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Résumé: Prédire l’évolution des écoulements
multiphasiques où coexistent des fluides fortement
contratés mobilise les numériciens et les physiciens
depuis le développement des codes de sûreté nu-
cléaire. Le défi est d’autant plus grand lorsque les
écoulements sont soumis à des chocs forts, possèdent
des changements de phases et transportent les es-
pèces sur de longues distances. Les modèles utilisés
pour prédire ces écoulements doivent ainsi capturer
les variations de volumes de toutes les phases, leurs
différentes dynamiques et les couplages entre les flu-

ides qui peuvent être forts et contrastés. Du fait
de cette physique complexe, la structure mathéma-
tiques des modèles s’écarte souvent des lois de con-
servation hyperbolique comme les équations d’Euler.
De nouvelles méthodes numériques doivent donc être
conçues afin d’approcher les solutions des modèles
avec des ressources numériques finies tout en restant
robustes. Ceci contraint les schémas numériques à
respecter la cohérence thermodynamique et à être
suffisamment stables pour mener à bien les calculs.
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over long distances. Simulation must then incorpo-
rate the compressibility of all phases, their differ-
ent dynamics and the strong and various couplings

occurring between them. Because of this complex
physics, the mathematical structure of the models
often departs from the Euler classical hyperbolic
equations. New numerical methods must be then de-
signed in order to solve these models with finite com-
putational resources and strong robustness which
constrained numerical schemes in terms of stability
and thermodynamic consistency.
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1.1 Introduction en Français

1.1.1 Un bref panorama de la thèse

Ce projet de thèse s’est déroulé au Commissariat à l’Énergie Atomique (CEA), Direction des
Applications Militaire (DAM). Il s’inscrit dans la continuité de la thèse de Vazquez-Gonzalez
(2016) et est contemporain de celle de Paulin (2021). Il s’agit de répondre à deux objectifs
dans le développement des modèles et schémas multiphasiques : être cohérent thermody-
namiquement et capturer la raideur inhérente à ces écoulements pour assurer la stabilité.
Dans des travaux précédents Vazquez-Gonzalez et al. (2020), un schéma numérique (nommé
GEEC pour « Geometric, Energy, and Entropy Compatible ») a été conçu en utilisant
des approches variationnelles et mimétiques. Avec ces méthodes, un comportement quasi-
isentropique et des conservations exactes ont été obtenus. Cependant, cette proximité avec
l’isentropie a rendu le schéma numérique potentiellement vulnérable aux résidus numériques.
En effet, comme l’un des objectifs était de capturer l’isentropie, la discrétisation de l’énergie
interne a été développée avec une approche mimétique sans aborder les problèmes de raideur.

Dans cette thèse, nous proposons une nouvelle discrétisation des équations d’énergie
interne, formellement applicable à tout autre schéma multiphasique, qui traite les problèmes
de raideur et de cohérence thermodynamique dans le couplage par la pression. Cette nouvelle
approche est appliquée au modèle discrétisé par Vazquez-Gonzalez et al. (2020), connu sous
le nom de modèle à 6 équations, qui dérive d’une approche de moyenne dépouillée de toutes
les corrélations de second ordre. Ainsi, toute la dissipation et tous les potentiels d’ordre
supérieur cachés dans les fluctuations sont éliminés. Par conséquent, le modèle ne représente
que des situations idéales et est donc rarement applicable aux écoulements multiphasiques
réels sans être complété. Cependant, comme il est à la racine de tous les autres modèles, il est
crucial d’en assurer une discrétisation correcte. Dans le prolongement de Vazquez-Gonzalez
et al. (2020), une méthode est proposée au chapitre (4) permettant d’introduire des effets
isentropiques d’ordre supérieur (tension de surface, turbulence, etc.) tout en maintenant une
formalisation du modèle qui rend compte de la raideur et de la cohérence thermodynamique.
Pour montrer l’intérêt de la méthode, des couplages au sein de la phase dispersée sont
considérés dans des écoulements chargés de particules. Les collisions sont introduites par
des approches variationnelles et les équations qui en découlent sont discrétisées en imitant
le schéma GEEC. Les couplages dissipatifs avec la phase porteuse sont modélisés par des
forces de traînée. Des simulations numériques de croisement de jets valident l’approche.

La dernière partie de la thèse est un travail exploratoire qui se concentre sur les problèmes
de cohérence thermodynamique dans la modélisation Lagrange-Euler (LE) d’écoulements de
particules dispersées. Une nouvelle description des particules est couplée au principe de
moindre action, conduisant à la dynamique couplée des phases dispersées et porteuses. La
dynamique discrète est dérivée avec la même procédure. Cette approche est étendue aux
particules compressibles. Les simulations numériques conduisent à des résultats contrastés,
montrant les possibilités de la méthode mais aussi un besoin d’améliorations.
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1.1.2 Le développement du polyphasique au CEA

Le polyphasique au CEA

Dans le cadre de ses missions, le CEA est amené à prédire différents écoulements polyphasiques
dans des contextes académiques et industriels. Tout d’abord, le fonctionnement et la sûreté
des réacteurs à eau pressurisée (REP) font intervenir plusieurs fluides circulant dans les dif-
férents circuits. Ces fluides sont soumis à des cycles au cours desquels se produisent de fortes
variations de température et de pression ainsi que des changements de phase. D’autre part,
le CEA a étendu en 2010 ses activités au domaine des énergies renouvelables. Les écoule-
ments polyphasiques y sont également rencontrés comme dans le domaine de l’hydrogène
par exemple (pile à combustible, électrolyse de vapeur à haute température, etc.). Enfin,
l’une des missions de la DAM est de concevoir et de garantir le fonctionnement et la sûreté
des armes nucléaires françaises. Depuis la signature du Traité d’interdiction complète des
essais nucléaires (TICE) sous la présidence de Jacques Chirac en 1996, la France a cessé
ses essais. Dans ce contexte, le programme de simulation a été lancé en 1994 par François
Mitterrand. Depuis lors, la DAM s’appuie sur la simulation numérique pour remplir ses
missions. L’objectif des scientifiques et ingénieurs de la DAM est alors de développer des
modèles analytiques permettant de rendre compte de la physique des armes et des schémas
numériques permettant de les résoudre. La complexité du phénomène et la grande précision
requise nécessitent d’importantes ressources de calcul. Pour répondre à cette demande, des
supercalculateurs sont développés et installés par Atos (anciennement Bull) au CEA DAM
Bruyères-le-Châtel. La réalisation et la programmation sur ces supercalculateurs constituent
un défi pour les ingénieurs en raison de leurs architectures spécifiques. Pour valider la qualité
des simulations numériques, des comparaisons avec des expériences de fusion réalisées avec
le Laser Mégajoule (LMJ) et d’autres expériences standards sont effectuées.

La simulations d’écoulements extrêmes

Du fait de ces applications spécifiques, les écoulements polyphasiques que l’on cherche à
simuler à la DAM peuvent se révéler très extrêmes. L’utilisation de ce qualificatif fait
référence à plusieurs caractéristiques rencontrées par les physiciens et les numériciens.

Tout d’abord, la taille des écoulements concernés est très grande par rapport au maillage
typique utilisé dans les simulations. Cette spécificité rend la simulation complète extrême-
ment coûteuse en termes de ressources de calcul. Même avec les ordinateurs les plus puissants
disponibles, certaines méthodes polyphasiques restent alors inaccessibles. De plus, ce point
implique le transport de matériaux sur de longues distances ce qui confronte les schémas à
la diffusion numérique.

En outre, le nombre de réservoirs d’énergie à l’intérieur des écoulements implique que les
modèles doivent respecter les conservations fondamentales (quantité de mouvement, masse
et énergie) car une fuite de ces quantités pourrait conduire à un écart critique entre la so-
lution réelle et la solution numérique. Ce problème est naturellement aussi présent dans les
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schémas. Il est particulièrement crucial de traiter la propagation correcte des chocs, condi-
tionnée par la vérification des relations de Rankine-Hugoniot. En outre, ce point conduit
à l’obligation de respecter la deuxième loi thermodynamique afin d’éviter des résultats non
physiques et/ou des calculs instables.

Le dernier point critique est le nombre élevé de matériaux (jusqu’à quelques dizaines)
et les contrastes dans leur équation d’état (EOS). Une multiplicité de phases implique un
grand nombre de couplages, conduisant à des modèles complexes qui rendent encore plus
difficile le respect des conservations et de la cohérence thermodynamique. D’autant plus que
la grande quantité d’énergie implique que tous les matériaux peuvent être compressés. Les
contrastes entre les matériaux n’ont pas d’impact direct sur les modèles mais contraignent
les schémas numériques utilisés pour les résoudre. Ceci contraignent à leur tour la manière
dont les modèles sont écrits.

La capture de ces écoulements est également difficile en raison des instabilités potentielles
entre les phases qui conduisent à un comportement non linéaire chaotique. Par exemple,
dans la simulation de la fusion par confinement interne (ICF), un petit défaut de la capsule
conduit à une perte de compression sphérique et diminue ainsi l’énergie apportée au matériau
fusible.

Le programme de simulation est ainsi confronté à de nombreux défis pour prédire les
écoulements polyphasiques extrêmes rencontrés. Les ingénieurs et les scientifiques ont donc
développé des modèles et des schémas spécifiques. Cependant, la prédiction des écoulements
polyphasiques était déjà une préoccupation dans de nombreux sites industriels à travers le
monde avant que le CEA DAM ne lance son programme de simulation.

1.1.3 Quelques repères dans la compréhension et la simulation des écoulements
polyphasiques

Le développement des premiers modèles

Le développement des modèles polyphasiques a commencé il y a quelques décennies. A la
connaissance de l’auteur, la première occurrence de la modélisation dans la littérature a
été publiée par van Deemter & van der Laan (1961). Cependant, les équations n’étaient
écrites que de manière formelle et la turbulence était négligée dans le processus de moyenne
et introduite de manière plutôt intuitive dans le tenseur des contraintes. Plus tard, Hinze
(1963) a dérivé un autre modèle en considérant l’effet des particules sur la phase continue.
Ces modèles ont été construits avec la technique de moyenne qui est toujours la manière
la plus utilisée pour construire des modèles polyphasiques. Ces deux références semblent
être la première forme moderne de modèles continus avec un ensemble d’équations par
fluide impliquant la conservation de la masse, de la quantité de mouvement et de l’énergie.
De nombreux modèles inspirés de leurs travaux ont été rapidement développés pour des
écoulements chargés de particules dans des tuyaux (Soo, 1969) ou dans des lits fluidisés
(Anderson & Jackson, 1967). La question de la fermeture des corrélations était déjà une
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préoccupation majeure, notamment les tenseurs de contraintes des deux phases. De plus,
les instabilités des modèles ont été rapidement identifiées dans les premières études, comme
par exemple par Murray (1965) qui a dérivé une relation de dispersion à partir de son jeu
d’équations.

Ainsi, de nombreuses questions qui sont encore abondamment étudiées aujourd’hui étaient
déjà présentes à l’esprit des premiers chercheurs. De plus, même si la procédure pour obtenir
des modèles a été clarifiée et rédigée de manière plus rigoureuse au fil des ans, l’idée princi-
pale, qui consiste à calculer la moyenne des équations locales du fluide et à rechercher des
fermetures de formes inconnues, était déjà développée. A l’époque, les modèles étaient pure-
ment académiques. Cependant, les ingénieurs et les scientifiques les ont rapidement combinés
avec les nouveaux ordinateurs afin de simuler efficacement les écoulements polyphasiques.

Quelques applications industrielles originelles

Les modèles et codes industriels précurseurs ont été développés simultanément à plusieurs
endroits dans le monde. Leur développement était particulièrement motivé pour assurer la
sécurité des réacteurs nucléaires. En particulier, l’accident de perte de réfrigérant (LOCA)
a été rapidement prédit avec une physique polyphasique. Cet accident survient lorsque le
circuit de refroidissement ne fonctionne plus à la suite de la rupture d’une conduite. Le cas
typique consiste à prédire les ondes de raréfaction progressant le long des tuyaux après la
rupture.

En France, le code CATHARE a été conçu en 1979 par le CEA, EDF et Framatome et
visait à simuler, entre autres cas, les LOCA dans les REP. Le modèle utilisé était un modèle
polyphasique complet ne supposant aucune relaxation instantanée de la vitesse ou de la
température (Rousseau, 1984). L’utilisation de ce type de modèles polyphasiques était déjà
connue au CEA de Grenoble (Bouré, 1973) où Ishii écrivit son manuel standard (Ishii, 1975).
Aux USA, selon Lyczkowski (2017), l’histoire des écoulements polyphasiques commence en
1970 avec le code projet SLOOP (Seriated LOOP) chez Aerojet Nuclear Company (ANC
sous financement AEC). Avant cela, le LOCA était calculé avec les codes RELAP dont le
développement est relaté par Mesina (2016). Le modèle utilisé dans les premières versions de
RELAP supposait une relaxation totale entre les phases et diverses entrées empiriques étaient
nécessaires pour capturer les effets polyphasiques tels que la trajectoires des bulles. En
revanche, le projet SLOOP utilisait des formes modernes des équations des flux diphasiques
(Solbrig & Hughes, 1971). C’était apparemment la première fois qu’un modèle d’écoulement
polyphasique était implémenté dans un code.

Cependant, les écoulements polyphasiques apparaissent dans de nombreuses autres situ-
ations. En Norvège, la prédiction du transport des fluides par les pipelines a été d’un intérêt
crucial avec l’exploitation pétrolière par le biais d’une plate-forme offshore lancée en 1971.
Ceci a conduit à la construction d’un laboratoire polyphasique en 1984 à Trondheim par
une collaboration entre Esso, Roagaland Research et Sintef. En parallèle, le développement
d’un code multiphysique à l’Institut pour la technologie de l’énergie (IFE) a débuté en 1979
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et a conduit au code OLGA.
D’où qu’ils viennent, les modélisateurs et les numériciens ont rapidement été confrontés

aux problèmes sérieux soulevés par les premiers chercheurs. Ces questions ont donné lieu à
des recherches approfondies et ne sont pas encore totalement résolues.

1.1.4 Quelques défis rencontrés par la communauté

L’ellipticité

L’un des problèmes les plus étudiés dans la modélisation des écoulements polyphasiques est
le caractère bien posé des modèles obtenus par procédures de moyenne. Cette question a été
relevée très tôt par Gidaspow et al. (1973) et a conduit à une énorme quantité de littérature
depuis lors. La recherche suivante: « two phase flow hyperbolic model », renvoie environ
8000 réponses sur Google Schoolar.

Depuis l’article fondateur de J.Hadamard (1902), le caractère bien posé d’un modèle est
liée à trois concepts principaux qui sont l’existence, l’unicité et la stabilité. Ces questions
ne concernent pas seulement les modèles polyphasiques mais tous les modèles physiques qui
s’écrivent avec des équations aux dérivées partielles (EDP) et concernent donc presque toute
la mécanique continue. Les trois points ci-dessus peuvent être reformulés comme suit :

• Existe-t-il une solution qui vérifie l’EDP du modèle ?

• Existe-t-il une seule solution de l’EDP ?

• Quel est l’impact d’un changement des conditions initiales sur la solution finale ?

La nature peut être considérée comme un dispositif de calcul qui suit les lois de la
physique et donne toujours une solution unique pour des milieux continus et des conditions
initiales données. Par conséquent, les modèles visant à reproduire ce calculateur devraient
posséder cette propriété. En outre, même si le changement des conditions initiales peut
avoir un impact énorme sur la solution finale (par exemple un système chaotique tel que la
météorologie), les perturbations devraient être limitées après un temps fini.

Cependant, le modèle polyphasique trouvé par Gidaspow et al. (1973) ne vérifiait pas
ces propriétés. Cette découverte a été inspirée par Mecredy & Hamilton (1972) qui, par une
analyse de stabilité, montre une atténuation de la vitesse de l’onde aux hautes fréquences
dans leur modèle. L’analyse des caractéristiques effectuée par Gidaspow et al. (1973) donne
une formule analytique pour les valeurs propres en limite compressible qui comprend une
partie complexe. Ce résultat a été la prémisse d’une longue série de recherches et de dis-
cussions sur la pertinence physique du modèle mal posé et les moyens d’y remédier. Cette
question reste ouverte, comme le rapportent Lhuillier et al. (2013), Dinh et al. (2004) et
Vazquez-Gonzalez et al. (2020).

Mais le caractère bien posé n’est pas le seul défi rencontré par les premiers chercheurs.
D’autres questions, qui n’ont pas été autant examinées, doivent encore être abordées afin de
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construire des modèles et des schémas qui prédisent une physique exacte avec suffisamment
de robustesse.

La cohérence thermodynamique

Dans ses mémoires personnelles Lyczkowski (2017)[partie 7.5], Lyczkowski raconte les sim-
ulations d’explosion dans une canalisation par son groupe. L’objectif était de reproduire
correctement par simulation numérique le profile de pression au bout du tube tel que fourni
par les expériences. Il était donc nécessaire de capturer correctement l’onde de détente et le
changement de phase s’ensuivant. Cependant, en comparant les résultats numériques de leur
code aux données issues des expériences de Edwards & O’Brien (1970), ils ont constaté une
grande différence sur la pression après le passage de l’onde. Le code prédisait que la pression
tombait à zéro alors que l’expérience montrait un plateau. De plus, cette erreur disparais-
sait lorsqu’aucun changement de phase ne se produisait (en raison d’une chute de pression
plus faible à la sortie du tube). Après une analyse minutieuse (détaillée par Lyczkowski
(2017)), le terme de transfert de masse entre l’eau et la vapeur (dû à la chute de pression)
s’est avéré thermodynamiquement incohérent. Une fois corrigés, les résultats expérimentaux
ont été correctement récupérés. C’est un exemple de la manière dont la cohérence avec la
thermodynamique est cruciale dans la conception de schémas numériques. Cependant, bien
qu’il soit courant de contraindre les codes à suivre la première loi de la thermodynamique
(Burton, 1991), le respect du second principe a reçu moins d’attention.

Pourtant, certains auteurs se sont enquis de sa vérification dans les modèles à l’intérieur
des codes de production (Arnold et al., 1990). De plus, comme le critère d’entropie per-
met de sélectionner la solution faible correcte pour les problèmes de Riemann, les schémas
de Godunov ont été largement étudiés afin d’assurer une dissipation appropriée dans les
chocs (comme la correction entropique: Harten (1983); Leveque (1990)). Cependant, ces
corrections ont l’inconvénient de faire dissiper les schémas partout et capturent mal les
écoulements isentropiques (Shen et al., 2010). A la lumière des remarques précédentes, la
notion de cohérence thermodynamique incarne :

• la préservation de l’énergie totale,

• la préservation du second principe où la dissipation se produit,

• suivre au plus près l’évolution isentropique lorsque la physique est non dissipative

Les deux premiers points doivent être strictement appliqués dans les schémas numériques
ainsi que dans les modèles. Cependant, le troisième point doit être examiné plus attentive-
ment. Si un modèle continu peut atteindre une isentropie stricte, un schéma numérique
conçu pour le résoudre produira des erreurs de l’ordre du schéma. L’évolution isentropique
étant unique, le chemin thermodynamique calculé s’en écartera à l’ordre du schéma. Pour-
tant, il est possible de concevoir des schémas isentropiques par des approches variationnelles.
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Mais la symplecticité et les conservations de la quantité de mouvement et de l’énergie ne
peuvent être préservées simultanément (Zhong & Marsden, 1988). Ainsi, les déviations de
l’isentropie ne peuvent être évitées.

La raideur dans les écoulements polyphasiques

Dans les écoulements polyphasiques extrêmes tels que décrits plus haut, de nombreuses in-
teractions couplent tous les matériaux. Ces couplages peuvent être de nature très différente
: pressions diverses, vitesses, processus de relaxation thermique, forces de pression, turbu-
lences, transferts de masse, etc. Tous doivent être conformes à la thermodynamique, comme
expliqué ci-dessus. Cette exigence s’applique aux modèles et aux schémas. Mais les schémas
numériques sont également mis au défi par la capture correcte de ces couplages en termes
de stabilité et de robustesse en raison de leur raideurs potentielle. Ces raideurs peuvent
notamment être due à des relaxations rapides entre phases et à de forts contrastes entre
matériaux. Un exemple classique dans la première catégorie est la capture des forces de
traînée entre deux phases se déplaçant initialement avec une vitesse relative importante.

Dans cette thèse, nous nous concentrons sur le principal couplage entre phases relevant
de la deuxième catégorie : le couplage de pression. La raideur de ce couplage apparaît
lorsque les matériaux présentent une compressibilité très contrastée. Dans ce cas, lorsque le
mélange est comprimé, l’un des matériaux supportera toute la compression alors que l’autre
ne subira quasiment aucune variation de volume. Lorsque des matériaux contrastés ne sont
pas soumis à de fortes compressions ou dilatations, l’un des matériaux peut être considéré
comme incompressible. Mais dans les cas extrêmes présentés ci-dessus, tous les matériaux
peuvent être comprimés et, par conséquent, les couplages de pression raides entre eux doivent
être calculés.

Les écoulements qui présentent de telles caractéristiques sont familiers à l’industrie nu-
cléaire où la vapeur et l’eau coexistent sous haute pression. Si les schémas numériques
peuvent être adaptés pour traiter la rigidité des termes de relaxation par des choix im-
plicites ou explicites, le couplage par la pression est plus difficile à traiter pour deux raisons
principales : il n’apparaît souvent pas explicitement dans les équations et il n’a pas un com-
portement monotone dû aux compressions ou expansions rencontrées par les écoulements.
La raideur du couplage par la pression dans les écoulements polyphasiques a été étudiée
dans les modèles du type Baer–Nunziato Baer & Nunziato (1986) (B.N.) (Kapila et al.,
2001; Saurel et al., 2009).

Mais cette raideur devrait être présente dans tous les modèles polyphasiques compress-
ibles. En effet, le contraste entre les phases qui conduit à des variations de volume iné-
gales est un phénomène physique qui doit être capturé quelle que soit la méthode utilisée.
Comme la raideur dans les modèles (B.N.) apparaît dans les processus de relaxation, les mod-
èles en équilibre complet qui en sont dérivés sont à l’abri du problème de raideur (Hantke
et al., 2021): « . . . les modèles réduits ont été dérivés en supposant des temps de relaxation
nuls. . .Ainsi, l’instabilité inhérente au modèle de non-équilibre est évitée. . . » Cependant, de

18



nombreux modèles entièrement compressibles à une seul pression ne sont pas une limite d’un
modèle de type B.N. (Vazquez-Gonzalez et al., 2020; Munkejord et al., 2009). Mais la raideur
due au couplage de pression est bien présente et peut être écrite explicitement dans l’EDP.
Un des objectifs de cette thèse est de proposer une solution pour capturer cette raideur par
le couplage de la pression tout en gardant la cohérence thermodynamique. L’objectif final
est d’améliorer la robustesse et la stabilité des schémas numériques polyphasiques.

1.2 Introduction in English

1.2.1 A short overview of the thesis

This thesis project was carried out at the Commissariat à l’Énergie Atomique (CEA), Direc-
tion des Applications Militaire (DAM). It is a continuation of the thesis of Vazquez-Gonzalez
(2016) and is contemporary with Paulin (2021). The aim is to address two objectives in the
development of multiphase models and schemes: being thermodynamically consistent and
capturing the inherent multiphase stiffness to ensure stability. In previous works (Vazquez-
Gonzalez et al., 2020), a consistent numerical scheme (named GEEC for ‘Geometric Energy
and Entropy Compatible’) was designed using variational and mimetic approaches. As a re-
sult, a quasi-isentropic behavior and exact conservations were obtained. However, this prox-
imity to isentropy made the numerical scheme potentially vulnerable to numerical residuals.
Moreover, as one of the objective was to capture isentropy, the internal energy discretization
was developed with a mimetic approach without addressing stiffness issues. In this thesis,
we propose a new discretization of the internal energy equations, formally applicable to any
other multiphase scheme, which addresses the stiffness and the thermodynamic consistency
issues in the pressure coupling.

The model discretized by Vazquez-Gonzalez et al. (2020), known as the 6-equation model,
derives from an averaging approach stripped of all second-order correlations. Thus, all dissi-
pation and higher order potentials hidden in the fluctuations are eliminated. Consequently,
the model represents only ideal situations and is therefore seldom applicable to real multi-
phase flows without being complemented by fluctuation terms. Now, as it is the basis for
all other models, it was crucial to ensure its correct discretization from the start. As follow
up to Vazquez-Gonzalez et al. (2020), we now propose a method to introduce higher-order
isentropic effects (surface tension, turbulence, etc.) while maintaining a model formalization
that captures stiffness and thermodynamic consistency. To show the interest of the method,
four way couplings are considered in dispersed particle-laden flows. Collisions are introduced
through variational approaches and the ensuing equations are discretized by mimicking the
GEEC scheme. Dissipative couplings with the carrier phase are embodied in drag forces.
Numerical simulations of crossing jets validate the approach.

The last part of the thesis is an exploratory work that focuses on thermodynamic con-
sistency issues in Lagrange-Euler (LE) modeling of dispersed particles-laden flows. A new
description of particles is coupled to the least action principle, leading to the coupled dynam-
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ics of dispersed and carrier phases. Discrete dynamics derived from the same procedure. This
approach is extended to compressible particles. Numerical simulations lead to contrasted
results, showing the possibilities of the method but also the need of many improvements.

1.2.2 The development of multiphase flows at CEA

Multiphase flows at CEA

In the scope of its missions, the CEA needs to predict various multiphase flows in academic
and industrial contexts. First, the functioning and safety of the pressurized water reactors
(PWR) involve several fluids flowing into the different circuits. The fluids are subject to
cycles in which high variations of temperature and pressure occur as well as phase changes.
Secondly, the CEA has extended his activities in 2010 to the renewable energy field. Mul-
tiphase flows are also encountered there in the hydrogen field for instance (fuel cell, high
temperature steam electrolysis, etc. . . ). Eventually, one of the tasks of the DAM is to design
and guarantee the functioning and safety of French nuclear weapons. Since the signature
of the Comprehensive Test Ban Treaty (CTBT) under Jacques Chirac’s presidency in 1996,
France has stopped nuclear tests. In this context, the simulation program has been launched
in 1994 by Francois Mitterrand. Since then, the DAM has relied on numerical simulation to
fulfill its missions. The aim of scientists and engineers at DAM is then to develop analytic
models to capture physics of weapons and the numerical schemes to solve them. Because of
the phenomenon complexity and the high precision required, huge computational resources
are needed. To meet this demand, supercomputers are developed and installed by Atos
(former Bull) at CEA DAM Bruyères-le-Châtel. Crafting and programming on these super-
computers is challenging for engineers because of their specific architectures. To validate
the quality of the numerical simulations, comparisons with experiments of fusion done with
the Laser Megajoule (LMJ) and other standard ones are made.

Simulation of extreme multiphase flows

Because of its specific applications, the multiphase flows aimed to be simulated at DAM can
be very extreme. The use of this qualifier refers to several features encountered by physicists
and numericists.

a First the size of the flows concerned is very large compared to the typical mesh size
used in simulations. This specificity makes complete simulation extremely expensive in
terms of computational resources. Even with the most powerful computers available,
some multiphase methods are then still inaccessible. Furthermore, this point implies
transport of materials over long distances which challenges the numerical schemes
in term of diffusion. The large size of the domain is also critical because the flows
present short scales impacting them. However, due to limited computing resources,
standard equations are only captured above a given scale dictated by cost computation
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constraints which is higher than these short scales. Thus a sub-scale modeling is
necessary.

b In addition, the amount of energy reservoirs inside the flows implies that models should
respect fundamental conservations (momentum, mass and energy) because a leak of
such quantities could lead to a critical gap between the real solution and the numerical
one. This issue is naturally also present in the schemes. This is especially crucial to
deal with the correct propagation of shocks, conditioned by the verification of the
Rankine-Hugoniot relations. Also, this point leads to the obligation of respecting the
second thermodynamics law in order to avoid nonphysical results and/or unstable
computations.

c The last critical point is the high number of materials (up to few dozens) and the
contrasts in their equation of state (EOS). A multiplicity of phases involves a huge
number of couplings, leading to complex models which makes it even harder to re-
spect the conservations and thermodynamic consistency, especially because the large
amount of energy implies that all the materials can be compressed. Contrasts between
materials do not impact the models directly but constrain the numerical schemes used
to solve them which in turn constrain the way models are written.

d Capture of such flows is also highly difficult due to potential instabilities occurring
between phases which lead to chaotic1 nonlinear behavior. An example of such flows
is the simulation of the Internal Confinement Fusion (ICF) where a small defect of the
capsule leads to loss of spherical compression and thus diminishes the energy brought
to the fusible material.

The simulation program is then confronted to many challenges to predict the extreme
multiphase flows engineers and scientist encounter. They have thus developed specific models
and schemes. Simulating and predicting multiphase flows were already a concern in many
industrial places across the world before the CEA DAM launched its simulation program.

1.2.3 Some landmarks in the understanding and simulation of multiphase flows

Development of the first models

The development of multiphase models started few decades ago. To the author’s knowledge,
the first occurrence of multiphase modeling in literature was published by van Deemter
& van der Laan (1961). However, the equations were written only in a formal way and
turbulence was neglected in the averaging process but introduced rather intuitively in the
stress tensor. Later, Hinze (1963) derived another model by considering the effect of particles
on the continuous fluid phase. These models were built with averaging technique which is
still the most common way to build multiphase models. These two references appear to

1it is understood here that an initial small default has a huge impact after a finite time
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be the first modern form of continuous multiphase models with a set of per fluid equations
involving conservation of mass, momentum and energy. Many models inspired by their
work were soon developed for particle-laden flows in pipes (Soo, 1969) or in fluidized beds
(Anderson & Jackson, 1967). The question of closing undetermined correlations was already
a major concern, notably the stress tensors of both phases. Very challenging as well, model
instabilities were soon identified in early studies, as for instance by Murray (1965) who
derived a dispersion relationship from his set of equations. Thus, many issues that are
still intensely studied today were in the minds of the first investigators. Also, even if the
procedure to obtain models has over the years been clarified and written more rigorously, the
main idea which consists on averaging the local fluid equations and looking for closures of
unknown forms was already developed. These models were academic by this time. However,
engineers and scientists soon combined them with the new born computers in order to
effectively simulate multiphase flows.

First multiphase flow industrial applications

Precursor industrial models and codes were developed simultaneously in several places of
the world. It was especially driven by the need to ensure the safety of nuclear reactors. In
particular, the loss of coolant accident (LOCA) was soon predicted with multiphase science.
This accident arises when the cooling circuit no longer functions as a result of a pipe rupture.
Typical test case consists in predicting rarefaction waves progressing along pipes after the
rupture.

In France, the code CATHARE was devised in 1979 by the CEA, EDF, and Framatome
and aimed also at simulating, among other cases, the (LOCA) in PWR. The model used is a
complete multiphase model assuming no instantaneous relaxation of velocity or temperature
(Rousseau, 1984). Using this kind of multiphase models was already known at CEA Grenoble
(Bouré, 1973) where Ishii wrote is seminal textbook (Ishii, 1975).

In USA, according to Lyczkowski (2017), the history of multiphase flows begins in 1970
with the SLOOP project code (Seriated LOOP) at Aerojet Nuclear Company (ANC under
AEC financing). Before that, LOCA was calculated with the RELAP codes whose develop-
ment is told by Mesina (2016). The model used in the first RELAP version assumed total
relaxation between phases and various empirical inputs were needed to capture multiphase
effects such as raising bubbles. In contrasts, the SLOOP project used modern forms of the
two phase flow equations (Solbrig & Hughes, 1971). This was apparently the first time a
multiphase flows model was implemented in a code.

However, multiphase flows appear in numerous other situations. In Norway, prediction
of fluid transport by pipelines has been of a crucial interest with petroleum exploitation
through offshore platform launched in 1971. This has lead to the construction of a multiphase
laboratory in 1984 at Trondheim by a collaboration between Esso, Roagaland Research and
Sintef. In parallel, the development of multiphase code in Institute for Energy Technology
(IFE) started in 1979 leads to the well known code OLGA.
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Wherever they came from, modelers and numericists were soon confronted with serious
issues raised by the early investigators. These issues have lead to extensive investigations
and are yet to be fully settled.

1.2.4 Some challenges faced by the community

Ellipticity

One of the most studied issues in multiphase flow modeling is the well-posedness of mod-
els derived from averaging procedures. This issue was brought to attention very early in
(Gidaspow et al., 1973) and has lead to a huge amount of literature since then. The query
“two phase flow hyperbolic model ” returns about 8000 answers on Google Scholar. Since the
seminal paper of Hadamard (1902), well-posedness is related to three main concepts which
are existence, uniqueness and stability. These questions need to be addressed not only in
multiphase models but in all models aiming to capture physics and written with partial
differential equation (PDE) and thus concern nearly all continuum mechanics. The three
points above can be reformulated as:

• Is there a solution that verifies the PDE of the model ?

• Is there only one solution of the PDE ?

• What is the impact of changes in initial conditions on the final solution ?

Reality can be viewed as a calculating device which follows the laws of physics and always
gives a unique solution for continuous media and given initial conditions. Therefore, models
aiming to approach this calculator should posses this property. Furthermore, even if changing
the initial conditions may have a huge impact on the final solution (for instance chaotic
system such as meteorology), disturbances are supposed to be bounded after a finite time.
However, the multiphase model introduced by Gidaspow et al. (1973) was ill-posed. This
discovery was inspired by Mecredy & Hamilton (1972) who produced a stability analysis
which shows wave speed attenuation at high frequencies in their model. The characteristic
analysis done in (Gidaspow et al., 1973) shows analytical formula of the complex eigenvalues
in the incompressible limit. This result was the premise to a long stream of competing
investigations and endless (sometimes bitter) discussions about the physical relevance of
model ill-posedness and the ways to “cure” it. This is still an open question as reported by
Lhuillier et al. (2013), Dinh et al. (2004) or Vazquez-Gonzalez et al. (2020).

But well-posedness is not the only challenge encountered by early researchers. Other
issues, which have not been so much examined, still need to be tackled in order to build
models and schemes that predict accurate physics with enough robustness.

Thermodynamic consistency and stiffness

Thermodynamic consistency inside multiphase flows In his personal memoir (Ly-
czkowski, 2017) [part 7.5], Lyczkowski tells about the simulations of the pipe blow-down
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by his group. The aim was to reproduce correctly by numerical simulation the pressure
profile along the tube as provided by experiments. It was therefore necessary to capture
correctly the expansion wave and the ensuing phase change. However, when they compared
their numerical results to the experimental data by Edwards & O’Brien (1970), they found
a huge pressure difference after the passage of the rarefaction wave. The code predicted
that pressure fell to zero whereas the experiment showed a plateau. Furthermore, this er-
ror disappeared when no phase change occurred (due to a smaller pressure drop at the
tube exit). After careful analysis (detailed by Lyczkowski (2017)), the mass transfer term
between water and steam (due to the pressure drop) was found to be thermodynamically
inconsistent. When corrected, the experimental results were properly recovered. This is an
example of how consistency toward thermodynamics is crucial in the the design of numerical
schemes. However, though it is a common practice to constraint codes to follow the first
law of thermodynamics (Burton, 1991), following the second law has received somewhat
less attention. Still, some authors were concerned about its verification in models inside
production codes (Arnold et al., 1990). Also, because the entropy criteria allows to select
the correct weak solution for Riemann problems, Godunov schemes have been extensively
studied in order to ensure proper dissipation in shocks (entropy fix, Harten (1983); Leveque
(1990)). However, these fixes have the disadvantage that schemes dissipate everywhere and
poorly capture isentropic flows (Shen et al., 2010). In the light of the previous remarks, the
notion of thermodynamic consistency embodies:

• preservation of the total energy,

• preservation of the second principle where dissipation occurs,

• following as closely as possible the isentropic evolution when the physics is non-
dissipative.

The first two points should be strictly applied in numerical schemes as well as in the models.
However, the third point needs to be more carefully examined. If a continuous model can
achieve strict isentropy, a numerical scheme designed to solve it will produce errors at the
order of the scheme. Since the isentropic evolution is unique (for a given set of energies), this
will cause the calculated thermodynamic path to deviate from it even though the scheme is
expected to deviate as little as possible. Yet it is possible to design isentropic schemes by
variational approaches (2.3.1). But symplecticity and the conservation of momentum and
energy cannot be preserved at the same time (Zhong & Marsden, 1988). Thus, deviations
from isentropy cannot be avoided.

Stiffness inside multiphase flows In extreme multiphase flows as described above, many
interactions couple all the materials. These couplings can be of very different nature: various
pressures, velocities, temperature relaxation processes, pressure forces, turbulence, mass
transfers, etc. . . All of them must comply with thermodynamics as explained above. This
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requirement applies to models and schemes. But the numerical schemes are also challenged
by the correct capture of these couplings in terms of stability and robustness due to their
potential stiffness. This stiffness can be notably due to fast relaxations between phases and
strong contrasts between materials. A classic example in the first category is the capture
of the drag forces between two phases moving initially with a large drift. In this thesis, we
focus on the major coupling between phase falling into the second category: the pressure
coupling. The stiffness of this coupling occurs when the materials present highly contrasted
compressibility. In that case, when the mixture is compressed, one of the materials will bear
all the compression whereas the other will experiment nearly no volume variation. Yet, when
contrasted materials are not subjected to high compression or expansion, one of the materials
can be assumed to be non compressible. But in the extreme cases presented above, all the
materials can be compressed and therefore the stiff pressure couplings between them must
be computed. Flows which present such feature are familiar to the nuclear industry where
steam and water coexists under high pressure. If the numerical schemes can be adapted
to tackle the stiffness on the relaxation terms by implicit or explicit choices, the coupling
through pressure is harder to cure for two main reasons: it often does not appear explicitly
in the equations, and it involves no monotonic behavior due to compression or expansion
encountered by the flows.

Pressure stiffness in multiphase has been studied in the very popular Baer & Nunziato
(1986) (B.N.) type models (Kapila et al. (2001)), (Saurel et al. (2009)). But it should be
present in all compressible multiphase models. Indeed, the contrast between phases which
leads to unequal volume variations is a physical phenomenon that must be captured whatever
the method used. Because stiffness in the B.N. models appears in relaxation processes, fully
equilibrium model derived from them are safe from stiffness issue (Hantke et al. (2021)):
. . . reduced models have been derived assuming zero relaxation times . . .Thus, the stiffness
inherent in the non-equilibrium model is avoided. . . . However, many fully compressible
one-pressure models are not a limit of a B.N. type model (Vazquez-Gonzalez et al. (2020),
Munkejord et al. (2009)). But stiffness due to pressure coupling is well present and can be
written explicitly in the PDE. One of the goals of this thesis is to propose a solution to
capture stiffness due to the pressure coupling while keeping the thermodynamic consistency.
The final aim is to improve the robustness and stability of numerical schemes for multiphase
flows.
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Aim: present some specfic approachs and results that will be used in the thesis. Main: - introduce the different types of multiphase modeling,- presente the Euler–Euler modeling,- give some theory to obtain the backbone model and GEEC,- discusse about hyperbolicity in multiphase flow.

Aim: characterize and tame the stiff stiffness of the pressure coupling in compressible multiphase flows. Main: - define the stiff stiffness inside multiphase flows,- use an implicit pressure to fulfill the second law,- estimate this implicit pressure,- test the approach in GEEC on extreme numerical tests.

One coupling term common to all compressible multiphase models: the pressure work. This coupling is stiff in contrasted flows.

The pressure work is not the only coupling occurring in multiphase flows. The backbone model needs to be completed.

Test the potential of the method presented in chapter 4 to capture four-way coupling in dispersed multiphase flows.

The four-way coupling’s capture in chapter 5 suffers from several difficulties notably due to the Eulerian formalism. An other formalism to model dispersed flows is the Lagrange-Euler formalism.

Aim: capture collisions in dispersed multiphase flows.Main: - separate the collisions in two types,- apply a variational approach for the first type,- introduce new phases for the second type,- implement the final model in GEEC,- test the approach on idealized situations.

Aim: build consistent isentropic models with explicit energy equations for complex multiphase flows.Main: - close the fundamental energy reservoirs to add,- apply a variational approach, - obtain the explicit energy equations,- force the instantaneous pressure relaxation when   considering the added mass energy.

Aim: capture the pressure coupling in Lagrange–Euler formalism with compressible particles.Main: - provide a hybrid description of particles,- implement this new description in a variational approach,- build the numerical scheme with a discrete variational   approach,- test the scheme in compressions and expansions.
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2.1 The modeling of multiphase flows

2.1.1 General description and classification of flows

This thesis is part of the DAM’s approach to build models predicting the behavior of mul-
tiphase flows and to develop numerical methods to solve them.. Multiphase flows are flows
mixing several phases. A common definition of a phase is a region of space in which the
thermodynamic behavior does not vary (same equation of state, same law for heat flux. . . ).
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These regions of space are separated by interfaces in which many physical phenomena occur
whose capture challenges the model. They can form a countable number of structures (strat-
ified flows in pipe) or multiple disconnected structures (sand grains in water). These two
cases define two broad categories of multiphase flows, namely separated flows and dispersed
flows. However, these categories are not absolute and depend on the scale at which the flows
are observed. A flow with billions of grains of sand in water is considered a dispersed flow
(with sand as the dispersed phase and water as the carrier phase), however when zoomed
in on a specific grain of sand, the flow can be considered a separated flow with one region
corresponding to sand and another to water. Another possible criterion for constructing a
classification is then to compare the average size of the interfaces with the typical length
of the flow. Of course, within the same flow, the two types of categories can coexist (sand
grains through a laminar water flow covering half the pipe).

Also, some classifications consider the state of matter of the phases involved: liquid/solid,
solid/gas, etc. . . The multiplicity of possible combinations makes these classifications very
complex. Moreover, they consist more in comparing the physical properties of the phases
than in questioning their state. Another way of classifying flows in this spirit could be an
evaluation of the relationship between the density of the phases, their compressibility, their
resistance to deformation, etc. . .

Engineers and scientist use specific models adapted to capture physics inside the multi-
phase flows depending on their place in classifications. Indeed, several classes of models exist,
designed for specific types of flows. In this thesis, two broad classes of models are explored.
The first class is able to deal with all type of multiphase flows (but with many pieces of
information lost) and the second one is specifically addressed to dispersed multiphase flows.

In industrial applications, pure single-phase flows rarely exist. However, it may not be
necessary to consider all phases present if one phase dominates or if they can be merged
into one phase with suitable physical properties. However, in many applications, these
approximations are not valid and therefore cannot be applied to predict flow behavior with
sufficient accuracy. In this case, multiphase flow modeling must be used. Such applications
are present in various academic and industrial fields and are crucial to model for the operation
of machines or the understanding of nature. Notable examples are the cavity phenomenon in
pumps where bursting bubbles can damage engines, the atomization phenomenon of sprayed
fuel in combustion chambers which is crucial for engine efficiency, etc. . .

2.1.2 Review of the models

Interface models

Models that reconstruct the interface constitute the direct numerical simulation (DNS) of
multiphase flow simulation. They describe the flow down to the interfacial scale. However,
if these methods are applicable for flows where the size of the structures is comparable
to the characteristic length of the flow, their calculation cost is too high when the size of
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the structures is close to the mesoscopic scale. Therefore, they may be used for separated
flows but their computational cost is prohibitive for dispersed flows. This is unfortunate
because for dispersed flows commonly encountered in industry, such as bubble flows, these
methods would have been very accurate. Indeed, surface tension effects are very important
(the interfacial area density is higher for small bubbles than for large ones at the same
volume fraction). In general, these methods are often used to calculate test cases where
only a few structures are initially present in the flow even though they are likely to be
strongly deformed: shock bubble interaction (Terashima & Tryggvason, 2009), Rayleigh
Taylor instabilities (Glimm et al., 1998, 2001), Richtmyer–Meshkov (Holmes et al., 1995).

Interface tracking Interface tracking has two essential elements, markers to reconstruct
the interface and a method to calculate the flow within the structures. The dynamics of
the markers are calculated with the propagation front scheme. It conventionally consists
of a splitting between the normal direction of the interface and the tangential direction of
the interface. There are many variants of this scheme that depend on the approximation
of the equations of motion, from simple interpolation of the flow velocity at the marker
(Tryggvason, 2012) to more complex algorithms (slope reconstruction, Riemann problem
and characteristic methods (Glimm et al., 2001)). Several difficulties exist to follow the
front: the management of the interface on itself, the collision and the disappearance of the
front (Chern et al., 1986). Far from the interfaces, the domain (called interior) is treated as
in the mono-fluid case by taking into account the boundary conditions corresponding to the
global edge of the domain or the interfaces.

Interface capturing Interface capture methods reconstruct the interface without assign-
ing it additional ‘numerical’ degrees of freedom (the interface tracking markers). It is there-
fore necessary to find its position with fluid quantities computed by the numerical scheme.
Usually, a new variable is introduced to the PDE system whose values will be computed at
any point in space (such as pressure or density) and will model the distance to the interface.
It is then necessary (as in the case of interface monitoring), to process the discontinuity of
the variables and to verify the Rankine Hugoniot relations. Two methods are particularly
used, the VOF method and the Level-Set method.

VOF The VOF method was developed by Noh & Woodward (1976) and then intro-
duced by Hirt & Nichols (1981). It consists in transporting a field ‘similar’ to the volume
fraction which is 1 when the cell is filled with the fluid and 0 otherwise. An intermediate
value of this field in a cell indicates the presence of the interface. The interface must be
then reconstructed inside the cell. There are several methods to perform the reconstruction
such as the SLIC (simple line interface calculation) method developed by Noh & Woodward
(1976) where the interfaces are aligned with the mesh or the PLIC (piecewise linear interface
calculation) method developed by Gueyffier et al. (1999). In this method, the knowledge of
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(a) Without interface tracking (b) With interface tracking

Figure 2.1: Transport of droplet from the free access code of Prof. Tryggvason
https://www3.nd.edu/ gtryggva/MultiphaseDNS/DNS-Solver.pdf

the VOF at any point of the mesh allows to deduce the normal to the interface by calculating
the gradient of the VOF. The interface is then reconstructed in the mesh from the knowledge
of the normal and the fact that it must separate the cell into two parts so that their volume
respects the value of the VOF. However, this can lead to discontinuous interfaces. It then
remains to propagate it and to deduce the new value of the VOF function.

Level set The level set is a method to reconstruct interface that has been introduced
by Osher & Sethian (1988) and applied to multiphase flows by Sussman et al. (1994). This
method is similar to the VOF method in that it uses a new field whose values are calculated
in each cell. Its main advantage is that the interface is located more precisely because the
value of the level set function is smooth. The interface will be located by looking at the 0

iso value of the level set function. The transport of the level set function is the same as for
a scalar field. Thus, it is simpler than the VOF transport, however, it cannot ensure strict
mass conservation. This problem is the main drawback of the Level Set method compared
to the VOF method and many attempts have been made to correct it van der Pijl et al.
(2005).

Kinetic approaches

The kinetic approaches represent the dispersed phase stochastically. They consider that
the phase is made of an ensemble of particles which possess some parameters. Instead of
computing the values of the parameters for each particle, they evaluate the probability of
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particles to be in some range of parameters. Its mathematical representation is the prob-
ability density function (PDF). Rigorously, for a system of N particles with p parameters,
the PDF must be a function of all parameters and variables

fPDF = f(t, x1
1, . . . , x

1
p, . . . , x

N
1 , . . . , x

N
p ). (2.1)

However, this function may be transformed by integration to the number density function
(NDF) which represents the probability that a certain number of particles be within some
range of parameters.

f = f(t, x1, . . . , xp) (2.2)

The space of parameters (x1, . . . , xp) is made of characteristic variables of a given particle,
as an example, the position x, the velocity v, the temperature, etc . . .

The kinetic approaches aim to obtain the (NDF) or at least some relevant information
about it such as the moments. The description of its evolution is generally made by a
Williams–Boltzmann type equation Williams (1958). With this definition of f , the number
of particles at time t in volume [(xi, xf ), (vi, vf )] is

N =

∫ vf

vi

∫ xf

xi

f(t, x′, v′)dx′dv′ (2.3)

and the density of particles is

n(t, x) =

∫
f(t, x, v)dv. (2.4)

In dispersed flows, the space of parameters is generally larger and contains the position x, the
velocity v, the temperature θ and a geometric parameter of the particle s. The iso-number
part of the Williams–Boltzmann equation is a consequence of the Liouville theorem

∂tf +∇x · (vf) +∇v · (Ff) + ∂s(Kf) + ∂θ(Rf) = 0, (2.5)

F , K, R, standing for the external forces, the mass transfers and the heat exchanges with
the carrier phase. The form ∇x · (vf) stand for the transport of the particles. This equation
can be completed with source terms describing fragmentation or coalescence of the particles,
thus changing the total number of particles.

Eulerian approaches The Eulerian approaches associated to kinetic models (not to be
confused with the Euler–Euler approaches detailed in (2.2)) aim to compute the moments
of the (NDF). The computation presented here is done by considering the simplest pos-
sible parametrization of the (NDF) (position, velocity and time) and is there to explain
the fundamental mechanisms. The parametrization chosen determines the equation of the
(NDF).

∂tf + (vif),xi + (Fif),vi = Q (2.6)
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Q being a collisional operator. The evolution of the moments is computed by integrating
(2.6) after multiplication by the associated function.

n =

∫
fdv ⇒ ∂t(n) + (uif),xi =

∫
Qdv (2.7a)

nui =

∫
vifdv ⇒ ∂t(nui) +

∫
vi(vjf),xjdv − Fi =

∫
viQdv (2.7b)

ne = 1
2

∫
v2
j fdv ⇒ ∂t(ne) + 1

2

∫
v2
j (vif),xidv − 1

2
Fiui =

∫
vjvjQdv (2.7c)

The last terms in the left hand side (LHS) of the equations have been computed by
integration by parts and using the fact that the distribution vanishes for infinite velocity.
However, the integration of a form of order p inside the spatial gradient leads to a form of
order p + 1. Therefore, the evolution equation of an order p moment involves a moment of
order p+ 1. Thus, it is not possible to use this method without closing the higher moment
which appears in the last evolution equation (here stopped at order 2 to make the link with
hydrodynamic equations). The forms within the spatial gradient illustrate this.∫

vivjfdv =

∫
(vi − ui)(vj − uj)fdv︸ ︷︷ ︸

Pij

+uiujn (2.8a)

∫
v2
j vifdv = 2uine+

∫
(vj − uj)2(vi − ui)dv︸ ︷︷ ︸

q

+2uj

∫
(vj − uj)(vi − ui)dv︸ ︷︷ ︸

Pij

(2.8b)

The evolution of the moment nu involves the pressure tensor Pij which is of order 2

and the evolution of total energy involves the heat flux q, a moment of order 3. The final
equations are then

∂t(n) + (nui),xi =

∫
Qdv (2.9a)

∂t(nui) + (nujui + Pij),xj = Fi +

∫
viQdv (2.9b)

∂t(ne) + (nuie+ q),xi + (ujPij),xi = Fiui +

∫
v2
jQdv (2.9c)

The system of equation obtained is very similar to Euler’s. It must be stressed that
pressure form appears as a pure momentum flux and does not involve collisions between
particles. As for the heat flux, it is a flux representing the asymmetry of the (NDF). To
close this unknown form, several solutions are possible:

• postulate the form of the distribution,

• using analytical function to relate the moment of order p+1 to the lower order moment.
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There is no discussion here about the collisional operator in which all the dissipative physics
occurs (see theorem H). However, basic properties of this operator are conservations of mass,
momentum and kinetic energy which occurs effectively during collisions)

•
∫
Qdv = 0 in order to conserve the number of particles,

• For a Maxwellian (NDF),
∫
viQdv =

∫
v2
jQdv = 0. There is then thermodynamic

equilibrium, no dissipation in the equations and the Euler equations are obtained.

In the development made, the (NDF) is only parametrized by the position and the
velocity. However, more parameters are needed to represent the dispersed phase, especially
the size of particles which is crucial in industrial applications like combustion. However,
increasing the phase space also increases the computational effort. In the field of spray for
combustion, two variables are generally added which leads to 9 parameters for the (NDF) in
3D. To reduce the computational effort, sectional methods were developed (Tambour, 1980;
Greenberg et al., 1993) where moments by integration over velocity and temperature are
computed whereas size is discretized in different sections. Clarification about the necessary
assumptions of the methods and the full derivation is made in Laurent & Massot (2001). The
system obtained after the integration is called the semi-kinetic system and a distribution
function of the form f(t, x, v, θ, s) = ñ(t, x, s)fθ(t, x, s, θ)fv(t, x, s, v) is postulated. The
functions fθ and fv sum to unity by integration on θ resp v. Once the semi-kinetic system
is obtained the particle density (conditioned by the size) function is also postulated as
ñ(t, x, s) = n(t, x)fs(t, x, s) and non dispersion in temperature and velocity by section is
assumed, ie there is only one velocity and one temperature by section (fθ(t, x, s, θ) = δ

(
θ −

f̄θ(t, x, s)
)
and fv(t, x, s, v) = δ

(
v − f̄v(t, x, s)

)
). Then, various assumptions on fs(t, x, s)

lead to different models, the most simple being to assume that there is only one size per
section which leads to a bi-fluid model.

Lagrangian approaches In the Lagrangian–Eulerian (LE) approaches, the carrier phase
is modeled with the Eulerian description and the Lagrangian phase is described with a
point stochastic process, i.e. the particles are within Lagrangian frame whereas the carrier
phase is represented in the Eulerian frame. Another denomination is the trajectory model
Brennen (2005) opposed to the two-fluid flow model. These approaches are designed to
predict particle-laden flows. In such flows, level of interactions between phases depend on
several parameters, notably the volume fraction and the mass loading of the dispersed phase
Balachandar (2010). When the carrier phase influences the dispersed phase, the coupling
is called one-way coupling, when particles also influences the carrier phase it is called two-
way coupling and four way-coupling when particles also interact with each other Elghobashi
(1991). This description of the dispersed phase is an approximation of the (NDF) by dirac
functions. The various levels of description of the dispersed and carrier phases lead to several
categories of models used. A review of the categories is done in Subramaniam (2013). For
the discrete phase, there are roughly two levels of descriptions:
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• The trajectory of all the particles is computed. The numerical entities represent then
physical particles.

• The trajectory of packets of particles are computed. The numerical entities represent
then stochastic particles embodying many physical particles.

Equations ruling the particles’ evolution are obtained by introducing the (NDF) approx-
imation in the Williams’ equation.

dXi

dt
= Vi ,

dSi
dt

= θi ,
dVi
dt

= Ai(Xi, Si, t, {U(x, t)}) (2.10)

with Xi, Vi, Ai the position, velocity and acceleration of the particle i, {U(x, t)} values of
the carrier phase fields and Si some other additional particle parameters, as an example a
geometric parameter if the particle loss or gain volume (evaporation for a droplet). The
acceleration is often modeled by a drag force between particles and carrier phase. However,
several other forces may occur, notably unsteady effects such as added mass and Basset
force or electrodynamic forces (in hybrid code aiming to simulate plasma for instance).
Modeling forces acting on particles is complex because it involves the local perturbations of
surrounding flow around them. The scales of the perturbations are generally lower than the
grid size and thus they must be captured by subscale modeling.

Diffuse interface model

Diffuse interface models do not consider that phases are separated by interfaces (although
they may include interfacial effects) but consider that all phases occupy the whole domain
with a certain probability of presence. This approach loses information about the physical
discontinuities that exist at the interface between two different phases. However, these
methods can be applied to various types of flows and are less computationally expensive than
the interface methods. Each phase has its own fields (velocity, density, etc.) which obey to
evolutionary equations similar to the Navier–Stokes system. The domain of definition of the
fields is the entire domain of the calculation. This is why the phases are said to coexist in
the same point of time and space. However, a more precise view is to say that the fields take
on the values of a given phase if it would have been present at that point. The principle
of these methods is to average the single-fluid equations weighted by the function of the
probability of presence of a given phase, and then to close the residuals resulting from this
calculation. These closures involve interpretation of the physical meaning of these residuals
according to the nature of the flow being modeled and the type of averaging used.

2.2 Details on Euler–Euler approach

2.2.1 On averaging

The computation of the average of equations is an old technique which flourished in fluid
mechanics with the study of turbulence. von Kármán (1948) attributes the paternity of
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statistical methods to Reynolds (1895). However, time averaging appears earlier in the
work of Boussinesq (1877). Nevertheless, Reynolds was first to decompose the movement
into an average part and a fluctuating part 1. A review of the historical development of
statistical methods for turbulence is given by Chassaing (2019). The justification for the
use of averaged equations is the desire to obtain a deterministic system of equations (thus
providing mathematical tools) to model a turbulent phenomenon. The classical averaging
operators used in fluid mechanics are the temporal, spatial and ensemble averaging operators.

āt(x, t) =
1

|H|

∫
H(t, t′)a(t′, x)dt′ (2.11)

āx(x, t) =
1

|G|

∫
G(x, x′)a(t, x′)dx′ (2.12)

āe(t, x) =
1

N

∑
i

ai(t, x) (2.13)

with ai(t, x) the value of the quantity a in (x, t) at the i th experiment.
Mass Reynolds averaging is defined with any of these operators as

ã =
ρa

ρ̄
a′′ = a− ã (2.14)

with a any fluid quantity of interest. Using this kind of averaging simplifies the averaged
equations but lead to a different interpretation of the deviation between averaged quantities
and real ones. As an example, the value of ũ is not anymore the averaged motion of
particles in a given domain or period of time but the velocity that correspond to the averaged
momentum quantity.

In order to simplify the computation, it may be assumed that operators follow the
Richardson & Lynch (1922) rules:

¯̄a = ā , āb′ = 0 , ā · b̄ · c̄ = ā · b̄ · c̄ , ∂xa = ∂xā. (2.15)

However, these rules are strictly verified only with ensemble averaging but may be acceptable
approximations for the other operators. In multiphase flows, averaging methods are used
not only to provide deterministic equations of a turbulent system but also to simplify the
complexity of the system due to the presence of several phases and their interfaces. The
averaging used involves the density and the fluid presence function bϕ noted here bϕ. The
averaged fluid presence function gives its probability of presence which is called here (possibly
misleadingly) volume fraction and noted αϕ. It should be stressed that the profile of the
volume fraction can only give an a priori idea of the shape of the flow. Some misleading
comments resulting from an over-interpretation of this field are given here to illustrate this
point.

1even if one of the Reynolds’ average, the mass average, is better known under the name of Favre average
Favre (1958) in France
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(a) counter example 1 (b) counter example 2

Figure 2.2: Counter examples to some misleading comments

• A sudden change of volume fraction always signals an interface.

• Volume averaging can be used only if the particles are smaller than the size of the
averaging width.

The first comment is wrong, a brutal change of volume fraction does not necessarily
signals an interface. In the bubbly flow represented in 2.2a, the drawing of the volume
fraction profile issued from the space averaging shows that the change of volume fraction
corresponds to the disappearance of the bubbles but not to an interface between bubbles
and water. Of course, this still represents a variation of interface related quantities like the
interface density.

The second comment is wrong as illustrated in 2.2b. The bubble’s presence is denoted
by I, the kernel by G. The averaging of the presence function is

α(x) =

∫
I(x′)G(x− x′)dx′∫
G(x− x′)dx′

(2.16)

The volume fraction may be discretized by cells smaller than the bubble’s width.
Hence the volume fraction is a very general field which gives only one information: the

probability to find a given phase at given point and time. But the volume fraction says
nothing about the topology of the flow (dispersed flow, separated flow, etc. . . ). However, if
the modeler knows the type of averaging used and the type of flow modeled, more information
can be extracted from the volume fraction (the size of the inclusions, the presence of an
interface, etc. . . ).

2.2.2 History of the models

The evolution equations of compressible multiphase flows were first found by a conditional
averaging of the Euler equations. The conditional averaging or conditional expectation is
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made thanks to the introduction of the function of presence (or indicative function) bϕ of
the fluid ϕ. This function takes the values of 1 when the fluid ϕ is present at (t, x) and 0

else. The conditional averaging can be a time, space or ensemble averaging. Historically,
the first developments of this method used space averaging (van Deemter & van der Laan,
1961; Hinze, 1963). They were soon popularized notably by Ishii (1975) and Drew (1983).
The first industrial multiphase flow codes, originally designed to insure the safety of nuclear
reactor (for instance (Bouré, 1973)), solved models issued from averaging.

Ishii’s approach: (Ishii (1975))

In this paragraph, the method used by the precursors of the averaging methods is presented.
For the sake of simplicity, the internal energy equation is not averaged here and the stress
tensor is reduced to the pressure. The equations that there are going to be averaged are the
local continuity equation and the local momentum equation .

∂tρ+∇ · (ρu) = 0, (2.17)

∂t(ρu) +∇ · (ρu⊗ u) +∇P = 0. (2.18)

These equations are valid at any point of the flow. The presence function of the fluid is
transported with the local velocity

∂tb
ϕ + u · ∇bϕ = 0. (2.19)

The equation (2.19) shows the need to model the spatial derivative of this indicator func-
tion. As this function is discontinuous, this derivative will be defined in the sense of the
distributions

∀φ ,
∫
V

∇(bϕ)φdv = −
∫
S(V )

φds. (2.20)

The last element to define is the interface velocity ui. Because the indicator function
varies only at the interface, its transport is restated as

∂tb
ϕ + uI · ∇bϕ = 0. (2.21)

The next step is the averaging of the two local equations weighted by the indicator
function.

∫
V

bϕ∂t(ρ)dv +

∫
V

bϕ∇ · (uρ)dv = 0, (2.22)∫
V

bϕ∂t(ρu)dv +

∫
V

bϕ∇ · (u⊗ uρ)dv +

∫
V

bϕ∇Pdv = 0. (2.23)
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The averaging operator
∫
V
dv commutes with the partial derivatives. Therefore, the

equations can be developed into

∂tbϕρ+∇ · bϕuρ−
∫
V

ρ∂t(b
ϕ)dv −

∫
V

uρ · ∇bϕdv︸ ︷︷ ︸∫
S(V ) ρ(u−ui)·ds

=0, (2.24)

∂tbϕρu+∇ · bϕu⊗ uρ−
∫
V

ρu∂t(b
ϕ)dv −

∫
V

u⊗ uρ · ∇bϕdv︸ ︷︷ ︸∫
S(V ) ρu⊗(u−ui)·ds

=−∇(bϕP )−
∫
S(V )

Pds.

(2.25)

After some manipulations, the final forms are obtained.

∂t([αρ]ϕ) +∇ · ([αρ]ϕuϕ) = mϕ, (2.26)

∂t([αρ]ϕuϕ) +∇ · ([αρ]ϕuϕ ⊗ uϕ) +∇(αϕpϕ) = muϕ −∇ · (bϕρu′ ⊗ u′), (2.27)

with the following source terms

mϕ =

∫
S(V )

ρ(u− ui) · ds, muϕ =

∫
S(V )

ρu⊗ (u− ui) · ds−
∫
S(V )

PdS. (2.28)

The signification of the source terms is straightforward because they are written in ex-
plicit form. They embody mass and momentum transfers through the interface and pressure
integration over the interface. However, all of them need to be closed to obtain a system of
equation that can be solved.

Current approach in the thesis

In the previous part, the averaging operator was explicitly written and thus specific form of
the residuals was obtained. However, the averaging computation can be done without spec-
ifying the operator as long as properties such as the Richardson’s rules (2.15) are specified.
The complete averaging of the non dissipative local equations with the stress tensor reduced
to pressure is presented here. The development is roughly the same: averaging of the local
equations after multiplying them some function. In the last paragraph, this function was the
indicator function. Here, cϕ, the mass fraction of the fluid ϕ is used instead of the indicator
function. This function represents the ratio between the mass of the fluid and the total mass
inside a volume whose characteristic size is the hydrodynamic scale. Because, the interface
is also spread under the hydrodynamic length, the mass fraction is a good indicator to mark
the presence of the interface. In previous developments, the evolution of the indicative func-
tion was not trivial because it involved to close the interface’s velocity. However, the mass
conservation of each fluid coupled to the local mass conservation imposes the evolution of
the mass fraction. The procedure is applied to the two local equations (mass, momentum
and internal energy)

cϕ∂t(ρ) + cϕ(ρui),i = 0, (2.29a)
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cϕ∂t(ρui) + cϕ(ρuiuj),j + cϕP,i = 0, (2.29b)

cϕ∂t(ρe) + cϕ(ρeui),i + cϕPui,i = 0. (2.29c)

After some manipulations, the very general equations are obtained

∂t(cϕρ) + (cϕρui),i = ρ[∂t(cϕ) + uic
ϕ
,i], (2.30a)

∂t(cϕuiρ) + (cϕρujui),j + cϕP,i = ρui[∂t(cϕ) + ujc
ϕ
,j], (2.30b)

∂t(cϕρe) + (cϕρeui),i + cϕPui,i = ρe[∂t(cϕ) + uic
ϕ
,i]. (2.30c)

The mass conservation of each fluid without source terms imposes the dynamic of the
mass fraction.

∂t(c
ϕ) + uϕj c

ϕ
,j = 0. (2.31)

Some authors (Holmas et al., 2008; Montini, 2011; Vreman, 2011) add diffusion in the
continuity equation by the mean of an additional Fick like form

Dϕ
t ([αρ]ϕ) = (ρϕκϕαϕ,j),j. (2.32)

The momentum equation is then also modified to take into account the diffusion of the
momentum quantity. To obtain this diffusion with an averaging method, the transport of
the mass fraction (or indicator function) must be modified by adding a diffusion form. This
is not developed here. However, this diffusion is introduced without solid physical grounds
and is added in the model to stabilize the short wavelengths. This explains its name of
artificial diffusion. However, diffusion due to turbulence has physical basis and can be found
by an analysis of the turbulent part of the drag force (de Bertonado, 1992; Burns et al.,
2004).

With the mass conservation hypothesis (and its consequence 2.31), the momentum equa-
tion and the internal energy equation become

∂t([αρ]ϕuϕi ) + ([αρ]ϕuϕi u
ϕ
j ),j = −cϕp,i − ([αρ]ϕ(uϕ)′j(u

ϕ)′i),j, (2.33a)

∂t([αρ]ϕeϕ) + ([αρ]ϕeϕuϕi ),i = −cϕpui,i − ([αρ]ϕ(eϕ)′(uϕ)′i),j. (2.33b)

The pressure forms can be expressed after some manipulations. First, the pressure per
fluid is defined as pϕ = cϕp

αϕ
and p′ = p− p. The LHS may be developed as

∂t([αρ]ϕuϕi ) + ([αρ]ϕuϕi u
ϕ
j ),j = −αϕpϕ,i − (pϕ − p̄)αϕ,i + p′cϕ,i − ([αρ]ϕ(uϕ)′j(u

ϕ)′i),j, (2.34a)

∂t([αρ]ϕeϕ) + ([αρ]ϕeϕuϕi ),i = −αϕpϕuϕi,i − cϕp(uϕ)′i,i − ([αρ]ϕ(eϕ)′(uϕ)′i),j. (2.34b)

The residuals inside the momentum equation represent multiphase features. Following
the averaging operator used and the type of flow modeled, these residuals have different
interpretations. These interpretations will influence their closures, needed to obtain a final
solvable system. However, the closure of the momentum equation and the closure of the
internal energy equation cannot be set independently in order to respect

40



• the conservation of total energy

• the consistency between closures of similar residual forms

• the thermodynamic consistency

Another possibility to obtain the internal energy equation is to assume that the mean
internal energy of a phase depends only on the mean field of this phase eϕ = eϕ(ρϕ, sϕ).
This means that the first principle can be applied as

dϕt (eϕ) = pϕ
dϕt ρϕ

(ρϕ)2
+ Tϕdϕt s

ϕ. (2.35)

with the pressure per phase defined as pϕ

(ρϕ)2
= ∂eϕ

∂ρϕ
. However, this equation is implicit in ρϕ

(and sϕ). Thus, using this equation poses problems from the numerical point of view. It
will be shown how it may be written explicitly using other relations between pressure and
volume fractions and adequate algebraic combinations (2.3.2).

2.2.3 Closing the fluctuation forms

In this part, various momentum equations due to different fluctuations’ closures are pre-
sented.

Instantaneous relaxation model

The first closure which can be made is to assume that the average pressure P̄ and the
fluid pressure pϕ are equal. It means that all the fluids share a common pressure. This
hypothesis is relevant assuming that the time of pressure relaxation between phases to a
common pressure is very small compared to other the typical time scales of the flow (heat
relaxation, velocity relaxation, acoustic propagation, etc. . . ) which explains the formulation:
instantaneous relaxation pressure. This postulate must be assessed by experiments. As an
example, shocks in bubbly flow present relaxation time in order of 3µs (Beylich & Gülhan,
1990) which must be compared to the propagation time of the shock wave toward the
domain (about 10−2s for a 1m size domain). Thus, this hypothesis is perfectly reasonable
in these experiments. Closure also needs to be given for the multiphase Reynolds tensor
Rϕ
ij = ([αρ]ϕ(uϕ)′j(u

ϕ)′i) and the pressure fluctuation along the gradient of the function of
presence p′bϕ,i. The easiest way is to set these forms equal to zero. The classical one pressure
and two velocities momentum equation is then obtained:

Dϕ
t ([αρ]ϕuϕi ) = −αϕp,i. (2.36)

It can be shown that this momentum equation derives from a least action principle
(Vazquez-Gonzalez et al., 2020), thus it is isentropic. The mass conservation and the mo-
mentum equation (2.36) are completed by the transport of the entropy, the volume filling
constraint and the pressure relation to close the model.

Dϕ
t ([αρ]ϕ) = 0, (2.37a)
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Dϕ
t ([αρ]ϕuϕi ) = −αϕpϕ,i, (2.37b)

dϕt (sϕ) = 0, (2.37c)

pϕ = p, (2.37d)∑
φ

αφ = 1. (2.37e)

This model, called the 6-equation model, is often used but is ill-posed due to a lack of
hyperbolicity. Also, it can not be written in conservative form due to the pressure gradient
weighted by the volume fraction. This prevents to use classical finite volume scheme. Be-
cause all residuals are set to zero, this model is at the core of all the other models where
additional forms/equations are added. This is why it is called backbone model by Vazquez-
Gonzalez et al. (2020). In what follows, some examples of the large panel of multiphase
models obtained by other closures are presented.

Interfacial pressure

The form (pϕ − p̄)αϕ,i may be interpreted as the difference between the pressure of the
phase ϕ and the pressure at the interface. One of the most famous closure of this form is
the Stuhmiller–Bestion closure (Stuhmiller, 1977) which expresses this difference as a mass
times the square of the drift. This closure leads to a conditional hyperbolic model. Many
authors write the momentum equation in a conservative way

Dϕ
t ([αρ]ϕuϕi ) + (αϕpϕ),i = p̄αϕ,i (2.38)

and then to close the average pressure p̄ with various interpretations.

Pressure relaxation through volume fraction evolution

Another model often used is the 7 equation model. In this model, the relaxation of pressure
is not instantaneous but proportional to the variation of the volume fraction. Therefore, the
relation between pressure, with here only two fluids denoted + and −, is modified as

{pϕ = p} ⇒ {d+
t (α+) = µ(p+ − p−)} (2.39)

Equation 2.39 expresses that pressure equilibrium is reached when the volume fraction of
the phases is stable. This illustrates that after a brutal compression (say a shock) in a multi-
phase flow with contrasted EOS (say bubbly flow), the bubbles continue to oscillate a certain
time after the passage of the shock (Beylich & Gülhan, 1990), which means that the pressure
between water and air is not in equilibrium. This time is the relaxation time modeled with
the coefficient µ called dynamic compaction viscosity (Saurel & Abgrall, 1999a). A charac-
teristic analysis of the model shows its unconditional hyperbolic character. A discussion of
this model is given in the paragraph (2.4.5).
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2.3 Current approach to find and discretize the backbone model

2.3.1 Variational approaches

The variational approaches consist on saying that the nature chooses among all the possible
trajectories the one that minimizes some functional. Since their successful application in
optics by Fermat in 1662, variational methods were used in many domain of physics. Notably,
the least action principle (LAP) enunciated by Lagrange in 1756 passed through many
revolutions in physics, from the general relativity of Einstein to the quantum electrodynamic
of Feynman. In classical mechanics, this principle states that the real trajectory of the system
minimizes the integral over time of the difference between kinetic and potential energy. This
principle has been reformulated by Hamilton in 1833 giving the Hamiltonian formulation.
The LAP (or the Hamiltonian reformulation) is a powerful tool to build trajectory models
of complex systems. Indeed, it involves to model the energies of the system rather than the
forces. In case of simple systems, where only few components interact, forces are easy to find
and so the trajectories. However, if the system contains many non trivial interactions, the
LAP is a powerful way to obtain satisfying modeling of the trajectories. If the microscopic
systems always posses a variational structure, the macroscopic ones cannot often be modeled
with this method due to irreversible process occurring (Berdichevsky, 2009). However, the
isentropic evolution of these systems obeys to the variational formalism and therefore, the use
of the LAP guaranties to obtain the non dissipative part of the equations. Furthermore, the
Noether theorem allows to insure conservations as long as the Lagrangian used present the
adequate invariants. Because thermodynamics consistency is a crucial issue in the complex
systems of multiphase flows (1.2.4), the LAP is going to be use to build the isentropic part
of the models and numerical schemes.

Introduction of the geometric properties of variational methods

To illustrate the reversible character of the trajectories issued from variational principles,
some short developments on the Hamiltonian systems inspired by Hairer et al. (2006) and
Sanz-Serna (1992) are presented. Hamiltonian systems present a great interest because many
systems of reference such as pendulum, harmonic oscillator, two-body system, etc. . . fall
into this category. These systems posses 2× d coordinates U = [q1, . . . , qd, p1, . . . , pd] whose
evolution satisfies

∂tU = J−1∇H(U) (2.40)

with J =

(
0d Id
−Id 0d

)
andH a functional called the Hamiltonian of the system (it is supposed

here that H is autonomous, ie it does not depend on time). The simplest example of such

43



systems is the harmonic oscillator

ẍ+ w2x = 0⇒

{
p = mẋ ,

q = x
, H = 1

2
p2︸︷︷︸

kinetic energy

+ 1
2
kq2︸︷︷︸

potential energy

(2.41)

Hence, the Hamiltonian is equal to the total energy 2. One of the properties of the system
(2.40) is that its flow φt conserves this total energy (only for autonomous systems), ie

H(φt(p0, q0)) = H(p(t), q(t)) = H(p0, q0) (2.42)

for any admissible initial states (p0, q0) (the demonstration is just a composition of deriva-
tives).

The geometric aspect of such systems is inside the matrix J . In 1D, for any parallelogram
made of two vectors X and Y , the oriented area of the parallelogram formed by (X, Y ) is
a(X, Y ) = X tJY = x1y2 − x2y1. The symplectic form, called ω is then defined as

ω(X, Y ) = X tJY. (2.43)

For any couple of vectors in the space p, q as X = [xp1, . . . , x
p
d, x

q
1, . . . , x

q
d] and

Y = [yp1, . . . , y
p
d, y

q
1, . . . , y

q
d], the form ω associates the sum of the oriented areas obtained by

projection onto the coordinate planes (pi, qi), ie

ω(X, Y ) =
∑
i

(xpi y
q
i − x

q
iy
p
i ). (2.44)

The symplectic form measures then a certain volume in the phase space. The central ge-
ometric property of the system (2.40) is that the flow of the system preserves this form,
ie

∇TφtJ∇φt = J ⇔ ω(∇φtX,∇φtY ) = ω(X, Y ) (2.45)

where ∇(p0,q0)φt(p0, q0) = ∇φt.
To understand the geometric impact of this formula, let us take a point U0 in the (p, q)

plan and a parallelogram P = [U0, U0 + x, U0 + y, U0 + x + y] with x and y small vectors.
The area of this parallelogram is ω(x, y). The parallelogram transported by the flow is

φt(P ) =[φt(U0), φt(U0 + x), φt(U0 + y), φt(U0 + x+ y)]

≈[φt(U0), φt(U0) +∇φt(U0) · x, φt(U0) +∇φt(U0) · y,
φt(U0) +∇φt(U0) · x+∇φt(U0) · y]

(2.46)

The area of this parallelogram is then at the order one

ω(∇φt(U0) · x,∇φt(U0) · x). (2.47)
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(a) Transport of a parallelogram with symplectic
flow

(b) Euler explicit vs Euler symplectic scheme on the
harmonic oscillator

Figure 2.3: Illustration of symplectic properties

If the flow is symplectic, the area of the transported parallelogram is the same as the original
one.

Now that these properties have been illustrated in the continuous case, the challenge
is to preserve them in the numerical schemes used to solve the differential equations. The
conservation of the total energy has been recognized as a crucial feature (in order to obtain
correct solution of the Riemann problem as an example) but concerns about preserving the
symplectic property in the discrete flow appear in the 60’s (de Vogelaere, 1956) and later on
(Ruth, 1983; Channell, 1983; Kang, 1984). The discrete flow is the application

φ∆t(p
n, qn) = (pn+1, qn+1) (2.48)

and the aim is to preserve the symplectic property (2.45) with this application as illustrated
in the figure (2.3). The symplectic Euler scheme is an example of symplectic scheme

pn+1 = pn −∆t∇qH(pn+1, qn) qn+1 = qn −∆t∇pH(pn+1, qn) (2.49)

For the harmonic oscillator, the discretized flow is(
pn+1

qn+1

)
=

(
1 −∆t

∆t 1−∆2t

)
︸ ︷︷ ︸

∇φ(qn,pn)

(
pn

qn

)
(2.50)

and straightforward computations lead to ∇φTJ∇φ = J .

2In fact, H is the Legendre transformation of the Lagrangian and is equal to the total energy when the
Lagrangian possesses a special form.
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Variational integrators

The geometric properties of the Hamiltonian systems can be preserved by symplectic inte-
grators. However, many systems do not verify the Hamiltonian structure but fall into the
larger class of Lagrangian systems. The Lagrangian systems possess a functional (called
Lagrangian) from which their equations of motions can be derived through the LAP. This
special property is also a geometric property. However, the symplectic form is not known a
priori but can be computed from the integral edge term issued of the variation (Marx, 2008).
The flow resulting from the Euler Lagrange equations preserves this symplectic (multisym-
plectic for the PDE) form ((Marsden & West, 2001) for the EDO and (Marsden et al., 1998)
for the PDE).

As for the Hamiltonian systems, the aim is to preserve this geometric property in nu-
merical schemes. The desire to use discrete Lagrangian to build such integrators dates back
to the 70’s (Cadzow, 1970; Jordan & E.Polak, 1964). To do so, the idea is to discretize
the action integral and differentiating it (Logan, 1973). However, a numerical scheme can
only posses two of the following properties: symplecticity, energy conservation, momentum
conservation (Zhong & Marsden, 1988). A choice must then be made to remove one of
these and because conservations are crucial for shock capture, the option in the numerical
schemes used in this thesis is to remove the symplecticity. This idea was applied recently
by Llor et al. (2016) and Vazquez-Gonzalez et al. (2020). Because the corrections to con-
serve the momentum and/or the energy are at the order of the scheme, they are said to be
quasi-symplectic.

Application to the Euler equations in continuous

Using the least action principle to find equations of motion in complex systems is a pow-
erful tool. Its use in fluid mechanics started in the years 1900’s for incompressible flows
with Clebsch (1859)) and with Bateman (1929) to compressible ones. The method of dif-
ferentiation of the action is not unique because there are two different descriptions of the
flow (Eulerian and Lagrangian) and two different ways to incorporate the constraints if the
Eulerian coordinates are chosen. The notations used here are the notations that the author
have found the most often.

Eulerian coordinates: x, Lagrangian coordinates: X

diffeomorphism L to E coordinates: x = φt(X)

Lagrangian velocity: û(t,X) = ∂tφt(X)

density: ρ̂(X, t) detF (X, t) = ρ0(X)

transformation gradient: F (X, t) =
∂φt(X)

∂X
and its determinant: J = det(F )

entropy: ŝ(X, t) = s0(X)
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Lagrangian variations In this approach, there is only one degree of freedom for the
system which is the diffeomorphism that links the Eulerian coordinates to the Lagrangian
one. All the hydrodynamic fields are related to this diffeomorphism and the derivation of
the action is only made with respect to its variation. The presentation done here is inspired
by Morrison (2006). The action in the Eulerian frame writes

Leuler =

∫
V (t)

1
2
ρ̃(x, t)ũ2(x, t)− ρ̃(x, t)e(s̃(x, t), ρ̃(x, t))dx. (2.51)

Changing the variable to the Lagrangian frame is straightforward and involves the determi-
nant of the diffeomorphism’s Jacobian J = detF (the entropy is constant along the fluid
particle path, ie s̃(x, t) = ŝ(X, t) = s0(X)).

Llag =

∫
D

[
1
2
φ̇t

2
(X)− e(s0(X),

ρ0(X)

J
)
]
ρ0(X)dX (2.52)

The action can be then written with the following form

A =

∫
T

∫
D

L(φi, φ̇i, φi,j)dXdt (2.53)

with φi the ith coordinate of φt and φi,j its derivative with respect toXj. The Euler Lagrange
equation can be then written as

0 =
∂L

∂φi
− d

dt
∂L

∂φ̇i
− d

dXj

∂L

∂φi,j
(2.54)

The first term in this Euler Lagrange equation is null (there is no dependence on φi in the
kinetic energy nor in the internal energy). The second term gives the acceleration ρ0(X)φ̈i.
The last one is the potential derivative

d
dXj

[
− ∂e

∂ρ̂

ρ2
0

J2︸︷︷︸
ρ̂2

∂J

∂φi,j

]
. (2.55)

The Euler momentum equation in the Lagrangian frame is then obtained

ρ0φ̈i = − d
dXj

[
P̂
∂J

∂φi,j

]
. (2.56)

This equation can be transformed by using the cofactor of the transformation Aij (see (Mor-
rison, 1998)). This equation is equivalent to the Eulerian counterpart, in 1D, the Eulerian
velocity writes

ũ(x, t) = ũ(φt(X, t), t) = û(X, t) = φ̇t(X) (2.57)

Then by derivation with respect to time

φ̈t(X) = ∂tũ+∇ũ · ũ (2.58)
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For the second term, in 1 D

d
dX

[
P̂
∂(∂Xφt)

∂(∂Xφt)

]
=

d
dX

P̂ = J∂xP̃ (2.59)

with P̃ the Eulerian pressure, P̂ (X, t) = P̃ (φt(X, t), t) = P̃ (x, t).
The Eulerian version of the equation is then found as

ρ0

J︸︷︷︸
ρ̃

dtũ = −∂xP̃ . (2.60)

Virtual motions The derivation by the method of the virtual motion is based on consider-
ing that there are several degrees of freedom in the flow (velocity, density, etc. . . ). However,
because all these fields depend only on the diffeomorphism φt and time, their variations are
linked to the variations of φt. Also, these fields are subject to two constraints, the mass
conservation and the entropy conservation. Therefore, the constraints are not present in the
Lagrangian but incorporate in the computation of each field’s variations. The presentation
done here is inspired by the work of Bretherton (1970) and Gavrilyuk (2011).

The fields denoted with a tilde are Eulerian fields, the fields with a hat are Lagrangian
fields.

Eulerian: f̃(t, x, ε) Lagrangian: f̂(t,X, ε) = f̃(t,Φt(X, ε), ε) (2.61)

Variations of the diffeomorphism φt are denoted

δx(t,X) =
d

dε
Φt(X, ε)|ε=0. (2.62)

The variations of a field in Eulerian and Lagrangian coordinates are then

δ̃f(t, x) = ∂εf̃(t, x, ε)|ε=0 δ̂f(t,X) = ∂εf̂(t,X, ε)|ε=0 (2.63)

Derivative of the equation (2.61) with respect to ε leads to the relation between both varia-
tions

δ̂f = δ̃f + δx.∇f (2.64)

The interpretation of the difference between both variations is that Lagrangian variations
consider changes of the field f and changes of the particles’ trajectory. The transformation
expresses then f(X, t)↔ f ′(X ′, t) with f ′ and X ′ the new fields and trajectories. However,
the Eulerian variations consider only variations of the field at a given point of space which
writes f(X, t)↔ f ′(X, t). At first order,

δ̂f =f ′(X ′, t)− f(X, t)

= f ′(X ′, t)− f ′(X, t)︸ ︷︷ ︸
(X′−X)·∇Xf

+ f ′(X, t)− f(X, t)︸ ︷︷ ︸
δ̃f

=δx · ∇f + δ̃f

(2.65)
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which is the relation (2.64).
Variations of the fields v, ρ are computed thanks to this relation between Lagrange and

Euler point of views combined with the mass constraint and the velocity definition. For
density, the equality (2.66) is assumed (its demonstration is recalled by Gavrilyuk (2011)).

δ̂(detF ) = detFdiv(δx) (2.66)

Density variations express then

δ̂ρ = −ρ̂div(δx) δ̃ρ = −div(ρ̃δx). (2.67)

For the velocity, variations write

δ̂u = ∂tδx δ̃u = dtδx− δx · ∇ũ. (2.68)

As the entropy is only function of Lagrangian coordinates, its variation is simply

δ̂s = 0 and thus δ̃s = −∇s̃.δx. (2.69)

The action is written as the integral over the current domain of the Lagrangian. It
contains only contains kinetic energy and internal energy. There is no added constraints in
the Lagrangian, however, the mass constraints will be incorporate in the expression of the
variations of the virtual motions.

A =

∫
T

∫
D(t)

1
2
ρ̃ũ2 − ρ̃e(ρ̃, s̃)dxdt (2.70)

The differentiation of the action along the parameters ε is

δA = ∂εA|ε=0. (2.71)

Substituting the expression of the variations derived above yields (these are Eulerian
fields so the gradients are along Eulerian coordinates)

δA =

∫
T

∫
D(t)

−
(

1
2
u2 − e(ρ, s)− ρe,ρ

)
div(ρδx) + ρu(dtδx−∇u.δx) + ρe,s∇s.δxdxdt.

(2.72)

With integration by part and assuming that the variations vanish at the frontiers,

δA =

∫
T

∫
D(t)

[
ρ∇
(

1
2
u2 − e(ρ, s)− ρe,ρ

)
−Dt(ρu)− 1

2
ρ∇u · u+ ρe,s∇s

]
· δxdxdt

δA =

∫
T

∫
D(t)

[
− ρ
(
∇(e+

P

ρ
)− e,s∇s

)
−Dt(ρu)

]
· δxdxdt

δA =

∫
T

∫
D(t)

[
−∇P −Dt(ρu)

]
· δxdxdt

(2.73)

The classical Euler momentum equation is then obtained.
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Eulerian formalism with constraints in Lagrangian The first attempts to use the
least action principle in the Eulerian formalism were unsuccessful because fields were not
linked with each other through any constraint. Indeed, the Lagrangian resumes then to

L = 1
2
ρu2 − ρe(ρ) (2.74)

and its derivation with respect to the two degree of freedoms u and ρ leads to the Euler–
Lagrange equations

ρu = 0 1
2
u2 − e− P/ρ = 0. (2.75)

These Euler–Lagrange equations are obviously wrong. The reason of this failure is that
both degrees of freedom ρ and u were considered as independent. However, they must be
linked through mass conservation (if not, this means that it is possible to create or destroy
mass which involves increasing or decreasing the number of particles which is not a degree
of freedom of the system). As shown by Schutz & Sorkin (1977), an Eulerian unconstrained
variation principle can not produce the correct evolution equations. Therefore, mass con-
servation must be added in the Lagrangian. In this approach, constraints are introduced
through Lagrange multipliers directly in the Lagrangian.

L = 1
2
ρu2 − ρe(ρ) + ΦDt(ρ). (2.76)

The derivation of the action leads to the Euler Lagrange equations

δui : 0 = ρui − ρΦ,i, (2.77)

δρ : 0 = 1
2
u2 − e(ρ)− ρe,ρ(ρ)− dt(Φ). (2.78)

The Euler–Lagrange equation obtained by derivation along velocity leads to an unsatisfac-
tory result because it implies that the flow is always potential which means that there are
only irrotational flows. The solution to obtain the rotational part of the flow was found by
Lin (1959). It consists on adding a constraint over the conservation of a Lagrangian marker
denoted ξ which is transported by the flow velocity. The Lagrangian yields then

L = 1
2
ρu2 − ρe(ρ, s(ξ)) + ΦDt(ρ) + Ψdtξ (2.79)

The entropy is introduced here as a function depending only of the fluid particles label. This
is a preservation of the isentropic character of the flow. Discussion about this constraint,
its relation to the Clebsch decomposition and its derivation from the Lagrangian framework
is made by Seliger & Whitham (1968). Also, its physical interpretation is discussed by
Bretherton (1970). The Euler–Lagrange equations of the system are then

δui : 0 = ρui − ρΦ,i + Ψξ,i, (2.80)

δρ : 0 = 1
2
u2
j − e(ρ, s(ξ))− ρe,ρ(ρ, s(ξ))− dt(Φ), (2.81)

δξ : 0 = −ρs,ξT −Dt(Ψ). (2.82)
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To obtain the momentum equation, the Eulerian derivative is applied to (2.80).

Dt(ρui) = ρ dt(Φ,i)︸ ︷︷ ︸
(dtΦ),i−uj,iΦ,j

−ξ,iDt(Ψ)︸ ︷︷ ︸
−ρs,ξT

−Ψ dt(ξ,i)︸ ︷︷ ︸
(dtξ),i−uj,iξ,j

Dt(ρui) = ρ
[

1
2
u2
j − e(ρ, s(ξ))− ρe,ρ(ρ, s(ξ))

]
,i
− ρuj,iΦ,j + Ψuj,iξ,j︸ ︷︷ ︸

ρuj,iuj

+ρTs,ξξ,i

The derivative of e(ρ, s(ξ)) combined with the last term of the formula gives the derivative
of the pressure. The classical Euler equation is then obtained

Dt(ρui) = −P,i. (2.83)

This last approach is the approach that will be used in the following. Some authors prefer
the Lagrangian approaches to the Eulerian ones because they seem more natural in the sens
that no constraints need to be introduced (Herivel, 1955). Also, some authors prefer the use
of the virtual variation methods because they avoid to introduce Lagrangian multipliers in
the Lagrangian. ’The specification (2.80) of the velocity field in terms of potentials is cum-
bersome, and for some applications is distinctly inconvenient.‘ (Bretherton, 1970). However,
this approach is simpler than its homologous one because it involves only integration by part.
The mass constraint is especially tedious to consider in 3D. For the pure Lagrangian meth-
ods, it involves to deal with the cofactor of the transformation gradient (Morrison, 1998).
For virtual motions, the theorem (2.66) is not straightforward to prove. Because additional
constraints and fields will be introduced in the following, using these two methods may lead
to other complex algebras that we avoid by using the pure Eulerian formulation.

2.3.2 The derivation of the backbone model

Using the variational approaches

Using variational approaches to build multiphase flow models dates from the work of Bedford
& Drumheller (1978). The authors used the virtual motion techniques (2.3.1) to build models
that take into account the micro inertia of the bubbles. The kinetic energy of this micro
inertia is the kinetic energy associated to the variation of volume fraction, added to complete
the space of parameters originally constituted by the two diffeomorphisms (Sciarra et al.,
2003). Introduction of this kinetic energy leads to a Rayleigh-Plesset like equation (Plesset,
1949). Virtual approaches were also used by Sciarra et al. (2003) and by Gavrilyuk &
Saurel (2002) where other effects such as the added mass had been added. The approach
used in this thesis (2.3.1) was applied first for multiphase flows by Geurst (1980) to build
a model for superfluid Helium, then in (Geurst, 1985) to build a model taking into account
added mass and is still used as recently (Clausse & López de Bertodano, 2021) to model
incompressible flow with inclusion of turbulence. This approach was also used to build the
backbone model by (Vazquez-Gonzalez, 2016; Vazquez-Gonzalez et al., 2020). The main
steps of the computation are reminded here. The Lagrangian of the system is built with the
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kinetic energies and the internal energies of each fluids plus the addition of the constraints
by the means of Lagrangian multipliers

L =
∑
φ

(
1
2
[αρ]φ(uφj )2︸ ︷︷ ︸

(1)

− [αρ]φe(ρφ, ξφ)︸ ︷︷ ︸
(2)

+ ΦφDφ
t ([αρ]φ)︸ ︷︷ ︸
(3)

+ Ψφdφt (ξφ)︸ ︷︷ ︸
(4)

)
+ Π

(∑
φ

αφ − 1

)
︸ ︷︷ ︸

(5)

(2.84)

with

• (1) the kinetic energy of the fluid φ,

• (2) the internal energy of the fluid φ,

• (3) the mass conservation of the fluid φ,

• (4) the entropy conservation (or equivalently the conservation of the Lagrangian marker)
of the fluid φ,

• (5) the volume filling constraint.

The derivative with respect of each degree of freedom leads to the following Euler La-
grange equations

δ[αρ]φ : 0 = 1
2
(uφj )2 − eφ − ρφeφ

,ρφ
− dφt (Φφ) (2.85)

δαφ : 0 = (ρφ)2eφ
,ρφ
− Π (2.86)

δuφi : 0 = [αρ]φuφi − [αρ]φΦ,i + Ψφξφ,i (2.87)

δξφ : 0 = −[αρ]φeφ
,ξφ
−Dφ

t (Ψφ) (2.88)

δΦφ : 0 = Dφ
t ([αρ]φ) (2.89)

δΨφ : 0 = dφt (ξφ) (2.90)

δΠ : 0 =
∑
φ

αφ − 1 (2.91)

Equations (2.86) shows that all the fluids share the same pressure which is the result found
by removing all the fluctuation terms issued from the averaging method. To obtain the mo-
mentum equation, the equation (2.87) is derived with the Eulerian derivative and the other
Euler Lagrange equations are used to make the pressure gradient appear. The computation
is essentially the same as the one done in (2.3.1) and is developed by Vazquez-Gonzalez
(2016). The momentum equation is obtained

Dϕ
t ([αρ]ϕuϕi ) = −αϕp,i. (2.92)

Completed by the Gibbs equation, the mass conservation (2.89), the no void constraint
(2.91) and the EOS per fluid, the backbone model is formed.
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Now that the isentropic part of the model is found, dissipative phenomenon needs to be
added. The Gibbs equations will then be written as

dϕt (eϕ) = pϕ
dϕt ρϕ

(ρϕ)2
+ Ẇϕ (2.93)

with Ẇϕ the irreversible source term. The implicit character of the equation above makes it
difficult to write a numerical scheme due to conservation and robustness issues. Therefore,
its explicit version is needed. The necessary development is done by Vazquez-Gonzalez et al.
(2020) and its main steps are briefly recalled here. First the thermodynamic relation over
the pressure (keeping in mind that the fluids share a common pressure) is used.

dϕt p = γϕp
dϕt ρϕ

ρϕ
+ ΓϕρϕẆϕ. (2.94)

With the mass conservation equation (2.89) this equation becomes

αϕ

γϕ
dϕt p = −pDϕ

t α
ϕ +

αϕ

γϕ
ΓϕρϕẆϕ. (2.95)

By summation over all the fluid equations and using the volume filling constraint (2.91), the
explicit equation over the common pressure is obtained

γ̄−1∂t(p) +
∑
φ

αφ

γφ
uφj p,j = −pūi,i +

∑
φ

αφ

γφ
ΓφρφẆ φ (2.96)

with γ̄−1 =
∑

φ
αφ

γφ
and ū =

∑
φ α

φuφ. The pressure equality is assumed here to be main-
tained even when dissipation is added to the model. Although, the instantaneous relaxation
comes from a variational approach which is valid when no dissipation is introduced. Thus,
keeping this equality is an hypothesis that allows to stick to the isentropic evolution when
the dissipation introduced in the model vanishes. Discussion about the introduction of the
dissipation in the pressure relation will be provided in the perspective. However, for the rest
of the thesis, we assume that the pressure relation provided by the Euler–Lagrange equation
issued from the LAP is valid even when we add dissipation into the model.

Using the explicit pressure evolution leads to the explicit version of the density and the
internal energy evolution per fluid.

dϕt (ρϕ)

ρϕ
= −β

ϕ

αϕ
ūi,i +

∑
φ

µϕφ

αϕp

(
uϕi − u

φ
i

)
p,i −

∑
φ

µϕφ

αϕp
(ΓϕρϕẆϕ − ΓφρφẆ φ

)

(2.97)

Dϕ
t ([αρ]ϕeϕ) = − βϕpūi,i︸ ︷︷ ︸

(0)

+
∑
φ

µϕφ
(
uϕi − u

φ
i

)
p,i︸ ︷︷ ︸

(1)

−
∑
φ

µϕφ
(
ΓϕρϕẆϕ − ΓφρφẆ φ

)
︸ ︷︷ ︸

(2)

+ [αρ]ϕẆϕ︸ ︷︷ ︸
(3)

(2.98)

with βϕ = αϕγ̄
γϕ

and µϕφ = βϕ α
φ

γφ
. The physical meanings of the different terms are
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• (0) total work of pressure weighted by a the relative compressibility of the fluid

• (1) pressure gradient along the drift between fluids

• (2) dissipation exchanges

• (3) dissipation source term

This form of energy equation will be used to construct the numerical scheme for several
reasons:

• the conservation at the discrete level

• the possibility to mimic the continuous version to find the discrete operators

• the exhibition of the stiff work of pressure

Because this scheme is quasi-isentropic, there is not enough dissipation to stabilize the
shocks (VonNeumann & Richtmyer, 1950). Thus, dissipative mechanisms must be added to
spread the shocks in order to capture them. This is done by the introduction of artificial
viscosity.

Adding dissipation in shocks

Introduction of the artificial viscosity. Artificial viscosity was published for the first
time by VonNeumann & Richtmyer (1950) but was used before its publication as shown
by the internal report of Richtmyer (1948). Since its publication, it has been extensively
used in Lagrangian numerical schemes (Cournède, 2001; Wilkins, 1963). The name artificial
viscosity is misleading because it has nothing artificial. In fact, it replaces the impact of the
unresolved microscopic viscosity by a mesoscopically computable force (Mattsson & Rider,
2015). Also, other mechanisms are able to dissipate in shocks such as thermal diffusion, drag
exchanges, etc. . . However, adding the artificial viscosity is enough to cut the instabilities
at short scales (Zel’Dovich & Raizer, 2002). The main idea behind artificial viscosity is to
capture shocks by spreading their profile into a prescribed length. This allows to stabilize
computations when the mesh is refined by smoothing the ensuing sharp shocks profile.

Artificial viscosity can be closed by mimicking the dissipative Euler equations (Margolin,
2019) and is shown to be deeply linked with thermodynamics through the fundamental
derivative (Mattsson & Rider, 2015; Kuropatenko, 1967). This term, often denoted Q, acts
as a pressure in the momentum equation and produces dissipation in the energy equation.
For a single phase, it is modeled as

Q = a2ρmin(0, ldiv(u))2 (2.99)

with a2 a coefficient (that should depends on the fluid EOS) and l the prescribed length
on which the shock is spread. In expansion, div(u) > 0 and thus artificial viscosity is
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null whereas in compression, div(u) < 0 and thus viscosity is activated. Furthermore, the
power squared makes artificial viscosity becomes non negligible only in region of strong
compression, ie in shocks. Its discretization is generally made as

Q = a2ρmin(0, l
∆u

∆x︸︷︷︸)2. (2.100)

In shocks, approximation of the work of this artificial pressure shows its dissipative character.

δW = −
∫
QdV ≈ −a2ρ

l2

(∆x)2
(∆u)2 S∆t ∆u︸︷︷︸

<0︸ ︷︷ ︸
dV

> 0 (2.101)

Thus, the artificial viscosity produces heat inside shocks. When a2 is at the order of unity,
the number of cells on which the shocks will be spread is driven by the length l chosen.

In rarefaction wave, another viscosity may be added to stabilized computations.

a1lcsdiv(u) (2.102)

This new form dissipates everywhere even in shocks but is there negligible compared to the
original one.

δW = −
∫
QdV = a1ρcs

l

∆x
∆t(∆u)2 > 0 (2.103)

The viscous local Euler equations shed light on the origin of artificial viscosity. The
developments here are inspired from (Mattsson & Rider, 2015).

Dt(ρ) = 0 (2.104)

Dt(ρu) = −∂x(P ) + ∂x(µ∂xu)) (2.105)

Dt

[
ρ(e+ 1

2
u2)
]

= −∂x(Pu) + ∂x(uµ∂xu)) (2.106)

The heat flux in the internal energy equation has not been introduced because the viscosity
is enough to stabilize shocks. The source term in the kinetic energy may be developed as

u∂x(µ∂xu)) = ∂x(uµ∂xu))− µ
(
∂x(u)

)2
. (2.107)

This means that the internal energy equation is restated to

ρdt(e)︸ ︷︷ ︸
de

= −P∂xu︸ ︷︷ ︸
PdV

+µ
(
∂x(u)

)2︸ ︷︷ ︸
TdS

. (2.108)

The dissipation due to the viscous term is formed by the divergence of the volume up to the
square which is very similar to the dissipation due to artificial viscosity. This form can be
closed with thermodynamic study in shocks.
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By integration of the local Euler equations along a stationary shocks of velocity σ, the
viscosity form cancels because gradients are null far from the shock. The Rankine-Hugoniot
relations are then obtained,

σ[ρ]− [ρu] = 0 ⇔ m[v]− [u] = 0 (2.109)

σ[ρu]− [ρu2 + P ] = 0 ⇔ m[u] + [P ] = 0 (2.110)

σ[ρ(e+ 1
2
u2)]− [ρu(e+ 1

2
u2 +

P

ρ
)] = 0 ⇔ [e] + P̄ [v] = 0 (2.111)

with m = ρ(u − σ), P̄ = 1
2
(Pf + Pi) and v the specific volume v = 1/ρ. For the proof of

the equation (2.111), use Pf,i = 1
2
P̄ ± 1

2
m[u] from the equation (2.110). This means that

stationary states before and after the shocks are not affected by the viscosity, however, the
steepening of the shock depends only on dissipation occurring inside it.

Integration of the equations along the shock from a point upstream to a point inside
makes the viscosity gradient appeared.∫ x

xi

(2.105)⇔ m2(v(x)− vi)︸ ︷︷ ︸
m[u]

+P (x)− Pi = µ ∂xu(x)︸ ︷︷ ︸
m∂xv(x)=−q(x)

(2.112)

∫ x

xi

(2.106)⇔ (e(x)− ei) + 1
2
(P (x) + q(x) + Pi)[v] = eq(x)︸ ︷︷ ︸

−µu(x)∂x(u(x))

(2.113)

These equations are restated to

P + q − Pi = −m2(v − vi) (2.114)

e+ eq − ei = −1
2
(P + q + Pi)(v − vi). (2.115)

Setting eq = 0 (considering it is absorbed in e), dividing the last equation by [v] and
identifying the ensuing term with the Gibbs relation de = −Pdv+TdS, the relation between
viscosity and dissipation is obtained as

q = −T dS
dV

(2.116)

which means that q rules the entropy production during the compression. This identity
combined with results issued from thermodynamics in weak shock (Bethe)

T∆S = −1
6
Gc2

(∆V

V

)3 ∆u

c
=

∆V

V
(2.117)

leads to the following viscosity closure

q = 1
6
Gρ0(∆u)2. (2.118)

In strong shock, the initial pressure Pi can be neglected before the final one Pf . Thus,
the equation (2.111), (2.110) and (2.109) leads to ∆e = 1

2
∆2u. As the work of pressure is

negligible before the entropy variation, T∆S = 1
2
∆2u = −q∆V . The volume variation in

strong shocks can be expressed as ∆V = − 2
ρi(Γ+2)

which leads to

q = 1
4
ρi(Γ + 2)∆2u (2.119)

in strong shocks.
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The artificial viscosity in multiphase flow The isentropic character of the backbone
model demands to add dissipation to capture the shocks. It has been shown how this
dissipation can be introduced in a single fluid flow by the mean of artificial viscosity closed
thanks to thermodynamic relation. In multiphase flows, an infinite number of closures
inspired by the single fluid analysis are available. In each closure, two choices must be
made: the shape of the artificial viscosity in the momentum equation and the distribution
of its work among the fluids. We have retained two main types: the iso dissipation closure
(1) and a closure based on the ratio of compressibility (2). The summary of both closures
are

(1) (2)

Q = ρ̄Q(ūi,i, cs) Q =
∑
φ

βφ ρφQ(
βφ

αφ
ūi,i, c

φ
s )︸ ︷︷ ︸

qφ

[αρ]ϕẆϕ = ηϕQūi,i βϕqϕūi,i

with ηϕ = αϕΓϕ∑
φ α

φ/Γφ
. The closure (2) is especially stiff when the ratio βϕ/αϕ increases because

the resulting dissipation is proportional to the cube of this quantity. It means that special
care must be taken to assure its capture in the internal energy equation from a numerical
point of view. The closure (1) is canonical in the sense that the form (2) in the internal
energy equation (2.98) becomes zero with this choice.

2.3.3 The numerical scheme

To preserve the geometric characteristic of the backbone model into its discretization, the
idea is to use the approaches developed in (2.3.1) to build the numerical scheme. Using
discrete variational principle to build a scheme for the mono fluid case was done in a semi
discrete way by Fahrenthold & Koo (1999) in Eulerian and extend to the ALE formalism by
Koo & Fahrenthold (2000). A second derivation is done in the incompressible case by Pavlov
et al. (2011). The first application to the multi-fluid case was made by Vazquez-Gonzalez
et al. (2020) and leads to the GEEC scheme presented in this subsection. The acronym
G.E.E.C. means Geometric Energy and Entropy Compatible.

• Geometric because the volume variation is coherent with the advection term.

• Energy because the scheme insures the exact preservation of the total energy

• Entropic because the second principle of the thermodynamic is respected and the
scheme dissipates as less as possible away from shocks.

The GEEC procedure allows to meet these requirements with three steps: i) the derivation
of the discrete momentum equation with a least action principle, ii) the computation of the
discrete internal energy equations by mimicry and computation of the discrete kinetic energy
equations, iii) the addition of the artificial viscosity presented in the subsection (2.3.2).
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The discrete version of the action (2.84) is written

A =
∑
c

[∑
φ

(
1
2
[αρ]φnc (uϕn+1/2

c )2 − [αρ]φnc e(ρ
φn
c , ξ

φn
c ) + Φφn+1

c Dφ
∆t([αρ]φnc )

+ Ψφn+1
c Dφ

∆t([αρ]ϕnc ξφnc )

)
− Πn+1

c

(∑
φ

αφnc − 1

)]
.

(2.120)

The operators in red are the transport operators which will entirely determine the dis-
cretization of the evolution equations. In order to fulfill the stability requirements, they
are chosen to be explicit at the first order. Modification of this transport operator in or-
der to reach the second order while preserving isotropic numerical diffusion is developed
by Paulin et al. (2020, 2021). The derivation of the least action which leads to the Euler–
Lagrange equations whose combination leads to the discrete momentum equation is made
by Vazquez-Gonzalez et al. (2020). The momentum equation per fluid is

Dϕ
∆t([αρ]ϕn−1

c uϕn−
1/2

c ) = −∆tnαϕnc
∑
d

σ
ϕn−1/2
cd s

n−1/2
cd (pnd − pnc ). (2.121)

This equation is not conservative due to the off-centering factor σφn−
1/2

cd which is equal to
1 when the fluid ϕ goes from the cell c to the cell d (crossing the oriented surface sn−

1/2
cd ,

from c to d, separating both cells) and 0 else. Thus, summation over all the fluids and cell
does not cancel under periodic conditions. In order to meet the conservation of the total
momentum, this gradient has to be modified. The first attempt to modify it was proposed
by Vazquez-Gonzalez (2016)

αϕnc σ
ϕn−1/2
cd ⇒ 1

2
(
αϕnc + αϕnd

2
+ αϕnc σ

ϕn−1/2
cd − αϕnd σ

ϕn−1/2
dc ). (2.122)

However, this gradient suffers from robustness issue in presence of strong volume fraction
gradient due to the presence of the volume fraction in the neighboring cells αϕnd . To tackle
this robustness issue, the total pressure gradient summed on all the fluid is modified to be
conservative and then weighted by the volume fraction for each fluid.

The new pressure gradients is written

Dϕ
∆t([αρ]ϕn−1

c uϕn−
1/2

c ) = −∆tnαϕnc
∑
d

σ̄
ϕn−1/2
cd s

n−1/2
cd (pnd − pnc ), (2.123)

with

σ̄
ϕn−1/2
cd = 1

2
σ
ϕn−1/2
cd + 1

2

∑
φ

αφnd σ
φn−1/2
cd . (2.124)

The computation of this pressure gradient is made in (2.A).
To compute the internal energy equation, the continuous equations are mimicked to

insure the compatibility between the discrete gradient operator in the momentum equation,
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the transport operator and the divergence of the volume. To do so, the kinetic energy
equations are computed as

1
2
(uϕn+1/2

c + uϕn−
1/2

c ) · (2.123) (2.125)

and the pressure is factorized in the right hand side. This leads to the divergence operator[
Pdiv(u)

]n
c

= P n
c

1
2

∑
d

s
n−1/2
cd ·

[
αϕnc σ̄

ϕn−1/2
cd (uϕn+1/2

c + uϕn−
1/2

c ) + αϕnd σ̄
ϕn−1/2
dc (u

ϕn+1/2
d + u

ϕn−1/2
d )

]
︸ ︷︷ ︸

〈V̊ 〉nc

.

(2.126)

The discrete internal energy equation yields then

Dϕ
∆t([αρ]ϕnc eϕnc ) =− βϕnc P n

c 〈V̊ 〉nc +
∑
φ

µϕφnc (〈~uϕ · ~∇P 〉nc − 〈~uφ · ~∇P 〉nc )

−
∑
φ

µϕφnc

[
Γϕ〈ρϕδWϕ〉nc − Γφ〈ρφδW φ〉nc

]
+ αϕnc 〈ρϕδWϕ〉nc

(2.127)

with

〈~uϕ · ~∇P 〉nc = 1
2

∑
d

σ̄
ϕn−1/2
cd (uϕn+1/2

c + uϕn−
1/2

c ) · sn−1/2
cd (pnd − pnc ) (2.128)

Once the internal energies of all fluids have been computed, a system is solved in each
cell to obtain the new values of the densities, volume fraction and pressure.

pn+1
c = Pϕ(ρϕn+1

c , eϕn+1
c )

∑
φ

[αρ]φn+1
c

ρφn+1
c

= 1 (2.129)

2.4 On the hyperbolicity in two-phase flow models

2.4.1 The link between stability and hyperbolicity

Physical laws are often translated into a system of PDE linking time evolution of the variables
to their spatial derivatives. To assure the validity and the possibility to use it in practice,
some properties on the solutions are needed. These properties define a well posed problem
from the definition of Hadamard (1902):

• existence,

• uniqueness,

• stability.

By the mean of stability, it is understood that a solution must depend continuously on the
data, ie that a small perturbation of an initial state must be bounded after a finite time.
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There are two main reasons to respect this principle, first flows can be unstable within
a certain range but the instabilities always damp, ie their amplitude never grows infinite.
Secondly, a model which is not stable is likely to crash during calculations because small
perturbations due to numerical errors appear at each iteration of the numerical solvers used
to solve the models. Now, is it possible to know if a model will be stable and, even more, is
it possible to predict its range of stability ? To answer this question, a theory that classifies
the PDE has been developed. Its main result is that the system of PDE must be hyperbolic,
ie possess only real non degenerate eigenvalues. The link between this property and the
well posed character of a problem has been developed in the mid century (Hersh, 1963;
Kreiss, 1970). However, a linear analysis can give a hint to understand the link between
characteristic analysis (the hyperbolicity condition) and the stability. Let a system of PDE
with an operator D, its Jacobian A, a stationary state U0 and a perturbation U . The linear
perturbation dynamics is

U t + ∂UD|U0(U) = U t + A(U0) · Ux = 0 (2.130)

To proceed to the analysis, the perturbation is projected into waves.

U =

u1

...
un

 ei(ωt−kx) = Ũei(ωt−kx) (2.131)

with Ũ independent of (x, t). The ensuing matrix relationship is

iŨ(ωI − kA(U0)) = 0. (2.132)

This system has a trivial solution which is Ũ = 0, to obtain non trivial solution, ω must
take on some values which cancel the determinant |ωI − kA(U0)|. This condition leads to a
relation between ω and k called the dispersion relation. The determinant writes

|ωI − kA| = |ωI − kPΛP−1| = |PωIP−1 − kPΛP−1| = |ωI − kΛ| =
∏
i

(ω − λik) (2.133)

with Λ and P the diagonal and transfer real matrix associated to A. If there exists a
complex eigenvalue λj, there exists another eigenvalue λ̄j, conjugate of λj and thus there
exists one eigenvalue λo which posses negative imaginary part. Then the mode associated
to this eigenvalue will grow exponentially

Ũe−kIm(λo)teik(Re(λo)t−x). (2.134)

This wave analysis does not constitute a rigorous approach but gives a hint to understand
the link between stability and characteristics.
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2.4.2 Ellipticity and characteristic analysis of the two phase flow model

The characteristic analysis of the two-velocities, two temperatures and one pressure model
shows that it is not hyperbolic and gives a hint to understand the roots of this elliptic
character. This feature was pointed early by Gidaspow et al. (1973) and here is presented
the simple analysis characteristic. The explicit equations are obtained by Vazquez-Gonzalez
et al. (2020), the demonstration of their computation is made before proceeding to the anal-
ysis of characteristics. Starting from (2.37), the equations are combined to obtain explicit
evolution of the pressure. The isentropic equation of pressure is

dϕt (pϕ) = γϕpϕ
dϕt ρϕ

ρϕ
. (2.135)

With the mass conservation and the pressure equality assumption, this equation is re-
stated as

αϕ

γϕ
dϕt (P ) = −PDϕ

t (αϕ) (2.136)

The combination
∑

φ(2.136)φ combined with the void filling condition leads to the following
pressure equation

∂t(P ) +
∑
φ

βφuφjP,j + γ̄P
∑
φ

(αφuφj ),j = 0 (2.137)

with γ̄−1 =
∑

φ
αφ

γφ
and βϕ = αϕγ̄

γϕ
. Once the pressure is explicit, the volume fraction equation

can be also written explicitly

Dϕ
t (αϕ) +

1

P

∑
φ

µϕφ(uϕj − u
φ
j )P,j − βϕ

∑
φ

(αφuφj ),j = 0 (2.138)

These formulas are valid for any number of fluid and for any dimension. However, we restrict
here to two fluid and 1D for the analysis of the characteristic.

The unknowns of this system are X =
(
P, α−, u−, u+, s−, s+

)
The system yields now as

∂tX + A∂x = 0 (2.139)

with

A =



β−u− + β+u+ γ̄P∆u γ̄Pα− γ̄Pα+ 0 0
µ+−∆u

P
u− − β−∆u α−β+ −α+β− 0 0

1
ρ−

0 u− 0 0 0
1
ρ+

0 0 u+ 0 0

0 0 0 0 u− 0

0 0 0 0 0 u+


(2.140)
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and ∆u = (u− − u+).
The characteristic polynomial is

P (λ) = (u− − λ)(u+ − λ)
[
(u+ − λ)2(u− − λ)2 − (c+)2β+(u− − λ)2 − (c−)2β−(u+ − λ)2

]
.

(2.141)

Then there are two obvious eigenvalues which are u+ and u− and correspond to the
transport of the entropy. The other eigenvalues are the four roots of the polynomial

(u+ − λ)2(u− − λ)2 − (c+)2β+(u− − λ)2 − (c−)2β−(u+ − λ)2. (2.142)

In the reference frame following the velocity u++u−

2
, the polynomial can be restated as

(δ − λ)2(δ + λ)2 − (c+)2β+(δ + λ)2 − (c−)2β−(δ − λ)2. (2.143)

with δ = u+−u−
2

. The domain of ellipticity has been found in (Ransom & Hicks (1984)) using
a theorem proved in (Wendroff (1979)). It is recalled in (Cournède (2001)) and yields

0 < δ2 < 1
4
c2

0

[
(α+/ρ+)1/3 + (α−/ρ−)1/3

]3
α+/ρ+ + α−/ρ−

(2.144)

with c0 the frozen speed of sound

1

ρc2
0

=
α+

ρ+(c2)+
+

α−

ρ−(c2)−
. (2.145)

To understand the development of instabilities, an expansion of this polynomial is made
around δ = 0. For δ = 0, there are four characteristics

(
0 , 0 ,−cs , cs

)
with cs the zero

drag speed of sound c2
s = β+(c+)2 + β−(c−)2. With a Taylor expansion around the last two

characteristics, the equation

P (δ, λ) = P (0,±cs)︸ ︷︷ ︸
=0

+(λ∓ cs)∂λP |0,±cs + δ∂δP |0,±cs = 0 (2.146)

leads to the following roots
(
−cs + δ α

+/ρ+−α−/ρ−
α+/ρ++α−/ρ−

, cs + δ α
+/ρ+−α−/ρ−
α+/ρ++α−/ρ−

.
)

Because the first derivatives around the two first eigenvalues (which are equals to zeros)
are null (it is a second order root ), a second order expansion is needed

P (δ, λ) = P (0, 0) + λ∂λP |0,0 + δ∂δP |0,0︸ ︷︷ ︸
=0

+1
2
λ2∂2

λP |0,0 + +1
2
δ2∂2

δP |0,0 + δλ∂2
λ,δP |0,0 = 0

(2.147)

The roots of this equation are:

δ

α+/ρ+ + α−/ρ−

(
−α+/ρ+ + α−/ρ− − 2i

√
α+α−/ρ+ρ− ,−α+/ρ+ + α−/ρ− + 2i

√
α+α−/ρ+ρ−

)
(2.148)
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Hence the dispersion relation around small values of drift gives the four eigenvalues

λ1,2 =−
δ
(
α+/ρ+ − α−/ρ−

)
α+/ρ+ + α−/ρ−

± 2i
δ
√
α+α−/ρ+ρ−

α+/ρ+ + α−/ρ−
(2.149)

λ3,4 =± cs + δ
α+/ρ+ − α−/ρ−

α+/ρ+ + α−/ρ−
(2.150)

The expansion around small values of δ shows the growth rate of the Kelvin–Helmoltz

instabilities driven by the coefficients ±2i
δ
√
α+α−/ρ+ρ−

α+/ρ++α−/ρ−
. These eigenvalues are not associated

with sound speed propagation, hence they are present independently of the compressibility
of the phases. Indeed, these unstable modes are the Kelvin-Helmoltz (K.H) instabilities
which are associated to the volume fraction.

However, all the previous development implies the instability of the linearized model.
Nevertheless, non linearities may have impact on the model (Keyfitz (2001)) that stabilizes
the flow.

2.4.3 What are the vision toward the ellipticity of this model ?

One vision in the community is that the multi-fluid models must be hyperbolic Romenski
& Toro (2004): At present it is practically conventional fact that the governing equations of
compressible two-phase flow model must be hyperbolic. Many researches on the field have
been made to find hyperbolic models of two phases flows. Several points may be raised in
response to a non hyperbolic model:

1 The physics behind the model is wrong because the model is mathematically incorrect,
thus the model should not be used.

2 The physics behind the model is correct but incomplete. The model can be used
if complemented by additional terms representing effects lost during the averaging
process. These additional terms are needed to ensure the hyperbolic character of the
model.

3 The multiphase flows are unstable as it is seen in nature with many well known in-
stabilities (Kelvin–Helmholtz (KH), Rayleigh–Taylor (RT), etc. . . ). Thus, the model
must be unstable on a certain range of frequencies. The added terms (inter-facial ef-
fects, relaxation terms, etc. . . ) are here to set a cut-off, ie small wavelength must be
damped if they are shorter than the cut-off.

Among the efforts made in the direction of the second remark, notable efforts to add
virtual mass effect are made by Geurst (1985); Zhang & VanderHeyden (2002); Drew (1979).
It has been shown that for certain a function of the added mass coefficient (depending
on the volume fraction), the added mass makes the model hyperbolic. Also, an interface
pressure term depending on the square of the drift was introduced by Stuhmiller (1977).
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This modification leads to unconditional hyperbolicity and the pressure term is similar as
the added mass pressure. Theofanous & Chang (2008) provided a review of notable attempts.

The third remark has been notably studied by Ramshaw (1978) where they add surface
tension in the form of a second derivative of the volume fraction. It must be stressed that
this expression represents the surface tension because the authors studied a separated flow
in a pipe. Thus, a variation of volume fraction represents well a curvature of the interface
between both fluids. But this closure would have not the same meaning at all in a dispersed
phase flow as an example.

About well posedness, the view which is developed across this thesis can be summarized
by the three following remarks.

• The elliptic model presented above (2.3.2) is not wrong but contains only macro-
scopic non dissipative physics. However, though the microscopic physics is isentropic
Berdichevsky (2009), its macroscopic counterpart must contain entropy production.
Thus, dissipation terms are missing and the model can not be used as such in indus-
trial applications. Nevertheless, because it is at the root of all other models, it needs
to be studied in order to understand the non dissipative physics and to build numerical
schemes able to capture isentropy.

• Experiments on multiphase flows show many chaotic behaviors. In order to capture
them, models must be unstable over some range of the spectrum. However, these
instabilities occur at large scales. Indeed, a microscopic mechanism always exists to
prevent high frequency/short wavelengths instabilities: size of the inclusions, surface
tension, viscosity. . .

• Therefore, using an unstable model to study a certain part of the physics always present
in all multiphase applications is of a crucial importance. Though, this model, which
represents only ideal situations, cannot be used to predict real multiphase flows.

To conclude these remarks, the elliptic character of the backbone model (also called 6
equations model) makes it unusable for engineers who want to simulate real multiphase
flows. But its study is fundamental for researchers in order to capture correctly isentropic
physics present in all of them. Also, its unstable character is not a problem per se. Indeed,
it is necessary to be unstable at some range of frequency to capture multiphase instabilities.
But the model should be complemented to obtain a cut off scale coherent with physics and
the dissipation inherent to macroscopic process.

2.4.4 Cutoff wavelength by Ramshaw (1978)

This paragraph highlights the second item above, ie that the model can be unstable at a
certain range of frequencies but must possess a cutoff in the spectrum. In the incompressible
model proposed by Ramshaw (1978), the relation between pressure is modified by adding a
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surface tension term.

p+ − p− = −σ∂2
x(α

+) (2.151)

The two phase pressures are closed by a barotropic equation ρi = f(pi). The average pressure
is denoted P = 1

2
(p+ + p−). The model they propose is then

∂t(α
+) + u+∂x(α

+) + α+∂x(u
+) = 0 (2.152a)

∂t(u
+) + u+∂x(u

+) +
1

ρ+

(
∂x(P )− 1

2
σ∂3

x(α
+)
)

= 0 (2.152b)

− ∂t(α+)− u−∂x(α+) + α−∂x(u
−) = 0 (2.152c)

∂t(u
−) + u−∂x(u

−) +
1

ρ+

(
∂x(P ) + 1

2
σ∂3

x(α
+)
)

= 0 (2.152d)

Wavelet analysis leads to the following dispersion relation

4α+α−k4σ − ρ−α+(ω − ku−)2 − ρ+α−(ω − ku+)2 = 0 (2.153)

which has four square roots

ω =
1

α1ρ2 + α2ρ1

[
(α1u2kρ2 + α2u1kρ1)

∓
(

4α1α2k2

[
σ(α1ρ2 + α2ρ1)k2 − ρ1ρ2(u2 − u1)2

])1/2]
.

(2.154)

If the form under the square root is negative, there is a complex root and thus instable
modes (the complex roots goes in conjugate pairs so that at least one will have negative
imaginary value). A examination of the roots leads to several remarks. First, the well known
influence of the drift on the instability (that notably feeds the KH instabilities) is observed.
Secondly, the creation or destruction of instabilities result from a competition between drift
and surface tension. But the factor k2 tells that the surface tension will damp instabilities
only at large k (thus short length waves) which are precisely what is needed to capture KH
instabilities which are long wave perturbations. However, without surface tension, nothing
except the size of the cell can limit short waves instabilities that are then supposed to be
evacuated in internal energy through dissipation.

On figure (2.4), the influence of surface tension on the short wavelengths is shown whereas
the large wavelengths are unaffected. It must be underlined that in any numerical simulation,
a cutoff length always exists which is the typical size of the mesh.

2.4.5 On the Baer & Nunziato (1986) model

The Baer–Nunziato model (Baer & Nunziato (1986)) has been developed to capture the de-
flagration to detonation transition in granular reactive multiphase flow. It was made popular
by Saurel & Abgrall (1999a), notably with the proof of its conservative and unconditionally
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(a) Kelvin–Helmoltz instabilities without surface
tension

(b) Kelvin–Helmoltz instabilities with surface ten-
sion

Figure 2.4: Kelvin–Helmoltz instabilities simulation

hyperbolic character. Since then, many authors have used this model to predict other types
of flows such as bubbly flow (Saurel & Abgrall, 1999a; Lallemand et al., 2005), as well as
granular flow (Gallouet, Thierry et al., 2010; Poroshyna & Utkin, 2019). Models of the type
of B.N. models are called seven equations model. This denomination comes from the fact
that an evolution equation for the volume fraction is added to the 6 evolution equations.
This equation is added to the EOS equations and the volume filling constraint and closes
the model. The evolution equation on the volume fraction has been studied by Chang &
Ramshaw (2008) to understand the physics behind it. Furthermore, the B.N. model has
been reviewed and many remarks are addressed toward its physical tenability to model dif-
ferent types of multiphase flow (Lhuillier et al., 2013; Theofanous & Chang, 2008; Dinh
et al., 2004). Notably about the fact that the characteristics exhibit sound speed of the
grain which can be true only if they are permanently in contact (as in the granular flows
that Baer & Nunziato (1986) originally aimed to model). In (Lhuillier et al., 2013), the
authors conclude that: The use of (3.7) (or its generalization (3.4)) (the evolution equation
of the volume fraction) when there are no permanent contacts between the particles is not
physically tenable despite its ability to restore hyperbolicity.

How is the B.N. volume fraction equation found

In this part, the development made by Baer & Nunziato (1986) is presented to understand
how they found this seventh equation. All the exchange forms, thermal flux and external
sources (which are specific to the type of flow willing to study) are stripped from their
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model to keep only the pressure gradient. First, the authors wrote the equations of mass
and momentum for each phase following Truesdell (1984)

Dϕ
t ([αρ]ϕ) =0, (2.155)

[αρ]ϕdϕt u
ϕ =− ∂x(πϕ). (2.156)

These equations are written under conservative forms which is not the case in many mod-
ern models in the literature. Then, they use the first principle to write the internal energy
equations: The remaining conservation law is a statement of the first law of thermodynamics
as applied to each phase. However, they wrote the internal energy equations as

[αρ]ϕdϕt e
ϕ = −πϕ∂xuϕ. (2.157)

This implies that their potential depends on [αρ]ϕ and not αϕ or ρϕ. Indeed, if πϕ is assumed
to be the pressure of the phase, then pϕ = πϕ and the first principle without dissipation
would become

[αρ]ϕdϕt e
ϕ = pϕ

dϕt [αρ]ϕ

[αρ]ϕ
= −πϕ∂xuϕ (2.158)

However, many modern models consider that the internal energy depends on the local density
ρϕ rather than the partial density [αρ]ϕ.

Once they wrote their evolution equation, they express the second principle of thermo-
dynamic which in our case reduces to∑

φ

[αρ]φdφt s
φ ≥ 0 (2.159)

After that, they proceed to a change of variable and write this inequality with the
Helmholtz free energy ψ = eϕ − sϕT instead of the entropy s. The equation (2.159) is
restated as ∑

φ

[αρ]ϕ

T φ
[
− dφt ψ

φ + dφt e
φ − sφdφt T φ

]
≥ 0 (2.160)

They assumed after some computation that in order to respect the second principle, the
free energy must depend on the density, the volume fraction and the temperature only.

ψϕ = ψ(ρϕ, αϕ, Tϕ) (2.161)

This leads to the inequality∑
φ

[αρ]ϕ

T φ
[
− ∂ψφ

∂αφ
dφt α

φ − ∂ψφ

∂ρφ
dφt ρ

φ − ∂ψφ

∂T φ
dφt T

φ + dφt e
φ − sφdφt T φ

]
≥ 0 (2.162)

which is expressed as follows with the mass conservation
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∑
φ

[αρ]ϕ

T φ
[
− ∂ψφ

∂αφ
+
∂ψφ

∂ρφ
ρφ

αφ
]
dφt α

φ +
[αρ]ϕ

T φ
[∂ψφ
∂T φ

+ sφ
]
dφt T

φ +
[
− πφ

T φ
+
∂ψφ

∂ρφ
[αρ]φρφ

T φ
]
∂xu

φ ≥ 0

(2.163)

They defined then the following quantities

pϕ = (ρϕ)2∂ψ
ϕ

∂ρϕ
βϕ = αϕρϕ

∂ψϕ

∂αϕ
, (2.164)

which leads to∑
φ

1

T φ
[
− βφ + pφ

]
dφt α

φ +
[αρ]ϕ

T φ
[∂ψφ
∂T φ

+ sφ
]
dφt T

φ +
[
− πφ + αφpφ

]∂xuφ
T φ
≥ 0. (2.165)

Now, the aim is to close the undetermined form in order to respect the second principle.
They set then

πφ =αφpφ and by definition
∂ψφ

∂T φ
= −sφ (2.166)

The only problem comes now from the volume fraction. Using the volume filling con-
straint, the inequality becomes

d+
t α

+
[
p+ − p− − (β+ − β−)

]
+ ∆u

[
p− − β−

]
∂xα

+ ≥ 0 (2.167)

This inequality has no reason to be satisfied, in Baer & Nunziato (1986), the last form
goes in other groups of terms and helps to close mass transfer. However, the first form is
written exactly the same. To be sure of its sign, Baer & Nunziato (1986) postulated the
existence of a function µ which satisfies

α+α−
[
p+ − p− − (β+ − β−)

]
= µd+

t α
+ (2.168)

Therefore, dissipation and thus the respect of the second principle of thermodynamic
are insured. However, dissipation occurs nearly everywhere in the flow. Indeed, at each
change of volume (dϕt αϕ or dϕt ρϕ 6= 0), the model dissipates, even in expansions which are
supposed to be isentropic. It must be stressed that when dealing with dissipation, an infinity
of closures are possible because the condition to fulfill is an inequality. However, isentropic
closures are unique (for a given set of energies). Here, the only physically tenable isentropic
closure is to set the pressure equality which leads to the 6 equation model.

Another way to obtain the volume fraction equation

Another way to obtain a volume fraction equation is to follow the work of Drew (1983). In
this work the author uses volume averaging. Therefore, the function of presence of a fluid
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ϕ called χϕ varies only at the interface between two phases. The natural evolution of this
quantity is

∂tχ
ϕ + ui∂xχ

ϕ = 0. (2.169)

This means that the function of presence is transported by the velocity of the interface ui.
More generally

∂tχ
ϕ + u∂xχ

ϕ = 0 (2.170)

with u the local velocity of the flow.
The question is then, how to average this quantity ?

∂tχϕ + u∂xχϕ = 0 (2.171)

In the classical averaging,

αϕ = χϕ , ρϕ =
ρχϕ

αϕ
, aϕ =

aρχϕ

[αρ]ϕ
(2.172)

which leads to

∂tα
ϕ + uϕ∂xα

ϕ + (uϕ)′∂xχϕ = 0 (2.173)

however, the variation (uϕ)′ is such that

(uϕ)′ρχϕ = 0 (2.174)

therefore, it is not possible to remove the last form. The variation of velocity around the
interface can be closed by assuming that it is proportional to the pressure variation at the
interface which leads to the B.N. type model.

2.A Appendix: computation of the new pressure gradient (2.3.3)

The total pressure gradient is obtained by summation over all the fluids.[
∇P

]n
c

=
∑
φ,d

αφnc σ
φn−1/2
cd s

n−1/2
cd (pnd − pnc ) (2.175)

To modify this total gradient, the form in σ is symmetrized and using the identity on the
of centering factor σφn−

1/2
cd + σ

φn−1/2
dc = 1 (which indicates that the fluid either goes from c to

d or from d to c).

1
2

∑
φ,d

[
αφnc + αφnc (σ

φn−1/2
cd − σφn−1/2

dc )
]
s
n−1/2
cd (P n

d − P n
c ) (2.176)
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Then, the second occurrence of the volume fraction is symmetrized.

1
2

∑
φ,d

[
αφnc + 1

2
(αφnc + αφnd )(σ

φn−1/2
cd − σφn−1/2

dc )
]
s
n−1/2
cd (P n

d − P n
c )

+1
4

∑
φ,d

[
(αφnc − α

φn
d )(σ

φn−1/2
cd − σφn−1/2

dc )
]
s
n−1/2
cd (P n

d − P n
c )

(2.177)

The last term is of order 3 and therefore is neglected. The first term can be transformed
(using the identity on the centering factor) into

1
2

∑
φ,d

[
αφnc + 1

2
(αφnc + αφnd )(2σ

φn−1/2
cd − 1)

]
s
n−1/2
cd (P n

d − P n
c )

= 1
2

∑
φ,d

(αφnc + αφnd )σ
φn−1/2
cd s

n−1/2
cd (P n

d − P n
c ) + 1

2

∑
φ,d

(αφnc − α
φn
d )s

n−1/2
cd (P n

d − P n
c )

(2.178)

The last term of the expression vanishes because the sum of the volume fraction is equal to
one. Then, the final gradient is obtained by factorizing the volume fraction in the cell c of
the fluid ϕ

αϕ∇ϕP = αϕnc
∑
d

σ̄
ϕn−1/2
cd s

n−1/2
cd (P n

d − P n
c ) (2.179)

with

σ̄
ϕn−1/2
cd = 1

2
σ
ϕn−1/2
cd + 1

2

∑
φ

αφnd σ
φn−1/2
cd (2.180)
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Taming the “stiff stiffness” of pressure work
and relaxation in numerical schemes for

compressible multi-fluid flows 1
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Designing models and schemes for compressible multi-fluid flow is often considered as
challenging when dealing with contrasted equations of state, low volume fractions, or high
compression or expansion ratios. This is due to the potentially severe stiffness of pressure
couplings, aggravated by (i) their quadratic multiplicity as they connect all energy reservoirs
(ii) the entropy conditions to be preserved on each fluid, (iii) their potentially unknown signs,
and (iv) their potential “stiff stiffness,” defined in the present work. Whether captured
under pressure-equilibration or pressure-relaxation models—where fluids respectively share
a common pressure or undergo a damped evolution towards a common pressure—the stiff
terms of the evolution equations have always required dedicated numerical approaches, with
sometimes mixed results depending on specific applications.

Some broad general guidelines are here proposed to tame the stiff stiffness issues of
the pressure terms. The framework is that of pressure-equilibrated average-field (or Euler–

1submitted to Int J Multiph Flow, 22nd December 2021
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Euler) models, discretized with a splitting of momentum and internal energy equations:
this makes the stiff terms behave locally as simple ODEs, amenable to integration by simple
schemes. The present approach resorts to (partly) exponential integrators to provide explicit
estimations of implicit pressures. The final explicit scheme, though not as robust as would
its fully implicit version, displays a vastly improved resilience to stiffness.

Numerical tests were carried out on strenuous versions of usual 1D shock tubes on two-
fluid mixtures of air and water (described by ideal and stiffened gases). In view of the ex-
cellent results, further 1D test in more extreme conditions were considered: free expansions,
and shocks on zero pressure state (Noh’s test). At usual acoustic CFL values, expansions
were robustly simulated for air volume fractions from less than 10−12 to up to nearly 1.
Similarly, shocks on zero pressure states were simulated to different final states for air vol-
ume fractions as low as 10−8, with air density factors across shocks ranging between a few
hundreds and hundredths depending on the choice of dissipation in each fluid. All tests were
carried out on a previously developed Geometry, Energy, and Entropy Consistent (GEEC)
scheme [IJMF, 132, 103324 (2020)].

3.1 Aim: pressure in multi-fluid models and schemes

The modeling and computation of multi-fluid flows appears as a never ending endeavor: there
were over 7000 articles in the field published during year 2020 according to Google Scholar,2

up about two and five fold from 2010 and 2000 respectively. A superficial inspection of the
query results shows that about a tenth involve at least some model discussion, adaptation,
comparison, etc. and about a fourth deal with compressible systems—as defined by the non-
vanishing presence of at least one compressible phase, a case of high relevance in numerous
applications.

This exuberance comes from the enormous variety of systems found in nature and indus-
try which require the development of correspondingly specific models and schemes: beyond
fundamental conservation laws (mass, momentum, etc. which are sufficient for detailed di-
rect numerical simulation approaches) and basic numerical tools (finite volumes, Riemann
solvers, particles-in-cell, etc.), all sorts of system-specific averaging assumptions and clo-
sures must be invoked (fluctuations, turbulence, drag. . . ), making models very specific and
different from each other. The present work will deal with the specific but very broad class
of averaged-field models, also known as Euler–Euler.

A critical ingredient in all Euler–Euler compressible multi-fluid models is mean pressure.
In such systems, terms involving mean pressure appear primarily in momentum fluxes,
buoyancy forces, pressure work on internal energy, and EOS (Equations Of State): although
seldom acknowledged, this produces numerous, intricate, and stiff couplings between all
the fluids’ energy reservoirs which can severely strain numerical schemes (Vazquez-Gonzalez
et al., 2020, §§ 1.3 & 3.6, note 4). The extreme stiffening potential of pressure couplings

2as returned by query: "multiphase flow" model scheme.
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in common systems is illustrated by air–water mixtures where hydrodynamic time scales
can be stiffened by factors in excess of 104, as highlighted in previous publications (see for
instance Vazquez-Gonzalez et al., 2020, § 3.6) and illustrated in Section 3.2.2.

Somewhat surprisingly however, most of the available strategies for model closures and
scheme discretizations appear to dilute the pressure stiffness issue among broader concerns
of physical relevance, model well-posedness, and adaptation of standard numerical methods:
a dominant controversy in the field is the ill-posedness of many multi-fluid models, still
active after over half a century and which has sometimes motivated inconsistent “corrected
pressure closures” in the models (see for instance Vazquez-Gonzalez et al., 2020, §§ 1.2 & A,
& refs therein). A brief overview and discussion on pressure closures is provided in 3.A for
modeling strategies in common use.

The central issue of the present work is the proper physical and numerical treatment
of EOS pressure couplings as deduced from first principles. The aim is to provide building
blocks for closures and schemes adapted to their specific potential stiffness and yet as “uni-
versal” as possible, i.e. applicable to most schemes up to minor adaptations. The rationale
for demanding this universality hinges on the fact that, pressure being the derivative of a
well defined potential (here internal energies given by EOS), mean pressure terms should
be expected to be uniquely defined by first principles of mechanics and thermodynamics
(Vazquez-Gonzalez et al., 2020, § 3 & refs therein). Although this general principle (ap-
plicable in both physical and numerical settings) constrains simple multi-fluid systems to
equal fluid pressures, the guidelines provided here will remain applicable to approaches with
non-equal (but algebraically related) fluid pressures. In this spirit, the present study will be
restrained to a single-pressure multi-fluid model stripped of all dissipation and fluctuation
terms, here designated as the “backbone” model as introduced in Section 3.2.1.

The main results, i.e. the discretization approaches of the pressure terms of the backbone
model, are derived in Section 3.4. As prerequisites, Section 3.2 reminds the specific back-
ground of relevant concepts and Section 3.3 lists the basic physical equations to be dealt
with. For readers familiar with compressible multi-fluid flows, these sections can be skipped
and just referred to for notations. Section 3.5 provides results of numerical test which have
been deliberately designed to severely strain the numerical schemes, well beyond the usual
two-fluid Riemann problems: free expansion in vacuum and strong “Noh” shocks (Noh,
1987), both on a stiff two-fluid system with velocity equilibration. All tests were carried out
in a 1D setting on ideal-gas–stiffened-gas mixtures tuned to mimic air and water. Results
show robust, stable, and consistent behavior at reasonable CFL values, independently of
(even extreme) volume fraction values. Since the pressure stiffness issues are weakly coupled
to transport and appear as equations formally equivalent to ODEs, the 1D results readily
extend to higher dimensions.
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3.2 Background: multi-fluid models and schemes

3.2.1 Derivation of multi-fluid models; backbone model

The (to-be-closed) statistical equations of multi-fluid models are most commonly deduced
from the single-time-and-point single-fluid equations (usually Euler or Navier–Stokes) by
application of an averaging procedure. The specificities of this averaging step (order of
correlations, averaging set, etc.) must be adapted to the type of the flow and to the quantities
of interest. The approach was first applied to some (not all) conservation equations (for
instance van Deemter & van der Laan, 1961; Hinze, 1963), and full sets of volume-averaged
two-fluid equations were eventually produced (for instance Nigmatulin, 1967; Delhaye, 1968;
Drew, 1971; Ishii & Ibiki, 2011)—for more modern discussions and references see for instance
Wörner (2003, § 3), Morel (2005, § 3), or Brennen (2005, § 1). The ensuing equations describe
the evolution of per-fluid average quantities but involve second- and higher-order correlations
of the fluctuations: these correlation terms are produced by the a-priori-unknown non-linear
effects and require supplementary closure laws.

The correlation terms are intrinsically dissipative and system dependent, whereas the gen-
eral structure of the equations with their non-dissipative terms alone is system independent
and thus universal. Following Vazquez-Gonzalez et al. (2016, 2020), the dissipation-stripped
multi-fluid model will be designated here as the backbone model—here given in Section 3.3.1
and derived in 3.B. It only involves transport and pressure terms, with external source terms
of momentum and internal energy when required.

The absence of any dissipation in the backbone model has two noticeable consequences
(Vazquez-Gonzalez et al., 2020, § 3): (i) its equations can be obtained in an unique way
from a least action principle where the Lagrangian density of the system involves the mean
kinetic and internal energies of the fluids, and (ii) the ensuing Euler–Lagrange equations
constrain all fluids at any given time and point to share the same common average pressure,
i.e. the backbone model is a so-called “single-pressure” model—also designated as “pressure
equilibrated” or “isobaric.” This last property is a major motivation to build corresponding
schemes with pressure equilibration, which can ensure low-dissipation and quasi-isentropic
character (to scheme order). Naturally, numerical scheme design always involves all sorts of
trade-offs and partial but controlled pressure equilibration may turn out to be acceptable in
some cases.

Backbone-based derivations of multi-fluid models and schemes thus follow the general
route represented in Fig. 3.1 where dissipation terms are deliberately removed and brought
back. This strategy was recently applied to develop the “GEEC” scheme (Vazquez-Gonzalez
et al., 2020) which will be used here to benchmark the stiffness-capturing techniques in
Section 3.5.

An important side property of the backbone model as derived from the above averaging
approach is that it also describes the evolution of interface cells in numeric schemes—when
cells intersect boundaries between fluids of different properties or states (Saurel & Abgrall,
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Single-fluid action integral � -No direct relationship! Multi-fluid action integral

?
Least action & Gibbs

?
Least action & Gibbs

Single-time-and-point
fluid-field equations (3.37)

(small-scale dissipation neglected)

Conditionally averaged equations:
(3.41) multi-fluid with fluctuations,

hence dissipative, modeled

Stripped averaged equations (3.1):
“backbone” without fluctuations,
hence not dissipative, not modeled

--
-Average

& close
-Strip

???
“Usual” discretizations

?
GEEC (or other) discretization

Discrete multi-fluid equations:
dissipative, hyperbolic–parabolic,
convergent but possibly unstable

Discrete “backbone” equations:
not dissipative, hyperbolic–elliptic,

unstable and not convergent
�Dress

Figure 3.1: Representation of modeling and discretization procedures of multi-fluid equations. The
usual direct approaches (triple arrows) produce modeled average equations and corresponding nu-
merical schemes (thick middle frames) with good stability, convergence, and dissipation properties,
but most often with poor behavior on isentropic flows. In contrast, an intermediate discretiza-
tion procedure of the so-called “backbone” dissipation-free equations (right hand side frames) can
simply recover isentropic behavior (to the scheme’s order). Following this approach, the GEEC
scheme used here (Vazquez-Gonzalez et al., 2020) is derived by a mimicking procedure of the least
action principle and Gibbs’ thermodynamic relationship. The non-averaged equations (left hand
side frames) are represented for reference to stress their difference with the backbone model: de-
spite formal analogies in evolution equations, the multi-fluid action cannot be obtained from the
single-fluid action. The averaging and stripping procedures are detailed in 3.B for a simplified case.

1999a,b; Saurel & Le Métayer, 2001; Chang & Liou, 2007, and references therein). This
is due to the formal identity between the physical statistical averaging and the numerical
cell averaging. As expected, controversies on the proper discrete equations for evolving
interface cells have practically mirrored those on multi-fluid models although with emphasis
on somewhat different aspects. The present work will fully apply to both situations and will
consider corresponding backgrounds indifferently.

3.2.2 Present issue: “stiff stiffness” of pressure work and equilibration

A common feature to all multi-fluid models is their potential pressure-related stiffness and
moreover, their potential stiff stiffness. These properties will be rigorously defined and
quantified in Section 3.3, but it is useful to introduce now a qualitative and intuitive example
to facilitate understanding.

A system of water containing a low volume fraction of air bubbles—say 1%—can be
viewed as numerically friendly: as known for decades, the effective speed of sound of the
mixture c is low (down to a minimum of about 30 m/s in standard conditions) because of
both the high compressibility of the bubbles and the high inertia of the surrounding water.
According to usual wisdom, an explicit numerical scheme would thus have its time step
limited by a weak CFL condition ∆t . ∆x/c. Now, within this time step limit, global
volume changes in excess of merely 1% could appear and thus collapse the air bubbles: the
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effective speed of sound of the mixture would then approach that of water thus inducing
stiffness. But moreover, this change of stiffness would appear over a small volume change
thus making stiffness stiff. Stiffness is related to a high first derivative of pressure (low
compressibility or high speed of sound), whereas stiff stiffness is related to a high second
derivative of pressure (high fundamental derivative).

The issues of pressure-related stiffness appear to have been mentioned but seldom stressed
in previous works despite being potentially present in all forms of the multi-fluid equations.
They are mostly eliminated in pure isentropic models, not considered here, where the internal
energies and pressures are given by (non-differential) functions of the densities—as in classi-
cal two-fluid four-equation models compared by Vazquez-Gonzalez et al. (2016). Now, this
requires that isentropic curves be provided by the EOS, a situation almost never encountered
in practical situations. In contrast, most hydro-schemes perform approximate integration of
pressure work in the energy equations under assumptions that scheme residues be small and
entropic. However, in stiff systems such as multi-fluid, the time-step constraints can make
residues large or even dominant, while their entropic character has still to be preserved.

In previous works involving one of the authors (this chapter is an article submitted
to IJMF and written by E.Heulhard de Montigny and A. Llor) (Vazquez-Gonzalez et al.,
2016, 2020), the stiffness issues were clearly identified on the backbone model (though not
tackled) when expressed with the explicit form of the internal energy equations. In this
form—here given in Section 3.3.2, derived in 3.B.3, and previously obtained by Munkejord
et al. (2009); Kreeft & Koren (2010)—the pressure work on the various (possibly numerous)
fluids is separated in individual and fluid-to-fluid exchange contributions, making accessible
the analysis of stiffness effects and the design of adapted numerical schemes.

3.2.3 Present hydrodynamic scheme: GEEC

The pressure-related stiffness issues mentioned in Section 3.2.2 are made even more challeng-
ing by the sheer number of convoluted pressure couplings between all energy reservoirs: for
instance a 10-fluids system involves 10 entropy constraints and 20 energy reservoirs (kinetic
and internal), with 20 flux terms and 20× 19/2 = 190 one-to-one exchange terms! Now, the
possible stiffness of this exchange network is marginally affected by the flux terms which are
usually under control of shallower CFL conditions: pressure couplings are basically in-cell
ODE-like problems.

Unsurprisingly, many numerical approaches have resorted to varied forms of splitting
strategies with the expectation that stiffness be isolated and captured in well controlled
sub-steps of the evolution cycle. However, this must be achieved while also controlling
the numerical residues on entropy and the sign of their final balance: it makes pressure
contributions difficult to split from each other, while still being more easily split from other
terms. For instance, it appears somewhat overoptimistic to follow the approach of many
Riemann-based schemes whereby pressure terms in momentum and energy equations are split
into flux and source parts which are discretized separately in different sub-steps: ensuring
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the final entropic consistency of the global time step on each fluid is then barely tractable,
if at all.

A counterexample of a proper Riemann-based strategy—though on a velocity-equilibrated
model—was provided by Despres & Lagoutiere (2007) with a Lagrange-plus-remap scheme:
all the pressure effects are computed at once in the Lagrangian sub-step. Through proper
implicit centering of pressure in the thermodynamic integration path, entropic behavior was
then proved. The present work follows this one-step course and pays scrupulous attention
to possible collateral effects detrimental to entropy consistency.

For all illustrative purposes in Section 3.5, stiffness-resilient pressure schemes will here
be adapted to the “Geometry, Energy, and Entropy Consistent (GEEC)” scheme (Vazquez-
Gonzalez et al., 2020)—summarized in 3.C. This scheme performs an explicit one-step dis-
cretization of the general multi-fluid backbone model with an order-one geometry- and
entropy-consistent approach. Shocks are captured through an explicit artificial viscosity
stress (Mattsson & Rider, 2015, & refs therein) whose dissipation can be distributed on
the fluids according to coefficients freely defined by the user. However, its explicit character
makes it non-entropic (to scheme order) and fragile in stiff situations. This was a motivation
of the present study.

3.2.4 Present approach: explicit estimates of implicit pressures

Regardless of details on background algorithms discussed in Section 3.2.3, every time step
of an hydro-scheme performs a thermodynamic transformation of the fluids in the system.
This evolution is actually a jump between initial and final states, between which an actual
path of continuous states may or may not be defined and may or may not be effectively
computed: examples of pure jumps and computed paths can be respectively found in Despres
& Lagoutiere (2007) and Miller & Puckett (1996). In any case, entropic behavior is then
ensured if the final states lies above the isentropic curves defined by the fluids’ initial states
and the eventual irreversible energy sources. In that respect, computing isentropic curves
may be regarded as most reassuring but appears computationally demanding (Miller &
Puckett, 1996) and superfluous as only the final pressure and irreversible works along the
path need to be known.

An important property stemming from thermodynamic principles is that reversible pres-
sure work over isentropes are always above their various order-one implicit approximations,
regardless of EOS stiffness. This was exploited by Despres & Lagoutiere (2007) and is more
closely examined in Section 3.4 as it provides universal recipes to produce entropic evolution
in hydro-schemes. Now, this comes at the expense of implicit calculations of final states,
which may be particularly convoluted in the presence of numerous couplings between all
the energy reservoirs (including kinetic). Moreover, adapting implicit techniques to fully
explicit schemes such as the multi-fluid GEEC can introduce unexpected difficulties. Also
noticeable is the fact that under-estimation of pressure work induces some dissipation whose
distribution over the different fluids is not defined by first principles and thus not unique:
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discrepant results can be produced by even the same hydro-scheme when fitted with differ-
ent pressure equilibration algorithms, as only in the isentropic limit are all evolution paths
necessarily identical.

In order to overcome the issues and complexities brought by the calculation of implicit
final pressures to obtain entropic pressure work, the present study explores a somewhat
less robust but much less demanding approach of explicit estimates of implicit pressures
(or EEIP, see Section 3.4.4). Such estimations are accessible because an explicit evolution
equation (possibly stiff) can be exhibited for the equilibrated pressure in the backbone
model—similarly to internal energies as mentioned in Section 3.2.2. Standard numerical
schemes for stiff equations can then be selected and simply embedded in an explicit scheme
such as the multi-fluid GEEC, as shown in Section 3.5.1.

3.2.5 Some previous approaches

As will appear in Section 3.4, multi-fluid pressure equilibration or relaxation comes in count-
less types and forms because it cannot be defined in a unique way from first principles: it is
an intrinsically dissipative process whose irreversible production can be distributed over the
fluids in completely arbitrary ways, possibly justified by model- or scheme-specific criteria.
Below is a short list of some important landmarks in the field.

Pressure equilibration in multi-fluid schemes happens to be a special case of “equilib-
rium with internal adiabatic constraints,” an old problem examined in classical textbooks
of thermodynamics (Callen, 1960, 1985, resp. App. C & pb. 2.7-3). Its solution—defined
by the distribution of entropy production—is indeterminate or not unique, a finding then
perceived as counter-intuitive which stirred controversies (Curzon & Leff, 1979; Chardin,
1986; Gruber, 1999; Khalil, 2019, & refs therein).

Early numerical schemes treated multi-fluid mixtures under the “equal strain” assumption
Benson (1992, § 3.11 & refs therein), a physically inconsistent closure but numerically simple
and not so fragile in many cases.

Miller & Puckett (1996, § 5 & ref. 15) proposed a quasi-isentropic equilibration approach
similar to the present “coupled exact isentropes” in Section 3.4.3, based on a fractional-step
algorithm and embedded in a Eulerian second-order Godunov scheme.

Despres & Lagoutiere (2007, § 5 & ref. 15) proposed an implicit equilibration approach
similar to the present “coupled implicit shocks” in Section 3.4.3, embedded in a Lagrangian
second-order Godunov scheme.

Chang & Liou (2007) proposed an implicit equilibration approach similar to the present
“coupled iso-energies” in Section 3.4.3, embedded in an AUSM+-up second-order scheme.

Yanilkin et al. (2013); François et al. (2013) reviewed and tested various relaxation
schemes in respectively ALE and Lagrangian-or-Eulerian settings. Lallemand et al. (2005);
Saurel et al. (2009); Le Métayer et al. (2013) introduced various schemes for the pressure
relaxation model of Baer & Nunziato (1986).

Recently, Hantke et al. (2021) considered the pressure equilibrated limit of the model
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of Baer & Nunziato (1986), and Chiocchetti & Müller (2020) introduced an exponential
integrator to capture its stiff pressure relaxation. An exponential scheme is also proposed
and tested here in Sections 3.4.3 and 3.5. No previous occurrence of this stiffness compliant
approach was found for pressure relaxation or equilibration.

3.3 Explicit backbone evolution equations; stiffness

3.3.1 Backbone model with explicit pressure work

The complete set of equations of the backbone model—whose derivation along the usual
conditional averaging approach is provided for reference in 3.B—can be written as

Dϕ
t (αϕρϕ) = 0, (3.1a)

Dϕ
t (αϕρϕuϕi ) + αϕp,i = αϕρϕgi, (3.1b)

Dϕ
t (αϕρϕeϕ)− αϕp dϕt ρ

ϕ

ρϕ
= αϕρϕẘϕ, (3.1c)

p = Pϕ(ρϕ, eϕ), (3.1d)

1 =
∑

ϕα
ϕ, (3.1e)

for mass conservation (3.1a), evolution equations of momenta and internal energies (3.1b)
and (3.1c), completed with the single-pressure and volume-filling conditions (3.1d) and (3.1e).
αϕ, ρϕ, uϕ, eϕ, ẘϕ, and Pϕ are respectively the mean volume fractions, densities, velocities,
internal energies, external (irreversible) energy sources, and half-EOS of fluids ϕ. p and g are
the common pressure field and gravity (momentum source). The Eulerian and Lagrangian
derivative operators along fluid velocities are respectively defined as

Dϕ
t · = ∂ϕt ·+ (·uϕi ),i. (3.2a)

dϕt · = ∂ϕt ·+ ·,i u
ϕ
i , (3.2b)

with Einstein’s rule of summation on repeated coordinate indices (i, j = 1, 2, 3) without
covariant–contravariant separation—thus p,iêi = ∇p and uj,j = ∇ · u. Energy equations
are here provided for the fluids’ internal energies, bearing in mind that fluids’ total energies
can be recovered in the standard form by the following combination

(3.1c) + p
ρϕ
× (3.1a) + uϕi × (3.1b)i −

(
1
2
uϕi u

ϕ
i

)
× (3.1a)

⇒ Dϕ
t

(
αϕρϕ

(
eϕ + 1

2
uϕi u

ϕ
i

))
+
(
αϕpuϕi

)
,i

+ p ∂tα
ϕ

= αϕρϕẘϕ, (3.3)

which conserves the system’s total energy as
∑

ϕ∂tα
ϕ = 0. This notation for combining

equations will be used in all the following, taking care that it represents the application of
the linear combination identically to both left and right hand sides exactly as given in the
referred equations.
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For two fluids ϕ, the system is known as the single-pressure six-equations two-fluid model.
It is also applicable to the numerical computation of cell-averaged quantities in mixed cells
at interfaces between fluids (see for instance Saurel & Abgrall, 1999a,b; Lallemand et al.,
2005; Chang & Liou, 2007, & refs therein). Assuming addition of an infinitely strong drag
force to induce velocity equilibration, the per-fluid momentum equations (3.1b) degenerate
into the usual total momentum equation

∂t(ρui) + (ρuiuj),j + p,i = ρgi, (3.4)

where ρ =
∑

ϕα
ϕρϕ and ρu =

∑
ϕα

ϕρϕuϕ are the mean total density and momentum with
uϕ = u. As the stiffness related issues are weakly dependent on relative drift velocities (low
Mach number) all the tests reported here were carried out on equilibrated-velocity systems.

3.3.2 Explicit pressure work in energy equations; stiffness

As extensively discussed in a previous work (Vazquez-Gonzalez et al., 2020, §§ 3.5 & 3.6) the
analysis and discretization of the internal energy equations (3.1c) is much more conveniently
carried out on the following alternative form

Dϕ
t (αϕρϕeϕ) = − βϕpui,i︸ ︷︷ ︸

V

+
∑

φ µ
ϕφp,i(u

ϕ
i − u

φ
i )︸ ︷︷ ︸

D

−
∑

φ µ
ϕφ
(
Γϕρϕẘϕ − Γ φρφẘφ

)︸ ︷︷ ︸
R

+αϕρϕẘϕ︸ ︷︷ ︸
I

. (3.5)

where

u =
∑

φα
φuφ (volume weighed velocity, 6= u), (3.6a)

βϕ = (αϕ/γϕ)
/∑

φ(αφ/γφ)

=
(
αϕ/(ρϕc2ϕ)

)/∑
φ

(
αφ/(ρφc2φ)

)
, (3.6b)

µϕφ = (αϕ/γϕ) βφ = βϕ (αφ/γφ) = µφϕ, (3.6c)

with

γϕ =
[
ρ∂p
p∂ρ

∣∣
s

]ϕ
= ρc2ϕ/p (adiabatic exponent of ϕ), (3.6d)

Γϕ =
[

∂p
ρT∂s

∣∣
ρ

]ϕ (Grüneisen coefficient of ϕ), (3.6e)

c2ϕ being the squared speeds of sound. It must be stressed that (3.5) is rigorously equivalent
to (3.1c), but is explicit, i.e. without time derivatives of ρϕ. The derivation of (3.5) was
provided for instance by Vazquez-Gonzalez et al. (2020, § 3.5 & refs therein) and is summa-
rized in 3.B.3. Terms similar to V in (3.5) also appear in the context of mixed-cell pressure
relaxation algorithms, as for instance in Benson (1992, eq. 3.11.2.2 & refs cited) or Yanilkin
et al. (2013, eq. 23 & refs cited).

The decomposition of pressure work on the right-hand side of form (3.5) provides im-
portant insight by separating the contributions of the different physical processes (Vazquez-
Gonzalez et al., 2020, § 3.6):
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V: is the fraction of the reversible pressure work on fluid ϕ due to changes in total Volume
ui,i, as given by coefficients βϕ;

D: is the exchange of reversible pressure work between fluids ϕ and φ due to their relative
Drift uϕ − uφ along the pressure gradient;

R: is the exchange of Reversible pressure work between fluids ϕ and φ due to their dif-
ferential response to their respective irreversible energy sources ẘϕ and ẘφ;

I: is the usual direct Irreversible energy source on fluid ϕ.

From now on, the evolution equations of the fluids’ internal energies will always be
considered in their explicit form (3.5) only. Evolution equations of densities and pressure,
possibly required at some points, will also be considered in corresponding explicit forms, as
obtained for instance in 3.B.3.

3.3.3 Stiffness of contrasted systems; air–water example

The backbone evolution equations (3.1a), (3.1b), and (3.5)—as any other general multi-fluid
equations—involve terms which all contain factor αϕ: this ensures that singular behaviors
are avoided in the αϕ → 0 limits. However, the relative amplitudes of these terms can still
be quite different and may induce unexpected stiff behaviors.

The basic yardstick of stiffness for a system of compressible fluids is its global compressibility—
related to its speed of sound which defines the numeric CFL stability condition. This total
compressibility appears on the evolution equation of the total energy, which in isentropic
conditions is given by∑

ϕ(3.5) ⇒
∑

ϕD
ϕ
t (αϕρϕeϕ) = −pui,i. (3.7)

Compared to the total pressure work pui,i, the per-fluid pressure work on fluid ϕ, term V
in (3.5), thus scales as

βϕ/αϕ = 1/
(
αϕ + γϕ

∑
φ 6=ϕα

φ/γφ
)
. (3.8)

As already noticed by Vazquez-Gonzalez et al. (2016, 2020, resp. §§ “Explicit pressure. . . ”
& 3.6), this ratio can take very high values for αϕ → 0 if γφ � γϕ and αφ . 1 for some
φ 6= ϕ.

A particularly important case of stiff mixture is provided by the air–water two-fluid
system. It will be used for bench-marking purposes in all the following and will be described
by half-EOS of stiffened gas type

pϕ = Γϕρϕeϕ − (Γϕ + 1)Πϕ, (3.9)

which reduce to ideal gas for Πϕ = 0 and yield c2ϕ = (Γϕ + 1)(pϕ + Πϕ)/ρϕ. Parameters
for air and water in standard conditions are listed in Table 3.1 and it is thus found that
γw/γa = (ρc2)w/(ρc2)a ≈ 15, 500. Therefore, for small volume fractions of air below 10−5,
mixture volume changes are transferred to air inclusions with this strenuous amplification
factor.
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ρa (kg/m3) ρw (kg/m3) c2a (m2/s2) c2w (m2/s2)
1.2 1000 (343)2 (1480)2

Table 3.1: Approximate stiffened gas parameters for air (a) and water (w) in standard conditions.
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Figure 3.2: Representations of isentropic curves pr(ρr) in reduced coordinates deduced from (3.12)
with EOS parameters in last row of Table 3.2, with their first and second normalized derivatives
for αar = 0 to 1 in 0.2 increments (thick solid lines) and 0.05, 0.1, and 0.15 (thin dashed lines).
Noticeably, a discontinuity in the speed of sound and a divergence of the fundamental derivative
appear at αar = 0 and ρr = 1, thus inducing the stiff stiffness of the system near this singularity.

3.3.4 Isentropic binary mixture of ideal–stiffened gases

A more systematic exploration of the stiffness issues in mixtures of contrasted fluids—
approximated as ideal and stiffened gases and formally labeled here as ϕ = a and w—can be
carried out under the doubly isentropic assumption (adiabatic or no heat exchange between
fluids).

Isentropic relations pϕ = Pϕ(ρϕ) can be integrated from (3.9) using arbitrary reference
states as origins. These reference states will be chosen here as (i) pressure Πw with density
ρaπ for ideal gas and (ii) vanishing pressure with density ρw0 for stiffened gas. Elementary
calculations eventually yield

Pa(ρa) = Πw (ρa/ρaπ)1+Γ a

, (3.10a)

Pw(ρw) = Πw
((
ρw/ρw0

)1+Γw

− 1
)
, (3.10b)

with the usual relationship between fluid densities and global density

1/ρ = ca/ρa + cw/ρw, (3.11)

where cϕ are the (constant) mixture-defining mass fractions. Substituting ρϕ from (3.10),
the isentropic relation between p and ρ for the mixture is obtained in reduced form as

1/ρr = αa
rp
−1/(1+Γ a)
r + αw

r (pr + 1)−1/(1+Γw), (3.12)
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where the reduced pressure, density, and effective volume fractions are defined as

pr = p/Πw, (3.13a)

ρr = ρ (ca/ρaπ + cw/ρw0 ), (3.13b)

αa
r = (ca/ρaπ)

/
(ca/ρaπ + cw/ρw0 ), (3.13c)

αw
r = (cw/ρw0 )

/
(ca/ρaπ + cw/ρw0 ). (3.13d)

The reduced isentrope (3.12) is thus completely defined by the three dimensionless pa-
rameters Γ a, Γw, and αw

r = 1− αa
r . At fixed EOS or Γϕ, isentropes make a one-parameter

bundle of paths, as illustrated in Fig. 3.2 for the Γϕ values in last row of Table 3.2. Speeds
of sound and fundamental derivatives (Menikoff & Plohr, 1989, § II.B) can be obtained as
simple algebraic expressions when expressed as derivatives with respect to pressure

c2
r(pr) =

(∂ρr
∂pr

)−1

, Gr(pr) = 1− ρr
2

∂2ρr
∂2pr

(∂ρr
∂pr

)−2

. (3.14)

Interestingly, at low αa
r stiffness and stiff stiffness appear around ρr = 1 as visible on the

speed of sound and fundamental derivative in Fig. 3.2. Numerical tests of free isentropic
expansions, which follow these reduced isentropes, are presented in Section 3.5.5.

3.3.5 Deluding speed of sound; fundamental derivative

The impact of stiff stiffness can go, in indirect ways, beyond equations of internal energy
and pressure equilibration, respectively examined in Sections 3.3.2 and 3.4. Here, impact
on wave propagation will affect the CFL condition, of prime importance for compressible
hydro-schemes.

Numerous references have explored the speed of sound in mixtures under various equili-
bration assumptions (Wijngaarden, 2007; Flåtten & Lund, 2011, & refs therein) but appar-
ently none have dealt with the fundamental derivative. Only the case of the pressure- and
velocity-equilibrated mixtures will be considered here because it is stiffer and thus more con-
straining, and also because it is more easily tractable (no wave analysis coupled to multiple
momentum equations).

In the case of zero and infinite drag forces—the later yielding full velocity equilibration—
the respective speeds of sound with the present notations are (see for instance Ferrer et al.,
2012, eqs 3.4 & 3.7)

c2
0 =

∑
ϕβ

ϕc2ϕ, (3.15a)

c2
∞ =

∑
ϕ
ρϕ

ρ
βϕc2ϕ. (3.15b)

The former is a convex combination of the fluids’ speeds of sound, whereas the later, because
of the ρϕ/ρ factors, can produce sometimes severe reductions below the lowest of the fluids’
speeds of sound. For instance in the air–water mixture in normal conditions c∞ can be as
low as 30 m/s, making erroneously believe that time steps can increase at given CFL value.
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Lengthy but straightforward calculations can also provide the fundamental derivative of
the mixture as

G∞ =
∑

ϕ
βϕ

αϕ
βϕGϕ. (3.16)

This again is not a convex combination of the fluids’ fundamental derivatives, with corre-
sponding amplification of G∞ values as observed in Section 3.3.4. Artificial viscosity tech-
niques for shock capture could be significantly affected (Mattsson & Rider, 2015).

Amplification of the fundamental derivative can be so large as to affect the CFL con-
dition. This can be estimated by a simple model of wave propagation in a Lagrangian cell
experiencing volume change at a constant rate ui,i. The speed of sound in the cell varies as

dc
dt

=
∂c

∂ρ

dρ
dt

= −(G− 1)cui,i, (3.17a)

which is integrated as

c(t) = c(0) exp[−(G− 1)ui,it]. (3.17b)

An acoustic perturbation departing form an edge of the cell will thus propagate at variable
velocity and reach position∫ t

0
c(t′)dt′ = c(0)

exp[−(G− 1)ui,it]− 1

−(G− 1)ui,i
, (3.18a)

at time t while the other edge will be at position

∆x(t) = ∆x(0) exp[ui,it]. (3.18b)

The CFL ratio η identifies how far the perturbation has moved within the cell width, and
thus

η =
exp[−(G− 1)ui,i∆t]− 1

−(G− 1)ui,i∆t exp[ui,it]

c(0)∆t

∆x(0)
, (3.19a)

which yields when expanded at vanishing ∆t

∆t =
(

1− 1
2
(1 + G)ui,i

η∆x
c

)−1
η∆x
c
. (3.19b)

This last expression shows the correction factor with respect to the usual CFL definition
∆t = η∆x/c, which can be severely restrictive for compression ui,i < 0 if G is high. Sym-
metrically, the condition can be strongly relaxed for expansion. A CFL constraint may not
always benefit from the reduction in speed of sound if the fundamental derivative increases
concurrently.

3.4 Single time-step integration of pressure work

3.4.1 An important building block: the “implicit shock”

Consider a general integration scheme of internal energy over the isentropic evolution of a
single fluid. Regardless of scheme details, a single time step can be reduced to

e1 − e0 = −
[
(1− λ)p1 + λp0

]
(v1 − v0), (3.20a)

pn = P(vn, en) for n = 1, 2, (3.20b)
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which is consistent with the isentropic transform for v1 → v0. In all this section, upper
indices 0 and 1 label states at two given initial and final times, v = 1/ρ is the per mass
volume, P is the (half-)EOS, and fluid index ϕ is omitted for readability. Weighing factor λ
is in principle between 0 and 1 depending on the scheme details, at which bounds it yields
respectively explicit and implicit schemes.

The entropic character of schemes similar to (3.20) was previously analyzed by Lagoutière
(2000, § III.1.5.1) using Taylor–Lagrange expansions of entropy around state 1—assumed to
be accessible. A different constructive method is followed here (expanded from Bethe, 1942,
§ II.6), in which entropy changes are analyzed along the locus of accessible states 1.

Using v1 to parameterize the locus of states 1, differentiation of (3.20a) and the basic
thermodynamic relations between de1, dp1, dv1, and entropy ds1 yield (see also Bethe, 1942,
eq. 31)

de1 = −(1−λ)(v1− v0)dp1 −
[
(1−λ)p1+ λp0

]
dv1,

⇔
[
1 + (1−λ)Γ 1(1− v0/v1)

]
T 1ds1

=
[
(1−λ)(1− v0/v1)(c1)2/v1 + λ(p1− p0)

]
dv1. (3.21)

For v1 = v0 where s1 = s0, this relation yields ds1/dv1 = 0: s1(v1) is thus tangent to the
isentrope—just as the Hugoniot curve which is also osculator. The factor on T 1ds1 is positive
under condition

v0/v1 = ρ1/ρ0 ≤ 1 +
1

(1−λ)Γ 1
= v0/v1

∞, (3.22)

which represents the upper admissible bound for compression—higher compression ratios
are excluded as discussed below. The factor on dv1 has two contributions of opposite sign,
each of different signs depending on volume changes

expansion: 1− v0/v1 ≥ 0 p1− p0 ≤ 0, (3.23a)

compression: 1− v0/v1 ≤ 0 p1− p0 ≥ 0. (3.23b)

Thus, for λ = 0 the sign of the factor is well defined, yielding

expansion: ds1/dv1 ≥ 0, (3.24a)

compression: ds1/dv1 ≤ 0, (3.24b)

and (3.20) is always entropic—i.e. s1(v1) ≥ s0 for any admissible v1 > v1
∞. For λ = 1, the

situation is opposite and (3.20) always destroys entropy. For intermediate values of λ, the
balance between the two contributions is highly dependent on the details of the EOS and
will not be analyzed here.

An important feature of the s1(v1) relationship is its divergence to infinity as v1 → v1
∞,

with corresponding divergence of pressure p1 and energy e1. All pressures are thus accessible
but higher compression factors are not, with v0/v1

∞ = 1 + 1/Γ 1 for λ = 0. Remarkably,
for λ = 1/2, (3.20) represents the energy integration under the Rayleigh line with the
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well known result that the compression limit on the Hugoniot curve (or shock adiabat)
is v0/v1

∞ = 1 + 2/Γ 1 with the ensuing condition Γ > −2 (Bethe, 1942, eq. II)—but the
Hugoniot is not entropic for expansion when the fundamental derivative is positive (Bethe,
1942, eq. I & refs therein). By analogy, the transform defined by (3.20) for λ = 0 will thus
be designated here as an “implicit shock.”

The universal entropic character of the implicit shock—regardless of EOS, step size, and
the possible addition of external entropy sources—was recognized by Despres & Lagoutiere
(2007) as an important ingredient in order to ensure the stability of multi-fluid thermody-
namic evolution with pressure-equilibration, especially when embedded into complex algo-
rithms.

3.4.2 Another building block: the “implicit isentrope”

Despite its universal entropic character, the implicit shock presented in Section 3.4.1 has
two significant drawbacks: (i) it can be highly over-dissipative in compression, so much
so that an asymptotically divergent pressure is obtained at finite volume and (ii) simple
numerical estimates of implicitly shocked states can thus be of low accuracy. This motivates
the introduction of other one-step schemes in order to better approximate the isentropic
curve even for significant volume changes.

The implicit isentrope is here defined by approximating the pressure work over the isen-
trope with the pressure on the isentrope at same final volume. Keeping the same notations
of Section 3.4.1, the final state (v1, e1, p1) is thus obtained as

e1 − e0 = −p∗(v1 − v0), (3.25a)

p∗ = P∗(v1, s0), (3.25b)

p1 = P(v1, e1), (3.25c)

where P∗ is the (half-)EOS expressed in volume–entropy variables and s0 is the entropy of
the initial state. In contrast to (3.20a), no intermediate pressures between p0 and p∗ will be
considered for the pressure work in (3.25a) as they would again introduce a here irrelevant
dependence on EOS details.

The entropic character can be analyzed from pressure work bounding. Denoting e∗ the
energy on the isentrope at volume v1, it is found

e∗ = e0 −
∫ 1

0
P∗(v, s0)dv ≤ e0 − p∗(v1 − v0) = e1, (3.26)

which holds because ∂p/∂v|s < 0 from the second principle of thermodynamics (the speed
of sound is real). Thus s1 > s0 since ∂e/∂s|v = T > 0, and the implicit isentrope is entropic.

Now, the implicit shock being always entropic and assuming ∂p/∂s|v > 0 (positive
Grüneisen coefficient, valid for most materials), its pressure at final state p1

IS verifies p1
IS ≥

87



2/3 1 3/2 2
0

1

2

3

4

p(v)

Figure 3.3: Illustration of the relative positions of the implicit isentrope (solid thin), implicit shock
(dashed thin), Hugoniot (dotted thin), and isentrope (solid thick) in p(v) representation from point
(1, 1) for an ideal gas with Γ = 2. Implicit isentrope and implicit shock are always entropic
whereas Hugoniot is entropic in compression only. The implicit shock displays a vertical asymptote
at v = 1 + 1/Γ = 2/3, not represented here.

p∗. Therefore

e1
IS = e0 − p1

IS(v1 − v0) ∣∣∣∣∣ ≤ e0 − p∗(v1 − v0) = e1 if v1 ≥ v0,

≥ e0 − p∗(v1 − v0) = e1 if v1 ≤ v0,
(3.27)

and the implicit isentrope is more entropic than the implicit shock for expansion, but less
entropic for compression. This last property is useful as the implicit shock can be excessively
over dissipative when approaching its asymptote at v1

∞.
The relative positions of the implicit shock, implicit isentrope, Hugoniot, and isentrope

locus are illustrated in Fig. 3.3. As expected, the implicit isentrope and shock being tangent
at v0, their entropy residues are of order two (order three for the Hugoniot).

3.4.3 Multi-fluid pressure equilibration

All single-pressure multi-fluid schemes include a pressure equilibration procedure, either
embedded within the general evolution step or carried out in a separate sub-step after a
(possibly) quasi-equilibrated evolution sub-step. Regardless of scheme details, equilibration
consists in finding a common pressure for a final state and at given total volume and energy
changes—or no changes if equilibration is carried out separately at constant total volume
and energy. Obviously, an ideal scheme would be able to capture isentropic flows to the
scheme order while remaining entropic: this is precisely the key feature of the step processes
given in Sections 3.4.1 and 3.4.2.

Without loss of generality, pressure equilibration is here considered only in the case of
constant total volume and energy. Extending notations of Section 3.4.1, this amounts to
solving the implicit set of 2Φ + 2 equations on the 2Φ + 1 variables (vϕ1, eϕ1, p1) (Φ being
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the number of fluids ϕ)

eϕ1 − eϕ0 = −〈p〉ϕ(vϕ1 − vϕ0), (3.28a)

p1 = Pϕ(vϕ1, eϕ1), (3.28b)

0 =
∑

ϕc
ϕ(vϕ1 − vϕ0), (3.28c)

0 =
∑

ϕc
ϕ(eϕ1 − eϕ0), (3.28d)

where cϕ are the (constant) fluid mass fractions. Effective pressures 〈p〉ϕ do not represent
actual thermodynamic pressures but merely let factorize the volume changes in the energy
changes, regardless of actual path and irreversible contributions. 〈p〉ϕ must be closed with
the existing variables in order to make the system well defined. A simple constraint is a
common pressure 〈p〉ϕ = 〈p〉, thus energy conservation follows from volume conservation—
this constraint is actually mandatory for two fluids Φ = 2. Four closures will be considered
here, three classical and one specific to the multi-fluid GEEC scheme.

Coupled implicit shocks This is the straightforward closure 〈p〉ϕ = p1 which reduces the
system to coupled implicit shocks on each fluid. This procedure, apparently pioneered under
somewhat different assumptions by Lagoutière (2000, § III.1.5.1) and Despres & Lagoutiere
(2007, § 4.1), is obviously entropic on each fluid according to Section 3.4.1. It is also rather
simple, the equations being generally solved by iterative Newton–Raphson-like algorithms
with EOS calls on each fluid at each iteration. However, for large initial imbalances it is
limited by the 1 + 1/Γϕ maximal per-fluid compression (3.22).

Coupled implicit isentropes In order to reduce the impact of over-dissipation with
implicit shocks, it appears natural to use implicit isentropes and set now 〈p〉ϕ = p∗. This
procedure is akin to full isentropic path reconstructions (Miller & Puckett, 1996). However,
it is not compatible with an exact equilibration of fluid pressures and a final equilibration
sub-step must be added. Using for this purpose the implicit shock, the final equilibration
scheme becomes

eϕ∗ − eϕ0 = −p∗(vϕ∗ − vϕ0), (3.29a)

p∗ = Pϕ∗(vϕ∗, sϕ0), (3.29b)

0 =
∑

ϕc
ϕ(vϕ∗ − vϕ0), (3.29c)

eϕ1 − eϕ∗ = −p1(vϕ1 − vϕ∗), (3.29d)

p1 = Pϕ(vϕ1, eϕ1), (3.29e)

0 =
∑

ϕc
ϕ(vϕ1 − vϕ0), (3.29f)

(these are two successive systems of 2Φ + 1 equations on 2Φ + 1 variables, respectively
(vϕ∗, eϕ∗, p∗) and (vϕ1, eϕ1, p1)). Now, this procedure comes at a significant price as, on top
of iterative solution for the final implicit-shock procedure, the isentropic (half-)EOS Pϕ∗

must be either known or reconstructed from integration of Pϕ.
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Coupled exact isentropes If isentropes are known or reconstructed from integration, it
appears possible to explicitly introduce dissipation and solve the 2Φ + 2 equations on the
2Φ+ 2 variables (vϕ1, eϕ1, p1, δQ)

eϕ1 = Eϕ∗(vϕ1, sϕ0) + θϕδQ, (3.30a)

p1 = Pϕ(vϕ1, eϕ1), (3.30b)

0 =
∑

ϕc
ϕ(vϕ1 − vϕ0), (3.30c)

0 =
∑

ϕc
ϕ(eϕ1 − eϕ0), (3.30d)

where δQ is the total irreversible energy and θϕ are fixed positive weighing coefficients such
that

∑
ϕθ

ϕcϕ = 1. The choice of θϕ values can here be dictated by other considerations—for
instance completely arbitrary or closely related to the physical processes in the system—
which reflect the intrinsically underdeterminate distribution of entropy production (Callen,
1960, 1985, resp. App. C & pb. 2.7-3). It thus provides access to all the possible entropic
solutions of the pressure equilibration problem—including the coupled implicit shocks and
isentropes although the determination of corresponding θϕ could be complex.

Coupled iso-energies The GEEC scheme—as various others (for instance Chang & Liou,
2007, § 2.8)—has the peculiarity of using explicit evolution equations to generate eϕ1 from
known pressure works on each fluid without previous knowledge of their volume changes.
Per-fluid pressure works are built from estimates to the scheme order of the common pres-
sure and the per-fluid volume changes. The scheme must then be complemented with a
final thermodynamic closure with exact pressure equilibration, adapted from (3.28) into an
implicit set of Φ+ 1 equations on the Φ+ 1 variables (vϕ1, p1)

p1 = Pϕ(vϕ1, eϕ1), (3.31a)

0 =
∑

ϕc
ϕ(vϕ1 − vϕ0). (3.31b)

This closure is not associated with an integration path. The scheme quality thus hinges
primarily on the entropic character of the pressure work estimates, embedded in the en-
ergies eϕ1 provided by (3.28a). The native GEEC scheme, as visible on (3.53), formally
involved an explicit pressure p0 in (3.28a), thus making the scheme non-entropic according
to Section 3.4.1.

3.4.4 EEIP: Explicit estimates of implicit pressures

According to Section 3.4.3, the basic principles of thermodynamics make pressure equili-
bration achievable: (i) always (it is entropic), (ii) regardless of EOS stiffness or contrasts,
(iii) with implicit pressure closures (explicit closures may be entropic but are not universal),
(iv) yielding non-unique results (distribution of dissipation must be specified by external
conditions included into the implicit pressure closures), and (v) with some simple closures
suited to numerical schemes. However, implicit pressure closures can make implementation
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complex and computation expensive in practical applications: this is aggravated by the fact
that pressure couples all the kinetic and internal energies in multi-fluid flows, thus making
implicit pressure schemes especially convoluted and expensive (see for instance Despres &
Lagoutiere, 2007).

Now, as also appeared in Section 3.4.3, there is a significant margin of freedom to select
implicit pressure closures for universal entropic equilibration. Differences do appear in how
the entropy production is distributed among the fluids, but if robustness alone is sought, this
freedom may be exploited to resort to estimates of implicit pressures, and moreover to explicit
estimates. Of course, some loss of universality may be expected but may be considered as
acceptable if kept under control on (somewhat) restricted classes of systems and EOS and
if inducing (big) gains on implementation complexity and computational resources.

The approximate prediction of pressure within multi-fluid hydro-schemes requires solving
its evolution equation which, for the backbone model, is derived in 3.B.3 as

∂tp+
(∑

φβ
φuφi
)
p,i︸ ︷︷ ︸

T

= − γ ui,ip︸ ︷︷ ︸
V

+
∑

φβ
φΓ φρφẘφ︸ ︷︷ ︸

I

, (3.32)

where γ is the mixture adiabatic exponent given by

1/γ =
∑

φα
φ/γφ, (3.33)

and all other quantities are defined by (3.6). Factor γ can make this equation extremely
stiff as discussed in Section 3.3.3 but moreover, p being the derivative of energy, it carries
the stiffness of the energy stiffness. Also to be noticed, the sign of the stiffness carried
by ui,i may not be constant depending on compression or expansion. All this makes usual
explicit or implicit integration schemes unacceptable for (3.32) in general, as their time step
constraints could be incompatible with usual CFL limitations.

Equation (3.32) displays three very different contributions to be time integrated:

T is a Lagrangian transport term with a velocity given by a convex combination of fluid
velocities: it is thus taken into account by underlying hydro-schemes under CFL-like
conditions of time step and can be taken care of through splitting strategies;

I is an irreversible source term which can be significant (or even dominant) but which will
generally increase the estimated pressure: This increase leads to a higher estimation of
the pressure work in expansion (in absolute value) and thus destructs entropy. Thus,
this term is ignored.

V is the main stiff term analyzed in this section: it must be time integrated to provide
the EEIP at each time step.

When only retaining term V, (3.32) takes the particularly simple structure of a local
scalar ODE, possibly stiff. In this case, a universally stable and positive integration scheme
is the “exponential scheme” which can be viewed as intermediate between the first order
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explicit and implicit schemes. Denoting τ = −γ ui,i∆t, all these schemes can be written in
the common form at time step n

p∗ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

pn(1 + kτn)1/k General,

pn(1 + τn) Expl. k = 1, −1 < τn < +∞,
pn exp τn Expn. k → 0, −∞ < τn < +∞,
pn(1− τn)−1 Impl. k = −1, −∞ < τn < +1,

pn Unit. k → ±∞, −∞ < τn < +∞,

(3.34)

where the restriction intervals on τn for stable positive behavior are appended.
The exponential scheme at k = 0 is especially appealing for its widest range of stability,

and for its faster than algebraic character with correspondingly higher dissipation—in par-
ticular during expansions τn < 0 where energies diminish. It was originally introduced by
Certaine (1960) for stiff problems (Curtiss & Hirschfelder, 1952) and was reviewed recently
(Minchev & W.Wrigh, 2005; Eichwald, 2013, § III).

Combinations of schemes such as (3.34), depending for instance on the sign of τn, could
also be considered as shown in Section 3.5 in the case of the GEEC scheme. It must be
stressed that (3.34) is not intended to be a prediction of time-evolved pressures such as pn+1/2

or pn+1, hence notation p∗.

3.5 One-dimensional numerical tests

3.5.1 EEIP in the GEEC scheme

The general method of EEIP described in Section 3.4 was tested within the GEEC ALE (Ar-
bitrary Lagrange–Euler) multi-fluid scheme—developed by Vazquez-Gonzalez et al. (2020),
briefly introduced in Section 3.2.3, and fully described here for reference in 3.C. It is here
used in its purely Eulerian mode by setting to zero the user-defined grid velocity.

The “native” GEEC scheme appears especially appealing in the present study thanks to
some of its convenient features:

1. consistent isentropic behavior (to the scheme order) stemming from a mimetic deriva-
tion of the least action principle and the Gibbs equation, for the respective momentum
and energy equations (Vazquez-Gonzalez et al., 2020, § 3);

2. specific velocity discretization (see Fig. 3.9), whereby transport does not induce volume
changes of individual fluids—which in turn are fully taken into account by thermody-
namic closures at the end of the cycle;

3. simple option for velocity equilibration within the cycle after momentum calcula-
tions (3.50c);

4. explicit user-tunable dissipation terms for shock capture, generally reduced to artificial
viscosity stresses (3.49) and (3.53d);
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5. fully explicit algorithm, including for pressure integration (3.48)—which is thus not
fully entropic and potentially fragile for stiff contrasted mixtures.

The introduction of an EEIP p∗ appears straightforward: (i) a simple sub-step (3.48) in-
volving one or a combination of options in (3.34) is introduced to compute p∗ and (ii) p∗

is substituted for the explicit pressure pn in all the increment equations of momenta (3.50)
and internal energies (3.53) thus preserving consistency and energy conservation. The final
pressure equilibration sub-step (3.54a) remains unchanged to generate pn+1.

Preliminary explorations of the tests presented in the next sections provided some further
hints to upgrade the native scheme into an EEIP version:

1. As already mentioned in Section 3.4.4, transport appeared controlled by a CFL con-
dition and was never stiff. It can thus be safely discarded from the pressure equa-
tion (3.48) which is then local to each cell.

2. The native scheme robustly captured strong compression phases, whereas an exponen-
tial EEIP could then be fragile with respect to floating point overflow. The entropy
deficit of the native scheme seems to be hidden here by the increase of internal energy
and by the numerical dissipation sources.

3. In contrast, the native scheme performed dismally under strong expansion phases,
whereas an exponential EEIP appeared particularly robust.

These elements inspired a simple hybrid closure for the EEIP (3.48), adapted from (3.34)

p∗ = pn exp
(

min[τn, 0]
)
, (3.35)

which was used in all the present tests. This approach will be designated as Hybrid-EEIP
or H-EEIP in all the following.

The most significant disruption of the dissipative character of EEIP in the scheme appears
from the mismatch between time centerings of the volume rates of change 〈V̊ 〉n−1/2

c and 〈V̊ 〉nc
respectively in pressure and artificial viscosity (3.48) and (3.49a), and their works (3.53a)
and (3.53d). This can lead to a loss of robustness for large time steps with possible sign
reversal of these volume rates of change, i.e. nonphysical entropy destruction. A simple
but efficient improvement, which was not experimented here, could consist in a prediction-
correction approach of un−

1/2
c and 〈V̊ 〉n−1/2

c (akin to Llor et al., 2016, § 2.5).

3.5.2 Selection and design of test cases

93



Γ
w

Le
ft

in
it
ia
ls

ta
te
x
<

0

Sh
oc
k
tu
be

de
sc
ri
pt
io
n

Π
w

R
ig
ht

in
it
ia
ls

ta
te
x
>

0
F
in
al

D
om

ai
n

C
el
ls

C
F
L

(Γ
a
=

2/
5
)

α
a

ρ
a

α
w

ρ
w

p
a,
w

u
a,
w

ti
m
e

W
at
er
-t
o-
ai
r,
cr
os
s-
co
nt
am

in
at
ed

3.
4

10
−

1
4

50
1
−
α
a

10
3

1
09

−
49

0
2
·1
0−

4
[−

3 4
,

1 4
]

10
00

0.
2

(S
au

re
l&

A
bg

ra
ll,

19
99

a,
F
ig
s
6
&

7)
6
·1
08

1
−
α
w

50
10
−

1
4

10
3

10
5

W
at
er
-t
o-
ai
r,
cr
os
s-
co
nt
am

in
at
ed

,
3.
4

10
−

1
4

1
1
−
α
a

10
3

1
01

2

0
7
·1
0−

6
[−

3 5
,

2 5
]

40
00

0.
4∗

en
ha

nc
ed

st
iff
ne

ss
6
·1
08

1
−
α
w

1
10
−

1
4

10
3

1
05

A
ir
-t
o-
w
at
er
,c

ro
ss
-c
on

ta
m
in
at
ed

1.
8

10
−

1
4

11
30

7†
1
−
α
a

22
31
†

1
09

0
4
·1
0−

4
[−

1 4
,

3 4
]

10
00

0.
2

(L
io
u
&

C
ha

ng
,2

00
5,

F
ig
.1

7.
11

)
8.
5
·1

08
1
−
α
w

1
.1
31
†

10
−

1
4

10
25
†

1
05

W
at
er

do
ub

le
ex
pa

ns
io
n
to

va
cu

um
,

4
10
−

1
2
≈

1
.2
‡

1
−
α
a
≈

1
.2
‡
≈

1.
3
‡
≈
−
0.
4‡

1/
4

[−
1
,1
]

20
00

0.
7

ai
r
co
nt
am

in
at
ed

1
≈

0
.4
‡

W
at
er

do
ub

le
sh
oc
k,

ai
r
co
nt
am

in
at
ed

,
4

10
−

8
10
−

3
1
−
α
a

1
1
0−

1
4

4/
3

5
/
2
2

[−
1
,1
]

50
0

0.
3

lo
w
,m

ed
iu
m
,a

nd
hi
gh

ai
r
di
ss
ip
at
io
n

1
−
4
/3

∗
F
ir
st

te
n
ti
m
e
st
ep
s
co
m
pu

te
d
w
it
h
re
du

ce
d
C
F
L
=

0.
0
4
.

†
D
en
si
ti
es

he
re

ad
ju
st
ed

in
or
de
r
to

se
t
in
it
ia
lt

em
pe

ra
tu
re

at
30
8
K
.

‡
A
ct
ua

li
ni
ti
al

de
ns
it
y,

pr
es
su
re
,a

nd
ve
lo
ci
ty

to
10
−
1
6
ac
cu
ra
cy
:
ρ
=

1.
1
7
6
6
8
6
0
5
0
0
4
2
2
4
7
,p

=
1.
2
5
5
8
1
2
6
3
0
4
8
9
6
7
3
,u

=
0.
4
2
9
9
8
5
3
8
5
6
2
8
9
3
1
7
+
0
.0
0
3
7
5
.

T
ab

le
3.
2:

P
hy

si
ca
li
ni
ti
al

st
at
es

an
d
nu

m
er
ic
al

co
nd

it
io
ns

fo
r
th
e
se
ve
n
ai
r-
w
at
er

sh
oc
k
tu
be

te
st
s
ca
rr
ie
d
ou

t
in

th
e
pr
es
en
t
w
or
k.

D
efi

ni
ti
on

of
C
F
L
an

d
cl
os
ur
e
of

ar
ti
fic

ia
lv

is
co
si
ty

ar
e
di
sc
us
se
d
in

Se
ct
io
n
3.
5.
3.

94



Numerical schemes for multi-fluid pressure equilibration can be conveniently bench-
marked with 1D test cases on velocity-equilibrated air–water mixtures at very low volume
fractions of either fluid. This is generally sufficient because of four important features:

1. pressure equilibration is essentially a local ODE (in Lagrangian coordinates);

2. which is weakly coupled to fluid-velocity differences;

3. whose stiffness is enhanced by fluid contrasts, as for air and water which are of prime
practical importance; and

4. with maximal stiffness at low air volume fractions, where one-way coupling of the
contaminant fluids holds.

As a premium, the one-way coupling condition makes the system behave as single-fluid, for
which solutions of the evolution equations are often tractable analytically and independently
of shock dissipation details. Tests with non-vanishing velocity differences or at non-negligible
volume fractions have also been performed (see for instance Toumi, 1996; Toumi & Kumbaro,
1996), but they appear less constraining on accuracy (there is not a unique solution to
Riemann problems) and robustness (stiffness appears at low volume fractions).

Previous robustness tests have thus privileged near-pure shock tubes, with air and water
on each side of an initial pressure discontinuity and with slight cross-contamination of air
by water and water by air. The dominant fluids evolve according to the Riemann problem
solution, whereas the contaminant fluids merely sample the surrounding pressure and evolve
isentropically unless submitted to shocks. In principle, the volume fractions of contaminant
fluids could be arbitrarily small, but in practice, robustness and stability are generally lost
over positivity or entropy violations below some volume-fraction threshold in the order of
10−7 at best.

For the present work, two tests among the most commonly reproduced so far were re-
tained: the water-to-air and air-to-water shock tubes of respectively Saurel & Abgrall (1999a,
Figs 6 & 7) and Liou & Chang (2005, Fig. 17.11) summarized in Table 3.2. Both of these
shock tubes have been tested in the present work, but with initial volume fractions of con-
taminant fluids at 10−14, significantly below usual levels and about two orders of magnitude
above round-off level (see Table 3.2).

The water-to-air test was re-explored in its basic form by Saurel & Abgrall (1999b, § 4.1)
and Saurel & Le Métayer (2001, § 4.1.1) among others. Some significant variations were
also introduced: Kitamura et al. (2014, § 3.3.3), Chang & Liou (2007, § 3.4), Pandare et al.
(2019, § 5.3), Luo et al. (2021, § 4.1) kept initial pressures but corrected initial densities so
that temperature was uniform at 308 K; Sun (2013), Allaire et al. (2002, § 8.3), Saurel et al.
(2003), and Saurel et al. (2008, § 7.1 & 7.2) modified the EOS, respectively with Tait EOS
for water, Van der Waals EOS for the gas, plasmas instead of water and air, and dodecane
liquid–vapor EOS; La Spina & de’ Michieli Vitturi (2012, § 5.2) explored the vanishing drag

95



between fluids; and Murrone & Guillard (2005, §§ 5.2.1 & 5.2.2) tested non negligible volume
fractions.

To the authors’ knowledge, the most strenuous variations on the water-to-air shock tube
were presented by Saurel et al. (2009, § 4.3.2) and Saurel et al. (2007, 2009, §§ 5 & 4.3.1)
with respectively a thousand-fold-increased initial high pressure (at 107 Pa) and a fifty-fold-
reduced initial air density (at 1 kg/m3). In the present work, these challenges have been
combined into a new configuration with initial density and pressure ratios of respectively
103 and 107 (see Table 3.2).

The less common dual case of air-to-water shock tube was re-explored mostly by Liou
et al. (2008, § V.B), Kitamura et al. (2014, § 3.3.1), and Pandare et al. (2019, § 5.2). Chang
& Liou (2007, § 3.3), Li (2020, § 5.2), and Denner et al. (2018, § 7.5.2) considered the test
with modified water EOS, with respectively Γw = 0.932, 0.9276, and 3.1. This test being
less demanding than the water-to-air shock tubes, no enhanced configurations are proposed
here.

Because robustness is mostly challenged by zones of air-contaminated water (see Sec-
tion 3.3.4), two specific configurations were also designed to separately test expansions fans
and shocks on this mixture (see Table 3.2): a free expansion to zero-pressure final state, and
a shock on zero-pressure initial state—an extension of the classical test of Noh (1987) (see
Table 3.2).

Expansion to low pressures were explored as idealized cavitation tests by Saurel & Abgrall
(1999a, § 6.1, Fig. 20), Saurel & Le Métayer (2001, § 4.2.1), or Kitamura et al. (2014, § 3.4). A
critical element here for preserving robustness of computations is the initial volume fraction
of air which is usually set above 10−3. In the present work, the initial volume fraction is
again set at 10−12, far below usual levels (see Table 3.2). Further details are presented in
Section 3.5.5 with the derivation of a semi-analytical solution in 3.D.

The extension of Noh’s test to stiffened gas EOS was considered by Burnett et al. (2018).
3.E further considers the case of an ideal–stiffened gas mixture assuming that fluids are
adiabatic and that shock dissipation can be distributed at will over the fluids. Again,
strenuous conditions are defined by low air volume fractions, here set at 10−8 (see Table 3.2).
Further details are presented in Section 3.5.6.

3.5.3 General numerical conditions, shock dissipation

Thermodynamic closure Although the pressure equilibration algorithm of the present
work intends to be stiffness compliant, it may still be ill-conditioned, i.e. sensitive to small
numerical perturbations induced for instance by round-off. This important element was
already noticed by Chang & Liou (2007, § 2.8)—whose thermodynamic closure is very similar
to that of the present GEEC scheme in (3.54a)—and becomes especially critical at very low
volume fractions close to round-off limits. Some standard numerical precautions were thus
taken in solving equations for the final state at the end of a cycle, similar to those of Chang
& Liou (2007, § 2.8). These will not be elaborated here as they fall off the scope of the
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present study.

CFL definition It is common practice to define the (variable) time step at each itera-
tion with respect to some maximum CFL value over the calculation domain. This makes
comparison of different tests less objective as speeds of sound in numerically singular cells
can be significantly above consistent values. As all the test cases in the present work have
quasi-analytical solutions, analytical speeds of sound can be computed and, combined with
cell sizes and fluid velocity in (3.47), provide a reference CFL for time steps. The reported
CFL values in Table 3.2 follow this definition and were chosen to be the highest “no-crash”
tenths. No corrections with the fundamental derivative were included (see Section 3.3.5) so
as to facilitate comparisons with other existing results.

Artificial dissipation As mentioned in Section 3.4.3 and previously discussed by Vazquez-
Gonzalez et al. (2020, § 3.7), shock dissipation in a multi-fluid system must be specified on a
case-by-case analysis to mimic the actual physical dissipation processes in the system: just
as for dissipation from pressure equilibration (see Section 3.4.3), thermodynamic principles
alone cannot define shock dissipation in full. Therefore, in the absence of universal physical
rationales, numerical tests can be carried out with dissipation weighs which are either:
(i) selected by some “common sense” argument or (ii) pushed to extreme values, possibly
nonphysical but strenuous enough to test robustness limits. In the present work, all the
test cases were carried out with a standard linear–quadratic artificial viscosity closure of
the mixture as defined by common practice (Mattsson & Rider, 2015, & refs therein)—
including a linear component in expansion phases (3.49),—but the associated dissipation
was distributed with different weighing λϕ in (3.53d). λϕ were defined as Grüneisen scaled
coefficients for shock-tube tests (Vazquez-Gonzalez et al., 2020, eq. 27), or as ad hoc (possibly
extreme) user-predefined coefficients for Noh’s tests. Naturally, the intrinsic dissipation of
the scheme—i.e. per fluid numerical residues on transport, pressure work, and pressure
equilibration—are fixed once and for all in the GEEC scheme and are not affected by λϕ.

3.5.4 Shock tube tests

Results from the three shock-tube tests of Table 3.2 are summarized in Fig. 3.4.
Some general features can be observed:

1. For legibility and scheme testing consistency, the initial values of αa and αw in the
three shock-tube tests where chosen equal. The robustness was thus limited by the
weakest of the cells in the weakest of the tests. Some of the reported volume fractions
could thus be somewhat reduced without affecting robustness.

2. The three tests were computed without any major difficulty with CFL values in usual
ranges for hydro-schemes and regardless of αa values down to 10−14, well below the
lowest of previously reported values around 10−7.
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Figure 3.4: Final simulated profiles for the three “cross-contaminated” shock-tube numerical tests
discussed in text: air-to-water (first column), enhanced air-to-water (second column), and water-
to-air (third column). In each column from top to bottom (log scales): combined air and water
volume fractions (first row); mixture, air, and water densities (respectively thick solid, dashed
and dotted lines, second row); left expanded views on computed and analytical mixture density
(respectively thick and thin lines, third row); right expanded views on computed and analytical
mixture density (respectively thick and thin lines, fourth row). Notice the wide dynamical ranges
on volume fractions and the shifts on shocks positions. See numerical conditions in Table 3.2.
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Figure 3.5: Computed and analytical density profiles (respectively thick and thin lines) around
the shock wave at three different times for the enhanced water-to-air shock tube. The constant
shift between computed and analytical profiles signals the presence of an initial time shift due to
numerical effects.

3. Large swings of air densities over three orders of magnitude on short distances can be
observed close to contacts and shocks (second row in Fig. 3.4).

4. In the enhanced-stiffness water-to-air case it was necessary to perform ten time steps
at a tenth of the nominal CFL value in order to pass the initial transients. This
is attributed to the very extreme conditions which are generated as the three waves
start separating (expansion, contact, and shock) and where air and water densities
experience over- and under-shoots by an order of magnitude (see Fig. 3.4).

5. For all tests, the native GEEC scheme provided very similar results as its H-EEIP
modified version, possibly with some slight reductions of maximum “no-crash” CFL
values which were not specifically measured here.

6. Numerical diffusion is observed as the present GEEC scheme was developed to first
order. The initial state for the standard water-to-air shock tube was thus set into a
uniform motion (see Table 3.2) adjusted to compensate the displacement of the contact
discontinuity and reduce its spreading (first column in Fig. 3.4).

7. Matching to the analytical solutions is observed in all cases (see last two rows in
Fig. 3.4) except for numerical diffusion effects and time shifts on contacts and shocks
for the water-to-air cases.

8. The mismatch observed on shock position in the enhanced water-to-air test appears
to be due to the initial transient where the three coincident waves separate slowly and
experience numerical diffusion. However, after full separation, shocks do propagate
according to theory up to a time shift at origin. This is visible on computed and
analytical profiles at different times (see Fig. 3.5).
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Figure 3.6: Final simulated half-profiles of double expansion initiated as in Table 3.2: air and
water densities (respectively solid and dashed lines, left column), air volume fraction and pressure
(respectively top and bottom, middle column), and emulated entropy change from initial state for
air and water (respectively top and bottom, right column). Corresponding semi-analytical solutions
provided in 3.D are given in thin lines.

3.5.5 Isentropic two-fluid expansion test

The isotropic expansion of air-contaminated water can be described by a semi-analytical self-
similar solution which is derived in 3.D. The profiles connecting high pressure and vacuum for
varying reduced volume fractions of air αa

r are illustrated in Fig. 3.10. At low αa
r , expansion

proceeds in two phases: (i) at pressures comparable to Πw, both water and air expand,
whereas (ii) at vanishing pressures, water evolves practically at constant volume while air
expands and eventually reaches unit volume fraction. In between, a fast transition occurs
with an increase of air density by possibly many orders of magnitude. This is the stiffest
moment during expansion, with the occurrence of stiff stiffness according to the analysis of
Section 3.3.4 and Fig. 3.2.

With the initial conditions of the water double expansion in Table 3.2, the two step
expansion are well separated in the simulations carried out with the H-EEIP corrected
scheme, as illustrated in Fig. 3.6. The test in Table 3.2 is ideally defined assuming that
pressure falls to zero at the center of the domain without opening a vacuum cavity. This
is desirable because a Eulerian scheme cannot drain completely the central cells. Now,
numerical dissipation actually makes air expand more than isentropically and in order to
reach air volume fractions close to unity at origin, it is necessary to increase slightly the
initial velocity. As specified in Table 3.2, it is here increased in order that the exact solution
would leave a void of fifteen cells on each side of origin as visible in Fig. 3.6.

Some general features can be observed:

1. Simulations are robustly carried out with the H-EEIP-corrected scheme at an initial
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air volume fraction of αa
r = 10−12 and a constant CFL value of 0.7. For this CFL value

the native scheme could not handle volume fractions below 10−3 without crashing.
This is consistent with the analysis of Section 3.4.1 whereby explicit schemes destroy
entropy—which here cannot be offset by isentropic heating during compression phases,
in contrast for instance with Noh’s test in Section 3.5.6.

2. Artificial viscosity was set to zero, a1 = 0, in order to better capture the isentropic
evolution. Usual non-zero values would further increase entropy production, without
impacting the scheme robustness.

3. The scheme robustness allows to reach final pressures well below 10−20 at origin.

4. The steep central transition near x = 0.6 is smeared and delayed by numerical diffusion.

5. Large errors on air density and volume fraction, as well as mixture pressure, appear
during the air expansion phase between x = 0 and ≈ 0.5 (see left two columns in
Fig. 3.6). These errors can be attributed to numerical dissipation which impacts
primarily air, as visible on the pseudo-entropy profiles (see right column in Fig. 3.6).
Formally, the implicit pressure in H-EEIP amounts to adding a linear artificial viscosity
with a coefficient locked onto the pressure stiffness τ in (3.34)—instead of being user
defined.

6. Slight oscillations on pressure are observed at the beginning of the air expansion phase,
between x ≈ 0.2 and 0.5. These oscillations, which appear “frozen” and do not impact
stability, are probably produced by the combination of very low pressure (below 10−10),
absence of artificial viscous stress, vanishing numerical diffusion due to low velocity in
this phase, and coupling to round-off errors.

7. Entropy production on the mixture is very mild even near the origin (see upper right
in Fig. 3.6). It is much more modest than that produced with Godunov type schemes
(for instance Shen et al., 2010, fig. 9).

3.5.6 Two-fluid extension of Noh’s test

The initial state of the original test of Noh (1987) consists of an ideal gas at unit density,
zero pressure (hence zero temperature and speed of sound), and with uniform unit velocity
towards a wall at the origin. An infinitely strong shock thus propagates from the wall,
inducing the theoretical maximum shock compression. This is obviously a final horizon of
stiffness for CFD and makes a mandatory test for most shock-physics codes. It is thus
appealing to extend this model flow to more complex EOS and to multi-fluid systems.

For stiffened gas, the zero pressure condition does not make a vanishing speed of sound.
But if contaminated by an ideal-gas, however small its volume fraction, the speed of sound
vanishes (see Section 3.3.4 and Fig. 3.2). Paradoxically, this does not define the shock from
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Figure 3.7: Final simulated half-profiles for the extended Noh numerical test on “air-contaminated”
water (normalized stiffened gas) for three shock dissipation levels on air as defined in text: low,
medium, and high (respectively first, second, and third columns at κa = 10−2, 1, and 102). In each
column from top to bottom: computed and analytical mixture density (respectively thick and thin
lines, first row); air volume fractions (second row, log scale); mixture and air densities (respectively
thick solid and dashed lines, third row, log scale); expanded views on air pressure, artificial viscosity
stress, volume fractions, and mixture density in shock region (respectively thick, thick dashed, thin,
and thin dotted lines, fourth row). Notice the wide dynamical ranges on volume fractions, the high
air densities at rising edges of shocks, and the air expansion under shock for high shock dissipation
(third column). See numerical conditions in Table 3.2.
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Figure 3.8: Final simulated profiles of air and mixture densities (resp. solid and dashed lines) for
the multi-fluid Noh numerical test on normalized “air-contaminated” water with and without added
initial uniform velocity of u = 6/5 (resp. thich and thin lines) for κa = 10−2, 1, and 102 (resp.
from left to right). The physically identical shocks on each side are perturbed by the asymmetry
of the transport-induced dissipation, thus producing different air shocked densities in a ≈ 3/2 ratio
despite exact jump conditions on the mixture density.

κa 10−2 1 102

αa0 Weak Medium Strong
10−8 5,500 55 0.55
1/3 1,200 17 NA
2/3 300 8.5 NA
1− 10−8 9.4 6 NA

Table 3.3: Air-density ratios ρa1/ρa0 across shock as observed in simulated flows on ideal–stiffened
gas mixtures at initial zero pressure for selected air volume fractions αa and air weighing factors of
dissipation κa in (3.36). NA: non-accessible tests as dissipation weights on water would be negative.
As expected, for vanishing volume fraction of air and even dissipation on fluids, the air compression
ratio matches the theoretical maximum 1 + 2/Γ a = 6.

the wall in a unique way because the initial amount of internal energy in water (of any possi-
ble magnitude) impacts the energy jump across the shock. Furthermore, the shock behavior
also depends on how the dissipated energy is shared between the fluids (see Section 3.5.3).

A general analysis of shocks in adiabatic mixtures of ideal and stiffened gases at zero
pressure is provided in 3.E. It shows that for given EOS and with proper scaling, the system
behavior can be fully described in an algebraically explicit way by three independent non-
dimensional parameters: the initial volume fractions and the volume ratios across shock for
each of the two fluids. Not all combinations of parameters are accessible for adiabatic fluid
mixtures as visible on the representation of admissible parameters in Fig. 3.11. Analytical
formulas in the limit of vanishing ideal gas and for water-consistent Grüneisen coefficients let
define the test involving simple fractions of Table 3.2—with final water density of 15/11 ≈
1.36, close to the theoretical maximum of 3/2 for Γw = 4.

Preliminary simulations of two-fluid-adapted Noh tests for various air–water volume
fractions confirmed the general results of 3.E. Initial pressures were set to 10−14 because
at exact zero, round-off errors would inevitably bring the system to nonphysical states of
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negative densities or temperatures. The fluids’ weighing coefficients of dissipation were
expressed as

λa = κaαa
0, and λw = 1− λa, (3.36)

where κa was a predefined constant representing an amplifying factor of dissipation on air
and αa

0 was the initial air volume fraction. Observed air density ratios across shock are
reported in Table 3.3 showing the strong impact of κa, especially in the one way coupling
limit at low αa.

As expected, the most fragile of the preliminary tests appeared at low αa. These were
thus retained in Table 3.2 for the three values κa = 10−2, 1, and 102. Results are summarized
in Fig. 3.4.

Some general features can be observed:

1. For legibility and scheme testing consistency, the initial αa and CFL values in the
three two-fluid Noh tests where chosen equal. The robustness was thus limited by the
weakest of the tests. These values could thus be somewhat optimized on specific cases
without affecting robustness.

2. As expected in this one-way coupling limit for air, results match the analytical solution
for water irrespective of dissipation on air (first row in Fig. 3.4).

3. As for the standard test of Noh (1987), typical “wall heating” effects close to the
origin are observed on all quantities for water and air in all cases, with some “frozen”
oscillations of no impact on the robustness and stability of the calculations.

4. Consistently with findings in 3.E, the post-shock air density can be well above or
well below the initial density (second row in Fig. 3.4), when dissipation level on air is
respectively low or high as defined by κa.

5. Within the shock layer, a strong overshot of air density is always observed (second
row in Fig. 3.4). This is due to the virtually infinite compressibility of the gas in the
initial state of vanishing pressure.

6. Concomitant with density overshot, air volume fractions undershoot by up to seven
orders of magnitude, thus approaching round-off floor (third row in Fig. 3.4). This is
the main factor which limits initial volume fractions to αa & 10−8.

7. Because of the air density overshot, the shock layer takes a peculiar three stage struc-
ture (fourth row in Fig. 3.4): (i) a very fast air compression around x = 0.9, (ii) a
slower air expansion between x = 0.9 and 0.85 induced by the progressive build up
of dissipation, and (iii) a quick water compression around x = 0.85 where the bulk of
shock dissipation occurs (see artificial viscosity profiles).
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8. Despite the combination of very strong compression and expansion phases, the native
GEEC scheme provided very similar results as its H-EEIP modified version, possi-
bly with some slight reductions of maximum “no-crash” CFL values which were not
specifically measured here.

Although the dissipation level on air, here controlled by κa, dominantly affects the final
state of the contaminant, all other sources also contribute, notably the intrinsic dissipation of
the scheme. It must thus be kept in mind that, within the simplistic multi-fluid dissipation
retained here, κa does not define dissipation in an univocal way. This is exemplified for
instance when carrying a multi-fluid Noh test with an added uniform velocity to the initial
condition of u = 6/5: the left and right velocities are then 12/5 and 0 thus enhancing
or reducing numerical diffusion. Resulting density profiles in Fig. 3.8 show post-shock air
densities in a 3:2 ratio between left and right, while no differences are observed on the
mixture density as expected. Somewhat surprisingly, this 3:2 ratio is practically constant for
all dissipation levels on air κa. A tentative explanation could be that numerical dissipation
is here mostly in the form of numerical diffusion.

The present study does not intend to provide methods to ensure well defined shock
dissipation irrespective of scheme contributions. It merely shows that a significant control
can be exerted to make shock capture less scheme dependent and more physics relevant
through adapted closures of artificial viscosity.

3.6 Conclusion

The present work was devoted to the specific but ubiquitous issue of potential stiffness of
pressure work couplings in simulations of contrasted compressible multi-fluid flow. The main
findings are:

1. An appropriate general formalism was introduced in order to recast pressure terms in
an explicit way amenable to a stiffness quantitative analysis. Stiffness and “stiff stiff-
ness” of pressure terms then appear naturally (Section 3.3)—these designate respec-
tively strong time derivatives and strong second derivatives. The analysis was applied
here to the “backbone” model—also known as the pressure-equilibrated six-equations
model in the case of two fluids,—which is common to most multi-fluid models when
canceling dissipative correlations. This was illustrated on the simple air-water mixture
of high practical importance.

2. Universal numerical solutions based on implicit pressure calculations were then pro-
posed to preserve robustness for all coupling strengths (Section 3.4). Thermodynamic
consistency warrants the per-fluid entropic character of such schemes.

3. A slightly degraded but significantly simpler approach was then determined based on
a hybrid explicit estimate of implicit pressure (H-EEIP, Section 3.4.4). It was directly
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adapted to a “GEEC” scheme previously proposed by Vazquez-Gonzalez et al. (2020)
for compressible multi-fluid flows (3.C), here restricted by velocity equilibration.

4. The ensuing modified scheme was found to perform very successfully on two standard
tests of the literature and three new tests specifically designed for being extremely
strenuous, involving strong shocks and expansions in vacuum (Section 3.5). CFL
conditions were not affected despite contrasts between fluids by orders of magnitude
on volume fractions, densities, speeds of sound, or dissipation strengths.

Other pressure related issues have often been blamed for observed fragility in multi-fluid
models and schemes, notably their possibly non-hyperbolic and ill-posed character sometimes
related to pressure equilibration (3.A). Now, it must be stressed that, whatever modifications
are introduced to recover hyperbolic behavior or other ailments, the possible stiffness of
pressure couplings is always present and requires specific care. The option of mollifying the
pressure stiffness was not retained here: not only can it seriously distort physical behavior,
but it appears especially convoluted in the presence of highly variable multi-fluid conditions
such as EOS singularities and contrasts, or number of fluids and energy reservoirs. Although
all tests were here carried out on a two-fluid air–water system, the present techniques apply
readily to any number of fluids with minimal intrusion in existing schemes. As an example,
a 20-fluid system presents 40 basic energy reservoirs (kinetic and internal, excluding others
for the sake of example), 20 entropy conditions, and 40×(40−1)/2 = 780 pressure couplings
all of which must be properly and consistently discretized.

Further developments are presently being considered: (i) equilibrated pressure approxi-
mations in systems actually involving physically motivated pressure imbalances, (ii) adap-
tation of present robustness prescriptions to second and higher order schemes, (iii) scheme-
independent approaches to physical shock dissipation, (iv) inclusion of fundamental deriva-
tives in the schemes.
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3.A Other pressure issues in compressible multi-fluid models and
schemes

Various authors have objected the relevance of the backbone model (3.1), often blaming the
single-pressure constraint for its observed ailments and recommending the introduction of
non-equal pressure assumptions. They generally justify preservation of non-equal pressures
by at least one of the following main reasons: (i) their significant and persistent physical exis-
tence, (ii) their significant but transient physical or numerical existence, (iii) their presumed
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necessity in order to restore the well-posedness of the multi-fluid equations, and (iv) their
convenience in order to reduce the numerical stiffness of inter-fluid pressure equilibration
by finite-rate relaxation equations. These will be briefly commented below, but the ensuing
approaches to modeling and discretization will not be detailed: their wide diversity reflects
that of underlying dissipation assumptions which, in contrast to isentropic behavior, are not
unique.

i) Persistent non-equal physical pressures These reflect the presence of supplemen-
tary potential energy reservoirs such as surface tension between fluids (Laplace pressure as in
Ramshaw, 1978) or kinetic energies of velocity fluctuations due to added mass, turbulence,
granular agitation pressure, etc. (Bernouilli-like effects as in Geurst, 1985). Dissipation-free
evolution equations (backbone models) can again be obtained from variational principles
(Gavrilyuk & Saurel, 2002; Heulhard de Montigny et al., 2021, & refs therein) and comple-
mented with dissipation terms. If these energies are small enough however, models can still
be constrained by pressure equilibration (Heulhard de Montigny et al., 2021).

ii) Transient non-equal physical pressures These reflect the presence of supplemen-
tary kinetic and potential energy reservoirs on internal degrees of freedom, as found for
bubble dynamics. Effects at macroscopic scales are observable when “in-phase” coherent
pulsing motions are present, for instance under shock excitation (Wijngaarden, 2007, & refs
therein). Theoretical and experimental estimations were provided for instance by Beylich
& Gülhan (1990, fig. 3) or Kapila et al. (2001, § B). When “out-of-phase” incoherent, these
can be treated as second-order correlations or even neglected. Dissipation-free evolution
equations with non-equal pressures (backbone model) can also be obtained from variational
principles (Bedford & Drumheller, 1978; Gavrilyuk & Saurel, 2002, & refs therein) and com-
plemented with dissipation terms (as found in Baer & Nunziato, 1986; Chang & Ramshaw,
2008).

iii) Well-posedness of multi-fluid models with non-equal pressures The demand
by numerous authors for well-posed hyperbolic multi-fluid models has lead to developing
numerous correction strategies to the backbone model. A widespread belief is that well-
posedness requires non-equal pressures: for instance, the algebraic and popular momentum
exchange term of Stuhmiller (1977) can be interpreted as a pressure imbalance, and the
model variants considered in points (i) and (ii) above also have impact. More intrusive
is the addition of a volume fraction equation driven by pressure imbalance for detonating
systems by Baer & Nunziato (1986). It was later extended to all types of systems (Saurel &
Abgrall, 1999a) for which, however, its physical relevance appears questionable (Bdzil et al.,
1999; Kapila et al., 2001; Dinh et al., 2004; Theofanous & Chang, 2008; Lhuillier et al.,
2013, & refs therein) and its asymptotic limit yields a backbone model with added terms of
cryptic interpretation (Hantke et al., 2021, eq. 2.16).
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iv) Stiffness reduction of non-equal pressure relaxation This is the most pragmatic
reason for accepting non-equal pressures although a numerically acceptable relaxation time
may not be always easily found. As already mentioned in Section 3.2.1, these pressure re-
laxation schemes can also be easily adapted to mixed interface cells in order to either damp
the stiffness of the pressure equilibration (Kamm et al., 2011; Yanilkin et al., 2013, & refs
therein) or to describe fine sub-cell Riemann-like problems at interfaces (Loubère et al.,
2012; François et al., 2013; Sun, 2013; Barlow et al., 2014). Some of the pressure relaxation
approaches considered in point (iii) above can also reduce the stiffness of pressure equili-
bration, although in some cases they merely displace the stiffness issues to other equations
(Chiocchetti & Müller, 2020).

Most of the corrections or extensions of the backbone model considered in points (i)
to (iii) have marginal impact on the stiffness issues related to pressure terms. Only in
point (iv) are these issues tackled by reducing stiffness through pressure relaxation, but on
somewhat questionable premises. For instance, pressure equilibration within an interface cell
can be viewed as inconsistent with a low CFL-constrained time step and motivates pressure
relaxation: pressure changes are mediated by acoustic waves which have to propagate various
times across the cell to reach equilibration (see for instance Barlow et al., 2014, § I). Now, this
argument should also apply to pure cells, within which details of uneven pressure fields are
actually never taken into account (except maybe in shock fitting techniques) as discretization
generally assumes homogeneous field values in each cell—thus contributing to numerical
diffusion.

At this point it is worthwhile citing Miller & Zimmerman (2009, Conclusions): “. . .making
a model for the behavior of mixed zones is treacherously close to devising epicycles. It is
possible to spend limitless amounts of time trying to get a single zone to reproduce ‘physi-
cally reasonable’ behavior. One should not attempt to do too much. Sub-zonal models are
only intended to keep a calculation running with believable physical results, not to accurately
solve the details of what happens inside a small volume. If those details are needed, then
more zones must be spent on the problem. If, however, a code is crashing because mixed
zones are producing physically unreasonable solutions, then an improved sub-zonal model for
mixed material behavior may be the answer..”

The issue of pressure stiffness is essential and common to all the model variants discussed
above and it is always amenable to implementation of the present numerical techniques.
Switching between the stripped backbone model and dressed versions only affects terms
other than pressure as illustrated in Fig. 3.1.

3.B The backbone model

3.B.1 Statistical multi-fluid evolution equations

The present appendix is a brief reminder on the derivation of average multi-fluid equations,
highlighting the separation of pressure contributions (mean, inter-fluid imbalance, and fluc-
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tuations). More details can be found in Wörner (2003, § 3), Morel (2005, § 3), or Brennen
(2005, § 1).

The instantaneous and local evolution equations for mass conservation of each fluid, total
momentum (Euler, no surface tension, no viscosity), total internal energy (no heat flux), and
pressure closure (EOS) are

∂t(c
ϕρ) + (cϕρuj),j = 0, (3.37a)

∂t(ρui) + (ρuiuj),j + p,i = ρgi, (3.37b)

∂t(ρe) + (ρeuj),j + puj,j = ρẘ, (3.37c)

p = P({cϕ}, ρ, e,σ). (3.37d)

In contrast to the rest of this chapter all symbols in the present appendix stand for the one-
point one-time non-averaged quantities, and σ stands for supplementary thermodynamic
variables (such as entropies) which fully define the state of the fluids. As represented in
Fig. 3.1, this set of equations can be obtained form a least action principle and from Gibbs’
identity.

The mixture is represented by the mass fractions of fluids ϕ, {cϕ} with
∑

ϕc
ϕ = 1, whose

evolution equations are given by mass conservation. All the following is thus applicable
irrespective of the nature and affinity of the fluids. For immiscible fluids, cϕ(t, x) only take
values 0 or 1 and coincide with the fluids’ presence functions.

Conditional ensemble averages, denoted by an over-bar, are now applied to the following
combinations of (3.37)

(3.37a), (3.38a)

cϕ × (3.37b) + ui × (3.37a)− cϕui ×
∑

φ(3.37a)
φ, (3.38b)

cϕ × (3.37c) + e× (3.37a)− cϕe×
∑

φ(3.37a)
φ, (3.38c)

(3.37d). (3.38d)

Assuming commutation of the averaging operator with derivations—which is rigorously true
for the ensemble average—elementary transformations yield

∂t
(
cϕρ
)

+
(
cϕρuj

)
,j

= 0, (3.39a)

∂t
(
cϕρui

)
+
(
cϕρuiuj

)
,j

+ cϕp,i = cϕρgi, (3.39b)

∂t
(
cϕρe

)
+
(
cϕρeuj

)
,j

+ cϕpuj,j = cϕρẘ, (3.39c)

p = P(cϕ, ρ, e,σ). (3.39d)

Defining means and fluctuations as

αϕ = cϕ, αϕρϕ = cϕρ, (3.40a)

αϕρϕuϕi = cϕρui, uϕi
′ = ui − uϕi , (3.40b)

αϕpϕ = cϕp, pϕ′ = p− pϕ, (3.40c)

αϕρϕeϕ = cϕρe, αϕρϕẘϕ = cϕρẘ, (3.40d)
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where
∑

ϕα
ϕ = 1, the averaged evolution equations are recast into their usual form

∂t(α
ϕρϕ) + (αϕρϕuϕj ),j = 0, (3.41a)

∂t(α
ϕρϕuϕi ) + (αϕρϕuϕi u

ϕ
j ),j +

(
cϕρϕuϕi

′uϕj
′
)
,j

+ αϕp,i︸ ︷︷ ︸
B

+
(
αϕ(pϕ − p)︸ ︷︷ ︸

F1

+ cϕpϕ′︸ ︷︷ ︸
F2

)
,i
+ cϕ,ip

′︸︷︷︸
D

= αϕρϕgi, (3.41b)

∂t(α
ϕρϕeϕ) + (αϕρϕeϕuϕj ),j +

(
cϕρϕeϕ′uϕj

′
)
,j

+ p cϕuj,j︸ ︷︷ ︸
V

+ cϕp′uj,j︸ ︷︷ ︸
I

= αϕρϕẘϕ, (3.41c)

p =
∑

φα
φpφ, (3.41d)

pϕ = Pϕ(ρϕ, eϕ,σϕ) +
∑

xy
∂2Pϕ

∂x∂y
· x′y′ + · · ·︸ ︷︷ ︸
H

. (3.41e)

Strictly speaking αϕ is the presence probability of fluid ϕ, but it is designated here as the
volume fraction according to common accepted usage—since first derivations used volume
averaging. Notice that, following Kataoka (1986), mass fraction gradients cϕ,i appear and
produce sheets of Dirac functions for discontinuous cϕ—as found in the important case of
immiscible fluids (see also Llor, 2005, § 3.1).

All the fluctuation-containing terms in (3.41) must be closed in order to solve the equa-
tions, usually from the mean quantities through system- and situation-dependent expres-
sions. The pressure related terms have been separated into different contributions corre-
sponding to various effects:

B: Buoyancy force, proportional to fluid volume;

F1: momentum Flux from inter-fluid pressure differences;

F2: momentum Flux from intra-fluid pressure fluctuations;

D: Drag from pressure fluctuations at interfaces, mostly due to turbulence and added
mass;

V: reversible work of mean pressure into internal energy or −pdV ;

I: Irreversible work of pressure fluctuations into internal energy;

H: contribution of thermodynamic state fluctuations to EOS of fluids to second-order
(Hessian);

all of which except B and V require closure assumptions.
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3.B.2 Backbone evolution equations

Equations (3.41) by themselves cannot provide total energy conservation as the kinetic
energy of velocity fluctuations is not included. These equations could be derived and also
complemented if applicable with added mass, surface tension effects, and internal volume
exchanges (bubble vibrations). These effects will not be explored here as they marginally
affect the mean pressure couplings, the only effects retained in the backbone model.

Cancellation of all fluctuation-containing terms in (3.41) including F1 yields the non-
dissipative backbone model in (3.1)—with notations (3.2a). The work of the pressure forces
in the momentum equations can now be balanced with internal energies according to sub-
stitution

cϕuj,j = −cϕ dtρ
ρ
≈ −αϕ dϕt ρ

ϕ

ρϕ
= Dϕ

t α
ϕ, (3.42)

which thus ensures conservation of total energy. The cancellation of term F1 in (3.41) may
not appear as a requirement to generate the backbone model. Several objections have been
raised as commented in 3.A and have led to unequal pressure models.

The backbone model can be obtained independently of this averaging-and-closure proce-
dure by applying the least action principle to a Lagrangian involving only the mean kinetic
and internal energies of the fluids as noted in Fig. 3.1 (see for instance Vazquez-Gonzalez
et al., 2020, § 3 & refs therein). This procedure forces fluid pressures to be equal. The only
possibility for a least action approach to yield unequal pressures is to add to the Lagrangian
the missing kinetic and potential energy reservoirs. For instance, bubble oscillations derive
from a Lagrangian containing the gas and liquid internal energies and the kinetic energy of
the bubbles’ volume variations (Bedford & Drumheller, 1978; Gavrilyuk & Saurel, 2002).

3.B.3 Derivation of evolution equations in explicit form

At various points in the present work, explicit evolution equations are required for stiff-
ness and prediction issues, notably in Section 3.3.2 for the multi-fluid equations of internal
energies. These were already provided by Vazquez-Gonzalez et al. (2020, § 3.5) and are
reproduced here for reference.

The starting point is the fundamental thermodynamic identity on the (common) pressure
along the fluid trajectories

dϕt p = c2ϕdϕt ρ
ϕ + ΓϕρϕTϕdϕsϕ, (3.43)

where Tϕdϕsϕ = ẘφ are the per-mass irreversible energy sources on fluid ϕ. When combined
with the mass conservation equations as∑

ϕ

[(
αϕ/(ρϕc2ϕ)

)
× (3.43) + (1/ρϕ)× (3.1a)

]
, (3.44)

it readily yields the explicit evolution equation of pressure (3.32).
The pressure evolution equation (3.32) can then be combined with (3.43) as(

αϕ/(ρϕc2ϕ)
)
×
(
(3.32)− (3.43)

)
, (3.45)
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to yield the explicit evolution equations of the fluid densities (and also of their volume
fractions)

αϕ
dϕt ρ

ϕ

ρϕ
= −Dϕ

t α
ϕ = βϕ

[
− ui,i

+
∑

φ
αφ

ρφc2φ
×
(

(uϕi − u
φ
i )p,i − Γϕρϕẘϕ + Γ φρφẘφ

) ]
. (3.46)

Substituted into the implicit evolution equations of internal energies (3.1c), this expression
yields the energy equation in explicit form (3.5).

3.C The GEEC scheme for the backbone model

The multi-fluid GEEC scheme used in all the present numerical tests was first obtained and
described by Vazquez-Gonzalez et al. (2020). It displays the following main features:

1. arbitrary number of fluids;

2. arbitrary mesh dimension, structure, and motion—prescribed by the user or adjusted
on-the-fly to the flow’s evolution;

3. continuity with the workhorse space- and-time-staggered schemes of in-house legacy
codes;

4. explicit mass, momentum, and internal energy increment equations for each fluid,
coupled by a single common pressure field;

5. exact conservation to round-off errors of each fluid’s mass, total momentum, and total
energy;

6. second-order accuracy in the Lagrangian limit and first-order accuracy of fluid trans-
port relative to the grid;

7. proper capture to second-order accuracy of isentropic flows—or quasi-symplectic be-
havior;

t n t n+½t n+1

xp-1

xp

xp+1 xp
n

w p
n+½

vc
φ n+½

[α, ρ, e]c
φn

c dscd

w p

vc
φ

σcd
φ
= 1 σdc

φ
= 0

c d

vc
φ
Δt

V
◦

cd

φ
Δt

Figure 3.9: Graphical representations of mesh and discretized quantities in space–time (left) and
2D-space (center), with the swept-flux cell-to-cell transfers (right). Notice the respective node and
cell centering of grid and per-fluid relative-to-grid velocities, ~wn+1/2

p and ~vϕn+1/2
c .
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8. shock capture and scheme stabilization ensured by a proper multi-fluid extension of
usual single-fluid closures of artificial viscosity;

9. stable and robust behavior with high CFL condition on usual stiff test cases—devoid
of common distortions such as hourglassing, DeBar artifacts, fragility to small volume
fractions or large density ratios, etc.

The scheme is fully described below. For the present study, it is adapted to an EEIP by
addition of sub-step 2.

All quantities are defined at integer- or half-integer-labeled times tn or tn−1/2 = (tn +

tn−1)/2. As illustrated in Fig. 3.9 the system is defined at time tn by quantities:

∆tn−1/2time increment form tn−1 to tn,
~u
ϕn−1/2
c absolute velocity of fluid ϕ,
~w
n−1/2
p grid velocity,

~xnp grid position,
~v
ϕn−1/2
c grid-relative velocity of fluid ϕ,
σ
ϕn−1/2
cd upwind factor of fluid ϕ from cell c to cell d (= 0 or 1),

[αρ]ϕnc apparent density of fluid ϕ,
eϕnc per mass internal energy of fluid ϕ,
αϕnc volume fraction of fluid ϕ,
ρϕnc density of fluid ϕ,
pnc pressure (common to fluids),
qϕnc artificial viscosity stress of fluid ϕ.

The scheme evolves these quantities to time tn+1 by applying the seven sub-steps to follow.
V n
c , ~s

n+1/2
cd , and V̊ ϕn−1/2

cd are respectively cell volumes, face vectors from cell c to cell d, and
volume transport rate from c to d for fluid ϕ. All transport operators follow a swept-flux
approach defined by the V̊ ϕn−1/2

cd .

1. Time step determination from given CFL

∆tn+1/2 = CFL×min
ϕ,c

{
hnc /
(
cnc + |~vϕn−1/2

c |
)}

, (3.47)

where cnc is the effective speed of sound of the mixture.

2. Explicit estimation of implicit pressure (IIEP), if selected

p∗c = pnc min[1, exp(τnc )], (3.48a)

where

τnc = −γnc 〈V̊ 〉n−
1/2

c /V n
c . (3.48b)

For the native GEEC scheme, p∗c = pnc is fully explicit.
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3. Artificial viscosity, following common practice (Mattsson & Rider, 2015, & refs therein)

qnc = ρncQ
[
〈V̊ 〉n−1/2

c /V n
c , c

n
c

]
(3.49a)

where

〈V̊ 〉n−1/2
c =

∑
ϕ,d~s

n−1/2
cd ·

(
αϕnc σ

ϕn−1/2
cd ~uϕn−

1/2
c

+ αϕnd σ
ϕn−1/2
dc ~u

ϕn−1/2
d

)
, (3.49b)

ρnc =
∑

φ[αρ]φnc , (3.49c)

Q
[
S,C

]
= a2

(
min[0, S]h

)2 − a1CSh, (3.49d)

h being the characteristic cell size, and a2 and a1 being the respective quadratic and
linear artificial-viscosity coefficients, here set to a2 = a1 = 0.5 in all the present work.

4. Momentum increments

V n
c [αρ]ϕnc ~uϕn+1/2

c − V n−1
c [αρ]ϕn−1

c ~uϕn−
1/2

c

+ ∆tn−
1/2
∑

d

(
V̊
ϕn−1/2
cd [αρ]ϕn−1

c ~uϕn−
1/2

c − V̊ ϕn−1/2
dc [αρ]ϕn−1

d ~u
ϕn−1/2
d

)
= −∆tnαϕnc

∑
dσ

ϕn−1/2
cd ~s

n−1/2
cd (p∗d − p∗c + qnd − qnc ) , (3.50a)

where the corrected upwinding factors are

σ
ϕn−1/2
cd = 1

2
σ
ϕn−1/2
cd + 1

2

∑
φα

φn
d σ

φn−1/2
cd . (3.50b)

Equilibration of fluid velocities (infinite drag), if selected

uϕn+1/2
c = un+1/2

c =
∑

φ[αρ]φnc u
φn+1/2
c /

∑
φ[αρ]φnc . (3.50c)

5. Grid velocity for ALE calculations

~wn+1/2
p = W

(
{~uϕn+1/2

c }
)
, (3.51a)

~vϕn+1/2
c = ~uϕn+1/2

c − ~wn+1/2
c , (3.51b)

V̊
ϕn+1/2
cd = σ

ϕn+1/2
cd ~s

n+1/2
cd · ~vϕn+1/2

c , (3.51c)

σ
ϕn+1/2
cd = H

(
~s
n+1/2
cd · ~vϕn+1/2

c

)
, (3.51d)

where H is the Heaviside function.

For Eulerian grid, ~wn+1/2
p = ~0 as in present numerical tests.

6. Mass transport

V n+1
c [αρ]ϕn+1

c − V n
c [αρ]ϕnc

+ ∆tn+1/2
∑

d

(
V̊
ϕn+1/2
cd [αρ]ϕnc − V̊

ϕn+1/2
dc [αρ]ϕnd

)
= 0 . (3.52)
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7. Internal energy increments

V n+1
c [αρ]ϕn+1

c eϕn+1
c − V n

c [αρ]ϕnc eϕnc

+ ∆tn+1/2
∑

d

(
V̊
ϕn+1/2
cd [αρ]ϕnc eϕnc − V̊

ϕn+1/2
dc [αρ]ϕnd eϕnd

)
= −∆tnβϕnc p∗c〈V̊ 〉nc

+ ∆tn
∑

φµ
ϕφn
c

(
〈~uϕ · ~∇p〉nc − 〈~uφ · ~∇p〉nc

)
−
∑

φµ
ϕφn
c

(
Γϕn
c 〈ρϕδWϕ〉nc − Γ φn

c 〈ρφδW φ〉nc
+ αϕnc 〈ρϕδWϕ〉nc , (3.53a)

where βϕnc , µϕφnc , and Γϕn
c are given by (3.6), mean drift work on fluid ϕ is

〈~uϕ · ~∇p〉nc = 1
2

∑
dσ

ϕn−1/2
cd (~uϕn+1/2

c + ~uϕn−
1/2

c ) · ~sn−1/2
cd

× (p∗d − p∗c) , (3.53b)

and mean global volume change rate is

〈V̊ 〉nc = 1
2

∑
ϕ,d~s

n−1/2
cd ·

[
αϕnc σ

ϕn−1/2
cd (~uϕn+1/2

c + ~uϕn−
1/2

c )

+ αϕnd σ
ϕn−1/2
dc (~u

ϕn+1/2
d + ~u

ϕn−1/2
d )

]
. (3.53c)

The dissipation is estimated as follow,

αϕnc 〈ρϕδWϕ〉nc = −∆tnλϕnc qnc 〈V̊ 〉nc
+ ∆tn−

1/2
∑

dV̊
ϕn−1/2
dc

1
2
[αρ]ϕn−1

d

× (~uϕn+1/2
c − ~uϕn−1/2

d ) · (~uϕn−1/2
c − ~uϕn−1/2

d ) , (3.53d)

The coefficient λϕnc weighs the total dissipation sources on fluid ϕ (other than numerical
residues). It is set here to λϕnc = [(αϕ/Γϕ)

/∑
φ(αφ/Γ φ)]nc unless specified otherwise.

8. Volume fractions, densities and pressure, given as solutions to the implicit set of equa-
tions

Pϕ(ρϕn+1
c , eϕn+1

c ) = pn+1
c , (3.54a)

[αρ]ϕn+1
c /ρϕn+1

c = αϕn+1
c , (3.54b)∑

ϕα
ϕn+1
c = 1 , (3.54c)

where Pϕ is the (half-)EOS of fluid ϕ.

3.D Semi-analytical solution of isentropic two-fluid expansion

Isentropic free expansion is described by the mass and momentum equations (3.1a) and (3.1b)
with the mixture EOS (3.12). In reduced quantities and expressing all fields as functions of
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Figure 3.10: Non-dimensional semi-analytical profiles of expansion to vacuum of ideal–stiffened gas
mixtures of varying compositions as given in Fig. 3.2: pressure, density, and velocity (from left to
right).

αa u c tFinal

10−12 0.4299853856289317 3.096037495936114 1/4

1/20 1.530201240096114 2.746459432810063 1/5

1/2 4.356034272582599 1.607886811203803 1/6

19/20 5.959547847799742 1.248993348739162 1/8

1− 10−12 6.111757952493628 1.222351581614179 1/8

Table 3.4: Velocity and speed of sound at the point where density and pressure conditions of the
double-expansion of air-contaminated water match values in Table 3.2 for different air volume frac-
tions αa. Final simulation times are defined to keep the profile within the [0, 1] interval. Expansion
profiles for similar αa values are illustrated in Fig. 3.10.

the reduced quantity ξ = x/t, the equations become (subscript r is implicit in this appendix)

0 = −ξ ∂
∂ξ
ρ+ ∂

∂ξ
(ρu), (3.55a)

0 = −ξ ∂
∂ξ

(ρu) + ∂
∂ξ

(ρu2) + c2 ∂
∂ξ
ρ. (3.55b)

This homogeneous system of ODEs has a non zero solution only if its determinant does not
cancel or

(u− ξ)2 − c2 = 0. (3.56)

Selecting the positive velocity branch to eliminate u in (3.55a) yields the ODE for ρ

(ρ ∂c
∂ρ

+ c) ∂
∂ξ
ρ = ρ. (3.57)

As isentropic curves takes a particularly simple form as functions of pressure, it appears
simpler to express the expansion wave as ξ(p), taking p as a parametric variable. It is thus
found

∂
∂p
ξ = (ρc)−1 + ∂

∂p
c, (3.58)

which is solved from point p = 0 where ξ = 0 and c = 0 by the simple quadrature

ξ(p) =

∫ p

0

dp
ρc

+ c. (3.59)
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Closed with EOS (3.12), numerical integration of this last quadrature provides semi-
analytical solutions for any initial air volume fraction. Various such resulting expansion
profiles are illustrated in Fig. 3.10 for EOS coefficients of Table 3.2. Table 3.4 lists some ve-
locities and speeds of sound at the canonical point where ρa = ρw with the same coefficients.
These provide simple initial conditions for test cases.

As visible in Fig. 3.10, the solutions display a strong gradient of pressure and air density
for small initial air volume fractions.

3.E Noh’s test for ideal–stiffened gas mixtures

Since its inception, the numerical test of Noh (1987) has become a mandatory benchmark for
compressible hydro-schemes. Despite a simple setting (ideal gas, 1D, fixed wall condition,
uniform unit initial density and velocity) its initial pressure and temperature are null, thus
making an infinitely strong shock propagate from the wall. This challenges two critical
features of an hydro-scheme: (i) its entropic character, as any errors of wrong sign on a zero
pressure state can be fatal (in practice initial pressure is set just above round-off level, i.e.
10−15 for double precision) and (ii) its CFL limitations, especially during initial transients
which can generate singular states (known as wall heating).

This test is extended here to the contrasted two-fluid velocity-equilibrated mixture of
ideal and stiffened gases—for convenience here designated as “air” and “water,” and labeled
“a” and “w.” Now, this cannot be achieved without giving up the important feature of
infinitely strong shock: it is impossible to find a non trivial pressure-equilibrated ideal–
stiffened gas mixture where both fluids have vanishing speed of sound. It is thus assumed
here that the initial condition is merely at zero pressure, thus ensuring zero speed of sound
on the ideal gas only.

Another important feature of any extension of Noh’s test is that dissipation details now
impact the jump conditions and propagation velocity of the shock. It is however possible to
determine the set of all shock-accessible states of the mixture as shown below.

In the reference frame of the shock front, jump conditions on the mixture’s total mass,
momentum, and energy are

0 =
[[
ρu
]]1

0
, (3.60a)

0 =
[[
ρu2 + p

]]1
0
, (3.60b)

0 =
[[
ρ(e+ u2/2) + pu

]]1
0
, (3.60c)

where subscripts 0 and 1 label respectively the up- and downstream states and
[[
×
]]1

0
denote

jumps across the shock layer. Assuming vanishing initial upstream pressure p0 = 0, these
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conditions define the velocities and a thermodynamic relationship

u0 = −
(
e1 − e0 + 1

2
p1(ρ−1

1 + ρ−1
0 )
)/√

2(e1 − e0), (3.61a)

u1 = −
(
e0 − e1 + 1

2
p1(ρ−1

1 + ρ−1
0 )
)/√

2(e1 − e0), (3.61b)

0 = ρ−1
1 − ρ−1

0 + 2(e1 − e0)/p1. (3.61c)

It is thus sufficient to provide up- and downstream states of the mixture compatible with (3.61c)
to fully define the shock.

For the single-pressure air–water mixture with (constant) mass fractions ca and cw, den-
sities and energies are

1/ρ{0,1} = cw/ρw{0,1} + ca/ρa{0,1}, (3.62a)

e{0,1} = cwew{0,1} + caea{0,1}, (3.62b)

p0 = 0 = Γwρw0 e
w
0 − (Γw + 1)Πw = Γ aρa0e

a
0, (3.62c)

p1 = Γwρw1 e
w
1 − (Γw + 1)Πw = Γ aρa1e

a
1. (3.62d)

Mass fractions, final densities and final pressure can be scaled into reduced quantities α{a,w}
0 ,

v
{a,w}
r , and pr, respectively initial volume fractions, Hugoniot-scaled volume ratios across
shock, and stiffened-gas-scaled final pressure, defined as

c{a,w} = α
{a,w}
0 ρ

{a,w}
0 /ρ0, (3.63a)

ρ
{a,w}
1 = ρ

{a,w}
0 (1 + 2/Γ {a,w})/v{a,w}r , (3.63b)

p1 = prΠ
w(Γw + 1)/(1 + Γw/2), (3.63c)

with realizability constraints αw
0 + αa

0 = 1, v{a,w}r > 0, and pr > 0. Substitution of energies
and scaled quantities in (3.61c) yields after some algebra

0 = αw
0

(
vwr − 1− 1 + 2/Γw − vwr

pr

)
+ αa

0(var − 1), (3.64)

hence
pr =

αw
0 (1 + 2/Γw − vwr )

αw
0 v

w
r + αa

0v
a
r − 1

. (3.65)

In this form and for given initial composition and EOS (here appearing as α{a,w}
0 and Γw),

the thermodynamic condition (3.61c) reduces to an algebraic relationship between the three
independent scaled variables v{a,w}r and pr. The set of accessible shocks is thus two dimen-
sional but is bounded by realizability constraints. Shock conditions are selected within this
domain by the strength of the shock and the balance of entropy production between fluids.

With condition (3.65), the realizability constraint pr > 0 now limits the acceptable v{a,w}r

values to

vwr < 1 + 2/Γw and αw
0 v

w
r + αa

0v
a
r > 1, (3.66a)
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or

vwr > 1 + 2/Γw and αw
0 v

w
r + αa

0v
a
r < 1, (3.66b)

This last condition is specific of multi-fluid behavior as it allows water to expand through
shock. It is accessible only if αw

0 /α
a
0 < (1 − var)Γw/2. Air expansion is also accessible, but

simultaneous expansion of air and water is forbidden.
Total entropy must increase through shock but expliciting this condition on a two-fluid

system requires knowledge of the individual fluid entropies, not contained in the half-EOS.
It is permissible for instance that the entropy of one of the fluids decreases through a shock
provided that the total entropy increases—though actual physical dissipation processes in
such cases could be highly complex and specific.

Accessible from the half-EOS of the present study is the more restrictive condition of
entropy increase on each of the fluids, a situation designated here as “doubly entropic.” For
ideal gas at zero pressure, this is already fulfilled by the realizability condition p1 > 0. For
the stiffened gas, inserting (3.10b) into (3.65), it is found

αw
0 (1 + 2/Γw − vwr )

αw
0 v

w
r + αa

0v
a
r − 1

>
1 + Γw/2

1 + Γw

[(
1 + 2/Γw

vwr

)1+Γw

− 1

]
, (3.67)

or

αa
0v

a
r < 1− αw

0 v
w
r

(
1−

(1 + Γw)
[1+2/Γw

vwr
− 1
]

(1 + Γw/2)
[(1+2/Γw

vwr

)1+Γw
− 1
]), (3.68)

In the (var , v
w
r ) planes at fixed α

{a,w}
0 values, this limit can be shown to connect points

(var , v
w
r ) = (1, 1 + 2/Γw) and (1/αa

0, 0) where it is tangent respectively to the Hugoniot line
of water and to the pr =∞ limit. This is illustrated in Fig. 3.11 for the Γ {a,w}

0 values in last
row of Table 3.2.

Compared to the single-fluid test, the doubly-entropic two-fluid Noh test can produce
densities beyond the Hugoniot limits 1 + 2/Γ {a,w}, for either of the fluids (but not both at
once) and for any initial volume fractions as visible in Fig. 3.11. It can also produce lower
densities for water or air respectively if αw

0 < 1/(1 + 2/Γw) or αa
0 < 1/(1 + 2/Γ a).
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Figure 3.11: Representation of accessible shocked states in the adiabatic two-fluid extension of Noh’s
test illustrated on an air–water mixture: for varying initial volume fractions of air αa0 = 60%, 15%,
4%, and 1% (form top to bottom), states accessible by all combinations of adiabatic irreversible
energy productions span the gray zones in the planes of reduced coordinates (var , vwr ) (3.63b). The
corresponding reduced shock pressures pr (3.63c) are represented by their contour lines at values
0 and ∞ (medium thick lines), and 1

3 , 1, and 3 (thin lines). Independent shock adiabats on each
of the fluids would connect the pole (white point) with different shocked states for varying shock
pressures (thick line joining white points). The forbidden zone (white area) is defined by negative
final pressure or negative entropy production on water (respectively out or within of the pr = 0 and
pr =∞ lines).
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Preserving isentropic behavior in multi-fluid
systems through fundamental energy

closures and first principle
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4.1 Introduction

4.1.1 Thermodynamic consistency in multiphase flows

General overview of entropy issues in fluid models and schemes

Entropy is a polymorphic concept of physics, first introduced to understand cycles in steam
engines (Clausius, Carnot, etc. . . ) where its link with irreversibly was established. It was
soon applied to fluid mechanics in the shock theory (Rankine, Hugoniot, etc. . . ) (Salas,
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2007) and the phase transition (Joseph Black). It is at the root of powerful postulates in
mechanics of equilibrium such as the maximum entropy principle used by Callen (1985).
Now, entropy should be preserved in absence of dissipative effects such as viscosity, heat
conduction, etc. . . in fluid mechanics. Once a system is characterized by potentials and
constraints, its isentropic evolution is unique. A discrepancy from it leads to either entropy
production in the best-case scenario or entropy destruction which corresponds to a violation
of the second principle.

If continuous models may preserve exactly this property, numerical schemes produce
errors at the scheme order which deviate the computed thermodynamic path from the isen-
tropic one. This is why capturing isentropic evolution by numerical schemes is said to be
especially fragile by Asher & McLachlan (2005). However, it has been recognized that en-
tropy production stabilizes schemes. In this spirit, correction of Godunov schemes aiming to
solve the Euler equations are made (Harten, 1983) to ensure enough dissipation at each time
step and artificial viscosity is introduced to stabilize Lagrangian schemes (VonNeumann &
Richtmyer, 1950) in shocks. However, if artificial viscosity stands for mesoscopic viscous
mechanisms that occur in shocks and are not taken into account at model scale, correc-
tion of Godunov like schemes dissipate everywhere, i.e. even outside shocks (Shen et al.,
2010). Thus isentropy cannot be preserved exactly in numerical computations but can be
approximated as much as possible.

On the other hand, preserving exact isentropy in fluid models is always possible. Dissi-
pation free constitutive equations of the simple single fluid system are the Euler equations,
known since several centuries. The entropy evolution is straightforward to extract and shows
the exact isentropic character of this set of equations. Still, entropy criteria is necessary to
select the right solution in discontinuous data. However, more complex fluid systems which
integrate radiation, turbulence, . . . are tough to model because they involve several internal
interactions between various potentials. Many dissipation mechanisms exist inside these
systems which produce irreversible energy transfers between potentials. These mechanisms
occur at sub-scale and depend on microscopic description. Thus, several possibilities exist
to close these dissipations depending on various a priori choices about microscopic physics
inside systems. However, once all the potentials have been set, the non dissipative macro-
scopic physics becomes unique. This involves that there is a unique expression for each
interaction inside the system.

Zoom on multi-fluid Euler-Euler modeling

Among complex fluid systems, multiphase flows represent a large domain of research that has
been developed to predict many industrial and academical flows. One of the most popular
way to model them is the Eulerian-Eulerian approach. It consists on considering that all
fluids may coexist on the same time-space point. All fluids are described by a set of fields
standing for various quantities of interest such as velocity, pressure, etc. . . . These fields are
linked through a system of partial differential equation (PDE) similar to the Euler equations
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(containing transport, pressure gradient, etc. . . ). To obtain this set of PDE, the single fluid
equations (Euler or Navier–Stokes) are conditionally averaged with the function of presence
of a given fluid of the mixture. The ensuing equations described the evolution of mean fluid
quantities and contains also high order terms whose closures are needed. These closures
depend on residual interpretations, themselves resulting of the type of flows studied and the
averaging operator used.

First applications of averaging approaches were made by van Deemter & van der Laan
(1961) and Hinze (1963), they were soon popularized by Ishii (1975) and Drew (1983).
The modern form of models issued from this approach consists on three equations per fluid
representing the evolution of their mass, momentum and energy. These equations are com-
plemented by constraint on the sum of averaged presence functions, denoted (sometimes
misleadingly) volume fractions and the state equation (EOS) of each phase. To complete
the system, more equations are needed 1. Generally, these missing equations are relations
between phase pressures which may be algebraic (Toumi, 1996), static (Ramshaw, 1978) or
dynamic (Baer & Nunziato, 1986). This last set of equations has been extensively discussed
for two reasons. First, it does not comes directly from the averaging process, thus, similarly
to the fluctuation terms, its validity depends on the type of flow considered and the averag-
ing operator used. Secondly, its choice impact the well-posedness of the model (Gidaspow
et al., 1973; Ramshaw, 1978; Saurel & Abgrall, 1999a) and thus its applicability to be used
for real flows’ simulation.

Closure choices are not unique and lead to a great variety of models specific to a given
flow type. However, once the energy reservoirs of the system are specified, there is only one
isentropic evolution. The cornerstone reservoirs are specified by the mean evolution equa-
tions and are formed by the mean kinetic and mean internal energy of each fluid. Therefore,
among the various possible closures only one allows to follow the isentropic evolution cor-
responding to the averaged equations. Nevertheless, other closures are possible as long as
they do not lead to violation of the second principle (Arnold et al., 1990).

4.1.2 Isentropy through variational approaches and first principles

Structure of isentropic systems

According to Berdichevsky (2009), equations that derived from a variational method possess
a variational structure whose major feature is the reciprocity of physical interactions. From
him: ’All equations of microphysics possess such a structure‘ and this property can be ex-
tended to reversible macroscopic systems because they derive from microscopic ones. When
systems are simple enough, variational approach is not necessary to find motions possessing
the variational structure. A famous example are the Euler equations which derive from a
least action principle but were found in 1757 by Euler without using the Lagrange formal-

1for N phases: 4 × N + 1 equations (N mass,N momentum, N energy, N EOS + volume fraction) for
5×N unknowns (αϕ, uϕ, ρϕ, eϕ, pϕ)
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ism of 1756. However, when systems become more complex with non trivial interactions,
variational methods are powerful to obtain reversible equations because the consistency be-
tween the PDEs and the energy reservoirs, possibly tedious, is provided by straightforward
differentiations.

Compressible multiphase flow systems are made of several fluids who possess at least two
energy reservoirs (the internal and kinetic energy). These fluids are coupled through the
volume filling condition and are constrained by their mass conservation. All reservoirs may
exchange energy which gives potentially N × (N − 1) coupling terms that must be modeled.
Thus, these systems fall into the category of complex systems where variational methods
are very competitive in order to predict their isentropic evolution.

One particular variational method is the least action principle (LAP) formulated by
Lagrange. The functional which is minimized in this method corresponds to the integral
over time of the difference between the kinetic and potential energies of the system. This
principle may appear odd because of its non locality and the peculiarity of the functional
(Berdichevsky, 2009). However, it has successfully survived many physical revolutions from
quantum mechanics to general relativity.

Least action principle in fluid mechanics

The use of the LAP in fluid mechanics appeared relatively lately compared to other domains
of physics. It can be traced back to Clebsch (1859) for incompressible flows and to Bateman
(1929) for irrotational compressible flows. However, using variational methods in optics
started with Fermat in 1657. Because fluid mechanics may be described with two different
coordinate systems (Euler and Lagrange), two different options have been pursued to apply
the LAP. However, because this principle is independent of the choice of coordinates, these
two options were found to be equivalent (Herivel, 1955) and clarified by Seliger & Whitham
(1968). The first option is to work with Lagrangian coordinates and has been developed
by Eckart (1938), Eckart (1960). Using the Eulerian coordinates was less straightforward
because constraints had to be introduced in the functional. It was Lin (1959) who introduced
is famous one which keeps trace of the particles’ Lagrangian coordinates. A last formulation
of the LAP was developed by Bretherton (1970) using the concept of virtual motion.

Because multiphase flows may obey to complex motion, the LAP was used to add micro
phenomena in models. The precursors of this method are Bedford & Drumheller (1978)
who developed a model for the kinetic energy of bubbles. This new kinetic energy was also
taken into account by Saurel & Abgrall (1999a) and Sciarra et al. (2003) within LAP. All of
these authors used the virtual motion approach to derive their functional. LAP in Eulerian
coordinates was also used to predict superfluid behavior (Geurst, 1980) and to take into
account added mass effects in multiphase models (Geurst, 1985).
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4.1.3 Explicit formalization in anticipation of future numerical schemes

Numerical schemes crafting relies on specific PDE structures to be formulated. For instance,
finite element methods are preferably applied to elliptic PDE. In fluid dynamics computation,
finite volume schemes based on fluxes are extensively used because they apply to conservative
PDE. This is why Euler equations are often formalized in total energy. In multiphase flows,
models may rarely be written in fully conservative forms. A well known example is the one
pressure model (or six equations model) (Toumi, 1996; Munkejord et al., 2009; Vazquez-
Gonzalez et al., 2020), where volume fraction is outside pressure derivative (or inversely
which is the so called nozzling term) in the momentum equation. However, models always
possess one conservative part (at least the transport), which can be discretized with finite
volume schemes. Furthermore, convection part of the model may be hyperbolic and thus
discretized by Godunov like schemes (Saurel & Abgrall, 1999a). This is the case for the
Baer & Nunziato (1986) (BN) like models.

Now, discretization of non conservative terms must be carefully crafted in order to re-
spect conservations and thermodynamic consistency 2. One way to achieve this is the use
of variational methods leading to symplectic schemes preserving the geometric structure
of numerical flows (Marx, 2008; Hairer et al., 2006). However, energy equations do not
derive from variational methods but from first principles (Gibbs equations). Thus, their
discretization is not provided with standard recipes. Yet, as shown by Vazquez-Gonzalez
et al. (2020), continuous forms may be mimicked to build conservative and consistent dis-
cretizations. However, respecting conservation involve explicit dynamics to avoid complex
studies of high dimensional non linear systems.

In multiphase flows Eulerian-Eulerian models, all fluids are coupled through the volume
filling constraint. Thus, explicit formulation of energies is not straightforward to obtain. BN
like models impose explicit dynamics of volume fractions through their specific pressure rela-
tion and thus explicit dynamics of energies. However, pressure equality in the six equations
model does not lead immediately to explicit dynamics. To the knowledge of the authors,
explicit formulation of energy equations in this model are only written by Vazquez-Gonzalez
et al. (2020) and nearly by Munkejord et al. (2009) where the explicit volume fraction dy-
namics is deduced. Though, explicit formulations also reveals stiffness due to contrasted
EOS which is inherent to all multiphase models, even in the BN types models (Chiocchetti
& Müller, 2020). Thus, explicit forms allows to adapt numerical schemes to capture it. In
two-phase flow modeling with single pressure models, only two potentials are implicitly cou-
pled. These are the internal energies of both fluid whose dynamics contain time derivative
of volume fraction (Munkejord et al., 2009; Vazquez-Gonzalez et al., 2020). However, when
other energies are added to the system (bubbles inertia, added mass, surface tension, etc. . . ),
more potentials are coupled and thus explicit formulations are harder to obtain. We derive
here consistent explicit energies equations in multiphase systems containing various energy
reservoirs issued from literature.

2thermodynamic consistency is also an issue in full conservative PDE system discretization
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4.2 Fundamental modeling of some energy reservoirs

4.2.1 Energy reservoirs at the cornerstone of non relaxed multiphase models

Averaging procedure to obtain multiphase models

As explained above, multiphase models are obtained through averaging processes of single
phase systems. This averaging is conditioned by the mass fraction of the fluid ϕ denoted
here cϕ. This function is equal to 1 when only the fluid ϕ is present and 0 when it disappears.
Because the aim is to obtain dissipation free multiphase equation, dissipation free single fluid
equations are averaged. Their simplest form is the Euler equations. Conditional averaging
resumes to multiply them by cϕ and apply the averaging operator denoted over-bar. This
yields:

cϕ∂t(ρ) + cϕ∂x(ρu) = 0, (4.1a)

cϕ∂t(ρu) + cϕ∂x(ρu2) + ∂x(cϕp) = 0, (4.1b)

cϕ∂t(ρe) + cϕ∂x(ρeu+ cϕp∂x(u) = 0, (4.1c)

p = √(cϕ, ρ, e,σ). (4.1d)

In contrast to the rest of this chapter, p stands here for the one-point one-time non-averaged
pressure. σ stands for supplementary thermodynamic variables (such as entropies) which
fully define the state of the fluids. The mass fraction is transported with the fluid velocity
in order to ensure the mass conservation of each fluid. Now, assuming that averaging and
derivative operations commute, this set of equations leads to:

∂t
(
cϕρ
)

+
(
cϕρuj

)
,j

= 0, (4.2a)

∂t
(
cϕρui

)
+
(
cϕρuiuj

)
,j

+ cϕp,i = 0, (4.2b)

∂t
(
cϕρe

)
+
(
cϕρeuj

)
,j

+ cϕpuj,j = 0, (4.2c)

p = √(cϕ, ρ, e,σ). (4.2d)

Defining means and fluctuations as

αϕ = cϕ, αϕρϕ = cϕρ, (4.3a)

αϕρϕuϕi = cϕρui, uϕi
′ = ui − uϕi , (4.3b)

αϕpϕ = cϕp, pϕ′ = p− pϕ, (4.3c)

αϕρϕeϕ = cϕρe, αϕρϕẘϕ = cϕρẘ, (4.3d)

127



where
∑

ϕα
ϕ = 1, the averaged evolution equations are restated into usual form

∂t(α
ϕρϕ) + (αϕρϕuϕj ),j = 0, (4.4a)

∂t(α
ϕρϕuϕi ) + (αϕρϕuϕi u

ϕ
j ),j +

(
cϕρϕuϕi

′uϕj
′︸ ︷︷ ︸

A

)
,j

+αϕp,i︸ ︷︷ ︸
B

+
(
cϕpϕ′ + αϕ(pϕ − p)),i︸ ︷︷ ︸

F

+ cϕ,ip
′︸︷︷︸

D︸ ︷︷ ︸
+αϕpϕ,i+α

ϕ
,i(p

ϕ−p̄)−cϕ,ip′

= 0, (4.4b)

∂t(α
ϕρϕeϕ) + (αϕρϕeϕuϕj ),j +

(
cϕρϕeϕ′uϕj

′
)
,j

+ p cϕuj,j︸ ︷︷ ︸
W

+ cϕp′uj,j︸ ︷︷ ︸
S

= 0, (4.4c)

p = √(αϕ, ρ, ẽ,σ) +
∑

xy

∂2√
∂x∂y
· x′y′ + · · ·︸ ︷︷ ︸
H

. (4.4d)

Now, this system of PDE has been obtain in a strictly formal way. No precision has
been presumed about the averaging operator 3 or the type of flow studied to proceed to
the computation. However, if the mean quantities have clear meanings, the residual terms
denoted by a capital letters are subject to interpretation depending on these two definitions.
As an example, with ensemble averaging in bubbly flows, this terms may be interpreted as:

A: Turbulent transport.

B: Buoyancy forces.

F: Flux of momentum from intra-fluid and inter-fluid pressure fluctuations.

D: Drag.

W: Reversible work of pressure into internal energy.

S: Irreversible work of pressure fluctuations into internal energy.

H: Second-order corrections to EOS from fluids’ state fluctuations.

Because they represent fluctuations in macroscopic evolution, they contain all the system
dissipation. Thus, setting them to zero stripped all entropy production from the model.
The ensuing set of equations is known as the six equations model. Because setting different
expressions of residuals only add more terms to the equation, it is at the roots of all other
multiphase models. This is why it has been called backbone model by Vazquez-Gonzalez

3except commutation with the derivatives which are rigorously true for ensemble averaging
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et al. (2020). This model yields:

Dϕ
t (αϕρϕ) = 0, (4.5a)

Dϕ
t (αϕρϕuϕi ) + αϕp,i = 0, (4.5b)

Dϕ
t (αϕρϕeϕ)− αϕp dϕt ρ

ϕ

ρϕ
= 0, (4.5c)

p = √ϕ(ρϕ, eϕ), (4.5d)

1 =
∑

ϕα
ϕ. (4.5e)

Variational derivation of the backbone model

Due to its isentropic character, this set of equations possesses a variational structure. To
build the functional from which it derives, one needs to find the system’s energy reservoirs.
In the light of (4.5c) and (4.5b), these reservoirs are the kinetic and potential energies of
each fluid which yields respectively 1

2
[αρ]ϕ(uϕ)2 and [αρ]ϕeϕ. Also, each fluid is constrained

by its mass conservation and the Lin constraint and is coupled with the others through
the volume filling constraint. Also, examination of the equation (4.5c) combined with the
mass conservation (4.5a) suggests that internal energies are function of ρϕ. However, the
model being isentropic, entropy dependency is not visible but must be still considered. The
functional yields (Vazquez-Gonzalez et al., 2020):

A =

∫
T

∫
Ω

∑
φ

[
1
2
[αρ]φ(uφ)2 − [αρ]φe(ρφ, s(ξφ)) + ΦϕDφ

t ([αρ]φ)

+ Ψφdφt (ξφ)

]
+ Π

[∑
φ

αφ − 1

]
dxdt

(4.6)

The derivation of the action is made in (Vazquez-Gonzalez et al., 2020) and is not repeated
here. It is shown that a combination of the ensuing Euler–Lagrange equations leads to the
backbone model (4.5). Also, the variation with respect to the volume fraction leads to

0 = Π + (ρϕ)2 ∂e
ϕ

∂ρϕ︸ ︷︷ ︸
pϕ

(4.7)

which corresponds the single pressure model. Thus, equal pressure closure is not only an
assumption in the backbone model but a necessary condition to obtain a dissipation free
model with energy reservoirs reduced to the kinetic and internal energies.

4.2.2 Energies of fluctuations lost by averaging process

The set of equations (4.5) represents ideal situations where all fluctuation terms which
contain dissipation and short scale potentials are negligible. Therefore, only few situations
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can be reasonably predicted with this rough modeling approach. However, because it is at
the roots of all other models, its discretization must be carefully crafted to be able to add
other building blocks. These blocks are higher order effects but may be crucial to predict
correctly real multiphase flows.

Effects Description Closure
External turbulence Agitation of dispersed particles (4.18)
Internal turbulence Turbulence inside a phase (4.36)
Surface tension Interfacial effect opposed to inclusions’ deformation (4.44)
Added mass Effective inertial mass of a structure drifting in a surrounding phase (4.45)

External turbulence

One of the most higher order effects studied is the turbulence contained inside [A] in (4.4b).
In suspension flows, this term stands for chaotic motion of particles due to interactions
or direct collisions (Lhuillier et al. (2013)). The kinetic energy associated to this turbulent
motion has been has been inspected by de Bertonado (1992), Saurel et al. (2003) and Herard
(2005). Its dynamics may be derived by several approaches presented here.

Kinetic approach The kinetic theory has been used in Gidaspow (1994) to study this
motion (called granular temperature in this book) through Boltzmann description. A simpler
approach is presented here, based on an idealized system. Particles’ agitation is defined as

ke = 1
2

[
(u′x)

2 + (u′y)
2 + (u′z)

2
]
. (4.8)

With the isotropic hypothesis, this expression simplifies to

ke = 3
2
(u′n)2 with n = x , y or z. (4.9)

The system studied is a fictive volume of fluid filled with particles. In the reference frame
of the mean particle velocity, walls are affected by particle collisions. These collisions lead
to an effective pressure called granular pressure. To estimate this pressure, a momentum
balance is made on the wall. The number of particles hitting a wall area ∆y∆z of normal
ex by unit of time yields

N = 1
2

αparticle

vparticle
u′x∆y∆z (4.10)

with vparticle being the particles’ volume. The momentum transmitted to the wall by unit of
time is then

∆(mv) =2Nmparticleu
′
x = αparticle

mparticle

vparticle
(u′x)

2∆y∆z

=2
3
[αρ]particleke∆y∆z.

(4.11)
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Ensuing pressure is then obtained as

pke =
∆(mv)

∆y∆z
= 2

3
[αρ]particleke. (4.12)

A thermodynamic relation is needed to relate this pressure to the other variables of the
system. This relation mimics Gibbs equation

dKe = −pkedV + TedSe. (4.13)

Ke is defined as the turbulent energy associated to particles agitation

Ke = V [αρ]ke. (4.14)

The mass of particle inside the volume V is constant. In isentropic evolution, the thermo-
dynamic relation 4.13 yields

dKe = −pkedV. (4.15)

With the equation (4.14) and (4.15), the Gibbs equation (4.13) is restated to

V [αρ]dke =− pkedV − V ked[αρ]− [αρ]kedV.

=pkeV
d[αρ]

[αρ]
− V ked[αρ] + [αρ]keV

d[αρ]

[αρ]

⇒ dke = pke
d[αρ]

[αρ]2
.

(4.16)

The entropy of the external turbulent energy depends only on the Lagrangian coordinates
in the isentropic case. Thus, to mimic the internal energy, the following closure is used for
the turbulent external energy

keϕ = keϕ([αρ]ϕ, ξϕ) mimics eϕ = eϕ(ρϕ, ξϕ), (4.17)
∂keϕ

∂[αρ]ϕ
=

pkeϕ

([αρ]ϕ)2
mimics

∂eϕ

∂ρϕ
=

pϕ

(ρϕ)2
. (4.18)

Averaging approach Obtaining evolution equations of the particles’ agitation by aver-
aging process has been studied by Lhuillier & Raviart (2020). The procedure is similar the
multiphase flow models derivation by averaging. The agitation is defined by the variation
of the mean kinetic energy per fluid to the kinetic energy per fluid formed by the mean
quantities (4.19).

[αρ]ϕkeϕ = 1
2
cϕρ(uϕ)′i(u

ϕ)′i = cϕ 1
2
ρu2

i − 1
2
[αρ]ϕ(uϕi )2 (4.19)

To obtain the evolution of this residuals, dynamics of both terms must be computed. The
equation on the average kinetic energy is derived by multiplying the equation (4.4b) by uϕi
and using the equation (4.5a))

∂t(
1
2
[αρ]ϕ(uϕi )2) +

(
1
2
[αρ]ϕ(uϕi )2uϕj

)
,j

= −αϕpϕ,iu
ϕ
i + Res uϕi . (4.20)
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The non averaged kinetic energy yields simply

∂t(
1
2
ρu2

i ) +
(

1
2
ρ(ui)

2uj
)
,j

= −p,iui. (4.21)

The agitation dynamics is obtained through

cϕ × (4.21)− (4.20). (4.22)

The temporal derivative is

cϕ∂t(
1
2
ρu2

i )− ∂t(1
2
[αρ]ϕ(uϕi )2)

with dtcϕ = 0 : =∂t(cϕ
1
2
ρu2

i ) + 1
2
ρu2

i c
ϕ
,juj − ∂t(1

2
[αρ]ϕ(uϕi )2)

=∂t(cϕ
1
2
ρ(uϕi + (uϕi )′)2) + 1

2
ρu2

i c
ϕ
,juj

− ∂t(1
2
[αρ]ϕ(uϕi )2)

=∂t([αρ]ϕkeϕ) + ∂t(cϕρu
ϕ
i (uϕi )′)︸ ︷︷ ︸

= 0

+1
2
ρu2

i c
ϕ
,juj.

(4.23)

The advection part is

cϕ
(

1
2
ρu2

iuj
)
,j
− (1

2
[αρ]ϕ(uϕi )2uϕj ),j

=
(
cϕ 1

2
ρu2

iuj
)
,j
− cϕ,j 1

2
ρu2

iuj − (1
2
[αρ]ϕ(uϕi )2uϕj ),j

=
(
cϕ 1

2
ρ(uϕi + (uϕi )′)2(uϕj + (uϕj )′)

)
,j
− cϕ,j 1

2
ρu2

iuj − (1
2
[αρ]ϕ(uϕi )2uϕj ),j

=
(
cϕ 1

2
ρ(uϕi )2(uϕj )′

)
,j︸ ︷︷ ︸

= 0

+
(
cϕρuϕi (uϕi )′uϕj

)
,j︸ ︷︷ ︸

= 0

+
(
cϕρuϕi (uϕi )′(uϕj )′

)
,j︸ ︷︷ ︸

uϕi Rij,j+Riju
ϕ
i,j

+
(
[αρ]ϕkeϕuϕj

)
,j

+
(
cϕ 1

2
ρ(uϕi )′(uϕi )′(uϕj )′

)
,j︸ ︷︷ ︸

neglected

−cϕ,j 1
2
ρu2

iuj.

(4.24)

The right part is

−cϕp,iui + αϕpϕ,iu
ϕ
i +Rij,ju

ϕ
i −

(
pϕ − p̄)αϕ,iu

ϕ
i + p′cϕ,iu

ϕ
i . (4.25)

The evolution of the kinetic turbulent energy yields then

Dϕ
t ([αρ]ϕkeϕ) = −Riju

ϕ
i,j.+ Res︸ ︷︷ ︸

cϕp,i(u
ϕ
i −ui)

. (4.26)

With an isotropic hypothesis, the Reynolds tensor Rij is modeled as

Rij = 2
3
[αρ]ϕkeϕδij = pkeϕδij. (4.27)

By neglecting residuals and using the continuity relation (4.5a), the equation (4.26) is re-
stated as

dϕt (keϕ) = pkeϕ
dϕt ([αρ]ϕ)

([αρ]ϕ)2
. (4.28)

The equation over the external turbulent pressure can be derived from (4.28)

dϕt (pkeϕ) = 5
3
pkeϕ

dϕt [αρ]ϕ

([αρ]ϕ)2
. (4.29)
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Internal turbulence

In addition to the chaotic motion of particles, carrier fluid may experience turbulence as in
single fluid flows. Models to capture this turbulence are purely single fluid models. One
example of closure is proposed in this section. The kinetic turbulent energy is defined as

k =
ρu′′i u

′′
i

ρ̄
. (4.30)

With computation on the Favre average equations (details in Galera (2005) p 30), the
evolution equation of this energy is obtained as

∂t(ρ̄k) + ∂xi(ρ̄kũi) = −ρ̄ũ′′ju′′i ∂xj ũi + neglected terms. (4.31)

To simplify the model, all the terms called neglected terms are neglected (2 to 5 in Galera
(2005)). The Reynolds tensor may be modeled as

R̃ij = −ρ̄ũ′′ju′′i = µt
[
(∂xj ũi + ∂xiũj)− 2

3
δij∂xk ũk

]
− 2

3
ρ̄kδij. (4.32)

The shear part is neglected, the evolution equation of the internal turbulent energy is restated
then as

∂t(ρ̄k) + ∂xi(ρ̄kũi) = −2
3
ρ̄k∂xi(ũi). (4.33)

With the Favre averaged mass conservation equation (for a single fluid), the evolution yields

dt(k) = 2
3
k
dtρ̄

ρ̄
. (4.34)

With the definition of dt(a) = ∂t(a) + ũi∂xi(a). The entropy of the turbulent energy is not
easy to define, however, for an isentropic flow, it depends only of the Lagrangian coordinates.
Thus, by setting the following pressure pk = 2

3
ρ̄k, a closure mimicking the internal energy

yields then

k = k(ρ, ξ) mimics e = e(ρ, ξ), (4.35)
∂k

∂ρ
=
pk
ρ2

mimics
∂e

∂ρ
=
P

ρ2
. (4.36)

Therefore, inside each structure, an internal mass turbulence kϕ may be defined which is
ruled by the Gibbs equation kϕ(ρϕ, ξϕ) with ∂ρϕkϕ = pkϕ

(ρϕ)2
and pkϕ = 2

3
ρϕkϕ. Dynamics of

the internal turbulent pressure can be computed as

dϕt (pkϕ) = 5
3
pkϕ

dϕt (ρϕ)

ρϕ
. (4.37)

133



Surface tension

Deviation of pressure fluid to the mean pressure expressed in the form [F] in (4.4b) may be
interpreted in bubbly flows as surface tension. The surface tension represents the resistance
of structures (such as bubbles) to be deformed. Its origin lies at molecular scale which is
the scale of the interfaces between the constituents. The resulting pressure is often modeled
by the Young and Laplace law (Chung, 2007; Ramshaw, 1978) involving the curvature of
the interface. Therefore, the surface tension effect is purely geometric, i.e. it depends only
on the position of the fluid particles. Thus, it falls into the variational formalism. Several
options are explored here to close this effect.

First model The first model is an simple example of how to take into account this phe-
nomenon in a flow with spherical inclusions (ie bubbles in a water air flow). With the
Laplace formula, the surface tension energy of a bubble is

Etens = σ4πr2, (4.38)

with r the radius of a bubble and σ the surface tension (considered here as constant). The
per volume energy associated to this model is then

etens = 3σα
1

r
, (4.39)

with r the mean radius. This expression represents the potential in the flow due to the surface
tension contained at the interfaces. As the mass of the bubble is constant (if there are no
mass exchanges), the radius is directly linked to the density of inclusions as mb = 4

3
πr3ρ.

Second model Surface tension in a water air flow is studied by Ramshaw (1978). In this
paper, the authors aimed to predict the evolution of a separated flow in a pipe. The two
fluids are denoted here by the signs + and −. To model surface tension, a relation between
pressure (4.41) is proposed where the curvature is modeled by the second derivative of the
void fraction. It is very difficult to use a ‘backward’ procedure to find the corresponding
energy. However, it happens that the potential proposed by Gavrilyuk & Saurel (2002)
which yields

1
2
σ|∇α|2 (4.40)

leads to this relation between the pressures

p+ − p− = σ∂2
xα

+ (4.41)

which is exactly the relation proposed in (Ramshaw, 1978).
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Third model The third model is inspired of Lhuillier et al. (2010), but it is added here
with a variational method that leads notably to a pressure relation not present in their
model. Two main variables are introduced, the surface energy eiϕ and the interfacial density
aiϕ of the fluid ϕ. The two quantities follow the evolution equations (4.42) and (4.43)

Di
t(ei

ϕ) = σDi
t(ai

ϕ), (4.42)

Di
t(ai

ϕ) = 2
3
aiϕ

Dϕ
t α

ϕ

αϕ
, (4.43)

with the operator DI
t (a) = ∂t(a) + (uIja),j and σ the surface tension of the dispersed phase.

The relation (4.43) is just a transcription of the power law between a surface and a volume.
To close this, the velocity of energy transport needs to be modeled. One choice done by
Lhuillier et al. (2010) is uI = uϕ with ϕ referring to the fluid associated with the inclusion.
The model is simplified here by using the following relation between the interfacial area and
the interfacial energy eiφ = σaiφ. With the mass conservation (4.5a), this yields

Dϕ
t (eiϕ) = −piϕαϕd

ϕ
t ρ

ϕ

ρϕ
, (4.44a)

dϕt (piϕ) = 1
3
piϕ

dϕt ρϕ

ρϕ
, (4.44b)

with piϕ = 2
3
σ aiϕ
αϕ

.

Added mass

The added mass effect or virtual mass effect is a turbulent effect that occurs when there is
a drift between two fluids, especially when inclusions (bubbles, grain, etc. . . ) of a light fluid
are moving in a heavier one. Its introduction is needed because the classical hydrodynamic
mass of the inclusions (their volume times their density) does not correspond to their inertial
mass. A common example is a bubble into a flow of water at rest. To set the bubble into
motion, not only the air inside needs to be accelerated but also all the surrounding water
which is much heavier. When the flow around the bubble is totally resolved, this effect
is naturally taken into account. However, after an averaging process, information on the
behavior of water around the bubble is lost. The mean velocity of the water is equal to
the instantaneous velocity far away from the bubble. Thus, the kinetic energy associated is
null in the case of a water at rest. But the kinetic energy is not the square of the average
velocity (which is zero here) but the average of the square. As a consequence, the added
mass can be considered as a turbulent effect because it represents a kinetic energy due to
the perturbation of the carrier phase velocity around the particle. More explanations about
meaning of added mass and computation for single structure are made by Clausse (2003).
In the light of this definition, added mass depends on the mass of the fluid displaced and
the relative velocity of the two phases. An averaged energy would then depend on the
void fraction of the particles and the density of the carrier phase. However, as shown in
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Zhang & VanderHeyden (2002), the mesoscale effects of the added mass need to be taken
into account in a two fluid flow by considering the average density surrounding the particle
which is ρ = [αρ]+ + [αρ]−. Thus, the added mass energy is written in a general way as

Eadd = 1
2
A
(α+ − α−

2
, [αρ]+, [αρ]−

)
|u+ − u−|2. (4.45)

Because the coefficient A is a density formed by a combination of both fluids, it must verifies
the homogeneity condition

A = [αρ]+A,[αρ]+ + [αρ]−A,[αρ]− . (4.46)

A last condition is that the added mass coefficient must vanish as one of the void fraction
tends to zero. A closure that satisfies these properties is the closure of Youngs (1989)

A = α+α−ρ. (4.47)

4.3 Dissipation free models with added fluctuations

4.3.1 Lagrangian and momentum equation

Construction of the Lagrangian

To complete the backbone model with the effects above, their corresponding energies are
added in the Lagrangian (4.6). However, when new fields are introduced such as the inter-
facial density, constraints that link them to the previous fields must be added in the action.
Those on turbulent energies are not necessary because these potentials depend explicitly
on the density and Lagrangian coordinates. The new Lagrangian of the system becomes
therefore

L =
∑
φ

(
1
2
[αρ]φ(uφj )2 − [αρ]φeφ(ρφ, ξφ)− [αρ]φkφ(ρφ, ξφ)︸ ︷︷ ︸

(1)

− [αρ]φkeφ([αρ]φ, ξφ)︸ ︷︷ ︸
(2)

− eiφ(aiφ)︸ ︷︷ ︸
(3)

+ΦφDφ
t ([αρ]φ)

+ ηφ
(
ρφDφ

t (aiφ) + 2
3
aiφdφt (ρφ)

)︸ ︷︷ ︸
(4)

+Ψφdφt (ξφ)

)

+ 1
2
A([αρ]+, [αρ]−,∆α)(∆uj)

2︸ ︷︷ ︸
(5)

−Π

(∑
φ

αφ − 1

)
.

(4.48)

In the new Lagrangian (5.22), the following forms have been thus added:

• (1) the internal turbulent energy

• (2) the external turbulent energy,
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• (3) the interfacial energy,

• (4) the constraint that links the interfacial area density to the density,

• (5) the added mass kinetic energy.

For all the added effects except the added mass, the number of fluids is arbitrary. How-
ever, it is restricted to two with added mass for simplicity which are called in that case +

and −. Variations of the action Ã =
∫
T

∫
Ω
Ldtdx with respect to the degrees of freedom

[αρ]φ, uφi , αφ, ξφ, ai
φ and all the Lagrangian multipliers lead to the Euler-Lagrange equations

δ[αρ]φ : 0 = 1
2
(uφj )2 − eφ − ρφeφ

,ρφ
− kφ − ρφkφ

,ρφ
− keφ

−[αρ]φkeφ
,[αρ]φ

− dφt (Φφ) +
ηφ

αφ
Dφ
t (aiφ)

−2
3

1

αφ
Dφ
t (ηφaiφ) + 1

2
A±(∆uj)

2

(4.49a)

δαφ : 0 = (ρφ)2eφ
,ρφ

+ (ρφ)2kφ
,ρφ
− ρφηφ

αφ
Dφ
t (aiφ)

+2
3

ρφ

αφ
Dφ
t (aiφηφ)± 1

4
Aα(∆uj)

2 − Π

(4.49b)

δuφi : 0 = [αρ]φuφi − [αρ]φΦ,i − aiφ(ηφρφ),i

+2
3
ηφaiφρφ,i + Ψφξφ,i ± A∆ui

(4.49c)

δξφ : 0 = −[αρ]φeφ
,ξφ
− [αρ]φkφ

,ξφ
− [αρ]φkeφ

,ξφ
−Dφ

t (Ψφ) (4.49d)

δaiφ : 0 = −eiφ
,aiφ − dφt (ηφρφ) + 2

3
ηφdφt (ρφ) (4.49e)

δΦφ : 0 = Dφ
t ([αρ]φ) (4.49f)

δηφ : 0 = ρφDφ
t (aiφ) + 2

3
aiφdφt (ρφ) (4.49g)

δΨφ : 0 = dφt (ξφ) (4.49h)

δΠ : 0 =
∑
φ

αφ − 1 (4.49i)

With the equation (4.49e) and the constraint (4.49g), the equation (4.49b) can be sim-
plified as

Π = pφ + pkφ − 2
3

aiφ

αφ
eiφ
,aiφ︸ ︷︷ ︸

piφ=
2
3

aiφ

αφ
σ

±1
4
A,α(∆uj)

2. (4.50)

The equation (4.50) is an algebraic relation between pressures. It shows that the total pres-
sures per fluid are equal. This total pressure is the sum of contributions from internal energy,
internal turbulence, surface tension and added mass (through the added mass coefficient).
Thus, this relation involves all the energy reservoirs with the exception of the kinetic energy
and the turbulent external energy which do not depend on the thermodynamic variables

137



(density or void fraction) but on the local mass ([αρ]φ) and the local velocity (uφi ). How-
ever, the kinetic energy reservoirs are still coupled through the added mass contribution
±1

4
A,α∆2uj due to the drift.

Momentum equations

The relation (4.49c) shows that added mass contributes to the momentum quantity with the
term ±A∆ui. The Clebsch decomposition of this momentum contains Lagrange multipliers
that must be eliminated to derive the momentum equation.

This is achieved by the following computation Dφ
t (4.49c) .

Dφ
t ([αρ]φuφi ± A∆ui) =[αρ]φdφt (Φ,i) + Dφ

t (aiφ(ηφρφ),i)

− 2
3
Dφ
t (ηφaiφρφ,i)−Dφ

t (Ψφξφ,i)
(4.51)

Using (4.43) and (4.49g), the form corresponding to surface tension is restated as

Dφ
t (aiφ(ηφρφ),i)− 2

3
Dφ
t (ηφaiφρφ,i) =− 2

3

aiφ

ρφ
ρφ,iei

φ

,aiφ + aiφ(ηφρφ),iu
φ
j,i

− 2
3
aiφηφρφ,iu

φ
j,i

(4.52)

With (4.5a), (4.49d), (4.49h) contributions of the other forms are

[αρ]φdφt (Φ,i)−Dφ
t (Ψφξφ,i) = [αρ]φ(dφt (Φ)),i

−[αρ]φΦ,iu
φ
j,i + Ψφξφ,iu

φ
j,i + [αρ]φξφ,i(e

φ
,ξφ

+ kφ
,ξφ

+ keφ
,ξφ

).
(4.53)

With (4.49a) and (4.5a) this can be simplified as

[αρ]φdφt (Φ,i)−Dφ
t (Ψφξφ,i) = −αφ[pφ + pkφ],i − (pkeφ),i

+[αρ]φ(
piφ

ρφ
),i + [αρ]± 1

2
(A,±(∆uj)

2),i

+[αρ]φuφj u
φ
j,i + [αρ]φΦ,iu

φ
j,i −Ψφξφ,iu

φ
j,i.

(4.54)

Using the equation (4.49c) to eliminate the multipliers form the combination, the final
momentum equation is obtained as

Dφ
t ([αρ]φuφi ± A∆ui)︸ ︷︷ ︸

(1)

=− αφ(pφ + pkφ − piφ),i︸ ︷︷ ︸
(2)

− (pkeφ),i︸ ︷︷ ︸
(3)

+1
2
[αρ]±(A,±(∆uj)

2),i ∓ u±j,iA∆uj︸ ︷︷ ︸
(4)

(4.55)

This momentum equation is composed by a series of distinct terms. On the left part is
written the transport of the total momentum quantity (1) which now takes into account the
added mass. On the right part, there are: (2) the gradient of the pressures derived from
potentials depending on volume fraction (or density) weighted by the volume fraction, (3)
the gradient of external turbulent pressure depending only of the local mass of the fluid, (4)
complex terms issued from the added mass.
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4.3.2 Forcing pressure equality

Justification of equal pressure constraint

Experiments in multiphase flows sometimes reveal variations between pressures of the dif-
ferent phases. For instance, when a shock propagates into a bubbly flow, bubbles oscillate
during a short period after the shock impact (Beylich & Gülhan, 1990),(Brennen, 2005, chap
4.4). The relaxation time of these oscillations is at the ms order. Therefore, the pressure
relaxation is much faster than the velocity and temperature one. Also, this relaxation is a
transitory effect damped by viscosity. In bubbly flows, it is ruled by the Rayleigh–Plesset
equation whose non dissipative part may be obtained with a least action principle (Saurel
& Abgrall, 1999a; Sciarra et al., 2003). The potential introduced corresponds to the bub-
bles’ kinetic energy. Added mass effects also lead to non pressure relaxation as shown by
the equation (4.50). Added mass is also a transitory effect but lasts as long as the fluids’
velocities are not relaxed which means that pressure relaxation can not be considered as
instantaneous. However, it is possible to evaluate the impact of neglecting the added mass
pressure in the relation between pressures.

To evaluate this impact, a single bubble a volume V b, density ρb and pressure pb inside a
water flow is considered. The added mass pressure is roughly equal to the dynamic pressure.
The volume variation can be then estimated as

dV
V

= 1
2

ρw

ρb
M2 (4.56)

with M = |∆ui|
cs

. Two effects are then in competition, the ratio of density between the
bubbles and the surrounding fluid versus the Mach number of the drift. In usual bubbly
flows, the drift is of the m.s−1 order whereas the sound speed is of 3× 102 m.s−1. Thus the
volume variation is about one per cent. Therefore, added mass contribution to pressure may
be neglected. However, the other forms may not be discarded. As an example, the inertia
in the momentum quantity A∆ui may be dominant before the classic inertia of the fluid.

In addition to these physical based arguments, practical issues to build usable models
involve to conserve pressure equality. As explained in (4.1.3), explicit energy evolutions are
necessary to build numerical schemes able to insure conservations without solving complex
systems and to capture internal stiffness. These equations are obtained by using the pres-
sure relation issued from the LAP. Therefore, this relation reflects the coupling between the
energy reservoirs and thus determine the degree of complexity of the equations. Because
relation (4.50) couples all the energy reservoirs, the ensuing energy equations are extremely
complex (4.A). Crafting a consistent and conservative numerical scheme solving these equa-
tions seems unrealistic. This is why pressure relaxation is now imposed in the model.

New Lagrangian, cost of the constraint

The equation (4.49b) shows that the relation between pressures is imposed by the potentials
depending on the thermodynamic quantities (the volume fraction or the density). Nev-
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ertheless, it is possible to impose a relation between pressures by the mean of a Lagrange
multiplier in the Lagrangian. This relation imposes a constant equilibrium between pressures
issued from internal energies. With addition of this constraints, the Lagrangian becomes

L = (5.22) + θ(p+ − p−) (4.57)

As the derivation is a linear operator, the new Euler-Lagrange equations are restated as

δ[αρ]φ : (4.49a)± θ

α±
p±,ρ± (4.58a)

δαφ : Π = pφ + pkφ + piφ ± 1
4
A,α∆2uj ±

ρ±θ

α±
p±,ρ± (4.58b)

δuφi : (4.49c) (4.58c)

δξφ : (4.49d)± θs±,ξ±p
±
,s± (4.58d)

δaiφ : (4.49e) (4.58e)

δθφ : (4.5a) (4.58f)

δηφ : (4.49g) (4.58g)

δΨφ : 0 = (4.49h) (4.58h)

δΠ : 0 =
∑
φ

αφ − 1 (4.58i)

δθ : 0 = p+ − p− (4.58j)

There are now two relations over pressures, the relation (4.58b) and the relation (4.58j).
These two relations lead to the expression of the Lagrangian multiplier θ in function of the
other pressures as

θ =
−∆(pkφ + piφ)− 1

2
A,α∆2uj

( γ
+

α+ + γ−

α−
)p

. (4.59)

The Lagrange multiplier can be then interpreted as the ratio between variations to the
equilibrium p+ − p− without constraint and the common pressure itself p. It is the cost to
return to the equilibrium. This cost may be restated as

θ = α+α−
−∆(pkφ + piφ)− 1

2
A,α∆2uj

ρeqc2
eq

(4.60)

with ρeqc2
eq = (α−ρ+(c+

s )2+α+ρ−(c−s )2). If the other effects are neglected, it may be expressed
with a Mach number and a density ratio as in (4.56). This cost is found to be negligible in
many industrial fluid flows.

The new momentum quantity yields

Dφ
t ([αρ]φuφi ± A∆ui) =− αφ(pφ + pkφ + piφ),i − (pkeφ),i

+ 1
2
[αρ]±(A,±∆2uj),i ∓ u±j,iA∆uj

∓ α±
( θ
α±

γ±p
)
,i
± θ,ip.

(4.61)

The momentum quantity now involves gradients of the pressure relaxation cost.
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4.3.3 Kinetic energy equations, conservation of the total energy

Without added mass, there is only one kinetic energy per fluid which is classically 1
2
[αρ]ϕ(uϕ)2.

This kinetic energy involves only the mass of the phase and its velocity. Thus it does not
couple phases with each other. The equation of the kinetic energy of each phase is ob-
tained by multiplying the momentum equation of a phase by its velocity and using the mass
conservation. Without pressure constraint, it yields then

Dφ
t (1

2
[αρ]φ(uφi )2) = −αφ (pφ + pkφ − piφ),iu

φ
i︸ ︷︷ ︸

(1)

− (pkeφ),iu
φ
i︸ ︷︷ ︸

(2)

.
(4.62)

Therefore, the kinetic energy equation per fluid is explicit with two distinct contributions.
The contribution (1) is the action of the total pressure weighted by the volume fraction
which ultimately couples all the fluids together with the relation

∑
φ α

φ = 1. It means that
the action of the total pressure is distributed on the kinetic energy of a phase according
to its volume fraction, itself coupled to the internal energy through the density. However,
the form (2) does not depend on volume fraction and therefore couples only the reservoir of
external turbulence of the fluid to its kinetic energy. As it will be seen in the next part, this
difference has a strong impact on the internal energies’ computation.

Now if added mass is considered, the combination above leads to another time derivative
which can not be simplified.

Dφ
t (1

2
[αρ]φ(uφi )2︸ ︷︷ ︸

Eφc

)± uφiD
φ
t (A∆ui) = −fφuφi . (4.63)

By summing all the equations (4.63) over the fluids, the total kinetic energy evolution is
obtained on the LHS but there is still a time derivative on the RHS.∑

φ

Eφ
c + ∂t(

1
2
A(∆ui)

2︸ ︷︷ ︸
added mass energy

) = −1
2
∆ui ∂tA︸︷︷︸

(a)

+transport− fφuφi . (4.64)

The coupling due to added mass is seen in (4.64) with two observations. Added mass energy
appears only if all the fluid momentum equations multiplied by their velocity are summed
which means that the added mass energy and the kinetic energy of all fluids are coupled.
The term (a) involves derivatives of the void fraction which itself involves derivatives of the
density, and ultimately the internal energies. This shows that added mass couples all the
system’s energy reservoirs and therefore that explicit energy equations will be very complex.
However, adding the pressure equality constraint simplifies the procedure as it will be shown
in the next part.

Still, even without pressure constraint, Noether’s theorem guarantees that total energy
is conserved and gives directly the flux with the following computation.
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H =
∑
φ

(
∂L
˙[αρ]φ

˙[αρ]φ +
∂L

ξ̇φ
ξ̇φ +

∂L
˙aiφ

˙aiφ +
∂L

ρ̇φ
ρ̇φ

)
− L

=
∑
φ

(
Φφ ˙[αρ]φ + ψφξ̇φ + ηφ(ρφ ˙aiφ + 2

3
aiφρ̇φ)

)
− L

=−
∑
φ

[
1
2
[αρ]φ(uφj )2 − [αρ]φ(eφ + kφ + keφ)− eiφ

+ Φφ([αρ]φuφj ),j + ψφuφj (ξφ),j + ηφ(ρφ(aiφuφj ),j + 2
3
aiφρφ,ju

φ
j )
]

+ Π(
∑
φ

αφ − 1)− 1

2
A∆2uj.

(4.65)

With the Euler-Lagrange equation (4.49c)

[αρ]φuφi ± A∆ui = [αρ]φΦφ
,i − ψφξ

φ
,i

+ aiφ(ηφρφ),i − 2
3
ηφaiφρφ,i,∑

φ

([αρ]φ(uφi )2) + A∆2ui =
∑(

[αρ]φuφi Φφ
,i − ψφu

φ
i ξ

φ
,i

+ uφi ai
φ(ηφρφ),i − uφi 2

3
ηφaiφρφ,i

)
.

(4.66)

The final form of the Hamiltonian is then (using the constraint volume filling constraint):

H =
∑
φ

(
Eφ
c + [αρ]φ(eφ + kφ + keφ) + eiφ + (Φφ[αρ]φuφj

+ηφρφaiφuφj ),j

)
+ 1

2
A∆2ui.

(4.67)

The flux derived from the Noether theorem are then

Fj =
δL

δ[αρ]φ,j

˙[αρ]φ +
δL

δξφ,j
ξ̇φ +

δL

δ(uφj ),j

˙
uφj +

δL

δ(aiφ),j

˙aiφ +
δL

δ(ρφ),j
ρ̇φ

=Φφuφj
˙[αρ]φ + ψφuφj ξ̇

φ + (Φφ[αρ]φ + ηφρφaiφ)
˙
uφj + ηφρφuφj

˙aiφ

+ 2
3
ηφaiφuφj ρ̇φ

=Φφ ˙
(uφj [αρ]φ) + ψφuφj ξ̇

φ + ηφρφ(
˙aiφuφj ) + 2

3
ηφaiφuφj ρ̇φ

(4.68)

The derivative of the Hamiltonian is equal to the flux and thus the total energy evolution
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equation is

∂t(Etot) =
∑
φ

[
∂t
(
Φφ[αρ]φuφj + ηφρφaiφuφj

)
,j
−

(
Φφ ˙

(uφj [αρ]φ) + ψφuφj ξ̇
φ + ηφρφ(

˙aiφuφj ) + 2
3
ηφaiφuφj ρ̇φ

)
,j

]
=
∑
φ

(
Φ̇φ[αρ]φuφj + ( ˙ηφρφ)aiφuφj + ψφuφj u

φ
i ξ

φ
,i

− 2
3
ηφaiφuφj ρ̇φ

)
,j

.

(4.69)

The equation (4.49a), combined with (4.49e) and the constraint (4.49g), removes the tem-
poral derivative on the right part on the Lagrangian multiplier Φφ

[αρ]φuφj Φ̇ =− [αρ]φuφj u
φ
i Φφ

,i + 1
2
[αρ]φuφj (uφi )2

− [αρ]φuφj (eφ + kφ + keφ)

− αφuφj (pφ + pkφ + piφ)− uφj pkeφ + 1
2
[αρ]±u±j A,±∆2ui.

(4.70)

The equation (4.49g) removes the other temporal derivatives

aiφuφj
(

( ˙ηφρφ)− 2
3
uφj ρ̇

φ
)

= −aiφuφj u
φ
i

(
(ηφρφ),i − 2

3
ηφρφ,i

)
− uφj aiφei

φ

,aiφ (4.71)

With the equation (4.49c), the final form of the conservative total energy equation yields∑
φ

[
Dφ
t

(
[αρ]φ(1

2
(uφi )2 + eφ + kφ + keφ)

)
+ Dφ

t (eiφ)
]

+ ∂t(
1
2
A∆2ui)

=−
∑
φ

[
αφuφj (pφ + pkφ + piφ) + uφj pke

φ
]
,j

− 1
2

[
(u+

j [αρ]+A,+ + u−j [αρ]−A,−)∆2ui
]
,j

(⇒ −(Eadd
1
2
(u+

j + u−j )),j − 1
4
((u+

j − u−j )([αρ]+A,+ − [αρ]−A,−)∆2ui),j

−
[
A∆ui(u

+
j u

+
i − u−j u−i )

]
,j

(4.72)

The equation over the total energy is composed by transport on the left part and flux
issued from interaction between the energy reservoirs on the right part. The added mass
flux are the two last terms of the equation (4.72). The first of these may be restated to form
a convective term transporting the added mass energy with the average velocity of the two
fluids. The rest of the flux is the work of the pressures issued from the different potential
reservoirs. However, the Noether theorem does not give the distribution of total flux over
the different fluids and the different reservoirs. The next section explain how to obtain this.

4.3.4 Explicit internal energy equations

Only with turbulence and physical surface tension

Potential energy equations of the model are directly derived from first principle considering
that the evolution of each phase is isentropic. First, the procedure is applied without added
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mass and pressure constraint.
As seen in (4.3.3), two categories of potential can be distinguished. The first category

contains the potentials that depend only of the mass of the phases. These potentials do not
couple the fluids together because they are not impacted by the volume filling constraint. In
the examples taken, the external agitation is in this category as seen in (4.3.1). Its isentropic
energy evolution is written explicitly thanks to the mass conservation as

Dφ
t ([αρ]φkeφ) = pkeφ

dφt ([αρ]φ)

[αρ]φ
= −pkeφuφj,j︸ ︷︷ ︸

(1)

. (4.73)

The term (1) of this equation combines with the term (2) of the equation (4.63).
The other category regroups potentials that depend on the volume fraction (or the den-

sity). The internal energy, internal turbulent energy and surface tension are in this category.
All of these potentials are coupled through the void fraction relation which is translated in
the Euler Lagrange equations by the relation between pressure (4.50). The isentropic Gibbs
like equation can be written for each fluid as

Dφ
t (energy) = pressure

Dφ
t ρ

φ

(ρφ)2
(4.74)

(even if the surface tension is not exactly written like this). To obtain explicit energy
equations, the temporal derivative over the density must be removed. This is achieve by
using the relation over volume fractions and its dual relation over the pressures. Each
pressure is linked to the density by a relation similar to

dφt (pressure) = gφpressure
dφt (ρφ)

ρφ
= −gφpressure

αφ
dDφ

t (αφ). (4.75)

To obtain an explicit equation, all the pressure Gibbs equations (4.75) are summed and
combined with (4.50) (with no added mass contribution here).

dφt (Π) = −
γφpφ + 5

3
pkφ + 1

3
piφ

αφ
Dφ
t (αφ). (4.76)

The sum of the volume fraction allows to remove the temporal derivative on the right part.

ν∂tΠ + Π,j

∑
φ

αφ

p̃φ
uφj = −ūj,j +

∑
φ

αφ

p̃φ
piφuφj,j (4.77)

with, ūj,j =
∑

φD
φ
t (αφ) =

∑
φ(αφuφj ),j, p̃φ = γφpφ + 5

3
pkφ + 1

3
piφ and ν =

∑
φ
αφ

p̃φ
.

This expression makes the temporal derivative of the total pressure appear explicitly
which leads to the explicit equation of the density of each phase.

αϕ
dϕt ρϕ

ρϕ
= −βϕūj,j + Π,j

∑
φ

µϕφ(uϕj − u
φ
j ) (4.78)
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with µϕφ = αφ

p̃φ
αϕ

p̃ϕ
1
ν
and βϕ = αϕ

p̃ϕν
.

With this explicit equation, all the energies can be computed with the Gibbs like equation
(4.74).

Dϕ
t ([αρ]ϕeϕ) = −βϕpϕūj,j + pϕ

∑
φ

µϕφ
(
dϕt (Π)− dφt (Π)

)
(4.79)

Dϕ
t ([αρ]ϕkϕ) = −βϕpkϕūj,j + pkϕ

∑
φ

µϕφ
(
dϕt (Π)− dφt (Π)

)
(4.80)

Dϕ
t (eiϕ) = βϕpiϕūj,j − piϕ

∑
φ

µϕφ
(
dϕt (Π)− dφt (Π)

)
(4.81)

The conservation of energy is satisfied because the sum of the coefficient βϕ is equal to one,
the total pressure pϕ + pkϕ − piϕ is equal for each fluid and the last term in each energy
equation vanish by summing over the all the fluids.∑

φ

Dφ
t

(
[αρ]φ(eφ + kφ + keφ) + eiφ + 1

2
[αρ]φ(uφj )2

]
=−

∑
φ

pkeφuφj,j −
∑
φ

uφj (pkeφ),j

−
∑
φ

βφ︸ ︷︷ ︸
=1

(pφ + pkφ − piφ)︸ ︷︷ ︸
Π

ūj,j︸︷︷︸∑
φ(αφuφj ),j

−
∑
φ

αφuφj (pφ + pkφ − piφ),j︸ ︷︷ ︸
Π,j

(4.82)

The different behavior between the potentials depending on the mass and those depending
on the void fraction (or density) appears in the energy equations. In the first category,
potentials are not coupled together. Each one forms a distinct flux which is only composed
of mass and velocity. In the second category, the effects are coupled and their pressure work
conjointly. For each of these potential, the associated pressure contributes linearly to the
total work of pressure ((Πūi),i in equation 4.82). However, the distribution of the total work
of pressure to a given fluid through the coefficient βϕ contains all the potentials effect of
this category. As an example, the pressure work in the internal energy equation of the fluid
ϕ is the work of the associated pressure pϕ but this work is weighted by a coefficient βϕ

which depends on the pressure pϕ but also on the pressure pkϕ and piϕ.

Only added mass

Until now, the added mass was not introduced in energy computations because this effect
couples all energy reservoirs as seen in the section (4.3.3). Therefore, the computation done
in (4.3.4) is very tedious. For simplicity, only two fluids denoted + and − are considered with
the three following energy reservoirs: internal energy, kinetic energy and added mass. In
the previous section, only potentials depending on the void fraction where coupled together
through the volume filling constraint. Thus, this relation completed by its dual relation over
pressures was enough to uncoupled the evolution equations. But added mass pressure is built
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with velocities and volume fraction 1
2
A,α∆2ui. Therefore, it is not possible to write directly

a relation similar to (4.75) due to the velocity derivatives. However, after long combinations
of equations which involve all the momentum equations, it is possible to obtain this type of
relation with additional terms composed by gradients. Computational details are provided
in annex. In the end, the internal energy dynamics contains few dozens of terms that can not
be simplified. Therefore, it seems impossible to build a scheme which consistently discretizes
the full model while respecting the conservation of energy. To tackle this issue, the internal
pressures are forced to be equal, p+ = p− = p. This constraint allows to use directly the
computation done in (4.3.4). The energy equations yields then

Dϕ
t ([αρ]ϕeϕ) = −βϕpūj,j +

∑
φ

µφϕ
(
dϕt (p)− dφt (p)

)
. (4.83)

The total kinetic energy equation is obtain by the combination of the momentum quantity
(4.61) multiplied by the phase velocity

∑
(4.61)φuφ and the total internal energy equation

is obtained by using the Gibbs relation and the relation over the void fraction.

D+
t (E+

c ) +D−t (E−c ) +D+
t (E+

int) +D−t (E−int) + ∂t(Eadd) =

−
∑
φ

(αφuφi p
φ),i −

[
A∆uj(u

+
i u

+
j − u−i u−j )

]
,i

− 1
2

[
∆2uj(A,+[αρ]+u+

i + A,−[αρ]−u−i )
]
,i

− 1
4
A,α∆2ui∂t(∆α)− α+u+

i (
θ

α+
γ+p),i + α−u−i (

θ

α−
γ−p),i + θ∆uip,i

(4.84)

The last line of this equation is not conservative, however, explicit volume fraction dynamic
may be extracted from explicit internal energy equations and Gibbs equations.

p∂t(∆α) =− 2p
[
(u+

i α
+),iβ

− − β+(u−i α
−),i
]
− 2µp,i∆ui (4.85)

with the expression of θ (4.59) (without turbulence and surface tension), the last line can
be written as a conservative flux which leads to the conservative total energy evolution

∑
φ

Dφ
t

(
[αρ]φ(1

2
(uφi )2 + eφ)

)
+ ∂t(Eadd) = −

∑
φ

(αφuφi p
φ),i

−1
2

[
∆2uj(A,+[αρ]+u+

i + A,−[αρ]−u−i )
]
,i
−
[
A∆uj(u

+
i u

+
j − u−i u−j )

]
,i

+
[
padd(u+

i α
+β− − u−i α−β+)

]
,i

(4.86)

The added mass is taken into account in a fully conservative and explicit model at the price
of a correction θ. Without this correction, it is not possible to obtain a consistent model
toward thermodynamics that can be fully explicit and simple enough to be implemented in
a numerical code.
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4.A Appendix: pressure evolution equation with added mass and
without pressure constraint

The system studied here is composed of two fluids + and −. The potentials of the system
are the internal energies, the kinetic energies and the added mass energy 1

2
A∆2ui. Added

mass pressure is denoted p̃ = 1
2
A,α∆2ui

By summing the equation over each fluid
∑

φ(4.55) (without turbulence and surface
tension), the total momentum evolution is∑

±
D±t ([αρ]±u±i ± A∆ui) = −α+p+ − α−p−

+1
2
([αρ]+(A,+),i + [αρ]−(A,−),i)∆

2uj

(using 4.46 and the derivative of A)

= −p,i + α+
,i (p

+ + 1
2
p̃︸ ︷︷ ︸

= Π

) + α−,i (p
− − 1

2
p̃︸ ︷︷ ︸

= Π

)

(using 4.58b and the volume fraction constraint)

= −p,i.

(4.87)

The total flux momentum p is the average mass pressure, each mass pressure can be expressed
in function of this flux.

p = α+p+ + α−p−, (4.88)

p± = p± α∓ 1
2
A,α∆2uj. (4.89)

By introducing it into the momentum equations, they can be written in the following
conservative form

D±([αρ]±u±i ± A∆ui) = −α±p,i ∓ (A,+[αρ]+u−j,i + A,−[αρ]−u+
j,i)∆uj

± 1
2
α+α−

[
(A,α∆2uj),i + ρ+(A,+),i∆

2uj − ρ−(A,−),i∆
2uj
]
. (4.90)

The pseudo ‘Gibbs’ equation over the dynamic pressure p̃ = 1
2
A,α∆2ui is coupled with

the added mass kinetic energy due do the drift. The following combination leads to the
evolution of the directed energy 1

2
K∆2ui, with K = [αρ]+[αρ]−

ρ
+ A,

(∑
±
±4.90i ×

[αρ]∓

ρ

)
×∆ui. (4.91)

After long but direct computations, the directed energy evolution is

D0
t (K)∆2ui + 1

2
Kd0

t (∆
2ui)−K∆2ui

[
u+
j (

[αρ]−

ρ
),j + u−j (

[αρ]+

ρ
),j]

= α+α−
ρ+ − ρ−

ρ
p,i∆ui − (A,+[αρ]+u−j,i + A,−[αρ]−u+

j,i)∆ui∆uj

+ 1
2
α+α−

[
(A,α∆2uj),i + ρ+(A,+),i∆

2uj − ρ−(A,−),i∆
2uj
]
∆ui (4.92)
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with u0
i =

[αρ]−u+i +[αρ]+u−i
ρ

and d0
t its Lagrangian transport operator associated. The drift

∆2ui and the coefficient K has been separated to be introduced into the derivative of the
dynamic pressure p̃. After long but simple computations, the following expression of the
dynamic pressure evolution is

d0
t (p̃) = ±gd0

t (α
±) +G (4.93)

with

g = ∆2ui
[

1
2
A,αα −

A2
,α

K

]
(4.94)

and

K

A,α
G = K∆2ui

[
u+
j (

[αρ]−

ρ
),j + u−j (

[αρ]+

ρ
),j]

−
(( [αρ]+2

ρ2
+ A,−

)
D0
t ([αρ]+) +

( [αρ]−2

ρ2
+ A,+

)
D0
t ([αρ]−)

− 1
2

K

A,α

[
A,α+d

0
t ([αρ]+) + A,α−d

0
t ([αρ]−)

])
∆2ui

+ α+α−
ρ+ − ρ−

ρ
p,i∆ui −

(
A,+[αρ]+u−j,i + A,−[αρ]−u+

j,i

)
∆uj∆ui

+ 1
2
α+α−

[
(A,α∆2uj),i + ρ+(A,+),i∆

2uj − ρ−(A,−),i∆
2uj
]
∆ui. (4.95)

Thanks to the mass conservation, the transport of [αρ]φ can be expressed without time
derivative. Thus, the evolution of p̃ is completely explicit, the equation 4.93 can be then
modified to match the usual Gibbs equation.

d±t (±α∓p̃) = −α
±

ρ±
(α∓g ± p̃)d±t (ρ±)− α±

ρ±
(α∓g ± p̃)u±j,j[αρ]±

±α∓G+ α∓(u0
j − u±j )(gα±,j ∓ p̃,j).

(4.96)

Then, the mass pressure equation and the added mass pressure equations can be combined
similarly as the geometric density effects.

d±t (±α∓p̃) = γ̃±p̃±add
d±t ρ

±

ρ±
+G±, (4.97)

d±t (p±) = γ±p±
d±t ρ

±

ρ±
+ Γ±ρ±W± (4.98)

with

γ̃±p̃±add = −α±(α∓g ± p̃), (4.99)

G± = −α
±

ρ±
(α∓g ± p̃)u±j,j[αρ]± ± α∓G+ α∓(u0

j − u±j )(gα±,j ∓ p̃,j). (4.100)

The same procedure can be then applied and the internal energy equations are similar to
(4.79) with

p̃± = γ̃±p̃±add + γ±p± , W̃± = Γ±W± +
G±

ρ±
. (4.101)
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Collisions in Eulerian-Eulerian modeling of
dispersed multiphase flows

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1.1 The coupling challenge . . . . . . . . . . . . . . . . . . . . . 151

5.1.2 Modeling of collisions . . . . . . . . . . . . . . . . . . . . . 151

5.1.3 Collisions’ challenging aspects . . . . . . . . . . . . . . . . . 152

5.1.4 The present approaches . . . . . . . . . . . . . . . . . . . . 153

5.2 The interior collisions . . . . . . . . . . . . . . . . . . . . . . 154

5.2.1 Turbulent agitation . . . . . . . . . . . . . . . . . . . . . . . 154

5.2.2 Energy closure . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.3 Lagrangian and momentum equation . . . . . . . . . . . . . 159

5.2.4 Energy equations . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.5 Pressure equilibrium . . . . . . . . . . . . . . . . . . . . . . 161

5.3 Exterior collisions . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.1 The main principle . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.2 Collision model . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.3 Mass, momentum and energy exchange . . . . . . . . . . . . 163

5.3.4 Closing the model . . . . . . . . . . . . . . . . . . . . . . . 164

5.4 The final model . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Numerical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.5.1 Interior collisions tests . . . . . . . . . . . . . . . . . . . . . 166

5.5.2 Exterior collisions tests . . . . . . . . . . . . . . . . . . . . . 168

5.5.3 Complete collision . . . . . . . . . . . . . . . . . . . . . . . 168

5.6 An extension of the model . . . . . . . . . . . . . . . . . . . 170

5.A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

150



5.1 Introduction

5.1.1 The coupling challenge

As explained in chapter (2), prediction of multiphase flows is crucial in many industrial
and academical areas. Many different types of such flows exist following the nature of the
constituting structures (molecule, inclusions, large zone with pure components. . . ). Among
them, dispersed flows are flows with small inclusions (compared to the scale of the flow) of
various materials inside a continuous medium. The inclusions form the dispersed phases and
the continuous medium the carrier phase. However, whatever the type of flow, three main
challenges must be faced to predict accurately its evolution: i) the capture of the couplings
between phases, ii) the stability of the flow and iii) the thermodynamic consistency.

The present chapter addresses the first challenge in the case of dispersed multi-phase
flows. This challenge consists in taking into account the variety of interactions between
phases. These interactions can be classified in three types (Balachandar, 2010): i) one-way
coupling where the carrier phase influences the dispersed phase, ii) two-way coupling where
there is a backward coupling from the dispersed phase to the carrier phase and iii) four-way
coupling when there are interactions inside the dispersed phase. In very dilute regimes, one
way coupling is enough to accurately predict the flow. When the mass of the dispersed phase
becomes significant compared to the mass of the carrier phase, two way coupling is needed.
In dense regimes, four way couplings are needed because collisions of the inclusions impact
the flow.

Dispersed multi-phase flows are present in industrial applications such as sediment trans-
port, fuel extraction, combustion, fluidized bed, etc. In such applications, the particles’ vol-
ume fraction may be very high and four-way coupling becomes necessary. Therefore, various
effects must be considered between carrier phase and dispersed phase such as drag, possibly
added mass and collisions between the inclusions.

5.1.2 Modeling of collisions

The main approaches to describe the dispersed phase are the Lagrangian methods, the ki-
netic approaches and the Eulerian approaches. In the Lagrangian approaches, collisions are
described by explicit interactions between the particles or parcels (computational particles).
These interactions can be modeled by short distance potentials (Coulomb) or contact forces
(friction, etc..) (Tsuji et al., 1993). In the kinetic approaches, collisions are captured by
modeling the collision operator (Liu et al., 2012). In the Eulerian approaches, many authors
use the concept of granular pressure (Gevrin et al., 2008) in dense regimes. This granular
pressure goes to infinity when the dispersed phase volume fraction approaches the com-
paction limit and depends on the agitation of the particles around the average velocity. The
high energy associated to agitation is modeled with a continuous field whose evolution equa-
tion is added to the usual two-fluid model. It must be stressed that granular pressure models
collisions between mesoscopic particles whereas the thermodynamic pressure models micro-

151



Figure 5.1: Collisions of a) point sphere, b) hard spheres and c) two groups of hard spheres against
a wall, the distance li define the area where particles are likely to hit the wall.

scopic phenomena. Building and adjusting the correct form of the granular pressure relies
on experimental data (Aguilar-Corona et al., 2011), derivation from Boltzmann equations
(Ding & Gidaspow, 1990) and macroscopic description.

5.1.3 Collisions’ challenging aspects

The granular pressure comes from the collisions of particles. One way to define this pressure
is to consider the transfer of momentum by unit of surface and time to a fictive wall (4) hit by
them. Now, the difficulties lie in the estimation of this transfer. In dilute regimes, particles
can be approximated by points. Thus, they do not collide with each other before hitting the
wall and thus the closure of external agitation as made in (4) is relevant. However, in dense
regimes, this assumption is not accurate. Their mean free path depends on their density
and volume. Thus, the wall layer which contains particles susceptible to collide with the
wall shrinks. Also, when several groups of particles are hitting the walls, a given particle
interacts with all of them and not only the ones in its group.

The three situations are illustrated on figure (figure 5.1). In the first situation, point
particles hit the wall (figure 5.1 left). In that case, particles cannot collide with each other.
Identification of particles susceptible to collide with the wall during a given time step is
straightforward (blue domain) and so is the wall pressure. In the second case (figure 5.1
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middle), particles are not point like and they are then likely to collide with each other as
well as hitting the wall. Given a time interval ∆t, it is more convoluted to predict which
particles are going to reach the wall. In addition, because particles interact together, the
same particle may hit the wall several times during the time interval. Therefore, closure of
the granular pressure has to take into account the mass, mean velocity and mean free path of
particles. This becomes even more complex when several groups of particles coexist (figure
5.1 right). In that case, the granular pressure is the sum of the total impulse impacts on
the wall. Also, the mean free path of a given particles depends on the volume and density
of all particles which involves a coupling with all groups.

The granular pressure and the associated potential may be derived by mesoscopic scale
analyses. However, in macroscopic scale described by Eulerian methods, granular agitation
possesses some artifacts due to the average process inherent of the method. This is illustrated
here by showing the impact of a dispersed phase split in several groups. Originally, the
Lagrangian of the dispersed phase is

L = 1
2
Nmū2 −mke (5.1)

with ū =
∑

p up/N and ke = 1
2

∑
p(up − ū)2. Now the dispersed phase is divided in two

groups. The Lagrangian of the system becomes

Lgroups =
∑
i

1
2
Nimūi

2 −mkei (5.2)

with ūi =
∑

p∈i up/Ni and kei = 1
2

∑
p∈i(up− ūi)2. The old Lagrangian may be written again

(computation details are provided in (5.A)) as

L = Lgroups −
∑
i

Nim(ū− ūi)2. (5.3)

Thus, the Lagrangian is not invariant by splitting into groups (in contrast with the total
energy). Therefore, the ensuing Euler–Lagrange and the momentum equations will differ.

5.1.4 The present approaches

In Eulerian description, the PDF of the dispersed phase may be divided in several groups
or phases in order to capture non Maxwellian distributions. Particles are distributed in
these phases following criteria such as their size, mean velocity, etc. . . Yet, as explained
above, a given particle is likely to interact with all particles whatever the phase they come
from. However, the Eulerian formalism does not identify each particles, it only identifies
groups of particles into different phases. Therefore, collisional effects which are mesoscopic
effects have to be translated in macroscopic ones. In this chapter, these are divided in two
categories. The first category contains the average effects of collisions inside a phase, it will
be called here interior collisions. The second part represents the effects of collisions between
two different phases, it will be referred here to exterior collisions. For a single particle, this
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Figure 5.2: Illustration of the two different types of collision

approach means that collisions with particles of its group will be treated differently (with
interior collisions formalism) than collision with particles of other groups (with exterior
collision formalism).

The interior collisions are taken into account by a potential depending on the kinetic
turbulent agitation and on the compaction limit. The isentropic equations of this model
are deduced with a least action principle and the procedure described in chapter (4). The
exterior collisions (collisions between different phases) are taken into account by the addition
of new phases which collect the particles that have collided. These new phases will be called
collector phases. They are introduced to identify particles that have collided from the others
inside the same group. Indeed, as there is only one value of velocity, energy, etc. . . per phase
in Eulerian description, non Maxwellian distribution are not captured. Thus, a collision
between two structures inside a cell affect all the particles in this cell. However, introducing
new phases allows non Maxwellian distribution to be reproduced. It is then possible to give
new values for collided particles with mass, energy and momentum different to the structure
from which they come without affecting the particles that have not collided.

5.2 The interior collisions

5.2.1 Turbulent agitation

In two–fluid models, equations of conservation derive from an averaging process of the local
hydrodynamic fields (u, ρ , etc. . . ) weighted by a presence function of each constituent
(Drew, 1983; Ishii, 1975). This procedure leads to fluctuation terms that represent various
effects specific to the multi-fluid flows such as surface tension and virtual mass. Among
them, the velocity fluctuations issued from transport averaging appear in a term called the
Reynolds Tensor. In the RANS literature, these velocity fluctuations are modeled with a
new field called turbulent agitation. Various evolution equations of this field and its dissi-
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pation exist in literature leading to a great amount of RANS models. This evolution can be
postulated or found with computation based on the existing PDEs representing momentum
conservation or even found with the kinetic theory. In chapter (4) it has been introduced
in the Lagrangian to obtain evolution equations with a variational method coupled with
a Gibbs like relation. The ensuing equations are consistent and furthermore improve the
system stability as noted by Youngs (1989); Lhuillier et al. (2013). In the dilute regimes, the
closure by the kinetic approach leads to similar results as those obtained by the averaging
approach in (4) where only the diagonal part of the Reynolds tensor is kept.

However, in these regimes, influence of the particles’ volume is not considered. In the
kinetic approach, collisions between particles are neglected by the point particles approxi-
mation. In the averaging approach, the punctual particle hypothesis is present in the local
equations averaged. These equations are fluid equations where the stress tensor is reduced
to pressure. However, the validity of this modeling is wrong when two particles collide with
each other. In such situations, the stress tensor should contain elastic effect, young modulus,
etc. . . of the materials. Thus, because the local equations do not consider collisions between
particles, the ensuing averaged equation do not contain this effect either.

In the literature, closures are usually applied to the granular pressure (Gevrin et al.,
2008; Kamenetsky et al., 2000; Wachem et al., 2001) that takes into account the compaction
limit by an increasing function of particles’ volume fraction. In this chapter, we propose a
closure for granular pressure in (5.2.2) and we obtain its associated potential by integration.
On the contrary of the punctual hypothesis made in (4), the particles’ volume is taken into
account. Therefore, the potential depends on the dispersed phase’s volume fraction.

5.2.2 Energy closure

The closure of the potential embodying the turbulent effect with collisions between particles
is based on two facts: i) the compaction limit effect is a consequence of an infinite frequency
collision limit and i) hard collisions between particles is non dissipative. The point i) involves
that turbulence and compaction limit must be taken into account jointly. The point ii)
involves that it is possible to use the LAP to compute the trajectory of the system.

Because the potential should depends on the volume of the particles, we propose a
potential that depends on the volume fraction of the dispersed phase. Furthermore, the
momentum quantity transferred to the wall depends on the mass of the particles. Therefore,
the potential depends also of the partial density of the particles.

[αρ]ϕkeϕ(αϕ, ρϕξϕ), (5.4)

Now, this potential must be coupled to the other fields. With the kinetic theory for point
particle or with a conditional averaging with local fluid equations, the following isentropic
closure is obtained (4),

∂keϕ = pkeϕ
∂[αρ]ϕ

([αρ]ϕ)2
, (5.5a)
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pkeϕ = 2
3
[αρ]ϕkeϕ. (5.5b)

This expresses that the kinetic turbulent agitation depends only of the Lagrangian coordi-
nates of the fluid particle and the number of particles per unit volume (which is directly
linked to the averaged mass of the particles).

keϕ = keϕ([αρ]ϕ, ξϕ). (5.6)

The kinetic theory used to obtain this closure considers only points particles. Thus the
compaction limit and volume fraction dependency does not appear.

It must be stressed here that this potential models only interior collisions inside a struc-
ture, this is why it depends only on the volume fraction of the given structure. However,
when several dispersed phases coexist, this potential is not able to take into account the
total volume occupied by the dispersed phase with its actual compaction limit as explained
in (5.2.2).

An example of mesoscopic derivation of closure for granular pressure

An example of closure’s derivation is presented here. The system considered is made of
particles inside a box. Particles are ideally spread in the box in a simple Cartesian grid
(figure 5.3). They are considered to move only along horizontal parallel lines (the black
dotted line in figure 5.3).

Figure 5.3: Ideal particles’ distribution inside a box

To compute the granular pressure, an estimation of the number of collisions by unit of
time is needed. Only particles close to the wall are susceptible to collide. Therefore, the
frequency of collisions with the wall depends only on the average distance between particles
and their mean velocity. During a long enough time interval (before the mean time between
collision), an estimate of the number of collisions with a single particle in the dotted black
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line is

N = 1
2

u

d
∆t (5.7)

where d is the mean free path of the particles. The total number of collisions in a section
∆S is then evaluated as

Ntot = Nn(d+ rparticle)∆S (5.8)

The granular pressure is deduced

pgranular = nmu2(1 +
rparticle
d

) (5.9)

with n the density of particle and m their mass. The mean distance between particles may
be estimated as the cubic square of the volume left.

d =
1

Np

V
1
3
c =

1

Np

(Vmax −NpVpart)
1
3 =

1

Np

(αcVtot −NpVpart)
1
3 =

1

Np

V
1
3
tot(αc − α)

1
3 (5.10)

with αc the compaction limit and Np the number of particles. The ratio between the char-
acteristic dimension of the box and the number of particles can be estimated as

V
1
3
tot

Np

= rparticle + d. (5.11)

Thus, the mean distance becomes

d = rparticle
(αc − α)

1
3

1− (αc − α)
1
3

. (5.12)

The closure sought depends then only on the relative mean velocity, the volume fraction
and the compaction limit.

pgranular = 1
2
[αρ]u2 1

(αc − α)
1
3

(5.13)

Now that the granular pressure is closed, the ensuing turbulent agitation is determined
with a Gibbs’ relation.

The first principle, the mass conservation and the definition of mass energy lead to the
following relations

dKe = −pgranulardV Ke = V [αρ]ke m = V [αρ] (5.14)

In the light of the pressure’s closure, the variables of interest for the compaction potential
are [αρ]ϕ and αϕ. When the partial density varies, the same differential form than the one
presented in the chapter (4) is obtained.

dkeϕ = pgranular
d[αρ]ϕ

([αρ]ϕ)2
(5.15)
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Now, the thermodynamics imposes that the energy must be an exact form. According to the
Schwartz’s theorem, this involves that the cross derivatives must be equal. The derivative
of the agitation with respect to α is postulated with some functional f as

dkeϕ = f(αϕ, [αρ]ϕ)keϕdαϕ (5.16)

To insure the equality between the cross derivatives, the following identity must be satisfied

f,[αρ]ϕαϕ = 1
2

1

[αρ]ϕ
1
3

1

(αc − αϕ)
4
3

(5.17)

which means that the partial derivative with respect to αϕ is

f,αϕ = 1
6

ln([αρ]ϕ)

(αc − αϕ)
4
3

. (5.18)

A potential keϕ(αϕ, [αρ]ϕ) that satisfies these differential relations is

keϕ(αϕ, [αρ]ϕ) = ([αρ]ϕ)
1
2

1

(αc−αϕ)1/3 (5.19)

Even if it comes from a coherent derivation, this potential seems far too complex. There-
fore, we will use in what follows a simpler form

keϕ = ([αρ]ϕ)
2
3f(αϕ) (5.20)

with f a function which goes to infinity when the volume fraction reaches the compaction
limit and unity when it goes to zero. With this simple closure, the same agitation potential
without compaction effect is found again in dilute regimes. The differential relations are
then

keϕ,[αρ]ϕ = 2
3

keϕ

[αρ]ϕ
keϕ,αϕ =

f ′(αϕ)

f(αϕ)
keϕ (5.21)

For the function f , we use simply f(αϕ) = αc
αc−α in the numerical simulations presented in

the bottom. However, the equations will be written formally, thus applicable to all closures.
It must be stressed that the present derivation is just an illustration of the capture of

collisions by a potential and does not intent to be relevant to predict real dispersed flows. The
set of equations derived in the following introduces the agitation potential in a pure formal
way and thus any other potential’s closure can be introduced providing that it depends on
the same variables (i.e. the partial density and the volume fraction of the phase). Several
equations of state for hard spheres exist (Carnahan–Starling, Kolafa correction. . . ) which
could be used to obtain different closures of the agitation potential.
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5.2.3 Lagrangian and momentum equation

As in chapter (4), the isentropic momentum equations of the system are obtained with a
variational method. The Lagrangian of the system is made with the kinetic energies (1), the
internal energies (2), the interior collision potentials (3), the mass constraint (4), the Lin
constraint (5) and the volume filling constraint (6).

L =
∑
φ

(
1
2
[αρ]φ(uφj )2︸ ︷︷ ︸

(1)

− [αρ]φeφ(ρφ, ξφ)︸ ︷︷ ︸
(2)

− [αρ]φkeφ([αρ]φ, αϕ, ξφ)︸ ︷︷ ︸
(3)

+ θφDφ
t ([αρ]φ)︸ ︷︷ ︸
(4)

+ Ψφdφt (ξφ)︸ ︷︷ ︸
(5)

)
− Π

(∑
φ

αφ − 1

)
︸ ︷︷ ︸

(6)

.
(5.22)

The resulting Euler Lagrange equations are obtained by derivation of the Lagrangian
with respect to the degrees of freedom [αρ]ϕ, αϕ, uϕi , ξϕ and the Lagrangian multipliers θϕ,
Ψϕ and Π.

δ[αρ]ϕ : 0 = 1
2
(uϕj )2 − eϕ − ρϕeϕ,ρϕ − keϕ − [αρ]ϕkeϕ,[αρ]ϕ − dϕt (θϕ) (5.23a)

δαϕ : 0 = (ρϕ)2eϕ,ρϕ − Π− [αρ]ϕkeϕ,αϕ (5.23b)

δuϕi : 0 = [αρ]ϕuϕi − [αρ]ϕθϕ,i + Ψϕξϕ,i (5.23c)

δξϕ : 0 = −[αρ]ϕeϕ,ξϕ − [αρ]ϕkeϕ,ξϕ −Dϕ
t (Ψϕ) (5.23d)

δθϕ : 0 = Dϕ
t ([αρ]ϕ) (5.23e)

δΨϕ : 0 = dϕt (ξϕ) (5.23f)

δΠ : 0 =
∑
φ

αφ − 1 (5.23g)

with pϕ = (ρϕ)2eϕ,ρϕ . The equation (5.23b) shows that the total pressure is the sum of two
contributions: the material pressure and the compaction pressure pϕc = [αρ]ϕkeϕ,αϕ . The
equilibrium is now between the difference of material pressure and compaction pressure of
each phases.

The computation of momentum equation is a bit lengthy but is straightforward (5.A).

Dϕ
t ([αρ]ϕuϕi ) =− αϕΠ,i −

[
([αρ]ϕ)2keϕ,[αρ]ϕ + αϕ[αρ]ϕkeϕ,αϕ︸ ︷︷ ︸

pϕke

]
,i

=− αϕpϕ,i − [αρ]ϕkeϕ,αϕα
ϕ
,i −

[
([αρ]ϕ)2keϕ,[αρ]ϕ

]
,i
.

(5.24)

The momentum conservation is ensured and exhibits two fluxes: i) the total pressure
flux formed by summation over the momentum quantities and ii) turbulent pressure flux
composed with two contributions, a contribution from the pressure associated to a mass
variation and a contribution from the compaction pressure associated to the volume fraction
variation.
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5.2.4 Energy equations

The energy equations are computed by the same procedure developed in (4). Manipulations
of the pressure relation (5.23b) allow to explicit the total pressure derivative. With the
procedure detailed in chapter (4), the explicit energy equations are obtained. Computational
details (with addition of eventual dissipation) are provided in (5.A). The explicit dynamics
of internal energies are

Dϕ
t ([αρ]ϕeϕ) = −βϕpϕūj,j − pϕ

∑
φ

µϕφΠ,j(u
φ
j − u

ϕ
j ) + pϕ

∑
φ

µϕφ(pφe1u
φ
j,j − p

ϕ
e1u

ϕ
j,j). (5.25)

The explicit compaction potential equation is also deduced as

Dϕ
t ([αρ]ϕkeϕ) =− pϕkeu

ϕ
j,j︸ ︷︷ ︸

[C]

+ pϕc β
ϕūj,j︸ ︷︷ ︸

[A]

+ pϕc
∑
φ

µϕφΠ,j(u
φ
j − u

ϕ
j )− pϕc

∑
φ

µϕφ(pφe1u
φ
j,j − p

ϕ
e1u

ϕ
j,j)︸ ︷︷ ︸

[B]

. (5.26)

with ūi =
∑

φ α
φuφi , µϕφ = αϕ

pϕe2
βφ, βϕ = αϕ

pϕe2ν
, ν =

∑
φ
αϕ

pφe2
,

pϕe1 =
[
keϕ,αϕ + [αρ]ϕkeϕ,αϕ[αρ]ϕ + keϕ,αϕαϕαϕ

]
[αρ]ϕ,

pφe2 =
[
γϕpϕ + αϕ[αρ]ϕkeϕ,αϕαϕ

]
,

and pϕke = ([αρ]ϕ)2keϕ,[αρ]ϕ + αϕ[αρ]ϕkeϕ,αϕ .
The evolution of the compaction potential is controlled by:

A The work of compaction pressure weighted by the relative compressibility of the fluid.

B Reversible energy exchanges made of a pressure gradient along the drift.

C A turbulent pressure multiplied by the rate of mass change (pϕke
dϕt [αρ]ϕ

[αρ]ϕ
).

The equations (5.24), (5.25) and (5.26) conserve the total energy (as the Noether theorem
would have proved because the Lagrangian is time invariant). Its evolution yields∑

φ

Dφ
t ([αρ]φ(eφ + keφ + 1

2
(uφj )2) = −

[
Πūj + pφkeu

φ
j

]
,j
. (5.27)

Now that the isentropic equations are written, the dissipative part of the model is intro-
duced. It is reduced here to a drag force between the air and the dispersed phase modeled
as

fϕs = −αϕρ0f(Reϕ)∆uϕ (5.28)

with 0 the carrier phase, ∆ϕu = u0−uϕ and Re a function of ∆ϕu. The sum of the reaction
due to the drag force between the carrier phase and the disperses phase is added in the
carrier phase momentum equation as

f 0
s = −

∑
φ

fφs . (5.29)
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The drag force leads to kinetic energy dissipation. Some part of the dissipation will be
converted in heat into the carrier and dispersed phase energy equation as source terms.
The other part will be converted in agitation in the turbulent equation. The weight of the
transfer to each energy reservoir is another modelization issue that we do not explore here.

5.2.5 Pressure equilibrium

The scheme used to solve the model is described by Vazquez-Gonzalez et al. (2020). In this
algorithm, a system is solved to verify the EOS of each fluid, the volume filling condition
and the pressure relation. In (Vazquez-Gonzalez et al., 2020)), the pressure of each phase
were equal. Here, the pressure relation is

Π = pϕ − [αρ]ϕkeϕ,αϕ (5.30)

Thus, the equilibrium is done accounting for the collision pressure. At the end of the first
step of the algorithm, the internal energies eϕ, the collision potential keϕ and the partial
density [αρ]ϕ are computed. Now, the thermodynamic quantities that verify the equations
cited above (which are already verified at the order of the scheme) must be obtained. To do
so, the following system with independent variables {ρϕ} and Π is solved∑

φ

[αρ]φ/ρφ = 1,

Π = pϕ − [αρ]ϕkeϕ,αϕ .
(5.31)

This system is potentially stiff and may need adapted numerical methods.

5.3 Exterior collisions

5.3.1 The main principle

Exterior collisions are collisions between two structures. They occur at macroscopic scales.
By structures we understand macroscopic collections of mesoscopic particles like jets, clouds,
etc. The goal is to capture particles ensuing from a collision between two macroscopic
structures. Inside these structures, there are particles that will collide and particles that
won’t. The aim is to capture the behavior of both groups. However, the Eulerian description
is not able to capture both groups without the introduction of a new phase in the model.
Indeed, there is only one averaged field per fluid. Thus, it is not possible to distinguish
particles that have collided from the others inside a phase. The idea is therefore to introduce
a new phase, initially empty (nearly no mass and no void fraction) that will collect the
particles issued from the collisions between two structures by the mean of mass, momentum
and energy exchanges. These phases will be called collector phases or fluids. We denote ϕb
the collector of the fluid ϕ, ie, the fluid that will collect the particles of ϕ that have collided.
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5.3.2 Collision model

The situation modeled is the crossing of two groups of particles ϕ and φ. We denote Aϕφ

the probability of a particle pϕ from the fluid ϕ to collide with a particle pφ from the fluid
φ. The following hypothesis, reasonable if the time step is small compared to the mean time
between two collisions, is used. The probability of collision between a particle pϕ and some
particles of the fluid φ is equal to the probability that the particle pϕ collide with only one
particle of the fluid φ. All the particles from one fluid are considered with the same radius
and velocity (which is already assumed in a cell). The cross-section of a particle pϕ crossing
a cloud of particles pφ is defined as

σϕφ = 4π(rϕ + rφ)2. (5.32)

In the reference frame of the particles pφ, the volume of space covered by pϕ with the
cross-section σϕφ during the time step ∆t can be expressed as

V ϕφ = σϕφ|uϕ − uφ|∆t. (5.33)

The average number of particles pφ present in the volume V ϕφ is

Nϕφ = V ϕφαφ
3

4πrφ3
(5.34)

If the time step is small enough, Nϕφ is between 0 and 1 and represents the probability that
a single particle pϕ collide with a a particle pφ of the cloud φ during the step time ∆t. The
average number of collisions between the fluid φ and the fluid ϕ per unit of time and volume
is then

nϕφ = Nϕφ 1

∆tV
= Nϕφαϕ

3

4∆tπrϕ3 = |uϕ − uφ|αφαϕ9(rϕ + rφ)2

4πrϕ3rφ3
(5.35)

This number is symmetric with respect to ϕ and φ. The total mass of the fluid ϕ per unit
of volume and time which collides with the fluid φ is then

ṁϕ|φ =nϕφρϕ
4

3
πrϕ

3

=|uϕ − uφ|αφ[αρ]ϕ
3(rφ + rϕ)2

rφ3

(5.36)

In general way, the total mass colliding by unit of volume and time can be modeled as

ṁϕ|φ = ρϕ|uϕ − uφ|αφαϕg(rϕ, rφ) (5.37)

with [g] = m−1.
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5.3.3 Mass, momentum and energy exchange

The collector fluids recover all the particles that have collided, the exchange form Ψϕϕb is
then

Ψϕϕb =
∑
φ

ṁϕ|φ (5.38)

In a general way, we denote Ψϕ→φ the transfer of mass from the fluid ϕ to the fluid φ. For
any fluid ϕ, the mass conservation and the momentum conservation is then

Dϕ
t ([αρ]ϕ) =

∑
φ

Ψφ→ϕ −
∑
φ

Ψϕ→φ. (5.39)

A new velocity must be associated to the particles that have collided. In a collision between
spheres, this new velocity depends on the two post collision velocities, their mass, the direc-
tion of the contact and a coefficient of restitution (Jenkins & Savage, 1983). However, with
the Eulerian description, there is no access to the detail of the contact direction. It will be
modeled later. For now, the ensuing velocity is a function of incident velocities, densities
and a coefficient of restitution.

Dϕ
t ([αρ]ϕuϕi ) = forces +

∑
φ

Ψφ→ϕh(uϕ, uφ, ρϕ, ρφ, e)−
∑
φ

Ψϕ→φuϕ. (5.40)

The only condition required is the conservation of the momentum quantity which means
that ∑

φ

∑
ϕ

Ψφ→ϕh(uϕ, uφ, ρϕ, ρφ, e)−Ψϕ→φuϕ = 0. (5.41)

The kinetic equation obtained from the linear combination uϕi × 5.40ϕi − 1
2
uϕ

2

i × 5.39ϕ is

Dϕ
t (1

2
[αρ]ϕuϕ

2

i ) = other variations

+
∑
φ

Ψφ→ϕ(h(uϕ, uφ, ρϕ, ρφ, e)uϕ − 1
2
uϕ

2)
−
∑
φ

Ψϕ→φ(h(uϕ, uφ, ρϕ, ρφ, e)uϕ − 1
2
uϕ

2) (5.42)

Collisions must respect the second lax of thermodynamics, so the sum of the terms added
in the kinetic energy equations must be negative (ie that the total collision effects destruct
kinetic energy). The kinetic energy loss will be converted into heat and agitation in the
internal and turbulent energy equations. We denote Ẇ and Ẇe the heat and the turbulent
energy production. The dissipation is introduced in the equations in the spirit of (Vazquez-
Gonzalez et al., 2020).

dϕt (eϕ) = pϕ
dϕt ρϕ

(ρϕ)2
+ Ẇϕ (5.43)

dϕt (keϕ) = −[αρ]ϕkeϕ,[αρ]ϕu
ϕ
j,j + keϕ,αϕd

ϕ
t (αϕ) + Ẇe (5.44)
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With the condition of energy conservation∑
ϕ

[αρ]ϕẆϕ + [αρ]ϕẆϕ
e = ρẆ (5.45)

with ρẆ the total kinetic energy destruction due to entropic effects.

5.3.4 Closing the model

The model is closed by assigning the expression of the mass exchange, the velocity after col-
lisions, the closure of the drag force and the distribution of the dissipation. Mass exchanges
from the fluid ϕ to a fluid ϕb due to the collision with the fluid φ are modeled as

Ψϕ→ϕb = κρϕαϕαφ|uφ − uϕ| (5.46)

It is postulated here that the vector that links the center of two particles at the instant of
contact is in the direction of the drift between the two particles (see 5.A).

h(uϕ, uφ, ρϕ, ρφ, e) =
ρϕuϕ + ρφuφ

ρϕ + ρφ
− e ρφ

ρϕ + ρφ
(uϕ − uφ)

=(1 + e)
ρφ

ρφ + ρϕ
uφ +

ρϕ − eρφ

ρϕ + ρφ
uϕ

(5.47)

The momentum conservation must be verified. The total momentum exchange yields

κ
∑
ϕ

∑
φ

αϕαφ|uϕ − uφ|
(ρϕρϕuϕ + ρϕρφuφ

ρϕ + ρφ
− e ρϕρφ

ρϕ + ρφ
(uϕ − uφ)− ρϕuϕ

)
︸ ︷︷ ︸

− ρϕρφ

ρϕ+ρφ
(e+1)(uϕ−uφ)

. (5.48)

The form under brace is asymmetrical and thus vanish by summation. Therefore, the mo-
mentum conservation is verified. The last feature to verify is the respect of the second
principle. The kinetic destruction due to the collision between ϕ and φ is distributed among
the fluids ϕ and φ and the collector fluids ϕb and φb.

∆Eϕ
c + ∆Eϕb

c + ∆Eφ
c + ∆Eφb

c =

+καϕαφ|uϕ − uφ|
(
ρϕh(uϕ, uφ, ρϕ, rp, e)uϕb + h(uφ, uϕ, ρφ, ρϕ, e)uφb

)
−καϕαφ|uϕ − uφ|

(
ρϕ[uϕuϕ − 1

2
(uϕ)2 + 1

2
(uϕb)2] + ρφ[uφuφ − 1

2
(uφ)2 + 1

2
(uφb)2]

) (5.49)

With the closure of h, it can be shown after lengthy computations (5.A) that the dissipation
is

Ẇcoll =− καϕαφ|uϕ − uφ|1
2[

(ρϕ)2(uϕ − uϕb)2 + (ρφ)2(uφ − uφb)2 + 2eρϕρφ(uϕ − uϕb)(uφ − uφb)
+ρϕρφ

(
(uφb − uϕ)2 + (uφ − uϕb)2 + 2e(uφb − uϕ)(uφ − uϕb)

)]
.

(5.50)

As the elasticity coefficient is between 0 and 1, the dissipation is always positive.
Now, this dissipation must be distributed among the potentials as source term. It is

assumed here that the dissipation due to the drag is distributed in the air’s internal energy
and in the particles’ agitation. The dissipation of the collisions is distributed in the internal
and agitation energies of the collector fluids.
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5.4 The final model

The final model may now be written. The equations for the original fluids are

Dϕ
t ([αρ]ϕ) =−

∑
φ

ṁϕ|φ (5.51)

Dϕ
t ([αρ]ϕuϕi ) =− αϕΠ,i − (pϕke),i −

∑
φ

ṁϕ|φuϕ (5.52)

Dϕ
t ([αρ]ϕeϕ) =− βϕpϕūj,j −

∑
φ

ṁϕ|φeϕ

− pϕ
∑
φ

µϕφ[dφt (Π)− dϕt (Π)] + pϕ
∑
φ

µϕφ[pφe1u
φ
j,j − p

ϕ
e1u

ϕ
j,j]

− pϕ
∑
φ

µϕφ(ρϕ ˙̄Wϕ − ρφ ˙̄W φ) + [αρ]ϕẆϕ

(5.53)

Dϕ
t ([αρ]ϕkeϕ) =βϕpϕc ūj,j −

∑
φ

ṁϕ|φkeϕ − pϕkeu
ϕ
j,j

+ pϕc
∑
φ

µϕφ[dφt (Π)− dϕt (Π)]− pϕc
∑
φ

µϕφ[pφe1u
φ
j,j − p

ϕ
e1u

ϕ
j,j]

+ pϕc
∑
φ

µϕφ(ρϕ ˙̄Wϕ − ρφ ˙̄W φ) + [αρ]ϕẆϕ
e .

(5.54)

and for the collector fluids

Dϕb
t ([αρ]ϕb) =

∑
φ

ṁϕ|φ (5.55)

Dϕb
t ([αρ]ϕbuϕbi ) =− αϕbΠ,i − (Pϕb

ke ),i

+
∑
φ

ṁϕ|φh(uϕ, uφ, ρϕ, ρφ, e) (5.56)

Dϕb
t ([αρ]ϕbeϕb) =− βϕbpϕbūj,j +

∑
φ

ṁϕ|φeϕ

− pϕb
∑
φ

µϕbφ[dφt (Π)− dϕbt (Π)] + pϕb
∑
φ

µϕbφ[p̄φuφj,j − p̄ϕbu
ϕb
j,j]

− pϕb
∑
φ

µϕbφ(ρϕb ˙̄Wϕb − ρφ ˙̄W φ) + [αρ]ϕbẆϕb

(5.57)

Dϕb
t ([αρ]ϕbkeϕb) =βϕbpϕbc ūj,j +

∑
φ

ṁϕ|φkeϕ − pϕbkeu
ϕb
j,j

+ pϕbc
∑
φ

µϕbφ[dφt (Π)− dϕbt (Π)]− pϕbc
∑
φ

µϕbφ[pφbe1u
φ
j,j − p

ϕb
e1u

ϕb
j,j]

+ pϕbc
∑
φ

µϕbφ(ρϕb ˙̄Wϕb − ρφ ˙̄W φ) + [αρ]ϕbẆϕb
e .

(5.58)

with ρϕW̄ = ΓϕρϕẆϕ − [αρ]ϕẆϕ
e
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Fluid Γϕ Πϕ ρϕ

Pa kg ·m−3

Air 2/5 0 1.0
Particles 6 2.1 · 109 1000

Table 5.1: Approximate stiffened gas parameters for air and particles in present study. Densities
are given at normal pressure 105 Pa.

5.5 Numerical tests

In all tests done in this section, the air is controlled the perfect state EOS and the particles
to the stiffened gas EOS (5.59) with the parameters set in table (5.1).

p = Γρe− π (5.59)

5.5.1 Interior collisions tests

The first numerical simulation tests only the interior collisions to see its effect on a single
phase. Two tests are done, one in 1D and one 2D.

1D test The first test aims to visualize the 1D effect of the potential and the transfer of
energy from the kinetic energy to agitation energy via drag’s dissipation. This test consists
on a cloud of particles moving into air. Particles velocity is initialized at 10 m.s−1. The
shape of the initial volume fraction is a Gaussian of amplitude 0.55 at 0.3 m. The air and
the particles exchange momentum via a drag forces. The dissipation due to the drag force
goes in two different energy reservoirs. One part goes to the air internal energy, scaled by
the air volume fraction, and the other part goes to the particle agitation energy, scaled by
the particles’ volume fraction. The results are shown in figure (5.4). The cloud is dispersed
by the potential asymmetrically. The asymmetry of the diffusion comes from the asymmetry
of the production due to the drag dissipation.

2D test The second test case aims to visualize the 2D effects of the potential and its
impact in a real industrial situation. It consists on the simulation of a jet of particles inside
a pipe. At the entry, the flow is made of a particle cloud inside air. The pipe is originally
filed with air. Particles inside the jet are initially turbulent which means that the dispersed
phase in entry has a turbulent kinetic energy. Inflow velocity is 10m.s−1 and the end the
simulation corresponds to the arrival of the jet close to the pipe end (after 0.7s). The initial
value of the turbulent agitation is 3J.kg−1. The dispersion of the jet is seen in (5.5) by
comparing jets with or without agitation. The compaction limit disperses the jet more than
the simple agitation (with f = 1). The fact that the jet is narrowed in the figure (5.5a) is
due to the wall boundaries conditions in the top and bottom of the domain.
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Figure 5.4: Partial densities of the different phases in the mixture in kg.m−3. In green and blue,
the dispersed phase with and without agitation, in red the air.

(a) Without agitation (b) With no compaction limit (c) With compaction

Figure 5.5: One particle jet inside a pipe
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(a) Initialization (b) After collision

Figure 5.6: Partial densities of the different phases of the mixture in kg.m−3. In green and blue,
the dispersed phase without agitation, in red the air, in violet the collector fluid.

5.5.2 Exterior collisions tests

The effect of the exterior collisions without interior collisions (agitation) is tested here. The
test aims to verify the correct behavior of the exchanges between the particle fluids and
the collector fluids. Two clouds crossing into an air background are simulated, the results
of their collision will feed the collector fluid in the middle of the domain. The dissipation
due to the exchanges goes to the internal energy of the collector fluid because it is assumed
that the collisions heat only the collided particles. The clouds and the collector fluid also
exchange momentum with air through the drag force and the dissipation of the drag force
goes to the internal energy of each fluid pondered by their volume fraction (see 5.A). Because
the fluids are initialized with no agitation that is not feed by dissipation next, it stays null
during all the computation. The results are presented in figure (5.6).

In the light of figure (5.6), the collector has been fed with the other clouds. Some
irregularities on the void fraction profile appear which are hard to explain.

5.5.3 Complete collision

The last test cases combine both types of collisions. The first test is again the crossing of
two clouds in an air background. However, this time the agitation energy is feed with the
dissipation due to the drag force or to the exchange between the clouds and the collector
fluid.

The collector clouds is diffused with regularized profile. In the first figure of (5.7), the
dissipation due to exchanges is very strong and spread the collided particles. In the second
figure, the dissipation due to the drag is weaker, the particles are less spread. However, the
irregularities of the void fraction profile are still removed. Because the drag force also dissi-
pates in the non collided clouds, they are also spread non uniformly (due to the asymmetry
of the drag force).

The last test case is the collision of two jets inside an air tube. Their inlet velocity is
[10,±10] m.s−1. The collision gives birth to a collided jet that is going to spread due to
the turbulent agitation. Two simulations has been done for this case. One simulation with
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(a) Agitation feed with dissipation of collisions (b) Agitation feed with drag dissipation

Figure 5.7: Partial densities of the different phases of the mixture in kg.m−3. In green and blue,
the dispersed phase, in red the air, in violet the collector fluid. (a) energy agitation only feed with
dissipation due to exchange, (b) with dissipation due to drag.

only interior collisions and one simulation with also exterior collision. The collided jet is less
dispersed with the exterior collision and a peak of volume fraction close to the compaction
limit remains where the two jets cross. Also, the collisions impact the jets later in the
simulation with the exterior collisions.
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Figure 5.8: Crossing of two jets with exterior collisions above and compaction only (bottom): vol-
ume fraction of particles, contour level at different times of the simulation (t = 0.03s, 0.045s, 0.6s).

5.6 An extension of the model

In the current development, two types of collisions have been identified: collisions inside
structures and between structures. The first type has been modeled with a potential and
implemented in the model via a variational method to conserve its geometric character. The
second type was taken into account by mass, momentum and energy exchanges between the
different phases. If these exchanges can represent point collisions between spheres in the
perfect elastic limit, they can not avoid dissipation here due to the average process of the
Eulerian framework (see appendix 5.A). There are two major defects in this second way to
deal with collisions:

• First, the collisions are no more a geometric process. They do not derive from a po-
tential and are closed in the mass and momentum equations rather than by a potential
approach. Therefore, we introduce dissipation due to mass and momentum exchanges
that is purely an effect of the Eulerian (average) approach. This dissipation which
feed the internal energy or the agitation has no clear meaning.

• Secondly, this type of collision needs to assign a phase for each macroscopic structure
(here each jet).Therefore, the price to describe a collision is to introduce a new phase
whose fields is going to be computed in all domain. In simulation with multiple
structures, the cost of the method becomes unrealistic.
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A possibility to remove the second type of collision is to take into account all the collisions
with a potential that will eventually dissipate into internal energy by a further modeling.
The simplest way to do this is to modify the potential of collision for each phase as follow

keϕ([αρ]ϕ, αϕ, ξϕ)→ keϕ([αρ]ϕ, αd, ξ
ϕ), (5.60)

with αd the sum over all the discrete phases susceptible to collide. However, by introducing
this potential, all the internal energy equations become coupled together and the explicit
equations are tedious to obtain. However, if there is only one carrier phase with many
discrete species inside, the no volume filling allows to recast the potential as

keϕ([αρ]ϕ, αp, ξϕ) (5.61)

with αp the carrier phase’s volume fraction.
Introduction of these new potentials in the Lagrangian leads to the following momentum

equations: (5.63) for the carrier phase, (5.64) for any dispersed phase and to the relation
between pressures (5.62).

Π =pp −
∑
d

[αρ]dked,αp ,

Π =pd
(5.62)

Dp
t ([αρ]pupi ) =− αppp,i

=− αpΠ,i − αp
[∑

d

[αρ]dked,αp ],i
(5.63)

Dd
t ([αρ]dudi ) =− αdΠ,i −

[
[αρ]d([αρ]dked,[αρ]d + αpked,αp)

]
,i

+ αp
[
[αρ]dked,αp

]
,i

(5.64)

The momentum is conserved by summation and its equation yields∑
d

Dd
t ([αρ]dudi ) + Dp

t ([αρ]pupi ) = −Π,i −
[
[αρ]d([αρ]dked,[αρ]d + αpked,αp)

]
,i
. (5.65)

As before, there are two fluxes: the first one is the total pressure gradient and the second
one is a contribution from the kinetic turbulent pressure which is similar to the previous
model except that the carrier phase’s volume fraction replaces the dispersed phase’s volume
fraction.

The energy equations are obtained by the same procedure, first, the total pressure evo-
lution is computed. The turbulent pressure evolution yields

dpt ([αρ]dked,αp) =(ked,αp + [αρ]pked,αp[αρ]d)d
p
t ([αρ]d) + [αρ]dked,αpαpd

p
t (α

p)

=[αρ]dked,αpαpD
p
t (α

p) + (ked,αp + [αρ]dked,αp[αρ]p − ked,αpαpα
p)[αρ]dupj,j

− (ked,αp + [αρ]pked,αp[αρ]p)([αρ]dudj ),j

(5.66)
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The internal and turbulent energies are then obtained by combining the total pressure
evolution ensuing from Gibbs’ relations and (5.66).

The internal energy’s dynamics of the dispersed phases and carrier phase are

Dd
t ([αρ]ded) =− Πβdūj,j + Π

∑
φ

µϕφΠ,j(u
ϕ
j − u

φ
j )− Πµdpppe1u

p
j,j

− Πµdp
∑
d

kde([αρ]dudj ),j,
(5.67)

Dp
t ([αρ]pep) =− ppβpūj,j + pp

∑
φ

µϕφΠ,j(u
p
j − u

φ
j ) + pp

∑
d

µdpppe1u
p
j,j

+ pp
∑
d

µdp
∑
d

kde([αρ]dudj ),j.
(5.68)

Eventually, the turbulent energy of the dispersed phases are

Dd
t ([αρ]dked) =− ([αρ]d)2ked,[αρ]du

d
j,j + [αρ]dked,αpα

p
,ju

d
j − [αρ]dked,αp(u

p
jα

p),j

+ [αρ]dked,αp
[
βpūj,j +

∑
φ

Π,jµ
φp(uφj − u

p
j)−

∑
d

µpdppe1u
p
j,j

−
∑
d

µpd
∑
d

kde([αρ]dudj ),j,

(5.69)

with ppe1 =
∑

d(ke
d
,αp+[αρ]dked,αp[αρ]p−ked,αpαpαp)[αρ]d for the carrier phase and pde1 = γdpd

for a dispersed phase,

ppe2 = γppp + αp
∑

d[αρ]dked,αpαp ,

kde = ked,αp + [αρ]pked,αp[αρ]p

The definition of the coefficient β and µ are identical to the first model.

This set of equation seems difficult to use in practice because the energy equations (5.68)
and (5.69) are very complex. Therefore, will be difficult to discretize these equations while
ensuring the energy conservation and the thermodynamic consistency.
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5.A Appendix

Transformation of a Lagrangian by splitting

L =
∑
i

1
2
Nim(ū− ūi + ūi)

2 − 1
2

∑
i

m
∑
p∈i

(ū− ūi + ūi − up)2

=
∑
i

1
2
Nimūi

2 +
∑
i

Nimūi(ū− ūi) +
∑
i

1
2
Nim(ū− ūi)2

− 1
2

∑
i

m
∑
p∈i

(ū− ūi)2 −
∑
i

m(ū− ūi)
∑
p∈i

(ūi − up)︸ ︷︷ ︸
=0

−1
2

∑
i

m
∑
p∈i

(ūi − up)2

=
∑
i

1
2
Nimūi

2 −mkei −
∑
i

Nim(ū− ūi)2 +
∑
i

Nimū(ū− ūi)︸ ︷︷ ︸
=0

=Lgroups −
∑
i

Nim(ū− ūi)2

(5.70)

Momentum equation from Least Action principle

The computation of the momentum equation is a bit lengthy but straightforward.

Dϕ
t ([αρ]ϕuϕi ) =− αϕpϕ,i − [αρ]ϕ

[
keϕ + [αρ]ϕkeϕ,[αρ]ϕ

]
,i

+ [αρ]ϕξϕ,ike
ϕ
,ξ

=− αϕΠ,i − αϕ
[
[αρ]ϕkeϕ,α

]
,i

− [αρ]ϕ
(

[αρ]ϕ,ike
ϕ
,[αρ]ϕ + αϕ,ike

ϕ
,αϕ +

(
([αρ]ϕ)2keϕ,[αρ]ϕ

)
,i

[αρ]ϕ
− [αρ]ϕ,ike

ϕ
,[αρ]ϕ

)
=− αϕΠ,i −

[
([αρ]ϕ)2keϕ,[αρ]ϕ + αϕ[αρ]ϕkeϕ,αϕ︸ ︷︷ ︸

pϕe

]
,i

(5.71)

Explicit energy equations

The explicit equation over the turbulent pressure is

dϕt (pϕ) =− γϕ

αϕ
pϕDϕ

t (αϕ)

dϕt ([αρ]ϕkeϕ,αϕ) =− keϕ,αϕ [αρ]ϕuϕj,j + [αρ]ϕdϕt (keϕ,αϕ)

=−
[
keϕ,αϕ + [αρ]ϕkeϕ,αϕ[αρ]ϕ + keϕ,αϕαϕα

ϕ
]
[αρ]ϕuϕj,j

+ [αρ]ϕkeϕ,αϕαϕD
ϕ
t (αϕ)

(5.72)
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The dynamics of the common pressure is then

dϕt (Π) =
[
keϕ,αϕ + [αρ]ϕkeϕ,αϕ[αρ]ϕ + keϕ,αϕαϕα

ϕ
]
[αρ]ϕ︸ ︷︷ ︸

pϕe1

uϕj,j

−
[
γϕpϕ + αϕ[αρ]ϕkeϕ,αϕαϕ

]︸ ︷︷ ︸
pϕe2

Dϕ
t (αϕ)

αϕ
.

(5.73)

This equation becomes implicit by summation over all fluids

ν∂t(Π) + Π,j

∑
φ

αϕ

pφe2
uφj =

∑
φ

pφe1

pφe2
uφj,j − ūj,j, (5.74)

with ν =
∑

φ
αϕ

pφe2
, βϕ =

αϕ/pφe2
ν

to obtain

∂t(Π) = −Π,j

∑
φ

βφuφj +
∑
φ

βφpφe1u
φ
j,j −

1

ν
ūj,j. (5.75)

The ensuing volume fraction’s equation is

Dϕ
t (αϕ) =

∑
φ

µϕφΠ,j(u
φ
j − u

ϕ
j )−

∑
φ

µϕφ(pφe1u
φ
j,j − p

ϕ
e1u

ϕ
j,j) + βϕūj,j. (5.76)

The explicit internal energy equations are then deduced.

Computation of the dissipation

With the closure used, the kinetic variations writes

καϕαφ|uϕ − uφ|
(
ρϕ
ρϕuϕ + ρφuφ

ρϕ + ρφ
uϕb − e ρϕρφ

ρϕ + ρφ
(uϕ − uφ)uϕbρφ

ρϕuϕ + ρφuφ

ρϕ + ρφ
uφb

−e ρϕρφ

ρϕ + ρφ
(uφ − uϕ)uφb

)
− καϕαφ|uϕ − uφ|

(
ρϕ[uϕuϕ − 1

2
(uϕ)2 + 1

2
(uϕb)2]

+ρφ[uφuφ − 1
2
(uφ)2 + 1

2
(uφb)2]

)
.

(5.77)

We regroup the terms factorized with the elasticity coefficient together as well as the
terms without elasticity coefficient.

1
2
(ρϕ)2(uϕ − uϕb)2 + 1

2
(ρφ)2(uφ − uφb)2 + 1

2
ρϕρφ(uϕ − uφb)2 + 1

2
ρϕρφ(uφ − uϕb)2

+eρϕρφ(uϕ − uφ)(uϕb − uφb).
(5.78)

Then, we use the equality

(uϕ − uφ)(uϕb − uφb) = (uϕ − uϕb)(uφ − uφb) + (uφb − uϕ)(uφ − uϕb) (5.79)

and we have proven the result.
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Dissipation due to the drag force

The dissipation due to the drag force between a fluid φ and a fluid ϕ express as

dW = 1
2
Cϕφ(uϕ − uφ)2. (5.80)

We distribute this dissipation among the fluid ϕ and φ as

dWϕ|φ =
αϕ|φ

αφ + αϕ
dW (5.81)

Collision between two spheres

The dynamics of the head-on collision between two hard spheres is described in (Gidaspow
(1994)). We call k± the vector that goes from the center of the particle + to the center of
the particle −. The post collision velocity express

u+
2 =

m+u+
1 +m−u−1

m+ +m−
− m−

m+ +m−
ek · (u+

1 − u−1 )k

u−2 =
m+u+

1 +m−u−1
m+ +m−

− m+

m+ +m−
ek · (u−1 − u+

1 )k

(5.82)

If we suppose that the vector k is in the direction of the difference of velocity, we have

k = u+
1 − u−1

u+
2 =

m+u+
1 +m−u−1

m+ +m−
− m−

m+ +m−
e(u+

1 − u−1 )

u−2 =
m+u+

1 +m−u−1
m+ +m−

− m+

m+ +m−
e(u−1 − u+

1 )

(5.83)

which is the model used.
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Exploratory work on a new hybrid method to
model dispersed phases in multiphase flows
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6.1 Introduction

6.1.1 Physics and modeling of dispersed multiphase flows

As explained in (2 and 5), dispersed multiphase flows are defined as flows where a dispersed
phase is distributed within a carrier phase in the form of inclusions (Balachandar, 2010).
Both phases may be of various kinds depending on the industrial or academic applications
where they are encountered, bubbly flows in stirred tanks (Shi & Rzehak, 2018), solid gas in
fluidized bed (Zhang & VanderHeyden, 2001) or liquid gas in combustion chambers (Murrone
& Villedieu, 2011). Couplings between the dispersed phase and the carrier phase occur at the
particles’ scale and are transitory, non linear and turbulent. Especially, the turbulence of the
carrier phase may be enhanced or damped by the dispersed inclusions (Balachandar, 2010).
Forces applied to particles by the carrier phase are of several kinds, from dynamic effects
including Basset force or virtual mass to static effects with pressure gradient and highly
non linear with the drag force. Also, interactions between the inclusions themselves may
be very complex due to potential inelastic collisions, fragmentations, coalescences, etc. In
addition, chemical aspects must be sometimes taken into account as well as phase transition
(evaporation of the droplets) (Murrone & Villedieu, 2011).

Due to the high number of interfaces involved, interface tracking or capturing methods
are unable to deal with such flows. Their computational cost becomes rapidly unrealistic
when the inclusions’ size diminishes or their number increases. Diffuse interface models
are workable but struggle to capture collision effects and the non Maxwellian character of
the NDF. However, kinetic methods are very efficient to deal with dispersed flows. They
provide a good balance between computing needs and precision. Inside kinetic models,
several solutions exist, from the complete resolution of the William’s equation to the Eulerian
methods. Among them, the Lagrange-Euler methods (LE) have been very fruitful to predict
dispersed mutliphase flows (Padding et al., 2015; Snider, 2007).

Theoretical grounds of the Lagrange Euler methods

The Lagrange-Euler methods (LE) are applied specifically to dispersed multiphase flows.
They are divided in several categories following the nature of the flows encountered (Padding
et al., 2015; Subramaniam, 2013). In all of these methods, particles are monitored in the
Lagrangian frame whereas the carrier phase is modeled in the Eulerian frame. Particles’
trajectories aim to reconstitute the number density function (NDF) solution of the Williams
equation (Williams (1958)). If LE approaches can be prohibitive due to their computational
cost when the number of particles increases, they present several advantages over an Eulerian
description of the dispersed phase.

• They are able to capture non Maxwellian distribution of particles.

• They describe more accurately collisions between particles.
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• They capture interactions with carrier phase easily, especially dynamics effects such
as added mass and basset forces.

On the mathematical point of view, particles constitute the following approximation of the
(NDF):

f =
∑
k

ωk(t)δxk(t)δvk(t) . . . (6.1)

The dynamics of ωk, xk, vk, . . . is obtained by introducing this approximation in the kinetic
equation. The development of multiphase (LE) methods was inspired by the first methods
to track particles in mesh.

6.1.2 First tracking of particles in Eulerian cell

The first method to track particles in Eulerian cells seems to be the particle in cell (PIC)
approach by Evans & Harlow (1957). The authors described the basic principles of the PIC
approach for hydrodynamic. It has been notably improved by O’Rourke et al. (1993) since.
The main ingredient of this method is the coupling between numerical particles through
cells. The particles p of mass mp are distributed in the domain. However, these particles
do not posses their own density, velocity and internal energy. All of these quantities will
be reconstructed in the center of the cell (e.g. density by the formula ρnc =

∑
p
mp
V nc

). All
of the particles in the same cell share the same velocity (the velocity of the cell). The
algorithm is split in three steps: velocity and internal energy computation, transport of
the particles, corrections due to the transport (if a particle has moved from one cell to
another). The velocity and internal energy computations are made with usual numerical
schemes (e.g. finite difference). The global formulation of the method is then based on the
coupling between discrete particles and continuous fields discretized in cells.

Multiphase adaptation MP–PIC and other methods

The PIC method was adapted to the multiphase flow with the MP–PIC method developed
by Andrews & O’Rourke (1996). This method was extended to two dimensions by Snider
et al. (1997) and to three by Snider (2001). The forward coupling is computed as the sum of
the drag force and the fluid pressure gradient. As in the PIC approach, the properties of the
discrete particles are mapped back to the Eulerian grid in order to compute the backward
coupling. Furthermore, four way coupling is taken into account by a particle stress, evaluated
with the volume fraction mapped back. Similar approaches have been developed such as
coupling between finite volume method for the Eulerian phase and material point method
(Bardenhagen et al., 2000) (extension of PIC method) for the dispersed phase (Baumgarten
et al., 2021). Notable works are made by Capecelatro & Desjardins (2013) where particles
are spread over several cells. An comprehensive review of the models as well as the numerical
methods is made by Subramaniam (2013).

180



Main difficulties encountered

The (LE) methods are challenged by several issues. First, the coupling between the dispersed
phase and the carrier phase is transitory, non linear and turbulent. Even if the (LE) methods
have more degrees of freedom to describe the flow than the diffuse interface ones, they still
struggle to capture it. Secondly, in the numerical point of view, they involve interactions
between two entities of very different natures, the particles’ discrete one and the carrier
phase’s continuous one. To do so, interpolations map discrete quantities into fields and
vice versa. They turn out to be very complex in 3-D simulations. Also, backward coupling
may be very costly in case of dense particle flow if the detail of all particles’ interaction is
computed. Modeling it by continuous potential depending on fields mapped back in Eulerian
grid, as the MP-PIC methods do, allows to get ride of this problem with a loss of precision.
Eventually, if the particles’ size is comparable to the mesh size, stability issues may appears
when their localization brutally changes from one cell to another. In that case, the carrier
phase is suddenly expanded, resp compressed, which may crash the computations.

6.2 A new thermodynamic consistent approach

6.2.1 Hybrid description of particles

In the exploratory work presented here, we propose a continuous model for the fluid and a
Lagrangian tracking of the particles by the mean of numerical particles as in many other
(LE) methods. A numerical particle is a numerical entity which embodies a group of physical
particles. This numerical particle is tracked along the domain of computation and will move
within the fluid. One specific property of our particles is that there is no sharp interface
between them and the carrier phase. It means that one particle is likely to coexist with the
carrier phase and/or other particles similarly to diffuse interface methods (see figure 6.1).

All the physical particles included in the same numerical particle are supposed to have
the same velocity (the velocity of the center of the particle). One consequence of this is
that the transport equation is reduced to an ordinary equation linking the mass center of
the numerical particle to its velocity. The spreading of the physical particles around the
mass center is prescribed with an analytic function. This reminds the kernel used in the
smooth hydrodynamic particle (SPH) method (Lucy, 1977; Gingold & Monaghan, 1977;
Monaghan, 1988)). However, our method differs from SPH because particles are not moving
interpolation points of continuous fields but numerical entities whose trajectory is computed
with different equations than the traditional Euler system.

The particles interact due to their coexistence in the same point. Each of them con-
tributes to the pressure in this point which in return will act on their velocity. Therefore,
this method is more similar to a continuous model with a geometric transport (the position
of the elements depends uniquely of the center of the particle) than an SPH like approach
where the particles are the degrees of freedom of an interpolation.
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Figure 6.1: Numerical Particle

Continuous and discrete description The method we propose attributes the following
properties to each numerical particle: a position, a velocity, a spreading, an internal energy,
and a density (or specific volume) field. The pressure is more specific because it will be
computed at each point (or in each cell after full discretization) in order to satisfy a local
equilibrium. A continuous quantity a denoted ap(x, t) means the value of the field a asso-
ciated to the particle p at (x, t). A discrete quantity a denoted anpc means the value of the
quantity a at time tn of the particle p in the cell c. It is stressed again that the particles are
spread over several cells after full discretization.

field position velocity distribution internal energy specific volume pressure
continuous xp(t) up(t) fmp(xp, x, t) ep(x, t) vp(x, t) p(x, t)

discrete xnp u
n+1/2
p fnmpc enpc vnpc pnc

Table 6.1: degrees of freedom

It must be stressed that only the distribution function (and the velocity) depends on the
position of the particles. The distribution plays the role of the transport of the particles
(i.e. it assigns positions to the real particles in function of the mass center position of the
numerical particles). The other quantities are thermodynamic ones which depend indirectly
on the particles’ positions.

On the necessity to distribute a particle In our scheme, a numerical particle is dis-
tributed in several cells. This can not be otherwise (only located in one cell) if we want
to:
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(a) Particle in only one cell (b) Particle in several (two) cells

• avoid brutal variations of void fraction

• capture correctly the pressure gradient

• capture the right contribution of each particle to the pressure field

One option that has been discarded is to reconstruct the pressure field by interpolation of its
values in the cell. With this choice,it is possible to use the derivative of this reconstruction
to compute the pressure gradient applied on a given particle. However, by doing so, if the
particle is located in one cell and stays in this cell during a time step, its move is free because
it does not affect any potential and so the pressure field. Thus, the principle of reciprocity
is violated. This is illustrated in the figure (6.2a). The particle distributed in one cell does
not affect the pressure gradient during the time step because there is no mass variation (and
thus density variation) in the cells where the pressure field is sampled. However, in the two
cells distribution case (6.2b), the displacement makes the mass distribution changes and so
the pressure gradient. This will be illustrated by using a variational method to derive a
consistent numerical scheme. It will give evidence that a distribution of the particles among
several cells is necessary to obtain a pressure gradient in the momentum equation of particle.
This distribution over several cells also allow to have a smooth change in void fraction during
a step time instead of a brutal one each time a particle crosses the boundary of the cell.

6.2.2 Variational approaches in discrete and semi-discrete systems

To find consistent trajectories of our hybrid particles, variational approaches are applied to a
semi continuous system. Using these methods to obtain trajectories of material points is very
efficient due to the system’s complexity. Well known examples are the double pendulum,
the multi spring-mass system, etc. Also, variational methods has been notably applied re-
cently to derive a geometric discretization of the Vlasov-Maxwell system with a PIC method
(Squire et al., 2012; Kraus et al., 2017). In hydrodynamic field, the LAP has been applied to
smooth hydrodynamic particle (SPH) method (Price, 2012) developed by Gingold & Mon-
aghan (1977) and Lucy (1977). Price (2012) uses also the first thermodynamics principle to
compute his the equations. Our approach are very similar of those references because we
aim to derive consistent trajectories of a discrete system.
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6.3 Application of the method on various systems

Several systems has been studied to test the validity of this method. First, we have consid-
ered only particles moving in Eulerian grid similarly to the PIC approaches. Then, we have
applied our method to a dispersed multiphase flow.

6.3.1 Full particles systems

In this system, we consider that there is no carrier phase and that the particles are com-
pressible. The Lagrangian of the system contains the kinetic and internal energies of all
particles. In addition, we constrain them to verify the no void condition.

L =
∑
p

1
2
mp(up)

2 −
∫

Ω

(∑
p

fmp(xp)e(vp) + Π(
∑
p

fmpvp − 1)

)
dx (6.2)

The derivation of the action with respect to the degrees of freedom xp, vp and Π leads to
the Euler Lagrange equations

δxp : 0 = −mpu̇p −
∫

Ω

∂xpfmp [ep + Πvp]dx, (6.3a)

δvp : 0 = pp − Π, (6.3b)

δΠ : 0 =
∑
p

fmpvp − 1. (6.3c)

The momentum equation is derived from (6.3a and 6.3b)

mpu̇p = −
∫

Ω

[ep + pvp]∂xpfmpdx (6.4)

with p = pp the common pressure of each particles through (6.3b). This equation seems to
inconsistent with the Euler equation where a pressure gradient appears. Here, the flux is
formed by the enthalpy H = E + pV . However, it possible to show its consistency by using
the thermodynamic relation between enthalpy and internal energy.

DH = DE + D(V p) = −pDV + pDV + VDp = VDp. (6.5)

The equation (6.4) is not conservative but can be restated using a property of the dis-
tribution function. The distribution function of the particle p has been written until now as
function of x and xp. However, to be relevant, the distribution must be homogeneous and
decreases around xp. Thus, the distribution is a function of the parameter xp−x. Therefore,
the derivative of fmp verifies ∂xpfmp = −∂xfmp . The ensuing developments made in annex
(6.A.1) lead to the total momentum equation:∑

p

mpu̇p =
∑
p

∫
Ω

∂x(fmpep)dx. (6.6)
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The total momentum flux is not formed by pressure but by the internal energy of all
particles.

Particles are coupled through the volume filling condition and its dual relation over
the pressure (6.3b). The internal energy reservoirs are then coupled together. To explicit
this system, we use the same procedure developed by Vazquez-Gonzalez et al. (2020) and
extended in (4). First, the thermodynamic identities over the pressure are formulated as

∂t(p) = −γpp
∂tvp
vp

= −p
fmp
ηp

∂tvp (6.7)

By summation and identifying total volume with the volume filling condition,

∂t(p)
∑
p

ηp = p
∑
p

vp∂t(fmp) = p
∑
p

vpup∂xp(fmp) (6.8)

With this explicit equation over the common pressure, the specific volume equation may be
deduced

pfmp∂tvp = −βpp
∑
q

vquq∂xq(fmq) (6.9)

with ηp =
fmpvp

γp
, ν =

∑
p ηp and βp = ηp

ν
.

The internal energy equation is then

∂t(fmpep) = epup∂xp(fmp) + βpP
∑
q

vquq∂xq(fmq). (6.10)

Summation over all particles (and using
∑

q βq = 1) leads to the opposite term of kinetic
energy production and shows the total energy conservation∑

p

∂t
[
fmpep + 1

2
fmpu

2
p

]
= 0 (6.11)

Now the internal energy equation (6.10) may be restated to

fmp∂t(ep) = βpp
∑
q

vquq∂xq(fmq)︸ ︷︷ ︸
[dV ]

. (6.12)

This expression makes makes appear the total volume variation [dV ] multiplied by the
common pressure and a factor β. This corresponds to the pressure work weighted by the
relative compressibility factor potentially stiff (3).

6.3.2 Dispersed multiphase flows

Model with fluid and non compressible particles

In this model, particles are rigid and move inside a compressible carrier phase. The La-
grangian of this system is now made with the kinetic energy of all particles plus the internal
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and kinetic energies of the fluid. The volume filling constraint includes the presence of the
carrier phase.

L =
∑
p

1
2
mpu

2
p +

∫
Ω

1
2
[αρ]u2 − [αρ]e(

[αρ]

α
, ξ)

+ Ψdt(ξ) + ΦDt([αρ])− Π(α +
∑
p

vpfmp − 1)dx
(6.13)

The particles’ specific volume vp is now a constant because they are considered to be rigid.
The Euler–Lagrange equation that result from the action are thus:

δxp : 0 =−mpu̇p −
∫

Ω

Π∂xpfpdx (6.14a)

δα : 0 = ρ2e,ρ︸︷︷︸
p

−Π (6.14b)

0 =
... Multi-fluid Euler–Lagrange equations (6.14c)

The other Euler–Lagrange equations are strictly the same than in the multi-continuous
approach (4). We obtain then both momentum equations as

mpu̇p = −vp
∫

Ω

p∂xpfmpdx (6.15)

Dt([αρ]ui) = −αp,i (6.16)

These equations are compatible with the Euler’s system, the fluid experiments a pressure
gradient and the particles are accelerated by the integral of the pressure around them. The
energy equations are also straightforward to obtain as the particles are not compressible,
thus, no coupling occurs between them and the fluid due to volume variations (the particles’
transport imposes the variation of the fluid’s volume).

Dt([αρ]e) = −pDt(α) = p
[
vp∂t(fmp)− (αui),i

]
= p
[
vpup∂xp(fmp)− (αui),i

]
(6.17)

Therefore, the energy equations of the fluid and particles are

Dt(
1
2
[αρ]u2) = −αuip,i
1
2
mpu̇

2
p = −upvp

∫
Ω

P∂xpfmpdx

Dt([αρ]e) = −p
[
(αui),i − upvp∂xpfmp

]︸ ︷︷ ︸
dV

(6.18)

The energy is well conserved by integration over Ω and the the fluid is compressed
according to the total volume change.
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6.3.3 Model with fluid and particles both compressible

In this section, particles are no more rigid but compressible. The Lagrangian of the system
is then complemented with the internal energies of the particles.

L =
∑
p

(
1
2
mpu

2
p −

∫
Ω

fmpep(vp)dx
)

+

∫
Ω

1
2
[αρ]u2 − [αρ]e(

[αρ]

α
, ξ)

+ Ψdt(ξ) + ΦDt([αρ])− Π(α +
∑
p

vpfmp − 1)dx
(6.19)

The Euler Lagrange equations of this system are

δxp : 0 =−mpu̇p −
∫

Ω

∂xpfmp [ep + Πvp]dx (6.20a)

δvp : 0 =pp − Π (6.20b)

δα : 0 =p− Π (6.20c)

0 =
... Multi-fluid Euler–Lagrange equations (6.20d)

The Euler–Lagrange equations with only fluid’s terms are still the same as in multi-
continuous, thus the momentum equation will be unchanged. The momentum equation of
the particles is also exactly the same as in the subsection 6.3.2. The LAP imposes also an
instantaneous relaxation to the pressure of the particles and the fluid.

mpu̇p = −
∫

Ω

∂xp(fmp)[ep + pvp]dx

Dt([αρ]ui) = −αp,i
(6.21)

The conservation is not obvious yet, however, it is obtained by the same arguments
developed in the subsection (6.3.1). It is demonstrated in annex (6.A.1) and yields∑

p

mpu̇p +

∫
Ω

Dt([αρ]u)dx = −
∫
∂Ω

∑
p

fmp [ep + pvp]DS −
∫

Ω

∂x(p)dx (6.22)

Here, the energy equations are more complex to derive because the particles are com-
pressible. However, the procedure developed in (Vazquez-Gonzalez et al. (2020)) can still be
applied to recover the explicit equations because the pressure relaxation is instantaneous.
After long but straightforward computations detailed in appendix (6.A.1), the internal en-
ergy equations yield

∂t(fmpep) = − µpuip,i− βpP (αui),i+ βp
∑
q

uqvqp∂xq(fmq) + upep∂xp(fmp), (6.23)

Dt([αρ]e) = +
∑
p

µpuip,i− βP (αui),i+ β
∑
q

uqvqp∂xq(fmq). (6.24)

with ηp =
fmpvp

γp
, η = α

γ
, ν =

∑
p ηp + η, β = η/ν, βp = ηp/ν, µp = ηηp/ν.
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Combined with the kinetic equations, the total energy is shown to be conserved

∫
Ω

Dt([αρ](1
2
u2
i + e) +

∑
p

∂t(
1
2
mpu

2
p) = −

∫
Ω

(αuip),idx. (6.25)

6.4 Consistent numerical schemes

6.4.1 System with only compressible particles

The system is constituted with a collection of compressible hybrid particles that spread over
fixed Eulerian cells. The discrete action is obtained by the following integration over time
and space of the continuous one

A =
∑
n

[∑
p

(
∆tn+1/2 1

2
mp(u

n+1/2
p )2 −∆tn

∑
c

fnmpcep(v
n
pc)

)

−
∑
c

Πc

(∑
p

fnmpcvpc − V
n
c

)]
.

(6.26)

The derivation of the action leads to the discrete Euler–Lagrange relations.

δxp : 0 =−mp(u
n+1/2
p − un−1/2

p )−∆tn
∑
c

∂fnmpc
∂xp

(epc + vnpcΠc), (6.27)

δvncp : 0 =−∆tnfnmpce
′
pc −∆tnmpcΠc. (6.28)

The equation (6.28) shows the pressure equality between particles inside a cell. Thus, there
is only one pressure per cell. The particles momentum equation yield

mp(u
n+1/2
p − un−1/2

p ) = −∆tn
∑
c

∂fnmpc
∂xp

(epc + vnpcp
n
c ). (6.29)

This equation is not conservative. There is no reason that the sum of the enthalpies
multiplied by the derivative of the mass cancels. To understand where does this fail comes,
the Noether theorem is applied. It must be stressed that the distribution function depends
on the particles’ position and the cells’ positions. Therefore, it yields: fnmpc = fnmpc(xp, xc).
The derivation of the Lagrangian with respect to space leads to:

L(x+ dx)− L(x) =dx
∑
p

∑
c

∂fnmpc
xc

(vpcΠ + epc)

=dx
∑
p

∑
c

∂fnmpc
∂xc

(vpcpc + epc)

However, the function fnmpc is a function of the distance between xp and xc, therefore, we
may restate this variation into

L(x+ dx)− L(x) =− dx
∑
p

∑
c

∂fnmpc
∂xp

(vpcpc + epc) (6.30)

188



which shows that the total momentum quantity is the translation of the Lagrangian. There-
fore, the momentum conservation cannot be guaranteed when using fixed mesh because the
Lagrangian is not space invariant. However, conservations are essentials to our schemes,
therefore, this approach has not been explored further.

6.4.2 System with fluid and non compressible particles

In (6.4.1), it has been shown that an Eulerian mesh cannot not preserve the total momentum
as it stands. Thus, the fluid is described now in a Lagrangian frame. The discrete action is
built by the following approximation of the integral over space and time.

A =
∑
n

[∑
p

∆tn+1/2 1
2
mp(u

n+1/2
p )2

+
∑
q

∆tn+1/2 1
2
mn
q (un+1/2

q )2 −
∑
c

∆tnmcec(
V n
c −

∑
p f

n
vpc

mc

)

] (6.31)

There is no volume filling constraint in the Lagrangian because it is possible to express
directly the fluid’s density inside the cell thanks to the volume left by the particles and the
mass of the cell.

The derivation of the action with respect to the particles and nodes’ positions leads to
the Euler–Lagrange equations.

δxp : 0 =−mp(u
n+1/2
p − un−1/2

p )−∆tn
∑
c

vp
∂fnmpc
∂xp

pnc (6.32)

δxq : 0 =−mq(u
n+1/2
q − un−1/2

q )−∆tn
∑
c,p

vp
∂fnmpc
∂xq

pnc + ∆tn
∑
c

∂V n
c

∂xq
pnc (6.33)

The ensuing momentum equations are compared to the continuous ones.

mpu̇p = −
∫

Ω

p∂xpfpdx→ mp
u
n+1/2
p − un−1/2

p

∆tn
= −

∑
c

pnc vp∂xpf
n
mpc (6.34)

Dt([αρ]ui) = −αp,i → mq
u
n+1/2
q − un−1/2

q

∆tn
=
∑
c

pnc

[
∂xqV

n
c −

∑
p

vp∂xqf
n
mpc

]
(6.35)

The momentum equation of particles is consistent with its continuous version. However,
it is not obvious for the fluid because its description is Lagrangian. However, the volume
filling conditions still applies.

V n
c −

∑
p

vpf
n
mpc = V n

c α
n
c (6.36)

Then, the node’s momentum equation may be restated as

mq
u
n+1/2
q − un−1/2

q

∆tn
=
∑
c

pnc ∂xq(α
n
cV

n
c ) (6.37)

189



This is similar to the CSTS scheme developed by Llor et al. (2016) with a modified corner
vector

∂xqV
n
c → ∂xqV

n
c −

∑
p

vp∂xqf
n
mpc . (6.38)

The cells’ volume and the distribution function must be invariant by translation through
space to guarantee the momentum’s conservation. This condition leads to the following
identities

∂xpf
n
vpc +

∑
q

∂xqf
n
vpc = 0, (6.39a)∑

q

∂xqV
n
c = 0. (6.39b)

This is brought out by the total momentum equation∑
p

mp(u
n+1/2
p − un−1/2

p )+
∑
q

mq(u
n+1/2
q − un−1/2

q )

=
∑
c

pnc

[∑
q

∂xqV
n
c −

∑
p

(
∂xpf

n
vpc +

∑
q

∂xqf
n
vpc

)]
.

(6.40)

The internal energy equation of the fluid is deduced directly from the Gibbs equation
because particles are not compressible. Therefore, there is no coupling through pressure.

[αρ]dt(e) = αp
dtρ
ρ

⇔
mc(e

n+1
c − enc ) = −pnc

[
un+1/2
q

∑
q

∂xqV
n
c − un+1/2

p

(∑
p

∂xqf
n
vpc +

∑
q

∂xpf
n
vpc

)]
︸ ︷︷ ︸

≈Dt(αnc V nc )

(6.41)

To insure the energy conservation, velocity terms in the expression (6.41) are modified.
The final internal energy equation is then

mc(e
n+1
c − enc ) = −pnc

[
1
2
(un+1/2

q + un−
1/2

q )(
∑
q

∂xqV
n
c −

∑
p,q

∂xqf
n
vpc)

− 1
2
(un+1/2

p + un−
1/2

p )
∑
p

∂xpf
n
vpc

]
.

(6.42)

The fluid’s density is simply determined with the knowledge of the cell’s volume and its
mass.

ρn+1
c =

mc

V n+1
c −

∑
p f

n+1
vpc

(6.43)

The pressure is computed with the fluid EOS.
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6.4.3 System with fluid and compressible particles

Because particles are compressible, their discrete internal energy is added in the discrete
action.

A =
∑
n

[∑
p

(
∆tn+1/2 1

2
mp(u

n+1/2
p )2 −∆tn

∑
c

fnmpcep(v
n
pc)

)

+
∑
q

∆tn+1/2 1
2
mn
q (un+1/2

q )2 −
∑
c

∆tnmcec(
V n
c −

∑
p f

n
mpcv

n
pc

mc

)

] (6.44)

The ensuing Euler–Lagrange equations are

δxp : 0 =−mp(u
n+1/2
p − un−1/2

p )−∆tn
∑
c

∂fnmpc
∂xp

(epc − vnpce′c), (6.45a)

δxq : 0 =−mq(u
n+1/2
q − un−1/2

q )−∆tn
∑
c,p

∂fnmpc
∂xq

(epc − vnpce′c)−∆tn
∑
c

∂V n
c

∂xq
e′c, (6.45b)

δvncp : 0 =−∆tnfnmpce
′
pc + ∆tnfnmpce

′
c. (6.45c)

The equation (6.45c) shows again the pressure equality between the fluid and the particles.
The momentum equations of nodes and particles yield

mp(u
n+1/2
p − un−1/2

p ) = −∆tn
∑
c

∂fnmpc
∂xp

(epc + vnpcp
n
c ) (6.46a)

mq(u
n+1/2
q − un−1/2

q ) = ∆tn
∑
c

∂V n
c

∂xq
pnc −∆tn

∑
p,c

∂fnmpc
∂xq

(epc + vnpcp
n
c ) (6.46b)

Manipulations of these momentum equation and the relations (6.39) bring out the total
momentum preservation (6.A.2) .

Internal energy equations are deduced with the same procedure as the multi-fluid Eule-
rian system. The following equations take into account eventual dissipations. Computation
details are provided in (6.A.1) The internal energy equations yield

mn+1
pc en+1

pc −mn
pce

n
pc =−∆tnβnpcp

n
c dtṼ

n
fc︸ ︷︷ ︸

(1)

+ ∆tn < ∇fnmpc .u > enpc︸ ︷︷ ︸
(2)

+
∑
ϕ

µnϕp(f
n
mpcΓ

n
pW

n
p −mn

ϕΓnϕW
n
ϕ )︸ ︷︷ ︸

(3)

+ W n
pc︸︷︷︸

(4)

(6.47a)

mc(e
n+1
c − enc ) =−∆tnβnc p

n
c dtṼ

n
fc +

∑
ϕ

µnϕc(mcΓ
n
cW

n
c −mn

ϕΓnϕW
n
ϕ ) +W n

c (6.47b)
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with

< ∇fnmpc .u > = ∂xpf
n
mpc

1
2
(un+1/2

p + un−
1/2

p ) +
∑
q

∂xqf
n
mpc

1
2
(un+1/2

q + un−
1/2

q ),

dtṼ n
c = 1

2

∑
q

∂V n
c

∂xq
(un+1/2

q + un−
1/2

q )

− 1
2

∑
p

vn+1
pc

[
(
∂fnmpc
∂xp

(un+1/2
p + un+1/2

p ) +
∑
q

∂fnmpc
∂xq

(un+1/2
q + un−

1/2
q )

]

and ν =
∑

p

fnmpcv
n
pc

γnpc
+ mcvnc

γnc
, βnpc =

fnmpcv
n
pc

γnpcν
, βnc = mcvnc

γnc ν
, µnϕc = βnϕc

mcvnc
γnc

.
The meaning of the constituting terms are

• (1) distribution of pressure work to the part of the particle p spread to the cell c.

• (2) transport of the internal energy

• (3) dissipation exchange

• (4) dissipation

(2) is called a transport term but corresponds to variation of internal energy in the cell
due to the mass variation

epdt(fmp) ≈ enpc(f
n+1
mpc − f

n
mpc) = ∆tn < ∇fnmpc .u > enpc (6.48)

Indeed, the real transport should be

−
∑
d

δmcde
n
pc +

∑
d

δmcde
n
pd (6.49)

with δmcd the transfer of mass from the distribution d to the distribution c. These mass
transfers can be obtained by analysis of all mass variation in the cell where the particle
spread. However, they will not match the form (2) at the order of the scheme. In fact, the
deviation to the real transport may be huge in a shock where neighboring energies are very
different.

Pressure relaxation Pressure relaxation is achieved with algebraic solver. The system
to be solved is composed by the pressure equality, the state equations of each particle and
the fluid and the no void constraint. Assuming that both phases obey to stiffened gas EOS
and that particles share the same reference pressure, the pressure is solution of a second
order polynomial. The EOS for the particles is

pn+1
c = Γpe

n+1
pc /vn+1

pc − πp
fn+1
mpc v

n+1
pc

V n+1
c

=
Γpf

n+1
mpc e

n+1
pc

V n+1
c (pn+1

c + πp)

(6.50)
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The EOS for the fluide is then

pn+1
c = Γρn+1

c en+1
c − π.

αn+1
c =

Γ[αρ]n+1
c en+1

c

pn+1
c + π

.
(6.51)

By summation,

1 =
a1

p+ π1

+
a2

p+ π2

(6.52)

This is a second degree polynomial in pn+1
c from which the solutions are known.

6.5 Precisions on the numerical schemes

6.5.1 On the particle spreading

The derivation of the evolution equations for the discrete systems are made in the previous
parts. In these equations, the spreading of the particles among cells is written formally. One
definition of the distribution that respect the relations (6.39) is proposed here. In addition
to this preservation, physical consistency demands to preserve uniform acceleration in a
uniform pressure gradient. One possibility is the barycentric coordinates, i.e. the spreading
of the particle p on the cell c is equal to ξpc with ξpc the barycentric coordinate of the particles
in with respect to the center of the cells c. If the number of spreading cells is higher than
the number of dimensions plus one, there is an infinity of possible barycentric coordinates.

Let the pressure fields be

pnc = pno −∇p · (xo − xc). (6.53)

The force applied on a given particle p is therefore

−pno (xo − xp) ·
∑
c

∂xξ
n
pc +

∑
c

∂xξ
n
pc∇p · (xp − xc). (6.54)

The first form canceled because the spreading weights sum to unity. With the linearity of
the derivation, the second form yields

∂x
[∑

c

ξnpc∇p · (xp − xc)
]
−
∑
c

ξnpcI · ∇p

= ∂x
[
∇p ·

∑
c

ξnpc(xp − xc)︸ ︷︷ ︸
=0

]
−
∑
c

ξnpc︸ ︷︷ ︸
=1

I · ∇p (6.55)

Therefore, for any particles, the pressure gradient is −∇p.
Numerical simulations are presented in (6.3) to shows the impact of this choice.
It is clear that only the barycentric spreading preserves the respective position of the

particles. Therefore, all the particles experiment well the same pressure gradient.
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(a) Initialisation (b) Non consistent spreading

(c) Barycentric spreading

Figure 6.3: Comparison between two spreadings in uniform pressure gradient

6.5.2 On the transport equation

In the particle’s description developed, the mass is entirely known by the position of the
center of gravity of the particle. Thus, the transport is purely geometric. However, it is
possible to mimic the transport equation to compare with a finite volume scheme (with an
Eulerian mesh). The transport equation of the fluid in GEEC is:

mn+1
c −mn

c =
∑
d

V n
dc[αρ]nd −

∑
d

V n
cd[αρ]nc (6.56)

=∆tn
∑
d

sdc
Vd
· undσdcmn

d −∆tn
∑
d

scd
Vc
· uncσcdmn

c . (6.57)

With a mass distribution, the pseudo transport of particles yields

mn+1
pc −mn

pc =mp[f
n+1
mpc − f

n
mpc ] (6.58)

=mp

∑
i

(∆xnp )i

i!
f (i)
mpc(x

n
p ). (6.59)

at the order (1), this restated as

mn+1
pc −mn

pc =mp∆x
n
p

∂fmpc
∂x

(xnp ) (6.60)

=∆tnunpmp

∂fmpc
∂x

(xnp ) (6.61)

With constant velocity, the two scheme correspond if the function fmpc satisfies
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∂fmpc
∂x

(xnp ) =
∑
d

sdc
Vd
σdcfpd − fpc

∑
d

scd
Vc
σcd

This is a system of coupled equations

∂xFp =

−
∑

d
s0d
V0
σ0d

s10
V1
σ10 . . . sn0

Vn
σn0

s01
V0
σ01 −

∑
d
s1d
V1
σ1d . . . sn1

Vn
σn1

... . . . ...

Fp (6.62)

This could be solvable for a constant sign of the velocity, otherwise the coefficient σ varies
with up which lead to the introduction of a temporal derivative in the equation. Therefore,
the choice of the transport in GEEC is a complex function of distribution which is probably
non analytical.

6.5.3 Dissipation forms

Because these schemes are unstable in shocks, necessary dissipation must be added to carry
on the computations. The dissipative forms added are introduced in a similar way that
Marboeuf (2018)[chap 4] did. They consist on an artificial viscosity term and an anti-
drift force. It must be underlined that these added forms should respect the following
requirements:

1 Effective dissipation, i.e. destruction of kinetic energy into heat.

2 Impact the final result as little as possible which requires it to be activated only to
dissipate in order to represent physical mechanisms (artificial viscosity) or when cells
are nonphysically deformed.

The anti-drift force verifies only partially the requirement [2], Marboeuf (2018) proposed
another way to counter non physical deformation modes with inertial filter. However, for
simplicity, anti-drift force was implemented in the code.

6.6 Numerical results

6.6.1 Incompressible particles in compressible fluids

This section aims to test the schemes presented previously. No convergence analysis nor
comparison with test cases in literature is done. The goal here is just to validate if our ap-
proach leads to physically relevant results and to evaluate its robustness. The CFL condition
is captured with the fastest fluid’s wave speed.
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Shock tube test case

This test case is used because the analytical solution without particles is known. Also, it
is a standard test case which allows to evaluate particles behavior in shocks and expansion
waves. In all case the fluid is a perfect gas with Γ = 2/5.

First, 1D test cases are presented to focus on particles behavior (in 2D, other numerical
issues appears). The fluid initialization is presented in (6.2).

x pressure velocity density
x ≤ 0.5 130 0.0 2

x ≥ 0.5 100 0.0 1

Table 6.2: Initialization of the shock tube

Both simulations contains 1000 particles spread over 2 cells. The full domain is discretized
with 100 cells. The aim is to verify that particles evolution are consistent with the physics in
shock and expansion wave, i.e. that they are correctly accelerated. Therefore, the particles’
density is imposed as the mean of fluid density before and after shock/expansion. Thus,
particles density is set to 1.04 in shock and 1.88 in expansion 1. The first simulation is made
with small particles which involves a volume fraction of 0.001. The second simulation is
made with bigger ones which lets only half of the volume to the carrier phase. The end time
is 0.03 s.

In the light of the figure (6.4), several points are raised. First, the scheme robustness
is strongly reduced when particles’ volume fraction increases. Instabilities appear in fluid’s
pressure which are tempered by artificial viscosity. The particle curtain gets highly dispersed
in velocity. Secondly, the particles velocity is distributed around the fluid velocity (and thus
without drag term). This means that pressure gradient is captured with some (but not
perfect) accuracy.

Other numerical experiments that are not shown here reveal that stability increases when
particles are heavier.

Particles in expansion wave show good agreement with theoretical results. The velocity
is dispersed around the fluid velocity value. Less stability issues are encountered as expected
(the expansion profile is smoother than the shock). To conclude, the overall speeding up of
particles is consistent which shows a correct capture of pressure gradients. However, stability
issues are encountered with high volume fraction.

6.6.2 Dispersed curtains

The numerical test case presented in this section is designed to reproduce experiments made
by Theofanous et al. (2018). The experiments consisted on dispersing a curtain of particles
spread within a gas by a shock. The curtain is made of spherical particles whose density

1This is an approximation:
∫
T
∇p(t)
ρ(t) dt ≈ 2

ρi+ρf

∫
T
∇p(t)dt

196



(a) Pressure with low volume fraction of particles (b) Velocity with low volume fraction of particles

(c) Pressure with high volume fraction of particles (d) Velocity with high volume fraction of particles

Figure 6.4: Particles under shock

(a) Pressure with low volume fraction of particles (b) Velocity with low volume fraction of particles

(c) Pressure with high volume fraction of particles (d) Velocity with high volume fraction of particles

Figure 6.5: Particles in expansion wave
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(a) Velocity in X direction, end time (b) Velocity in Y direction, end time

Figure 6.6: Velocities at final time, particles are the white dots.

is 2.5 g.cm−3. The loaded fraction is about 0.01 . Therefore, the gas is slightly modified
by the particles loading. However, the forward coupling essentially determines the particles
behavior. In our model, the only coupling between both phases is the pressure gradient.
But according to Theofanous et al. (2018), drag is responsible for the curtain dispersion. A
simple drag force has been therefore implemented in the scheme

fpc = 0.5
∑
c

vnpcf
n
mpcρ

n
c (u

n+
1
2

c − un+1/2
p ) (6.63)

with u
n+

1
2

c the velocity interpolated in the center of the cell with nodes’ velocity. No backward
drag has been implemented because particles effects on fluid is negligible. The test case
consists on a rectangular domain of 1 × 3 m2. The right boundary condition is a wall
condition and the left one is a piston like boundary condition. The upper resp bottom nodes
follow the closest bottom resp upper node. The piston velocity is set to 100 m.s−1 and the
initial pressure and density for the gas are 1 atm and 1 kg.m−3. 1000 hybrid particles are
randomly initialized between [0.5; 0.6] × [0.3; 0.6]. The simulation ends at time 5 ms. The
CFL condition is determined by the fastest wave speed of the gas and is set to 0.2. The
domain is discretized by 50× 100 cells.

From the figures (6.6), the carrier phase is hardly influenced by the dispersed phase.
However, the dispersed phase is influenced by the carrier phase as shown in figure (6.7b).
The curtain is well dispersed by the shock after 5 ms (the shock hits the curtain at 1 ms).
The curtain’s width is multiplied by about 1.5 which is comparable to the results obtained
by Theofanous et al. (2018) for the same Mach number.

6.6.3 Compressible particle in shock and expansion

The simulation presented here aimed to test the behavior of compressible particles inside
shocks and rarefaction wave. The goal is to verify that particles described in a discrete

198



(a) Initial particles’ position (b) Final particles’ position

Figure 6.7: Dispersed curtain by a shock

(a) Particles’ energy: 0.0003 s (b) Particles’ energy: 0.0007 s

Figure 6.8: Fluid energy is drawn in black line, particle’s energies are the red dots. Because it is a
1 D simulation, the particle is distributed in two cells. CFL = 0.5

way reproduce the fluid behavior if they posses the same thermodynamics (EOS, initial
density. . . ). We simulate one particle inside a shock tube. The particle and the fluid follow
the perfect gas equation. Their initial density is 1. The pressure is set to 1.1 × 105 Pa on
the left and 105 Pa on the right. The particles’ volume are set to 10−4 of the cells volume.
Computations are made with 100 cells.

The figure (6.8) reveals that the particle does not behave correctly. The internal energies
strongly deviate from the fluid one’s. This poses two problems: first the density of the
particles is wrong, secondly, because internal energy intervenes in the momentum quantity,
its gradient involves acceleration and thus the particle’s velocity deviates from the fluid.
After examination, it is shown that the problems comes from wrong transport approximation.
Indeed, the term (2) in the equation (6.47b) stands from transport approximation mn+1

p c−
mn
pc. However, this transport is badly predicted when particles’ drift with respect to the

nodes is high. To verify this, we proceed to a simulation where exact transport is prescribed
into the internal energy equation.

It is shown in figure (6.9) that this correction allows to find the correct internal energy
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(a) Particles’ energy: 0.0003 s (b) Particles’ energy: 0.0007 s

Figure 6.9: Fluid energy is drawn in black line, particles’ energy are the red dots. The transport
inside internal energy equation of particles has been introduced exactly. CFL = 0.5

evolution. However, this cannot preserve total energy conservation. Now, two options
should be explored: i) reduce drastically the CFL in order to recover correct transport
approximation, ii) use exact form of the transport.

The last option involves to add a correction in the scheme to preserve the total energy.
But it remains to prove that this correction is dissipative.

Also, another problem that must be solved is the prescription of internal energy and
specific volume when the particle’s support (the cells on which it is distributed) is modified.
Indeed, the internal energy in the new distribution is not determined by any equation.
Therefore, physical reasoning must be used to distribute the internal energy of the particle
into the new cells while conserving it. The specific volume may be then deduced from the
EOS of the particle.

6.A Appendix

6.A.1 Continuous

Conservations in the full particles systems

mpu̇p =

∫
∂Ω

fmp [ep + pvp]DS −
∫

Ω

fmp ∂x[ep + pvp]︸ ︷︷ ︸
vp∂x(p)

Dx

∑
p

mpu̇p =

∫
∂Ω

∑
p

fmp [ep + pvp]DS −
∫

Ω

∑
p

fmpvp︸ ︷︷ ︸
=1

∂x(p)Dx

∑
p

mpu̇p =

∫
∂Ω

(∑
p

fmp [ep + pvp]− p
)

︸ ︷︷ ︸∑
p fmpep

DS

∑
p

mpu̇p =
∑
p

∫
Ω

∂x(fmpep)Dx

(6.64)
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Full compressible fluid- particle systems

Momentum conservation

mpu̇p =

∫
∂Ω

fmp [ep + pvp]DS −
∫

Ω

fmp ∂x[ep + pvp]︸ ︷︷ ︸
vp∂x(p)

dx

∑
p

mpu̇p =

∫
∂Ω

∑
p

fmp [ep + pvp]DS −
∫

Ω

∑
p

fmpvp︸ ︷︷ ︸
=1−α

∂x(p)dx
(6.65)

Internal energies equations For each particle and for the fluid, the pressure equation
yields

∂t(p) = −γpp
∂t(vp)

vp

dt(p) = γp
dt(ρ)

ρ

(6.66)

This is restated as

∂t(p)
∑
p

ηp = −p
∑
p

fmp∂t(vp)︸ ︷︷ ︸∑
p ∂t(fmpvp)−

∑
p vpup∂xpfmp

ηdt(p) = −pDt(α)

(6.67)

Thanks to the volume filling constraint condition

∂t(p)
∑
p

ηp = p∂t(α) +
∑
p

vpup∂xpfmp

ηdt(p) = −p∂t(α)− p(αui),i
(6.68)

with ηp =
fmpvp

γp
and η = α

γ
By summing the equations, we obtain a similar relation as in the

subsection (6.3.1),

ν∂t(p) = −ηuip,i +
∑
p

upvpp∂xpfmp − p(αui),i (6.69)

with ν =
∑

p

fmpvp

γp
+ α

γ
With this explicit equation on the common pressure, internal energies’

dynamic is straightforward to derive.
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6.A.2 Discrete

Full compressible fluid- particle systems

Momentum conservation∑
q

mq(u
n+1/2
q − un−1/2

q ) +
∑
p

mp(u
n+1/2
p − un−1/2

p ) = ∆tn
∑
c

(∑
q

∂V n
c

∂xq

)
pnc

−∆tn
∑
c

(∑
p

(∂fnmpc
∂xp

+
∑
q

∂fnmpc
∂xq

)
(epc + vnpcp

n
c )

) (6.70)

Internal energies equations For any particle p, the pressure evolution is

pn+1
c − pnc = −γnpc

pnc
vnpc

(vn+1
pc − vnpc) + Γφ

W n
pc

vnpc
(6.71)

and for the fluid

pn+1
c − pnc = −γnc

pnc
vnc

(vn+1
c − vnc ) + Γc

W n
c

vnc
(6.72)

with

vnc =
V n
c −

∑
p f

n
mpcv

n
pc

mc

(6.73)

By summing the equations (6.71) and (6.72) after isolating the specific volume difference,
we obtain

ν(pn+1
c − pnc ) =− pnc

[∑
p

(fnmpcv
n+1
pc − fnmpcv

n
pc) + (V n+1

c − V n
c )

−
∑
p

(fn+1
mpc v

n+1
pc − fnmpcv

n
pc)
]

+
∑ mv

γ
Γ
W

v

=− pnc

[
−
∑
p

vn+1
pc (fn+1

mpc − f
n
mpc) + (V n+1

c − V n
c )

]
+
∑ mv

γ
Γ
W

v

=pnc∆tn+1/2
[∑

p

vn+1
pc

(∂fnmpc
∂xp

un+1/2
p +

∑
q

∂fnmpc
∂xq

un+1/2
q

)
︸ ︷︷ ︸

∇fnmpc .u

− pnc∆tn+1/2
∑
q

∂V n
c

∂xq
un+1/2
q +

∑ mv

γ
Γ
W

v

=−∆tn+1/2pnc dtV
n
fc +

∑ mv

γ
Γ
W

v

(6.74)

with ν =
∑

p

fnmpcv
n
pc

γnpc
+ mcvnc

γnc
. Here, the total volume divergence is equal to

dtV n
c =

∑
q

∂V n
c

∂xq
un+1/2
q −

∑
p

vn+1
pc

[
(
∂fnmpc
∂xp

un+1/2
p +

∑
q

∂fnmpc
∂xq

un+1/2
q )

]
(6.75)
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This volume variation is similar to the variation of the volume occupied by the fluid.

V n+1
fc
− V n

fc = V n+1
c − V n

c︸ ︷︷ ︸
variation of the cell volume

−
∑
p

vn+1
pc fn+1

mpc −
∑
p

vnpcf
n
mpc︸ ︷︷ ︸

variation of the volume of particles inside the cell

=∆tndtV n
fc −

∑
p

(vn+1
pc − vnpc)fnmpc +O((∆tn)2)

(6.76)

However, there is one form missing which is the variation of specific volume. It means that
the term dtV n

c contains the variation due to the volume of the cells and the variation of
volume of the particle due to their variation of mass but not the variation of volume due to
their variation of density at constant mass.

The discrete Gibbs relation yields

en+1
pc − enpc = −pnc (vn+1

c − vnc ) +W n
pc (6.77)

The energy of the component φ may be found as

mn+1
φc en+1

φc −m
n
φce

n
φc = −pncmn

φc(v
n+1
φc − v

n
φc) + (mn+1

φc −m
n
φc)e

n+1
φc (6.78)

Internal energy dynamics of a particle p and of the fluid are then

fn+1
mpc e

n+1
pc − fnmpce

n
pc =−∆tn+1/2βnpcDtV

n
fc + ∆tn+1/2en+1

pc ∇fnmpc .u

+
∑
ϕ

µnϕp(f
n
mpcΓ

n
pW

n
p −mn

ϕΓnϕW
n
ϕ ) +W n

pc
(6.79)

mce
n+1
c −mce

n
c =−∆tn+1/2βncDtV

n
fc

+
∑
ϕ

µnϕc(m
n
cΓncW

n
c −mn

ϕΓnϕW
n
ϕ ) +W n

c
(6.80)

The total internal energy evolution without dissipation is obtain by summation∑
c

mc(e
n+1
c − enc ) +

∑
p

(fn+1
mpc e

n+1
pc − fnmpce

n
pc) =

−∆tn+1/2
∑
c

(
pnc
∑
q

∂V n
c

∂xq
un+1/2
q

)
+∆tn+1/2

∑
c

∑
p

∇fnmpc .u
(
vn+1
pc pnc + en+1

pc

) (6.81)

with βnpc =
fnmpcv

n
pc

γnpcν
, βnc = mcvnc

γnc ν
, µnϕc = βnϕc

mcvnc
γnc

.
Thus, there is a conservation default if the expressions above are used for energy equa-

tions. A modification at the order 2 is sufficient to obtain a correct compensation. The
velocities un+1/2

p and un+1/2
q are modified to 1

2
(u

n+1/2
p +u

n−1/2
p ) and 1

2
(u

n+1/2
q +u

n−1/2
q ). Further-

more, we obtain the same enthalpy as in the kinetic energy equations by replacing internal
energy and specific volume in n+ 1 by their values in n.Eventually, the time step ∆tn+1/2 is
modified to ∆tn to preserve total energy.
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CHAPTER 7

Conclusion

The challenges of multiphase flow simulation addressed in this thesis are related to three
main ideas: the capture of internal couplings, and the concepts of stiffness and entropy.
These appear intertwined in various forms along the four chapters of the thesis:

• In chapter 3, a scheme to capture pressure work in compressible contrasted flows was
built in compliance with the second law even under fast (stiff) evolutions. This chal-
lenge involved analyses about entropy and stiffness in multiphase flows.

• In chapter 4, the capture of isentropic couplings embedded in the averaged correla-
tion terms coming from multifluid statistical descriptions are separated, analyzed, and
consistently modeled. Questions about couplings and entropy are addressed there as
well as in chapter 5 where collisions inside dispersed flows are modeled.

• In chapter 6, pressure work consistency is explored again, this time within the Lagrange–
Euler framework. The main difficulty is then to properly capture the geometric char-
acter of this coupling, involving the concept of entropy.

The problems answered in these four chapters relate to modeling or numerical aspects.
Less trivially, they also relate to their behavior in isentropic or dissipative situations: both
are compatible with the second principle but the former is much more fragile than the second
and requires special attention. As quoted from Asher & McLachlan (2005, § I) isentropy is
“living at the edge of stability.” This separation between reversible and irreversible physics
is fundamental and is much more general than the specific context of multiphase flows.
For instance, it is illustrated in the development of time-stepping algorithms for non-linear
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thermodynamic systems that preserve symmetries, energy and the laws of thermodynam-
ics (Romero, 2009, § II). These desirable properties coming from the separate treatment of
reversible and irreversible aspects are also illustrated in simulations where Reynolds num-
bers could be artificially reduced by spurious dissipation (Reiss, 2015, § 1.1). Results and
perspectives are reviewed below according to these general lines.

The modeling of isentropic couplings in multiphase flows. In addition to the funda-
mental coupling by pressure, other couplings exist in multiphase flows hidden in interfacial
effects whose description is lost in many formalisms, notably within the Euler–Euler descrip-
tion. A method is proposed in chapter 4 to capture their isentropic part in this framework
through a variational approach. A procedure is then developed to obtain the explicit evolu-
tion equations of all these new energies, sometimes with corrections resulting from a pressure
equality assumption.

This approach is tested in chapter 5 on the modeling of collisions in dispersed flows. The
collisions are artificially divided in two types to adapt to the specific Euler–Euler formalism:
collisions occurring inside a single phase or between different phases, the former being partly
amenable to a variational approach. As a proof of concept, a new model is then developed,
implemented, and tested on several numerical simulations showing the versatility and the
robustness of the approach. The closure of the potentials does not aim at accurately de-
scribing real dispersed flows but rather at providing a founding ground on which building
proper adapted models.

The approaches presented here are just proofs of concept and as such they have by no
means the capacity to represent real industrial multiphase flows. More work must be added
to define rigorously the potentials with careful analysis of the interactions between specific
phases in specific systems. For this, closures of energy reservoirs presented in chapter 4
should be improved by DNS or experiments. Also, the closure of agitation potentials in
chapter 5 is only provided here as a tool to prove the validity of the approach developed
in chapter 4 to design models that can be integrated in a code to simulate multiphase
flows. They could be improved for instance by including results from hard-spheres systems
(Carnahan & Starling, 1969, etc.).

Dissipative phenomena and spurious dissipation in models. In this thesis, dissipa-
tive phenomena in the modeling of multiphase flows may be divided in two types: (i) the
dissipation due to physical effects appearing as source terms in momentum equations, in
particular here the drag force; (ii) spurious dissipation which is the consequence of the sta-
tistical averaging framework. Here, the averaging process of the Euler–Euler formalism leads
to non physical dissipation in the capture of the collisions between two phases (see chapter
5). For now, the distribution of this dissipation as been prescribed at their extreme levels
(all in the carrier phase as an example).

Improvements should be done in order to avoid spurious dissipation due to the Euler–
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Euler formalism in the capture of collisions (for instance with the approach developed in
section 5.6). Also, in order to represent real multiphase flows, the distribution of the dis-
sipation must be crafted according to specific studies of the internal mechanisms based on
experiments or DNS.

The other main modeling perspective is the consistency between the isentropic and the
dissipative physics inside models. Indeed, as pointed out by M. Villedieu in his review of the
thesis, the root of the explicit formulation of the energy equations comes from the Euler–
Lagrange relations which lock to each other all the phase pressures. This relation, as seen in
chapter 4, is used in the algebraic combination involving also the volume filling constraint
and the pressures’ evolution to obtain the explicit isentropic evolution equations of energy.
From there, the dissipation is simply added as source terms. However, pressure equilibration
here appears as a consequence of strictly non-dissipative behavior and may not hold in the
presence of dissipation (though it may still be a relevant approximation). A solution to
recover the consistency between isentropic and entropic physics inside models could be the
use of the virtual work principle.

Numerical capture of reversible physics. A quasi-symplectic discretization of the
backbone model has been provided by Vazquez-Gonzalez et al. (2020) using a discrete vari-
ational approach leading to the GEEC scheme. The supplementary terms added to the
backbone model in chapter 5 have been discretized by mimicking this scheme. The GEEC
scheme is for now of order one in space, and studies may be conducted to improve it to
order two while keeping its variational structure. Notable contributions towards this goal
have been made by Paulin (2021) and further developments are being investigated.

In this spirit, exploratory works are proposed to capture pressure coupling in the Lagrange–
Euler formalism in chapter 6 while keeping its geometric character. This is done by means of
an hybrid description of particles introduced inside a discrete variational approach. Within
this frame, discrete and almost-geometric evolution equations are obtained. The numerical
tests show that the compressible version of the method suffers from serious defects revealed
by the nonphysical behavior of particles in shocks and expansions. The method may be cor-
rected but at the price of a loss of energy conservation. This is a challenging project which
deserves further investigations and could potentially provide some indepth understanding
applicable to other modeling and numerical approaches.

Enforcing the second law in scheme residuals. A particular focus is made on dis-
cretization of the coupling via pressure as it appears in all compressible models and connects
most of the energy reservoirs. This coupling is known to be potentially extremely stiff when
contrasted phases coexist within the flow, but furthermore, as examined in chapter 3, it is
“stiffly stiff:” this new concept designates the sudden stiffness variations which may appear
during the evolution of a contrasted mixture. A method is proposed to counter the chal-
lenging yet inevitable compressibility effects, adaptable to all models and schemes involving
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the computation of pressure work. It is here tested first on the most extreme multiphase
tests from the literature and then on even more extreme new tests exploring the horizon of
multiphase stiffness and showing the potential of the method.

The general approach proposed in chapter 3 involves an implicit pressure in the pressure
work discretization. This warrants to comply with the second law of thermodynamics even
under stiff evolution. Now, the correspondingly modified GEEC scheme turns out to be
identical to the native GEEC scheme (with explicit pressure) to which a linear artificial
viscosity would be added. As reminded in chapter 2, the closure and amplitude of artificial
viscosity should be defined from the EOS of the phases, notably by the fundamental deriva-
tive of the mixture; but, the artificial viscosity added through the implicit pressure is ruled
by the pressure evolution and does not involve the fundamental derivative. It remains then
to understand what is the link between artificial viscosity and the implicit pressure.

As mentioned previously, implicit pressure warrants compliance with the second law.
This strong and convenient safety comes at a significant price that may appear too high:
the scheme dissipates at each time step, possibly staying far away (at the order of the scheme)
from the isentropic evolution (see for instance the isentropic expansions of Fig. 3.6). It thus
appears highly relevant to investigate alternatives between fully explicit schemes (which
anti-dissipates at each time step) and fully implicit schemes in order to reduce numerical
dissipation while preserving the thermodynamic consistency.
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