congested and cause more packet collision. For the larger network, the
choosing a suitable size of function scope TTL0 is crucial as nodes located at the edge
cluster can be reached and have enough time to return the Data. From this study, RTX
traffic causes packet collisions, especially at the edge of the coverage or termination of the
recursion, when the aggregation window is getting too small.

Applying Interest Exclude Selector

Inclusion of an Exclude selector in the Interest can suppress unnecessary Data packet
transmission due to the Interest re-transmission, thus, reducing network collision, which
then improves correctness of network computation. Figure 4.11 shows the number of
network Data packet transmissions. The re-transmission with an Exclude selector have
a much lower number of Data packet transmissions and thus a lower chance of packet
collision. However, when the coverage becomes smaller compared to the network size,
e.g. 500 nodes, this mechanism has shown limited benefit as it is overwhelmed by an
out-of-coverage problem due to inappropriate choice of aggregation window size.

These three mechanisms can significantly help to reduce the differences between the
Function Coverage and Data Inclusion sets, as shown in Table 4.2. With function scope
TTL0 of 10 seconds, it can be said that FindMax with random aggregation window +
RTX + exclusion provides correct answers for a network with up to 200 nodes.

The simulation results show that the packet loss in wireless network effects the Ac-
tiveNDN computation accuracy, and the proposed mechanisms: randomized aggregation
window, Interest re-transmission and Interest Exclude Selector, can deal with the packet
loss and reduce the inaccuracy from the packet lost. The accuracy related to the coverage
of the function call, which is determined by the size of the scope TTL0, is discussed in
the next section.
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Figure 4.11 – Number of Data packet transmission

4.5 Function Scope Analysis

With distributed computation on wireless networks, it is expected that the computation
finds different results at different times due to changes in the sensor readings, while
different sizes of the initial function scope (TTL0) can play an important role in the
data inclusiveness of IoT nodes in the computation. When the data inclusiveness is
not completely covered to all node, it means that some data has gone missing, and the
computation result can become inaccurate. This can be caused by having too small TTL0,
or function scope that won’t allow the Interest to be forwarded to all nodes in the network
or by some physical conditions of the network that causes some nodes to be isolated, such
as wrong configurations or hardware malfunctions. The network is disconnected where
parts of the network cannot be reached for a given transmission range (T ) causing the
correctness of results to downgrade where it is left to the IoT application to decide on what
would be an acceptable error rate for them. Some application may require data from all
nodes in the network be included in the computation, and some other may set satisfaction
rates much lower; the higher the inclusion of nodes (C), the higher the accuracy of the
computation.

The simulation result in the previous section, Figure 4.9a, shows that the correction
of the computation results are reduced in large network sizes because there are nodes
that cannot be reached; hence they are unable to contribute to the computation. As
demonstrated in section 4.4.2, if the network is fully connected regarding a given T , then
C could be as high as 100% in linear time, O(N) as our traversal algorithm is based on
breadth-first-search. To cover the entire network, TTL0 should be chosen to relate to the
size of the network (N) as well as the time taken for function calls, which is where the
topology of the network comes into play. The time taken for function calls is related to
the maximum number of hops (H), which can be approximated by the diameter of the
network.
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However, if the network is sparse with small T , it is likely that parts of the network
cannot be reached hence C can downgrade while higher number of hops may occur; with
large T , we can achieve higher C regardless of the choice of TTL0. If we increase TTL0

for a sparse network with small T , the performance may improve as more time can be
spent visiting more nodes. But for high T , whether the network, is sparse or dense, the
scenario would be become closer to a single hop network in which case the choice of TTL0

would depend largely on the number of nodes more than the number of hops. For dense
network, more time is needed to visit all nodes within a given range T as the network is
dense and more so for low T . Here, the choice of TTL0 is important. If the TTL0 was too
small, many reachable nodes will not reach and the data can be missed out, thus reducing
the inclusion rate C.

Figure 4.12 – Comparing TTL in sparse and dense network

We simulated the ActiveNDN to compare different TTL0 with varying transmission
range T in sparse and dense network. Our simulation results shown in Figure 4.12 has
confirmed with above analysis. For sparse network, with large T , small H is expected
while for small T , to achieve large C, higher H and higher TTL0 is expected. For dense
network, if TTL0 is set too small, C drastically downgrade regardless of choices of the
transmission range T . On both cases, longer T is preferred for both cases while TTL0



4.6. CONCLUSION 67

should be set to cover all nodes N and H, or, TTL0 ≥ a ∗N + b ∗H where a is the unit
cost in visiting each node and b is the unit cost for a function call.

For our target applications, the users can decide to accept the level of confidence C of
their applications and configure their T and TTL0 accordingly.

4.6 Conclusion
In this chapter, the ActiveNDN architecture is demonstrated through the proof-of-concept
implementation and large-scale simulation. It was demonstrated that with an IoT appli-
cation on a wireless network, the occurrence of packet collisions is the most important
issue affecting system performance because the Interests of the Data can be lost, giving
incorrect answers as the result of the in-network computation. To recover from Interest
packet loss, Interests are retransmitted so missing Interests can be serviced properly. To
avoid packet collision, a randomized aggregation window is deployed and to reduce an un-
necessary transmission, exclusion fields are adopted in the Interest packets. These three
mechanisms have drastically reduced the percentages of incorrect answers. However, to
ensure that the system can correctly answer at all times, it is important to choose ap-
propriate aggregation windows, or Interest lifetime TTL, for different network sizes and
densities.

We have shown that ActiveNDN is capable of performing robust distributed compu-
tations on sensor data near the sensors themselves by offloading the computations to a
function library attached to the NDN forwarders through the proof-of-concept prototype,
which will be used in further complex scenario. Using simulation experiments, we have
shown that the efficiency of the computations is greatly improved by distributing them
across the local wireless sensor network, and that timely responses are possible for IoT
applications.
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5 ActiveNDN for IoT Data Processing

In-network computation enables distributed computation across the network, whereas
traditional IoT systems rely on a centralized cloud to perform various tasks such as stor-
ing, processing, and computing all data instances. If the IoT network is isolated and
the connection to the Internet is sporadic, cloud-based computation may not be able to
provide prompt responses. From this perspective, in this thesis, we propose to perform
data analysis within the network instead of relying on the Internet and the cloud. Based
on this, an in-network computation architecture using ActiveNDN, described in Chapter
3, has been proposed for wireless sensor IoT networks.

In this chapter, we first demonstrate an implementation of ActiveNDN with a real
testbed (Section 5.1) for real-time PM2.5 prediction in an IoT network. Our approach
focuses on data processing within the network by using IoT devices or sensor nodes that
already exist in the networked system and are already used to forward traffic to perform
computations and communicate with other nodes to aggregate the computation results.

In-network computation does not require a dedicated server for data processing, as
computations can be performed on any sensor node. The node not only forwards the
data, but also processes and aggregates it before sending it. This can not only distribute
the computational load among the nodes, but also reduce the network traffic. To further
evaluate our proposed ActiveNDN, this chapter conducts several experiments comparing
the performance of in-network computation in ActiveNDN with the centralized approach
where the computations can be performed by one of the nodes acting as an edge server
within the IoT network (Section 5.2). Our comparisons were performed through simula-
tion and real testbed experiments using in-network ActiveNDN against two centralized
edge computing approaches using NDN and an IP-based CoAP IoT protocol. For the
simulation experiments, we extended our ActiveNDN simulation from Section 4.5 to com-
pare the system with different network sizes. Then, we compared the three schemes with
a real PM2.5 prediction scenario in a real IoT network in a remote community with an
area of 0.3 square kilometres.

69
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5.1 Real-world Application

5.1.1 ActiveNDN Testbed

To provide proof of concept, a real-world IoT network was set up to monitor air quality
using a sensor kit developed as part of the SEA-HAZEMON [SEA-HAZEMON, ] project.
Figure 5.1 shows an example of an IoT node named Canarin connected to multiple air
quality sensors such as PM1/2.5/10, temperature, humidity, CO, CO2, and GPS, using
UDOONEO [UDOO, ], a single board computer, as the main controller and computational
unit. In this testbed, we use the ActiveNDN codebase of the prototype developed in
Chapter 4 and placed the four Canarin nodes in Thai Samakkee village (see Figure 5.2) in
Mae Sot district, Tak province, Thailand, using the connectivity of the existing TakNet
network [Kanchanasut et al., 2018], a flat OLSR [Jacquet et al., 2001] network with over
400 nodes.

Figure 5.1 – A Canarin sensor node

To prepare the testbed for ActiveNDN and NDN, the Named Data Networking For-
warding Daemon (NFD) [NDN, b] responsible for managing name-based routing over the
network is installed on all Canarin nodes creating an NDN overlay over the existing OLSR
routing protocol [Jacquet et al., 2001] in the TakNet network. Then, we use a static rout-
ing to set up the forwarding table (FIB) of each node to assign the name prefixes and
NDN faces.
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Figure 5.2 – ActiveNDN testbed in Community Wireless Mesh Network

5.1.2 Prediction of PM2.5

ActiveNDN will be used to monitor air quality in communities isolated from the Internet to
provide real-time alerts to local members. On the ActiveNDN testbed, we applied plume
movement modelling proposed in [Kanabkaew et al., 2019] to predict PM2.5 concentration
in the local village. Here, we demonstrate an air quality IoT application where PM2.5
prediction is calculated from multiple function calls, including FindAv, Sigma, which sums
the data, and Predict, to predict the PM2.5 concentration for the next hour. FindAv is
used on each node in the network to calculate the local PM2.5 averages or aggregate the
averages of the entire network. Consequently, the Sigma function is deployed on a node
that continuously aggregates the last 24 hours of average values obtained by FindAv. Note
that all three functions are run as background tasks to collect data for a linear regression
model. Finally, the Predict function is triggered by a user to compute the prediction
result. Whenever it is called by the Interest request, the Predict function takes the sums
from the Sigma function to build a linear regression model, and then returns the PM2.5
prediction result embedded in the Data packet.

ActiveNDN provides a suitable solution for performing regression analysis and gener-
ating short-term predictions of PM2.5 levels for on-site users. As shown in Figure 5.3,
an ActiveNDN node can be set to periodically provide PM2.5 predictions to the network.
Every 15 minutes, an average PM2.5 value is calculated from the sensor nodes in the
network. The average is input into a linear regression program to obtain a predictive
model and predict future PM2.5 values for the time period of interest. The entire process
involves time-based distributed computing functions running on possibly different nodes
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Figure 5.3 – Real-time PM2.5 Data Analytics

in the network. Some nodes may take time-based averages from sensors in the network,
while other nodes may perform linear regression on the time series of average data. Ac-
tiveNDN. The plume prediction model includes three main steps that can be implemented
as function calls in ActiveNDN, as described below.

Finding average PM2.5: This involves two functions,

1. Function FindAv_i : This function is responsible for determining the average PM2.5
values over a specified time period in node i. The time period can be adjusted via
a programmable configuration. According to the model proposed in [Kanabkaew
et al., 2019], a period of 15 minutes is preferred. The FindAv_i is placed in each
node to continuously calculate the local PM2.5 readings. The average value of
PM2.5 readings is generated as a Data packet every 15 minutes and stored in the
content store (CS) of each node.

2. Function FindAv : This function is used for aggregating the averages from all pub-
lished averages in the network that come from the FindAv_i. As mentioned in
Section 4.3.2, ActiveNDN allows recursive function call to be propagated through-
out the network. The FindAv function follows this principle to recursively aggregate
values from other nodes in the network. An example of an Interest message can be
expressed as follows: /findav/pm2.5/(caller-nonce) lifetime=TTLi

The name prefix consists of the function name (findav) and the requested value
(pm2.5 ), while the caller nonce is used to identify the caller, as explained in Section
3.5.1. This Interest is expressed after the internal calculation of the average value is
completed (FindAv_i). The Interest will be broadcasted to the neighbour nodes. The
function starts an aggregation window timer for TTLi+1 and waits for the returning Data
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until the timer ends. Then it calculates the average and the count of all collected data
and returns a result as Data: /findav/pm2.5/(caller-nonce)/(nonce) content=(average
PM2.5),(data count) back to the caller.

Time
23456 1n

The latest time slot 

n+1

S1

S2

15 minute time slot:

x2x3x4x5x6 x1xnxn+1Average value:

Figure 5.4 – Duration of summations

Summing of average values function (Sigma): This function continuously com-
putes sums of xt, xt−1 , xt× xt−1, x2t , and x2t−1, where xt is the current 15-minute average
PM2.5 measured by all sensors in the network and xt−1 is the previous data point mea-
sured 15 minutes earlier. A summation is performed over 96 data points representing
the last 24 hours of data at 15-minute intervals, as shown in Equations 5.1, 5.2, 5.3, 5.4
and 5.5, where x1 is the most recent 15-minute average PM2.5 value, xn is the 15-minute
average PM2.5 value from 24 hours ago, and n is the number of training data points
collected in 24-hour (96). The duration of summation is shown in Figure 5.4, where S1

summation includes data from x1 to xn and S2 includes data from x2 to xn+1.

S1 =
n∑

t=1

xt (5.1)

S2 =
n+1∑
t=2

xt (5.2)

S3 =
n∑

t=1

(xtxt+1) (5.3)

S4 =
n∑

t=1

x2t (5.4)

S5 =
n+1∑
t=2

x2t (5.5)

Notice that the Sigma function can be assigned to any ActiveNDN node in the network,
but in our case, Sigma is contained in the same node as the Predict function.
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At setup time, a function call is made to initiate the Sigma functions that continu-
ously build the sums of the average PM2.5 values needed for the prediction calculations.
Sigma can be kept active because the corresponding PIT entry has an infinite lifetime,
set in the Interest of the first function call. Every 15 minutes, Sigma calls FindAv with
an Interest: /findav/pm2.5/(caller-nonce) lifetime=15m to recursively collect the average
PM2.5 from the network and send the results Data: /findav/pm2.5/(caller-nonce)/(callee-
nonce) content=(average PM2.5) freshness=15m to be cached at CS. When an Interest:
/predict/pm2.5/villageA/2021.01.02-01:00/60 lifetime=10s is received from the first Ac-
tiveNDN node found with the Predict function, which means a 60-minute PM2.5 pre-
diction is requested. The Predict function in its FL is called to initiate a chain of ex-
ecutions and return the final result Data: /predict/pm2.5/villageA/2021.01.02-01:00/60
content=(predicted pm2.5 value after 60 minutes) to the user, as shown in Figure 5.3.
The Predict function sends an Interest: /sigma/pm2.5/villageA/t to the network with a
time of day t synchronized with the 15-minute interval of the clock. The Sigma function
calculates the summations and produces a Data: /sigma/pm2.5/villageA/t content=(n,
S1, S1, S3, S4, S5) for each 15-minute clock interval and stores these data packets in the
CS of its ActiveNDN node. These data packets can be retrieved from an Interest with
a matching name prefix and sent to the calling function to be applied to the linear least
squares regression in Predict.

Predicting function (Predict): The function applies the linear regression method
in predicting PM2.5 levels based on past training data [Seltman, 2018]. A closed form for
the prediction of PM2.5 value (y) is expressed by the following equation:

y = α + βxtc (5.6)

where α and β are coefficients calculated from past training data, which can be com-
puted as follows.

β =
nS3 − S1S2

nS5 − (S2)2
(5.7)

α =
S1 − βS2

n
(5.8)

Note that, all input variables in the β- and α- equations such as S1 and S2 are the
sums of the average PM2.5 values in the past observation period (24 hours), which can
be retrieved from the Sigma function. Using this model equation, the 15-minute PM2.5
prediction y can be calculated by inserting the last average PM2.5 measurement x into the
model. A longer prediction period can be calculated by applying the previous prediction
to the same model. For example, a 30-minute forecast can be calculated by applying the
15-minute forecast to the model.

To deploy ActiveNDN on the real test bed in Thai Samakkee Village, Thailand, we
first simulated our deployment plan in our laboratory. We created 10 ActiveNDN nodes
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with PM2.5 sensors and placed them in an area the size of a village. In four nodes, we
deployed the functions Predict and Sigma, while the functions FindAv_i and FindAv
were placed in all node. A user’s request is sent to the first ActiveNDN node found
using the Predict function. This then initiates a chain of executions and returns the final
results to the user. The Sigma can be assigned to any node in the ActiveNDN network,
but for our simulation it is contained in the same node as the Predict function. We
simulated PM2.5 prediction with ndnSIM using raw data from 2018 [Kanabkaew et al.,
2019] with satisfactory accuracy. The Predict function can produce a one-hour prediction
as 195.287 vs. 195.245 (µg/m3) based on historical data for the last 24 hours with an
RMSE (4.533). In the real deployment of ActiveNDN in Thai Samakkee Village, Thailand
(Section 5.1.1), with the same settings as in the simulation, the one-hour predictions could
achieve satisfactory prediction accuracy with an average RMSE (6.27).

5.2 Edge vs In-Network Computation

To provide prompt responses to user requests, an IoT application must retrieve data
from many devices, process the data, and perform the desired computations. With edge
computing, all of these activities are centralized and performed by an edge server, which
in the case of an isolated IoT implementation might be located within the same local
network. With in-network computing, the IoT application can rely on computations
performed by members of the network.

In this section, we perform simulation experiments to compare the performance of
ActiveNDN with other centralized computing models in large wireless sensor networks.
ActiveNDN is inherently designed for an in-network computational model, where compu-
tations can be performed anywhere in the network in a distributed manner. To evaluate
the performance of ActiveNDN, we selected two communication protocols, including the
Constrained Application Protocol (CoAP) [Shelby et al., 2014] and a native Named Data
Networking (NDN). The CoAP is an IP-based protocol that is widely used in many IoT
systems, while the computational model is best suited for the centralized approach. As for
the NDN, in this evaluation, we only use the native approach of the NDN, where a single
user sends a request to retrieve data from all members and perform all computations at
the anchor or edge node, so it is classified as a centralized computation model. For this
evaluation, the scenario of a wireless sensor network is used, considering single-hop and
multi-hop communication topologies.

In the single-hop topology, all nodes in the network are within radio range, so they
can communicate directly with each other without the need for forwarding. As shown in
Figure 5.5, the central or anchor node, acting as an edge server, can send the Interest or
request directly to all sensor nodes in a broadcast or multicast transmission (see 5.5a),
and the sensor nodes can send the data directly back to the central node (5.5b).

In a multi-hop topology, each pair of nodes may be out of radio range of the other and



76 CHAPTER 5. ACTIVENDN FOR IOT DATA PROCESSING

(a) Interest traversal (b) Data aggregation

Figure 5.5 – Single-hop network

Figure 5.6 – Interest traversal in multi-hop networks

inter-node communication must be relayed by intermediate nodes. The request/Interest
traversal in this network is shown in Figure 5.6. The edge server or the anchor node A
and nodes D, E, F , and G cannot communicate with each other without nodes B and
C relaying the messages. In this case, node A’s request is forwarded by nodes B and C.
For data aggregation phase in the multi-hop topology, the three schemes have different
network traffic characteristics. In ActiveNDN, the Data aggregation is performed by in-
network computations, as shown in Figure 5.7a. Relaying nodes B and C receive and
aggregate the Data from nodes D and E, and F and G, respectively. Thus, nodes B and
C can each send only one aggregated data result back to the anchor node. In CoAP, on
the other hand, nodes B and C do not process the responses from nodes D, E, F , and
G and only forward them separately to the central node, as shown in Figure 5.7c. In the
NDN case, shown in Figure 5.7b, the network traffic is significantly higher. This is due
to the forwarding problems of native NDN in wireless networks, as mentioned in Section
2.3.5, due to overhearing and lack of network information.

In both NDN and ActiveNDN, a packet is broadcasted while the neighbouring nodes’
information is not available. In order for the packet to reach the entire network, the nodes
in the network must forward the packet. Unlike ActiveNDN, native NDN forwarding
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(a) ActiveNDN (b) NDN (c) CoAP

Figure 5.7 – Data aggregation in multi-hop networks

does not have a nonce checking mechanism to exclude irrelevant packets from forwarding.
Therefore, in the NDN scheme, any node can listen for a packet from its neighbours
and forward the packet as well, resulting in high network traffic. This can be seen in
Figure 5.7b. For example, node D that listens to any data sent by node B, such as data
originating from node B or node E, will unnecessarily forward this data to its neighbours.

The performance evaluation of ActiveNDN, NDN and CoAP is performed in both
single-hop and multi-hop topologies, varying the network size with 50, 60, 70, 80, 90 and
100 nodes, respectively. The nodes are placed uniformly with a density of 100 nodes/km2.
Each node is connected to a Wi-Fi interface configured in ad hoc mode with a fixed data
rate of 1 Mbps. To simulate the single-hop topology, we set the transmission range of
each node to 2 km to enable a one-hop connection between all nodes.

For the multi-hop topology, the transmission range is set to 250 m. The protocol
configuration of the three schemes remains the same in single-hop and multi-hop networks.
In each scheme, we measure and compare the average data inclusion from repeated 100
simulation runs. To perform the simulation experiments, we use ndnSIM [Mastorakis
et al., 2017], an official simulation platform for NDN.

The simulation results are shown in Figure 5.8. In the single-hop topology, the network
is connected by one hop, while in the multi-hop topology, the average number of network
hops ranges from 4.1 hops for the 50-node network to 5.6 hops for the 100-node network.
In both the single-hop and multi-hop cases, ActiveNDN outperforms the other systems
with 99-100% data inclusion within the same time span, while NDN and CoAP only reach
up to 47.9% and 51.1% for single-hop and 47.8% and 22.0% for multi-hop, respectively.
This is because ActiveNDN applies data aggregation to reduce the number of packets to be
transmitted and employs various collision avoidance and packet loss recovery strategies.

In the single-hop case, the CoAP scheme performs better than the NDN scheme, and
as the size of the network increases, the difference in data reception between the two in-
creases. This is due to wireless forwarding in NDN, where Data packets are unnecessarily
transmitted by each node to forward the packets, causing the amount of traffic to in-
crease polynomially according to the number of nodes, and thus packet collisions increase
tremendously. CoAP, on the other hand, uses unicast forwarding, which does not cause as
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Figure 5.8 – ActiveNDN vs. Centralized computing

much additional traffic as NDN, so it can provide better scalability than NDN. However,
both systems are heavily affected by the collision problem.

On the other hand, NDN achieves higher data inclusion than the CoAP scheme in a
multi-hop topology. Due to the redundancy of relay transmissions in NDN, each node can
provide a spare copy of the lost packets, and the number of nodes in a collision domain,
i.e., in one hop, is smaller and does not scale with the network size as in the single-hop
scenario. CoAP is not able to handle packet loss on the intermediate relay nodes, and
end-to-end retransmission is not sufficient to resolve packet collisions in a timely manner.

The simulation confirms that ActiveNDN achieves better performance and scalability
than the centralized computations schemes for data aggregation in wireless sensor net-
works. More data can be successfully collected by reducing traffic and using collision
avoidance strategies in the wireless network. While the CoAP scheme performs better
than NDN in single-hop networks, the NDN system turns out to be more reliable in
multi-hop experiments. In the next section, we will further test the three methods in a
real test environment to compare their performance in the real world.

5.2.1 Comparisons Using Testbed Experiments

We used the testbed described in 5.1.1 to compare our in-network ActiveNDN with cen-
tralized edge computing in NDN and CoAP.

For the NDN scheme, a dedicated edge node is implemented with the PM2.5 prediction
model as a Python program with NFD forwarder via the PyNDN library [NDN, b]. The
edge node periodically broadcasts an Interest message to collect PM2.5 data from all
sensor nodes deployed in the network. The collected data is stored in the program memory
(RAM) of the edge node. Once the PM2.5 prediction is requested, the edge node pulls
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all the collected data from the last 24 hours from the program memory and executes the
chain of functions that includes FindAv_i, FindAv, Sigma, and Predict. The computed
result, i.e. the prediction of the average PM2.5 concentration in the next hour, will be
returned to the requested user through a Data message.

In the CoAP scheme, data collection is done on a push basis. Each node sends its
raw PM2.5 data to the CoAP server in the edge node. The Repo program in each node
is implemented as a CoAP client, which sends the PM2.5 measurements directly to the
CoAP server in the edge node over the normal IP network. As with the NDN setup,
the compute program, which contains both storage and FL, is implemented as another
CoAP client that uses CoAP’s Observe method to subscribe to the local CoAP server
for the PM2.5 measurement. The server then forwards the PM2.5 measurement to the
compute program, which keeps the data in program memory ready for processing by the
prediction function. The prediction program in the CoAP scheme works in the same way
as in the NDN scheme, where all processes - averaging, summation, linear regression, and
prediction are contained in one program and are started as soon as it is requested.

We compare the accuracy of prediction results, response time, computational resource
usage, and network traffic between the three schemes: ActiveNDN, NDN, and CoAP. For
each experiment, we let the system collect data for 6 hours before requesting the PM2.5
prediction.

Prediction Accuracy

We compare the accuracy of the prediction error of each scheme with different prediction
durations: 15, 30, 45, and 60 minutes. The predictions are requested every 15 minutes for
6 hours, giving a total of 24 predictions per case. We take the actual measurements taken
from the same sensors collected on the Hazemon server, average them at the 15-minute
interval, and use them as a reference to calculate the error of the predictions.

Figure 5.9 – Error of the prediction results



80 CHAPTER 5. ACTIVENDN FOR IOT DATA PROCESSING

The RMSE of the prediction results is shown in Figure 5.9. Overall, the longer the
prediction period, the larger the error. Comparing the three schemes, ActiveNDN has the
lowest prediction error, while CoAP is a close behind and NDN has the worst result, but
the errors are not significantly different.

Figure 5.10 – Data inclusion of the prediction

We further investigated the inclusion of the data and found that, as expected, the
results are not very different at less than 1%. As can be seen in Figure 5.10, ActiveNDN
and CoAP have comparable data inclusion, while NDN has the lowest data inclusion,
which could be the reason for the lowest accuracy.

Response Time

Response time is measured by how much time a function takes to work and provide a
response after being started by a call. We measured the response time of a process to
produce 60 minute PM2.5 predictions. We repeated the process 10 times and averaged
the response time.

The result in Figure 5.11 shows that ActiveNDN was able to provide a response within
0.232 seconds, which was faster than the other schemes, CoAP was second with 1.749
seconds and NDN took 1.604 seconds.

We further examine the time taken in each part of the prediction program, as shown
in Table 5.1. We found that averaging in CoAP and NDN takes the most time. It takes
more than 1.5 seconds to process 6 hours of raw data from 4 nodes, which is expected
given the processing power of an SBC processor. In ActiveNDN, the average and Sigma
are continuously calculated, and the result is output, which is cached in the background
at CS. It takes a total of 0.166 seconds to retrieve the Average and Sigma results from
NDN’s CS. Of this time, 0.074 seconds is spent waiting for the response from CS and
0.092 seconds is spent creating the Interest packets and parsing the results from Data
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Figure 5.11 – Average response time comparison

Table 5.1 – Average time taken by parts of the predict program

Part of prediction program ActiveNDN NDN CoAP
Predict 0.012 0.018 0.018
Sigma - 0.010 0.009
Average - 1.636 1.573
NDN CS response time 0.074 - -
Packet creation/parsing
for retrieving data from CS 0.092 - -
Packet creation/parsing
for incoming call and returning result 0.054 0.085 0.005

Total response time 0.232 1.749 1.604
SD of total response time 0.033 0.468 0.425

packets. The calculation time taken in the Sigma part (for NDN and CoAP schemes) and
in the Predict part (for all schemes) is comparable between the schemes, as the difference
is only 6 ms. Also, when comparing the NDN and CoAP protocols, the ActiveNDN and
NDN schemes take more time to parse and create packets than CoAP. However, this is
due to how the different programming libraries are implemented for the protocol.

Resource Consumption

We measure CPU and memory usage of ActiveNDN, NDN, CoAP for 2 hours while
requesting new prediction results every 15 minutes. We focus only on the processes related
to the prediction program, categorized by the system components: Repo, FL /Compute
program, NDN Forwarder and CoAP server.

The CPU usage of the process in the context of prediction is shown in Table 5.2 CoAP
consumes the least CPU consumption because it operates directly on the IP layer, which
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Table 5.2 – CPU usage comparison

CPU usage (%) ActiveNDN NDN CoAP
non-anchor
nodes

anchor
node

sensor
nodes

edge
server

sensor
node

edge
server

FL/Compute program 8.739 8.800 7.250 1.480
Repo 5.733 5.660 5.271 5.788 0.028 0.034
NDN Forwarder 1.206 1.301 0.963 1.109
CoAP-server 0.411
Total 15.678 15.761 6.234 14.147 0.028 1.925

is natively supported by the OS and highly optimized, while the ActiveNDN and NDN
schemes use an additional NDN protocol layer and therefore have more CPU processing
overhead. ActiveNDN also consumes the most CPU, compared to the other schemes
because multiple computational processes are constantly running in the background. In
NDN, the central node requires a high CPU consumption as in ActiveNDN, but the
NDN sensor nodes consume less CPU time since they are not responsible for running the
computational processes.

Table 5.3 – Memory usage comparison

Memory usage (%) ActiveNDN NDN CoAP
non-anchor
nodes

anchor
node

sensor
nodes

edge
server

sensor
node

edge
server

FL/Compute program 0.068 0.066 0.033 0.150
Repo 0.013 0.013 0.012 0.013 0.146 0.145
NDN Forwarder 0.024 0.024 0.023 0.024
CoAP-server 0.056
Total 0.104 0.103 0.035 0.069 0.146 0.351

The memory consumption for each scheme is shown in Table 5.3. The CoAP scheme
significantly consumes the most memory, especially for the Repo and the Computing
process that constitute the CoAP client. This could be due to the fact that the client
part of the CoAP library was not implemented optimally. When comparing ActiveNDN
to NDN schemes, NDN requires less memory due to its lower function overhead. This is
due to the fact that in NDN there is only one function that performs all operations, while
in ActiveNDN there are several functions that are executed simultaneously, especially
the FindAv_i function that calls itself recursively. ActiveNDN uses the same amount of
memory on each node because of the running background functions, and the process is
distributed on each node.
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Network Traffic

We measured the total network traffic on the data collection of each scheme for 2 hours.

Figure 5.12 – Network traffic comparison: (left) total traffic shown in number of bytes,
(right) total transmission in number of packets.

As can be seen in Figure 5.12, NDN has the highest traffic, followed by CoAP and
ActiveNDN. This is because all transmission in NDN is flooded to every node in the
network, while transmission in ActiveNDN is a one hop broadcast and in CoAP it is an
end-to-end unicast with IP routing. Also, the ActiveNDN has the least number of packets
because the data is aggregated at each hop, so only the processed data is transmitted.

5.3 Conclusion
In this chapter, we have demonstrated the use of ActiveNDN in a wireless OLSR network
with real-world applications that provide sufficiently accurate hourly PM2.5 predictions.
Further improvements can be made with in-network calculations to handle possible abrupt
changes in the environment in real time, such as changes in wind speed and direction that
cannot be effectively handled with post-data analysis. In addition, complex real-time
simulations of physical phenomena can be achieved by programming the network and
performing computations such as image processing and machine learning on the network.

We also evaluated the performance of in-network computations on ActiveNDN com-
pared to centralized computations through experiments. It was found that ActiveNDN
performs better than the centralized approaches in this local IoT network environment
for both NDN and CoAP schemes. It provides more accurate results due to higher data
inclusion, consumes the least network traffic with the lowest response time, while consum-
ing more computational resources than the centralized schemes. The ability to distribute
the computational load across many nodes in the network so that not all data needs to
be sent to a central node makes ActiveNDN suitable for large-scale IoT deployments.
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6 Conclusions and Future Works

With the explosive growth of the "Internet of Things" (IoT) devices, various services
such as smart cities, smart monitoring, and smart transportation have been proposed in
the last decade. Although numerous efforts have been made to enable IoT services in
remote areas, most solutions are still based on a cloud or centralized architecture. These
are prone to be disrupted by intermittent internet connectivity while the central server
cannot communicate with remote devices.

In-network computation has been proposed to enable data processing at intermediate
nodes in the network, with the network processing the data rather than just forwarding
it. However, due to the complexity of the mapping process between data and host or
the mismatch between application and network layers, such a design cannot be efficiently
implemented in the traditional Internet protocol. The Named Data Networking (NDN)
architecture, on the other hand, identifies content by name and applies name-based rout-
ing, making the network location-independent. This allows a user to make a name request,
called an Interest, to the network, which can be forwarded to the nearest node that has
a data object matching the name. This makes NDN an ideal candidate for in-network
computation.

6.1 Thesis Summary

In this thesis, the existing IoT developments and in-network computation techniques were
investigated to identify the challenges in implementing a novel in-network computation
framework for IoT networks. To this end, ActiveNDN, a general distributed computing
framework using in-network computing techniques is designed, implemented, and evalu-
ated. ActiveNDN was extended from the Named Data Networking architecture and adds
a Function Library (FL) to the NDN forwarder to store the executable codes and execute
the function. A function call can be expressed as a prefix of the Interest name that is
forwarded across the network to find the node that has a matching name in FL. In turn,
the computed result is appended to a Data packet and forwarded back to the requested
user. A function call can also be a call to itself or a recursive call; recursions can occur
within the same node or be applied in a distributed manner across the network.

In wireless sensor networks, which are often used for IoT applications, ActiveNDN de-
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ployments may experience packet loss as many nodes transmit simultaneously, which may
cause packet collisions, and overhearing induced by the shared wireless medium, causing
redundant responses or transmissions. Three mechanisms, including a randomized aggre-
gation window, retransmission of Interests, and Interest exclude selector are used to avoid
packet collisions, compensate for lost transmissions of Interests, and reduce unnecessary
transmissions, respectively. A prototype of ActiveNDN has been implemented as a proof
of concept, which has been validated in both laboratory and real-world deployments. In
addition, simulation experiments were conducted using ndnSIM to benchmark the per-
formance of ActiveNDN on a large scale. The results of the experiments confirm that
our proposed wireless network mechanisms can drastically reduce packet loss and results
inaccuracy.

The performance of in-network computation on ActiveNDN is evaluated through ex-
tensive experiments and compared with other centralized computation approaches (native
NDN and CoAP). The results show that ActiveNDN achieves more accurate results due
to its higher data inclusion, while consuming less traffic and having faster response time.
However, ActiveNDN seems to consume more resources (CPU and memory consumption).
Another interesting result is the efficiency of ActiveNDN in distributing computational
tasks among many nodes in the network. This proves that ActiveNDN is suitable for
large-scale deployments in the IoT network.

For a more complex scenario, ActiveNDN was deployed in a wireless sensor network
with real-world applications that provide sufficiently accurate PM2.5 predictions. The
PM2.5 prediction application uses linear regression analysis with a set of computational
functions. This demonstration confirms that ActiveNDN is capable of performing com-
plex real-world applications through network programming and distributed computation
execution.

6.2 Future Works

The emergence of data-intensive applications has significant implications for the current
Internet architecture. New digital applications such as Augmented Reality (AR), Mixed
Reality (MR), and Virtual Reality (VR) require intensive real-time computations to build
a virtual environment. These tasks include collecting and processing multiple sensor
data, high-resolution (HD) image rendering, and 3D processing that are too heavy to be
performed in terminals (e.g., VR headset, smartphone, digital set-top box) or a dedicated
edge node. On the other hand, pushing computation workload to the hi-end data center
could handle all the complexities. Uploading large amounts of data and sending back the
computed results can lead to high latency, which can affect the user experience.

In-network computation is considered a promising solution that can distribute the
computational load across available devices. The computational functions can be per-
formed within the network, bringing the computations close to the user’s device. As a
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result, it can meet the time-critical requirement while significantly reducing bandwidth
consumption.

ActiveNDN provides in-network computational capabilities by allowing computations
to be performed in nodes with function call forwarding. However, in-network programma-
bility has not been considered. The programs or function codes executed are preconfigured
by the network administrator. With a large sensor deployment, it is very time-consuming
to manually add or update the functions in the network. In this context, the function
compiler plays an important role by accepting new programs or functions from software
developers. The compiled function codes ready for installation can be orchestrated to all
available devices in the network. This will be our future research direction by extending
the ActiveNDN into a programmable distributed IoT system where high-dimensional data
can be processed with a variety of computational programs.

Another research direction is related to the dynamic adaptation of ActiveNDN param-
eters. For example, the feature set needs to be manually configured at the beginning of
the running function. Moreover, there is still a lack of adaptive network topology setting.
This leads to inappropriate configuration, as too large function scope can incur long de-
lays in computation, while too small a setting can have an impact on data inclusion. The
optimization model to select an appropriate feature set based on network topology and
network size is essential for our future study. The exploratory or probing mechanism is
required for future development to obtain network information for the model that can be
applied with some machine learning algorithms.
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