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Summary

L'essayage virtuel des produits cosmétiques SUMMARY segmentation d'images, de localisation du visage et sur des méthodes de réseaux de neurones spécialisées pour les plateformes mobiles, les moteurs actuels de VTO permettent une utilisation en temps réel sur mobile. Ils garantissent ainsi une expérience interactive, en simulant des colorations capillaires ou du maquillage directement sur la page web d'un site de e-commerce.

Les limites actuelles de l'essayage virtuel

Même si l'essayage virtuel des cosmétiques a connu un large succès, il souffre cependant de plusieurs limites. Tout d'abord, pour chaque nouveau produit cosmétique créé, le processus de création de l'essayage virtuel correspondant est laborieux et manuel. En effet, lorsqu'un nouveau produit est créé par les laboratoires, un artiste graphique doit alors manuellement choisir les nombreux paramètres de rendu qui permettront de reproduire une version virtuelle réaliste du produit. De plus, cette procédure doit être répétée pour les centaines de nouveaux produits lancés chaque année par de nombreuses marques, couvrant une large variété de couleurs et textures de maquillage des lèvres, des yeux et de la peau.

De plus, dans certains cas, il existe un décalage entre l'apparence virtuelle d'un produit et son apparence réelle, qui peut être dû à différents facteurs. Il peut tout d'abord être lié au choix de la méthode de rendu. En effet, puisque l'essayage virtuel doit répondre aux contraintes de puissance de calcul sur mobile, les méthodes de rendu les plus réalistes, telles que le path tracing ne sont pas envisageables. Ainsi, des techniques plus basiques employant des modèles de matériaux simplifiés sont privilégiées pour permettre des calculs en temps réel, ce qui dégrade le réalisme de la simulation. Par ailleurs, le réalisme du VTO est étroitement lié au choix des paramètres de rendu par l'artiste graphique. En pratique, des erreurs de celuici semblent être le principal facteur de décalage observé entre l'apparence virtuelle et l'apparence simulée, ce qui appelle à créer de nouvelles méthodes pour automatiser et accroître la précision du processus de création des cosmétiques virtuels.

Enfin, l'expérience de l'utilisateur constitue un autre domaine limitant l'essayage virtuel. En effet, l'expérience conventionnelle du VTO permet au consommateur de choisir un cosmétique dans une liste prédéterminée de produits qu'il est ensuite possible d'acheter. Cependant, l'essor des réseaux sociaux fait appel à la création de nouvelles expériences, dans lesquelles les consommateurs pourraient essayer des cosmétiques directement à partir de photos qui les inspirent issues des réseaux sociaux. Cela requiert le développement de nouveaux systèmes capables d'identifier les caractéristiques d'un produit cosmétique à partir d'une image d'exemple.

Modèles génératifs et rendu neuronal

Dans le domaine de l'apprentissage machine, une nouvelle catégorie de modèles a récemment émergée, apportant de nouvelles perspectives pour les problèmes de synthèse d'images. Les réseaux génératifs adverses, ou GAN pour Generative Adversarial Networks, introduits en 2014, constituent une nouvelle méthode permettant de générer des données synthétiques. L'idée originale consiste à utiliser un réseau de neurones appelé le discriminant, ainsi qu'un ensemble d'images d'exemple pour apprendre à classifier entre images réelles et synthétiques. Cette fonction d'estimation du photo-réalisme ainsi apprise est utilisée en temps que fonction de coût pour entraîner simultanément un autre réseau appelé générateur, qui est lui chargé de la synthèse d'images. La méthode des GAN s'est rapidement imposée et permet désormais de générer des images de portraits humains en haute résolution qui sont difficilement distinguables de la réalité. Ce nouvel ensemble de méthodes offre de nouvelles perspectives pour la création de nouvelles techniques d'essayage virtuel de cosmétiques.

Cependant plusieurs limites aux méthodes de GAN ont été identifiées. Tout d'abord, comparés aux méthodes de rendu traditionnelles, les réseaux génératifs souffrent d'un manque de contrôle dans le processus de synthèse d'images. Le plus souvent, les images peuvent être modifiées via un ensemble de variables qui ne sont pas interprétables et entremêlées avec d'autres facteurs de variation. De plus, la plupart des méthodes génératives qui s'attachent à modifier des images requièrent l'utilisation de larges bases de données d'images annotées pour un apprentissage supervisé. Cela mène également à l'apparition d'artefacts non réalistes pour les cas particuliers non suffisamment représentés dans les données d'apprentissage. Enfin, les réseaux génératifs sont généralement problématiques à utiliser pour des applications vidéos, et ce dû à des temps de calcul importants et à des artefacts temporels créant un manque de cohérence entre des images consécutives. Ces limites rendent les méthodes de GAN difficilement utilisables en pratique, et en particulier pour des applications industrielles.

Par ailleurs, le nouveau domaine du rendu neuronal, ou neural rendering, s'est récemment développé en s'inspirant du succès des GAN. Cette approche hybride propose de combiner les modèles génératifs à des approches plus classiques de l'informatique graphique. Alors que l'apprentissage machine permet d'améliorer le réalisme en apprenant à partir d'images réelles, l'utilisation de méthodes issues de l'informatique graphique permet d'incorporer des éléments de connaissance physique dans le problème de la génération d'images. Ainsi, le rendu neuronal s'attache généralement à des tâches de synthèse d'images contrôlables telles que la ré-illumination de scènes, ou la ré-animation des visages dans des vidéos. Enfin une autre direction dans le domaine du rendu neuronal propose d'utiliser des modèles génératifs pour des tâches auxiliaires au rendu, permettant d'accélérer la création d'images synthétiques. C'est par exemple le cas des modèles de débruitage de ray tracing ou des modèles d'estimation de SVBRDF pour la capture rapide des matériaux. À notre connaissance, la combinaison de modèles génératifs et informatique graphique n'a pas été appliquée au problème de l'essayage virtuel des cosmétiques.

Objectifs de la thèse D'un point de vue applicatif, l'objectif premier de cette thèse est d'améliorer la qualité de l'essayage virtuel des cosmétiques pour les consommateurs, en la rapprochant de l'expérience d'un véritable essayage en magasin, introduisant ainsi de nouvelles possibilités pour les ventes digitales de cosmétiques. Cette amélioration peut couvrir différents aspects des systèmes d'essayage virtuel, correspondant à plusieurs directions méthodologiques.

Tout d'abord, de nouvelles méthodes de rendu peuvent être développées afin d'améliorer le réalisme des images synthétiques de cosmétiques. En nous inspirant des avancées dans le domaine des modèles génératifs nous proposons de construire de nouvelles techniques de rendu photo-réaliste pour les cosmétiques. Alors que les méthodes existantes souffrent d'un manque de contrôle, nous proposons d'étudier des modèles génératifs dans lesquels les différents attributs de l'apparence des cosmétiques (couleur, brillance, etc.) peuvent être contrôlés.

Par ailleurs, d'autres tâches auxiliaires qui contribuent à l'amélioration de l'essayage virtuel peuvent également bénéficier du rendu neuronal. Par exemple, améliorer et accélérer la création de l'essayage virtuel lors du processus de fabrication de nouveaux produits cosmétique peuvent largement contribuer à réduire le décalage parfois observé entre cosmétiques réels et virtuels. Ainsi, inspirés par les travaux dans le domaine de la capture des matériaux, nous cherchons à développer de nouvelles méthodes pour estimer le rendu d'un cosmétique à partir d'images d'exemples ou de données de laboratoire, automatisant ainsi un processus actuellement manuel et source d'erreur.

De plus, les méthodes de rendu neuronal peuvent être utilisées pour créer de nouvelles expériences d'essayage virtuel pour les utilisateurs, telles que la possibilité d'essayer un produit à partir d'une image d'exemple issue des réseaux sociaux. De telles fonctionnalités pourraient permettre d'améliorer l'expérience actuelle des utilisateurs, et contribuer au développement des applications d'essayage virtuel de cosmétiques.

Enfin, les méthodes que nous proposons doivent prendre en compte les contraintes pratiques des applications d'essayage virtuel de cosmétiques. Ainsi, ces techniques doivent être généralisables à l'ensemble des catégories de produits (rouge à lèvres, fard à paupières, coloration capillaire, etc.) et à travers des milliers de références. De plus, les applications de VTO sont généralement exécutées en temps réel sur smartphone, ce qui signifie que nos méthodes doivent prendre en compte les capacités de calcul contraintes des plateformes mobiles.

Chapitre 2 : Modèles génératifs contrôlables pour l'essayage virtuel de maquillage

En tant que première étape dans ce travail de recherche, nous proposons de considérer les modèles génératifs comme une nouvelle catégorie de moteur de rendu pour la synthèse d'images de cosmétiques. Cependant, les méthodes existantes de modèles génératifs sont dépourvues de certaines capacités essentielles pour les applications de rendus de produits cosmétiques, comme la capacité à contrôler la couleur du maquillage synthétisé. De plus, entraîner un modèle génératif en utilisant les méthodes conventionnelles requiert l'utilisation de larges bases de données annotées. Or de telles bases de données n'existent pas dans le domaine de la recherche sur la génération d'images de maquillage.

Dans ce chapitre, nous présentons nos travaux sur le sujet ayant abouti à une publication dans le workshop Advance in Image Manipulation de la conférence ECCV 2020. Nos contributions peuvent être résumées ainsi :

• Nous proposons le modèle CA-GAN, pour Color Aware Generative Adversarial Network. Ce modèle génératif peut être entraîné afin de modifier la couleur d'un objet dans une image vers une nouvelle couleur arbitraire. Ce modèle est basé sur l'utilisation d'une fonction de régression sur la couleur, combinée à une nouvelle fonction de coût portant sur la cohérence d'arrière-plan, permettant de préserver la couleur des objets non ciblés.

• Nous introduisons une nouvelle méthode d'apprentissage faiblement supervisé pour les modèles génératifs contrôlables, qui nous permet d'entraîner notre modèle sans avoir accès à une large base de données d'images annotées par couleur de maquillage.

• Pour la première fois, nous introduisons une analyse quantitative de la performance des modèles de transfert de maquillage, et en particulier pour les rouges à lèvres, à l'aide d'un nouveau jeu de données. Nous démontrons ainsi que notre modèle est plus précis que les autres méthodes de l'état de l'art dans le domaine du transfert de maquillage.

Discriminateur de couleur faiblement supervisé

Puisque notre objectif est d'apprendre à synthétiser une image de maquillage avec une couleur arbitraire, nous avons besoin d'utiliser un signal de supervision de la couleur afin de pouvoir entraîner notre modèle génératif. Cependant, la plupart des bases de données disponibles ne contiennent pas d'étiquette sur la couleur des objets. De plus, étiqueter la couleur d'un objet est une tâche fastidieuse et largement subjective. Afin de dépasser cette limite, nous introduisons une nouvelle méthode d'apprentissage de GAN conditionnel, faiblement supervisée. Une idée centrale de l'apprentissage faiblement supervisé consiste à utiliser une base de données non annotée combinée à une méthode non supervisée pour produire des variables descriptives faibles. Ces variables descriptives sont ensuite utilisées comme étiquettes pour entraîner un modèle de manière supervisée. Alors même que les variables descriptives faibles sont individuellement bruitées, elles apportent un signal de supervision qui, en utilisant une large base de données, permet d'apprendre un modèle prédictif robuste. Nous proposons d'adapter cette idée afin d'apprendre un modèle discriminateur de couleur faiblement supervisé qui sera utilisé pour superviser l'apprentissage de notre générateur de maquillage contrôlable à couleur contrôlable.

Nous faisons l'hypothèse que le maquillage est généralement présent dans une région spécifique du visage, par exemple les lèvres pour le rouge à lèvres et les paupières pour le fard à paupières. Ces zones peuvent être approximativement estimées en utilisant des méthodes classiques de détection du visage. Ainsi nous proposons d'obtenir des variables descriptives faibles de la couleur de maquillage en estimant la position des pixels de maquillage sur la bouche et les yeux, puis en calculant la couleur médiane des pixels de la région correspondante. De manière similaire, nous estimons également des variables descriptives pour la couleur de peau, qui seront utilisées pour contrôler que notre modèle génératif ne transforme pas la couleur des autres éléments de l'image. Ces descripteurs de couleurs sont bruités car ils ne prennent pas en compte les effets d'ombre sur les paupières ou bien les phénomènes d'occultation sur les images causés par les cheveux ou les mains. Nous proposons donc d'utiliser ces variables non pas directement pour l'apprentissage du générateur mais pour apprendre un discriminateur de couleur faiblement supervisé. Ainsi, en utilisant une large base de données d'images de maquillage non annotées, notre discriminateur de couleur apprend à extraire la couleur du maquillage de manière plus précise que notre méthode non supervisée initiale.

Modèle génératif à couleur contrôllable

L'architecture de notre modèle génératif à couleur contrôlable utilise comme entrée une image source ainsi qu'une couleur cible représentée par un triplet de couleurs dans l'espace CIEL * a * b * , et produit une image en sortie. Notre modèle génératif à couleur contrôlable est entraîné en utilisant une combinaison de plusieurs fonctions de coût décrites dans cette section.

En plus des fonctions de coût classiquement utilisées dans les problèmes génératifs comme la fonction de coût adversariale des GAN ou la fonction de cohérence cyclique, nous introduisons de nouvelles fonctions permettant d'apprendre un modèle génératif à couleur contrôlable. Tout d'abord, la fonction de coût de régression sur la couleur permet de contraindre le modèle à générer une image dont la couleur de maquillage est proche de la couleur cible. Cette fonction de coût est calculée en tirant parti du discriminateur de couleur faiblement supervisé. Par ailleurs, nous introduisons également une fonction de coût de de cohérence de l'arrière-plan, qui permet de contraindre le modèle génératif à conserver la couleur des objets non ciblés. En particulier nous proposons d'utiliser la couleur de peau estimée par le modèle discriminateur de couleur, pour calculer une fonction de coût contraignant le générateur à ne modifier que la couleur de maquillage et laisser inchangée celle de la peau.

Enfin nous présentons plusieurs résultats qualitatifs dans ce chapitre, illustrant la capacité de notre modèle CA-GAN à générer des images de maquillage photo-réaliste pour les rouges à lèvres et le maquillage des yeux. De plus, à la manière d'un moteur de rendu physique, la couleur du maquillage peut être explicitement contrôlée, tout en laissant inchangées les autres caractéristiques de l'image.

Nous montrons également que cette même méthode peut être utilisée pour estimer un transfert de maquillage. En effet, le discriminateur de couleur peut être utilisé pour estimer la couleur de maquillage à partir d'une image de référence fournie par un utilisateur. Ensuite cette couleur est utilisée par le générateur ainsi qu'une image de portrait de l'utilisateur pour automatiquement générer une image du maquillage transféré sur son visage. Nous comparons qualitativement et quantitativement nos résultats aux méthodes existantes de transfert de maquillage, et montrons que notre méthode permet de produire des résultats d'une qualité et d'un réalisme supérieurs.

Chapitre 3 : Rendu neuronal pour l'essayage virtuel à partir d'exemples en temps réel

Alors que nous avons introduit une nouvelle méthode de synthèse d'images réalistes de cosmétiques basée sur les modèles génératifs, certaines limites, comme la taille des réseaux de neurones utilisés, rendent cette approche inapplicable à l'essayage virtuel en temps réel sur mobile. En revanche, les technologies de réalité augmentée actuellement utilisées dans les applications de VTO sont basées sur des méthodes d'informatique graphique et peuvent être exécutées avec des taux de rafraîchissements en temps réel sur mobile. Cependant, ces méthodes graphiques nécessitent d'être paramétrées manuellement afin d'obtenir des textures de maquillage réalistes. De plus, cette étape d'ajustement manuelle du rendu est le plus souvent responsable du décalage existant entre l'apparence réelle et l'apparence virtuelle d'un produit cosmétique.

Dans ce chapitre, nous introduisons une méthode de rendu neuronal qui propose d'apporter des réponses à ce problème en automatisant la paramétrisation des moteurs de rendu de réalité augmentée à partir d'une image d'exemple. Ces travaux ont donné lieu à une publication au Workshop CVPR 2022 Artificial Image for Content Creation ainsi qu'à une publication à l'Eurographics 2022 Computer Graphics Forum. Nos contributions peuvent être résumées comme suit :

• Nous introduisons une nouvelle méthode pour l'essayage virtuel à partir d'exemples basée sur l'utilisation d'un réseau d'encodage graphique inverse, apprenant à projeter une image d'exemple dans l'espace des paramètres d'un moteur de rendu. Ce modèle est entraîné de manière auto-supervisée ce qui ne nécessite pas l'utilisation de données annotées.

• Afin de supprimer le besoin d'un moteur de rendu graphique différentiable dans les problèmes de graphique inverse, nous introduisons un modèle imitateur. Ce réseau de neurones génératif apprend à reproduire de manière fidèle le comportement d'un moteur de rendu non différentiable donné. Nous montrons que l'utilisation d'un tel imitateur permet de significativement augmenter la performance de l'encodeur graphique inverse.

• Nous évaluons la précision de notre approche en l'appliquant à deux problèmes courants de l'essayage virtuel : le maquillage et la coloration capillaire, tous deux construits sur des principes de rendus très différents.

Encodeur graphique inverse

Afin de permettre l'utilisation des technologies d'essayage virtuel à partir d'un exemple en temps réel sur les plateformes mobiles, nous proposons de remplacer l'utilisation de réseaux de neurones génératifs par une méthode hybride de rendu neuronal, combinant réseaux de neurones et informatique graphique. Étant donnée une image, les méthodes de graphique inverse cherchent à estimer la valeur de certains paramètres graphiques permettant de reproduire une apparence identique via un moteur de rendu. Dans notre cas, il nous est impossible d'utiliser l'approche conventionnelle de graphique inverse consistant à résoudre un problème d'optimisation pour chaque image d'exemple via une descente de gradient. Ainsi, nous proposons d'utiliser à la place un modèle d'Encodeur Graphique Inverse. Prenant la forme d'un réseau de neurones, cet encodeur apprend à projeter une image d'exemple dans l'espace des paramètres d'un moteur de rendu donné. Appliqué au cas de l'essayage virtuel du maquillage, l'encodeur graphique inverse permet d'estimer les paramètres du moteur de rendu graphique de maquillage virtuel qui doivent être utilisés pour reproduire l'apparence du maquillage sur une image d'exemple (par exemple couleur, opacité, brillance, etc.). Ces paramètres peuvent ainsi être utilisés pour rendre un maquillage virtuel en temps réel en faisant appel au moteur de rendu graphique, compatible avec les contraintes d'exécutions sur les plateformes mobiles. Puisque les paramètres de rendu du maquillage sont fixés entre chaque images d'une vidéo, notre encodeur graphique inverse ne nécessite qu'une seule utilisation par image d'exemple et son rôle est donc négligeable dans le temps de calcul nécessaire au rendu d'une vidéo d'essayage virtuel.

Notre modèle d'encodeur graphique inverse peut être entraîné grâce à une méthode auto-supervisée, s'affranchissant ainsi du besoin d'un jeu de données annotées. Ainsi, nous proposons de tirer aléatoirement des paramètres de rendu, puis de générer une image de maquillage synthétique en utilisant le moteur de graphique inverse ainsi qu'une image de portrait aléatoire. À partir de cette image, l'encodeur graphique inverse apprend à estimer les paramètres de rendu utilisés via une fonction de coût graphique, correspondant à une distance euclidienne dans l'espace des paramètres de rendu. De plus, nous contrôlons entièrement la distribution des paramètres de rendu lors de l'apprentissage, ce qui permet à notre approche d'être plus robuste aux couleurs de maquillages rarement représentées dans les jeux de données réels, puisqu'elles peuvent facilement être introduites dans le cadre de notre approche d'apprentissage auto-supervisé.

Réseau imitateur pour l'apprentisage de rendu dérivable

Une particularité des moteurs de rendu utilisés dans le domaine de la réalité augmentée est le fait qu'ils utilisent des modèles de matériaux simplifiés qui ne sont en pratique pas dérivables. Cela conduit à l'impossibilité d'utiliser le moteur de rendu durant la phase d'apprentissage, ce qui limite la précision de l'encodeur graphique inverse. Pour cette raison, nous introduisons une nouvelle méthode pour entraîner un modèle Imitateur apprenant automatiquement à reproduire le comportement d'un moteur de rendu non dérivable donné, via un modèle génératif. En particulier, nous introduisons une nouvelle fonction de coût de sensibilité, permettant d'assurer que le réseau imitateur apprend une représentation continue de chaque paramètre de rendu. Ainsi, cette fonction de coût impose au réseau imitateur un taux de variation comparable à celui du moteur de rendu pour chaque paramètre graphique, ce qui ne nécessite pas l'utilisation d'un moteur de rendu dérivable.

Puisque l'imitateur est un réseau de neurone, il est par définition dérivable et peut être utilisé pour la rétropropagation du gradient lors de l'apprentissage de l'encodeur graphique inverse. Cela permet alors d'introduire une nouvelle fonction de coût de rendu en utilisant une similarité perceptuelle, imposant à l'encodeur graphique inverse d'estimer des paramètres de rendu permettant de générer une image proche de l'image d'exemple initiale. Nous montrons ainsi que l'utilisation d'un réseau imitateur permet d'accroître significativement les performances de l'encodeur graphique inverse.

Enfin, nous démontrons que notre méthode peut être utilisée pour l'essayage virtuel de différentes catégories de produits cosmétiques. Ainsi, nous illustrons ses performances pour les catégories du rouge à lèvres, fard à paupières et coloration capillaire. Pour chaque catégorie, nous comparons qualitativement et quantitativement notre approche à d'autres méthodes de rendu neuronal et montrons que notre méthode permet d'atteindre des résultats de meilleure qualité, en temps réel et en haute définition. De plus, comparativement à l'approche basée sur les modèles génératifs que nous introduisons dans le chapitre 2, cette méthode permet de contrôler des éléments de brillance et de texture en plus de la couleur, permettant un rendu plus réaliste de certains produits de maquillage comme les gloss et les rouges à lèvres mats.

Notre méthode de rendu neuronal peut donc être utilisée par des artistes graphiques afin de créer des rendus réalistes à partir d'une image de référence d'un produit. Pour chaque nouveau cosmétique produit créé, cette technologie permet d'accélérer la création de l'essayage virtuel et permet d'accroître la qualité du rendu. De plus, notre méthode permet également de nouvelles expériences d'utilisateurs, dans lesquelles les consommateurs peuvent essayer virtuellement de nouveaux produits inconnus à travers l'utilisation d'une image les inspirant issue des réseaux sociaux.

Chapitre 4 : Capture neurale de matériaux cosmétiques

Les méthodes que nous avons introduites dans les chapitres précédents permettent de réaliser un essayage virtuel à partir d'images dont les conditions d'acquisition ne sont pas contrôlées. Bien qu'elles permettent de nouvelles applications, ces méthodes souffrent de plusieurs limites dans leur capacité à reproduire l'apparence réelle des produits cosmétiques. En effet, l'apparence d'un produit de maquillage sur une image dont les conditions d'acquisition sont non contrôlées est ambiguë et largement impactée par des facteurs tels que les conditions d'illumination, l'épaisseur de maquillage appliqué pour la couleur de la peau. Par ailleurs, les entreprises de cosmétiques désireuses de produire des essayages virtuels réalistes ont plus facilement accès aux produits cosmétiques en laboratoire qu'à des images de référence des produits appliqués sur le visage. Cela appelle donc à construire de nouvelles méthodes permettant de capturer l'apparence des cosmétiques en laboratoire de manière plus précise et à plus grande échelle. Dans ce chapitre, inspirés par le domaine de la capture de l'apparence des matériaux, nous étudions de nouvelles techniques permettant de mesurer l'apparence d'un échantillon de produit cosmétique en laboratoires. Nos contributions peuvent être résumées comme suit :

• Nous introduisons un nouveau système d'acquisition d'images in vitro basé sur une application automatisée des cosmétiques en film combiné à un système d'imagerie contrôlé.

• Pour illustrer l'utilité de ce nouveau type de méthode d'acquisition de données, nous présentons une méthode de capture neural de l'apparence des matériaux à partir d'images in vitro. Cette méthode est construite sur la base de notre méthode d'encodeur graphique inverse et peut être entraînée sans images annotées.

Système d'acquisition d'images de cosmétiques in vitro

Par opposition à des matériaux comme le bois ou la pierre, les produits cosmétiques ne peuvent être mesurés directement. Ils sont généralement vendus sous forme solide ou liquide, et leur apparence sous cette forme peut être trompeuse. En effet, les cosmétiques sont ensuite appliqués sur la peau en couche fine, et leur apparence finale dépend à la fois des propriétés de couleur et de transparence du produit cosmétique, de l'épaisseur de l'application ainsi que de la couleur de la peau sur laquelle ils sont appliqués. Afin de pouvoir mesurer l'apparence finale sur la peau de manière précise, il est nécessaire de pouvoir fixer ces différentes sources de variabilité. Nous introduisons tout d'abord un système contrôlé d'application des produits cosmétiques. Au lieu d'appliquer les cosmétiques sur la peau, nous proposons d'utiliser un substrat artificiel dont la couleur est fixe et contrôlée, ce qui est davantage compatible avec des mesures de produits à grande échelle, qui sont nécessaires pour l'application dans le cadre de l'industrie cosmétique. En particulier, nous proposons d'utiliser des cartes de contrastes traditionnellement utilisées dans l'industrie de la peinture et des encres. Ces cartes possèdent typiquement un fond noir et blanc dont la couleur et la brillance sont contrôlées, permettant ainsi d'obtenir une information visuelle sur l'opacité du produit appliqué. Une fois le substrat fixé, le produit cosmétique doit être appliqué dans des conditions contrôlées. Les applications manuelles sont exclues car l'apparence finale du cosmétique est largement dépendante de l'homogénéité ainsi que de la pression d'application. Pour contourner ce problème nous proposons d'utiliser un applicateur automatique de film tel qu'utilisé dans l'industrie de la peinture. Ce type d'outil permet d'obtenir une application répétable des cosmétiques grâce une pression contrôlée par un moteur ainsi qu'un système d'aspiration du substrat.

Enfin, l'acquisition d'images doit permettre de capturer l'ensemble de l'apparence du produit cosmétique, de la couleur à la brillance en passant par l'opacité. Là où certains systèmes utilisent une caméra rotative ou un ensemble de caméras pour capturer l'apparence des matériaux sous divers angles, nous proposons SUMMARY plutôt de positionner l'échantillon sur une surface courbe, et de capturer une unique image dont la position relative de la caméra, de l'illuminant et de l'échantillon sont contrôlées. Ainsi, il est possible de capturer simultanément l'apparence du matériau sous plusieurs angles, permettant d'observer des caractéristiques telles que la brillance ou l'apparence métallique due à la présence de nacres dans certains cosmétiques. De plus, un tel système sans éléments rotatifs et utilisant une unique caméra peut être reproduit à moindre coûts et utilisé pour des captures rapides, compatibles avec les mesures à grande échelle nécessaires dans le cadre de l'industrie cosmétique.

Réseau encodeur graphique in vitro pour la capture des matériaux Afin d'illustrer l'utilité de notre système d'acquisition de données cosmétiques, nous proposons une méthode de capture neurale de l'apparence des matériaux à partir d'images in vitro. Les méthodes conventionnelles de capture des matériaux s'appuient sur l'utilisation de modèles physiques pour calculer les paramètres du matériau à partir d'images de l'échantillon et ainsi estimer des représentation paramétriques telles que la SVBRDF, pour spatially-varying bi-directional reflectance distribution function. Cependant, dans le cas des produits cosmétiques, les moteurs de rendus utilisés pour l'essayage virtuel en réalité augmentée sont basés sur des modèles de matériaux simplifiés et spécifiques, rendant inutilisables l'approche physique conventionnelle.

Ainsi nous proposons une méthode utilisant l'apprentissage machine pour apprendre à automatiquement paramétriser un moteur de rendu graphique à partir d'une image in vitro, indépendamment du modèle de matériau utilisé. Une difficulté de notre problème est que pour chaque cosmétique mesuré in vitro, nous ne disposons pas de la paramétrisation correspondante pour le moteur de rendu graphique, ce qui rend impossible l'utilisation d'une méthode supervisée. À la place nous proposons d'utiliser notre encodeur graphique inverse introduit dans le chapitre 3, ainsi qu'une base de données d'images de portrait.

Ainsi, pour chaque rouge à lèvres mesuré avec notre système d'imagerie in vitro, nous utilisons un ensemble d'images de portrait où le même produit a été appliqué sur les lèvres du sujet. Notre encodeur graphique inverse est utilisé pour estimer les paramètres de rendu à partir de ces images de portraits qui sont ensuite moyennés. Puis nous proposons d'entraîner notre encodeur graphique in vitro à estimer des paramètres graphiques identiques à partir de l'image de laboratoire. Une telle méthode a l'avantage de pouvoir être entraînée sans image annotée, et indépendamment de la méthode de rendu et du modèle de matériau utilisé. Ainsi, à partir d'une unique image capturée par notre système in vitro, ce nouvel encodeur est capable d'estimer la paramétrisation du moteur de rendu de cosmétiques pour reproduire une apparence similaire en réalité augmentée, accélérant ainsi la création de l'essayage virtuel lors de la création des nouveaux produits cosmétiques. Nous illustrons notre approche sur un ensemble de rouges à lèvres et montrons qualitativement que notre modèle est capable de capturer des couleurs et brillances de rouges à lèvres variés de manière précise.

Chapitre 5 : Applications industrielles

Dans ce chapitre, nous décrivons comment les méthodes introduites dans cette thèse ont été utilisées dans diverses applications industrielles pour le marché des cosmétiques. La plupart de ces applications reprennent directement les méthodes que nous avons présentées, ou bien introduisent de légères modifications. Ces applications industrielles peuvent être résumées comme suit :

• Nous montrons comment notre modèle génératif de synthèse d'images de cosmétique est utilisé pour la création automatique d'interfaces utilisateurs dans le cadre des produits cosmétiques personnalisés.

• Nous introduisons un système de numérisation de la couleur de cheveux basé sur notre méthode d'encodeur graphique inverse. Ce système permet de capturer la couleur d'un échantillon de cheveux afin de pouvoir le reproduire dans un environnement virtuel afin d'accélérer le développement des produits de coloration capillaires.

• Nous montrons comment notre encodeur graphique inverse peut être utilisé pour créer un système de classification non supervisé des produits cosmétiques à partir d'images d'exemple.

Modèle génératif pour la création automatique d'interfaces utilisateurs

Alors qu'une large partie des ventes de cosmétiques est réalisée sur les sites de e-commerce, le choix du produit est traditionnellement assorti d'une image d'exemple où le produit est appliqué sur le visage d'un mannequin. Le rôle de telles images est d'aider le consommateur à comprendre l'apparence d'un produit cosmétique sans pour autant devoir l'essayer. Réaliser de telles images pour les centaines de produits lancés chaque année, et pour l'ensemble des couleurs disponibles dans chaque gamme de produit, représente un coût important pour les industriels de la cosmétique. En particulier, l'essor des produits cosmétiques personnalisés décuple les possibilités de couleur qui rendent impossible le fait de réaliser des séances photos pour chaque teinte possible. Même si notre modèle génératif introduit dans le chapitre 2 est initialement conçu pour l'essayage virtuel destiné aux consommateurs, il peut également être utilisé dans le cadre de ce problème.

En effet, notre modèle CA-GAN est capable de modifier la couleur d'un rouge à lèvres dans une image vers une nouvelle couleur cible. A partir d'une unique image de rouge à lèvres issu d'une séance photo, ce modèle peut donc être utilisé dans le but de générer une image d'exemple réaliste et en haute définition pour une autre teinte au sein de la même gamme de produit. Cette méthode permet ainsi d'automatiser la génération des images d'exemple utilisées dans les interfaces utilisateurs. Nous présentons en détail comment cette méthode a été utilisée pour générer l'interface de l'appareil Rouges sur Mesure Perso permettant de créer des rouges à lèvres à la couleur personnalisée à partir de cartouches de rouge à lèvres liquides monochromes. Ainsi notre système peut être utilisé pour adapter automatiquement les images d'exemple de l'interface aux différentes teintes de rouge à lèvres que cet appareil est capable de créer en fonction des cartouches de couleurs utilisées.

Numérisation de la couleur de cheveux par encodeur graphique inverse L'apparence des cheveux est un phénomène complexe dû à la géométrie du cheveu, ainsi qu'au trajet de la lumière dans les différentes fibres. Pour cette raison, reproduire une couleur de cheveux spécifique dans un moteur de rendu est un défi qui demande une expertise en informatique graphique ainsi qu'un travail d'ajustement manuel. De plus, la capacité à reproduire virtuellement une mèche de cheveux donnée est un élément essentiel pour le développement des colorations capillaires, permettant de visualiser une coloration sous différentes conditions, ou de comparer plusieurs formules dans le temps.

Nous proposons ainsi un système de numérisation de la couleur de cheveux inspiré sur notre méthode d'encodeur graphique inverse présentée dans le chapitre 3, combinant un moteur de rendu de path tracing ainsi qu'un encodeur graphique inverse et un système d'imagerie d'échantillons de mèches de cheveux. Ce système de capture de la couleur des cheveux a été présenté lors d'une publication à la conférence Electronic Imaging 2022.

Nous utilisons un moteur de rendu de path tracing permettant de synthétiser des images réalistes de cheveux, dont l'apparence est contrôlée par des paramètres physiques tel que le diamètre du cheveu, la concentration en mélanine ou en pigments de coloration. Un tel moteur de rendu n'est pas dérivable, ce qui en fait un cas d'application pour notre méthode d'encodeur graphique inverse. Ainsi nous proposons d'utiliser notre moteur de rendu pour générer des images de mèches de cheveux, et de les utiliser pour entraîner un encodeur graphique inverse capable d'estimer les paramètres physiques du cheveu utilisés pour synthétiser l'image. Puis un appareil d'imagerie contrôlé est utilisé afin de capturer des images de mèches de cheveux réelles, sur lesquelles notre encodeur graphique inverse peut être utilisé.

Nous montrons donc qu'à partir d'une mèche de cheveux, notre système est capable d'estimer les paramètres physiques à l'origine de l'apparence du cheveux, permettant ainsi permet de générer des images synthétiques de cheveux de couleur similaire dans un environnement virtuel. Utilisée dans le cadre du développement de coloration capillaire, cette technologie permet de numériser une formule chimique sous la forme d'un résultat de couleur pouvant être rendu dans différents environnements lumineux ou avec divers types de cheveux. Il est également possible d'utiliser cette méthode pour comparer différentes colorations capillaires entre elles en comparant les paramètres de rendus obtenus grâce à notre système sur chacune des mèches de cheveux colorées avec différentes formules de coloration.

Chapter 1

Introduction

This thesis is done through a collaboration between L'Oréal Research and Innovation and Télécom Paris, and was done between 2019 and 2022. This research is supervised by Isabelle Bloch and Pietro Gori at Télécom Paris, and Matthieu Perrot for L'Oréal.

Context and Motivations

Beauty Tech: Cosmetics and Information Technologies

Cosmetics Market and e-commerce The beauty market is organized around several product categories, each addressing a precise goal. Thus, cosmetics products can be found in an immense variety with categories as diverse as makeup, skincare, haircare, hair dye, hygiene products and fragrance. In particular, makeup products, that we will particularly discuss in this work as illustrated exist in a diversity of color and textures, as illustrated in Figure 1.1. Cosmetics is also a very dynamic global market, estimated at $200 Bn in 2020, according to [109]. Across all cosmetics categories, the development of e-commerce has been an important growth factor, as digital sales now account for 22% of sales in the beauty market in 2020 [109]. Furthermore, e-commerce is a rapidly growing field, with a 62% increase from 2019 [109]. These digital sales usually take place on cosmetics brands' websites or large digital stores. More recently, the development of social commerce has brought sales directly into social media applications, accounting for 12% of sales in China [109]. However, digital sales of cosmetics poses challenges to equal the physical store experience, as digital consumers cannot physically try products, nor be guided by a beauty adviser.

Beauty Tech

The rapid development of digital sales has been largely supported by technologies inspired by new capabilities in mathematics and computer sciences. The name Beauty Tech denotes applications of these technologies to the field of cosmetics. Even though it is not regularly encountered in the academic world, it is an active area of research in the industry. Beauty Tech addresses a large variety of problems, from software to accelerate laboratory research, to consumer diagnostic tools and cosmetics Virtual Try-On. For instance, computational chemistry models are used to accelerate new formulas discovery, by attempting to predict properties of a given formula composition [START_REF] Gomes | Space-filling designs for mixtures[END_REF][START_REF] Goussard | A new machine-learning tool for fast estimation of liquid viscosity. application to cosmetic oils[END_REF], or using robotics and machine learning to optimize formula compositions [START_REF] Cao | Optimization of formulations using robotic experiments driven by machine learning DoE[END_REF]. Furthermore, machine learning based diagnostic tools are used for consumer hair color [START_REF] Bokaris | Hair tone estimation at roots via imaging device with embedded deep learning[END_REF] and skin analysis [START_REF] Flament | An automatic procedure that grades some facial skin structural signs: agreements and validation with clinical assessments made by dermatologists[END_REF][START_REF] Kips | Beyond color correction: Skin color estimation in the wild through deep learning[END_REF], in order to recommend adapted or personalized cosmetics for each customer. These novel methods allow offering new consumer experiences on digital retail platforms, helping consumers to better find the cosmetics products that suit their needs and aspirations. In this research work, we focus on the problem of cosmetics Virtual Try-On (VTO), which a widespread technology to support sales in e-commerce.

Virtual Try-On for Cosmetics

Augmented Reality Applications Augmented reality (AR) [START_REF] Ronald T Azuma | A survey of augmented reality[END_REF][START_REF] Carmigniani | Augmented reality technologies, systems and applications[END_REF] is a field that aims at superimposing computer-generated elements on top of a real-world environment in real-time. As opposed to Virtual Reality applications that immerse users in a fully virtual world, AR proposes to realistically blend a digital world into a person's perception, where additional environment information can be displayed, or environment modification can be simulated.

Conventional augmented reality systems are usually based on a two-step pipeline. First, an environment perception model is used to estimate the position of the virtual object to render in the image. Then the virtual object is rendered using computer graphics techniques, and blended in the original image. This scene perception is usually performed using machine learning based computer vision models, for tasks such as facial landmarks tracking [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF], hand tracking [START_REF] Wang | RGB2Hands: real-time tracking of 3D hand interactions from monocular rgb video[END_REF][START_REF] Zhang | MediaPipe hands: On-device real-time hand tracking[END_REF], body pose estimation [START_REF] Bazarevsky | BlazePose: On-device real-time body pose tracking[END_REF], or scene depth estimation [START_REF] Kopf | Robust consistent video depth estimation[END_REF]. This is a critical step in order to realistically insert a virtual object in a real scene.

Applications in this domain are diverse and widely spread, from medical training [START_REF] Esther Z Barsom | Systematic review on the effectiveness of augmented reality applications in medical training[END_REF] to advertising [START_REF] Tsai | Inspection or play? a study of how augmented reality technology can be utilized in advertising[END_REF], manufacturing and repair [START_REF] Feiner | Knowledge-based augmented reality[END_REF][START_REF] Pang | Assembly design and evaluation in an augmented reality environment[END_REF], or art installations [START_REF] Bokaris | Gardien du temple: An interactive installation involving poetry, performance and spatial augmented reality[END_REF]. AR systems use a large variety of display technologies, such as headset [START_REF] Matthew G Hanna | Augmented reality technology using microsoft hololens in anatomic pathology[END_REF] or projectors [START_REF] Bokaris | Light me up: An augmented-reality projection system[END_REF]. However, mobile devices/smartphones are currently the most widely spread platforms for AR applications. Indeed, they embed both high-quality sensor devices (camera, accelerometers, etc.) and computational capabilities without the cost of buying an additional device. For this reason, most of the research in this field focus on reaching real-time capabilities with limited computation resources [START_REF] Bazarevsky | BlazePose: On-device real-time body pose tracking[END_REF][START_REF] Bazarevsky | BlazeFace: Sub-millisecond neural face detection on mobile GPUs[END_REF][START_REF] Kartynnik | Real-time facial surface geometry from monocular video on mobile GPUs[END_REF].

Virtual Try-On in Cosmetics Building on the success of augmented reality, Virtual Try-On(VTO) is a popular application that has rapidly spread across digital stores and social media applications. Virtual try-on leverages AR technologies in order to let consumers try products from their home, visualizing items in their physical environment, such as a piece of furniture standing in their home, or glasses wear on their faces. In particular, VTO is well adapted to the digital retail of cosmetics, where a smartphone screen and front camera are used as a pocket mirror in which users can see their image wearing a given lipstick or eye shadow. They can browse through multiple products, selecting ones that match their style and aspirations. Building on recent success in hair segmentation [START_REF] Levinshtein | Real-time deep hair matting on mobile devices[END_REF], 3D facial landmarks tracking [START_REF] Kartynnik | Real-time facial surface geometry from monocular video on mobile GPUs[END_REF], and mobile neural network inference [START_REF] Smilkov | js: Machine learning for the web and beyond[END_REF], current VTO engines can run in real-time on mobile devices. They deliver an interactive experience, simulating hair dying [START_REF] Redken | Redken virtual hair color try-on[END_REF] or makeup [START_REF]L'oréal paris makeup virtual try on[END_REF] directly in the browser.

In this research work, we will mainly consider virtual try-on for makeup, as this product category covers a large variety of appearances, with many color and texture variations, from matte to glossy and metallic finish. Moreover, makeup is certainly the category of cosmetics with the most variety in appearance, with diverse colors and textures, as seen in Figure 1.1. However, to demonstrate the generalization capabilities of our approach, we will also illustrate the performance of our methods for hair dye virtual try-on, but with limited discussion and experiments.

Current limitations Even though cosmetics virtual try-on has seen a large consumer success in recent years, it suffers from several limitations. First of all, each time a new cosmetics product is created, the process of creating the corresponding VTO is time-consuming and requires expert knowledge. Indeed, once a new product has been created by the laboratory, a computer graphics artist needs to manually define the corresponding set of rendering parameters for this given product. This process is illustrated in Figure 1.2. This is a tedious task that requires to carefully set multiple parameters. Furthermore, this procedure needs to be repeated across hundreds of products each year, as novel colors and textures for lip, skin, and eye makeup are launched for multiple brands.

Furthermore, in some cases, a large gap can be observed between the appearance of the simulated and the real cosmetics, as visible in Figure 1.3. A general goal across this research work is to reduce this gap, bringing closer together the physical and virtual experience of cosmetics. This current discrepancy can be due to limitations in the chosen rendering method. Indeed, since the VTO needs to run in real-time on mobile devices browsers, state-of-the-art rendering methods such as stochastic ray tracing [START_REF] Robert L Cook | Distributed ray tracing[END_REF][START_REF] Jensen | Monte carlo ray tracing[END_REF][START_REF] Steven G Parker | GPU ray tracing[END_REF] can generally not be employed. Instead, more basic rendering principles with simplified material models are used, to ensure real-time execution. In addition, the realism of the VTO is highly dependent on the choice of rendering parameters by the computer graphics artist. In practice, this seems to be a key factor of error in the virtual try-on pipeline. For this reason, it is desirable to develop new methods to accelerate and improve the accuracy of this cosmetic products digitization step.

Moreover, some virtual try-on failures are caused by complicated lighting on the scene that has to be captured and taken into account in the makeup rendering. Since illuminant capture for augmented reality is an active field that is not specific to the rendering of cosmetics we will not explore this direction in this research work. However, advances in this domain will be directly applicable to improve cosmetics virtual try-on realism.

Finally, other limitations can be found in the current user experience of cosmetics virtual try-on. Indeed, the conventional VTO experiences on a digital retail store let the consumer choose across a fixed, preestablished number of cosmetics that can then be purchased. However, as described earlier, the rise of social commerce urges for novel user experiences, where consumers could directly try shades from inspirational images on social media. This requires developing systems able to identify product features and product references in example images.

Generative Models and Neural rendering

Generative machine learning In the field of machine learning, a novel category of models has recently emerged, bringing new perspectives for image synthesis tasks. Generative Adversarial Networks(GANs) were introduced in the now seminal paper [START_REF] Goodfellow | Generative adversarial networks[END_REF], opening new capabilities for realistically synthesizing new data points. The original idea consists in using a neural network called the discriminator, and a set of example images to learn to classify between real and synthesized images. This learned photorealism function is then used as a loss to simultaneously train a generator network to synthesize realistic images. This powerful idea has since been improved, and can now be used to synthesize high-resolution portrait images [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Alias-free generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] which are indistinguishable from real images. Furthermore, the generative network approach has been rapidly extended to image-to-image translation problems where the generator takes an image as input. This formulation allows addressing new tasks such as avatar generation [START_REF] Wolf | Unsupervised Creation of Parameterized Avatars[END_REF], image inpainting [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF], or image face aging [7,[START_REF] Despois | AgingMapGAN (AMGAN): High-resolution controllable face aging with spatially-aware conditional gans[END_REF][START_REF] Zhang | Age progression/regression by conditional adversarial autoencoder[END_REF]. This novel generative network approach offers new perspectives for creating a more realistic virtual try-on experience for cosmetics.

However, compared to conventional rendering methods, GANs suffer from several identified limitations. First, compared to physically-based models, they lack fine control over the synthesized images. Most often, the synthesized image can be modified only through features that are not interpretable, and highly entangled with other factors of variations. In addition, most image-to-image translation models require access to large labeled databases for supervised training, and generative models are highly dependent on the training data distribution, leading to artifacts and glitches for classes that are under-represented. This makes GAN-based solutions difficult to implement in practice.

Furthermore, one particularity of the virtual try-on problem is that the synthesized cosmetics must be realistically inserted in an existing consumer image or video sent by the consumer. However, the majority of GAN-based methods for portrait image editing use unconditional GAN architectures, such as StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], that are trained to generate realistic portrait images from latent codes. Modifying a source portrait image using a StyleGAN model requires finding a latent code that reconstructs the source image and manipulating this code to generate a modified image [2,4]. Still, during this source image projection step, many details of the image are lost, such as skin detail or portrait background, which is not acceptable for VTO applications. Finally, GANs are difficult to use for real-time video inference, due to slow inference speed and temporal artifacts.

Neural Rendering Building on the success of GANs, the novel field of neural rendering is rapidly developing. This hybrid approach proposes to combine generative models with traditional computer graphics techniques. While the machine learning approach allows us to statistically learn from real example images from improved realism, computer graphics components enable to incorporate physical knowledge into the image synthesis problem. The work in [START_REF] Tewari | State of the art on neural rendering[END_REF] presents a complete overview of this emerging field. Compared to purely generative models, neural rendering often focuses on controllable image synthesis, with success in tasks such as portrait relighting [START_REF] Pandey | Total Relighting : Learning to Relight Portraits for Background Replacement[END_REF][START_REF] Sun | Single image portrait relighting[END_REF], or facial reenactment [START_REF] Kim | Deep video portraits[END_REF][START_REF] Thies | Deferred neural rendering: Image synthesis using neural textures[END_REF]. Another direction of work consists of using generative models to improve conventional computer graphics pipelines. For instance, SVBRDF estimation from uncontrolled example images [START_REF] Guo | Materialgan: Reflectance capture using a generative svbrdf model[END_REF][START_REF] Henzler | Generative Modelling of BRDF Textures from Flash Images[END_REF] and denoising of ray tracing images [START_REF] Khademi Kalantari | A machine learning approach for filtering monte carlo noise[END_REF][START_REF] Xu | Adversarial monte carlo denoising with conditioned auxiliary feature modulation[END_REF] both use generative models for auxiliary tasks that accelerate the creation of synthetic images. To the best of our knowledge, the neural rendering approach, combining generative and computer graphics techniques, has not been applied to cosmetics virtual try-on.

Objectives

The primary applicative goal of this thesis is to enhance the quality of cosmetics virtual try-on for consumers, bringing it closer to the physical store experience, and introducing new digital retail possibilities. This improvement can cover several aspects of the VTO pipeline, corresponding to different methodological directions.

First, new rendering methods can be developed to improve the realism of the synthesized cosmetics images. By building on the success of generative networks, we aim at creating photo-realistic rendering methods for cosmetics. However, generative methods must be amended to overcome some of the current limitations compared to conventional rendering, such as a lack of control in the synthesized image, or the need for large labeled databases. Thus, we aim at creating new generative methods for which cosmetics appearance attributes can be controlled explicitly as in existing computer graphics approaches, and for which new unseen products can be renderer without retraining the entire model. In addition, unlike many image synthesis methods for portraits, our approach needs to preserve the details of the source image such as background or skin details, and need to be robust to extreme face poses such as seen on social media images.

Secondly, other auxiliary tasks, which can contribute to improving virtual try-on, also benefit from the neural rendering approach. For instance, improving and accelerating the creation of new cosmetics product instances in VTO engines can contribute to largely reducing the gap between real and synthetic cosmetics images. Thus, inspired by material capture tasks, we aim to develop novel methods to compute cosmetics rendering from example images or controlled in-vitro laboratory data, relaxing the need for manual parametrization by computer graphics artists.

Furthermore, neural rendering methods could be used to augment virtual try-on experiences with additional features, such as trying a cosmetic product from reference inspirational images. Such additional functionalities would improve the current user experience and contribute to the development of VTO applications. This require to develop new methods that can accurately capture the complex and various appearance of cosmetics.

Moreover, a long-sought capability in cosmetics is the ability to estimate the appearance of a cosmetic given in vitro data. Indeed, compared to in vivo experiments which require to apply cosmetics on persons to observe their appearance, in vitro measurements can be done more rapidly and at a larger scale in laboratories. Introducing methods capable of estimating cosmetics appearance from vitro data would accelerate the development cycle of cosmetics in laboratories and create new perspectives for the creation of personalized cosmetics.

Finally, the new methods that we introduce must take into account the practical constraints of virtual try-on applications. Thus, our proposed techniques must be able to generalize and scale across various cosmetics categories (lipstick, eye-shadow, hair dying, etc.) and thousands of cosmetics references. Furthermore, as VTO applications are generally executed in real-time on mobile devices browsers, the introduced methods must take into account computational constraints.

Thesis Structure and Contributions

In this section, we briefly present the organization of this document and stress our contributions in each chapter. First, we introduce in Chapter 2 a novel makeup synthesis method based on generative networks in which the makeup color can be explicitly controlled, similarly to a physically-based renderer. Our model obtains photorealistic results on lips and eyes makeup and can be trained from unlabeled images. Furthermore, it can also be used as a makeup style transfer method in which the user can have fine control.

Then, in Chapter 3, we introduce a neural rendering approach for virtual try-on of cosmetics in realtime on mobile devices. Our method enables new applications where consumers can virtually try-on a novel, unknown cosmetic product from an inspirational reference image on social media. Our approach is based on a novel inverse graphics encoder network that learns to map a single example image into the space of parameters of a computer graphics rendering engine. This model is trained using a self-supervised approach which does not require labeled training data.

Next in Chapter 4 we propose a novel method for accelerating the digitization of new cosmetics products in virtual try-on applications. Inspired by the field of material capture, we introduced a controlled application and imaging system for cosmetics that can capture information on the appearance of a specific cosmetics product. Furthermore, we illustrated how this novel type of cosmetics image could be used to estimate the final appearance of cosmetics on the face using a neural rendering approach building on our architecture introduced in Chapter 3.

Moreover, in Chapter 5 we describe how the methods introduced in this thesis have been used in various industrial applications for the cosmetics market. Most of these applications are directly using our models with little adaptations to fit the specificity of each task. In particular, we introduce an automatic tool for generating novel images for digital retail interfaces, a hair digitization method for capturing the appearance of a physical hair sample, and a zero-shot lipstick classification system able to recommend a product in a given brand to reproduce the makeup appearance on an example image.

Finally in Chapter 6 we conclude on the contributions of neural rendering for cosmetics virtual try-on. We emphasize the limitations of the proposed methods and introduce perspectives for future work in this domain.

Chapter 2

Controllable Generative Model for Makeup Virtual Try-On

As a first step in our research, we propose to consider generative models as a new category of renderers to synthesize cosmetics images. Inspired by the recent success of generative adversarial networks models to synthesize realistic images, we aim at using this category of models to produce realistic images of makeup from a source portrait image. However, existing generative methods have missing capabilities that are key in cosmetics rendering applications, such as the ability to control the appearance of the rendered makeup color through a set of rendering parameters. Besides, training a controllable generative network with existing methods require a large number of labeled images, which are not available in current research makeup datasets. In this chapter we present our research on this subject that has led to a publication at the Advance in Image Manipulation Workshop of ECCV 2020.

In this work, we propose a GAN-based makeup synthesis in which the makeup color can be explicitly controlled, similarly to a physically-based renderer. Our model obtains photorealistic results on lips and eyes makeup. It can also be used as a makeup style transfer method in which the user can have fine control over the color of the synthesized makeup, as illustrated in Figure 2.1. Our main contributions can be summarized as follows:

• We propose CA-GAN, a color aware conditional GAN that can modify the color of specific objects in the image to an arbitrary target color. This model is based on the use of a color regression loss combined with a novel background consistency loss that preserves the color attributes of non-targeted objects.

• To remove the need for costly color labeled data, we introduce weakly supervised learning for GAN based controllable synthesis. This method enables to learn a controllable synthesis of complex objects, and only requires a weak proxy of the image attribute that we desire to modify.

• For the first time, we introduce a quantitative analysis of color accuracy and makeup style transfer performance for lipsticks cosmetics using ground-truth images and demonstrate that our model outperforms state of the art.

We review related work on generative models and makeup synthesis in Section 2.1. Then, we introduce our weakly supervised method for training a color controllable generative network in Section 2.2. To support the training and evaluation of this model, we introduce novel makeup datasets with higher resolution and diversity in Section 2.3. The implementation of our model is described in Section 2.4 and results are presented in Section 2.5. Finally, limitations and perspectives for future work are detailed in Sections 2.6 and 2.7.

Related Work

GANs for Image-to-Image Translation. The idea of Generative Adversarial Networks (GANs) was initially introduced in [START_REF] Goodfellow | Generative adversarial networks[END_REF], and consists in jointly training a generator network to synthesize data samples 25 from random noises and a discriminator that learns to classify realistic data. The discriminator is used to learn a realism estimation function, which is used to enforce a realism constraint to the generator network using an adversarial loss. The GAN approach has since been rapidly improved to generate more complex and various data, such as high-resolution portrait images [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. These significant advances have been made possible thanks to the introduction of more stable adversarial losses [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF], and novel model architectures such as using adaptive instance normalization layers [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF].

While the initial GAN approach allows generating new data samples from random noises, the GAN approach as then been extended to image-to-image translation problems using conditional GANs that take an image and a set of conditions as inputs [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF]. However, this method initially required the use of pixelaligned image pairs for training, which is rare in practice. To overcome this limitation, the cycle consistency loss was introduced in [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF], allowing to train GAN for image-to-image translation from unpaired images. This enables to train generative networks for a large variety of tasks where aligned data do not exist in practice. The use of GAN for solving image-to-image translation problems has later been extended to many different applications such as image completion [START_REF] Iizuka | Globally and locally consistent image completion[END_REF], super-resolution [START_REF] Ledig | Photo-realistic single image super-resolution using a generative adversarial network[END_REF] or video frame interpolation [START_REF] Jiang | Super slomo: High quality estimation of multiple intermediate frames for video interpolation[END_REF].

Controllable Image Synthesis with GANs. In the field of GANs, efforts have recently been made to develop methods that can control one or more attributes of the generated images. A first research direction gathers works that attempt to implicitly control the model outputs in an unsupervised manner, through operations in the latent space. Among them, InfoGAN [START_REF] Chen | Infogan: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] aims to learn interpretable representations in the latent space based on information regularization, while the method in [START_REF] Voynov | Unsupervised discovery of interpretable directions in the gan latent space[END_REF] attempts to identify directions in a GAN model latent space that are semantically meaningful. Furthermore, StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] is an architecture that leverages adaptive instance normalization layers [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] to implicitly diversify and control the style of generated images at different scales, achieving impressive results on the difficult category of portrait images. However, while these methods introduce a meaningful modification of the generated images, they have no control over which attributes are edited. Hence, the meaning of each modified attribute is described a posteriori by the researchers while observing empirically the induced modification ("zoom", "orientation", "gender", etc.).

On the other hand, other studies attempt to provide explicit control of the generated images through supervised methods that leverage image labels. For instance, Fader networks [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF] achieve continuous control along a specific class attribute by using adversarial training in the latent space. Besides, the StarGAN architecture in [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[END_REF] extends image-to-image translation to multiple class domains. This provides control over multiple attributes simultaneously, each being encoded as a discrete class. Furthermore, the introduction of spatially adaptive normalization layers [START_REF] Park | Semantic image synthesis with spatially-adaptive normalization[END_REF] allows training conditional GANs with spatial information such as local aging control on portrait images [START_REF] Despois | AgingMapGAN (AMGAN): High-resolution controllable face aging with spatially-aware conditional gans[END_REF].

Furthermore, many recent works build on the success of StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] for portrait image synthesis and propose to manipulate the latent space of a pre-trained StyleGAN model to achieve control on various attributes such as age [4], pose [2], expression [START_REF] Shen | InterFaceGan: Interpreting the disentangled face representation learned by gans[END_REF] and hairstyle [START_REF] Saha | Loho: Latent optimization of hairstyles via orthogonalization[END_REF]. However, these StyleGAN based methods are of limited interest for image-to-image translation applications as they often fail to preserve the background or fine details of the source portrait image. Indeed, they do not operate directly on the input image but on a proxy image found in the StyleGAN latent space through an inversion process. Even though these image inversion methods are rapidly improving, as in [5,[START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF], they need to be used on each image before the editing process. This makes this set of methods not suitable for video-based applications such as virtual try-on.

Makeup style transfer Makeup synthesis has drawn interest across the evolution of computer vision methods, and in particular through the task of makeup style transfer. This task consists in extracting makeup appearance from a reference portrait image and synthesizing this makeup on the image of another person. Traditional image processing methods were first applied to this problem, such as image analogy [START_REF] Hertzmann | Image analogies[END_REF][START_REF] Tong | Example-based cosmetic transfer[END_REF] or semantic layer decomposition [START_REF] Guo | Digital face makeup by example[END_REF]. Later, neural networks based style transfer [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF] was adapted to portrait images to perform makeup style transfer [START_REF] Liu | Makeup like a superstar: Deep localized makeup transfer network[END_REF]. However, such a method requires aligned faces and similar skin tones in source and target images.

Inspired by recent successes in GANs, makeup style transfer was formulated in [START_REF] Chang | Pairedcyclegan: Asymmetric style transfer for applying and removing makeup[END_REF] as an asymmetric domain translation problem, using a conditional GAN approach to jointly train a makeup transfer and makeup removal network. In a later work, BeautyGAN [START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] improved this GAN based approach by introducing a makeup instance-level transfer in addition to the makeup domain transfer. This is ensured through makeup segmentation and histogram matching between the source and the reference image. Another research direction attempts to generalize makeup transfer method to extreme makeup styles such as patterns over the forehead or chicks using mutliple overlapping discriminators modules [START_REF] Gu | Ladn: Local adversarial disentangling network for facial makeup and de-makeup[END_REF] or UV maps based transfer [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF].

However, existing methods suffer from several limitations. First, the makeup extracted from the reference image is represented implicitly in a latent code. Therefore the synthesized makeup style cannot be associated with an existing cosmetic product that could be recommended to obtain that look. Furthermore, once the makeup style has been transferred, the generated image cannot be modified to explore other makeup shades. Prior studies [START_REF] Chen | Beautyglow: On-demand makeup transfer framework with reversible generative network[END_REF][START_REF] Liu | Makeup like a superstar: Deep localized makeup transfer network[END_REF][START_REF] Zhang | Disentangled makeup transfer with generative adversarial network[END_REF] attempted to propose makeup style transfer methods that are controllable, but only in terms of transfer intensity. This is of limited interest for user that want to explore other shades variations.

Color Aware GAN for Controllable Makeup transfer 2.2.1 Problem Formulation: Color Controllable Synthesis

We propose a new formulation for the makeup style transfer problem, where the objective is to learn a color controllable makeup style synthesis. Hence, we propose to train a generator G to generate a makeup style of an arbitrary target color c from a source image x. Furthermore, in order to perform makeup style transfer from a reference image y to the source image x we also need to train a discriminator D color to estimate the makeup color c y from y. Equation 2.1 describes the objective of color controllable makeup style transfer, where c y belongs to a continuous three-dimensional color space:

G(x, c y ) = G(x, D color (y)) (2.1)
With this new objective, the makeup color is transferred from the reference to the source image, and at the same time, explicitly controlled to reach the desired result. Furthermore, the estimated makeup color can be used to compute a correspondence with existing cosmetics products that can be recommended.

In contrast to other studies, we do not decompose image domains between before and after makeup. Indeed, in practice consumers desire to virtually try new shades without removing their current makeup. For this reason, it is desirable to train a model that can generate makeup style from portrait images with or without makeup. Furthermore, we consider that makeup style can be decomposed as lipstick, eye makeup, and foundation. We address the first and consider the second as the eye shadow. However, since foundation is close to skin color, we consider it as part of the source image content rather than makeup style, and propose to enforce its preservation in the makeup transfer.

Weakly Supervised Color Discriminator

Weak Supervision for Conditional GANs Since our objective is to learn to synthesize a makeup with an arbitrary color, we need a color supervision signal to support the training of our generator. However, most available datasets do not contain labels on objects color. Furthermore, labeling the apparent color value of an object in an image is a tedious task that is highly subjective. On the other hand, GAN based models require a large amount of data to be trained. To overcome this difficulty, we introduce a method to train conditional GAN models in a weakly supervised manner.

A central idea in weakly supervised learning consists in using a non supervised method on unlabeled images to produce weak features. These features are then used as labels to train a model in a supervised fashion. Even though the weak features are individually noisy, they provide a supervision signal, which when leveraging a large amount of data allows learning a strong predictive model. We propose to adapt this idea to learn a weakly supervised color discriminator that will be used to supervise the training of our makeup synthesis generator.

The idea of weak supervision is particularly adapted to the context of conditional GANs. Indeed, generative models require a large number of data to be trained and are very sensitive to biases in the training data. The ability to train a conditional GAN without label data makes it possible to train generative networks using a considerable amount of data, leading to more stable training and more realistic synthesized images. Furthermore, one limitation of weak supervision is the poor performance of the learned predictor compared to traditional supervised methods. However, in the context of CGAN, the objective is to provide a supervision signal so that the generator learns to modify an image according to a condition attribute. Since the generator network is already controlled by the adversarial realism loss, only realistic modifications of the image are allowed. Thus, even though the conditional signal is noisy as long as it is correlated to the target feature, the generator will learn to modify the image in the right direction. In particular for color control, even if the color discriminator does not estimate the right shade of red, it will still send to the generator the signal that the synthesized image should have a red attribute. In practice, this is sufficient to learn a realistic object color manipulation.

Weakly Supervised Makeup Color Estimator

We propose to adapt this idea of weakly supervised conditional GANs to makeup color, in order to learn a color controllable GAN from unlabeled images. We build on the assumption that makeup is generally localized on specific regions of the face, which can be approximately estimated for each image using traditional face processing methods. We denote by C m (x) our weak makeup colors feature extractor. This weak estimator consists in first estimating the position of facial landmarks and then computing the median pixel in a fixed region defined from landmarks position, for lips and eye shadow. Similarly, we also use C s (x), a weak skin color model to compute the skin color in each image, using the inverse makeup segmentation mask. Skin color will be used to ensure background color consistency when processing local crops. Examples of weak color labels generated using this unsupervised approach are presented in Figures 2.2 and 2.7.

This color feature extractor is weak in the sense that it produces a noisy estimate of a makeup color. The landmarks estimation often fails for complex poses, and the median color estimation does not take into account shading effects nor occlusion, as illustrated in Figure 2.2. Furthermore, the spatial information on which C m (x) relies only captures a simplified information of the makeup style, in particular for eye makeup. For this reason, we avoid to use C m (x) to directly control the generator output, and instead use it as a weak supervisor for D color (x) learned color discriminant module. By leveraging the noisy signal of C m (x) over a large amount of data, D color (x) learns a better representation for the attribute of interest, and outperforms C m (x). We illustrate the superior accuracy of the learned discriminant compared to the initial weak model in Figure 2.2.

Neural Networks Architectures

Processing Local Crops for Higher Resolution Our CA-GAN model consists of two different networks, a generator, and a discriminator, that are jointly trained. The model only processes crops of the region of interest for lips and eyes to achieve a higher resolution in the generated images. Compared to most generative-based makeup synthesis approaches, which downsample portrait and thus operate in small resolution, we propose to process crops of lips and eyes in their original resolution. Furthermore, this cropping strategy has the remarkable property of increasing the proportion of relevant pixels (lips and eyes) in the image, facilitating the network training. Besides, we train two independent CA-GAN models to process lips and eyes images. We evaluate the accuracy of training a single model for both types of images in Section 2.5.1 

Generator

Our generator takes as input a source image together with a target color and outputs an estimated image. Its architecture is described in detail in Table 2.1. As in the StarGAN [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[END_REF] architecture, the input condition is concatenated as an additional channel to the source image. This allows us to avoid any assumption on how the color information should be passed to the generator, but has the drawback of increasing the size of the model. This can be problematic for images of very high resolutions as the input tensor size is doubled. We then use a conventional residual network architecture with instance normalization [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] which is common in generator architectures. The residual blocks that we use consist of two convolutional layers with 4 × 4 kernels and a skip connection. Similarly to [START_REF] Chang | Pairedcyclegan: Asymmetric style transfer for applying and removing makeup[END_REF], our generator does not directly outputs final generated image. Instead, the generator estimates a tensor of pixel difference that is added to the source image in order to obtain the generated image. With this output architecture, the generator network does not need to encode the entire input image in the bottleneck layer, but only the information on the pixel that should be modified. This allows us to save networks capacity and improve the preservation of small details in the synthetic images.

CHAPTER 2. CONTROLLABLE GENERATIVE MODEL FOR MAKEUP VIRTUAL TRY-ON

Furthermore we do not clip the value of the generator output, which could lead to synthesized images with values outside the [0,255] range. According to our observations, this tends to facilitate training as such extreme generator outputs will be easily penalized by the discriminant, which would have been more difficult with clipping.

Discriminator

Our Discriminator module is a multitask network that simultaneously outputs estimates of makeup color, skin color, and classifies the image as real or fake, as illustrated in Figure 2.4. Compared to using three separate discriminant modules, solving these three tasks at the same time has multiple advantages. First, using a single model dramatically reduces the number of weights to learn, allowing for faster and simpler training on regular GPUs. Furthermore, since these tasks are closely related, using common filters could lead to an improved generalization.

The network is based on a fully convolutional architecture, similar to PatchGAN [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF]. We use convolutional blocks with 4 × 4 kernels and 64 filters, each with relu activation. The network outputs use a single convolutional filter with 2 × 2 kernel for the realism output and two distinct convolutional blocks with 2 × 2 kernel and three filters. The output size is modulated using padding to obtain color outputs of size 3 for each image. The architecture of the discriminator network is described in detail in Table 2.1. As done in the generator module, we do not clip the output of the discriminator. This allows extreme outputs to be largely penalized when compared to the weak labels, facilitating training.

CA-GAN Training Objective Function

In this section, we describe in detail the architecture and loss functions for training our GA-GAN model. In particular we introduce two new loss functions for training conditional GANs, a color regression loss and a background consistency loss. An overview of the training procedure is illustrated in Figure 2.4.

Color regression loss function

The color regression loss function ensures that the makeup color in the generated image is close to the target color condition passed to the generator. During training, for each image x i among the n training examples, a target color c i is randomly sampled at each epoch among existing colors in the training set. The color regression loss computes a color distance between a target color c i and D color (G(x i , c i )), the color of the generated image as estimated by the makeup color branch of the discriminator. As a color regression loss, we propose to use mse -lab , the mean squared error in the CIE L * a * b * space. This loss inherits from the perceptual properties of the color distance CIE ∆E* 1976 [START_REF] Mclaren | XIII-The development of the CIE 1976 (L* a* b*) uniform colour space and colourdifference formula[END_REF] which is key for color estimation problems. The color regression loss is described in Equations 2.2 and 2.3 for the discriminator and the generator, respectively, where D color is the makeup color regression output of the discriminator, and c xi i = C m (x i ) the color label for image x i obtained using our weak model:

L D color = 1 n n i=1 c xi i -D color (x i ) 2 (2.2) 
L G color = 1 n n i=1 c i -D color (G(x i , c i )) 2 (2.3)
Adversarial loss function As in any GAN problem, we use an adversarial loss function whose objective is to make generated images indistinguishable from real images. In particular, we use the Wasserstein GAN loss [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] and more specifically the one from [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF] with gradient penalty. Our used adversarial loss function is described in Equation 2.4 for the discriminator and Equation 2.5 for the generator, where D proba is the realism classification output of the discriminator and λ gp gp(D) the weighted gradient penalty term computed on D:

L D adv = 1 n n i=1 D proba (G(x i , c i )) - 1 n n i=1 D proba (x i ) + λ gp gp(D) (2.4) L G adv = - 1 n n i=1 D proba (G(x i , c i )) (2.5)
Cycle consistency loss function Since we are learning image-to-image translation from unpaired images, we need an additional loss to ensure that we will not modify undesired content in the source image. Consequently, we employ a cycle consistency loss described in Equation 2.6, where we compute a perceptual distance between x i and its reconstruction xi = G(G(x i , c i ), c xi i )). As a perceptual distance, we choose M SSIM , the multiscale structural similarity loss introduced in [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF], leading to the following cycle consistency loss: The M SSIM between images x and y is defined as:

L cycle = 1 -M SSIM (x i , xi ) (2.6)
M SSIM (x, y) = [l(x, y)] αM M j=1 [c j (x, y)] βj [s j (x, y)] γj (2.7)
In this equation M is the scale parameter, α, β, γ are relative importance parameters. The fonctions l, c and s are the luminance, contrast and structure functions, where c j and s j are evaluated at scale j. The following equations define l, c and s, where µ x is the mean of x, σ x the standard deviation of x, σ xy the covariance between x and y, L the dynamic range of the image and k 1 and k 2 are constants:

l(x, y) = 2µ x µ y + (k 1 L) 2 µ 2 x µ 2 y + (k 1 L) 2 c(x, y) = 2σ x σ y + (k 2 L) 2 σ 2 x σ 2 y + (k 2 L) 2 s(x, y) = 2σ xy + (k 2 L) 2 /2 σ x σ y + (k 2 L) 2 /2 (2.8)
In our experiments we use the default parameters values of the tensorflow [1] implementation of the M SSIM , which are M = 11, α = β = γ = 1, k 1 = 0.01 and k 2 = 0.03 Background consistency loss function In order to ensure that the color of the other object in the image remains unchanged, we propose a background consistency loss function that penalizes the color modification of the background. In the case of makeup color, the background color is represented by the skin color on the source image. Equations 2.9 and 2.10 describe background consistency for the discriminator and the generator, respectively, where D bg is the background color estimation output of the discriminator and b xi i = C s (x i ) the extracted background color of the image x i :

L D bg = 1 n n i=1 b xi i -D bg (x i ) 2
(2.9)

L G bg = 1 n n i=1 D bg (x i ) -D bg (G(x i , c i )) 2 (2.10)
Total objective functions Finally, to combine all the loss functions, we propose to use weighting factors for each loss of the generator. Indeed, some factors such as the cycle consistency loss and the reconstruction loss must be balanced as they penalize opposite transformations. Equations 2.11 and 2.12 describe the total objective functions of the discriminator and the generator, where λ color , λ bg and λ cycle are weighting factors for each generator loss that are set experimentally:

L D = L D adv + L D color + L D bg (2.11) L G = L G adv + λ color L G color + λ bg L G bg + λ cycle L cycle (2.12)
In total, we train the discriminator and generator network simultaneously by solving the following optimization problem, where θ G and θ D are the weights for the generator and discriminator, respectively:

min θG,θG L G + L D (2.13)

Makeup Dataset

In this section we review the existing available datasets as well as their imitations. Then we introduce two new datasets collected for this reserach, the Makeup Social Media (MSM) dataset and the Lipstick Try-On (LTO) dataset.

Available Makeup Research Datasets Most existing generative approaches for makeup synthesis are trained using image datasets collected from various social media and made available for research purposes. We summarize in Table 2.2 the most commonly used makeup datasets and their characteristics. We omit the datasets based on synthetic data as GAN based approach are more adapted to training on real images. In practice, existing makeup datasets suffer from various limitations, making them difficult to use for training and validating high-quality models. First, as visible in Table 2.2, the resolution from most datasets is very low, and the image size ranges from 130 × 150 pixels for the YMU dataset [START_REF] Dantcheva | Can facial cosmetics affect the matching accuracy of face recognition systems?[END_REF] to 512 × 512 pixels for the LADN dataset [START_REF] Gu | Ladn: Local adversarial disentangling network for facial makeup and de-makeup[END_REF]. As the resolution of smartphone camera images increased, this has not been accompanied by an increased resolution in available makeup datasets. In practice, generative models trained on modest resolution images are non-usable for consumer-level applications that commonly use high-resolution photos and videos. Furthermore, research makeup datasets were generally collected from a particular website or country and generally show a lack of variety in terms of both makeup color and skin color. This is also a limitation as models trained on biased data will hardly generalize to new makeup and skin colors.

In addition, even though most makeup datasets contain images with and without makeup, they are mostly unpaired images of different persons. The only dataset containing images of the same person before and after makeup is the YMU dataset [START_REF] Dantcheva | Can facial cosmetics affect the matching accuracy of face recognition systems?[END_REF], but it only includes a small number of low-resolution images. Since this type of paired data is challenging to obtain in practice, the training procedure of generative models for makeup generally assumes that only unpaired data are available. However, the absence of paired data that could be used as ground truth raises questions on quantitative evaluation of makeup synthesis models. Thus, most existing generative approaches for makeup synthesis only rely on qualitative comparison on a small set of images [START_REF] Chang | Pairedcyclegan: Asymmetric style transfer for applying and removing makeup[END_REF][START_REF] Gu | Ladn: Local adversarial disentangling network for facial makeup and de-makeup[END_REF], while others rely on synthetic data evaluation [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF] or user studies [START_REF] Chen | Beautyglow: On-demand makeup transfer framework with reversible generative network[END_REF][START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF]. Finally, none of the existing makeup datasets contains information on which cosmetics products where used in an image. This is an important limitations for evaluating the ability of makeup synthesis models to synthesize a given lipstick or eye-shadow. In order to overcome these limitations, we introduce two novel makeup datasets, the Makeup Social Media (MSM) dataset and the Lipstick Triplet (LT) dataset. 

Dataset

number of images image size images without makeup paired before/after cosmetics products labels YMU [START_REF] Dantcheva | Can facial cosmetics affect the matching accuracy of face recognition systems?[END_REF] 600 130 × 150 MT [START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] 3834 361 x 361 LADN [START_REF] Gu | Ladn: Local adversarial disentangling network for facial makeup and de-makeup[END_REF] 698 512 × 512 CPM-Real [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF] 9895 400 x 400 (on average) MSM (ours) 5000 1080 x 1080 LTO (ours) 1950 1080 x 800 (on average) The objective of this dataset is to provide ground truth for lipstick virtual try-on evaluation.

Lipstick Try-On (LTO) Dataset Yet, even though social media images are generally used for training makeup synthesis models, they remain different from images expected during a virtual try-on experience. Indeed, portrait images or videos for such experience are generally of lower quality, with various smartphones camera and uncontrolled lighting. In addition, to create a robust quantitative evaluation of makeup synthesis, ground truth images of multiple persons wearing the same lipstick are required. To this end, we collected a dataset dedicated to the evaluation of makeup synthesis models in real conditions, in particular for the category of lipsticks. We refer to this dataset as the Lipstick Try-On (LTO) Dataset. We recruited a set of 100 volunteers with various skin tones to ensure a large skin color variation in our dataset. Particular dispositions were taken to ensure that the collected images respect the GDPR regulation for personal data protection. For instance, each volunteer was informed of the research and scientific publication purposes of this data collection and signed explicit consent. During the data acquisition, each panelist was instructed to take a set of portrait images without makeup, using the front camera of their own mobile devices. To obtain a large variety of poses of face and lips, the panelists are requested to take a video, moving their head from left to right, then counting from 1 to 10 out loud. All these images and videos are taken under a natural environment with uncontrolled lighting. This type of acquisition condition aims at reproducing typical in the wild images that are expected in consumer applications.

Additionally, we selected 80 different solid lipsticks with various colors and finish, ranging from matte to glossy and metallic. Each lipstick was randomly attributed to panelists, ensuring that every product was at least used by three different volunteers. For each of their three assigned lipsticks, volunteers apply makeup themselves and take images and videos using the same acquisition protocol. Example images of this dataset are visible in Figure 2.6. One limitation of this dataset is that the pose of the panelist might slightly vary between images before and after makeup.

Implementation

In this section we describe the details of our CA-GAN implementation, covering various stages from image preprocessing to hyperparameters used during training. Computing Weak Color Labels In order to accelerate the training phase, the weak color features are not computed dynamically during the training phase. Instead, we pre-compute all the color features and save them to a file. The weak color features are computed as follows. First, using the popular dlib library [START_REF] Davis | Dlib-ml: A machine learning toolkit[END_REF] we estimate the position of 68 facial landmarks on the image using a cascade of regression trees. Then for both eyes and lips, we define a set of landmarks in which we expect to find makeup. We then fit a spline for each of these landmarks sets to obtain a mask for the makeup region. Finally, we compute the median color in the makeup region to obtain the makeup color weak feature. Each color is then converted to the CIE L * a * b * space under the assumption of a white illuminant. Symmetrically, the skin color feature is estimated by calculating the median color of the outside the makeup mask. Figure 2.7 illustrates an example of this procedure for several images in the MSM dataset.

One advantage of our weakly supervised approach is that any makeup images could be used for training. We only consider images from our MSM dataset as they have a larger resolution than other makeup datasets, as visible in Table 2.2. Still, the training set could be extended using any high-resolution makeup images. In addition, our MSM dataset contains a large diversity of makeup.

Images Preprocessing As detailed in Section 2.2.3, our CA-GAN model operates on local crops of lips and eyes. For each image we compute the crop coordinates using estimated facial landmark positions. Two crops of eyes per image are considered in order to increase the number of training samples. Each crop is resized to 128 × 128 pixels, which generally does not reduce original resolution. Each crop image is rescaled to the range [-1; 1] to facilitate training. Finally, we use data augmentation during training with random horizontal and vertical flips with a probability of 50 % each.

Training Implementation Our CA-GAN network is implemented using the Tensorflow [1] deep learning framework. The generator and discriminator are jointly trained on 90 percent of our MSM dataset. For each batch, the set of target colors c i passed to the generator is computed by shuffling the ground truth color features in the batch. In practice, we shift the index of the colors by a random integer, smaller than the batch size, to ensure that each image is assigned a different target color than its ground truth. The discriminator and generator are trained simultaneously over 200 epochs using the adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a fixed learning rate of 10 -3 for the discriminator 3.10 -3 for the generator. We use a batch size of 32 on a single Tesla V100 GPU with 16MB of memory. The weighting factors of the generator loss function are set to λ gp = 10, λ color = 10, λ bkg = 5, λ cycle = 200.

Finally, we train separated CA-GAN models for processing lips and eyes images, as well as a joint model trained on both categories. As illustrated in Table 2.4, separated models slightly overperform the joint model, and are thus used for the image results presented in this study.

Results and Experiments

Qualitative Evaluation

Color Controllable Makeup Synthesis

First, we use images from our MSM dataset that are unseen during training and modify their makeup color independently in each dimension of the CIE L * a * b * color space. As visible in Figure 2.8 the makeup color is modified to a color that is perceptually similar to the target color, while the image overall realism is preserved. Our model accurately learned to modify the makeup color while preserving other dimensions of the appearance such as the makeup texture. Such results are usually obtained through complex image filtering techniques and would need a specific processing depending on each object category. Moreover, our model seems to be robust to variations in lips and poses as seen in Figures 2.10 and 2.9. Even for complex poses, the generator learns only to modify the makeup pixel, preserving other details of the image such as eye color or eyelashes. This is an important property for making a generative approach usable in practice for virtual try-on applications.

In addition, we generate portrait images typically encountered in virtual try-on applications using our LTO dataset of smartphone images. As visible in Figure 2.12, the synthesized images reach well the target makeup color while preserving the realistic appearance at the portrait scale. Furthermore the realism and color accuracy of our makeup synthesis model seems to be consistent across skin color and environment lighting variation, as seen in Figure 2.14 and Figure 2.11.

Additional videos results are presented on the website1 , illustrating performance on various skin tones, poses, and illuminants. Even though our model was not trained on videos, it seems to be temporally stable, as illustrated in the video examples. This is an expected property compared to most generativebased image-to-image translation approaches [START_REF] Chu | Learning temporal coherence via self-supervision for gan-based video generation[END_REF][START_REF] Thimonier | Learning long term style preserving blind video temporal consistency[END_REF]. We assume that the temporal stability is improved by the fact that our GAN is constrained by a regression condition instead of a class domain, as seen in conventional approaches. By exercising a stronger constraint, the regression condition controls the outputs with less ambiguity, leading to more consistent results across frames.

Eventually, an important difference compared to existing makeup synthesis methods is that our model is trained on makeup images only, while conventional approaches separate between images with and without makeup. However, it can be observed in our results that this is not an issue in practice. In particular, for images of eyes without makeup, eye shadow seemed to be synthesized on an average position around the eye, as illustrated in Figure 2.12.

Skin Color Preservation

Even though our model only processes a local crop of the image, the color of skin is preserved, and the crop modification is not easily perceivable at the portrait scale, as it seen in Figure 2.12. In addition we show in Figure 2.14 that the skin color preservation is consistent across various skin tones. Since our model only modifies makeup and preserves the other pixels, we do not need to use Poisson blending to insert the processed crop in the final image as used in [START_REF] Chang | Pairedcyclegan: Asymmetric style transfer for applying and removing makeup[END_REF][START_REF] Chen | Beautyglow: On-demand makeup transfer framework with reversible generative network[END_REF]. This speeds up computations and avoids using a segmentation of the lips or eyes region, which could introduce additional error.

As an ablation study, we train a CA-GAN model without using the proposed background consistency loss function. As observed in Figure 2.13, skin pixels are also modified in the generated image. Even though these changes might look realistic at the patch level and thus are not penalized by the adversarial loss function, they are not acceptable at the portrait image level. Using our background consistency loss function however, skin color modification is penalized by the discriminator, which leads to significantly improved results. 

Makeup Style Transfer

We propose to compare our makeup synthesis approach against other generative models for makeup style transfer. Indeed, our model can be directly used for the makeup transfer task. Given a reference makeup image, we use our discriminator module to estimate the makeup color. This color is then passed to the generator with a source portrait image, and the makeup image is synthesized. This makeup transfer For this experiment, we use images from our LTO dataset as typical source images, and perform makeup style transfer from reference images drawn from the MT dataset. The results are visible in Figure 2.16. In addition to obtaining a realistic generated image, the makeup style can be edited to explore other makeup styles in a continuous color space. Furthermore, our model also estimates the makeup color which can be used to recommend existing cosmetics that can be used in practice to achieve a similar result. Moreover, we compared our results on the style transfer tasks against other popular models for which the code is available. To perform style transfer with our CA-GAN model, we estimate the makeup color in the reference image using the color regression branch of the discriminator, and generate a synthetic makeup image using the generator. The obtained results can be observed in Figure 2.16. We compared our model against BeautyGAN [START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] which is a state of the art method for conventional makeup style transfer. Our model transfers makeup color with equivalent performance. Furthermore, while BeautyGAN tends to transfer the skin color together with the makeup style, our model obtains better preservation of the original skin tone of the source subject, which is a desirable property for virtual try-on applications.

Weak vs Learned Color Estimator

While the weak color estimator C m (x) used for weak supervision is fixed, the learned color extractor in the discriminant D color (x) leverages a large dataset. Hence, even if C m (x) has high variance and largely fails for some images, D color (x) learns a more robust color estimator. To illustrate this idea, we computed on test images the color difference between estimates of the weak model and the corresponding learned discriminant, as shown in Figure 2.17. Even if the two models agree for most images, large differences occur in some cases. In practice, we found that in most large difference cases, the weak estimator was failing due to poor facial landmark localization, occlusion, or complex appearance with shading and specularities (see Figure 2.2). The difference is even larger for the eye shadow region in which appearance is more complex due to hair and eyelash occlusion. This reinforces the usefulness of weakly supervised learning for GAN based models, since improved color estimation will improve the generator control and in turn the style transfer accuracy.

Specialized vs single model

We have seen that our makeup synthesis approach generalizes well to lips and eyes images when training two specialized models on lips and eyes datasets. This section considers training a single makeup model that can synthesize makeup for both lips and eyes images. We show in Figure 2.18 the results of a qualitative experiment where we trained specialized and joint models, and used them to synthesize makeup on lips and eye images. It can be observed that a specialized model does not generalize well to unseen image categories. In addition, training a single joined model leads to qualitatively similar results for both lips and eyes images. However, as we describe next in Section 2.5.2, the quantitative analysis establishes that specialized models lead to higher color accuracy and style transfer performance.

Quantitative Evaluation

In this section, we focus on the evaluation of the model on lips images. Indeed, evaluating makeup synthesis for eyes raises additional challenges as the eye makeup can be placed with various patterns around the eye. The eye makeup zone can thus be larger or smaller than the eyelid, and there is no existing eye makeup segmentation model that we could use to extract eye makeup pixels from example images. On the other hand, lipstick images are more accessible to analyze as the assumption that lipstick is placed on the lips is reasonable. Furthermore, lips segmentation is an established task that is addressed by many popular libraries that we can use in our analysis. Color Accuracy Evaluation First, we evaluate the ability of our CA-GAN model to generate makeup images that are close to the chosen color target. For this experiment, illustrated in the supplementary material, we use the 500 test images from our MSM dataset. First, we choose a set of 50 representative lipstick shades by computing the centroids of a k-means clustering of the lipstick colors in our training data. Then, for each test sample, we generate an image with each representative lipstick color as target. Finally, using a lips segmentation algorithm we estimate the median color of lips to compute a color distance to the model target. We also estimate the difference between the color of the skin before and after image synthesis to control its preservation. The results of these experiments are reported in Table 2.3. The ablation study confirms that the use of the lab -mse for color loss largely increases the color accuracy of our model. Furthermore, our novel background consistency loss helps the generator to disentangle skin and lips color, which leads to significantly improved lipstick color accuracy and skin color preservation. Makeup Transfer Evaluation For the first time, we introduce a quantitative evaluation of model performance on the makeup style transfer task, as illustrated in Figure 2.20. We use our collected LTO dataset that contains images of multiple panelists wearing the same lipstick shade. Thus, it is possible to construct ground-truth triplets with a reference portrait, a source portrait, and the associated groundtruth image with the reference makeup. The style transfer accuracy is then computed using the MSSIM similarity [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] as a measure of a perceptual distance. Furthermore, to avoid lighting bias, we select the ground-truth among several images of the same panelist, using the most similar skin color compared to the source image. We perform this experiment on 300 image triplets with 100 different panelists and 80 different lipstick shades. The results of this experiment are reported in Table 2.4. The ablation study confirms that our color regression and background consistency loss functions significantly improve the style transfer performance. Furthermore, we observe that our model outperforms BeautyGAN by a significant margin. This is expected given the ability of our model to preserve the skin color in the source image.

Limitations

Even though we have shown that our CA-GAN method can synthesize makeup images in a realistic manner, in practice this generative method remains difficult to use in virtual try-on applications. In this section, we point out the main limits of our approach for consumer class applications.

Dependence on Data Distributions Similar to most machine learning models, our generative approach is highly dependent on the training data distribution. In particular, the color estimation accuracy of our discriminator models is lower for makeup colors which are rarely seen in our datasets, such as black or green lipsticks. This observation is illustrated in Figure 2.21. Consequently, the color control signal sent to the generator during training is less accurate for these extreme colors, making the generator less accurate in these regions of the color space. Furthermore, this is reinforced by the fact that the target color conditions used during training are drawn by sampling the ground truth color in each training batch. As a result, unusual colors that are underrepresented in the training data are rarely used as a condition for the generator. This means that the capacity of the generator to synthesize realistic images for these colors is less often controlled by the discriminator than for more common colors.

One straightforward solution would be to collect more data for rare makeup colors as well as using a new sampling strategy for target colors during training. For instance, target colors could be sampled using a uniform distribution in the color space, leading to increased diversity.

Single Color Assumption A central hypothesis in this work is the assumption that the object of interest has a single color. Hence, our discriminator module is trained to estimates a single makeup color for each image. This can lead to ambiguity as some makeup styles use multiple makeup colors at the same time. This is particularly true for eyes makeup, where several products are often blended to obtain a horizontal gradient of colors. In practice, our generator usually modifies one of the main colors to reach the target color, as shown in the examples presented in Figure 2.22. However, this seems to be an unstable behavior as multiple colors are often shifted simultaneously. One solution could be to use a spatial condition in addition to the color condition. For instance, a segmentation mask could be concatenated to the source image in the generator input, conveying the information on which part of the makeup should be modified. A similar idea on conveying spatial information for conditional GANs has been developed in [START_REF] Park | Semantic image synthesis with spatially-adaptive normalization[END_REF].

Execution time In addition, an important limitation of our generative approach is its slow execution time. Thus, while most virtual try-on methods operate on real-time in mobile devices, generative models are based on large neural networks which can difficulty be used for video applications on mobile devices. In Table 2.5 we illustrate the execution time of our CA-GAN model on two different mobile devices. These figures are computed using the Core ML framework [START_REF]Apple. Coreml -integrate machine learning models into your app[END_REF] which ensures hardware acceleration for machine learning inference on mobile devices. These results tend to indicate that such models can only be used for image-based applications, as their frame rate is too slow for video applications. Thus, in Section 5.1 we present an asynchronous application of our CA-GAN model in which real-time capabilities are not required. However, to unlock the capabilities of neural rendering for video applications, we propose to orient our following research toward developing rendering methods that are compatible with real-time constraints on mobile devices. Table 2.5: Profiling results of our generator inference on mobile devices. The results are obtained by averaging the tine taken by 6 consecutive inference on each device, using the Core ML framework for hardware acceleration.

Device

Generator Inference iPad pro 4, CoreML 835 ms iPhone X, CoreML 1093 ms

Perspectives for Future Work

Generalization to Other Object Categories An advantageous property of our CA-GAN model is that it can be trained in a weakly supervised manner, relaxing the need for a set of labeled data. Thus, our approach initially developed for makeup synthesis can be directly extended to other object categories. The only requirement is the access to a set of unlabeled training images and the capacity to compute a weak color feature for the object of interest. As presented in our makeup method, a simple way to obtain a weak color feature in an unsupervised manner is to use an object segmentation estimate, even though it is approximate. Consequently, our approach can be directly adapted to most object categories for which a segmentation model is available or can be trained using accessible research data, such as cars, dogs, or hair images. In Figure 2.23 we show example results of our CA-GAN models trained for hair color synthesis.

The results seem realistic overall, except for really light hair, which some local artifacts can be observed. Furthermore, hair comes in more various shapes than lips and eyes, and our hair generator sometimes fails to modify all hair pixels, as seen Figure 2.23. This indicates that additional spatial supervision during training could be needed to extend our approach to more complex objects.

CA-GAN as a Color Data Augmentation Technique Finally, our generative model could also be used as a data augmentation technique to train a more robust model for various tasks. For many supervised tasks, images dataset for which labels are available suffer from bias. For instance, facial recognition and age estimation datasets rarely contain the makeup of various colors. Similarly, rare hair colors are often underrepresented in hair segmentation datasets. Thus, our CA-GAN model could be trained on a large unlabeled dataset with various colors and be used as a data augmentation technique to introduce color variation in a labeled dataset that suffers from bias. Under the assumption that our generative model preserves the label of interest, such as the face identity, age, or hair segmentation in our examples, this data augmentation could lead to improved performance for objects with rare color in the initial training dataset. In Chapter 2 we showed that generative models could be considered as a new category of renderers for realistic virtual try-on. However, several limitations make these methods intractable for consumer-level applications. In particular, the large size of generative models prevents them from being used in real-time on mobile devices. On the other hand, current virtual try-on commercial solutions based on computer graphics renderers can be executed with real-time frame-rates in smartphone browsers but are challenging to parametrize to obtain realistic makeup textures (see Figure 1.3). In practice, setting these parameters to obtain realistic rendering for hundreds of products in a digital store is a tedious task that requires expert knowledge in computer graphics. This caveat often leads to a gap between virtual try-on and real product appearance. In this work, we propose to investigate solutions for this problem, allowing us to improve and automatize augmented reality renderer parametrization from example images. Recently, a novel family of methods based on neural rendering has introduced the task of image based virtual try-on, which brings new perspectives for this problem [START_REF] Tewari | State of the art on neural rendering[END_REF]. This task consists in extracting a product appearance from a single reference image and synthesizing it on the image of another person.

In this chapter, we introduce a Neural Rendering approach to virtual try-on. This hybrid solution leverages the speed and portability of computer graphics based renderers, together with the appearance extraction capabilities of neural-based methods. Our method enables new applications where consumers can virtually try-on a novel unknown product from a reference inspirational image on social media, as shown in Figure 3.1. It can also be used by computer graphics artists to automatically create realistic renderings from a reference product image. Our research on this topic led to a publication in the CVPR 2021 Workshops Artificial Intelligence for Content Creation (AICC) and Computer Vision for Fashion Art and Design (CVFAD), as well as a publication in the Eurographics 2022 Computer Graphics Forum.

Our contributions can be summarized as follows:

• We introduce a novel framework for image-based virtual try-on, using an inverse graphics encoder (IGE) networks that learns to map a single example image into the space of parameters of a rendering engine. This model is trained using a self-supervised approach which does not require labeled training data.

• To relax the need for a graphics-based differentiable renderer in inverse graphics problems, we introduce a trainable imitator module. Our imitator is a generative network that learns to accurately reproduce the behavior of a given non-differentiable renderer. To train the imitator, we propose a novel rendering sensitivity loss which ensures that the network learns an accurate and continuous representation for each rendering parameter. This method for automatically learning a differentiable renderer could be beneficial for various inverse graphics tasks. In particular, we show that using an imitator during training significantly increases the performance of our IGE network.

• We assess the effectiveness of our approach by investigating two well-established problems: makeup and hair color virtual try-on (see Figure 3.1). These problems are built on very different rendering principles, respectively physically-based computer graphics, and pixel statistics manipulation. In Section 3.1 we present the existing related work on neural rendering and image-based virtual try-on. Then in Section 3.2 we describe in detail the Augmented Reality (AR) renderers for makeup and hair dye that we consider in this work. In Section 3.3 we introduce our Inverse Graphics Encoder (IGE) network as well as the corresponding self-supervised training procedure. Furthermore, in Section 3.4 we present a novel method for training an imitator network which reproduces the behavior of a given non-differentiable renderer. We then demonstrate that it can be used to improve the IGE network training by introducing additional supervision in the image space. Finally in Sections 3.5 and 3.6 we describe our implementation and report the results of our experiments. Several industrial applications for the IGE model are later described in Chapter 5.

Related work

Inverse Graphics and Differentiable Rendering

Given a natural image, inverse graphics approaches aim to estimate features that are typically used in computer graphics scene representation, such as HDR environment map [START_REF] Somanath | Hdr environment map estimation for real-time augmented reality[END_REF][START_REF] Song | Neural illumination: Lighting prediction for indoor environments[END_REF] or meshes of 3D objects such as faces [START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF]. Similarly to our problem, some applications focus on solutions to assist computer graphics artists to accelerate their work, such as spatially-varying bidirectional reflectance fields (SVBRDF) estimation from smartphone flash images [START_REF] Valentin Deschaintre | Singleimage SVBRDF capture with a rendering-aware deep network[END_REF][START_REF] Henzler | Generative Modelling of BRDF Textures from Flash Images[END_REF].

Most inverse graphics methods build on the rapidly growing field of differentiable rendering. This area focuses on developing differentiable operations for replacing the non-differentiable modules of computer graphics rendering pipelines [START_REF] Laine | Modular primitives for high-performance differentiable rendering[END_REF][START_REF] Tzu | Differentiable Monte Carlo ray tracing through edge sampling[END_REF]. Nowadays, differentiable renderers are key components for solving inverse graphics problems. Indeed, the vanilla inverse graphics approach consists in estimating the set of rendering parameters by minimizing photometric or perceptual distances [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF][START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] between a reference image and the synthesized image using stochastic gradient descent, as done in [START_REF] Laine | Modular primitives for high-performance differentiable rendering[END_REF]. However, in addition to the requirement of a differentiable renderer, such an approach is slow since a gradient descent needs to be computed at inference for each new reference image. Thus, these methods are not suited to realtime applications. More recent methods, such as in [START_REF] Henzler | Generative Modelling of BRDF Textures from Flash Images[END_REF], avoid using gradient descent during inference by training an end-to-end neural network, while a differentiable renderer is used to provide feedback during training. This approach results in faster inference since only a single forward pass of the model is needed. In this paper, we propose to build upon this approach. Finally, another method consists in training graphics parameters estimators by using datasets composed of physical ground truth measurements, such as HDR maps [START_REF] Somanath | Hdr environment map estimation for real-time augmented reality[END_REF] or OLAT images [START_REF] Pandey | Total Relighting : Learning to Relight Portraits for Background Replacement[END_REF]. Even though these approaches led to successful applications, they are difficult to generalize to many different inverse rendering problems as ground truth measurements are extremely costly to acquire at a large scale. [START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] training and inference CA-GAN [START_REF] Kips | CA-GAN: weakly supervised color aware GAN for controllable makeup transfer[END_REF] training and inference PSGAN [START_REF] Jiang | PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer[END_REF] training and inference Color-Pattern Makeup Transfer [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF] training and inference Our method training only

Augmented Reality Renderers

Augmented reality renderers are a particular category of computer graphics pipelines where the objective is to realistically synthesize an object in an image or video of a real scene. In general, AR renderers are composed of one or several scene perception modules whose role is to estimate relevant scene information from the source image, that is then passed to a rendering module. For instance, many portraits-based AR applications are building on facial landmarks estimation [START_REF] Kazemi | One millisecond face alignment with an ensemble of regression trees[END_REF] used to compute the position of a synthetic object such as glasses that are then blended on the face image [START_REF] Azevedo | An augmented reality virtual glasses try-on system[END_REF]. Similarly, other popular scene perception methods for augmented reality focus on hand tracking [START_REF] Wang | RGB2Hands: real-time tracking of 3D hand interactions from monocular rgb video[END_REF][START_REF] Zhang | MediaPipe hands: On-device real-time hand tracking[END_REF], body pose estimation [START_REF] Bazarevsky | BlazePose: On-device real-time body pose tracking[END_REF], hair segmentation [START_REF] Levinshtein | Real-time deep hair matting on mobile devices[END_REF], or scene depth estimation [START_REF] Kopf | Robust consistent video depth estimation[END_REF]. Furthermore, most augmented reality applications target video-based problems and deployment on mobile devices. For this reason, reaching real-time with limited computation resources is usually an important focus of research in this field, as illustrated in [START_REF] Bazarevsky | BlazePose: On-device real-time body pose tracking[END_REF][START_REF] Bazarevsky | BlazeFace: Sub-millisecond neural face detection on mobile GPUs[END_REF][START_REF] Kopf | Robust consistent video depth estimation[END_REF][START_REF] Li | Lightweight Real-time Makeup Try-on in Mobile Browsers with Tiny CNN Models for Facial Tracking[END_REF]. Many AR applications focus on virtual try-on tasks in order to enhance the consumer experience in digital stores. Popular applications introduce virtual try-on for makeup [START_REF] Evangelista | Realistic ar makeup over diverse skin tones on mobile[END_REF][START_REF] Sokal | High-Quality AR Lipstick Simulation via Image Filtering Techniques[END_REF], hair dye [START_REF] Tkachenka | Real-time Hair segmentation and recoloring on Mobile GPUs[END_REF], or nail polish [START_REF] Duke | Nail polish try-on: Realtime semantic segmentation of small objects fornative and browser smartphone AR applications[END_REF], reaching realistic results in real-time on mobile devices. However, for such methods, the renderer needs to be manually parametrized by an artist to obtain a realistic rendering of a targeted product. Users are restricted to select a product within a pre-defined range, and cannot virtually try a novel product from a given new reference image.

Image-Based Virtual Try-On

While conventional AR renderers render objects that are previously created by computer graphics artists, a recent research direction based on neural rendering has proposed the novel task of image-based virtual try-on. The objective consists in extracting a product appearance from a given reference image and realistically synthesizing this product in the image of another person. Most methods in this field are built on a similar approach, and propose to use a neural network to extract product features into a latent space. Then, this product representation is decoded and rendered on the source image usingngenerative models such as generative advesarial networks (GANs) [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] or variational auto-encoders (VAEs) [START_REF] Diederik | Auto-encoding variational Bayes[END_REF]. In particular, this idea has been successfully used for makeup transfer [START_REF] Jiang | PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer[END_REF][START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] and is rapidly emerging in the field of fashion articles [START_REF] Jetchev | The conditional analogy gan: Swapping fashion articles on people images[END_REF]. Recent methods attempt to provide controllable rendering [START_REF] Kips | CA-GAN: weakly supervised color aware GAN for controllable makeup transfer[END_REF], or propose to leverage additional scene information in their models, such as segmentation masks for fashion items [START_REF] Choi | Viton-hd: High-resolution virtual try-on via misalignment-aware normalization[END_REF][START_REF] Ge | Disentangled cycle consistency for highly-realistic virtual try-on[END_REF] or UV maps for makeup [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF]. We summarize the various approaches of image based makeup virtual try-on in Table 3.1.

However, current virtual try-on from example image methods suffer from several limitations. First, these neural rendering methods are based on large generative models that cannot be used to produce highresolution renderings in real-time on mobile devices. Furthermore, such models often lead to poor results when used on videos, since generative models are known to produce time inconsistencies artifacts. Even though recent works attempt to address this issue by training post-processing models [START_REF] Chu | Learning temporal coherence via self-supervision for gan-based video generation[END_REF][START_REF] Thimonier | Learning long term style preserving blind video temporal consistency[END_REF], they cannot be used in real-time. More recently, an inverse graphics approach has been introduced for makeup [START_REF] Kips | Deep graphics encoder for real-time video makeup synthesis from example[END_REF], bringing interesting perspectives for reaching real-time image-based virtual try-on. In this chapter, we propose to build on this approach to propose a more robust and general framework. It comprises scene perception modules that compute scene information, such as lips mesh and scene illuminant, which is then passed to a computer graphics renderer. The makeup renderer uses physically-based rendering with a simple material model for fast image synthesis. The appearance of the makeup product to render is controlled by a vector of graphics parameters. The eye shadow renderer functions on a similar principle, replacing the lips mesh by an eye-lid mesh estimate.

Augmented Reality Renderers

In this section, we describe the two AR renderers that we choose to illustrate the framework proposed in this chapter. We selected two renderers that address popular virtual try-on categories with different rendering principles, physically-based computer graphics for makeup, and pixel statistics manipulation for hair color.

Makeup Augmented Reality Renderer

Our makeup augmented reality renderer is based on facial landmarks estimation and physically-based computer graphics rendering. This pipeline is illustrated in Figure 3.2 and example renderings for lipsticks and eye shadow are visible in Figure 3.3.

Perception Module

The perception module of our makeup AR renderers aims to estimate the makeup position to render in the portrait image under the form of a 3D object. This 3D object position should be consistent with the person's face pose to blend in the final rendered image realistically. To this end, we use a deep neural network based on a two-stage architecture, as described in [START_REF] Li | Lightweight real-time makeup try-on in mobile browsers with tiny CNN models for facial tracking[END_REF], to estimate the 2D position of facial landmarks in the images. This model is adapted to fast inference to reach real-time performance on portable devices, reaching an inference time of 20 ms on iPhone XR. More details on the profiling of our rendering pipeline in mobile web browsers are shown in Table 3.8. Then, using the estimated 2D landmark position and a fixed reference lip mesh, we compute the remapped position of the 3D lip mesh in the image. Additionally, a normal map is added to this lips model by using a reference normal map of lips created by a computer graphics artist. Similarly, for eye makeup, the makeup style is defined using a binary mask which is then remapped to the facial landmarks using a fixed reference face mesh. The binary mask of the makeup style can be modified to reach various eye makeup styles, according to what is prompted by the user. Finally, the illuminant color is estimated using eye sclera and pupil as a reference target, as done in [START_REF] Choi | The human sclera and pupil as the calibration targets[END_REF]. Even though it has limited accuracy, this simple method has the advantage of being computationally fast and is accurate enough to account for a general color cast in the portrait image. The estimated illuminant and mesh information is then passed to the rendering module. Rendering Module Following similar procedures as in [START_REF] Li | Lightweight real-time makeup try-on in mobile browsers with tiny CNN models for facial tracking[END_REF], we use a graphics-based makeup renderer that synthesizes makeup images which are then blended on the source portrait image. Specifically, the makeup rendering is done in two steps, re-coloring and texture rendering. For re-coloring, the input lipstick color is adjusted based on the material parameters and gray histograms from the target region in the input image to better fit with the background. In the second step, the texture of the makeup (e.g. glossiness, sparkles) is applied using a simple material model and the mesh estimated in the perception module. The illuminant color estimated by the perception module is used during the rendering process, together with a predefined illumination environment map oriented according to the camera position. This allows us to obtain a spatially consistent shine effect across multiple frames of a video, which is essential for realism. Finally, the rendered image is blended on the source image to obtain the final rendering.

Overall, the makeup appearance is parametrized as a set of color and textures parameters. These parameters are carefully set for each product by expert artists in order to obtain realistic cosmetics appearance. In this paper, we only consider the main rendering parameters of this pipeline, as described in Table 3.2, and leave other material parameters to their default values. 

Hair Color Augmented Reality Renderer

The hair Augmented Reality rendering pipeline we use consists of a combination of hair mask estimation and pixel statistics manipulation. This pipeline is illustrated in Figure 3. Perception Module For hair rendering, our perception module consists of estimating a 2D hair mask from the source image. For this task, we use a neural network trained on segmentation labels, similarly to the methods in [START_REF] Levinshtein | Real-time deep hair matting on mobile devices[END_REF][START_REF] Tkachenka | Real-time Hair segmentation and recoloring on Mobile GPUs[END_REF] The neural network architecture is inspired by MobileNetV2 [START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF], modified for segmentation in the fashion of a U-Net model [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. We remove the last three inverted residual blocks in order to achieve faster inference. In addition, guided filters [START_REF] He | Guided image filtering[END_REF] are used on the logit output of the estimated mask to refine the hair segmentation output according to the source image. More complex approaches exist for hair perception, such as the method presented in [START_REF] Chai | Autohair: Fully automatic hair modeling from a single image[END_REF] which proposes to estimate the hair growth direction and 3D hair shape. However, such methods rely on intensive computations which cannot be used in real-time on mobile devices.

Rendering Module Since the perception module only returns a 2D segmentation mask for the hair we cannot use a physically-based computer graphics method during the rendering step. Instead we use a more simple pixel statistic manipulation in the region of interest. First, given a set of swatch parameters (Table 3.3) a re-coloring step computes a pixel-wise color transformation on a reference hair swatch image. From this re-colored swatch, a reference histogram for R, G, B and gray values is extracted. The second step in the hair AR rendering pipeline, the rendering process, uses both this swatch histogram and additional non-swatch parameters from the shade matching process to render hair color. In the rendering process, a hair segmentation model first estimates a hair mask from the input image. The detected hair region is then transformed so that its histogram matches the histogram of the re-colored swatch image. Finally, shine and contrast effects boost global and local contrast to improve texture, and a blending procedure can add an optional effect of local shades variations. In this paper, we consider both swatch and non-swatch parameters as they both affect all steps of the rendering process, as described in Table 3.3.

Current Limitation of Augmented Reality Renderers

The two renderers presented in Sections 3.2.1 and 3.2.2 are good examples of commercial solutions currently used for virtual try-on in consumer class products. They can run in video in real-time on mobile devices. propose to focus this work around this key limitation. Moreover, other limitations remain in current augmented reality renderers. Since these are general caveats found in augmented reality and are not specific to the problem of cosmetics virtual try-on, we choose not to address them in this research work. However, advances in this domain will be directly applicable to improve cosmetics VTO realism. Typically, videos on which the VTO must be rendered are taken in the wild, under an uncontrolled lighting environment. This often results in a bias in the rendered appearance of the product, which is rendered under an illumination estimated with a simple hypothesis. Recent works such as [START_REF] Somanath | Hdr environment map estimation for real-time augmented reality[END_REF] attempt to provide more accurate methods for capturing illumination information from a scene in the wild. This type of method will largely contribute to improving the quality of augmented reality image synthesis. Finally, a recognized problem is the fact that smartphone screens display colors with varying accuracy across mobile devices. Therefore, when a consumer is using a device with particularly low color fidelity, the appearance of the rendered makeup can be misleading independently of the quality of the rendering.

Inverse Graphics Encoder (IGE) Network

In this work, we introduce a general approach for image-based virtual try-on using neural rendering. Our approach is based on a combination of augmented reality rendering and neural networks for inverse graphics. We introduce a simple yet powerful framework to train an inverse graphics encoder (IGE) network that learns to project an example image to the parameter space of a rendering engine. In the case of makeup image synthesis, this allows us to automatically compute the renderer parametrization in order to synthesize a makeup similar to that of a reference example image. In this section we introduce a simple self-supervised method for training our IGE network without groundtruth images.

A General Model for Augmented Reality Renderers

The primary prerequisite of our method is the access to a parametrized augmented reality renderer. In this section, we provide a general model and notations for describing this category of renderers.

An augmented reality renderer R can render in a source image X an object whose appearance is parametrized by a vector of graphics parameters g. Thus, for each frame of a video, renderer R takes as input a frame X as well as a vector of parameters g and synthesizes an output frame where the rendered object is realistically inserted. We assume that R uses computationally fast methods and can render video in real-time on mobile devices, as most AR renderers.

As described in Section 3.2, AR renderers can be based on a large variety of rendering principles and composed of multiple models. Thus, to ensure that our approach is compatible with most augmented reality problems, we do not introduce additional assumptions on the used rendering methods and consider the renderer R as a black box. Thus, we do not assume that the 3D mesh or UV maps computed during the rendering process are accessible, as they do not exist for hair color. Furthermore, we assume that R is not differentiable, as is the case for most AR rendering pipeline implementations in practice. Even though most rendering principles can be replaced by their differentiable estimates, this would require considerable development and is often incompatible with the real-time and portability constraints of AR renderers.

This general model for AR renderer is compatible with many augmented reality problems. In this work, we will consider three augmented reality renderers for lipstick, eye shadow, and hair color, as illustrated in Figure 3.6. However, we believe that our approach could be directly extended to other augmented reality problems. Training procedure of our model. We sample a graphics parameters vector g i and render a corresponding image using a renderer R and a random source image X i . Then, the inverse graphics encoder E is trained to map the image to the space of graphics parameters with minimum error. Right: inference pipeline. A reference image X ref is passed to the inverse graphics encoder to estimate the corresponding makeup graphics parameters. Then this code can be used as input to the rendering engine, to render the reference makeup on videos in real-time. To facilitate training and increase the proportion of relevant pixels in the image, E is trained on crops of eyes and lips.

Self-Supervised Training Procedure

Since our system must be able to run in real-time on mobile devices, we cannot use the conventional inverse graphics approach which solves an optimization problem for each example image using gradient descent, as in [START_REF] Laine | Modular primitives for high-performance differentiable rendering[END_REF]. Instead, we introduce an end-to-end neural network that can solve this task with a single forward pass. Given a particular AR renderer R, we propose to build a specialized inverse graphics encoder network E that learns to directly map a single example image into the parameter space of the renderer. The training procedure of our framework is described in Figure 3.7.

We denote by R the computer graphics rendering engine, taking as input a portrait image X and parametrized by g, the vector of parameters representing the makeup material that we name the graphics parameters. Each component of g is described in Table 3.2 for makeup and Table 3.3 for hair. Our objective is to train an encoder E, so that given an example makeup image X ref , we can estimate the corresponding graphics parameters ĝ = E(X ref ) to render images with the same makeup appearance.

Because the renderer R is not differentiable, we cannot compute a loss in the image space. Instead, we propose to learn E using a loss function defined in the space of graphics parameters. This is a more compact problem than inverse rendering or material appearance extraction, and does not require a time-consuming gradient descent step for inference. Instead, we train a special-purpose machine learning model that learns an accurate solution for a given renderer and graphics parameters choice. Mathematically, we denote by g i a randomly sampled graphics parameters vector of size n, and X i a random portrait image. Thus, our model E is trained to minimize the following objective function:

L graphics = 1 n n i=1 g i -E(R(X i , g i )) 2
Our training procedure is self-supervised, since it does not depend on a training dataset of natural images, but only on a sampling of graphics parameters that we control entirely at training time. Therefore, in comparison to existing methods, our model is less sensitive to bias in available training datasets, where extreme cosmetics color such as green or blue lipstick are scarce. Instead, we can enforce during training a graphics parameters distribution that samples the entire space of rendering parameters. This leads to better performance specially in cases of rare and extreme makeup examples. We describe how we set graphics parameters sampling distribution to reinforce diversity in Section 3.5.

Inverse Graphics Encoder Inference

At inference time, our inverse graphics encoder can be used to perform example-based virtual try-on. An example reference image is passed to our IGE network to estimate a corresponding graphics parameters vector. Given a single reference image X ref , the encoder network directly estimates the set of corresponding rendering parameters ĝ = E(X ref ). Then the estimated graphics vector ĝ can be used with the augmented reality renderer R to render in a novel image X source a cosmetics with the same appearance as in the reference image. Similarly, the extracted cosmetics appearance can be rendered on each frame of a video in real-time. Since the rendering parameters are fixed for each frame, the encoder inference needs to be run only once and does not impact the real-time efficiency of the renderer. This example-based virtual try-on procedure is illustrated in Figure 3.8.

This method can be used by computer graphics artists to automatically create realistic renderings from a reference product image. For each new cosmetics product launch, this can help to largely accelerate the creation of virtual try-on and increase the accuracy of the rendering. In addition, our method enables new applications where consumers can virtually try-on a novel unknown product from a reference inspirational image on social media. This requires to run the IGE network locally in the consumer mobile device. In practice this is not an issue since good results can be reached using a very light architecture (see Section 3.5.3) reaching real-time inference as shown in Section 3.6.4.

Imitator Module, a Learned Differentiable Renderer

In Section 3.3 we have shown that in the absence of a differentiable renderer, our IGE network can be trained by using a loss in the space of graphics parameters. In this section, we introduce a trainable imitator module that learns to reproduce the behavior of a non-differentiable renderer. Moreover, we introduce a novel sensitivity loss for training imitator networks, ensuring that the network learns an accurate and continuous representation for each rendering parameter. Finally, we show that the imitator module can be used during the training phase of the IGE network to enforce additional supervision in the image space, leading to significantly increased performance.

Imitator Motivation

Training the IGE network using only a graphics loss function, as described in Section 3.3, suffers from limitations. Indeed, this approach rely in the assumption that a distance in the space of graphics parameters is a good measure for the appearance of cosmetics. However, this distance can be misleading as some parameters (e.g. RGB) have a very large contribution to the rendering results, while other parameters (e.g. gloss roughness) have a more limited impact. Similarly, reaching a realistic shine effect for a given product often requires very high accuracy in the setting of the shine parameters, where slight variations can lead to perceptually very different textures. Thus, the graphics loss function, computed in the space of rendering parameters, does not provide an optimal signal for supervising the inverse graphics encoder training. Therefore, we propose to use an additional rendering loss function in the image space, by leveraging an imitator module

A better approach would be to use a loss in the image space between the estimated and ground truth rendering. However, this requires having access to a differentiable renderer that can backpropagate rendering errors to the encoder weights during training. However, most AR renderers are not differentiable in practice, as assumed in Section 3.3.1. In this section, we detail the first step of our framework, which consists in training a differentiable imitator module that will later be used to train our inverse graphics encoder. Our imitator takes the form of a generative neural network that automatically learns to reproduce the behavior of a given renderer. This network can then be used as a differentiable surrogate of the initial renderer for solving various inverse graphics problems.

The idea of using a generative network to build a differentiable estimate of a renderer was first proposed in the field of automatic avatar creation [START_REF] Shi | Fast and Robust Face-to-Parameter Translation for Game Character Auto-Creation[END_REF][START_REF] Shi | Face-to-parameter translation for game character auto-creation[END_REF][START_REF] Wolf | Unsupervised Creation of Parameterized Avatars[END_REF]. However, compared to fixed-camera avatar renderers, AR renderers are more complex functions that are usually composed of computer vision and computer graphics modules. Previous renderer imitator methods directly apply the conventional Generative Adversarial Networks method for image-to-image translation established in [START_REF] Isola | Image-to-image translation with conditional adversarial networks[END_REF]. This approach consists in training the imitator to reproduce the renderer output by minimizing a perceptual loss between the renderer and imitator outputs on a set of example rendering images.

However, this method does not leverage the specificity of the renderer imitation problem. Indeed, compared to the standard image-to-image translation problem, the training phase does not depend on a fixed set of training images. Instead, the training data is dynamically generated by sampling random rendering parameters and passing them to a renderer to create a training image. Thus, the distribution of the training data can be fully controlled at any time.

We propose to leverage this advantage to introduce a more constrained formulation of the imitator problem, based on a novel rendering sensitivity loss. This additional loss function is motivated by two observations. First, the imitator network is required to accurately model each of the renderer parameters. However, this is not explicitly enforced by the conventional imitator approach, where parameters that only impact a small portion of the rendered images have a limited weight in the perceptual loss. Secondly, in order to accurately solve inverse graphics problems, the imitator needs to learn a continuous representation for each parameter, where a shift in a given parameter will lead to changes in the rendered image which are similar to the ones obtained using the actual AR renderer. This is particularly challenging as generative networks are known for the difficulties they encounter in accurately modeling the entire training data distribution (i.e., the mode collapse problem) [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF][START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF][START_REF] Liu | Spectral regularization for combating mode collapse in gans[END_REF].

Finally, this learned differentiable renderer could be used to solve other inverse graphics tasks. However, regarding example-based virtual try-on, our task of interest in this chapter, the differentiable renderer could not be used to solve the problem directly. Indeed, the conventional inverse graphics approach that uses gradient descent to compute the optimal set of parameters given a perceptual distance, as presented in [START_REF] Laine | Modular primitives for high-performance differentiable rendering[END_REF], requires the reference image and rendered image to be pixel aligned, which is not the case for our task. For example, in the case of lipstick, the lips pose and geometry varies between the reference image and the source portrait image, which makes the perceptual distance computation impractical. Thus, regarding our problem of interest, the main purpose of this learned differentiable renderer is to introduce an improved loss in the image space to train a better graphics encoder network. 

Imitator Training

In this section, we detail the training procedure of our imitator model, illustrated in Figure 3.9. Our objective is to train an imitator network I that learns to reproduce the behavior of the renderer R, and for which derivatives with respect to g can be computed. We generate training data by randomly sampling n graphics vectors g i , i = 1...n and render them through R with a randomly associated portrait image X i . We propose to train I by using a combination of two loss functions. First, we use an imitation loss function that enforces similarity between R and I outputs, using a perceptual distance based on deep features [START_REF] Kim | Accurate image super-resolution using very deep convolutional networks[END_REF]. This perceptual distance between two images x and y can be written as follows:

L perceptual (x, y) = E V GG (x) -E V GG (y) 2 2 (3.1)
where E V GG is the feature encoder of a pre-trained VGG neural network. Then, our imitation loss is the following:

L imitation = 1 n n i=1 L perceptual R(X i , g i ), I(X i , g i ) (3.2)
Secondly, we introduce a novel rendering sensitivity loss function that enforces the imitator I to mimic the renderer R relationship between variations in the input parameters and the resulting image. For each dimension j, j = 1...m, in each sampled graphics vector g i , we randomly sample a shifted vector g i,j , where the value in dimension j was replaced by a novel randomly sampled value. Then, we use this shifted vector to compute a shifted rendered image using R, and explicitly enforce similar changes in I:

L sens = 1 n n i=1 m j=1 [R(X i , g i ) -R(X i , g i,j )] -[I(X i , g i ) -I(X i , g i,j )] 2 2 
(3.3)

Finally, we use the conventional adversarial GAN loss function, where D is a discriminator module trained with the gradient penalty loss from [START_REF] Gulrajani | Improved training of Wasserstein GANs[END_REF]: The training of the inverse graphics encoder E can be improved using our imitator network. Thus, to ensure additional supervision in the image space, our learned imitator module is used to compute a differentiable rendering estimate from the encoder output.

L GAN = - 1 n n i=1 D(I(X i , g i )) (3.4)
A rendering loss function L rendering is then computed using a perceptual distance between the rendered image and its reconstructed estimate.

In total, our imitator is trained to minimize the following loss function, where λ 1 and λ 2 are weighting factors that are set experimentally:

L I total = λ 1 L imitation + λ 2 L sens + L GAN (3.5)

Graphics Encoder Training using Imitator

Once trained, the imitator module can be used during the inverse graphics encoder training to enforce additional supervision directly in the image space, that we denote the rendering loss. This new encoder training pipeline including the imitator is illustrated in Figure 3.10.

For each training image, the encoder module estimates a graphics vector, and the imitator computes the corresponding rendered image. A perceptual distance is then calculated between this reconstructed rendering and the original rendered image that was passed to the graphics encoder, as illustrated in Figure 3.10. The rendering loss function can be written as follows:

L rendering = 1 n n i=1 L perceptual R(X i , g i ) -I(E(R(X i , g i ))) (3.6)
Since the imitator is differentiable, we can compute the gradients of this loss function with respect to the encoder weights, and train the encoder network using the conventional stochastic gradient descent procedure. In total, our inverse graphics encoder is trained to minimize the following loss function, where λ 3 is a weighting factor to balance the two components of the function:

L E total = L graphics + λ 3 L rendering
However, the imitator module is only used during the encoder training phase. At inference time, the imitator is discarded, as it is less optimized for inference on portable devices compared to the initial augmented reality renderer R. 

Implementation

Controlling the Training Data Distribution

A specificity of our framework is that we fully control the distribution of graphics vectors used to train our inverse graphics encoder. We propose to leverage this distinctive trait to construct a distribution that will reinforce the model performance on extreme examples. To obtain a realistic graphics parameters sampling, we fit a multivariate normal distribution on a set of rendering parameters previously set by experts to simulate a range of existing products. We choose a Gaussian distribution as it seemed adapted to the empirical distribution of our data. In addition, we reinforce the diversity of the sampled graphics vectors by alternately sampling from a uniform distribution. Even though this might lead to non-realistic synthetic images, the increased diversity will make the framework more robust to extreme examples that might occur in practice, such as blue lipstick or purple hair. In Figure 3.11 we show an example of used distribution for the red color parameters in lipstick rendering.

Synthetic Data Creation

Even though the training could be generated dynamically for each batch, we propose generating a synthetic dataset before training. Indeed, this allows obtaining a more reproducible training procedure as the same set of images will be used across each training iteration. Furthermore, we generate separate lips, eye shadow, and hair color datasets to train a specialized model for each category of object.

Each training dataset is synthesized by independently sampling n = 15000 graphics parameters vectors. The graphics vector are of size m = 6 for makeup and m = 9 for hair color, as described in Tables 3.2 and 3.3. Additionally, for eye makeup rendering, we select a random application pattern around the eye among a fixed list of possible patterns, in order to obtain various eye makeup styles. Then, each sampled graphics vector is associated to a random portrait image drawn from a high-resolution portrait dataset. In particular, we use the ffhq dataset [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], filtering out images of subjects below the age of 18. Furthermore, we chose to retain images of men in the dataset as they are more likely to be imaged without heavy makeup. Finally, the synthetic images are generated using the AR rendered described in Section 3.2.

Example images generated using this procedure are shown in Figure 3.12 for lips, Figure 3.13 for eye shadow, and Figure 3.14 for hair color. It can be observed that this data generation method leads to images with high diversity in makeup or hair color. Since we voluntarily sample extreme rendering parameters, some synthetic images such as green hair or green matte lipstick do not look realistic. However, this is not an issue in practice, as the objective is to ensure that the IGE network learns to extract the appearance of cosmetics of all colors and textures.

Finally, we generate additional images for training the imitator network using the sensitivity loss function. For each synthetic image previously generated, we randomly sample each dimension of the graphics vector individually to obtain a set of novel graphics vectors and render them to obtain the corresponding synthetic images. We repeat this procedure three times to ensure a large diversity in the obtained images. 

Model Architectures and Training

The architectures of our imitator and inverse graphics encoder modules are described in detail in Table 3.4. Our learned imitator module is implemented using an architecture inspired by the StarGAN [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-to-image translation[END_REF] generator. The generator input is constructed by concatenating the graphics parameters g to the source image X i as additional channels. We use instance normalization in each layer, as well as residual blocks composed of two convolutional layers with 4 × 4 kernels and a skip connection. Furthermore, in the final layer, the generator outputs a pixel differences map that is added to the source image to obtain the generated image. This architecture allows for a better preservation of the input image details, as the entire image does not need to be encoded in the generator bottleneck. The encoder architecture is composed of a simple encoder network using convolution blocks with 4 × 4 kernels and ReLU activation outputs. The final layer of the encoder is composed of linear activation outputs of the same size as the graphics vector. To improve the proportion of relevant pixels in the lipstick and eye shadow images, we crop the portraits around the lips/eyes before feeding them to the imitator and encoder model.

We empirically set the loss weighting factors values to λ 1 = 100, λ 2 = 1000 and λ 3 = 20 , with identical values for makeup and hair color experiments. The imitator and inverse graphics encoder are trained with a batch size of 16 on a single Tesla V100 GPU with 16MB of memory. Each model is trained over 300 epochs using an Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer with a fixed learning rate of 5.10 -5 using the Tensorflow [1] framework.

Results and Experiments

In this section, we propose to assess the quality of our different modules. We introduce various experiments using real and synthetic data and compare the results with existing generative-based methods. In Section 3.6.1 we present a qualitative evaluation of our inverse graphics encoder and imitator networks for makeup and hair color, using images from the MSM dataset and source images from the LTO dataset. These two datasets are described in detail in Section 2.3. Then, in Section 3.6.2 we perform quantitative experiments, using synthetic data for ablation studies as well as evaluation on real lipstick images from the LTO dataset (see Section 2.3). Then, in Section 3.6.3 we introduce a user study that compares the performance of our method against manual render parametrization by experts, using reference images from the MSM dataset (see Section 2.3) and source portrait image from the ffhq dataset [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. Next, in Section 3.6.4 we evaluate the inference speed of our model, demonstrating that it can achieve real-time speed on mobile devices. Finally in Section 3.7 we comment the current limitations of our framework.

Qualitative Evaluation

Imitator Qualitative Evaluation First, we assess the performance of our learned imitator module. In particular, we intend to verify that the images produced by the imitator are perceptually similar to those synthesized by the original renderer. To do so, we sample a test set of rendering parameters for makeup, and render them on test images taken from the ffhq dataset [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] using both the learned imitator and the original augmented reality renderers. We repeat this experiment for lipstick, eye shadow and hair color. The results are visible in Figure 3.15.

Even though the AR renderers that we consider in this work are composed of multiple complex modules of perception and rendering, it can be observed that our imitator is able to learn how to reproduce their behavior accurately. For all the studied renderers, the imitator correctly learned to modify only the relevant image regions. Furthermore, the imitator accurately reproduces the perceptual appearance of makeup and hair color rendered by the original renderer. This observation tends to confirm that the imitator module can provide a valuable and differentiable supervision signal during the training of the IGE network.

Furthermore, to emphasize the impact of our novel rendering sensitivity loss on the accuracy of the imitator network, we conduct a qualitative ablation study. We train imitator networks for makeup and hair color without using the sensitivity loss, and compare their output with the original augmented reality renderers, as done in the previous experiment. We present the result in Figure 3.16. Compared to the standard imitator approach, our imitator module trained with sensitivity loss learns a better representation for parameters that affect a smaller portion of the image, such as the shine level in the lipstick rendering. This results in a estimated rendering more consistent with the augmented reality renderer, which leads to better supervision for the IGE network. Furthermore, the use of a sensitivity loss seems to lead to a more accurate rendering of colors in the case of hair color virtual try-on, as visible in Figure 3.16. 

Makeup Inverse Graphics Encoder

Secondly, we assess the ability of our inverse graphics encoder network to extract the appearance of cosmetics from an example image accurately. In addition, we intend to evaluate the realism of our virtual try-on from an example image solution. For this experiment, we compare our results against popular neural-based hair and makeup synthesis models that can be used for makeup or hair color transfer from a reference image to a source image of a different person.

In the case of makeup, we sample a test set from the MSM dataset (see Section 2.3), with makeup styles of various colors and textures. For each test image, we use our IGE network to estimate the corresponding graphics parameters for lipstick and eye shadow. We then render the makeup using our AR renderer on typical virtual try-on images taken from the LTO dataset, introduced in (see Section 2.3). Finally, we compare our approach against two state-of-the-art makeup transfer generative methods for which the code is available, PSGAN [START_REF] Jiang | PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer[END_REF] and CPM [START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF]. We present example results of this experiment in Figure 3.17.

As shown in these images, in addition to permitting real-time inference, our approach achieves more realistic results than generative-based methods and can accurately model makeup with various colors and textures from matte to shine cosmetics. Our model shows fewer artifacts than purely generative approaches, even for rare makeup colors such as blue lipstick. In addition, our model achieves a higher resolution compared to generative approaches. Indeed, even though the IGE network takes as input a makeup image in small resolution to estimate the graphics parameters, the augmented reality renderers can synthesize images in high resolution, leading to qualitatively superior results. Additionally, we show example results at the portrait scale in Figures 3.18 and 3.1. Furthermore, compared to generative approaches, our method enables improved conservation of the skin and identity of the source portrait image, which is an essential property for virtual try-on applications.

Eventually, we assess the importance of using the imitator module during the inverse graphics encoder network training. For lipstick and eye shadow, we train IGE models with and without using a rendering loss computed through the imitator module during training. The results of this experiment are visible in Figure 3.17. The images synthesized for the IGE network supervised by the imitator module can more accurately reproduce the makeup in the reference image. In particular, the imitator seems to bring progress for complex cosmetic textures such as shiny lipsticks or eye shadow. Indeed, shine is defined by multiple parameters that only affect a small proportion of the image, making it more difficult to model using a graphics loss only. This observation tends to confirm that our imitator approach allows us to better inverse graphics encoders by introducing supervision in the image space even in the absence of a differentiable renderer.

Hair Color Inverse Graphics Encoder

Additionally, for hair color virtual try-on, we compare our approach against MichiGAN [START_REF] Tan | Michigan: multi-input-conditioned hair image generation for portrait editing[END_REF], a generativebased model for controllable hair synthesis. We sample test images from the ffhq dataset, and estimate the hair parameters using our IGE network trained on hair images. Using our hair color AR renderer, we then render the estimated hair color on pictures from the LTO dataset. The results of this experiment are visible in Figure 3.19.

Our real-time approach allows extracting the hair parameters and successfully rendering a perceptually similar hair color. In particular, our network can model complex hair colors such as brown with blond highlights, as visible in the examples presented in Figure 3.1.

However, it can be observed that the quality of the results seems lower for the hair color compared to makeup. Indeed, our framework can reproduce the general hair color but sometimes fail to accurately model reflection color, as it can be seen in Figures 3.1 and 3.19. Since the imitator has correctly learned the hair renderer, as seen in Figure 3.15, we assume that the lower encoder performance on hair images is due to the limitations of our AR hair renderer. Indeed, as already pointed out in [START_REF] Tkachenka | Real-time Hair segmentation and recoloring on Mobile GPUs[END_REF], such a hair recoloring technique is dependent on the initial hair color, and different types of hair might need additional Figure 3.17: Qualitative comparison of our approach against neural rendering methods for example-based makeup virtual try-on. Our model achieves more realistic results with high resolution. Furthermore, using an imitator for training our IGE network allows us to achieve better shine modeling. Compared to purely generative approaches, our model shows less artifacts even for rare makeup colors such as blue lipstick.

parameter tuning to obtain a similar result. Thus, a noticeable limitation of our framework is that it requires a renderer for which the parameter space can cover a large variety of appearances. This makes our approach more suitable to physically-based renderers such as our lipstick AR renderer.

Comparison Against Real Lipstick Images

The final applicative objective is to reproduce the physical experience of trying a cosmetic product. For this reason, we need to assess the ability of our system to accurately reproduce the appearance of a given lipstick in the physical world. To do so, we propose to compare our results against genuine product images on the same person. We perform this experiment on the lipstick categories, as collecting real word data is easier for this category than for hair color or eye makeup. First, we use test images from the MSM dataset in which we have information on the lipstick reference that was used in the picture. Next, we use our IGE network to estimate the rendering parameters for each product and render the lipstick on images without makeup from the LTO dataset. Then, we compare our estimated rendering against real pictures of the same subject wearing the corresponding lipstick in the same lighting environment. Furthermore, we also compare our results against lipstick rendering manually parametrized by artists using the same lipstick AR renderer. This manual parametrization represents the current virtual try-on experience that can be currently found in a digital store for makeup. The results of this experiment are visible in Figure 3.20. With this experiment, it can be observed that given a reference image of a lipstick, our model is capable of estimating and reproducing the appearance of a cosmetic product with a reasonable degree of realism. The color of the makeup is accurately portrayed for lipsticks with various colors, even for rare colors such as brown lipstick, as seen in Figure 3.20. Furthermore, the shine or matte characteristics seem to be captured with acceptable realism. Above all, the VTO estimated by our model seems closer to the real appearance of the makeup than the VTO which was manually parametrized by artists. Indeed, in addition to being automated, our methods enable us to reach a more precise color and texture. Such an improved VTO parametrization brings more realism for consumers who desire to test different cosmetics virtually, and reduces the potential deceptiveness of purchasing a lipstick with a different appearance in the physical world. Thus, our IGE network can be used in practice as a tool for accelerating and improving the accuracy of the creation of virtual cosmetics in current virtual try-on solutions.

Quantitative Evaluation

Ablation study

In order to analyze the role played by each component of our framework, we perform a quantitative ablation study. Since collecting a large number of ground truth data is difficult, particularly for hair color, we propose to perform an experiment based on synthetic images. For hair color and lipstick, we randomly sample 3000 graphics vectors and render each of them on two portrait images randomly drawn each time from the ffhq dataset. During the experiment, we extract appearance from the first rendered image using our graphics encoder, and transfer it to the second portrait before rendering. Ultimately, we compare our estimated rendering with the ground-truth rendering on the second portrait. This experiment is illustrated in Figure 3.21, and the results are reported in Table 3.5. These results tend to demonstrate the usefulness of using an imitator module instead of a single loss in the space of rendering parameters, reducing the average perceptual distance from 0.071 to 0.054 for lipsticks. Furthermore, using our novel rendering sensitivity loss function during the imitator training leads to a more accurate inverse graphics encoder than the standard imitator approach. Lastly, a combination of graphics loss and rendering loss terms achieves the best performance on most metrics by a small margin. Since we showed that the results were qualitatively superior in Section 3.6.1, we thus suggest conserving these two loss terms for training. Our model is able to estimate the lipstick appearance with a reasonable degree of realism. Furthermore, our estimated VTO seems closer to the authentic appearance of the product than the manually parametrized VTO that can be found in current commercial solutions.

Evaluation on Real Makeup Data

To quantitatively compare our approach against other image-based virtual-try on methods, we perform a quantitative experiment based on real images. We reproduce the quantitative evaluation of lipstick virtual try-on from the example introduced in Chapter 2. In particular, we use the LTO dataset with 300 triplets of reference portraits with lipstick, source portraits without makeup, and associated ground-truth images of the same person with the reference lipstick. We compare our approach against state-of-the-art generative methods for makeup synthesis from example images for which the code is available. The results of this experiment are presented in Table 3.6, and confirm that our framework achieves a more realistic virtual try-on according to all metrics, in addition to reaching real-time. We do not consider an equivalent experiment for hair color, as collecting a similar dataset would require multiple panelists to dye their hair to the same color, which is difficult to achieve in practice.

User Experiment

We also conduct a user study in order to compare our model to renderer parametrization set by expert artists. The experiment based on real-data introduced in Section 3.6.1 cannot be reproduced at a large scale because we do not have reference images for most lipsticks used in the LTO datasets. Indeed, the lipsticks found in MSM and LTO datasets are generally of two different makeup brands. Instead, we build a validation dataset of 2500 images of volunteers wearing a total of 327 different lipsticks. For each of these lipsticks, artists have carefully set the rendering parameters to reproduce the makeup product appearance. We use 2000 images to estimate the rendering parameters for each of the considered lipstick using our models, computing the median when multiple images per lipstick are available. The remaining 500 images are kept for validation. Using this dataset, we conduct a user study on six human evaluators. Each of them is presented with an image from the validation set, and the two associated renderings of the same lipstick, based on artists rendering parameters and on parameters estimated by our model. Each rendering image is randomly denoted as rendering A or B to limit bias in the evaluation. Examples of images generated for this experiment are presented in Figure 3.22. Each evaluator must choose among the categories "both renderings are valid", "only rendering A is valid", "only rendering B is valid", and "both renderings are invalid". All images are labeled by three different evaluators. Finally, we removed images for which a majority vote was not reached among the evaluators (19%). We also removed images where both renderings were considered unrealistic (14%), assuming this was more due to the renderer limitations than to an inaccurate rendering parametrization. The results of this experiment are presented in Table 3. 7.

Results indicate that in 48.5% of cases our system outperforms a manual rendering parametrization, while it performs equally in 19.7% of the labeled examples. However, for 31.8% of the images, our system Table 3.7: Results of our user study comparing our system to manual renderer parametrization made by artists. Each judge is asked to identify which rendering is the most realistic compared to a real reference image.

Both renderings valid

19.68% Only artists rendering valid 31.80 % Only our rendering valid 48.52 % failed to produce a realistic rendering while an artist could manually obtain a convincing result. In particular, our framework seems to fail to correctly model very dark lipsticks, that were not encountered in our training distribution This study tends to demonstrate that our system can also be used to help artists to create more realistic renderings, by accelerating the currently manual rendering parametrization using example images. This study assess the virtual try-on improvements using our method compared to manual parametrization by experts. Complex makeup textures such as shine, vinyl, or metallics are easier to reproduce using our system, reaching an increased realism.

Inference Speed

One of the advantages of our hybrid method combining deep learning and classical computer graphics is that it does not use neural rendering at inference. Indeed, a commonly recognized challenge of generative techniques is that they cannot be deployed for real-time video applications. In this section, we profile and report the inference speed of our inverse graphics encoder and our lipstick renderer. Our trained models of the inverse graphics encoder and lip detection are converted from TensorFlow to NCNN [START_REF] Tencent | high-performance neural network inference framework optimized for the mobile platform[END_REF] and deployed using TensorFlow.js [START_REF] Smilkov | js: Machine learning for the web and beyond[END_REF]. This framework makes neural networks models runnable on mobile platforms and mobile web browsers with potential GPU acceleration. Running such networks directly in the browser has several advantages. First, it vastly improves user experience as consumers do not need to download and install an application. Instead, the neural network is automatically downloaded and executed on the web page of the digital retail store. Furthermore, cloud-based applications allow for a local inference directly in the devices, which considerably reduces costs and latency. We profile our model directly in the browser by computing an average over 500 frames, skipping the first 100 frames which are slowed down by the initialization procedure, assets loading and GPU warm-up. The results of the profiling for two different mobile devices are reported in Table 3.8. As shown in these results, our method is able to achieve realtime speed, even on moderately recent mobile platforms (iPhone8 Plus, Chrome). Furthermore, it can be observed that the increase of computation time used by our IGE network is negligible compared to the rendering. This means that our example based virtual try-on could be directly embedded in the augmented reality renderer without negatively impacting the user experience. 

Limitations of our Neural Rendering approach

In this section, we examine the existing limitations of the example-based virtual try-on that we presented in this chapter. First, we proposed to represent the graphics parameters space as a simple vector. However, this formulation does not allow us to model spatially varying parameters, such as the region of application for eye shadow. For this reason, our current model can extract the color and texture of an eye shadow but cannot reproduce the application pattern automatically. Still, in practice, the application region is an essential factor of variation of the eye makeup appearance. A potential solution would be to represent the graphics parameters space as a tensor, conveying spatial information on where to place makeup as a mask. The additional information could be passed as additional channels of the tensor, or as a separated vector. Then, the graphics loss function could be extended using loss functions from the field of image segmentation to account for both material parameters and makeup regions segmentation. This formulation could also be extended to support multiple eye shadow products in the same eye makeup style, which is often found in practice. The graphics tensor could contain information on multiple regions where to apply the eye makeup.

In addition, we have shown that our framework can be used to create tools for artists to automatize or accelerate the parametrization of renderers. However, this requires having access to portrait images of each lipstick for which we desire to compute the corresponding graphics parameters. In practice, this is rarely the case and acquiring such images systematically is costly. Thus our inverse graphics encoder model is more prompt to be used in consumer applications for virtual try-on from inspirational images or cosmetics products recommendation, as described in the industrial applications detailed in Chapter 5.

Furthermore, while our framework shows satisfying results for transferring the makeup appearance, it cannot be considered as a simulation of the real world. Indeed using a single portrait image as a reference for capturing the cosmetic property leads to ambiguity. Thus, for cosmetics with low opacity, such as lips gloss, the appearance is highly dependent on the lips color of the person in the reference portrait image, which is unknown when using a single reference image. Furthermore, the illuminant in the reference portrait image is also unknown and uncontrolled, which could lead to a biased estimate of the appearance of the cosmetic product. For instance, a pink lipstick under a warm illuminant could look more orange than it really is. Similarly, a strong directional light in the portrait image could increase the shine appearance of the image leading to a gap between the estimated and real appearance. We illustrate this caveat in Figure 3.23. These limitations of portrait images call for a more robust and scalable method for capturing cosmetics products' appearance, for which we introduce perspectives in the next chapter. 

Cosmetics Neural Material Capture

In the previous chapter, we have shown that a portrait image taken in the wild can be used as a reference image to capture the appearance of a cosmetic product. While this approach is useful for creating new user experiences where consumers can virtually try-on looks from inspirational social media images, it shows some limitations for effectively reproducing specific products. Indeed, the appearance of a makeup product in an uncontrolled portrait image is ambiguous, as it is largely affected by factors such as the illumination conditions, the applied thickness of the makeup layer, or the skin/lips color of the person wearing the makeup. On the other hand, cosmetics companies running digital stores desire to produce highly realistic virtual try-on experiences of their products and have more easily access to physical products than reference portrait images.

In this chapter, inspired by the field of image-based material capture, we investigate novel techniques for capturing the appearance of a physical cosmetic product sample. Compared to neural rendering methods based on portrait images, such solutions aim at producing a more accurate representation of a cosmetic product appearance. Furthermore, such cosmetics material capture solutions must take into account concerns such as speed, scalability, cost and reproducibility. Most material capture solutions assume that an object is entirely composed of a given material and thus cannot be directly used for measuring the appearance of makeup which is a thin layer applied on the skin. This requires the development of novel image acquisition methods more adapted to specific characteristics of cosmetics. Furthermore, as detailed in Chapter 3, AR renderers used in productions often use simplified material models for accelerating execution on mobile devices, making conventional material capture solutions unusable. Thus, we introduce neural based methods which bring new perspectives for more flexible material capture models.

In Section 4.1 we review related work on material capture hardware and associated algorithmic solutions. Then in Section 4.2 we introduce a novel system for acquisition of cosmetics images in vitro, based on an automated film application and an imaging system in controlled conditions. Furthermore in Section 4.2.3 we illustrate and comment the data acquired with this system on various lipsticks. To illustrate the usefulness of this novel data acquisition approach, we introduce in Section 4.3 an experiment for learning a neural-based material capture encoder from in vitro images. This simple method builds on the inverse graphics encoder introduced in Chapter 3 and can be trained without material ground truth. Finally, in Section 4.5, we present future perspectives for learning data-driven cosmetics renderers using supervision by real-world images.

Related Work

Material Capture Systems

When rendering virtual objects in a synthetic environment, artists often desire to reproduce the visual appearance of specific reference material. Manually editing parameters for complex materials such as metallic surfaces, stone, and wood is particularly challenging and it is difficult to reproduce a given sample of material. For this reason, the field of material capture has recently introduced a large variety of methods for capturing a representation of material given a real sample.

A typical material measurement setup includes a light source and a sensor to capture information on 77 the illuminated region of the sample, as discussed in [START_REF] Guarnera | Material capture and representation with applications in virtual reality[END_REF]. The measured materials are generally under the form of a bi-directional reflectance distribution functions (BRDF), or spatially-varying bi-directional reflectance distribution functions (SVBRDFs). The majority of material capture systems are built on image acquisition through one or multiple cameras. Thus, the approach presented in [START_REF] Matusik | A data-driven reflectance model[END_REF] uses a camera and a spherical sample of material lighten by a rotating xenon lamp. Rotating elements are common in material capture as they allow measuring the appearance of the material with various angles of the light, resulting in a more realistic representation of characteristics such as shine. For instance, the setup introduced in [START_REF] Ngan | Experimental analysis of brdf models[END_REF] uses a fixed lighting and a fixed camera combined with a rotating cylinder on which stripes of material are rolled. Alternatively, some systems avoid moving parts for a more robust and scalable acquisition system. Thus, the method described in [START_REF] Jefferson | Measuring bidirectional texture reflectance with a kaleidoscope[END_REF] is based on a kaleidoscope, which allows viewing the sample surface with multiple angles in a single image without mechanical movements. Furthermore, other material capture devices are not based on images acquisition. Thus, gonioreflectometers [START_REF] Sing | A gonioreflectometer for measuring the bidirectional reflectance of material for use in illumination computation[END_REF] use a light source rotating around an axis and a sensor capturing data on the observed reflections. Gonioreflectometers can have various degrees of freedom by moving the sample, light, and sensor on multiple axes. Another solution often used to measure gloss levels in the paper industry is the use of glossmeters measuring the specular reflection of a surface, as described in [START_REF] Richard | Methods of determining gloss[END_REF]. However, this category of measurement devices is sensible to the measured material surface structure, leading to difficulties when measuring some cosmetics products. Indeed, the presence of pearls is frequent in metallic lipsticks and eye shadows, which tends to cause a chaotic reflection of the light on the surface, therefore biasing the shine measurement. For this reason, we propose to focus on image-based measurement, which can be used to compare materials with a large variety of surface structures. Finally, the field of material capture has recently focused on methods using mobile phone cameras, which allow measuring materials outside laboratories at a considerably low cost easily. In particular, mobile devices material capture often uses the camera flash as a light source. Hence, the method presented in [3] estimates the material characteristics given two smartphone images, one with and one without flash.

However, capturing the appearance of cosmetics material raises specific challenges. First, most real-time renderers for makeup virtual try-on do not use conventional material models such as BRDF and SVBRDF. Instead, to accelerate execution on mobile devices, they use simpler materials or other rendering principles based on pixel statistics manipulations, as described in Sections 3.2.1 and 3.2.2. For this reason, material representation measured by conventional material capture methods can not be used for virtual try-on applications. In addition, material capture generally assumes that a given object to render is composed of a single material and focuses on related materials such as wood, stone, or fabrics. In contrast, materials found in cosmetics are applied as a thin film on top of skin, lips, or eyes. Thus, properties such as opacity will broadly affect the final cosmetics appearance and are generally not measured in conventional material capture procedures. For instance, material capture methods for car paints, introduced in [START_REF] Rump | Photo-realistic rendering of metallic car paint from image-based measurements[END_REF], do not address paint transparency since, unlike cosmetics, paint is customarily applied until the base color is invisible. To the best of our knowledge, there is no existing work on dedicated material capture methods for cosmetics.

Neural Rendering for Material Capture

While material capture systems described in Section 4.1.1 are commonly based on physics and optics principles, neural rendering has recently introduced new perspectives for this field. Indeed, using machine learning techniques in the material capture pipelines allowed the creation of systems that do not require complex hardware, maintaining a satisfying level of accuracy. Hence, the work in [START_REF] Valentin Deschaintre | Singleimage SVBRDF capture with a rendering-aware deep network[END_REF] introduces a U-Net type architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] used to estimate a SVBRDF from a single reference image directly. Furthermore, this model can be trained using synthetic images and a differentiable render to compute a loss based on a perceptual image measure, comparing the estimated and ground truth material rendering. Building on this approach, a neural network encoder architecture introduced in [START_REF] Gao | Deep inverse rendering for high-resolution svbrdf estimation from an arbitrary number of images[END_REF] takes as input multiple images to capture more complex materials. Such machine learning models allow for more simple, scalable, and less costly material capture solutions, and generally only require a smartphone camera and flash. This principle has also been extended to other material models such as procedural materials using differentiable node graphs and a differentiable renderer, as introduced in [START_REF] Shi | Match: differentiable material graphs for procedural material capture[END_REF].

Furthermore, generative models have also contributed to advances in material captures. Thus, the method presented in [START_REF] Ben-Ezra | An LED-only BRDF measurement device[END_REF] introduced an unsupervised learning procedure for training generative adversarial networks to estimate SVBDRF from a single image without ground truth. Additionally, inspired by the adaptive instance normalization layer [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] adopted in StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], the work in [START_REF] Henzler | Generative Modelling of BRDF Textures from Flash Images[END_REF] introduces a generator architecture that estimates a SVBRDF from a single flash image.

Finally, to some extent, our inverse graphics encoder network introduced in Chapter 3 can be considered as a material capture method that estimates cosmetics parameters from an example of makeup applied on the face. However, this method must be amended, taking inspiration from the material capture field to create a more accurate and scalable system for capturing the appearance of cosmetics samples.

Cosmetics Vitro Imaging System

This section introduces a novel protocol for acquiring images of applied cosmetics in controlled conditions that we will later use as input images for a cosmetics material capture method. We denote these images vitro images as they can be produced at a large scale in a laboratory environment, similar to in vitro testing. In Section 4.2.1 we present our controlled application method for makeup. Then, in Section 4.2.2 we describe our image acquisition method for capturing vitro images from the obtained cosmetics applications. We illustrate this approach solely on the lipstick category for simplicity purposes, but it could be directly extended to any liquid cosmetics category.

Automated Cosmetics Vitro Application

As opposed to other materials such as wood or stone, we cannot directly measure the appearance of cosmetics. Cosmetics are generally sold under a liquid or solid form (e.g. stick or liquid lipsticks), and their bulk appearance can be misleading. Indeed, consumers apply cosmetics as a thin film on skin, lips, or eyes, and after drying, cosmetics reach their final appearance. Thus, we must reproduce these conditions in a controlled environment to observe and measure the most relevant cosmetics appearance. To be used at an industrial scale, that is, measuring thousands of cosmetics across multiple laboratories, our cosmetics vitro application method must be rapid and reproducible while maintaining low costs.

Application Surface First, we need to consider on which surface the makeup will be applied. Since we desire to obtain scalable solutions, directly applying cosmetics on a consumer's skin or lips is not a feasible solution. Indeed, this is hardly reasonable in practice, as it would require to run hundreds of tests to measure multiple lipstick ranges. Furthermore, since the appearance of the makeup is affected by the color of the underlying surface, images of two lipsticks on different persons cannot be directly compared due to skin and lips tone variation.

Instead, we propose to take inspiration from the paint industry, where the paint is applied on reference flat surfaces with controlled color and characteristics. Thus, it is common in the automotive, inks, wood coating, and cosmetics industry to apply a coating on a drawdawn paper card [START_REF] Byk | Byk instrument website -drawdown cards[END_REF] for color or shine measurement. These cards typically contain a black and a white region with controlled color and gloss, as illustrated in Figure 4.1. Thus, they are particularly adapted for evaluating the opacity of cosmetics, which is an essential property that we intend to measure in our material capture experiments. Alternative substrates can also be considered, such as synthetic leather of controlled color. Compared to paper cards, this type of surface intends to reproduce skin texture and can be used to replicate specific phenomenons occurring on the skin during drying, such as pigments or oil migrations. We consider both paper and synthetic leather substrate, and qualitatively compare the results in Section 4.2.2.

Cosmetics Applicator

Once the substrate has been selected, the lipstick must be applied with a controlled technique. Entirely manual applications are excluded as the final appearance is highly dependent on the applied pressure or the homogeneity of the application. To work around this problem, we propose to use controlled applicators designed for paints and coatings. This type of tools are specifically designed to create swatches of coatings with a thin and homogeneous thickness, reaching repeatable results over each application. For instance, wire rods [START_REF] Byk | Byk instrument website -wire-wound rods[END_REF] are composed of a thin wire rolled around a metallic bar and can be used to create uniform swatches of thin films. We also consider bar applicators [START_REF] Byk | Byk instrument website -square applicator[END_REF] which can reach more uniform results for low viscosity products. We illustrate these two applicators in Figure 4.2.

Furthermore, in order to maximize the consistency between any two cosmetics applications, we propose to use an automatic applicator, similar to the one presented in [START_REF] Byk | Byk instrument website -small automatic film applicator[END_REF]. Compared to manual applications, this automated methods ensure a consistent speed and drawn pressure by using a motor and an aspiration system, leading to a largely improved consistency. An image of the machine that we use for our experiments is presented in Figure 4.2.

Vitro Image Acquisition

Once makeup has been applied in a controlled manner, we propose to build a dedicated imaging system to capture the appearance of the sample in controlled conditions. Our imaging system, visible in Figure 4.3, is designed for simplicity and rapid image acquisition at a large scale and low cost.

Curved Support for Cosmetics Swatches As described in Section 4.1, most material capture systems are based on moving parts or mutiple cameras for capturing the appearance of the sample with various angle of the light. However, this type of solution dramatically increases the system complexity, increasing costs, maintenance, and acquisition time. Since we desire to maintain a low cost for measuring hundreds of products every year across multiple laboratories, we propose a more simple system based on a curved support, as introduced in [START_REF] Ngan | Experimental analysis of brdf models[END_REF]. In comparison, we do not use a rotating cylinder but a fixed semi-cylinder with a clip maintaining the paper card on the cylinder. This curved support that we specifically designed and 3D printed for our imaging system of paper card is illustrated in Figure 4.5, and visible in the picture of the system in Figure 4.6. Using such a curved surface avoids using any moving part in our system while still observing our cosmetic material under multiple angles of light in a single image. This makes visible in the pictures some material properties such as matte or gloss characteristics which are essential to capture, and this allows us to obtain an accurate cosmetics material capture system.

Controlled Imaging

Once the cosmetics sample is installed on the curved support, the image acquisition is ensured by a single camera. To obtain controlled and reproducible conditions, we use a camera support holding the camera at a fixed distance and position from the sample, as visible in Figure 4.4. In addition, we ensure controlled lighting on the scene using a 48 LED ring light for macrophotography, that we install around the camera objective. Finally, to ensure a good image quality at a close distance, we employ a camera Sony A7III alpha 7 mark III combined with an objective Tamron 28-75mm f/2.8 Di III RXD.

In addition, we desire to provide long-term consistency across several sample measurements. Indeed, our vitro cosmetics images acquisition system must be robust in case of a drift in the camera sensor or a change of camera. In addition, other sources of variation can occur, such as a displacement of the support with respect to the camera when moving the system or building another identical system. For this reason, we include multiple reference charts in the image. First, we incorporate a color reference chart, which we will use during postprocessing to apply color correction on the vitro image. Furthermore, to control the position of the sample with respect to the camera, we use ArUco codes [START_REF] Garrido-Jurado | Generation of fiducial marker dictionaries using mixed integer linear programming[END_REF], typically used in augmented reality applications, to compute the position of a planar surface. These codes can be easily identified and localized in 3D using real-time computer vision methods, such as the one introduced in [START_REF] Francisco | Speeded up detection of squared fiducial markers[END_REF], implemented in the OpenCV library [START_REF] Bradski | The OpenCV Library[END_REF]. An example of an image acquired by our system, without any processing, is presented in Figure 4.6. 

Data Acquisition and Experiments

Applicator and Substrate Choice Among the various applicator and substrate choices that we introduced in Section 4.2.1, we propose to choose the most adapted to cosmetics using a qualitative experiment. We selected a set of 5 lipsticks with different colors, opacity and shine, and viscosity. We then applied each lipstick using the automated applicator with two different setups: (1) wire rod applicator on white synthetic leather, and (2) bar film applicator on white drawdown paper card. Then, for each applied sample, an image is taken using the image acquisition system detailed in Section 4.2.2. The results of this experiment are presented in Figure 4.7.

This experiment tends to show that rod wire applicators lead to heterogeneous applications for lipsticks with low viscosity, such as gloss. In addition, since the vitro image is captured from a close distance, these minor artifacts are significantly visible on the vitro image. In contrast, bar film applicator on paper cards resulted in a more homogeneous application for all tested lipstick, independently of their opacity, shine, or viscosity. For this reason, we propose to retain this application technique for our vitro image acquisition system.

Data Acquisition and Qualitative Analysis Next, we use our system to build a novel database of lipstick materials. Thus, we measure 53 different lipstick products, which are spread across 4 different commercial ranges. Each range was selected to represent the large variety of lipstick textures available on the cosmetics market: gloss, matte, metallic and satin lipsticks. As previously described, we apply each lipstick on a paper draw dawn card using the automated bar applicator. Then an image is captured for each lipstick sample using our vitro image acquisition system.

First, we propose to validate that the appearance of the vitro sample is consistent with the appearance of the same lipstick applied on lips. For each measured lipstick, we compare the vitro image with portrait images of a person wearing the same lipstick taken from the Makeup Social Media (MSM) dataset, introduced in Section 2.3. The results of this experiment are visible in Figure 4.8. It can be observed that that the shine characteristics which are visible in the portrait image can also be seen on the vitro images. For instance, a shine is visible on the vitro image for Butter Gloss -Angel Food Cake, which is consistent with the shine seen on the lips of the corresponding image. Similarly, the metallic appearance of the lipstick Cosmic Metals -Retro Harmony can be observed in the vitro image, where pearls are visible. Furthermore, this experiment tends to confirm that vitro images contain more information than portrait images. Indeed, on portrait image, the opacity of the lipstick is ambiguous since the thickness applied by the person is unknown. In contrast it can be observed in vitro images that some lipsticks are more transparent. This is key information for improving the accuracy of virtual try-on, as a transparent lipstick will be more affected by the color of the underlying lips than an opaque lipstick.

To confirm this observation, we compare vitro images of lipsticks with simple postprocessing. We compute an optimal color transform for each image using the least square estimation of a 3 × 4 affine transformation matrix between color reference chart patches pixels and the corresponding reference color measurements. After applying the color correction, the lipstick swatches are cropped according to a position computed using the ArUco codes [START_REF] Garrido-Jurado | Generation of fiducial marker dictionaries using mixed integer linear programming[END_REF]. We display the obtained images in Figure 4.9. This experiment tends to confirm that our vitro imaging system can be used to capture complex information about shine and reflections of various cosmetics materials with a very different appearance. This is an appealing property compared to glossmeters that can only compare gloss levels of surfaces with similar structures.

Finally, we repeat this postprocessing procedure with lipstick of various opacity levels, and display the results in Figure 4.10. Since all lipsticks are applied with a controlled thickness, the opacity characteristics of each cosmetic can be directly observed on the vitro image. Indeed, in images of products with high opacity, the difference between the black and white areas of the draw dawn card is barely visible. Similarly, for products with low opacity, such as gloss lipsticks, the color difference on the image between black and white backgrounds is considerable.

We thus have shown that our vitro images acquisition setup enables to capture images with enough information for capturing the appearance of complex cosmetics products. These images could be combined with a large variety of methods to obtain cosmetics material measurements. For example, since we know the thickness of the applied products and the reference color of the paper cards, one could directly derive opacity and color parameters for each lipstick using a simple physical model. The next section shows an alternative method based on deep inverse graphics to directly estimate the material parameters of cosmetics virtual try-on renderers.

Vitro Graphics Encoder for Material Capture

In this section, we propose an experiment to illustrate the potential methods and applications which can be built using our vitro imaging system. Since the image acquisition is entirely controlled, a possible direction would be to use a physical model to compute the material parameters of the makeup given the camera parameters and geometry of the surface. We propose to introduce a different direction based on neural descriptors, that could be more easily adapted to unconventional material parameters encountered in augmented reality. In Section 3.2.1 of the previous chapter, we described renderers used in production for real-time virtual try-on of cosmetics on mobile devices. To achieve faster inference on devices with limited computational power, we saw that these renderers do not rely on conventional material models such as BRDFs, but instead on simpler and singular parametrized materials. For this reason, existing established material capture methods cannot be directly used to parametrize our virtual try-on renderer from vitro images of cosmetics. On the other hand, virtual try-on solutions would broadly benefit from a material capture solution that could accelerate, scale, and improve the accuracy of the parametrization of new cosmetics products. Therefore, we propose to build on the inverse graphics encoder network introduced in Chapter 3, and train a special-purpose vitro encoder network, which learns to estimate the parameters of our virtual try-on renderer from vitro images of cosmetics.

Method

Lack of Ground Truth for VTO Renderers While most material capture methods based on neural networks are trained using synthetic data, such as in [START_REF] Valentin Deschaintre | Singleimage SVBRDF capture with a rendering-aware deep network[END_REF][START_REF] Gao | Deep inverse rendering for high-resolution svbrdf estimation from an arbitrary number of images[END_REF][START_REF] Shi | Match: differentiable material graphs for procedural material capture[END_REF], this assumes to have access to a differentiable renderer which can reproduce the scene of interest. In our case, the vitro images of lipstick could be easily generated using a differentiable renderer such as in [START_REF] Laine | Modular primitives for high-performance differentiable rendering[END_REF][START_REF] Tzu | Differentiable Monte Carlo ray tracing through edge sampling[END_REF][START_REF] Li | Differentiable monte carlo ray tracing through edge sampling[END_REF]. However, the corresponding ground truth for parametrizing the virtual try-on renderer could not be obtained as these differentiable renderer are using conventional material models. Instead, we introduce a special-purpose neural network model that learns to directly estimate the virtual try-on renderer parameters given a vitro image of a lipstick.

One difficulty for training such a model is the access to training data. We do not have access to a large database of portrait images before and after wearing lipstick and the corresponding vitro images that could be used to supervise the training of the vitro encoder network. Furthermore, as shown in Section 3.6.3, ground truth parametrizations provided by artists are not always accurate, and in comparison, our inverse graphics encoder module was able to reproduce the real appearance of cosmetics with more realism. However, for each of the 54 measured lipsticks using our vitro image acquisition system, multiple reference portrait images can be found in the Makeup Social Media Dataset, introduced in Section 2.3. We thus propose a novel training procedure using these reference images and our inverse graphics encoder network.

Vitro Image Preprocessing

The vitro images captured by our system, such as the one visible in Figure 4.6, cannot be directly passed to a neural network. Indeed, they are extremely large due to the camera's high resolution, and the lipstick swatch only covers a small region of the total image. As done in Section 4.2.3, we first localize the position of the ArUco codes in the image and compute the relative position of the white and black sections of the drawdown paper card. Then, we compute the localization of the color reference chart patches and use their pixel value to estimate a color correction of the vitro image. Finally, to introduce data augmentation for each lipstick image, we randomly crop the white and black regions of the drawdown card and concatenate the obtained images channelwise to produce the final tensor passed to the vitro encoder. This procedure for vitro image preprocessing is visible in Figure 4.11.

Vitro Encoder Training

The training procedure of our vitro encoder network is illustrated in Figure 4.12. For each measured lipstick, we have access to a vitro image, and a set of portrait images of different persons with the same lipstick. We denote by V j the vitro image of product j, and by X j i the portrait image number i of product j. As shown in Chapter 3, our inverse graphics encoder network, which we denote here E vivo , can process portrait images to estimate rendering parameters to use for reproducing a similar appearance using the virtual try-on renderer. Thus for each portrait image, we estimate the corresponding rendering parameters using the E vivo , and average the results for each product.

Finally, the vitro encoder is trained to estimate rendering parameters that are consistent with the rendering parameters estimated by E vivo by minimizing a distance in the space of rendering parameters. In total, our vitro encoder is trained to minimize the following loss function, where k denotes the number of products and n the number of portrait images for each product:

L vitro = 1 k k j=1 1 n n i=1 E vivo (X j i ) -E vitro (V j ) 2 (4.1)

Experiments and Qualitative Results

Implementation To implement our vitro encoder model, we use the same architecture as our inverse graphics encoder for portraits, described in Section 3.5.3. We only modify the first layer, which takes a tensor with 6 channel as input, representing the concatenation of the vitro images on white and black background. The model is trained on vitro images of 48 different lipsticks with various textures and 1781 portrait images of the same products taken from the MSM dataset. The remaining 5 lipsticks of our dataset are used as a test set to validate our approach. We train the model over 200 epochs, using the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer and a fixed learning rate of 5.10 -5 .

Qualitative Experiments Given the small size of our training and validation dataset, we only perform qualitative evaluation, as quantitative analysis would not be conclusive. To illustrate the realism of the estimated rendering parameters using the test vitro images, we collect a small dataset of ground truth images. For each lipstick in the test set, we collect images before and after makeup in the same lighting conditions with three different panelists. The images are taken with the panelist smartphones in automatic settings to reproduce typical conditions encountered in virtual try-on applications. The lighting however is fixed to ensure that the images before and after makeup can be directly compared.

For each vitro image, we estimate the rendering parameters using the trained vitro encoder and render the lipstick using the virtual try-on renderer described in Section 3.2.1. Finally, we qualitatively compare our results against ground truth images and manual parametrization by artists, using the same renderer. This manual parametrization is representative of virtual try-on solutions currently found in production on digital retail stores. The results of this experiment are visible in Figures 4. [START_REF] Esther Z Barsom | Systematic review on the effectiveness of augmented reality applications in medical training[END_REF] Overall, the appearance of the real product is correctly reproduced by our cosmetics material capture method. It can be observed that our vitro encoder is capable of estimating a lipstick color that is consistent with the color of the real product seen on the ground truth image. Furthermore, our method can estimate variation in the shine level, realistically reproducing our test lipstick shine and matte characteristics. Thus, the virtual try-on obtained using our material capture system looks more realistic compared to manual parametrization by artists. In particular, the color of the real product is more accurately reproduced.

Compared to using portrait images as references, as done with the portrait inverse graphics encoder, vitro images are more controlled and less ambiguous for measuring lipstick color, as they are not affected by unknown lighting or unknown background color of the lips. In addition, our cosmetics material capture method is fully automatic, from the cosmetics product application to the estimation of material parameters. Thus, our system relaxes the needs for experts artists and accelerates the digitization of cosmetics at large Example results of our vitro encoder network. We compare the rendering parameters estimated from the vitro images using our vitro encoder, against ground truth image of the same person wearing the corresponding lipstick. We also compare with rendering currently used in digital stores, manually parametrized by artists.

scales, necessary for commercial virtual try-on applications.

Limitations

In this section, we stress some limitations of our cosmetics material capture method. First of all, our experiment is based on a small-scale dataset. For this reason, even though the qualitative results look promising, conclusive quantitative results cannot be reached. Our results would need to be confirmed at a larger scale, collecting more vitro images of lipsticks, as well as the corresponding portrait images for validation.

In addition, some complex cosmetics appearances such as metallic lipsticks are rare in our datasets and are difficult to reproduce with our current model. Indeed, among the 54 measured lipsticks, four have a metallic appearance, and only three are used for training, while the remaining lipstick is part of the test set. We illustrate in Figure 4.14 the performance of our material capture on a metallic lipstick. It can be observed that, even though our system produces lipstick with a significant degree of shine, it does not look realistic compared to the ground truth image of the real product. Therefore, we assume that metallic shine requires a different parametrization type, which cannot be effectively learned with such a small dataset. However, since the metallic appearance is visible on the vitro image, we believe that this could be learned using a larger dataset of another material parameters estimation method. Example limitations of our cosmetics material capture system. Our limited dataset does not allow us to learn an accurate vitro encoder for metallic lipsticks, which have a more complex appearance. Furthermore, high transparency lipsticks are also less accurately reproduced, which we believe is due to our training procedure.

Moreover, the performance looks lower for some of the transparent lipsticks, such as gloss lipsticks. Indeed, as illustrated in Figure 4.14, our system generally reproduces a material that has a correct shine but not enough transparency. In contrast, the real products provide a shine effect while not entirely covering the initial color of the lips. While the transparency of the product is easily perceptible on the vitro image, we believe that our vitro encoder does not accurately reproduce this characteristic due to our training procedure. Indeed, our vitro encoder is supervised by the inverse graphics encoder, taking reference portrait images from the MSM dataset as input. Thus, the transparency of the product is not perceptible at the portrait scale since we do not have access to the image before makeup. For this reason, the supervision signal sent by the inverse graphics encoder to the vitro encoder does not permit to capture the transparency characteristics of the gloss lipsticks. We believe that this difficulty could be overcome by using a different technique, such as using carefully parametrized ground truth or learning from real-world images using before and after makeup images combined with a differentiable renderer.

Finally, a noticeable limitation of our material capture method is the fact that it is currently restricted to liquid cosmetics products. Indeed, the automatic application procedure described in Section 4.2.1 is mainly dedicated to painting and coating materials and cannot be used to measure solid products. While many cosmetics products are found under a liquid form (such as foundation, lipstick, blush, or eye shadow), other categories are more challenging to apply in a controlled and automated manner. For example, solid lipsticks can be heated and mixed to achieve a liquid form allowing them to be applied using our method, but new applications techniques must be developed for products such as eye shadow powders. However, we believe that the imaging system could remain the same, even though different vitro models could be needed if the application condition of the cosmetics product differs too much.

Future Work: Neural Tensor Capture for Generative Models

This section discusses perspectives for other methods that could be developed using our vitro cosmetics images to achieve a more realistic virtual try-on. The method that we introduced in Section 4.3 is built on an existing virtual try-on renderer, leading to several limitations. First, this rendering engine is not An example training procedure for a neural texture model for cosmetics virtual try-on. Given a vitro image, the neural texture encoder learns to estimate a texture tensor. Then, the texture tensor is passed to the neural renderer together with a source portrait image to estimate the virtual try-on. Both models are trained simultaneously using real ground truth images and a perceptual loss function.

differentiable, which largely restricts the possible loss functions and training procedures. Moreover, the quality of the synthesized results is bounded by the realism of the used rendering engine. In contrast, we have shown in Chapter 2 that generative models could be used to learn more realistic renderers from realworld images. Thus, assuming that we have access to a sufficiently large database, we propose a generative neural network architecture that could be used to learn a more realistic virtual try-on of cosmetics.

Inspired by the neural texture formulations introduced in [START_REF] Thies | Deferred neural rendering: Image synthesis using neural textures[END_REF] for facial reenactment in videos, we propose to represent each cosmetics product by a neural texture tensor. Thus, instead of using a predefined material model, we intend to learn the material representation using machine learning and realworld images. Given a vitro image of a cosmetics product, a neural texture encoder network directly estimates the neural texture tensor for this product. Furthermore, conventional renderers cannot interpret this neural texture, and a neural renderer module must be learned simultaneously. This neural renderer module takes as input a source portrait image and the neural texture tensor representing the cosmetics product and outputs the estimated virtual try-on image. This neural renderer could be implemented using different methods. For example, the generator architecture from Section 2.2.3 could be directly adapted by concatenating the source image and the neural texture tensor as input. Another approach could incorporate 3D geometry information, similarly to the method from [START_REF] Thies | Deferred neural rendering: Image synthesis using neural textures[END_REF] which passes UV-maps and neural textures as inputs to the neural renderer, in a procedure inspired by computer graphics pipelines.

Finally, the texture encoder and renderer networks are trained simultaneously using real-world images. For each cosmetics product in the training dataset, the vitro image is sent to the neural encoder, and a source portrait image without makeup is passed to the neural renderer, together with the texture encoder output tensor. Finally, the neural renderer outputs an estimated virtual try-on image which is compared to a ground truth image of the same person wearing the corresponding cosmetics product using a perceptual measurement. We illustrate this training procedure in Figure 4.15.

Compared to the vitro encoder approach introduced in Section 4.3, this type of architecture could be more adapted to learn cosmetics characteristics such as product opacity. Indeed, the opacity is perceptible in the vitro image, and the ground truth image would enforce both the texture encoder and the neural renderer to represent this characteristic. However, even though it is expected to reach a higher accuracy, this approach is more challenging to implement in practice as it requires a large-scale data collection of vitro and portrait images. Furthermore, the portrait image before and after makeup must be taken in a similar lighting environment and with the same facial poses to be directly comparable. In practice, this could be achieved by using simple facial poses but would raise issues for creating renderers robust to extreme poses variations, as often found in cosmetics virtual try-on applications.

Chapter 5

Industrial Applications

This chapter describes how the methods introduced in this thesis have been used in various applications for the cosmetics market. Most of these applications are directly using our models with little adaptations to fit the specificity of each task. As illustrated in the following sections, our neural rendering methods bring practical solutions for a variety of tasks outside the scope of virtual try-on for consumers. Hence, our models applied to other auxiliary tasks allow for new user experiences in digital retail and accelerate cosmetics formula development in the laboratory.

In Section 5.1 we detail a direct utilization of the generative model described in Chapter 2 to automatically synthesize new example makeup for powering applications and website interfaces. Next, in Section 5.2 we show that our inverse graphics approach introduced in Chapter 3 can be transposed to hair rendering to create a hair digitization procedure. Eventually, in Section 5.3 we show that our inverse graphics encoder (IGE) network for lipstick can be utilized to create a zero-shot classifier for lipsticks products. This allows creating new consumer experiences for digital stores, recommending specific products from example images sent by consumers.

Rendering Adaptive Interfaces for Personalized Makeup Devices

Even though the initial objective for our CA-GAN model described in Chapter2 was to synthesize makeup on consumer images, its usage can be directly adapted to other industrial objectives. In particular, it can modify existing makeup images, reducing the cost of acquiring novel pictures for creating new application and website interfaces. The following section describes how our CA-GAN model automatically generated an adaptive interface for a personalized makeup device.

Personalized Makeup Devices

An important recent trend in the cosmetics market is the ability to create personalized products for each consumer, matching their aspirations and diversity. This principle has been first adapted to the creation of customized foundation directly in point of sale [6,110]. More recently, this approach has been extended to consumer devices that can deliver customized products directly from home.

In particular L'Oréal launched in 2021 Rouges sur Mesure Perso by Yves-Saint-Laurent [START_REF]Rouges sur Mesure Perso by Yves-Saint-Laurent[END_REF], a portable device capable of distributing personalized lipstick shades. The device uses cartridges of lipstick that are dispensed and mixed together to obtain the various lipstick shades that are prompted by the users through a mobile appication. Image of the device and its cartridges are presented in Figure 5.1.

With conventional makeup, consumers are used to choose between a fixed set of shades, watching example images of models wearing each shade. However, picking a shade among a continuous range of possible makeup colors raises new challenges in user experience and user interface. Indeed, the mobile application interface must display examples of lipstick that can be created using the current set of cartridges inserted in the device. On the other hand, using real images is impossible in practice, as it would require taking photographs of models with thousands of shades, leading to immense costs. This cost issue is generally addressed in current digital retail platforms by taking a few images of models and using digital editing by expert artists to simulate all the shades in a given lipstick range. However, this solution is also 93 infeasible for personalized products, as it would require manually editing thousands of images. This calls for a novel solution that can automatically generate makeup images to realistically illustrate a continuous makeup range.

Generative Model for Automatic Adaptative User Interface

To solve this problem, we used the CA-GAN model presented in Chapter 2 to create an adaptive user interface for the personalized cosmetics device. Since we already have access to images of models wearing the target lipstick with different shades, our generative approach for color controllable makeup synthesis is well adapted to this task, as it allows us to realistically modify the color of lipstick in a source image to a new target color. Furthermore, as opposed to virtual try-on for consumers, we do not need to synthesize the makeup on a video stream but only on static images. For this reason, the slow inference time of generative models is not an issue for this task. In addition, since only a finite number of cartridge combinations are possible, the makeup image synthesis can be done offline and does not need to be embedded in the mobile application. This allows avoiding several drawbacks, such as dramatically increasing the memory size of the mobile application with the weights of a sizeable generative model.

We directly use our CA-GAN lipstick model on images collected during a professional model photoshoot. The gathered images cover a large variety of skin tones and lipstick colors. For each image, we render a large number of synthetic images using possible lipstick shades in the Rouges sur Mesure Perso device. The results are depicted in Figure 5.2. It can be observed that our CA-GAN model produces realistic images across model skin tones and target lipstick colors. These generated images were obtained automatically, without the intervention of photo manipulation artists, and are realistic enough to be used for a user interface.

In practice, the adaptive interface system relies on a simple architecture. The device detects the inserted monochrome cartridges and sends the information to the mobile application, which automatically generates a user interface using the images stored in the mobile application. Examples of our adaptive user interface are visible in Figure 5.3. This type of system could be directly extended to other use-cases, such as the retail websites of conventional makeup, helping cosmetics brands to rapidly create images of large ranges of makeup color given a few real photoshoot images.

Finally, this principle of synthesizing new example images for makeup retail could be extended to more conventional applications, such as cosmetics digital stores. While launching hundreds of new products every year, cosmetics digital store need to display example of the appearance of their makeup for each available shade. Being able to automatically synthesize images for an entire color range from a single model image would permit to accelerate and reduce the cost of this process broadly. 

Hair Color Digitization through Imaging and Deep Inverse Graphics

Hair appearance is a complex phenomenon due to hair geometry and the way the light bounces on different hair fibers. For this reason, reproducing a specific hair color in a rendering environment is a challenging task that requires manual work and expert knowledge in computer graphics to visually tune the result. Many applications could benefit from an automated method for capturing the appearance of a physical hair sample, from augmented/virtual reality to hair dying development.

In this section, we show that our inverse graphics encoder approach can be directly extended to hair rendering to create a novel method for hair color digitization. This system led to a publication at the 2022 Electronic Imaging Conference. Our proposed pipeline allows capturing the color appearance of a physical hair sample and renders synthetic images of hair with a similar appearance, simulating different hairstyles and/or lighting environments. This procedure is illustrated in Figure 5.4. Since rendering realistic hair images requires path-tracing rendering, the conventional inverse graphics approach based on differentiable rendering is untractable. Our method is based on the combination of a controlled imaging device, a pathtracing renderer, and an inverse graphics model based on self-supervised machine learning, which does not require to use of differentiable rendering to be trained. We illustrate the performance of our hair digitization method on both real and synthetic images and show that our method can accurately capture and render hair color.

Method

Hair Strand Imagery

The imaging setup used for capturing hair swatch images is illustrated in Figure 5.5. It is composed of fixed camera and illumination to obtain controlled acquisition conditions. The hair swatch is stretched out on a flat-surface holder to fix the distance to the camera. A different geometry, such as a curved surface for holding strands, could be use to capture specular and secondary hair reflections. Example images of hair acquired with this system are visible in Figure 5.7.

Compared to other hair capture systems [START_REF] Hu | Robust hair capture using simulated examples[END_REF][START_REF] Paris | Capture of hair geometry from multiple images[END_REF], our acquisition method focuses on hair color and does not capture the geometry of a complete hairstyle. This choice was made to obtain a more scalable hair digitization approach, that can be done at a large scale using small synthetic/real hair swatches, which is more convenient for hair dying development. Furthermore, the hair geometry can still be edited in the rendering environment, as illustrated in Figure 5.4.

Hair Renderer

Related Work Various scattering models have been proposed in the literature to simulate the way light is reflected from hair fibers [START_REF] Eugene D'eon | An energyconserving hair reflectance model[END_REF][START_REF] Marschner | Light scattering from human hair fibers[END_REF][START_REF] Yan | Physically-accurate fur reflectance: Modeling, measurement and rendering[END_REF] offering physically-based realistic results. Different light bounces on the hair fiber, which is usually represented by a cylinder, have an important effect on the hair appearance and thus its realism. Specularities, hair color and hair tone are directly connected with the three scattering components introduced in [START_REF] Marschner | Light scattering from human hair fibers[END_REF]. With the recent advances in the parallelization of ray tracing (OptiX, Vulkan RT ), path-tracing implementations of these models have become more practical, increasing the degree of realism due to global illumination. The control over the appearance of the hair color is based on physical parameters of individual hair fibers, such as natural melanin concentration/ratio or other artificial dye colorants. In order to improve the user friendliness in production, visual attributes such as the albedo have been introduced in [START_REF] Matt | A practical and controllable hair and fur model for production path tracing[END_REF] and implemented in Renderman [START_REF] Christensen | Renderman: An advanced path-tracing architecture for movie rendering[END_REF] to favor the artistic expression. However, the tuning of these parameters to match the appearance of a physical hair sample is almost impossible without a psycho-visual match.

Our Hair Path Tracing Renderer The hair renderer used in this approach is based on the scattering model described in [START_REF] Pharr | The implementation of a hair scattering model[END_REF][START_REF] Yan | Physically-accurate fur reflectance: Modeling, measurement and rendering[END_REF]. In particular, this method relies on a more efficient scattering model for fibers using a near-field shading model. Since the objective of this work is hair appearance, a physicallybased renderer that accurately describes the lobes of light bounces on the hair cylinder is essential. The path tracing implementation of our renderer was performed in the parallelized framework Nvidia OptiX to accelerate the computations.

As illustrated in Figure 5.6, we divide the rendering parameters into two categories: the hair parameters h that determine the hair color and the scene parameters s which control the other scene parameters such as camera position and hair shape. For a given set of hair parameters, the scene parameters can be dynamically controlled to produce images at different scales, and different hairstyles, as seen in Figure 5.1. The interaction with the renderer for controlling the hair color in the scene is performed by tuning the parameters of the concentration/ratio of the natural hair melanin of individual hair fibers [START_REF] Eugene D'eon | An energyconserving hair reflectance model[END_REF] as well as an additional color absorption parameter simulating an artificial dye colorant. Hair Inverse Graphics Encoder Self-supervised training Building upon the deep inverse graphics approach presented in Chapter 3, we propose to train a deep inverse graphics model using self-supervised learning and synthetic images. This method is a direct adaption of our IGE network, up to the difference that the renderer does not take as input an input image but a set of scene parameters s which represents the hair style, camera and illuminant parameters. For each synthetic image i we sample a random vector of hair parameters h i , using the parameters described in Table 5.1. To obtain training with a large diversity of hair colors, we sample n vectors of hair parameters using a uniform distribution for each parameter. This sometimes leads to unrealistic hair colors, as seen in Figure 5.7, but ensures that our model generalizes well to rare hair colors such as blue or pink. To introduce hair fiber localization variations among the synthetic images we randomly sample for each synthetic image the camera position parameters, that are defined with spherical coordinates. We denote this random scene parameters for synthesizing the swatch image i as s swatch i . These rendering parameters are then passed to the ray tracing renderer to produce the synthetic image R(h i , s swatch i ). Finally, the synthetic image is given as input to an encoder network E, which is trained to estimate the initial hair parameters h i . This training procedure is illustrated in Figure 5.8. In total, the deep inverse graphics encoder E, parametrized by its weights Θ, is trained to minimize the following loss function using gradient descent:

min Θ L graphics = min Θ 1 n n i=1 h i -E(R(h i , s swatch i )) 2 .
Hair digitization At inference time, the inverse graphics encoder is used to estimate hair color using real hair swatches. Our imaging system is used to obtain an image of a hair sample, that we denote x swatch . This image is sent to the graphics encoder which estimates the associated hair rendering parameters E(x swatch ). Finally, these hair parameters can be used with the path-tracing engine to render synthetic images with The training procedure of our hair inverse graphics model. Hair color parameters h i are randomly sampled and passed to the renderer R to produce a synthetic swatch image using adapted scene parameters s swatch . The rendered image is passed to the inverse graphics encoder E that learns to estimate the initial hair parameters h i using L graphics , a loss function defined in the graphics parameter space. Figure 5.9: Our hair digitization pipeline. An image x swatch of the hair sample is acquired and passed to the inverse graphics encoder E to estimate hair color parameters. Synthetic images of hair with the same appearance as the hair sample can be rendered using the estimated hair parameters and the chosen scene parameters s. In this example, s straight allows synthesizing portrait scale images of straight hair. various scene parameters s, such as different hairstyles, lighting conditions, or camera positions. This hair digitization pipeline is illustrated in Figure 5.9.

Experiments and Results

Implementation To train our graphics encoder we use the same fully convolutional neural network architecture as our IGE network in Chapter 3. We use a training set of n = 5000 synthetic images generated using the renderer described in Section 5.2.1. Our model is trained over 400 epochs using the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF], a fixed learning rate of 10 -6 and a batch size of 32.

Qualitative Evaluation We performed qualitative experiments on both synthetic and real data. First, we captured images of real hair swatches using our imaging system and with our inverse graphics approach and synthesized images with various scene settings, as seen in Figure 5.10. For assessing performance on more challenging hair colors, we synthesized a set of test swatch images and repeated the experiment. For both real and synthetic images, it can be observed that our approach allows us to accurately capture the hair appearance over a range of various hair colors. The fine color variations between several shades of brown hair are still visible in the rendered images, which tends to show that our model is accurate enough to be used in practice.

Still, it can be observed that our model is not able to reproduce the natural hair color variation that can exist within individual hair fibers. This is due to the behavior of our renderer. Even though each hair is modeled individually during the path tracing process, they are each parametrized by the same set of parameters. However, in practice, natural hair fibers have slightly different melanin concentrations, which results in a natural hair color variation within a single strand, as observed in Figure 5.10. This limitation could be overcome by introducing heterogeneity in hair parameters, modeling each parameter using a statistical distribution such as a Gaussian distribution. In turn, the inverse graphics model would have to be adapted to estimate both the average and standard deviation for each rendering parameter. Specifically, this can be done by increasing the size of the final dense layer of the model.

Moreover, to our observations during the qualitative experiments, the accuracy of our system seems to be lower for blond and very light hair. This is probably due to the sampling distributions of the hair parameters that we chose during training. Indeed, the hair rendering parameters were all sampled using an independent uniform distribution. Because of each of our hair parameters' role in the rendering process, it is unlikely that a random combination will lead to a synthesized image of blond hair. Indeed, to obtain light hair, the melanin concentration and melanin ratio need to be low at the same time. In addition, if the dye concentration is not low, the dye RGB must indicate a light yellow color to preserve the blond appearance of the hair. Hence we observed that the frequency of blond hair strands imaged during training was relatively low, leading to reduced performance for this type of hair color. However, this weakness could be overcome by using a more complex distribution to sample hair color parameters, ensuring that various light colors are well represented during training.

Quantitative Evaluation In order to quantitatively assess the performance of our approach, we also performed synthetic experiments. We synthesized a set of 300 original hair swatch images using random hair parameters drawn according to a uniform distribution. For each synthetic image, we estimated the hair parameters using our inverse graphics encoder, and rendered the corresponding image using the same scene parameters to obtain images with aligned hair fibers. Finally, we computed various image reconstruction evaluation measures between the original and the reconstructed strand images. The results of this experiment are reported in Table 5.2. The low errors on all image reconstruction metrics tend to confirm the qualitative evaluation results.

Limitations A current limitation of our hair digitization procedure is that our current imaging system does not capture the secondary reflection of the hair strands. Thus hair dying products allow to the Evaluation measure Value (mean ± std ) L1 7.08 ± 11.79 MSSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] 0.20 ± 0.04 LPIPS [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] 0.12 ± 0.19 creation of complex hair colors that might have reflections with varying intensity and color. This type of appearance can be reproduced with our hair path-tracing renderer, but we would need to amend the imaging methods so that the second reflection can be observed in the hair sample images. This could be done by substituting the current flat surface holding the hair samples with a curved surface. This would allow observing in a single image the light bouncing on hair with various angles. We present examples of hair on a curved surface in Figure 5.11. Finally, this method would require additional quantitative validation using real images. One way of evaluating our system further would be to ask experts to provide ground truth rendering parameters on a set of hair samples. This validation dataset could be used to compute how well our system can capture the appearance of hair compared to a trained expert, assessing hair colors that are currently difficult to model.

Application to Hair Dye Development

In practice, this system has several applications for accelerating the development of hair dye formulas in laboratories. As opposed to most makeup formulas, hair dye formulas are not based on pigments but chemically reactive precursors forming dye inside the hair fiber. This makes it challenging to model the final appearance of hair after dying. For this reason, hair dye development relies heavily on successive experimental iterations to reach a target color.

Our hair digitization system can be used to accelerate this iterative procedure. Hair dye formulas are tested on a strand of synthetic hair, and after taking an image of the hair sample, our model allows to render hair with the same appearance directly. This helps laboratories to quickly assess and compare multiple formulas under various illuminants and realistic hairstyles. This in vitro process is much faster and scalable than dying the entire hair of a panelist. Lastly, our system can be used for estimating correspondences between hair samples and dye formulas. Each time a dye formula is applied on a hair sample and an image is taken, we propose to use our model to compute the hair rendering parameters and save them into a data-store. Later, each time a new hair sample is photographed, the estimated hair rendering parameters can be compared to the data-store of observed dye formulas. Then, using a simple nearest neighbor algorithm, we can compute the dye formula that can be used to obtain a similar appearance. This procedure is illustrated in Figure 5.12. However, using the nearest neighbor algorithm assumes that the space of formulas is well populated. This type of system can be helpful to match formulas composed of radically different raw materials that would be challenging to compare otherwise. .12: Our system can also be used to compute correspondences between hair dye. Given a hair sample image, the hair rendering parameters are estimated, and compared to parameters for previously observed formulas. The formula with closest hair parameters can be returned as a dye with corresponding appearance.

Zero-Shot Learning for Cosmetics Product Classification from Inspirational Images

Even though the primary goal of this thesis is to improve the quality of cosmetics virtual try-on, some of the methods introduced in this manuscript can be used to solve auxiliary tasks that can improve the digital retail experience. In this section, we show that the makeup inverse graphics encoder (IGE) model introduced in Chapter 3 can be directly used to build a zero shot classifier for lipstick products. This allows building applications where, given an inspirational image sent by a consumer, we compute which product in a given brand could be used to obtain the same appearance.

Method

Challenges of Cosmetics Classification from Inspirational Images Consumers often discover new products from inspirational images found in social medial, magazines, or online advertisements, and this is particularly true for the field of cosmetics. Thus, an interesting application for cosmetics digital retail would be the ability to recommend a specific makeup product from an example portrait image sent by a consumer. The recommended product reference must allow the consumer to obtain the same makeup style as the reference inspirational image. In addition, such a system must be able to recommend products within a given makeup brand, in order to adapt for multiple digital retail store websites. Similar applications are already deployed, such as the Lipscanner [START_REF]Chanel lipscanner : find your perfect shade[END_REF] mobile application illustrated in Figure 5.13. However, associating an example makeup style image to a product is a complicated task for several reasons. First, the appearance of makeup products is a combination of multiple factors, such as color, shine, pearls, and opacity. Existing makeup product classification applications, such as Lipscanner, base their recommendation on color only. This is not sufficient to achieve a consistent result with the reference inspirational image, as this system cannot distinguish between a gloss and a matte lipstick of the same color. Secondly, data must be collected in order to obtain information about the products to recommend. Collecting images of makeup products can be particularly costly on a large scale, as there are thousands of existing references for lipstick only, with hundreds of new product launches every year. In addition, to the best of our knowledge, there is no publicly available makeup image dataset with product information. This makes the conventional image classification approach difficult to apply in practice.

This calls for a new approach for cosmetics product classification that does not rely on expensive data collection, and for which the classifier can be rapidly adapted to new products launches.

Zero-Shot Classification using Inverse Graphics Encoder TheZero-shot learning approach introduces methods to learn models which can classify among classes that are unobserved during training. This is generally done by learning an embedding for images classes seen in training, and using this feature space on unseen classes during inference with a simple decision boundary, as presented in [START_REF] Frome | Devise: A deep visual-semantic embedding model[END_REF]. An older and more straightforward approach relies on the association of seen and unseen classes through an auxiliary feature such as color classes, as introduced in [START_REF] Christoph H Lampert | Learning to detect unseen object classes by between-class attribute transfer[END_REF]. Interestingly, our inverse graphics model for makeup This type of method needs to be improved to take into account the variety of cosmetics appearance (shine, metallics, etc) Figure 5.14: Our inverse graphics encoder can be used for zero-shot classification of cosmetics products. After estimating the graphics vector, it is compared to a set of existing products using the nearest neighbor, to estimate the lipstick with the closest appearance.

produces a continuous feature space that can serve as the auxiliary information backbone of a zero-shot classification model.

As an auxiliary information, for each lipstick product that can be virtually try-on on a digital store, the corresponding rendering parameters have been carefully set by computer graphics artists. This constitutes a large database of thousands of products that can be used as a power full feature space. We propose to leverage this rendering parameters database together with our inverse graphics encoder to create an unsupervised classifier for cosmetics products. In particular, in this section, we detail this principle for lipstick classification. Our unsupervised classification procedure is illustrated in Figure 5.14 and works as follows. First, given an inspirational portrait image wearing makeup sent by a consumer, we use our lipstick inverse graphics model to estimate rendering parameters corresponding to the example lipstick appearance. Secondly, we compare the estimated parameters against a large database of rendering parameters for each lipstick sold on our websites. Using a simple nearest neighbor algorithm we can compute the closest existing product in our database. This relies on the assumption that a distance in the space of rendering parameters is a good measure for product similarity, which seems a reasonable hypothesis.

Compared to the conventional supervised classification technique, our method presents several advantages. First, this approach does not require expensive data collection of tens of thousands of portrait images wearing all possible lipstick references. The inverse graphics encoder model was itself trained in a self-supervised manner and did not require collecting images. The only required data are the rendering parameters for each lipstick. However, as virtual try-on applications are now common in digital retail stores, such data are widely available, allowing our system to classify thousands of different cosmetics products.

Secondly, our classifier can be easily extended to new cosmetics products. For each newly introduced lipstick, the corresponding rendering parameters for virtual try-on must be added to the database. Then, the product can be directly classified by our system, without retraining the inverse graphics encoder. This is a considerable advantage over conventional classifiers, that would need to be retrained for each new product.

Furthermore, an important advantage of using inverse graphics features as auxiliary information for zero-shot classification is the fact that this feature space allows comparing product with drastically different formula architecture. Thus, another natural direction could have been to obtain product auxiliary information by measuring physical properties on products directly, such as color and shine. This is particularly challenging since makeup products can be based on dramatically different material chemical architecture, from solid lipstick to liquid and palette lipsticks. Thus, comparing measured physical properties on these different classes of products is impossible in practice, due to the varying nature of these materials.

Finally, another advantage of our approach relies on the fact that the rendering parameter space is interpretable. While most zero-shot classification techniques utilize a learned feature space, our graphics parameter space is based on physical constants of rendering models, such as color, gloss, and metallics. Thus, at inference time, we can add additional constraints that leverage the interpretability of our feature space. For instance, it is possible to recommend the product with the closest color, independently of the other attributes such as gloss. Another example would be to favor products with the same texture, even though the color is slightly different. This could be useful for products with complex textures, such as metallics or vinyl, which can be difficult to find for consumers. We can thus assume that consumers are eager to accept another close color to match the exact texture of the reference inspirational image. Incorporating such constraints in the recommendation could be achieved by using weights on the different dimensions of the rendering parameter space when computing the nearest neighbor at inference.

Experiments

In order to evaluate the performance of our zero-shot cosmetics classification approach, we perform a series of qualitative and quantitative experiments. For simplicity purposes, we focus on the category of lipstick but this approach could be directly extended to other cosmetics product categories.

Qualitative Results

We propose to reproduce a consumer's experience attempting to find a lipstick given an inspirational image seen on social media. To do so, we take an image from our MSM dataset (see Section 2.3), which are images of partners makeup influencers shared on social networks. In addition, as auxiliary information, we consider the virtual try-on rendering parameters of 327 lipsticks taken from the brand Nyx Cosmetics. Computer graphics artists manually tuned these parameters and we assume that they reflect well the appearance of the corresponding real products. For each image, we estimate the rendering parameters using our inverse graphics network described in Chapter 3. Then, we use the nearest neighbor algorithm to determine the closest Nyx product as the predicted class. Finally, we synthesize a virtual try-on of lipstick on a test portrait image using the classified product rendering parameters. This estimated rendering is used to qualitatively validate that the appearance of the estimated lipstick is similar to the appearance of the reference image. The results of this experiment are presented in Figure 5.15.

It can be observed that our zero-shot classifier for lipstick produces qualitatively convincing results. The virtual try-on appearance of the estimated product looks visually similar to the reference image. This tends to indicate that this product could be used to obtain the same makeup appearance. In addition, the lipstick classification seems accurate over a large variety of textures, from gloss to matte and metallic, as illustrated in Figure 5.15. This is a significant improvement over systems such as Lipscanner based on color only. Finally, it can be observed that our system can classify lipsticks independently of their chemical architecture, recommending any gloss or solid, liquid, and palette lipstick.

Quantitative Results

We also perform quantitative experiments to compare our zero-classification system against a conventional deep learning classification approach. The social media dataset of makeup influencer images also contains self-declared labels on which makeup products were used for each image. We propose to use these labels as lipstick classes ground truth for computing quantitative performance measures. Thus, we build a dataset of 2500 images of 265 different lipstick products, with a variety of colors and textures. To use as a supervised classification baseline, we train a neural network by fine-tuning MobileNet [START_REF] Andrew G Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] model pre-trained on the ImageNet dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. We remove the initial classification head, and replace it by a dense layer of size 265, and a dropout rate of 0.2. As a prepossessing, we detect facial landmarks and crop lips to increase the proportion of relevant pixels in the image. Finally, we use a simple dataaugmentation approach during training by randomly flipping each lips image horizontally and performing a random rotation. Our MobileNet classifier is trained on 80% of our dataset, over 200 epochs using the Adam optimizer with a fixed learning rate of 5.10 -5 . Finally, we compute conventional classification performance measures using the remaining 20% of the dataset and present the results in Table 5.3. According to these results, the supervised approach significantly over-performs our zero-classification. However, even though it shows an increased classification accuracy, the supervised model is incapable of classifying novel lipstick products. Indeed, the supervised approach requires a costly new data collection and additional model training to address novel classes.

However, classification performance measures are particularly ambiguous for this particular task. Among the 265 products of our dataset, many lipsticks have a similar appearance. Indeed, bright red matte and nude gloss are common lipsticks that exist with small shades variations and different packaging. However, even though they have a comparable appearance, they are considered distinct classes in our dataset. For this reason, we propose to evaluate the performance of our model in the light of image-based metrics instead and perform a novel experiment. First, we use our virtual try-on renderer for each test image in our dataset to render the estimated lipstick and ground truth lipstick on a fixed portrait image. An example of this evaluation procedure is illustrated in Figure 5.16. Then, we use several image similarity metrics to assess the difference between the estimated and ground truth rendering. This metric has the advantage of taking into consideration the appearance of the considered estimated and ground truth lipsticks. Thus, for an image of a given matte red lipstick, predicting a different but close shade of red will not be as penalized as predicting a glossy blue lipstick. The results of this experiment are presented in Table 5.4. Image-based similaity measures seems to indicate that there is a smaller gap between the supervised approach and our zero-shot classification model. The SSIM similarity measure even indicates that our model over-performs the supervised approach. As opposed to classification scores, this can capture cases where the estimated product is different from the ground truth, but has similar appearance.

Limitations

Our zero-shot classification approach suffers from several limitations. First, it relies on the assumption that a distance in the space of rendering parameters is a good measure for product appearance. In practice, this assumption raises questions as discussed in section 3.4, motivating our imitator module. For instance, a difference in color parameters might be less acceptable than a difference in gloss parameters. In our experiments, all the parameters in the rendering parameter space was normalized before computing the distance, assuming equal contribution of all parameters. A possible direction would be to compute weight factors for each rendering parameter using image similarity measures to estimate the relative weight of each parameter in a perceptual difference between two lipsticks. Secondly, our method requires access to a set of rendering parameters for each product that we intend to classify. In practice, this can be costly to obtain, even though there is no alternative in currently deployed VTO technologies. However, a cheaper alternative for our system would be to use a single example image per product as a reference. Thus, our IGE network can be used to estimate rendering parameters from each example image. These estimated rendering parameters can then be used as a reference product database to compute the nearest neighbor during inference.

Lipstick Color Recommendation Engine

In this section, we show that our inverse graphics encoder for makeup can be used as a computer vision module for makeup analysis. Thus, we show that a simple makeup recommendation system can be built using a database of unlabeled images and features generated by our IGE network. It is common knowledge for makeup artists that the skin tone of a person is a central element for choosing a pleasant lipstick color, as shown in [START_REF] Australia | How to pick the best lipstick shades for your skin tone[END_REF][START_REF] Williams | Best lipstick for each skin tone according to makeup artists[END_REF]. Such rules are generally funded on color theory principles which attempt to provide practical guidelines for color associations, of which examples can be found in [START_REF] Zena | Colour harmony revisited[END_REF]. These color combination principles have been widely applied to makeup, and some digital retail platforms introduced tools helping consumers choose their lipsticks based on these rules. For instance, the application Lipstick Shade Finder [START_REF] Cosmetics | Lipstick shade finder[END_REF] advise consumers to choose a lipstick color by introducing selections for light, medium, and dark skin tones. However, such applications are generally limited to basic rules and ordinarily only consider three categories of skin tones.

Using Inverse Graphics to Build Recommendation Databases from Unlabeled Images

Instead of using predefined rules, we propose to use our inverse graphics encoder and a database of images from social media to create data-driven rules for lipstick recommendation. We use the Makeup Social Media dataset, introduced in Section 2.3, for creating our recommendation database. Like most makeup databases, this dataset does not contain information on the skin tones and colors of the lipstick used. Thus, we propose using machine learning models to estimate these features, which will then be used to build a recommendation algorithm. Skin color estimation from uncontrolled images is a popular topic in the domain of cosmetics and has been studied in [START_REF] Borza | Automatic skin tone extraction for visagism applications[END_REF][START_REF] Choi | The human sclera and pupil as the calibration targets[END_REF][START_REF] Kips | Beyond color correction: Skin color estimation in the wild through deep learning[END_REF]. We choose to use the LabNet model introduced Example of lipstick color recommendation from three different consumers images using our system. Some colors, such as nude lipsticks, seem to match most skin tones, while some colors, such as purple lipsticks, only emerge for some skin clusters.

in [START_REF] Kips | Beyond color correction: Skin color estimation in the wild through deep learning[END_REF], as it demonstrated the higher accuracy and can estimate a skin color value in a continuous, three dimensional color space. However, there is no previous equivalent approach for estimating makeup products characteristics from an image. Hence, we propose to use our IGE network introduced in Chapter 3 as a computer vision module to estimate makeup descriptors from each image. In practice, we use the LabNet model and the IGE network to evaluate skin color and lipstick color on each image of the MSM dataset. This procedure for building our lipstick recommendation database is illustrated in Figure 5.19. One advantage of this approach is that it only requires a set of unlabeled makeup images and could thus be easily adapted to tailor recommendation across seasons, years, or countries. We illustrate in Figure 5.18 the lipstick colors estimated by our inverse graphics encoder network on the MSM dataset.

A Simple Lipstick Color Recommendation System

We then propose to use the obtained database of skin color and lipstick color correspondence to build a lipstick color recommendation system. Most conventional recommendation systems are usable in this case, such as matrix the popular factorization methods [START_REF] Takács | Matrix factorization and neighbor based algorithms for the netflix prize problem[END_REF]. However, we only intend to demonstrate the interest in using inverse graphics features for building recommendation systems, and thus choose for simplicity to present a straightforward system based on clusters frequencies.

To obtain discrete classes for skin tones and skin colors, we use the popular K-means clustering algorithm. We set the number of clusters to 30, ensuring that all clusters are well populated. Then the recommendation is directly derived from the clusters frequency statistics. Given the image of a novel person who desires a lipstick color recommendation, we estimate their skin tone using the LabNet model and assign it to the corresponding skin cluster. Then, the recommendation is computed using the recommendation database, returning the lipstick color clusters that are the most frequent for persons in the same skin color cluster. Other recommendation heuristics could be used in order to reinforce the recommendation of lipsticks that are typical to a skin tone cluster. This recommendation procedure is illustrated in Figure 5.19. Furthermore, we show an example of lipstick recommendation using random images from the MSM dataset in Figure 5.20. It can be observed that some lipstick colors, such as nude lipsticks, seem to match most skin tones, while some colors, such as purple lipsticks, only emerge for some skin clusters.

One limitation of this simple algorithm is that it does not provide a color recommendation in the continuous color space but only across a set of predefined color clusters. Existing approaches for color recommendation have been developed to solve this issue, such as the GAN-based approach presented in [START_REF] Colormind | Generating color palettes[END_REF].

Mapping to Personalized Lipsticks

This lipstick system can also be adapted to personalized cosmetics systems, such as the one presented in Section 5.1. In particular, this personalized lipstick machine can be set to several color universe, delivering customized lipstick colors for either a red, orange, fuchsia or nude palette. In this case, it is possible to obtain a more fined-grained recommendation by computing 30 clusters within each of the color universe instead of the entire color space. Thus, given the estimated skin tone of a consumer, social media images with similar skin color are filtered, using a threshold of the Euclidean distance in the CIE L * a * b * color space. The estimated lipstick colors of the remaining images are then mapped to 30 clusters within a chosen color universe. We illustrate this procedure for a given skin color and three color universes in Figure 5.21. Another alternative would be to avoid using clustering and directly compute the centroid of the lipstick colors in the social media images with similar a skin tone.

Limitations

While we have shown that our inverse graphics network approach can be used to easily build recommendation databases from unlabeled data, some limitation remains. Thus the absence of labeled data makes it difficult to validate the algorithmic choices and estimate a recommendation performance. Further user studies would be necessary to assess the quality of the recommendation. Furthermore, our approach relies on the assumption that the lipstick and skin color in the database of images is well-matched, and the database contains a large spectrum of skin tones. Finally, we merely demonstrated a simple recommendation system for illustration purposes. For industrial applications, it should be replaced by a more complex recommendation system such as collaborative filtering.

Conclusion

In this Chapter, we have shown that the methods introduced in this research work have enabled a variety of novel applications in the cosmetics industry. Some use-cases constitute direct applications our models, such as the automatic editing of cosmetics images for retail user interface described in Section 5.1. We also showed that some of our methods could be directly transposed in other domains, with applications outside the field of virtual try-on. Thus, we illustrated how our inverse graphics methods introduced in Chapter 3 can be adapted to create a hair digitization method enabling novel possibilities for hair dye evaluation of realistic hair color capture for video games or movie production. Finally, we also showed that the models introduced in this manuscript can be used as cosmetics feature generators to create novel computer applications for the cosmetics market. Thus, we illustrated in Section 5.3 how our inverse graphics features can either support a zero-shot lipstick classification for product retrieval from example images or be used as features for creating cosmetics recommendation engines in Section 5.4. In the future, we believe that our methods, which largely focus on lipstick in this manuscript, could be directly adapted to other cosmetics categories, creating novel experiences for a variety of products such as eye makeup, blush, foundation, or nail polish.

Chapter 6

Conclusion and Future Work

Conclusion

The initial application objective of this research work was to improve the quality of cosmetics virtual try-on technologies. Throughout the methods and applications that we introduced, we have shown that neural rendering methods could bring various improvements over the existing approaches of cosmetics in augmented reality. In this final chapter, we emphasize the various contributions that we brought to the fields of neural rendering, makeup synthesis, and augmented reality.

Improved Makeup Datasets for Computer Vision Research

Along the course of this research work, we introduced multiple makeup datasets that supported the training and evaluation of our models. In particular, we presented the Makeup Social Media dataset, with unprecedented image resolution and diversity in portrait images. In contrast, existing research datasets were limited by the lack of variety in makeup characteristics and facial poses. This dataset also includes information on which cosmetics products were used in each image for the first time. This allowed us to introduce novel metrics and tasks such as the lipstick classification presented in Section 5.3.

Furthermore, even though makeup synthesis using neural models is a popular topic, model performance analysis remained limited to qualitative examples due to a previous lack of makeup data. We thus introduced the Lipstick Try-On dataset, which for the first time contains images of multiple persons before and after applying known makeup products. Such a dataset allowed us to compute quantitative metrics for tasks such as makeup transfer and makeup synthesis. We believe that this approach could largely benefit computer vision research for makeup by introducing better quantitative experiments and model evaluation. Still, similar contributions remain to be made for other cosmetics categories such as hair dye, foundation, blush and eyelash.

Genenerative Renderers for Photorealistic Virtual Try-On Secondly, we have shown that neural rendering can directly contribute to the improvement of virtual try-on by introducing novel, more realistic renderers. In particular, while conventional generative models produce photorealistic portrait images but lack control, we introduced in Chapter 2 a color controllable makeup synthesis neural renderer. Similar to computer graphics renderers, the makeup color in the synthesized result can be explicitly controlled while preserving the realism of the portrait image which was learned using real-world images. Such color control capabilities make this technique employable for high-resolution applications, synthesizing a large variety of cosmetics products with a single model, as illustrated in Section 5.1. In addition, our method could be directly extended to other object categories in different fields, as it can be trained on unlabeled images and only requires a weak segmentation model of the object of interest. However, even though this generative technique produces realistic images, it is based on large neural networks with slow inference speed, making this category of models difficult to use for virtual try-on applications running in real-time on mobile devices.

Neural Rendering for Real-Time Virtual Try-on from Example Next, we showed that neural rendering could also indirectly contribute to the improvements of virtual try-on, by introducing novel 111 applications where consumers can try a novel makeup from an inspirational reference image. Instead of replacing the rendering function with a neural network, we introduced a hybrid approach that combines the speed and portability of computer graphics rendering with the appearance extraction capabilities of neural-based methods. Thus, given an example portrait image, we use an inverse graphics encoder network to estimate the makeup material parameters which are sent to the computer graphics engine, rendering a makeup with a similar appearance in real-time on mobile devices. While each product rendering in a digital store was previously manually set by artists, we showed that our neural rendering technique ameliorates the realism of virtual try-on by automatically computing more accurate rendering parameters from a reference portrait image.

We believe that this approach can be directly extended to other object categories and augmented reality applications such as glasses or hat virtual try-on. Moreover, it could particularly benefit other systems using parametrized renderers, and especially non-differentiable rendering methods, as we illustrate in Section 5.2 where we adapt this method to create a hair digitization system for path-tracing hair renderers. Furthermore, we showed that this inverse graphics model could be used to solve other auxiliary tasks such as zero-shot classification of cosmetics product, creating a novel experience for cosmetics retail, as illustrated in Section 5.3.

Estimate Cosmetics Appearance from

In Vitro Laboratory Data Finally, we introduced novel methods for accelerating the digitization of new cosmetics products in virtual try-on applications. While using reference portrait images for estimating cosmetics rendering parameters suffered from limitations due to ambiguity in the lighting environment and product transparency, we introduced in Chapter 4 a novel method for capturing the appearance of cosmetics from in vitro images. Inspired by the field of material capture, we introduced a controlled application and imaging system for cosmetics that can capture information on the appearance of a specific cosmetics product. Furthermore, we illustrated how this novel type of cosmetics image can be used to estimate the authentic appearance of cosmetics using a neural rendering approach.

Such a method can largely contribute to increasing the quality of virtual try-on applications by addressing a surrogate problem, the digitization of products. Indeed, such automated systems can guarantee that each novel cosmetics product launched in a digital store is accompanied by a realistic virtual try-on, resulting in a better realism and improved user experience. Moreover, as our method is fully automatic, from the cosmetics application in the laboratory to the rendering parameters estimation, and based on simple hardware, it could be used at a large industrial scale with limited costs. Furthermore, the ability to instantaneously estimate the appearance of a product from vitro data, without applying the product to a person's skin, could significantly accelerate the development of new cosmetics. Thus, laboratories could use our system to test a novel cosmetics formula on different people digitally, broadly reducing the time and cost of consumer studies.

Future Work

The methods and results that we introduced in this work cast some light on new perspectives for improving virtual try-on through the use of neural rendering techniques. In this section, we stress several directions that could be followed in the future to develop novel neural rendering approaches for cosmetics simulation.

Makeup Datasets for Learning Neural Renderers with Supervision Most of the models presented in this manuscript are trained using unsupervised techniques, making them easily adaptable to other tasks or object categories. However, learning neural renderers using direct supervision with real-world data could increase realism in makeup synthesis. This would require access to large-scale datasets with portrait images before and after applying known makeup products. Then, neural rendering models could be trained to reproduce the appearance of the cosmetic product observed in the real images using a perceptual loss, as described in the training procedure proposed in Section 4.5.

However, collecting such datasets raises novel challenges. First, to be directly comparable, portrait images before and after applying cosmetics must be taken under similar lighting conditions, and with a consistent facial poses. Moreover, particular precaution must be taken to ensure that a large variety of cosmetics appearance, person's characteristics, lighting condition and facial poses is ensured. For instance, models must be trained on portrait images of persons of different ages and skin tones to ensure a balanced performance for a large variety of users. While collecting such real-world datasets is complex and costly, recent advances in synthetic data generation for computer vision and image synthesis, as presented in [START_REF] Pandey | Total Relighting : Learning to Relight Portraits for Background Replacement[END_REF][START_REF] Wood | Fake it till you make it: Face analysis in the wild using synthetic data alone[END_REF], could constitute and compelling direction.

Cosmetics Transparency and the Impact of Skin Tone on Appearance We discussed the fact that the opacity characteristics of cosmetics can significantly affect the appearance once applied to a person's face. This is particularly visible for cosmetics with high transparency, such as lips gloss, for which current virtual try-on solutions struggle to estimate the real appearance on a given person accurately. Furthermore, additional complexity is brought by the fact that different persons apply various thicknesses of cosmetics on the skin, leading to another source of variation in the final appearance. Therefore, a better understanding and modeling of this phenomenon is necessary to improve further our ability to create an entirely realistic virtual try-on experience. Furthermore, taking into account the impact of skin tone on cosmetics appearance is essential for the development of personalized cosmetics [110,[START_REF]Rouges sur Mesure Perso by Yves-Saint-Laurent[END_REF]. For lipsticks, this could, for instance, allow estimating different formula compositions needed to reach the same makeup appearance on two different persons.

Potential solutions for learning a representation of cosmetics transparency could be to train a neural renderer with supervision using real portrait images before and after makeup. This would allow the neural network to learn that a given product translates into different appearances on different skins. Another perspective would be to use vitro images introduced in Chapter 4, on which product transparency is directly observable. These images could be used to derive a measure of cosmetics opacity which could be used either with graphics-oriented approaches or neural-based techniques.

Environment Perception Another important source of variation in the appearance of cosmetics in portrait images is the lighting environment. For instance, the color appearance of a makeup product in an image can be shifted under a warm illuminant, and the reflection of a shiny lipstick will be greatly dependent on the lighting environment. This difficulty is not particular to virtual try-on for cosmetics, but is also found in augmented reality and re-rendering problems. We only used simple established solutions for this problem in this work, but future work could greatly benefit from the rapid advances in this field. For instance, a representation of the lighting environment could be estimated from the source portrait image and added to the neural rendering module, as done in [START_REF] Pandey | Total Relighting : Learning to Relight Portraits for Background Replacement[END_REF].

Differentiable Renderers for Mobile Platforms Another important source of variation in the appearance of cosmetics in portrait images is the lighting environment. For instance, when discussing the use of computer graphics techniques for virtual makeup try-on, we essentially assumed that these methods are not differentiable. Indeed, currently available differentiable estimates for rendering operations cannot be used in real-time on mobile devices. However, this is a rapidly emerging field, and the gap between differentiable renderers for research and production renderers for mobile platforms could be closed shortly. This would allow for immense possibilities for neural rendering, allowing for more complex graphics-based solutions during training or inference on mobile devices. This could, for instance, bring new perspectives for material capture methods using conventional material models, which have proved to be realistic in cinema and video games applications.

Advances in Neural Rendering Finally, the domain of neural rendering, which is at the center of this work, is an emerging field that is rapidly evolving. Most of the methods that we introduced focus on 2D neural rendering, according to the terminology defined in [START_REF] Tewari | Advances in neural rendering[END_REF]. Indeed, our models generally take as input a 2D image and directly estimate the output image. In contrast, many recently introduced neural rendering techniques use neural networks to build intermediate 3D representations of the scene, such as done in Neural Radiance Fields (NeRF) approaches [START_REF] Mildenhall | Nerf: Representing scenes as neural radiance fields for view synthesis[END_REF]. These methods offer novel perspectives for incorporating scene information and physical knowledge into the neural rendering problems leading to improved realism of the synthesized image.

Furthermore, we stressed the computational expense of large neural networks models, which currently prohibit some methods from being used in real-time on mobile devices, such as our generative model introduced in Chapter 2. Still, the rapid development of neural networks for mobile platforms has led to the apparition of special-purpose neural network hardware acceleration. Most major mobile device Abstract : Augmented reality applications have rapidly spread across online retail platforms and social media, allowing consumers to virtually try on a large variety of cosmetics products. However, even though appreciated by consumers, such applications currently offer limited realism compared to real product images. On the other hand, the rapidly emerging field of generative models and neural rendering offers new perspectives that we will study in this work for realistic image synthesis and novel virtual try-on experiences. First, we introduce a novel makeup synthesis method based on generative networks in which the makeup color can be explicitly controlled, similar to a physically-based renderer. Our model obtains photorealistic results on lips and eyes makeup in high resolution. Furthermore, we relax the need for labeled data by introducing a weakly-supervised learning approach for generative-based controllable synthesis. However, GANs methods suffer from limitations for real-time applications. Thus, we propose a neural rendering approach for virtual try-on of cosmetics in real-time on mobile devices. Our approach is based on a novel inverse graphics enco-der network that learns to map a single example image into the space of parameters of a computer graphics rendering engine. This model is trained using a self-supervised approach which does not require labeled training data. This method enables new applications where consumers can virtually try-on a novel, unknown cosmetic product from an inspirational reference image on social media. Finally, we propose a novel method for accelerating the digitization of new cosmetics products in virtual try-on applications. Inspired by the field of material capture, we introduced a controlled application and imaging system for cosmetics products. Furthermore, we illustrate how this novel type of cosmetics image can be used to estimate the final appearance of cosmetics on the face using a neural rendering approach. Overall, the novel methods introduced in this thesis improve cosmetics virtual try-on technologies both directly, by introducing more realistic rendering method, and indirectly, allowing novel experiences for consumers, and accelerating the creation of virtual try-on for new cosmetics products.
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Figure 1 . 1 :

 11 Figure 1.1: Examples of various makeup appearances on social media. Makeup products cover a large variety of appearances in color and texture, from matte to gloss or metallic finish.
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 12 Figure 1.2:Current pipeline for cosmetics virtual try on. New products are developed in the lab and optimized using in vitro measurements. For each new cosmetics product, a computer graphics artist set rendering parameters that are used to render a virtual try-on on mobile devices, in real-time.
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 13 Figure 1.3: Example failure of virtual try-on for lipstick. The color and finish of the simulation are not accurate enough to obtain a realistic virtual try-on.
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 21 Figure 2.1: Our CA-GAN model performs a color controllable makeup style transfer. The makeup color is explicitly estimated from the reference image and passed to the generator. Represented at the bottom right corner of each image, the makeup color can be modified to explore makeup style and reach the desired result.
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 22 Figure 2.2: Our weakly supervised color discriminator module is learned using weak makeup color features that are computed in an unsupervised manner, based on estimated facial landmarks. Even though our initial color weak feature are noisy (bottom rows), our color discriminator module learns an accurate color makeup color representation.

Figure 2 . 3 :

 23 Figure 2.3: To increase the resolution of the generated images, we avoid downsampling the portrait image. Instead, our generator process local crops of eyes and lips in their original resolution. The generated crops are then inserted into the initial portrait image.

Figure 2 . 4 :

 24 Figure 2.4: The training procedure of our CA-GAN model. First (a) the generator G estimates an image from a source image x i and a target makeup color c i . Secondly (b) the discriminator D estimates the makeup color, skin color and a real/fake classification from the generated image, used to compute the color regression loss L color , background consistency loss L bg and adversarial loss L adv , respectively. Thirdly (c), the source image is reconstructed from the generated one using the makeup color as target. The reconstruction is used to compute the cycle consistency loss L cycle .
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 25 Figure 2.5: Example images from our Makeup Social Media (MSM) dataset. Compared to existing makeup datasets, MSM introduces images with higher resolution and increased variety in makeup colors, makeup textures, facial poses and skin tones.
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 26 Figure 2.6: Example images from our Lipstick Try-ON (LTO) Dataset. It contains images with and without lipstick taken in the wild.The objective of this dataset is to provide ground truth for lipstick virtual try-on evaluation.
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 27 Figure 2.7: Example of color features for makeup and eye shadow obtained using our weak model based on facial landmarks. For eyes and lips, we define a region of interest using facial landmarks, and compute the median color in this region.
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 28 Figure 2.8: Modification of makeup color along each dimension of the CIEL * a * b * color space, using images from our MSM dataset.The color patch on the bottom-right of each image illustrates the target color passed to the model. Our approach generalizes to lips and eyes images with various makeup color and textures.
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 29 Figure 2.9: Eyes pose variation: examples of eye shadow rendering using our CA-GAN model on images with various eyes poses. The segmentation accuracy and image realism are consistent across various poses.
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 210 Figure 2.10: Lips pose variation: examples of lipstick rendering using our CA-GAN model on images with various lips poses. The segmentation accuracy and image realism are consistent across various poses.

Figure 2 . 11 :

 211 Figure 2.11: Lighting variation: Example of lipstick and eye shadow rendering using our CA-GAN model under various illuminates. The image realism and color appearance are consistent across various skin tones.
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 212 Figure 2.12: Example of makeup virtual try-on on portrait images from the LTO dataset. The synthesized makeup is consistent across frames and facial poses variations.
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 213 Figure 2.13: Our background consistency loss function improves the preservation of the skin color in the modified image, which is essential at the portrait scale.
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 214 Figure 2.14: Skin color variation: examples of lipstick and eye shadow rendering using our CA-GAN model on subjects with different skin tones. The color accuracy and image realism is consistent across various skin tones.
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 215 Figure 2.15: Makeup transfer pipeline using our CA-GAN model. The discriminator is used to estimate the makeup color on the reference image. The generator uses this estimated color to synthesize the makeup on the portrait image.
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 216 Figure 2.16: Our model shows makeup style transfer performances that are equivalent to state of the art models, while obtaining better preservation of the skin color of the source subject and introducing color control.
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 217 Figure 2.17: Color difference between weak color features and estimates by the learned discriminator. Large differences between the two models are generally due to failure of the weak feature extractor.
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 218 Figure 2.18: Specialized models, trained on lips or eyes images only, do not generalize well to other unseen image categories. Training a joint model on both lips and eyes makeup synthesis leads to qualitatively similar results for both categories.
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 219 Figure 2.19: Example of our color accuracy evaluation. For each generated image we use a lips segmentation model, compute the pixel color median to measure the generated lips and skin colors, and compute the color difference (δE) with the target lips color and source skin color.
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 220 Figure 2.20: The style transfer performance is evaluated using triplets of lips images. The makeup is extracted from the reference image and transferred to the source image of a different panelist. We use a ground-truth image of the source panelist with the same lipstick to compute a style transfer performance. The computed perceptual distance 1 -M SSIM is given at the bottom right of each generated image.
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 221 Figure 2.21: Example makeup synthesis for common and rare colors in our dataset. The realism of the synthesized images is highly dependent on the training data distribution.
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 222 Figure 2.22: Example of makeup color modification for extreme examples with multiple colors.
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 2233 Figure 2.23: Example results of our CA-GAN models trained for controllable hair color synthesis. Even though results are of good quality overall, some local artifacts can be observed.
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 31 Figure 3.1: Examples of image-based virtual try-on using our inverse graphics encoder (IGE) network for makeup and hair color.
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 32 Figure3.2: Description of our makeup augmented reality renderers. It comprises scene perception modules that compute scene information, such as lips mesh and scene illuminant, which is then passed to a computer graphics renderer. The makeup renderer uses physically-based rendering with a simple material model for fast image synthesis. The appearance of the makeup product to render is controlled by a vector of graphics parameters. The eye shadow renderer functions on a similar principle, replacing the lips mesh by an eye-lid mesh estimate.
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 33 Figure 3.3: Examples of images synthesized using our makeup augmented reality renderer leveraging physically-based computer graphics. When parametrized by expert artists, as in these examples, this category of renderers can produce highly realistic images of lipstick and eye shadow.
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 34 Figure 3.4: Illustration of our hair augmented reality renderer pipeline. A perception module estimates a 2D mask of hair in the image, and pixel statistics manipulations allow us to render hair of a different color while preserving the image realism.

  4 and examples of synthesized images are shown in Figure 3.5.
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 3533 Figure 3.5: Examples of images synthesized using our hair augmented reality renderer built on hair segmentation and pixel statistics manipulation.
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 36 Figure 3.6:We consider an augmented reality renderer R that can render in a source image X an object whose appearance is parametrized by a vector of graphics parameters g. This general model is compatible with most AR renderers such as lipstick, eye shadow and hair color.

Figure 3 . 7 :

 37 Figure 3.7:Training procedure of our model. We sample a graphics parameters vector g i and render a corresponding image using a renderer R and a random source image X i . Then, the inverse graphics encoder E is trained to map the image to the space of graphics parameters with minimum error. Right: inference pipeline. A reference image X ref is passed to the inverse graphics encoder to estimate the corresponding makeup graphics parameters. Then this code can be used as input to the rendering engine, to render the reference makeup on videos in real-time. To facilitate training and increase the proportion of relevant pixels in the image, E is trained on crops of eyes and lips.

Figure 3 . 8 :

 38 Figure 3.8: At inference time, the inverse graphics encoder E directly estimates the rendering parameters from a single example image X ref . The estimated parameters are passed to the AR renderer than can render the virtual try-on for each frame X j source of the video stream in real time.

Figure 3 . 9 :

 39 Figure 3.9: The training procedure of our differentiable imitator module I that learns to reproduce the behavior or the renderer R. The imitation loss function L imitation enforces perceptual similarity between R and I outputs on randomly sampled graphics parameter vectors g. The sensitivity loss function Lsens ensures that a random shift in any dimension of the graphics parameter vector is correctly modeled by the imitator.

Figure 3 .

 3 Figure 3.10:The training of the inverse graphics encoder E can be improved using our imitator network. Thus, to ensure additional supervision in the image space, our learned imitator module is used to compute a differentiable rendering estimate from the encoder output. A rendering loss function L rendering is then computed using a perceptual distance between the rendered image and its reconstructed estimate.

Figure 3 . 11 :

 311 Figure 3.11: Example of the sampling distribution for the red color parameter of our lipstick renderer. Starting from a distribution fitted on natural data, we reinforce the diversity of the training by sampling from a uniform distribution.

Figure 3 . 12 :

 312 Figure 3.12: Examples of synthetic lipstick data used for training our IGE network. These images are obtained by randomly sampling rendering parameters and rendering on random portrait images taken from the ffhq dataset [82].

Figure 3 . 13 :

 313 Figure 3.13: Examples of synthetic eye shadow data used for training our IGE network. In addition to the random makeup parameters, the application pattern around the eyes is selected randomly among a list of possible patterns in order to obtain various makeup styles.

Figure 3 . 15 :

 315 Figure 3.15: Our imitator module learns to accurately reproduce the behavior of complex augmented reality renderers, editing the right pixels and reproducing perceptually similar appearances.

Figure 3 . 16 :

 316 Figure 3.16: A qualitative ablation study illustrates the impact of our novel rendering sensitivity loss. The accuracy in rendering parameters such as shine or color is significantly improved.

Figure 3 . 18 :

 318 Figure 3.18: Comparison of our example-based virtual try-on against generative based methods for lipstick transfer. In addition to being faster, our model achieves more realistic results in high resolution, accurately modeling lipstick with various colors and textures.

Figure 3 . 19 :

 319 Figure 3.19: Comparison against generative-based methods for hair color virtual try-on. In addition to reaching real-time on mobile devices, our model produces more realistic hair color results.

Figure 3 . 20 :

 320 Figure 3.20: Example comparison of the virtual try-on estimated by our model with real lipstick images taken in identical conditions.Our model is able to estimate the lipstick appearance with a reasonable degree of realism. Furthermore, our estimated VTO seems closer to the authentic appearance of the product than the manually parametrized VTO that can be found in current commercial solutions.

Figure 3 . 21 :

 321 Figure 3.21: Examples of our evaluation on synthetic data used to build our quantitative ablation study.

Figure 3 . 22 :

 322 Figure 3.22: Example images used during our user study. This study assess the virtual try-on improvements using our method compared to manual parametrization by experts. Complex makeup textures such as shine, vinyl, or metallics are easier to reproduce using our system, reaching an increased realism.

Figure 3 . 23 :

 323 Figure 3.23:Example of lipstick appearance with illuminant variation. The makeup material appearance is highly dependent on the light of the scene. This property is difficult to capture with a single social media image as reference, since the lighting in the image is unknown, uncontrolled, and might not reflect the entire appearance properties of the cosmetics material.

Figure 4 . 1 :

 41 Figure 4.1: Example of a drawdown card used to measure coating color and opacity. We propose to use this type of card for controlled application of cosmetics.

Figure 4 . 2 :

 42 Figure 4.2: Example of coating applicators for controlled application with consistent thickness.

Figure 4 . 3 :

 43 Figure 4.3: An automatic applicator system, ensuring a consistent speed and drawdown pressure during the application.

Figure 4 . 4 :

 44 Figure 4.4: Our vitro image acquisition system for capturing controlled images of cosmetics swatches.

Figure 4 . 5 :

 45 Figure 4.5: The lipstick swatches on contrast cards are attached on curved support before image acquisition. The curvature allows capturing the appearance of the cosmetics sample under multiple angles of the light in a single image. This makes visible in the pictures some material properties such as matte or gloss characteristics which are essential to capture.

Figure 4 . 6 :

 46 Figure 4.6: Example of an image acquired by our cosmetics vitro imaging system. We use color and position reference charts to ensure controlled conditions across multiple sample measurements.

Figure 4 . 7 :

 47 Figure 4.7: Comparison of images of different substrates and application methods for lipsticks of varying color, opacity and shine. We propose to retain the bar film applicator combined with a paper card, which reaches the most consistent and uniform result.

Figure 4 . 8 :

 48 Figure 4.8: Comparison of the appearance of various lipsticks in vitro images and portrait images.

Figure 4 . 9 :

 49 Figure 4.9: Examples of vitro images of lipstick with various textures. Matte, glossy or metallic characteristics can all be observed on the vitro images produced by our system.

Figure 4 . 10 :

 410 Figure 4.10: Examples of lipsticks with various opacity levels. For lipstick with high opacity, the color difference of the background is barely perceptible, while it is significant for more transparent products.

Figure 4 . 11 :

 411 Figure 4.11: Preprocessing pipeline of vitro images. The original image is cropped and color corrected using the ArUco codes and the reference color chart in the image. Then we perform data augmentation by randomly cropping patches on both the black and white backround region of the constrast paper card. Finally the crops are concatenated channel-wise to create the input tensor of the network.

Figure 4 . 12 :

 412 Figure 4.12: Training procedure of our vitro encoder network E vitro . Given a vitro image of a product, the model is trained to reproduce the rendering parameters estimated by the inverse graphics encoder network E vivo using a set of reference portrait images of the same product.
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Figure 4 .

 4 Figure 4.13:Example results of our vitro encoder network. We compare the rendering parameters estimated from the vitro images using our vitro encoder, against ground truth image of the same person wearing the corresponding lipstick. We also compare with rendering currently used in digital stores, manually parametrized by artists.

Figure 4 .

 4 Figure 4.14:Example limitations of our cosmetics material capture system. Our limited dataset does not allow us to learn an accurate vitro encoder for metallic lipsticks, which have a more complex appearance. Furthermore, high transparency lipsticks are also less accurately reproduced, which we believe is due to our training procedure.

Figure 4 .

 4 Figure 4.15:An example training procedure for a neural texture model for cosmetics virtual try-on. Given a vitro image, the neural texture encoder learns to estimate a texture tensor. Then, the texture tensor is passed to the neural renderer together with a source portrait image to estimate the virtual try-on. Both models are trained simultaneously using real ground truth images and a perceptual loss function.
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 51 Figure 5.1: Left, the Rouges sur Mesure Perso device by Yves-Saint-Laurent allows to deliver personalized lipstick shades. Right, two example sets of monochrome cartridges of liquid lipstick used in the device to produce new custom shades.

Figure 5 . 2 :

 52 Figure 5.2: Example usage of our CA-GAN model to synthesize new makeup shades from a single photoshoot. The color patch on the bottom right of each estimated images represents the target lipstick color passed to the generative model.

Figure 5 . 3 :

 53 Figure 5.3: Example of our adaptive interface for personalized lipstick using our CA-GAN model.

Figure 5 . 4 :

 54 Figure 5.4: Given a hair sample, we propose a hair digitization method that estimates rendering parameters that can be used to render a synthetic scene with hair of similar color appearance. Our method is based on the combination of a controlled imaging method, a deep inverse graphics encoder model, and a path-tracing renderer. (Hair models courtesy of Cem Yuksel [163])

Figure 5 . 5 :

 55 Figure 5.5: The imaging setup used for capturing hair sample images. It is composed of one camera and three light sources for controlled acquisitions conditions.

Figure 5 . 6 :

 56 Figure 5.6: Our renderer takes as input hair parameters h that determine the hair color and scene parameters s which control camera position and hair shape.

Figure 5 . 7 :

 57 Figure 5.7: Top, examples of hair swatches images acquired using our imaging device. Bottom, examples of synthetic images obtained with our hair path-tracing renderer.

Figure 5 . 8 :

 58 Figure 5.8:The training procedure of our hair inverse graphics model. Hair color parameters h i are randomly sampled and passed to the renderer R to produce a synthetic swatch image using adapted scene parameters s swatch . The rendered image is passed to the inverse graphics encoder E that learns to estimate the initial hair parameters h i using L graphics , a loss function defined in the graphics parameter space.

Figure 5 . 10 :

 510 Figure 5.10: Qualitative results on real and synthetic hair swatch images. Our inverse graphics model accurately captures the hair appearance from hair swatch images, over a large variety of hair colors.

Figure 5 . 11 :

 511 Figure 5.11: Example of hair sample images taken on a curved surface. Above the specular reflection the color of the secondary reflection can be seen. This type of imaging enables to capture the appearance of the reflection on hair and could be used to improve our approach.

Figure 5

 5 Figure5.12: Our system can also be used to compute correspondences between hair dye. Given a hair sample image, the hair rendering parameters are estimated, and compared to parameters for previously observed formulas. The formula with closest hair parameters can be returned as a dye with corresponding appearance.

Figure 5 . 13 :

 513 Figure5.13: Example use of Lipscanner, an application that recommend a lipstick given the estimated lips color on a reference portrait image. This type of method needs to be improved to take into account the variety of cosmetics appearance (shine, metallics, etc)

Figure 5 . 15 :

 515 Figure 5.15: Given an example reference image, our zero-shot lipstick classification system can estimate the product with the closest appearance for a given cosmetics brand. Since our model operates in the space of rendering parameters, it is possible to search across lipstick based on different architecture (liquid, stick, palette) for which laboratory measurements are difficult to compare.

Figure 5 . 16 :

 516 Figure 5.16: Examples of our quantitative evaluation procedure for lipstick classification using our zero-shot classifier. The estimated lipstick is rendered on an example image, and compared to the ground truth rendering of the same image using image similarity measures.As opposed to classification scores, this can capture cases where the estimated product is different from the ground truth, but has similar appearance.

Figure 5 . 17 :

 517 Figure5.17: We use our IGE network to estimate lipstick color in a large social media images database. Similarly, we use the LabNet model from[START_REF] Kips | Beyond color correction: Skin color estimation in the wild through deep learning[END_REF] to estimate skin color on these same images. This procedure allows us to automatically create a large skin and lipstick correspondence database from unlabelled images.

Figure 5 . 18 :

 518 Figure 5.18: The estimated lipstick colors using our IGE network on the MSM dataset. The colors are represented in the CIE L * a * b * color space. A large variety of colors are represented, from red and nudes to black and blue lipsticks.

Figure 5 . 19 :

 519 Figure5.19: Illustration of our lipstick recommendation system. First, the skin color of the user is estimated using a portrait image and the LabNet model. Then the skin color is mapped to a skin cluster, which allows determining images in the recommendation databases with comparable skin color. Finally, the lipstick recommendation is directly obtained by computing the frequencies of each lipstick cluster in the corresponding social media images.

Figure 5 .

 5 Figure5.20: Example of lipstick color recommendation from three different consumers images using our system. Some colors, such as nude lipsticks, seem to match most skin tones, while some colors, such as purple lipsticks, only emerge for some skin clusters.

Figure 5 . 21 :

 521 Figure 5.21: Illustration of our lipstick recommendation for personalized products. For each skin color cluster and color universe, we filter social media images and map each image to the closest possible formula. Finally we can compute the frequency of appearance of each product of a color universe for this skin cluster.
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  Rendu Neuronal pour l'Am élioration de l'Essayage Virtuel des Cosm étiques Mots cl és : Apprentissage Machine, R éseaux G én ératifs, Rendu Neuronal, R éalit é Augment é R ésum é : Les applications dans le domaine de la r éalit é augment ée se sont rapidement r épandues au travers des sites de e-commerce et des r éseaux sociaux, permettant d ésormais aux consommateurs d'essayer virtuellement une large vari ét é de produits cosm étiques. N éanmoins, alors l'essayage virtuel est appr éci é par les consommateurs, il offre un r éalisme limit é en comparaison d'une image de v éritable produit cosm étique. Par ailleurs, les domaines émergent des r éseaux g én ératifs et du rendu neuronal offrent aujourd'hui de nouvelles perspectives que nous étudions cette th èse, pour une synth èse d'images plus r éalistes et de nouvelles exp ériences d'essayage virtuel. Tout d'abord, nous introduisons une nouvelle m éthode de synth èse de maquillage, bas ée sur des r éseaux g én ératifs, dans laquelle la couleur des cosm étiques peut être explicitement contr ôl ée, de fac ¸on similaire à un moteur de rendu physique. Notre mod èle permet de synth étiser des images r éalistes de maquillage des yeux et des l èvres en haute r ésolution. De plus, nous introduisons une m éthode d'apprentissage faiblement supervis ée pour les r éseaux g én ératifs contr ôlables, nous permettant de nous affranchir du besoin de donn ées labellis ées. Cependant, les m éthodes g én ératives souffrent de certaines limitations pour une utilisation dans des applications en temps r éel. C'est pourquoi nous proposons une approche de rendu neuronal pour l'essayage virtuel des cosm étiques en temps r éel sur les appareils mobiles. Notre approche est bas ée sur un nouveau r éseau d'inversion graphique qui apprend à projeter une image d'exemple dans l'espace des param ètres d'un moteur de rendu d'informatique graphique. Ce mod èle est entraîn é gr âce à une approche auto-supervis ée qui ne n écessite pas d'images d'entraînement labellis ées. Cette m éthode rend possible de nouvelles applications dans lesquelles les consommateurs peuvent essayer virtuellement un nouveau produit cosm étique à partir d'une image de maquillage de leur choix, telle qu'une photographie issue des r éseaux sociaux. Enfin, nous introduisons une nouvelle m éthode permettant d'acc él érer la digitalisation de nouveaux produits cosm étiques pour les applications d'essayage virtuel. En prenant exemple sur le domaine de la capture des mat ériaux, nous proposons une nouvelle m éthode combinant application contr ôl ée et syst ème d'imagerie pour les produits cosm étiques. De plus, nous illustrons une utilisation possible de ce nouveau type de donn ées pour l'estimation de l'apparence des cosm étiques sur le visage gr âce à une m éthode ce rendu neuronal. Au total, les nouvelles m éthodes introduites dans cette th èse permettent l'am élioration des technologies d'essayage virtuel des cosm étiques, à la fois de mani ère directe, en introduisant des m éthodes rendu plus r éaliste, et indirecte, en proposant de nouvelles exp ériences pour les consommateurs et en am éliorant la cr éations de l'essayage virtuel pour de nouveaux produits cosm étiques. Title : Neural Rendering for Improved Cosmetics Virtual Try-on Keywords : Machine Learning, Generative Networks, Neural Rendering, Augmented Reality

  

  

  

  

Table 2 . 1 :

 21 The architecture of our generator and discriminator models.

Table 2 . 2 :

 22 Overview of currently available makeup datasets for research.

Table 2 . 3 :

 23 The ablation study demonstrates that our color regression and background consistency loss functions significantly increase the makeup color synthesis accuracy and skin color preservation.

	Model	color loss	background consistency loss training images	lips color accuracy (∆E mean)	skin color preservation (∆E mean)
	CA-GAN rgb-mse	no	lips	25.82	19.49
	CA-GAN lab-mse	no	lips	9.62	10.18
	CA-GAN lab-mse	yes	lips	6.80	6.05
	CA-GAN lab-mse	yes	eyes and lips	7.78	8.76

Table 2 .

 2 4: A quantitative evaluation of the style transfer performance using style transfer image triplets.

	Model	color loss background consistency loss training images	L1	1 -MSSIM
	BeautyGAN [101]	-	-	-	0.124	0.371
	CA-GAN	rgb-mse	no	lips	0.231	0.698
	CA-GAN	lab-mse	no	lips	0.097	0.313
	CA-GAN	lab-mse	yes	lips	0.085	0.283
	CA-GAN	lab-mse	yes	eyes and lips	0.087	0.312

Table 3 . 1 :

 31 Summary of the existing approaches for virtual try-on for makeup. Most methods that can render from an example image are based on neural-rendering, using a generative neural network during both the training and inference phase. Such renderers are differentiable but they are much slower. To reach real-time inference, our method uses neural rendering during the training phase only.

	method	render from example image phase using generative model differentiable renderer real-time inference
	Standard AR rendering	-
	BeautyGAN	

Table 3 . 2 :

 32 Main parameters used in the makeup rendering process. The complete rendering process includes a total of 17 parameters in order to achieve more sophisticated lipstick looks, including sparkles.

	Parameter	Range
	Makeup opacity	[0, 1]
	R,G,B	[0, 255]
	Amount of gloss on the makeup [0, +∞)
	Gloss Roughness	[0, 1]
	Reflection intensity	[0, 1]

Table 3 . 5 :

 35 Ablation study on lips synthetic data.

	Lipstick experiment

PSNR ↑ (mean ± std) SSIM ↑ (mean ± std) ↓ perceptual dist. (mean ± std) PSNR ↑ (mean ± std) SSIM ↑ (mean ± std) ↓ perceptual dist. (mean ± std)

Table 3 . 6

 36 

: Quantitative evaluation of the makeup transfer performance using a dataset of ground truth triplet images.

Model

PSNR ↑ (mean ± std) SSIM ↑ (mean ± std) ↓ perceptual dist. (mean ± std) BeautyGAN

[START_REF] Li | BeautyGAN: Instance-level facial makeup transfer with deep generative adversarial network[END_REF] 

17.44 ± 3.43 0.609 ± 0.094 0.093 ± 0.018 CA-GAN

[START_REF] Kips | CA-GAN: weakly supervised color aware GAN for controllable makeup transfer[END_REF] 

17.92 ± 2.93 0.621 ± 0.033 0.077 ± 0.019 PSGAN

[START_REF] Jiang | PSGAN: Pose and Expression Robust Spatial-Aware GAN for Customizable Makeup Transfer[END_REF] 

16.11 ± 2.42 0.360 ± 0.098 0.062 ± 0.018 CPM

[START_REF] Nguyen | Lipstick ain't enough: Beyond color matching for in-thewild makeup transfer[END_REF] 

17.87 ± 3.65 0.655 ± 0.089 0.065 ± 0.022 IGE (ours)

18.35 ± 2.63 0.672 ± 0.100 0.060 ± 0.016

Table 3 . 8 :

 38 Profiling results of our graphics lipstick rendering pipeline on mobile devices. To get accurate results, we skip the first 100 frames and average the results of the next 500 frames for each device.

	Device	Inverse Encoder Landmarks Detection Rendering & Display
	iPhone8 Plus, Safari	26.98ms	38.50ms	52.91ms
	iPhoneX, Safari	27ms	38.46ms	57.57ms

Table 5 . 1 :

 51 Description of the parameters controlling the hair color in our renderer.

Table 5 . 2 :

 52 Quantitative evaluation: hair image reconstruction performance on synthetic data.

Table 5 . 3 :

 53 Classification performance measures for lipstick classification

	method	learning procedure top 1 accuracy top 3 accuracy top 5 accuracy top 10 accuracy
	MobileNet [70] supervised learning	13.60%	27.00%	34.56%	45.57%
	our method	zero-shot learning	8.80 %	19.63%	26.63%	41.76%

Table 5 . 4

 54 

	MobileNet [70]	supervised	11.82 ± 10.98	24.30 ± 6.30	0.085 ± 0.090	1.08 ± 0.73
	our method	unsupervised	10.63 ± 7.03	24.85 ± 4.871	0.094 ± 0.062	1.38 ± 0.50

: Image similarity performance measures for lipstick classification method learning procedure ↓ l1 (mean ± std) ↑ PSNR (mean ± std) ↑ SSIM (mean ± std) ↓ perceptual dist. (mean ± std)

Dans cette thèse, nous proposons d'étudier en particulier l'essayage virtuel des produits cosmétiques, ou VTO pour Virtual Try-On. L'essayage virtuel appartient au domaine de la Réalité Augmentée qui consiste à insérer un objet virtuel dans un environnement véritable en temps réel. Contrairement à la réalité virtuelle qui propose une immersion dans un monde entièrement virtuel, la réalité augmentée permet d'introduire des objets virtuels dans le champ de perception d'une personne. Les systèmes de réalité augmentée utilisent une large variété de supports, tels que des projecteurs ou des casques spécialisés, mais les smartphones constituent aujourd'hui la plateforme la plus répandue pour les applications sur le marché des consommateurs. En effet, tout en étant largement répandus, leurs différents capteurs (caméras, accéléromètres), ainsi que leur grande capacité de calcul embarqué, permettent aux smartphones de supporter des applications en temps réel tout en évitant aux consommateurs d'acquérir un appareil spécialisé.En s'appuyant sur le succès de la réalité augmentée, l'essayage virtuel (VTO) est une application qui s'est largement popularisée à travers les différents sites de e-commerce et les réseaux sociaux. Ainsi, le VTO permet aux consommateurs d'essayer un objet directement depuis leur environnement personnel, qu'il s'agisse d'un meuble ou d'une paire de lunettes. En particulier, l'essayage virtuel est tout à fait adapté aux produits cosmétiques, l'écran et la caméra d'un smartphone étant utilisés comme un miroir de poche dans lequel les utilisateurs peuvent percevoir l'image de leur visage portant le rouge à lèvres ou fard à paupières de leur intérêt. En naviguant à travers de multiples produits, les consommateurs peuvent ainsi choisir celui qui correspond le mieux à leur style et leurs aspirations. Basés sur des technologies de 9

Makeup Social Media (MSM) DatasetTo overcome the limitations found in the current makeup research data, we collected a novel dataset that we denote Makeup Social Media Dataset (MSM). Every day, many new makeup images are shared on social media. In particular, beauty influencers worldwide are testing many new cosmetics products, sharing the results with their communities. We thus individually contacted thousands of influencers, requesting their consent to collect some of their makeup images shared on social media. Furthermore, to provide product information, influencers are required to self-declare the reference of some of the cosmetics products used in their makeup style for each image. These products cover various cosmetics categories, ranging from lipstick to eye-shadow, foundation, and mascara.This resulted in a dataset of 5000 images with a significantly increased variability in skin colors, hair color, and facial poses. In addition, these images contain many different cosmetic products, more precisely 1591 distinct shades of 294 distinct products ranges. This large variety allows our database to cover a broad diversity of cosmetics appearance, with numerous colors and textures. Examples of images from this dataset are visible in Figures 2.5, 1.1 and 2.7. Furthermore, portrait images in our MSM dataset are in high resolution (image size of 1080 × 1080 pixels), sufficient to train models usable for production use cases on mobile devices cameras. Eventually, this dataset also covers examples of extreme makeup styles, a limitation already stressed in[START_REF] Gu | Ladn: Local adversarial disentangling network for facial makeup and de-makeup[END_REF], This is useful to emphasize the limitations of trained models on complex and rare data, as illustrated in Figure2.22.

https://robinkips.github.io/CA-GAN/
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Additionally, with the development of frameworks such asTensorFlow.js [START_REF]Tensorflow[END_REF], they can be deployed at scale by running them directly into the browser using mobile devices GPU. However in practice they suffer from several limitations. Generally, commercial virtual try-on applications need to render not a single product but an entire range of items with various appearances. Thus, for each cosmetics product that we desire to render for virtual try-on, a set of rendering parameters must be determined. In practice, setting these parameters to obtain realistic rendering for hundreds of products in a digital store is a tedious task that requires expert knowledge in computer graphics.

A first problem is the fact that many sets of parameters lead to synthesized images with unrealistic textures as visible in Figure 3.12. In particular, material texture parameters used in the makeup renderer can lead to unrealistic shine and must be set by experts to obtain a convincing makeup material. Furthermore, the essential objective of the VTO is to enable consumers to try a specific cosmetic product to assess its appearance, reproducing the experience of a physical retail store. This means that the virtual appearance of each simulated cosmetic product must be as close as possible to the genuine product. Thus, for hundreds of cosmetics references, a new set of parameters must be determined by expert artists. Furthermore, this tiresome work must be repeated at each new product launch. In practice, poor parametrization is a primary factor in the lack of realism in cosmetics VTO, as illustrated in Figure 1.3. For this reason, we