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Abstract

The present thesis addresses the problem of cosmological backreaction, i.e., the question of whether and to which extent cosmological inhomogeneities a ect the global evolution of the Universe. We will thereby focus on, but not restrict to, backreaction in a purely quantum theoretical framework which is adapted to describe situations during the earliest phases of the Universe. Our approach to evaluating backreaction uses a perturbative and constructive mathematical formalism which is denoted as space adiabatic perturbation theory, and which extends the well-known Born-Oppenheimer approximation to molecular systems.

The underlying idea of this scheme is to separate the system into an adiabatically slow and a fast part, similar to the separation of nuclear and electronic subsystems in a molecular setting. Such a distinction is reasonable if a corresponding perturbation parameter can be identi ed. In case of molecular systems, such a parameter arises as the ratio of the light electron and heavy nuclear masses. In the case of the here considered cosmological systems, we identify the ratio of the gravitational and the matter coupling constants as a suitable perturbative parameter. In a rst step, we apply the space adiabatic formalism to a toy model and compute the backreaction of a homogeneous scalar eld on a homogeneous and isotropic geometry. We restrict the computations to second order in the adiabatic perturbations and obtain an e ective Hamilton operator for the geometry.

In the sequel, we apply space adiabatic perturbation theory to an inhomogeneous cosmology and calculate backreaction e ects of the inhomogeneous quantum cosmological elds on the global quantum degrees of freedom. Therefore, it is necessary to rst extend the scheme adequately for an application to in nite dimensional eld theories. In fact, the violation of the Hilbert-Schmidt condition for quantum eld theories prevents a direct application of the scheme. A solution is obtained by a transformation of variables which is canonical up to second order in the cosmological perturbations. This allows us to compute an e ective Hamilton operator for a cosmological eld theory previously deparametrized by a timelike dust eld as well as the identication of an e ective Hamilton constraint for a system with gauge-invariant cosmological perturbations. Both objects act on the global degrees of freedom and include the backreaction of the inhomogeneities up to second order in the adiabatic perturbation theory.

We conclude that it is a priori inadmissible to neglect cosmological backreaction. However, due to the general di culties associated with nding solutions for coupled gravitational systems, the concrete evaluation of the operators found here must remain the subject of future research. One obstacle is the occurrence of inde nite mass squares associated with the perturbation elds which are the result of the previous transformations (which however, already appear in independent problems, for example in the use of Mukhanov-Sasaki variables) . A further complication in the nal quantization and search for appropriate solutions arises from the non-polynomial dependence on the global degrees of freedom. We discuss these obstacles in detail and point to possible solutions.

Zusammenfassung

Die vorliegende Dissertation befasst sich mit dem Thema der kosmologischen Rückwirkungen, also insbesondere der Frage ob und in welchem Ausmaße kosmologische Inhomogenitäten die Entwicklung des Universums auf seinen größten Skalen beein usst. Dabei liegt unser Fokus auf Rückwirkungen in einem rein quantenmechanischen Formalismus, welcher mutmaßlich das Universum in seinen frühesten Phasen adäquat beschreibt. Wir werden allerdings ebenso auf Resultate und den Forschungsstand auf dem Gebiet der Rückreaktionen für die späteren semiklassischen und klassischen Phasen eingehen. Unser Ansatz zur Berechnung von quantenmechanischen Rückwirkungen beruht auf der perturbativen und konstruktiven Raumadiabatischen Störungstheorie, welche eine Erweiterung der bekannten Born-Oppenheimer Approximation für molekulare Systeme darstellt.

Die Idee des verwendeten Schemas beruht darauf das betrachtete Gesamtsystem in einen adiabatisch langsamen und einen schnellen Anteil zu separieren, ähnlich wie die Unterteilung in Kern-und Elektronensysteme auf molekularer Ebene. Dies ist dann physikalisch sinnvoll, wenn ein entsprechender Störparameter identi ziert werden kann. Im Falle von molekularen Systemen ist dies das Massenverhältnis; im Falle der hier betrachteten kosmologischen Systeme identi zieren wir das Verhältnis der gravitationellen und der Materie-Kopplungskonstanten als Störparameter. In einem ersten Schritt wenden wir die Raumadiabatische Störungstheorie auf ein einfaches Beispielsystem an und berechnen die Rückwirkung eines homogenen Skalarfeldes auf eine homogene und isotrope Geometrie. Wir beschränken uns dabei auf die Ermittlung eines e ektiven Hamiltonoperators für die Geometrie bis zur zweiten Störungsordnung.

Im Weiteren wenden wir das Raumadiabatische Schema auf inhomogene kosmologische Systeme an und berechnen die Rückwirkungen der inhomogenen quantenkosmologischen Felder auf die globalen Quantenfreiheitsgrade des Systems. Dazu müssen wir das Schema zunächst adäquat für die Anwendung auf unendlich dimensionale Feldtheorien erweitern. Tatsächlich verhindert die Verletzung der Hilbert-Schmidt Bedingung für Quantenfeldtheorien die Anwendung des Schemas auf die hier betrachteten Systeme. Eine Lösung erhält man durch eine Variablentransformation der Feldtheorie, die hier bis auf zweite Ordnung in den kosmologischen Störungen kanonisch ist. Dies ermöglicht die Berechnung eines e ektiven Hamiltonoperators für eine kosmologische Feldtheorie, die zuvor durch ein Staubfeld deparametrisiert wurde, sowie die Bestimmung einer e ektiven Hamilton Zwangsbedingung für ein System mit eichinvarianten, kosmologischen Störungen. Beide Objekte wirken auf die globalen Freiheitsgrade und beinhalten die Rückwirkungen der Inhomogenitäten bis zur zweiten adiabatischen Störungsordnung.

Wir schließen daraus, dass es a priori unzulässig ist solche kosmologischen Rückwirkungen zu vernachlässigen. Aufgrund der allgemeinen Schwierigkeit Lösungen für gekoppelte gravitationelle Quantensysteme zu nden, muss allerdings die konkrete Auswertung der ermittelten Operatoren und Zwangsbedingungen Gegenstand zukünftiger Forschung bleiben.

Eine Hürde stellt dabei das Auftreten von inde niten Massenquadraten für die Feldtheorien dar, die Resultat der zuvor durchgeführten Transformationen sind (welche aber auch schon in hiervon unabhängigen Problemen auftauchen, zum Beispiel bei der Verwendung von Mukhanov-Sasaki Variablen). Ein Erschwernis bei der nalen Quantisierung und Suche nach entsprechenden Lösungen ergibt sich zudem durch die nicht-polynomielle Abhängigkeit von den globalen Variablen. Wir diskutieren diese Hürden ausführlich und weisen auf mögliche Lösungsstrategien hin.

Résumé

Cette thèse aborde le problème des réactions inverses en cosmologie. Plus précisément, nous cherchons à donner une réponse à la question de la signi cation et de la forme des e ets excercés par les inhomogénéités cosmologiques sur l'évolution globale de l'Univers et cela dans un cadre purement quantique. Nous nous concentrerons donc, mais sans nous y limiter, sur les réactions inverses quantiques adaptées pour décrire les premières phases de l'Univers. Notre approche se sert d'un formalisme perturbatif et constructif nommé théorie des perturbations spatio-adiabatiques et qui s'inspire de l'approximation de Born-Oppenheimer bien connue de l'analyse spectrale des systèmes moléculaires. Cette théorie développe l'approche de Born-Oppenheimer de plusieurs façons.

L'idée sous-jacente de cette approche consiste à séparer le système en une partie adiabatiquement lente et en une partie rapide, similaire à la séparation des sous-systèmes nucléaires et électroniques dans un molécule. Une telle distinction est raisonnable si un paramètre perturbatif correspondant peut être identi é. Dans le cas des systèmes moléculaires, un tel paramètre provient de la fraction des masses des électrons légers et des noyaux lourds. En cosmologie par contre, nous identi ons le rapport des constantes de couplage de la gravitation et de la matière comme un paramètre perturbatif susceptible. Dans une première étape, nous appliquons ce formalisme spatio-adiabatique à un modèle d'oscillateurs simples ainsi qu'à un modèle cosmologique réduit de symétries comprenant un champ scalaire couplé à la géométrie d'espace-temps. Nous réussissons à dériver des opérateurs hamiltonien e ectifs dans les deux cas qui comprennent les réactions inverses du système rapide excercés au système lent. Nous nous limitons à des calculs au second ordre dans les perturbations adiabatiques.

Par la suite, nous appliquons la théorie des perturbations spatio-adiabatiques à des modèles de cosmologie inhomogène et calculons les e ets des réactions inverses des champs cosmologiques quantiques et inhomogènes sur les degrés de liberté quantiques globaux (par exemple sur le taux d'expansion de l'Univers). Pour cela, il est nécessaire d'étendre le schéma de manière adéquate pour permettre son application aux théories des champs de dimension in nie. Plus précisément, la violation de la condition de Hilbert-Schmidt dans le contexte des théories quantiques des champs empêche l'application directe du schéma. Il s'avère qu'une transformation des variables (au niveau classique) qui est canonique jusqu'au second ordre dans les perturbations cosmologiques o re une solution à ce dilemme. Ces transformations nous permettent de calculer un opérateur hamiltonien e ectif pour une théorie cosmologique des champs quantiques, préalablement déparamétrisée par un champ de poussière, ainsi que l'identi cation d'une contrainte hamiltonienne e ective pour un système comprenant des perturbations cosmologiques invariantes de jauge. Les deux objets agissent sur les degrés de liberté globaux et incluent les e ets des réactions inverses des inhomogénéités jusqu'au second ordre spatio-adiabatique.

Nous concluons par souligner qu'il est a priori inadmissible de négliger les e ets de réaction inverse en cosmologie selon nos résultats. Cependant, en raison des di cultés générales associées à la recherche de solutions pour les systèmes gravitationnels couplés à la matière, l'évaluation concrète des opérateurs trouvés ici reste le sujet de recherches futures. Un obstacle est l'apparition de carrés de masse indé nis associés aux champs perturbatifs qui sont le résultat des transformations mentionnées ci-dessus. Une autre complication dans la quanti cation nale et la recherche de solutions appropriées provient de la dépendance non-polynomiale des degrés de liberté globaux. Nous discutons ces obstacles en détail et indiquons des solutions possibles.

Part I. Introduction 1. Backreaction and the Physical Standard Model

The aim of this work is to investigate the physical interactions in the very early Universe and more precisely to develop a suitable theoretical formalism that incorporates backreaction e ects between the di erent components of gravity-matter systems. In particular, we develop a formalism within non-perturbative quantum gravity that allows to iteratively include the interactions between its constituents while providing e ective quantum constraints or equations of motion with a signi cantly simpler structure compared to full quantum gravtiy, and whose solutions become hence into reach. Progress in this direction will also allow to approach the semiclassical limit in quantum cosmology which is of utmost importance in order to bridge the gap between theory and experiment. The purpose of this introductory chapter is to motivate and specify the assumptions of this endeavor, to examine their adequacy, and to eventually provide the reader with a short outline of our goals and achievements.

We will rst show how our speci c research question is directly linked to the scienti c progress in the elds of general relativity, the concordance model of cosmology, and the open questions related to it, the invention of quantum mechanics and the related perturbative quantum eld theories, the technical di culties arising in quantum eld theories on curved space times and full non-perturbative quantum gravity. We will then present several strategies to mitigate the latter obstacles and bridge the gap between theory and observation. In particular, we shortly discuss several Planck mass perturbation theories, symmetry reduction, and the question of how the semiclassical limit of quantum gravity is related to our question of backreaction. The two former programs are however only partly able to solve these problems and neglect important parts of the interaction between the gravity and matter degrees of freedom. We therefore strongly advocate to apply the scheme of space adiabatic perturbation theory (SAPT) to quantum gravity, or our extension thereof, and point to the goals that have been achieved in the course of this thesis.

We refer the reader who is exclusively interested in acquiring information about the considerable advantages of implementing SAPT in perturbative quantum cosmology in comparison to other approaches studied so far, and who would like to jump to the speci c achievements of this thesis, directly to section 1.1.10 of this chapter. Besides, more detailed overviews of certain topics can be found in part II of this thesis. Since we follow the development of the relevant theories in chronological order, this chapter can also be perceived as a historical synopsis. It provides the relevant notions necessary for this thesis but also goes beyond in that it o ers a thorough historical embedding. A concise and more pragmatic outline of this thesis will be given in section 1.2.

Backreaction and the Physical Standard Model

Physical and Historical Background

To begin with, we clarify the meaning of the notion of "backreaction" used here, leading us directly to the theoretical foundations of this work and its embedding in 20th and 21st century physics. In particular, by backreaction we mean the e ect of quantum cosmological perturbations (i.e., of quantized elds of linear cosmological perturbations) on the homogeneous quantum cosmological degrees of freedom of a gravity-matter system. This is of course not the only possible de nition of backreaction as we will see in the sequel but it makes certainly sense to denote these e ects as backreaction e ects.

The backreaction problem is then concerned with the question about how and to which extent these backreactions from the perturbations possibly a ect the background, and aims hence at incorporating the actual (or at least improved) dynamics of the system which has been (over-)simpli ed before. Here, we start however with the question of why this problem arises at all and how it is founded in the developments of physics during the last centuries. We take a step back and start with the inceptions of general relativity, quantum theory and quantum eld theory on curved space time (QFT on CST).

The Success of General Relativity

Indeed, the 20th century started with a physical revolution regarding the common understanding of space and time especially brought forward by Einstein (1905b), [START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF]: In accordance with most experimental data at that time and following Newton's Philosophiae Naturalis Principia Mathematica, most physicists and natural philosophers had assumed that all motions take place on a static three-dimensional Euclidean spatial manifold with a common uniform time variable. It was soon recognized that the induced Galilean space time transformations led to inconsistencies when applied to the famous Maxwell equations for electromagnetism but that another set of transformations which became known under the name of Lorentz transformations leaves them invariant [START_REF] Larmor | On a Dynamical Theory of the Electric and Luminiferous Medium[END_REF][START_REF] Lorentz | Electromagnetic phenomena in a system moving with any velocity smaller than that of light[END_REF][START_REF] Macrossan | A Note on Relativity Before Einstein[END_REF][START_REF] Poincaré | Sur la Dynamique de l'Electron[END_REF][START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF]. Thereupon, Einstein (1905b) derived the same transformations by assuming the principle of relativity and the constancy of the speed of light in all inertial frames, hence showing that the transformation of space and time coordinates of relatively moving inertial observers is provided by Lorentz' transformations [START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF]. As [START_REF] Minkowski | Raum und Zeit[END_REF] realized, Einstein's special theory of relativity is most conveniently formulated by introducing four-dimensional space time vectors, and more generically in a covariant way in which the static Minkowski metric is a constant Lorentz-invariant tensor eld providing a measure of space and time for inertial observers [START_REF] Einstein | Concerning an heuristic point of view toward the emission and transformation of light[END_REF]. [START_REF] Einstein | Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation[END_REF] nally succeeded in developing a likewise covariant theory of the gravitational force denoted as general relativity (see chapter 2 and particularly section 2.1) which replaces the constant Minkowski metric with a generally space time dependent metric tensor eld [START_REF] Einstein | Concerning an heuristic point of view toward the emission and transformation of light[END_REF](Einstein , 1916a;;[START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF]. The dynamical Einstein eld equations for depend directly on the distribution of the matter and energy content, and are given by = 8

where is the geometric Einstein tensor, is the matter stress-energy tensor and is Newton's constant. Einstein's theory changed the understanding of space and time 1.1. Physical and Historical Background severely. One relevant feature is that there is no preferred coordinate system and that physics must not depend on a coordinate choice, i.e., the theory is di eomorphism invariant. Besides and most importantly, the geometry of space time is dynamical which is a very crucial feature for our backreaction problem here.

To date, general relativity presents one of the most successful physical theories whose foundations and implications could be tested up to very high precision at the scale of our solar system and below: Both the weak and the strong equivalence principle underlying the theory [START_REF] Will | Theory and experiment in gravitational physics, Revised Edition[END_REF]) could be checked and con rmed to the highest accuracy [START_REF] Dittus | Experimental Tests of the Equivalence Principle and Newton's Law in Space[END_REF]. For example, [START_REF] Touboul | MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle[END_REF] tested the universality of free fall (and hence the weak equivalence principle) with a precision to the order of 10 -15 while [START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF] con rmed the strong equivalence principle with a pulsar in a triple stellar system. The recent detection of gravitational waves provides a meanwhile extensive catalog of di erent gravitational systems con rming Einstein's theory in an additional astonishing way (B. P. [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]; R. [START_REF] Abbott | Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog[END_REF]. In fact, Einstein (1916a) himself had already deduced the anomalous precession of the perihelion of Mercury and thus presented a rst important test of his theory by explaining already existing experimental data (Le Verrier 1859). In short, general relativity is one of the best tested scienti c theories, at least on scales of the solar system (Will 2006), and predicts a plethora of physical phenomena that have been detected today such as black holes [START_REF] Ghez | High proper motion stars in the vicinity of Sgr A*: Evidence for a supermassive black hole at the center of our galaxy[END_REF][START_REF] Schwarzschild | Quantum Electrodynamics. III. The Electromagnetic Properties of the Electron -Radiative Corrections to Scattering[END_REF]) and gravitational waves (B. P. [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]Einstein 1916bEinstein , 1918)).

Our Universe and Concordance Cosmology

Unfortunately, Einstein's equations are second order, non-linear di erential equations for the metric tensor and consequently very di cult to solve. Exact solutions only exist for very speci c, highly symmetric situations such as black holes [START_REF] Townsend | Black holes: Lecture notes[END_REF] or for cosmological symmetries [START_REF] Stephani | Exact Solutions to Einstein's Field Equations[END_REF]. In fact, the homogeneous and isotropic solutions of the eld equations, the FLRW solutions of gravity [START_REF] Friedman | Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes[END_REF][START_REF] Friedman | Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes[END_REF][START_REF] Lemaître | A Homogeneous Universe of Constant Mass and Increasing Radius accounting for the Radial Velocity of Extra-galactic Nebulae[END_REF][START_REF] Robertson | Kinematics and World-Structure III[END_REF]H. P. Robertson , 1936a,b;,b;[START_REF] Walker | On Milne's Theory of World-Structure[END_REF], have not only convinced by their simplicity but also provide a model of the Universe that is in astonishing agreement with observational data (despite a number of open puzzles to which we will come in the following), see sections 2.2 and 2.3. Probably due to the simplicity of these equations, the recording of cosmological data has experienced a substantial upswing during the last decades.

In fact, the today's measurement technology permits to register electromagnetic radiation from astronomical objects that are up to 32 billion light-years away from us [START_REF] Oesch | A Remarkably Luminous Galaxy at = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy[END_REF], and hence, provide information about the Universe from about 13.4 billion years ago. The LIGO and Virgo collaborations have recently succeeded in detecting gravitational radiation from distances of more than 8 billion light-years (B. P. [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]. The cosmic microwave background (CMB) radiation o ers an even more ancient relic of cosmic history (Aghanim et al. 2020a;[START_REF] Penzias | A Measurement of excess antenna temperature at 4080-Mc/s[END_REF]. It shows a picture of the Universe from the time of decoupling, i.e., from around 13.7 billion years ago (Alpher and Herman 1948c;[START_REF] Peebles | The case for the relativistic hot Big Bang cosmology[END_REF]. Most of the data points to a very simple picture of the Universe modeled by only six parameters (Aghanim et al. 2020a;[START_REF] Spergel | The dark side of cosmology: Dark matter and dark energy[END_REF]. The corresponding theory is known as the standard inationary ΛCDM model. A thorough introduction to the current cosmological standard model will be given in section 2.2. According to this model, the almost homogeneous and isotropic Universe has been expanding over its entire history from a very hot and dense state into the present Universe, presumably starting with a phase of in ationary expansion. The underlying "in aton" scalar eld eventually decayed into other matter species [START_REF] Albrecht | Cosmology for grand uni ed theories with radiatively induced symmetry breaking[END_REF][START_REF] Linde | A new in ationary universe scenario: A possible solution of the horizon, atness, homogeneity, isotropy and primordial monopole problems[END_REF] giving rise to the rich cosmic inventory we observe today.

In order to account for the matter content of the Universe, namely the large scale structure of galaxies and the ucutations in the CMB, it is however necessary to introduce inhomogeneous cosmological elds [START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF][START_REF] Halliwell | The Origin of Structure in the Universe[END_REF]. In fact, the concordance model of cosmology assumes that small quantum perturbations of the in aton eld provide the seeds of the present large scale structure of the Universe, and induced the necessary inhomogeneities in the early Universe [START_REF] Bardeen | Spontaneous Creation of Almost Scale -Free Density Perturbations in an In ationary Universe[END_REF][START_REF] Guth | Fluctuations in the New In ationary Universe[END_REF][START_REF] Hawking | The Development of Irregularities in a Single Bubble In ationary Universe[END_REF][START_REF] Starobinsky | Dynamics of Phase Transition in the New In ationary Universe Scenario and Generation of Perturbations[END_REF]. These inhomogeneities are modeled as small Gaussian perturbations (Aghanim et al. 2020a) around the symmetry-reduced model at earliest times, and are stretched to cosmic scales by the continual expansion of space [START_REF] Blumenthal | Formation of Galaxies and Large Scale Structure with Cold Dark Matter[END_REF]. For the main part of the known cosmic history, they can be described by classical means but as we go backwards in time, quantum e ects should be considered (Baumann 2012). The question of the quantum-to-classical transition of these perturbations has for example been investigated by [START_REF] Kiefer | Quantum to classical transition for uctuations in the early universe[END_REF] and [START_REF] Polarski | Semiclassicality and decoherence of cosmological perturbations[END_REF], and we will not say much about it here. The purely quantum theoretical part will be discussed in the next paragraph but we remain with the classical late time Universe for the time being.

Problems of the Concordance Model

At the classical level, the above-described procedure of strictly splitting the cosmological elds into a symmetry-reduced part and perturbations thereof provides of course a rst mean to study solutions to such a simple model (in contrast to the highly non-linear full Einstein equations) but it leads to several problems and might oversimplify the model at hand: First, at the technical level, it breaks the covariance of the theory, and depending on the concrete problem, it is usually advisable to use a gauge-invariant perturbation formalism [START_REF] Bardeen | Gauge Invariant Cosmological Perturbations[END_REF][START_REF] Kodama | Cosmological Perturbation Theory[END_REF][START_REF] Mukhanov | Theory of cosmological perturbations[END_REF]. This might be mathematically cumbersome but does not alter the physical results at the classical level, and provides us indeed with a sound theory of cosmological perturbations. Another problem is however more severe [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF]): In fact, the procedure for examining the cosmological dynamics starts by solving the purely homogeneous and isotropic, zeroth order contributions to the eld equations independently of the perturbations. Then, by employing this classical " xed" background solution in the rst order equations of motion for the perturbations and truncating any higher order contributions, one can evolve the cosmological perturbations on this xed geometry. Due to the split, the background is considered completely independent of the perturbations and thus, possible backreactions of the dynamical perturbations on the homogeneous degrees of freedom are neglected. It is still unclear whether and to which extent these classical backreactions have an impact on the global evolution of the Universe, and we dedicate chapter 3 to an overview of the most relevant results in this eld.

One motivation for studying backreaction actually came from the hope that such e ects 1.1. Physical and Historical Background could shed light on any of the existing discrepancies between the cosmological standard model and observational data (see for example [START_REF] Buchert | On average properties of inhomogeneous uids in general relativity. II. Perfect uid cosmologies[END_REF]). Some of these hypotheses did not stand the test of numerical studies [START_REF] Adamek | Safely smoothing spacetime: backreaction in relativistic cosmological simulations[END_REF][START_REF] Macpherson | Einstein's Universe: Cosmological structure formation in numerical relativity[END_REF], others are not tested yet. In any case, it is timely to approach the severe problems of the cosmological standard model and to search for viable solutions for the dark energy and dark matter problems [START_REF] Bertone | History of dark matter[END_REF][START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF]. We also point to the recently discovered discrepancy between di erent measurement results for the Hubble parameter 0 [START_REF] Pesce | The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints[END_REF], and we will be more explicit regarding the open problems of the concordance model in section 2.3. As of today, there exists a variety of proposed solutions among which classical backraction but there is no general agreement on any particular solution. Some approaches suspect to nd their answers in earlier phases of the cosmic history. In fact, the above discrepancies in the recent measurements of 0 could point to inconsistencies of the cosmological concordance model applied to the early Universe (Aghanim et al. 2020b). This brings us to the second important thematic eld in physics of the last two centuries -quantum theory.

The Beginnings of Quantum Mechanics

While the revolutionary thoughts on gravity were inspired by the rather well-tried theories of gravitation and electromagnetism by Newton and Maxwell, very novel ideas were needed to describe experimental results at the microscopic scale. Planck (1900a) was the rst to nd a correct law for the black body radiation by assuming that a cavity wall viewed as a collection of oscillators absorbs and emits radiation only in discrete "quanta" (Weinberg 2015). Shortly after, Einstein (1905a) succeeded in explaining the photoelectric e ect [START_REF] Lenard | Über die lichtelektrische Wirkung[END_REF]) also by means of discrete energy quanta of the radiation eld. Furthermore, [START_REF] Bohr | On the Constitution of Atoms and Molecules[END_REF] with his atomic model of discrete energy levels as well as De Broglie (1923) with his wave-particle dualism contributed to the search for a thorough new theory of "quantum mechanics" [START_REF] Born | Zur Quantenmechanik II[END_REF]Weinberg 2015). Its theoretical foundations were laid by Born, Heisenberg, and P. Jordan (1926), [START_REF] Born | Zur Quantenmechanik[END_REF], and [START_REF] Heisenberg | Über quantenmechanische Umdeutung kinematischer und mechanischer Beziehungen[END_REF] using a matrix approach, by Schrödinger (1926a,b,c,d) with a wave mechanics formulation, and Schrödinger (1926e) nally established the equivalence of these two approaches (Weinberg 2015). Neumann (1932a) nally succeeded in integrating both theories into a coherent mathematical picture of operator algebras and Hilbert spaces (O'Connor and E. F. [START_REF] O'connor | A history of Quantum Mechanics[END_REF].

The new quantum theory was however incompatible with Einstein's special and general relativity which motivated researchers to nd, as a rst step, a Lorentz invariant theory of quantum elds, i.e., a theory that incorporates the principles of special relativity [START_REF] Kuhlmann | Quantum Field Theory[END_REF]). Born, Heisenberg, and P. Jordan (1926) had already considered the (free) electromagnetic eld as an in nite number of quantum oscillators and [START_REF] Dirac | The Quantum Theory of the Emission and Absorption of Radiation[END_REF] added an interaction term in order to account for the emission and absorption of radiation in a rst order perturbative manner (Weinberg 1977). In order to describe electromagnetically interacting matter particles in a Lorentz invariant way, [START_REF] Dirac | The Quantum Theory of the Emission and Absorption of Radiation[END_REF] established the one-particle equation for electrons and positrons named after him. Accordingly, while radiation was treated in a eld formalism, matter particles were understood as individually occurring objects, see the historical overview by Weinberg (1977). P. [START_REF] Jordan | Über das Paulische Äquivalenzverbot[END_REF] showed that material particles can also be regarded as the quanta of elds (e.g., the Dirac eld) and the idea of a eld-theoretical quantum electrodynamics began to take root. The idea was developed further by [START_REF] Heisenberg | Über quantenmechanische Umdeutung kinematischer und mechanischer Beziehungen[END_REF][START_REF] Heisenberg | Zur Quantentheorie der Wellenfelder. II[END_REF] and P. [START_REF] Jordan | Zur Quantenelektrodynamik ladungsfreier Felder[END_REF], and by [START_REF] Pauli | Über die Quantisierung der skalaren relativistischen Wellengleichung[END_REF] and [START_REF] Weisskopf | Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons[END_REF]. [START_REF] Furry | On the Theory of the Electron and Positive[END_REF] succeeded to show that quantum electrodynamics naturally incorporates antiparticles which had already been predicted by [START_REF] Dirac | The Quantum Theory of the Emission and Absorption of Radiation[END_REF], (Weinberg 1977).

The bene ts of this quantum theory have been demonstrated experimentally, for example by the correct prediction of additional quantum mechanical degrees of freedom such as electron spin [START_REF] Debye | Quantenhypothese und Zeemane ekt[END_REF][START_REF] Sommerfeld | Zur Theorie des Zeemane ekts der Wassersto inien, mit einem Anhang über den Starke ekt[END_REF][START_REF] Tsamis | Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons[END_REF], and the correct theoretical determination of the ne structure of atomic spectra [START_REF] Michelson | On a method of making the wave-length of sodium light the actual practical standard of length[END_REF][START_REF] Sommerfeld | Zur Theorie des Zeemane ekts der Wassersto inien, mit einem Anhang über den Starke ekt[END_REF]. However, the resounding success of the theory was limited to simple dynamical problems, and in order to describe quantum mechanical interactions, approximation methods had to be used for both relativistic and non-relativistic phenomena. One particularly important approximation method for non-relativistic problems that is still of great relevance today was introduced by [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF]. It introduces the ratio of the small electron mass and the nuclear mass as an "adiabatic" perturbation parameter to establish a rst order perturbative theory for molecular systems. The scheme is widely used in theoretical and computational chemistry [START_REF] Cramer | Essentials of Computational Chemistry -Theories and Models. Second Edition[END_REF]). Despite its success, the Born-Oppenheimer theory is restricted to a narrow class of Hamiltonian systems and cannot be extended to higher perturbative orders. We will be more explicit regarding the Born-Oppenheimer formalism in section 6.1 as it forms the physical basis of this work. A possible extension was introduced by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], the so-called space adiabatic perturbation theory (SAPT) which overcomes the afore-mentioned shortcomings, see sections 6.2 -6.8. It requires to introduce a phase space quantization scheme [START_REF] Groenewold | On the principles of elementary quantum mechanics[END_REF][START_REF] Moyal | Quantum mechanics as a statistical theory[END_REF][START_REF] Weyl | Quantenmechanik und Gruppentheorie[END_REF][START_REF] Wigner | On the Quantum Correction for Thermodynamics Equilibrium[END_REF], and pseudodi erential calculus [START_REF] Hörmander | The Weyl calculus of pseudodi erential operators[END_REF](Hörmander , 1985b;;[START_REF] Kohn | An Algebra of Pseudo-Di erential Operators[END_REF].

Perturbative Quantum Field Theory

Perturbative methods to quantum theory have also been employed on the (special) relativistic quantum eld theory (QFT) side. In fact, the above-mentioned rst models in QFT are perturbative in nature (as are most of the theories studied today), and most importantly for us, they rely on a non-dynamical Minkowski background [START_REF] Strocchi | An Introduction to Non-Perturbative Foundations of Quantum Field Theory[END_REF]. The motivation for developing such perturbative models obviously lies in the complexity of the non-perturbative interacting theories. In fact, we only know a very limited number of QFTs that can be solved exactly, in particular in four space time dimensions these are exclusively the free eld theories of any mass and spin, and theories with solutions that can be expressed as functions of such free elds [START_REF] Strocchi | An Introduction to Non-Perturbative Foundations of Quantum Field Theory[END_REF]). We will provide a short review of QFT in section 4.1 focussed on the QFT of a free Klein-Gordon scalar eld.

Strictly speaking, of course, there is not one single QFT because as numerous as the problems for formulating a quantum theory of physical interactions are, so are the approaches to solving them [START_REF] Kuhlmann | Quantum Field Theory[END_REF]. [START_REF] Streater | PCT, Spin and Statistics and All That[END_REF] succeeded to nd a mathematically rigorous formulation for these free theories by introducing their Wightman axioms [START_REF] Strocchi | An Introduction to Non-Perturbative Foundations of Quantum Field Theory[END_REF]. Unfortunately, none of the known interacting quantum eld models in four space time dimensions could be rigorously constructed and thus could be veri ed to obey these axioms. Now, one 1.1. Physical and Historical Background can either try to obtain physically relevant results from these interacting theories, despite the lack of a mathematical foundation, or one can pursue the goal of developing QFTs that satisfy the axioms. In the rst case, it is necessary to resort to perturbative methods as had already been recognized by Dirac and his peers. These perturbative approaches assume that the Hamilton operator of the interacting theory splits into a free solvable Hamiltonian 0 and an interaction term , and that the interaction term enters with a small coupling or perturbation parameter such that = 0 + [START_REF] Kuhlmann | Quantum Field Theory[END_REF]): The calculation of scattering amplitudes, i.e., of the S-matrix elements , ∶= lim →∞ ⟨ , ( --) ⟩ requires the (vacuum) states , ∈ ℋ 0 in the free Hilbert space ℋ 0 of the free theory and the time evolution operator (in ) evaluated for some initial and nal times in , in the in nite past and future. The time evolution operator in perturbation theory consists of a power series in whose coe cents are the time-ordered products of represented in terms of the free operators. Every perturbative order results in a number of cross sections which represent di erent particle processes. Now there are several fundamental problems with these calculations. The rst is that the individual scattering amplitudes give in nite results as [START_REF] Oppenheimer | Note on the Theory of the Interaction of Field and Matter[END_REF] realized in the framework of quantum electrodynamics and these are due to the self-energy of the elds and vacuum polarization. The theory consequently looses its predictive power and many physicists believed back then that the framework was useless. From 1947 on however, QFT experienced a remarkable upswing, triggered by the measurement of an e ect of the self-energy of the electron in the hydrogen atom, namely the Lamb shift [START_REF] Lamb | Fine Structure of the Hydrogen Atom by a Microwave Method[END_REF], (Weinberg 1977): The year before, [START_REF] Tomonaga | On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields[END_REF], and then in the following years, Tomonaga et. al. [START_REF] Ito | Corrections due to the Reaction of "Cohesive Force Field" to the Elastic Scattering of an Electron. I[END_REF][START_REF] Kanesawa | On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields V: Case of Interacting Electromagnetic and Meson Fields[END_REF][START_REF] Koba | On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields. II: Case of Interacting Electromagnetic and Electron Fields and III. Case of Interacting Electromagnetic and Electron Fields[END_REF][START_REF] Koba | On Radiation Reactions in Collision Processes. I: Application of the "Self-Consistent" Subtraction Method to the Elastic Scattering of an Electron[END_REF][START_REF] Tomonaga | On a Relativistically Invariant Formulation of the Quantum Theory of Wave Fields[END_REF]) as well as Schwinger (1948, 1949a,b, 1951a,b) and Feynman (1948aFeynman ( ,b,c, 1949aFeynman ( ,b, 1950) ) developed renormalization formalisms which absorb the in nities into a rede nition of the physical parameters [START_REF] Weisskopf | Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons[END_REF]. Dyson (1949a,b) showed that these procedures apply well to quantum electrodynamics but in general only to a very limited number of theories.

Fortunately, through the work by many physicists from the 1950's to the 1970's ('t [START_REF] Hooft | Summary purely homogeneous case, applies to these inhomogeneous models as well[END_REF][START_REF] Englert | Broken Symmetry and the Mass of Gauge Vector Mesons[END_REF][START_REF] Fritzsch | Advantages of the Color Octet Gluon Picture[END_REF][START_REF] Glashow | Partial-Symmetries of Weak Interactions[END_REF][START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF][START_REF] Gross | Ultraviolet Behavior of Nonabelian Gauge Theories[END_REF][START_REF] Higgs | Broken Symmetries and the Masses of Gauge Bosons[END_REF][START_REF] Politzer | Reliable Perturbative Results for Strong Interactions?[END_REF][START_REF] Salam | Weak and Electromagnetic Interactions[END_REF]Weinberg 1974a,b;[START_REF] Yang | Conservation of isotopic spin and isotopic gauge invariance[END_REF], it was possible to formulate a certain class of physically relevant theories which are indeed renormalizable (Weinberg 1977): These are the gauge theories for the interactions subsumed in the Standard Model of physics: The electroweak interactions as well as the strong interaction together with the Higgs mechanism of spontaneous symmetry breaking. Within these theories, it is possible to compute nite values for the scattering amplitudes which are in astonishing agreement with experimental data. We refer to the discovery of the zoo of Standard Model particles, and especially to the detection of the Higgs boson at the LHC [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF] Chatrchyan | Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC[END_REF].

Despite the experimental agreement, the Standard Model stands on rather thin mathematical grounds as we have explained above. Besides, an important result which questions the construction of a perturbative QFT using the tools of the free theory was formulated by [START_REF] Haag | On quantum eld theories[END_REF]. Namely, the free and the fully interacting Hamiltonian give rise to di erent unitarily inequivalent representations (D. [START_REF] Hall | A theorem on invariant analytic functions with applications to relativistic quantum eld theory[END_REF]. It turns out that this also applies to free neutral scalar elds of di erent mass and hence, prevents these models from having unitarily equivalent 1. Backreaction and the Physical Standard Model representations (Reed and Simon 1975b). We will encounter similar problems in the construction of the cosmological QFT in this thesis (see sections 8.1 and 9.1) which can however be (partially) circumvented by introducing a suitable set of transformations for the elds.

Quantum Field Theory on Curved Space Times

So far, we restricted our considerations to perturbative models of QFT which heavily rely on a static Minkowski background. In fact, standard Minkowski QFT only admits the matter elds as dynamical entities while treating space time as static. This kind of simpli cation is of course reasonable as long as space time is almost Minkowskian, for example for Earth-based particle experiments but for the cosmological situations that we have in mind we need to drop this assumption. One can anticipate that such an endeavor will aggravate the theoretical problems of perturbative QFT substantially but there are several proposals for how to make progress, and we will present them in the following. To start with let us point out that so far, the matter elds are considered in a quantum framework while the metric eld is considered classically. However, Einstein's equations directly relate the quantum matter content with the classical space time geometry which appears to be a contradiction from a mathematical perspective. Although not providing an answer to the question of why we should treat quantum elds and a classical geometry at the same level, QFT on CSTs try to provide a connection between standard Minkowski QFT and general relativity.

The idea of QFT on generically curved space times (Fulling 1989;Hollands and Wald 2010;Wald 1995) is to consider classes of classical geometries and to examine the QFTs given such geometries. This is of course not a trivial enterprise since standard QFT heavily relies on the notion of a preferred vacuum state and an associated Hilbert space of excited particles. The existence and uniqueness of such a preferred vacuum is due to the strong Poincaré symmetry of Minkowski space, and hence completely looses its relevance on generically curved space times. A framework that does not rely on representations of the quantum theory but which focusses on the operator algebraic aspects, and which is hence much more exible when it comes to generic space times is algebraic QFT [START_REF] Araki | Mathematical theory of quantum elds[END_REF][START_REF] Brunetti | Advances in Algebraic Quantum Field Theory[END_REF][START_REF] Haag | On quantum eld theories[END_REF]. Chapter 4 is devoted to several aspects of QFT on CST, and section 4.1 particularly introduces and discusses the algebraic approach.

However, such theories obviously make an important simpli cation: Similar to the backreaction problem in classical cosmological perturbation theory, they omit the e ects of one part of the system (here, of the quantum matter elds) on another part (the geometry of space time). This cuts out a relevant part of the interactions within the system. While it is certainly a progress to consider the geometry of space time as a dynamical entity, one only examines the propagation of the quantum elds on the latter while neglecting their e ects on the space time geometry. There are several proposals for how to include such backreaction e ects, namely semiclassical gravity [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF][START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF], and stochastic (semiclassical) gravity [START_REF] Calzetta | Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems[END_REF][START_REF] Hu | Dissipation in Quantum Fields and Semiclassical Gravity[END_REF][START_REF] Jordan | E ective Field Equations for Expectation Values[END_REF]R. Jordan , 1987)). Both approaches will be discussed in sections 4.2 and 4.3 respectively, and we provide the reader with an overview of the current state of research in these elds.

Although these approaches provide the possibility of including backreaction e ects at a semiclassical level, the fundamental issue of equating a classical with a quantum mechanical en-1.1. Physical and Historical Background tity via Einstein's eld equations remains unanswered. This suggests in fact to rethink the methods used so far, and it seems natural from the previous discussion to consider the gravitational eld as a quantum mechanical eld. As a rst step in formulating such a theory of quantum gravity, one could consider a perturbative framework in which the gravitational perturbations of a Minkowski metric (i.e., gravitons) are being quantized in the same manner as the quantum matter elds of standard QFT and using the same Fock representations. As it turns out, such perturbative theories are non-renormalizable ('t [START_REF] Hooft | Summary purely homogeneous case, applies to these inhomogeneous models as well[END_REF][START_REF] Goro | The Ultraviolet Behavior of Einstein Gravity[END_REF], and which should prevent the whole endeavor right from the beginning. One could now argue that it is still possible to formulate an e ective eld theory for low energies as proposed by [START_REF] Donoghue | General relativity as an e ective eld theory: The leading quantum corrections[END_REF]. In order to describe situations with high energy densities as we have in mind, this is however of little utility.

Quantum Gravity and its Open Problems

We are hence led to consider fully non-perturbative approaches to quantum gravity. The formulation of such a non-perturbative theory of quantum gravity has occupied researchers for over a hundred years now, in particular since Einstein (1916b) rst speculated about the modi cations that quantum theory would bring for general relativity [START_REF] Rocci | On rst attempts to reconcile quantum principles with gravity[END_REF]. At present, we have a number of di erent approaches for quantizing gravity, among which asymptotic safety [START_REF] Niedermaier | The gravitational contribution to the stress-energy tensor of a medium in general relativity[END_REF]Weinberg 1976Weinberg , 1980)), string theory, in particular in its AdS/CFT-incarnation [START_REF] Ammon | Gauge/Gravity Duality -Foundations and Applications[END_REF][START_REF] Polchinski | String Theory[END_REF], causal dynamical triangulations [START_REF] Ambjorn | Reconstructing the universe[END_REF][START_REF] Loll | Quantum Gravity from Causal Dynamical Triangulations: A Review[END_REF]), causal sets [START_REF] Bombelli | Space-Time as a Causal Set[END_REF][START_REF] Sorkin | Causal sets: Discrete gravity[END_REF] as well as spin foam and loop quantum gravity (LQG) [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF] to mention but a few. We emphasize that remarkable progress has been made in the theoretical and phenomenological elaboration of these theories during the last years. Unfortunately, none of them has so far been able to provide a uniform model for describing the cosmological data situation, and the mathematical formulation of any of these theories of quantum gravity is a highly complex endeavor. We refer exemplarily to LQG which provides a mathematically sound framework to formulating the quantum dynamics of gravity including a rigorous representation of the canonical commutation relations and in which even the problem of gauge reduction can be solved using material reference systems [START_REF] Giesel | Scalar Material Reference Systems and Loop Quantum Gravity[END_REF][START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF]. The problem in this particular quantum gravity framework is then related to the fact that the quantum dynamics is plagued by quantization ambiguities which have found their way into the quantum Einstein equations after removing an auxiliary regulator. This problem is more precisely due to the tremendous nonlinearity of the Einstein equations, and hence prevents the prediction of testable results. Since however LQG is a non-perturbative approach to quantum gravity, at least no perturbation series have to be summed with unknown (presumably zero) radius of convergence. To make LQG predictive, many e orts are made regarding non-perturbative (Wilsonian) renormalization for LQG, for example by [START_REF] Bahr | On background-independent renormalization of spin foam models[END_REF], [START_REF] Bahr | Hypercuboidal renormalization in spin foam quantum gravity[END_REF], [START_REF] Dittrich | The continuum limit of loop quantum gravity -a framework for solving the theory[END_REF], [START_REF] Dittrich | Time evolution as re ning, coarse graining and entangling[END_REF], Lang, Liegener, and Thiemann (2018a,b,c,d), and [START_REF] Liegener | Hamiltonian Renormalisation V: Free Vector Bosons[END_REF].

In addition to the open questions on the theoretical side, one major problem in the development of a theory of quantum gravity is the lack of relevant measurement data owing to the fact that the large reduced Planck mass Pl = √ ℏ ∕(8 ) ≈ 4.34 × 10 -9 kg ≈ 2.43 × 10 18 GeV∕c 2
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(NIST-Database 2019) suppresses any quantum gravity e ects in earth based experiments. In fact, the heaviest known Standard Model particle (or rather boson) is the Higgs with a mass H ≈ 125.10GeV∕c 2 ≪ Pl [START_REF] Zyla | Review of Particle Physics[END_REF]. The huge mass di erence is known as the hierarchy problem. On the other hand, this speci cally allows to develop perturbation theories for gravitational models coupled to matter. This will be particularly important for our purposes here as we are going to introduce a perturbative scheme with respect to Pl -1 , or rather its ratio with a typical Standard Model coupling constant. In fact, the idea to use Pl -1 as a perturbative parameter in quantum gravity or cosmology has a long tradition and goes back to [START_REF] Brout | On the Concept of Time and the Origin of the Cosmological Temperature[END_REF], (Kiefer 2007). We will provide an overview of its applications to quantum gravity and cosmology in chapter 5.

While this large mass di erence prohibits to test quantum gravity e ects on Earth, there is hope that the increasing abundance of cosmological data can improve the situation. In order to make contact between empirical data and a fully-edged theory of quantum gravity, one would, in a rst place, seek the cosmological sector of such a theory by examining speci c states in the physical Hilbert space which possess the appropriate semiclassical "cosmological" properties. Unfortunately, none of the existing approaches has yet reached a stage where such (exact) solutions are available, in particular when gravity additionally couples to matter. This is however indispensable in order to bridge the gap between theory and experiment. More precisely, only if such a semiclassical regime of the theory exists, it will be possible to identify a viable candidate theory of quantum gravity. Due to the non-linear character of the resulting eld equations, the intricate coupling between matter and gravity as well as the inherent problems of any quantization procedure for an in nite number of degrees of freedom, any e ort to extract exact solutions of a quantum gravity-matter system (even when restricted to cosmological situations) appears to be pointless at present.

Born-Oppenheimer for Quantum Gravity and Semiclassical Limit

Fortunately, the situation is not hopeless and we can anticipate to make progress by considering suitable approximation schemes. Unsurprisingly, the tiny inverse Planck mass can now be of considerable advantage -its occurence in the quantum Einstein equations can serve to establish a rigorous perturbation scheme. From a physical point of view, such a scheme would probably divide the system, at least formally, into a matter and a gravitational part, since the inverse mass values of the Standard Model matter elds are signi cantly larger than Pl -1 . This picture alludes to the idea of an "adiabatic" limit in which the gravity part appears as the zeroth order subsystem while the quantum matter content is associated with a perturbative subsystem that backreacts on the gravitational degrees of freedom. Recall therefore the well-known ideas of the Born-Oppenheimer approximation. Such a perturbation theory might not only help to extract viable results from the quantum theory itself but could serve to establish the semiclassical limit of quantum gravity.

Our observations teach us that this semiclassical limit should yield a QFT on CST, similar to what the ΛCDM model refers to during the earlier stages of the Universe. Hence, in this limit the theory describes gravity in (almost) classical terms while the matter content features entirely quantum mechanical characteristics. Consequently, the approximation scheme naturally splits the system into a gravity and a matter part. Indeed, it turns out that the rst approximation scheme with respect to the inverse Planck mass, and the semiclassical limit are intimitely related -but it is important to stress that they are not equivalent. In fact, it is possible to consider the Pl -1 -limit without making reference to a semiclassical limit at all as we will explain in a moment. However, both approaches naturally include a split between matter and gravitational degrees of freedom which could allow us to formally separate the problems in order to make progress. This is why many researchers have considered the Pl -1 -limit in order to make progress regarding the semiclassical limit, and which is a perfectly legitimate proceeding. In many approaches, regardless of the underlying quantum gravity formalism, the semiclassical limit is then invoked in a second step by de ning suitable semiclassical, maybe coherent, quantum states which have low uctuations around a given classical metric. Before amounting to the di culties related to de ning such semiclassical states, let us shortly specify the ideas that have been pursued regarding the Pl -1 -and the semiclassical limit in quantum gravity. Many of them but not all refer to the Born-Oppenheimer approximation or extensions thereof.

The rst investigations using an Pl -1 -expansion within quantum gravity-matter models were performed in the framework of quantum geometrodynamics (Kiefer 2007;[START_REF] Wheeler | On the Nature of quantum geometrodynamics[END_REF]) by expanding the Wheeler-DeWitt equation in terms of the ratio of the Planck mass and the matter eld mass [START_REF] Kiefer | Quantum gravitational corrections to the functional Schrödinger equation[END_REF], and possibly by using the Born-Oppenheimer approach [START_REF] Bertoni | The Born-Oppenheimer approach to the matter -gravity system and unitarity[END_REF][START_REF] Brout | Time in Semiclassical Gravity[END_REF][START_REF] Kiefer | Continuous Measurement of Minisuperspace Variables by Higher Multipoles[END_REF]) (for a summary, see (Kiefer 2007)). In a second step, these approaches employ the typical Born-Oppenheimer ansatz solution that seperates the system into a gravitational and a matter part [START_REF] Kamenshchik | The Born-Oppenheimer approach to Quantum Cosmology[END_REF]Kiefer 2007). Integrating out the matter part gives rise to an e ective quantum problem for the geometric part including the backreaction e ects of the quantum matter system. Note that there is no semiclassical limit invoked so far. However, in a second step, one can additionally employ a semiclassical approximation giving rise to a matter QFT on CST. In this respect, it is common to employ a Wentzel-Kramers-Brillouin (WKB) ansatz [START_REF] Brillouin | La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives[END_REF][START_REF] Kramers | Wellenmechanik und halbzahlige Quantisierung[END_REF][START_REF] Wentzel | Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik[END_REF], for the geometrical states, yielding a set of semiclassical Einstein equations. Such states are however not coherent and do not solve the quantum constraint. In this respect, the question of time and of unitary evolution arises, and we refer to the book by Kiefer (2007) and the more recent paper by Di [START_REF] Di Gioia | Non-Unitarity Problem in Quantum Gravity Corrections to Quantum Field Theory with Born-Oppenheimer Approximation[END_REF] and references therein for a discussion of this topic. We will be more precise regarding these approaches (and others) within the geometrodynamical paradigm that attempt to better incorporate interactions between the gravity-matter components in chapter 5.

Other attempts to implement the Born-Oppenheimer approximation in quantum gravitymatter systems have been pursued by [START_REF] Giesel | Born-Oppenheimer decomposition for quantum elds on quantum spacetimes[END_REF] in an LQGrelated framework. While the Born-Oppenheimer approximation represents an ideal framework for including backreactions, its applicability is quite restrictive. In fact, the choice of variables within LQG prevents the direct use of the Born-Oppenheimer methods as the ux operators are mutually non-commuting (which is a prerequisite for the Born-Oppenheimer scheme). Consequently, the authors use another set of variables for the gravity sector and a scalar eld for the matter sector to derive a set of semiclassical Einstein equations. They also point to the possibility of pursuing the formal Born-Oppenheimer scheme and computing quantum solutions to the gravity sector with the e ective backreaction of the quantum matter elds, and propose to introduce 1. Backreaction and the Physical Standard Model coherent states for the gravitational subsystem in order to make progress in nding solutions.

Unfortunately, the construction of such semiclassical, coherent states within a full theory of quantum gravity is a highly non-trivial task. In LQG, for example, candidates for such coherent states have been extensively studied by [START_REF] Thiemann | Gauge eld theory coherent states (GCS) 4: In nite tensor product and thermodynamical limit[END_REF] and Thiemann and Winkler (2001a,b,c). Nevertheless, the task of de ning the semiclassical limit within LQG and within other approaches to quantum gravity by means of such states could not be fully addressed, and it is, in general, a difcult exercise, see for example in (Sahlmann and Thiemann 2006a,b;Stottmeister and Thiemann 2016a,b,c) for works within LQG. More precisely, these coherent states are primarily de ned for a free gravitational system, and fail to follow the classical trajectory in interacting systems with matter for a su ciently long time, i.e., the quantum Hamiltonian does not preserve their semiclassical properties. The di culty of de ning such states for full quantum gravity plus matter has motivated several lines of research in order to make progress regarding the semiclassical limit, and which has also stimulated research for understanding the (more generic) problem of quantum backreaction in such models.

One idea is of course, again, to recover rst a formal split between quantum gravity and matter degrees of freedom, and which would facilitate the implementation of the semiclassical limit and the possible quest for suitable semiclassical states. In this respect, Stottmeister and Thiemann (2016a,b,c) considered the application of the SAPT scheme within LQG. While the application of this scheme allows to consider the question of pure quantum backreaction, it is also ideally suited to investigate the semiclassical limit due to the reasons mentioned above. Since in the SAPT approach, the variables of the gravitational (adiabatic) sector are not required to commute, it is in principle possible to apply the Born-Oppenheimer ideas also to LQG and related theories, which was not possible before (see above). The concrete implementation turns however out to be dicult due to the particular structure of the LQG phase space and its quantum representation, see chapter 5 for more details.

Making Progress with Symmetry Reduction

All these di culties regarding the question of backreaction in full quantum gravity and the derivation of the semiclassical limit suggest to rst consider simpler, possibly symmetry-reduced models of quantum gravity with matter. I.e., like in many other situations, it seems reasonable to rst explore symmetry reduced models before attacking the less symmetric situations -connected with the hope of obtaining at least qualitative statements. These so-called "minisuperspace" models perform rst a symmetry reduction in the classical theory and then quantize the nitely many, remaining degrees of freedom. Of course, this procedure stands in opposition to Heisenberg's uncertainty principle which prohibits the freezing of what are actually quantum mechanical, uctuating degrees of freedom. While [START_REF] Kuchar | Is minisuperspace quantization valid?: Taub in mixmaster[END_REF] have shown that some symmetry reduced models do not re ect the behavior of less symmetric models in metric gravity, there is no generic result that prevents the symmetry reduced models from serving as an arena for testing mathematical methods. In line with the various approaches to quantum gravity, there is a multitude of attempts to de ne a quantum cosmology, e.g., the canonical Wheeler-DeWitt approach (De-Witt 1967), the standard path integral approach due to Hartle and Hawking [START_REF] Hartle | Wave Function of the Universe[END_REF][START_REF] Hawking | The Development of Irregularities in a Single Bubble In ationary Universe[END_REF], string cosmology [START_REF] Veneziano | Scale factor duality for classical and quantum strings[END_REF], spinfoam cosmology (Vidotto 2011), 1.1. Physical and Historical Background and canonical loop quantum cosmology (LQC) (Ashtekar, Bojowald, and Lewandowski 2003a;Ashtekar, Pawlowski, and P. Singh 2006b;[START_REF] Bojowald | Loop quantum cosmology[END_REF]) and many more.

To approach our goal of describing the interactions of full quantum gravity plus matter, it is of course indispensable to include inhomogeneities in such models. In a rst step, this might be done using linear perturbation theory for simplifying our enterprise and also in recognition of cosmological observations. Such approaches hence include dynamical cosmological perturbations as well as a dynamical homogeneous sector. Thus, they still fall into the category of non-perturbative approaches to quantum gravity in comparison to the traditional perturbative Minkowski space plus graviton frameworks, and should consequently be ideally suited to describe the interactions within the very early Universe. At the same time, they might alleviate the problems associated with the substantial non-linearities in Einstein's eld equations. Similar to the full theory, however, these models pose a number of question if one aims at understanding and describing the interactions of the components or derive a semiclassical limit.

Progress with respect to the semiclassical limit can be achieved by computing expectation values with respect to some admissible semiclassical ansatz state. Most easily, one starts with considering semiclassical states for the homogeneous quantum degrees of freedom but of course it is (in principle) possible to extend the procedure to the quantum perturbations. To start with, one may derive a semiclassical trajectory of the homogeneous degrees of freedom using such semiclassical states for the homogeneous sector, giving rise to a formal QFT on CST. The latter now includes e ective quantum modi cations to the semiclassical homogeneous curved space time. The additional (gauge-invariant) cosmological perturbations on this e ective background are then quantized using standard Fock representations. As examples, we point to the hybrid quantization schemes in LQC (i.e., the dressed metric approach [START_REF] Agullo | The pre-in ationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations[END_REF], the deformed algebra approach [START_REF] Barrau | Anomaly-free cosmological perturbations in e ective canonical quantum gravity[END_REF] and the hybrid approach (Elizaga Navascués, [START_REF] Elizaga Navascués | Hybrid models in loop quantum cosmology[END_REF][START_REF] Martín-Benito | Hybrid Quantum Gowdy Cosmology: Combining Loop and Fock Quantizations[END_REF]) which use di erent methods to establish e ective quantum eld equations of motion for the cosmological perturbations on an LQC e ective quantum background.

Common to these approaches is that they choose a speci c product ansatz for the wave function with a homogeneous and an inhomogeneous contribution, in close analogy to the standard Born-Oppenheimer ansatz. They determine e ective equations of motion for the quantum perturbations on an e ective semiclassical homogeneous quantum background which hence corresponds to a QFT on CST with a modi ed cosmological space time. On the other hand, they neglect backreactions in the sense of a Born-Oppenheimer approximation from the perturbations on these approximate homogeneous solutions, and are consequently unable to provide a better understanding of the interactions within the quantum gravity-matter system. The assumptions that went into these approaches and which are in our opinion not easy to control have been detailed by Castelló Gomar, Martín-Benito, and Mena Marugán (2015) for the hybrid and by [START_REF] Agullo | The pre-in ationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations[END_REF] for the dressed metric approach.

Moreover, these approaches rely on introducing one speci c semiclassical state. To (partially) overcome these shortcomings, considerations of including backreaction have been pursued by [START_REF] Rovelli | Stepping out of Homogeneity in Loop Quantum Cosmology[END_REF] and by Castelló Gomar, [START_REF] Castelló Gomar | Quantum corrections to the Mukhanov-Sasaki equations[END_REF] within the LQC approach, and by [START_REF] Chataignier | Unitarity of quantum-gravitational corrections to primordial uctuations in the Born-Oppenheimer approach[END_REF] and references therein within the geometrodynamical approach. Many of these approaches remain however on a purely formal 1. Backreaction and the Physical Standard Model level due to technical di culties or rely on a set of speci c semiclassical ansatz functions.

Space Adiabatic Perturbation Theory in Quantum Cosmology

It is precisely at this point that we propose a new but at the same time conservative formalism to describe the interactions within a non-perturbative theory of quantum gravity plus matter, and which improves the current state of the art in several respects. More speci cally, we implement a perturbative approach with respect to the inverse Planck mass that is able to rigorously attack the question of whether the backreactions of the inhomogeneous cosmological quantum elds have a substantial e ect on the homogeneous quantum degrees of freedom -A very crucial open problem that has been neglected in most approaches so far (mostly due to technical problems), and which represents the rst important step towards a thorough understanding of the interactions in quantum gravity-matter systems, and a step towards a semiclassical limit of the theory.

As opposed to the approaches above, we will not rely on the introduction of some semiclassical ansatz functions for the homogeneous sector. We are hence, for the time being, not primarily interested in the semiclassical limit of the respective models but rather in formulating a consistent approach for obtaining e ective and simpler constraints or equations of motions that take the full quantum mechanical and dynamical character of non-perturbative quantum gravity into account. Of course, it is still possible to consider the semiclassical limit in a second step. As anticipated above, our goal is to develop and implement a perturbative scheme following the ideas of the Born-Oppenheimer approach but which improves the latter in several essential ways. The space adiabatic approach by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF] represents an ideal starting point for achieving just this. Their original formalism will be presented in chapter 6.

Its Advantages

The considerable advantages of employing SAPT methods in order to approach a working theory of interactions in quantum cosmology plus matter can be identi ed by comparing to the above mentioned approaches: First, while adhering to the sucessful idea of considering an Pl -1 -limit in quantum gravity, it establishes a rigorous perturbative formalism with respect to Pl -1 which can be evaluated up to any desired order. This allows to derive e ective quantum Hamilton constraints or operators whose structure is much simpler than the original one but whose solutions approximate the true solutions up to an, in principle, inde nitely small error. Secondly, these technically much simpler constraints are derived without invoking a semiclassical limit or behaviour of any kind. We are also not forced into choosing one speci c (semiclassical) ansatz state in order to derive physical results as it is required by most of the approaches considered before. Thirdly, the scheme performs a formal split between the homogeneous and the inhomogeneous sector in quantum cosmological perturbation theory, and which allows to analyze the two subsystems (again on a formal level) at di erent stages of the procedure. This split brings us one step closer to recovering the semiclasssical QFT on CST-limit of quantum cosmology, and might simplify the identi cation of suitable semiclassical states considerably. Finally, since the formalism relies on a phase space quantization scheme, it substantially enlarges the range of systems to which it can be applied -most importantly, to the cosmological systems that we have in mind. Recall that the
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Born-Oppenheimer approach restricts to models in which the coupling of subsystems is mediated via commuting operators. SAPT lifts this restriction, and makes it hence possible to apply such a scheme at all.

Our Achievements

With these prerequisites in mind, we have hence achieved the following goals on the way to a rigorous formulation of a theory of interactions in coupled quantum gravity plus matter:

• We have shown that the methods of SAPT as introduced by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF] for unconstrained, quantum mechanical systems can be extended to constrained Hamiltonian systems, most importantly to problems in quantum cosmology. In fact, the constraint itself thereby justi es the use of the perturbative (adiabatic) hierarchy rather than the equipartition theorem. This will be made very clear in chapter 7 where we introduce a cosmological toy model in order to test the application of SAPT to constrained systems. More precisely, we apply the scheme up to second (adiabatic) order to a homogeneous and isotropic FLRW model with a scalar eld as the matter content.

• SAPT also applies to quantum eld theoretical models. In fact, we show that a general obstruction to implementing the SAPT formalism to such in nite dimensional theories is the failure of the Hilbert-Schmidt condition. This generically indicates that the dynamics of the quantum cosmological perturbations in such theories is not unitarily implementable.

In chapter 8, we examine this problem for a cosmological model with scalar matter eld perturbations and propose a transformation of variables which alleviates the failing of the Hilbert-Schmidt condition. We then successfully apply SAPT to cosmological perturbation theory with a scalar eld and dust matter content up to second order in the adiabatic perturbations. This results in an e ective Hamilton operator for the homogeneous sector and which takes the backreaction of the perturbations thoroughly into account.

• We are able to identify an important challenge which occurs when implementing SAPT to quantum cosmological perturbation theory: The transformations of variables mentioned before yield modi ed mass values or rather mass functions of the perturbation elds. In particular, the mass squares become functions of the homogeneous variables and may be inde nite, inducing tachyonic instabilities for the perturbations. In chapter 9, we point to a number of solutions to this problem, and apply one of them to the model in chapter 8 and also to the next model considered in chapter 9. We also assert that the standard transformations to gauge-invariant cosmological perturbations already lead to such tachyonic elds, hence the very occurence of such tachyonic instabilities is not rst and foremost due to the SAPT scheme.

• We apply SAPT to the standard gauge-invariant cosmological perturbation model in quantum cosmology up to second order in the adiabatic perturbations in chapter 9. Again, the transformations for obtaining gauge-invariant variables and in order to circumvent the Hilbert-Schmidt condition lead to inde nite mass squared functions for the scalar and tensor perturbations. These functions are non-polynomial with respect to the homogeneous degrees of freedom. As mentioned before, we propose several strategies for coping with 1. Backreaction and the Physical Standard Model these peculiar mass functions, and apply one of them to the cosmological model in this chapter.

• Despite the inde nite mass squared functions, we emphasize that SAPT can always be formally carried out. One simply needs to assure that the tachyonic phase space regions as well as regions where the eigenvalues of the perturbative elds cross are avoided when quantizing the homogeneous sector. One possibility is to restrict the underlying phase space by hand, which is conceivable due to the phase space quantization procedure pursued here.

• For all the cosmological models considered in this thesis, i.e., the purely homogeneous model in chapter 7, the scalar and dust eld cosmological model with inhomogeneities in chapter 8, and the perturbative scalar eld model with gauge-invariant scalar and tensor perturbations in chapter 9, we are able to compute an e ective Hamilton constraint or operator that takes the backreaction of one part of the system onto the remaining system into account. Finding solutions for this considerably simpler Hamiltonian will provide us with approximate solutions to the coupled gravity-matter system, and which takes their interactions adequately into account. While formally symmetric, these e ective Hamiltonians are non-polynomial, both in momentum and con guration degrees of freedom, leading to unpleasant domain issues. We emphasize however that such questions of self-adjoint extensions are generic in quantum gravity and not caused by the SAPT scheme itself. We have identi ed possible choices of dense domains.

This being said, we nally take the opportunity to emphasize once again that our considerations of backreactions are performed in a purely non-perturbative quantum gravity framework, i.e., the inhomogeneous as well as the homogeneous degrees of freedom are both dynamical and quantum. In particular, we do not refer to any background structure like in perturbative Minkoswki quantum gravity. The use of the cosmological perturbation series up to linear order is a tool for simplifying the calculations and should not be confused with a perturbative limit of quantum gravity implying a background structure. While the pure quantum gravitational theories have not yet reached a stage in which physical solutions are known, the cosmological split performed in this work permits to make progress in this direction -while still considering all degrees of freedom in a quantum framework. Hence, our application of SAPT provides a formidable avenue to better understanding and possibly solving purely non-perturbative quantum cosmological models, thoroughly taking into account the interactions between matter and gravity. Very importantly, due to the natural split of its degrees of freedom and the formal consideration of homogeneous and inhomogeneous degrees of freedom at di erent levels of the scheme, it o ers the attractive perspective to also simplify the quest for a semiclassical limit of quantum cosmology.

We will provide a detailed summary of our ndings in part IV and point to the numerous future routes entailed by our work. The next section provides a short and more concise outline of this thesis (i.e., without historical references).

Outline

Following the thematical map given above, the structure of this thesis is as follows:

Outline

In part II, we provide the reader with the necessary mathematical tools and physical background for this thesis. We thereby assume the reader to be familiar with the basic notions of general relativity, the concordance model of cosmology and QFT. In order to make this work as self-contained as possible, we will nevertheless review some of the relevant issues within these elds. We start in chapter 2 with the theory of general relativity and the concordance model of cosmology. We will use the opportunity to point to the various open questions and problems of the contemporary cosmological model. This will subsequently bring us to chapter 3 which reviews the current state of research in the eld of classical cosmological backreaction. There, the question is whether and to which extent classical cosmological inhomogeneities in the rather recent Universe might modify the evolution of the Universe on its largest scales. As it turns out, there is no consensus, and opinions about the interpretation of the physical results di er widely.

We then leave the purely classical realm of the cosmic history -going backwards in time -and start in chapter 4 with a short review of QFT on CST. This will prove to be useful for the subsequent sections which discuss the backreaction problem in the semiclassical theory. Here, semiclassical means that matter elds are considered as quantum elds which propagate on a purely classical space time, and thus the question of backreaction is whether those quantum elds alter the classical Einstein equations for gravity. One possible path to examining this question, denoted as semiclassical gravity, computes the expectation value of the quantum stress-energy tensor in a suitable (cosmological) quantum state of the matter elds and uses the result as an e ective source for the classical Einstein equations. The second approach that we will discuss is denoted as stochastic (semiclassical) gravity, and adds stochastic noise terms that account for the quantum uctuations of the matter elds. Both approaches are shortly reviewed and the current state of research is presented.

Further proceeding backwards in time, the concordance model of cosmology suggests that a purely quantum mechanical framework of the physical interactions in the very early Universe should be considered. Accordingly, in chapter 5, we review the notion of backreaction in purely quantum ( eld) theoretical approaches to gravity. More precisely, we will speci cally point to the works in quantum gravity and quantum cosmology that employ the inverse Planck mass as a perturbation parameter to evaluate backreaction similar to the approach that is promoted in this thesis.

This brings us to the nal chapter 6 of the introductory part II which is dedicated to the analysis of coupled quantum systems using appropriate approximation schemes. It introduces SAPT as promoted by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF] which will be used for the computation of backreaction in the following chapters. The approach is inspired by the standard Born-Oppenheimer approximation for molecules (which will be reviewed as well) but uses advanced mathematical tools in order to enlarge the scope of the scheme and to provide a systematic perturbation theory. It uses a phase space quantization for parts of the physical system and employs pseudodi erential calculus in various ways. More precisely, it relies on an operator-valued pseudodi erential calculus which will be thoroughly introduced in chapter 6. We will provide a systematic iterative evaluation of the scheme as well as the explicit formulae of this perturbation scheme up to second perturbative order (which are particularly relevant for the remaining chapters). We nish with a showcase example of two coupled oscillators.

In part III, we use and extend SAPT in order to compute the backreaction e ects for cosmo-logical systems. Thereby, we encounter several di culties since we apply the scheme to quantum eld theoretical models while the original theory is conceived for nite-dimensional quantum systems.

As a warm-up, chapter 7 discusses a homogeneous and isotropic cosmological model that consists of the geometric FLRW degrees of freedom (i.e., the scale factor and its conjugate momentum), and a homogeneous and isotropic real scalar eld. We compute the backreaction from the scalar eld to the geometry. While the evaluation of SAPT proceeds in a very similar way as for the oscillator model, there are new challenges that we will discuss in detail. In fact, due to the constraint character of general relativity, the identi cation of slow and fast sectors like in the Born-Oppenheimer theory is not trivial, and the special form of the Hamilton constraint induces the occurrence of non-polynomial operators in the nal e ective Hamilton constraint.

In chapter 8, we apply the ideas of SAPT to a quantum eld theoretical model that consists of a homogeneous and isotropic geometry and a dust particle that serves to deparametrize the model (i.e., to introduce a clock) as well as a quantized Klein-Gordon scalar eld. Before applying the space adiabatic formalism, it is appropriate to introduce a set of transformations on the whole classical phase space. These transformations will assure that (up to second order in the cosmological perturbations) the QFTs parametrized by the FLRW geometry can be linked unitarily which is a necessary prerequisite for the space adiabatic quantization scheme.

Finally, chapter 9, as the centerpiece of this thesis, examines the backreaction of gauge-invariant cosmological perturbations on a homogeneous and isotropic FLRW model including the homogeneous mode of a real-valued scalar eld. It includes an FLRW metric and perturbations thereof as well as a perturbed Klein-Gordon scalar eld which are combined in order to de ne gauge-invariant scalar, vector, and tensor perturbations. As for the previous model, we start by introducing appropriate phase space transformations that are canonical up to second order in the perturbations in order to obtain a well-de ned QFT, and in order to allow for a quantization of the total system. We thereby follow the ideas of Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF]. Subsequently, we discuss the presence of inde nite mass squared functions, and possible methods to circumvent the subsequent problems. Finally, we come back to the question of identifying slow and fast sectors and provide some ideas in order to achieve such an identi cation.

Part IV concludes the thesis by providing a summary of the work and giving an outlook to possible future avenues entailed by our ndings. In chapter 12, we provide a detailed summary of this thesis in French in which we recapitulate every chapter seperately.

The appendices A, B and C detail some of the computations that are relevant to the understanding of the thesis but can readily be assigned to the end. In appendix A, we provide computations regarding the Born-Oppenheimer scheme in chapter 6 that help to understand the equations stated there. In appendix B, we detail the computations for the spectral deviations of the anharmonic osillator problem in chapter 6 that are due to the second order backreaction of the harmonic oscillator subsystem. In appendix C, we give a prescription for a Weyl quantization for a system with a compact con guration space.
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List of Publications

This thesis mainly relies on the following publications that resulted from collaborations of the author with T. Thiemann (and one of them also in collaboration with J. Neuser), i) "Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory" by [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF],

ii) "Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology" by [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF],

iii) "Quantum Cosmological Backreactions III: Deparametrized Quantum Cosmological Perturbation Theory" by Schander and Thiemann (2019b), iv) "Quantum Cosmological Backreactions IV: Constrained Quantum Cosmologial Perturbation Theory" by Schander and Thiemann (2019c).

As a consequence, parts of this thesis are based or are strongly inspired by these publications. In the relevant chapters, we will point more precisely to the respective publications.

In order to already provide an overview, reference ii) elaborates on the two toy models discussed in section 6.8 and chapter 7, in particular the oscillator model and the homogeneous and isotropic cosmological model. Reference iii) is devoted to the inhomogeneous cosmological model with dust matter that we encounter in chapter 8. Reference iv) examines the inhomogeneous cosmological model with gauge-invariant scalar and tensor perturbations which is the subject of chapter 9. Besides, it provides the precise formulae of the space adiabatic scheme up to second order in the adiabatic perturbations that we give in section 6.7. Finally, reference i) details the conceptual issues encountered when applying SAPT to the (inhomogeneous) cosmological models and which we discuss at various stages of this thesis. Again, a precise statement about the content of the chapter and the corresponding references will be given at the beginning of each chapter.

Further publications that have been published by the author and collaborators during the preparation of the author's thesis are, v) "Detailed investigation of the duration of in ation in loop quantum cosmology for a Bianchi-I universe with di errent in aton potentials and initial conditions" by Martineau, [START_REF] Martineau | Detailed investigation of the duration of ination in loop quantum cosmology for a Bianchi-I universe with di erent in aton potentials and initial conditions[END_REF], vi) "Backreaction in Cosmology" by Schander and Thiemann (2021).

Reference vi) is a resume of the application of SAPT to cosmological models and arose during the writing of this thesis manuscript. Certain sections therefore strongly resemble paragraphs of this reference. We will identify these sections in the appropriate places.

Part II.

Research Context and Embedding

General Relativity and Concordance Cosmology

In this thesis, we introduce and develop quantum cosmological models that take backreactions from one part of the system on the remaining part into account. In particular, the ultimate goal is to consider gauge-invariant quantum cosmological perturbations and their backreaction on a homogeneous and isotropic quantum FLRW background. Thereby, we build on the pillars of Einstein's theory of general relativity and on (some aspects of) the concordance ΛCDM model of cosmology. In this chapter, we provide the basic ideas and results of these theories with a focus on those notions relevant for our purposes. We assume familarity with the basic concepts of general relativity and the standard cosmological model, and refer the reader to the excellent textbooks by Wald (1984), [START_REF] Carroll | Spacetime and Geometry -An Introduction to General Relativity[END_REF], [START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF], [START_REF] Misner | Gravitation[END_REF] and [START_REF] Sachs | General Relativity for Mathematicians[END_REF] regarding general relativity, and by [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF], [START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF], [START_REF] Durrer | The Cosmic Microwave Background[END_REF] and Baumann (2012) for the concordance model of cosmology. This chapter is based on these references (among others). Some parts of this chapter, especially section 2.3 are inspired and partially taken from reference (Schander and Thiemann 2021) which resulted from a collaboration of the author and T. Thiemann.

Throughout this chapter, we assume ℳ to be a smooth four-dimensional Lorentzian manifold with signature (-, +, +, +), and we identi y points with coordinates thereon. We denote the bundle of ( , ) tensors over ℳ by ℳ, and accordingly the space of sections of ℳ by Γ( ℳ). Greek indices run from 0 to 3 while latin indices run from 1 to 3. We use units with ≡ 1 ≡ ℏ.

General Relativity and the ADM Formalism

The theory of general relativity relies on the strong equivalence principle which implies that any theory of gravitation has to be described in terms of a pseudo-Riemannian space time geometry, and the corresponding eld equations must admit a certain form [START_REF] Dittus | Experimental Tests of the Equivalence Principle and Newton's Law in Space[END_REF]. More precisely, general relativity ties the geometry of space and time, parametrized by the symmetric two-times covariant metric tensor eld ∈ Γ( 0 2 ℳ), to the (matter) stress-energy tensor eld ∈ Γ( 0 2 ℳ). The relation is provided by Einstein's famous eld equations (Wald 1984)

∶= ℛ (4) - 1 2 (4) + Λ = 8 (2.1)
where ℛ (4) ∈ Γ( 0 2 ℳ) and (4) ∈ Γ( 0 0 ℳ) denote the Ricci tensor and the four-dimensional curvature scalar respectively, and the Einstein tensor. They depend on and the associated unique covariant derivative ∇. We also introduce a cosmological constant Λ ∈ ℝ, and Newton's constant . These equations need to be postulated but are based on plausible arguments [START_REF] Carroll | Spacetime and Geometry -An Introduction to General Relativity[END_REF]): One way to obtain them is to rst introduce the Einstein-Hilbert action functional of the gravitational eld

EH [ ] = 1 16 ∫ ℳ d 4 √ (4) -2Λ , (2.2)
and to apply the principle of least action. denotes the absolute value of the determinant of the metric tensor. As the matter content, we employ a free real-valued scalar eld Φ ∈ Γ( 0 0 ℳ) (or since Φ is trivial, we simply write Φ ∶ ℳ → ℝ) with a mass ∈ ℝ + and a quadratic potential. Its action functional is given by (Wald 1984)

M [ , Φ] = - 1 2 ∫ ℳ d 4 √ Φ Φ + 2 Φ 2 (2.3)
where ∈ ℝ + is the coupling constant of the scalar eld. Note that 1∕ has dimension of mass squared and we assume it to be of the order of the typical Standard Model particle masses.

The choice of the scalar eld serves two purposes: On the one hand, we explore uncharted territory by including quantum mechanical backreaction in the later stages of this work, and therefore refrain from disguising our results by choosing a more complicated matter content. On the other hand, we wish to make contact with cosmological models of the early Universe and follow the concordance theory which introduces a scalar in aton eld as the dominant primordial matter content. To derive Einstein's equations, one can apply the action principle to the total action functional = EH + M , see for example in the textbooks by Wald (1984) and [START_REF] Carroll | Spacetime and Geometry -An Introduction to General Relativity[END_REF]. Here, we will however follow the idea by [START_REF] Arnowitt | Dynamical Structure and De nition of Energy in General Relativity[END_REF] and perform a foliation of spacetime into (a priori arbitrary) spacelike hypersurfaces before we consider dynamics. Thanks so this splitting (also denoted as ADM formalism due to its inventors), it is possible to de ne velocities and hence canonical momenta of the basic variables. This is necessary for a Hamiltonian formulation of the problem. In fact, we must follow this Hamiltonian path as we are going to canonically quantize the system later on. We emphasize that this slicing does not break di eomorphism invariance as the split remains arbitrary. For detailed introductions to the ADM formalism, we refer to the original reference and the books by Wald (1984) and [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF], and on which the following section is based.

The ADM Formalism

The ADM split of a four-dimensional spacetime manifold ℳ requires the latter to have the topology ℳ ≃ ℝ × where is a xed three-dimensional (spatial) manifold of arbitrary topology. If ℳ is globally hyperbolic, this is already granted due to a theorem by Geroch (1970). In this work, we assume global hyperbolicity and de ne the spatial (Cauchy) hypersurfaces ≃ 3 to have the topology of at, compact three-tori. The atness is supposed to mimic the properties of the concordance cosmological model and the compactness will prevent divergences to appear for the quantum eld theory that we consider in the following chapters. Since the radii of the torus can be chosen arbitrarily, it is possible to x them as the size of the observable Universe such that the model mimics the atness of the concordance cosmological model while the compactness will prevent divergences to appear for the QFT that we consider in the following chapters.

In the context of the ADM split which we review here following [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF], it is useful 2.1. General Relativity and the ADM Formalism to introduce a di eomorphism ∶ ℝ × → ℳ which maps points ( , ) ∈ ℝ × to points ∈ ℳ. The spatial hypersurfaces can be labeled by a global time parameter ∈ ℝ and we will consequently denote them by Σ . The "time" vector eld t ∈ Γ( 1 0 ℳ) obeys t ∇ = 1. It is possible to decompose the components of t into its components normal and tangential to Σ according to t = + (2.4)

where ∈ Γ( 0 0 ℳ) is the lapse function, ∈ Γ( 1 0 ℳ) the shift vector and ∈ Γ( 1 0 ℳ) is the unit normal to Σ . The metric tensor induces a three-dimensional metric ℎ ∈ Γ( 0 2 (ℳ) on the spatial hypersurfaces de ned as

ℎ ∶= + , (2.5)
which is spatial in the sense that any contraction of the vectors , with ℎ vanishes. In order to introduce a notion of velocity for the spatial metric, it is useful to de ne the second fundamental form or extrinsic curvature ∈ Γ( 0 2 ℳ) such that

∶= ℎ ℎ ∇ = (ℒ ℎ) (2.6)
where indices are moved with respect to the original metric , and is a spatial tensor, too. The second expression introduces the Lie derivative of ℎ with respect to the "temporal" vector , and hence underlines that can be interpreted as some kind of velocity of ℎ . On the spatial hypersurfaces, it is possible to de ne a unique, covariant derivative associated with ℎ with which in turn, we can de ne a "spatial" curvature tensor ℜ (3) ∈ Γ( 0 4 ℳ), Ricci tensor ℛ (3) ∈ Γ( 0 2 ℳ) and curvature scalar (3) ∈ Γ( 0 0 ℳ).

To pull tensors back to the spatial hypersurfaces, one employs the three spatial vector elds ( ) ∶= , ( , ) ( , )= , for example ℎ ( , ) = ( , , ℎ )( ( , )). In total, this permits to express the Einstein-Hilbert and scalar eld actions in terms of the variables on the hypersurfaces, the time parameter as well as lapse and shift and which are hence given by

EH [ℎ] = 1 16 ∫ d d 3 √ ℎ (3) + -( ) 2 -2Λ , (2.7) M [ℎ, Φ] = 1 2 ∫ d d 3 √ ℎ Φ2 2 -2 2 Φ Φ, -ℎ - 2 Φ, Φ, -2 Φ 2 .

Legendre Transform and Dirac Analysis

In this form, the action functional = ∫ d d 3 ℒ, with its Lagrange density ℒ, allow to perform a Legendre transformation and to de ne conjugate momenta for ℎ and Φ as well as a Hamilton and di eomorphism constraints. In particular, the conjugate momenta of the spatial metric and the scalar eld Π Φ are de ned as [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF])

∶= ℒ ḣ = √ ℎ 16 -ℎ , Π Φ ∶= ℒ Φ = √ ℎ Φ - Φ, (2.8)
with ∈ Γ( 2 0,1 ℳ) and Π Φ ∈ Γ( 0 0,1 ℳ) where the additional index indicates that both elds have density weight = 1. On any xed spatial hypersurface (i.e., for any xed value of ), the elds {ℎ , Φ, , Π Φ } span the in nite dimensional phase space Γ of the theory. More precisely, Γ is the cotangent bundle * ℱ of the con guration space ℱ of elds that is spanned by the elds ℎ and Φ. Due to the possibly distributional character of the canonical elds, one introduces spatial smearing functions 1 , 2 on (some chart of) the spatial manifold , in order to de ne the only non-vanishing Poisson brackets on this phase space

{ℎ ( 1 ), ( 2 )} = ⟨ 1 , 2 ⟩, {Φ( 1 ), Π Φ ( 2 )} = ⟨ 1 , 2 ⟩, (2.9)
and where the brackets denote the inner product of the considered smearing function space, e.g., the space of smooth functions with compact support on , ∞ 0 ( ). Since the velocities of lapse and shift do not occur in the action it is not possible to derive relations that represent them in terms of the elds and their momenta. Rather we obtain the four primary constraints

∶= ℒ ̇ = 0 =∶ , ∶= ℒ ̇ = 0 =∶ , (2.10)
where we introduced the functions and to emphasize the constraint character of these equations. Obviously, the constraints imply that the canonical elds ℎ , , , , , are not all independent and this requires a special treatment of the dynamical system.

We therefore follow the so-called Dirac analysis given in the textbooks by [START_REF] Henneaux | Quantization of Gauge Systems[END_REF], [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF] and Kiefer (2007), and to which we also refer for more details: In a nutshell, the procedure is similar to the Hamiltonian program for unconstrained eld systems in order to de ne a Hamiltonian density ℋ and additionally append the primary constraints multiplied with a corresponding set of Lagrange multiplier functions and such that

ℋ ∶= ḣ + ΦΠ Φ + ̇ + ̇ -ℒ + + .
(2.11)

In fact, the Hamiltonian is only well de ned on a submanifold of the total phase space given by the primary constraints = 0 and = 0. Since they vanish, they can be added without changing the formalism. The Lagrange multipliers are in principle arbitrary phase space functions but their introduction in the Hamiltonian serves the purpose to properly recover the correct dynamics of the system. Seen as independent variables they ensure that the variational action principle returns the correct equations of motions including the primary constraint equations. The total Hamiltonian has the form [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF])

ℍ ∶= ∫ d d 3 + + ̃ + ̃ =∶ ( ) + ⃑ ( ⃑ ) + ( ̃ ) + ⃑ ( ⃑ ̃ ), (2.12)
where we simply merged the arbitrary functions ̇ , and ̇ , into the new Lagrange multipliers ̃ and ̃ respectively, and de ned and such that and can be extracted as prefactors. Now, the Dirac algorithm proceeds by varying the action with respect to these Lagrange multipliers, and as anticipated, this simply yields the four primary constraints = 0 and = 0 as can also be read o the Hamiltonian in equation (2.12). To obtain a consistent dynamics, the Dirac algorithm must demand that these constraints are preserved under the evo-lution of the Hamiltonian. These requirements correspond to evaluating Hamilton's equations for the primary constraints and to require them to vanish for any smearing functions , ⃑ , namely [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF])

̇ ( ) ∶= {ℍ, ( )} = ( ) = 0, ̇⃑ ( ⃑ ) ∶= {ℍ, ⃑ ( ⃑ )} = ⃑ ( ⃑ ) = 0.
(2.13)

These secondary constraints imply that the total Hamiltonian is forced to vanish. Checking whether these secondary constraints are preserved under the evolution of the Hamiltonian yields the Dirac or hypersurface deformation algebra evaluated with respect to suitable smearing elds 1 , 2 , ⃑ 1 , ⃑ 2 such that [START_REF] Thiemann | Modern Canonical Quantum General Relativity[END_REF])

{ ⃑ ( ⃑ 1 ), ⃑ ( ⃑ 2 )} = -16 ⃑ (ℒ ⃑ 1 ( ⃑ 2 )), (2.14) { ⃑ ( ⃑ 1 ), ( 2 )} = -16 (ℒ ⃑ 1 2 ), (2.15) { ( 1 ), ( 2 )} = -16 ⃑ ( ⃑ ( 1 , 2 , ℎ)).
(2.16)

We see that these equations do not generate new secondary constraints and vanish if the rst set of secondary constraints are zero, i.e., the constraints are of rst class. We will not discuss these results in more detail as the primary purpose of this section was to present Dirac's algorithm. In chapter 9, we will make explicit use of this algorithm but applied to a cosmological model with appropriate perturbations. This brings us to the topic of our next section.

The Concordance Lambda-CDM Model

The current concordance model of cosmology (Aghanim et al. 2020a,b;[START_REF] Cervantes-Cota | Cosmology today -A brief review[END_REF][START_REF] Deruelle | Relativity in Modern Physics[END_REF][START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF]) is a compilation of physical approaches based on general relativity and the Standard Model of particle physics that intend to interpret and explain cosmological data. Many of its theoretical results are in astonishing agreement with past and present cosmological observations such as the light element abundances that are (to a large extent) in accord with Big Bang Nucleosynthesis [START_REF] Coc | Primordial nucleosynthesis[END_REF], and the CMB temperature map and power spectra obtained by a multitude of cosmic microwave observations (Aghanim et al. 2020a;[START_REF] Bennett | Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results[END_REF][START_REF] Leitch | DASI three-year cosmic microwave background polarization results[END_REF][START_REF] Smoot | Structure in the COBE di erential microwave radiometer rst year maps[END_REF].

It draws the picture of an ever increasing, statistically and spatially homogeneous and isotropic Universe starting from a dense and hot Big Bang, culminating into the present Universe which is composed of a constant "dark" energy component associated with a cosmological constant Λ (∼ 69% of the total energy budget), cold "dark" matter (CDM, ∼ 25%) and baryonic matter (∼ 6%). Despite its achievements, the increasing amount of high-precision measuring data from early Universe surveys such as Planck (Aghanim et al. 2020a), and late time scrutinies such as the Hubble space telescope (Riess et al. 2016) strenghten the doubts regarding our cosmological world view, see for example [START_REF] Reid | An Improved Distance to NGC 4258 and its Implications for the Hubble Constant[END_REF]. It is the goal of this section to review the basic ideas of the concordance model with a focus on those aspects relevant for this thesis, as well as to point to its cavities.

Homogeneity and Isotropy

Cosmological data indicates that the Universe has been spatially homogeneous and isotropic up to small perturbations during its earlier phases and when integrated over very large scales (roughly 100 Mpc) today [START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF]. This is the content of the cosmological principle). One of the most impressive set of results that underlines this hypothesis for the early Universe comes from a multitude of cosmic microwave missions, in particular from the Planck collaboration which o ers the most recent and precise temperature map of the observable Universe [START_REF] Akrami | Planck 2018 results. X. Constraints on in ation[END_REF], see Fig. 2.1. The observed photons exhibit an almost perfect black body spectrum with an average temperature of = 2.726 ± 0.001 K [START_REF] Fixsen | The temperature of the cosmic microwave background[END_REF], hence denoted as cosmic microwave background (CMB) radiation. It displays fractional temperature uctuations of only 10 -5 which makes the assumption of a purely homogeneous and isotropic Universe plausible.

The gravitational eld that corresponds to a purely homogeneous and isotropic Universe is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric given by the line element [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

d 2 = -0 d 2 + ( ) 2 d 2 1 -2 + 2 dΩ 2 =∶ -0 d 2 + ℎ 0 ( , ) d d ,
(2.17

)
where dΩ is the solid angle volume form, a corresponding radial coordinate, is cosmic time, and ∈ {-1, 0, 1} is the curvature parameter de ning a hyperbolic, Euclidean or elliptic topology of the spatial hypersurfaces respectively. ∈ ℝ + is the scale factor which parametrizes the purely homogeneous and isotropic metric. ℎ 0 denotes the spatial metric induced by the total metric , where we additonally inserted the superscript "0" to emphasize that we deal with the purely homogeneous and isotropic FLRW metric (without any perturbations). It is often convenient to introduce the time-independent spatial metric h0 on the hypersurfaces according to ℎ 0 ( , ) =∶ 2 ( ) h0 ( ). Following our conventions from the previous section, we set the arbitrary lapse function equal to one, 0 ≡ 1, such that the only remaining dynamical degree of freedom such that the metric is conformally equivalent to the Minkowski metric up to a global factor ( ).

Many observations point to a at Universe with = 0 such as the Planck results combined with data from acoustic baryonic oscillations [START_REF] Akrami | Planck 2018 results. X. Constraints on in ation[END_REF], and we will henceforth adopt this choice. However, we also point to an analysis of the very same CMB data combined with luminosity distance data that excludes this scenario, namely [START_REF] Valentino | Cosmic Discordance: Planck and luminosity distance data exclude LCDM[END_REF].

So far, cosmological data supports the idea that the observable Universe is and has been expanding for a very long period of time, i.e., the scale factor has been increasing. As a consequence the physical wavelength of relativistic particles is stretched out and leads to a redshift de ned as [START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF] 1

+ ∶= in = 0 in , (2.18)
where in and in denote the wavelength and the scale factor at the time when the light is emitted, and 0 ≡ 1 is the scale factor today. Accordingly, light from remote objects is redshifted when it arrives on Earth and provides a mean to estimate their distance and age if the spectrum is known.

According to Einstein's equations (2.1), the evolution of the scale factor depends on the matter content of the Universe. A convenient choice for an isotropic and homogeneous Universe is a perfect uid as it is isotropic in its rest frame. The stress-energy tensor of a perfect uid with four-velocity , energy density , and pressure is given by [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

= ( + ) + . (2.19)
Inserting the FLRW metric (2.17) into both sides of Einstein's equations yields the Friedmann and the Raychaudhuri equations which determine the evolution of the Hubble parameter ∶= ̇ and the acceleration of the scale factor respectively [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

2 = 8 3 -2 + Λ 3 , ̈ = - 4 3 ( + 3 ) + Λ 3 (2.20)
where we included a cosmological constant Λ > 0. Besides, the conservation of energy, ∇ = 0, yields the continuity equation for the perfect uid [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

̇ + 3 ( + ) = 0.
(2.21)

From now on, we denote quantities that are measured today by a subscript "0" and see how they relate to the quantities at earlier times according to these three equations. By default, one de nes and measures the present "critical" energy density using Friedmann's equation (2.20) assuming a at Universe ( = 0) [START_REF] Dodelson | Modern Cosmology -Second Edition[END_REF] cr ≡

3 2 0 8 = 1.88 ℎ 2 × 10 -29 g cm -3 (2.22)
where the parameter ℎ has been introduced for convenience since 0 is commonly de ned as 0 ∶= 100 ℎ km s -1 Mpc -1 . Recent analyses yield ℎ ≈ 0.7 together with a statistically signi cant disagreement between late and early Universe measurements denoted as the 0 -tension. For example, a combination of data from red giant stars and of Omega Centauri from the Hubble Space Telescope yield ℎ = 0.72 ± 0.2 [START_REF] Soltis | The Parallax of Omega Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant[END_REF] while the 2018 Planck mission attains ℎ = 0.68 ± .0 (Aghanim et al. 2020b). If we allow for a non-vanishing curvature in the Friedmann equation ( ≠ 0), de nition (2.22) implies that a curved Universe has a density 0 today that is di erent from the critical energy density.

Cosmic Inventory

The total energy density ( ) at any time is commonly split into di erent parts according to the constituents that formed the Universe at time . In the simplest case of a barotropic uid (i.e., a uid whose density is a function of pressure only), the behavior of ( ) follows from a constant equation of state = with ∈ ℝ and the resulting continuity equation (Baumann 2012)

= in in -3(1+ ) (2.23)
where in and in denote the energy density and scale factor at some initial time in . A gas of nonrelativistic matter particles has vanishing pressure ( = 0) such that its energy density scales like m ∼ -3 , i.e., for an increasing scale factor matter is diluted according to the volume expansion. Radiation has an equation of state r = 1 3 r such that r ∼ -4 which accounts for the additional energy redshift. The accelerated expansion of the Universe today is attributed to a cosmological constant Λ with = -1, and hence Λ ∼ 0 . Since it is unclear if this acceleration is soleley driven by a cosmological constant or whether there is an(other) microphyiscal origin, one associates Λ with a "dark energy" component.

We de ne the dimensionless density parameters Ω ,0 ∶= ,0 cr for any of the matter species by dividing by the critical energy density cr , and assume that the respective constituents are non-interacting. Dividing the Friedmann equation by 2 0 yields (Dodelson and Schmidt 2021)

2 2 0 = Ω r,0 0 4 + Ω m,0 0 3 + Ω ,0 0 2 + Ω Λ,0 .
(2.24)

The ΛCDM model includes photons and relativistic neutrinos as radiation as well as baryonic matter, cold dark matter and non-relativistic neutrinos in the matter sector, and we de ned density parameters for the curvature Ω ,0 and for the cosmological constant Ω Λ,0 . The notion of cold dark matter (CDM) was introduced to name a yet unknown (hence "dark") non-relativistic (hence "cold") and gravitationally interacting matter component present in the Universe [START_REF] Blumenthal | Formation of Galaxies and Large Scale Structure with Cold Dark Matter[END_REF]. The Planck collaboration determined values for these parameters (within the 68% con dence limit) using the CMB data as well as measurements from recent galaxy surveys such as SDSS, 2dFGRS and many more given by (Aghanim et al. 2020b) Ω Λ,0 = 0.689 ± 0.006, Ω m,0 = 0.311 ± 0.006, Ω ,0 = 0.001 ± 0.002, Ω r,0 ≤ 10 -4 . (2.25)

Consequently, the standard baryonic matter represents only about 6% of the total energy density contributions while the remaining matter part is attributed to a CDM component. According to Friedmann's equation (2.24), the relative abundances of the components have changed during the evolution of the Universe. Using the formula for the redshift together with Friedmann's law (2.24) and the parameters (2.25), it is straightforward to deduce the redshift at which dark matter starts to dominate over cold matter, and the redshift when matter begins to dominate over radiation. In particular, we have that (Aghanim et al. 2020b)

Λ-m = Ω Λ Ω m 1 3 -1 ≈ 0.30, m-r = Ω m Ω r -1 ≈ 3380. (2.26)
There is yet another possibility to identify epochs and events of cosmic history which is particularly useful as is extends to phases prior to radiation domination and the release of the CMB photons. Wien's displacement law stipulates the ratio of the peak of the black body frequency and the corresponding temperature to be a constant such that the temperature at some time is given by

( ) = 0 ⋅ ( ( )∕ 0 ) = 0 ∕ ( ) = 2.726 K ⋅ (1 + ( )).

Cosmic Evolution

The Friedmann equation reveals that the rst dominant energy component among the ones given in equation (2.25) in an expanding Universe with non-interacting constituents must have been relativistic radiation, followed by a period with non-relativistic matter preeminence. In our Universe, the curvature density parameter is to small to yield a nominal e ect such that the subsequent phase (today) is dark energy-dominated. This recent epoch sees the formation of a rich structure of galaxies and clusters due to the gravitational force that drives the accumulation of matter in an elsewhere rather empty and expanding Universe. The following chronology is based on [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]; Wikipedia 2020).

At redshift Λ-m ≈ 0.3 ( ≈ 3.5 K), going backwards in time, the matter components took over and prepared the present structure formation. The rst stars were born at around ≈ 16 ( ≈ 46 K) which gave rise to the phase of reionization due to the intense radiation they emitted. The rst galaxies formed at = 11.1 ( = 33 K) [START_REF] Oesch | A Remarkably Luminous Galaxy at = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy[END_REF]. Prior to reionization, there were no light-emitting structures yet which led to the notion of the "Dark Ages". At these times, the Universe had cooled down enough to allow photons to travel long distances and in fact, the Universe was pervaded by a radiative background which would later form the CMB. The photons decoupled at around ≈ 1090 ( ≈ 3000 K) from the hot and dense plasma of baryonic and dark matter which itself began to recombine to neutral atoms. This epoch sees the formation of the cosmic web driven by the presence of dark matter that acts gravitationally and which reinforces the already existing density uctuations in the hot plasma.

The matter-dominated era passes into a phase of radiation supremacy at around ≈ 3600 ( ≈ 10 4 K). The high temperatures allowed for nuclear fusion to occur which ushers in the era of Big Bang Nucleosynthesis, producing light elements like hydrogen (∼ 75%), helium (∼ 25%) and negligible parts of lithium at around = 10 7 K -10 9 K. The predicted relative abundances of these elements can be tested against observational data from galaxies and provide yet another impressive con rmation of the standard hot Big Bang model, despite the yet unsolved discrepancy of the lithium abundance between measurements and predictions by a factor of 3 [START_REF] Coc | Primordial nucleosynthesis[END_REF]. Prior to this phase, the Universe was presumably and dominantly lled with leptons and neutrinos ( = 10 7 K -10 9 K). The decoupling of the latter species produced a cosmic neutrino background that is observable today (at least indirectly in the CMB patterns) [START_REF] Follin | A First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background[END_REF]. Aforetime, hadrons started to be produced as the Universe cooled down to temperatures of 10 10 K -10 12 K, and made up the dominant energy contribution before even lower temperatures prevented their production. The hadron epoch was preceded by the quark epoch during which the Universe's temperature of 10 12 K -10 15 K were too high to allow the formation of hadrons from the dense quark-gluon plasma that pervaded the Universe. The quark epoch had followed the phase of electroweak symmetry breaking that occured at ≈ 10 15 K and presented the end of the thermalization phase during which the rst particles interacted such that a thermal equilibrium was achieved. This era is denoted as the electroweak epoch and roughly encounters temperatures between 10 22 K and 10 29 K.

Physics prior to this epoch is still very speculative. The standard Hot Big Bang model assumes that the mentioned particles have been produced by a decaying real scalar eld that dominated the Universe during its very rst moments. This is the in aton eld, and the corresponding "in ationary" phase is claimed to provide answers to some of the open questions of the standard hot Big Bang model.

Problems of the Lambda-CDM Model

The ΛCDM model as presented above implies a number of odd results. One of these problems concerns the apparent isotropy of the CMB radiation which leads us to assume that CMB photons from any direction arriving today on Earth must have thermalized at earlier times, i.e., must have been in causal contact. To verify this assumption, we evaluate the angle between two points (photons) in the CMB radiation map that had the possibility to causally interact from the presumed beginning of the Universe until photon decoupling (last scattering) at ls ≈ (1 + ls ) -1 ≈ 10 -3 . Since photons follow null rays their maximal radial comoving distance ∆ they can cover equals the conformal time ∆ that has passed. Between an initial time = in and the time of last scattering ls , a photon could hence have covered the comoving distance (Baumann 2012)

∆ =∶ ph ( ls ) = ∫ ls in d ( ) = ∫ ls in d ( ) 2 (2.27)
which is precisely the particle horizon ph of a photon at ls , i.e., the maximal distance from where the photons can receive light signals given the Universe "begins" at = in . This corresponds to a physical distance = ls ⋅ ph ( ls ) at the time of last scattering. Two photons seperated by that distance at ls might have travelled towards us and the comoving distance they covered if they arrive today is (Baumann 2012) (2.28) which is the photon's event horizon eh ( 0 ), i.e., the maximal distance they could have traveled until today. The comoving particle and the event horizons can be computed explicitely using those two formulae and equation (2.24) assuming that we evaluate it before dark energy dominates. Using the parameters (2.25) shows that ph ≪ eh such that the small angle-approximation is valid in order to infer the angle through which we observe a formerly causally connected patch in the CMB map, namely [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]) (2.29) where we implicitely stated the standard formula for the angular diameter distance A . This corresponds to an angle of 1.1 • , and consequently a sky consisting of 4 0.019 2 ≈ 3 × 10 4 causally disconnected patches which seems implausible given the high degree of isotropy in the CMB map. A possible solution to this problem becomes apparent by rewriting the integral in equation (2.27) using the logarithm of the scale factor as,

eh ( 0 ) ∶= ∫ 0 ls d ( ) = ∫ 0 ls d ( ) 2 ,
Θ = A ∶= ph ( ls ) eh ( 0 ) ≈ 0.019 rad,
ph ( ls ) = ∫ ln ls ln in ( ) -1 d ln .
(2.30) Any process between the initial time in and last scattering that leads to a decreasing Hubble radius ( ) -1 (the comoving distance which particles can travel during the time

d d ln
) would increase the particle horizon and hence ease the causality problem which is also known as the horizon problem. This requirement can be achieved by a phase of accelerated expansion ̈ > 0 during which the scale factor grows by a factor with ∶= ln( e ) -ln( in ) being the number of efolds (Baumann 2012).

Another peculiarity of the ΛCDM model is the so-called atness problem which results from the present density parameter ( 0 ) being very close to the critical density cr . This means that the reduced density Ω( 0 ) ∶= ( 0 ) cr is very close to unity. In fact, this also implies that the density parameter Ω( ) must have been very close to unity throughout its entire history which seems a very ad hoc assumption given its diverse history. Since the actual density Ω( ) of the Universe at some previous moment in time < 0 di ers from the critical density Ω cr = 1 by the curvature term Ω( ) -1 =∶ Ω ( ) = ⋅ ( ) -2 with being constant, the critical curvature density at any time is given by [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

Ω ( ) = (Ω( 0 ) -1) ( 0 0 ) 2 ( ( ) ( )) 2 = (Ω( 0 ) -1) ̇ 2 0 ̇ ( ) 2 .
(2.31)

We evaluate this expression for the early radiation dominated Universe for which we have ̇ 0 ⋅ ̇ ( ) -1 ∼ ( ) ⋅ -1 0 according to Friedmann's equation. We consider the era of electroweak symmetry breaking as the rst phase of which cosmologists are relatively certain and assume that the scale factor was smaller by a factor 2.726 × 10 -29 as it is today such that Ω ( ew ) ≤ 7 × 10 -62 . This small value is di cult to reconcile with a cosmologist's idea of a "natural" cosmological parameter. From equation (2.31) it follows that a very large Hubble radius ( ) -1 ( in ) at some earlier time in provides a mean to allow for a larger value of Ω ( ew ). If succeeded by a phase with decreasing Hubble radius, this procedure provides a mechanism to have a very small density parameter at ew without choosing the value by hand.

Both the horizon and the atness problem pre gure a phase of accelerated expansion at earliest times during which the Hubble radius should decrease substantially. A similar mechanism has also been proposed regarding the so-called monopole problem which occurs when including a very early epoch of Grand Uni cation of forces (i.e., an early period at which the temperature was so high that the electroweak and the strong force were uni ed as the electronuclear force) . Such a phase would produce a high abundance of massive monopoles during symmetry breaking which in turn would imply a monopole density of at least 10 13 times the critical density today [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]. This is in obvious disagreement with cosmological data. As anticipated before, a long enough lasting period of accelerated expansion would dilute the monopole's number density such that it drops to only one monopole per present horizon scale. The current concordance model of cosmology invokes a real-valued scalar eld Φ with a potential energy (Φ) and which is able to drive a phase of such accelerated expansion.

In ation

The simplest in ationary model enriches the cosmic inventory by a real-valued scalar eld Φ ∈ Γ( 0 0 ℳ) with a quadratic potential and an action M given in equation (2.3). Assuming that the eld has been spatially homogeneous and isotropic on the constant cosmic time hypersurfaces, the action reduces to (Baumann 2012

) M [ ] = 1 2 ∫ d 3 ̇ ( ) 2 -2 ( ) 2 (2.32)
where we distinguish the time-dependent homogeneous and isotropic eld ∶ ℝ → ℝ from the generic space and time-dependent eld Φ. The principle of least action yields the stress-energy tensor by varying the action M with respect to the metric tensor . Comparing the resulting tensor to the standard stress-energy tensor of a perfect uid in the homogeneous and isotropic case (cf. equation (2.19)) yields an equation of state (Baumann 2012

) = = ̇ ( ) 2 -2 ( ) 2 ̇ ( ) 2 + 2 ( ) 2 .
(2.33)

The Raychaudhuri equation (2.20) for an in aton Universe indicates that a phase of accelerated expansion with ̈ > 0 requires that < -1 3

. In this case, we infer from equation (2.33) that the potential energy of the eld must dominate over the kinetic energy. In cosmology, it is common to use the so-called slow-roll approximation to guarantee a phase of accelerated expansion by assuming that ̇ 2 ≪ 2 2 such that ≈ -1. This corresponds to a dynamical phase with a large potential energy and a vanishing kinetic energy, hence the name "slow-roll". In such a case, the continuity equation for a perfect uid reduces to ̇ ≈ 0 and Friedmann's equation consequently yields a constant Hubble parameter such that

( ) = in ( -in ) .
(2.34)

Consequently, in ation generates a de Sitter-like expanding Universe, i.e., a Universe with a constant exponential expansion. To obtain a su cient amount of in ationary e-folds, this expansion must persist long enough. This requirement together with the rst slow-roll condition from above is usually expressed using the so-called slow roll parameters and (Baumann 2012)

∶= 4 ̇ 2 2 ≪ 1, ∶= ̇ ≪ 1 (2.35)
which should remain small and constant during in ation. Knowing that remains unchanged during in ation and that grows exponentially, the atness problem (2.31) gives an estimate on how many e-folds are necessary to outweigh the very small factor ( 0 0 ) 2 ( ( ) ( )) -2 ≈ 7×10 -58 which led to Ω ( ) ≤ 7 × 10 -62 . In particular, this requires the number of e-folds to be ≥ ln 10 29 ∕2.726 ≈ 66. An in ationary model which is capable of generating this number of efolds would as well solve the horizon and the monopole problem [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]. Providing such a phase of accelerated expansion was the motivating idea behind the in ationary model, and its simplicity gave the theory soon its present standing in the cosmological concordance theory.

Another important feature of the in ationary model is that it provides a natural mechanism to account for the observed large scale structure of the present Universe and the tiny perturbations in the CMB temperature map. The idea is to introduce very small perturbations of the in aton and the metric eld that are presumably caused by inhomogeneous quantum elds at earliest times. The homogeneous part of the in aton would stretch these perturbations to horizon scales while a suitable mechanism (e.g., decoherence [START_REF] Schlosshauer | Decoherence and the Quantum-To-Classical Transition[END_REF])) renders the perturbations classical. This would lead to the rich cosmic structure of our present Universe. Since these perturbations depend on both space and time coordinates they introduce a gauge arbitrariness due to the underlying di eomorphism invariance of general relativity.

Cosmological Perturbations

The basic idea underlying standard cosmological perturbation theory is on the one hand to assume that it is physically meaningful to foliate space time into certain spatial hypersurfaces Σ , ∈ ℝ, on which it is admissible to consider the cosmological elds as maximally symmetric, i.e., as homogeneous and isotropic. This corresponds to the assumptions of the cosmological principle, namely that the geometry of the Universe admits a purely spatially homogeneous and isotropic solution associated with a spatially homogeneous and isotropic matter content. On the other hand, cosmological perturbation theory allows for small inhomogeneities. This motivates the following split for any cosmological eld ( , ), = 1, 2, … , such as the components of the metric tensor or the scalar eld Φ [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF] ( , ) =∶ 0 ( ) + ( , ).

(2.36)

The rst contribution 0 ( ) is obtained by a maximal symmetry reduction of the total elds ( , ) (for example, the FLRW metric), and provides a solution for an actual spatially homogeneous and isotropic Universe. It is often assumed that the functions 0 result from a spatial averaging of the elds ( , ). By de nition, they depend only on time. The scale factor ( ) would be one example. The second part represents a small linear perturbation of the homogeneous and isotropic solution 0 . They are required to be small in the sense that ≪ 0 for any scalar component .

To be more precise, we introduce a set of perturbation elds of the metric and the scalar eld following the notation by Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] as we are going to make use of their results when it comes to gauge-invariant perturbation theory in chapter 9. Their notation di ers from the standard one, used for instance in the textbook by [START_REF] Peter | Primordial Cosmology[END_REF] and the article by [START_REF] Ma | Cosmological Perturbation Theory in the Synchronous vs. Conformal Newtonian Gauge[END_REF] but turns out to have advantages for the pursued Dirac analysis (the di erence basically consists in adding factors of ( ) and covariant derivatives at various places). It is useful to decompose the perturbations into its scalar, vector and tensor components with respect to three-dimensional rotations since at linear perturbative order the perturbations will decouple. The perturbed FLRW metric element then has the form

d 2 = -( 0 + 3 ( , )) d 2 + 2 2 ( ( , ) + ( , )) d d (2.37) + 2 (1 + ( , )) h0 + 6 - h0 3 ∆ ( , ) + 2 √ 6 ( , ) + 4 √ 3 ( ) ( , ) d d
where ∆ ∶= is the Laplace-Beltrami operator on the spatial hypersurface. It includes a lapse perturbation , the shift perturbation and the spatial perturbation elds and in the scalar sector. The vector perturbations are incorporated in the shift vector by the function and in the spatial metric by . The tensorial perturbations are denoted by . The matter scalar eld splits up into a homogeneous and an inhomogeneous part according to Φ( , ) =∶ ( ) + ( , ).

The choice of eld degrees of freedom in this representation is obviously redundant as the number of variable elds is higher than the number of physical elds (recall that the metric tensor has a totality of only two physical degrees of freedom), ergo there is a gauge choice to be made. One possibility is to set several of the elds equal to zero which is particularly convenient when a choice of spatial hypersurfaces is physically prescribed and xed. If the possibility of coordinate (or rather gauge) transformations should be kept open and in order to prevent ctitious unphysical perturbations when changing the gauge, it is advisable to introduce a set of gauge-invariant perturbation variables. Regarding the tensor sector, is already gauge invariant. In the scalar sector, the real-valued Mukhanov-Sasaki eld represents the standard choice for a gauge invariant eld [START_REF] Kodama | Cosmological Perturbation Theory[END_REF][START_REF] Mukhanov | Quantum Theory of Gauge Invariant Cosmological Perturbations[END_REF][START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF] ∶= -̇ ( -∆ ) .

(2.38)

For the time being, we omit the discussion of the vector perturbations as they are not relevant for our later results. The remaining scalar functions and associated with lapse and shift perturbations are Lagrange multipliers and can hence be chosen arbitrarily. Knowing the evolution of the remaining dynamical elds will allow to relate the primordial perturbations to the matter and CMB uctuations today.

Evolution of Perturbations

The dynamics of the physical perturbation elds result from inserting the ansatz 0 + for the cosmological quantities into Einstein's equations. The latter will be written in shorthand notation as

Π[ ] ≡ Π [ , Φ] ∶= [ ] -8 [ , Φ] = 0 (2.39)
where the Einstein and stress-energy tensor are to be understood as functionals of and Φ. The standard cosmological reasoning goes as follows [START_REF] Mukhanov | Theory of cosmological perturbations[END_REF]):

1. Expand Einstein's equations in a functional power series in about the background 0 [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF])

Π[ 0 ] + Π, [ 0 ] + 1 2 Π, [ 0 ] + ( 3 ) = 0 (2.40)
where ( 3 ) subsumes any contribution of third or higher order in the perturbative elds, and a comma stands for the derivative with respect to the perturbative eld.

2. Assume that the homogeneous and isotropic elds 0 solve Einstein's equations such that Π[ 0 ] = 0 holds true independently of the remaining perturbative expressions.

3. Assuming that quadratic and higher perturbative terms are negligible compared to the linear ones, and that the Friedmann equations from the previous step are satis ed, the linearized equations of motion for the cosmological perturbations read

Π, [ 0 ] = 0.
(2.41)

Insert the solutions of the homogeneous Friedmann equations into equation (2.41) and solve for the perturbative degrees of freedom. The result is a set of second order di erential equations (2.42) for the perturbations that depend (non-linearly) on the ( xed) "background" Friedmann solutions.

4. Omit any higher order contributions of the perturbed Einstein equations.

Following this procedure, it is straightforward, although lengthy, to derive the concrete form of the perturbative equations of motion (2.41), and we therefore refer to the seminal work by [START_REF] Mukhanov | Theory of cosmological perturbations[END_REF]. For stating the results, we note that the tensor perturbations carry only two independent degrees of freedom corresponding to their two polarizations and we label these elds by ± . Besides, it is convenient to use the conformal time parameter instead of cosmic time , and the time-dependent function ∶= ̇ where is the Hubble parameter. This gives the three di erential equations for the Mukhanov-Sasaki eld and the two tensor polarizations ± (also known as gravitational waves):

d 2 d 2 -∆ + 1 d 2 d 2 = 0, d 2 ± d 2 -∆ + 1 d 2 d 2 ± = 0. (2.42)
Both equations resemble the standard Klein-Gordon eld equations with a time-dependent mass, and they di er precisely in the form of this mass term. Without loss of generality, let us focus on the case of the scalar modes here.

Before we continue with the solutions, let us note that instead of deriving the equations of motions for the (scalar) perturbations by inserting the perturbed elds into Einstein's equations, one can start with the action functional of the gravity-matter system and insert the perturbed elds at this level. The part of the action associated with the perturbative Mukhanov-Sasaki variables is given by the second order matter action [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF])

M [ ] 2 = 1 2 ∫ d 3 ( ) 2 + ∆ + (2.43)
where the prime denotes a derivative with respect to conformal time . The corresponding Hamil-tonian obtained by a Legendre transformation with canonically conjugate momentum

∶= ℒ M 2 = of is given by M 2 = 1 2 ∫ d 3 2 + -∆ + (2.44)
where ℒ M 2 is the Lagrange density associated with the second order perturbative action M 2 . The transition to a Hamiltonian description is most useful since the standard cosmological paradigm considers the perturbative elds as quantum elds at earliest times (on a cosmological classical background), and hence the procedure makes it possible to directly perform a canonical quantization. Therefore, one imposes the standard eld commutation relations evaluated for two smearing elds 1 , 2 ∈ ( ):

[ ( 1 ), ( 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 pert , (2.45)
and all other commutators are vanishing. The quantum elds and belong to the algebra of quantum elds

. The commutator de ned on this algebra obviously acts on the only dynamical degrees of freedom -the perturbative elds. The angle brackets denote the inner product of the function space ( ) and 1 1 1 pert denotes the one of the perturbative eld operator algebra. We will review the basics of QFT on CST in chapter 4 in more detail.

In order to gain insights into the structure of solutions, it is useful to use standard annihilation and creation operators and * which are linear functions of the canonical eld operators. These are usually introduced by expanding the canonical elds with respect to a mode basis, i.e., a set of normalized solutions to the classical eld equations (2.42) [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]. Since the underlying FLRW space time is conformally static, time and space variables can be separated in a suitable ansatz function for the solutions. In the spatially at case, the solutions of the spatial equation are the standard plane waves labeled by the wave vectors ∈ ℝ 3 (Fulling 1989). For simplicity, we will omit spatial indices for the coordinates and the wave vectors and denote products simply by =∶ .

The temporal solutions of the eld equations are the corresponding Fourier modes ( ) which obey a standard oscillator equation with time-dependent frequency 2 = 2 -1 d 2 d 2 , see equation (2.47). Since the di erential equation is of second order, there are two independent solutions for every 2 associated with and -. Hence, the quantum eld can be decomposed according to (Baumann 2012)

( ) = ∫ ℝ d 3 (2 ) 3∕2 ( ) ̌ -+ * ( ) ̌ (2.46)
where we introduced the spatial smearing function ∈ ( ) and its Fourier transform ̌ ∈ ( ).

Besides, ∶ ℝ → ℂ is a complex-valued function and the bar denotes complex conjugation.

The * denotes the adjoint of . Note that this map actually underlies a representation map and we will be more precise in chapter 4 but remain here with the standard proceeding in cosmology. Besides, we used that for a real-valued scalar eld ( , ), the mode functions satsify ( ) = -( ). Then, the temporal mode functions ( ) must satisfy (Baumann 2012)

d 2 d 2 + 2 - 1 d 2 d 2 = 0 (2.47)
as well as the (Wronskian) normalization condition (Baumann 2012)

( ) -( ) = 2 .
(2.48)

Then, the standard commutation relations for the annihilation and creation operators have the only non-vanishing commutator

[ ( 1 ), * ( 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 pert (2.49)
where the smearing functions 1 and 2 are chosen as above. We emphasize that in this picture, the quantum elds carry the time dependence while the states of the theory are de ned to be time-independent. This is the Heisenberg picture, commonly used in cosmological applications.

Later on, we will also use the Schrödinger picture in which the states are time-dependent, not the operators.

Having de ned the annihilation and creation operators by means of their commutation relations, one can construct an appropriate Hilbert space (for example a Fock space). The vacuum state Ω is de ned as the state that is annihilated by any of the annihilation operators, i.e., ( )Ω = 0, ∀ ∈ ( ), and any excited state can be constructed by an appropriate application of creation operators on the vacuum. However, the physical content of the theory and the physical interpretation of the states becomes clear only after xing the mode functions [START_REF] Mukhanov | Introduction to Quantum E ects in Gravity[END_REF]. In fact, a di erent choice of normalized mode functions that is related to the 's and * 's by a simple linear transformation

= + , , ∈ ℂ ∀ ∈ ℝ 3 , 2 -2 = 1 (2.50)
gives rise to a new set of annihilation and creaction operators given by

= - * -, * = * - -.
(2.51)

The linear coe cients and are known as the Bogoliubov coe cients [START_REF] Bogoliubov | On a new method in the theory of superconductivity[END_REF]. One can easily deduce that the mean density of particles of the -representation in the vacuum state of the -representation is given by, ∫ d 3 2 [START_REF] Mukhanov | Introduction to Quantum E ects in Gravity[END_REF]. This density is only nite if 2 decays faster than -3 for large . If this is not the case the Bogoliubov transformations are not well-de ned and it is not possible to express the one vacuum state by means of excited states in the other representation.

All the choices of mode functions are a priori equivalent, or rather, there is no preferred choice of mode solutions inherently given by the theory. However, in order to make physical predictions or to compare to physically relevant results, it is of course vital to choose a certain representation, i.e, a set of mode functions. As seen above, this choice is tantamount to a choice of vacuum and correspondingly excited states. Unfortunately, in general curved space times, there is no preferred choice of normalized mode functions, and hence no preferred vacuum state. The notion of a preferred vacuum state is only available in highly symmetric situations. For example in Minkowski space time, the Poincaré symmetries unambiguously x such a set of mode functions for a quantum eld with a certain mass which is hence associated with a physical vacuum state (namely the state that is invariant under Poincaré transformations) and the corresponding excited particles. Note that the vacua for elds with di erent masses remain unitarily inequivalent even in this highly symmetric scenario. Similarly, in de Sitter space time the Bunch-Davies vacuum is the physically preferred vacuum state for a matter quantum eld of a certain mass. In general curved space times, possibly without any symmetries, such a criterion is missing, and hence, the choice of mode functions is ambiguous. There are however certain physically reasonable criteria that allows one to choose a set of mode functions rather than others.

One possibility is to x an "instantaneous" vacuum state for some particular time = 0 [START_REF] Mukhanov | Introduction to Quantum E ects in Gravity[END_REF]. The idea is to x the initial conditions for a set of mode functions with respect to which the Hamilton operator has a minimal expectation value in the corresponding vacuum state. These initial conditions are given by ( 0 ) = ( 0 ) -1∕2 exp( ( 0 )) and ( 0 ) = ( ) ( 0 ) where ( 0 ) ∈ ℝ is a free parameter. Hence, this prescription does not x the freedom in the initial conditions completely. In the case that 2 ( 0 ) < 0, such an instantaneous vacuum does not exist. Besides, the instantaneous vacuum at any other time 1 ≠ 0 will be di erent from the one at 0 .

Another useful notion of the vacuum is available in space times with a slowly changing gravitational eld, more precisely, when the frequencies ( ) are varying slowly. The construction of these so-called adiabatic vacuum state relies on a WKB approximation for the ansatz solutions of the mode functions accordingly given by [START_REF] Parker | Quantized elds and particle creation in expanding universes. I[END_REF])

( ) = 1 √ ( ) exp ∫ 0 d ( ) , (2.52) 
and which must obey the mode equations of motion (2.47). One expands in powers of the small parameter ( ) -1 where is a xed time interval within which and all its derivatives do not vary substantially. This gives a perturbative scheme for determining the adiabatic mode functions and their initial values ( 0 ) and ( 0 ). It was shown that the adiabatic states of fourth order in this perturbative scheme can regularize the stress-energy tensor of the free theory and are thus physically reasonable states [START_REF] Lindig | Not all adiabatic vacua are physical states[END_REF]) (we will be more precise on this topic in chapter 4). We point out that similar to the instantaneous vacuum state, the adiabatic vacuum states depend on the precise choice of an initial time 0 , and are thus still ambiguous. Finally, we mention that [START_REF] Agullo | Preferred instantaneous vacuum for linear scalar elds in cosmological space-times[END_REF] have introduced another notion of a preferred instantaneous vacuum state for FLRW cosmologies for which every Fourier mode makes a vanishing contribution to the adiabatically renormalized stress-energy tensor. Here as well, the vacuum choice depends on the moment 0 at which the initial conditions are set.

In short, due to the lack of symmetries in general curved space times, it is simply not possible to x a particular vacuum state. Since one is free to choose a coordinate system, it is impossible by principle to have a physically unambiguously preferred vacuum. As mentioned above, there are however situations in which one can relate the states of one representation with the states of another representation. In many cases, this fails namely when the mean density of one particle species, in the other vacuum is in nite. This problem will also occur in the quantum eld theories we have in mind, and we will come back to this issue in chapters 4, 8 and 9.

Power Spectrum

Coming back to the standard cosmological model starting with the semiclassical picture of cosmological quantum perturbations on a classical homogeneous background, it is generically assumed that these perturbations are stretched during the cosmic expansion and evolve into today's large scale structure. During this process, the perturbations become classical, possibly by a process of decoherence. In order to compare the theoretically predicted scalar perturbations that obey the above equations of motion with observations, it is necessary to compute a statistically relevant measure of these perturbations as it is impossible to trace back the exact evolution of the perturbations starting with some speci c initial conditions. A well-suited and simple tool are the power spectra of the scalar (and tensor) perturbations [START_REF] Durrer | The Cosmic Microwave Background[END_REF][START_REF] Piattella | Lecture Notes in Cosmology[END_REF], that directly depend on the mode amplitudes of the perturbations. In case of Gaussian random uctuations, this statistical measure is indeed su cient to reproduce all the statistical information contained within the perturbative elds (it relies on computing the two-point functions). The power spectrum is given by (Baumann 2012) (2.53) and the amplitude of the modes is to be extracted at the end of in ation. The initial conditions for the quantum elds are set at the beginning of in ation at which point the Universe is expected to be in an almost de Sitter state. Moreover, at su ciently early times, all modes of cosmological interest are presumably well inside the cosmological horizon, i.e., 2 ≫ ∕ . One can hence disregard the time-dependent potential term in the mode equations of motion, which gives rise to a quantum eld in Minkowski space time. Consequently, the cosmological paradigm sets Minkowski initial conditions for the perturbative elds which give rise to a unique and wellde ned vacuum state. These initial conditions are then evolved according to a simpli ed mode equation of motion in de Sitter space (the modes can leave the horizon during in ation).

∆ 2 ( ) = 3 2 2 2 ,
The mode amplitudes at the end of in ation then serve to compute the primordial power spectrum. This spectrum in turn gives the initial conditions for the equations of motion that govern the evolution of the cosmological perturbation during its later history up to the present date. The evolution underlies a coupled set of Boltzmann equations of the di erent matter species present during the various stages of the cosmic history. Analytical investigations of this evolution are too complex but there are a range of cosmological numerical codes that allow to trace the evolution of the matter species during these times, e.g., the Cosmic Linear Anisotropy Solving System (CLASS) [START_REF] Blas | The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes[END_REF][START_REF] Lesgourgues | The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview[END_REF]. These codes generate the late-time angular power spectrum that can be compared to the observable traces of, for example the CMB Temperature anisotropies (or rather its two point correlators), see Figure 2.2. 

Problems and Inconsistencies

In the following section, we examine the open questions and problems inherent to the standard concordance cosmological model as outlined before. We note that this section coincides in large parts with segments of reference (Schander and Thiemann 2021).

The ΛCDM concordance model based on the pillars of the Standard Model of particle physics and general relativity has shaped our current view of the Universe, and has been the driving force behind many of the breakthroughs of modern cosmology, for example the prediction and the discovery of the CMB radiation (Aghanim et al. 2020a,b;Alpher and Herman 1948a,b;Gamov 1948a,b;[START_REF] Penzias | A Measurement of excess antenna temperature at 4080-Mc/s[END_REF]. Modelled by only six parameters (Aghanim et al. 2020b;Spergel 2015), it features an impressive simplicity while correctly predicting and tting large parts of the existing cosmological data (Aghanim et al. 2020a,b).

As we have seen, one of the most important assumptions within the ΛCDM paradigm is that the Universe is almost spatially homogeneous and isotropic in a statistical sense. Within the standard ΛCDM model, small inhomogeneities on any scale smaller than the observable Universe are presumed to evolve following the underlying FLRW background structure, but conversely their presence does not a ect the global FLRW evolution. More precisely, it is assumed that e ects from the small scale inhomogeneities onto the largest scales can be neglegted, i.e., there is no substantial backreaction. Doubts regarding the simplistic nature and the question of backreaction have gained momentum in recent years. In fact, the ΛCDM model, as appealing it may be, leads to the conclusion that approximately 69% of the energy budget of our Universe consists of a yet unknown uid, dubbed "dark energy" (Aghanim et al. 2020b), and which drives the very recent accelerated expansion of the Universe [START_REF] Peebles | The Cosmological Constant and Dark Energy[END_REF][START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF][START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF]. Most of the remaining 31% of the energy budget is credited to another yet unknown form of cold "dark" matter (Aghanim et al. 2020b;[START_REF] Blumenthal | Formation of Galaxies and Large Scale Structure with Cold Dark Matter[END_REF][START_REF] Peebles | Large-sclae background temperature and mass uctuations due to scaleinvariant primeval perturbations[END_REF]) which provides an explanation for the characteristic rotation and motion of the remaining 6% of ordinary matter in the Universe. In summary, we are faced with the problem that we are literally in the dark about 94% of the energy and matter content of the observable Universe.

We emphasize that the creativity of researchers in terms of possible solutions to these two problems seems almost inexhaustible. On the dark matter front, weakly interacting massive particles (WIMPs) are among the most famous candidates but none of the proposed solutions could yet be detected [START_REF] Bertone | History of dark matter[END_REF]. Another proposal is that dark matter is constituted (partly) by primordial black holes (Carr and Kühnel 2020;[START_REF] Carr | Black Holes and WIMPs: All or Nothing or Something Else[END_REF]. Regarding dark energy, the simplest explanation could be a fundamental energy of space apparent through the cosmological constant Λ while for example the existence of an additional dynamical eld (the "quintessence") would provide another answer [START_REF] Ratra | Cosmological consequences of a rolling homogeneous scalar eld[END_REF]. But long story short -we still don't know the answer.

In recent years, these conceptual problems have been accompanied by tensions in the estimates of certain cosmological parameters as made by di erent collaborations (Di Valentino et al. 2021a,c;[START_REF] Pesce | The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints[END_REF]. The evaluation of the Hubble constant 0 as performed by the Planck collaboration (explicitely assuming a ΛCDM model) gives a value of 0 = (67.27 ± 0.60)km∕(s ⋅ Mpc) (Aghanim et al. 2020b) while the SH0ES collaboration nds 0 = (74.03±1.42)km∕(s⋅Mpc) [START_REF] Riess | Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM[END_REF]) which in turn is based on the measurements of the Hubble Space Telescope, see also Figure 2.3. This leads to a tension at the 4.4 -level (Di Valentino et al. 2021c). While others [START_REF] Efstathiou | A Lockdown Perspective on the Hubble Tension (with comments from the SH0ES team)[END_REF][START_REF] Freedman | Measurements of the Hubble Constant: Tensions in Perspective[END_REF] claim that this tension can be alleviated by a careful analysis of the late time cosmological measurements, there is no consensus within the research community about this question.

Furthermore, the estimate of the parameter 8 , a measure for the matter energy density Ω m and the amplitue of structure growth 8 , is subject to similar but less stringent discrepancies (see Figure 2.3). Its value as determined by the Planck collaboration (Aghanim et al. 2020b) and other low-redshift measurements [START_REF] Heymans | KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints[END_REF]) is in tension above the 2 -level (Di Valentino et al. 2021a). There are also numerous proposed solutions for this problem, some of them adding further content to the model of the early Universe [START_REF] Valentino | In the Realm of the Hubble tensiona Review of Solutions[END_REF], others claim that the systematic uncertainties related to the Cepheid color-luminosity calibration prevents us from correctly measuring 0 at late times [START_REF] Mortsell | The Hubble Tension Bites the Dust: Sensitivity of the Hubble Constant Determination to Cepheid Color Calibration[END_REF]. Interestingly, [START_REF] Krishnan | Does Hubble Tension Signal a Breakdown in FLRW Cosmology?[END_REF] propose that the Hubble tension indicates a possible breakdown of the FLRW model and possibly the assumption of an isotropic Universe.

Indeed, it has been claimed, inspired by the work of [START_REF] Ellis | On the expected anisotropy of radio source events[END_REF] that even the assumption of the cosmological principle should be questioned according to the evaluation of measurement data of the preliminary CatWISE quasar catalogue [START_REF] Eisenhardt | The CatWISE Preliminary Catalog: Motions from WISE and NEOWISE Data[END_REF]). More precisely, [START_REF] Secrest | A Test of the Cosmological Principle with Quasars[END_REF] assert that our peculiar velocity with respect to these quasars is di erent from the peculiar velocity of the CMB, and hence the kinematic interpretation of the CMB dipole is rejected with a -value of 5 × 10 -7 , or put otherwise, is in 4.9 tension with observations. Similar conclusions were already drawn by [START_REF] Colin | Probing the anisotropic local universe and beyond with SNe Ia data[END_REF]. On the other hand, [START_REF] Stahl | Peculiar-velocity cosmology with Types Ia and II supernovae[END_REF] nd results inferred from measurements of recent supernovae of types Ia and II consistent with the Planck results and the ΛCDM model. Furthermore, in [START_REF] Bullock | Small-Scale Challenges to the ΛCDM Paradigm[END_REF][START_REF] Del Popolo | Small scale problems of the ΛCDM model: a short review[END_REF], it is argued that the concordance model comprises also severe problems on the smallest scales which are re ected in discrepancies between the ΛCDM model and observations. For example, the cores of many dark matter dominated galaxies are less dense and cuspy than predicted by the ΛCDM paradigm.

These pressing open questions on the observational side and the growing tensions between di erent parameter estimates indicate that there might be some fundamental problems in our understanding of modern cosmology and the theoretical models underlying it. Indeed, the criticism of many aspects of the ΛCDM model is growing louder in recent years. Many of the objections concern the in ationary paradigm that was introduced to solve some of the initial problems of the standard cosmological model. In particular, in ation was introduced to solve the monopole, the atness and the horizon problem. Regarding the monopoles, one could however argue that there are simply no monopoles -in fact, we do not have observational evidence for a process that produces a high abundance of monopoles at earliest times. Hence, a natural proposal for explaining the non-existence of monopoles in the Universe is simply to assume that there haven't been any in the rst place.

Regarding the ne tuning problems, one could argue that our discomfort to assume a very tiny value for the curvature density at earliest times is rather an aesthetic problem than a physical one. Nature could simply choose a large range of initial conditions -why should all the cosmological parameters be close to one? Finally, it is often claimed that in ation solves the problem of initial conditions in the sense that it provides a natural explanation for why our Universe has been almost homogeneous and isotropic throughout its history (the horizon problem). While in ation provides indeed a formalism for having causally connected patches in all directions of the sky at earliest times, it certainly does not ease the ne-tuning problem. More precisely, one needs a very speci c set of parameters within the in ationary model for obtaining a long enough lasting phase of in ation and for producing the right amplitudes of the scalar density power spectrum [START_REF] Adams | Constraints on the scalar-eld potential in in ationary models[END_REF][START_REF] Ijjas | Implications of Planck2015 for in ationary, ekpyrotic and anamorphic bouncing cosmologies[END_REF].

Moreover, an analysis of the standard Liouville phase space measure for cosomological models shows that single eld in ationary models with large numbers of in ation (e.g., ≥ 60) are exponentially suppressed [START_REF] Gibbons | The Measure Problem in Cosmology[END_REF][START_REF] Penrose | Di culties with in ationary cosmology[END_REF]. This fact can be related to the requirement that in ation requires a long lasting phase of potential energy dominance which is hard to attain [START_REF] Ijjas | Implications of Planck2015 for in ationary, ekpyrotic and anamorphic bouncing cosmologies[END_REF]. Eventually, we mention that already according to the Planck 2015 data release, many of the in ationary scalar eld models have been experimentally excluded. While the Gaussian nature of the CMB perturbations eliminates the rather complex in ationary models and favors the single eld models, the Planck 2015 data disfavors the single eld models [START_REF] Ijjas | Implications of Planck2015 for in ationary, ekpyrotic and anamorphic bouncing cosmologies[END_REF].

In either case, none of the known Standard Model particles and elds seem to resemble the postulated in ationary eld or to give a hint regarding its origin. The only yet detected scalar eld currently included in the Standard Model is the Higgs boson but in order to provide a long enough lasting in ationary phase at early times, the eld would be required to be non-minimally coupled to gravity [START_REF] Bezrukov | The Standard Model Higgs boson as the in aton[END_REF].

Another criticism that is raised regarding the standard cosmological model both without and with an in ationary phase concerns the inherent singularities predicted by the theory. In fact, classical general relativity presumes that for an expanding Universe lled with ordinary matter the Universe encounters a "Big Bang" singularity with in nite density when going backwards in time [START_REF] Hawking | The Development of Irregularities in a Single Bubble In ationary Universe[END_REF]. Furthermore, [START_REF] Borde | In ationary space-times are incomplete in past directions[END_REF] have shown that also in ationary Universes are past-incomplete, and thus encounter the same singularity issues. It is claimed that these singularities predict the theory's own breakdown and should be avoided.

Despite these criticisms and the existing data, the theory of in ation remains an active eld of research. On the other hand, many new proposals suggest to replace the in ationary paradigm by other cosmic scenarios such as bouncing cosmologies [START_REF] Brandenberger | Bouncing Cosmologies: Progress and Problems[END_REF][START_REF] Cai | Exploring Bouncing Cosmologies with Cosmological Surveys[END_REF][START_REF] Novello | Bouncing Cosmologies[END_REF]. A wide variety of such bouncing approaches are being pursued, some of them are motivated by purely classical theories, e.g., (Ijjas and Steinhardt 2019) while others rely on quantum mechanical approaches to the early Universe, e.g., (Ashtekar, Pawlowski, and P. Singh 2006a).

While these approaches attempt to replace the almost homogeneous and isotropic in ationary paradigm using a variety of di erent approaches, most of them adhere to linear cosmological perturbation theory assuming that the test eld perturbations propagate on a xed (possibly quantum) cosmological background. In these models, the perturbations do not backreact on the cosmological homogeneous degrees of freedom, i.e., they do not alter the global evolution of the Universe. Such possible backreaction e ects are neglected in most of the cosmological approaches, both for models of the late time Universe as well as for the early Universe. In view of the existing data situation and the growing discrepancies within the cosmological standard model, it seems however very timely to reassess the question of backreaction. Furthermore, as the 0 -tension might point to discrepancies of our concordance model in the very early Universe, it is important to further examine and understand theories of quantum gravity -of course coupled to matter. As explained in the introduction, a particularly interesting endeavor would be to consider the semiclassical limit of a quantum cosmological scenario (i.e., nding a QFT on a cosmological CST), or more generically, to nd (approximate) quantum solutions within such a theory of quantum cosmology with quantum matter. This requires an understanding of the inter-and backreaction of such quantum models.

Hence, in our view the question of backreaction is one of the most obvious and pressing ones as it examines not only one of the most important assumptions of modern cosmology (i.e., that cosmological backreaction can be neglected) but it also allows to approach the true quantum solutions of coupled gravity-matter systems. To investigate this question, no exotic new physics is needed (in the rst place) but only the appropriate mathematical tools. The formalism employed to study this question in this thesis will also provide the means to analyze the semiclassical limit of such theories.

Therefore, in chapter 3 we rst review the existing approaches to the problem of backreaction for the late time classical Universe. Chapter 4 examines the question of backreaction in semiclassical approaches to cosmology. In chapter 5, we revise the existing approaches to including backreaction in quantum mechanical approaches to cosmology. The remainder of this thesis will focus on one speci c and new proposal for including purely quantum mechanical backreaction which relies on a very exible and suitable formalism relying on the Born-Oppenheimer approach, and which we adapt for an application to quantum cosmological perturbation theory.

Classical Cosmological Backreaction

The previous chapter has underlined that the concordance ΛCDM model, despite its achievements, comes with many (often unstated) assumptions. One of them is the conjecture that cosmological backreaction is negligible, i.e., the assumption that any phenomenon related to the e ects of cosmological inhomogeneities on the global or macroscopic evolution of the Universe can be ignored. In this chapter, we analyze the underlying problems that could arise due to neglecting such backreaction in purely classical approaches to cosmology, and provide an overview of the ideas discussed in the literature.

The topic is of course multifaceted and includes various aspects that require di erent methods and answers. An analysis of all the proposed approaches is beyond the scope of this work, and we therefore focus on the most relevant and most discussed ideas. Owing to the di erent physical situations, it is useful to distinguish between backreaction that occurs in the early and the late time Universe. Hereby, "late" refers to times after the decoupling of matter and radiation, whereas "early" studies encompass the in ationary Universe including the reheating phase. We start with a discussion of backreaction during the recent eras in cosmology and work our way back to the e ects of backreaction in the early Universe. The former approaches rely on purely classical models of the late time Universe while some of the latter schemes (but not all) are based on quantum eld theories on curved space times. The approaches based on quantum eld theories will be the topic of the next chapter.

As far as it stands, there is no consensus on the question of backreaction, and results depend on the underlying physical model as well as on the averaging procedure being chosen. Our discussion of the late and early Universe backreaction e ects in the following relies mainly on (but is not limited to the works by) [START_REF] Bolejko | Inhomogeneous cosmology and backreaction: Current status and future prospects[END_REF], [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF], [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]Paranjape (2012), and references therein. A similar but shorter discussion of the topic can also be found in (Schander and Thiemann 2021), and certain parts of this paper coincide with parts of this section. The remainder of this thesis examines the question of backreaction in the very early Universe, where quantum e ects for di erent parts of the cosmological system are presumed to play a role.

Backreaction in the Late Time Universe

To understand the issue of backreaction, it is useful to make a distinction between a truly spatially homogeneous and isotropic Universe, and a Universe which is only statistically homogeneous and isotropic (such as ours). In the rst case, the geometric quantities of the theory as well as the matter content of the Universe reduce to FLRW form: the metric tensor can be parametrized by the scale factor ( ) and the matter content may be described by a spatially homogeneous and isotropic eld or uid. The Friedmann equations provide the corresponding equations of motion. In the case of a statistically homogeneous and isotropic Universe, there are inhomogeneities and obviously, the physical geometry and matter content fail to be well represented by an FLRW Universe. Nevertheless, it is reasonable to ask whether the ΛCDM model provides a good t to the true lumpy Universe on its largest scales. This is the question underlying the " tting problem" in cosmology [START_REF] Ellis | The ' tting problem' in cosmology[END_REF], namely to de ne a suitable homogeneous and isotropic model with suitable cosmological parameters that t well cosmological observations. One possibility to make progress with regards to the tting problem is to derive global quantities such as a global expansion parameter. For example, one could identify spatial hypersurfaces in space time and compute spatial volume averages of the local expansion rate. These averaged quantities however do not in general obey the Einstein equations (or the Friedmann equations) because the averaging process does not commute with evaluating the Einstein tensor [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. This is due to the non-linearity of Einstein's equations and can heuristically be understood as follows (Paranjape 2009): The Einstein tensor [ ] depends on derivatives of the Levi-Civita connection Γ associated with the metric as well as on its square Γ 2 . Given an appropriate de nition of spatial hypersurfaces in space time, an averaging over spatial volumes yields contributions ⟨Γ 2 ⟩ to the averaged Einstein equations while the matter content is described by the averaged stress-energy tensor ⟨ ⟩ . In contrast, the Friedmann equations depart from the averaged metric tensor ⟨ ⟩ and are assumed to have the form, 8 ⟨ ⟩ ≡ [⟨ ⟩] ∼ ⟨Γ⟩ 2 . The rst equality is hence an assumption! The true equations of motion valid on the averaging scale contain (a priori) non-vanishing contributions of the form (Paranjape 2012)

[⟨ ⟩] = 8 ⟨ ⟩ + ∼ 8 ⟨ ⟩ + ⟨Γ⟩ 2 -⟨Γ 2 ⟩ (3.1)
where it was assumed that the Einstein equations hold for the inhomogeneous metric on the smallest scale where they have been excellently checked. The e ects of backreaction have been stored into the additional e ective stress-energy tensor .

The resulting equations and quantities obviously depend heavily on the concrete averaging procedure, the assumed matter content and on how inhomogeneities are built into the model. Likewise, the results range from negligible deviations from the assumed ΛCDM evolution to major changes of the theory such as works that aim at explaining the recent accelerated expansion of the Universe by backreaction [START_REF] Buchert | On average properties of inhomogeneous uids in general relativity. II. Perfect uid cosmologies[END_REF][START_REF] Heinesen | Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature[END_REF].

The following sections provide a short overview of some of the relevant contributions, starting with approaches that focus on purely non-perturbative situations, then restricting to the manifestly perturbative methods, and continuing with an explicit consideration of numerical results. As advertised, we nish with an overview of classical backreaction in the early Universe.

Non-Perturbative Techniques

One possibility to quantify backreaction is to average a given inhomogeneous geometry and to compare the result to a purely homogeneous and isotropic solution to Einstein's equations. In a general relativistic setting, this problem was rst considered by and, e.g., by considering the backreaction of gravitational waves on a slowly varying background [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. The seminal work by [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF] transferred these ideas to cosmology, and in the sequel, many authors have proposed avenues to its solution among which [START_REF] Anastopoulos | Gravitational backreaction in cosmological spacetimes[END_REF], [START_REF] Carfora | A Renormalization group approach to relativistic cosmology[END_REF], [START_REF] Futamase | Averaging of a locally inhomogeneous realistic universe[END_REF], [START_REF] Kasai | Construction of inhomogeneous universes which are Friedmann-Lemaitre-Robertson-Walker on average[END_REF], [START_REF] Mustapha | Shrinking 2. The Distortion of the area distance redshift relation in inhomogeneous isotropic universes[END_REF][START_REF] Zotov | Averaging Einstein's Equations[END_REF][START_REF] Zotov | Averaging Einstein's Equations[END_REF] in the non-perturbative regime (Paranjape 2009).

One challenge is to de ne a proper averaging mechanism for generic tensor elds since tensors at di erent space time points cannot simply be compared one to another in a curved background [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. A second issue is that a proper averaging procedure requires some information about the correct solution of geometry right from the beginning which is in most cases not available. In fact, one needs to choose physically reasonable spatial hypersurfaces to perform the averaging.

One of the most prominent approaches to a background independent averaging procedure was introduced by [START_REF] Buchert | On average properties of inhomogeneous uids in general relativity. II. Perfect uid cosmologies[END_REF][START_REF] Buchert | On average properties of inhomogeneous uids in general relativity. II. Perfect uid cosmologies[END_REF], and is based on building spatial averages of scalar elds in inhomogeneous cosmologies. To illustrate the procedure, let us focus on late time cosmological situations using a pressureless vorticity-free dust as the matter content and comoving coordinates such that the equal-time hypersurfaces coincide with the matter rest frame. The gradient of the dust 4-velocity can be expressed in terms of the volume expansion rate and the shear tensor using the decomposition [START_REF] Buchert | Backreaction in late-time cosmology[END_REF])

∇ =∶ 1 3 ℎ + . (3.2) 
The spatial average of a scalar eld ( , ) over a spatial region is de ned with the induced spatial metric ℎ as

⟨ ⟩ ( ) = 1 ∫ d 3 √ ℎ ( , ). (3.3) 
Since taking a time derivative does not commute with spatial averaging in this formalism (Clarkson, [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF] the averaging of the Einstein eld equations yields an additional kinematical backreaction term in the Raychaudhuri equation for the volume scale factor

∝ 1∕3 3 ̈ + 4 ⟨ ⟩ = Λ + , ∶= 2 3 ⟨ 2 ⟩ -⟨ ⟩ 2 -2⟨ 2 ⟩ . (3.4)
Note that structure formation and clustering in the late Universe lead to an increasing variance of the expansion rate, and hence to growing backreaction [START_REF] Buchert | Backreaction in late-time cosmology[END_REF]. If the backreaction acts similarly to a positive cosmological constant, as has been suggested by [START_REF] Nambu | Accelerating universe via spatial averaging[END_REF] and [START_REF] Räsänen | Light propagation in statistically homogeneous and isotropic universes with general matter content[END_REF], this would yield a very natural solution to the coincidence problem, i.e., to the question of why the accelerated expansion starts just now when nonlinear structure formation begins [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. To date, however, it is not clear as to which extent this formalism actually leads to observable predictions. Since the formalism only knows how to average scalar quantities, the resulting system of scalar equations is not closed and requires suitable external input to estimate the averaged shear [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. Consequently, backreaction can not be determined without ambiguity by this procedure.

Possible avenues to proceed are provided by the scaling solutions employed by [START_REF] Desgrange | Dynamical spatial curvature as a t to type Ia supernovae[END_REF], [START_REF] Larena | Testing backreaction e ects with observations[END_REF][START_REF] Roy | Global gravitational instability of FLRW backgrounds -interpreting the dark sectors[END_REF] which lead to results that can be compared to observations. In general, the averaged elds, e.g., the volume scale factor do not have a clear physical meaning a priori [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. [START_REF] Räsänen | Light propagation in statistically homogeneous and isotropic universes with general matter content[END_REF]Räsänen ( , 2010) ) argues however that they precisely describe observations along the past lightcone while [START_REF] Adamek | Safely smoothing spacetime: backreaction in relativistic cosmological simulations[END_REF] underline that averaged quantities that are attached to the dust particles fail to provide a meaningful description of cosmological models when it comes to structure formation and shell-crossing. Instead, they advocate choosing averaging surfaces that correspond to the Poisson gauge as it results in negligible backreaction. Recently, [START_REF] Heinesen | Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature[END_REF] have stressed that this approach lacks physical signi cance.

Another approach to the averaging problem which is manifestly covariant and hence eases the limitations of Buchert's formalism has been introduced by [START_REF] Zalaletdinov | Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology[END_REF]. This scheme, denoted as "Macroscopic Gravity", relies on introducing an auxiliary so-called bi-local transport operator ( , ) that acts as an integral kernel on a tensor ( ) in order to give its average ̄ ( ) [START_REF] Zalaletdinov | Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology[END_REF],

̄ ( ) = ∫ Σ 4 ( , ) ( , ) ( ) ∫ Σ 4 √ . (3.5)
The transport operator ( ) is constructed such that its contractions with the actual physical operator transforms as a tensor at the point but as a scalar elsewhere which allows to average over the space time region Σ [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. The eld equations for the averaged quantities comprise an additional geometric correlation tensor that can be understood as an additional source term due to backreaction [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. In a at FLRW macroscopic background, the resulting backreaction takes the form of an additional spatial curvature term [START_REF] Hoogen | A Complete Cosmological Solution to the Averaged Einstein Field Equations as found in Macroscopic Gravity[END_REF], and it was shown that the scheme reduces to Buchert's formalism in an appropriate limit [START_REF] Paranjape | The Spatial averaging limit of covariant macroscopic gravity: Scalar corrections to the cosmological equations[END_REF]. Since the averaging procedure depends on the choice of the transport operator, the scheme lacks however predictive power and it is not clear how the choice of the transport operator a ects the theory [START_REF] Hoogen | A Complete Cosmological Solution to the Averaged Einstein Field Equations as found in Macroscopic Gravity[END_REF].

One major criticism inherent to both presented formalisms is that they focus on deriving e ective equations of motion for the averaged metric which by itself lacks a direct physical meaning. The averaged geometric quantities do not relate directly to physical observables [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]): In particular, physical observables are related to light emission by some distant sources, for example the angular diameter distance or the redshift, and backreaction should be evaluated with respect to these observables. This can of course be overcome by imposing further physical assumptions that relate the results to observations. Within Buchert's scheme, this has been done using the above-mentioned scaling solutions. Within the Macroscopic Gravity approach, [START_REF] Paranjape | Backreaction of Cosmological Perturbations in Covariant Macroscopic Gravity[END_REF] and Paranjape and T. P. Singh (2008) conclude that backreaction e ects remain negligibly small both in the perturbative as well as in the non-linear regime of gravity. On the other hand, [START_REF] Coley | Cosmological Observations: Averaging on the Null Cone[END_REF] and [START_REF] Räsänen | Light propagation in statistically homogeneous and isotropic universes with general matter content[END_REF]Räsänen ( , 2010) ) derived e ective cosmological equations of motion related to an averaging procedure on the past null cone. Another proposal for de ning covariant light-cone averages was put forward by [START_REF] Gasperini | Light-cone averaging in cosmology: Formalism and applications[END_REF], but the procedure requires dynamical equations of motion to relate variables at different times [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. See also in [START_REF] Fanizza | Generalized covariant prescriptions for averaging cosmological observables[END_REF]) for a more recent generalized proposal with a direct application to cosmological situations. It is in fact possible that inhomogeneities directly in uence the measurement of cosmological parameters [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF], for example the redshift and its drift [START_REF] Koksbang | Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture[END_REF] or area distances [START_REF] Bertotti | The luminosity of distant galaxies[END_REF][START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. The relevance of these e ects depends of course on the actual distribution of matter in our Universe [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. Recently, many proposals regarding the measurement of the redshift and its possible drift have been made in order to falsify the question of the backreaction problem (Heinesen 2021a,b;[START_REF] Koksbang | Observations in statistically homogeneous, locally inhomogeneous cosmological toymodels without FLRW backgrounds[END_REF]Koksbang , 2020[START_REF] Koksbang | Observations in statistically homogeneous, locally inhomogeneous cosmological toymodels without FLRW backgrounds[END_REF].

In addition to the question of a meaninigful averaging mechanism, the evaluation of backreaction also raises the question of how to design the underlying model of the Universe. The ΛCDM model uses a purely homogeneous and isotropic uid to represent the matter content that drives the global evolution of the Universe. But the Universe is made up of structures and metastructures that cluster in certain regions while other regions are almost empty. In the eld of Inhomogeneous Cosmology [START_REF] Bolejko | Inhomogeneous cosmological models: Exact solutions and their applications[END_REF][START_REF] Krasinski | Inhomogeneous Cosmological Models[END_REF]) many proposals have been made to improve the simplistic assumptions of the standard model, some of which have been used to evaluate backreaction [START_REF] Bolejko | Inhomogeneous cosmology and backreaction: Current status and future prospects[END_REF][START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF].

One proposal by [START_REF] Wiltshire | Average observational quantities in the timescape cosmology[END_REF] is the "Timescape Cosmology" which separates the Universe into underdense expanding regions bounded by overdense virialized structures. Wiltshire also computes an average using Buchert's formalism but it turns out that the strength of the corresponding backreaction is limited to a few percent [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. More importantly, the di erent time measures in the overdense regions and the averaged model have the e ect of an additional redshift for observers in the overdense region which could account for the dimming of supernovae [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF][START_REF] Leith | Gravitational energy as dark energy: Concordance of cosmological tests[END_REF]. Similar attempts but with di erent assumptions for the matter distribution in the Universe are the Swiss Cheese model [START_REF] Biswas | Swiss-Cheese Inhomogeneous Cosmology and the Dark Energy Problem[END_REF][START_REF] Kantowski | Corrections in the Luminosity Redshift Relations of the Homogeneous Friedmann Models[END_REF][START_REF] Tomita | Distances and lensing in cosmological void models[END_REF], modi cations of an FLRW Universe by introducing spherically symmetric Lemaître-Tolman-Bondi or Szekeres dust space times [START_REF] Bolejko | Szekeres Swiss-Cheese model and supernova observations[END_REF][START_REF] Marra | Light-cone averages in a swiss-cheese Universe[END_REF].

All these models rely on introducing a cosmological uid that is consistently modi ed, but the matching conditions assure that the global evolution of the models do not di er from the standard FLRW expansion [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. Inhomogeneous cosmologies that do not assume an underlying FLRW background are for example regular black hole lattices (e.g., [START_REF] Yoo | Black hole universe with a cosmological constant[END_REF])) or the Lindquist-Wheeler models which consist of a regular lattice of Schwarzschild domains that are bounded by matter shells [START_REF] Lindquist | Dynamics of a Lattice Universe by the Schwarzschild-Cell Method[END_REF]. Interestingly, the global evolution in these models approximately follows the corresponding FLRW evolution [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. Although this restricts their value for evaluating backreaction as an e ect on the global evolution of the Universe, they provide insights into backreaction e ects on light propagation [START_REF] Krasinski | Redshift propagation equations in the ≠ 0 Szekeres models[END_REF][START_REF] Sussman | Back-reaction and e ective acceleration in generic LTB dust models[END_REF].

In summary, we acknowledge that evaluating the form and strength of backreaction for nonperturbative inhomogeneous cosmology is a di cult task. There are several proposals for how to average the inhomogeneous elds in order to obtain macroscopic quantities that one can compare with global cosmological parameters. All presented schemes require to make a priori assumptions that have physical consequences, for example the choice of a suitable averaging volume or the form of the bi-local transport operator in Macroscopic Gravity. There is no consensus regarding these questions so far. One possibility to yet make progress is to construct a viable model of the Universe that admits exact solutions and to compare its evolution and observable quantities with an assumed FLRW Universe. This comes however at the price of oversimplifying the true lumpy Universe and care must be taken in the choice of boundary and matching conditions [START_REF] Bolejko | Inhomogeneous cosmology and backreaction: Current status and future prospects[END_REF]. It is thus of interest to analyze perturbative FLRW based models whose results on backreaction e ects can possibly be compared to cosmological observations without ambiguities owing to the theoretical framework [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. Of course, it must be noted that this approach might not be adequate during recent times when structures have formed. These computations for backreaction need a particular FLRW background solution as an input. But this background will be altered by the e ects of backreaction. We can thus never start with the correct background -a vicious circle (Paranjape 2009).

Perturbative Techniques

Perturbative models assume that the Universe is well described by a spatially homogeneous and isotropic solution to Einstein's equations with small perturbations. The question is thus whether and to which extent the perturbative elds alter the dynamics of the homogeneous background solution in a linear or weakly non-linear regime. The goal of the game is to compute averaged macroscopic quantities which include backreactions by the perturbations and which can ultimately be compared to observable quantities such as the luminosity distance.

Similar to the non-linear regime, the explicit backreaction e ect depends on the chosen averaging scheme and the underlying matter model. The results of the averaging formalisms by Buchert and Zalaletdinov, although constructed for explicitely non-perturbative models, can be applied to the perturbative cosmological regime. This has for example been done by [START_REF] Paranjape | The Spatial averaging limit of covariant macroscopic gravity: Scalar corrections to the cosmological equations[END_REF] for Macroscopic Gravity and the Buchert scheme, the result being negligible backreaction e ects in the new e ective Friedmann equations. Other proposals for averaging schemes that explicitely apply to the perturbative regime were proposed by [START_REF] Boersma | Averaging in cosmology[END_REF], [START_REF] Futamase | Averaging of a locally inhomogeneous realistic universe[END_REF]Noonan (1984), see also (Paranjape 2009).

Most of the works tie in with cosmological observations and consider at ΛCDM models with Gaussian scalar perturbations to start with [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. To evaluate backreaction, they compute the deviations to the Hubble expansion rate or similar variables that are caused by backreaction [START_REF] Clarkson | The in uence of structure formation on the cosmic expansion[END_REF][START_REF] Clarkson | Is backreaction really small within concordance cosmology?[END_REF][START_REF] Kolb | Cosmological background solutions and cosmological backreactions[END_REF][START_REF] Kolb | The E ect of inhomogeneities on the expansion rate of the universe[END_REF][START_REF] Li | Scale dependence of cosmological backreaction[END_REF][START_REF] Russ | Age of the universe: In uence of the inhomogeneities on the global expansion factor[END_REF], or give e ective Friedmann equations with additional contributions (Baumann et al. 2012;[START_REF] Behrend | Cosmological Backreaction from Perturbations[END_REF][START_REF] Brown | Averaging Robertson-Walker Cosmologies[END_REF]Noonan 1984;[START_REF] Paranjape | The Spatial averaging limit of covariant macroscopic gravity: Scalar corrections to the cosmological equations[END_REF][START_REF] Peebles | Large-sclae background temperature and mass uctuations due to scaleinvariant primeval perturbations[END_REF], see also [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF].

The basic idea underlying the perturbative treatments is to expand the metric and the matter elds in rst (and second) order perturbation theory and to write the deviations of the original theory in terms of averages of these perturbative elds. The assumption is hence that the real inhomogeneous Universe, consisting of large voids between the matter dominated regions, can be well described using a Newtonian approximation [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. This conjecture has been supported for example by Baumann et al. (2012) and [START_REF] Ishibashi | Can the acceleration of our universe be explained by the e ects of inhomogeneities?[END_REF]. In fact, [START_REF] Buchert | Geometrical order-of-magnitude estimates for spatial curvature in realistic models of the Universe[END_REF] estimate the relative size of spatial metric perturbations at the scale of voids and walls in our Universe to be of the order of 10 -5 , and which would hence support the perturbative ansatz. The eld equations include however density perturbations of the form 2 where is the mode number of the eld and which can be large [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF].

To evaluate the corrected global Hubble expansion rate, it is convenient to rst compute a spatial average over some appropriate macroscopic domain (like for the non-perturbative approaches above), and to use then the given statistical information about the perturbation elds in guise of their power spectra in order to give concrete estimates of the size of the e ects [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]: More precisely, one computes the corresponding ensemble average of, for example the Hubble rate, including second order terms due to the perturbations. First order terms in the metric perturbations drop out (that is why a second order extension is needed), and one is left with computing the ensemble averages of the spatial averages ⟨ Φ Φ⟩, , ∈ ℕ, as far as the Hubble expansion rate is concerned. Here, Φ denotes the Newtonian potential of the metric which is perturbed using a Poisson gauge.

Employing the observational constraints on the power spectra, it turns out that the dominant contributions are at most of the order of 10 -5 which is due to the large horizon scale at matter equality, or equivalently, the low temperatures at that time, and backreaction only depends on the modes that are larger than this scale [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. The subdominant terms depend directly on an IR-cuto that is necessary for the computations and which is set by the largest modes we can observe today. It re ects our ignorance of physics that might happen on larger scales, and some have claimed that this could result in observable backreaction e ects [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF], namely by nding a bound for the start of in ation which basically determines the cuto [START_REF] Barausse | The E ect of inhomogeneities on the luminosity distance-redshift relation: Is dark energy necessary in a perturbed Universe?[END_REF][START_REF] Kolb | The E ect of inhomogeneities on the expansion rate of the universe[END_REF]Kolb, Matarrese, and Riotto 2006) while others disagree in this respect [START_REF] Flanagan | Can superhorizon perturbations drive the acceleration of the universe?[END_REF][START_REF] Geshnizjani | Do large-scale inhomogeneities explain away dark energy?[END_REF][START_REF] Hirata | Can superhorizon cosmological perturbations explain the acceleration of the Universe?[END_REF].

Regarding the corrections to the variance of the Hubble rate and the deceleration parameter = -(1 + ̇ ∕ 2 ), the second order perturbative contributions include averaging terms that manifestly depend on an arti cial UV-cuto which should in principle be set by the end of in ation and the structure scale of dark matter [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. And even if the cuto is set by larger scales (i.e., larger than the scales of non-linearity), it can lead to large backreaction of order unity in the variance of the Hubble rate, see also in the previous reference. Baumann et al. (2012) propose a reformulation of perturbation theory which could ease the problem. More precisely, they develop an e ective eld theory valid on large scales ≪ Λ while carefully implementing a split of long and short wavelength modes in their e ective equations of motion. They nd no signi cant backreaction on the largest scales but claim that there are relevant e ects on the baryon accoustic oscillations. This promising approach has however been critizised to neglect backreaction terms due to their partly non-Riemannian averaging procedure [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]).

The problems that arise for Riemannian averaging have been addressed by [START_REF] Green | A new framework for analyzing the e ects of small scale inhomogeneities in cosmology[END_REF], 2012, 2013) using a weak eld limit. Instead of considering averages of inhomogeneous elds over a certain volume as discussed above, they de ne a point limit process for the cosmological inhomogeneities. They nd that backreaction for matter that behaves non-relativistically on small scales can only occur in form of an e ective radiation stress-energy tensor, and they claim that the overal FLRW evolution is not signi cantly a ected by such backreaction (Green and Wald 2014). Their scheme omits however the e ects of matter clustering (which should be the most relevant contribution to backreaction) [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF], and it has been questioned whether the limiting process can describe any realistic situation in nature [START_REF] Buchert | Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?[END_REF].

This last criticism seems to be inherent to any of the discussed approaches that consider averaging over spatial or spatio-temporal volume cells. What is however being measured are quantities that are related to light emission (such as the redshift and the angular diameter distance), and one could ask whether a null-tting, i.e., an averaging procedure along the past null cone, yields meaningful results [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. The ideas for how this might work in a perturbative setting were laid out in a seminal work by [START_REF] Sachs | Observations in cosmology[END_REF]. These ideas were for example used by [START_REF] Flanagan | Can superhorizon perturbations drive the acceleration of the universe?[END_REF] to compute the deceleration parameter as measured by comoving observers. Other approaches evaluate the e ects of perturbations on observable quantities such as the distance-redshift relation [START_REF] Barausse | The E ect of inhomogeneities on the luminosity distance-redshift relation: Is dark energy necessary in a perturbed Universe?[END_REF][START_REF] Bonvin | Fluctuations of the luminosity distance[END_REF] which includes corrections as the ones to the Hubble rate. Second order (possibly large) contributions might furthermore a ect the variance of the luminosity distance average as well as the deceleration parameter [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF].

Finally, it is fair to say that there is no consensus on the question of backreaction in perturbative cosmology. It is however clear that the Newtonian potential, responsible for the backreaction in many of the approaches, is very small (except in the vicinity of heavy objects such as neutron stars) and the peculiar form of its power spectrum (namely its small magnitude on large scales) prevent the backreaction e ect for any quantity that depends on Φ and its derivatives to be large [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF]. Only the variance of cosmological parameters might receive relevant backreaction e ects but solely on small scales of a few Mpc. In general, it is not surprising that in a model for which the background is already xed up to tiny perturbations the backreaction e ects remain small, but it is of course questionable whether this approach is able to describe the physical reality in a very lumpy Universe [START_REF] Ellis | Relativistic Cosmology: Its Nature, Aims and Problems[END_REF]. The sceptic will also oppose that backreaction is an e ect due to full general relativity and cannot be captured with Newtonian approximations. Another open issue is whether higher order perturbation theory might change the given results, and as mentioned above, whether the ambiguities introduced by the IR-and UV-cuto s play a role for the ultimate results [START_REF] Clarkson | Does the growth of structure a ect our dynamical models of the universe? The averaging, backreaction and tting problems in cosmology[END_REF].

Relativistic Simulations

Numerical methods for simulating the evolution of realistic relativistic space times might help to make progress on the question of backreaction, in particular in situations where exact solutions to Einstein's equations are out of reach. As it currently stands, several di erent coding environments are available [START_REF] Bolejko | Inhomogeneous cosmology and backreaction: Current status and future prospects[END_REF]: The most important ones are the cosmological N-body code "gevolution" which includes relativistic e ects by means of a weak eld approximation [START_REF] Adamek | gevolution: a cosmological N-body code based on General Relativity[END_REF]; the N-body code "GRAMSES" implementing a constrained formulation of general relativity (Barrera -Hinojosa and B. Li 2020); the numerical relativity "Einstein toolkit" based on the Cactus infrastructure [START_REF] Lo Er | The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics[END_REF]; and the numerical relativity code "Cosmograph" [START_REF] Mertens | Integration of inhomogeneous cosmological spacetimes in the BSSN formalism[END_REF] (for a comparison of the codes see [START_REF] Adamek | Numerical solutions to Einstein's equations in a shearing-dust Universe: a code comparison[END_REF].

As an application to an inhomogeneous cosmological situation in which the matter content is modelled by a pressureless uid, [START_REF] Mertens | Integration of inhomogeneous cosmological spacetimes in the BSSN formalism[END_REF] employ the "Cosmograph" code and compare their simulation to the evolution of a homogeneous FLRW model. They show that inhomogeneities generate uctuations in the extrinsic curvature parameter but defer
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the evaluation of physical observables to future work. As another more concrete application to the backreaction problem, [START_REF] Bentivegna | E ects of nonlinear inhomogeneity on the cosmic expansion with numerical relativity[END_REF] use the Einstein toolkit in an Einstein -de Sitter Universe with small initial density perturbations in order to show that the kinematic backreaction term scales like 1 but remains very small even for large perturbations. Also based on the Einstein toolkit, [START_REF] Macpherson | Einstein's Universe: Cosmological structure formation in numerical relativity[END_REF] show that backreaction remains negligibly small in a CDM-Universe. All these results rely however on a uid approximation which breaks down when it comes to structure formation and shell-crossing in the late time Universe.

In contrast, [START_REF] Adamek | Safely smoothing spacetime: backreaction in relativistic cosmological simulations[END_REF] work with the gevolution code modelling a ΛCDM and an Einstein -de Sitter Universe with CDM-particles. Depending on the gauge -Poisson or comoving -and a corresponding choice of averaging hypersurfaces, they demonstrate that in the former case backreaction in the Hubble expansion rate remains always small (at the subpercent level), while when following the comoving dust particles, backreaction can become large (∼ 15%). They subsequently argue that the correct question to ask is whether there are time slicings with respect to which backreaction remains small, while [START_REF] Heinesen | Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature[END_REF] question the physical relevance of this hypothesis.

Backreaction in the Early Universe

For the evaluation of backreaction during the earliest cosmic eras, it seems admissible, according to the concordance model, to assume a spatially homogeneous and isotropic Universe with small perturbations. In line with the ΛCDM model, one can for instance assume an in ationary phase prior to the radiation dominated era and an FLRW metric plus perturbations to model the Universe as has been done for example by [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF] and [START_REF] Mukhanov | On the Back reaction problem for gravitational perturbations[END_REF]. We will explain the latter approach in more detail, and also review subsequent ndings. Note that the following overview coincides with a section in (Schander and Thiemann 2021) which arose as a collaboration between T. Thiemann and the author.

The idea brought forward by [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF] is to consider backreaction from long wavelength modes in models of the early Universe. Other earlier contributions in that direction were notably made by [START_REF] Tsamis | Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons[END_REF][START_REF] Tsamis | Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons[END_REF]. Their procedure improves on the strict perturbative truncation of the perturbative ΛCDM model by including second order contributions to the perturbative Einstein equations. Therefore recall from the previous chapter that in the standard perturbative treatment, the zeroth order homogeneous Einstein equations are assumed to hold exactly by neglecting any perturbations, i.e., Π[ 0 ] = 0. The evolution equations for the perturbations arise from considering any linear rst-order terms of the eld equations, namely Π, [ 0 ] = 0, together with the homogeneous solutions for 0 from the previous step.

A possible improvement of this truncation arises by performing a spatial average of the perturbative Einstein equations (2.40). Equipped with a global time parameter and using that the spatial average of any perturbative eld vanishes, a set of improved Friedmann equations including backreaction e ects up to second order can be derived [START_REF] Abramo | The Energy-Momentum Tensor for Cosmological Perturbations[END_REF]: Brandenberger, and Mukhanov (1997) apply the scheme to an in ationary scalar eld model with gauge-invariant cosmological perturbations, and consider the backreaction problem associated with an e ective long wavelength energy momentum tensor. However, Unruh (1998) subsequently examined the question of whether this e ect is indeed locally measurable, and found that such backreaction e ects (in single eld in ationary theories) can be absorbed by a gauge transformation [START_REF] Abramo | No one loop back reaction in chaotic in ation[END_REF][START_REF] Geshnizjani | Back reaction of perturbations in two scalar eld in ationary models[END_REF].

Π[ 0 ] + 1 2 ⟨ Π, [ 0 ] ⟩ = 0. (3.6) Abramo,
It was then shown by [START_REF] Geshnizjani | Back reaction of perturbations in two scalar eld in ationary models[END_REF] that backreaction of such uctuations becomes locally measurable after introducing an additional subdominant clock eld, see also [START_REF] Brandenberger | Back-reaction of cosmological perturbations in the in nite wavelength approximation[END_REF]. This approach was then extended by [START_REF] Marozzi | Cosmological Backreaction for a Test Field Observer in a Chaotic In ationary Model[END_REF] based on the gauge-invariant formalism by [START_REF] Finelli | Energy momentum tensor of eld uctuations in massive chaotic in ation[END_REF]. Besides, an extension of these works to second order perturbation theory shows that backreaction induced by super-Hubble perturbations is relevant even beyond perturbation theory and induces a negative contribution to the local Hubble expansion rate [START_REF] Brandenberger | Backreaction of super-Hubble cosmological perturbations beyond perturbation theory[END_REF]. Further contributions were notably made by [START_REF] Losic | Long-wavelength metric backreactions in slow-roll in ation[END_REF][START_REF] Losic | Long-wavelength metric backreactions in slow-roll in ation[END_REF] who support the idea that backreaction represents a real and measurable e ect in early Universe cosmology.

Quantum Field Theory on Curved Space Times

The considerations in the previous chapter were of a purely classical nature in that the gravitational as well as the matter elds were analyzed as classical elds. This seems to be a reasonable assumption for the late time Universe but it should be questioned for the earlier phases when the Universe was a hot and very dense place. In such situations, at least the matter degrees of freedom require a description with quantum eld theoretical methods. The direct implementation of this idea leads to the wide terrain of quantum eld theory on curved space times (QFT on CST) in which the quantum uctuations of matter elds are coupled to a purely classical gravitational eld. This should in fact provide a good approximation to physical situations where curved space time e ects are signi cant, but the quantum nature of gravity is negligible. Due to its hybrid nature, it is clearly not a fundamental theory, but one can hope to make progress towards a more fundamental theory by asking the right questions within the approximative framework of QFT on CST.

The main issue of QFT on CST is to examine the structure of the quantum matter elds on some xed curved space time determined by the classical gravitational eld. Heuristically, this admits the picture of quantum elds propagating as test elds on a speci c classical background, and the theory takes the e ect of gravity upon the quantum elds into account. The backreaction e ects of the quantum eld uctuations on the gravitational background are however neglegted in this framework. To include such backreaction, the approach of semiclassical gravity includes the expectation value of the quantum stress-energy tensor in some appropriate matter state as an e ective source term in the Einstein equations, hence denoted as semiclassical Einstein equations. Another approach to including backreaction is denoted stochastic (semiclassical) gravity. In this framework, additional stochastic terms appear in the semiclassical Einstein equations.

Before attacking the question of backreaction in semiclassical (section 4.2) and stochastic gravity (section 4.3), we provide a review of the relevant notions and results of QFT on CST. The latter is based on [START_REF] Birrell | Quantum Fields in Curved Space[END_REF]Hollands and Wald 2015;Wald 1995).

Quantum Field Theory on Curved Space Times

Covariant Approach

As the name suggests, quantum eld theory on curved space times aims at de ning a consistent quantum theory for (matter) elds that are coupled to a generic classical gravitational eld. This is in fact not a trivial task since many of the fundamental concepts of QFT on Minkowski space time such as Poincaré invariance, and hence the notion of a Poincaré invariant vacuum state and excitations thereof are meaningless. Nevertheless, it is possible to de ne a set of basic principles, inspired by Minkowski QFT, but which are more general in nature. These are as follows (Hollands and Wald 2015):

First, any quantum eld Φ Φ Φ is to be considered as a distribution on some space of test functions on the underlying Riemannian space time manifold (ℳ, ) with metric tensor , and with values in a quantum algebra = (ℳ, ). The focus on the algebraic character releaves us from xing one particular eld representation. In fact, due to the in nite number of degrees of freedom, di erent representations of the eld algebra are in general not unitarily equivalent -the Stone-von Neumann theorem does not apply here -and hence, the choice of a representation does not seem to be fundamental for the de nition of a QFT on CST. We thereby follow the algebraic approach to QFT [START_REF] Haag | On quantum eld theories[END_REF]. Second, the QFT should be locally and covariantly constructed, in the sense that information propagates according to the laws of general relativity and the elds should be constructed without any further background structure. Third, the elds of the QFT should obey a suitable so-called microlocal spectrum condition which translates the requirement of positive energy from QFT on Minkowski space time to the generic relativistic case.

With these preliminaries in mind, we give the basic notions and ideas of (algebraic) QFT on CST for a free real-valued scalar eld Φ ∶ ℳ → ℝ. The section is mainly based on [START_REF] Birrell | Quantum Fields in Curved Space[END_REF]Hollands and Wald 2015). The classical Klein-Gordon eld on a generically curved but globally hyperbolic space time ℳ with Lorentzian-signature metric tensor and generated by some smooth source ∶ ℳ → ℝ satis es the equation of motion (Hollands and Wald 2015)

∇ ∇ -2 Φ = (4.1)
where ∇ is the covariant derivative associated with , and ∈ ℝ the mass of the scalar eld.

After a (3 + 1)-split, any pair 1 , 2 of smooth functions on a spatial hypersurface with unit normal determine a unique solution Φ to the Klein-Gordon equation with

Φ = 1 , ∇ Φ = 2 . (4.2)
The solutions Φ of such an initial value formulation depend continuously and causaly on the initial data 1 , 2 , and on the source , see (Hollands and Wald 2015) for more details. It is common to de ne the advanced and retarded propagators ± of the Klein-Gordon eld as functions on ∞ 0 (ℳ) or equivalently as distributional kernels on ℳ × ℳ such that formally

∇ ∇ -2 ± ( , ) = ( , ) (4.3) 
where the operator on the left hand side acts on the rst variable in a distributional sense. It will also turn out to be useful to de ne the "commutator function" ∶= + --.

The QFT of the Klein-Gordon eld is then most suitably constructed by introducing a "quantum" algebra of observables (ℳ, ) that re ects the properties of the linear and real-valued Klein-Gordon eld in an appropriate sense. Let therefore be a unital * -algebra with the involution * . A quantum eld Φ Φ Φ ∈ (ℳ, ) is a distribution over the Riemannian manifold (ℳ, )

such that for any set of smearing functions , 1 , 2 ∈ ∞ 0 (ℳ), the eld Φ Φ Φ has values in the unital "quantum" * -algebra and satis es (Hollands and Wald 2015)

1. Φ Φ Φ( 1 1 + 2 2 ) = 1 Φ Φ Φ( 1 ) + 2 Φ Φ Φ( 2 ), for all 1 , 2 ∈ ℂ (Linearity), 2. Φ Φ Φ ∇ ∇ -2 = 0 (Field equation), 3. Φ Φ Φ( ) * = Φ Φ Φ( ̄ ), (Hermicity), 4. [Φ Φ Φ( 1 ), Φ Φ Φ( 2 )] = ( 1 , 2 ) 1 1 1 (Commutator relation)
where 1 1 1 is the one in the quantum algebra and an overbar denotes complex conjugation. Then, one can establish (Hollands and Wald 2015) that the linearity allows to informally interpret the eld as an operator-valued distribution of the form

Φ Φ Φ( ) = ∫ ℳ d 4 √ Φ Φ Φ( ) ( ). (4.4)
The notion of a physical state refers to a linear map ∶ → ℂ which is normalized, (1 1 1) = 1, and positive, ( * ) ≥ 0 for all ∈ . By construction, any state is determined by the set of its -point functions with ≥ 1 de ned by (Hollands and Wald 2015)

( 1 , ..., ) ∶= (Φ Φ Φ( 1 ) ⋯ Φ Φ Φ( )). (4.5)
Given such a state or its -point functions, we know all the expectation values of all powers of the eld operators Φ Φ Φ( ), and hence we have all physical information that can be extracted. Two states and can be taken to form a new state via their convex linear combination +(1-) where 0 ≤ ≤ 1. A state is called pure if it cannot be decomposed into a non-trivial convex linear combination.

There is also a direct relation between the algebraic states de ned above and vector states in a Hilbert space ℋ (Hollands and Wald 2015): For this, one needs a Hilbert space ℋ with a dense domain ⊂ ℋ and a * -algebra of linear operators ⊂ ℒ( ) on this dense domain. Then, the algebraic state arises from a non-zero vector in according to

( ) ∶= ⟨ , ⟩ ⟨ , ⟩ (4.6)
where ⟨⋅, ⋅⟩ is the inner product in ℋ, and ∈ . On the other hand, any algebraic state gives rise to a Hilbert space ℋ with invariant domain , a representation of on ℋ and a vector Ω ∈ such that (4.6) holds. This is known as the GNS construction in QFT [START_REF] Gel'fand | On the embedding of normed rings into the ring of operators in Hilbert space[END_REF][START_REF] Segal | Irreducible representations of operator algebras[END_REF], and which proves that the algebraic and the Hilbert space representations in quantum eld theory are essentially equivalent. However, the Hilbert space representation obviously chooses one particular representation, in constrast to the algebraic ansatz which is hence more general.

In order to lter the physically relevant states o the large class of admissible states on , one can impose a set of natural conditions on the states (Hollands and Wald 2015). One relevant class of states known as Hadamard states are constructed such that i) they control the high frequency modes of the eld, in the sense that, ii) the singular structure of the -point functions at short distances should not be worse than for the vacuum state in Minkowski, and iii) the singular structure of the -point functions should be of "positive frequency type" (Hollands and Wald 2015). This can be most precisely phrased in terms of wave front sets (Radzikowski 1996a,b). As it turns out, the restriction to Hadamard states is necessary in order to de ne expectation values of polynomials of the elds and its derivatives at the same space time point, hence, they assure that a covariant renormalization prescription can be de ned for the stress-energy tensor. A class of Hadamard states exists on any globally hyperbolic space time [START_REF] Fulling | Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-time. II[END_REF][START_REF] Gérard | Construction of Hadamard states by pseudo-di erential calculus[END_REF] which makes them particularly useful in QFT on CST.

A generalization of the class of Hadamard states yields the adiabatic vacuum states [START_REF] Junker | Adiabatic vacuum states on general space-time manifolds: Definition, construction, and physical properties[END_REF], initially introduced by [START_REF] Parker | Quantized elds and particle creation in expanding universes. I[END_REF] in order to describe particle creation in an expanding FLRW Universe (note that this notion of adiabaticity has to be strictly distinguished from the notion of adiabaticity in the space adiabatic perturbation theory approach). When extended to generically curved space times, the class of adiabtic states contains the class of Hadamard states as these are adiabatic states of "in nite order" [START_REF] Junker | Adiabatic vacuum states on general space-time manifolds: Definition, construction, and physical properties[END_REF]. We already encountered the adiabatic states in chapter 2 where they were de ned by introducing a WKB ansatz (2.52) for the mode solutions of the Klein-Gordon eld. It was pointed out that these mode solutions are iteratively constructed with respect to an adiabatic perturbation parameter under the assumption that the geometry changes slowly. An in nite iteration of this type yields precisely a Hadamard state.

Another very important class of states are the so-called Gaussian or quasi-free states. These are de ned by the requirement that their connected -point functions (Hollands and Wald 2015)

c ( 1 , … , ) ∶= 1 … ln 1 1 … , 1 , … , ∈ (4.7) 
be vanishing for all > 2, i.e., Gaussian states are completely determined by their one-and twopoint functions c 1 and c 2 . Accordingly, a Gaussian state is positive i for any ∈ ∞ 0 (ℳ) the two-point function 2 ( , ̄ ) is positive semide nite, which gives rise to a large set of admissible Gaussian states useful for QFT on CST.

Most interestingly, a certain class of Gaussian states can be identi ed with a vacuum state in a Fock representation of (ℳ, ) (while other Gaussian states include KMS (temperature) states) (Hollands and Wald 2015). Therefore one uses the two point function 2 associated with the Gaussian state to de ne an inner product on ∞ 0 (ℳ, ℂ) and to identify corresponding degenerate vectors. The factor space of ∞ 0 (ℳ, ℂ) divided by the degenerate vectors yields a subspace of complex valued smooth solutions to the Klein-Gordon equation which correspond to the positive frequency modes known from the standard Hilbert space representation (Hollands and Wald 2015). is most conveniently referred to as the one-particle Hilbert space. The corresponding symmetric bosonic Fock space ℱ s ( ) is given by

ℱ s ( ) = ℂ ⊕ ⨁ ≥1 ( ⊗ s ⋯ ⊗ s ) (4.8)
where ⊗ s is the symmetrized tensor product, here applied times. It is then convenient to choose a representation of the quantum algebra given by 2015). Another way of de ning pure Gaussian states uses a set of smooth, complex-valued mode functions ( ) where the modes belong to an appropriate measure space ( , d ), and any mode function satis es the Klein-Gordon equation (4.1) with zero source. For every ∈ ∞ 0 (ℳ, ℝ), one de nes a map ∶ → ℂ by (Hollands and Wald 2015)

[Φ Φ Φ( )] = ([ ]) * + ([ ]) , ( 
( ) = ∫ ℳ d 4 √ ( ) ( ), (4.10) 
and we assume that is square-integrable over and that the span of these functions is dense in 2 ( , d ). Besides, the mode functions should be complete with respect to the Klein-Gordon inner product on (ℳ, ) in the sense that

⟨ 1 , 2 ⟩ 2 ( ) = 1 2 ( 1 , 2 ), ∀ 1 , 2 ∈ ∞ 0 (ℳ). (4.11)
This yields indeed the two-point function of a Gaussian state de ned as

2 ( , ) = ∫ d ( ) ( ) ( ). (4.12)
Since is well-de ned on the equivalence classes [ ] and provides a bounded isomorphism ∶ → 2 ( , d ), the GNS representation yields the symmetric Fock space ℱ s ( 2 ( , d )) as a Hilbert space and the representation on this Fock space can be informally written as

(Φ Φ Φ( )) = ∫ d ( ) ( ) + ( ) * . (4.13)
From this, one recovers the standard Fock representation on Minkowski space if we identify the modes with the wave vectors in ℝ 3 , and ( , ) = -+ ∕ √ 2 . Considering the at three-torus, as we will frequently do, is in ℤ 3 and we have the same mode functions.

In general, two representations (ℋ, , Ω) and (ℋ , , Ω ) of the eld algebra are said to be unitarily equivalent if there exists an isometry ∶ ℋ → ℋ such that ( ) * = ( ) for all ∈ (Hollands and Wald 2015). This means that two unitarily equivalent representations are physically equivalent in the sense that the physical results do not depend on the choice of the representation. It is hence an important question which of the representations of a eld algebra can be identi ed as unitarily equivalent, and it turns out that most of the representations are not unitarily equivalent. In case of two Gaussian states and , a necessary condition for them to be unitarily equivalent is that there exists a constant such that (Hollands and Wald 2015)

2 ( , ) ≤ 2 ( , ) ≤ 2 ( , ), ∀ ∈ ∞ 0 (ℳ, ℝ). (4.14)
In fact, it is easy to construct states which violate this condition. Let us make this more explicit by using a mode decomposition, and for simplicity, let us assume that we are on the at three-torus, and the modes are hence in ℤ 3 . The representations of the two algebraic states are given by,

(Φ Φ Φ( )) = ∑ ( ) + ( ) * , (Φ Φ Φ( )) = ∑ ⃗ ( ) + ( ) * . (4.15)
As both sets of mode functions are required to be complete, it is possible to expand one set of mode functions in terms of the other set,

( ) = ∑ + . (4.16)
These are the well-known Bogoliubov transformations [START_REF] Bogoliubov | On a new method in the theory of superconductivity[END_REF] with the Bogoliubov coe cients and . They satisfy [START_REF] Birrell | Quantum Fields in Curved Space[END_REF])

∑ - = , ∑ - = 0. (4.17)
With that it is easy to show that the annihilation operators of the two representations are related according to

= ∑ + * , = ∑ - * (4.18)
It is hence clear that non-vanishing prevent the associated Fock spaces from being unitarily equivalent, in particular Ω will in general not be annihilated by , i.e., Ω ≠ 0. Even worse, one vacuum state may correspond to an in nite number of excitations with respect to the other representation. Therefore, let us consider the operator ∶= * for the number of -mode particles, and compute its expectation value with respect to the vacuum Ω . This gives [START_REF] Birrell | Quantum Fields in Curved Space[END_REF])

⟨Ω , Ω ⟩ ℋ = ∑ 2 . (4.19)
Hence, if the right hand side of this equation is not nite, the vacuum state of the second representation carries in nitely many particles with respect to the rst representation, and the two representations cannot be unitarily equivalent.

Hamiltonian Formalism

The above considerations of QFT on CST were presented in a covariant manner in the sense that no space time split was performed. Even if this proceeding best re ects the nature of the underlying concepts of general relativity, it is often useful to perform a split. It allows us to carry out a Hamiltonian analysis required for the following chapters. This section is mainly based on the textbooks by Fulling (1989), [START_REF] Peskin | An Introduction to Quantum Field Theory[END_REF], and Reed and Simon (1975b).

In Minkowski space, the relation between the covariant formalism and the standard Hamiltonian framework can be established by using only certain classes of smearing functions (Reed and Simon 1975b). In particular, the Hamilton formalism requires an initial value formulation in which the smearing elds have support on one precise spatial hypersurface. Formally, this can be achieved by using distributional smearing functions that are delta distributions with respect to time (i.e., they restrict the eld to one spatial hypersurface) and ordinary test functions (for example Schwartz functions) with respect to the space coordinates. Unfortunately, smearing by a distribution is not an a priori well-de ned procedure and one must assure that the given theory allows one to do so. However, if this is possible such a restriction gives in fact rise to the standard Hamiltonian quantum eld theory. We refrain from going into more details as this is not relevant for this thesis but refer the interested reader to the book by Reed and Simon (1975b, part X.7.).

We directly suppose that such a Hamiltonian formalism is available, and consider a Riemannian space time manifold (ℳ, ) which is globally hyperbolic, ℳ = ℝ × , and consequently admits a foliation into spatial hypersurfaces Σ = , labelled by the cosmic time parameter ∈ ℝ. We consider the case of a spatially homogeneous and isotropic gravitational eld with the scale factor as its only dynamical degree of freedom. The classical action of a free Klein-Gordon scalar eld with mass ∈ ℝ + and coupling constant ∈ ℝ + on this geometry is given by (Fulling 1989)

Φ [ , Φ] = 1 2 ∫ ℝ× d d 3 √ h0 3 Φ2 2 - 1 2 Φ -∆ + 2 2 Φ (4.20)
where √ h0 is the spatial volume element and ∆ ∶= is the Laplace-Beltrami operator associated with . A dot denotes a derivative with respect to and is the homogeneous lapse. A standard Legendre transformation yields for the canonically conjugate momentum of Φ:

Π Φ ∶= ℒ Φ = √ h0 3 Φ. (4.21)
The in nite dimensional phase space Γ of the theory is spanned by the elds (Φ, Π Φ ) for every xed time . In order to de ne the Poisson brackets in Γ, we use a set of suitable test (or smearing) functions 1 , 2 , usually functions with compact support in (a chart of) the spatial manifold such that

{Φ( 1 ), Π Φ ( 2 )} = ⟨ 1 , 2 ⟩ (4.22)
is the only non-vanishing Poisson bracket. The angular brackets denote the inner product within the space of test functions. The Legendre transformation yields the Hamiltonian of the classical theory

= 1 2 ∫ d 3 √ h0 3 2 Π 2 Φ h0 6 + 1 2 Φ -∆ + 2 2 Φ . (4.23)
Since is a Lagrange multiplier, we can arbitrarily x its value without a ecting the theory, and we choose here ≡ 1. Besides, in this section the value of the coupling constant is of no relevance, and so we x it to ≡ 1. In addition, we assume that the spatial manifold is a compact and at manifold, i.e., the three-torus 3 = 1 × 1 × 1 . We choose its sides to have lengths 1 in all three directions. Certainly, a more extended analysis for general spatial manifolds would be possible. But since this is not the very emphasis of this section, we choose a topology that is as simple as possible. With this, we formally write the Hamiltonian as a function of as

( ) ∶= 1 2 3 ∫ 3 d 3 Π 2 Φ + Φ -∆ 4 + 6 2 Φ (4.24)
where the scale factor should be understood as an external parameter. Note that the metric of the at three-torus is the standard Euclidean at metric on the respective domain. Consequently, its determinant evaluates to 1. We de ne the -dependent frequency operator ( ) on the space of two-times di erentiable functions on 3 as ( ) 2 ( ) ∶= -∆ 4 + 6 2 ( ), ∀ ∈ 2 ( 3 ).

(4.25)

The corresponding quantum theory of elds promotes the classical elds to operator-valued distributions Φ Φ Φ( 1 ) and Π Π Π Φ ( 2 ) which are de ned, as before, on a suitable space of test functions (Reed and Simon 1975b). The theory is accordingly de ned by the commutator relation

[Φ Φ Φ( 1 ), Π Π Π Φ ( 2 )] = ⟨ 1 , 2 ⟩ 1 1 1 (4.26)
where 1 1 1 is the one in the quantum operator algebra . This commutation relation is compatible and actually follows from the commutator relation of the scalar eld in section 4.1 after restricting to the above-mentioned appropriate class of smearing functions (Reed and Simon 1975b). A representation ∶ → ℬ(ℋ) of the eld algebra on a suitable Hilbert space ℋ in terms of (linear) annihilation and creation operators ( , ) ∈ ℒ(ℋ) and * ( , ) ∈ ℒ(ℋ) can be given by (Hollands and Wald 2015)

( , ) ∶= 1 √ 2 √ ( ) Φ Φ Φ ( ) - √ ( ) -1 Π Π Π Φ ( ) , (4.27) * ( , ) ∶= 1 √ 2 √ ( ) Φ Φ Φ ( ) + √ ( ) -1 Π Π Π Φ ( ) , (4.28) 
for a suitable test function . Here, the action of the operator √ ( ) on the quantum elds is to be understood in the distributional sense as

√ ( ) Φ Φ Φ( ) ∶= Φ Φ Φ( √ ( ) )
. By means of the commutation relation for the eld operators, the commutator of the annihilation and creation operators are given by

[ ( , 1 ), * ( , 2 )] = ⟨ 1 , 2 ⟩ 1 1 1. (4.29)
For any xed value of , the theory is very well-known and one can easily provide a concrete Hilbert space representation. For the time being, let therefore ≡ 1 which precisely corresponds to the quantum Klein-Gordon eld on Minkowski space. We omit any occurence of and write

2 ( ) ∶= -∆ + 2 ( ), (4.30) 
and introduce this operator into the formulae for the annihilation and creation operators ( ) and * ( ). It follows that the eld operators have the form

[Φ Φ Φ( )] = 1 √ 2 ( ( ) + * ( )) , [Π Π Π Φ ( )] = - √ 2 ( ( ) - * ( )) . (4.31)
It is convenient to x a basis of mode functions and to provide formulae for the annihilation and creation operators with respect to the label set of the basis. On the torus, we can consider the discrete mode functions

{ ( ) ∶= exp(-)} , ∈ [0, 1] 3 = 3 , ∈ Σ ∶= 2 ℤ 3 . (4.32)
The mode functions de ne a discrete basis for 2 ( 3 , d ), and most importantly are eigenfunctions of the Laplace operator on the torus such that -∆ = 2 . Hence, we also have that = √ 2 + 2 , and we consquently de ne ∶= √ 2 + 2 . Due to the linearity of the elds and the completeness of the basis, we can expand the elds with respect to the modes and de ne the mode annihilation and creation operators (Hollands and Wald 2015)

∶= ( ) = ∫ 3 d ( ) ( ), ∶= ( ) * = ∫ 3 d ( ) * ( ). (4.33)
The hermicity of the canonical quantum elds imposes that -= * . By expanding the Hamiltonian with respect to the mode functions, it follows that

= 1 2 ∑ ∈Σ * , (4.34)
where we directly omitted the in nite vacuum energy contribution. It comes as no surprise that the annihilation and creation operators satisfy the standard commutation relations

, * = , 1 1 1, (4.35)
where , is now a Kronecker delta. An appropriate Hilbert space of this representation is the Fock space of some one particle Hilbert space ℋ whose basis elements are labeled by thevectors. For example, we can use the mode basis { } on 2 ( 3 , d ) =∶ ℋ. The corresponding symmetric Fock space is constructed according to (see the previous section)

ℱ s (ℋ) ∶= ℂ ⊕ ⨁ ≥1 (ℋ ⊗ s ⋯ ⊗ s ℋ) . (4.36) 
A symmetric state with particles corresponds to an element ( ) ( 1 , … , ) ∈ ℱ s (ℋ) with coordinates in position representation. One can also use a representation in terms of occupation numbers and simply specify a state by all non-vanishing excitation numbers { ⃗ } ⃗ of all modes ⃗ . The annihilation and creaction operators annihilate and create a state respectively according to (Reed and Simon 1975b)

( ( ) ) ( ) ( 1 , … , ) = √ + 1 ∫ 3 d ( ) ( +1) ( , 1 , … , ), (4.37) 
( * ( ) ) ( ) ( 1 , … , ) = 1 √ ∑ =1 ( ) ( -1) ( 1 , … , ̃ , … , ) (4.38)
where the tilde in the last line indicates a missing entry. The state that is void of any excitations is the vacuum state Ω ∈ ℱ s (ℋ). Any excited state with excitation numbers ( ) ∶= { } ∈Σ with respect to the chosen mode basis results from applying the appropriate number of creation operators

( ) = ∏ ∈Σ * √ ! Ω. (4.39)
This shortly summarizes the standard quantum eld theory of a Klein-Gordon real scalar eld on Minkowski space. In order to recover the full theory set out at the beginning, we would however need to leave the scale factor variable.

Starting from the theory on Minkoswki space, the question is how the theory for another value of is di erent from the original one with = 1. More precisely, we recognize that the theories for di erent values of di er in the frequency ( ), and in a global prefactor of the Hamiltonian. In our notation, the canonical quantum eld and its conjugate momentum do not depend on , but the annihilation and creation operators acquire an -dependence through the frequency operator ( ). As the annihilation operator xes a particular vacuum state and the associated excited states, these states obviously depend on . The vacuum state will consequently be denoted by Ω( ) and the excited states by ( ) ( ), and they are still related by the analog of equation (4.39) where now * ( ) as well as ( ) ( ) and Ω( ) depend on . To make the relation between the theories more precise, one can compare the annihilation and creation operators for two di erent values of . Let therefore 1 , 2 ∈ ℝ, and let ∈ 2 ( 3 , d ). Since Φ Φ Φ( ) and Π Π Π Φ ( ) are -independent, we can use the decomposition of their representations into annihilation and creation operators to deduce that

√ ( 1 ) -1 ( 1 ) + √ ( 1 ) -1 * ( 1 ) ( ) = √ ( 2 ) -1 ( 2 ) + √ ( 2 ) -1 * ( 2 ) ( ) (4.40) √ ( 1 ) ( 1 ) - √ ( 1 ) * ( 1 ) ( ) = √ ( 2 ) ( 2 ) - √ ( 2 ) * ( 2 ) ( ). (4.41)
The two equations allow us to represent ( 1 , ) and * ( 1 , ) in terms of ( 2 , ) and * ( 2 , ).

Therefore, let us de ne the two di erential operators (Schander and Thiemann 2019a)

± ( 1 , 2 ) ∶= 1 2 ⎡ ⎢ ⎣ √ ( 1 ) ( 2 ) ± √ ( 2 ) ( 1 ) ⎤ ⎥ ⎦ , (4.42) 
which provides us with relations for the annihilation and creation operators given as

( 1 , ) = [ + ( 1 , 2 ) ( 2 )] ( ) + [ -( 1 , 2 ) * ( 2 )] ( ), (4.43) ( 1 , ) = [ -( 1 , 2 ) ( 2 )] ( ) + [ + ( 1 , 2 ) * ( 2 )] ( ). (4.44)
For both values of , one can choose the standard representations on Fock space and de ne vacuum states Ω( 1 ) and Ω( 2 ) accordingly. The important question is of course how or rather if these two vacua and hence the representations of the eld theory can be unitarily related.

It turns out that the answer is in the negative, and this will prevent the application of space adiabatic theory to quantum eld theoretical models in the rst place. We will come back to this problem in chapter 8 when we discuss the rst of the quantum eld theoretical models of this thesis. In fact, it is possible to perform a perturbative transformation on the whole canonical phase space that allows to relate the two representations in a unitary way. Before, we will give an overview of the backreaction problem in quantum eld theory on curved space times, i.e., in the semiclassical regime, to which the two following sections are dedicated.

Semiclassical Gravity

Semiclassical gravity is a program that builds on the former QFT on CST approach but which is interested in the backreaction excerted from the quantum eld uctuations on the classical gravitational eld. The problem was rst laid out by [START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF], who considered the backreaction from particle creaction on the gravitational eld. The rst goal in this program is to consistently de ne a modi ed set of Einstein eld equations in which the expectation value of the quantum stress-energy tensor with respect to an appropriate algebraic quantum state of the matter elds appears as a source term, i.e., [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF])

ℛ (4) + 1 2 (4) = 8 (∶ ∶), (4.45) 
where ℛ ( 4) and (4) are the classical four-dimensional Ricci tensor and curvature scalar (cf. chapter 2), is Newton's constant, and a suitable algebraic state as de ned in the previous section.

The colons indicate the normal ordering of the stress-energy tensor .

Evaluating the right hand side of this equation is of course not a trivial task and is only well de ned after a suitable regularization and renormalization procedure. The explicit implementation of such procedures for a suitable set of quantum states is the rst goal of semiclassical gravity [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF]. The second goal of semiclassical gravity is to solve these equations and to nd the improved dynamics of the classical gravitational eld that consistently includes the backreaction of the quantum matter uctuations. The following summary of the basic ideas and results in semiclassical gravity is mainly based on the the textbooks and articles by [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF], Hack (2016), [START_REF] Hu | Dissipation in Quantum Fields and Semiclassical Gravity[END_REF][START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF][START_REF] Siemssen | The Semiclassical Einstein Equation on Cosmological Spacetimes[END_REF]. Note also that parts of this summary can be found in (Schander and Thiemann 2021).

Regarding the rst of these two goals, di culties occur due to the divergent structure of the stress-energy tensor of the quantum elds [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF]: The tensor generically depends on products of operator-valued distributions of the elds at the same space time points, for example one is faced with the formal expression Φ Φ Φ( ) 2 . In fact, the two-point function 2 ( , ) ∶= (Φ Φ Φ( ) Φ Φ Φ( )) is singular at = for a generic quantum state . In Minkowski space, the solution is to consider the normal ordered operator ∶Φ Φ Φ( ) 2 ∶ and to realize that the products of the expectation value Ω(∶Φ Φ Φ( ) 2 ∶) at di erent points are well-de ned for the Minkowski vacuum Ω. More precisely, such expectation values are well-de ned distributions such that a smearing with any two test functions is nite. In general curved space times, the Minkowski vacuum is not available but there are di erent ways of generalizing the procedure and to obtain a meaningful expression for (∶ ∶).

More precisely, in his seminal work [START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF] introduced ve axioms that are required to hold for a suitable renormalization scheme to give a meaningful expectation value for the stress energy tensor. The rst four axioms are automatically satis ed in every locally covariant theory in line with [START_REF] Brunetti | The Generally covariant locality principle: A New paradigm for local quantum eld theory[END_REF]. However, the fth one which requires (∶ ∶) to depend on the derivatives of the metric coe cients up to second order (but not higher derivatives) is not generically given (Wald 1978). One explicit regularization scheme is the Hadamard point-splitting method [START_REF] Brunetti | Microlocal analysis and interacting quantum eld theories: Renormalization on physical backgrounds[END_REF][START_REF] Hirata | Can superhorizon cosmological perturbations explain the acceleration of the Universe?[END_REF] which proceeds in similar lines as the standard Minkowski approach, and which we already alluded to in section 4.1. As before, one considers the normal-orderd version of the stress-energy tensor, and for a Klein-Gordon eld, the latter contains products of the operator-valued eld distributions. One then separates the space time points at which the elds in are evaluated and thereby regularizes the theory. The result depends on the distance regulator, conventionally chosen to be the geodesic distance between these points. This expression is evaluated in a su ciently regular state before taking the coincidence limit → 0. Physically relevant states are the Hadamard states, de ned such that normal ordered elds have nite expectation values. More precisely, the two-point distributions evaluated on Hadamard states satisfy the microlocal spectrum condition [START_REF] Brunetti | The Microlocal spectrum condition and Wick polynomials of free elds on curved space-times[END_REF]Radzikowski 1996b). As a consequence, their n-point functions are well-de ned distributions. Still, these states have a universal divergence [START_REF] Kay | Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon[END_REF][START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF], but the idea behind the point-splitting procedure is to identify and subtract these divergencies in a controlled renormalization procedure before taking the coincidence limit. Namely, the divergencies that appear in (∶ ∶) can be absorbed in the gravitational contributions on the left hand side of the semiclassical Einstein equation by a rede nition of the coupling constants such as Newton's constant or the cosmological constant [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF]. Despite the non-unique normal ordering procedure in the rst step of the point-splitting regularization, it was shown that this procedure yields a unique result of the renormalized stressenergy tensor up to rede nitions of the coupling constants [START_REF] Hirata | Can superhorizon cosmological perturbations explain the acceleration of the Universe?[END_REF][START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF]Wald , 1978)).

For applications in cosmology, the so-called adiabatic regularization procedure (Fulling, Parker, and Hu 1974a,b;[START_REF] Parker | Adiabatic regularization of the energy momentum tensor of a quantized eld in homogeneous spaces[END_REF]) is another way to make sense of the formal expression (∶ ∶). This procedure is essentially equivalent to the above Hadamard pointsplitting regularization, in particular, they di er only by local curvature tensors [START_REF] Siemssen | The Semiclassical Einstein Equation on Cosmological Spacetimes[END_REF].

It relies on the use of adiabatic states [START_REF] Parker | Quantized elds and particle creation in expanding universes. I[END_REF] which are only approximately Hadamard but their straightforward construction proves to be useful [START_REF] Junker | Adiabatic vacuum states on general space-time manifolds: Definition, construction, and physical properties[END_REF]. We already pointed out that its underlying idea is to de ne approximate WKB solutions of the matter eld wave equation for a slowly varying cosmological space time up to a certain order in this approximate scheme. It turns out that the expectation value with respect to such an adiabatic vacuum state of fourth order is regularizable, and one can apply a standard regularization and renormalization scheme as before (Fulling, Parker, and Hu 1974a;[START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF].

The result of these regularization procedures are sets of modi ed Einstein eld equations with quadratic curvature terms, e.g., ( (4) ) 2 and ℛ (4) (ℛ ( 4) ) are added to the original Einstein Lagrangian. For general couplings of the scalar eld, these give rise to fourth order derivatives of the metric [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF] which cannot be completely reabsorbed in the renormalization constants [START_REF] Hirata | Can superhorizon cosmological perturbations explain the acceleration of the Universe?[END_REF][START_REF] Hirata | Can superhorizon cosmological perturbations explain the acceleration of the Universe?[END_REF]. Such a theory would require to x the metric and its rst three derivatives on a spacelike hypersurface to have a well-posed initial value problem, and furthermore can lead to instabilites. Such problems can be (partially) avoided by considering only conformally coupled elds both massless or massive. In this case, local and global solutions of the semiclassical Einstein equations exist [START_REF] Meda | Existence and uniqueness of solutions of the semiclassical Einstein equation in cosmological models[END_REF]. We also mention that in general the expectation value of the stress-energy tensor violates the classical, local positive energy conditions of general relativity. It is however possible to satisfy more general nonlocal energy conditions such as the "averaged null energy condition" (ANEC) [START_REF] Flanagan | Does back reaction enforce the averaged null energy condition in semiclassical gravity?[END_REF]. Care must however be taken when choosing admissible solutions in order to not violate the self-consisteny of the semiclassical equations.

Applications of the semiclassical scheme to cosmological situations are numerous, and we can only discuss a small fraction of them here. In general, these works aim at estimating the backreaction due to matter quantum elds on the cosmological background, mainly restricted to the conformally coupled scalar eld case [START_REF] Siemssen | The Semiclassical Einstein Equation on Cosmological Spacetimes[END_REF]. One kind of e ects is related to the non-vanishing trace (hence denoted as trace anomaly) of the stress-energy tensor for quan-tum elds (Hu and Verdaguer 2020): In fact, for massless conformally coupled elds, the only quantum source in the semiclassical Einstein equations comes from the trace. In this respect, [START_REF] Fischetti | Quantum E ects in the Early Universe. 1. Inuence of Trace Anomalies on Homogeneous, Isotropic, Classical Geometries[END_REF] considered the backreaction e ects from a conformally invariant matter eld in an FLRW Universe with classical radiation and found that the trace anomaly can soften the cosmological singularity, but not avoid it. Other works in this direction were done by [START_REF] Anderson | E ects of Quantum Fields on Singularities and Particle Horizons in the Early Universe. III. The conformally coupled massive scalar eld[END_REF][START_REF] Anderson | E ects of Quantum Fields on Singularities and Particle Horizons in the Early Universe. III. The conformally coupled massive scalar eld[END_REF][START_REF] Anderson | E ects of Quantum Fields on Singularities and Particle Horizons in the Early Universe. III. The conformally coupled massive scalar eld[END_REF], who also considered the trace e ects on the particle horizon. A well-known example of trace anomaly e ects from semiclassical gravity is the Starobinsky (1987) cosmological model.

Another application of semiclassical gravity is the study of backreaction of particle creation on the dynamics of the early Universe as already conceived by [START_REF] Voisin | An improved test of the strong equivalence principle with the pulsar in a triple star system[END_REF], see [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF]: [START_REF] Grishchuk | Graviton Creation in the Early Universe[END_REF] as well as [START_REF] Hu | Induced quantum metric uctuations and the validity of semiclassical gravity[END_REF] considered the e ect of gravitons around the Planck time in an FLRW Universe with a classical isotropic uid. They use an adiabatic regularization scheme and nd that the graviton creation in this model leads to a timely non-local (i.e., history-dependent) backreaction e ect given in terms of a non-local damping kernel in the effective Friedmann equation of the classical FLRW cosmology. Similar studies were performed for anisotropic FLRW Universes and it was shown that particle production due to the shear anisotropy will isotropize space time [START_REF] Hu | Induced quantum metric uctuations and the validity of semiclassical gravity[END_REF][START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF][START_REF] Zel'dovich | Particle production and vacuum polarization in an anisotropic gravitational eld[END_REF]. Regarding the e ects of particle creation in a spatially inhomogeneous but isotropic Universe, we refer to the work by [START_REF] Campos | Semiclassical equations for weakly inhomogeneous cosmologies[END_REF].

As also discussed in (Schander and Thiemann 2021), we point to more recent works by [START_REF] Finelli | Energy momentum tensor of eld uctuations in massive chaotic in ation[END_REF], 2004) who speci cally consider a slow-roll (almost de Sitter) phase of the very early Universe and compute a(n) adiabatically renormalized energy momentum tensor of the quantum in aton, respectively cosmological scalar uctuations. In case of the cosmological scalar perturbations, they nd that the energy momentum tensor is characterized by a negative energy density which grows during in ation and also that backreaction is not a mere gauge artifact.

Further contributions to the topic of semiclassical gravity for cosmological situations were notably made by [START_REF] Dappiaggi | Stable cosmological models driven by a free quantum scalar eld[END_REF][START_REF] Dappiaggi | Dark Energy from Quantum Matter[END_REF][START_REF] Eltzner | Dynamical Backreaction in Robertson-Walker Spacetime[END_REF][START_REF] Gottschalk | The Cosmological Semiclassical Einstein Equation as an In nite-Dimensional Dynamical System[END_REF][START_REF] Hack | The Lambda CDM-model in quantum eld theory on curved spacetime and Dark Radiation[END_REF][START_REF] Matsui | Quantum Spacetime Instability and Breakdown of Semiclassical Gravity[END_REF][START_REF] Parker | Nonperturbative e ects of vacuum energy on the recent expansion of the universe[END_REF][START_REF] Pinamonti | On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario[END_REF], to mention but a few (Schander and Thiemann 2021). Most recently, [START_REF] Meda | Existence and uniqueness of solutions of the semiclassical Einstein equation in cosmological models[END_REF] have made progress on the de nition of the semiclassical theory for general couplings by proving existence and uniqueness of solutions in at cosmological space times with a massive quantum scalar eld. We also point to the recent work by [START_REF] Matsui | Quantum Spacetime Instability and Breakdown of Semiclassical Gravity[END_REF] who claim that semiclassical gravity is not appropriate to describe the early Universe. They also provide an extensive list of further references that provide a good account of achievements in the eld of semiclassical gravity, again see also (Schander and Thiemann 2021).

Finally, the question remains whether semiclassical gravity is able to capture the relevant physical e ects due to quantum backreaction, i.e., in particular whether the expectation value of the energy-momentum tensor can adequately re ect the quantum nature of the matter elds. In fact, just as for the classical backreactions, there is a vicious circle as we specify a certain class of solutions on the gravitational side which we would actually like to determine by the procedure [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF]. The theory of stochastic (semiclassical) gravity aims at evaluating this question of validity of the semiclassical approach by including additional "stochastic" quantum contributions from the matter elds.

Stochastic (Semiclassical) Gravity

The approach of stochastic (semiclassical) gravity is built on the Einstein-Langevin equations which can be seen as an extension of the former semiclassical Einstein equations. In addition to the expectation value of the quantum stress-energy tensor, it includes an e ective noise term due to the uctuations of the quantum matter elds. More precisely, the noise kernel is the expectation value of a tensor that describes the uctuations of quantum matter elds in curved space times. This section is mainly based on the papers and textbooks by [START_REF] Calzetta | Coarse grained e ective action and renormalization group theory in semiclassical gravity and cosmology[END_REF] and [START_REF] Hu | Dissipation in Quantum Fields and Semiclassical Gravity[END_REF][START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF] to which we also refer for more thorough introductions to the topic. Note again that parts of this summary can also be found in (Schander and Thiemann 2021).

In fact, it was argued that the bare semiclassical approach to gravity could break down when the uctuations of the stress-energy tensor are large [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF][START_REF] Kuo | Semiclassical gravity theory and quantum uctuations[END_REF]. Di erent proposals have been made to quantify this statement [START_REF] Ford | Stress tensor uctuations and stochastic space-times[END_REF]Hu and Phillips 2000;[START_REF] Hu | Induced quantum metric uctuations and the validity of semiclassical gravity[END_REF][START_REF] Kuo | Semiclassical gravity theory and quantum uctuations[END_REF], and it was asserted that an additional stochastic source should enter the semiclassical Einstein equations to assure the validity of the approach [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF]. This led to the development of stochastic gravity, inspired by the idea of an open system approach where one divides the system into an environment (here the quantum matter eld) and a system (the gravitational classical degrees of freedom) [START_REF] Hu | Dissipation in Quantum Fields and Semiclassical Gravity[END_REF]).

This idea is manifestly re ected in the functional approach to stochastic gravity which creates a link to open system concepts and statistical features such as dissipation, uctuations, noise and decoherence [START_REF] Calzetta | Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems[END_REF][START_REF] Jordan | E ective Field Equations for Expectation Values[END_REF]R. Jordan , 1987)). It employs a so-called closed time path coarse grained e ective action (CTP CGEA) (Hu and Verdaguer 2020) whose basic idea is to compute an in uence action that is a functional of the classical metric but which includes the e ects of the quantum matter elds by evaluating the matter path integral along a closed time path. By variation with respect to the metric tensor, the in uence action yields the expectation value of the quantum stress-energy tensor. The idea is to evaluate this derivation with respect to a linearly perturbed metric eld [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF] and which gives rise to the equations of motion for the metric perturbations which are sourced by the in uence action and hence by the quantum matter e ects. They include the contributions from the expectation value of the stress-energy tensor already known from semiclassical gravity as well as an additional noise term.

As already discussed in (Schander and Thiemann 2021), some of the rst applications of the CTP CGEA formalism to the backreaction problem in cosmology were performed by [START_REF] Calzetta | Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems[END_REF], 1989, 1994), [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF]. [START_REF] Hu | Induced quantum metric uctuations and the validity of semiclassical gravity[END_REF] derived the Einstein-Langevin equations for the case of a free massive scalar eld in a at FLRW background. The case of a massless conformally coupled eld was discussed in [START_REF] Campos | Semiclassical equations for weakly inhomogeneous cosmologies[END_REF]. The scope of works (see [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF]) includes topics such as stochastic in ation where quantum uctuations present in the noise term backreact on the in aton eld (Calzetta and Hu 1995;[START_REF] Lombardo | Coarse graining and decoherence in quantum eld theory[END_REF] as well as studies of the reheating phase in in ationary cosmology [START_REF] Boyanovsky | Reheating and thermalization: Linear versus nonlinear relaxation[END_REF][START_REF] Ramsey | Nonequilibrium in aton dynamics and reheating. 1. Back reaction of parametric particle creation and curved space-time e ects[END_REF]. The formalism was also used by Sinha 4. 3. Stochastic (Semiclassical) Gravity and Hu (1991) to check the validity of the minisuperspace approximation in quantum cosmology.

We also mention that there is yet another way to formulate stochastic gravity [START_REF] Hu | Semiclassical and Stochastic Gravity: Quantum Field E ects on Curved Spacetime[END_REF], namely the so-called axiomatic approach [START_REF] Martin | Stochastic semiclassical uctuations in Minkowski space-time[END_REF] which establishes the link to semiclassical gravity in a more direct way [START_REF] Martin | Stochastic semiclassical uctuations in Minkowski space-time[END_REF]. It starts from the renormalized semiclassical Einstein equation discussed in the previous section and introduces an additional Gaussian stochastic tensor eld on the right hand side of these equations. This stochastic tensor eld is de ned through the two-point correlation function of the stressenergy tensor and accounts for the quantum uctuations of the quantum matter elds. It represents an additional noise term that induces perturbations of the classical metric. The resultant equations of motion for the metric perturbations with the noise as an additional source are the Einstein-Langevin equations.

Like in (Schander and Thiemann 2021), let us also point to one of the most prominent applications of stochastic methods to early Universe cosmology by [START_REF] Starobinsky | Dynamics of Phase Transition in the New In ationary Universe Scenario and Generation of Perturbations[END_REF]Starobinsky ( , 1988)). His stochastic in ationary model evaluates backreaction of small scalar eld quantum perturbations on the corresponding long wavelength modes (which are assumed to behave classically) by additional stochastic terms in the long wavelength equations of motion. A slow-roll behavior of the background is assumed. Interestingly, it has been shown that the stochastic and the quantum eld theoretic approaches to perturbations in the early Universe yield the same results [START_REF] Finelli | Generation of uctuations during in ation: Comparison of stochastic and eld-theoretic approaches[END_REF][START_REF] Starobinsky | Equilibrium state of a self-interacting scalar eld in the de Sitter background[END_REF][START_REF] Tsamis | Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons[END_REF]. For recent considerations of stochastic in ation beyond the (strict) slow-roll conditions, we refer to the work by [START_REF] Pattison | Stochastic in ation beyond slow roll[END_REF] and references therein.

In both, the semiclassical and the stochastic approaches to backreaction, one aims at incorporating the e ects from the quantum matter elds onto the classical curved space times. The rst approach is built on the semiclassical Einstein equations, the second one on the Einstein-Langevin equations. Both provide solutions to the backreaction problem for cases with simple (speci cally coupled) scalar eld matter content but more involved situations are hard to implement due to technical problems and stabilitiy problems. The most important conceptual problem (from our perspective) is of course that the gravitational eld is considered being classical while the matter elds are considered as quantum elds. While this represents a seminal progress to incorporate quantum e ects of the matter elds in the early Universe, it can and should be questioned whether this somehow incompatible approach (classical and quantum elds treated at the same level) survives the test of future observations, and whether it should be replaced by a more consistent approach -quantum gravity. The topic of backreaction in the light of approaches to quantum gravity is the subject of the next chapter.

Quantum Gravity and Cosmology

This chapter reviews methods of quantifying backreaction in non-perturbative approaches to quantum gravity and quantum cosmology in more detail than the introductory chapter. By nonperturbative, we mean that the gravitational eld is not split into a xed, non-dynamical background and (possible) perturbations thereof, e.g., gravitons, but is considered as a dynamical quantity that is consequently subject to a quantization procedure (i.e., we are excluding any approach with a xed Minkowski background in which only the perturbative gravitons appear as dynamical degrees of freedom). This is of course vital to the concept of backreaction that we have in mind since in such perturbative approaches, there simply cannot occur any backreaction on the background (gravitational) degrees of freedom by de nition.

The notion of backreaction is, of course, multifaceted and encompasses various aspects. In this work, we consider backreaction i) from a homogeneous and isotropic scalar eld on an FLRW space time, ii) from an inhomogeneous scalar eld on an FLRW space time, and iii) from gauge-invariant cosmological perturbations on the homogeneous and isotropic space time and matter scalar eld.

In any of these cases, we consider backreactions onto the homogeneous space time degrees of freedom, and possibly on the homogeneous matter degrees of freedom. Since we see the rst case rather as an explorative toy model for the two other cases, we can say that our focus is on the quantum backreaction of cosmological perturbations on the homogeneous and isotropic background degrees of freedom. The perturbative scheme that underlies our computations uses the very small ratio of the gravitational (or Newton's) coupling constant , and an ordinary matter coupling constant .

Planck Mass and Born-Oppenheimer Schemes in Quantum Gravity

Within the usual Born-Oppenheimer scheme on which this work relies, such a perturbative parameter is identi ed with the ratio of a very small and a very large mass of the system's constituents such as the electron's and the nuclei's mass. One then speaks of a slow heavy subsystem and the fast light subsystem by comparing their average velocities. It is also claimed that the slow system behaves almost classical which is why in various works, the semiclassical limit for the slow subsystem is invoked by e.g., using semiclassical ansatz solutions for the slow sector, see for example [START_REF] Hagedorn | A time dependent Born-Oppenheimer approximation[END_REF][START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. It is however important to distinguish between the adiabatic limit of the Born-Oppenheimer scheme and a semiclassical limit as was pointed out by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF].

Our work makes this distinction manifest -no semiclassical approximation is used. Other works on backreaction in quantum gravity employ these schemes simultaneously which of course allows to explore the semiclassical regime but which is less general.

In this section, we focus on the investigations of quantum gravitational and cosmological backreaction that employ a perturbative approach using the reduced Planck mass of gravity Pl ∝ -1∕2 (or rather its inverse) as a pertrubation parameter. The idea that quantum gravity can be considered as a perturbative theory with respect to Pl has already been introduced by [START_REF] Brout | On the Concept of Time and the Origin of the Cosmological Temperature[END_REF]. The rst investigations of backreaction in quantum gravity that rely on this expansion were performed in the framework of quantum geometrodynamics (Kiefer 2007;[START_REF] Wheeler | On the Nature of quantum geometrodynamics[END_REF]), a quantum gravitational eld approach based on Einstein's original metric gravity together with an ADM space time split. The idea is to expand the Wheeler-DeWitt equation (a quantum version of Einstein's equations in the (3 + 1)-split) in terms of the ratio of the Planck mass and the matter eld mass (Kiefer and T. P. Singh 1991). A di erent idea, conceptually similar to the schemes considered here, is to use a Born-Oppenheimer type approach relying on the same perturbation parameter. Di erent considerations of the problem (giving rise to similar results) can be found in the works by [START_REF] Bertoni | The Born-Oppenheimer approach to the matter -gravity system and unitarity[END_REF], [START_REF] Brout | Time in Semiclassical Gravity[END_REF], and [START_REF] Kiefer | Continuous Measurement of Minisuperspace Variables by Higher Multipoles[END_REF] (for a summary, see (Kiefer 2007)). The idea of the Born-Oppenheimer approach will be explained in section 6 in great detail, but to understand its use in the given context we present the key ideas. Note that parts of this section resemble the discussion in (Schander and Thiemann 2021).

In quantum geometrodynamics, one starts with the Wheeler-DeWitt equation (i.e., a quantization of the classical constraint equation of gravity) which includes quantum geometry and a quantum matter eld (usually a real-valued scalar eld). For simplicity, let denote the gravitational and the matter degrees of freedom. The Born-Oppenheimer scheme employs an ansatz solution for the quantum Hamiltonian and momentum constraint of the form (Kiefer 2007)

Ψ( , ) = ∑ ( ) ( , ) (5.1)
where { ( , )} , ∈ ℕ is supposed to be a known orthonormal basis of the matter Hilbert space that solves the matter part of the constraint and is to be considered as an external parameter for this eigenvalue problem. Then one applies the constraints to Ψ and applies some ( , ) from the left (i.e., one considers the inner product of the matter states) (Kiefer 2007). This gives rise to constraint equations for the geometric factors ( ) which can be seen as an e ective quantum problem for the geometric part, including the backreaction e ects of the quantum matter system.

In order to examine a semiclassical limit of the theory (i.e., a matter quantum eld theory on curved space times), it is common to employ a WKB ansatz for the geometrical states ( ) of the form (Kiefer 2007)

( ) = ( ) Pl 2 [ ] .
(5.2)

The perturbative scheme in Pl -1 eventually yields the semiclassical Einstein equations. In this sense, these approaches evaluate the backreaction of the quantum matter elds on the quantum or classical geometry.

One can also apply the Born-Oppenheimer and WKB approximations in a di erent manner. Instead of taking the expectation value with respect to the quantum matter system, one applies the Wheeler-DeWitt constraints on the total Born-Oppenheimer ansatz function and uses the WKB 5.1. Planck Mass and Born-Oppenheimer Schemes in Quantum Gravity approximation for the geometrical part. Restricting again to the lowest order with respect to the Planck mass, this yields a quantum constraint for the matter wave function which depends on the classical action (through the WKB ansatz), and derivatives with respect to the spatial metric thereof. The idea of the above-cited works (and also of [START_REF] Briggs | Time dependence in quantum mechanics[END_REF]) is to introduce an external time parameter that depends on this derivative, hence giving rise to a Schrödinger equation for the matter system that includes the backreaction of the geometry through the geometrydependent time derivative. In fact, this gives rise to a notion of time in a formerly background independent framework. Such ideas go back to [START_REF] Dewitt | Quantum Theory of Gravity[END_REF] and have been applied to a variety of cosmological situations (see (Kiefer 2007) and references therein). Another approach for recovering a notion of time and a unitary evolution was proposed by Di Gioia et al. ( 2021) (see also references therein), and it was emphasized that the question has not been given a conclusive answer yet. It is also a di erent notion of backreaction than the one considered in this thesis.

We emphasize again that these approaches rely on a WKB approximation in order to consider a semiclassical limit. Applications of these works to the in ationary paradigm with perturbations and a discussion of the question of unitary evolution of the perturbations can be found in the work by [START_REF] Chataignier | Unitarity of quantum-gravitational corrections to primordial uctuations in the Born-Oppenheimer approach[END_REF] and references therein. In this work, they also consider cosmological perturbations that include gravitational contributions (i.e., the Mukhanov-Sasaki variables). Similar approaches that do not split the system into geometric and matter parts, but include (perturbative) parts of the gravitational degrees of freedom in the fast subsystem and (homogeneous) matter parts in the slow sector were also proposed by [START_REF] Halliwell | The Origin of Structure in the Universe[END_REF] and A. [START_REF] Vilenkin | The Interpretation of the Wave Function of the Universe[END_REF]. This split will also be our choice in chapter 9 of this thesis.

The Born-Oppenheimer approximation was also considered within approaches to quantum gravity that attempt to use connection and ux variables instead of the usual metric variables of Einstein gravity. [START_REF] Giesel | Born-Oppenheimer decomposition for quantum elds on quantum spacetimes[END_REF] aimed at an application of the Born-Oppenheimer methods to LQG using holonomy-ux variables or connection-ux variables. As it turns out, this choice of variables prevents the use of the Born-Oppenheimer methods since the ux operators are mutually non-commuting (which is here a prerequisite for the Born-Oppenheimer scheme to work). Instead, they use commuting co-triad variables for the gravity sector and a scalar eld for the matter sector. At zeroth order of the scheme, and assuming that the gravitational sector behaves e ectively classical, it is possible to derive e ective semiclassical Einstein equations that take the backreaction of the quantum matter elds via an expectation value into account. [START_REF] Giesel | Born-Oppenheimer decomposition for quantum elds on quantum spacetimes[END_REF] consider their model on a discrete lattice (as it is common practice for approaches to LQG), and thus formally obtain a lattice QFT on a discrete curved space time. They also point to the possibility of pursuing the formal Born-Oppenheimer scheme and computing quantum solutions to the gravity sector with the e ective backreaction of the quantum matter elds. Finally, they introduce a hybrid approach (similar to the models we consider here) where the gravitational sector is restricted to FLRW solutions and the fast part of the system is given by the matter quantum elds. They also propose to introduce coherent states for the gravitational subsystem in order to make progress in nding solutions. Due to the complexity of the gravity-matter systems, the focus of this work lies on spelling out the conceptual ideas rather than technically carrying out the program in detail.

Space Adiabatic Methods in Quantum Gravity

More recently, Stottmeister and Thiemann (2016a,b,c) considered similar questions in the context of LQG but employed the more general SAPT scheme [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF]. Since in the latter approach, the variables of the slow, gravitational sector are not required to commute (as it was the case in the Born-Oppenheimer approach), it is possible to apply the Born-Oppenheimer ideas also to LQG and related theories. The concrete implementation turns however out to be di cult due to the particular structure of the LQG phase space and represention. More precisely, the phase space of LQG relies on the cotangent bundle * of a compact Lie group (rather than on a vector space), and the compactness of this group prevents a direct application of the space adiabatic methods. More precisely, it implies that the Weyl quantizations of the local * and the global × ̂ where ̂ is the dual of need to be distinguished which makes it necessary to choose between local and global structures at various points. Besides, the compactness of the group prevents an -scaling of the position variables, i.e., the transfer of the deformation parameter from the momenta to the position variables in the global setting which makes the whole enterprise much more rigid [START_REF] Stottmeister | On the Embedding of Quantum Field Theory on Curved Spacetimes into Loop Quantum Gravity[END_REF]Stottmeister and Thiemann 2016b). Solutions to this problem can be derived in the case of abelian groups such as = (1) , ∈ ℕ (Stottmeister and Thiemann 2016b), but for the non-abelian case = (2) of interest in LQG such strategies do not apply. Other open issues of their attempts are related to the underlying graph structure of LQG models and the projective limits of nite dimensional truncations of the gravitational phase space that are needed in order to construct a continuum theory (Stottmeister and Thiemann 2016c). They also point out that a major obstruction to the derivation of a QFT on CST from LQG lies in the inequivalent representations of quantum elds for di erent gravitational con gurations (Stottmeister and Thiemann 2016c). This problem is a generic feature of background dependent quantum eld theories as we have seen in the previous chapter. In this work, we present a (perturbative) solution to this problem which makes the application of space adiabatic methods to quantum cosmology possible, and which was already introduced by Castelló Gomar, Martín-Benito, and Mena Marugán (2016), Castelló Gomar, Martín-Benito, and[START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF][START_REF] Fernandez-Mendez | Unique Fock quantization of scalar cosmological perturbations[END_REF].

Born-Oppenheimer in Quantum Cosmology and Decoherence

Now, of course, one can still try to make progress by assuming symmetry reductions, and in fact, the cosmological principle encourages us to do so. We already referred to discussions of the Born-Oppenheimer approach within quantum geometrodynamics, and in particular within its cosmological sector [START_REF] Chataignier | Unitarity of quantum-gravitational corrections to primordial uctuations in the Born-Oppenheimer approach[END_REF][START_REF] Kamenshchik | The Born-Oppenheimer approach to Quantum Cosmology[END_REF]Kiefer 2007). In particular, [START_REF] Chataignier | Unitarity of quantum-gravitational corrections to primordial uctuations in the Born-Oppenheimer approach[END_REF] consider the quantum gravitational corrections to the power spectra of scalar and tensor perturbations, and succeed in deriving a unitary evolution for the cosmological perturbations by making a particular gauge choice. In this framework, the usual (semiclassical) WKB ansatz is induced in order to recover a time variable. A comparison of di erent proposals for how to implement the Born-Oppenheimer semiclassical approximation was given by [START_REF] Kamenshchik | The Born-Oppenheimer approach to Quantum Cosmology[END_REF]. We also indicate that Di Gioia et al. ( 2021) have examined the question of unitary evolution in more detail and 5.3. Born-Oppenheimer in Quantum Cosmology and Decoherence make another proposal for recovering a unitary evolution. Besides, we point to the application of Born-Oppenheimer methods within the spin foam approach to LQC [START_REF] Rovelli | Stepping out of Homogeneity in Loop Quantum Cosmology[END_REF], and point out that Castelló Gomar, Martín-Benito, and Mena Marugán (2016) consider a kind of Born-Oppenheimer approximation in the hybrid approach to LQC which is however conceptually di erent from ours.

As already pointed out for the quantum gravitational case, many of these approaches rely on a semiclassical (WKB) ansatz solution for the "heavy" homogeneous part of the system, and which is, in fact, not a proper semiclassical state. Besides, it is a speci c choice which restricts the theory to a very small range of physical situations. In general, all these approaches rely on a number of di erent assumptions, e.g., that backreaction is indeed (very) small, see [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Agullo | The pre-in ationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations[END_REF] for a detailed account of these assumptions in the hybrid and in the dressed metric approaches to LQC respectively. Even if these proposals provide seminal progress in evaluating and incorporating backreaction in quantum cosmology, it is because of these various assumptions, which are in fact hard to control, that we aim at establishing an unambigious scheme that does not build on any of these assumptions.

Before we move on to the presentation of the SAPT scheme in the following chapter, let us also stress that there is an obvious connection between backreaction and decoherence (Schlosshauer 2007). Decoherence [START_REF] Zeh | On the interpretation of measurement in quantum theory[END_REF]) is the physical mechanism in which a quantum system looses its quantum mechanical properties (more precisely its coherence, i.e., the de nite phase relation between di erent quantum states) through its interaction with an environmental system. Indeed, in decoherence one aims at nding an e ective description of a speci c subsystem using the reduced density matrix approach, tracing over the remaining degrees of freedom within the system, and computing its e ective dynamics, e.g., by solving associated Lindblad equations [START_REF] Manzano | A short introduction to the Lindblad master equation[END_REF].

The idea of decoherence can be applied to a quantum gravitational setting in di erent ways. On the one hand, the environmental system can be composed of all inhomogeneous degrees of freedom which in turn induce a quantum-to-classical transition in the purely homogeneous (global) cosmological sector. This concept was rst considered by [START_REF] Kiefer | Continuous Measurement of Minisuperspace Variables by Higher Multipoles[END_REF] and [START_REF] Paz | Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples[END_REF][START_REF] Paz | Decoherence and back reaction in quantum cosmology: Multidimensional minisuperspace examples[END_REF] and re ned by [START_REF] Barvinsky | Decoherence in quantum cosmology at the onset of in ation[END_REF] for the case of cosmological (bosonic) perturbations in an in ationary Universe. Barvinsky, Kamenshchik, and Kiefer (1999) also considered a system with perturbative fermionic degrees of freedom. Similar to the above applications of the Born-Oppenheimer formalism, these approaches rely on a semiclassical WKB approximation, and hence a speci c set of ansatz solutions for system's and environmental degrees of freedom. On the other hand, the same reasoning can be applied to the quantum-to-classical transition of the cosmological inhomogeneous modes during in ation [START_REF] Kiefer | Quantum to classical transition for uctuations in the early universe[END_REF][START_REF] Polarski | Semiclassicality and decoherence of cosmological perturbations[END_REF]. This decoherence process becomes relevant when the wavelength of the relevant primordial quantum eld mode substantially exceeds the Hubble scale -1 . The reasoning of this approach is similar to the previous one and relies on a semiclassical approximation together with the existence of a classical homogeneous background. Besides, both approaches employ a time variable obtained by using the Hamilton-Jacobi equations in the semiclassical WKB approximation.

In fact, it is di cult to compute precise cosmological backreaction e ects in perturbative quantum cosmology without relying on an approximation scheme or a set of speci c ansatz solutions, or more generically, to account for all relevant interactions in coupled gravity-matter systems. The constraint character of gravity prevents us from using the standard quantum mechanical tools for solving such systems, e.g., there is no a priori given time variable, and besides, the equations are highly non-linear. Even for purely homogeneous and isotropic considerations in quantum cosmology, solutions to the constraint equations are only known for highly simpli ed systems (independent of the quantization procedure that one chooses). An inclusion of the inhomogeneous quantum elds makes the di cult task of nding (approximate) solutions seemingly impossible, even more the derivation of a semiclassical limit. Finding such a limit, in particular a QFT on CST from full quantum gravity is however indispensable in order to identify the viable candidates for theories of quantum gravity, and to bridge the gap between theory and experiment. As already pointed out in the introduction, the construction of semiclassical, maybe coherent states, for obtaining such a limit is a highly non-trivial endeavor, and has not been successfully accomplished until today. The de nition of such a limit for symmetry-reduced cosmological models may be possible, but the approaches considered in this respect mostly neglect the e ects of backreaction between the system's constituents.

In the remainder of this thesis, we will advocate the idea of implementing the SAPT approach for making progress regarding these questions. In particular, we will show how this formalism allows us to rigorously implement backreaction into coupled quantum gravity-matter systems, and to hence, also approach the semiclassical limit of quantum gravity in a second step. It is an unambiguous attempt in including such backreaction since it applies, in principle, to di erent quantum gravitational or cosmological systems, and also the speci c quantization underlying the quantum gravity scheme may be modi ed. SAPT is an inductive scheme which allows to de ne e ective quantum constraints with a considerably simpler structure than the original problem, but whose solutions approximate the true solutions up to an, in principle, inde nitely small error. It includes a formal, natural split between the homogeneous and inhomogeneous quantum degrees of freedom, and which is reminiscent of the split within the semiclassical limit of cosmological QFT on CST. The scheme will hence simplify the remaining steps towards a semiclassical approximation of quantum cosmology. Similar to the Born-Oppenheimer scheme, it uses the inverse Planck mass, or rather the ratio of a matter coupling constant and the Planck mass, as a perturbative parameter.

In the next chapter, we will provide the reader with a detailed review of the Born-Oppenheimer scheme, an introduction to SAPT and all necessary mathematical tools. Besides, we examine the iterative procedure of the scheme, and for reasons of clarity, we apply the scheme to a simple oscillator toy model up to second order in the adiabatic perturbations.

Coupled Quantum Systems

Most quantum mechanical systems, in particular those with non-trivial couplings between their internal degrees of freedom, withhold exact analytical or numerical solutions. In certain cases however, consistent approximation schemes provide a mean to extract almost accurate solutions and dynamics. In this chapter, we discuss an approach to approximately solving coupled quantum mechanical systems which have a unifying characteristic: the occurrence of a small, perturbative parameter . Here, this parameter will identify the highly di ering mass or energy scales of two inherent subsystems. In case of a molecule, it naturally arises as the ratio of the electronic and the nucleonic masses e and n , 2 ∶= e n . Recall that an electron has a mass of order e ≈ 9.11×10 -31 kg while a nucleon has a mass of order n ≈ 1.67×10 -27 kg, hence, 2 ≈ 5.46×10 -4 ≪ 1. As we will see in part III of this thesis, also cosmological systems allow for a de nition of a perturbative parameter by means of their coupling constants. This chapter introduces the ideas and techniques of the approximation scheme coined space adiabatic perturbation theory (SAPT) [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF] that we are going to extend for the computation of backreaction in quantum cosmology. The chapter and appendix A rely to a large extent on the textbook by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF], but also on the works by [START_REF] Dubin | Mathematical Aspects of Weyl Quantization and Phase[END_REF], [START_REF] Chruściński | Geometric phases in classical and quantum mechanics[END_REF] and Stottmeister and Thiemann (2016a) among others. Sections 6.6, 6.7 and 6.8 as well as the appendix B are strongly inspired by [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF]Schander and Thiemann 2019a,c), and partly taken from these references.

The SAPT scheme is a straightforward extension of the Born-Oppenheimer method wellknown from molecular physics, and further discussed in section 6.1. Its underlying idea is to exploit the highly di ering velocities of nuclei and electrons in a molecule related to the equipartition of kinetic energies in the system: Large masses can statistically be associated with small velocities or more precisely, the averages of the nucleonic and electronic velocities satisfy the relation ⟨ n ⟩ ≈ ⟨ e ⟩. It is thus reasonable to speak of the slow nucleonic system and the fast electronic system, and to use an ansatz of quantum electronic solutions with xed nucleonic coordinates. It allows to compute an expression for the stationary spectra of the system which however admit errors of order .

To analyze the dynamics of the system, it is straightforward to generalize the original Born-Oppenheimer scheme to the rst order adiabatic theory (to be discussed below) which permits to give rst order error estimates for the dynamical evolution of the system. As the electronic ansatz functions provide suitable approximate solutions which remain almost invariant under the dynamics of the full Hamiltonian, one also speaks of adiabatic decoupling of the electron energy bands, and is denoted as the adiabatic perturbation parameter. The theory o ers however no direct way to improve the rst order error estimates, and furthermore, supports only a certain class of Hamilton operators. It does not cover couplings mediated by non-commuting operators with respect to the slow subsystem.

The idea of the SAPT approach is to introduce a phase space quantization scheme which will lift the above restrictions, see section 6.2 for more details. More precisely, it comes in the form of an operator-valued pseudodi erential calculus to be explained in section 6.3. In sections 6.4 and 6.5, we are ready to introduce and discuss the scheme of SAPT itself which will accompany us throughout the remainder of this thesis, and which represents a successfull extension of the Born-Oppenheimer approximation to any perturbative order and for a large range of Hamilton operators and even constraints. Section 6.6 is intended for the iterative execution of the scheme and shows its consistency. In section 6.7, we provide all relevant formulae of SAPT for the type of models examined in the remainder of this thesis and up to second order in the adiabatic perturbations. Finally, we exemplify it with a model of coupled quantum oscillators in section 6.8.

The Born-Oppenheimer Approximation

Stationary Born-Oppenheimer Theory

The formalism by [START_REF] Born | Zur Quantentheorie der Molekeln[END_REF] (see also [START_REF] Born | Dynamical theory of crystal lattices[END_REF])) provides a scheme to compute approximate spectra and eigensolutions to coupled quantum systems, most prominently applied to microscopic, molecular systems. The basic idea of the scheme consists in partially projecting the molecular Hamiltonian on a wisely chosen wave function of the electronic subsystem in order to obtain an e ective Hamiltonian for the slow nuclei only. A review of this scheme, mostly inspired by Chruściński and Jamiołkowksi (2004, Section 6.3.3.), Panati, Spohn, and Teufel (2007) as well as Stottmeister and Thiemann (2016a, Section II), is the subject of this section.

We choose a simple setting with nuclei with positions and momenta ( , ) ∈ ℝ 2 and likewise for the electrons with positions and momenta ( , ) ∈ ℝ 2 . In the corresponding quantum theory, let us label the quantum operators associated with the nuclei using hats, i.e., by ̂ ∈ ℒ( n ) and ̂ ∈ ℒ( n ) where n is the space of Schwartz functions in dimensions and ℒ denotes the space of linear operators on n . For the electronic subsystem, we de ne the quantum operators as bold letters, i.e., by ∈ ℒ( e ) and ∈ ℒ( e ). Thereby, e is the Schwartz space in dimensions. n and e are subspaces of the so-called nucleonic and electronic Hilbert spaces ℋ s ∶= 2 (ℝ ) and ℋ f ∶= 2 (ℝ ) on which the respective canonical operators are essentially self-adjoint. The total Hilbert space arises as the tensor product of Hilbert spaces ℋ = ℋ s ⊗ ℋ f . The operators on the total Hilbert space ℋ result from tensor multiplying bounded operators. For example, the Weyl elements associated with the canonical variables become bounded operators on ℋ by tensor multiplying with a unity operator, i.e., exp( ̂ ) → exp( ̂ ) ⊗ 1 1 1 f or exp( ) → 1s ⊗exp( ) for some , ∈ ℝ. Whenever it is clear from the context, we omit such trivial factors.

Note that the di erent presentations of quantum operators for the slow and the fast subsystem (i.e., using hats versus bold letters) is just a convenient tool to distinguish the two subsystems in an obvious way. One could use the same representation on the Hilbert space 2 (ℝ + ) in fact, this is equivalent (Reed and Simon 1975a):

Remark. Tensor Products of Hilbert Spaces

The unique isomorphism, 2 (ℝ )⊗ 2 (ℝ ) ≅ 2 (ℝ + ) gives rise to the unitary mapping ⊗ ↦ ( ) ( ) ∈ 2 (ℝ + ) for any ∈ 2 (ℝ ), ∈ 2 (ℝ ) (Reed and Simon 1975a, p. 50). Besides, for any separable Hilbert space ℋ f , there is a unique isomorphism from 2 (ℝ ) ⊗ ℋ f to 2 (ℝ , ℋ f ) given by the unitary mapping ⊗ ↦ ( ) for any ∈ 2 (ℝ ) and ∈ ℋ f (Reed and Simon 1975a, Theorem II.10). This motivates to consider a bre bundle formalism for the joint Hilbert spaces as it views states in the total Hilbert space as functions over ℝ with values in ℋ f . A state has the form of a vector eld over ℝ . The simplest possible eld has only one non-vanishing value at some point 0 ∈ ℝ , and can be represented as a delta distribution 0 ∈ (ℝ ) that has a vector ∈ ℋ f associated to this point. In fact, any vector eld or wave function in 2 (ℝ , ℋ f ) can be represented as a linear combination of the generalized states 0 ( 0 ) with 0 ∈ ℝ where we allow ∈ ℋ f to depend on the point of reference 0 (see [START_REF] Ballentine | Quantum Mechanics: A Modern Development[END_REF]Gel'fand and N. Y. Vilenkin 1964) for the notion of generalized states and rigged Hilbert spaces). In appendix A, we show that this construction yields indeed a complete generalized eigenbasis.

Let us consider a (molecular) Hamilton operator which includes an external magnetic potential, ∶ ℝ → ℝ such that [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF])

̂ ∶= ̂ + ( ̂ ) 2 2 + ( -( )) 2 2 + ( ̂ , ). (6.1)
The operator is de ned on a dense domain ⊂ 2 (ℝ , ℋ f ). The potential ( , ) ∶ ℝ + → ℝ is in general a complicated function of all con guration variables and mediates the coupling between the nuclei and the electrons (typically, a Coulomb potential). In a rst step, the Born-Oppenheimer formalism suggests to split the Hamiltonian into two parts according to

̂ ∶= ̂ + ( ̂ ) 2 2 + f ( ̂ , , ) (6.2) 
where f ( ̂ , , ) is the so-called electronic Hamiltonian. Because the potential in the electronic Hamiltonian solely depends on the commuting position operators ̂ with respect to the nucleonic system, it is convenient to make the following considerations. We rst assume that for every 0 ∈ ℝ , there exists a complete eigenbasis

{ ( 0 )} ∈ℕ of ℋ f such that f ( 0 , , ) ( 0 ) = f, ( 0 ) ( 0 ) (6.3)
where the f, ( 0 ) ∈ ℝ are the 0 -dependent eigenenergies. For variable 0 , they de ne the electronic energy bands. We assume that the have all multiplicity equal to one. Besides, the energy functions f, ( 0 ) are mutually disjoint functions for every ∈ ℕ, i.e., there are no eigenvalue crossings. It is then possible to construct a complete generalized eigenbasis associated with f ( ̂ , , ) by combining a delta distribution 0 ∈ (ℝ ) with one of the electronic basis states ( 0 ), ∈ ℕ (Stottmeister and Thiemann 2016a). Cleary, this corresponds to a state in the dual space (ℝ , ℋ f ) which is only non-vanishing at the point 0 . Formally speaking, one can think of it as having the value ( 0 ) there. Since the delta distribution is not in 2 (ℝ ), it is necessary to generalize the notion of eigenstates using a rigged Hilbert space, for example ⊂ ℋ s ⊂ . Here, we introduce the distribution ( 0 , ) ∈ (ℝ , ℋ f ) which acts on states Ψ ∈ (ℝ , ℋ f ), and which in a formal integral representation has the form

( 0 , ) (Ψ) ∶= ∫ ℝ d ( -0 ) ⟨ ( 0 ), ⋅ ⟩ ℋ f Ψ( ) = ⟨ ( 0 ), Ψ( 0 )⟩ ℋ f =∶ ( 0 ). (6.4)
It is easy to see that f ( ̂ , , ) can be lifted to an operator on the larger space (ℝ , ℋ f ) which yields for every Ψ ∈ (ℝ , ℋ f )

( f ( ̂ , , ) ( 0 , ) )(Ψ) = ⟨ f ( 0 , , ) ( 0 ), Ψ( 0 )⟩ ℋ f = f, ( 0 ) ⋅ ( 0 , ) (Ψ), (6.5)
supporting the idea that the ( 0 , ) provide a generalized eigenbasis of the electronic Hamiltonian. The Born-Oppenheimer scheme asks whether these generalized eigenstates remain unchangend under the evolution generated by ̂ . The answer is in the negative and to see this, let us assume that there exists a solution Ψ for ̂ with eigenvalue (Stottmeister and Thiemann 2016a)

̂ Ψ = Ψ . (6.6)
We project this equation on the distribution ( 0 , ) and write it as

( 0 ) ∶= ( 0 , ) ( Ψ ) = ( 0 , ) ( ̂ Ψ ) (6.7) = ∫ ℝ d ( -0 ) ⟨ ( 0 ), ⋅ ⟩ ℋ f ⎡ ⎢ ⎢ ⎣ ̂ + ( ̂ ) 2 2 + f ( ̂ , , ) ⎤ ⎥ ⎥ ⎦ Ψ ( ).
The second electronic term has a trivial solution using equation (6.5) -it is a pure multiplication operator -while the rst, kinetic term requires more care. We perform these calculations explicitely in appendix A, and give here only the nal result using the matrix elements (Stottmeister and Thiemann 2016a)

( 0 ) ∶= -⟨ ( 0 ), (∇ 0 )( 0 )⟩ ℋ f , (6.8) ( 0 ) ∶= ∇ 0 + ( 0 ) - ( 0 ), (6.9) 
and note that the functions ( ) are known as Berry phases in the literature. With 2 ∶= e n from above, we obtain

( 0 ) = ∑ - 2 ∑ ( 0 ) ( 0 ) + f, ( 0 ) ( 0 ). (6.10)
While the electronic, potential term only includes the electronic energy band with the chosen electronic quantum number , the kinetic term mixes a priori all electronic energy bands. An exact solution could consequently require the computation of an in nite number of matrix elements. To obtain approximate solutions, the Born-Oppenheimer scheme, improved by the Berry-Simon connection [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF][START_REF] Simon | Holonomy, the quantum adiabatic theorem, and Berry's phase[END_REF] or the Mead potential [START_REF] Mead | On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei[END_REF], ignores these mixing terms such that the only contributing, kinetic matrix element is ∶= (Stottmeister and Thiemann 2016a). In addition, one can perform a perturbative expansion of and ( 0 ) in . Eventually, it yields reasonable results for the stationary molecular spectra. The error estimate can however not be improved by simple means unless we compute the possibly in nite number of matrix elements. Moreover, one would like to compute the dynamics of the problem.

Dynamical First Order Adiabatic Theory

In the previous section, the analysis of the Hamilton operator (6.2) was performed by choosing a particular (generalized) basis state ( 0 , ) associated with a point 0 ∈ ℝ and an electronic energy band f, ( 0 ), and by projecting to a(n unknown) solution of ̂ . To learn about the molecular dynamics it is more convenient to derive appropriate operator equations. Therefore, let us consider the function f ( , , ) on ℝ which arises from the electronic operator ̂ f ( ̂ , , ) by simply replacing the operator ̂ with the real parameter . This next section is a summary of the results in [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF].

Accordingly, f ( , , ) is a function with values in the linear operators on ℋ f , and we additionally assume that it is uniformly bounded and smooth with respect to , taking values in the bounded, self-adjoint operators on some dense domain e ⊆ ℋ f . Due to the self-adjoint values, it is possible to write the electronic Hamiltonian as a direct integral in the form

̂ f = ∫ ⊕ ℝ d f ( , , ) (6.11) 
such that ̂ f is a self-adjoint operator on 2 (ℝ ) ⊗ . More precisely, ̂ f is a bred operator and naturally acts on the Hilbert space

2 (ℝ ) ⊗ ℋ f = ∫ ⊕ ℝ d ℋ f (6.12)
in the sense that for a generic wave function ( , ) ∈ 2 (ℝ ) ⊗ , the operator ̂ f acts like

( ̂ f )( , ) = f ( , , -) ( , ).
As in the previous section, f ( ) admits a complete eigenbasis { ( )} in ℋ f for every value of and the associated energy bands f, ( ) can be considered as functions in ℝ . Following [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF], let us now de ne a -dependent projection operator ( ) ∈ ℬ(ℋ f ) on the electronic Hilbert space ℋ f which is associated with the energy band f, ( ) of f ( , , ) for one particular and xed number ∈ ℕ. More precisely, for every xed ∈ ℝ , it projects any electronic wave function ∈ ℋ f on the eigenstate ( ) ∈ ℋ f . We promote ( ) to an operator on the total Hilbert space by the direct integral construction, ̂ ∶= ∫ ⊕ d ( ) from above. By de nition, ̂ commutes with the bred, electronic Hamiltonian, and hence ̂ ℋ is an invariant subspace for the dynamics generated by ̂ f , namely

-̂ f , ̂ = 0 (6.13)
where ∈ ℝ is a microscopic time parameter. Now, let us consider the total Hamiltonian including the kinetic energy contributions of the nuclei. We assume that the magnetic vector potential ( ) is a bounded and smooth function on ℝ , which implies that

̂ ∶= 2 2 -∇ + ( ) 2 + ̂ f , (6.14)
is a self-adjoint operator on its domain of de nition ( ̂ ) = 2 (ℝ ) ⊗ e , where 2 is the Sobolev Hilbert space. Note that this Hamilton operator is unbounded but for our qualitative statements here, this does not play a substantial role. We will be more precise in this respect in the next sections. As can be shown, the operator ̂ fails to be an orthogonal projection with respect to the total Hamiltonian ̂ . Due to the -dependent kinetic term, we have that ̂ , ̂ ∼ , and -̂ , ̂ ∼ . (6.15)

The second estimate means that the subspace ̂ ℋ is not invariant under the dynamics generated by ̂ and states Ψ that are initially in ̂ ℋ will not remain inside. Only for short time intervals , the state approximately stays within ̂ ℋ. In most physical situations however, the interesting molecular dynamics happens on nite macroscopic time scales ∶= . Consequently, the estimate in equation (6.15) leads to results with errors of order (1). It is possible to improve this result in several ways which is the aim of the time-adiabatic theory. The important assumption, which continues to play a role in the later applications, consists in presuming an energy band gap. In particular, the electronic Hamiltonian should have a discrete band structure, for example

f,0 ( ) < f,1 ( ) < f,2 ( ) < ..., (6.16) 
and in particular such that the energy band f, ( ) for the xed quantum number is separated by a band gap from the remainder of the spectrum for every ∈ ℝ . More technically, we assume that there is a part ( ) ⊂ ( f ( )) of the total spectrum of f ( ) such that there are two bounded functions ± ∈ b (ℝ , ℝ) that de ne an interval ( ) = [ -( ), + ( )] such that ( ) ⊂ ( ) pointwise, and

inf ∈ℝ dist ( ( ), ( f ( )) ⧵ ( )) =∶ > 0. (6.17)
Of course, it is also possible to make local statements if the energy gap is only satis ed on a certain domain ⊂ ℝ . We refer to the book by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF] and stick to the global gap condition here.

Besides, let us introduce the projection operator Ê ℰ ℰ ∶= 1 1 1 (-∞,ℰ] ( ̂ ) which is the spectral projection of ̂ on energies smaller than ℰ ∈ ℝ. Then, with the assumption of the gap condition, the time-adiabatic theorem states that there exists a positive constant < ∞ such that

‖ ‖ ‖ ‖ ‖ -̂ , ̂ Ê ℰ ℰ ‖ ‖ ‖ ‖ ‖ ℬ(ℋ) ≤ (1 + ), (6.18)
and the norm is for bounded operators on ℋ. Hence, ̂ ℋ is an approximately invariant subspace with respect to the full dynamics on macroscopic time scales, although ≪ 1 . The projection on total nite energies is necessary to prevent unbounded kinetic energies, in particular for the nuclei. The result in equation (6.18) supports the idea that subspaces associated with electronic energy bands remain, at least approximately, invariant under the dynamics of ̂ .

For concrete applications, it is desirable to learn about the e ective dynamics within these subspaces. It is thus useful to de ne the diagonal Hamiltonian (6.19) where ̂ ⟂ ∶= 1 1 1 ℋ -̂ is the orthogonal compliment of the projector ̂ . It is easy to see that the diagonal Hamiltonian commutes with ̂ , and thus leaves the subspace ̂ ℋ invariant under its dynamics. Before we use ̂ diag to analyze the dynamics within ̂ ℋ, we rst assert that ̂ diag gives indeed a good approximation of the dynamics generated by ̂ . In fact, it follows from the time-adiabatic theorem that there exists a constant ̃ < ∞ such that

̂ diag ∶= ̂ ̂ ̂ + ̂ ⟂ ̂ ̂ ⟂ ,
‖ ‖ ‖ ‖ ‖ -̂ - -̂ diag Ê ℰ ℰ ‖ ‖ ‖ ‖ ‖ ℬ(ℋ) ≤ ̃ (1 + ℰ ) (1 + ). (6.20)
This allows to examine ̂ diag and its dynamics on states in the decoupled subspace ̂ ℋ in more detail.

There is however a problem if we want to consider the dynamics of ̂ on ̂ ℋ f . In fact, this operator does not preserve the subspace (only up to higher orders in ). But this is a catastrophe for doing spectral analysis as one cannot compute eigenvalues of an operator which maps out of the considered subspace. It is therefore helpful to switch to a simpler reference subspace which we denote by ℛ ⊂ ℋ. A natural reference space is ℛ = 2 (ℝ ), i.e., the nucleonic Hilbert space, and we de ne a unitary operator ∶ ̂ ℋ → ℛ with

̂ ∶= ∫ ⊕ ℝ d ( ) ∶= ∫ ⊕ ℝ d ⟨ ( ), ⋅ ⟩ ℋ f . (6.21)
The unitary ̂ serves to de ne an e ective Hamilton operator on the reference subspace ℛ given by

̂ e ∶= ̂ ̂ ̂ ̂ ̂ † = 2 2 -∇ + ( ) 2 + f, ( ) + ( 2 ). (6.22)
Evidently, the dynamics generated by ̂ e on ℛ has a much simpler form than the dynamics of ̂ , and there is justi ed hope that exact solutions are available for this problem. This simpler dynamics can be compared with the original dynamics, and indeed one nds that there exists another constant ̌ such that

‖ ‖ ‖ ‖ ‖ -̂ -̂ † -̂ e ̂ ̂ Ê ℰ ℰ ‖ ‖ ‖ ‖ ‖ ℬ(ℋ) ≤ ̃ (1 + ). (6.23)
While this result is mathematically not deeper than the estimate in equation ( 6.20), it shows that the dynamics inside of ̂ ℋ can be formulated by means of a much simpler Hamiltonian and consequently a much simpler Schrödinger equation. In particular, the presence of the spectral gap implies that the dynamics of the nuclei is governed by the e ective, electronic potential energy f, ( ). A solution ( , ) to the e ective, nucleonic Schrödinger equation

d d = ̂ e ( ), ( 0 ) =∶ 0 ∈ 2 (ℝ ) (6.24)
multiplied by the eigenstate ( , ) is Ψ( , , ) = ̂ † ( , , ) = ( , ) ( , ), (6.25)

and yields an approximate solution to the full quantum problem, at least up to errors of order and for time scales ≪ 1 . The question is whether one can improve these error estimates and derive results that are valid for longer time scales. The answer is in the positive, but the techniques employed here are not adequate for this undertaking. Besides, the presented theory only applies to systems for which the coupling operator depends on mutually commuting operators with respect to the slow subsystem. Here, these were the position operators of the nuclei. The commutativity ensures that the operator has the form of a bred operator using a direct integral construction. This is however not the case for many interesting problems such as the Dirac equation subject to an external electromagnetic eld.

Fibred Operators over Phase Space

We consider and review again an example given in [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]): The single particle Dirac theory is modeled on the Hilbert space 2 (ℝ 2 , ℂ 4 ) and describes an electron-positron particle with mass and with two spin directions for the positron and the electron part respectively. In momentum representation, the Dirac Hamiltonian reads

̂ D ∶= ⋅ -( ∇ ) + + ( ∇ ) (6.26)
where and are the standard Dirac matrices composed of the Pauli matrices. ∶ ℝ 3 → ℝ 3

and ∶ ℝ 3 → ℝ are a slowly varying external electromagnetical potential. The techniques of the time adiabatic theory fail for this example because ̂ D cannot be cast into a bred operator over neither the con guration nor the momentum space: ̂ and ̂ do not commute. However, one can think of the Dirac Hamiltonian as a function or a " bration" over the slow phase space with values in the bounded operators on ℂ 4 , namely D ( , ) = ⋅ ( -( )) + + ( ). (6.27)

In fact, the phase space formulation or more precisely, a phase space quantum mechanics for the slow degrees of freedom will provide a solution to the problem of the Dirac Hamiltonian and also allow for a systematic perturbation theory with respect to the adiabatic parameter . This is the subject of sections 6.2, 6.3 and 6.4.

Standard Time-Adiabatic Theory

The reader familiar with the (time) adiabatic theorem might wonder why we refer to the timeadiabatic theory in the above considerations. In fact, the time adiabatic theory generically concerns quantum systems with an explicitely time-dependent Hamilton operator ( ). In fact, the standard time-adiabatic theory starts with a family of bounded, self-adjoint Hamilton operators ( ) ∈ ℬ sa (ℋ), ∈ ℝ, and is interested in the initial value problem of the unitary propagator ( , 0 ) ∈ ℬ(ℋ) given by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF])

d ( , 0 ) d = ( ) ( , 0 ), ( 0 , 0 ) = 1 1 1 ℋ (6.28)
which is equivalent to the question of the state evolution ( ) = ( , 0 ) ( 0 ) with ( 0 ), ( ) ∈ ℋ. Again based on [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF], one can make the following statements: Assuming a spectral gap between some relevant subset ( ) and the total, time-dependent spectrum ( ) of ( ), and the resulting existence of the orthogonal projection operator ( ), the time-adiabatic theorem states in its simplest form that there exists a constant < ∞ such that

‖(1 1 1 ℋ -( )) ( , 0 ) ( 0 )‖ ℬ(ℋ) ≤ (1 + -0 ). (6.29)
A slightly more general version of the theorem de nes an adapted, so-called adiabatic unitary propagator ( , 0 ) generated by the adiabatic Hamiltonian ( ) which precisely intertwines the spectral subspaces ( ), i.e., ( ) ( , 0 ) = ( , 0 ) ( 0 ). (6.30)

In fact, the adiabatic Hamiltonian corresponds to the diagonal Hamiltonian from above, and the analogous adiabatic theorem states that for some ( ) ∈ 2 b (ℝ, ℬ sa (ℋ)) satisfying an energy gap condition, there exists a constant ̃ < ∞ such that for all , 0 ∈ ℝ it holds that

‖ ( , 0 ) - ( , 0 )‖ ℬ(ℋ) ≤ ̃ (1 --0 ). (6.31)
This statement ties in with the adiabatic theorem from above, and in fact, the space adiabatic theory is a generalization of this time-adiabatic result. To see this, simply think of the time derivative as a perturbation of the family of Hamiltonians ( ). The proof of the space adiabatic theorem is a generalization of the proof of the time-adiabatic result (6.31) to the case where some 0 ( ) is a family of self-adjoint operators on ℋ f which leads to the total Hamiltonian

̂ = (-∇ ) + ∫ ⊕ ℝ d 0 ( ) (6.32)
where ∶ ℝ → ℝ corresponds to the perturbation of the time adiabatic case. Put differently, the spectral problem of a time-dependent Hamiltonian ( ) can be understood as the kernel problem of a Hamilton constraint ̂ = ̂ + ̂ ( ̂ ), where ̂ is the conjugate momentum of the time operator ̂ .

It is important to note that the time-dependence in physical systems arises in most cases as an idealization of a coupling to another physical system, that cannot be described in simpler terms. The space adiabatic theory is therefore more generic than the idealized time-adiabatic theory.

The Coherent State Born-Oppenheimer Ansatz

The phase space quantization scheme to be discussed in the following is the core of SAPT and lifts the restriction that the coupling must be mediated by mutually commuting operators in the slow sector. Another possibility to circumvent this limitation is to replace the Dirac delta distributions in the generalized eigenstates ( 0 , ) by some appropriate (overcomplete) basis of coherent states ( 0 , ) with 0 ∈ ℂ , and which are peaked on classical phase space points (Stottmeister and Thiemann 2016a): More precisely, consider the -dependent standard coherent states 0 ( ) ∈ 2 (ℝ ) associated with the annihilation and creation operators [ ̂ , ̂ † ] = of ̂ and ̂ . Then, one might assume that the physical problem admits an operator-valued phase space function ̃ 0 ( , , , ) ∈ b (ℝ 2 , ℬ(ℋ f )) such that the associated operator on the full Hilbert space ℋ = 2 (ℝ ) ⊗ ℋ f arises as (Stottmeister and Thiemann 2016a)

̂ 0 ( ̂ , ̂ , , ) = ̂ 0 ( ̂ , ̂ † , , ) = ∫ ℂ d 2 ( ) ̃ 0 ( , ̄ , , ) ⊗ ⟨ , ⋅ ⟩ 2 (ℝ ) . (6.33)
If it is possible to solve the eigenvalue problem associated with the operator-symbol ̃ 0 ( , ̄ , , ), one obtains a set of eigensolutions { ( , ̄ )} in ℋ f with ∈ ℕ . As before, it is reasonable to build the (overcomplete) family of product states { 0 ( ) ⊗ ( 0 , ̄ 0 )} , 0 ⊂ 2 (ℝ , ℋ f ). This ansatz consequently allows to consider operators with a dependence on non-commuting, slow operators, but it comes with some ambiguities due to the overcompleteness of the coherent state basis: In concrete applications, the symbol ̃ 0 ( , ̄ , , ) de ned by equation (6.33) is not given a priori so we need to compute it in order to perform a semiclassical analysis. The procedure suggested by the Born-Oppenheimer theory would be to compute the expectation value of ̂ 0 ( ̂ , ̂ , , ) with respect to the coherent state basis { 0 ( ) ⊗ ( 0 , ̄ 0 )} , 0 . Due to the overcompleteness of this basis, the matrix elements obtained by this strategy fail however in general to agree with those that can be derived from ̃ 0 ( , ̄ , , ) [START_REF] Landsman | Mathematical Topics Between Classical and Quantum Mechanics[END_REF]Stottmeister and Thiemann 2016a). It is thus not trivial how to obtain the concrete form of ̃ 0 ( , ̄ , , ) from the full Hamilton operator ̂ 0 ( ̂ , ̂ , , ). Moreover, the computation of the expectation values are often very cumbersome and may even not be possible in some cases. As we will see, SAPT is technically much simpler to implement and uses the semiclassical symbols of operators in a direct manner via the Weyl correspondence.

Summary

This section has illustrated that the standard Born-Oppenheimer theory for stationary spectra and its dynamical time-adiabatic extension admit errors of order and require the coupling to be mediated by mutually commuting operators of the slow subsystem. It uses the idea that the fast (electronic) eigensolutions depend parametrically on the nuclei positions which gives rise to a bre bundle point of view in which any base point admits a fast (electronic) eigenvalue problem with a bred (electronic) Hamiltonian. This formalism is thus not adapted to problems such as the one-particle Dirac equation with an external electromagnetic eld. The example of the Dirac equation however suggests to consider a bration over the whole phase space, not only over the slow con gutation space. SAPT as developed by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF] uses exactly this idea and establishes a systematic perturbation theory with respect to the adiabatic parameter .

To technically realize the perturbative scheme, it employs an -scaled phase space quantization for the slow degrees of freedom and develops the equations of motion as an (asymptotic) series in . Every coe cient of this power series represents an independent, approximate equation of motion which is usually easier to solve. The phase space quantum mechanics nds its origin in Weyl's quantization prescription (although it does not restrict to his rule of symmetric ordering), and makes contact to the standard Hilbert space representation of quantum theory by means of integral operators. This is the topic of the following section.

Weyl Quantization and Integral Operators

SAPT is a purely quantum mechanical approach which requires, like any quantum theory, a prescription for associating a quantum observable ̂ to a given classical observable ∈ ∞ (Γ, ℝ), i.e., to a smooth function on the classical phase space Γ. The representation of a quantum observable can arise in di erent forms, the most common one is certainly its description as a bounded operator on a (dense domain of a) Hilbert space ℋ = 2 ( , d ) where is a con guration space and d an appropriate measure. Another (less well-known) representation is the so-called phase space or deformation quantization (Bayen et al. 1978a,b;[START_REF] Blas | The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes[END_REF]. Its central idea is to assign to each classical observable a function on phase space, denoted as a "symbol" function and to replace the operator product by a non-commuting product on the corresponding quantum algebra of phase space functions. The classi cation of such symbol functions and the investigation of their properties is known as the theory of pseudodi erential operators ("pseudo", because it exceeds the standard classes of di erential operators).

Pseudodi erential calculus was initially developed for the purpose of investigating partial di erential equations and particularly singular integral operators on purely mathematical grounds [START_REF] Kohn | An Algebra of Pseudo-Di erential Operators[END_REF][START_REF] Mikhlin | Singular Integral Equations[END_REF]. Bayen et al. (1978a,b), [START_REF] Hörmander | The Weyl calculus of pseudodi erential operators[END_REF]Hörmander ( , 1985b)), and [START_REF] Howe | Quantum Mechanics and Partial Di erential Equations[END_REF] and many others subsequently developed the connection and application to quantum mechanics. Formally, the computations within phase space quantum theory can be limited to operations of functions on phase space (like multiplication, inversion etc.). The relation to the common representation of operators acting on Hilbert spaces becomes obvious, if the symbol functions are considered to be part of an integral kernel whose integral with the wave function in ℋ corresponds to the application of the operator. More precisely, let ̂ ∈ ℬ(ℋ) be a bounded operator on ℋ and ∈ ℋ. Then, the aim is to nd an appropriate integral kernel

∈ ( 2 ) in the tempered distributions such that ( ̂ )( ) = ∫ d ( , ̃ ) ( ̃ ) is a well-de ned operation
and agrees with the known result from the Hilbert space representation of quantum theory. To understand this relation and also to construct and motivate the computational tools, we will illuminate these basic aspects of the so-called Weyl correspondence and of the pseudodi erential theory. As a starting point, we use the spectral theorem and the Weyl quantization prescription.

SAPT uses this prescription for the slow sector in order to establish a perturbation theory with respect to the physical perturbation parameter . The fast sector will be represented using the standard operator quantization. As it turns out, the interplay of these two quantization schemes allows for a systematic treatment of highly non-trivial coupled quantum systems. The resulting theory works with operator-valued symbol functions, in contrast to the original pseudodi erential theory of scalar-valued symbols. This requires the extension of the initial results of the scalarvalued symbolic calculus. We start with a review of the original, scalar-valued symbols and the Weyl correspondence. The following introduction and overview of the topic is inspired by and based on the textbooks by Dubin, Hennings, and Smith (1980, Chapter 8) and by Folland (1989, Chapter 2) as well as by the paper by Blaszak and Domanski (2012)

Weyl Quantization

Consider a one-dimensional system whose position and momentum operators ̂ and ̂ act as operators on appropriately dense domains of the Hilbert space ℋ = 2 (ℝ, d ). It is often more convenient to work with their associated one-parameter unitary groups ( ̂ ) and ( ̂ ) where and are real parameters which arise from the quantization of the functions ( ) = and ( ) =

with respect to and . The spectral theorem for the operators ̂ and ̂ together with the corresponding spectral calculus provide a representation of these operators by means of the projection-valued spectral measures d Π ̂ and d Π ̂ , for example ( ̂ ) = ∫ ( ̂ ) ( ) d Π ̂ ( ), and

( ̂ ) = ℝ is the spectrum of ̂ [START_REF] Dubin | Mathematical Aspects of Weyl Quantization and Phase[END_REF]. This account of the unitary group elements and the spectral calculus for generic functions ( ̂ ) (or equivalently ( ̂ )) suggests to establish an operator-valued Fourier inversion formula to represent an operator function ( ̂ ) for any ∈ (ℝ) as [START_REF] Dubin | Mathematical Aspects of Weyl Quantization and Phase[END_REF])

( ̂ ) = 1 √ 2 ∫ ℝ ̌ ( ) ( ̂ ) d (6.34)
where ( ⋅) denotes the Fourier transform for Schwartz functions. The Fourier transform also extends uniquely to linear automorphisms of (ℝ). This formula directly follows from employing the Fourier transformation formula and the spectral representation of the unitary group element ( ̂ ) from above. An equivalent formula holds for momentum-valued functions ( ̂ ). Since in quantum mechanics, position and momentum do not commute, the quantization of mixed operators like ̂ ∶= ( ̂ , ̂ ) with ( , ) ∈ (ℝ 2 ) is ambivalent. The proposed quantization schemes with the one-parameter unitary groups and the Fourier inversion formula only allow to realize purely ̂ -or ̂ -ordered quantization schemes, such as the ̂ -ordered version of ̂ (Dubin, Hennings, and Smith 1980)

̂ = 1 2 ∬ ℝ 2 d d ̌ ( , ) ( ̂ ) ( ̂ ) (6.35)
where ̌ is the Fourier transform with respect to both -and -variables. In fact, this represents the generalization of the standard polynomial ̂ -and ̂ -ordered quantization schemes.

To obtain a more symmetric operator ordering and to map real-valued phase space functions onto self-adjoint operators, [START_REF] Weyl | Quantenmechanik und Gruppentheorie[END_REF] proposed a di erent ordering prescription by considering the unitary group elements ( ̂ ) and ( ̂ ) as being the elements of special subgroups of the more generic Weyl group with elements ( , ) ( ̂ , ̂ ) = ( ̂ + ̂ ) . In particular, = ( ,0) and = (0, ) . The quantization prescription for a function ( , ) is given by [START_REF] Dubin | Mathematical Aspects of Weyl Quantization and Phase[END_REF]) (6.36) and we note that this is a unitary isomorphism from2 (ℝ 2 ) to the space of Hilbert-Schmidt operators on 2 (ℝ). For concrete applications to wave functions ( ) in (a dense domain of) the Hilbert space 2 (ℝ), we employ the standard representation of position and momentum operators as multiplication ( ̂ )( ) = ⋅ ( ), and as derivation ( ̂ )( ) = -ℏ( )( ) operators.

( , ) ↦ ̂ = 1 2 ∬ ℝ 2 d d ̌ ( , ) ( ̂ + ̂ ) ,
Accordingly, the Weyl element ( , ) ( ̂ , ̂ ) evaluates to ( ̂ + ̂ ) ( ) = ℏ( )∕2 ( + ℏ )

for any smooth ∈ 2 (ℝ). This suggests to represent the operator ̂ as an integral operator with a corresponding integral kernel . To see this, let us restrict ( ) ∈ (ℝ) to be Schwartz, and let ( , ) ∈ (Γ) be a tempered distribution. Then, the Schwartz kernel theorem states that there is indeed a unique linear operator, ̂ ∶ (ℝ) → (ℝ) ∶ ↦ ( ̂ ) with [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF])

̂ ( ) = ∫ ℝ d ̃ ( , ̃ ) ( ̃ ) = 1 2 ℏ ∬ ℝ 2 d ̃ d 1 2 ( + ̃ ), ( -̃ )∕ℏ ( ̃ ), (6.37)
where the kernel ( , ̃ ) ∈ (ℝ 2 ) is a tempered distribution. The related assignment, ̂ ∶ (ℝ 2 ) → ℬ( 2 (ℝ)) which maps a Schwartz function ( , ) ∈ (ℝ 2 ) on phase space to the corresponding operator ̂ ∈ ℬ( 2 (ℝ)) on 2 (ℝ) via relation (6.37) is known as the Weyl correspondence. Consequently, the knowledge of the function su ces to uniquely determine the corresponding Weyl quantization ̂ without computing the explicit representation on the Hilbert space 2 (ℝ).

Phase Space Quantum Mechanics

To de ne a quantum theory exlusively as a theory of phase space functions, one also needs to transfer the algebraic structures of the quantum theory to phase space. Our following discussion is mostly a summary of (Blaszak and Domanski 2012), and more details can be found in that reference.

In the classical theory, the Poisson manifold (Γ, ) consisting of a smooth phase space manifold Γ, together with the algebra ∞ (Γ) of smooth functions on Γ and the Poisson structure de ne the dynamics of the underlying classical system. Here, the Poisson structure is simply the bilinear Poisson Lie bracket {⋅, ⋅} ∶ ∞ (ℝ 2 ) × ∞ (ℝ 2 ) → ∞ (ℝ 2 ). Starting from this classical phase space algebra c ∶= ( ∞ (ℝ 2 ), {⋅, ⋅}, ⋅) where "⋅" denotes the commutative pointwise product of phase space functions, the quantum theory replaces the pointwise product by an appropriate, non-commutative "star" product which we denote by "⋆ ℏ ". Since the star product should correspond to the pullback of the operator product to phase space, it is uniquely de ned as soon as the operator ordering is xed. Accordingly, the Poisson bracket transforms into the pullback [⋅, ⋅] ℏ of the quantum commutator of operators.

Hence, we de ne a quantum phase space algebra Q ∶= ( ∞ (ℝ 2 ), [⋅, ⋅] ℏ , ⋆ ℏ ) for which the star product is a non-commutative and associative relation on ∞ (ℝ 2 ), and the quantum Poisson bracket satis es the relation -ℏ [ 1 , 2 ] ℏ = ( 1 ⋆ ℏ 2 -2 ⋆ ℏ 1 ) for all 1 , 2 ∈ ∞ (ℝ 2 ) which is a natural requirement in order to make contact with standard quantum mechanics (Blaszak and Domanski 2012). One can interpret this procedure as a deformation quantization since the star product and the quantum Poisson bracket arise as deformations of the pointwise product and the classical Poisson bracket in the limit ℏ → 0. In particular, the scheme assumes for all ,

1 , i) 1 ⋆ ℏ 2 = 1 ⋅ 2 + (ℏ), ii) [ 1 , 2 ] ℏ = { 1 , 2 } + (ℏ), iii) ⋆ ℏ 1 = 1 ⋆ ℏ = .
Given these conditions, the concrete form of the star product de nes a quantum theory with a choice of operator ordering. One particularly simple and intuitive class of star products are the Moyal products. A Moyal proudct carries the form of a power series expansion in ℏ, i.e.,

1 ⋆ ℏ 2 ∶= ∑ ∈ℕ ℏ ( 1 , 2 ) where ∶ Q × Q → Q are bilinear operators satisfying 0 ( 1 , 2 ) = 1 2
, and 1 ( 1 , 2 ) -1 ( 2 , 1 ) = { 1 , 2 }. The higher order contributions depend on the concrete choice of operator ordering in the quantum theory. One particular subclass of Moyal products has the form of an exponential (Blaszak and Domanski 2012)

( 1 ⋆ ℏ 2 )( , ) = exp ℏ -ℏ ̄ 1 ( , ) 2 ( , ) = , = (6.38)
where the parameters ∈ ℝ, and ̄ = 1 -∈ ℝ, parametrize di erent orderings. This class includes the common Weyl ordering with

= 1 2 = ̄ .
The crucial idea of SAPT is to exploit this ℏ-expansion and to supplement it by an additional factor which may arise, like for the molecular systems, as the ratio of two inherent masses. In general, let us associate a set of canonical variables ( , ) on the "slow" phase space Γ s with a heavy mass > 0, and let ( , ) be the canonical pair in the "fast" phase space Γ f associated with a mass 0 < ≪ such that 2 ∶= ≪ 1. Using the equipartition theorem, the theory admits that on (statistical) average ⟨ 2 ⟩ ≈ 2 ⟨ 2 ⟩. It seems thus intuitive to de ne a rescaled momentum ∶= such that ⟨ 2 ⟩ ≈ ⟨ 2 ⟩.

This rede nition of variables generates a rescaling of the canonical Poisson bracket { , } = , and similarly for the quantum commutator of the associated quantum theory. In particular, we have the rescaled commutation relation [ ̂ , ̂ ] s = -ℏ 1s for the position operator ̂ ∈ ℒ( ) and respectively for the rescaled momentum operator ̂ ∈ ℒ( ), where is the one-dimensional Schwartz space. In a deformation quantization scheme of the slow subsystem, the rescaling of the momentum operator is tantamount to a rescaling of Planck's constant ℏ → ℏ as can easily be deduced from the rescaled de nition of the commutator relation above. This has important consequences for the whole phase space quantization scheme, because the power series expansions for the star product and the quantum Poisson bracket can now be considered as to be with respect to the parameter ̃ ∶= ℏ. This allows to couple the two subsystems order by order in an -expansion in the "adiabatic" limit → 0.

To simplify the analysis, the scheme sticks to the standard Hilbert space representation for operators with respect to the fast subsystem while it employs the phase space representation for the slow subsystem. Quantum operators of the fast subsystem will be indicated by bold letters, e.g., ∈ ℒ( ) and ∈ ℒ( ). Although the scheme employs the phase space scheme for the slow subsystem, recall that a standard analysis of the theory on the total Hilbert space ℋ ∶= ℋ f ⊗ ℋ s is possible by means of the above-introduced Weyl correspondence. Instead of de ning quantum operators for the coupled theory as (a sum of) tensor products ̂ ⊗ ∈ ℬ(ℋ) of bounded operators ̂ ∈ ℬ(ℋ s ) and ∈ ℬ(ℋ f ) on the respectively slow and fast Hilbert spaces ℋ s and ℋ f , the partial phase space scheme intertwines the representation with quantum phase space functions and operators on Hilbert spaces. More precisely, quantum observables will have the form of operator-valued functions on the slow phase space, i.e., they belong to ∞ (Γ s , ℬ(ℋ f )) and take the form ( , ) ∈ ∞ (Γ s , ℬ(ℋ f )) = ∞ (ℝ 2 , 2 (ℝ)) [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. The analysis of such operators is the subject of the operator-valued pseudodi erential calculus.

Operator-Valued Pseudodi erential Calculus

Pseudodi erential calculus for operator-valued symbols as introduced by Panati, Spohn, and [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF] and detailed by Teufel (2003, Appendix A) is in many respects directly related to the original scalar-valued calculus. The following section is a summary of the relevant notions and de nitions provided in [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF], Appendix A) to which we refer for more details.

Let ℋ, ℋ 1 and ℋ 2 be separable Hilbert spaces and ℬ(ℋ 1 , ℋ 2 ) the space of bounded linear operators from ℋ 1 to ℋ 2 . Let be a ℬ(ℋ 1 , ℋ 2 )-valued Schwartz function on ℝ 2 , in particular ∈ (ℝ 2 , ℬ(ℋ 1 , ℋ 2 )). Analogous to the scalar-valued case, the function ( , ) gives rise to an operator ̂ ∶ 2 (ℝ, ℋ 1 ) → 2 (ℝ, ℋ 2 ) by means of the Weyl correspondence. For a wave function ∈ (ℝ, ℋ 1 ), this operator is given by

̂ ( ) = 1 2 ∫ ℝ 2 d d ̃ 1 2 ( + ̃ ), ( -̃ )∕ ( ̃ ). (6.39)
It is possible to extend the space of symbol functions for which the Weyl quantization (6.39) yields a well-de ned operator on the space of Schwartz functions ∈ (ℝ, ℋ 1 ). We introduce the special symbols by Hörmander in de nition 6.1, as well as the more general symbols in de nition 6.3 which encompass Hörmander's symbols.

De nition 6.1. Hörmander's Symbols

A function ∈ ∞ (ℝ 2 , ℬ(ℋ 1 , ℋ 2 )) belongs to Hörmander's symbol class (ℬ(ℋ 1 , ℋ 2 )) with ∈ ℝ and 0 ≤ ≤ 1, if for every , ∈ ℕ, there exists a positive constant , such that

sup ∈ℝ ‖ ‖ ‖ ‖ ‖ ( )( , ) ‖ ‖ ‖ ‖ ‖ℬ(ℋ 1 ,ℋ 2 ) ≤ , ⟨ ⟩ -, ∀ ∈ ℝ (6.40)
where

⟨ ⟩ ∶= (1 + 2 ) 1∕2 .
Note that these symbols need to be bounded functions with respect to the con guration variable , while their at most polynomial growth with respect to the momentum decreases with every derivative with respect to . This de nition, and many other similar de nitions of symbol classes, nd their motivation in the pseudodi erential calculus for di erential operators with non-constant coe cients. Therefore, let ( , ) be a di erential operator with non-constant coe cients and the di erential operator associated with the con guration variable (Hörmander 1985b): To nd solutions ( ) to the di erential equation ( ( , ) )( ) = ( ), it is reasonable to use the ansatz = , with = ( , ) being a pseudodi erential operator itself. As it turns out, the symbol function ( , ) associated with this operator provides a reasonable approximation and appropriate error estimates for the solution whenever it is of the above symbol type. This is because one seeks approximations whose errors decay asymptotically for large like -for some ∈ ℕ, and the Hörmander symbol functions guarantee just that. For applications in physics, for example in quantum mechanics, there are other limits than the ( → ∞)-limit which are of interest for the concrete problem, e.g., the so-called semiclassical limit ℏ → 0, or the adiabatic limit → 0 considered here. Consequently, asymptotic expansions are with respect to these physical parameters and physical problems allow for more generic bounds than the ⟨ ⟩ -functions. To have classes of symbols that allow to de ne a topology and well-de ned compositions of symbols, it is reasonable to de ne them by means of a more generic class of "order" functions.

De nition 6.2. Order Functions

A function ∶ ℝ 2 → [0, +∞) is called an order function if there are constants 0 > 0 and 0 > 0 such that ( ) ≤ 0 ⟨ -⟩ 0 ( ), ∀ , ∈ ℝ 2 . (6.41)

The de nition consequently gives rise to more generic symbol classes, namely

De nition 6.3. Generic Symbol Classes

A function ∈ ∞ (ℝ 2 , ℬ(ℋ 1 , ℋ 2 )) belongs to the generic symbol class with order function , if for every , ∈ ℕ there exists a positive constant , such that

‖ ‖ ‖ ‖ ‖ ( )( , ) ‖ ‖ ‖ ‖ ‖ℬ(ℋ 1 ,ℋ 2 ) ≤ , ( , ), ∀ , ∈ ℝ. (6.42)
Note that Hörmander's symbol classes fall in the generic class with ( ) = ⟨ ⟩ . The advantage of introducing symbol classes is that they are Fréchet spaces with a topology provided by a family of seminorms. These seminorms are given by the minimal constants , > 0 in equations (6.40) and (6.42). For example, the seminorms in the special case of Hörmander's symbols are

‖ ‖ ( ) = sup + ≤ sup , ∈ℝ ⟨ ⟩ -+ ‖ ‖ ‖ ‖ ‖ ( )( , ) ‖ ‖ ‖ ‖ ‖ℬ(ℋ 1 ,ℋ 2 ) , ∈ ℕ. (6.43)
As in the case of scalar-valued symbol functions, the Weyl quantization of any symbol ∈ (ℬ(ℋ 1 , ℋ 2 )) or ∈ (ℬ(ℋ 1 , ℋ 2 )) de nes a continuous operator ̂ from (ℝ, ℋ 1 ) to (ℝ, ℋ 2 ) (Teufel 2003, p. 207). Moreover, this mapping extends to a continuous mapping from (ℝ, ℋ 1 ) to (ℝ, ℋ 2 ). These Weyl quantizations form the class of operators

OP ∶= ̂ ( ) ∶ ∈ (ℬ(ℋ 1 , ℋ 2 )) (6.44)
or OP for the more speci c Hörmander symbols. A useful property of these operators is that they are bounded as operators on 2 (ℝ, ℋ 1 ) whenever the corresponding symbol function is a bounded function on phase space. This is the content of the following proposition. Proposition 6.1. Calderon-Vaillancourt For every bounded operator-valued function

∈ 3 b (ℝ 2 , ℬ(ℋ)), there exists a constant d < ∞ such that ‖ ‖ ‖ ‖ ̂ ‖ ‖ ‖ ‖ ℬ( 2 (ℝ,ℋ)) ≤ d ‖ ‖ 3 b . (6.45)
As a consequence of this theorem, the Weyl quantization of symbol functions in 0 (ℬ(ℋ)) considered as the map ̂ ∶ 0 (ℬ(ℋ)) → ℬ( 2 (ℝ, ℋ)) is continuous with respect to the Fréchet topology of seminorms on 0 (ℬ(ℋ)). Besides, it is possible to make a statement about the (essential) self-adjointness of symbol operators. Proposition 6.2. Essential Self-Adjointness Let ∈ (ℬ(ℋ)) such that + 1 1 1 s is elliptic in the sense that ‖ ( , ) + 1 1 1 s ‖ ≥ ( , ) for some > 0. Then, ̂ is essentially self-adjoint on (ℝ, ℋ) for su ciently small. In particular, for ∈ 0 0 (ℝ, ℬ sa (ℋ)), i.e., is a bounded function on phase space with values in the self-adjoint operators on ℋ, then ̂ ∈ ℬ sa ( 2 (ℝ, ℋ)) is bounded and self-adjoint.

Note that the latter statement holds for any symbol ∈ 0 (ℝ, ℬ sa (ℋ)) because ⊆ for any ≥ . Further important statements of the pseudodi erential calculus concern the composition of symbol functions and their Weyl quantizations. As we have outlined before, the symbol classes admit well-de ned products on phase space. The pointwise product ⋅ of the two symbols ∈

1 (ℬ(ℋ 2 , ℋ 3 )) and ∈ 2 (ℬ(ℋ 1 , ℋ 2 )) is in the symbol class 1 + 2 (ℬ(ℋ 1 , ℋ 3 ))
for every 1 , 2 ∈ ℝ. Similarly, the pointwise product of symbols ∈ 1 (ℬ(ℋ 2 , ℋ 3 )) and ∈ 2 (ℬ(ℋ 1 , ℋ 2 )) belongs to the symbol class 1 2 (ℬ(ℋ 1 , ℋ 3 )). Of special importance for the semiclassical symbol calculus and especially for SAPT is the so-called Weyl product which corresponds to the operator product of quantum operators underlying the Weyl quantization prescription.

Proposition 6.3. The Weyl Product

Let ∈ 1 (ℬ(ℋ 2 , ℋ 3 )) and ∈ 2 (ℬ(ℋ 1 , ℋ 2 )). Then the operator product ̂ ̂ of their Weyl quantizations is well-de ned and given by ̂ ̂ = ̂ with ∈ 1 + 2 (ℬ(ℋ 1 , ℋ 3 )) of the form A similar result holds for the symbol classes . In particular, let ∈ 1 (ℬ(ℋ 2 , ℋ 3 )) and ∈ 2 (ℬ(ℋ 1 , ℋ 2 )). Then, we have ̂ ̂ = ̂ with ∈ 1 2 (ℬ(ℋ 1 , ℋ 3 )) where ( , ) arises from (6.46).

( , ) = exp 2 ( - ) ( 
Note that the symbol classes 0 (ℬ(ℋ)) and ∞ (ℬ(ℋ)) ∶= ⋃ ∈ℝ (ℬ(ℋ)) are algebras with respect to the Weyl product ⋆ . The form of the Weyl product as a power series in the perturbation parameter suggests to de ne classes of -dependent symbol functions. Suitably, these symbols correspond to power series in with coe cients in the classical symbol functions. The following de nition of formal power series symbols proves to be useful.

De nition 6.4. Formal Power Series Symbols

Let { } ∈ℕ be a sequence of symbol functions with ∈ ∞ (ℬ(ℋ 1 , ℋ 2 )) for every ∈ ℕ. The subspace of the formal power series symbols is given by

( , ℬ(ℋ 1 , ℋ 2 )) ∶= ⎧ ⎨ ⎩ ∑ ≥0 ∶ ∈ -(ℬ(ℋ 1 , ℋ 2 )) ⎫ ⎬ ⎭ . (6.47)
The formal power series symbols admit a star product which has the same form as the Weyl product in equation (6.46). However, this product is then referred to in the literature as the Moyal product denoted by "⋆ ". The formal power series give rise to the following de ntion of (adiabatic) perturbation symbols. We note that in the literature, these symbols are designated as "semiclassical symbols" (Teufel 2003, p. 209). This is reasonable in the respective cases where one considers the hypothetical limit ℏ → 0. Here, we prefer to introduce the following terminology.

De nition 6.5. (Adiabatic) Perturbation Symbols

A map ∶ [0, 0 ) → (ℬ(ℋ 1 , ℋ 2 )) ∶ ↦ is an (adiabatic) perturbation symbol of order and weight if there exists a sequence { } ∈ℕ with ∈ -(ℬ(ℋ 1 , ℋ 2 )) (i.e., a formal power series symbol) such that for every ∈ ℕ and any ∈ ℕ, there exists a constant , > 0 such that for any ∈ [0, 0 ) one has

‖ ‖ ‖ ‖ ‖ ‖ ‖ - -1 ∑ =0 ‖ ‖ ‖ ‖ ‖ ‖ ‖ ( -) ≤ , . (6.48) 
Here, ‖ ⋅ ‖ ( ) is the th Fréchet seminorm in

(ℬ(ℋ 1 , ℋ 2 )). It is also clear that then -( - ∑ -1 =0 ) ∈ -.
We denote the space of these perturbation symbols of order and weight by ( , ℬ(ℋ 1 , ℋ 2 )) or simply as ( ). These de nitions and all the following apply similarly to the symbol classes with generic order functions. If the series { } ∈ℕ satis es condition (6.48) for some ∈ ( ), one writes ≍ ∑ ≥0

, and we say that is asymptotically equivalent to the corresponding series expansion.

We emphasize that such a power series ∑ ≥0 need not always converge. However, it always corresponds to an asymptotic expansion of one (or several) adiabatic perturbation symbols . Therefore, let us introduce the following notation.

De nition 6.6. The Error Estimate ( ∞ )

If ≍ ∑ ≥0
in ( ) and = 0 for every ∈ ℕ, we write = ( ∞ ).

Then, we come back to the relation between the perturbation symbols and the formal power series ∑ ∈ℕ . In particular, we note that there exists a perturbation symbol ∈ ( )

for every ∈ ( , ℬ(ℋ)) such that ≍ ∑ ≥0
, and = is unique up to ( ∞ ). We then denote as a resummation of ∑ ≥0

. It is important to realize that this notion of asymptotic equivalence can be weak for symbol classes with = 0. For example, ⟨ ⟩ -1∕ = ( ∞ ) in 0 ( ). Therefore, it is reasonable to introduce a seperate, stronger statement for classes with > 0.

De nition 6.7. Asymptotic Equivalence in ( ) for > 0

For , ∈ ( ) with > 0, we say that = + -∞ ( ∞ ) if - = ( ∞ ) in ( ).
Abusing the notation, one also writes

̂ = ̂ + -∞ ( ∞ ) if the corresponding symbols satisfy = + -∞ ( ∞ ).
Asymptotic equivalence for > 0 is strong in the sense that there exist constants , > 0 for any , ∈ ℕ such that ‖ -‖ ( -) ≤ , for any ∈ [0, 0 ). Because > 0, we have that -≥ 0 for some ∈ ℕ and the theorem of Calderon-Vaillancourt assures that the di erence operator ̂ -̂ is bounded in the ℬ( 2 (ℝ, ℋ))-norm. The statement can even be reinforced: ̂ -̂ is a smoothing operator, i.e., it belongs to OP -∞ ∶= ⋂ ∈ℝ OP . In order to also have a weaker notion of an operator bound, we also introduce the 0 ( ∞ ) notation.

Space Adiabatic Perturbation Theory

De nition 6.8. The Bound 0 ( ∞ ) Let ̂ and ̂ be two -dependent operators on ℋ. We say that ̂ = ̂ + 0 ( ∞ ) if for every ∈ ℕ there exists a constant > 0 such that

‖ ‖ ‖ ‖ ̂ -̂ ‖ ‖ ‖ ‖ℬ( 2 (ℝ,ℋ 1 ), 2 (ℝ,ℋ 2 )) ≤ , ∀ ∈ [0, 0 ). (6.49)
With these basic results (from [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF])) regarding operator-valued pseudodi erential calculus, let us move on to its application to SAPT.

Space Adiabatic Perturbation Theory

In a nutshell, SAPT is a method to compute an improved Hamilton operator for a quantum system that includes the backreaction of an environment with a highly di ering mass or energy scale. It thereby extends the standard Born-Oppenheimer theory to arbitrarily high orders in the perturbative scheme using the operator-valued pseudodi erential calculus of section 6.3. In this section, we present the conditions under which the theory applies (section 6.4.1), give an overview of the formalism (section 6.5), perform the iterative construction for arbitrary order (section 6.6), and give more details on the explicit construction up to second order that we use to derive our results within quantum cosmology (section 6.7). This section is mostly based and partially taken from the references (Schander and Thiemann 2019a,c), and which we will indicate in due course.

Similar to the former notation, we assume that the system of interest naturally splits into a slow subsystem with phase space variables ( , ) while the fast subsystem is labeled by the phase space variables ( , ). We consider a simple four-dimensional phase space Γ = Γ s ×Γ f = ℝ 4 where Γ s = ℝ 2 and Γ f = ℝ 2 denote the slow and the fast phase spaces respectively. A generalization to higher dimensional phase spaces proves to be straightforward [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. We also mention that to a certain extent it is also possible to generalize the scheme to nite dimensional phase spaces which are not vector spaces (Stottmeister and Thiemann 2016a,b,c), yet these are not of interest for our purposes. For the presented model, the phase space structure is provided by the only nonvanishing Poisson brackets { , } = { , } = 1. The classical Hamilton function specifying the dynamics of the theory will be denoted by ( , , , ) and is supposed to be a smooth function of the phase space variables.

SAPT is designed for the analysis of purely quantum mechanical systems, and again we label the operators associated with the slow subsystem by hats, for example ( ̂ , ̂ ) for the basic slow phase space operators. Bold letters stand for the operators of the fast subsystem, e.g., ( , ). We use the standard representation on the Hilbert space ℋ s = 2 (ℝ, d ) for the slow subsystem and similarly for the fast Hilbert space ℋ f = 2 (ℝ, d ). Position and momentum operators shall act in the standard way as multiplication and derivative operators on the respectively dense domains of de nition in the Hilbert spaces. Position and momentum operator satisfy the commutation relations [ ̂ , ̂ ] = 1s , and [ , ] = 1 1 1 f respectively. The tensor product of these Hilbert spaces ℋ ∶= ℋ f ⊗ ℋ s models the total Hilbert space of our system. The simplest form of a bounded operator acting on this Hilbert space would have the form of a topological tensor product ̂ ⊗ with ̂ ∈ ℬ(ℋ s ) and ∈ ℬ(ℋ f ). Every bounded operator ascends to an operator on the total Hilbert space by tensor-multiplying with the respectively other unity operator. In order to make SAPT work at the technical level, the scheme resorts to a phase space or deformation quantization with respect to the slow subsystem while keeping the Hilbert space representation of the fast subsystem. Recall that this quantization scheme assigns a function on the slow phase space with values in the space of bounded operators on the fast Hilbert space to an appropriate classical observable, thus giving rise to the operator-valued pseudodi erential calculus of section 6.3. Besides, one performs an appropriate -scaling of the slow degrees of freedom. In the given cases, this amounts to de ning the momentum ∶= with ∈ ℝ + . This gives rise to a modi ed commutation relation [ ̂ , ̂ ] = 1s for the slow sector and to an -scaled pseudodi erential calculus. As in standard quantum theory, it is necessary to choose an ordering prescription for quantum operators and we will stick here to the symmetric Weyl ordering procedure, (B. C. Hall 2013, p. 261), although di erent orderings are conceivable (Blaszak and Domanski 2012, Section 3).

System Requirements

SAPT as introduced by Panati, Spohn, and [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF] places a set of restrictions on the physical system under consideration. These are, in some respects, quite restrictive. However, if one accepts to abandon certain results such as the convergence of the perturbative series, it is possible to milden the conditions. Here, we start by giving the original conditions by Panati, Spohn and Teufel, which can be split into four categories:

(C1) The state space of the system decomposes as

ℋ = 2 (ℝ) ⊗ ℋ f = 2 (ℝ, ℋ f ), (6.50)
where 2 (ℝ) is the state space of the system whose rate of change is by a factor , ∈ ℝ + , smaller than the rate of change of the (environmental) system ℋ f . The latter is assumed to be a separable Hilbert space.

(C2) The quantum Hamiltonian ̂ (may it be an operator or a constraint) is given as the Weyl quantization of a semiclassical symbol ∈

( , ℬ(ℋ f )) ( , ) ≍ ∞ ∑ =0 ( ) (6.51)
with values in the bounded self-adjoint operators on ℋ f where ∶= ( , ) = ( , ).

(C3) For any xed ∈ ℝ 2 , the spectrum ( ) of the principal symbol 0 ( ) of ( , ) has at least one isolated part ( ) associated with a xed quantum number ∈ ℕ of the fast system (see Figure 6.1). In particular, the minimal distance between the elements of ( ) and the remainder of the spectrum rem ( ) ∶= ( )∖ ( ) represent a non-vanishing gap. According to its characteristics with varying , the gap can be classi ed by means of a parameter . Conditions (Gap) : Let ± ∈ 0 (ℝ 2 , ℝ) be two continuous functions with -≤ + .

(G1) Enclosing interval. For every ∈ ℝ 2 the isolated part of the spectrum ( ) is entirely contained in the interval ( ) ∶= [ -( ), + ( )].

(G2) Gap to the remainder. The distance between the remainder of the spectrum rem ( ) and the enclosing interval ( ) is strictly bigger than zero and increasing for large momenta, i.e., Dist [ rem ( ), ( )] ≥ g (1 + 2 ) 2 . (6.52) (G3) Boundedness of the interval. The width of the interval ( ) is uniformly bounded, i.e., sup

∈ℝ 2 + ( ) --( ) ≤ d < ∞.
(6.53) (C4) Convergence Condition. If the system satis es the gap condition (C3) for some ∈ ℝ, the Hamilton symbol must be in . If = 0, also must vanish. If > 0, can be any real number but ̂ must be essentially self-adjoint on (ℝ, ℋ f ).

We note that (C4) is not vital to perform the formal computations in the following. It ensures however that for considerations on the whole slow phase space ℝ 2 , the error estimates of SAPT are bounded everywhere on ℝ 2 . In particular, the adiabatic decoupling is said to be uniform.

The following gure shows a possible con guration of energy bands of the Hamilton symbol ( , ). The relevant energy band (in purple) is separated by the two functions + and -from the remainder of the spectrum (in green) everywhere on the phase space ℝ 2 . f + (q,p) f -(q,p) σ ν (q,p) (q,p) σ(H(q,p)) 

The Space Adiabatic Formalism

To explain the general idea of SAPT, let us assume that all four conditions (C1) -(C4) are satis ed. This means that we have a semiclassical Hamilton symbol ( , ℬ(ℋ f )) with values in the bounded, self-adjoint operators and whose Weyl quantization is a well-de ned operator on ℋ = 2 (ℝ, ℋ f ). Its spectrum satis es the gap condition for some ∈ ℝ with = if > 0 or if = 0 also vanishes. Besides, let us choose one single energy band with fast quantum number ∈ ℕ that will backreact on the slow subsystem. In the following, we discuss the scheme of SAPT in more detail splitting it into three stages. Note that a similar account of SAPT can also be found in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF] on which this section is based together with [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. Unless stated otherwise, the given results and many more details can be found in [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF].

The Moyal Projector

The rst step of the scheme consists in constructing an operator which is an almost projector and almost invariant under the dynamics of the total Hamiltonian ̂ where "almost" refers to an error of the desired order in . Therefore, consider the gap condition (C3) according to which the principal Hamilton symbol 0 ( , ) admits a pointwise separated energy band ( , ) associated with one of its (fast) quantum numbers ∈ ℕ. The ( , )-dependent eigensolution in ℋ f is ( , ) with 0 ( , ) ( , ) = ( , ) ( , ). (6.54)

We assume that is a simple energy band without degeneracies although the extension to nonsimple and degenerate energy bands is straightforward as long as the gap condition is satis ed. One can consider the eigenvalue equation (6.54) as a stationary quantum problem for xed classical nuclei con gurations ( , ) ∈ ℝ 2 . The interesting question is how these stationary ansatz solutions evolve under the dynamics of the Hamilton operator ̂ and whether they provide an approximation to the solutions of the dynamical quantum problem. More precisely, does the -scaled Weyl quantization ( 0 ) of the projection symbol 0 ( , ) ∶= ( , ) ⟨ ( , ), ⋅ ⟩ f (where the angular brackets denote the inner product within ℋ f ) approach a true dynamical projection operator ̂ of the Hamiltonian ̂ , i.e., an operator ̂ which satis es [ ̂ , ̂ ] = 0? The answer to this question is in the positive although 0 only provides a rst order approximation with respect to . In particular, by pulling back the computations to phase space using the Weyl ordered phase space quantization scheme with the Moyal product ⋆ , it is easy to verify that ⋆ 0 -0 ⋆ ∼ . (6.55)

Besides, 0 also fails to provide an exact projection operator on the full Hilbert space. Instead, we have that 0 ⋆ 0 -0 ∼ . The space adiabatic theorem provides a mean to improve the situation [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. It states that if conditions (C1) -(C4) are ful lled, there exists indeed an orthogonal projection operator Π Π Π ∈ ℬ(ℋ) on the total Hilbert space such that [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF])

̂ , Π Π Π = 0 ( ∞ ), (6.56) 
i.e., Π Π Π approaches ̂ up to in nite order in , and most importantly, there exists an adiabatic symbol function ∈ 0 ( ) whose Weyl quantization gives rise to the construction of the above projection operator Π Π Π = ̂ ( ) + 0 ( ∞ ). This relation can be established using resolvent methods [START_REF] Nenciu | Semiclassical limit for multistate Klein-Gordon systems: Almost invariant subspaces and scattering theory[END_REF][START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF], and it assures that these operators are indeed very close in norm.

The idea of SAPT is to iteratively construct a Moyal projection symbol

∶= ∞ ∑ =0 ∈ 0 (ℬ(ℋ f )) (6.57)
which takes 0 as its inductive starting point and for which is a suitable resummation. Note that 0 still depends on the xed quantum number ∈ ℕ, and so do the higher iterations for every ∈ ℕ. We will however not explicitely name this dependence here and in the following due to notational reasons.

The space adiabatic theorem assures that is in the symbol class -(ℬ(ℋ f )) for any ∈ ℕ due to the convergence condition (C4). In case of a convergent power series, we can simply identify with but the results in [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF] include the divergent case for which the distinction becomes relevant. We would then have that = + 0 ( ∞ ). In either case, we can relate the Weyl quantization of the symbol function to the projection operator Π Π Π according to the space adiabatic theorem. According to the latter, the properties of are naturally given as (6.58) and these relations serve to de ne an iterative procedure for the construction of by means of the -dependent Moyal star product ⋆ . The Weyl quantization ̂ is a bounded operator on ℋ due to the theoreom of Calderon-Vaillancourt and the fact that ∈ 0 . In particular, it holds true that

(S1-1) ⋆ = , (S1-2) * = , (S1-3) ⋆ -⋆ = 0,
(S1-1)' ̂ 2 = ̂ + -∞ ( ∞ ), (S1-2)' ̂ † = ̂ , (S1-3)' ̂ ̂ -̂ ̂ = -∞ ( ∞ ). (6.59)
If ̂ is unbounded but has a symbol in with > 0 and > 0, the latter equality holds in the norm of bounded operators. However, if = 0 while > 0, this is not true anymore. The convergence condition (C4) is crucial for the results (6.59) to be valid as otherwise one cannot assume that gives rise to a bounded operator on ℋ. We refer to Teufel (2003, p. 80 .) for the explicit proof of these statements. For a convergent series = , one can omit the above error terms. In the divergent case, the true projection operator Π Π Π emerges from ̂ using resolvent methods.

In the next step, one would like to restrict the Hamiltonian to the single subspace associated with Π Π Π. Intuitively, the dynamics of Π Π Π ̂ Π Π Π should be trivial as we already know the solutions of the fast subsystem . There are however problems with using Π Π Π directly. First, the limit lim →0 Π Π Π does not exist. As a consequence, Π Π Πℋ might not even be close to an -independent subspace, and the entire scheme would depend heavily on the speci c value of . Note also that an analysis of the subspace Π Π Πℋ turns out to be a di cult or even impossible task because depends very nontrivially on the slow phase space variables. Besides, it turns out that for any < ∞, the Weyl quantization ̂ ( ) of the projector symbol function

( ) ∶= ∑ =0 (6.60)
is by construction not an exact projector on the total Hilbert space ℋ (Schander and Thiemann 2019a). In particular, the restricted operator ̂ ̂ ( ) ∶= ̂ ( ) ̂ ̂ ( ) does not preserve the subspace ̂ ( ) ℋ. As a consequence, it remains unclear how to perform a spectral analysis for this operator on ̂ ( ) ℋ ⊂ ℋ. Even worse, the operator ̂ ̂ ( ) maps states in ̂ ( ) ℋ outside of this domain. SAPT resorts therefore to a suitable reference space that does neither depend on nor on the slow phase space variables.

The Moyal Unitary

Consider a symbol function 0 ( , ) which maps the subspace 0 ℋ f ⊂ ℋ f to a ( , )-independent subspace of ℋ f . A simple proposal for this is the following: Fix a speci c point in the slow phase space ( 0 , 0 ) ∈ ℝ 2 . The choice can be physically motivated and depends on the problem under consideration. Take the eigenbasis { ( , )} associated with 0 ( , ), and denote the basis at the point ( 0 , 0 ) by { } ∶= { ( 0 , 0 )} . This motivates the de nition of the unitary symbol

0 ( , ) ∶= ∞ ∑ =0 ⟨ ( , ), ⋅ ⟩ f (6.61)
where we assume that none of the eigenstates is degenerate. Of course, the { } could be any orthonormal basis of ℋ f . The important point is that the reference vectors do not depend on ( , ). One can then de ne the reference projection associated with the quantum number as above according to R ∶= ⟨ , ⋅ ⟩ f . (6.62)

The technical relevance of this reference structure is that R , in contrast to 0 , does not receive adiabatic corrections throughout the application of the space adiabatic perturbation scheme, and thus, always de nes an exact projector on the total Hilbert space by

̂ R = ̂ ( ̂ R ) = R ⊗ 1s . (6.63)
Formally, the scheme then constructs the Moyal unitary ( , ) as a power series in according to

( , ) = ∞ ∑ =0 ( , ) (6.64) 
with the symbol 0 in equation (6.61) as a starting point. It is easy to verify that 0 indeed intertwines the symbols 0 and R according to 0 ⋅ 0 ⋅ * 0 = R where the dot denotes the operator product within the fast quantum algebra. The scheme then assures the existence of the Moyal unitary in (6.64) which satis es the following equalities:

(S2-1) * ⋆ = 1 1 1 f , (S2-2) ⋆ * = 1 1 1 f , (S2-3) ⋆ ⋆ * = R .
(6.65)

These equations give rise to a series of algebraic equations which determine

∈ -(ℬ(ℋ f ))
for every ∈ ℕ order by order in . Let us assume that it is possible to establish the whole series ∑ ≥0

. Then, there exists a(n up to terms of order -∞ ( ∞ )) unique resummation of ∈ 0 (ℬ(ℋ f )) whose Weyl quantization ̂ is a bounded operator on ℋ satisfying

(S2-1)' ̂ † ̂ = 1 1 1 + -∞ ( ∞ ), (6.66) (S2-2)' ̂ ̂ † = 1 1 1 + -∞ ( ∞ ), (6.67) (S2-1)' ̂ ̂ ̂ † = ̂ R + -∞ ( ∞ ) (6.68)
where 1 1 1 is the unity operator associated with the entire system. Obviously, the resummation operator ̂ is only almost unitary and intertwines ̂ and ̂ R only up to some -dependent error.

It is however possible to modify ̂ by a term in 0 ( ∞ ) which makes it a true unitary operator ̂ .

Moreover, this operator turns out to be a true intertwining operator in the sense that ̂ Π Π Π ̂ † = ̂ R .

As for the Moyal projector, we will restrict ourselves to determine the Moyal unitary up to some nite order ∈ ℕ given by

( ) = ∑ =0 .
(6.69)

The Moyal projector and the Moyal unitary allow to map the dynamics of ̂ to the reference space associated with ̂ R which gives rise to a new e ective and much simpler Hamiltonian.

The E ective Hamiltonian

The e ective Hamiltonian corresponds to the unitary transformation of the original Hamiltonian ̂ to the simple reference space, and thus provides the possibility to qualitatively derive the dynamics of the system on the reference space. The e ective Hamiltonian symbol is de ned as (S3) ℎ ℎ ℎ e ∶= ⋆ ⋆ * . (6.70)

We denote the Weyl quantization of its resummation by ĥ ℎ ℎ e , . The corresponding symbol function ℎ ℎ ℎ e , ( , ) is a semiclassical symbol in ( ) since ∈ 0 ( ) and ∈ ( ). Note that ĥ ℎ ℎ e , is in fact essentially self-adjoint on the Schwartz space (ℝ, ℋ f ) [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]. It generates an evolution very close to the original Hamilton operator namely -̂ -̂ † -ĥ ℎ ℎ e , ̂ = 0 ( ∞ ). (6.71)

To further simplify the computations, one can consider the e ective Hamiltonian restricted to the reference space, i.e., the symbol R ℎ ℎ ℎ e R instead of ℎ ℎ ℎ e . This makes sense since the construction scheme for ̂ guarantees that ℎ ℎ ℎ e preserves the subspace ̂ R ℋ. As also discussed in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]), the subsequent applications, this statement translates into the assertion that the reduced operator ĥ ℎ ℎ e ,( ) ∶= ̂ ( ) ̂ ̂ † ( ) preserves the subspace ̂ R ℋ up to corrections of order +1 . It thus coincides up to corrections of order +1 with the operator ĥ ℎ ℎ e ,( ),R ∶= ̂ R ̂ ( ) ̂ ̂ † ( ) ̂ R on the Hilbert subspace ̂ R ℋ ≅ ℋ s ⊗ ℂ. The seemingly more natural operator ̂ ( ) ̂ ̂ ( ) does not preserve the subspace ̂ ( ) ℋ because ̂ ( ) is not an exact projector. As a result, ĥ ℎ ℎ e ,( ),R provides the perturbative adiabatic decoupling that we wanted to achieve, and will consequently be the object of interest in the sequel.

The spectrum of ĥ ℎ ℎ e ,( ),R , denoted by e ,( ) is referrred to as the -th energy band (recall that we restricted the backreactions to the fast quantum number right from the beginning). If Ψ ( ), , is a generalized eigenvector of ĥ ℎ ℎ e ,( ),R with eigenvalue then up to corrections of order +1 , the vector Ψ( ), , = ̂ † ( ) Ψ ( ), , is a generalized eigenvector of the orginal Hamiltonian ̂ with the same eigenvalue [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]): This can be easily reproduced, dropping any contributions of order ( +1 ), such that

̂ Ψ( ), , = ̂ ̂ † ( ) ̂ R ̂ ( ) ̂ † ( ) Ψ ( ), , = ̂ ̂ ( ) ̂ † ( ) Ψ ( ), , = ̂ ( ) ̂ ̂ † ( ) Ψ ( ), , = ̂ † ( ) ( ̂ R ̂ ( ) ̂ ̂ † ( ) ̂ ( ) )Ψ ( ), , = ̂ † ( ) ĥ
ℎ ℎ e ,( ),R Ψ ( ), , = Ψ( ), , .

(6.72)

The approximate eigenvector Ψ( ), , is an element of the approximately invariant subspace ̂ ( ) ℋ up to corrections of order ( +1 ) Ψ( ), , = ̂ † ( ) ̂ R ̂ ( ) ̂ † ( ) Ψ ( ), , = ̂ ( ) Ψ( ), , . (6.73)

As already discussed in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF], the ̂ ( ) are displayed as an auxiliary structure introduced in order to solve the spectral problem including backreations. But they have no further fundamental relevance as is also clear from the fact that they are not uniquely determined by the perturbative scheme. Besides, we note that ̂ ( ) is not to be confused with the unitary map ̂ that maps ℋ to 2 ( ( ̂ ), d ), granted to exist by the spectral theorem, where ( ̂ ) is the spectrum of ̂ and its spectral measure. This is already clear from the fact that ̂ ( ) generically depends on while ̂ does not. The fact that the ̂ ( ) approximately commute with ̂ and are approximate projections displays them as approximants of spectral projections of ̂ on the part e ,( ) of the spectrum. The spectral projections are of course not necessarily mutually orthogonal even if the gap condition holds (unless the energy bands are strictly mutually disjoint). For instance, ( , ) could have pure point spectrum but ̂ could have absolutely continuous spectrum.

We summarize the formalism for a system with Hamilton symbol ∈ . If the system satis es the conditions (C1) -(C4), the space adiabatic theorem assures that: (S1) There exists a unique formal symbol = ∑ ≥0 with ∈ -(ℬ(ℋ f )) such that 0 is the spectral projection of ( , ) corresponding to ( , ) and with the properties (S1-1) ⋆ = , (S1-2) * = , (S1-3) ⋆ -⋆ = 0.

It can be shown that the Weyl quantization of a resummation of which we denote by is 0 ( ∞ )-close to an operator Π Π Π, i.e., Π Π Π = ̂ + 0 ( ∞ ) and that [ ̂ , Π Π Π] = 0 ( ∞ ) (Teufel 2003, p. 75). Hence, the symbol function gives indeed rise to an (almost) projector onto one of the dynamical subspaces of ̂ .

(S2) Let R be the projection on some reference subspace f ⊂ ℋ f . We assume that there exists a symbol 0 ∈ 0 (ℬ(ℋ f )) such that 0 ⋅ 0 ⋅ * 0 = R . Then, there is a formal symbol

= ∑ ≥0 with ∈ -(ℬ(ℋ f )) such that (S2-1) * ⋆ = 1 1 1, (S2-2) ⋆ * = 1 1 1, (S2-3) ⋆ ⋆ * = R .
The Weyl quantization of a resummation of which we denote by gives rise to an operator ̂ = ̂ + 0 ( ∞ ) for which it holds true that ̂ Π Π Π ̂ † = ̂ R (Teufel 2003, p. 85).

(S3) There exists a formal e ective Hamilton symbol ℎ ℎ ℎ e = ∑ ≥0 ℎ ℎ ℎ e , de ned as

ℎ ℎ ℎ e ∶= ⋆ ⋆ * .
For systems with an external time parameter and the Weyl quantizations ̂ and ĥ ℎ ℎ e , we have (Teufel 2003, p. 90) -̂ -̂ † -ĥ ℎ ℎ e ̂ = 0 ( ∞ ). (6.74)

Iterative Constructions

This section examines the iterative construction of the above symbol functions up to some arbitrary but nite order ∈ ℕ. It is based and mostly taken from [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

The construction is founded on the assumption that the Moyal projector ( , ), the Moyal unitary ( , ), and the e ective Hamilton symbol ℎ ℎ ℎ e ( , ) appear as power series with respect to the adiabatic perturbation parameter , and we are going to concentrate on the determination of the power series coe cients up to this nite order ∈ ℕ. I.e., we establish the symbols, 

(S1-2)" * ( ) -( ) = 0 ( +1 ), (S1-3)" ⋆ ( ) -( ) ⋆ = 0 ( +1 ),
for the Moyal unitary they are given by

(S2-1)" * ( ) ⋆ ( ) -1 1 1 f = 0 ( +1 ), (S2-2)" ( ) ⋆ * ( ) -1 1 1 f = 0 ( +1 ), (S2-3)" ( ) ⋆ ( ) ⋆ * ( ) -R = 0 ( +1 ),
and for the e ective Hamiltonian ℎ ℎ ℎ e we nally have (S3)" ℎ ℎ ℎ e ,( ) -( ) ⋆ ⋆ * ( ) = 0 ( +1 ).

Regarding the 0 ( +1 )-estimate, we note that the space adiabatic theory assures that the symbol coe cients , and ℎ ℎ ℎ e , can be build in such a way that the coe cients of order and smaller vanish on the right hand sides of these equations. Besides, the product rule for semiclassical symbols assures that by plugging in the corresponding series expansions up to order on the left hand side, the right hand sides will be symbols in the class 0 (ℬ(ℋ f )) at most and so evaluate to bounded operators on the total Hilbert space. In equation ( S3), this necessarily requires to be in with strictly bigger than zero. In the following subsections, we provide the inductive construction rules for ( ) , ( ) and ℎ ℎ ℎ e ,( ) , and therefore recall that the Moyal product for two symbols ∈ 1 , ∈ 2 is given at leading order by ( ⋆ )( , ) = ( , ) ⋅ ( , ) + 0 ( ) (6.75) where 0 ( ) indicates that the remaining terms of this equation are of higher orders in .

Construction of the Moyal Projector

Based on the construction rules (S1)", the Moyal projection symbol is to be determined iteratively up to order . Therefore, the symbol function 0 ( , ) serves as the starting point for the induction scheme. The expansion of the Moyal product in (S1)" simply gives the standard operator product on ℬ(ℋ f ) at zeroth order such that its restriction to zeroth order yields (S1-1) 2 0 -0 = 0, (S1-2) * 0 -0 = 0, (S1-3) [ 0 , 0 ] f = 0 (6.76)

where the f-indexed brackets denote the commutator with respect to the fast operator algebra only. These equations are ful lled by construction for 0 such that the basis case is granted. Let us then assume that it is possible to construct ( -1) and turn to the solution of the coe cient .

The construction rule (S1-1)" provides the diagonal parts of . The induction scheme allows to assume that we already found ( -1) such that ( -1) ⋆ ( -1) -( -1) = 0 ( ) is satis ed. We then denote the terms of (S1-1)" at order which only include the already known symbols ( -1) by -1 . We then have that ( -1) ⋆ ( -1) -( -1) =∶ -1 + 0 ( +1 ). Importantly, -1 is already explicitely determined because of the induction assumption. For the induction step, we then consider the rule (S1-1)" including the symbol . By carrying all the terms with 's of order + 1 and higher to 0 ( +1 ), (S1-1)" takes the form

0 ( +1 ) = ( -1) ⋆ ( -1) -( -1) + ⋅ 0 + 0 ⋅ - = ( -1 + ⋅ 0 + 0 ⋅ -).
(6.77)

To extract , we rst de ne the orthogonal complement of 0 in ℋ f as ⟂ 0 ∶= 1 1 1 f -0 . Then, projecting (6.77) to the block diagonal pieces yields indeed the determining equations for the diagonal parts of de ned as

D,0 ∶= 0 ⋅ ⋅ 0 = -0 ⋅ -1 ⋅ 0 , D,⟂ ∶= ⟂ 0 ⋅ ⋅ ⟂ 0 = ⟂ 0 ⋅ -1 ⋅ ⟂ 0 . (6.78)
For the projection on the o -diagonal parts of , the consistency conditions

0 ⋅ -1 ⋅ ⟂ 0 = 0 = ⟂ 0 ⋅ -1 ⋅ 0 (6.79)
arise. This identity follows from the de ning equation (S1-1)" by projecting on the o -diagonal pieces and pushing all terms of order +1 and higher into the error term. Furthermore, the associativity of the star product can be exploited to obtain

0 ⋅ -1 ⋅ ⟂ 0 = 0 ⋅ ( -1) ⋆ ( -1) -( -1) ⋅ ⟂ 0 + 0 ( +1 ) (6.80) = ( -1) ⋅ ( -1) ⋆ ( -1) -( -1) ⋅ ⟂ ( -1) + 0 ( +1 ) = ( -1) ⋆ ( -1) ⋆ ( -1) -( -1) ⋆ ⟂ ( -1) + 0 ( +1 ) = ( -1) ⋆ ( -1) -( -1) ⋆ ( -1) ⋆ ⟂ ( -1) + 0 ( +1 ) = -( -1) ⋆ ( -1) -( -1) ⋆ ( -1) ⋆ ( -1) -( -1) + 0 ( +1 ) = 0 ( +1 )
where we used in the last step that 2 -1 ⋆ -1 is evidently of higher order than +1 . As a result, the diagonal terms are determined by (6.78) while the o -diagonal contributions to still need to be xed. (S1-3)" provides the algebraic equations to construct them. First, the third equation in (6.76) ensures that the base clause of the induction is settled. We then assume that (S1-3)" also holds for and ( -1) with the corresponding error term 0 ( ). For the iteration step, we split again ( ) = ( -1) + and insert into (S1-3)", and we de ne a new symbol -1 such that [ ( -1) , ] ⋆ =∶ -1 + 0 ( +1 ) where we shifted any contribution of order +1 and higher in the Moyal commutator into the error term. This results in

0 ( +1 ) = ⋆ ( ) -( ) ⋆ = ⋆ ( -1) -( -1) ⋆ + ( ⋆ -⋆ ) = (--1 + ⋆ -⋆ ) = (--1 + [ 0 , ] f ). (6.81)
Consequently, the scheme requires the term in the round brackets to vanish. To extract the odiagonal contributions of with this relation, it is advisable to multiply it by 0 from the left as well as by its orthogonal complement ⟂ 0 from the right, and to repeat the procedure with these operators exchanged. For this, we de ne the two o -diagonal contributions of as OD,1 ∶= 0 ⋅ ⋅ ⟂ 0 and OD,2 ∶= ⟂ 0 ⋅ ⋅ 0 . Besides, let us denote the restriction of the zeroth order

Hamilton symbol 0 which excludes the pre-selected energy band by ⟂ 0 ∶= 0 ⋅ ⟂ 0 . Using that 0 and ⟂ 0 commute with 0 as operators on ℋ f , this yields for the rst o -diagonal part

0 ⋅ -1 ⋅ ⟂ 0 + 0 ( +1 ) = ( 0 ⋅ 0 ⋅ ⋅ ⟂ 0 -0 ⋅ ⋅ 0 ⋅ ⟂ 0 ) = OD,1 ⋅ ( 1 1 1 f -⟂ 0 ). (6.82)
By restricting to the terms of order in (6.82), this gives nally for OD,1 and similarly for OD,2

OD,1 = 0 ⋅ -1 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 , OD,2 = -( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 ⋅ -1 ⋅ 0 . (6.83)
Again, consistency with the former derivation of -1 for the diagonal part of the Moyal projector requires to show that the diagonal part of equation (6.81) is indeed vanishing. We split this task into two steps and rst derive an expression for 0 ⋅ -1 ⋅ 0 and in a second step for 0 ⋅[ 0 , ] f ⋅ 0 , namely

0 ⋅ -1 ⋅ 0 = 0 ⋅ ( ( -1) ⋆ -⋆ ( -1) ) ⋅ 0 + 0 ( +1 ) (6.84) = ( -1) ⋆ ( ( -1) ⋆ -⋆ ( -1) ) ⋆ ( -1) + 0 ( +1 ) = ( -1 + ( -1) ) ⋆ ⋆ ( -1) -( -1) ⋆ ⋆ ( -1 + ( -1) ) + 0 ( +1 ) = ( -1 ⋆ ⋆ ( -1) -( -1) ⋆ ⋆ -1 ) + 0 ( +1 ) = ( -1 ⋅ 0 ⋅ 0 -0 ⋅ 0 ⋅ -1 ) + 0 ( +1 ) = 0 ( +1 ).
Indeed, the bracket term in the last line vanishes since 0 ⋅ 0 = 1 1 1 f is proportional to the one in ℋ f and hence commutes with -1 . On the other hand, we have for 0

⋅ [ 0 , ] f ⋅ 0 that 0 ⋅ [ 0 , ] f ⋅ 0 = ( 0 ⋅ 0 ⋅ ⋅ 0 -0 ⋅ ⋅ 0 ⋅ 0 ) = ( D,1 -D,1 ) = 0. (6.85)
Employing the same relations, it is straightforward to derive that also

⟂ 0 ⋅ -1 ⋅ ⟂ 0 = 0 ( +1 ) (6.86)
holds true. This proves the consistency of the relations for the o -diagonal contributions for . Collecting all terms, the nal result for the coe cient of the Moyal projector at order reads = D,0 + D,⟂ + OD,1 + OD,2 (6.87)

= -0 ⋅ -1 ⋅ 0 + ⟂ 0 ⋅ -1 ⋅ ⟂ 0 + 0 ⋅ -1 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 -( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 ⋅ -1 ⋅ 0
where -1 = ( -1) ⋆ ( -1) -( -1) and -1 = [ ( -1) , ] ⋆ . These relations determine and will be used in the following applications.

Construction of the Moyal Unitary

The construction of the Moyal unitary follows the rules (S2)" and as before, we proceed iteratively to build ( ) . We assume a formal power series for the Moyal unitary up to order , namely ( ) = ∑ ≤ and the symbol function 0 from (6.61) serves as the starting point for the construction scheme. Then, at zeroth order the rules (S2)" evaluate to

(S2-1) * 0 ⋅ 0 -1 1 1 f = 0, (S2-2) 0 ⋅ * 0 -1 1 1 f = 0, (S2-3) 0 ⋅ 0 ⋅ * 0 -R = 0 (6.88)
which are satis ed by construction of 0 and R . By induction, we assume that the rules (S2)" are satis ed for the symbol ( -1) . Then, the induction assumption yields that * ( -1) ⋆ ( -1) -1 1 1 f = 0 ( ), and likewise ( -1) ⋆ * ( -1) -1 1 1 f = 0 ( ). To determine , we de ne the operators -1 and -1 as the contributions of order to these equations, in particular * ( -1) ⋆ ( -1) -1 1 1 f =∶ -1 + 0 ( +1 ), and ( -1) ⋆ * ( -1) -1 1 1 f =∶ -1 + 0 ( +1 ). The corresponding equations for ( ) and its adjoint * ( ) give * ( ) ⋆ ( ) -1 1 1 f = -1 + * ⋅ 0 + * 0 ⋅ + 0 ( +1 ), (6.89)

( ) ⋆ * ( ) -1 1 1 f = -1 + ⋅ * 0 + 0 ⋅ * + 0 ( +1 ), (6.90) 
and we require that the terms in the brackets vanish. Assuming that this holds true, it is possible to extract * in both equations according to * = -

( -1 ⋅ * 0 + * 0 ⋅ ⋅ * 0 ) = -( * 0 ⋅ -1 + * 0 ⋅ ⋅ * 0 ). (6.91)
By comparing the two de ning terms, one can relate the operators -1 and -1 by

-1 = * 0 ⋅ -1 ⋅ 0 (6.92)
which is identically satis ed by the induction assumption, namely we can show that

( -1 ⋅ * 0 - * 0 ⋅ -1 ) = ( * ( -1) ⋆ ( -1) -1 1 1 f ) ⋅ * 0 - * 0 ⋅ ( ( -1) ⋆ * ( -1) -1 1 1 f ) + 0 ( +1 ) = ( * ( -1) ⋆ ( -1) -1 1 1 f ) ⋆ * ( -1) - * ( -1) ⋆ ( ( -1) ⋆ * ( -1) -1 1 1 f ) + 0 ( +1 ) = 0 ( +1 )
where we used the associativity of the star product for the last manipulation. In a next step, we consider the rule (S2-3)". Since the zeroth order part of this equation is satis ed, cf. (6.88), we assume by induction that we found ( -1) such that ( -1) ⋆ ( -1) ⋆ * ( -1) -R = 0 ( ) is satis ed. We de ne a new operator -1 to extract the contributions of order of this equation, namely

( -1) ⋆ ( -1) ⋆ * ( -1) -R =∶ -1 + 0 ( +1 ).
Then the induction step yields

( ) ⋆ ( ) ⋆ * ( ) -R = -1 + ⋅ 0 ⋅ * 0 + 0 ⋅ ⋅ * 0 + 0 ⋅ 0 ⋅ * + 0 ( +1 ). (6.93)
Consequently, we require the terms in the brackets to vanish. In this case and by means of (6.91), it holds true that

-1 = -0 ⋅ ⋅ * 0 -⋅ 0 ⋅ * 0 + 0 ⋅ 0 ⋅ ( -1 ⋅ * 0 + * 0 ⋅ ⋅ * 0 ) (6.94) = -0 ⋅ ⋅ * 0 -⋅ * 0 ⋅ R + 0 ⋅ 0 ⋅ -1 ⋅ * 0 + R ⋅ ⋅ * 0 (6.95)
which transforms into an equation determining , namely

[ R , ⋅ * 0 ] f = -1 + 0 ⋅ ⋅ * 0 -0 ⋅ 0 ⋅ -1 ⋅ * 0 . (6.96)
We then consider projecting this equation onto the diagonal or o -diagonal parts with respect to R and its orthogonal complement ⟂ R ∶= 1 1 1 f -R . As the commutator on the left hand side is anti-symmetric, this gives

0 = R ⋅ ( -1 + 0 ⋅ ⋅ * 0 --1 ) ⋅ R =∶ (6.97) = ⟂ R ⋅ ( -1 + 0 ⋅ ⋅ * 0 --1 ) ⋅ ⟂ R =∶ ⟂ (6.98)
where we introduced the symbols and ⟂ for later convenience. Both equations are identically satis ed by the induction assumption. To show this, recall the result for the Moyal projector in equation (6.87) which presents the projector already as a decomposition into diagonal and odiagonal parts. Multiplication by 0 from the left and by * 0 from the right provides the splitting in diagonal and o -diagonal parts with respect to R and ⟂ R such that

0 ⋅ ⋅ * 0 = -R ⋅ 0 ⋅ -1 * 0 ⋅ R + ⟂ R ⋅ 0 ⋅ -1 ⋅ * 0 ⋅ ⟂ R (6.99) + R ⋅ 0 ⋅ -1 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ * 0 ⋅ ⟂ R -⟂ R ⋅ 0 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ -1 ⋅ * 0 ⋅ R .
It is now obvious to restrict in equations (6.97) and (6.98) to the relevant contributions for , namely

= R ⋅ ( -1 -0 ⋅ -1 ⋅ * 0 --1 ) ⋅ R = R ⋅ (( ( -1) ⋆ ( -1) ⋆ * ( -1) -R ) -0 ⋅ ( ( -1) ⋆ ( -1) -( -1) ) ⋅ * 0 ) ⋅ R -R ⋅ ( ( -1) ⋆ * ( -1) -1 1 1 f ) ⋅ R + 0 ( +1 ) = R ⋅ ( ( -1) ⋆ ( -1) ⋆ * ( -1) -( -1) ⋆ ( ( -1) ⋆ ( -1) -( -1) ) ⋆ * ( -1) ) ⋅ R -R ⋅ ( ( -1) ⋆ * ( -1) ) ⋅ R + 0 ( +1 ) = R ⋅ ( -1) ⋆ (-( -1) ⋆ ( -1) + 2 ( -1) -1 1 1 f ) ⋆ * ( -1) ⋅ R + 0 ( +1 ) = -R ⋅ ( -1) ⋆ ( ( -1) -1 1 1 f ) ⋆ ( ( -1) -1 1 1 f ) ⋆ * ( -1) ⋅ R + 0 ( +1 ). (6.100)
To show that the contributions of at order are indeed vanishing, we abbreviate the following 0 ( )-objects according to -1 ∶= ( -1) ⋆ ( -1) -( -1) , (6.101)

-1 ∶= ( -1) ⋆ * ( -1) -1 1 1 f , (6.102)

-1 ∶= * ( -1) ⋆ ( -1) -1 1 1 f , (6.103)

-1 ∶= ( -1) ⋆ ( -1) * ( -1) -R . (6.104)
With this, we continue to elaborate on starting from equation (6.100). In the rst step, we use that R does not depend on the slow phase space variables and hence the operator product of any other quantity with R equals their Moyal product. Consequently, we have

= -R ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) ⋆ ( ( -1) -1 1 1 f ) ⋆ * ( -1) ⋆ R + 0 ( +1 ) (6.105) = -( ( -1) ⋆ ( -1) ⋆ * ( -1) --1 ) ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) ⋆ ( ( -1) -1 1 1 f ) ⋆ * ( -1) ⋆ ( ( -1) ⋆ ( -1) ⋆ * ( -1) --1 ) + 0 ( +1 ) = -( -1) ⋆ ( -1) ⋆ * ( -1) ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ * ( -1) ⋆ ( -1) ⋆ ( -1) ⋆ *
In any of the lines, we can directly eliminate those terms that are quadratic in the operators -1 and -1 . All the remaining terms admit at least one factor of the form ( -1) ⋆ ( ( -1) -1 1 1 f ) or the same with factors interchanged. These factors simply evaluate to -1 and so all the contributions are at least quadratic in -1 , -1 and -1 , such that we obtain

= -( -1) ⋆ ( -1) ⋆ -1 ⋆ ( ( -1) -1 1 1 f ) ⋆ -1 ⋆ * ( -1) -( -1) ⋆ -1 ⋆ ( ( -1) -1 1 1 f ) ⋆ -1 ⋆ ( -1) ⋆ * ( -1) -( -1) ⋆ -1 ⋆ -1 ⋆ * ( -1) + -1 ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) ⋆ -1 ⋆ * ( -1) + ( -1) ⋆ -1 ⋆ ( ( -1) -1 1 1 f ) ⋆ * ( -1) ⋆ -1 + 0 ( +1 ) = 0 ( +1 ).
(6.106)

The very same arguments lead to the vanishing of the orthogonal part ⟂ , namely to

⟂ = ⟂ R ⋅ ( -1 + 0 ⋅ ⋅ * 0 --1 ) ⋅ ⟂ R = 0 ( +1 ).
(6.107)

These two equations (6.106) and (6.107) consequently show that the block diagonal parts of with respect to R remain undetermined. Without loss of generality, we can choose them to vanish, also because is only an auxiliary structure here. Finally, we project on the o -diagonal contributions to and obtain with (6.96) and (6.99) that

R ⋅ ⋅ * 0 ⋅ ⟂ R = R ⋅ ( -1 + 0 ⋅ ⋅ * 0 --1 ) ⋅ ⟂ R = R ⋅ ( -1 + 0 ⋅ -1 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ * 0 --1 ) ⋅ ⟂ R , (6.108) ⟂ R ⋅ ⋅ * 0 ⋅ R = -⟂ R ⋅ ( -1 + 0 ⋅ ⋅ * 0 --1 ) ⋅ R = -⟂ R ⋅ ( -1 -0 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ -1 ⋅ * 0 --1 ) ⋅ R . (6.109)
Eventually, the inductive equation for evaluates to

= R ⋅ ( -1 + 0 ⋅ -1 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ * 0 --1 ) ⋅ ⟂ R ⋅ 0 -⟂ R ⋅ ( -1 -0 ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ -1 ⋅ * 0 --1 ) ⋅ R ⋅ 0 .
(6.110)

Construction of the E ective Hamiltonian

The last step of the scheme consists in computing the e ective Hamilton symbol ℎ ℎ ℎ e and in particular the e ective Hamiltonian restricted to the fast subspace associated with the projector R which will be denoted by ℎ ℎ ℎ e ,R . Recall that ℎ ℎ ℎ e ,( ) = ( ) ⋆ ⋆ * ( ) + 0 ( +1 ) (6.111)

where we can insert ( ) from the previous section. As we are mainly interested in the dynamics within the fast subspace associated with quantum number ∈ ℕ, we consider the restriction

ℎ ℎ ℎ e ,( ),R = R ( ) ⋆ ⋆ * ( ) R + 0 ( +1 ). (6.112)
We emphasize that the Weyl quantization ĥ ℎ ℎ e ,( ),R preserves the subspace ̂ R ℋ. This subspace carries the orthonormal basis { ⊗ } , where ∈ ℕ is the discrete quantum number of the fast eigenstates ∈ ℋ f , and denotes a (possibly generalized) orthogonal basis of ℋ s . As already shown before, the spectrum of ĥ ℎ ℎ e ,( ) gives an approximation of order +1 of the corresponding energy band of the original Hamiltonian ̂ . The advantage of ĥ ℎ ℎ e ,( ) is that it is e ectively an operator on the rather small Hilbert space ℂ ⊗ ℋ s while backreaction e ects between the slow and fast sector are taken care of to the given order of approximation.

This section has remained on a formal level that is valid for any perturbative order. In the following section, we derive concrete formulae in order to determine the e ective Hamiltonian up to second order in the perturbations. The inductive scheme simpli es the equations signi cantly.

Explicit Scheme up to Second Order

This section provides all the necessary formulae that lead to the computation of the e ective Hamilton symbol ℎ ℎ ℎ e ,(2),R up to second order in the perturbations. We thereby assume that the conditions (C1) to (C4) are all satis ed and restrict our interest to the backreaction from one single fast energy band with quantum number . Due to the structure of the problems that we have in mind, it is admissible to assume that the Hamilton operator admits only a zero order contribution, and we henceforth use the symbol 0 rather than . A very similar discussion of the SAPT scheme up to second order can also be found in (Schander and Thiemann 2019c) since the latter is based on our considerations here.

For the computations, it is helpful and intuitive to establish a bre bundle perspective. The idea is to interpret for example a vector-valued function in ∞ (Γ , ℋ f ) as a global section of a bre or Hilbert bundle. We assume the reader to be familiar with the standard notions of bre bundles and refer to the works by [START_REF] Nakahara | Geometry, topology, and physics[END_REF] and [START_REF] Goldberg | What is a Connection, and what is it good for?[END_REF]. We then let ∶= Γ s = ℝ 2 be a smooth manifold denoted as the base space, and let ∶= ℋ f be the fast Hilbert space denoted as the bre space. We de ne the trivial Hilbert bundle ∶ → with ∶= × and is the continuous bundle projection. Let Γ( ) be the space of smooth sections ∶ → of , i.e., the space of smooth maps ( , ) with • = . In the following, we identify points in and with coordinates and write ( , ) ∈ and ∈ ℋ f . The discrete eigensolutions ( , ) ∈ ℋ f , ∈ ℕ, de ne a set of smooth sections, i.e., we can write ∶ → ∶ ( , ) ↦ ( , , ( , )), (6.113)

and obviously • = , ∀ ∈ ℕ. Because 0 is a smooth operator-valued function on , its discrete eigensolutions ( , ) are smooth vector-valued functions on , and for every xed ( , ) ∈ they build a complete eigenbasis of . Their partial derivatives with respect to and are thus well-de ned operations which yield a notion of covariant derivative from the bre bundle perspective. To establish such a connection, let be the tangent bundle of the base space , i.e., the union of the tangent spaces ( , ) which can be identi ed with ℝ 2 . * denotes the corresponding cotangent bundle on , and Λ( ) is the space of antisymmetric cotangent vectors (i.e., one-forms). We use coordinate representations to denote the elements of the tangent spaces The de nition of the connection's components requires a gauge choice, namely a speci cation of a basis for the bres at each point ( , ) ∈ . Since the zeroth order Hamilton symbol 0 ( , ) provides a complete, orthonormal basis { ( , )} at each point ( , ) and since the bundle is trivial, it is natural to adopt this basis as our gauge choice. Any section may thus be decomposed as ( , ) ∶= ∑ ( , ) ( , ) where are the ( , )-dependent coe cients of . Conventionally, we denote the connection of the basis elements as the gauge potential ∈ ∞ (Λ( ) ⊗ ℒ(ℋ f )) which is a one-form with values in the linear operators on ℋ f . With the gauge and coordinate choices from above, its components decompose according to As a consequence, the connection cannot have any diagonal contributions, namely = 0 for every ∈ ℕ. These results and de nitions will prove useful for the space adiabatic scheme because the Moyal product of the phase space quantization involves the derivatives of several operatorvalued functions with respect to and , and we are going to express them in terms of the connection coe cients. Recall that the symmetric Moyal product is given at leading and subleading order for any two ( , ), ( , ) ∈ ∞ (Γ s , ℬ(ℋ f )) by

(∇ ) ( , ) ∶= ( ) ( , ) = ( , ) ( 
( ⋆ ) ( , ) = ( ⋅ )( , ) + 2 (( ) ⋅ ( ) -( ) ⋅ ( ))( , ) + 0 ( 2 ). (6.120)
To shorten the notation, we introduce the Poisson bracket { , } s ∶= ( ) ⋅ ( ) -( ) ⋅ ( ).

The scheme then starts with the construction of the Moyal projector .

Construction of the Moyal Projector

We recall that the goal of the rst step is to construct the symbol function ( , ) associated with a projection operator Π Π Π that commutes up to small errors in with the full Hamilton operator ̂ .

In order to construct the e ective Hamilton symbol ℎ ℎ ℎ e ,(2),R up to second order in , it su ces to construct the rst order symbol (1) ∶= 0 + 1 . We recall that condition (C2) and (C3) assure that the zeroth order Hamilton symbol 0 ( , ) admits a discrete eigenbasis { ( , )} which serves as a good starting point for the construction of the Moyal projector. In particular, the eigenvalue problem has the form By choosing one physically appropriate eigenstate ( , ) ∈ ℋ f , the scheme suggests to de ne the zeroth order projection symbol as 0 ( , ) ∶= ( , ) ⟨ ( , ), ⋅⟩ f . (6.122)

It is straightforward to check that this symbol satis es the conditions (S1) at zeroth order by construction, namely (S1-1) ⋅ 0 -0 = 0, (S1-2) * 0 = 0 , (S1-3) [ 0 , 0 ] = 0, (6.123)

and we recall that the wave functions ( , ) are real-valued. To construct 1 ( , ), the scheme divides the symbol into an diagonal and an o -diagonal part. The following rst condition determines the diagonal part.

Condition (S1-1): ⋆ -= 0

By means of the series expansion of (1) and the star product in equation (6.120), the expansion of the rst condition (S1-1) in yields up to rst order

0 ⋅ 0 + 2 { 0 , 0 } s + 0 ⋅ 1 + 1 ⋅ 0 = 0 + 1 + 0 ( 2 ). (6.124)
Comparing the terms of the same order in on both sides, the zeroth order contributions yield the equation 0 ⋅ 0 = 0 which is simply (S1-1). The rst order contributions determine the diagonal contribution to 1 by requiring that

0 ! = 1 + 1 ⋅ 0 + 0 ⋅ 1 -1 with 1 ∶= 2 { 0 , 0 } s (6.125)
where we tie in with the notation of the general construction scheme in the previous section. The evaluation of the symbol 1 requires to build the -and -derivatives of 0 ( , ). Using the connection components ( , ) from above and the functional representation of 0 due to Riesz in equation ( 6.122), we obtain

0 = ( ⟨ , ⋅⟩ f + ⟨ , ⋅⟩ f ), (6.126)
and we emphasize that is a xed number while we sum over ∈ ℕ. We recall that ⟨⋅, ⋅⟩ f is the inner product within the fast Hilbert space ℋ f . Using that has no diagonal contributions, this gives

1 = 2 0 , 0 f = ( ⟨ , ⋅ ⟩ f -⟨ , ⋅ ⟩ f ) . (6.127)
The total diagonal contribution D 1 of 1 can be expressed by means of 1 by multiplying with 0 and ⟂ 0 = 1 1 1 f -0 from the left and the right, such that

D 1 = -0 ⋅ 1 ⋅ 0 + ⟂ 0 ⋅ 1 ⋅ ⟂ 0 = ⟂ 0 ⋅ 1 ⋅ ⟂ 0 (6.128)
where the rst term vanishes because, again, the connection has no diagonal terms. In order to determine the remaining o -diagonal part OD 1 ∶= 1 -D 1 , we consider condition (S1-3).

Condition (S1-3): ⋆ -⋆ = 0

The expansion of (S1-3) up to rst order in yields the determinig equation for OD

1 [ 0 , 0 ] f + 2 { 0 , 0 } s -2 { 0 , 0 } s + 0 ⋅ 1 -1 ⋅ 0 = 0 ( 2 ). (6.129)
Again, the zeroth order contribution [ 0 , 0 ] f = 0 is trivially satis ed since the symbol 0 is an orthogonal projection operator on the eigensolutions of 0 . Regarding the rst order contributions, the scheme requires that the term in the brackets vanishes, in particular that

0 ! = -1 + [ 0 , 1 ] f with 1 ∶= 2 ({ 0 , 0 } s -{ 0 , 0 } s ) . (6.130)
The o -diagonal contributions OD,1 1 ∶= 0 ⋅ 1 ⋅ ⟂ 0 and OD,2 1 ∶= ⟂ 0 ⋅ 1 ⋅ 0 follow from the multiplication of 0 and ⟂ 0 respectively once from the left and the right. With ⟂ 0 = 0 ⋅ ⟂ 0 and using that 0 and ⟂ 0 commute with 0 as operators on ℋ f , we obtain for the total o -diagonal operator OD

1 = OD,1 1 + OD,2 1 that OD 1 = 0 ⋅ 1 ⋅ ⟂ 0 ⋅ ( 1 1 1 f -⟂ 0 ) -1 -( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 ⋅ 1 ⋅ 0 (6.131) = 2 0 ⋅{ 0 , 0 + 1 1 1 f } s ⋅( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 + ( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 ⋅{ 0 + 1 1 1 f , 0 } s ⋅ 0 .
In order to evaluate OD 1 in terms of the connection coe cients, we recall that the Hamilton operator symbol can be written in its spectral form as

0 ( , ) = ∑ ∈ℕ ( , ) ( , ) ⟨ ( , ), ⋅⟩ f (6.132)
where ( , ) is the real-valued energy band function for the quantum number . Consequently, derivations of 0 ( , ) with respect to and consist of three contributions for every due to the product rule. This is for example relevant for the Poisson brackets that enter equation (6.131). To illustrate the explicit evaluation of the respective terms, we compute the left contributions of the rst term in OD 1 , i.e.,

0 ⋅ { 0 , 0 + 1 1 1 f } s = 0 ⋅ 0 ( 0 + 1 1 1 f ) - 0 ( 0 + 1 1 1 f ) = ⟨ , ⋅ ⟩ f ∑ ( + ) ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f - ⟨ , ⋅ ⟩ f ∑ ( + ) ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f .
Then, let us replace the partial derivatives by their connection representatives and relabel certain indices in order to obtain as a result

0 ⋅ { 0 , 0 + 1 1 1 f } s =∶ ∑ ⟨ , ⋅ ⟩ f ( , ) (6.133)
where we de ned the real-valued function ( , ) ∈ ∞ (Γ s , ℝ) according to

∶= ( + ) - ( + ) + ( - ) - . (6.134)
Note that the quantum number is xed while and run over all natural numbers. To obtain the rst term of OD 1 , we still need to multiply by the remaining factor ( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 from the right, which yields

2 0 ⋅ { 0 , 0 + 1 1 1 f } s ⋅ ( 1 1 1 f -⟂ 0 ) -1 ⋅ ⟂ 0 = 2 ∑ ⟨ , ⋅ ⟩ f ( , ) ⋅ ∑ ≠ ⟨ , ⋅ ⟩ f - = 2 ∑ ≠ - ⟨ , ⋅ ⟩ f . (6.135)
Note that this operator has indeed only o -diagonal contributions as it projects on the state from any other state , ≠ . It is then easy to evaluate the remaining contribution to OD 1 without further calculations. According to the construction step (S1-2) the scheme requires that the projection symbol is self-adjoint = * such that the remaining contribution of OD 1 must evaluate to yield the total result

OD 1 = 2 ∑ ≠ - ( ⟨ , ⋅ ⟩ f -⟨ , ⋅ ⟩ f ) . (6.136)
Thereby, note that any of the functions , and are real-valued. It is easy to check that indeed, an explicit evaluation of the second summand in equation (6.131) for OD 1 yields the same result. We have thus determined all contributions to (1) . The abstract results that we provide here will be illustrated in simple toy model examples in the following sections, and we will see that many of the terms simplify signi cantly. For closing this section, we emphasize that (1) ( , ) depends on the heavy phase space variables. Quantizing it with respect to the slow phase space variables yields a non-trivial operator with respect to the heavy subsystem and hence, does not simplify the task to nd (approximate) solutions for the quantum problem. The next step of the scheme consists in constructing a unitary symbol which maps the dynamical subspace related to (1) to a suitable reference subspace f ⊂ ℋ f .

Construction of the Moyal Unitary

We choose an arbitrary but suitable reference subspace f ⊂ ℋ f by selecting one xed set of values ( 0 , 0 ) ∈ Γ s . We denote the eigenbasis of ℋ f at ( 0 , 0 ) by { ( 0 , 0 )} ∈ℕ =∶ { } ∈ℕ and de ne the reference projection as R ∶= ( 0 , 0 ) (6.137) In order to mediate between f and the subspace associated with , the scheme suggests to compute a unitary symbol given as a formal power series in . We restrict the computation to the rst order (1) = 0 + 1 . It makes sense to choose

⟨ ( 0 , 0 ), ⋅ ⟩ f =∶ ⟨ , ⋅ ⟩ f .
0 ( , ) ∶= ∑ ≥0 ⟨ ( , ), ⋅ ⟩ f (6.138)
as initial data of the iteration. This is of course a choice which should be adapted to the phyiscal situation at hand. The given option trivially satis es the zeroth order of the space adiabatic scheme, namely

(S2-1) 0 ⋅ * 0 = 1 1 1 f , (S2-2) * 0 ⋅ 0 = 1 1 1 f , (S2-3) 0 ⋅ 0 ⋅ * 0 = R . (6.139)
In order to determine 1 , it is useful to split it into a hermitian and an antihermitian part using the symbols ℎ ℎ ℎ 1 = ℎ ℎ ℎ * 1 and 1 = - * 1 , such that (1) ∶= 0 + (ℎ ℎ ℎ 1 + 1 ) ⋅ 0 .

Conditions (S2-1) and (S2-2):

⋆ * = 1 1 1 f = * ⋆
The unitarity conditions (S2-1) and (S2-2) yield the same results and so we restrict our interest to the rst condition. It evaluates in terms of ℎ ℎ ℎ 1 to the equation

0 ⋅ * 0 -1 1 1 f + 2 { 0 , * 0 } s + 2 ℎ ℎ ℎ 1 = 0 ( 2 ), (6.140) 
and likewise for the second condition (S2-2). At zeroth order, the resulting conditions 0 ⋅ * 0 -1 1 1 f = 0, and * 0 ⋅ 0 -1 1 1 f = 0 are trivially satis ed for the choice of 0 in (6.206). For the rst order contribution, the scheme requires that the terms in the brackets vanish identically. This yields a determining equation for ℎ ℎ ℎ 1 for which we evaluate

0 = ∑ ⟨ , ⋅ ⟩ f = ∑ ⟨ , ⟩ f , (6.141) * 0 = ∑ ⟨ , ⋅ ⟩ f = ∑ ⟨ , ⋅ ⟩ f . (6.142)
The total hermitian part h 1 ∶= ℎ ℎ ℎ 1 ⋅ 0 is then given according to equation (6.207) by

h 1 = -4 { 0 , * 0 } s ⋅ 0 = 4 ∑ , , - ⟨ , ⋅ ⟩ f . (6.143)
The antihermitian part 1 is determined by condition (S2-3).

Condition (S2-3):

⋆ ⋆ * = R
We evaluate condition (S2-3) up to rst order in the perturbations and obtain at zeroth order the obvious result 0 ⋅ 0 ⋅ * 0 = R . In order to determine the rst order contributions and hence 1 , we closely follow Teufel (2003, p. 86) and make the following de nition:

(1) ∶= 0 + ℎ ℎ ℎ 1 ⋅ 0 = (1) -1 ⋅ 0 (6.144) which simply separates the hermitian and the antihermitian part of (1) . Due to the conditions (S2-1) and (S2-2), we know that 1 satis es (1) ⋆ * (1) = 1 1 1 f + 0 ( 2 ), and * (1) ⋆ (1) = 1 1 1 f + 0 ( 2 ). Let us then introduce a symbol function 1 to subsume the contributions in (S2-3) coming from the symbol (1) according to

(1) ⋆ ⋆ *

(1) -R =∶ 1 + 0 ( 2 ). (6.145)

With this de nition, the evaluation of (S1-3) up to rst order yields

(1) ⋆ ⋆ * (1) -R =∶ 1 + [ 1 , R ] f + 0 ( 2 ). (6.146)
The term in the round brackets must vanish to satisfy the requirements of SAPT. A possible solution to this is given by 1 = [ R , 1 ], if 1 is hermitian and o -diagonal with respect to R , namely we must ensure that

R ⋅ 1 ⋅ R = 0 = ⟂ R ⋅ 1 ⋅ ⟂ R . (6.147)
To show the second equality, we use that (1) satis es (S1-1) and (S1-2) up to second order in the perturbations such that ⟂ 0 can be written as

1 1 1 f -R = (1) ⋆ * (1) -R + 0 ( 2 ) = (1) ⋆ * (1) + (1) ⋆ ⋆ * (1) + 1 + 0 ( 2 ) = (1) ⋆ (1 1 1 f -) ⋆ *
(1) + 1 + 0 ( 2 ). (6.148)

We also recall the de nition 1 ∶= -1 ( (1) ⋆ ⋆ * (1) -R ) + 0 ( 1 ) which underlines that 1 is the zeroth order symbol of the given expression. Besides, note that as a Moyal projector satis es the relation ⋆ (1 1 1 f -) = 0. Omitting any terms of higher than zeroth order in yields

⟂ R ⋅ 1 ⋅ ⟂ R = 1 ⟂ R ⋅ ( (1) ⋆ ⋆ * (1) -R ) ⋅ ⟂ R 0 = 1 ⟂ R ⋆ (1) ⋆ ⋆ * (1) ⋆ ⟂ R 0 = 1 ⟂ R ⋆ (1) ⋆ ⋆ * (1) ⋆ ( (1) ⋆ (1 1 1 f -) ⋆ * (1) + 1 ) 0 = ( (1) ⋆ (1 1 1 f -) ⋆ * (1) + 1 ) ⋆ (1) ⋆ ⋆ * (1) ⋆ 1 0 = 0.
(6.149)

The very same reasoning leads to R ⋅ 1 ⋅ R = 0. This shows that 1 contains indeed only odiagonal contribution and it is admissible to determine 1 according to 1 = [ R , 1 ]. According to (S2-3), we have that

1 = ℎ ℎ ℎ 1 ⋅ R + R ⋅ ℎ ℎ ℎ 1 + 0 ⋅ 1 ⋅ * 0 + 2 0 ⋅ { 0 , * 0 } s + 2 { 0 , * 0 } s ⋅ R . (6.150)
To simplify [ R , 1 ], we use several identities. First, we employ ℎ ℎ ℎ 1 = -( ∕4){ 0 , * 0 } s from above. We also use that R , 0 ⋅ { 0 , * 0 } s f = R , { 0 , * 0 } s f (6.151) which can easily be shown by using the Riesz representation of the symbols and the connection representation of their derivatives. In total, this yields for the antihermitian part ah

1 ∶= 1 ⋅ 0 of 1 that ah 1 = R , 0 ⋅ OD 1 ⋅ * 0 f ⋅ 0 + 4 R , { 0 , * 0 } s f ⋅ 0 . (6.152)
One could nally insert the formula for OD 1 that we already computed in order to express (1) by only zeroth order symbols.

Construction of the E ective Hamiltonian

We construct ℎ ℎ ℎ e ,(2) iteratively by using the condition (S3), i.e., ℎ ℎ ℎ e ∶= ⋆ ⋆ * . Moreover, we project on the relevant energy band associated with R . The zeroth order contribution is of course trivial and yields

ℎ ℎ ℎ e ,0,R = R ⋅ 0 ⋅ 0 ⋅ * 0 ⋅ R = ∑ ( , ) ⟨ , ⋅⟩ f . (6.153)
The quantization of this symbol with respect to the slow degrees of freedom yields the standard Born-Oppenheimer approximation. For the higher order contributions of ℎ ℎ ℎ e ,(2),R , the evaluation of the double star product would be cumbersome. It is therefore useful to star-multiply (S3) by from the right. For the rst order e ective Hamilton symbol this yields ⋆ -ℎ ℎ ℎ e ,0 ⋆ = ℎ ℎ ℎ e ,1 ⋆ + 0 ( 2 ) = ℎ ℎ ℎ e ,1 ⋅ 0 + 0 ( 2 ). (6.154)

The determining equation for ℎ ℎ ℎ e ,1 is thus given by

ℎ ℎ ℎ e ,1 = 1 ⋅ 0 -ℎ ℎ ℎ e ,0 ⋅ 1 + 2 { 0 , 0 } s -2 {ℎ ℎ ℎ e ,0 , 0 } s ⋅ * 0 . (6.155)
We desist from evaluating this expression further as we are mainly interested in the projection on the relevant energy band. In particular, we compute,

ℎ ℎ ℎ e ,1,R = R ⋅ ℎ ℎ ℎ e ,1 ⋅ R = R ⋅ 1 ⋅ ( 0 -) ⋅ * 0 ⋅ R + 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R = 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R (6.156)
where the rst two contributions cancel each other since ⋅ 0 ⋅ R = 0 ⋅ R . Using the connection representation, it is easy to show that also the remaining contributions vanish identically. Therefore, we consider the following identity:

R ⋅ 0 = ⟨ , ⋅ ⟩ f = 0 ⋅ 0 ⋅ 0 . (6.157)
As a consequence, we can reformulate ℎ ℎ ℎ e ,1,R such that it is possible to use the identities that we found for determining OD 1 , in particular (6.133) and the subsequent de nition. This gives

ℎ ℎ ℎ e ,1,R = 0 ⋅ 0 ⋅ { 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R = ∑ ⟨ , ⋅ ⟩ f ⟨ , ⋅ ⟩ f = ⟨ , ⋅ ⟩ f = 0. (6.158)
The last equality follows because has no diagonal contributions, simply because has none and because = -. The very same reasoning for determining ℎ ℎ ℎ e ,1 applies for ℎ ℎ ℎ e ,2 , i.e., star-multiplying condition (S3) by from the right yields

ℎ ℎ ℎ e ,2,R = R ⋅ -ℎ ℎ ℎ e ,1 ⋅ 1 + 2 { 1 , 0 } s -2 { , 1 } s -2 {ℎ ℎ ℎ e ,1 , 0 } s + [ 0 ⋆ 0 ] 2 -[ ⋆ 0 ] 2 ⋅ * 0 ⋅ R (6.159)
where the brackets with index "2" select the contributions of second order in of the terms inside the brackets. The following discussion simpli es the individual terms, starting with the rst contribution to ℎ ℎ ℎ e ,2,R which vanishes identically. To see this, it su ces to consider the left hand side R ⋅ ℎ ℎ ℎ e ,1,R in which we will employ the explicit expression for 1 , namely

R ⋅ ℎ ℎ ℎ e ,1,R = R ⋅ 1 ⋅ ( 0 -1 1 1 f ) ⋅ * 0 + 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ 0 = -2 R ⋅ 0 ⋅ { 0 , 0 + 1 1 1 f } s ⋅ (1 1 1 f -0 ) ⋅ * 0 + 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ * 0 -4 R ⋅ { 0 , * 0 } s -R ⋅ { 0 , * 0 } s + { 0 , * 0 } s ⋅ R ⋅ 0 ⋅ ( 0 -1 1 1 f ) ⋅ * 0 = 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ 0 ⋅ * 0 = 0. (6.160)
The second line in this computation obviously yields the fourth line by comparing the terms. The third line vanishes because the rst and the second term cancel each other while we use for the last term that { 0 , * 0 } s has no diagonal contributions. The fourth line corresponds simply to the diagonal rst order e ective Hamiltonian ℎ ℎ ℎ e ,1,R and we have already shown that this vanishes identically. The two following contributions can be merged into one term and by pulling R into the Poisson bracket, they yield

2 { R ⋅ 1 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R = 1 4 {{ R ⋅ 0 , 0 + 1 1 1 f } s ⋅ ( 0 -1 1 1 f ) -1 ⋅ ⟂ 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R . (6.161)
In terms of the fast eigenstates and the connection coe cients it is given by

2 { R ⋅ 1 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R (6.162) = - 1 4 ∑ ≠ - ( -) -2 - - - - + 1 4 ∑ ≠ --- ( ↔ ) ---
where in the second line we add the terms of the rst line with every occurence of " " replaced by " ", and vice versa. We emphasize the di erence between the connection symbols and the functions which we used for expressing 1 . The fourth contribution to ℎ ℎ ℎ e ,2,R vanishes again trivially as it includes R ⋅ ℎ ℎ ℎ e ,1 . The two remaining contributions involve the second order Moyal product, and are given by

R ⋅ [ 0 ⋆ 0 ] 2 -[ ⋆ 0 ] 2 ⋅ * 0 ⋅ R (6.163) = R ⋅ - 1 8 2 0 2 2 ( 0 -) 2 + 1 4 2 0 2 ( 0 -) - 1 8 2 0 2 2 ( 0 -) 2 ⋅ * 0 ⋅ R .
To represent these contributions in terms of the states and connection coe cients, we make the following de nitions: R ⋅ - (6.165) and the functions e ,1 ( , ) and e ,2 ( , ) are then given according to e ,1 ( , ) = -

1 8 2 0 2 2 ( 0 -) 2 ⋅ * 0 ⋅ R =∶ e ,1 ( , ) R (6.164) R ⋅ 1 4 2 0 2 ( 0 -) ⋅ * 0 ⋅ R =∶ e ,2 ( , ) R ,
1 8 2 ( -) + ( -) + ( -2 + ) ⋅ + ⋅ R , (6.166) e ,2 ( , ) = 1 4 ( -) + ( -) + ( -) + ( -) + ( -) - .
The total contribution coming from the second order components of the Moyal product in ℎ ℎ ℎ e ,2,R has then the form

R ⋅ [ 0 ⋆ 0 ] 2 -[ ⋆ 0 ] 2 ⋅ * 0 ⋅ R = e ,1 ( , ) + e ,2 ( , ) + e ,1 ( , ) ⋅ R ,
and we emphasize that the last term simply arises from the rst term by interchanging any occurence of by and vice versa. These contributions together with those in equation (6.162) build then the total e ective Hamiltonian symbol ℎ ℎ ℎ e ,2,R ( , ). However lengthy these expressions might be, in the application to the models that we consider here, most of the terms vanish or enter at higher orders in the perturbative -scheme. To illustrate this, we consider a simple toy model consisting of two coupled oscillators.

An Example: Coupled Oscillators

This section applies the space adiabatic perturbation scheme to a simple oscillator toy model, and it is based and largely taken from [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF]. More precisely, the quantum system comprises two coupled subsystems: An anharmonic oscillator which can be identi ed with a heavy mass ∈ ℝ + , and a harmonic oscillator associated with a lighter mass ∈ ℝ + . We require the mass ratio 2 ∶= to be small. Accordingly, the anharmonic oscillator with mass admits a much smaller rate of change than the harmonic oscillator with mass . In the following, we refer to the heavy anharmonic subsystem with phase space variables ( , ) ∈ Γ s = ℝ 2 , while for the light harmonic oscillator, we introduce the phase space variables ( , ) ∈ Γ f = ℝ 2 . The classical Hamiltonian associated with the model is given as the four-times di erentiable function on the cartesian product of phase spaces

Γ s × Γ f ( , , , ) = 2 2 + 2 2 + 1 2 ( ) 2 ⋅ 2 ∈ 4 (Γ s × Γ f , ℝ) (6.167)
where we have introduced the function

( ) ∶= 0 1 + 2 2 ∈ 2 (Γ s , ℝ + ). (6.168)
The function mediates the coupling between the two oscillators and can be understood as adependent frequency of the light harmonic oscillator. The parameter ∈ ℝ + has the dimension of a length and plays the role of a coupling constant of the subsystems. The coupling vanishes in the limit → ∞. We quantize the system and start by considering the light harmonic oscillator. We specify the state space as a standard 2 -space and denote it as 2 (ℝ, d ). The quantum operators of the canonical variables and will be indicated as bold letters and shall act on the vectors in 2 (ℝ) in the known way as multiplication and derivative operators. In the following, we set ℏ ≡ 1.

Position and momentum operator of the light oscillator satisfy the formal commutation relation

[ , ] f = 1 1 1 f . (6.169)
Since the classical Hamilton function ( , , , ) does not contain any mixed products of the canonical variables and , there is no ordering choice to be made for the quantum theory. For the heavy anharmonic oscillator, we analogously choose the Hilbert space 2 (ℝ, d ). The quantum operators of the canonical variables and will be indicated by hats and shall act in the known way, similarly to the light oscillator. In order to make SAPT work at the technical level, we introduce the rescaled momentum operator ̂ ∶= ̂ . Hence, the standard commutation relation of position and momentum operator becomes [ ̂ , ̂ ] s = 1s , (6.170) and we choose the Weyl ordering prescription. The total Hilbert space is the topological tensor product

ℋ = 2 (ℝ, d ) ⊗ 2 (ℝ, d ) ≅ 2 (ℝ 2 , d d ). (6.171) Quantum operators on ℋ have the form ̂ ⊗ ∈ ℬ( 2 s (ℝ)) ⊗ ℬ( 2 f (ℝ)) for ̂ ∈ ℬ( 2 s (ℝ)) and ∈ ℬ( 2 f (ℝ)).
The Hamilton operator ̂ associated with the classical Hamilton function consequently has the form

̂ = ̂ 2 2 ⊗ 1 1 1 f + 1s ⊗ 2 2 + 1 2 ( ̂ ) 2 ⊗ 2 (6.172)
where we directly employed the rescaled momentum operator ̂ . Note that ̂ is not a bounded operator on the state space ℋ, but it is a well-de ned bounded operator on ∞ 0 (ℝ) ⊗ ∞ 0 (ℝ), i.e., on the topological tensor product of the spaces of smooth functions with compact support on ℝ.

Our rst duty is then to check whether ̂ is essentially self-adjoint on a subspace of ℋ in order to establish a well-de ned quantum theory with a spectral calculus. For this purpose, a theorem which goes back to Kato (1972) is helpful. It states that if the potential energy contribution ( , ) in ( , , , ) is a measurable locally bounded function ( , ) ∈ ∞ loc (ℝ 2 ), and if it is positive ≥ 0, then ̂ de ned as an operator on ∞ 0 (ℝ 2 ) ≅ ∞ 0 (ℝ) ⊗ ∞ 0 (ℝ) is essentially self-adjoint. For our model, the potential energy function is given by (6.173) cf., equation (6.167). is measurable, locally bounded, and positive. Consequently, ̂ is essentially self-adjoint on ∞ 0 (ℝ 2 ) and hence, generates the time evolution of the quantum states in ℋ. To apply SAPT, we will now alter the representation of the heavy anharmonic quantum theory. We check the conditions that have to be met for SAPT and adapt the representation accordingly.

( , ) = 1 2 2 0 1 + 2 2 2 ⋅ 2 ,

Checking of the Conditions and Preparations

We start by checking conditions (C1) to (C4) of SAPT referring to section 6.4.1. Regarding condition (C1), we note that the tensor product Hilbert space ℋ = 2 (ℝ, d ) ⊗ 2 (ℝ, d ) trivially satis es (C1) because 2 (ℝ, d ) is a separable Hilbert space, and hence ℋ has the required form of a tensor product. Recall that as ℋ f is separable, it is possible to construct a unique isomorphism between the spaces 2 (ℝ) ⊗ ℋ f and 2 (ℝ, ℋ f ) (Reed and Simon 1975a, Theorem II.10 on p.52). As remarked before, the 2 (ℝ, ℋ f ) -representation of some state Ψ ∈ ℋ gives rise to a Hilbert bundle picture: Therefore, consider ℳ = ℝ as the base manifold of the Hilbert bundle → ℳ for which every bre is a Hilbert space ℋ f . A state Ψ ∈ 2 (ℝ, ℋ f ) has the form of a section Ψ ∶ ↦ ( , Ψ( )) ∈ with Ψ( ) ∈ ℋ f . Regarding requirement (C2) which imposes conditions on the Hamilton operator, we start by representing the Hamilton operator as a symbol function, ( , ), i.e.,

( , ) = 2 2 1 1 1 f + 2 2 + 1 2 ( ) 2 2 (6.174)
which yields an unbounded operator on 2 (ℝ, d ) for every ( , ) ∈ ℝ 2 . Following the space adiabatic perturbation scheme by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], ( , ) must belong to one of the symbol classes (ℬ(ℋ f )). Consequently, it should have values in the space of bounded operators ℬ(ℋ f ), be a bounded function with respect to the slow con guration variable , and be maximally polynomial with respect to the slow momentum . It is clear that cannot satisfy the rst of these conditions as the energy spectrum of the harmonic quantum oscillator is undoubtedly bounded from below but certainly not from above, hence it is not a bounded operator on ℋ f . The simplest solution would be to introduce a restricted domain ⊂ ℋ f on which ( , ) is bounded.

We take a di erent path, however, because we want to closely follow [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], for which we need symbols with values in the bounded operators on ℋ f . Our solution for this problem comes with an answer for the issue that the symbol function ( , ) grows quadratically with respect to while the symbol classes require it to be bounded with respect to . As it turns out, the fact that ( , ) grows as well quadratically with respect to will be problematic when considering condition (C4). Namely, the gap of our system is a constant gap such that the parameter of condition (C3) is zero. (C4) requires that in this case, the Hamilton symbol must be in 0 , i.e., a constant function with respect to . Otherwise the adiabatic decoupling would not be uniform (Panati, Spohn, and Teufel 2003, p. 175).

Our strategy is the following: We de ne an auxiliary Hamilton symbol aux ( , ) which is not only a bounded operator on ℋ f but also a bounded function with respect to the slow phase space variables and . In order to de ne such an auxiliary Hamiltonian, it is helpful to rewrite the Hamilton symbol ( , ) in its spectral form. Therefore, recall that it has the form of a harmonic oscillator Hamiltonian with a -dependent frequency ( ), mass and an energy o -set o ( ) ∶= We emphasize that the eigenstates ( ) are elements in ℋ f and that the -dependence is purely parametric. For a position representation on ℋ f = 2 (ℝ, d ), the ( ) read

( , ) = 1 √ 2 ! ( ) 1∕4 - ( ) 2 2 √ ( ) (6.176)
where the are the standard physicist's Hermite polynomials. Every eigenstate ( ) gives rise to a -dependent projection operator on ℋ f , namely

( ) ∶= ( ) ⟨ ( ), ⋅ ⟩ ℋ f . (6.177)
As a consequence, the Hamiltonian symbol in its spectral form is given by ( , ) which satis es all the requirements for SAPT. The idea is to replace the function ( , ) by some appropriately bounded function outside a certain, compact region on the slow phase space. Therefore, let us de ne the interval Λ ∶= {( , ) ∶ ‖ ( , )‖ ℬ(ℋ f ) < c } or more presicely all points ( , ) ∈ ℝ 2 for which it holds true that ( , ) < c . Therefore, we de nitely need to choose c > 0 ( + 1∕2). Then, let us assume that it is possible to de ne the following auxiliary Hamiltonian symbol (Panati, Spohn, and Teufel 2003, p. 176

( , ) = ∑ ≥0 ( , ) ( ). ( 6 
) (i) aux ( , ) = ( , ) for all ( , ) ∈ Λ + ∶= {( , ) ∶ ‖ ( , )‖ ℬ(ℋ f ) < c + }, (ii) ‖ aux ( , )‖ ℬ(ℋ f ) > ‖ ( , )‖ ℬ(ℋ f )
for all ( , ) ∉ Λ + and ( , ) ∈ Λ + , (iii) aux ( , ) satis es the global gap condition with = 0, i.e., it admits a constant gap.

In the given case, it is easy to construct such an auxiliary Hamiltonian. One simply extends the energy bands ( , ) outside the region Λ + smoothly by a set of bounded, smooth functions with appropriate transition conditions. For example, we can assume the representation of aux ( , ) to be given by aux

( , ) = ∑ =0 ̃ ( , ) ( ) with ̃ ( ) = ⎧ ⎨ ⎩ ( , ) if ( , ) ∈ Λ + , ( , ) if ( , ) ∉ Λ + (6.180)
where ( , ) ∈ ∞ b (ℝ 2 , ℝ) is an appropriately bounded function for every 0 ≤ ≤ . Besides, they must be pointwise distinct, i.e., they are not allowed to merge into or to cross with one another. This is important for the gap condition (C3). In fact, with these requirements aux ( , ) satis es (as we will show more explicitely in the sequel) all conditions for SAPT. It remains to show that the dynamics of ̂ aux and the original Hamiltonian agree on a set of relevant quantum states. Therefore, we rst show that the dynamics of ̂ and ̂ aux coincide for states up to the cut-o energy c . To technically realize the proof, it is useful to resort to a new symbol class which falls under the generic de nition 6.3 of symbol functions. The corresponding order function that we de ne is

∶ ℝ 2 → [0, ∞) ∶ ( , ) ↦ (1 + 2 + 2 ) (6.181)
with ∶= 0 ( + 1∕2), ∶= -1 and ∶= (2 0 ( + 1∕2)) -1 all bigger than zero. is constructed just to provide the symbol class ( , ℬ(ℋ f )) for the Hamiltonian ( , ) as one can easily read o from de nition 6.3. Next, we show that ̂ is essentially self-adjoint on the Schwartz space (ℝ, ℋ f ) using a proposition by Dimassi and Sjöstrand (1999, p. 101) (see also in Teufel 2003, p. 208). To use the proposition, we need to demonstrate that the symbol function , ). Indeed, the spectral representation of ( , ) makes it easy to deduce that

( + 1 1 1 f ) is elliptic in the sense that ‖ ( , ) + 1 1 1 f ‖ ℬ(ℋ f ) ≥ ( 
‖ ( , ) + 1 1 1 f ‖ ℬ(ℋ f ) = √ ( , ) 2 + 1 > ( , ) = ( , ). (6.182)
According to Dimassi and Sjöstrand (1999, Prop. 8.5), ̂ is then essentially self-adjoint on (ℝ, ℋ f ).

This allows us in a second step to de ne a cut-o operator c ( ̂ ) which projects on energies smaller than c . Therefore, consider the characteristic function c ∈ ∞ 0 (ℝ) such that c [0, c ] = 1 and c [ c + ,∞) = 0 for some small > 0 (cf. Panati, Spohn, and Teufel 2003, p. 176). Then, according to [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF] the operator-valued function c ( ̂ ) ∈ OP -∞ ( ) obtained by the spectral calculus of self-adjoint operators is a smoothing operator. The associated symbol function c ( , ) ∶= Symb( c ( ̂ )) has an asymptotic expansion which is 1 1 1 f on the interval Λ and equal to zero on the phase space region Λ + . With the spectral projection operator 1 1 1 (-∞, c ] on energies below c , it then follows that

̂ -̂ aux c ( ̂ ) = -∞ ( ∞ ), ̂ -̂ aux 1 1 1 (-∞, c ] ( ̂ ) = 0 ( ∞ ) (6.183)
where the second identity follows from the rst one by using that c

( ̂ ) 1 1 1 (-∞, c ] ( ̂ ) = 1 1 1 (-∞, c ] ( ̂ ).
This su ces to show the equivalence of the dynamics generated by ̂ and ̂ aux up to in nitely small errors. In particular, it holds true that

-̂ aux --̂ 1 1 1 (-∞, c ] ( ̂ ) (6.184) = --̂ aux ∫ 0 d ̂ aux ̂ aux -̂ -̂ 1 1 1 (-∞, c ] = 0 ( ∞ ).
Hence, we are able to construct an auxiliary Hamiltonian symbol aux that satis es all conditions (C1) to (C4) and which belongs to the symbol class 0 0 (ℬ(ℋ f )). The dynamics generated by the Weyl quantization of this symbol approximates the dynamics of the cut-o Hamiltonian according to the estimate in equation (6.184).

We stress however, that it is not possible to compare the dynamics of the auxiliary Hamiltonian to the dynamics generated by the original Hamiltonian, and which is due to the fact that the latter is an unbounded operator while the former is bounded. Consequently, one can pursue two di erent strategies now: Either, one uses the auxiliary Hamilton symbol for the application of SAPT in the following, and consequently obtains adiabatic perturbation series that are convergent. This is however at the price that the auxiliary Hamiltonian has di erent physical properties than the original Hamiltonian. Or one remains with the original Hamiltonian at the cost of possibly non-convergent perturbation series. In this thesis, we follow the latter approach. In other words, we use the rigorous mathematical framework that applies to the auxiliary system to motivate the adiabatic formulas for the actual unbounded system. The convergence of the resulting adiabatic series (say in the sense of matrix elements, i.e., the weak operator topology) then, however, has to be investigated by independent means in a case by case fashion, and might be rather di cult. Now, before moving on to the actual application of the scheme we make a short comment regarding the physical interpretation of the scheme. The identi cation of a slow and a fast adiabatic subsystem typically becomes manifest by means of the adiabatic perturbation parameter 2 ∶= ≪ 1. With the equipartition theorem and assuming that the system is ergodic, it follows that in thermal equilibrium the kinetic energy contributions of the light and the heavy oscillator must have the same phase space average and also the same time average, i.e., ⟨ 2 ⟩ ≈ ⟨ 2 ⟩, and consequently ⟨ ̇ 2 ⟩ ≈ 2 ⟨ ̇ 2 ⟩ (6.185)

where the angular brackets denote a phase space or a time average. Evidently, the heavy oscillator moves much slower in average than the light oscillator. Besides, we see that the momentum of the heavy oscillator is much larger than the momentum of the light oscillator, i.e., 2 ⟨ 2 ⟩ ≈ ⟨ 2 ⟩. This motivates the above de nition of the rescaled momentum ∶= such that ⟨ 2 ⟩ ≈ ⟨ 2 ⟩, and which gives rise to the perturbative treatment of the theory. The theory then requires that the Hamiltonian with the rescaled momenta does not carry any inverse powers of which is indeed the case. We note that the fact that the average velocity of the heavy oscillator is much smaller than the average velocity of the light oscillator is independent of the frequencies of the two oscillators. Even if the frequency Ω of the heavy anharmonic oscillator was much larger than the frequency Ω of the light oscillator, it still holds true that the velocity of the heavy subsystem is much smaller than the velocity of the light oscillator (at least their time averages). This is possible because the amplitude of the light oscillator can be much larger than the amplitude of the heavy subsystem. Therefore, consider the relation between velocity and frequency of the two subsystems, namely ̇ = Ω , and ̇ = Ω . Then, with ̇ ≈ ̇ in time average coming from the equipartion theorem, it can still hold true that for example Ω = Ω (i.e., the heavy oscillator frequency is much larger than the one of the light subsystem) by claiming that ≈ 2 .

Space Adiabatic Construction Scheme

We are now ready to compute the second order e ective Hamilton symbol ℎ ℎ ℎ e ,(2),R for the oscillator toy model. We choose the quantum number ∈ ℕ associated with the fast harmonic oscillator. It su ces to compute the Moyal projector and the Moyal unitary up to rst order in the perturbative construction scheme. We recall the form of the star product up to rst order in for two smooth symbol functions ( , ) and ( , ) given by ( ⋆ ) ( , ) = ( ⋅ )( , ) + 2 { , } s ( , ) + 0 ( 2 ). (6.186)

Following the manual at the beginning of this section 6.5, we start with the construction of the Moyal projector.

(S1): Construction of the Projector Symbol (1)

We expand the rst order Moyal projector according to (1) = 0 + 1 . The zeroth order symbol arises naturally using the smooth eigenstate ( ) ∈ ℋ f of the fast quantum oscillator, i.e., we choose 0 ∶= ( ) = ( ) ⟨ ( ), ⋅ ⟩ f . (6.187)

Note that the fast eigenstates, and hence the symbol 0 ( ) depend solely on the fast con guration variable which will lead to signi cant simpli cations for the space adiabatic construction scheme.

To construct 1 ( , ), we rst consider condition (S1-1) which determines the diagonal part of it.

Condition (S1-1): ⋆ =

By means of the series expansion of (1) and the star product in equation ( 6.186), we recall that (S1-1) yields up to rst order 0 ⋅ 0 + 2 { 0 , 0 } s + 0 ⋅ 1 + 1 ⋅ 0 = 0 + 1 + 0 ( 2 ). (6.188)

The zeroth order contributions yield the base requirement 0 ⋅ 0 = 0 which holds true as a simple algebraic operator equation on ℋ f . The iterative construction scheme in section 6.7, and obviously equation (6.188) determine the diagonal contribution to 1 by requiring that

0 ! = 0 + 1 ⋅ 0 + 0 ⋅ 1 -1 with 0 ∶= 2 { 0 , 0 } s . (6.189)
Since 0 ( ) does not depend on , the derivatives 0 and hence the Poisson brackets for 0 vanish. Consequently, 0 vanishes and so does the diagonal part of 1 , namely

D 1 = -0 ⋅ 0 ⋅ 0 + ⟂ 0 ⋅ 0 ⋅ ⟂ 0 = 0. (6.190)
For determining the remaining o -diagonal part OD 1 ∶= 1 -D 1 , we consider condition (S1-3).

Condition (S1-3): ⋆ -⋆ = 0

We recall that the expansion of condition (S1-3) up to rst order in yields

[ 0 , 0 ] f + 2 { 0 , 0 } s -2 { 0 , 0 } s + 0 ⋅ 1 -1 ⋅ 0 = 0 ( 2 ). (6.191)
Again, the zeroth order condition [ 0 , 0 ] f = 0 is trivially satis ed for our model since the symbol 0 is an orthogonal projection operator on the eigensolutions of 0 . Regarding the rst order contributions, the scheme requires that the term in the round brackets vanishes, in particular that 0

! = -0 + [ 0 , 1 ] f with 0 ∶= 2 ({ 0 , 0 } s -{ 0 , 0 } s ) . (6.192)
The o -diagonal contributions OD,1 1 ∶= 0 ⋅ 1 ⋅ ⟂ 0 and OD,2 1 ∶= ⟂ 0 ⋅ 1 ⋅ 0 follow from the multiplication of 0 and ⟂ 0 respectively, once from the left and the right. With ⟂ 0 = 0 ⋅ ⟂ 0 and using that 0 and ⟂ 0 commute with 0 as operators on ℋ f , we recall that we obtain thereby for the total o -diagonal operator OD

1 = OD,1 1 + OD,2 1 OD 1 = -2 0 ⋅ { 0 , 0 + 1 1 1 f } s ⋅ ( ⟂ 0 -1 1 1 f ) -1 ⋅ ⟂ 0 + ( ⟂ 0 -1 1 1 f ) -1 ⋅ ⟂ 0 ⋅ { 0 + 1 1 1 f , 0 } s ⋅ 0 .
The concrete evaluation of the Poisson bracket in this equation necessitates the derivatives of 0 ( ), and hence of the fast quantum states ( ) with respect to . We recall that the states ( ) can be seen as smooth sections of a trivial Hilbert bundle = Γ s × ℋ f where the slow phase space Γ s identi es with the base manifold and ℋ f is the bre. The gauge potential ∈ ∞ (Λ(Γ s ) ⊗ ℒ(ℋ f )) is a one-form on Γ s with values in the linear operators on ℋ f and tells us how the basis states ( ) naturally change when moving on Γ s . We want to identify its coe cients ( ) ∈ ∞ (Γ s , ℝ) for every and ∈ ℕ with the partial derivatives of the states ( ) with respect to , in particular (6.193) Therefore, recall that the states are harmonic quantum oscillator eigenstates with a -dependent frequency ( ), and a constant mass , i.e., in Schrödinger representation, they have the form

( ) ( ) = ( ) ( ) ⊗ d ∶= ( ) ⊗ d .
( , ) = 1 √ 2 ! ( ) 1∕4 - ( ) 2 2 √ ( ) . (6.194)
To continue, it is appropriate to use a representation in terms of the standard annihilation and creation operators which satisfy the commutation relation [ ( ), * ( )] f = 1 1 1 f for every ∈ ℝ, and which are given in terms of the fast canonical quantum operators and by

* ( ) = √ ( ) 2 - ( ) . (6.195)
The derivatives of 0 ( ) and * ( ) with respect to thus evaluate to

0 ( ) ∶= √ 2 ( ) 2 ( ), * ( ) ∶= -2 ( ) ( ), (6.196) 
where we de ned the function ( ) ∶= -( )∕(4 ). Since the application of the creation operators * give rise to the excited state by means of the relation = ( * ) 0 ∕ √ !, it is easy to deduce the partial derivative of any state ( ), and to read o the coe cients of the connection 6.197) i.e., -2 ( ) = -√ ( -1) ( ), +2 ( ) = √ ( + 1)( + 1) ( ).

( ) = - √ ( -1) ( ) -2 ( ) + √ ( + 1)( + 2) ( ) +2 ( ) =∶ -2 ( ) -2 ( ) + +2 ( ) +2 ( ), ( 
The only non-vanishing contributions ±2 of the connection relate states which mutually di er by two excitations. We recall that the derivative of the orthonormality relation ⟨ , ⟩ f = with respect to yields that ±2 = -( ±2) . (6.198)

Moreover, we emphasize that the connection components in the direction of vanish all identically because ( ) does not depend on for any ∈ ℕ. With that we come back to the evaluation of OD 1 for which we need the symbol function 0 . In connection representation, it reads

0 = ( ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f ) . (6.199)
The computation of OD 1 includes the term 0 ⋅ { 0 , 0 + 1 1 1 f } s which we evaluate for illustrative purposes. First, we notice that we have only one non-vanishing contribution for the Poisson bracket because 0 is zero. What we get is

0 ⋅ 0 ( 0 + ) = ⟨ , ⋅ ⟩ f ( ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f ) ∑ ( + ) ⟨ , ⋅ ⟩ f = ∑ ≠ ( + ) ⟨ , ⋅ ⟩ f . (6.200)
Note that the -derivative of 0 + 1 1 1 0 only applies to the energy functions + because the states do not depend on . Besides, we used that does not have any diagonal contributions, i.e., = 0. The evaluation of { 0 + 1 1 1 f , 0 } f ⋅ 0 works completely analogous. Finally, to obtain OD 1 we multiply by a factor ( ⟂ 0 -1 1 1 f ) -1 from the left and the right respectively. For the rst contribution, this yields , the total expression for OD

0 ⋅ 0 ( 0 + ) ⋅ ( ⟂ 0 -1 1 1 f ) -1 = ∑ ≠ - ( + ) ⟨ , ⋅ ⟩ f . ( 6 
1 = 1 yields 1 = 2 -2 ( ⟨ -2 , ⋅ ⟩ f --2 ⟨ , ⋅ ⟩ f ) + +2 ( +2 ⟨ , ⋅ ⟩ f -⟨ +2 , ⋅ ⟩ f ) . (6.202)
In particular, we used that the operator ( 0 + 1 1 1 f ) is simply (2 ∕ ) ⋅ 1 1 1 f and that the inverse of ( ⟂ 0 -1 1 1 f ) reduces to a factor, ( ±2 -) -1 = ±(2 ) -1 when projected on ±2 . These are in fact the only contributions because the only non-vanishing connection coe cients are -2 ( ) = -( ) √ ( -1), +2 ( ) = ( ) √ ( + 1)( + 2), (6.203)

( ) = - 1 4 ( ) ( ) = - 2( 2 + 2 ) . (6.204) Condition (S1-2): * =
It is easy to check that (1) satis es condition (S1-2) up to rst order in the perturbative scheme by transposing and complex conjugating 0 and 1 . We see that this improved projection symbol maps from and to further fast energy states, not only from and to , which shows that the totally invariant projector will probably involve an in nite number of fast energy states. A mapping to a simpler reference space appears thus to be very helpful.

(S2): Construction of the Unitary Symbol (1)

We choose an arbitrary but suitable reference subspace f ⊂ ℋ f by selecting one xed ( 0 , 0 ) ∈ Γ s . We denote the eigenbasis of ℋ f at ( 0 , 0 ) by { ( 0 )} ∈ℕ =∶ { } ∈ℕ and de ne the reference projection as (6.205) In order to mediate between f and the subspace associated with , we introduce the Moyal unitary up to rst order (1) = 0 + 1 . It makes sense to choose

R ∶= ( 0 ) ⟨ ( 0 ), ⋅ ⟩ f =∶ ⟨ , ⋅ ⟩ f .
0 ( ) ∶= ∑ ⟨ ( ), ⋅ ⟩ f (6.206)
as initial data of the iteration. We split 1 into a hermitian and an antihermitian part ℎ ℎ ℎ 1 = ℎ ℎ ℎ * 1 and 1 = - * 1 such that (1) ∶= 0 + (ℎ ℎ ℎ 1 + 1 ) ⋅ 0 .

Conditions (S2-1) and (S2-2):

⋆ * = 1 1 1 f = * ⋆
The unitarity condition (S2-1) becomes up to rst order in terms of the symbol ℎ ℎ ℎ 1 (6.207) and likewise for the second condition (S2-2). At zeroth order, the resulting conditions 0 ⋅ * 0 -1 1 1 f = 0, and * 0 ⋅ 0 -1 1 1 f = 0 are trivially satis ed for the choice of 0 in (6.206). Regarding the condition at rst order in that arises from (6.207), it is clear that the Poisson bracket { 0 , * 0 } s vanishes since 0 does not depend on . It therefore follows directly that ℎ ℎ ℎ 1 = 0. The antihermitian part 1 is determined by condition (S2-3).

0 ⋅ * 0 -1 1 1 f + 2 { 0 , * 0 } s + 2 ℎ ℎ ℎ 1 = 0 ( 2 ),

Condition (S2-3):

⋆ ⋆ * = R
We keep in mind that any Poisson bracket applied on only the symbols 0 , 0 and * 0 vanishes, because the symbols do not depend on . Then, condition (S2-3) evaluates to

0 ⋅ 0 ⋅ * 0 -R + [ 1 , R ] f + 0 ⋅ 1 ⋅ * 0 = 0 ( 2 ). (6.208)
It is straightforward to check that our choices of 0 , 0 and R satisfy the condition at zeroth order, namely 0 ⋅ 0 ⋅ * 0 -R = 0. At rst order in , we use that the equation 1 = -[ R , [ 1 , R ] f ] f gives a solution for 1 which provides the following result for 1 :

1 = R , 0 ⋅ OD 1 ⋅ * 0 f ⋅ 0 . (6.209)
Using the already known solution for OD 1 , this gives in terms of the connection coe cients and the eigenstates

1 = 2 -2 ( ⟨ -2 , ⋅ ⟩ f + -2 ⟨ , ⋅⟩ f ) - +2 ( +2 ⟨ , ⋅ ⟩ f + ⟨ +2 , ⋅ ⟩ f ) . (6.210) (S3): Construction of the E ective Hamilton Symbol ℎ ℎ ℎ e ,(2),R
The last step of the perturbation scheme consists in pulling the dynamics of the chosen subspace associated with to the -independent subspace ̂ R ℋ. This essentially means that by applying the unitary operator ̂ = ̂ + 0 ( ∞ ) to the Hamiltonian ̂ 0 , the action of the latter on elements in Π Π Πℋ is rotated to ̂ R ℋ. The e ective Hamiltonian ĥ ℎ ℎ e which acts on this subspace is the Weyl 6. Coupled Quantum Systems quantization of the symbol ℎ ℎ ℎ e which is determined by condition (S3), namely by ℎ ℎ ℎ e = ⋆ 0 ⋆ * . Again, we assume an ansatz of a formal power series ℎ ℎ ℎ e ,(2) = ℎ ℎ ℎ e ,0 + ℎ ℎ ℎ e ,1 + 2 ℎ ℎ ℎ e ,2 . In the following, we restrict our attention directly to the subspace associated with R and project on it. At zeroth order, the condition (S3) gives

ℎ ℎ ℎ e ,0,R = R ⋅ 0 ⋅ 0 ⋅ * 0 ⋅ R = 2 2 + ( ) + 1 2 R (6.211)
which corresponds to a standard Born-Oppenheimer result: it includes the original kinetic energy contribution of the slow oscillator plus an e ective potential energy due to its interaction with the fast oscillator. For the rst and second order contributions in (S3), we recall that it is useful to star multiply the condition by from the right to minimize the computational e ort. This yields ⋆ 0 -ℎ ℎ ℎ e ,0 ⋆ = ℎ ℎ ℎ e ,1 ⋆ + 0 ( 2 ) = ℎ ℎ ℎ e ,1 ⋅ + 0 ( 2 ) (6.212)

for determining the rst order contribution ℎ ℎ ℎ e ,1 , and leads to ℎ ℎ ℎ e ,1 = 1 ⋅ 0 -ℎ ℎ ℎ e ,0 ⋅ 1 + 2 { 0 , 0 } s -2 ℎ ℎ ℎ e ,0 , 0 s ⋅ * 0 .

(6.213)

Knowing that 1 has no diagonal contributions and that 0 does not depend on , this condition implies that ℎ ℎ ℎ e ,1 has no diagonal contributions. Hence, the restriction to the chosen subspace with quantum number vanishes

ℎ ℎ ℎ e ,1,R = 2 R ⋅ { 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R = 0. (6.214)
The same strategy applies for deriving ℎ ℎ ℎ e ,2,R which is however non-vanishing. Its determining equation is given here by

ℎ ℎ ℎ e ,2,R = 2 R ⋅ { 1 , 0 + 1 1 1 f } s -ℎ ℎ ℎ e ,1 ⋅ 1 -2 ℎ ℎ ℎ e ,1 , 0 s ⋅ * 0 ⋅ R = 2 { R ⋅ 1 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R (6.215)
where the second line follows from observing that R ⋅ ℎ ℎ ℎ e ,1 = 0. To evaluate the symbol in equation ( 6.215), we use the explicit representation of the symbol in terms of connections and eigenstates introduced in section 6.7, and then that any of the vanishes as well as that ( -) does not depend on . This yields

ℎ ℎ ℎ e ,2,R = 1 2 - + 1 4 - ( -) R (6.216) = 2 ( -2 ) 2 --2 + ( +2 ) 2 -+2 R + 1 2 2 2 ( -2 ) 2 + ( +2 ) 2 R .
Then inserting the explicit expressions for the energies and the coe cients of the connections, we obtain

ℎ ℎ ℎ e ,2,R = 2 2 0 - 2 2 ( 2 + 2 ) 3 + 1 2 + 2 ( 2 + 2 ) 2 0 2 2 2 + + 1 R . (6.217)
The second order contribution ℎ ℎ ℎ e ,2,R displays the e ects of non-adiabaticity. We see that this second order contribution does not only give an additional potential term which solely depends on as a backreaction from the light harmonic oscillator onto the heavy oscillator. It also includes a kinetic term which depends on the momentum . This last line will serve as the starting point for a further analysis of the solutions to this e ective Hamilton operator.

Approximate Solutions to the E ective Hamiltonian

We start with the evaluation of the zeroth order symbol of equation (6.211). It is easy to evaluate the action of its quantization on some generic tensor product wave function in ℋ = ℋ s ⊗ ℋ f :

The operator associated with the fast subsystem R has the eigenfunction which is the same for every ( , ) ∈ Γ s . Thus, one can simply examine the action of the ( , )-dependent energy function on elements of ℋ s . The Schrödinger equation for some generic wave function 0 ∈ ℋ s , derived from the Hamilton symbol in equation ( 6.211), is given by

- 2 2 + 1 2 Ω 2 2 0 , ( ) = ̃ , 0 , ( ) (6.218) 
where we de ned

Ω = √ 2 0 2 + 1 2 , ̃ , = , -0 + 1 2 , (6.219)
and , is the energy of the whole system. This is the Schrödinger equation of a harmonic oscillator with mass parameter and frequency Ω . The eigenfunctions 0 , ( ) are associated with discrete eigenenergies which are not only labeled by the former quantum number of the light subsystem but also by the heavy quantum number . The superscript "0" indicates that these are the solutions of the zeroth order e ective Hamiltonian. The respective eigenenergies are given by

, = 0 + 1 2 + √ 2 0 2 + 1 2 ⋅ + 1 2 . (6.220)
We emphasize that this result corresponds to the Born-Oppenheimer approximation, i.e., the adiabatic limit of the perturbation theory. In this simpli ed scheme, the heavy degrees of freedom encounter an external potential given by a single energy level of the light degrees of freedom. This limit is also denoted as "adiabatic decoupling" because the light degrees of freedom are constrained to stay within one energy band.

The contribution to the e ective Hamilton operator of second order ĥ ℎ ℎ e ,2,R is the Weyl quantization of the symbol function in equation (6.216). As this operator represents a perturbation of the zeroth order Hamiltonian ĥ ℎ ℎ e ,0,R , standard quantum mechanical perturbation theory applies and provides corrections to the spectrum { , } ∈ℕ . Namely, the shift of the energy due to ĥ ℎ ℎ e ,2,R is given as the expectation value in the zeroth order states, i.e., ∆ , ∶= ⟨ 0 , , ĥ ℎ ℎ e ,2,R 0 , ⟩ s . Knowing both ingredients, the zeroth order states and the form of the perturbation e ective Hamiltonian, it is straightforward to compute ∆ , for any and in ℕ. We present the derivations and the explicit formulae in Appendix B and content ourselves with providing the expression for ∆ 0, for illustration here. Therefore, we de ne a dimensionless parameter ∶= √ Ω and we obtain

∆ 0, = - Ω 4 ( 2 + + 1) + Ω 2 16 0 + 1 2 (2 + 7 2 + 2 4 ) (6.221) + Erf ( ) √ 2 8 ⎛ ⎜ ⎝ Ω 2 ( + 1 2 ) 4 0 (11 2 -2 + 20 4 + 4 6 )-Ω ( 2 + + 1)(1 + 2 2 ) ⎞ ⎟ ⎠
where Erf ( ) = erf ( ) -1, with "erf " being the standard error function.

As a nal remark, we note that the second order e ective Hamilton operator in (6.216) contains inverse powers of . Since the model here allows for the use of standard quantum mechanical perturbation theory, it is possible to extract relevant information of the quantum problem using perturbation theory. This is a very speci c case and is due to the fact that the zeroth order solutions of the e ective Hamiltonian admit a discrete spectrum. As we will see below, the cosmological models yield e ective Hamilton constraints at zeroth order with continuous spectrum such that the standard perturbative methods are no longer available. It is however possible to de ne a dense and invariant domain on which these operators are well-de ned.

Part III.

Quantum Cosmology with Backreaction

In this chapter, we apply SAPT to a simple cosmological model. Its main purpose is to illustrate the formalism for a constrained gravitational system which allows for a discussion of some challenges that we will encounter in the inhomogeneous models hereafter. After introducing the system, we apply SAPT to this system in section 7.1. In section 7.2, we explain the challenges occuring in SAPT for quantum cosmology. This chapter relies to a large extent on [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF] and [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

Presentation of the System and Preparations

We consider Einstein general relativity reduced to spatial homogeneity and isotropy at the classical level, including a cosmological constant Λ ∈ ℝ + and coupled to a spatially homogeneous, isotropic and real Klein-Gordon eld with mass ∈ ℝ + . The model rests on a four-dimensional space time manifold ℳ which we assume to be globally hyperbolic. The gravitational eld has Lorentzian signature (-, +, +, +) and space time (ℳ, ) is a pseudo-Riemannian manifold. According to a theorem by Geroch (1970), a globally hyperbolic manifold necessarily has the topology ℳ ≅ ℝ × where is a xed three-dimensional manifold of arbitrary topology. In the following, we choose to be the compact, at three-torus 3 with side lengths in all directions. We emphasize that the torus actually comprises any compact and at manifold since they are all nitely covered by tori according to a theorem by Bieberbach [START_REF] Bieberbach | Über die Bewegungsgruppen der Euklidischen Räume, Erste Abhandlung[END_REF](Bieberbach , 1912)). Accordingly, we set the cosmological curvature parameter to = 0. We choose coordinates such that the time parameter labels the homogeneous and isotropic spatial slices. The metric tensor of general relativity has the time-dependent scale factor as its only remaining dynamical degree of freedom. The scalar eld reduces to a homogeneous and isotropic time-dependent eld ∶ ℝ → ℝ. The Einstein-Hilbert and the matter eld cosmological action are given by

[ , ] = ∫ ℝ d - 1 2 6 ̇ 2 + 2 Λ 3 + 1 2 3 ̇ 2 -2 2 (7.1)
where a dot denotes a derivative with respect to cosmic time , and the integration over the torus volume produces a factor 3 ≡ 1. Here, and are the coupling constants of general relativity and the Klein-Gordon system respectively where = 8 and is Newton's constant, and we set ℏ ≡ 1 ≡ throughout this chapter. If both and are dimensionless, as we assume, then both coupling constants have the same dimension. Thus, it is reasonable to de ne the adiabatic perturbation parameter as the dimensionless ratio Note that we can associate mass parameters to the coupling constants, namely 2 ∶= -1 and 2 Pl ∶= -1 where Pl is the Planck mass. We assume that ≪ Pl and thus ≪ 1 which is certainly the case if is in the mass range of a typical standard model particle. It transpires that in the adiabatic language, gravity is the "slow" sector and the Klein-Gordon particle the "fast" one. This may seem counterintuitive when one interprets the Klein-Gordon eld as an in aton candidate and the in ationary phase when practically freezes (for small ) while expands exponentially. However, note that the distinction of slow and fast degrees of freedom uses intrinsically a statistical average over phase space. For instance, when the system under consideration has a true Hamiltonian bounded from below, one uses the equipartition theorem. In our case we do not have a true Hamiltonian but rather a Hamilton constraint such that the equipartition theorem does not apply. Section 7.2.1 explains that the Hamilton constraint itself gives rise to conditions under which the scheme satis es the standard physical intuition of slow and fast sectors.

The space adiabatic scheme requires a Hamiltonian formulation of the problem. We de ne the conjugate momenta of and as ∶= 

+ Λ 3 + 2 2 3 + 1 2 2 2 3 2 (7.3)
where for notational reasons, we divided the whole constraint by a constant factor . For simplifying the analysis by means of SAPT, we switch to triad-like canonical variables

∶= ± √ 3 , ∶= 2 3 √ (7.4)
which is a double cover of the original phase space. Note that the range of consists of two branches, a positive and a negative one. We do not restrict to any of these. Hence, the slow phase space associated with the geometry is Γ s = ℝ 2 and the fast phase space is Γ f = ℝ 2 . In order to keep the notation as simple as possible, we introduce the following parameters and functions

G ∶= 8 3 , 2 G ∶= 3 Λ 4 , ̃ ∶= 2 , 2 KG ∶= 2 2 . (7.5)
These de nitions and the new canonical variables give for the Hamilton constraint

( , , , ) = - 2 2 G + 1 2 G 2 G 2 + 2 2 ̃ ( ) + 1 2 ̃ ( ) 2 KG 2 . (7.6)
We quantize the system and start by considering the scalar eld subsystem. We choose a standard 2 -Hilbert space, and denote it by ℋ f = 2 (ℝ, d ). The quantum operators are indicated as bold letters, and the scalar eld operator and its conjugate momentum satisfy the canonical commutation relation [ , ] f = 1 1 1 f . Similarly, the state space of the geometrical subsystem will be denoted by ℋ s = 2 (ℝ, d ). The quantum operators wear hats and the canonical commutation relation for the geometrical variable and its conjugate momentum are [ ̂ , ̂ ] s = 1s . The quantum theory of the coupled system has the tensor product Hilbert space ℋ s ⊗ ℋ f . Another possible choice of rep-resentation is for example used in LQC (Ashtekar, Bojowald, and Lewandowski 2003b;Ashtekar, Pawlowski, and P. Singh 2006b;[START_REF] Bojowald | Loop quantum cosmology[END_REF] for which one motivation is that inverse powers of or can be made well-de ned following the technique introduced for LQG [START_REF] Thiemann | Anomaly-free formulation of nonperturbative, four-dimensional Lorentzian quantum gravity[END_REF](Thiemann , 1998)). That technique does not work in the presently chosen Schrödinger representation, and we will come back to the problem of choosing a suitable domain on which the resulting Hamiltonian is well-de ned. Formally, the constraint operator on the tensor product Hilbert space is given by

̂ = - ̂ 2 2 G + 1 2 G 2 G ̂ 2 ⊗ 1 1 1 f + 1 2 ̃ ( ̂ ) ⊗ 2 + 1 2 ̃ ( ̂ ) 2 KG ⊗ 2 . (7.7)
This operator is neither a bounded operator on ℋ f nor on ℋ s , even worse, it is not bounded from below due to the constraint character of general relativity. If one were to solve the associated quantum mechanical problem, the goal would be to nd quantum states within ℋ that are annihilated by the constraint operator ̂ . As far as we know, there are no solutions known to this problem. In what follows, we perform a systematic step by step SAPT treatment that will allow us to derive a much simpler quantum mechanical problem which approximates the above problem up to a desired error estimate.

Checking of the Conditions and Preparations

We check the conditions (C1) -(C4) from section 6.4.1 for the cosmological model. Condition (C1) holds without further ado since the cosmological Hilbert space ℋ s ⊗ ℋ f has the required tensor product form. In addition, ℋ s is an 2 -space and ℋ f is a separable Hilbert space. Following condition (C2), we represent the quantum constraint (7.7) as a symbol function ( , ) with values in the linear operators on the Klein-Gordon Hilbert space ℋ f . Formally, we simply quantize the Klein-Gordon subsystem by means of a standard Weyl quantization procedure and obtain

( , ) = - 2 2 G + 1 2 G 2 G 2 1 1 1 f + 2 2 ̃ ( ) + 1 2 ̃ ( ) 2 KG 2 . (7.8)
This symbol function is an unbounded linear operator on ℋ f for every ( , ) ∈ ℝ 2 . In particular, the operator corresponds to the Hamiltonian of a quantum harmonic oscillator with constant frequency KG , -dependent mass ̃ ( ), and an o -set energy. As such, the symbol has for xed, nite ( , ) an energy spectrum which is bounded from below but not from above. Besides, ( , ) is an unbounded function with respect to both and . According to SAPT, the constraint symbol must however belong to one of the symbol classes (ℬ(ℋ f )) in order to give a uniformly convergent error estimate ( should not be confused here with the mass parameter). More precisely, the symbol should have values in the space of bounded operators on ℋ f , be a bounded function with respect to and maximally grow polynomially in .

By means of the standard quantum oscillator eigensolutions ∈ ℋ f , ∈ ℕ, for the described oscillator with -dependent mass, the corresponding eigenvalue equation has the form

( , ) ( ) = ( , ) ( ), ( , ) = - 2 2 G + 1 2 G 2 G 2 + KG + 1 2 . (7.9)
We emphasize that the -dependence of the states is purely parametric. As in the oscillator ex-ample, it is evident to de ne a -dependent projection operator on ℋ f ( ) ∶= ( ) ⟨ ( ), ⋅ ⟩ ℋ f (7.10) by means of which the Hamilton symbol constraint has the spectral representation (7.11) In order to respect the conditions for the application of SAPT, it is possible to de ne an auxiliary Hamilton symbol aux ( , ) in close analogy to the oscillator example. In a rst step, one de nes the symbol ( , ) by cutting the sum in equation ( 7.11) after the + 1'st contribution. lies in the symbol class with order function ∶ ℝ 2 → ℝ ∶ ( , ) ↦ ⋅ (1 + 2 + 2 ) where , , ∈ ℝ + are appropriate positive constants.

( , ) = ∑ ≥0 ( , ) ( ).
( , ) lies consequently in ( , ℬ(ℋ f )).

Besides it has values in the self-adjoint operators and is elliptic, the proofs for this being analogous to the ones for the oscillator model. Then, by restricting the norm of ( , ) to a certain cut-o value c and de ning an associated domain Λ in the slow phase space, it is possible to de ne the cut-o operator c ( ̂ ) ∈ ℬ(ℋ). The domain Λ also suggests to de ne the auxiliary Hamilton symbol aux , which agrees with on Λ and smoothly transforms into a bounded function outside this domain, cf. (Panati, Spohn, and Teufel 2003, p. 176). The construction yields that

̂ aux -̂ 1 1 1 (-∞, c ] = 0 ( ∞ ), (7.12) 
and we refer to the previous chapter for more details. Since we are solely interested in the solutions to the constraint (i.e., there is no absolute time propagation), this statement su ces for our purposes. The theory hence allows us to perform the space adiabatic scheme with aux whose solutions are very close to solutions of the cut-o constraint . We stress however that this does not guarantee that these solutions are close to the solutions of the original Hamilton constraint ̂ . A statement similar to equation (7.12) with ̂ replaced by the original constraint ̂ does not hold since ̂ is an unbounded operator. As for the oscillator model, one can now either proceed by applying SAPT to the auxiliary constraint which guarantees a convergent adiabatic perturbation theory but which is physically di erent from the original problem. The convergence (e.g., with respect to the weak operator topology) must then be investigated by independent means, and which might be a non-trivial enterprise. On the other hand, one may continue with the original constraint, leading to a possibly non-convergent perturbation series. Here, we follow the second strategy.

Space Adiabatic Construction Scheme

Again, we proceed in three steps to compute an e ective Hamilton constraint e ,(2),R .

(S1): Construction of the Projector Symbol (1)

With the power series ansatz (1) = 0 + 1 , and the natural choice for the base clause 0 ∶= ( ) ⟨ ( ), ⋅ ⟩ ℋ f (7.13) for some xed fast quantum number ∈ ℕ, we construct the symbol function (1) ( , ) in close analogy to the considerations of the oscillator model. Similarly, the rst condition (S1-1), ⋆ = , yields that the diagonal contribution to 1 vanishes because 0 ( ) depends solely on .

Regarding the third condition (S1-3), 0 ⋆ -⋆ 0 = 0, recall that it yields

1 = -2 0 ⋅ { 0 , 0 + 1 1 1 f } s ⋅ ( ⟂ 0 -1 1 1 f ) -1 ⋅ ⟂ 0 -2 ( ⟂ 0 -1 1 1 f ) -1 ⋅ ⟂ 0 ⋅ { 0 + 1 1 1 f , 0 } s ⋅ 0 (7.14)
as a determining equation for 1 where we de ned ⟂ 0 = 0 ⋅ ⟂ 0 . To evaluate the partial derivative 0 in this equation, we need to evaluate the derivative of the states ( ) ∈ ℋ f as well as the derivatives of the canonically de ned creation and annihilation operators * ( ) ∈ ℒ(ℋ f ) and ( ) ∈ ℒ(ℋ f ). Therefore, recall that the initial, fast eigenvalue problem with solutions ( ) coincides with the quantum harmonic oscillator problem with a generalized -dependent mass ̃ KG ( ) = 2 and an ( , )-dependent o -set energy. Accordingly, the creation operator * ( ) can be written in terms of the canonical pair ( , ) as

( ) * = √ ̃ ( ) KG 2 - ̃ ( ) KG . (7.15)
The derivatives of the vacuum state 0 ( ) and the creation operator are given by

0 ∶= √ 2 ( ) 2 ( ), ( ) * = -2 ( ) ( ) (7.16)
where we introduced the function ( ) ∶= -( ̃ )∕(4 ̃ ) = -1∕(2 ). We propose the de nition of a covariant derivative or more precisely of a gauge potential associated with the -derivative of the fast oscillator states. Using the natural basis choice from above, its coe cients with respect to the -direction on Γ s are given by

( ) = -2 ( ) -2 ( ) + +2 ( ) +2 ( ) (7.17) with ( ) = - √ ( -1) ( ) +2 + √ ( + 1)( + 2) ( ) -2
. All coe cients in thedirection vanish because the fast eigenstates do not depend on . As for the oscillator model, only the coe cients of the gauge potential that connect states di ering by two excitations are nonvanishing as can be read o from the above assignment. Since we have real-valued eigenstates, the connection coe cients are real-valued, too such that the orthonormality relation between the fast states yields that = -. The -derivative of the projector symbol 0 follows from using Riesz' representation and we can simply write

0 = ( ⟨ , ⋅ ⟩ f + ⟨ , ⋅ ⟩ f ) (7.18)
where we emphasize that is a xed quantum number while (of course not to be confused with the mass of the Klein-Gordon eld) runs over all natural numbers. To evaluate 1 , we use that the partial derivative ( 0 + ⋅ 1 1 1 f ) is simply (-2 ∕ G ) ⋅ 1 1 1 f because only the spectral functions ( , ) depend on while the states do not. The functional form of the energy functions also reduces ( ⟂ 0 -) to a factor ±(2 KG ) -1 . As a result, the projector symbol 1 has the form

1 = -2 G KG -2 ( ⟨ -2 , ⋅ ⟩ f --2 ⟨ , ⋅ ⟩ f ) + +2 ( +2 ⟨ , ⋅ ⟩ f -⟨ +2 , ⋅ ⟩ f ) . (7.19)
With this, one can easily check that (1) satis es all three conditions subsumed under (S1) up to rst order in , i.e., that it is a projector and commutes with the full Hamiltonian up to errors of order 2 .

(S2): Construction of the Unitary Symbol (1)

Analogously to the proceeding in section 6.8.2, we construct a unitary symbol (1) which maps the dynamical subspace related to (1) to a suitable reference subspace f ⊂ ℋ f . We select one xed ( 0 , 0 ) ∈ Γ s and de ne the reference projection by R ∶= ( 0)

⟨ ( 0 ), ⋅ ⟩ f =∶ ⟨ , ⋅ ⟩ f . (7.20)
A natural choice for the unitary operator in line with conditions (S2) at zeroth order is given by

0 ( ) = ∑ ≥0 ⟨ ( ), ⋅ ⟩ f . (7.21)
The iterative construction gives in analogy to the results in section 6.8.2 for 1 that

1 = [ R , 0 ⋅ OD 1 ⋅ * 0 ] f ⋅ 0 (7.22) = 2 G KG -2 ( ⟨ -2 , ⋅⟩ f + -2 ⟨ , ⋅ ⟩ f ) - +2 ( +2 ⟨ , ⋅ ⟩ f + ⟨ +2 , ⋅ ⟩ f ) ,
recalling that the hermitian part of the unitary symbol simply vanishes because, again, the states do not depend on .

(S3): Construction of the E ective Constraint Symbol e ,(2),R

We restrict the computation of the e ective Hamiltonian to the selected reference space, i.e., we compute e ,(2),R ( , ) ∶= R ⋅ e ,(2) ( , ) ⋅ R . The zeroth order contribution of this symbol is given according to condition (S3) by e ,0,R ( , ) = -

2 2 G + 1 2 G 2 G 2 + KG + 1 2 R . (7.23)
Thus, the e ective constraint symbol for the gravitational degrees of freedom includes the bare gravitational constraint symbol plus an o -set energy which stems from the Klein-Gordon particle's chosen energy band. This result corresponds to the Born-Oppenheimer approximation. As in the oscillator model, the rst order contribution of the e ective constraint symbol e ,1 ( , ) contains only o -diagonal terms such that e ,1,R ( , ) vanishes identically, namely e ,1,R ( ,

) = 2 { R ⋅ 0 , 0 + 1 1 1 f } s ⋅ * 0 ⋅ R = 0. (7.24)
The same reasoning applies to the computation of e ,2,R ( , ) which is thus given by e ,2,R = 2

{ R ⋅ 1 , 0 + 1 1 1 f } s ⋅ 0 ⋅ R (7.25) = 2 ( -2 ) 2 --2 + ( +2 ) 2 -+2 R + 1 2 2 2 ( -2 ) 2 + ( +2 ) 2 R .
Finally, we insert the explicit results for the energy functions and the connection coe cients and obtain e ,2,R ( , ) = - (7.26) This proves our statement that besides the trivial Born-Oppenheimer approximation further backreaction e ects arise for the gravitational subsystem. It is now easy to evaluate the action of this symbol on some generic tensor product wave function in ℋ = ℋ s ⊗ ℋ f since the Klein-Gordon tensor factor does not depend on the gravitational degrees of freedom anymore. The e ective problem reduces to a quantum problem with respect to the slow geometric sector only.

1 2 G 2 G KG 2 + 1 2 + 1 2 2 2 + + 1 R .
One can start to analyze the quantum problem by considering only the zeroth order Hamilton constraint (7.23). It corresponds to the problem of an inverted harmonic oscillator with mass G , frequency G and an o -set energy o , ∶= KG ( + 1∕2). Solutions to this problem are well-known and it turns out that the corresponding spectrum is of the continuous type [START_REF] Finster | Spectrum of the Schrödinger Operator with Inverted Harmonic Oscillator Potential[END_REF]. To see this, let us perform a canonical transformation by a simple rescaling in order to obtain the new variables

∶= √ G G , ∶= √ G G . (7.27)
Inserting these variables and multiplying the constraint e ,0,R ( , ) by 2∕ G gives the new constraint de ned by 0 ( , ) ∶= -2 + 2 + ̃ o , (7.28)

where ̃ o , ∶= 2 o , ∕ G . For the quantum theory of the inverted oscillator, we employ a standard Schrödinger representation and use 2 (ℝ, d ) as a Hilbert space. One can show that the corresponding quantum operator

̂ 0 = 2 2 + 2 + ̃ o , (7.29)
has the domain of de nition ∞ (ℝ) ∩ 2 (ℝ), and is essentially self-adjoint on ∞ 0 (ℝ) ⊂ 2 (ℝ) (Reed and Simon 1975b, Theorems X.36 and X.38). Its (generalized) spectral problem has hence the form where ∈ ℝ is real-valued and associated with a quantum number . As it turns out, the spectrum is continuous and so can also take continuous values. In fact, let = -(1∕2)(1 -).

Then, the two linearly independent generalized eigensolutions ( ) associated with the spectral value are given by [START_REF] Finster | Spectrum of the Schrödinger Operator with Inverted Harmonic Oscillator Potential[END_REF])

( ) = exp 2 2 3 4 , -( +1) ( ) = exp -2 2 -( +1) 5 4 (7.31)
where for ∈ ℂ ⧵ ℕ, the Hermite functions ( ) are given according to [START_REF] Lebedev | Special Functions and Their Applications[END_REF])

( ) = 1 2Γ(-) ∞ ∑ =0 (-1) ! Γ - 2 (2 ) . (7.32)
These solutions are also known as parabolic cylinder functions. They are not normalizable as functions in 2 (ℝ, d ) [START_REF] Finster | Spectrum of the Schrödinger Operator with Inverted Harmonic Oscillator Potential[END_REF], and therefore can only serve as a generalized eigenbasis. The spectrum is also continuous. However, since the operator ̂ 0 is essentially selfadjoint, the generalized eigenvectors of parabolic cylinder functions are complete (Gel'fand and N. Y. Vilenkin 1964, p. 126). Hence, one can construct any normalizable combination of parabolic cylinder functions which are however no eigensolutions to the problem. A thorough construction of wavepackets that are sharply peaked in energy, and coherent states that follow classical trajectors can be found in [START_REF] Barton | Quantum Mechanics of the Inverted Oscillator Potential[END_REF]).

In the next step, one would like to solve the perturbed problem including the corrections at second order SAPT. For this purpose, it would be desirable to take advantage of the known solutions to the zeroth order problem, and use a quantum mechanical perturbation theory, similar to the usual perturbation theory employed for the oscillator model in the previous chapter. Unfortunately, this method is applicable only when the zeroth order has a pure point spectrum, which is obviously not the case here [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF]). As we explain in this paper, the perturbation theory for absolutely continuous operators is very unstable in the sense that a perturbation by an operator of arbitrarily small Hilbert-Schmidt norm exists such that their sum has pure point spectrum (Kato 1995). We are not aware of any rigorous work in that direction and it seems that the spectral problem of the Hamilton constraint operator including zeroth and second order contributions cannot use simple perturbative methods but must be addressed by independent methods.

Challenges for the Space Adiabatic Scheme

Identi cation of Slow and Fast Sectors

For the cosmological model, it would be helpful to have a physical intuition about the respective behavior of the slow and fast subsystems. In this section, we will provide such an intuition based on the considerations in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

In case of the oscillator toy model, and more generally for unconstrained dynamical systems, one resorts to the equipartition theorem in order to show that the heavy subsystem has a much smaller rate of change than the light subsystem (see for example equation (6.185)). However, the equipartition theorem is not applicable in the case of unconstrained cosmological systems. Therefore, consider the statistical average of some phase space function ∈ ∞ (Γ) on the full phase space Γ = Γ s × Γ f , and let be the Hamiltonian of the system. Let us denote the phase space variables in analogy to the previous section by ( , , , ). The phase space average of is then de ned by

⟨ ⟩ ∶= 1 ∫ Γ d d d d - ( , , , ), ∶= ∫ Γ d d d d -
where is the partition function and ∶= ( B ) -1 is the reciprocal of the thermodynamic temperature of the system. For ⟨ ⟩ to make sense, we must assume that is bounded from below such that the integrals converge. This also assures that in the integration by parts that one performs to show that ⟨ ⟩ = -1 no boundary terms appear. Both conditions are violated for the cosmological model because the gravitational kinetic energy is negative. However, we have the constraint itself and two highly di ering parameters, namely the gravitational coupling constant and the matter coupling constant of the scalar eld, and which give rise to the perturbation parameter 2 = . The existence of the perturbative parameter assures that we can safely apply the space adiabatic formalism but one might question the physical relevance of its use. In order to see under which conditions the theory leads to a physical distinction of slow and fast sectors, we take a closer look at the constraint. We use the Hamilton constraint from the previous section but stick to the more intuitive scale factor variable for the geometric subsystem. By multiplying with the global factor -1 , we obtain

1 12 2 2 = Λ 2 2 3 + 2 2 3 + 1 2 2 3 2 (7.33)
where we de ned the canonical momentum of the geometric subsystem according to ∶= ̇ . The typical quantity to measure the velocity of the expansion of the Universe is the Hubble parameter ∶= ̇ which we rather denote by in order to avoid confusion with the Hamilton function. It is related to the variables ( , ) according to = -2 6 2 . Likewise, the velocity of the scalar eld is given by ∶= ̇ = 3 . Inserting this in the constraint (7.33) gives

2 = 1 6 2 2 + 1 3 Λ + 1 6 2 2 2 . (7.34)
A comparison of the respective terms allows for the conclusion that for small cosmological constant and small potentials of the scalar eld, we have indeed that the geometric velocity is much smaller than the velocity of the scalar eld, namely ∼ , at least at a classical level. Accordingly, the homogeneous mode of the scalar eld can be identi ed as the fast sector while the geometry appears as the slow subsystem owing to our assumption on and . Indeed, we have that ≪ .

During a possible in ationary phase however, we know that the scalar eld potential must be much larger than the kinetic term, i.e., 2 ≈ 1 6 2 2 2 ≫ 1 6 2 2 , assuming that the cosmological constant is negligibly small. One might introduce another perturbative parameter ≪ 1 that quanti es the ratio between 2 and the kinetic contribution of the scalar eld, for example, 2 2 ∼ 2 2 , and hence ∼ . In the case that ≪ , we can still establish that ≪ , and hence the physical intuition of the slow geometric system and the fast scalar eld remains valid. There is however the possibility that ≥ , in which case we obtain that ≥ . SAPT then still works at the technical level as long as ≪ 1 but the classical picture that associates the geometry with the slow subsystem fails.

Non-Polynomial Operators

The Hamilton constraint ( , , , ) from equation (7.6) is non-polynomial in the scale factor related con guration variable and contains inverse powers of it. The same is true for the geometric part of the e ective Hamilton constraint e ,(2),R ( , , , ) that arises from the results in equations (7.23) and ( 7.26) by omitting the fast projector R . Moreover, we must assume that in higher orders of the space adiabatic scheme even higher inverse contributions of the geometric phase space variables occur. This is because the connection coe cients are proportional to -1 . As we will see in the following sections, for more involved models also the momenta can enter with inverse orders in the e ective Hamilton constraint. It hence transpires that it would be desirable to have a dense set of vectors which is invariant under any of the operators corresponding to and for , ∈ ℤ. In LQC (as also discussed in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF])), one deals with negative powers of by using a non-standard representation inspired by the representation used in the full LQG theory such that the spectrum of is pure point rather than absolutely continuous. Hence, the commutator between fractional powers of and Weyl elements of is both densely de ned and introduces the desired negative powers of . This comes at the price that the operator corresponding to does not exist and one consequently needs to approximate it by polynomials in Weyl elements. However, negative powers of would then also need to be approximated by inverse polynomials of Weyl elememts and these are not in the domain of so that for our purpose the representation chosen in LQC is of no direct advantage.

We thus advocate to take an unbiased point of view and ask whether it is possible to choose the above desired domain directly in the Schrödinger represenation. The advantage would be that the operators corresponding to and exist. Indeed, one can establish the following result as found and stated in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]): 1. There exists a dense and invariant domain ⊂ ℋ for the operators ̂ and ̂ where ∈ ℤ and ∈ ℕ 0 . This domain consists of smooth functions of rapid decrease both at = 0 and at = ±∞.

2. The domain is spanned by functions { ( )} with ∈ ℤ whose inner products can be computed analytically in closed form. Correspondingly, an orthonormal basis can be constructed by means of the Gram-Schmidt procedure.

3. Let ( ) be a function such that both, ( ) and -1 ( ) are polynomially bounded and smooth except possibly at = 0 or ± ∞. Furthermore, let 1 ( ), … , ( ) be polynomials in . Then there exists a common domain ( ) ⊂ for the operators of item 1. and of the operators corresponding to the symols ( , ) ∶= ( ) 2 ( ) -with = 1, .., , in suitable symmetric orderings where depends on both and the degree of the polynomials .

The proof of this theorem can be found in reference Thiemann n.d. Thereby, note that ̂ -1 is a symmetric operator with distribution kernel

( ̂ -1 )( ) = -2 ∫ ℝ d sgn( -) ( ) (7.35)
which can easily be seen by applying ̂ = -d∕d from the left and using that, d sgn( -)∕d = -2 ( -) in a distributional sense. The domain of ̂ -1 must be chosen carefully. Even if is a Schwartz function, while ̂ -1 is smooth, it may not be of rapid decrease any more at in nity.

Likewise, it is a simple corollary that a dense and invariant domain for ̂ ̂ with ∈ ℤ, ∈ ℕ 0 is given by the Fourier transform of the functions of item 1) but that the Fourier transform is not necessarily of rapid decrease in any more. This is why the statement of item 3) is signi cantly weaker, in particular ( ) is not an invariant domain for the list of operators stated and it is presently not clear whether it is dense. It is however certain that there exists no function in orthogonal to ( ).

The idea for de ning the rather singular symbols that we encounter in the homogeneous sector of quantum cosmology is thus as follows (provided that we can factor out a suitable 2 as described above): At any order of the adiabatic expansion the terms that involve negative powers of are of the form described in item 3) and are nite in number. Thus we use the ordering alluded to in item 3) and the domain described there. The other terms not involving negative powers of are also de ned on that domain since ( ) ⊂ .

Inhomogeneous Cosmology with Dust

This chapter applies SAPT to a quantum eld model which includes a homogeneous and isotropic gravitational eld as well as a Klein-Gordon eld which is now allowed to be inhomogeneous.

Besides, we introduce a homogeneous timelike dust eld which serves to deparametrize the model in order to have a true Hamiltonian instead of a constraint. This distinguishes this chapter from the following chapter 9 in which we discuss a fully constrained model. In both cases, it is necessary to generalize the standard space adiabatic perturbation approach by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], because of the henceforward in nite number of eld degrees of freedom. As before, we are going to split the system into two subsystems where now the inhomogeneous degrees of freedom will be identi ed with the sector formerly denoted as the fast sector. As such, the model must provide an initial quantum eld theoretical model that depends on the homogeneous variables which constitute the remaining part of the system.

One important assumption of SAPT which is trivially satis ed in the quantum mechanical case is that these fast initial quantum problems are mutually unitarily equivalent one to another. This is the statement of the Stone-von Neumann theorem [START_REF] Neumann | Die Eindeutigkeit der Schrödingerschen Operatoren[END_REF](Neumann , 1932b;;[START_REF] Stone | Linear Transformations in Hilbert Space. III. Operational Methods and Group Theory[END_REF]Stone , 1932) ) in quantum mechanics. The Stone-von Neumann theorem does however not apply to quantum eld theory, and we will use the Hilbert-Schmidt condition (Wald 1995, section 4.4) to explicitely show that the Hilbert spaces of the fast problems are not unitarily equivalent from the outset. As we will see, these problems originating from the in nite number of degrees of freedom can be circumvented using a transformation of the total set of homogeneous and inhomogeneous variables. This transformation is an exact canonical transformation up to second order in the cosmological perturbations. The idea for these transformations orginally comes from the hybrid approach to quantum cosmology as proposed by Castelló Gomar, Martín-Benito, and[START_REF] Castelló Gomar | Quantum corrections to the Mukhanov-Sasaki equations[END_REF][START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF], and Elizaga Navascués, [START_REF] Elizaga Navascués | Hybrid models in loop quantum cosmology[END_REF].

Accordingly, this chapter starts in section 8.1 with demonstrating the failure of the Hilbert-Schmidt condition for models with an in nite number of degrees of freedom. We subsequently introduce a suitable set of (almost) canonical transformations at the classical level to resolve this issue. This section is based and partly taken from [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]. In section 8.2, we apply the scheme to the transformed inhomogeneous Klein-Gordon model with dust. It is based and also partially taken from (Schander and Thiemann 2019b).

Transformations for Well-De ned Quantum Fields

A Quantum Field Theory with Dust

In this section, we discuss the anomalies that occur in QFT on CST due to the in nite number of degrees of freedom. In particular, it is important to understand how the quantum elds for di erent con gurations of the underlying curved space time can be related one to another. As it turns out, the corresponding natural Fock representations fail to be unitarily equivalent for di erent con gurations of the homogeneous variables. SAPT requires a remedy for this problem due to its tensorial Hilbert space structure.

We illustrate the dilemma with a simple eld theoretical model of a classical real-valued scalar eld Φ of Klein-Gordon type de ned on space time ℳ ≅ ℝ × for which we choose the spatial hypersurface to be a at and compact manifold, i.e., the three-torus 3 . A di erent choice of topology is possible but since this choice does not a ect the essential point of this section, we use the simple three-torus. ℳ hence foliates into spatial hypersurfaces, each of which has the topology 3 . Therefore, we recall that there exists a di eomorphism which maps any point ∈ ℳ to its coordinate representative ( , ). The variable denotes the local coordinates on 3 .

The eld naturally splits into a purely homogeneous and isotropic part ( , ) = ( ) with respect to this hypersurface foliation and we de ne the di erence ( , ) ∶= Φ( , ) -( ) as a linear perturbation of . Furthermore, the model comprises the homogeneous and isotropic part of the metric eld which has Lorentzian signature (-, +, +, +) as well as a timelike homogeneous and isotropic real scalar dust eld with energy density (J. D. [START_REF] Brown | Dust as a standard of space and time in canonical quantum gravity[END_REF]. The homogeneous and isotropic metric reduces to the time-dependent scale factor , its velocity ̇ and the lapse function . Since turns out to be a mere Lagrange multiplier (see the Dirac analysis in section 2.1.2), we set ≡ 1. Since we work on compact spatial slices, it is meaningful to isolate the zero mode of the elds and the action splits into a homogeneous and a second order inhomogeneous perturbative part

= hom + pert with hom [ , , ] =∫ ℝ d - 3 ̇ 2 + 3 2 ̇ 2 -1 + 3 2 ̇ 2 -2 2 , pert [ , ] = 1 2 ∫ ℝ× 3 d d 3 ̇ 2 - (∇ ) 2 2 -2 2 (8.1)
where = 8 is the gravitational coupling constant, ∈ ℝ + is the coupling constant of the matter eld, ∈ ℝ + its mass, and we have introduced the measure d of the spatial hypersurfaces. The dust eld serves to deparametrize the model. Namely, after xing the gauge freedom associated with the spacetime di eomorphisms, the gravitational and scalar contribution to the Hamilton constraint combine to build a physical Hamiltonian when integrated over the spatial hypersurface (J. D. [START_REF] Brown | Dust as a standard of space and time in canonical quantum gravity[END_REF][START_REF] Giesel | Scalar Material Reference Systems and Loop Quantum Gravity[END_REF]. The gravitational and the scalar eld degrees of freedom become observable elds. Obviously, such a deparametrization simpli es the analysis of the quantum problem signi cantly but it must be pointed out that this framework does not treat all degrees of freedom at the same level -namely, the dust eld is not quantized.

To proceed towards an application of SAPT, we employ a Hamiltonian analysis and perform a Legendre transformation from which the conjugate momenta ( , , ) of the scale factor, the homogeneous scalar eld and the inhomogeneous part of the scalar eld arise in the standard way (cf. section 2.1.2). Together with their conjugate variables ( , , ), they constitute the total (now in nite-dimensional) phase space Γ of the system. The transformation yields the Hamilton function = hom + pert with pert ( , , ) =

1 2 ∫ 3 d 2 2 3 - (∆ ) + 3 2 2 (8.2)
where ∆ is the Laplace-Beltrami operator associated with the constant spatial hypersurface 3 . The homogeneous contribution to the Hamiltonian hom ( , , , ) has the form of the wellknown homogeneous and isotropic cosmological Hamilton constraint (7.3) but its explicit form is not important here. SAPT requires to work on a product Hilbert space ℋ = ℋ hom ⊗ ℋ pert where the rst factor refers to the homogeneous sector and the second one to the perturbative sector in our case. This is similar to what we encountered before when splitting into a slow and a fast sector according to ℋ = ℋ s ⊗ ℋ f . As far as the homogeneous sector is concerned, we adopt a usual Schrödinger representation on the Hilbert space ℋ hom = 2 (ℝ + × ℝ, d d ). Note that this Hilbert space is restricted to the positive half real line in the rst factor which requires a proper examination of the operators and their domains de ned on it. Regarding the inhomogeneous part, a standard Fock representation suggests itself since pert ( , , ) is quadratic in the elds and . But which one? The "background" variable is not a xed function of time but a dynamical quantum variable, and hence displays quantum uctuations. SAPT allows to technically consider the scale factor as a real parameter at a rst stage, namely when quantizing pert ( , , ) with respect to the inhomogeneous variables ( , ). In this case, the system corresponds to a standard quantum Klein-Gordon eld with an -dependent frequency, and the representation will hence depend on the value of .

To see this, consider the one-particle Hilbert space ℋ 3 ∶= 2 ( 3 , d ) on 3 and the associated symmetric Fock space ℋ pert = ℱ s (ℋ 3 ) as the state space of the inhomogeneous quantum eld theory. We promote the canonical elds to operator-valued distributions on a suitable space of smearing functions, e.g., the space of smooth functions ∞ 0 ( 3 ) with compact support on 3 . The operators will be denoted by bold letters, i.e., ( ), ( ) ∈ ℒ(ℱ s (ℋ 3 )) with ∈ ∞ 0 ( 3 ) where ℒ commonly denotes the space of linear operators. The theory is de ned by the commutation relations

[ ( 1 ), ( 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 pert (8.3)
where 1 , 2 ∈ ∞ 0 ( 3) are two suitable test functions, ⟨⋅, ⋅⟩ denotes the 2 -scalar product of 2 ( 3 )-functions, 1 1 1 pert is the one in the corresponding quantum algebra that we denote by and we explicitely label the commutator bracket with respect to the perturbative elds with a subscript "pert". In order to de ne the standard representation in terms of annihilation and creation operators, we introduce the -dependent one-particle frequency operator ( ) according to ( ) 2 ∶= -4 ∆ + 2 6 . (8.4)

By duality, this operator can act on the quantum eld

( ) ∈ ℒ(ℱ s (ℋ 3 )) with ∈ ∞ 0 ( 3 ) according to ( √ ( )( ))( ) ∶= ( √ ( )( )). A representation ∶ → ℒ(ℱ s (ℋ 3
)) of the eld algebra in terms of annihilation and creation operators and * can then be de ned by (8.5) and accordingly for the creation operator with the minus replaced by a plus. Since the representation map depends on the value of , it makes sense to de ne = with its explicit dependence on . The commutation relations of the elds become

( , ) ∶= 1 √ 2 √ ( ) ( ) - √ ( ) -1 ( ) ,
[ ( , 1 ), ( , 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 pert (8.6)
with 1 1 1 pert ∈ ℬ(ℱ s (ℋ 3 )). For the following considerations, it is useful to consider an orthonormal basis in ℋ 3 . Since we are on the three-torus, this basis can be labeled by a discrete set of numbers ∈ Σ ∶= 2 ℤ 3 . We denote this basis by { } ∈Σ and require the functions to be eigenfunctions of the Laplace-Beltrami operator on 3 with eigenvalues -2 respectively. Since we associate the zero mode = 0 with the homogeneous mode of the scalar eld, it will be excluded in the following considerations regarding the purely inhomogeneous eld theory. We de ne ∶= 2 ℤ 3 ⧵ {0}.

Hence, the frequency operator ( ) for every ∈ ℝ + acts on some with ∈ according to

( ) = √ 4 2 + 2 6 =∶ ( , 2 ) . (8.7)
On the normalized three-torus, the basis functions can be given more explicitely by the plane waves ( ) = exp( ), ∈ 3 . It is convenient to introduce the annihilation and creation operators for the modes , which satisfy the standard commutation relations of annihilation and creation operators, namely

[ ( , ), * ( , )] pert = , 1 1 1 pert , ∀ ∈ ℝ + (8.8)
where , is the Kronecker delta with respect to the discrete modes and . A representation of the quantization pert of the perturbative Hamiltonian in terms of these mode annihilation and creation operators gives the model the form of a discrete but in nite set of independent harmonic oscillators with respective frequencies ( , 2 ). A normal ordering of the Fock-quantized perturbation Hamiltonian pert yields pert ( ) =

1 3 ∑ ∈ * ( , )( ( ) ( ))( ). (8.9)
This expression has the standard form of a Hamilton operator in quantum eld theory on Minkowski space time -with the di erence that the frequency as well as the annihilation and creation operators depend on the scale factor. The question is how the natural basis states induced by the annihilation operators are related for di erent values of .

Violation of the Hilbert-Schmidt Condition

The question of the relation between the di erent representations and of how the natural states induced by these representations are linked can be formulated in the following way:

1. Are the -dependent Fock representations ( , ℱ s ) with the group homomorphisms ∶ → ℒ(ℱ s ) that map the eld Weyl algebra associated with ( , ) to the space of bounded linear operators on ℱ s all unitarily equivalent to a single representation ( 0 , ℱ s )? This is one of the innocent looking assumptions of SAPT in quantum mechanics.

2. Assuming that this unitary equivalence between the di erent representations is granted, let be a smooth function in ℋ 3 and ̂ ( , ) ∶= ̂ ( ( , )) and * ( , ) ∶= ̂ ( * ( , )) the Weyl quantizations of ( , ) and * ( , ) with respect to the homogeneous variables, i.e., with respect to the scale factor here. Then, is the complete algebra of operators ̂ , ̂ , ̂ , ̂ , ̂ ( , ), * ( , ) well-de ned on the full Hilbert space ℋ hom ⊗ ℋ pert ?

It turns out that both questions are tightly related and that the answer to both is in the negative. The underlying e ect has been rst observed by Castelló Gomar, Martín-Benito, and[START_REF] Castelló Gomar | Quantum corrections to the Mukhanov-Sasaki equations[END_REF][START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF], and Elizaga Navascués, [START_REF] Elizaga Navascués | Hybrid models in loop quantum cosmology[END_REF] in a related context. To see the origin of the problem, we note that a necessary condition for an a rmative answer to the rst question is that the natural Fock vacuum Ω( 2 ) associated with the representation 2 can be written as a (possibly excited) state with respect to states associated with the representation 1 for all distinct 1 , 2 in ℝ + . In fact, this condition is also su cient because polynomials of the creation operators * ( 1 , ) can then be written as polynomials of the operators ( 2 , ) and * ( 2 , ) for some smooth ∈ ∞ 0 ( 3 ).

Relation of Vacua

To elaborate on this, let ( ) denote the collection of occupation numbers { } ∈ of some excited state ( ) within the 1 -representation. We de ne this excited state in the standard manner as

( ) ( 1 ) = ∏ ∈ [ * ( 1 , )] √ ! Ω( 1 ) (8.10)
where Ω( 1 ) is the standard vacuum state associated with the representation 1 , i.e., it satis es ( 1 , )Ω( 1 ) = 0 for all ∈ . We then assume that it is possible to write the natural vacuum state associated with 2 as a linear combination of such excited states, namely

Ω( 2 ) = ∑ ( ) ( ) ⋅ ( ) ( 1 ) (8.11)
where the sum is over all ( ) with only nitely many di erent from zero. We then require that ( 2 , ) Ω( 2 ) = 0 is satis ed for any ∈ . To analyze this equation with respect to the 1 -representation, consider the one-particle operators ± ( 1 , 2 ) ∶ ∞ 0 ( 3 ) → ∞ 0 ( 3 ) de ned by

± ( 1 , 2 ) ∶= 1 2 ⎛ ⎜ ⎝ √ ( 1 ) ( 2 ) ± √ ( 2 ) ( 1 ) ⎞ ⎟ ⎠ , (8.12)
and we recall that these correspond to the Bogoliubov coe cients already encountered in section 4.1. By extending ± ( 1 , 2 ) to the space of operator-valued distributions as before, we de ne the Bogoliubov transformation by

( 2 , ) ∶= ( + ( 1 , 2 ) ( 1 ))( ) + ( -( 1 , 2 ) * ( 1 ))( ) (8.13)
for any ∈ ∞ 0 ( 3 ) and linear combinations thereof. The one-particle operator ± ( 1 , 2 ) is diagonal with respect to the basis states { } ∈ . Therefore, let ± ( 1 , 2 , 2 ) ∈ ℝ be the eigenvalues of ± ( 1 , 2 ) de ned by ± ( 1 , 2 ) = ± ( 1 , 2 , 2 ) . It follows by extending this relation to the operator-valued distributions that

( + ( 1 , 2 ) ( 1 ))( ) = + ( 1 , 2 , 2 ) ( 1 , ) (8.14)
and correspondingly for -( 1 , 2 ) and * ( 1 , ). Eventually, let us introduce the following notation: We denote the collection of occupation numbers for which only the excitation number associated with equals one and the remaining ones all vanish by 1 . Then, the expression ( ) ± 1 stands for a set of occupation numbers in which the excitation number of in the set ( ) is raised or lowered respectively by one. Then, we require that the de ning equation of the vacuum state holds, namely that the application of the annihilation operator ( 2 , ) on the vacuum state Ω( 2 ) vanishes independently for all ∈ and get

( 2 , )Ω( 2 ) (8.15) = ∑ ( ) ( ) √ + ( 1 , 2 , 2 ) ( )-1 ( 1 ) + √ + 1 -( 1 , 2 , 2 ) ( )+1 ( 1 ) = ∑ ( ) ( )+1 + ( 1 , 2 , 2 ) √ + 1 + ( )-1 -( 1 , 2 , 2 ) √ ( ) ( 1 ) ! = 0.
Since the relation (8.15) holds for all ∈ independently, the coe cients must be of in nite product type, i.e., of the form

( ) = ∏ . (8.16)
Then, we de ne the quotient ( 1 , 2 , 2 ) ∶= -( 1 , 2 , 2 )∕ + ( 1 , 2 , 2 ). The product ansatz together with this de nition transforms equation (8.15) into the recursion relation,

+1 = - √ + 1 ( 1 , 2 , 2 ) -1 .
(8.17)

The right hand side of the recursion relation vanishes for = 0. It follows that ( ) = 0 for any odd . For even, the solution of equation ( 8.17) is given by

2 = - √ 2 -1 2 ( 1 , 2 , 2 ) 2( -1) = (-( 1 , 2 , 2 )) √ (2 )! 4 ( !) 2 0 (8.18)
where for the time being, the 0 remain undetermined and their values are of no relevance for the subsequent argumentation. In order to prove that the vacuum Ω( 1 ) transforms into the vacuum Ω( 2 ) in a well-de ned fashion, it is necessary that the ℱ s -norm of Ω( 2 ) within the 1representation has a nite non-vanishing value. As a working hypothesis, we assume that this is true. Then, it stems from the previous results that

‖Ω( 2 )‖ 2 ℱ s = ∑ ( ) ( ) 2 = ∑ ( ) ∏ ∈ 2 = ∑ ( ) ∏ ∈ 2 = ∏ ∈ ∞ ∑ =0 0 2 ( 1 , 2 , 2 ) 2 (2 )! 4 ( !) 2 = ∏ ∈ 0 2 ⋅ ∏ ∈ ∞ ∑ =0 ( 1 , 2 , 2 ) 2 (2 )! 4 ( !) 2 . (8.19)
Regarding the -dependent factors in the last expression, it holds true that

1 2 ≤ (2 )! 4 ( !) 2 ≤ 1 (8.20)
using mathematical induction. Inserting the estimate (8.20) into (8.19) allows to rewrite the sum as a geometric series. Namely, we then obtain products of in nite series over with coe cients ( ( 1 , 2 , 2 ) 2 )∕2 and ( 1 , 2 , 2 ) 2 respectively. Since ( 1 , 2 , 2 ) 2 < 1 independently of 2 , this gives rise to the following estimate:

∏ ∈ 0 2 ⋅ ∏ ∈ 1 - ( 2 ) 2 2 -1 ≤ ‖Ω( 2 )‖ 2 ℱ s ( 1 ) ≤ ∏ ∈ 0 2 ⋅ ∏ ∈ 1 -( 2 ) 2 -1 .
Thus, a necessary condition for the convergence of (8.19) is that the two in nite products converge independently to a nite non-zero value. Note thereby that ∏ ∈ 0 2 is a common prefactor in all ( ) 2 , and thus must converge to some nite value as otherwise the ( ) would be meaningless.

By taking the logarithm, the convergence of the lower estimate is equivalent to the convergence of the series

∑ ∈ ln 1 - ( 1 , 2 , 2 ) 2 2 (8.21)
which is also known as the Hilbert-Schmidt condition (Wald 1995). In order to resolve the estimates, we recall that ( 1 , 2 , 2 ) is determined by the frequency function ( , 2 ), namely

( 1 , 2 , 2 ) 2 = -( 1 , 2 , 2 ) 2 + ( 1 , 2 , 2 ) 2 = (( 4 1 -4 2 ) 2 + ( 6 1 -6 2 ) 2 ) 2 ( ( 1 , 2 ) + ( 2 , 2 )) 4 .
(8.22)

A necessary condition for the series (8.21) to converge is that the coe cients of the latter tend to zero for 2 → ∞. Keeping track of the logarithm, this is true if ( 1 , 2 , 2 ) 2 tends to zero. To check this, note that ( , 2 ) → 2 for large 2 . Consequently, expression (8.21) evaluates to

lim →∞ ( 1 , 2 , 2 ) 2 = ( 2 1 -2 2 ) 2 ( 2 1 + 2 2 ) 2 (8.23)
which is a non-vanishing constant for 1 ≠ 2 and consequently, the Hilbert-Schmidt condition fails for any two distinct 1 , 2 . Note however that according to equation (8.22), the problem would disappear if the wave mode term was relieved from its scale factor dependence. In particular, then ( 1 , 2 , 2 ) 2 would decay like 1∕ 4 , and thus the series ∑ ln 1 -( 1 , 2 , 2 ) 2 would converge to a non zero value. This answers the rst question posed above, namely that the Fock representations ( , ℱ s ) are not unitarily equivalent for di erent values of , except in the case that the contribution carrying the Laplace-Beltrami operator in the one-particle frequency operator ( , 2 ) is independent of the scale factor, or more generically, independent of the homogeneous phase space variables.

De nition of the Operator Algebra

The second question, i.e., whether the complete operator algebra of the canonical pairs is well de ned on the full Hilbert space, is in fact equivalent to the rst one. To see this, we assume that the scale factor is represented as a self-adjoint operator ̂ on a dense domain of the full Hilbert space ℋ. The spectral theorem then allows to display the Hilbert space as a direct integral or a Hilbert bundle subordinate to according to

ℋ ≅ ∫ ⊕ ( ̂ ) d ( ) ℋ pert ( ) (8.24)
where is the spectral probability measure on the spectrum ( ̂ ) of ̂ which is just ℝ + 0 . The previous discussion suggests to identify the bre spaces ℋ pert ( ) with the Fock space ℱ s with di erent -dependent vacua. As a consequence of the spectral theorem, the Hilbert spaces ℱ s must be chosen identical (Reed and Simon 1975a,b) but this is not possible according to the former considerations.

Let us assume the opposite for the time being. Then, vectors in the Hilbert bundle are given by measurable bre Hilbert space valued functions ∶ ( ̂ ) ↦ ℋ, ↦ ( ) over the base manifold ( ̂ ). They are equipped with the inner product

⟨ , ⟩ ℋ = ∫ ( ̂ ) d ( )⟨ ( ), ( )⟩ ℱ s . (8.25)
By the spectral theorem, ̂ acts by multiplication in the bre ℱ s . Accordingly, the operator ̂ pert acts bre wise by the symbol pert ( ) in equation (8.9). The question is how the operator ̂ representing the momentum conjugate to the scale factor acts on the direct integral Hilbert space.

As the spectrum of ̂ is of the absolutely continuous type, the momentum acts as ( ̂ )( ) = ( + ( )) ( ) where we introduce the function ( ) related to the divergence of the measure ( ). The function has the purpose to turn ̂ into a symmetric operator. In fact, in order to obtain a self-adjoint operator, it is advisable to pass to the real-valued triad variable (like in the previous chapter) and work with its conjugate momentum. Nevertheless, the conclusion derived below is not a ected by these subtleties.

In order to check whether the geometric momentum operator ̂ is well-de ned on (some dense subset of) ℋ, we compute the norm of the state ( ̂ Ω)( ). Therefore, consider the geometric commutator of ̂ and ̂ ( , ) in an integral representation. As the operator ( , ) only depends on the con guration variable , a partial integration allows to shift the derivative due to ̂ on ( , ). Using equation (8.5), we see that the derivative directly acts on powers of the one-particle operator ( ) within ( , ). This yields an -dependent one-particle operator ( ) subject to the geometric quantization procedure

̂ , ̂ ( , ) = -( ̂ ( ) * ( ))( ) where ( ) ∶= 1 2 ( ) ( ) (8.26)
and where for notational convenience the hats indicating the Weyl quantization with respect to the homogeneous variables rather sit on the operator labels than on their arguments. As a result of equation ( 8.26) and with the requirement ̂ ( , ) Ω( ) = 0 for any ∈ ∞ 0 ( 3 ), it holds true that ̂ ( , ) ( ̂ Ω) = ̂ ( , ), ̂ Ω = ( ̂ ( ) * ( ))( ) Ω.

(8.27)

Using that any one-particle state has a unique decomposition with respect to some basis { } ∈ and that the above equality must hold for any , the vector ̂ Ω is given by (8.28) This allows us to compute the norm of ̂ Ω. Therefore, we denote the twofold excitation of the vacuum state Ω( ) with respect to the mode by √ 2 2 ( ). Then, using the inner product with respect to the geometric quantization, we obtain for the norm squared

̂ Ω = -2 ∑ ∈ * ( , ) ( ̂ ( ) * ( ))( ) Ω.
‖ ̂ Ω‖ 2 ℱ s = ∫ ( ̂ ) d ( ) ∑ ∈ ⟨ 2 ( ) ( , 2 ), ( , 2 ) 2 ( )⟩ ℱ s = 1 16 ∫ ( ̂ ) d ( ) ∑ ∈ ( , 2 ) 2 ( , 2 ) 2 2 .
(8.29)

The norm only admits a nite value if the sum over is almost everywhere nite as a function of . However, for large any coe cient of the series evaluates to (4∕ ) 2 which is a constant for some xed value of the scale factor . Hence, the sum does not converge and ̂ Ω has in nite norm. Note that equation (8.29) is the in nitesimal version of equation (8.21) which becomes clear by dividing the latter by ( 1 -2 ) 2 and taking the limit 2 → 1 . Consequently, SAPT cannot be applied to QFT on CST without further ado.

A Simple Transformation

One hope might be that with a di erent choice of Fock representations the Hilbert-Schmidt condition can be met for example by a simple canonical rescaling of the eld operators. However, if the correspondingly normal-ordered Hamiltonian should remain at least densely de ned on the Fock states, this again leads to an obstruction. To understand the origin of this impediment, note that we can satisfy the Hilbert-Schmidt condition by rescaling the classical (distributional) elds ( ) and ( ) according to ̃ ( ) ∶= ( ), ̃ ( ) ∶= ( ) .

(8.30)

The new elds still satisfy the canonical Poisson brackets with respect to the inhomogeneous degrees of freedom if is held xed, i.e., { ̃ ( 1 ), ̃ ( 2 )} pert = ⟨ 1 , 2 ⟩ for any 1 , 2 ∈ ∞ 0 ( 3 ), and we recall that ⟨⋅, ⋅⟩ is the scalar product in 2 ( 3). The perturbative Hamilton function then becomes (8.31) Note that now the coe cient of the Laplace operator in ̃ ( ) 2 is independent of . However, the transformation (8.30) is not a canonical transformation on the full phase space. In fact, it is no longer the case that , ̃ and ̃ have vanishing Poisson brackets as the above transformation depends on . Consequently, the fundamental canonical structure is lost. However, the transformation (8.30) allows for an exact completion by adding a corresponding contact term in the symplectic potential.

pert ( ) = 1 2 ∫ 3 d ̃ 2 + ̃ ̃ ( ) ̃ where ̃ ( ) = -∆ + 2 2 .
To de ne the symplectic potential for the system, we recall that it is modelled on an in nite dimensional Banach manifold which is given by the Cartesian product of the nite dimensional, homogeneous con guration space hom = ℝ + ×ℝ and the in nite dimensional, perturbative conguration space of elds pert . The latter space could for example be the Sobolev space 1 ( 3 ) of elds whose rst derivatives have a nite 2 -norm such that the Hamilton function is well de ned. With the cotangent bundle * (i.e., the phase space associated with ) and the projection map pr ∶ * → , we de ne the symplectic potential Θ on the manifold * as a map from the tangent space ( * ) into ℝ where ∈ * with = pr( ). In particular, for some ∈ ( * ), we have that Θ( )( ) ∶= (pr * ( )) where pr * ∶ ( * ) → is the pushforward of the projection pr [START_REF] Cherno | Properties of In nite Dimensional Hamiltonian Systems[END_REF].

In a coordinate representation, this has the standard intuitive form: We denote the coordinates of a point ( , ) ∈ * Φ in phase space by (Φ, Π) where Φ stands for the generalized elds ( , , ). Then, Θ has the coordinate representation ∫ d Π( )dΦ( ) where d is the exterior derivative such that dΦ( ) denotes a standard one-form on (Φ,Π) ( * ) [START_REF] Cartan | Di erential Forms[END_REF]. To shorten the notation, we simply denote the integral by ⟨Π, dΦ⟩. By splitting the elds into the homogeneous and inhomogeneous components and by executing the integrals over the homogeneous degrees of freedom, we obtain

Θ = d + d + ⟨ , d ⟩ (8.32)
where we used the product rule for the exterior derivative. The transformation leading to the dashed elds produces an additional term in the transformed symplectic potential which is then given by

Θ = - 1 ⟨ , ⟩ d + d + ⟨ ̃ , d ̃ ⟩. (8.33)
This suggests to de ne new dashed pairs of conjugate variables for the homogeneous sector, namely

̃ ∶= - 1 ⟨ , ⟩ = - 1 ⟨ ̃ , ̃ ⟩, ̃ ∶= , ̃ ∶= , ̃ ∶= (8.34)
which would complete the transformation. Unfortunately, now we have to write the homogeneous Hamiltonian hom in terms of ̃ and this causes problems when passing to the quantum realm. In particular, when quantizing with respect to the perturbative Fock elds as suggested by SAPT, the supplementary term due to the completion introduces rst and second powers of an ill-de ned (normal ordered) operator. By taking an arbitrary basis { } ∈ of 2 ( 3), this operator is given by

∑ ∈ ̃ ( ) ̃ ( ) = 2 ∑ ∈ ̃ ( , ) 2 -̃ * ( , ) 2 -2 ̃ * ( , ) ̃ ( , ) (8.35) 
where ̃ is the annihilation operator obtained from (8.5) by substituting all ingredients by those with a tilde and likewise for the creation operator ̃ * . The operator (8.35) is obviously ill-de ned on the corresponding Fock space.

General Class of Transformations

Eventually, this discussion suggests to consider more general transformations in order to avoid the desastrous terms such as (8.35). To determine the class of admissible transformations, we follow the procedure introduced by Castelló Gomar, Martín-Benito, and Mena Marugán 2016; Castelló Gomar, Martín-Benito, and Mena Marugán 2015; Elizaga Navascués, Martin-Benito, and Mena Marugan 2016. Their considerations restrict to perturbation theory up to second order in the elds and which themselves are considered to be of rst order. This advocates to con ne to transformations linear in and such as (8.30), keeping the second order nature of pert while higher order transformations would not be visible at the second order precision of pert . The corresponding contact terms for the homogeneous degrees of freedom will then be of second order at leading order as in equation (8.34).

To shorten the notation, we use the letters ( , ) for collectively denoting the homogeneous variables ( , ) and ( , ). Whenever a distinction is necessary we label them by indices ( , ) with = 1, 2. We consider the classical elds ( , ) ∈ 3 ( 3 )× 2 ( 3 ) and apply a set of transformations, ( , , , ) which relate the original elds ( , ) and the transformed elds ( ̃ , ̃ ). Note that these transformations are operators on the space of (a certain class of) functions, or rather elds, on 3 . We de ne them by

( ) ∶= ( ( , ) ̃ ( , ))( ) + ( ( , ) ̃ ( , ))( ), (8.36) 
( ) ∶= ( ( , ) ̃ ( , ))( ) + ( ( , ) ̃ ( , ))( ) (8.37)
for a smearing eld . We keep the transformations ( , , , ) as generic as possible and let them depend on all homogeneous degrees of freedom ( , ). Furthermore, they may involve the Laplace-Beltrami operator which consequently yields non-trivial but translation invariant operators on the eld space.

Regarding the Hilbert-Schmidt condition, it su ces to restrict the transformations to depend on the Laplacian so that they mutually commute and are symmetric on 2 ( 3 ). Of course, , , and are restricted to be real-valued since all the variables are. The following analysis shows that the transformations must meet certain conditions. The rst requirement results from conditions on the Poisson brackets of the transformed elds. In particular, the new system of elds should satisfy the standard Poisson bracket relations with respect to the inhomogeneous elds such that the transformations (8.36) and (8.37) be canonical. With the two smearing functions 1 , 2 ∈ ∞ 0 ( 3 ) we require that

{ ( 1 ), ( 2 )} = ⟨ 1 , 2 ⟩ = { ̃ ( 1 ), ̃ ( 2 )}. (8.38)
By shifting the transformation operators , , and on the smearing elds 1 and 2 , it must hence hold true that

⟨(-+ ) 1 , 2 ⟩ = ⟨ 1 , 2 ⟩ ⇒ -= 1. (8.39)
We emphasize that the symmetry of the respective kernels was exploited and that ([ , ])( ) = ([ , ])( ) = 0 due to mutual commutativity of the operators. Further conditions for the operators ( , , , ) arise from plugging the transformations (8.36) and (8.37) into the symplectic potential (8.32). This generates terms in the symplectic potential giving rise to transformations of the homogeneous variables at second order in the perturbations. When plugging this whole new set of transformed variables into the Hamiltonian and expanding up to second order in the perturbations, new terms in the Hamiltonian emerge. The fact that some of these terms would engender operators in the quantum theory that are not well de ned on the Fock space allows to con ne the possible transformations ( , , , ). It is even possible to restrict the transformations in such a way that all the Fock spaces ℱ s become identical. The condition for this is that the Laplace-Beltrami operator in the e ective frequency of the Klein-Gordon eld remains independent of the homogeneous phase space variables. The symplectic potential is given by

Θ = d + ⟨ , d ⟩ = d + ⟨( ̃ ) + ( ̃ ), d(( ̃ ) + ( ̃ ))⟩ = d + ⟨ ̃ ( -), d ̃ ⟩ - 1 2 (⟨ ̃ , d( ) ̃ ⟩ + ⟨ ̃ , d ( ) ̃ ⟩ + 2⟨ ̃ , d ( ) ̃ ⟩) + ⟨ ̃ , ( d ) ̃ ⟩ + ⟨ ̃ , ( d + d ) ̃ ⟩ + ⟨ ̃ , ( d ) ̃ ⟩ (8.40)
where the second equality was obtained by using that ⟨ ̃ , (d )⟩ = -⟨d( ̃ ), ̃ ⟩. By means of the product rule for the exterior derivative, we let "d" act on ( ) and on ̃ . This gives, -⟨ ̃ , d( ) ̃ ⟩ -⟨ ̃ , d ̃ ⟩. We recognize that the last term corresponds to the original term with a minus sign and by shifting the expressions, we obtain that ⟨ ̃ , (d )⟩ equals -(1∕2)⟨ ̃ , d( ) ̃ ⟩. This method yields all the terms with a factor (1∕2) in the second line. Since the operators depend on the homogeneous variables ( , ), we further obtain

Θ = d + ⟨ ̃ , d ̃ ⟩ - 1 2 ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + 2⟨ ̃ , ( ) ̃ ⟩ d - 1 2 ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + 2⟨ ̃ , ( ) ̃ ⟩ d + ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ( ) + ( )) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ d + ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ( ) + ( )) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ d . (8.41)
In a nal step, let us shift the di erential in d to its prefactor using that total di erentials vanish such that

Θ = ⟨ ̃ , d ̃ ⟩ + - 1 2 ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + 2⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ( ) + ( )) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ d -d - 1 2 ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + 2⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ + ⟨ ̃ , ( ( ) + ( )) ̃ ⟩ + ⟨ ̃ , ( ) ̃ ⟩ . (8.42)
The shifting of the di erential is meaningful because we aim at determining the transformations of the homogeneous variables. Let us denote these transformations by → + =∶ ̃ and → + , =∶ ̃ where the -transformations are of second order in the perturbations. The symplectic potential of these transformed variables is given by

( + , ) d( + ) = d + , d + d + ( 2 ) = d + , d -d + ( 2 ) (8.43)
where in the second line we shifted the exterior derivative from on by omitting a total exterior di erential. Consequently, it is possible to directly read o the transformations from equation (8.42). Before, we use the known relation -= 1 to remodel the terms in the transformations. Eventually, this gives

̃ = - 1 2 ⟨ ̃ , ( ( ) -( )) ̃ ⟩ + ⟨ ̃ , ( ( ) -( )) ̃ ⟩ + ⟨ ̃ , ( ( ) -( ) + ( ) -( )) ̃ ⟩ (8.44) ̃ = + 1 2 ⟨ ̃ , ( ( ) -( )) ̃ ⟩ + ⟨ ̃ , ( ( ) -( )) ̃ ⟩ + ⟨ ̃ , ( ( ) -( ) + ( ) -( )) ̃ ⟩ . (8.45)
It is easy to invert these transformations as the additional terms are already of second order in the perturbations. Hence, we replace all occurings of the homogeneous variabales in these terms by the dashed homogeneous variables. This yields in the truncated scheme that

= ̃ -( ̃ , ̃ ), = ̃ -, ( ̃ , ̃ ). (8.46)
To con ne the possible transformations, we plug these results into the Hamilton function and develop the latter up to second order in the perturbations. As the perturbative Hamilton function pert is already of second order, it is allowed to simply replace the original homogeneous variables by the dashed ones. Regarding the homogeneous Hamiltonian hom the cutting of higher order terms suggests to Taylor-expand with respect to the homogeneous degrees of freedom, namely hom ( , ) = hom ( ̃ , ̃ ) -hom ( ̃ , ̃ ) ( ̃ , ̃ ) -hom ( ̃ , ̃ ) , ( ̃ , ̃ ).

(8.47)

To write this in a compact form, we emphazise that the transformations include derivatives of through 2 . Consequently, it holds true that = 1 and hence the whole round bracket of the kinetic term reduces to 2 = 2 . Requiring that the mixed term in equation (8.49) vanishes, we obtain a direct algebraic solution for the operator , namely = -̇ 2 .

(8.50)

Note that we freely interchange the order of the operators as they are commuting. Eventually, we consider the rst line and recall that the operator in the round brackets must equal 2 (-∆ + ̃ 2 ) where ̃ ( ̃ , ̃ ) denotes an e ective mass term which depends on the dashed variables but not on the Laplace operator. With the above choices, it is straightforward to compute that this operator is given by

2 = 1 ̃ , ̃ ( ̃ , ̇̃ ) 2 = 2 ̃ 2 -̈ ̃ -̇̃ 2 . (8.51)
Thus, it is nally achievable to make the Hamilton symbol pert ( ̃ , ̃ ) well-de ned for all representations ̃ for all ̃ ∈ ℝ + . Through the dependence of ̃ 2 on the velocity and the acceleration of the scale factor, the mass term actually depends on the momentum ̃ . Hence, the coupling between the homogeneous and the perturbative sector is now provided by both the canonical variable and its conjugate momentum. Since these represent non-commuting operators in a quantum theory, the Born-Oppenheimer method is no longer available here. We are forced into the space adiabatic generalization to which we will nally come in the next section. Before we move on, let us make one important remark.

Discussion

One can see that the new mass square in equation (8.51) is not manifestly positive. With the speci c choices made here, there is no freedom left to change this without making the coe cients ( , , , ) also depend on ∆. Whether this can be improved by exploiting the complete freedom for those operators will be left for future research.

In this respect, we draw the attention to the work by Elizaga Navascués, Mena Marugán, and Thiemann (2019). There, the starting point is indeed a Hamiltonian of second order in the inhomogeneous degrees of freedom with standard form up to a prefactor depending on the homogeneous degrees of freedom. Furthermore, the mass squared is a generic function of the homogeneous degrees of freedom. A prominent example for these kinds of Hamilton functions is the Mukhanov-Sasaki Hamiltonian. Hence, they are precisely in the situation arrived at above after the (almost) canonical transformations (exact up to second order). The analysis by Elizaga Navascués, Mena Marugán, and Thiemann (2019) investigates the most general Fock representation, labelled by the homogeneous variables, that supports such a Hamiltonian and at the same time provides a canonical transformation of the homogeneous sector to variables which directly commute with the associated annihilation and creation variables. This procedure has the advantage that the Hilbert-Schmidt condition is trivially solved because the annihilation and creation operators do not depend on the transformed homogeneous degrees of freedom. As such, the strategy is similar in spirit to the present one although the details are di erent.

Unfortunately however, their strategy does not allow for an algebraic solution (at least in the most generic FLRW case). Rather it is necessary to solve a system consisting of two non-linear (but semi-linear) rst order partial di erential equations for complex coe cient operators coming from the Hamiltonian vector eld of hom . These equations guarantee that all conditions are met including the positivity of the mass term. One of the conditions is equivalent to the xed point equation of the adiabatic vacua construction (Fulling 1989), the other determines an otherwise free phase. While these partial di erential equations are well posed and can be solved in principle by the method of characteristics, it is generally very hard to solve the system explicity given the detailed form of hom . This however is a prerequisite to quantize the homogeneous sector as well. Thus for our purposes, we stick to the method sketched above, although the possibility to ensure the positivity of the mass squared is very attractive. We deal with the complications that arise for negative mass squared terms more explicitely in chapter 9.

There is is also another independent reason for why the approach by Elizaga Navascués, Mena Marugán, and Thiemann ( 2019) is attractive: Since annihilation and creation operators commute with the operators of the homogeneous sector, the latter operators preserve the domain of the inhomogeneous part of the Hamiltonian. This is not necessarily the case when we simply assure the Hilbert-Schmidt condition. To see this, suppose that the symbol ( ) that we derived in equation (8.26) is of Hilbert-Schmidt type and only depends on . Then, the vector ̂ pert ( ̂ Ω) can be computed using the explicit representation of ̂ Ω in equation (8.28). After shifting the annihilation operator due to the Hamilton operator to the right side of the resulting operator, we obtain

̂ pert ( ̂ Ω) = -̂ ( -3 ) ∑ ∈ * ( , ) ̂ ( ) ̂ ( ) * ( ) ( ) Ω (8.52)
where ̂ represents a Weyl quantization. The operator symbol ( ) ( ) is given using equation (8.26) by ( ) which grows like for large if the coe cient in front of the Laplace operator depends on the scale factor. Even if the Laplace operator does not carry an -dependent prefactor, the resulting expression decays at most like 1∕ . Hence, the in nite sum over all the 's and this fall o property of the above operator prevents ( ̂ pert ̂ ) to be a well-de ned operator on Fock space. By itself this is not a problem because we want to consider the spectrum of ̂ = ̂ ( ) rather than ̂ ( pert ) which does not require to have the commutator [ ̂ , ̂ pert ] de ned on the Fock space. Nevertheless, it would be a convenient property to have. Thereby, we recall that once ̂ can be constructed as a self-adjoint operator, the existence of a dense and invariant domain is granted, see (Reed and Simon 1975a,b).

Cosmological Perturbations with Dust

In this section, we nally apply SAPT to a model which is very similar to the one introduced at the beginning of section 8.1. According to our discussion there, we will rst determine a suitable transformation of second order in the perturbative elds in order to obtain a well-de ned quantum eld theory to which we can apply SAPT. Note again that the following section relies and is partially taken from (Schander and Thiemann 2019b).

The Hamilton Function

Following on from the previous section, we consider the four-dimensional space time manifold ℳ ≅ ℝ × 3 where the three-torus has side lengths 1 in all three directions although one can of course choose the lenghts completely arbitrarily. We identify points and coordinates in ℳ and denote them with with lowercase letters ( , ). Our model consists of a purely homogeneous and isotropic geometry with a scale factor as its only dynamical degree of freedom. We include the homogeneous real and timelike scalar dust eld with energy density in order to deparametrize the theory. For the matter sector of the system, we choose a real scalar eld Φ( , ) of Klein-Gordon type with mass ∈ ℝ + and coupling constant ∈ ℝ + . In constrast to the model in section 8.1, we do not split the Klein-Gordon eld into its purely homogeneous and inhomogeneous parts. The split in the last section served the purpose to show that the introduced transformations can be found with at least two degrees of freedom in the homogeneous sector, i.e., the scale factor and the homogeneous scalar eld. In fact, such transformations can be found with even more homogeneous degrees of freedom. Here, we can restrict to one homogeneous variable -the scale factor -and our discussion will be hence more explicit. Since we use the dust eld to deparametrize the theory, a homogeneous scalar eld would not serve this purpose either.

Following the results by [START_REF] Halliwell | The Origin of Structure in the Universe[END_REF] and in analogy to the results in (8.1), the action = hom + pert is given by hom

[ , ] = ∫ ℝ d - 3 ̇ 2 - Λ 3 + 3 2 ̇ 2 -1 , (8.53) pert [ , Φ] = 1 2 ∫ ℝ× 3 d d 3 Φ2 - 1 2 Φ -∆ + 2 2 Φ
where we additionally introduced a cosmological constant Λ ∈ ℝ + . Note that there is no √ h0 appearing anymore since the latter evaluates to one for the three-torus. ∆ ∶= is the Laplace-Beltrami operator on the three-torus.

We perform a Legendre transformation with the Lagrange function and density de ned by = ∫ d = ∫ d d ℒ, and introduce the conjugate momenta

∶= ̇ = - 6 ̇ , Π Φ ∶= ℒ Φ = 3 Φ. (8.54)
Due to the dust eld, the linear constraints can be solved immediately by using a reduced phase space scheme. As a consequence, the system has a physical Hamilton function = hom + pert with

= -12 2 + Λ 3 + 2 3 ∫ 3 d Π 2 Φ + 4 2 Φ (-∆ + 2 2 ) Φ . (8.55)
The canonical structure of the system is encoded in the Poisson bracket relations

{ , } = 1, {Φ( 1 ), Π Φ ( 2 )} = ∫ 3 d 1 ( ) 2 ( ) (8.56)
where 1 , 2 ∈ ∞ 0 ( 3 ) are two smearing functions. All other Poisson brackets vanish. To make the space adiabatic scheme work at the technical level, we de ne the ratio of and as the dimensionless perturbative parameter 2 ∶= . As it turns out (see [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF])), it is indeed reasonable to identify the homogeneous and isotropic degrees of freedom with a heavy centre of mass mode and to consequently de ne ∶= as a rescaled momentum. To simplify notation, we also de ne a rescaled cosmological constant which we assume still to be very small, namely Λ ∶= Λ 2 . We divide the Hamiltonian by the constant , keep this in mind but continue to denote the Hamiltonian by the same symbol. Its homogeneous part is given by hom = - (8.57) and similar to the oscillator example, we have { , } = . As anticipated in the previous section, the scheme requires to perform additional transformations of the elds in order have a wellde ned quantum eld theory.

1 12 2 + Λ 3 ,

Almost Canonical Transformation

The inhomogeneous part of the Hamilton function in equation ( 8.55) depends on the e ective frequency operator ( ) = √ -4 ∆ + 2 6 . Recall from the previous section that the -dependence of the Laplace term in ( ) prevents the quantum eld theory of (Φ, Π Φ ) from having unitarily equivalent representations for di erent values of the scale factor. In the same lines, this section derives a transformation which is canonical up to second order in the perturbative elds. Therefore, consider the symplectic one-form Θ on the tangent space of the total phase space. In coordinate representation, in which d and dΦ represent the standard one-forms for the homogeneous and the inhomogeneous phase spaces respectively, we have that Θ is given by

Θ = d + ∫ ℬ d Π Φ ( ) dΦ( ) = 1 d + ∫ 3 d Π Φ ( ) dΦ( ). (8.58) 
As an ansatz for the transformations of the inhomogeneities, inspired by the results in section 8.1, we employ

Φ ∶= ⋅ Φ, ΠΦ ∶= Π Φ + ( , ) Φ ⇒ Φ = Φ , Π Φ = ( ΠΦ -( , ) Φ) (8.59)
where ( , ) is a real-valued function that needs to be determined by our condition on the eld theory. Besides, the following abbreviations will prove to be useful:

∶= ∫ 3 d Φ( ) 2 = 1 2 ∫ 3 d Φ( ) 2 =∶ ̃ 2 , (8.60) ∶= ∫ 3 d Π Φ ( )Φ( ) = ∫ 3 d ΠΦ ( ) Φ( ) -( , ) ̃ =∶ ̃ -̃ . (8.61)
We insert the transformations (8.59) into the symplectic potential Θ and use the de nitions (8.60) and (8.61). The product rule for the di erential one-form which we apply on Φ and omitting total di erentials then yields

Θ = 1 - 1 ̃ + ̃ d + ∫ 3 d ΠΦ d Φ + ̃ 2 d . (8.62)
Since depends solely on and , we can write d = , d + , d , where the comma corresponds to the derivative with respect to the given variable. The term proportional to d ts nicely into the rst bracket in equation (8.62). For the second term, we use that total di erentials vanish, and by cutting the theory after the second order in the scalar eld variables, the symplectic potential has the form

Θ = 1 - 1 ̃ + ̃ + 1 2 , ̃ d - 1 2 , ̃ + ∫ 3 d ΠΦ d Φ. (8.63)
This structure gives rise to the de nition of new variables in the homogeneous sector

̃ ∶= + - 1 ̃ + ̃ + 1 2 , ̃ , ̃ ∶= - 1 2 , ̃ . (8.64)
With these dashed variables, the symplectic potential regains its original form. It remains to determine the function ( , ) and to verify whether the Hamilton function transforms into a wellde ned function with respect to the new variables. In order to express the Hamilton function in terms of them, we need to invert the rules (8.64). It proves to be bene cial to directly employ an explicit representation for the function . An educated guess is ( , ) = -6 . (8.65)

Its derivatives with respect to serve for determining as a function of the dashed variables with equation (8.64). Multiplying the latter by , using an algebraic solution formula for quadratic equations and cutting again after second order in the perturbative elds gives the second relation in equation (8.66) as a solution for . To determine as a function of ̃ and ̃ , we insert the solution for ( ̃ , ̃ ) into the rst relation in (8.64) and Taylor expand the function up to second order in the perturbation elds. This yields

= ̃ + 1 ̃ ̃ + 2 12 ̃ ̃ ̃ , = ̃ - 2 12 ̃ ̃ . (8.66)
In a rst step, we compute the homogeneous part of the Hamilton function (8.57) in terms of the dashed variables and eventually compare it with the perturbative part. We use the rules (8.66) and Taylor expand again up to second order in the perturbation elds. For the homogeneous part, now including also second order contributions, we get the following result:

̃ hom = - 1 12 ̃ 2 ̃ + Λ ̃ 3 -6 ̃ ̃ 2 ̃ - 2 48 ̃ 2 ̃ 3 ̃ - Λ 4 ̃ ̃ . (8.67)
The rst two terms agree with the original homogeneous Hamilton function but with dashed variables. The additional terms are second order in the elds and arise because of the transformations.

In particular, the ̃ -term introduces di culties because its quantization is not a well-de ned operator on Fock space. Fortunately, the de nition of the function ( , ) was aimed exactly at cancelling the term with the transformed inhomogeneous Hamilton function. Indeed, the latter is given in terms of the dashed variables by omitting any contributions of third order and higher in the elds

̃ pert = 1 2 ̃ ∫ 3 d Π2 Φ + Φ (-∆ + ̃ 2 2 ) Φ + 6 ̃ ̃ 2 ̃ + 2 72 ̃ 2 ̃ 3 ̃ . (8.68)
We observe that the -dependence of the Laplace term has indeed vanished and a global factor ̃ -1 has appeared for the classical Klein-Gordon Hamilton function. Besides, the transformation yields new terms which indeed cancel the anomalous contribution proportional to ̃ in the dashed homogeneous Hamilton function (8.67). In total, the Hamiltonian ̃ = ̃ hom + ̃ pert gives rise to two supplementary, independent contributions that depend on ̃ . Recalling that ̃ = ∫ d Φ 2 , they yield additional contributions to an e ective mass function ̃ ( ̃ , ̃ ), namely

̃ = - 1 12 ̃ 2 ̃ + Λ ̃ 3 + 1 2 ̃ ∫ 3 d Π2 Φ + Φ (-∆ + ̃ ( ̃ , ̃ ) 2 ) Φ , (8.69) with ̃ ( ̃ , ̃ ) 2 = 2 - Λ 2 ̃ 2 - 2 72 ̃ 2 ̃ 2 . (8.70)
The Laplace term in the perturbative part of this Hamilton function no longer depends on the scale factor. After a quantization of the elds, the Fock representations are consequently unitarily equivalent for di erent background con gurations. This allows to nally apply the space adiabatic perturbation scheme. However, the e ective mass square function in equation (8.70) is inde nite, thus leading to tachyonic instabilities for certain regions in the slow phase space Γ hom . We refer to section 9.2 where we present several strategies for how to deal with this issue. Here, we perform an additional canonical transformation with respect to the homogeneous variables only such that the e ective mass squared becomes positive de nite. Therefore, we de ne a set of constant parameters

2 ∶= 2 - Λ 2 , 2 ∶= 2 72 , 2 ∶= 2 2 . (8.71)
We assume the constant 2 to be positive such that is in the reals. The e ective mass value then becomes ̃ 2 =∶ 2 ̃ 2 -2 ̃ 2 ̃ 2 . We also choose a new canonical pair ( , ) according to

̃ =∶ √ 2 + 2 2 2 =∶ ( , ), ̃ =∶ ̃ . (8.72)
Accordingly, the e ective mass square function is simply given by ̃ 2 = 2 2 which is positive for any ∈ ℝ. By this choice, we implicitely limit the original phase space in terms of ( ̃ , ̃ ) to a restricted domain. The starting point for SAPT is the Hamilton function in terms of the new variables given by

= - 1 12 2 2 + 3 Λ 3 + 1 2 ∫ 3 d Π2 Φ + Φ (-∆ + 2 2 ) Φ . (8.73)
To quantize the theory, we employ the standard Schrödinger representation for the geometric variables ( , ) labeling quantum operators by hats, i.e., ̂ and ̂ for the canonical quantum operators. We recall that and arose from the rescaled variables ̃ and ̃ such that the canonical commutation relation is given by [ ̂ , ̂ ] = 1hom . Regarding the ordering of non-commuting operators, we employ the symmetric Weyl quantization procedure for the homogeneous sector. The Hilbert space is simply 2 (ℝ, d ) with the standard measure on ℝ.

For the fast Klein-Gordon eld Φ, we choose a standard Fock representation on the compact manifold 3 . Therefore, consider the one-particle Hilbert space ℋ 3 = 2 ( 3 , d ) on 3 . The almost canonical transformations from above guarantee that all Fock representations ( , ) for di erent ( , ) are mutually unitarily equivalent at least up to second order in the eld perturbations. We mark operators acting on ℱ s (ℋ ) with bold letters such that the basic eld operators are Φ Φ Φ( 1 ) and Π Π Π Φ ( 2 ) for some smooth test functions 1 , 2 ∈ ∞ 0 ( 3 ). The Fock space ℱ s consists of sequences { ( ) } ≥0 of totally symmetric functions with variables. The canonical commutation relations are given by

[ Φ Φ Φ( 1 ), Π Π Π Φ ( 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 pert . (8.74)
In order to de ne the quantum theory of the whole system, we introduce the total Hilbert space as the topological tensor product ℋ ∶= ℋ hom ⊗ ℋ pert = 2 (ℝ, d ) ⊗ ℱ s . With these prerequisites, the Hamilton operator ̂ acting on a dense subset ⊂ ℋ of the total Hilbert space has the form

̂ = ̂ - 1 12 2 2 + Λ 3 ⊗ 1 1 1 pert + 1 2 ̂ ( -1 ) ⊗ ∫ 3 d Π Π Π Φ ( ) 2 (8.75) + 1 2 ̂ ( -1 ) ⊗ ∫ 3 d Φ Φ Φ( )(-∆Φ Φ Φ)( ) + 2 2 ̂ ( -1 2 ) ⊗ ∫ 3 d Φ Φ Φ( ) 2 .

Checking of the Conditions

We check the conditions (C1) -(C4) before we apply SAPT. Regarding (C1), it is clear that the Hilbert space has the form of a tensor product ℋ = ℋ hom ⊗ ℋ pert with ℋ hom = 2 (ℝ, d ) and ℋ pert = ℱ s and the latter factor is also a separable Hilbert space. For condition (C2), let us consider the formal quantization of the Hamilton function in equation (8.73) with respect to the inhomogeneous eld perturbations only, or in other terms, the Wigner-Weyl transform of the Hamilton operator (8.75) with respect to the slow subsector. This gives rise to the operator-valued function on the slow phase space

( , ) ∶= - 1 12 2 2 + Λ 3 1 1 1 pert + 1 2 ∫ 3 d Π Π Π 2 Φ + Φ Φ Φ (-∆ + 2 2 ) Φ Φ Φ . (8.76)
We represent the Hamiltonian in terms of annihilation and creation operators ( , ) and * ( , ) for some one particle state ∈ 2 ( 3 , d ) and for some xed ∈ ℝ. Therefore, we use thedependent representation map ∶ → ℒ(ℱ s ) between the eld Weyl algebra and the space of linear operators on Fock space ℱ s . With the one-particle frequency operator ( ) ∶= √ -∆ + 2 2 , the annihilation operator is given by

( , ) ∶= 1 √ 2 √ ( ) Φ Φ Φ ( ) - √ ( ) -1 Π Π Π Φ ( ) .
(8.77)

The canonical commutation relations become [ ( , 1 ), * ( , 2 )] = 1 1 1 pert ⋅ ∫ d 1 ( ) 2 ( ). We consider the plane waves = exp( ⋅ ) with ∈ Σ ∶= 2 ℤ 3 as an orthonormal basis of the Hilbert space ℋ 3 . We denote the annihilation and creation operators with respect to the basis states by ( ) and * ( ) such that [ ( ), * ( )] = , 1 1 1 pert . The Laplace-Beltrami operator has corresponding eigenvalues -∆ =∶ 2 such that the frequency operator evaluates to ( , 2 ) ∶= ( 2 + 2 2 ) 1∕2 when applied to . The Hamilton symbol (8.76) with normal ordering is accordingly given by

( , ) = - 1 12 2 2 + Λ 3 1 1 1 pert + 1 ∑ ∈Σ ( , 2 ) * ( ) ( ). (8.78) 
Condition (C2) requires ( , ) to be a symbol function in one of the classes for which ( , ) must be a bounded operator on ℱ s . Like for the nite dimensional cases, this is a priori not satis ed since the number operator can have in nite values for in nitely excited states. Besides, ( , ) is not a bounded function with respect to and . The situation is very similar to the one encountered in the examples in chapters 6 and 7. To x this problem, one may proceed in the same way as in section 6.8 and introduce an auxiliary Hamilton symbol aux by truncating the sum over in equation (8.78) and by restricting this symbol further to a certain cut-o energy. The resulting symbol lies in the symbol class 0 0 and satis es hence condition (C2). This is again at the cost of creating a new, physically inequivalent problem. Otherwise, one can stick to the original Hamilton symbol at the cost of relinquishing convergence of the resulting adiabatic perturbation series. In the following, we will adopt the second path, and point out again that for the rst approach, one would need to investigate the convergence of the adiabatic series by independent means.

To check the gap condition (C3), let us evaluate the eigenstates associated with the symbol ( , ). Since the mode vectors are discrete, the eigenvalues of are discrete as well. For each pair of annihilation and creation operators ( ) and * ( ), there is a natural vacuum state Ω( ) de ned by the requirement ( )Ω( ) = 0 for every ∈ Σ. Any excited eigenstate ( ) ( ) where ( ) is a short form for the collection of its excitation numbers { } ∈Σ results from the ( )-times application of the creation operators

( ) ( ) = ∏ ∈Σ * ( ) √ ! Ω( ). (8.79) 
The energy bands ( ) ( , ) are the ( , )-dependent energy eigenvalues of the symbol function ( , ). As the Hamiltonian depends only on the wave number via its square 2 , it is clear that there are degenerate eigenstates. In particular, for each vector ∈ Σ there are (at least) 2 3 -1 vectors in Σ with the same eigenenergy. We therefore label, whenever needed, the degenerate eigenstates associated with those wave vectors by an additional degeneracy label = 1, … , ( ) with degeneracy number ( ) ∈ ℕ. The generalized eigenvalue equation for the Klein-Gordon eld problem is then given with respect to a degenerate set of eigenstates ( ) ( ) by

( , ) ( ) ( ) = ( ) ( , ) ( ) ( ) (8.80) with ( ) ( , ) = - 1 12 2 2 + Λ 3 + 1 ∑ ∈Σ , ( , 2 ). 
(8.81)

The spectrum ( , ) of ( , ) thus consists of the set of all energy bands { ( ) ( , )} ( ) for all possible combinations of excitation numbers ( ). SAPT demands to choose an isolated subset ( , ) ⊂ ( , ) which is uniformly separated from the remainder of the spectrum.

It appears that the energy functions depends on i) 2 and ii) their excitation numbers for any of the excited one-particle states that contributes to the total Fock state. Obviously, these energy functions ( ) ( , ) are subject to eigenvalue crossings for varying (note that the ( , )dependent homogeneous contribution to the Hamilton symbol is the same for all energy bands and plays hence no role for the energy gap). Such overlaps are prohibited for the application of SAPT as we have presented it here, and the failure of the gap condition leads to a considerably more di cult realization of the space adiabatic scheme, see for example (Teufel 2003, Chapter 6).

One possible resort is to restrict the con guration variable to an appropriate domain ⊂ Γ hom of the homogeneous phase space after having chosen ( ), and such that the corresponding energy function ( ) ( , ) does not cross with any of the remaining energy bands in that region of phase space. One must then consider the such restricted phase space when it comes to quantization and hence, also for the realization of the SAPT scheme. More precisely, one considers the cotangent bundle * as a phase space and uses a corresponding well-de ned quantization scheme. Within the scope of this thesis, we will bypass this issue for now and focus on the formal problem of applying SAPT to the Hamilton symbol on its original domain. The corresponding quantization problem is a formidable topic for future work.

Space Adiabatic Construction Scheme

We construct the Moyal projector and the Moyal unitary for the inhomogeneous cosmological model with dust up to rst order in perturbation theory and according to the construction steps (S1) and (S2). Accordingly, we compute the e ective Hamiltonian ℎ ℎ ℎ e ,R up to second order according to the rule (S3).

(S1): Construction of the Projector Symbol (1)

The inductive scheme suggests to construct (1) = 0 + 1 choosing as initial data the symbol function

0 ∶= ( ) ∑ =1 ( ) ( ) ⟨ ( ) ( ), ⋅ ⟩ ℱ s (8.82)
where ( ) = { , } ∈Σ is the set of excitation numbers of the chosen Fock state and = 1, … , ( ) is the associated degeneracy label. The zeroth order of the conditions (S1) is satis ed trivially by construction, i.e.,

0 ⋅ 0 = 0 , * 0 = 0 , ⋅ 0 -0 ⋅ = 0. (8.83)
Note that the full Hamilton symbol can be identi ed with a zeroth order contribution in the -scheme. Although carries contributions that depend on , for simplicity we keep these terms as they can simply be neglected at the end. Note that the symbol 0 solely depends on the triadlike con guration variable . As shown in section 6.7, the diagonal contribution to 1 vanishes in this case. While we can use the same formal expression for the o -diagonal part of 1 as for the nite-dimensional models, namely equation (6.131), its concrete evaluation needs more care. It is necessary to evaluate the derivatives of the eigenfunctions ( ) ( ) with respect to for which we use the explicit -dependence of the creation operators * ( ) in line with equation (8.77) and relation (8.79) for the excited Fock states. Therefore, let us rst de ne the function

( , 2 ) ∶= - 1 4 ( , 2 ) ( , 2 ) . (8.84)
Then, the identity ( ) = -2 ( , 2 ) * ( ) follows from (8.77) and together with the equations ( ) Ω( ) = 0 for all ∈ Σ it implies that the derivative of the vacuum state Ω( ) is given by

Ω( ) = ∑ ∈Σ ( , 2 ) * ( ) * ( ) Ω( ). (8.85)
Given the derivatives of the creation operators and the vacuum state, it is straightforward to deduce the derivatives of the excited states ( ) ( ) from equation (8.79). Therefore, we denote the state whose quantum number for the wave vector is shifted by ±2 compared to the state ( ) ( ) by {.., ±2,..} . Then, the derivative of ( ) ( ) is given by

( ) ( ) = - ∑ ∈Σ ( , 2 ) √ ( -1) ( * ) -2 √ ( -2)! ∏ ∈Σ⧵{ } ( * ) √ ! Ω( ) (8.86) + ∑ ∈Σ ( , 2 ) √ ( + 1)( + 2) ( * ) +2 √ ( + 2)! ∏ ∈Σ⧵{ } ( * ) √ ! Ω( ) = ∑ ∈Σ ( , 2 ) - √ ( -1) {.., -2,..} + √ ( + 1)( + 2) {.., +2,..} .
Again, we de ne a gauge potential ∈ ∞ (Λ(Γ hom ) ⊗ ℒ(ℋ pert )) as a one-form on the homogeneous phase space Γ s and with values in the linear operators on the symmetric Fock space ℋ pert = ℱ s . With the choice of the basis states { ( ) }, we write for the coe cients of ( )

( ) = ∑ ∈Σ ( , 2 ) - √ ( -1) {.., +2,..} ( ) + √ ( + 2)( + 1) {.., -2,..} ( )
.

Using these coe cients, the expression for the state derivatives has a simpler form, namely

( ) ( ) = ∑ ∈Σ {.., -2,..} ( ) {.., -2,..} + {.., +2,..} ( ) {.., +2,..} . (8.87)
As a consequence, the -derivative of the projector symbol 0 ( ) results from the functional representation of the projector due to Riesz such that

0 ( ) = ∑ =1 ∑ ∈Σ {.., , -2,..} ( ) ( ) ⟨ {.., , -2,..} , ⋅ ⟩ ℱ s + {.., , -2,..} ⟨ ( ) , ⋅ ⟩ ℱ s (8.88) + {.., , +2,..} ( ) ( ) ⟨ {.., , +2,..} , ⋅ ⟩ ℱ s + {.., , +2,..} ⟨ ( ) , ⋅ ⟩ ℱ s .
To evaluate 1 , the Poisson bracket in equation (6.131) requires to determine the -derivative of the symbol function ( + ( ) 1 1 1 pert ). This function depends on via its homogeneous gravita-

(S2): Construction of the Moyal Unitary (1)

We choose an arbitrary but suitable reference subspace pert ⊂ ℋ pert to which we map the relevant dynamics of the problem. We choose a point ( 0 , ,0 ) ∈ Γ hom and denote the corresponding eigenbasis of ( 0 , ,0 ) by { ( ) } ∶= { ( ) ( 0 )}. The reference projection associated with pert is given by (8.95) The mediator between ℋ pert and pert , and vice versa, has the zeroth order component

R ∶= ( ) ∑ =1 ( ) ⟨ ( ) , ⋅ ⟩ ℱ s .
0 ( ) ∶= ∑ ( ) ( ) ⟨ ( ) ( ), ⋅ ⟩ ℱ s (8.96)
where the sum over ( ) is a sum over all possible combinations of excitation numbers in the eld Fock space. It is straightforward to show that 0 and R together with 0 satisfy the base clause of the construction rules (S2), namely (S2-1) * 0 ⋅ 0 = 1 1 1 pert , (S2-2) 0 ⋅ * 0 = 1 1 1 pert , and (S2-3) 0 ⋅ 0 ⋅ * 0 = R . The hermitian contribution to 1 trivially vanishes because 0 soleley depends on . The antihermitian part 1 ⋅ 0 is then determined by the equation

[ 1 , R ] pert + 0 ⋅ 1 ⋅ * 0 = 0 (8.97)
with a solution that yields for

1 1 = [ R , 0 ⋅ 1 ⋅ * 0 ] pert ⋅ 0 . (8.98)
With 1 in equation (8.90), this gives the following result:

1 = 2 ( ) ∑ =1 ∑ ∈Σ {.., , -2,..} ( ) 1,( ), ( ) ⟨ {.., , -2,..} , ⋅ ⟩ ℱ s + {.., , -2,..} ⟨ ( ) , ⋅ ⟩ ℱ s + {.., , +2,..} ( ) 2,( ), ( ) ⟨ {.., , +2,..} , ⋅ ⟩ ℱ s + {.., , +2,..} ⟨ ( ) , ⋅ ⟩ ℱ s . (8.99) (S3): Construction of the E ective Hamiltonian ℎ ℎ ℎ e , (2) 
According to the rule (S3), i.e., ℎ ℎ ℎ e = ⋆ ⋆ * , the scheme yields for the zero order contribution of the restricted e ective Hamilton symbol ℎ ℎ ℎ e ,(2),R = ℎ ℎ ℎ e ,0,R + ℎ ℎ ℎ e ,1,R + 2 ℎ ℎ ℎ e ,2,R , the following result:

ℎ ℎ ℎ e ,0,R ( , ) ∶= R ⋅ 0 ⋅ 0 ⋅ * 0 ⋅ R (8.100) = - 1 12 2 2 + Λ 3 R + 1 ( ) ∑ =1 ∑ ∈Σ ( , 2 ) , ( ) ⟨ ( ) , ⋅⟩ ℱ s .
This corresponds to the Born-Oppenheimer adiabatic limit of the perturbation theory in which the e ective Hamiltonian for the gravitational degrees of freedom not only contains the rst "bare" gravitational homogeneous part hom ( , ) but also the backreaction contribution from the Klein-Gordon energy band ( ). Starting with the rst order contribution, we obtain according to equation (6.212)

ℎ ℎ ℎ e ,1 = 1 ⋅ 0 -ℎ ℎ ℎ e ,0 ⋅ 1 + 2 { 0 , 0 } hom -2 {ℎ ℎ ℎ e ,0 , 0 } hom ⋅ * 0 . (8.101)
Recall that 1 has no diagonal contributions according to (8.99), and that 0 is independent of . Therefore, ℎ ℎ ℎ e ,1 has no diagonal contributions at all such that ℎ ℎ ℎ e ,1,R ∶= R ⋅ ℎ ℎ ℎ e ,1 ⋅ R vanishes identically. Recall that ℎ ℎ ℎ e ,2,R is given by

ℎ ℎ ℎ e ,2,R = R ⋅ 2 { 1 , 0 + ( ) 1 1 1 pert } hom -{ℎ ℎ ℎ e ,1 , 0 } hom -ℎ ℎ ℎ e ,1 ⋅ 1 ⋅ * 0 ⋅ R . (8.102)
Note that ℎ ℎ ℎ e ,1 is non-vanishing, in constrast to ℎ ℎ ℎ e ,1,R , and its non-vanishing contributions need to be taken into account in the evaluation of ℎ ℎ ℎ e ,2,R . However, we have already shown that R ⋅ ℎ ℎ ℎ e ,1 = 0 due to symmetry reasons. By pulling the symbol R into the Poisson bracket of the second term, which is allowed since R is independent of and , also the second term vanishes. Thus, the evaluation of ℎ ℎ ℎ e ,2,R is con ned to the rst contribution. Using the result for 1 in equation (8.99) yields a priori for the second order contribution of the e ective Hamilton symbol

ℎ ℎ ℎ e ,2,R = ( ) ∑ =1 ∑ ∈Σ 3,( ) 3 , + 1 2 + 4,( ) 4 2 , + , + 1 + 5,( ) 5 , + 1 2 ⋅ 
( ) ⟨ ( ) , ⋅ ⟩ ℱ s , (8.103) 
where we employed the phase space functions 3,( ) ( , ), 4,( ) ( , ) and 5,( ) ( , ) given by Note that these functions do not depend on the wave vector which has been employed as a summation index in (8.103). They act as multiplicative functions which could be pulled out of the sums. We emphasize that this result can easily be obtained by using and extending the explicit results in terms of the connection coe cients used for the oscillator and the cosmological toy models. The explicit evaluation of the energy functions shows that several terms include higher orders in the perturbation parameter . In particular, it is clear from the de nitions (8.71) that is proportional to , and hence the terms including derivatives of = √ 2 + 2 2 2 with respect to contribute additional factors of . One can do this straightforward computation and show that the only remaining terms at second order are

ℎ ℎ ℎ e ,2,R 2 = - 3 4 32 ∑ =1 ( ) ⟨ ( ) , ⋅ ⟩ ℱ s (8.107) ⋅ ∑ ∈Σ 4 Σ 3 1 ( 2 ) 4 2 , + , + 1 + 3 2 2 1 ( 2 ) 5 , + 1 2 . 
We emphasize that the sums over all modes in (8.107) converge. First, the integers , are only non-vanishing for a nite number of modes which solves the convergence problem for terms which enter with polynomials of , . The remaining constant contributions however bene t from the high inverse order of ( , 2 ) = √ 2 + 2 2 that enters. It is thus possible to explicitely compute the e ective Hamilton symbol up to second order in for the cosmological eld model and we obtain a convergent result despite the mode sums. The next aim would be to nd solutions with respect to the non-trivial slow scalar part of ℎ ℎ ℎ e ,(2),R . The application of the operator ̂ then yields wave functions in ℋ which are exact solutions up to errors of order 3 . We leave this task to future research, and emphasize that techniques to solve the Hamiltonian problem similar to the one for the homogeneous cosmological toy model will be necessary.

Gauge-Invariant Inhomogeneous Cosmology

Gauge-Invariant Cosmological Perturbations

In this chapter, we apply SAPT to inhomogeneous quantum cosmological perturbation theory with gauge-invariant perturbation variables. The scheme proceeds in a similar manner as in the previous chapter but is, in contrast, completely constrained. The goal is to compute the backreaction from the inhomogeneous perturbations exerted on the homogeneous degrees of freedom.

The chapter mainly relies on (Schander and Thiemann 2019c) which serves as a basis for sections 9.1 and 9.3 in which we apply the SAPT scheme to two inhomogeneous cosmological models and prepare this application accordingly. Sections 9.2 and 9.4 are based on the more general considerations in [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

Cosmological Perturbation Theory

The model rests on a four-dimensional globally hyperbolic space time manifold ℳ ≅ ℝ × . The gravitational eld on ℳ is, as usual, a two-times covariant, symmetric, and non-degenerate tensor eld with signature (-, +, +, +). The spatial hypersurfaces are compact and at three-tori ≅ 3 with side lenghts ≡ 1. As the matter content, we consider again a real-valued Klein-Gordon scalar eld Φ. We adopt a (3 + 1)-split of space time as developed by [START_REF] Arnowitt | Dynamical Structure and De nition of Energy in General Relativity[END_REF] (see section 2.1.1). Due to the global hyperbolicity, ℳ foliates into Cauchy surfaces Σ parametrized by a global time function . is the unit normal vector eld to these hypersurfaces, and the (standard) lapse and shift functions which parametrize the normal and the tangential part of the foliation. The spatial metric on 3 induced by is de ned as ℎ ∶= + . The associated extrinsic curvature is given by = ℎ ℎ ∇ . ∇ is the unique torsion-free covariant derivative associated to the metric . After pulling back the tensor elds to 3 and denoting spatial indices on the spatial hypersurfaces with lower case latin symbols , , , .. ∈ {1, 2, 3}, the Lagrange density is expressed by the sum of the Einstein-Hilbert Lagrange density ℒ EH and the scalar eld Lagrange density ℒ Φ with

ℒ EH = 1 2 √ ℎ (3) + -( ) 2 -2Λ , (9.1) 
ℒ Φ = 1 2 √ ℎ - 1 2 Φ2 + 2 2 Φ Φ + ℎ - 2 Φ Φ + 2 Φ 2 . (9.2)
We recall that = 8 = Pl -2 is the gravitational coupling constant, ∈ ℝ + is the coupling constant of the scalar eld, ∈ ℝ + is the mass parameter of the scalar eld, and (3) is the curvature scalar associated with the three-metric ℎ and its Levi-Civita covariant derivative . The only degrees of freedom of the spatially homogeneous and isotropic sector are the zeroth Γ pert = Γ f . The perturbative momenta are de ned according to

∶= ℒ ̇ (9.8)
for any eld ∈ { , , , , }. On the other hand, the variables 0 , , ̌ and ̌ induce the lapse and shift primary constraints

Π 0 0 , Π 1 , Π ̌ 1 and Π ̌ , 1
because the Lagrangian does not depend on any of the velocities of these variables. A Legendre transformation yields the Hamiltonian density

ℋ = 0 ℋ 0 + ℋ s 2 + ℋ 2 + ℋ 2 + ⋅ ℋ 1 + ̌ ⋅ ℋ ̌ , 1 + ̌ ⋅ ℋ ̌ 1 + 0 ⋅ Π 0 0 + ⋅ Π 1 + ̌ ⋅ Π ̌ 1 + ̌ , ⋅ Π ̌ ,
1 .

(9.9)

ℋ 0 denotes the zeroth order Hamiltonian contribution associated with the completely homogeneous and isotropic model. ℋ s 2 , ℋ 2 and ℋ 2 are of second order in the perturbations and contain only scalar, vector and tensor variables respectively. ℋ 1 , ℋ ̌ , 1 and ℋ ̌ 1 represent rst order contributions which factorize with the respective lapse and shift variables. The second line lists the primary constraints associated with lapse and shift and their Lagrange multipliers 0 , , ̌ and ̌ , . As it turns out, the system is completely constrained and we thus perform a Dirac analysis to extract the relevant physics. We refer to chapter 2 for an overview of the Dirac constraint analysis.

Identifying Suitable Variables

The constraint analysis can be performed most easily by rst identifying a suitable set of free variables -in fact, it will then become a trivial task. We start by noting that the perturbation variables that we introduced are not all gauge-invariant. In the scalar sector, it is convenient to introduce the gauge-invariant Mukhanov-Sasaki variable [START_REF] Mukhanov | Quantum Theory of Gauge Invariant Cosmological Perturbations[END_REF][START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF] given by ∶= + 6 ( -∆ ).

(9.10)

Note that this transformation for the perturbative elds also depends on the homogeneous degrees of freedom. While the original perturbation variables had canonical momenta properly de ned by the Legendre transform, the mapping to new perturbation variables will break the canonical structure as it depends very non-trivially on the homogeneous degrees of freedom. In order to preserve the canonical structure of the system, it is mandatory to nd a suitable transformation for the homogeneous and isotropic variables, too. This appears to be a cumbersome mission. Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] have however shown that it is possible to nd a transformation for the homogeneous and isotropic degrees of freedom which preserves the canonical structure of the system up to second order in the cosmological scalar perturbations.

While identifying the most suitable degrees of freedom which will preserve the canonical structure up to second order in the cosmological perturbation, we should also be concerned with the closure of the constraint algebra. In general, the algorithm might entail a large number of constraints that are needed to guarantee consistency of the dynamics. The idea, put forward by Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF] is to use some of the secondary constraints of the Dirac algorithm as the canonical variables them-selves. Thereby, the Dirac algorithm becomes partly trivial just by implementing the rst set of secondary constraints. In summary, the aim of the following procedure is then threefold.

Firstly, we introduce gauge-invariant variables for the perturbations in order to allow for a generic choice of variables, and not to be a restricted to a speci c choice of coordinates. Secondly, we aim at keeping the canonical structure of the theory, at least up to second order in the cosmological perturbations. For the latter purpose, we will review the Dirac algorithm for constrained systems and implement additional transformations for the homogeneous and isotropic degrees of freedom. In particular, we modify the homogeneous variables by adding second order contributions in the cosmological perturbations. Thirdly, we wish to construct a theory whose dynamics will be unitarily implementable at the quantum level. Therefore, we consider further canonical transformations with respect to the perturbations. Their e ects on the homogeneous variables will be taken into account accordingly.

Following the work by Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and by [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF], the formalism proceeds as follows: As a starting point, we consider the homogeneous and isotropic degrees of freedom as non-dynamical background variables. This o ers the possibility to introduce perturbation variables which build a canonical set with respect to the dynamical perturbative system only.

New Variables in the Tensor Sector

We start with the canonical pair of the tensor perturbations ( , ) which is already gaugeinvariant by construction. In this respect, no transformation is necessary that would possibly break the canonical structure of the entire system. However, we would like to work with classical perturbation variables whose dynamics is unitarily implementable in the quantum theory. This simply amounts to eliminating contributions in the Hamiltonian which couple the perturbation variables with their respective momenta. In this way, the nal Hamiltonian at second order will only consist of terms proportional to squares of the perturbation variables or squares of the perturbation momenta after a suitable transformation. In other words, after a Fourier transformation, the Hamiltonian has the form of a sum of harmonic oscillators with masses and frequencies that possibly depend on the homogeneous and isotropic degrees of freedom. Indeed, these transformations guarantee the unitarity of the perturbation's quantum dynamics when considered in a semiclassical framework of a QFT on CST. [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF] suggest an appropriate transformation for the tensor perturbations, which however, breaks the canonical structure. They consequently perform an additional transformation of the homogeneous degrees of freedom. This transformation supplements the original variables by second order perturbative contributions.

Following their procedure, we denote the shifted, new homogeneous variables by ( ̌ , ̌ , ̌ , ̌ ).

Implementing these new variables in the Hamilton constraint, the transformations yield additional terms in the Hamiltonian which are of second order in the tensor perturbations. We absorb these terms in ℋ 2 and denote the new tensor Hamiltonian as Ȟ 2 . Furthermore, the transformations result into a shift of the lapse function by second order contributions which will be taken into account by a function denoted as ̌ 2 .

New Variables in the Vector Sector

Regarding the vector perturbations, we can identify the constraints ℋ ̌ , 1

and their conjugate variables ̌ 1, ∶= 2 √ 3 as canonical pairs. This choice is ideally suited in order to obtain a preferably simple constraint algebra at the end. It entails an additional transformation for the homogeneous degrees of freedom in order to preserve the (almost) canonical structure, similar the the procedure for the tensor perturbations. The new variables, which also include the transformations from the tensor perturbations, shall be denoted by ( ̀ , ̀ , ̀ , ̀ ). The transformations result in a new second order vectorial part of the Hamiltonian H 2 which is proportional to the constraint ℋ ̌ , 1

itself. Note that we also express the linear constraint ℋ ̌ , 1 in terms of the new variables. However, the form of the constraint does not change since we cut after the second perturbative order and the new homogeneous variables only di er by contributions in second order.

Thus, if we demand that ℋ ̌ , 1 vanishes as a constraint, this implies that H 2 vanishes automatically. Hence, there is no vector constraint contributing to the second order Hamilton constraint as long as the rst order constraint is satis ed which means that its solution is trivial and we have no longer to include it into our considerations.

New Variables in the Scalar Sector

In the scalar sector, we employ the Mukhanov-Sasaki scalar eld as introduced above. Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] suggest to consider the rst order constraints ℋ 1 and ℋ ̌ 1 as the remaining new scalar perturbation variables. Since these constraints do not commute with respect to the perturbative Poisson brackets, we shift ℋ 1 by a linear term in the perturbations and we denote the new constraint variable by H 1 . The latter Poisson commutes with ℋ ̌ 1 if for the time being we only consider the perturbations as dynamical degrees of freedom. This procedure entails another shift of the lapse function which yields the new lapse function ̄ 2 emanating from ̌ 2 . In a next step, we construct the conjugate variables with respect to the inhomogeneous Poisson brackets denoting them by , 1 and ̌ 1 . The new canonical pairs in the scalar sector of the perturbations are thus ( , ), ( 1 , H 1 ) and ( ̌ 1 , ℋ ̌ 1 ). Finally, we complete the transformation in the homogeneous sector by adding second order contributions to the initial homogeneous canonical pairs. This yields the new variables ( ̃ , ̃ , ̃ , ̃ ) in the homogeneous sector. The implementation of the transformations yields new contributions to ℋ: Some of them include only the Mukhanov-Sasaki canonical variables and we correspondingly absorb them into a new second order scalar Hamiltonian H 2 . Another contribution is proportional to the zeroth order Hamiltonian ℋ 0 such that it is possible to absorb them into ̄ 2 which becomes ̆ 2 . In addition, the transformations result into new second order contributions which are proportional to the linear constraints H 1 and ℋ ̌ 1 . We denote these contributions as 1 and 1 respectively.

In total, the transformations result in the following Hamiltonian density (9.11) We emphasize that the constraint H is to be expressed in terms of the new homogeneous variables ( ̃ , ̃ , ̃ , ̃ ) which nally amounts to simply replacing non-dashed variables by the dashed ones as we cut after the second order in perturbations. The second line in equation (9.11) accounts for the set of primary constraints (Π 0 0 , Π 1 , Π ̌ 1 , Π ̌ , 1 ) with their respective Lagrange multipliers ( 0 , , ̌ , ̌ , ). These primary constraints already appeared in equation (9.9) and have remained unchanged under the preceding transformations.

H = 0 + ̆ 2 ⋅ ℋ 0 + H 2 + H 2 + Ȟ 2 + ( + 1 )⋅ H 1 + ̃ + 1 ⋅ℋ ̌ 1 + ̌ ⋅ ℋ ̌ , 1 + 0 ⋅Π 0 0 + ⋅Π 1 + ̌ ⋅Π ̌ 1 + ̌ , ⋅Π ̌ , 1 .

Dirac Constraint Analysis

We are now ready to perform the Dirac constraint analysis based on the new variables and constraints emanating from the previous transformations. We rst consider the primary constraints which imply that the system restricts to the submanifold of the phase space de ned by

Π 0 0 = 0, Π 1 = 0, Π ̌ 1 = 0, Π ̌ , 1 = 0. (9.12)
Consequently, the associated Lagrange multipliers 0 , , ̌ and ̌ , can be chosen arbitrarily.

In a second step, consistency of the dynamics requires that the primary constraints are preseverd (i.e., remain zero) under the evolution generated by the full Hamilton constraint H. This requirement gives rise to the secondary constraints where "≈ 0" means that the expression on the left hand side must vanish at least weakly, i.e., on the primary constraint surface. Note that now, the Poisson brackets include the dynamics with respect to all canonical pairs of the transformed system both the homogeneous and the inhomogeneous ones.

H, Π 0 0 = ℋ 0 + H 2 + H 2 + Ȟ 2 ≈ 0, (9.13) 
H, Π 1 = H 1 ≈ 0, (9.14 
The next step consists in checking whether the secondary constraints in the equations (9.13) -( 9 

H, H 1 = 1 , H 1 H 1 + 1 , H 1 ℋ ̌ 1 ≈ 0, (9.18) H, ℋ ̌ 1 = 1 , ℋ ̌ 1 H 1 + 1 , ℋ ̌ 1 ℋ ̌ 1 = 0. (9.19)
Hence, the constraint algebra closes and as a consequence, it su ces to evaluate the primary and the rst set of secondary constraints to solve the system. In particular, we must guarantee that the equations

H 1 = 0, ℋ ̌ 1 = 0, ℋ ̌ , 1 = 0, ℋ 0 + H 2 + H 2 + Ȟ 2 = 0 (9.20)
are satis ed on the constraint surface. Since H 1 , ℋ ̌ 1 and ℋ ̌ , 1

were de ned as canonical momenta, we can simply impose the rst three equations by requiring that these momenta be vanishing. We recall that the second order vector constraint H 2 is zero whenever ℋ ̌ , 1 = 0 is satis ed.

The Hamilton Constraint

From the previous discussion, it follows that the only non-trivial constraint of the cosmological system is

∶= ℋ 0 + H 2 + Ȟ 2 = 0. (9.21)
As a consquence, the total constraint ∶= ∫ d splits into three parts. Omitting the dashes over the transformed homogeneous variables in order to keep the notation simple, these are given by 0 ∶= - where we recall that ( , , , ) are inhomogeneous and thus -dependent elds. ∆ ∶= is the Laplace-Beltrami operator on the three-torus. We de ned the Mukhanov-Sasaki mass function MS ( , , , ) and the tensor mass function T ( , , ) according to The total Hamiltonian constraint = 0 + ̃ 2 + ̌ 2 is the object of interest in the subsequent application of SAPT.

Epsilon-Rescalings

To make contact with SAPT, we rescale the canonical pairs that we obtained by the transformations in the previous section using the dimensionless parameter 2 ∶= . In the homogeneous sector, we de ne ∶= 2 , ∶= .

(9.27)

In the perturbative sector, we rescale the Mukhanov-Sasaki eld variables and the tensor eld variables according to ̆ ∶= , ̆ ∶= and ̆ ∶= 2 , ̆ ∶= 2 . (9.28)

We directly relabel the rescaled variables by removing the breves such that the notation remains as simple as possible. Since is constrained to vanish, it is admissible to multiply it by a global factor 2 . This gives the nal classical Hamilton constraint = 0 + ̃ 2 + ̌ 2 = 0 where now any of the terms is rescaled by a factor 2 such that 

0 = - 2 12 + 2 2 3 + 1 2 2 2 3 2 + Λ
( T ) 2 = 2 6 2 -3 2 2 2 2 -6Λ 2 . (9.33)
Note that the transformations for the perturbation elds (9.28) are canonical while the canonical structure of the homogeneous degrees of freedom changes due to the rescaling in (9.27).

Quantization

We employ a standard Schrödinger representation for the homogeneous sector. Operators will be denoted by hats. The Hilbert space of the gravitational subsystem is ℋ ∶= 2 (ℝ + , d ) and for the homogeneous scalar matter subsystem, we have ℋ ∶= 2 (ℝ, d ). The total homogeneous Hilbert space is given as the tensor product of Hilbert spaces ℋ hom = ℋ ⊗ ℋ . The canonical operators of the homogeneous sector ( ̂ , ̂ , ̂ , ̂ ) are associated with the standard multiplication and derivative operators in Schrödinger position representation on the respective dense domains. Note that due to the rescaling with , the momentum operators always enter with an additional factor 2 or respectively. Their Weyl elements satisfy the Weyl algebra relations which lead to the formal quantum commutation relations

[ ̂ , ̂ ] hom = 2 1 , ̂ , ̂ hom = 1 (9.34)
where the subscript "hom" indicates that the commutator is with respect to the homogeneous quantum algebra. The operators 1 and 1 denote the unity operators in ℋ and ℋ respectively. Note that any of the operators is de ned on the whole ℋ hom but we always omit trivial factors of unity. The space adiabatic perturbation scheme requires us to use a symmetric Weyl quantization prescription which we are going to employ in the following. We note that the scheme considers the homogeneous and isotropic degrees of freedom as the ones whose canonical structure becomes rescaled by a very small parameter, hence they will be identi ed as the "slow" variables and be subject to a phase space quantization. We associate the fast sector of the model with the cosmological inhomogeneities, i.e., the Mukhanov-Sasaki and tensor perturbations. In a strict sense, one can however not identify these sectors with a respectively "slow" or "fast" dynamicsthere simply is no dynamics since the system is completely constrained.

Bold characters indicate quantum operators of the inhomogeneous system and the quantum elds are given for any time ∈ ℝ by the operator-valued distributions ( ( ), ( ), ( ), ( ))

on 3 . We denote the Hilbert space of the Mukhanov-Sasaki quantum system by ℋ MS , the tensor Hilbert space as ℋ T , and the total Hilbert space of the inhomogeneities arises naturally as the tensor product of the two latter as ℋ pert = ℋ MS ⊗ ℋ T . We employ the standard canonical commutation relations for the perturbation elds. Therefore, we introduce two contravariant test tensor elds ( ) and ( ) of rank 0 and 2 respectively as well as two covariant test tensor elds ( ) and ( ) of rank 0 and 2 respectively. The quantum commutation relations consequently have the form

[ ( ), ( )] pert = ⟨ , ⟩ 1 1 1 MS , [ ( ), ( )] pert = ⟨ , ⟩1 1 1 T
where the subscript "pert" indicates that the commutator is with respect to operators on the perturbative Hilbert space ℋ pert , and 1 1 1 MS and 1 1 1 T denote the unity operators on the respective Mukhanov-Sasaki and tensor subspaces. Again, we omit any trivial factor of unity. With this, we are ready to quantize the Hamilton constraint as a whole. Therefore, we carefully split its contributions in equations (9.29) -(9.33) into its homogeneous and inhomogeneous contributions, quantize these parts respectively and glue them together with tensor products (just as we did for the dust model). This yields the formal expression

̂ = ̂ 0 + ̂ s 2 + ̂̌ t 2 (9.35)
which is of course of little direct interest as exact solutions are out of reach. Instead, we employ SAPT and consider the known phase space quantization scheme for the homogeneous sector.

Partial Phase Space Quantization

Following SAPT, we quantize the Hamilton function with respect to the inhomogeneous sector only and obtain the Hamilton constraint symbol given by

= 0 1 1 1 pert + ̃ s 2 + ̌ t 2 (9.36)
with 1 1 1 pert = 1 1 1 MS ⊗ 1 1 1 T and using the expressions (9.29) -(9.31). As before, it is most useful to employ annihilation and creation operators. Although not mandatory, let us consider the basis states ( ) = exp( ) of the one-particle Hilbert space ℋ 3 = 2 ( 3 , d ) where ∈ ∶= 2 ℤ 3 ⧵ {0}.

The Hilbert spaces of the perturbative quantum eld theories are then given by the symmetric Fock spaces ℱ s (ℋ 3 ) associated with the one-particle Hilbert space. More precisely, the total perturbative Hilbert space comprises the symmetric Mukhanov-Sasaki Fock space ℱ s,MS as well as two symmetric Fock spaces associated with the tensor degrees of freedom. Indeed, the tensor eld carries only two independent degrees of freedom corresponding to the two polarizations of the tensor modes. These will be labeled by the index = {+, -} and we write for the Fock spaces ℱ s,T,± . The total Hilbert space is given as the tensor product

ℋ pert = ℱ s,MS (ℋ 3 ) ⨂ ={+,-}
ℱ s,T, (ℋ 3 ). (9.37)

We de ne the one-particle frequency operators for the Mukhanov-Sasaki and the tensor system by

√ -∆ + 2 MS , T ∶= 2 √ -18∆ + 6 ( T ) 2 . (9.38)
Note that both operators depend on the homogeneous degrees of freedom as they contain the mass functions MS ( , , , ) and T ( , , ). To avoid confusion with the scale factor variable, we will denote the annihilation and creation operators of the Mukhanov-Sasaki system with the symbols and * . They arise using an ( , , , )-dependent representation map ( , , , ) ∶ → ℒ(ℋ pert ) from the eld Weyl algebra to the space of linear operators on Fock space. As operator-valued distributions on the space of smearing functions ∞ 0 ( 3 ), they are given for any

∈ ∞ 0 ( 3 ) by ( ) ∶= 1 √ 2 √ MS ( ) - √ MS -1 ( ) , (9.39) 
and they explicitely depend on the slow phase space variables through the frequency MS . The creation operator * ( ) arises from ( ) by taking its adjoint. Likewise, one de nes annihilation and creation operators ± ( ) and * ± ( ) for the two tensor modes by replacing MS by T and by replacing the elds ( , ) by the two pairs of tensorial elds which we denote by ( ± , ,± ). For xed homogeneous variables ( , , , ), the commutation relations for the Mukhanov-Sasaki eld evaluate to [ ( 1 ), * ( 2 )] pert = ⟨ 1 , 2 ⟩ 1 1 1 MS (9.40)

where 1 , 2 ∈ ∞ 0 ( 3 ), and likewise for the graviton elds.

It will prove useful to pass to a mode representation and in the following we refer to the annihilation and creation operators of a mode ∈ for the Mukhanov-Sasaki system by and * . For the tensor modes, we de ne the set of vectors ∈ ∶= { , } with ∈ {-, +} to denote the annihilation and creation operators by and * . The commutation relations have the form where we conveniently denoted the purely homogeneous Hamilton function from equation (9.29) by hom and omitted trivial factors of unity. We emphasize that not only the zeroth order oset energy contribution hom depends on the homogeneous phase space variables but also the frequency functions MS ( 2 ) and T ( 2 ) as well as any of the annihilation and creation operators of the Mukhanov-Sasaki and tensor systems.

, * pert = , 1 1 1 MS , , * pert = , 1 1 1 T , ( 9 

Checking of the Conditions

In order to see whether SAPT applies to the presented model, we go through the conditions (C1) -(C4). Regarding condition (C1), the total Hilbert space has the form of the tensor product

ℋ = ℋ hom ⊗ ℋ pert (9.43)
where the second factor identi es with the perturbative Fock Hilbert spaces while the rst is given by the homogeneous space of states. Note that this was only achievable because of the almost canonical transformations that we performed in section 9.1.1. As a consequence, we can unitarily relate the states induced by di erent Fock representations.

To continue with the remaining conditions, let us assume for the time being that is a physical Hamilton operator, and we are interested in its entire spectrum. From equation (9.42), it is easy to deduce that admits a discrete spectrum for any xed ( , , , ) ∈ Γ hom because the sums over the (generalized) wave vectors in the Hamilton constraint are discrete and so is the spectrum of the number operators * and * when applied to vectors in the total Fock space ℋ pert . Any Fock state ( ) ∈ ℋ pert with nite energy identi es with a nite set of non-vanishing quantum numbers ( ) ∶= {… , MS, 1 , MS, 2 , … , T, , 1 , T, , 2 , … } where we distinguished between the quantum numbers of the Mukhanov-Sasaki and the tensor perturbations, and 1 , 2 , … run over 2 ℤ 3 . We also introduce degeneracy labels which take the possibility of degenerate eigenstates into account, and we denote them by = 1, … , for the Mukhanov-Sasaki system and by = 1, … , for the graviton system. To shorten the notation, we integrate the degeneracy labels in ∶= { , } and the degeneracy numbers in ∶= { , }. According to equation (9.42), the discrete eigenvalue problem for any nite set of quantum numbers ( ) then has the form ( , , , ) ( ) ( , , , ) = ( ) ( , , , ) ( ) ( , , , ), (9.44)

( ) ( , , , ) ∶= hom ( , , , ) + 1 ∑ ∈ MS, , MS ( 2 ) + 1 6 ∑ ∈ T, , T ( 2 ) 
.

To further shorten the notation, we write for the set of homogeneous phase space variables ( , ) ∶= ( , , , ). The eigenvalue problem in ℋ pert is then given by ( , ) ( ) ( , ) = ( ) ( , ) ( ) ( , ).

(9.45)

Due to the discreteness of the eigenbasis, it is possible to de ne non-vanishing energy gaps between the eigenenergy bands of the perturbations at least for local regions in phase space. In the following, we assume that the relevant energy bands admit such local gaps in the region of interest.

Now, condition (C2) requires that the quantum Hamilton constraint ̂ is given as the Weyl quantization of the symbol function ( , , , ) which is implemented by de nition. Furthermore, should have values in the space of bounded self-adjoint operators on ℋ pert , should be a bounded function with respect to and and maximally admit a polynomial growth with respect to the momenta and . Obviously, ( , , , ) is neither a (polynomially) bounded function with respect to the homogeneous variables nor is it a bounded operator on the inhomogeneous Fock spaces and which would be required to satisfy (C2). In order to satisfy condition (C2) and to secure convergence of the perturbation series for the problem at hand, it would be necessary to de ne an auxiliary Hamiltonian symbol aux that satis es (C2) and which generates approximately the same dynamics as the original Hamiltonian (see chapter 6). However, this is not achievable without further ado since ( , , , ) is an unbounded operator. Again, we are left with two choices: We either de ne an operator aux that satis es (C2) but which will not entirely re ect the properties of or we retain the original Hamilton constraint at the cost of obtaining possibly non-convergent adiabatic perturbation theories. We remain here with the second option, and stress that convergence (e.g., with respect to a weak operator topology) of the perturbative series for the rst option would need to be investigated by independent means.

Let us also note that both the homogeneous and the inhomogeneous contributions to the constraint ( , , , ) depend on , either via hom or via MS ( 2 ) and T ( 2 ). Following SAPT, these di erent contributions in should be split in a power series expansion with respect to such that several non-vanishing power series coe cients in can be identi ed and be treated at di erent orders of the SAPT scheme. Here however, we will subsume the whole constraint under its zeroth order contribution 0 in order to simplify the task of applying SAPT. This procedure does not change the nal result as long as one carefully sorts the contributions after the application of SAPT. Since this section should rather be seen as a rst explorative investigation of SAPT for gauge-invariant cosmological perturbation theory, we will defer from performing this analysis and simply set ≡ 0 .

Regarding condition (C3), we note once again that due to the discreteness of the modes and certain regions in the homogeneous phase space can be identi ed where no eigenvalue crossings occur. We will assume that we can restrict our investigations to such a region in phase space.

Finally, condition (C4) assures the convergence of the results but we have already stated that condition (C2) can not be met without further ado, and which prohibits any results on the convergence of the perturbative series. We will hence not be able to make any further statements regarding convergence here but as mentioned before SAPT can be applied regardless.

Analysis of the Perturbation Eigenfunctions

Every excited state in the Hilbert space ℋ pert can be constructed from the vacuum state Ω( , ) by applying the desired number ( MS, , T, ,+ , T, ,-) of creation operators for every set of wave numbers , , . SAPT chooses formally one such eigenstate with quantum number(s) ( ) given by In this notation, the derivative of some state ( ) ( , ) with respect to has the form

( ) ( , ) = ∏ ∈ ∏ ∈ ( * ) MS, √ MS, ! ( * )
( ) ( , ) = ∑ ∈ MS, -2 MS, MS {…, MS, -2,… } + MS, +2 MS, MS {…, MS, +2,… } ∏ T, ( T ) + MS ( MS ) ∏ ∑ ∈ T, -2 T, T, {…, T, -2,… } + T, +2 T, T, {…, T, +2,… } T, ≠ ( T ) .
(9.57)

Space Adiabatic Construction Scheme

The construction of the space adiabatic symbols is subject to two di erent perturbative scalings, namely with respect to for the homogeneous scalar eld, and with respect to 2 for the homogeneous gravitational degrees of freedom. As a consequence, the Moyal product for two operatorvalued functions ( , ), ( , ) ∈ (Γ hom , ℬ(ℋ pert )) takes the form .58) where the vectors indicate the direction in which the partial derivatives act. As we will see in the following, the Moyal product with respect to the gravitational degrees of freedom does not contribute to the computations up to second order in the perturbation scheme. Up to the two di erent scalings, the scheme proceeds in the lines of chapter 6 and 8.

( ⋆ )( , ) ≍ exp 2 ⃐ ⃑ -⃐ ⃑ - 2 2 ⃐ ⃑ -⃐ ⃑ ( , ) (9 

Construction of the Moyal Projector

The rst goal is to compute a Moyal projector symbol up to rst order in the perturbations and subject to the split (1) = 0 + 1 . We choose the discrete eigenstate ( ) ( , ) ∈ ℋ pert with quantum number ( ) associated with the Hamilton symbol ( , ) to de ne 0 ( , ) ∶= ∑ ( ) ( , ) ⟨ ( ) ( , ), ⋅ ⟩ ℱ s (9.59)

where denotes again the degeneracy label for the considered state. To determine the rst order contribution 1 , the scheme splits it into a diagonal and an o -diagonal part. As we know from the previous models, the diagonal part is not going to vanish trivially here because the states depend on both the homogeneous variables and their conjugate momenta. However, the diagonal contribution will not enter the computation for the e ective Hamilton symbol and so we leave its computation aside, and directly come to the o -diagonal part OD 1 . Following the results from zeroth order, this yields

ℎ ℎ ℎ e ,0,R = , ∑ , =1 hom ( , , , ) + 1 ∑ ∈ MS, , MS ( 2 ) + 1 6 ∑ ∈ T, , T ( 2 ) 
⋅ ( ) ⟨ ( ) , ⋅ ⟩ ℱ s (9.66) which includes the standard zeroth order Hamilton constraint for an FLRW Universe with a homogeneous and isotropic scalar eld denoted here by hom ( , , , ) and the bare energy contributions from the relevant energy band ( ) . Note that these additional terms are nite as we chose the relevant quantum numbers { MS, , , T, , } to be non-vanishing for only a nite number of wave vectors and . If we considered the vacuum state for which any of the numbers { MS, , , T, , } vanishes, there would be no additional contributions to hom .

We stress once again that hom as well as MS ( 2 ) and T ( 2 ) depend on , and a careful analysis of ℎ ℎ ℎ e ,0,R would be necessary to deduct these -dependent contributions and to add them to the higher order contributions of the nal e ective constraint. As mentioned earlier, we will not perform this analysis here.

Coming to the rst order contribution to the e ective Hamiltonian, we realize (once more) that it vanishes identically as shown in section 6.7.

The second order e ective Hamilton symbol includes several contributions but we will show that only one of them is of second order in the perturbative parameter, and hence relevant. First, recall the formulae for determining ℎ ℎ ℎ e ,2,R from section 6.7. There are basically three di erent kinds of contributions. For the rst of them, remember that a second order contribution with respect to corresponds to a rst order contribution in the perturbation scheme with respect to the homogeneous gravitational degrees of freedom ( , ). Consequently, ℎ ℎ ℎ e ,2,R includes the rst order e ective Hamilton constraint regarding the gravitational 2 -scheme. However, we already know that the rst order e ective Hamilton constraint within the relevant energy band vanishes identically and so we can simply drop this term. The other two contributions are due to thescheme with respect to the homogeneous scalar matter eld. The rst of them arises by computing contributions of the rst order Moyal product, and the second from second order contributions to the Moyal product, namely

ℎ ℎ ℎ e ,2,R = 2 { R ⋅ 1 , + ( ) 1 1 1 f } hom ⋅ * 0 ⋅ R + R ⋅ [ 0 ⋆ ] 2 -( ) ⋆ 0 2 ⋅ * 0 ⋅ R (9.67)
where the Poisson brackets with subscript "hom" denote the standard Poisson brackets on the homogeneous phase space, and the square brackets with subscript 2 mean that the inside is restricted to exactly second order in the perturbative scheme. We have given an explicit expression of this result in terms of the connection coe cients ( , ), the energy functions ( ) ( , ) and the composite function ( ) ( , ) in equations (6.134), (6.162) and (6.163) . in section 6.7. We will not state them here again but we review their components and select the contributions that e ectively enter at second order in the perturbative scheme. The appearance of terms that actually enter at higher orders in stems from the fact that the perturbative Mukhanov-Sasaki and graviton contributions to are by de nition of second order in . Nevertheless, it was necessary to include them as zeroth order contributions to make the space adiabatic scheme work at the technical level. This does not undermine the results but a careful analysis of all terms is required.

We recall that the e ective, ( , , , )-dependent masses of the Mukhanov-Sasaki and the graviton systems depend polynomially on with di erent exponents, and so will their derivatives with respect to the homogeneous variables. Most importantly, we nd by inspecting their explicit expressions in equations (9.32) and (9.33) that

( T ) 2 ∝ 2 2 ∼ 2 , ( MS ) 2 ∝ ∼ , (9.68) ( T ) 2 = 0, ( MS ) 2 ∝ 4 , 3 6 2 ∼ 1. (9.69)
Since the coe cients of the connection depend directly on these derivatives of the masses, it is straightforward to deduce their dependence on , namely

( ) ( ) T ∝ ( T ) 2
18 2 + 6( T ) 2 ∼ 2 , (9.70)

( ) ( ) T = 0, (9.71) ( ) ( ) MS ∝ 2 MS 2 + ( MS ) 2 ∼ , (9.72) ( ) ( ) MS ∝ 2 MS 2 + ( MS ) 2 ∼ 1 (9.73)
where the vertical lines with subscripts "MS" and "T" indicate the restriction of the connection coe cients to those which contain only non-trivial factors with respect to the Mukhanov-Sasaki or the tensor perturbations respectively. In addition, there are several other factors that enter the formula for the e ective, second order Hamilton constraint, in particular ( ) -( ) ∼ 2 (9.74)

( ( ) -( ) ) -1 ∼ -2 (9.75) hom ∝ 2 3 ∼ 2 , (9.76) hom ∝ 3 ∼ 1. (9.77)
With this information, we examine all terms contributing to ℎ ℎ ℎ e ,2,R carefully and identify only one single term which is of order 0 , and consequently enters at the correct order for our scheme. All other terms include additional factors in . This relevant contribution comes from the rst order Moyal product expressions and is given by

ℎ ℎ ℎ e ,2,R = - ∑ ,( ) 1 ( ) -( ) ( ) ( ) MS ( ) ( ) MS hom 2 ( ) ⟨ ( ) , ⋅⟩ ℱ s .
(9.78)

The sum over all possible excitation numbers ( ) reduces to a sum over the wave modes by eval-uating the connection coe cients. In particular, we have that

∑ ( ) ( ) ( ) MS ( ) ( ) MS ( ) -( ) (9.79) = ∑ ∈ - 2 MS, ( 2 ) MS, , -2 MS, , 2 + 2 MS, ( 2 ) MS, , +2 MS, , 2 = ∑ ∈ ( MS , ) 2 2 MS, ( 2 ) -( MS, , -1) MS, , + ( MS, , + 1)( MS, , + 2) = ∑ ∈ 1 ( 2 + MS ) 5∕2 MS, , - 1 2 9 2 4 3 2 2 .
(9.80)

This result, together with ( hom ) 2 = 2 ∕ 6 , yields the second order e ective Hamilton constraint

ℎ ℎ ℎ e ,2,R ( , , , ) = - ∑ =1 ∑ ∈ 1 ( 2 + 2 MS ) 5∕2 MS, , + 1 2 9 2 4 4 3 2 ( ) ⟨ ( ) , ⋅⟩ ℱ s . (9.81)
Before moving to a thorough discussion of this result, let us emphasize once again that 2 MS and also ( ) depend on and hence, a careful analysis would be required to deduct the resulting higher order contributions in in ℎ ℎ ℎ e ,2,R ( , , , ). However, we will not perform this analysis here.

Discussion of the Results

In the previous section, we have computed the e ective Hamilton constraint ℎ ℎ ℎ e ,(2),R = ℎ ℎ ℎ e ,0,R + 2 ℎ ℎ ℎ e ,2,R that quanti es the backreaction of the Fock space energy band with quantum number(s) ( ) on the homogeneous degrees of freedom. We emphasize that ℎ ℎ ℎ e ,2,R ( , , , ) is a symbol function on the homogeneous phase space with values in the linear operators on ℋ pert . First, note that we can split the result into two parts, namely the one including the nite number of non-vanishing relevant quantum numbers MS, , for di erent degeneracy labels , and the contributions which do not depend on these quantum numbers and hence include any summand of the wave vector sum. The rst part only has a nite number of contributions. Remember however that the e ective Mukhanov-Sasaki mass squared 2 MS ( , , , ) is an inde nite function on the homogeneous phase space. It can become negative and hence cancel and even surpass the wave number squared in the denominator of the rst factor.

Regarding the rst case, in particular if a non-positive mass squared cancels the wave number contribution, we observe that for every wave vector ∈ , there is a (possibly non-connected) three-dimensional region ⊂ Γ hom in the four-dimensional homogeneous phase space for which this single summand diverges. Since the summation over is discrete, we expect the divergent surfaces to lie discretely in Γ s . For the rst part of the e ective Hamiltonian, we have a nite number of such surfaces while for the second part, we have a countably in nite number of divergent surfaces. In addition, the global (third) factor in ℎ ℎ ℎ e ,2,R diverges in the limits → 0, → 0 and → ±∞.

Despite these divergencies, we emphasize that the symbol Hamilton constraint still needs to be Weyl quantized. It might still be possible to nd appropriate solutions. Of course, the divergencies narrow the set of admissible quantum states for which ĥ ℎ ℎ e ,2,R is a well-de ned quantum operator . Besides, the absolute value of a negative mass term might be larger than the wave vector squared such that the total Hamilton constraint symbol would have imaginary contributions. Hence, the question arises whether the nal e ective Hamilton operator of the theory is self-adjoint or allows for self-adjoint extensions. It is therefore more than reasonable to seek for strategies to circumvent these possible problems.

Inde nite Mass Squared Operators

Possible Solutions

The Mukhanov-Sasaki and graviton mass squared terms of the previous model are not manifestly positive in all regions of the homogeneous phase space. This is due to the various transformations in the homogeneous and in the inhomogeneous sector which are necessary to obtain a well-de ned quantum eld theory with gauge-invariant perturbation variables. In this section, we present ve strategies which aim at avoiding or attenuating the resulting problems. Our discussion here is based and partially taken from [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

Before, we point out that the transformations and also the presented strategies apply to rather generic second order Hamiltonians. More generally, one may have several matter or geometry species, e.g., scalar, vector, tensor and spinor modes, (Elizaga Navascués, [START_REF] Elizaga Navascués | Hybrid models in loop quantum cosmology[END_REF]. We label the di erent species by the index . Then, the transformations from section 8.1 for the case of one single inhomogeneous scalar eld and which we denoted by ( , , , ) can be generalized to a set of transformations ( , , , ) for every species. Recall that the transformations resulted in additional terms to the homogeneous degrees of freedom ( , ), = 1, … , which we denoted by ( , , ) and which were of second order in the respective perturbative degrees of freedom. Accordingly, we expect additional terms ( , , , , ) for every species . Since we perturb the homogeneous contribution of the Hamiltonian only linearly in ( , , , , ), and because it is allowed to drop the ( , , , , )-corrections for the homogeneous variables in the perturbative part of the Hamiltonian as we cut after second order, the di erent contributions of the species never mix. Accordingly, we can consider the Hamiltonian symbols to be well de ned on the corresponding Fock spaces and the Hilbert-Schmidt conditions are solved. However, the mass squared terms 2 ( , ) for each of the species may be inde nite.

Adapted Almost-Canonical Transformations

The rst, and probably most natural suggestion, is to exploit the full freedom in the transformations ( , , , ) that led to the additional terms in the respective mass squares 2 for every species . In the previous section, we directly limited our attention to a restricted subclass of transformations to simplify the task of nding at least one transformation that su ces our needs. We emphasize that there should be a substantial freedom in the choice of these transformations, and the domain of the phase space where the mass squared functions are positive depends on this free-dom. Thereupon, this region should not be of any physical signi cance and the generalization of the transformations is hence a physically motivated criterion.

Restriction of the Phase Space

A second approach consists in restricting the classical phase space of the homogeneous degrees of freedom to a subset 2 ≥0 ⊂ Γ hom for which ( , ) 2 is positive for every species , i.e., ( , ) 2 ≥ 0 for every ( , ) ∈ 2 ≥0 and every . Such a restriction can be achieved by de ning new variables for the associated homogeneous variables and by setting 2 2 = 2 where ∈ ℝ is a suitable constant. We applied this procedure in chapter 8 where we replaced the original homogeneous canonical pair ( , ) by the new canonical pair ( , ). With the original variables, the e ective mass term was given by (9.82) which is not manifestly positive. With the new variables it became 2 ( ) = 2 2 where 2 was assumed to be positive. The transformation leading to this new set of variables is given by

( , ) 2 = 2 2 - Λ 2 - 2 72 2 2 =∶ 2 2 -2 2 2 2 ,
2 = 2 + 2 2 2 , = .
(9.83) Indeed, if ( , ) is canonical also ( , ) is a canonical pair, as one can easily show as follows:

{ , } hom = 1 2 , 2 hom = 1 2 , 2 + 2 2 hom = 1 2 , 2 hom = { , } hom = 1.
This transformation leads hence to the desired positive de nite mass squared function ( ) 2 of the eld theory (given that 2 is indeed positive). However, the transformation restricts the range of the variables ( , ) ∈ ℝ + × ℝ to the set of pairs ( , ) with 4 ≥ 2 2 . Consequently, the admissible domain of the homogeneous phase space becomes restricted. Besides, as one can easily see by analyzing the new Hamilton function ( , ) in equation (8.73), these transformations substantially worsen the degree of non-polynomiality of ( , ) which can be a serious disadvantage when it comes to quantizing the theory.

This reasoning also applies to higher dimensional phase spaces with several species . An especially nice situation occurs when the mass terms 2 have mutually vanishing Poisson brackets between them. Namely, in this case, it is reasonable to consider them as action variables and determine the corresponding angle variables as their conjugate variables. Unfortunately, this procedure already fails for a set of tensorial and scalar eld modes present at the same time. More generally, we may be able to write 2 in the form ( , ) 2 = ( , ) 2 ( , ) 2 (9.84) where ( , ) 2 is a positive function and ( , ) 2 may still be inde nite for certain species but the 2 are mutually commuting for all for which 2 is inde nite. Then, apply the action angle prescription to the new variables 2 and assume that the number of homogeneous variable pairs is at least as large as the number of inde nite mass squared terms. In the most general case, we solve the equations 2 = ( , ) 2 for some homogeneous momenta = ( , , ( , ))

where the ( , ), = + 1, … , stands for the remaining phase space variables which are not associated with a perturbative species. The variables ( , , , ) coordinatize a new phase space with induced symplectic structure. While these variables fail to be canonical coordinates for the system, they are supposed to have full range in some ℝ 2 in contrast to the . Finally, we must pass to suitable Darboux coordinates and hope that they are global in order that we may apply Weyl quantization.

Restriction to Admissible Modes

The third possibility is to take the inde nite mass terms 2 seriously as they stand and to allow them to be negative. Accordingly, for certain ranges of the homogeneous variables, the inhomogeneous symbol operator pert ( , ) de nes a quantum eld theory of tachyons. A possibility to deal with the tachyonic instabilty was suggested by Radzikowski (2008). There, the idea is to construct a ( , )-dependent Fock space ℋ ( , ) and to allow only those modes corresponding to eigenfunctions of the ∆ such that their eigenvalues of the frequency squared operator ( , ) 2 = -∆ 2 + ( , ) 2 is bigger or equal to zero, i.e., 2 + ( , ) 2 ≥ 0. Accordingly, the smaller ( , ) 2 becomes, the larger the required infrared cut-o on the admissible modes. Speci cally, for the example given above, we nd that ( , ) 2 becomes very negative for 2 2 → ∞. Note that this term is proportional to ̇ 2 . Hence, for a baryon or radiation dominated Universe, this term certainly diverges at the classical Big Bang.

For SAPT, this has the following consequence. Recall that for a torus of respective side lengths 1 in all directions, the mode numbers are discrete, more precisely ∈ = 2 ℤ 3 ⧵ {0}. Let ± ⊂ Γ hom be the subsets of the slow phase space de ned by ( , ) 2 ≥ 0 and ( , ) 2 < 0 respectively. Let us consider the spectrum of the Hamilton symbol pert ( , ). For example, consider the perturbative and quantized contribution to the dust model in chapter 8 in equation (8.69) with the mass term stated in the previous section or the perturbative Mukhanov-Sasaki and graviton Hamilton symbols obtained after quantizing the functions in equations (9.30) and (9.31). Expressed in terms of the corresponding annihilation and creation operators, it is easy to see that the spectral value associated with a mode has the form

( , ) ∶= √ 2 + ( , ) 2 (9.85)
where ∈ ℝ + is one for the dust model and the Mukhanov-Sasaki eld and = 18 for the graviton perturbations. For every point ( , ) ∈ -, one can de ne a discrete set of modes ( , ) ⊂ which consists of all modes for which it holds that 2 > ( , ) 2 , i.e., for all modes in ( , )

the energy is well-de ned and real. We then impose to disregard all modes in ⧵ ( , ) individually for every ( , ) ∈ -as well as their associated spectral values ( , ). Consequently, also any eigenstate ( ) ( , ) that contains an excitation of these respective mode vectors will be neglected. This obviously a ects the computation of the Moyal projector and the Moyal unitary and accordingly the e ective Hamiltonian ℎ ℎ ℎ e . For example, the symbol might not be unitary anymore as it relates the mode bases at di erent points ( , ), but would become a partial isometry. We would declare the energy band values to vanish for certain modes thus violating the gap condition. Furthermore, the spectral function ( , ) → ( , ) has a discontinuity at the surface 2 = ( , ) 2 on phase space. This can be problematic when computing the Moyal products which require to take derivatives with respect to the homogeneous variables. In total, we admit that this leads to major modi cations of the space adiabatic scheme.

Modi cation of the Quantization Scheme

The fourth proposal presented here suggests to modify the Weyl quantization procedure for the homogeneous variables which is part of the space adiabatic perturbation scheme. In particular, the idea is to restrict the phase space integral over the homogeneous degrees of freedom that enters the Weyl quantization to + in an ad hoc manner. This can be achieved by multiplying all symbol functions such as the Hamiltonian ( , ) with the characteristic function + ( , ) of + . This is again not di erentiable and it would be more appropriate to substitute + by a smoothed version of it, i.e., a smooth function that is zero in -and smoothly reaches unity within + in an arbitrarily small neighbourhood of the boundary + . Of course, the quantum theory then will depend on that smoothing procedure which introduces ambiguities and technical challenges because the smoothed version of + is a highly non-polynomial function of and .

Decomposition of the Hamilton Symbol

Finally, the fth suggestion for how to deal with the inde nite mass squared function is to consider a mode decomposition of the inhomogeneous Hamiltonian contribution pert ( , ) and to write for ( , ) ∈ -, pert ( , ) ∶= + pert ( , ) + - pert ( , ) where + pert ( , ) is the contribution from all modes with 2 ≥ ( , ) 2 . Then, + pert ( , ) may be quantized as before, while the quantization of - pert ( , ) represents a nite sum of ipped quantum harmonic oscillators. The di erence of this strategy compared to the third method where we performed a mode-cutting, is exactly that we do not discard - pert . We notice that the spectrum of a ipped harmonic oscillator is of the absolutely continuous type, cf. for example [START_REF] Finster | Spectrum of the Schrödinger Operator with Inverted Harmonic Oscillator Potential[END_REF]. Thus, the spectrum of - pert changes drastically when we transit from + to -with corresponding consequences for the space adiabatic perturbation scheme. Unfortunately, such a theory would be unstable.

Gauge-Invariant Model with Positive Mass Squared

In this section, we apply the second strategy from the previous section to the model with gaugeinvariant cosmological perturbations. In particular, we are going to restrict the classical phase space of the homogeneous degrees of freedom to a set of points ( , ) ∈ Γ hom for which both, the e ective Mukhanov-Sasaki e ective mass squared MS ( , ) 2 and the e ective graviton mass T ( , ) 2 are manifestly positive. We achieve this by de ning two new sets of homogeneous phase space variables which we denote by ( , ), and ( , ). This section is based on and partially taken from (Schander and Thiemann 2019c).

Symplectic Embedding

For simplicity, we restrict our considerations to the case of a vanishing scalar eld potential and zero cosmological constant, i.e., = 0 = Λ. Then, we consider the rescaled homogeneous variables ( , , ) with Poisson brackets { , } = 2 , and { , } = . Referring to the de nition of the Mukhanov-Sasaki and graviton mass squared functions in equations (9.32) and (9.33), the mass squared functions are given here by in close analogy to the original model. The frequency functions MS ( 2 ) and T ( 2 ) have the same form as before but are expressed in terms of the new variables, and similarly for the creation and annihilation operators. Therefore, also the application of SAPT proceeds in the very same manner. The functions MS , and T , which serve to quantify the derivatives of the annihilation operators and in the direction ∈ { , , , } have the same form with respect to the masses and frequencies as before, and so do the coe cients of the connections ( ) ( ) . The explicit expression in terms of the new variables looks of course di erent than before. We observe again that the connections relate only states which di er by ±2 excitations in one quantum number.

Since all formal expressions are identical to the ones in section 9.1, we are content to directly present the expression for the e ective Hamilton constraint up to second order in the perturbations. As before, we therefore de ne an operator-valued symbol R associated with the fast eigensolution(s) ( ) ∶= ( ) ( 0 , 0 , 0 , 0 ) ∈ ℋ pert at some xed phase space point ( 0 , 0 , 0 , 0 ) ∈ Γ hom . Thereby, we allow for degenerate eigenstates with degeneracy labels = ( , ) and the degrees of degeneracy = ( , ) for the Mukhanov-Sasaki and the graviton perturbations respectively. At zeroth order, the scheme generates the standard Born-Oppenheimer result that we directly restrict to the relevant subspace associated with R and obtain (9.101)

The rst contribution is simply the standard FLRW Hamiltonian constraint. The two remaining contributions correspond to the bare energy of the chosen excitation number ( ) associated with the Mukhanov-Sasaki and the graviton perturbations. At rst order of the scheme, the e ective Hamilton constraint vanishes. This is because we assumed that the standard Moyal product applies to the given case, and hence the formulae from the previous section can be used. In this case, the rst order e ective Hamiltonian vanishes identically.

At second order, it is again possible to split the contributions into a part that only contains the bare symbols and their Poisson brackets and a part which involves the second order Moyal product. The symbolic form of the rst part evidently remains the same and we only need to replace the Poisson brackets with respect to the old variables by the Poisson brackets with respect to the new variables. We refer to the previous section for the explicit computations. Analogously, it turns out that many contributions are actually of higher order in and can thus be omitted for our choice of truncation. This yields

2 { R ⋅ 1 , + ( ) 1 1 1 f } ⋅ 0 ⋅ R = (9.102) -exp , ∑ , =1 ( ) ⟨ ( ) , ⋅⟩ ℱ s ⎛ ⎜ ⎝ ∑ ∈ 2 MS, , + 1 64 MS ( 2 ) 5 ⋅ 2 MS hom - 2 MS hom 2 + ∑ ∈ 27 8 2 T, , + 1 T ( 2 ) 5 ⋅ ( T ) 2 hom 2 ⎞ ⎟ ⎠ .
In contrast to the result using the original variables, the tensor modes generate second order backreactions. This is not very surprising. Even if the two sets of variables are classically related by a canonical transformation, the quantum theories lead to di erent physical theories. This is a well-known feature of standard quantum theory, and only the comparison with experimental data provides the means to distinguish the physically relevant from the non-relevant theories.

A priori, the scheme includes also contributions to the second order e ective Hamilton constraint that are due to the second order Moyal product. However, as before it turns out that these contributions are all of higher than second order in , and hence are not relevant for our computations. This nally yields the e ective Hamiltonian with respect to the transformed variables ( , , , ), i.e., without the -scaling for the momentum variables. It consists of the zeroth order contribution (9.101), and the second order contribution (9.102). Expressing the latter explicitly as a function of the transformed variables, we obtain Again, we identify the standard purely homogeneous and isotropic Hamilton constraint of our cosmological model in the rst line of this result. Together with the bare energy band contributions from the Mukhanov-Sasaki and tensor perturbations in the ensuing line, this yields the zeroth order contribution of our perturbative scheme. The last line shows the second order contributions of the scheme. These depend partly on the relevant excitation numbers that we have chosen but there are also contributions which do not, and hence present a vacuum backreaction from the perturbative degrees of freedom on the homogeneous degrees of freedom. Note that effectively, after having performed a transformation to the unscaled momenta ( , ), they both enter with a factor 12 , and terms containing polynomials of them should thus remain very smale within our perturbative scheme. We emphasize once again that we do not expect the same results as for the previous model without the transformations in the homogeneous sector. Another reason for this to happen is that the restriction to the positive mass region is accomplished by a symplectic embedding rather than a symplectomorphism which in particular changes the entire topology of the slow phase space. Thus, the quantum theories cannot be unitarily equivalent. Note that even if the phase spaces were the same and the transformation was strictly canonical, the Moyal products do not simply get rewritten in terms of the new variables unless the canonical transformation is of a restricted type called "gauge equivalent" as de ned in the paper by Blaszak and Domanski (2013).

Modi cations of the Weyl Quantization Procedure

In the previous section, we performed a symplectic embedding of the homogeneous degrees of freedom that included a restriction of one of the new variables to a union of two compact intervals on the real line. The standard Weyl quantization procedure is however de ned for systems with the cotangent bundle over the real line (or products thereof) as their phase space, and hence, the Weyl quantization procedure is a priori not available for this model. In particular, the Moyal product underlying the SAPT scheme might be subject to modi cations which would consequently alter the results obtained so far.

If we adhere to the above choice of phase space variables, the de nition of the Weyl quantization kernel in equation (6.37) (or in (6.39) in the operator-valued case) should be adapated accordingly. In particular, the integral representation must take into account that the classical observables as well as the wave functions are only de ned on a compact con guration space which in turn necessitates the use of a discrete Fourier series with respect to the respective modes instead of the continuous Fourier transform. This e ectively corresponds to considering the phase space * 1 ⊕ * 1 instead of * ℝ 2 . We provide a derivation of the Weyl quantization formula for the phase space * where is a compact interval in appendix C. It is important to note that due to the restriction on a nite interval ambiguities occur in the de nition of the momentum operator as it admits an in nite number of self-adjoint extensions (Reed and Simon 1975b). This must also be taken into account when considering the direct sum of two * (we will be more precise in the next paragraph). We also refer to the work by [START_REF] Jorgenson | Momentum Operators in Two Intervals: Spectra and Phase Transitions[END_REF] in this respect. In order to recover, the correct product formula for operators and hence a star product on the space of symbol functions, it is advisible to follow the detailed proof for the standard Weyl product formula by [START_REF] Folland | Harmonic Analysis in Phase Space[END_REF]. We refrain here from performing this computation, and refer to the work by Stottmeister and Thiemann (2016b) in which such a restricted Weyl quantization in application to LQC has been discussed.

As anticipated above, it is necessary to clarify some domain issues regarding the quantization procedure. In particular, we need to check whether a quantization of the homogeneous (sub) phase space associated with the variables ( , ), namely the cotangent bundle * where is the union of the two intervals de ned by ± , is feasible. Therefore, let more generally be = 1 ∪ ⋯ ∪ a union of disjoint intervals , = 1, … , . Note that the Hilbert space 2 ( , d ) of square integrable functions over is speci ed uniquely by the restrictions = which shows that 2 ( , d ) = ⨁ 2 ( , d ). Adapting the considerations to our model, each is a compact and closed interval of the form [ , ] with , ∈ ℝ. When it comes to quantization, this entails a plethora of problems because we need to impose, as mentioned above, restrictive conditions on the admissible domains of operators in order for them to be self-adjoint.

Alternatively, one can also de ne a new set of variables such that the new con guration variable can take values in all of ℝ, and which arises from by a suitable map. Let us consider for example and we can easily check that indeed the canonical structure passes over to the new variables, { , } = 1. As a consequence, we may think of * as * ℝ. We pick the Hilbert space 2 ([ , ], d )

= ( ) = + 1 + 2 arctan( ) - 2 , ( 9 
on which acts by multiplication and as the derivative operatorof course subject to boundary conditions to make it self-adjoint. On the other hand, we can promote the variables and to quantum operators such that the latter satisfy the standard commutation relation [ ̂ , ̂ ] = 1hom . One can thus think of ̂ as a multiplication operator and ̂ as the (-)-scaled derivative operator with respect to . Since and are de ned on the whole ℝ 2 , it is reasonable to impose a symmetric Weyl quantization scheme in order to connect with the previous considerations.

Note however that this procedure of performing a(nother) coordinate transformation may lead to a completely di erent quantum theory, despite of the transformation being canonical. If one prefers to consider the quantum theory in the original positive mass squared variables ( , , , ) one should concentrate on de ning a suitable -scaled Weyl calculus as refered to above. However, since the transformations are canonical in nature, one expects that the rst adiabatic order of the star product and hence of the SAPT scheme does not change, as this order solely involves the Poisson bracket relations (which do not change in this case).

Identi cation of Slow and Fast Sectors

SAPT relies on the identi cation of two distinct subsystems within the model. This distinction becomes manifest by means of an adiabatic perturbation parameter . In the standard Born-Oppenheimer theory for molecules, the adiabatic perturbation parameter arises as the mass ratio of the light electron mass e and the heavy nuclei mass n such that 2 ∶= e n ≪ 1. We have already argued at the beginning of chapter 6 that such a small mass ratio together with the equipartition theorem for a standard mechanical system implies that the electrons are statistically fast compared to the heavy nucleus. In fact, together with the hypothesis of ergodicity this implies that the time average of the nuclei velocity is much smaller than the averaged electron velocity. Expressed in terms of the nuclei momentum and the electron momentum , this gives 2 ⟨ 2 ⟩ ≈ ⟨ 2 ⟩. This motivates to de ne a rescaled nucleus momentum ∶= which gives then rise to the perturbative space adiabatic scheme. This section discusses the identi caton of slow and fast sectors in the models given before based and partially taken from [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF].

This idea that one subsystem behaves much slower than another one applies to the oscillator model from section 6.8 which consists of a light harmonic oscillator coupled to a heavy anharmonic oscillator. Their respective masses and serve to de ne the small perturbation parameter 2 ∶= ≪ 1. The system is unconstrained and the physical intuition that the heavy anharmonic oscillator moves slowly in comparison to the light harmonic oscillator follows from the equipartition theorem. In thermodynamical equilibrium at non-vanishing temperature and assuming that the system is ergodic, the phase space average, and therefore the statistical time average, of the kinetic energies are approximately equal. Then, the same reasoning as for the molecular example from above applies and one can show that the average velocity of the heavy oscillator ̇ is much smaller than the average velocity ̇ of the light oscillator. As explained in section 6.8.1, this statement holds true irrespective of the frequencies of the two oscillators.

The situation becomes however di erent for the constrained purely homogeneous and isotropic cosmological model with scalar matter content in chapter 7. First, this model does not have two mass parameters in the strict sense that could be compared one to another. However, the gravitational coupling constant = 8 and the matter coupling constant of the scalar eld provide a dimensionless fraction which gives rise to a very small parameter, too, namely 2 ∶= . We note that the parameter is to be distinguished from the Compton wave length 1∕ associated with the Klein-Gordon scalar eld mass (where we recall that ℏ = 1 = for convenience). In the space adiabatic treatment, we assume that 2 ≪ 1 which is certainly satis ed if is of the same magnitude as the standard length scale of the standard model, i.e., ≈ -2 . With this, we can apply the space adiabatic formalism but one might question the relevance of its use since the Hamiltonian is a constraint. The equipartition theorem is not applicable anymore and so the usual naming of slow and fast sector is lost. As we have argued in section 7.2.1, it is however possible to identify regions in the slow phase space for which one can associate the geometry with the slow sector and the matter eld with the fast sector. This is possible because the Hamilton constraint is required to vanish. Most importantly, the Hamilton constraint (7.3) allows for a thorough application of SAPT. Indeed, the scheme would not be applicable if the constraint contained inverse powers of the small parameter . Since equals zero one can however always rescale by appropriate factors of in order to make any inverse powers of disappear.

For the third model with inhomogeneous scalar eld degrees of freedom and a dust scalar eld the situation is di erent. We have a physical Hamiltonian instead of a constraint, and hence one should be very careful with rescaling the Hamiltonian by factors of . However, the model does not require such a rescaling. The nal Hamilton function ̃ in equation (8.69) with the mass term ̃ in equation (8.70) carries only one contribution in the mass squared that is proportional to 2 . The only inverse power in appears together with the cosmological constant Λ which we assume to be so small (or even vanishing) such that it counteracts the large factor -2 .

Finally, the cosmological model with gauge-invariant perturbations in this chapter is again a constrained system. Hence, it is possible to multiply the whole Hamilton constraint by arbitrary polynomials of . In fact, we used this trick to arrive at the nal Hamilton constraint given in equations (9.29) -(9.31). The latter is free of any anomalous terms in . Therefore, we also applied several rescalings of the homogenous and inhomogeneous variables that do however not impair the applicability of SAPT. The transformations of the inhomogeneous elds are canonical and hence preserve the canonical structure. The rescalings performed with respect to the homogeneous variables lead exactly to the -transformations of the Poisson brackets and commutator relations necessary for SAPT to work.

Eventually, let us point to an argumentation that associates the inhomogeneous degrees of freedom with a light mass while the homogeneous degrees of freedom can be identi ed with a heavy mass, [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]). The idea is the following: Consider a three-torus (which can be assumed to be as large as the whole observable Universe) and split it into 3 small spatial cubes with a vector ∈ ℝ 3 pointing to their centers respectively. Integrate the inhomogeneous cosmological eld over each of these small cubes and associate a new degree of freedom to each cube. This actually corresponds to a coarse graining procedure in which we replace the uncountably many eld degrees of freedom by countably many "cube" degrees of freedom. The same can be achieved for the inhomogeneous conjugate momentum eld. Since this is more convenenient for representing the Lagrangian and the Hamiltonian with respect to these integrated variables, one nally shifts each cube degree of freedom by the cube eld at = 0 (which reduces the number of degrees of freedom by one), and introduces the (new and old) mean eld degree of freedom obtained by integrating over the whole torus.

Then, by evaluating the Hamiltonian with respect to the new coarse-grained variables, it turns out that one can indeed associate the homogeneous (i.e., mean eld) degree of freedom with a heavy mass ∶= 3 while the other cube degrees of freedom have mass = 1 ≪ 3 = . In a nal step, one performs a unitary transformation between these cube degrees of freedom and the discrete mode degrees of freedom (which actually represent the relevant degrees of freedom for the inhomogeneous models considered here). Eventually, the homogeneous mode acquires a heavy mass while the modes associated with the inhomogeneities have a small mass. This is a proof of principle and we again refer to [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF]) for a more detailed account of this argument. We point however out that for unconstrained systems for which the equipartition theorem does not apply, this argument does not help to single out a "slow" subsystem. It allows however to identify certain regions in phase space (cf. the argument in section 7.2.1) in which the homogeneous mode factually behaves like a slow degree of freedom compared to the remaining inhomogeneous modes.

Summary

In this thesis, we have examined the question of backreaction in cosmology with a focus on the backreaction problem in inhomogeneous quantum cosmology, i.e., the question of whether and to which extent the inhomogeneous cosmological quantum elds a ect the global evolution of a quantum cosmological Universe. This is the rst important step towards a thorough incorporation of the entire interactions between the system's constituents in non-perturbative quantum gravity plus matter. We advocate to employ the formalism of SAPT which originally goes back to [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], and which allows us to rigorously study the outstanding question of backreaction in inhomogeneous quantum cosmology with a straightforward perturbative mechanism.

Our rst important accomplishment is to have shown that the SAPT scheme is indeed applicable to constrained and inhomogeneous quantum cosmological models. Thereby, the constraint itself justi es the use of the adiabatic perturbation theory. We have named the conditions under which SAPT is implementable for ini nite-dimensional quantum eld theories. In particular, in a rst step the Hilbert-Schmidt condition needs to be met. Since the usual formulation of any cosmological QFT leads to its failure, we have speci ed a strategy for how to overcome this obstacle. We were subsequently able to apply SAPT to two relevant inhomogeneous cosmological models, in particular to a perturbative scalar eld model with deparametrizing dust, and to the standard paradigm of gauge-invariant quantum cosmological perturbations. We emphasize that in the latter case, the usual Born-Oppenheimer scheme would not be applicable, and hence SAPT represents a substantial advancement in the application to cosmological perturbation theory. The resulting e ective quantum Hamilton operator, respectively constraint, have a signi cantly simpler structure than their original counterparts while still taking the interactions between the homogeneous and the inhomogeneous degrees of freedom seriously into account. Solutions of these operators will lead to approximate solutions of the full quantum gravitationalmatter problem, up to (here) errors of third order in the adiabatic perturbation parameter. Most importantly, the scheme can be carried out up to any desired perturbative order, leaving us with a powerful mechanism for approaching solutions to full quantum cosmology coupled to quantum matter.

Our ndings have also entailed several new questions and research directions. We shortly point out that the scheme includes inde nite mass squared functions for the quantum elds which, if not dealt with, lead to tachyonic instabilites. We pointed to several strategies for how to circumvent these issues and applied some of them subsequently. In particular, we performed canonical transformations, respectively embeddings, of the homogeneous cosmological variables to make these mass squared functions manifestly positive. We emphasize that such instabilities already occur in standard cosmological perturbation theory, and are by no means caused by the SAPT scheme itself. We underline that a fundamental solution to this problem could be most 10. Summary easily provided by inspecting the very transformations that led to these mass functions in the rst place. We stress that the SAPT scheme is nevertheless applicable to quantum cosmological perturbation theory, and we were able to derive e ective Hamiltonians for the above mentioned physical systems which unambigiously take the e ects of backreaction into account.

In this respect, let us brie y point to one particularly interesting and astonishing outcome of the theory: Therefore, note that all e ective Hamiltonians obtained with the SAPT formalism in this thesis admit non-vanishing backreaction terms due to the vacuum of the "fast" subsystem. Indeed, if we consider the backreaction induced by the fast vacuum (by setting ≡ 0), certain contributions to the second order e ective Hamiltonian for the "slow" subsystem do not vanish. In particular, the resulting Hamiltonian contains, in addition to the zeroth order "free" theory of the slow degrees of freedom, potential and even kinetic contributions. This dependence on the adiabatically "slow" degrees of freedom is actually reminiscent of the Casimir e ect from quantum electrodynamics which rests on the idea that the Hamiltonian with the boundary conditions of some material interfaces is di erent from the free Hamiltonian, and its dependence on the position of the boundary generates a net force. In this sense, the e ective Hamiltonians obtained by the SAPT scheme lead to a Casimir-like e ect induced by the vacuum state of the fast subsystem exercised on the slow subsystem. Before we will detail the possible avenues entailed by our work in the next chapter, we provide a more detailed recapitulation of our ndings in the following sections.

We started with an overview of the developments in physics during the 20th century that led to the construction of the current physical standard model including general relativity and the Standard Model of particle physics. Together with high precision cosmological measurement data, this model suggests that the Universe has been expanding during its entire history and was consequently a very hot and dense place at its earliest stages. A theory of the very early Universe should hence employ the methods of QFT on CST or quantum gravity. Both approaches represent active elds of research but as it currently stands, there neither exists a fully developped theory of quantum gravity nor do we know a fully established framework for describing (interacting) QFT on CST. Nevertheless, in order to make progress in the study of the very early Universe, possible ideas are to employ suitable approximation schemes and exploit known symmetries of the system. This leads to the theory of linear perturbative quantum cosmology which should be relevant when the inhomogeneities of the system are small compared to the purely homogeneous contributions to the system. The usual proceeding of these approaches consists in propagating the inhomogeneous quantum elds on a formerly xed e ective quantum background. Then, backreactions of the inhomogeneous quantum elds on the global evolution of the dynamical (quantum) background are neglected. Hence, these procedures dismiss important e ects of the interactions within the system.

Of course, the problem of neglecting backreaction plays also a role in purely classical considerations of the late time classical Universe, and we reviewed the current methods to examining such classical backreaction. There are several proposals for how to approach this question (e.g., non-perturbative and perturbative models, di erent matter con gurations etc.) but no conclusive answer has been given so far due to the mathematical and physical complexity of the problem. One important issue concerns the choice of the reference volume in the procedure of averaging which is evidently a physical and not a gauge choice.

The same question concerning backreaction e ects arises in semiclassical frameworks in which one describes the inhomogeneous cosmological perturbations using QFT and the geometry by means of classical general relativity. We reviewed the approaches of semiclassical gravity and stochastic (semiclassical) gravity that address the backreaction problem within QFT on CST. In both cases, one rst needs to nd admissible quantum states for evaluating the expectation value of the matter stress-energy tensor in order to nd, in a second step, solutions to the modi ed classical Einstein equations which include this expectation value (and possibly further "stochastic" contributions) as additional sources. Due to the generic di culties of identifying suitable states that lead to a well-de ned expectation value of the stress-energy tensor on a generically curved space time (e.g., due to UV-divergences, identifying a suitable regularization and renormalization procedure, ambiguities of quantum states in generically curved space times), this endeavor is not a trivial one, and only realized for certain (rather simplistic) matter contents. Also the second stage of nding solutions to the modi ed Einstein equations turns out to be involved as one has to deal with stability problems, in particular for non-trivial matter con gurations. Furthermore when considered from a conceptual point of view, the semiclassical approach leaves us with the question of whether one should couple purely quantum mechanical elds to a classical gravitational eld. Although, it seems to be a physically reasonable approach in situations where quantum e ects of gravity are negligible while matter shows quantum behavior, the mathematical frameworks are per se incompatible.

To approach a purely quantum mechanical discussion of the problem, we reviewed the known avenues to the question of backreaction within several approaches to quantum gravity and quantum cosmology. We focused on those ideas that employ a perturbative expansion with respect to the tiny inverse Planck mass and more precisely, those approaches that use Born-Oppenheimer like methods. Besides, we discussed the relation between those perturbative approaches and the semiclassical limit to quantum gravity which are closely related but actually independent. Therefore, the question of quantum backreaction can be considered independently of the semiclassical limit, and which we have done in this thesis. While considering the semiclassical limit is a perfectly legitimate procedure, most importantly to bridge the gap between theory and observations, it is also of unconditional relevance in order to independently understand the interactions of the system's components within a pure quantum gravitational formalism. Most of these approaches additionally employ however a semiclassical limit, choosing very speci c semiclassical ansatz solutions, or must remain on a formal level due to the high complexity of the theories. Moreover, they are subject to the limitations of the standard Born-Oppenheimer theory, namely the coupling must be provided by mutually commuting operators of the slow sector, and the perturbative scheme cannot be extended to higher, improved error estimates. We therefore strongly suggest to make use of the correspondingly revised scheme of SAPT.

To make this point clear, we reviewed the Born-Oppenheimer scheme, thereby focussing on its properties that prevent its application to the cosmological models that we have in mind, namely the requirement of a common spectrum of the coupling operators associated with one part of the system. As it turns out, SAPT overcomes these shortcomings by employing a phase space quantization scheme for this sector of the model. The latter also allows to de ne a perturbative scheme up to any desired order in the corresponding adiabatic perturbation parameter. We subsequently reviewed the basics of Weyl quantization, phase space quantum mechanics and operator-valued 10. Summary pseudodi erential calculus which are the basis of SAPT. After introducing the conditions and the construction scheme of SAPT, we gave a detailed iterative account of the construction procedure and also provided a more detailed set of formulae for the scheme up to second perturbative order.

As a rst exercise, we applied the space adiabatic perturbation formalism to a simple toy model consisting of a fast harmonic oscillator coupled to a slow anharmonic oscillator. The coupling is provided here by the potential energy of the two oscillators. The adiabatic perturbation parameter is de ned as the mass ratio 2 ∶= of the light harmonic oscillator of mass and the heavy anharmonic oscillator of mass with ≪ . Due to the equipartition theorem, the anharmonic oscillator can be identi ed as the slow subsystem compared to the fast harmonic oscillator. Although the model consists of only two degrees of freedom which a priori allows for a direct application of SAPT, the Hamilton operator does not satisfy the four outlined conditions of the SAPT scheme because it is an unbounded operator with respect to the fast subsystem, and furthermore is an anbounded function with respect to the slow phase space variables. As suggested by [START_REF] Panati | Space-Adiabatic Perturbation Theory[END_REF], we therefore de ned an auxiliary Hamiltonian whose Wigner-transformed symbol function belongs to an appropriate symbol class such that SAPT can be applied to this problem. However, this Hamiltonian is physically di erent from the original Hamiltonian, and it is not possible to assure the convergence of the perturbative series associated with the original problem by this procedure. This is due to the fact that the latter is an unbounded operator. One must hence either employ the auxiliary (inequivalent) Hamiltonian which would guarantee the convergence of the problem, or remain with the original Hamiltonian without a manifest result regarding the convergence of the perturbative series.

The resulting e ective Hamiltonian derived from the original Hamiltonian and up to second order in the adiabatic perturbations includes a standard Born-Oppenheimer zeroth order part and a non-trivial second order contribution. We solved the quantum problem for the anharmonic oscillator subject to the backreactions of the harmonic oscillator by using standard quantum mechanical perturbation theory. This is possible because the zeroth order e ective Hamiltonian has a pure point spectrum. In particular, the zeroth order problem has the form of a harmonic oscillator with an o -set energy and frequency that both depend on the backreaction of the fast oscillator. The second order e ective Hamiltonian includes kinetic as well as potential energy contributions and depends non-polynomially on the position variable. Using quantum mechanical perturbation theory, we computed the second order spectral shift which depends on the backreaction from the fast oscillator.

As a second, also still quantum mechanical model, we considered a homogeneous and isotropic cosmology with a cosmological constant and coupled to a real-valued massive scalar particle. The geometric sector of the theory naturally arises as the -scaled subsystem where the perturbative parameter arises as the ratio of the gravitational and the matter coupling constant. Since the system is completely constrained, the usual assignment of slow and fast sectors due to the equipartition theorem fails. Nevertheless, we can identify regions in the geometric phase space for which the standard interpretation of slow and fast variables is restored. In either case, we emphasize that SAPT applies as soon as one can determine a suitable perturbation parameter and if the Hamiltonian has a certain form. Namely, it should not carry inverse powers of which would impair the perturbative scheme. However, in the case of constrained systems this represents no problem as one can simply multiply the whole constraint by appropriate factors of . In the given example, such an inverse factor appears only together with the cosmological constant which we assume to be so small such that it does not harm our results. Consequently, we are able to compute an e ective quantum Hamilton constraint for the geometry including the backreaction from the scalar eld. The resulting theory at zeroth order is an inverse oscillator which is known to have a continuous real spectrum. Unfortunately, this implies that the standard quantum mechanical perturbation theory for evaluating the second order e ective Hamiltonian is not available anymore, and we leave the further examination of the spectral problem for future research.

The third model considered in this thesis nally applies SAPT to a quantum eld theoretical cosmological model. More precisely, in this model the purely homogeneous geometry is coupled to an inhomogeneous Klein-Gordon eld and a deparametrizing timelike dust eld. Besides, it includes a cosmological constant. Technically, the space adiabatic scheme rst requires us to consider the inhomogeneous QFT on a classical dynamical background. However, we show that the QFTs for di erent background con gurations are physically inequivalent in the sense that the Hilbert-Schmidt condition is violated, i.e., the vacua for di erent background con gurations cannot be related by a suitable (or even unitary) transformation -they live in di erent Hilbert spaces. This corresponds however to an (unsaid) important condition for the functioning of SAPT, more concisely the "fast" bre Hilbert spaces of the QFT's must all be the same. We nd a solution to this obstacle by employing transformations for the whole canonical system that are canonical up to second order in the cosmological perturbations, and which were previously introduced in the hybrid approach to LQC. The implementation of such transformations allows us to apply SAPT, however at the cost of introducing an e ective mass squared for the quantum eld that is an inde nite function of the homogeneous geometry. Hence, the theory admits a priori tachyonic instabilites at least for certain homogeneous con gurations.

Fortunately, such instabilities can be circumvented by means of a transformation for the geometric sector as we show in the corresponding chapter. The application of the scheme up to second perturbative order then provided us with an e ective Hamiltonian for the homogeneous sector including the backreaction of the inhomogeneous quantum Klein-Gordon eld. At zeroth order, we regained the homogeneous geometric quantum operator together with an e ective potential energy contribution from the Klein-Gordon quantum energy bands. This corresponds in fact to the standard Born-Oppenheimer outcome -which is little surprising since this model would have also allowed for an application of the Born-Oppenheimer scheme as the coupling is provided solely by the geometric con guration variable. However, the non-vanishing second order e ective Hamiltonian goes beyond the standard Born-Oppenheimer scheme and yields a number of corrections that in part depend on all possible energy bands of the Klein-Gordon eld. In particular, there are backreactions from the vacuum of the QFT. Despite the in nite sums, these contributions converge but also depend non-polynomially on both, the geometric con guration variable and its conjugate momentum which aggravate the quest for a suitable domain of the Hamilton operator and its solutions. However, it is possible to name a domain for a certain class of non-polynomial mixed operators in section 7.2.2.

The nal model and centerpiece of this thesis is a standard inhomogeneous cosmology that consists, on the one hand, of the standard homogeneous and isotropic sector of geometry and a massive Klein-Gordon scalar eld, and on the other hand, its associated gauge-invariant linear 10. Summary perturbation elds. This system is completely constrained and we hence performed a Dirac analysis in order to obtain the relevant constraints. Together with the transformations that prevent the Hilbert-Schmidt condition from failing for the corresponding QFT, we obtained a single nontrivial Hamilton constraint that describes the physical properties of the system. Its zeroth order contribution has the standard form of the purely homogeneous cosmological Hamilton constraint while its second order consists of a pure Mukhanov-Sasaki and graviton part (the vector perturbations are naturally solved by the scheme itself). Both the scalar and the graviton perturbative elds have the form of a minimally coupled real scalar eld whose e ective masses squared, again, depend on the homogeneous degrees of freedom.

First leaving the problems associated with tachyonic instabilities aside, we applied SAPT to this model and obtained an e ective Hamilton constraint for the homogeneous geometry and Klein-Gordon system that includes the backreaction from the Fock perturbations. At zeroth order we obtain the usual Born-Oppenheimer-like contributions that consist of the homogeneous constraint as well as a "bare" energy from the relevant Fock perturbation energy bands. The rst order contribution is again vanishing. A careful analysis of the second order contribution, in particular of its -scaling of every term, results in a one-line formula for the contributions proportional to 2 . At this order, any tensor backreaction vanishes and we are left with the Mukhanov-Sasaki contributions. They contain sums over the whole ∈ and with respect to the frequency function ( 2 ) -5 = ( 2 + 2 MS ) -(5∕2) . If 2 MS is positive the sum will converge. However, we saw that 2

MS is an inde nite function leading to divergencies of the symbol function. Moreover, the whole e ective symbol Hamilton constraint depends non-trivially on the homogeneous phase space variables which substantially complicates the quest for a domain of the constraint and possible solutions. Therefore, we discuss several proposals for how to overcome the issues related to the inde nite masses squared and the corresponding tachyonic instabilities. The rst proposal goes back to the point where the inde nite mass squared functions occured -namely when transforming the phase space of the theory in order to have well-de ned QFTs. In our applications, we restricted to the simplest possible transformations and followed the paths proposed by Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF]. It is hence possible that a further examination of the possible transformations yields mass functions that avoid the tachyonic instabilities right from the beginning. A second proposal is to restrict the homogeneous phase space in a suitable manner such that the masses squared become manifestly positive. This can be achieved by nding a suitable canonical transformation in the homogeneous sector that leads to a positive mass squared. Such a strategy has actually been employed for the inhomogeneous model with dust eld, and we also discussed a corresponding modi cation of the model with gauge-invariant cosmological perturbations in the last chapter. The resulting effective Hamilton constraint for the transformed homogeneous degrees of freedom is of a similar form but also contains the backreaction from the tensor modes. This is not very surprising since such a procedure is likely to change the resulting quantum theory. In fact, it is well known that a canonical transformation on the classical level will probably yield a di erent quantum theory. This is not problematic per se, the experiment has to show which choice of variables is physical.

In this respect, we also point out that transformations for positive mass squared functions possibly restrict the original phase space in that the new variables are only de ned on compact subsets of the original phase space. This is the case in the given model and consequently, the Weyl quantization procedure underlying the Moyal product and hence the SAPT scheme must be carefully revised. Again, the resulting e ective Hamilton constraint depends on MS ( 2 ) -5 , and also on T ( 2 ) -5 , which are being summed over all possible modes. Since the mass squared functions are both positive de nite in terms of the new variables no tachyonic instabilities occur and the sums converge. However, the e ective Hamilton constraint still depends in a non-trivial and non-polynomial way on the homogeneous degrees of freedom which makes the search for a domain of de nition and possible solutions of the quantized constraint more di cult. We leave this for future research, and point again to a proposal for such a domain.

We also pointed to the possibility of restricting the admissible perturbative modes for every point ( , ) in the slow phase space by hand such that the frequency functions do not admit imaginary values. This leads however to complications for the SAPT scheme which by itself relies on "connecting" the di erent bre Fock spaces on the homogeneous phase space. For example, the Moyal symbol that links subspaces of the Fock spaces at di erent points ( , ) would not be unitary anymore. A fourth possibility is to modify the Weyl quantization procedure by restricting the integrals entering the Weyl integral representation to the regions in phase space for which the mass squared functions are manifestly positive. To soften this adhoc cut-o , it is possible to multiply all symbol functions by a suitable smoothed characteristic function which however modi es the quantization procedure, and hence the physical results, itself.

Finally, we emphasized that the space adiabatic scheme applies in principle to every model that admits a suitable perturbative parameter arising as the ratio of the masses or coupling constants of two respective subsystems. In case of a true, physical Hamiltonian, the system should furthermore avoid inverse powers of the perturbative parameter as this would impair the perturbation theory. For a constrained system whose Hamiltonian is forced to vanish, it is possible to multiply the whole constraint by appropriate factors of the perturbative parameter in such cases. However, the standard reasoning that the subsystem with the heavy mass evolves with a smaller velocity than the light subsystem does not transfer to the constrained case (and is also not necessary). In fact, this reasoning goes back to the equipartition theorem and the ergodic hypothesis which are only applicable to unconstrained systems. Nevertheless, the purely homogeneous cosmological model still allows to identify the geometry with the slow sector and the scalar eld with the fast sector for certain regions in phase space. In fact, as soon as the Hamilton constraint is satis ed classically, the constraint equation serves for identifying these regions.

A similar argumentation is also possible for constrained inhomogeneous systems, see section 9.4 and [START_REF] Schander | Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation Theory[END_REF] in which case we would like to identify the homogeneous mode with the slow sector. Such an argument can be made manifest by performing a coarse graining procedure in which one subdivides the whole space time manifold (here the three-torus) into a large number 3 ∈ ℕ 3 of equally sized spatial volumes. These inhomogeneous "cube" degrees of freedom can be unitarily related to the discrete modes of the inhomogeneous eld (i.e., the relevant inhomogeneous degrees of freedom in the inhomogeneous models encountered here). Then, the purely homogeneous (mean eld) degree of freedom automatically acquires a heavy mass ∶= 3 which is much larger than the masses ∶= 1 associated with the inhomogeneous modes. This can be seen by evaluating the corresponding Hamilton constraint. Then, the above argument for identifying slow and fast sectors in certain phase space regions used for the

Outlook

In this nal section, we would like to provide the reader with some of the most interesting open questions entailed by our ndings and propose several new research directions associated with these questions (and which are also partly already under investigation).

One possible extension of our application of SAPT to the four given models is of course to pursue the perturbative scheme up to higher perturbative orders. We have worked out the scheme up to the second order but the construction of higher order estimates is possible and straightforward. We have laid the basis for such an enterprise in section 6.6 where we have detailed the iterative construction of the perturbative scheme at every possible order. In the concrete applications, we have however restricted to second order considerations since the computations become quickly heavy. Nevertheless, such extensions would be particularly interesting in order to check whether the scheme converges in an obvious way, for example one might think that the e ective Hamiltonians encountered in the inhomogeneous models will be proportional to ( 2 ) -for a suitable ∈ ℕ and hence sum up to a convergent contribution.

As pointed out earlier, the e ective Hamiltonians obtained in chapters 8 and 9 include mass functions of the perturbative quantum elds whose squares are inde nite functions of the homogeneous variables. This might lead to tachyonic instabilities. While we have implemented solutions to this issue by performing transformations within the homogeneous sector only, it seems natural to rst scrutinize the very transformations introduced in sections 8.1 and 9.1 that led to such mass functions. We emphasize once more that such inde nite mass functions already occur in the standard gauge-invariant cosmological perturbation theory, and are not exlusively due to the application of SAPT. We have pointed out that there is a tremendous freedom in the choice of such transformations, and which should be investigated further. Unfortunately, this could not be done within the time limitations of this thesis. One immediate idea leading to a more generic set of transformations is to allow these to depend on the Laplace-Beltrami operator.

Other proposals for circumventing the tachyonic instabilities would be to restrict the homogeneous phase space to regions in which the mass squared functions are manifestly positive. For such an enterprise, one needs to review the Weyl quantization scheme for these homogeneous variables and take care of possible domain issues. We underline that a thorough examination of the eld transformations as proposed before would make this investigation obsolete. Due to these inde nite mass squared functions, the nal spectral analysis of the e ective Hamiltonians obtained so far has not been carried out yet. Once this technical problem is xed, the scheme will allow us to make considerable progress in the yet unanswered question of quantum backreaction, and consequently lead to a more profound understanding of the interactions between gravity and matter in the very early Universe. Moreover, our formalism is not only a promising tool in the quest of purely quantum eld theoretical solutions for these earliest moments but is also ideally suited to bridge the gap between theory and experiment. In fact, we have seen that the adiabatic 11. Outlook limit (invoked here) and the semiclassical limit go hand in hand, which will ultimately allow us to confront our theoretical results with observations. Fortunately, there are a variety of observational ndings, such as the recent acceleration of our Universe, the dark matter problem, the 0 -and possibly the 8 -tension and many more, that reveal a discrepancy between our current cosmological models and reality. On the other hand, the ever increasing abundance of cosmological data of ever increasing precision allows us to poinpoint the shortcomings of the concordance model, and to scrutinize the possible modi cations of the in ationary ΛCDM model. In this respect, we take a novel but at the same time conservative position and pursue an approach that is long overdue: We advocate to include the yet missing fundamental backreaction in theories of quantum gravity plus matter, and to rst fully understand the underlying interactions before introducing very novel ideas into the game. This will nally enable us to tackle the question of nding possible ngerprints of quantum gravity in cosmological data. We hence venture to ask the question whether the inclusion of backreaction might possibly be su cient to account for the outstanding problems of modern cosmology, or if they will, at least, provide partial answers.

One excellent avenue in this direction is to use our quantum cosmological models with perturbations, including backreaction e ects, to generate primordial and eventually angular CMB power spectra, which can then be compared to the recent measurements by the Planck collaboration, (Aghanim et al. 2020a), or to the even more precise measurements of future CMB missions. Thereby, we might introduce a semiclassical approximation scheme while still accounting for the backreaction between inhomogeneous and homogeneous degrees of freedom. This could for example be done by introducing suitable semiclassical states with respect to the homogeneous sector. This will provide us with a standard cosmological QFT on CST in which the cosmological perturbations propagate on the homogeneous background. One other possibility to regain the semiclassical limit within SAPT was proposed by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF]: Using Egorov's theorem, we know that the evolution of the quantum mechanical perturbations with respect to the homogeneous degrees of freedom can be obtained by transporting the perturbations along the classical ow generated by the original Hamiltonian constraint. In this approach, the evolution of the perturbations will simply follow the classical trajectory provided by the energy eigenvalue of the zeroth order Hamiltonian symbol problem (up to errors of second order in ). Any higher order contribution can be obtained by expanding the Heisenberg evolution equation in a phase space quantization scheme. This scheme as proposed by [START_REF] Teufel | Adiabatic Perturbation Theory in Quantum Dynamics[END_REF] applies to unconstrained systems but by using the quantum constraint equation instead of the Heisenberg equation, one should obtain similar results for the constrained case. After following their evolution until the time of photon decoupling, intercepting the mode amplitudes will allow us to compute the power spectrum of scalar perturbations.

In this respect, we also point to the existing anomalies observed in the CMB such as the power suppresion at large angular scales, the dipolar asymmetry, a preference for odd-parity correlations and the tension associated with the lensing amplitude (Aghanim et al. 2020a). In fact, it has recently been shown that certain (quantum) modi cations of the standard model at earliest times can be responsible for these anomalies [START_REF] Agullo | Anomalies in the CMB from a cosmic bounce[END_REF], and which are particularly mediated by non-Gaussianities of the perturbations. In fact, we also expect that the scalar eld in our models will admit self-interactions when taking higher order perturbations in the inhomogeneities into account. Such self-interactions could signi cantly contribute to cosmological non-Gaussianities, and which would be naturally produced by the SAPT formalism. We point to already existing higher order schemes in the existing literature [START_REF] Brunetti | Cosmological perturbation theory and quantum gravity[END_REF]Dittrich and Tambornino 2007a,b), and which could be implemented in our SAPT scheme.

We also mention that the inclusion of backreaction with the SAPT scheme could provide a natural answer to the problem of cosmological singularities in the very early Universe. Indeed, the backreaction e ects may, even at the purely homogeneous and isotropic level, lead to modi ed quantum constraint equations that naturally solve the singularity problem. The quest for solutions of the e ective Hamiltonians derived within the scope of this thesis represents hence a project of compelling importance.

12. French Summary -Compte-Rendu Français Résumé Cette thèse aborde le problème des réactions inverses en cosmologie. Plus précisément, nous cherchons à donner une réponse à la question de la signi cation et de la forme des e ets excercés par les inhomogénéités cosmologiques sur l'évolution globale de l'Univers et cela dans un cadre purement quantique. Nous nous concentrerons donc, mais sans nous y limiter, sur les réactions inverses quantiques adaptées pour décrire les premières phases de l'Univers. Notre approche se sert d'un formalisme perturbatif et constructif nommé théorie des perturbations spatio-adiabatiques et qui s'inspire de l'approximation de Born-Oppenheimer bien connue de l'analyse spectrale des systèmes moléculaires. Cette théorie développe l'approche de Born-Oppenheimer de plusieurs façons.

L'idée sous-jacente de cette approche consiste à séparer le système en une partie adiabatiquement lente et en une partie rapide, similaire à la séparation des sous-systèmes nucléaires et électroniques dans un molécule. Une telle distinction est raisonnable si un paramètre perturbatif correspondant peut être identi é. Dans le cas des systèmes moléculaires, un tel paramètre provient de la fraction des masses des électrons légers et des noyaux lourds. En cosmologie par contre, nous identi ons le rapport des constantes de couplage de la gravitation et de la matière comme un paramètre perturbatif susceptible. Dans une première étape, nous appliquons ce formalisme spatio-adiabatique à un modèle d'oscillateurs simples ainsi qu'à un modèle cosmologique réduit de symétries comprenant un champ scalaire couplé à la géométrie d'espace-temps. Nous réussissons à dériver des opérateurs hamiltonien e ectifs dans les deux cas qui comprennent les réactions inverses du système rapide excercés au système lent. Nous nous limitons à des calculs au second ordre dans les perturbations adiabatiques.

Par la suite, nous appliquons la théorie des perturbations spatio-adiabatiques à des modèles de cosmologie inhomogène et calculons les e ets des réactions inverses des champs cosmologiques quantiques et inhomogènes sur les degrés de liberté quantiques globaux (par exemple sur le taux d'expansion de l'Univers). Pour cela, il est nécessaire d'étendre le schéma de manière adéquate pour permettre son application aux théories des champs de dimension in nie. Plus précisément, la violation de la condition de Hilbert-Schmidt dans le contexte des théories quantiques des champs empêche l'application directe du schéma. Il s'avère qu'une transformation des variables (au niveau classique) qui est canonique jusqu'au second ordre dans les perturbations cosmologiques o re une solution à ce dilemme. Ces transformations nous permettent de calculer un opérateur hamiltonien e ectif pour une théorie cosmologique des champs quantiques, préalablement déparamétrisée par un champ de poussière, ainsi que l'identi cation d'une contrainte hamiltonienne e ective pour un système comprenant des perturbations cosmologiques invariantes de jauge. Les deux objets agissent sur les degrés de liberté globaux et incluent les e ets des réactions inverses des inhomogénéités jusqu'au second ordre spatio-adiabatique.

Nous concluons par souligner qu'il est a priori inadmissible de négliger les e ets de réaction inverse en cosmologie selon nos résultats. Cependant, en raison des di cultés générales associées à la recherche de solutions pour les systèmes gravitationnels couplés à la matière, l'évaluation concrète des opérateurs trouvés ici reste le sujet de recherches futures. Un obstacle est l'apparition de carrés de masse indé nis associés aux champs perturbatifs qui sont le résultat des transformations mentionnées ci-dessus. Une autre complication dans la quanti cation nale et la recherche de solutions appropriées provient de la dépendance non-polynomiale des degrés de liberté globaux. Nous discutons ces obstacles en détail et indiquons des solutions possibles.

I. Introduction I.1. Réactions Inverses et Modèle Standard de Physique

Ce premier chapitre entend présenter succinctement les principes du "modèle standard" de la physique contemporaine qui représente également la base pour ce projet de thèse. Il s'agit d'un voyage chronologique à travers la physique des XXe et XXIe siècles.

Notre expédition commence par la découverte fondamentale d'Einstein que l'espace-temps représente une entité dynamique symbolisée par le champ gravitationnel et dont la dynamique est directement liée au contenu matériel et à l'énergie du système. Cette relation se manifeste dans les équations covariantes d'Einstein qui forment la base de la relativité générale. Malheureusement ces équations di érentielles d'ordre deux et non-linéaires ne nous o rent pas de solutions en général, mais leur application à l'Univers entier peut pro ter des symétries inhérèntes au système. Plus précisément, les observations cosmologiques indiquent que l'Univers était spatialement homogène et isotrope (dans un sense statistique) à des petites perturbations près pendant ses phases anciennes, et il l'est encore aujourd'hui sur des échelles supérieures à environ 100 Mpc. Supposons pour un instant que l'Univers était purement homogène et isotrope, cela signi e une simpli cation énorme pour les dégrés de liberté admissibles et les équations dynamiques de la théorie. Il en résulte la métrique FLRW ainsi que les équations de Friedmann-Lemaître qui déterminent l'évolution de l'Univers une fois que le contenu de matière est connu et bien sûr sous l'hypothèse d'homogénéité et d'isotropie.

Cette théorie nous conduit au modèle standard de la cosmologie contemporaine et sa simplicité a sûrement contribué à stimuler l'intérêt en cosmologie et à la collecte de données cosmologiques. La quantité des données de mesure recueillies entre-temps est remarquable et, avec les fondements théoriques, elle nous permet de retracer l'histoire de l'Univers à plus de 13 milliards d'années. Dans ce cadre, les inhomogénéités de l'Univers sont décrites par de petits champs perturbatifs. Dans les époques récentes et donc classiques, ces champs inhomogènes sont décrits comme des champs classiques qui n'impactent pas le fond homogène et isotrope. Pendant des époques plus anciennes, on suppose qu'au moins les champs de matière doivent être considérés dans un formalisme de mécanique quantique, on se sert plus précisément d'une théorie quantique des champs sur un espace-temps courbe. Durant les premières phases de l'Univers, nous partons du principe que tous les degrés de liberté doivent être considérés dans un formalisme quantique, les champs inhomogènes ainsi que les dégrés de libertés globaux. De la même manière que dans le cas purement classique, ces théories quantiques ou semi-classiques propagent les champs inhomogènes sur un fond classique ou e ectif semi-classique sans tenir compte des réactions inverses de ces inhomogénéités sur le fond.

Cela est dû, bien sûr, à la complexité des théories concernées. Danc ce chapitre, nous identi ons les di cultés diverses rencontrées pour comprendre et décrire de manière adéquate les interactions et réactions inverses des di érentes parties d'un système quantique ou semi-classique. Nous faisons référence au problème (non-résolu) de formuler une théorie des interactions quantiques au niveau mathématique, le théorème de Haag, la non-renormalisabilité de la gravité quantique perturbative, les ambiguïtés de dé nir un vide en théorie quantique des champs en espacetemps courbe et la possibilité de rencontrer des représentations inéquivalentes en théorie quantique des champs.

Nous proposons donc de recourir à un schéma d'approximation qui permet de trouver des équations e ectives ou des solutions physiques au moins approximatives. En particulier, nous abordons l'idée de l'approche de Born-Oppenheimer bien connue de la physique des molécules et qui emploie le rapport de la petite masse des électrons et la grande masse des noyaux comme un paramètre perturbatif. Cependant, l'approche considère les deux sous-système sur un niveau quantique. Nous soulignons que cette idée s'applique également aux systèmes contraints en gravitation mais qu'une extension du formalisme est nécessaire. En e et, une telle extension a déjà été élaborée pour des systèmes de mécanique quantique, à savoir la théorie des perturbations spatioadiabatique. Le but de cette thèse est d'appliquer ce formalisme aux modèles cosmologiques et de l'étendre pour une application en cosmologie inhomogène.

II. Contexte de Recherche

II.2. Relativité Générale et Cosmologie Standard

Ce chapitre entend donner un court résumé des bases de la relativité générale et de la cosmologie standard, plus précisément du modèle ΛCDM avec de l'in ation. Il s'agit, dans une première étape, d'énoncer les notions élémentaires de la relativité générale mais aussi d'introduire le formalisme ADM et l'analyse des contraintes (selon Dirac) qui sont rarement présentés dans les introductions à la relativité générale. Dans une deuxième étape, le chapitre présente les bases théoriques de la cosmologie contemporaine qui s'appuient surtout sur la relativité générale, la théorie quantique des champs en espace courbe et des principes de symétrie. Bien que la cos-mologie physique est incontestablement un des grands succès scienti ques du dernier siècle, nous insisteront nalement sur les incomplétudes et les inconsistences du modèle.

Néanmoins, on commencera par s'adresser aux grandes réussites de la cosmologie physique. L'observation du fond di us cosmologique, l'analyse du spectre des galaxies et la détection des ondes gravitationnelles des trous noirs binaires sur Terre ne représentent que quelques exemples des acquis scienti ques exceptionnelles dans le domaine de la cosmologie. La relativité générale donne un cadre théorique pour tenir compte de ces phénomènes divers. Elle est basée sur l'idée que l'espace-temps est déformé par le contenu de matière et son énergie. Les équations de champ d'Einstein exhibent ce lien entre les composantes matérielles du système et du champ gravitationnel qui représente sa géométrie. Ces équations sont soumises au principe de covariance généralisé qui constitue le principe fondamental de la théorie. Pour autant, il est souvent considéré comme désirable de suivre un formalisme hamiltonien qui permettra d'accomplir une quanti cation canonique. Le formalisme ADM réalise une telle énonciation hamiltonienne de la gravitation. Pour en déduire les solutions physiques de la théorie, il faut suivre une analyse des contraintes. Cette analyse de même qu'une quête des solutions aux équations d'Einstein (qui sont des équations di érentielles d'ordre deux et non-linéaires) s'avèrent compliquées et ne sont pas accessibles dans des situations générales.

Pour établir une théorie physique qui est néanmoins capable de décrire les phénomènes cosmologiques mentionnés ci-dessus, on suppose l'Univers spatialement homogène et isotrope et constitué d'un uide parfait. À partir des ces symétries, on peut facilement établir une métrique qui est entièrement déterminée par un facteur de courbure xé et le facteur d'échelle -c'est la métrique de Friedmann-Lemaître-Robertson-Walker. Les équations d'Einstein se réduisent aux équations de Friedmann-Lemaître qui guident l'évolution de l'Univers, concurremment avec l'équation de continuité. Tenant compte des observations et des propriétés connues de la matière, cette théorie trace l'histoire d'un Univers en expansion permanent qui débute dans un état de densité d'énergie in nie -le "Big Bang". Pour résoudre les problèmes inhérents de l'horizon et de la platitude, le modèle ressort à un champ scalaire réel -dit in ationnaire -présent aux premiers instants de l'Univers. D'ailleurs, la théorie est enrichie des perturbations cosmologiques linéaires qui tiennent compte des inhomogénéités présentes, par exemple, dans le CMB. Il est supposé que ces perturbations n'in uencent pas l'évolution du fond homogène et isotrope.

Malgré son succès, ce modèle simpliste de l'Univers présente des défauts essentiels. Du côté observationnel, on est confronté au fait que l'Univers est composé de 94% d'énergie et de matière noire dont la nature est toujours inconnue. D'ailleurs, diverses mesures de la constante de Hubble arrivent à des résultats incompatibles. Il semble donc urgent de réviser ce modèle. Notre approche (conservatrice) à ce sujet est d'inclure des réactions inverses des inhomogénéités qui ont été négligées dans une première étape.

II.3. Réactions Inverses Classiques

Ce chapitre entend exposer une introduction aux approches purement classiques des réactions inverses en cosmologie. Plus précisément, il s'agit d'évaluer des e ects des inhomogénéités cosmologiques sur l'évolution globale de l'Univers et cela dans un formalisme classique. Les méthodes présentées sont quali ées donc pour décrire des réactions inverses dans l'Univers "récent" c'està-dire après le découplage de matière et de radiation. Ce domaine de réactions inverses classiques comprend plusieurs méthodes distinctes et la théorie s'applique à des modèles de contenu de matière variés. Aussi diverses que soient les techniques, les résultats le sont aussi. En e et, il n'y pas d'accord sur l'intensité et sur la forme de ces réactions. Pour structurer notre résumé, nous avons distingué d'un côté des méthodes analytiques non-perturbatives et perturbatives et de l'autre des simulations numériques.

Nous commençons par noter que les équations de Friedmann utilisées en cosmologie standard ne sont correctement valides que dans un système qui est exactement homogène et isotrope en ces dimensions spatiales. Étant donné que notre Univers a toujours compris des inhomogénéités, par exemple apparentes dans le fond di us cosmologique et dans la distribution de matière présente, il faut réviser les équations dynamiques pour l'Univers à des échelles globales. En partant des équations d'Einstein locales dont la validité a été montrée à haute précision, il faut trouver une méthode pour en obtenir une "moyenne" judicieuse. Nous présentons les deux méthodes les plus connues: le schéma des moyennes scalaires de Buchert et la méthode covariante de Zalaletdinov dites "gravité macroscopique". Ces deux techniques s'appliquent aux modèles non-perturbatifs ainsi qu'aux modèles perturbatifs, mais dans tous les cas elles sont soumises à des ambiguités importantes pour les résultats physiques. Le choix des coordonnées et donc le choix du volume moyenné ainsi que le modèle du contenu de matière y jouent un rôle important. Nous présentons plusieurs applications de ces méthodes à des modèles divers et soulignons leurs résultats di érents. En outre, on fait référence à des études en cosmologie inhomogène qui ne consistent pas à calculer des moyennes mais qui cherchent à suivre l'évolution exacte de modèles simplistes de l'Univers. À ce sujet, on mentionne, entre autres, les modèles de "fromage suisse", de "Timescape Cosmology" et la formule de Lindquist-Wheeler d'un univers sur réseau.

Nous continuons avec les approches perturbatives, applicables dans des situations avec des inhomogénéités petites qui s'utilisent donc surtout aux phases anciennes de l'Univers. Elles permettent d'analyser le problème des réactions inverses en espace Fourier des champs de perturbations cosmologiques et donc de recourir à des spectres de puissance primordiaux pour falsi er les résultats. Étant donné l'exiguïté des perturbations, les études e ectuées indiquent que les e ets inverses sont plutôt négligeables. Néanmoins, plusieurs questions restent pendantes dues aux coupages arti ciels de modes infrarouges et ultraviolets. Au dernier paragraphe, nous abordons aussi les réactions inverses dues aux perturbations cosmologiques dans des modèles in ationnaires de l'Univers primordial. Il s'avère que ces réactions impactent la loi de Hubble-Lemaître sur des échelles locales.

Finalement, nous attirons l'attention de la lectrice/ du lecteur sur des simulations numériques qui ont seulement été e ectuées récemment. Elles retracent l'évolution des perturbations pendant les phases classiques de l'Univers pour en déduire les e ets de réactions inverses. En fonction du modèle de matière sous-jacent, ces études trouvent des e ets négligeables ou des corrections de 15% au taux d'expansion de l'Univers.

II.4. Théorie Quantique des Champs en Espace-Temps Courbe

La théorie quantique des champs est un des piliers de fondation du modèle standard de la physique contemporaine. Dans une première étape, ce chapitre entend récapituler les bases de la théorie quantique des champs en espace-temps courbe qui constitue aussi le fondement de cette thèse. À ce sujet, nous commençons par aborder une approche covariante dans un formalisme de théorie quantique des champs algébrique qui est particulièrement susceptible de tenir compte des caractéristiques d'un espace-temps courbe. D'ailleurs, nous retraçons les idées de l'approche hamiltonienne à la théorie quantique des champs ce qui est béné que pour une quanti cation canonique par la suite. La deuxième partie de ce chapitre entend donner un aperçu des approches consacrées aux réactions inverses en théorie quantiques des champs en espace-temps courbe. Dans ce contexte, ces réactions inverses sont excercées par les champs quantiques matériels à l'espacetemps courbe classique. Les deux démarches que nous présentons sont connues sous les termes de gravité semi-classique et gravité stochastique.

Comme son nom le suggère, la théorie quantique des champs en espace-temps courbe tente à énoncer un formalisme bien dé ni des champs quantiques couplés à un champ gravitationnel classique. Ceci est évidemment une entreprise très di cile vu que les notions connues de la théorie des champs quantiques en espace de Minkowski sont fortement liées aux symétries présentes dans ce cas particulier. Par exemple, l'existence et l'unicité du vide de Minkowski est due aux symétries de Poincaré. Ce fait motive donc le choix d'un formalisme mathématique qui est basé sur l'algèbre des champs quantiques et non sur la représentation du vide et des états quantiques générale dans un espace de Hilbert. Par conséquent, nous présentons les bases de la théorie algébrique pour un champ scalaire réel: les axiomes de l'algèbre du champ basés sur les solutions classiques de la théorie, les fonctions de corrélations ainsi que la dé nition d'états quantiques et leur relation aux états vectoriels standards. Nous nommons plusieurs classes d'états importantes telles que les états de Hadamard, les vides adiabatiques et les états Gaussiens. À la suite, nous passons de cette approche covariante à une formule hamiltonienne qu'on obtient en choisissant des fonctions de test particuliers. Nous élaborons la théorie en utilisant un champs scalaire sur un espace-temps cosmologique qui bien re ète les propriétes des modèles considéres ultérieurement. En particulier, nous abordons les transformations de Bogoliubov qui donnent les relations entre des représentations di érentes et dont certaines propriétés déterminent si les représentations sont unitairement équivalentes ou pas. Comme dans le cas classique considéré ci-dessus, l'impact possible des champs inhomogènes (et quantiques) sur le fond, c'est-à-dire l'espace-temps courbe, est estimé mineur.

Les approches de la gravité semi-classique et de la gravité (semi-classique) stochastique permettent d'intégrer ces e ets de réactions inverses. Leur but ultérieur est de déduire des équations d'Einstein modi ées qui comprennent les e ets des champs quantiques sur l'espace-temps courbes. Ces équations sont respectivement connus comme les équations d'Einstein semi-classiques et les équations d'Einstein-Langevin. Pour la première de ces deux méthodes, on com-mence par calculer la valeur moyenne du tenseur énergie-impulsion dans un état quantique approprié. Le résultat fournit un nouveau terme de source pour le champ gravitationnel classique et dé nit ainsi les équations d'Einstein semi-classiques. La deuxième approche calcule une action e ective pour la partie gravitationnelle du système en se servant des méthodes d'intégrations, et en déduit les équations d'Einstein-Langevin par principe de moindre action. Celles-ci comprennent les nouvelles sources de l'approche semi-classique mais le formalisme rajoute des termes dits stochastiques. Nous faisons référence à plusieurs modèles considérés dans ce contexte. À cause du formalisme mathématique lourd de ces théories et la di culté de trouver des états susceptibles en théorie quantique des champs en espace-courbe, ces résultats se limitent aux con gurations plutôt simplistes. Finalement, il faut aussi souligner que coupler un système quantique à un système purement classique est une procédure inconsistante.

II.5. Gravité et Cosmologie Quantique

Ce chapitre entend présenter plusieurs approches qui examinent des réactions inverses en gravité ou cosmologie quantique. A n de réduire le nombre d'approches à considérer ici, nous nous limitons aux formalismes qui utilisent la masse de Planck inverse ou certains rapports de celle-ci comme paramètre perturbatif.

Le chapitre commence par les approches utilisées en géometrodynamique qui considèrent la masse de Planck inverse comme un paramètre de perturbation dans les équations de Wheelerde Witt avec de la matière (c'est-à-dire les équations d'Einstein quanti ées). Ces approches recourent à une approche de Born-Oppenheimer dans une première étape en employant une certaine forme pour les solutions quantiques du problème et qui sont nécessaires pour son évaluation. Malheureusement, les équations résultantes restent si complexes qu'il faut recourir à une fonction d'approche semi-classique pour pouvoir avancer. Nous remarquons également qu'il est possible d'identi er un paramètre de temps en se servant des équations de Hamilton-Jacobi classiques. Toutes ces approches sont toutefois basées sur des approximations semi-classiques qui de façon conséquente réduisent le domaine d'application de la théorie. En particulier, cela empêche son utilisation pour des systèmes purement quantiques.

Nous faisons aussi référence à des études poursuivies en gravitation quantique à boucles qui utilisent également l'approche de Born-Oppenheimer. Leur but est surtout de dériver une théorie quantique des champs en espace-temps courbe à partir de cette approche de la gravitation quantique. Une des di cultés initialement rencontrées dans ces études est due à la non-commutativité de certaines variables, particulièrement les champs du secteur gravitationnel qui sont couplés aux champs de matière. Cela nécessite une extension de l'approche de Born-Oppenheimer qui s'applique seulement aux cas commutatifs dans ce sens précis. Dans ce contexte, Stottmeister et Thiemann ont exploité la théorie des perturbations spatio-adiabatique qui est a priori adaptée à une application en gravité quantique. Néanmoins, leurs résultats restent sur un niveau formel en raison de la structure nécessairement compliquée d'une théorie de gravité quantique.

Cependant, il est possible d'appliquer la théorie des perturbations spatio-adiabatiques aux systèmes cosmologiques, qui sont plus faciles à analyser en termes de structure mathématique. Bien que des di cultés similaires aux problèmes des théories quantiques des champs sur un espace-temps courbe se posent ici, les réductions de symétrie (avec des perturbations) permettent néanmoins une analyse des e ets de réactions inverses dans ce contexte. En particulier, lorsque l'on considère la théorie des perturbations cosmologiques standard, il est nécessaire d'utiliser la théorie des perturbations spatio-adiabatiques car, pour les mêmes raisons que celles mentionnées ci-dessus, il n'est pas possible d'appliquer l'approche de Born-Oppenheimer.

II.6. Systèmes Quantiques Couplés

Ce dernier chapitre de la partie II entend énoncer l'idée et les bases de l'approche de Born-Oppenheimer usuelle employée en physique des molécules ainsi que les bases de la théorie des perturbations spatio-adiabatiques selon Panati, Spohn et Teufel. En particulier, nous abordons les limites de la théorie de Born-Oppenheimer et expliquons pourquoi la théorie spatio-adiabatique est une extension appropriée qui permet non seulement une extension constructive à des ordres de perturbation plus élevés mais est également applicable à une classe bien plus large de systèmes. Après une introduction à la théorie spatio-adiabatique selon Panati, Spohn et Teufel, en particulier aux conditions et aux étapes de construction explicites, nous discutons le caractère itératif de la théorie et prouvons que la théorie est cohérente. De plus, nous donnons de manière très explicite les formules algébriques nécessaires pour e ectuer la construction jusqu'au deuxième ordre dans les perturbations. En n, nous appliquons la théorie à un exemple de deux oscillateurs couplés et réalisons le schéma jusqu'au second ordre.

Le chapitre commence par reproduire l'approche de Born-Oppenheimer pour une molécule simple. En partant de l'équation de Schrödinger stationnaire et en utilisant le petit rapport de masse entre les électrons et les noyaux, nous obtenons un opérateur hamiltonien perturbatif pour ce modèle. En considérant les noyaux comme des quantités classiques, la théorie donne un opérateur hamiltonien e ectif pour les électrons, qui dépend toutefois de manière paramétrique des variables nucléaires. En supposant que ce système a des solutions paramétriques, nous pouvons dériver un hamiltonien e ectif pour le noyau en le projetant sur ces solutions électroniques. Pour cela, il était nécessaire d'utiliser un état quantique qui a la forme d'un produit. La réduction de cet opérateur à l'ordre zéro ou au premier ordre des perturbations réfère à l'approche de Born-Oppenheimer.

Évidemment, cette théorie est fondée sur l'usage d'un état quantique spéci que et une extension aux ordres plus élévés dans les perturbations n'est pas possible. Dans une première étape, cela nous incite à recourir à une approximation, également basée sur le paramètre de perturbation employé ci-dessus, mais qui ne nécessite pas un état quantique spéci que. Ce sont donc les équations algébriques des opérateurs qui dé nissent cette théorie adiabatique et dynamique de premier ordre. Quoique cette théorie soit plus générale que l'approche de Born-Oppenheimer usuelle, elle est toujours limitée au premier ordre dans les perturbations adiabatiques.

Un autre défaut de cette théorie, comme pour l'approche de Born-Oppenheimer, est lié au fait que ces théories sont basées sur l'existence d'un spectre simultané des opérateurs de couplage du système lent. Plus précisément, elles s'appuient sur le fait que les opérateurs des positions des noyaux commutent. Cela limite évidemment l'applicabilité de l'approche et notamment empêche son usage pour les systèmes en cosmologie inhomogène qu'on voudrait considérer dans une étape ultérieure. Pour cela, on présente l'exemple d'une particule de Dirac couplée à un champ électromagnétique classique. La forme de l'hamiltonien motive à considérer une théorie quantique du système rapide "sur" l'espace des phases du système lent. Avant de passer à une telle approche, nous remarquons que la théorie adiabatique-temporelle est en fait comprise dans la théorie spatio-adiabatique que nous allons aborder. Plus précisément, il faut imaginer le temps comme un paramètre extérieur et la dérivée temporelle apparente dans l'équation de Schrödinger comme une perturbation de l'hamiltonien qui lui-même dépend du temps. Finalement, nous faisons aussi référence à une approche qui utilise des états cohérents pour lever la restriction aux modèles avec des couplages commutatifs. Nous démontrons les dicultés de cette procédure et soulignons que la théorie spatio-adiabatique est plus exible, simple et directe.

Avec ces résultats, nous commençons par la suite à énoncer les bases de la théorie des perturbations spatio-adiabatiques. La première partie consiste à renouveler les idées sous-jacentes à la quanti cation de Weyl qui utilise des transformations de Fourier pour établir une quanti cation des éléments de Weyl ainsi que de chaque opérateur qu'on peut en déduire. Cela mène à une représentation des opérateurs comme opérateurs intégraux si appliqués à une fonction d'onde. Le noyau d'un tel opérateur est particulièrement intéressant car il détermine uniquement, dès qu'un ordre des opérateurs est xé, l'e et de cet opérateur. En e et, il est possible de retirer la mécanique quantique entièrement sur l'espace des phases sans faire référence à une représentation sur un espace de Hilbert. Au lieu de travailler avec des opérateurs algébriques représentés sur un espace d'états quantiques, on e ectue donc les calculs dans une algèbre des fonctions sur l'espace des phases. Naturellement, le produit d'opérateurs se traduit en un produit non-commutatif nommé "produit étoile". La théorie résultante est la mécanique quantique de l'espace des phase, et elle est physiquement équivalente à l'approche usuelle. Comme en mécanique quantique standard, il est possible de récupérer la mécanique classique dans la limite ℏ → 0, mais ici la relation est plus évidente car on travaille déjà sur l'espace des phases. À l'avenant, le produit étoile a la forme d'une série entière en ℏ.

Revenons maintenant à la théorie des perturbations spatio-adiabatiques pour les systèmes couplés quantiques admettant un paramètre perturbatif qui caractérisent deux échelles énergétiques di érentes du système. Dans un tel système, il est souvent possible de redimensionner un des variables du système lent en multipliant par le paramètre perturbatif. Cette procédure par contre redimensionne aussi le produit étoile si on considère la théorie sur l'espace des phases. Il en résulte donc une théorie perturbative au niveau des équations de mouvement si on développe le produit étoile respectivement. L'idée de base de cette théorie est donc comme suivant: On divise le système dans une partie "lente" et une partie "rapide" a n de retirer la théorie quantique du système lent à l'espace des phases. L'identi cation d'un paramètre perturbatif et la redimension d'une des variables lentes aboutissent à une théorie perturbative mais purement quantique. Le système rapide est cependant toujours représenté sur un espace de Hilbert et a la forme d'une mécanique quantique usuelle. Le calcul correspondant s'appelle le calcul pseudo-di érentiel à valeurs d'opérateurs et représente une extension directe du calcul pseudo-di érentiel scalaire. Nous donnons une petite introduction à ce calcul focalisée sur les aspects importants par la suite.

Avec ces informations, nous sommes donc prêts à introduire la théorie des perturbations spatio-adiabatiques. À cet égard, nous suivons les dé nitions et le schéma de Panati, Spohn et Teufel. La première étape consiste en présenter les quatres conditions que chaque modèle est obligé de satisfaire a n que le schéma soit applicable. Puis, la théorie se divise en trois étapes: La construction d'un projecteur, d'un opérateur unitaire et un hamiltonien e ectif. Ce dernier n'agit que sur le système lente mais inclut les réactions inverses du système rapide. Le schéma est constructif et permet donc d'approcher la dynamique originale à une erreur de l'ordre souhaité près. Plus précisément, ce formalisme construit un hamiltonien e ectif dont le problème des valeurs propres est considérablement plus simple à résoudre mais dont les solutions approchent les vraies solutions à une petite erreur près.

Pour obtenir les équations de mouvement quantique qui déterminent les solutions à un erreur +1 près il faut poursuivre la démarche du schéma jusqu'à l'ordre . Nous montrons dans ce chapitre que le schéma est cohérent en soi et qu'il produit des opérateurs bien dé nis. Puis, nous considérons les étapes de construction jusqu'à l'ordre deux plus en détail et cela pour des systèmes d'une forme que nous rencontrerons à la suite. Plus concrètement, la partie rapide de ces systèmes spéci ques est donnée par un nombre ni ou in ni d'oscillateurs harmoniques dont la masse ou la fréquence dépend des variables lents. Nous utiliserons donc ces formules à nombreux endroits par la suite du manuscrit.

En n, la dernière partie de ce chapitre entend appliquer le formalisme spatio-adiabatique à un simple exemple comprenant deux oscillateurs dont l'oscillateur rapide est harmonique. Le sous-système anharmonique a la forme d'un oscillateur anharmonique. Nous suivons le schéma jusqu'au deuxième ordre et dérivons le projecteur, le symbole unitaire et l'hamiltonien e ective. Nous récupérons les résultats de Born et Oppenheimer à l'ordre zéro et des perturbations quantiques à l'ordre deux. Grâce au spectre discret de l'opérateur non-perturbé, on peut d'employer la théorie des perturbations usuelle en mécanique quantique.

III. Cosmologie Quantique et Réactions Inverses III.7. Cosmologie Homogène et Isotrope

La troisième partie de cette thèse entend présenter l'application de la théorie des perturbations spatio-adiabatiques à des modèles divers en cosmologie. Ce chapitre commence par considérer un modèle simple d'une cosmologie spatialement homogène et isotrope. Le modèle contient une partie géometrique paramétrisée par le facteur d'échelle et son moment conjugé et une constante cosmologique ainsi qu'un champ scalaire réel, également homogène et isotrope. Ce dernier est plus précisément un champ de Klein-Gordon avec une masse et un potentiel quadratique.

Dans une première étape, nous passons à un formalisme hamiltonien par une transforma-tion de Legendre pour pouvoir appliquer le schéma. D'ailleurs, nous introduisons un nouveau pair canonique pour le système géométrique qu'on peut identi er avec une variable de triades et son moment conjugé. Puis, le schéma spatio-adiabatique exige qu'une quanti cation soit formellement e ectuée pour le système matériel qui, comme annoncé avant, est un simple oscillateur harmonique dont la masse dépend de la géométrie. Avec les nouvelles variables, la partie géometrique obtient la forme d'un oscillateur inverse.

A n de pouvoir appliquer la théorie spatio-adiabatique à ce modèle, il est nécessaire de véri er les conditions énoncées au dernier chapitre. Grâce au spectre discret de l'oscillateur harmonique représentant le champ de Klein-Gordon, il est simple de prouver que le modèle admet des lacunes non-nulles entre ses bandes d'énergie, ce qui est une des prémisses de la théorie. Vu qu'il s'agit un modèle avec un nombre de degrés de liberté ni (il y'en a que deux), la première condition est satisfaite sans autre action parce que l'espace de Hilbert a naturellement la forme d'un produit tensoriel. Les deux conditions restant concernent la forme de l'hamiltonien du système. En particulier, ils exigent que la fonction symbolique de l'hamiltonien ait des valeurs dans l'espace des opérateurs bornés sur l'espace de Hilbert de la matière ainsi que la fonction symbolique soit polynomialement bornée vis-à-vis du moment cinétique et bornée vis-à-vis de la con guration de la géométrie. Cela nous oblige de dé nir un hamiltonien auxiliaire pour pouvoir garantir la convergence de la série perturbative. Cet hamiltonien auxiliaire satisfait la totalité des quatres conditions mais ne correspond que sur un domaine restreint de l'espace des phases de la géométrie à l'hamiltonien original.

Ces préparations permettent donc l'application du schéma et nous construisons le symbole d'un projecteur et d'un opérateur unitaire jusqu'à l'ordre un. En e et, cela su t pour obtenir un hamiltonien e ectif à l'ordre deux. Nous trouvons qu'à l'ordre zéro le résultat correspond toujours à la solution de l'approche de Born-Oppenheimer. Il s'agit d'un oscillateur inverse avec une énergie du point zéro non-nulle mais constante. Le premier ordre est nul alors que le deuxième ordre donne plusieurs corrections à l'ordre zéro. Cette perturbation contient non seulement un terme potentiel non-polynomiale mais aussi une contribution cinétique, également avec une dépendence non-polynomiale de la con guration de la géométrie. En se limitant à l'ordre zéro, nous pouvons utiliser les solutions connues de l'oscillateur inverse pour résoudre la contrainte. Ces solutions ne sont pas de carré sommable et le spectre consiste en la ligne réelle entière, donc il s'agit d'un spectre continu. Cele nous êmpeche d'employer la théorie des perturbations usuelle en mécanique quantique. Même pire, nous observons que les perturbations d'un spectre continu sont très instables. Nous devons donc reporter la recherche de solutions à un travail ultérieur.

En n, ce chapitre entend discuter deux propriétés de l'hamiltonien e ectif obtenu ici et qui se posent également dans les chapitres suivants. Premièrement, il faut souligner qu'il s'agit d'une contrainte et non d'un hamiltonien physique. L'existence d'un vrai hamiltonien borné par le bas est toutefois nécessaire pour la validité de l'équipartion de l'énergie. Par conséquent, il n'est plus possible d'associer une grande masse avec une dynamique lente et donc la distinction système lent -rapide se périme. Il est néanmoins possible d'utiliser la contrainte classique pour identi er des régions dans l'espace des phases pour lesquelles la géométrie représente le système lent tandis que le champ scalaire représent la partie rapide. Deuxièmement, la partie de la contrainte hamiltonienne e ective de l'ordre deux contient des fonctions non-polynomiales de la variable géométrique. Bien que la quanti cation de Weyl de ces fonctions dans sa forme intégrale ne pose pas de problème en soi, trouver un domaine admissible et des solutions de la contrainte est di cile. Ce problème sera encore aggravé par la suite, car les modèles inhomogènes produisent des fonctions qui ne sont pas polynomiales en ce qui concerne les moments conjugés. Pour cela, nous montrons qu'il est pourtant possible d'identi er des domaines susceptibles dans plusieurs cas particuliers.

III.8. Cosmologie Inhomogène avec Poussière

Ce chapitre est le premier de deux dans lesquels nous considérons des modèles cosmologiques inhomogènes. Comme précédemment, ces modèles contiennent une partie purement spatialement homogène et isotrope de la géométrie (et éventuellement de la matière), mais sont complétés par des perturbations linéaires des champs cosmologiques. Dans tous les modèles, nous considérons des degrés de liberté géométriques ainsi qu'un champ scalaire réel, mais selon la commodité, nous divisons les secteurs homogènes et inhomogènes de manière di érente et e ectuons des transformations des champs si nécessaire. Le point commun de tous ces modèles est qu'ils prennent la forme d'une théorie quantique des champs sur un espace-temps courbe dans le cadre de la théorie des perturbations spatio-adiabatiques. Le fond est représenté par des degrés de liberté homogènes et isotropes. Étant donné cette forme, le schéma spatio-adiabatique exige que chaque théorie quantique des champs soit unitairement équivalent dans le sens usuel en théorie quantique des champs pour chaque con guration des variables homogènes. Comme nous l'avons montré, ceci n'est pas le cas a priori et le schéma ne serait donc pas applicable. Heureusement, il est possible de résoudre ce problème grâce à certaines transformations des champs et des variables homogènes. Ce chapitre commence par exposer les raisons pour lesquelles la théorie spatio-adiabatique ne peut pas être appliquée en premier lieu. Nous dé nirons ensuite une classe générale de transformations qui permettent une application suivante. Par la suite, nous appliquerons une telle transformation à l'un des modèles inhomogènes avant d'exécuter la théorie des perturbations spatioadiabatiques. d'échelle qui sont très proches. C'est la condition de Hilbert-Schmidt qui est violée. Pareillement, la théorie ne nous permet pas de représenter l'opérateur du moment conjugé de la géométrie homogène comme un opérateur bien dé ni dans les espaces de Fock. Nous montrons que l'opérateur du moment appliqué au vide donne un résultat non normalisable. Cependant, il est facile d'identier la cause de ces anomalies: les fréquences et particulièrement leur contribution qui contient l'opérateur de Laplace-Beltrami dépend du facteur d'échelle. Une fois que cette dépendance est supprimée, les théories quantiques des champs admettent des représentations équivalents.

Cela nous conduit à chercher des transformations susceptibles qui sont capables de supprimer cette dépendence. A cet égard, il faut noter que la canonicité de toutes les variables impliquées doit être préservée, puisqu'en n de compte nous voulons aussi quanti er les variables homogènes. Cela exlut par exemple d'employer des transformations pour le secteur inhomogène générique qui dépendent des variables homogènes. Il semble très di cile de trouver une telle transformation qui soit exactement canonique. Nous suivons donc une approche approximative et exigeons seulement que les transformations soient canoniques jusqu'au deuxième ordre dans les champs perturbatifs. Cela est raisonnable puisque de toute façon la théorie coupe l'hamiltonien après cet ordre.

L'investigation du potentiel symplectique nous permet nalement d'énoncer une classe de transformations qui est quali ée pour résoudre les problèmes mentionnés ci-dessus (c'est-à-dire elle lève la dépendence aux variables homogènes du terme associé à l'opérateur Laplace-Beltrami) et garantit en outre que l'opérateur hamiltonien transformé reste bien dé ni. Muni de ces transformations, nous sommes prêtes à appliquer la théorie des perturbations spatio-adiabatiques.

Par la suite, nous considérons un modèle avec une partie géométrique spatialement homogène et isotrope, une constante cosmologique, un champ de poussière pour déparamétriser la théorie ainsi qu'un champ scalaire inhomogène du type Klein-Gordon. Contrairement au modèle précédent, ce modèle ne contient pas de mode homogène du champ scalaire. Dans le modèle précédent, ce mode était principalement utilisé pour démontrer la généralité des transformations. Puisque le champ de poussière déparamétrise déjà la théorie, le champ scalaire homogène peut être simplement attribué à la partie inhomogène. Avec ce modèle, nous considérons ensuite l'application de la théorie des perturbations spatio-adiabatiques.

Le schéma procède de manière très similaire comme pour les exemples précédents, avec la seule di érence que le simple oscillateur "rapide" soit remplacé par un nombre in ni mais dénombrable d'oscillateurs avec des fréquences di érentes et qui dépendent toujours de la géométrie homogène. Comme précédemment, nous sélectionnons un état dans l'espace de Fock pour calculer le symbole d'un projecteur, d'un opérateur unitaire ainsi qu'un hamiltonien e ectif jusqu'à l'ordre deux des perturbations spatio-adiabatiques. Ce dernier agit sur la géométrie homogène et inclut les e ets des réactions inverses de l'état de Fock choisi avant. L'ordre zéro de ce dernier symbole reproduit le résultat de l'approche de Born-Oppenheimer. Cette partie contient la contrainte hamiltonienne usuelle d'une géométrie homogène et isotrope (avec une constante cosmologique) ainsi que l'énergie des bandes d'énergie de l'état de Fock choisi. Le symbole d'ordre un est nul tandis que le deuxième ordre donne un résultat non-trivial. Comme pour les exemples précédents, celui-ci contient des fonctions de la géométrie homogène non-polynomiale. De surcroît, ce terme dépend de toutes les bandes d'énergie de tous les états de Fock possible. Il semble donc possible, à première vue, que cet hamiltonien ne converge pas. Heureusement, les bandes contribuent d'une manière convergente. De plus, les carrés des fonctions de fréquence sont dé nis positifs comme on peut s'y attendre dans une théorie quantique des champs standard.

Néanmoins, trouver un domaine de cet opérateur ou bien des solutions une fois qu'il a été quanti é par la méthode de Weyl sera di cile. Nous reporterons cette analyse à une recherche ultérieure. Nous notons cependant que le théorème du chapitre précédent sur l'existence de domaines pour les opérateurs non-polynomiaux pourrait être utile.

III.9. Cosmologie Inhomogène et Invariante de Jauge

Ce chapitre représente la partie principale de ce manuscrit. Tous les exemples précédents peuvent être considérés comme une préparation à l'analyse du modèle suivant. En particulier, ce chapitre entend étudier la théorie des perturbations cosmologiques standard qui est fréquemment utilisée, notamment pour comparer les modèles cosmologiques aux données mesurées. Comme pour les modèles précédents, nous considérons à nouveau une théorie consistante d'une composante géométrique homogène et isotrope, une constante cosmologique, et cette fois également un mode homogène et isotrope d'un champ scalaire du type Klein-Gordon. La partie inhomogène du modèle comporte les perturbations de la géométrie ainsi que les perturbations du champ scalaire réel. Contrairement à l'exemple précédent, ce modèle ne comporte pas de champ de poussière déparamétrisant et la théorie est donc contrainte.

Sans ce champ de poussière, il n'y pas de coordonnées privilégiées mais la répartition en mode homogène et inhomogène a brisé la covariance de la théorie. Il est possible de rétablir cette covariance à l'ordre linéaire des perturbations en utilisant des variables invariantes de jauge dans le secteur inhomogène. Premièrement, il est utile de décomposer les champs inhomogènes de cette théorie en une partie scalaire, vectorielle et tensorielle en fonction de leur comportement sous les rotations de [START_REF] Khalatnikov | Stochastic de Sitter (in ationary) stage in early Universe[END_REF]. Puis, nous pouvons introduire des variables invariantes de jauge indépendamment pour chacun de ces secteurs. Dans le secteur scalaire, il s'agit du champ de Mukhanov-Sasaki bien connu et les perturbations tensorielles sont déjà invariantes de jauge. Le problème avec les transformations de ce genre est qu'elles impliquent les variables homogènent et donc brisent la canonicité du système. Dans le cas où on considère le fond comme xé ceci ne pose pas de problème, mais dans un formalisme où les variables homogènes sont considérées comme dynamiques et soumises à une quanti cation ultérieurement, c'est inadmissible. Comme dans l'exemple précedent, il faut envisager des transformations plus génériques qui tiennent compte du secteur homogène. Par ailleurs, ces transformations doivent prévenir les anomalies rencontrées au dernier chapitre qui sont reliées à la condition de Hilbert-Schmidt. Une dernière condition est que le nouvel hamiltonien ne contienne que des termes qui soient bien dé nis sur les espaces de Fock correspondants.

Dans le contexte de ce modèle spéci que, nous pouvons nous servir de la littérature existante. En e et, dans l'approche hybride en cosmologie quantique, de telles transformations ont déjà été traitées et elles sont explicitement applicables à notre modèle. Ces transformations contiennent les transformations usuelles pour obtenir des champs perturbatifs invariants de jauge, par exemple les transformation de Mukhanov-Sasaki, mais les complètent par des transformations des variables homogènes. Ces dernières sont elles-mêmes du second ordre dans les perturbations cosmologiques et se traduisent par des termes supplémentaires de second ordre dans la nouvelle contrainte hamiltonienne de la théorie. En particulier, la nouvelle contrainte garde formellement sa forme mais la masse originale du champ de Klein-Gordon est remplacée par une fonction compliquée des variables homogènes -une nouvelle masse e ective.

Avec ces transformations, il est possible d'appliquer le schéma spatio-adiabatique. Une analyse des contraintes montre que la seule contrainte non-triviale restante consiste en la partie homogène usuelle de la théorie cosmologique plus des contributions scalaires et tensorielles de second ordre. Les deux dernières sont comme avant quadratique dans leurs variables et leurs moments conjugés, mais les masses dépendent maintenant du secteur homogène. Dans une première étape, le schéma quanti e les champs inhomogènes menant formellement à une théorie quantique des champs en espace courbe. Cette théorie contient la partie scalaire de Mukhanov-Sasaki ainsi que deux modes tensoriels. Nous appliquons le schéma de la même manière que dans le chapitre précédent. Il en résulte une contrainte hamiltonienne (d'ordre deux dans les perturbations spatio-adiabatiques) qui nécessite une analyse plus approfondie. En e et, l'hamiltonien comprend des termes qui sont d'un ordre plus élevé ce qui est dû à notre partition de l'hamiltonien dans une première étape. Après cette analyse et la suppression de termes trop élévés, nous arrivons au résultat nal. Celui-ci contient la partie usuelle complètement homogène et isotrope ainsi que l'énergie de l'état de Fock choisi au début du schéma. Il faut noter que cette énergie est une fonction compliquée du secteur homogène car elle contient des masses e ectives. À l'ordre deux, la contrainte hamiltonienne dépend de toutes les énérgies des états de Fock, plus précisément des énergies de la partie scalaire. La partie tensorielle ne contribue pas aux e ets de réactions inverses dans ce modèle. Comme pour l'exemple précédent, on peut montrer que les contributions convergent mais seulement si les masses e ectives sont dé nies positives.

Cependant, ces carrés de masse ne sont pas nécessairement positifs. Il s'agit des fonctions sur l'espace des phases homogène qui peuvent prendre des valeurs négatives sur certains domaines. Ceci est particulièrement inquiétant car des champs de carré de masse négatives sont soumis à des instabilités tachyoniques. Par la suite, nous proposons donc plusieurs stratégies pour gérer ces problèmes. Entre autres, nous proposons d'étudier plus en détail les transformations e ectuées cidessus et éventuellement de trouver d'autres transformations qui ne conduisent pas aux carrés de masse indé nis. En fait, nous nous sommes limités à une transformation particulière. Une autre possibilité consiste à e ectuer une transformation ou un plongement canonique supplémentaire dans l'espace de phase homogène qui est conçue exactement de manière à ce que les carrés de masse deviennent dé nis positifs. En e et, nous avons déjà appliqué cette stratégie au dernier chapitre. Ressemblablement, nous poursuivons cette tactique ici.

Pour ce faire, nous considérons les deux paires canoniques du secteur homogène et les transformons de sorte que les carrés de masse soient manifestement positifs. Ce faisant, l'une des variables doit être restreinte à l'union de deux intervalles compacts. L'application suivante du schéma spatio-adiabatique génère une contrainte hamiltonienne fondamentalement di érent, en particulier cette fois-ci les modes tensoriels sont également impliqués en ce qui concerne les réactions inverses d'ordre deux. Cela n'est pas surprenant puisqu'une transformation canonique classique peut très bien conduire à une théorie quantique di érente. Seulement l'expérience peut déter-miner laquelle des deux théories est l'importante. Néanmoins, ce modèle nécessite une révision: En e et, la quanti cation de Weyl ainsi que le produit étoile ne sont dé nis que pour des modèles avec un espace des phases de la forme * ℝ . Les variables fondamentales doivent donc assumer toute valeur réelle. Ce n'est évidemment plus le cas et les formules de Weyl ne sont conséquemment plus applicables. Par la suite, nous examinons donc deux solutions possibles à ce problème mais qui apportent aussi des di cultés. Cependant, une fois ces problèmes levés, nous disposons d'une contrainte hamiltonienne bien dé nie qu'il reste à quanti er dans une dernière étape. De nouveau, nous devons reporter la recherche d'un domaine de dé nition et des solutions possibles à un projet ultérieur.

Dans la dernière section de ce chapitre, nous revenons à la question de savoir comment une division en un secteur lent et un secteur rapide pourrait se présenter pour les modèles inhomogènes. Nous faisons référence à l'idée d'associer une masse lourde aux variables homogènes et une masse petite aux modes inhomogènes. Pour ce faire, il faut diviser le torus trois-dimensionel spatial en petits segments et dé nir de nouvelles variables en fonction de ceux-ci. Ces segments engendrent un nombre dénombrable de degrés de liberté et peuvent en fait être associés à une petite masse. Dans une dernière étape, ces variables peuvent être associées aux modes du champ original en utilisant une transformation unitaire. Nous avons étudié cette question plus en détail dans l'un des articles connexes.

IV. Conclusion et Perspectives d'Avenir

IV.10. Conclusion

Dans cette thèse, nous avons abordé la question des réactions inverses en cosmologie en nous concentrant sur le problème de ces e ets en cosmologie quantique inhomogène. Plus précisément, nous avons considéré la question de savoir si et dans quelle mesure les champs quantiques et inhomogènes in uencent l'évolution globale d'un Univers quantique. Pour trouver une réponse à cette question, nous avons recouru au formalisme des perturbations spatio-adiabatiques introduit par Panati, Spohn et Teufel. De surcroît, nous avons étendu ce schéma de manière appropriée a n d'inclure des modèles de théorie quantique des champs. Ce chapitre avant-dernier entend donner un résumé et une conclusion de nos résultats.

Nous avons commencé avec un historique des développements de la physique au cours du 20e et 21e siècles qui ont conduit à la construction du modèle physique contemporain comprenant la relativité générale ainsi que le modèle standard de la physique des particules. Relié aux données de mesure cosmologique de haute précision, ce modèle suggère que l'Univers a toujours été en expansion tout au long de son histoire connue et qu'il était donc très chaud et dense pendant ses premiers moments. Une théorie de l'Univers primordial devrait donc faire appel aux méthodes de la théorie quantique des champs en espace-temps courbe ou à la gravité quantique. A n de progresser dans l'étude de l'Univers primordial dans le cadre de ces deux théorie très com-plexes, il est possible d'employer des schémas approximatifs et d'exploiter les symétries connues du système. Cela conduit à la théorie des perturbations cosmologiques et quantiques qui devrait être pertinente lorsque les inhomogénéités du système sont faibles par rapport aux contributions purement homogènes du système. La procédure habituelle de ces approches consiste à propager les champs quantiques et inhomogènes sur un fond quantique e ectif préalablement xé. Ensuite, les réactions inverses des champs quantiques inhomogènes sur l'évolution globale du fond sont négligées.

Bien entendu, le problème de négliger les réactions inverses joue également un rôle dans les modèles classiques de l'Univers, et nous avons passé en revue les méthodes qui consistent à inclure ces e ets. Pourtant, ces nombreuses approches n'ont pas encore trouvé de réponse concluante. La même question se pose dans les théories semi-classiques comme la théorie quantique des champs en espace-temps courbe. Nous avons considéré les approches de la gravité semi-classique et de la gravité stochastique (semi-classique) qui abordent le problème des réactions inverses. Dans les deux cas, il faut d'abord trouver des états quantiques admissibles pour évaluer la valeur moyenne du tenseur d'énergie-impulsion de la matière a n de trouver, dans une deuxième étape, des solutions aux équations d'Einstein classiques modi ées qui incluent ces termes (et éventuellement d'autres contributions "stochastiques") comme sources supplémentaires. En raison des di cultés génériques d'identi cation des états appropriés qui conduisent à une valeur moyenne bien dé nie du tenseur d'énergie-impulsion dans un espace-temps génériquement courbé, cette entreprise n'est pas triviale et n'est réalisée que pour certains contenus de matière (plutôt simplistes). De même, la deuxième étape, qui consiste à trouver des solutions aux équations d'Einstein modiées, s'avère complexe car il faut faire face à des problèmes de stabilité. D'ailleurs, d'un point de vue conceptuel, l'approche semi-classique ne peut pas représenter la théorie nale.

Pour aborder une discussion purement quantique du problème, nous avons considéré les approches connues en gravité et en cosmologie quantique. Nous nous sommes concentrés sur les idées qui utilisent une expansion perturbative dans l'inverse de la masse Planck et, plus précisément sur les méthodes de type Born-Oppenheimer. Pour obtenir des résultats pertinents, la plupart de ces approches emploient cependant une limite semi-classique ou restent sur un niveau formel. Pour resoudre ces problèmes et pour surmonter les di cultés usuelles de l'approche de Born-Oppenheimer, nous suggérons d'utiliser le nouveau formalisme des perturbations spatioadiabatiques de Panati, Spohn et Teufel. Par la suite, nous donnons une introduction approfondie à cette théorie et fournissons tous les outils mathématiques nécessaires.

Le premier exemple auquel nous avons appliqué ce formalisme perturbatif consiste en un oscillateur harmonique rapide couplé à un oscillateur anharmonique et lent. Le couplage s'e ectue par l'énergie potentielle des deux oscillateurs. Le paramètre de perturbation adiabatique est dé ni comme le rapport de leurs masses. Bien que le modèle ne comprenne que deux dégrés de liberté, ce qui permet normalement une application directe du formalisme, nous avons modi é l'opérateur hamiltonien pour assurer la convergence de la série perturbative. Puisque les calculs restent valables localement, nous avons tout de même continué à utiliser l'hamiltonien original. L'hamiltonien e ectif résultant du schéma spatio-adiabatique comprend l'approche usuelle de Born-Oppenheimer à l'ordre zéro et des contributions supplémentaires à l'ordre deux. Nous avons pu résoudre le problème quantique de cet opérateur en utilisant la théorie des perturbations en mécanique quantique standard et avons donc implémenté des réactions inverses de l'oscillateur rapide au problème de l'oscillateur lent.

En tant que modèle cosmologique quantique, nous avons abordé une cosmologie homogène et isotrope avec une constante cosmologique et couplée à une particule scalaire massive à valeur réelle. Le secteur géométrique apparaît naturellement comme le système redimensionné par un petit paramètre perturbatif qui est donné par le rapport entre la constante de couplage gravitationnelle et la constante de couplage de la matière. Puisque le système est contrainte, l'attribution habituelle des secteurs rapides et lents due au théorème d'équipartion échoue. Néanmoins, nous pouvons identi er des régions dans l'espace des phases pour lesquelles cette interprétation est restaurée. Comme pour l'exemple précédent, nous sommes en mesure de construire une contrainte hamiltonienne e ective quantique pour la géométrie, y compris les e ets des réactions inverses du champ scalaire. La théorie résultante à l'ordre zéro est un oscillateur inverse qui a un spectre réel continu. Malheureusement, cela implique que la théorie standard des perturbations en mécanique quantique pour évaluer l'hamiltonien e ectif du second ordre n'est plus disponible, et nous laissons l'analyse plus approfondi du problème spectral pour de la recherche future.

Le troisième modèle dans cette thèse applique le formalisme adiabatique à une géométrie purement homogène et isotrope, couplée à un champ de Klein-Gordon inhomogène et à un champ de poussière. Techniquement, le schéma nous oblige d'abord à considérer une théorie quantique des champs sur un espace-temps courbe classique. Cependant, nous montrons que ces théories pour di érentes con gurations de la géométrie sont physiquement inéquivalentes dans le sens où la condition de Hilbert-Schmidt est violée. Nous trouvons une solution pour cela en employant des transformations pour l'ensemble du système canonique qui sont canoniques jusqu'au second ordre dans les perturbations cosmologiques, et qui ont été précédemment introduites dans l'approche hybride à la cosmologie quantique. L'application du schéma jusqu'au second ordre perturbatif nous fournit alors un hamiltonien e ectif pour le secteur homogène incluant les réactions inverses du champ de Klein-Gordon quantique inhomogène. À l'ordre zéro, nous retrouvons la contrainte homogène usuelle en cosmologie ainsi qu'une contribution d'énergie potentielle effective provenant des bandes d'énergie du champ de Klein-Gordon. Cela correspond en fait au résultat standard de Born-Oppenheimer. Cependant, la contrainte e ective du second ordre va au-delà et produit des corrections qui dépendent en partie de toutes les bandes d'énergie possibles du champ de Klein-Gordon. En particulier, il y a des e ets provenant du vide de la théorie quantique des champs. Ces contributions convergent mais dépendent de manière non-polynomiale à la fois de la con guration géométrique et de son moment conjugué.

Le dernier modèle est une cosmologie inhomogène qui se compose, d'une part, du secteur homogène et isotrope habituel de la géométrie et d'un champ scalaire massif de Klein-Gordon, et d'autre part, des champs de perturbations linéaires invariants de jauge. Ce système est complètement contraint et nous e ectuons donc une analyse de Dirac a n d'obtenir les contraintes pertinentes. Avec les transformations qui empêchent la condition de Hilbert-Schmidt d'échouer, nous obtenons une seule contrainte hamiltonienne. Sa contribution d'ordre zéro a la forme standard de la contrainte cosmologique purement homogène, tandis que le second ordre consiste en deux parties associées au champ de Mukhanov-Sasaki et aux gravitons. Les deux champs inhomogènes ont la forme d'un champ scalaire minimalement couplé dont les masses e ectives sont des fonctions indé nies des degrés de liberté homogènes. Nous appliquons le schéma adiabatique et obtenons une contrainte e ective pour la géométrie homogène et le système de Klein-Gordon qui inclut réactions inverses des perturbations de Fock. A l'ordre zéro, nous récupérons les contributions usuelles de Born-Oppenheimer qui consistent en la contrainte homogène ainsi qu'en une énergie supplémentaire provenant des bandes d'énergie des perturbations de Fock. Les réactions inverses des gravitons ne jouent aucun rôle à cet ordre et ils ne restent que les contributions du champ de Mukhanov-Sasaki. Celles-ci incluent les masses indé nies e ectives qui conduiraient donc à des divergences de la fonction symbolique. De plus, la contrainte dépend de manière non-triviale des variables de l'espace des phases homogène, ce qui complique considérablement la recherche d'un domaine de la contrainte et des solutions possibles.

Par conséquent, nous discutons plusieurs stratégies pour surmonter les problèmes liés aux masses carrées indé nies et aux instabilités tachyoniques correspondantes. La première proposition consiste à examiner les transformations possibles qui ont e ectivement conduit aux instabilités tachyoniques. Une deuxième proposition consiste à restreindre l'espace des phases homogène d'une manière appropriée a n que les masses au carré deviennent manifestement positives. Ceci peut être réalisé en trouvant une transformation canonique appropriée dans le secteur homogène. Une telle stratégie a été employée pour le modèle inhomogène avec champ de poussière, et nous avons également discuté une modi cation similaire du modèle avec perturbations cosmologiques invariantes de jauge. La contrainte hamiltonienne e ective qui en résulte contient également les e ets des réactions inverses des modes tensoriels. Une telle transformation peut restreindre l'espace des phases original au sens que les nouvelles variables ne sont dé nies que sur des intervalles compacts de l'espace des phases original. Par conséquent, la procédure de quanti cation de Weyl et le produit étoile doivent être soigneusement révisée. De plus, la contrainte e ective dépend toujours de manière non-triviale et non-polynomiale des degrés de liberté homogènes, ce qui rend la recherche d'un domaine de dé nition et de solutions possibles di cile. Nous reportons cette question à des recherches futures.

Pour conclure, nous soulignons que la théorie des perturbations spatio-adiabatique s'applique en principe à tout modèle qui admet un paramètre perturbatif approprié, résultant des rapports des masses ou des constantes de couplage de deux sous-systèmes. Dans le cas d'un vrai hamiltonien physique, le système doit en outre éviter les puissances inverses du paramètre perturbatif. Pour un système contraint, il est par contre toujours possible de multiplier la contrainte par des facteurs appropriés du paramètre perturbatif pour éviter des telles puissances inverses. Cependant, le raisonnement usuel selon lequel le système associé avec une masse lourde évolue à une vitesse inférieure à celle du système léger, ne s'applique pas au cas contraint.

IV.11. Perspectives d'Avenir

Malgré des nombreux résultats et conclusions obtenus au cours de cette thèse, l'application de la théorie des perturbations spatio-adiabatiques aux systèmes cosmologiques pose également certaines questions importantes et propose plusieurs nouvelles directions de recherche.

Une extension évidente de nos résultats serait de poursuivre le schéma perturbatif jusqu'à des ordres plus élevés. Nous nous sommes limités au second ordre, mais la construction de ré-sultats à des ordres supérieurs bien que possible, pourrait être laborieuse. Nous avons énoncé les bases d'une telle entreprise en e ectuant une construction itérative du schéma perturbatif pour chaque ordre possible.

Vis-à-vis des contraintes e ectives résultantes du schéma, nous soulignons aussi qu'elles dépendent de manière non-polynomiale des variables de l'espace des phases lentes ou homogènes dans tous les cas considérés ici. On peut s'attendre à ce que le degré de non polynomialité augmente avec l'ordre du schéma considéré car les coe cients de connexion non-polynomiaux contribuent à des ordres proportionnellement plus élevés. Par conséquent, pour certaines régions de l'espace des phases, l'hamiltonien admet un comportement singulier. Étant donné que l'objectif principal du schéma est de procéder avec une quanti cation de Weyl des hamiltoniens e ectifs par rapport au secteur lent ou homogène, la non-polynomialité pourrait a ecter sérieusement la recherche d'un domaine ou de solutions invariants de l'opérateur. Nous avons souligné qu'un domaine invariant peut être trouvé pour un type spéci que de fonctions symboliques.

Une autre di culté liée à ce problème précédent concerne les carrés des masses indé nis pour les modèles inhomogènes. Une solution évidente pour cela serait de réviser les transformations pour le système entier qui ont généré ces fonctions de masse e ectives. Même si nous avons commençé par considérer des transformations génériques au début, nous avons restreint nos considérations à une transformation spéci que dans les applications suivantes. Une autre stratégie est d'aborder des transformations ou des plongements canoniques par rapport à l'espace des phases homogène a n d'obtenir des fonctions de masse au carré positif. En e et, nous avons employé cette stratégie pour deux modèles inhomogènes. Pour le modèle avec des perturbations invariantes de jauge, ce plongement aboutit à la restriction d'une des variables à une union de deux intervalles compactes. En conséquence, il faut réviser les règles et la procédure de la quanti cation de Weyl attentivement.

En n, l'une des questions les plus importantes en cosmologie concerne la comparaison de nos résultats avec des données expérimentales. L'approche naturelle qui prendrait en compte les e ets quantiques de notre approche fonctionne comme suit: Partant de la contrainte e ective du modèle inhomogènes aux variables invariantes de jauge, on détermine les solutions de cette contrainte, c'est-à-dire qu'on essaie de trouver des états dans l'espace de Hilbert qui sont annihilés par la contrainte quantique. Puis, on applique la quanti cation de Weyl du symbole unitaire qu'on a construit auparavant. Cela donnera un état dans l'espace de Hilbert total et qui correspond à des vraies solutions à une erreur d'ordre trois dans le paramètre adiabatique. Idéalement, cet état suit une trajectoire semi-classique au moins par rapport aux variables homogènes. On pourrait alors extraire des trajectoires relationnelles du champs scalaire et du facteur d'échelle (cela pourrait générer un paramètre de temps interne). Finalement, on pourrait évaluer les spectres de puissances des modes inhomogènes au long de cette trajectoire. Les amplitudes des modes donneraient un spectre de puissance primordial.

Sachant que trouver ces solutions est très di cile (même impossible), on pourrait suivre un chemin plus modeste inspiré par le théorème d'Egorov. Il est basé sur l'idée que l'évolution temporelle d'une observable semi-classique en mécanique quantique suit, à des erreurs près, la trajectoire classique et a des propriétés "semi-classiques". Par conséquent, son évolution peut être obtenue par un transport le long du ux classique générés par l'hamiltonien classique. De manière similaire, on peut transporter les champs quantiques inhomogènes le long du ux généré Part V.

Appendix

In this section, we detail the application of standard quantum mechanical perturbation theory to the oscillator model of section 6.8. Our considerations are based and largely taken from [START_REF] Neuser | Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology[END_REF].

The e ective Hamilton operator of the oscillator model splits into the zeroth order contribution ĥ ℎ ℎ e ,0,R and a perturbation of second order, ĥ ℎ ℎ e ,2,R . It is possible to compute the e ect of the perturbative part of the Hamiltonian on the unperturbed spectrum { , } ∈ℕ by using standard quantum perturbation theory. The deviation of the spectrum due to ĥ ℎ ℎ e ,2,R results from computing the expectation value of ĥ ℎ ℎ e ,2,R in the unperturbed states {Ξ 0 , } ∈ℕ , namely ∆ , ∶= ⟨Ξ 0 , , ĥ ℎ ℎ e ,2,R Ξ 0 , ⟩ s . For notational reasons, we split the perturbation operator into two parts: A "kinetic" one ℎ ℎ ℎ kin e ,2,R ( , ) which depends not only on but also on the momentum , and a "potential" contribution ℎ ℎ ℎ pot e ,2,R ( ) which solely depends on . Since these operators act trivially on the light Hilbert space by projecting on the state via R , we omit the action on the light states and only consider the scalar functions ℎ kin e ,2,R ( , ) and ℎ The concrete evaluation of the potential operator ĥpot e ,2,R as an expectation value in one of the oscillator eigenfunctions Ξ , ( ) is trivial as it only depends on : In position representation, we only have to integrate its symbol ℎ pot e ,2,R ( ) over (Ξ , Ξ , )( ) = ( Ξ , ) 2 ( ). The kinetic term can be treated using the integral Weyl quantization. Thereby, the -variables turn into derivatives of the remaining -dependent part of ℎ kin e ,2,R and the eigenfunctions Ξ , ( ). In order to simplify the analysis, we use partial integration to shift all the derivatives on the functions Ξ , ( ). ( 2 + 2 ) 3 2 ( )( 2 -2 -1) - 
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 2 Figure 2.1.: The Planck 2018 CMB temperature map taken from (Aghanim et al. 2020a). Red points indicate slightly hotter and blue points slightly colder spots compared to the mean temperature. The region delineated by a grey line has been masked and inpainted due to residuals from foreground emission.
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 2 Figure 2.2.: Planck CMB foreground-subtracted angular power spectrum for temperature, taken from (Aghanim et al. 2020a). The blue lines show the best-tting standard ΛCDM model.
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 23 Figure 2.3.: Left panel: Inverse-distance-ladder constraints on the Hubble parameter and Ω m due to (Riess et al. 2019) (grey bands), compared to the result from Planck (blue) (Aghanim et al. 2020b). Contours contain 68% and 95% of the probability. The gure is taken from (Aghanim et al. 2020a) where more details are given. Right panel: Cosmic shear results with constraints on 8 and Ω m for the Dark Energy Survey (DES Y3) (green) (Amon et al. 2021), the Planck 2018 CMB data (Aghanim et al. 2020c), (yellow), as well as the KiDS-1000 COSEBIs analysis (blue) and the HSC results (red). The gure is taken from (Amon et al. 2021), see also there for more references and explanations.

  4.9) and we identify the usual creation and annihilation operators * ([ ]) ∈ ℒ(ℱ s ) and ([ ]) ∈ ℒ(ℱ s ) associated with the equivalence class of in . The vacuum state Ω ∈ ℱ s ( ) indeed co-incides with the algebraic Gaussian state through the GNS construction (Hollands and Wald

Figure 6

 6 Figure 6.1.: Qualitative illustration of the spectrum of a symbol Hamiltonian with corresponding energy bands. The graphic is inspired by (Teufel 2003).

  e , . Based on the construction rules (S1), (S2), and (S3), we can spell out the algebraic equations for determining any of the coe cients up to order ∈ ℕ, in particular for the Moyal projector these equations read (S1-1)" ( ) ⋆ ( ) -( ) = 0 ( +1 ),

  ( , ) as , ∈ ( , ) , and d , d ∈ Λ( ) denote the coordinate di erential one-forms. A connection of the Hilbert bundle is a linear map∇ ∶ Γ( ) → Γ( ⊗ * ) ∶ ↦ ∇( ) (6.114)that satis es the Leibniz rule. Here, we choose to identify the connection with the partial derivatives on in the following way: is any smooth section on . It is straightforward to show that the map is linear because the partial derivatives are linear operations. The Leibniz rule holds for any smooth function on and any smooth section , namely∇( ) = ∇( ) + ⊗ d .(6.116) 

2 2.

 2 For any ( , ) ∈ ℝ 2 , one can simply use the well-known solutions of the quantum harmonic oscillator which we denote by ∈ ℋ f , ∈ ℕ. Here, they depend on and with their associated energy functions ( , ), the eigenvalue problem can be written in the form

  .201)Recalling that the energy band functions are given for this model by ( ,

̇

  and ∶= ̇ where is the Lagrange function associated with the action = ∫ d . The Poisson brackets of the canonical variables evaluate to { , } = and { , } = 1. The Legendre transformation generates the Hamilton constraint

Theorem 7. 1 .

 1 Domain for Non-Polynomial Operators Consider the canonical pair of position and momentum operators ( ̂ , ̂ ) and use a Schrödinger representation on the Hilbert space ℋ = 2 (ℝ, d ), i.e., ( ̂ )( ) = ( ), ( ̂ )( ) = -d ( )∕d for ∈ ℋ. Then, the following holds true:

  .41) and the 's are Kronecker deltas since we are on the compact three-torus. Since the 's are eigenfunctions of the Laplace-Beltrami operator, we have that (∆ )( ) = -2 ( ), and it is possible to label the frequency operators accordingly by MS ( 2 ) and T ( 2 ) when evaluated on . It is then straightforward to express the normal-ordered Hamilton constraint symbol function ∈ ∞ (Γ s , ℒ(ℋ pert )) by means of the creation and annihilation operators and the associated frequency functions = hom ( , , , ) 1 1 1 pert + 1

  ⟨ ( ) , ⋅ ⟩ ℱ s .

  quantum oscillator solutions Ξ , ( ) in terms of Hermite polynomials { ( )} ∈ℕ , and which gives for the expectation values

  

  is the scale factor . It is often useful to use the conformal time parameter de ned by d ∶=

d ( )

  has values in the bounded operators on ℋ f due to the cut-o . Its norm is simply ( , ) which underlines that it still depends polynomially on and . Because the scheme requires a bounded Hamiltonian symbol in case of a constant gap to satisfy condition (C4), it is necessary to de ne the auxiliary Hamiltonian aux

	Obviously,	( , )		
					.178)
	In a rst step, let us de ne a cut-o Hamiltonian symbol	( , ) which truncates the sum in
	(6.178) after some nite number ∈ ℕ, i.e.,		
		( , ) ∶=	∑	( , ) ( ).	(6.179)
			=0	

  .16) are preserved under the dynamics of H or if they entail further secondary constraints. The computations are trivial since the preceding transformations imply that the rst order constraints

	H with their respective conjugate variables 1 , 1 , ℋ ̌ 1 and ℋ ̌ , are canonical variables, and hence commute with all other variables except 1 ̌ 1 and ̌ , 1 . Indeed, 1 appears in H within the
	rst order functions 1 and 1 , and thus, entails non-vanishing Poisson brackets with H 1 . Since
	these Poisson brackets enter however with an additional constraint factor, they vanish at least
	weakly, namely		
	H, ℋ 0 + H	2 + H 2 + Ȟ 2 = 0,	(9.17)

  Note that because of = 0, the variable is cyclic. Evidently, ( T ) 2 ( , ) ≥ 0 is manifestly positive but this is not the case for MS ( , ) 2 . However, after some algebraic manipulations, we can write 2 MS as a manifestly positive quantity. Therefore, we de ne ∶= , and we write Note that the constant parameters ± satisfy the inequalities + > 1 > -> 0. This tells us that if we require 2 MS > 0, we must constrain 2 by

	the form											
	( , , , ) = hom ( , , , ) 1 1 1 pert +	-		∑ ∈	MS ( 2 ) * +	∈ ∑	6 T ( 2 )	* *
													(9.100)
		2 MS = -	1 18	2 2 +	7 2 2 4 -18	4 2 2 , ( T ) 2 =	2 6 2 .	(9.86)
	2 MS =	18 4 2	+	2 -2	2 --	2	with 2 ± =	1 72	7 ±	√	33 ∈ ℝ.	(9.87)
							2 +	2 > 2 > 2 -	2 .	(9.88)
	This can most easily be achieved by introducing a new explicit parametrization with the variable
	de ned by											
									=∶				(9.89)
	for which we require that ∈ ∶= [-+ , --] ∪ [ -, + ]. With this information, let us introduce
	the two variables											
						=	,			∶= -,	(9.90)
	and pursue the aim to de ne two canonical sets of which ( , ) is one. Therefore, we also de ne
	∶= ln . By this parametrization, the symplectic structure of the homogeneous subsystem can
	be pulled back. Dropping total di erentials, we obtain	
		2 Θ = -d +	d		= -( +	) d -	d .	(9.91)
	It is manifest to identify as a new momentum variable and as its conjugate variable. Similarly,
	can serve as a new momentum variable with conjugate variable ( +	). In a nal step,
	it is useful to introduce another canonical transformation. Therefore, we de ne as a canonical
	variable											
			∶= exp( +		) = ⋅ exp	.	(9.92)

∈ ∞ (ℝ 2 ) that (Blaszak and Domanski 2012)

( -1)+ -1 ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ * ( -1) ⋆ ( -1) ⋆ ( -1) ⋆ * ( -1) + ( -1) ⋆ ( -1) ⋆ * ( -1) ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ * ( -1) ⋆ -1 + 0 ( +1 )where we pushed the terms that are quadratic in -1 to the remainder 0 ( +1 ). This strategy applies for any quadratic occurence of the symbols in (6.101) -(6.104) such that the continuation of (6.105) becomes= -( -1) ⋆ ( -1) ⋆ ( -1 + 1 1 1 f ) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ ( -1 + 1 1 1 f ) ⋆ ( -1) ⋆ * ( -1) + -1 ⋆ ( -1) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ ( -1 + 1 1 1 f ) ⋆ ( -1) ⋆ * ( -1)+ ( -1) ⋆ ( -1) ⋆ ( -1 + 1 1 1 f ) ⋆ ( ( -1) -1 1 1 f ) 2 ⋆ ⋆ * ( -1) ⋆ -1 + 0 ( +1 ).

( , ) ( , ) = ( , ) ( , ), ( , ) ∈ ℋ f . (6.121)

∶= . (7.2) 

2 + 2 + ̃ o , ( ) = ( ) (7.30)

Dans une première étape, nous choisissons un modèle avec une partie géométrique et un champ scalaire réel spatialement homogène et isotrope, ainsi que des perturbations du champ scalaire. D'ailleurs, le modèle contient, par facilité, un champ de poussière qui sert à déparamétriser la thèorie. Nous récuperons donc un hamiltonien physique. Dans ce cas, l'action ainsi que l'hamiltonien de la partie perturbative du modèle dépendent du champ et de son moment conjugé de manière quadratique mais également de la géométrie homogène, plus précisément du facteur d'échelle. Comme les hypersurfaces spatiales du modèle correspondent à des tores troisdimensionnelle et compacts, une transformation de Fourier des champs montre que le modèle coïncide avec un ensemble dénombrable d'oscillateurs harmoniques dont les fréquences dépendent du facteur d'échelle. Puis, il s'avère que les représentations de Fock "naturelles" de la théorie quantique des champs associée ne sont pas équivalents l'un à l'autre pour di érentes valeurs du facteur d'échelle. En plus de cela, nous montrons que le vide d'une des représentations ne constitue pas un état normalisable vis-à-vis d'une des autres représentations, même pas pour des valeurs du facteur
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the operators ( , , , ) with respect to while the , contain their derivatives with respect to . With the respective opposite derivative of the homogeneous Hamiltonian as a prefactor, this makes the homogeneous Poisson brackets ̇ = { hom , } hom for some observable appear such that hom = ̃ hom -1 2 ⟨ ̃ , ( ̇ -̇ ) ̃ ⟩ + ⟨ ̃ , ( ̇ -̇ ) ̃ ⟩ + ⟨ ̃ , ( ̇ -̇ + ̇ -̇ ) ̃ ⟩ where all functions on the right hand side are evaluated at ̃ , ̃ . Accordingly from the de nition of pert in equation (8.2), and with the fact that the transformations of the inhomogeneous degrees of freedom mix up con guration and momentum variables, we obtain pert in terms of the new elds ( ̃ , ̃ ). In order to unify the notation, we introduce the functions and operators ( ) ∶= -3 , ( ) ∶= , ( ) 2 ∶= -∆ + 2 3 . (8.48) In these expressions, it is allowed to replace by ̃ in agreement with the truncation after the second order in the perturbations. This gives for the perturbative part of the Hamiltonian in terms of the new elds pert = 1 2 ⟨ ̃ , ( 2 + 2 2 ) ̃ ⟩ + ⟨ ̃ , ( 2 + 2 2 ) ̃ ⟩ + 2⟨ ̃ , ( + 2 ) ̃ ⟩ where all functions depend on ̃ , ̃ . In total, the second order contributions of the transformed Hamilton function are given by

The last term is ill-de ned on any Fock space, hence its exterior round bracket must vanish. The round bracket of the second contribution is supposed to be a positive operator such that the model admits a positive kinetic energy contribution. We denote it by 2 , and it is allowed to be a function of all the homogeneous variables ( , ) as well as of the Laplace-Beltrami operator ∆. The round bracket of the rst contribution is accordingly required to be of the form 2 (-∆ + ̃ 2 ) where ̃ 2 is a function of the homogeneous variables to be determined. In fact, this will guarantee that 2 appears as a global factor of the perturbative Hamiltonian which leaves us with a Hamiltonian density of standard form with constant coe cients for the Laplacian ∆ such that the Hilbert-Schmidt condition is satis ed.

Concrete Choice and Application

To make these considerations more explicit, let us now consider the simplest choice for the operators ( , , , ) in accordance with the above requirements. These are that (i) none of the operators ( , , , ) depends on ∆, and (ii) does not depend on ∆.

This selection is in fact unique and provides the following solutions. First, it implies that must vanish because otherwise 2 appearing in the kinetic term in equation (8.49) would contain a ∆ tional part of ( , ) and of ( ) , which we de ne by hom ( , ) = -1 12 ( , ) 2 2 + Λ ( , ) 3 . (8.89) Besides, the perturbative eld contribution of the Hamilton symbol and the energy function ( ) depend on via the global prefactor ( , ) -1 , cf. equation (8.78) such that diagonal contributions from this part enter as well in the evaluation of the Poisson bracket. We denote the perturbative part of ( ) as pert,( ) . In the formula for 1 , the symbol operators 0 and 0 select the relevant contributions in ( 0 + ( ) 1 1 1 pert ) for every ∈ Σ. These restrict also the relevant contributions from ( ⟂ -( ) 1 1 1 pert ) -1 for every , namely to ( {. where we de ned the functions 1,( ), ( , ) and 2,( ), ( , ) according to

2,( ), ( , ) ∶= -

The same results can be obtained following the scheme in section 6.7. The inclusion of degenerate eigenstates and the in nite number of degrees of freedom yields

where was de ned in equation (6.134). While the sum over ( ) includes in principle all possible combinations of excitation numbers, the function ( ) ( ) is only non-vanishing for a restricted number of combinations of ( ). In particular, the only non-vanishing contributions are

which yields exactly the functions 1∕2,( ), ( , ) from above and supports the total result. Finally, it is easy to show that the symbol function 1 also trivially satis es (S1-2).

order lapse function 0 ( ) which is a Lagrange multiplier, and the scale factor associated with the zeroth order spatial metric ℎ 0 ( , ) ∶= 2 ( ) h0 ( ) with h0 ( ) being the time-independent metric on the spatial hypersurfaces (cf. section 2.2). For the at three-torus h0 is simply the Euclidean spatial metric restricted to the respective domain. Its determinant evaluates to one.

We introduce perturbations of the homogeneous degrees of freedom using a decomposition into scalar, vector and tensor parts according to their properties regarding (3)-transformations. A detailed analysis of cosmological perturbation theory within the Hamiltonian framework for closed FLRW universes was initiated and performed by [START_REF] Halliwell | The Origin of Structure in the Universe[END_REF]. Since we make use of their results in a later stage, we will stick to the de nition of perturbations used by Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Martínez | Primordial tensor modes of the early Universe[END_REF], and which is given by ( , ) =∶ 0 ( ) + 3 ( ) ( , )

Φ( , ) =∶ ( ) + ( , ).

(9.6)

The homogeneous and isotropic degrees of freedom ( 0 , , ) are functions of the time parameter while the inhomogeneous elds , , , , , , , depend on both the time variable and the spatial degrees of freedom . We denote the perturbative scalar elds by ( , , , , ), the vector degrees of freedom by and , and the tensor eld perturbations by . For notational reasons, we introduce the elds ̌ ∶= ∆ and ̌ ∶= as new degrees of freedom associated with the shift.

Legendre Transformation

We insert the perturbed variables from equations (9.3) -(9.6) into the Lagrange density in (9.1) and (9.2), and expand the Lagrangian and the action functional up to second order in the perturbations. As the three-torus does not have a boundary, total divergences vanish in the computations. The resulting action does neither depend on the velocities of the lapse variables 0 and , nor on the velocities of the shift variables ̌ and ̌ . This implies that lapse and shift are Lagrange multipliers and will hence be associated to primary constraint equations in the Hamiltonian formalism. We perform a Legendre transformation in the lines of Castelló Gomar, [START_REF] Castelló Gomar | Gauge-Invariant Perturbations in Hybrid Quantum Cosmology[END_REF] and [START_REF] Halliwell | The Origin of Structure in the Universe[END_REF], and de ne the conjugate momenta ( , ) for the homogeneous and isotropic degrees of freedom ( , ) using the Lagrange function = ∫ d ℒ which gives

We denote the corresponding phase space by Γ hom = Γ s . The perturbation elds ( , , , , ) together with their conjugate momenta ( , , , , ) span the perturbative phase space

We introduce the explicit representation of the Mukhanov-Sasaki wave function and the tensor wave functions as a product by

Recall that the creation and annihilation operators for the Mukhanov-Sasaki and the graviton modes (see equation (9.39)) depend explicitely on the homogeneous phase space variables through the masses within the frequency functions

We deduce the derivatives of the annihilation operators with respect to ∈ { , }, namely

where we implicitely de ned the functions MS , and T , in close analogy to the nite dimensional models before and the in nite dimensional dust model. The vacuum state Ω( , ) ∈ ℋ pert is de ned such that ( Ω)( , ) = 0 and ( Ω)( , ) = 0 for every ∈ and every ∈ . These equations, together with the derivatives of the annihilation and creation operators, give rise to a formula for the -derivative of the vacuum state given by

With this, it is straightforward to compute the -derivative of any excited state ( ) using that ( ) can be expressed by application of an appropriate number of creation operators on the vacuum state, see equation (9.46). Again, we de ne the derivative of the eigenstates with respect to the homogeneous parameters as an application of a connection ∈ ∞ (Γ hom , ℒ(ℋ pert )) on the global Hilbert bundle , and we write

where the summation over ( ) includes essentially all possible excitation numbers within the Fock space ℋ pert . However, there is only a countable number of ( )'s for which

is a nite set of non-vanishing excitation numbers. Therefore, let us state again that the notation ( ) is a short form for a set of nitely many non-vanishing excitation numbers that we can write more explicitely as {… , MS, 1 , MS, 2 , … , T, 1 , T, 2 , … }. Besides, we denote a set of quantum numbers which only di ers from ( ) in the single quantum number MS∕T, by ±2 by {… , MS∕T, ± 2, … }. We are therefore led to write the connection coe cients in the direction section 6.7, this symbol is given by OD (9.60) and the function ( ) ( ) ( , ) is given in line with the de nition in equation (6.134) by

(9.61)

Construction of the Moyal Unitary

We construct the unitary symbol up to rst order and therefore choose ℋ pert as the reference space pert . Its basis is determined by xing a set of numbers ( 0 , 0 ) ∈ Γ hom and de ning { ( ) ∶= ( ) ( 0 , 0 )} ( ) as the natural basis of pert . Then, we de ne the zeroth order contribution to the Moyal unitary to be

(9.62)

We also de ne the reference projection for the relevant energy band according to

We easily verify that the zeroth order conditions for the Moyal unitary are satis ed with these choices. The hermitian part of 1 ( , ) is given in terms of the connection coe cients and the fast eigenstates by

(9.64)

Since the sum runs over all possible combinations of quantum numbers, it is clear that the two contributions are equal and cancel each other. We thus have that h 1 = 0. The antihermitian part of 1 results then from employing the result for OD 1 in the well-known expression

Construction of the E ective Hamilton Constraint

We evaluate the e ective Hamilton constraint symbol according to the third condition ℎ ℎ ℎ e = ⋆ ⋆ * , and restrict our interest directly to the reference space, i.e., to ℎ ℎ ℎ e ,R = R ⋅ ℎ ℎ ℎ e ⋅ R . At It can easily be checked that the variable with =∶ serves as a conjugate momentum for , and in terms of the initial variables, it is given by = ⋅ exp -.

(9.93)

Note also that the following identity holds = -.

(9.94)

Then, we can identify the total transformation ∶ ℝ 4 ⊃ ∋ ( ̃ , ̃ ) → ( , ) ∈ ⊂ ℝ 4 , where , are subsets of ℝ 4 which maps the new variables canonically on the initial ones, and which is explicitely given by

= -, = .

(9.96)

We emphasize that in the new space adiabatic perturbation scheme, we can treat like with rescaling 2 and as with rescaling . In the new variables, the homogeneous part of the Hamilton constraint hom and the masses 2 MS and ( T ) 2 are given by hom = ( ) 2 2 exp -2 -1 6 , (9.97)

( ) 2 2 exp -4 + -2 2 --, (9.98)

( ) 2 2 exp -4 .

(9.99)

Now, both mass squared terms are manifestly positive in terms of the two new canonical sets ( , ) and ( , ). Note that is non-negative and ∈ is de ned on a union of two compact intervals in ℝ. We emphasize that this restriction of the phase space requires us to properly revise the de nition of the integral Weyl quantization procedure and the Moyal product. We will discuss this point in the sequel but rst formally apply the space adiabatic scheme to the presented model using the standard Weyl formulas available on the whole real line.

Space Adiabatic Construction Scheme

We apply SAPT to the inhomogeneous cosmological model with gauge-invariant perturbations and the appropriate transformations as discussed in section 9.1, but employ the new phase space variables ( , , , ). The Hamilton symbol from (9.42) expressed with these new variables takes
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par l'hamiltonien e ectif.

Finalement, nous soulignons également que nous avons toujours considéré des théories linéaires dans les perturbations cosmologiques. Il s'agit bien entendu d'une approximation qui n'est plus valable dès que l'amplitude des modes devient trop grande. Une extension possible serait donc de considérer des théorie des perturbations cosmologiques d'ordre supérieur.

A. Computation for the Born-Oppenheimer Approximation In this section, we give some of the calculations underlying the results of section 6.1, and which we think are bene cial for the understanding of the results, in particular because these calculations are not given in the original references by [START_REF] Chruściński | Geometric phases in classical and quantum mechanics[END_REF], Panati, Spohn, and Teufel (2007), and Stottmeister and Thiemann (2016a).

As introduced in section 6.1, we use the generalized basis states { ( 0 , ) } of the electronic Hamilton operator f ( ̂ ; , ) which are distributions on (ℝ ) ⊗ ℋ f ⊂ 2 (ℝ ) ⊗ ℋ f labelled by 0 ∈ ℝ and ∈ ℕ. For some ( ) ∈ (ℝ ) and ∈ (ℝ ) ⊂ ℋ f , they are de ned to yield ( 0 , ) ( ⊗ ) = ( 0 ) ⊗ ⟨ ( 0 ), ⟩ ℋ f . Recall that the { ( 0 , ) } build indeed a complete generalized eigenbasis of 2 (ℝ ) ⊗ ℋ f ≅ 2 (ℝ , ℋ f ) if we assume that f ( ̂ ; , ) is essentially self-adjoint on (ℝ ) ⊗ (ℝ ) (Gel'fand and N. Y. Vilenkin 1964, p. 120). Often, it is intuitive to use a formal integral notation regarding the rst tensor factor using delta distributions

We can picture elements in (ℝ , ℋ f ) as Schwartz functions over ℝ which accomodate some vector ∈ ℋ f at every point ∈ ℝ . This corresponds to a bre bundle over ℝ with bres ℋ f = ℋ f ( ) at every point ∈ ℝ . It is therefore reasonable to consider vector elds ( ) ∈ ∞ (ℝ , ℋ f ) such that for every ∈ ℝ it is ( ) ∈ ℋ f . Such a vector eld is obtained by regarding f ( ; , ) as a -dependent operator on ℋ f and determining its eigensolutions { ( )} ∈ℕ for every ∈ ℝ , namely f ( ; , ) ( ) = ( ) ( ), ∀ ∈ ℝ , ∀ ∈ ℕ .

(A.2)

For some xed 0 ∈ ℝ , the states { ( 0 )} ∈ℕ represent a certain basis choice in ℋ f . The distributions ( 0 , ) simply project on the value of the wave function at 0 and the associated basis state ( 0 ) ∈ ℋ f at this point.

As suggested in section 6.1, we consider the solution Ψ ∈ ℋ of the total Hamiltonian ̂ which satis es ̂ Ψ = Ψ . (A.3)

A. Computation for the Born-Oppenheimer Approximation

We can write its projection to some point 0 and the vector ( 0 ) by means of ( 0 , ) such that

To solve the second electronic contribution in the last line, we use the position-Schrödinger representation of the electronic Hamiltonian with respect to the nucleonic degrees of freedom, i.e., the operator acts as a multiplication operator with regard to . Furthermore, let us implement a unity operator using the complete generalized basis ( , ) , in particular

The second, electronic term in the previous equation (A.4) consequently yields

To compute the kinetic term in (A.4), it is useful to rst apply only one factor (-∇ + ( )) to Ψ ( ) which yields using the product rule of derivations

To obtain the nal matrix element, we employ also the second factor (-∇ + ( )) and eventually apply the distribution ( 0 , ) . To begin with, let us consider only the rst term of the above interim result. Using the product rule for derivations (after the second equality sign), we obtain

where we inserted a unity operator 1 1 1 ℋ f in the last step. Analogously, we apply (-∇ + ( )) and ( 0 , ) to the two latter contributions in equation (A.8) which gives

To condense the previous computations, it is convenient to introduce the matrix elements (Stottmeister and Thiemann 2016a)

The nal outcome for the matrix element ( 0 ) in equation (A.4) emanates from the interim results (A.7), (A.9) and (A.10), together with the de nitions (A.11) and (A.12), and is given by

In order to solve the -integrals, we take advantage of the series representation of the Hermite polynomials given by

to pull out the -dependence. The resulting integrals for the potential and the kinetic part have the form

where is a parameter which changes according to the choice of . It is possible to derive recursion relations for solving ( ) and ( ) for generic . The required input are the rst few integrals (0), ( 1), ( 0), ( 1) and (2) which can be solved by hand. For deriving the recursion relation, we add and subtract terms in the integral which sum up to zero but which allow to reduce the integral to terms that depend on the preceding integrals. For example, the integral ( ) unfolds to

where Γ is the standard gamma-function. A similar relation for ( ) can be found by using the same trick. By introducing an appropriate recursion ansatz, it is possible to trace any ( ) back to Γ( ) with 2 ≤ ≤ , (1) and (0), and likewise for ( ) using Γ( ) with 3 ≤ ≤ , (2), ( 1) and (0). For the ( )'s, we employ

in equation (B.6) and we determine the coe cients to be

Again, the same method applies to ( ). With these prerequisites, it is possible to determine ∆ , = ∆ kin , + ∆ pot , for any and in ℕ. To illustrate the result, the energy shift due to the potential term has the form

and likewise for the kinetic term but more lengthy. By evaluating the sums and employing the speci c ( )'s for every summand, we obtain the correct energy shift. Namely, the energy shifts for = 0 and = 1 are given by

(2 (1) -( 2)), (B.12)

with the integrals given by

Here, "erf " denotes the error function. Employing the integrals in the above equations yields the expressions in equation (6.221).

C. Weyl Quantization on a Compact Interval

In this section, we elaborate on the Weyl quantization procedure for a system whose con guration space is restricted to a compact interval. Without loss of generality, let us consider ∈ ∶= [0, 2 ]. We start by stating our conventions for the Fourier transform and the Fourier series.

In the case that ∈ ℝ and ∈ (ℝ), we choose the Fourier transform of to have the form

where ̌ ∈ (ℝ) is the Fourier transform of .

In contrast, let ∈ and ∈ 2 ( ). The Fourier series of is given by

where ̌ ∈ 2 (ℤ) are the Fourier mode coe cients. Now, let ∶ × ℝ → ℝ be a real-valued function on the phase space × ℝ. Its Weyl quantization is de ned by its Fourier transform (with respect to both variables) ̌ using Weyl elements by

In order to know the action of the Weyl elements on a wave function, one must choose one particular self-adjoint extension of the momentum operator ̂ on the interval . In fact, there is an in nite number of extensions and which can be parametrized by a complex number . This number de nes how the wave function at = 2 is related to the wave function at = 0, i.e., (0) = (2 ), see (Reed and Simon 1975b) for details. Let us consider the case = 1 here.

Then, for a wave function ∈ ∞ 0 ( ) with (0) = (2 ), the Weyl element acts as

Employing this relation into equation (C.3) when applied to a suitable wave function yields (after the rst line we omit the mod 2 for notational reasons)

where we employed the de nition of the Dirac comb in order to get the last equality. We then de ne a new variable ∶= --1 2

. Besides, we de ne a function ( , ) that selects the one particular such that the integral does not vanish for a xed con guration ( , ), i.e.,

We split the integral over into an in nite number of integrals of length [0, 2 ], and for the second equality we de ne a new variable ∶= -4 such that

( + mod 2 ).

Then, we interchange the integral over and the sum and use again the de nition of the Dirac comb which gives

(C.10)

Finally, we de ne ∶= + in order to replace and obtain

One can easily check that this de nition for the Weyl quantization leads exactly the standard Weyl prescriptions. For ( ) = and ∈ (0, 2 ), we get

(C.12)

For ( ) = , and ∈ (0, 2 ), we have

Let ( ) = , ∈ (0, 2 ). Then, we get Newton's constant Bundle of ( , )-tensors over some manifold 3

The three-torus ,51,20,52,20 scalar,52,194,195 tensor,52,194,196 vector,194,197