
HAL Id: tel-03824888
https://theses.hal.science/tel-03824888

Submitted on 21 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kalikow decomposition for counting processes with
stochastic intensity

Tien Cuong Phi

To cite this version:
Tien Cuong Phi. Kalikow decomposition for counting processes with stochastic intensity. Probability
[math.PR]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4029�. �tel-03824888�

https://theses.hal.science/tel-03824888
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
Décomposition de Kalikow pour des
processus de comptage à intensité

stochastique

Tien Cuong PHI
Laboratoire J.A. Dieudonné

Présentée en vue de l’obtention
du grade de docteur en
mathématique d’Université
Côte d’Azur
Dirigée par : Patricia
Reynaud-Bouret
et co-dirigée par : Eva
Löcherbach
Soutenue le : 14/06/2022

Devant le jury composé de
Patricia Reynaud-Bouret Supervisor DR CNRS, LJAD et NeuroMod, Université Côte d’Azur
Eva Löcherbach Co-supervisor Professor, Université Paris 1
Philippe Robert Reviewer DR INRIA, Inria de Paris
Nancy Lopes Garcia Reviewer Professor, University of Campinas, Brazil
Etienne Tanré Examinator CR INRIA, Inria Centre d’Université Côte d’Azur
Alexandre Muzy Examinator CNRS, I3S, Inria Centre d’Université Côte d’Azur

Décomposition de Kalikow pour des
processus de comptage à intensité

stochastique

Kalikow decomposition for counting
processes with stochastic intensity

Membres du jury:
Rapporteurs
Rapporteur Philippe Robert DR INRIA Inria de Paris
Rapportrice Nancy Lopes Garcia Professeure Université de Campinas, Brésil
Examinateur Alexandre Muzy CNRS I3S, Inria Centre d’Université Côte d’Azur
Examinateur Etienne Tanré CR INRIA Inria Centre d’Université Côte d’Azur
Directrice Patricia Reynaud-Bouret DR CNRS LJAD et NeuroMod, Université Côte d’Azur
Co-directrice Eva Löcherbach Professeure SAMM, Université Paris 1

iii

Abstract

The goal of this thesis is to construct algorithms which are able to simulate the activity of a neural
network. The activity of the neural network can be modeled by the spike train of each neuron, which are
represented by a multivariate point processes. Most of the known approaches to simulate point processes
encounter difficulties when the underlying network is large.

In this thesis, we propose new algorithms using a new type of Kalikow decomposition. In particular,
we present an algorithm to simulate the behavior of one neuron embedded in an infinite neural network
without simulating the whole network. We focus on mathematically proving that our algorithm returns
the right point processes and on studying its stopping condition. Then, a constructive proof shows that
this new decomposition holds for on various point processes.

Finally, we propose algorithms, that can be parallelized and that enables us to simulate a hundred of
thousand neurons in a complete interaction graph, on a laptop computer. Most notably, the complexity
of this algorithm seems linear with respect to the number of neurons on simulation.

Keywords: stochastic simulation, perfect simulation, Kalikow decomposition, Hawkes process, thin-
ning algorithm, large-scale simulation, point process, stochastic process.

iv

Résumé

L’objectif de cette thèse est de construire des algorithmes capables de simuler l’activité d’un réseau de
neurones. L’activité du réseau de neurones peut être modélisée par le train de spikes de chaque neurone,
qui sont représentés par un processus ponctuelmultivarié. La plupart des approches connues pour simuler
des processus ponctuels rencontrent des difficultés lorsque le réseau sous-jacent est de grande taille.

Dans cette thèse, nous proposons de nouveaux algorithmes utilisant un nouveau type de décomposition
de Kalikow. En particulier, nous présentons un algorithme permettant de simuler le comportement d’un
neurone intégré dans un réseau neuronal infini sans simuler l’ensemble du réseau. Nous nous concentrons
sur la preuve mathématique que notre algorithme renvoie les bons processus ponctuels et sur l’étude de sa
condition d’arrêt. Ensuite, une preuve constructive montre que cette nouvelle décomposition est valable
pour divers processus ponctuels.

Enfin, nous proposons des algorithmes, qui peuvent être parallélisés et qui permettent de simuler une
centaine de milliers de neurones dans un graphe d’interaction complet, sur un ordinateur portable. Plus
particulièrement, la complexité de cet algorithme semble linéaire par rapport au nombre de neurones à
simuler.

Mots clef: simulation stochastique, simulation parfaite, décompositiondeKalikow, processus deHawkes,
algorithme de rejet, simulation à grande échelle, processus ponctuel, processus stochastique.

v

Acknowledgements
When I write these lines, I know that it marks the end of a long andmemorable journey inmy life . I am

grateful to many people for the help and support during the various stage of writing my PhD thesis. First
and foremost, I would like to thank you the defense committee: Philippe Robert, Nancy Lopes Garcia,
Etienne Tanre, and Alexandre Muzy for crucial feedbacks which greatly improve my thesis. Manon and
Roland played a crucial role in my committee de these over 3 years, providing endless assistance and for
this, I am grateful to them.

Next and certainly, most importantly, I turn to Patricia and Eva. Surely a page, even a book, is not
enough for me to express my gratitude to them. No words are enough to express my gratitude. I always
consider them as my second mothers. They give me advice, both in math and in real life. I have known
Patricia for 5 years. Perhaps no one understands my abilities better than Patricia. Patricia taught me so
much and spent a lot of time talking to me in her limited time. In Patricia, I found constant creativity,
enthusiasm for science, and daring to take on challenges. She also taught me lessons about interaction
with other colleagues. Although I don’t have much time to work directly with Eva, in return, every time I
get to meet Eva, she always takes precious time to talk to me. Her extensive knowledge has helped me a
lot to get to where I am today.

I would like to thank the friends who have helped me a lot along this way. First, I would like to express
my sincere thanks to Gilles, who has been very supportive over the years, both in work and real life.
Next, I would like to thank Gaetan, my best friend over the years. An enthusiastic and funny friend.
Gaetan’s help certainly got me through the most difficult first year in France. I also thank Paul, who has
contributed significantly to helpingme complete the final chapter of this thesis. Paul taught me a lot about
programming and suggested me lots of good questions. I would also like to thank my friends: Cyrille,
Giulia, Julien, Stephano, Marie, etc.

I also do not forget to thankmyVietnamese friends, such as Hai, Tuan, and Lam. Thank you BienThoa,
Trang Tu, and most especially Quang Huong, we have given each other invaluable care and help. Thank
you, Phuong Anh, for editing this English manuscript.

I am forever indebted to my parents, and my siblings, who have always stand by my side and supported
me. Most especially, I would like to thank to my wonderful life partner Ngan and my son Bach, who has
greatly helped me to complete this journey. I hope that through those efforts, I instill in him the belief
that hard work does pay off.

I would like to thank my colleagues in the LJAD lab, the secretaries of the team in the laboratory like
Narymen, etc.

I know that there are many other friends, who for a moment I cannot remember. I would like to thank
all of you.

vi

List of Figures

1.1 Neuron Source: tutorix.com . 2
1.2 Action potential Source: teachmephysiology.com . 2
1.3 A neighborhood . 6

2.4 Simulation for 𝑀 = 2, 𝜎 = 1, 𝜆∅ = 0.25. For each neuron in Z2, that have been re-
quested in Steps 9:11, except the neuron of interest (0, 0), have been counted the total
number of requests, that is the number of time a 𝑉𝑇 pointed towards this neuron (Steps 9
and 11) and the total time spent at this precise neuron simulating a homogeneous Poisson
process (Step 12). Note that since the simulation is on [0, 100] the time spent at position
(0, 0) is at least 100. On (a), the summary for one simulation with below the plot, number
of points accepted at neuron (0, 0) and total number of points that have been simulated.
Also annotated on (a), with labels between 0 and 8, the 9 neurons for which the same sim-
ulation in [20,40] is represented in more details on (b). More precisely on (b), in abscissa
is time and the neuron labels in ordinate. A plain dot represents an accepted point, by the
thinning step (Step 20 of Algorithm 3), and an empty round, a rejected point. The blue
pieces of line represent the non empty neighborhoods that are in V. 27

2.5 Simulation for 4 other sets of parameters, all of them with 𝜎 = 3. Summaries as explained
in Figure 2.4. On top, 𝑀 = 2; on bottom, 𝑀 = 20. On the left part, 𝜆∅ = 0.25, on the
right part, 𝜆∅ = 0.5. 28

4.1 The cumulative distribution function (c.d.f) of the p values of Test 1 and Test 2 for OtS
algorithm. The red diagonal line is the c.d.f of uniform random variable on [0,1]. The
dashed blue line is the c.d.f of p values corresponds to Test 1. The dashed green line is the
c.d.f of p values corresponds to Test 2. 93

4.2 On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-
correlation at that number of lags. By default, the plot starts at lag = 0 and the auto-
correlation will always be 1 at lag = 0. The blue shaded region is the confidence interval
with a default value of 𝛼 = 0.05. 94

4.3 The c.d.f of the p values of of Test 1 and Test 2. The red diagonal line is the c.d.f of uniform
random variable on [0,1]. The dashed blue line is the c.d.f of p values corresponds to Test
1. The dashed green line is the c.d.f of p values corresponds to Test 2. 95

4.4 On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-
correlation at that number of lags. By default, the plot starts at lag = 0 and the auto-
correlation will always be 1 at lag = 0. The blue shaded region is the confidence interval
with a default value of 𝛼 = 0.05. 96

vii

List of Figures

4.5 The c.d.f of the p values of of Test 1 and Test 2. The red diagonal line is the c.d.f of uniform
random variable on [0,1]. The dashed blue line is the c.d.f of p values corresponds to Test
1. The dashed green line is the c.d.f of p values corresponds to Test 2. 97

4.6 On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-
correlation at that number of lags. By default, the plot starts at lag = 0 and the auto-
correlation will always be 1 at lag = 0. The blue shaded region is the confidence interval
with a default value of 𝛼 = 0.05. 98

4.7 Execution time of the algorithms sequential Ogata’s thinning, sequential Kalikow-Ogata’s
thinning, and partially parallel Kalikow-Ogata’s thinning with 2 and 4 𝑝𝑜𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠: For
each number of neurons, the algorithms are run 3 times. They simulate the process during
5s. The median values are used to perform a polynomial regression of degree 2 99

viii

Contents

� Introduction �
1.1 Mathematical background . 1

1.1.1 Point process . 1
1.1.2 Stochastic intensity . 1

1.2 Neuroscience motivation . 2
1.3 Hawkes process . 3
1.4 Simulation algorithms and Kalikow decomposition . 4

1.4.1 Ogata’s algorithm . 4
1.4.2 Kalikow decomposition . 5
1.4.3 Perfect simulation . 7

1.5 Presentation of the thesis . 9
1.5.1 Main contributions . 11
1.5.2 State of the works . 12

� Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Poten-
tially Infinite Neuronal Networks ��
2.1 abstract . 14
2.2 Introduction . 14
2.3 Event-scheduling simulation of point processes . 15
2.4 Kalikow decomposition . 18
2.5 Backward Forward algorithm . 20
2.6 Illustration . 26
2.7 Conclusion . 28
2.8 Link between Algorithm 2 and the Kalikow decomposition 28
2.9 Proof of Proposition 1 . 30

� Kalikow decomposition for counting processes with stochastic intensity ��
3.1 abstract . 34
3.2 Introduction . 34
3.3 Notation and Kalikow decomposition . 35

3.3.1 Notation and Definition . 35
3.3.2 From the decomposition at time 0 to the decomposition at any time 𝑡. 37
3.3.3 About the subspace 𝒴 . 38

3.4 Main results . 38
3.4.1 The first method . 38

ix

Contents

3.4.2 Examples of the first method . 40
3.4.3 Another method for nonlinear Hawkes processes 44
3.4.4 Examples of second method . 46

3.5 Modified Perfect Simulation algorithm . 47
3.5.1 Backward procedure . 48
3.5.2 Forward procedure . 49
3.5.3 Do we construct the right intensity? . 49
3.5.4 Why does the Backward steps end? . 51
3.5.5 The complexity of the algorithm . 51
3.5.6 Efficiency of the algorithm and discussion of the choice of the weights on a par-

ticular example . 56
3.6 Conclusion . 59

� New methods for simulating point processes. ��
4.1 Introduction . 64
4.2 Mathematical definitions and notation . 64

4.2.1 Deterministic and stochastic upper bound of intensities 65
4.2.2 Point structure . 65
4.2.3 Neuron structure . 66

4.3 First part: Deterministically bounded intensities and Parallelization 67
4.3.1 Sequential Ogata’s thinning algorithm . 68
4.3.2 Partially parallelized Ogata’s thinning algorithm 71
4.3.3 Sequential Kalikow-Ogata’s thinning algorithm 74
4.3.4 Partially parallelized Kalikow-Ogata’s thinning algorithm 78
4.3.5 Applications . 82

4.4 Second part: Stochastically bounded intensities . 84
4.4.1 Sequential Ogata’s thinning algorithm . 84
4.4.2 Sequential KalikowOgata algorithm . 86
4.4.3 Applications . 89

4.5 Numerical results . 92
4.5.1 Statistical test . 92
4.5.2 Execution time of the algorithms . 99

Bibliography ���

x

� Introduction

�.� Mathematical background

The main mathematical object underlying this thesis is the temporal point process. Let us start with some
notation and definitions.

�.�.� Point process

A point process 𝑍 inR can be viewed as a (countable) collection of times inR, denoted by (𝑇𝑛)𝑛∈Z, with
the convention that 𝑇0 ≤ 0 < 𝑇1. We will call ℬ(R) the Borel subsets ofR. For any bounded measurable
set 𝐴 belonging to ℬ(R), we denote 𝑍(𝐴) the cardinal of 𝑍 ∩ 𝐴.
Throughout this thesis, we will only consider the simple point processes. A point process 𝑍 is simple if
P(∀𝑡, 𝑍([𝑡]) = 0 or 1) = 1 with the convention that [𝑡] ∶= [𝑡, 𝑡].
The point process 𝑍 can also be defined by its associated discrete random measure 𝑑𝑍𝑡 ∶= 𝑍(𝑑𝑡), i.e the
random measure on (R, ℬ(R)) such that, for any positive measurable function 𝑓, we have ∫

R
𝑓(𝑡)𝑑𝑍𝑡 =

∑𝑘∈Z 𝑓(𝑇𝑘). Associated to the point process 𝑍, we also define a counting process 𝑍𝑡 ∶= 𝑍((0, 𝑡]) if 𝑡 ≥ 0
and 𝑍𝑡 ∶= −𝑍([𝑡, 0)) otherwise.
Moreover, associated to the process 𝑍, we consider the canonical filtration ℱ 𝑍

𝑡 defined by

ℱ 𝑍
𝑡 = 𝜎(𝑍 ∩ (−∞, 𝑡]).

If the process 𝑍 is such that, for any 𝑡
ℱ𝑡 ⊃ ℱ 𝑍

𝑡

then ℱ𝑡 is called a history of the process 𝑍. We will always be in this case in this manuscript.
It is more convenient to study point processes via their stochastic intensity, which is defined in the next

section.

�.�.� Stochastic intensity

To facilitate the writing, in this section, we will only consider the point process 𝑍 in R+. The result can
be easily extended in a more general framework.

The ℱ-predictable process (𝜙𝑡)𝑡≥0 is called ℱ-intensity of 𝑍 if 𝑍𝑡 − ∫𝑡
0 𝜙𝑠𝑑𝑠 is a ℱ𝑡 martingale. This

definition opened a new approach to study point process with abundant tools of martingale theory [2].

1

1 Introduction

In practice, to verify that 𝜙𝑡 is the ℱ intensity of the process 𝑍, we often use the following equivalent
definition of the stochastic intensity (Definition D7 of [2]).

Definition. Let 𝑍𝑡 be a point process adapted to some history ℱ𝑡 and let 𝜙𝑡 be a nonnegative ℱ𝑡 pre-
dictable process such that for all 𝑡 ≥ 0

∫
𝑡

0
𝜙𝑠𝑑𝑠 < ∞ 𝑎.𝑠

If for all nonegative ℱ𝑡 predictable 𝐶𝑡 we have

E(∫
∞

0
𝐶𝑠𝑑𝑍𝑠) = E(∫

∞

0
𝐶𝑠𝜙𝑠𝑑𝑠).

Then we say 𝑍𝑡 admits the ℱ𝑡 (predictable) intensity 𝜙𝑡.

Most of the models under consideration in this thesis come from neuroscience, that is the object of the
next section.

�.� Neuroscience motivation

Neurons or nerve cells are the fundamental units of the brain and nervous system. The human brain
has about 1011 neurons that fire electrochemical signals to communicate with each other via specialized
connections called synapses. These signals are transmitted from the cell body of a neuron through the
axon (then synapse) to the next neuron (see Figure 1.1).

Figure 1.1: Neuron
Source: tutorix.com Figure 1.2: Action potential

Source: teachmephysiology.com

A neuron receives thousands of synaptic inputs from other neurons, then sums them up (synaptic inte-
gration), if this sum is large enough (see Figure 1.2), it produces an action potential also called spike. The
action potentials of a given neuron having roughly all the the time the same shape, therefore, we are only
interested by the time of their emission. One way to present the neural activity is to record the occurrence
of spikes, which we call spike train. That is why we use point processes to model the neural activity and

2

1.3 Hawkes process

in particular we use Hawkes process, that is presented in the upcoming section. The average number of
spikes over a time unit is called firing rate.

�.� Hawkes process

Hawkes process is firstly introduced in the papers [12, 13]. It then receives a lot of interest in the last decade
and has numerous applications in various fields, to name but a few:

• in seismology [24]

• in finance [1]

• in genome analysis [31]

• spread of infection disease [5] .

Throughout this thesis, the integral ∫𝑏
𝑎 stands for ∫𝑏−

𝑎 or ∫[𝑎,𝑏) for the reason of predictability, if we
do not mention it differently. Most of the time, we will work with multivariate and non-linear Hawkes
process. Let us consider I the index set, I = {1, 2, … , 𝑁}. A multivariate Hawkes process (𝑍1, … , 𝑍𝑁)
is defined by its stochastic intensity for 𝑖 = 1, … , 𝑁, which has the following form in general:

𝜙𝑖(𝑡|ℱ𝑡) = 𝜓𝑖(∑
𝑗∈I

∫
𝑡

−∞
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠)
(1.3.1)

where 𝜓𝑖 is called the associated intensity function and ℎ𝑗𝑖 measures the influence of index 𝑗 on index 𝑖.
In neuroscience, the intensity 𝜙𝑖 represents the firing rate of neuron 𝑖. Here, the firing rate of neuron

𝑖 depends on the spikes of all the neurons before time 𝑡. This formula imitates very well the synaptic
integration procedure of a neural network. In addition, for mathematical purposes, we often assume that
𝜓𝑖 is continuous function (or even Lipschitz for the reason of stability [3, 4]). The continuity assumption
here also ensures that the 𝜙𝑖 is predictable [32]. In addition, if we do not state otherwise, we always assume
that ℎ𝑗𝑖 is a 𝐿1 function, i.e ‖ℎ𝑗𝑖‖𝐿1 = ∫∞

0 |ℎ𝑗𝑖(𝑡)|𝑑𝑡 < ∞. We also suppose that 𝜓𝑖 is locally integrable
to avoid explosion [32].

In the following, wewill present several type ofHawkes processes. Webeginwith linearHawkes process,
which is obtained by considering the function 𝜓𝑖 in Equation 1.3.1 has the following form 𝜓𝑖(𝑥) ∶= 𝜇𝑖 +𝑥.
Then the conditional intensity is given by

𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

−∞
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠 (1.3.2)

wherewe keep all conditions as stated earlier, 𝜇𝑖 is a positive number, which represents for the spontaneous
rate of the neuron 𝑖 and ℎ𝑗𝑖 is positive.

In neuroscience, it is reasonable to do not take into account the spikes which appear far from the time
of consideration. It leads us to consider the linear Hawkes process with bounded support of interaction
𝐴, with intensity

𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

𝑡−𝐴
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠 (1.3.3)

3

1 Introduction

where 𝐴 is a given positive number.
As notice in the Figure 1.2, after a neuron emits a spike, the firing rate of this neuron rapidly decreases

to zero. Then it follows by a refractory period, in which the neuron is unable to produce a new spike. This
can be modelled by the nonlinear Hawkes process with hard refractory period [29] with intensity

𝜙𝑖(𝑡|ℱ𝑡) = 𝜓𝑖(∑
𝑗∈I

∫
𝑡

−∞
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠)
1𝑡−𝐿𝑖(𝑡)>𝛿 (1.3.4)

where 𝛿 is a positive number, representing the length of the refractory period and 𝐿𝑖(𝑡) = sup{𝑇 ∈
𝑍 𝑖 such that 𝑇 < 𝑡} the last spiking time before time 𝑡.

In this thesis, to simplify, we only focus on the positive interaction function ℎ𝑗𝑖, means we only consider
the excitatory effects of neurons. However, our results are possible extended to the case of excitatory and
inhibitory also. We left it for future works.

In mathematics, Hawkes processes have been extensively studied in probability theory, statistics and
computer science:

1. stationary and stability [3]

2. long time behavior [32]

3. mean field limits [4]

4. simulation [19, 20, 21]

We focus in particular on the simulation ofHawkes processes. Simulation helps us to predict the pattern
of point process in the future, for model checking, see the further discussions in [30]. In particular, brain
simulation is received a lot of attentions recently. There exists several grand projects such as the Human
Brain Project in Europe, the Brain Mapping in Japan and the Brain Initiative in the United States. In the
next section, we present simulation algorithms of point processes.

�.� Simulation algorithms and Kalikow decomposition

�.�.� Ogata’s algorithm

We begin with the simulation algorithm proposed by Lewis and Shedler [18] in 1979, which is applied
to nonhomogeneous Poisson processes. Inspired by this method, two years later, Ogata [23] introduced
a thinning algorithm to simulate point processes having stochastic intensity. Throughout this thesis, we
call classical Ogata’s algorithm to refer to this method. In the following, we rewrite Proposition 1 of [23].

Say we want to simulate a multivariate point process 𝑍 = (𝑍 𝑖)𝑖 with intensity (𝜙𝑖)𝑖∈I in the time interval
[0, 𝑡𝑚𝑎𝑥] Moreover, we assume that there is no point before time 0, i.e 𝑍𝑖

0 = 0, ∀𝑖. Then Proposition 1 of
[23] can be rewritten as follow.

Proposition. There exist a ℱ𝑡 predictable process Λ𝑡 which is defined path-wise such that

𝑁

∑
𝑖=1

𝜙𝑖(𝑡|ℱ𝑡) ≤ Λ𝑡

4

1.4 Simulation algorithms and Kalikow decomposition

and we set

𝜙𝑁+1(𝑡|ℱ𝑡) = Λ𝑡 −
𝑁

∑
𝑖=1

𝜙𝑖(𝑡|ℱ𝑡).

Let us denote 𝑇1, 𝑇2, … , 𝑇Π𝑡𝑚𝑎𝑥
be the points of process Π with the intensity Λ𝑡. We assign a mark 𝑝 =

1, … , 𝑁 + 1 to point 𝑇𝑘 if

𝑝−1

∑
𝑖=1

𝜙𝑖(𝑇𝑘|ℱ𝑇𝑘
)/Λ𝑇𝑘

< 𝑈𝑘 ≤
𝑝

∑
𝑖=1

𝜙𝑖(𝑇𝑘|ℱ𝑇𝑘
)/Λ𝑇𝑘

where 𝑈𝑘 is an uniform random variable on [0, 1]. Then the points with mark 𝑝 = 1, … , 𝑁 forms a
multivariate point process with intensity (𝜙𝑖(𝑡|ℱ𝑡))𝑖.

This method is quite generic, since it does not need any specific condition on the conditional intensity
but it contains two main drawbacks. First, we can not obtain a stationary version of the Hawkes process
since we start at time 0 without a point before 0. More importantly, at each point 𝑇𝑘, in order to assign a
mark, we need to compute the cumulative sum of the intensities. However, this cumulative sum becomes
extremely hard to compute when the number of neurons 𝑁 is big. This is one of the main motivations of
the thesis, keeping in mind that the neural network of the humain brain is of size 𝑁 = 1011. Recently,
there exists another approach byMascart et al. [19], in which, they also aim to simulate such a huge neural
network. Their algorithm is a variant of Ogata’s algorithm. However, their network needs to be sparse,
in the sense that one neuron is only connected to very few other neurons. In our thesis, we can consider
a neural network which is complete, i.e each neuron connects to all the other neurons and we can even
consider the infinite networks. In the next section, we present how we are able to do so.

�.�.� Kalikow decomposition

This section is devoted to introducing the Kalikow decomposition to improve the classical Ogata thinning
algorithm. To begin, we define what a neighborhood is. Intuitively, the neighborhood of (𝑖, 𝑡) is a part of
the past that is needed to compute the stochastic intensity 𝜙𝑖(𝑡|ℱ𝑡). The rigorous mathematical definition
can be found in Chapter 2 and 3.

5

1 Introduction

(a) (b)

(c)

Figure 1.3: A neighborhood

6

1.4 Simulation algorithms and Kalikow decomposition

In Figure 1.3, we present three different possibilities of a space-time neighborhood. Note that, in an
informal way, the intensity function 𝜙𝑖(𝑡|ℱ𝑡) represents for the probability obtaining a new point in a
small interval [𝑡, 𝑡 + 𝑑𝑡] given the past before time 𝑡. To decide whether we have a new point in [𝑡, 𝑡 + 𝑑𝑡],
we need to look at either a neuron and a fraction of time before 𝑡 (the green line in Figure 1.3(a)), two
neurons and two different fractions of times before 𝑡 (the blue lines in Figure 1.3(b)) or empty set (Figure
1.3(c)), i.e independent to the past.

The whole point of Kalikow decomposition is to pick at random a neighborhood in a family of space-
time neighborhoods (neighborhood family) according to a certain distribution. This can be done thanks
to the Kalikow decomposition, which is presented in the following.

We say that a stochastic intensity 𝜙𝑖(𝑡|ℱ𝑡) admits a Kalikow decomposition with respect to the neigh-
borhood family V if there is a sequence of function 𝜙𝑣𝑘

𝑖 (𝑡|ℱ𝑡) which only depends on the information in
the neighborhood 𝑣𝑘 and the probability distribution on V, 𝜆𝑖,𝑡(𝑣) such that

𝜙𝑖(𝑡|ℱ𝑡) = 𝜆𝑖,𝑡(∅)𝜙∅
𝑖 (𝑡) + ∑

𝑘
𝜆𝑖,𝑡(𝑣𝑘)𝜙𝑣𝑘

𝑖 (𝑡|ℱ𝑡)

with 𝜆𝑖,𝑡(∅) + ∑𝑘 𝜆𝑖,𝑡(𝑣𝑘) = 1.
The Kalikow decomposition can be interpreted as follows. The intensity function 𝜙𝑖(𝑡|ℱ𝑡) in some cases
might depend on the whole past. Instead of taking the whole information in the past, we draw a random
neighborhood𝑉, that is a finite part of the past according to the distribution𝜆𝑖,𝑡(.). Once the neighborhood
is chosen, assume that is is 𝑣𝑘, we then compute the intensity function according to 𝜙𝑣𝑘

𝑖 (𝑡|ℱ𝑡) which
depends only on the points in 𝑣𝑘. The information in 𝑣𝑘 is much less than the whole past, which hopefully
helps us to compute the intensity more efficiently.

Kalikow decomposition [16]was largely studied in the context of stochastic processes having longmem-
ory [6, 10, 11, 25]. But the decomposition was applied to transition probability rather than to a stochastic
intensity in our study. As a result, they consider only discrete-time processes. Despite numerous stud-
ies on discrete-time processes, up to our knowledge, there exists only one work on continuous processes
by Hodara and Löcherbach [14]. It is worth noting that, in their paper, the intensities are assumed to be
bounded by a constant, and 𝜆𝑖,𝑡(𝑣𝑘) are not deterministic but depends on the realization of a dominat-
ing Poisson process, which in practice need to be simulated at prior to write the Kalikow decomposition.
To distinguish, we call such decomposition, the conditional Kalikow decomposition and the one defined
with deterministic 𝜆 by unconditional Kalikow decomposition. A very natural question arises, does this
unconditional Kalikow decomposition exists in different examples? If it is the case, how to write it? How
we can apply this decomposition in the simulation?

Remark1. It is worth noting that, at this stage the distribution function𝜆(.) inKalikowdecomposition can
be either deterministic or random. We have not proved yet such a deterministic Kalikow decomposition
exists in the continuous time process.

�.�.� Perfect simulation

In this section, we investigate several perfect simulation algorithms. By perfect simulation, we mean it
can simulate the stationary distribution of a finite number of components in a potentially infinite network

7

1 Introduction

within a given finite space-time window. To explain clearly and coherently, we first examine the algo-
rithms for discrete-time processes then continuous-time processes. This thesis mostly deals with Hawkes
processes, which are in particular a process with longmemory. Therefore, wewill focus to the perfect algo-
rithmdeveloped byComets et al. [6] in the discrete-time processes and compare it with the famous perfect
simulation, named Coupling From the Past (CFTP) of Propp and Wilson [28]. Some other approaches to
perfect simulations can be found at [8].

Perfect simulation is a widely discussed topic since the first seminal paper of Propp and Wilson [28].

The goal of this paper is to simulate the invariant measure ofMarkov chains. Following Propp andWilson
[28], fixed a time 0, for a fixed predeterminded time in the past, we simulate one trajectory per initial state.
If the trajectories coalesce, the common value at time 0 is picked under the stationary distribution. If the
trajectories do not coalesce, we extend their paths further in the past. Theorem 1 of [28] showed that if we
start from a far enough time in the past, the trajectories starting from all possible initial states coalesce.

Different from the Propp andWilson’s method, perfect simulation in the paper of Comets et al. [6] used
to simulate the invariant measure of the processes with long memory, which is more general than Markov
chains and Markov processes. This method is based on the regenerative construction of processes, which
is (as the authors cited) introduced in the paper [9]. In their method, at each instant 𝑛, there is a (random)
number 𝑘𝑛 ≥ 0 such that the distribution of the move 𝑛 + 1 is the same for all histories agreeing the
𝑘𝑛 preceding instants. This independence from 𝑘𝑛 remote past yields to the times 𝜏 such that preceding
past before 𝜏 are irrelevant for future moves. If there exist 𝜏 > −∞ such that 𝜏 ≤ 𝑛 − 𝑘𝑛 for all 𝑛 ≥ 𝜏,
we call such 𝜏 the regeneration time. Moreover in Section 2 of [6], the authors presented explicitly the
regenerative construction.

This second approach byComets et al. relies on the regenerative representation of transition probability.
Recently, by using the Kalikow decomposition’s notation, Galves et al. provided a more general approach
[10, 11] with the same spirit of Comets’s approach. In short, as discussed in the previous section, Kalikow
decomposition allows us to (randomly) determine a space-time neighborhood, which then constitute a
clan of ancestors of the interested point. Ancestor of a point 𝑇 is the point that might influence to 𝑇 (see
Chapter 3 to more rigorous definition). By applying the Kalikow decomposition to these obtaining points
in the clan of ancestor, we obtain the ancestors of ancestor of the interested point. Repeat this procedure
until all the points either having empty neighborhood or visited neighborhood, means it only contains the
visited points. By doing so, we create a branching processes containing all influent points to the interest
point. Denote 𝜏 the point with minimum in time. We see that all history before time 𝜏 is irrelevant to
determine the state of the interested point and that this property is similar to [6]. Back to our perfect
simulation algorithm, once the clan is completely constructed, we process with the Forward algorithm.
In which, we begin with the smallest point. Then we continue with the point whose neighborhood is
completely determined. We repeat this until the state of interested point is determined.

Most the existing papers focus on discrete time processes, in this thesis, we want to provide Perfect
simulation for continuous time processes. Therefore, the approach of Comets need some adaptation.
Indeed, we will need to decompose conditional intensities rather than transition probabilities. This leads
to serious difficulties that usually prevent amore practical application of the Perfect Simulation algorithm.
Again, up to our knowledge, the only work dealing with continuous time counting processes, is the one
by Hodara and Löcherbach [15]. Their decomposition is constructed under the assumption that there is a

8

1.5 Presentation of the thesis

dominating Poisson process on each of the nodes, from which the points of the processes under interest
can be thinned by rejection sampling (see also [22] for another use of thinning in simulation of counting
processes). To prove the existence of a Kalikow decomposition and go back to a more classic discrete time
setting, the authors need to freeze the dominating Poisson process, leading to a mixture, in the Kalikow
decomposition, that depends on the realization of the dominating Poisson process. Such a mixture is not
accessible in practice, and this prevents the use of their Perfect Simulation algorithm for more concrete
purposes than mere existence.

There also exists other approaches to do perfect simulation for continuous point processes:

• by Møller and Rasmussen [21]: this method only applies for linear Hawkes processes which can be
presented as Poisson cluster processes. Then the length distribution of the clusters are required to
perform simulation in their algorithm. However as they discussed, these are not known even in
simple cases. Therefore, the authors used the idea of dominated Coupling From The Past ([17]),
they replaced the (unkown) cumulative distribution function by the upper and lower bound of it.
By this method, they create coupled upper and lower process. These processes will converge to the
true Hakwes processes.

• byDassio and Zhao [7]: thismethod exploit some special properties of exponential Hawkes process.

�.� Presentation of the thesis

In Chapter 2, we introduce a new simulation algorithm in the stationary (time-homogeneous) system
using the unconditional Kalikow decomposition. We apply this algorithm to a neuroscience question.
More precisely, we study the behavior of one part of a neural network with potentially an infinite number
of neurons. We consider I the set of neurons, which might be infinite (countable). Throughout Chapter
2, we focus on the following conditional intensity

𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

𝑤𝑖𝑗(𝑍𝑗([𝑡 − 𝐴, 𝑡)) ∧ 𝑀)

where 𝑀 is a given positive number and 𝑤𝑖𝑗 ∈ [0, 1] is the proportion to the interaction between neuron
𝑖 and 𝑗 such that ∑𝑗 𝑤𝑖𝑗 < 1 for all 𝑖. Clearly, within this formula, the conditional intensity is bounded.
We can apply Ogata’s thinning algorithm [23]. However, to do so, we need to simulate the whole system in
order to simulate one neuron. In addition, starting from time 0, it does not go backward in time, therefore
we can not simulate aHawkes process in a stationary regime. There exist a work ofMoller and Rassmussen
[21] that provides a perfect simulation but needs the branching structure of the process to do so. In this
chapter, we present another approach that also overcomes this flaw. We define a new type of Kalikow
decomposition in continuous time (Definition 2.4.1 of Chapter 2).

Definition. We say that the process admits a Kalikow decomposition with bound 𝑀 and neighborhood
familyV, if for any neuron 𝑖 ∈ I, for all 𝑣 ∈ V there exists a non negative 𝑀-bounded quantity 𝜙𝑣

𝑖,𝑡 whose

9

1 Introduction

value only depends on the points appearing in the neighborhood 𝑣, and a probability density function
𝜆𝑖(.) such that

𝜙𝑖(𝑡 ∣ ℱ𝑡) = 𝜆𝑖(∅)𝜙∅
𝑖 (𝑡) + ∑

𝑣∈V,𝑣≠∅
𝜆𝑖(𝑣) × 𝜙𝑣

𝑖 (𝑡|ℱ𝑡) (1.5.1)

with 𝜆𝑖(∅) + ∑
𝑣∈V,𝑣≠∅

𝜆𝑖(𝑣) = 1.

Remark 2. Note that, at this stage, we only define the Kalikow decomposition for a bounded intensity and
also we need to restrict our self to bounded 𝜙𝑣.

Within this new type of Kalikow decomposition, we propose a theoretical algorithm that combines the
idea of Ogata algorithm and Kalikow decomposition, see Algorithm 2 of Chapter 2. But this algorithm
is purely theoretical since the computation of 𝜙𝑉𝑇

𝑖 depends on the points in 𝑉𝑇, which are not known at
this stage. To deal with this problem, we propose a modified version of the Perfect simulation, which we
call Backward Forward algorithm (Algorithm 3). We prove that this algorithm ends in finite time almost
surely in Proposition 1. Moreover, this algorithm also returns the right intensity process, which is proved
in Proposition 2.

In Chapter 3, we show that unconditional Kalikow decomposition exists in various types of Hawkes
processes. In this chapter, we also define for the first time an unconditional Kalikow decomposition in
general case (Definition 3.3.3).

Definition. We say a process 𝑍𝑖 for some 𝑖 ∈ I admits the Kalikow decomposition with respect to a
neighborhood familyV if for all 𝑡, for any 𝑣 ∈ V there exists a cylindrical function 𝜙𝑣

𝑖 (𝑡|.) taking values in
R+, whose value only depends on the points appearing in the neighborhood 𝑣, and a probability density
function 𝜆𝑖(.) such that

𝜙𝑖(𝑡|ℱ𝑡) = 𝜆𝑖(∅)𝜙∅
𝑖 + ∑

𝑣∈V,𝑣≠∅
𝜆𝑖(𝑣)𝜙𝑣

𝑖 (𝑡|ℱ𝑡) (1.5.2)

with 𝜆𝑖(∅) + ∑
𝑣∈V,𝑣≠∅

𝜆𝑖(𝑣) = 1.

Remark 3. Note that, in this definition of Kalikow decomposition, there is no restriction to 𝜙𝑣 and the
probability distribution 𝜆 is deterministic.

Next, very naturally, we show how to obtain the unconditional Kalikow decomposition for a various pro-
cesses. This is a very constructive method and it also proved the existence of unconditional Kalikow
decomposition, see Proposition 3 of Chapter 3.
On the other hand, for the nonlinearHawkes process, in particular, we also propose anothermethod using
Taylor expansion in Proposition 5. We extend the definition of the random neighborhood in Chapter 2
and introduce the modified Perfect simulation with the general random neighborhood, see Backward-
Foward algorithm in Section 3.5 of Chapter 3. Similar to the previous chapter, Proposition 7 gives the
stopping condition for the Backward-Foward algorithm and Proposition 6 shows that it provides a right
intensity process. In this chapter, we also study the complexity of the algorithm in terms of the number of
simulated points (see Proposition 8 of Chapter 3). Based on these discussions, we show how to optimize
the Kalikow decomposition in the last section of this chapter.

10

1.5 Presentation of the thesis

In Chapter 4, based on the theory developed inChapter 3, we present several new simulation algorithms
for point processes. We focus on two different hypotheses: either the conditional intensity is bounded by
a deterministic number (Definition 7) or it is bounded by a predictable function (Definition 8).

In the first case, we rewrite Ogata’s algorithm in our settings (see Algorithm 4). This version is sequential.
Notably, we construct a parallelized version of Ogata’s algorithm (see Algorithm 5). Next, by adding Ka-
likow decomposition, we propose two new algorithms, one is purely sequential (Algorithm 6), the other
is partially parallelized (Algorithm 7).

In the second case, when the intensity is bounded by a predictable function, we construct two sequen-
tial algorithms: one we call Ogata’s algorithm (Algorithm 8), the second one is KalikowOgata algorithm
(Algorithm 9).

In the deterministic bounded case, we design an algorithm for a particular situation, namely the Hawkes
process with a refractory period (Section 4.3.5), whereas in the second case, we focus on proving mathe-
matical the correctness of the algorithms (Section 4.4.3). In the last section, we provide several statistical
tests and execution times of algorithms in Section 4.5. Notably, the Kalikow Ogata algorithm is showed to
be significantly better than the classical Ogata algorithm and to have linear complexity even for a complete
graph on simulation.

We left chapters 2, 3, 4 under their article form except for a few modifications in order to preserve con-
sistency between the chapters. In particular, some definitions may be redundant with this introduction.

�.�.� Main contributions

First and foremost, my work is mostly inspired by practical questions. Therefore, I rather focus on the
possibility of implementing the algorithms than the theoretical question about the existence of invariant
measures like in [6, 10, 11, 14]. For example, in the paper [14] (which is closest to our work and is also
the only work in continuous time processes), the authors need to simulate the whole underlying network
to obtain Kalikow decomposition and then do a perfect simulation. From a computational point of view,
this approach is unfeasible (both for finite and infinite network). Our approach only simulates parts of the
dominating Poisson processes which are needed (in the bounded case). More importantly, as we discussed
earlier in Section 1.4.2, going from conditional Kalikow decomposition to the unconditional one is crucial
in practice. In addition, many numerical results are presented in Chapter 2 and Chapter 4 together with
numerous discussions.

Besides, this thesis also has some theoretical contributions. The previous works on Kalikow decom-
position [6, 9, 10] mostly relied on the continuity assumption, which is not necessary in the thesis. The
Linear Hawkes process which is indeed not satisfied the continuity assumption with the ”nested” neigh-
borhood, therefore the classical Kalikow decomposition can not be obtained. However, by considering
the Linear Hawkes process with specific choice of neighborhood, we obtain Kalikow decomposition, see
Chapter 3. Lastly, in Chapter 4 of the thesis, we also proposed an algorithm to simulate a point process
with unbounded intensity. We extended the idea of Ogata [23] with Kalikow decomposition to introduce
numerous new algorithms, see Chapter 4.

11

1 Introduction

�.�.� State of the works

Chapter 2 corresponds to the paper [27], in collaboration with Alexandre Muzy and Patricia Reynaud-
Bouret. This paper is published in Springer Nature Computer Science.

Chapter 3 corresponds to the paper [26]. This paper is submitted to Advances in Applied Probability,
which is now in major revision.

The first part of Chapter 4 corresponds to the report ofMaster internship of Paul Gresland, in which the
author is cosupervisor with Alexandre Muzy, Patricia Reynaud-Bouret. The second part of this chapter is
a work in progress.

12

� Event-Scheduling Algorithms with
Kalikow Decomposition for Simulating
Potentially Infinite Neuronal Networks

Written by T.C. Phi, A. Muzy and P. Reynaud-Bouret

Status: Published in SN Computer Science.

13

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

�.� abstract

Event-scheduling algorithms can compute in continuous time the next occurrence of points (as events)
of a counting process based on their current conditional intensity. In particular event-scheduling algo-
rithms can be adapted to perform the simulation of finite neuronal networks activity. These algorithms
are based on Ogata’s thinning strategy [17], which always needs to simulate the whole network to access
the behaviour of one particular neuron of the network. On the other hand, for discrete timemodels, theo-
retical algorithms based on Kalikow decomposition can pick at random influencing neurons and perform
a perfect simulation (meaning without approximations) of the behaviour of one given neuron embedded
in an infinite network, at every time step. These algorithms are currently not computationally tractable
in continuous time. To solve this problem, an event-scheduling algorithm with Kalikow decomposition
is proposed here for the sequential simulation of point processes neuronal models satisfying this decom-
position. This new algorithm is applied to infinite neuronal networks whose finite time simulation is a
prerequisite to realistic brain modeling.

�.� Introduction

Point processes in time are stochastic objects that model efficiently event occurrences with a huge variety
of applications: time of deaths, earthquake occurrences, gene positions on DNA strand, etc. [1, 20, 22]).

Most of the time, point processes are multivariate [6] in the sense that either several processes are con-
sidered at the same time, or in the sense that one process regroups together all the events of the different
processes and marks them by their type. A typical example consists in considering either two processes,
one counting the wedding events of a given person and one counting the children birth dates of the same
person or only one marked process which regroups all the possible dates of birth or weddings indepen-
dently and adds one mark per point, here wedding or birth.

Consider now a network of neurons each of them emitting action potentials (spikes). These spike trains
can be modeled by a multivariate point process with a potentially infinite number of marks, each mark
representing one given neuron. The main difference between classical models of multivariate point pro-
cesses and the ones considered in particular for neuronal networks is the size of the network. A human
brain consists in about 1011 neurons whereas a cockroach contains already about 106 neurons. Therefore
the simulation of the whole network is either impossible or a very difficult and computationally intensive
task for which particular tricks depending on the shape of the network or the point processes have to be
used [5, 13, 19].

Another point of view, which is the one considered here, is to simulate, not the whole network, but
the events of one particular node or neuron, embedded in and interacting with the whole network. In
this sense, one might consider an infinite network. This is the mathematical point of view considered
in a series of papers [8, 9, 18] and based on Kalikow decomposition [11] coupled with perfect simulation
theoretical algorithms [4, 7]. However these works are suitable in discrete time and only provide a way to
decide at each time step if the neuron is spiking or not. They cannot operate in continuous time, i.e. they
cannot directly predict the next event (or spike). Up to our knowledge, there exists only one attempt of
using such decomposition in continuous time [10], but the corresponding simulation algorithm is purely

14

2.3 Event-scheduling simulation of point processes

theoretical in the sense that the corresponding conditional Kalikow decomposition should exist given the
whole infinite realization of a multivariate Poisson process, with an infinite number of marks, quantity
which is impossible to simulate in practice.

The aim of the present work is to present an algorithm which

• can operate in continuous time in the sense that it can predict the occurrence of the next event. In
this sense, it is an event-scheduling algorithm;

• can simulate the behavior of one particular neuron embedded in a potentially infinite networkwith-
out having to simulate the whole network;

• is based on an unconditional Kalikow decomposition and in this sense, can only work for point
processes with this decomposition.

In Section 2.3, we specify the links between event-scheduling algorithms and the classical point process
theory. In Section 2.4, we give the Kalikow decomposition. In Section 2.5, we present the backward-
forward perfect simulation algorithm and prove why it almost surely ends under certain conditions. In
Section 2.6, we provide simulation results and a conclusion is given in Section 2.7.

�.� Event-scheduling simulation of point processes

On the one hand, simulation algorithms of multivariate point processes [17] are quite well known in the
statistical community but as far as we know quite confidential in the simulation (computer scientist) com-
munity. On the other hand, event-scheduling simulation first appeared in the mid-1960s [21] and was
formalized as discrete event systems in the mid-1970s [24] to interpret very general simulation algorithms
scheduling “next events”. A basic event-scheduling algorithm “jumps” from one event occurring at a time
stamp 𝑡 ∈ R+

0 to a next event occurring at a next time stamp 𝑡′ ∈ R+
0 , with 𝑡′ ≥ 𝑡. In a discrete event sys-

tem, the state of the system is considered as changing at times 𝑡, 𝑡′ and conversely unchanging in between
[23]. In [13], we have written themain equivalence between the point processes simulation algorithms and
the discrete event simulation set-up, which led us to a significant improvement in terms of computational
timewhen huge but finite networks are into play. Usual event-scheduling simulation algorithms have been
developed considering independently the components (nodes) of a system. Our approach considers new
algorithms for activity tracking simulation [16]. The event activity is tracked from active nodes to children
(influencees).

Here we just recall the main ingredients that are useful for the sequel.

To define point processes, we need a filtration or history (ℱ𝑡)𝑡≥0. Most of the time, and this will be
the case here, this filtration (or history) is restricted to the internal history of the multivariate process
(ℱ 𝑖𝑛𝑡

𝑡)𝑡≥0, which means that at time 𝑡−, i.e. just before time 𝑡, we only have access to the events that
have already occurred in the past strictly before time 𝑡, in the whole network. The conditional inten-
sity, 𝜙𝑖(𝑡|ℱ 𝑖𝑛𝑡

𝑡−), of the point process, representing neuron 𝑖 gives the instantaneous firing rate, that is the
frequency of spikes, given the past contained in ℱ 𝑖𝑛𝑡

𝑡− . Let us just mention two very famous examples.

15

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

If 𝜙𝑖(𝑡|ℱ 𝑖𝑛𝑡
𝑡−) is a deterministic constant, say 𝑀, then the spikes of neuron 𝑖 form a homogeneous Pois-

son process with intensity 𝑀. The occurrence of spikes are completely independent from what occurs
elsewhere in the network and from the previous occurrences of spikes of neuron 𝑖.

If we denote by I the set of neurons, we can also envision the following form for the conditional intensity:

𝜙𝑖(𝑡|ℱ 𝑖𝑛𝑡
𝑡−) = 𝜈𝑖 + ∑

𝑗∈ I
𝑤𝑖𝑗(Nb

𝑗
[𝑡−𝐴,𝑡) ∧ 𝑀). (2.3.1)

This is a particular case of generalized Hawkes processes [3]. More precisely 𝜈𝑖 is the spontaneous rate
(assumed to be less than the deterministic upper bound 𝑀 > 1) of neuron 𝑖. Then every neuron in the
network can excite neuron 𝑖: more precisely, one counts the number of spikes that have been produced
by neuron 𝑗 just before 𝑡, in a window of length 𝐴, this is Nb𝑗

[𝑡−𝐴,𝑡); we clip it by the upper bound 𝑀 and
modulate its contribution to the intensity by the positive synaptic weight between neuron 𝑖 and neuron
𝑗, 𝑤𝑖𝑗. For instance, if there is only one spike in the whole network just before time 𝑡, and if this hap-
pens on neuron 𝑗, then the intensity for neuron 𝑖 becomes 𝜈𝑖 + 𝑤𝑖𝑗. The sum over all neurons 𝑗 mimics
the synaptic integration that takes place at neuron 𝑖. As a renormalization constraint, we assume that
sup𝑖∈ I ∑𝑗∈ I 𝑤𝑖𝑗 < 1. This ensures in particular that such a process has always a conditional intensity
bounded by 2𝑀.

Hence, starting for instance at time 𝑡, and given the whole past, one can compute the next event in the
network by computing for each node of the network the next event in absence of other spike apparition.
To do so, remark that in absence of other spike apparition, the quantity 𝜙𝑖(𝑠|ℱ 𝑖𝑛𝑡

𝑠−) for 𝑠 > 𝑡 becomes for
instance in the previous example

𝜙𝑎𝑏𝑠
𝑖 (𝑠, 𝑡) = 𝜈𝑖 + ∑

𝑗∈ I
𝑤𝑖𝑗(Nb

𝑗
[𝑠−𝐴,𝑡) ∧ 𝑀),

meaning that we do not count the spikes that may occur after 𝑡 but before 𝑠. This can be generalized to
more general point processes. The main simulation loop is presented in Algorithm 1

16

2.3 Event-scheduling simulation of point processes

Algorithm 1 Classical point process simulation algorithm

▷ With [𝑡0, 𝑡1] the interval of simulation
1: Initialize the family of points P = ∅

▷ Each point is a time 𝑇 with a mark, 𝑗𝑇, which is the neuron on which 𝑇 appears
2: Initialize 𝑡 ← 𝑡0

3: repeat
4: for each neuron 𝑖 ∈ I do
5: Draw independently an exponential variable 𝐸𝑖 with parameter 1
6: Apply the inverse transformation, that is, find 𝑇𝑖 such that

∫
𝑇𝑖

𝑡
𝜙𝑎𝑏𝑠

𝑖 (𝑠, 𝑡)𝑑𝑠 = 𝐸𝑖.

7: end for
8: Compute the time 𝑇 of the next spike of the system after 𝑡, and the neuron where the spike occurs

by 𝑇 ← min𝑖∈ I 𝑇𝑖, with 𝑗𝑇 ← argmin𝑖∈ I 𝑇𝑖
9: if 𝑇 ≤ 𝑡1 then

10: append 𝑇 with mark 𝑗𝑇 to P
11: end if
12: 𝑡 ← 𝑇
13: until 𝑡 > 𝑡1

17

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

Note that the quantity 𝜙𝑎𝑏𝑠
𝑖 (𝑠, 𝑡) can be also seen as the hazard rate of the next potential point 𝑇 (1)

𝑖 after
𝑡. It is a discrete event approach with the state corresponding to the function 𝜙𝑎𝑏𝑠

𝑖 (., 𝑡).
Ogata [17], inspired by Lewis’ algorithm [12], added a thinning (also called rejection) step on top of

this procedure because the integral ∫
𝑇 (1)

𝑖
𝑡 𝜙𝑎𝑏𝑠

𝑖 (𝑠, 𝑡)𝑑𝑠 can be very difficult to compute. To do so (and
simplifying a bit), assume that 𝜙𝑖(𝑡|ℱ 𝑖𝑛𝑡

𝑡−) is upper bounded by a deterministic constant 𝑀. Thismeans that
the point process has always less points than a homogeneous Poisson process with intensity 𝑀. Therefore
Steps 5-6 of Algorithm 1 can be replaced by the generation of an exponential of parameter 𝑀, 𝐸′

𝑖 and
deciding whether we accept or reject the point with probability 𝜙𝑎𝑏𝑠

𝑖 (𝑡 + 𝐸′
𝑖 , 𝑡)/𝑀. There are a lot of

variants of this procedure: Ogata’s original one uses actually the fact that the minimum of exponential
variables, is still an exponential variable. Therefore one can propose a next point for the whole system,
then accept it for the whole system and then decide on which neuron of the network the event is actually
appearing. More details on the multivariate Ogata’s algorithm can be found in [13].

As we see here, Ogata’s algorithm is very general but clearly needs to simulate the whole system to
simulate only one neuron. Moreover starting at time 𝑡0, it does not go backward and therefore cannot
simulate a Hawkes process in stationary regime. There has been specific algorithms based on clusters
representation that aim at perfectly simulate particular univariate Hawkes processes [15]. The algorithm
that we propose here, will also overcome this flaw.

�.� Kalikow decomposition

Kalikow decomposition relies on the concept of neighborhood, denoted by 𝑣, which are picked at random
andwhich gives the portion of time andneuron subsets that we need to look at, tomove forward. Typically,
for a positive constant 𝐴, such a 𝑣 can be:

• {(𝑖, [−𝐴, 0))}, meaning we are interested only by the spikes of neuron 𝑖 in the window [−𝐴, 0);

• {(𝑖, [−2𝐴, 0)), (𝑗, [−2𝐴, −𝐴))}, that is, we need the spikes of neuron 𝑖 in the window [−2𝐴, 0) and
the spikes of neuron 𝑗 in the window [−2𝐴, −𝐴);

• the emptyset ∅, meaning that we do not need to look at anything to pursue.

We need to also define 𝑙(𝑣) the total time length of the neighborhood 𝑣 whatever the neuron is. For
instance, in the first case, we find 𝑙(𝑣) = 𝐴, in the second 𝑙(𝑣) = 3𝐴 and in the third 𝑙(𝑣) = 0.

We are only interested by stationary processes, for which the conditional intensity, 𝜙𝑖(𝑡 ∣ ℱ 𝑖𝑛𝑡
𝑡−), only

depends on the intrinsic distance between the previous points and the time 𝑡 and not on the precise value
of 𝑡 per se. In this sense the rule to compute the intensity may be only defined at time 0 and then shifted by
𝑡 to have the conditional intensity at time 𝑡. In the same way, the timeline of a neighborhood 𝑣 is defined
as a subset of R∗

− so that information contained in the neighborhood is included in ℱ 𝑖𝑛𝑡
0− , and 𝑣 can be

shifted (meaning its timeline is shifted) at position 𝑡 if need be. We assume that I the set of neurons is
countable and that we have a countable set of possibilities for the neighborhoods 𝒱.

Then, we say that the process admits a Kalikow decompositionwith bound 𝑀 and neighborhood family
𝒱, if for any neuron 𝑖 ∈ I, for all 𝑣 ∈ 𝒱 there exists a non negative 𝑀-bounded quantity 𝜙𝑣

𝑖 , which is

18

2.4 Kalikow decomposition

ℱ 𝑖𝑛𝑡
0− measurable and whose value only depends on the points appearing in the neighborhood 𝑣, and a

probability density function 𝜆𝑖(.) such that

𝜙𝑖(0 ∣ ℱ 𝑖𝑛𝑡
0−) = 𝜆𝑖(∅)𝜙∅

𝑖 + ∑
𝑣∈𝒱 ,𝑣≠∅

𝜆𝑖(𝑣) × 𝜙𝑣
𝑖 (2.4.1)

with 𝜆𝑖(∅) + ∑
𝑣∈𝒱 ,𝑣≠∅

𝜆𝑖(𝑣) = 1.

Note that because of the stationarity assumptions, the rule to compute the 𝜙𝑣
𝑖 ’s can be shifted at time 𝑡,

which leads to a predictable function that we call 𝜙𝑣𝑡
𝑖 (𝑡) which only depends on what is inside 𝑣𝑡, which

is the neighborhood 𝑣 shifted by 𝑡. Note also that 𝜙∅
𝑖 , because it depends on what happens in an empty

neighborhood, is a pure constant.
The interpretation of (2.4.1) is tricky and is not as straightforward as in the discrete case (see [18]). The

best way to understand it is to give the theoretical algorithm for simulating the next event on neuron 𝑖
after time 𝑡 (cf. Algorithm 2).

Algorithm 2 Kalikow theoretical simulation algorithm

▷ With [𝑡0, 𝑡1] the interval of simulation for neuron 𝑖

1: Initialize the family of points P = ∅

▷ NB: since we are only interested by points on neuron 𝑖, 𝑗𝑇 = 𝑖 is a useless mark here.

2: Initialize 𝑡 ← 𝑡0

3: repeat
4: Draw an exponential variable 𝐸 with parameter 𝑀, and compute 𝑇 = 𝑡 + 𝐸.
5: Pick a random neighborhood according to the distribution 𝜆𝑖(.) given in the Kalikow decompo-

sition and shift the neighborhood at time 𝑇: this is 𝑉𝑇.

6: Draw 𝑋𝑇 a Bernoulli variable with parameter
𝜙𝑉𝑇

𝑖 (𝑇)
𝑀

7: if 𝑋𝑇 = 1 and 𝑇 ≤ 𝑡1 then
8: append 𝑇 to P
9: end if

10: 𝑡 ← 𝑇
11: until 𝑡 > 𝑡1

This Algorithm is close to Algorithm 1 but adds a neighborhood choice (Step 5) with a thinning step
(Steps 6-9).

In Appendix 2.8, we prove that this algorithm indeed provides a point process with an intensity given
by (2.4.1) shifted at time 𝑡.

The previous algorithm cannot be put into practice because the computation of 𝜙𝑉𝑇
𝑖 depends on the

points in 𝑉𝑇, that are not known at this stage. That is why the efficient algorithm that we propose in the
next section goes backward in time before moving forward.

19

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

�.� Backward Forward algorithm

Let us now describe the complete Backward Forward algorithm (cf. Algorithm 3). Note that to do so, the
set of points P is not reduced, as in the two previous algorithms, to the set of points that we want to
simulate but this contains all the points that need to be simulated to perform the task.

20

2.5 Backward Forward algorithm

Algorithm 3 Backward Forward Algorithm

▷ With [𝑡0, 𝑡1] the interval of simulation for neuron 𝑖 ∈ I

1: Initialize the family V of non empty neighborhoods with {(𝑖, [𝑡0, 𝑡1])}
2: Initialize the family of points P = ∅

▷ Each point is a time 𝑇 with 3 marks: 𝑗𝑇 is the neuron on which 𝑇 appears, 𝑉𝑇 for the
choice of neighborhood, 𝑋𝑇 for the thinning step (accepted/rejected)

3: Draw 𝐸 an exponential variable with parameter 𝑀
4: Schedule 𝑇𝑛𝑒𝑥𝑡 = 𝑡0 + 𝐸
5: while 𝑇𝑛𝑒𝑥𝑡 < 𝑡1 do
6: Append to P, the point 𝑇𝑛𝑒𝑥𝑡, with 3 marks: 𝑗𝑇𝑛𝑒𝑥𝑡

= 𝑖, 𝑉𝑇𝑛𝑒𝑥𝑡
= n.a. and 𝑋𝑇𝑛𝑒𝑥𝑡

= n.a.
(n.a. stand for not assigned yet)

7: while There are points 𝑇 in P with 𝑉𝑇 = n.a. do
8: for each point 𝑇 in P with 𝑉𝑇 = n.a. do
9: Update 𝑉𝑇 by drawing 𝑉𝑇 according to 𝜆𝑗𝑇

shifted at time 𝑇.
10: if 𝑉𝑇 ≠ ∅ then
11: Find the portion of time/neurons in𝑉𝑇 which does not intersect the existing

non empty neighborhoods in V
12: Simulate on it a Poisson process with rate 𝑀
13: Append the simulated points, 𝑇 ′, if any, to P with their neuron 𝑗𝑇 ′ and

with 𝑉𝑇 ′ = 𝑋𝑇 ′ =n.a
14: Append 𝑉𝑇 to V
15: end if
16: end for
17: end while
18: Sort the 𝑇’s in P with 𝑋𝑇 =n.a. in increasing order
19: for each of them starting with the most backward do

20: Draw 𝑋𝑇 as a Bernoulli variable with parameter
𝜙𝑉𝑇

𝑗𝑇
(𝑇)

𝑀
21: end for
22: Draw 𝐸′ another exponential variable with parameter 𝑀
23: 𝑇𝑛𝑒𝑥𝑡 ← 𝑇𝑛𝑒𝑥𝑡 + 𝐸′

24: end while
25: Thedesired points are the points in Pwithmarks 𝑗𝑇 = 𝑖, 𝑋𝑇 = 1 and that appear in [𝑡0, 𝑡1]

▷ It is possible that the algorithm generated points before 𝑡0 and they have to be removed

Init.

Init.
Marks

Back-
ward

Forward

At the difference with Algorithm 2, the main point is that in the backward part we pick at random all
the points that may influence the thinning step. The fact that this loop ends comes from the following
Proposition.

21

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

Proposition 1. If
sup
𝑖∈ I ∑

𝑣∈𝒱
𝜆𝑖(𝑣)𝑙(𝑣)𝑀 < 1. (2.5.1)

then the backward part of Algorithm 3 ends almost surely in finite time.

The proof is postponed to Appendix 2.9. It is based on branching process arguments. Basically if in
Steps 8-16, we produce in average less than one point, either because we picked the empty set in 𝑉𝑇 or
because the simulation of the Poisson process ended up with a small amount of points, eventually none,
then the loop ends almost surely because there is an extinction of the corresponding branching process.

In the backward part, one of the most delicate part consists in being sure that we add new points only
if we have not visited this portion of time/neurons before (see Steps 11-13). If we do not make this ver-
ification, we may not have the same past depending on the neuron we are looking at and the procedure
would not simulate the process we want.

In the forward part, because the backward algorithm stopped just before, we are first sure to have assess
all 𝑉𝑇’s. Since 𝜙𝑉𝑡

𝑗 (𝑡) is ℱ 𝑖𝑛𝑡
𝑡− measurable, for all 𝑡, 𝜙𝑉𝑇

𝑗𝑇
(𝑇) only depends on the points in P with mark

𝑋𝑇 = 1 inside 𝑉𝑇. The problem in Algorithm 2, phrased differently, is that we do not know the marks 𝑋𝑇

of the previous points when we have to compute 𝜙𝑉𝑇
𝑗𝑇

(𝑇). But in the forward part of Algorithm 3, we are
sure that the most backward point for which the thinning (𝑋𝑇 =n.a.) has not taken place, satisfies

• either 𝑉𝑇 = ∅

• or 𝑉𝑇 ≠ ∅ but either there are no simulated points in the corresponding 𝑉𝑇 or the points there come
from previous rounds of the loop (Step 5). Therefore their marks 𝑋𝑇 have been assigned.

Therefore, with the Backward Forward algorithm, and at the difference to Algorithm 2, we take the points
in an order for which we are sure that we know the previous needed marks.

Figure 4 describes an example to go step by step through Algorithm 3. The backward steps determine all
the points that may influence the acceptation/rejection of point 𝑇𝑛𝑒𝑥𝑡. Notice that whereas usual activity
tracking algorithms for point processes [13] automatically detect the active children (influencees), activity
tracking in the backward steps detect the parents (influencers). The forward steps finally select the points.

22

2.5 Backward Forward algorithm

23

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

Remark 4. Main flow example for Algorithm 3, with backward steps (cf. Algorithm 3, Steps 7-17) and
forward steps (cf. Algorithm 3, Steps 18-25). Following circled numbers: (1)The next point 𝑇𝑛𝑒𝑥𝑡 = 𝑡0 +𝐸
(cf. Algorithm 3, Step 4) is scheduled, (2) The neighborhood 𝑉𝑇𝑛𝑒𝑥𝑡

is selected in the first backward step,
a first generation of three points (𝑎, 𝑏 on neuron 𝑘 and 𝑐 on neuron ℓ) is drawn (cf. Algorithm 3, Step
9), thanks to a Poisson process, (cf. Algorithm 3, Steps 11-12) and appended to P (cf. Algorithm 3, Step
13), (3) at the second generation, a non empty neighborhood is found, i.e. 𝑉𝑏 ≠ ∅ (cf. Algorithm 3, Steps
9-1), but the Poisson process simulation does not give any point in it (cf. Algorithm 3, Step 12), (4) at
the second generation, the neighborhood 𝑉𝑎 is picked, it is not empty and overlap the neighborhood of
the first generation (cf. Algorithm 3, Steps 9-11): therefore there is no new simulation in the overlap (𝑐
is kept and belongs to 𝑉𝑏 as well as 𝑉𝑎) but there is a new simulation thanks to a Poisson process outside
of the overlap leading to a new point 𝑑 (cf. Algorithm 3, Step 12)(5) at the second generation, for point 𝑐,
one pick the empty neighborhood, i.e. 𝑉𝑐 = ∅ (cf. Algorithm 3, Step 9) and therefore we do not simulate
any Poisson process, (6) at third generation, similarly no point and no interval are generated, i.e. 𝑉𝑑 = ∅
(cf. Algorithm 3, Step 9). This is the end of the backward steps and the beginning of the forward ones, (7)

24

2.5 Backward Forward algorithm

the point 𝑑 is not selected, acceptation/selection taking place with probability
𝜙∅

ℓ
𝑀 (cf. Algorithm 3, Step

20), (8) the point 𝑐 is accepted, here again with probability
𝜙∅

ℓ
𝑀 (cf. Algorithm 3, Step 20), (9) the point 𝑏

is not selected, acceptation taking place, here, with probability
𝜙𝑉𝑏

𝑘 (𝑏)
𝑀 (cf. Algorithm 3, Step 20), (10) the

point 𝑎 is selected, acceptation taking place, here, with probability
𝜙𝑉𝑎

𝑘 (𝑎)
𝑀 (cf. Algorithm 3, Step 20), (11)

The neighborhood of neuron 𝑖 contains two points, one on neuron 𝑘 and one on neuron ℓ and one selects

𝑇𝑛𝑒𝑥𝑡 with probability 𝜙
𝑉𝑇𝑛𝑒𝑥𝑡
𝑖 (𝑇𝑛𝑒𝑥𝑡)

𝑀 .

25

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

�.� Illustration

To illustrate in practice the algorithm, we have simulated aHawkes process as given in (2.3.1). Indeed such
a process has a Kalikow decomposition (2.4.1) with bound 𝑀 and neighborhood family 𝒱 constituted of
the 𝑣’s of the form 𝑣 = {(𝑗, [−𝐴, 0))} for some neuron 𝑗 in I. To do that, we need the following choices:

𝜆𝑖(∅) = 1 − ∑
𝑗∈ I

𝑤𝑖𝑗 and 𝜙∅
𝑖 =

𝜈𝑖
𝜆𝑖(∅)

and for 𝑣 of the form 𝑣 = {(𝑗, [−𝐴, 0))} for some neuron 𝑗 in I,

𝜆𝑖(𝑣) = 𝑤𝑖𝑗 and 𝜙𝑣
𝑖 = Nb𝑗

[−𝐴,0) ∧ 𝑀.

We have taken I = Z2 and the 𝑤𝑖𝑗 proportional to a discretized centred symmetric bivariate Gaussian
distribution of standard deviation 𝜎. More precisely, once 𝜆𝑖(∅) = 𝜆∅ fixed, picking according to 𝜆𝑖

consists in

• choosing whether 𝑉 is empty or not with probability 𝜆∅

• if 𝑉 ≠ ∅, choosing 𝑉 = {(𝑗, [−𝐴, 0))} with 𝑗 − 𝑖 = round(𝑊) and 𝑊 obeys a bivariate 𝒩 (0, 𝜎2).
The round function returns the integer number that is closest to 𝑊.

In all the sequel, the simulation is made for neuron 𝑖 = (0, 0) with 𝑡0 = 0, 𝑡1 = 100 (see Algorithm 3).
The parameters 𝑀, 𝜆∅ and 𝜎 vary. The parameters 𝜈𝑖 = 𝜈 and 𝐴 are fixed accordingly by

𝜈 = 0.9𝑀𝜆∅ and 𝐴 = 0.9𝑀−1(1 − 𝜆∅)−1,

to ensure that 𝜙∅
𝑖 < 𝑀 and (2.5.1), which amounts here to (1 − 𝜆∅)𝐴𝑀 < 1.

On Figure 2.4(a), with 𝑀 = 2, 𝜎 = 1 and 𝜆∅ small, we see the overall spread of the algorithm around
the neuron to simulate (here (0, 0)). Because we chose a Gaussian variable with small variance for the
𝜆𝑖’s, the spread is weak and the neurons very close to the neuron to simulate are requested a lot of time at
Steps 9-11 of the algorithm. This is also where the algorithm spent the biggest amount of time to simulate
Poisson processes. Note also that roughly to simulate 80 points, we need to simulate 10 times more points
globally in the infinite network. Remark also on Figure 2.4(b), the avalanche phenomenon, typical of
Hawkes processes: for instance the small cluster of black points on neuron with label 0 (i.e. (0,0)) around
time 22, is likely to be due to an excitation coming for the spikes generated (and accepted) on neuron
labeled 8 and self excitation. The beauty of the algorithm is that we do not need to have the whole time
line of neuron 8 to trigger neuron 0, but only the small blue pieces: we just request them at random,
depending on the Kalikow decomposition.

On Figure 2.5, we can first observe that when the parameter which governs the range of 𝜆𝑖’s increase,
the global spread of the algorithm increase. In particular, comparing the top left of Figure 2.5 to Figure
2.4 where the only parameter that changes is 𝜎, we see that the algorithm is going much further away and
simulates much more points for a sensible equal number of points to generate (and accept) on neuron
(0,0). Moreover we can observe that

26

2.6 Illustration

• From left to right, by increasing 𝜆∅, it is more likely to pick an empty neighborhood and as a con-
sequence, the spread of the algorithm is smaller. By increasing 𝜈 = 0.9𝑀𝜆∅, this also increases the
total number of points produced on neuron (0;0).

• From top to bottom, by increasing 𝑀, there are more points which are simulated in the Poisson
processes (Step 12 of Algorithm 3) and there is also a stronger interaction (we do not truncate that
much the number of points in 𝜙𝑣). Therefore, the spread becomes larger and more uniform too,
because there are globally more points that are making requests. Moreover, by having a basic rate
𝑀 which is 10 times bigger, we have to simulate roughly 10 times more points.

●

●

●

●●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

● ● ●●

●●●

●

●

●●

●

●

●

●

●

0

1 2

3

456

7

8

−4

0

4

−4 0 4

Accepted at (0,0): 79 Produced : 782

Nb_Requests

●

●

●

10

20

30

4

8

12

16

Time_Spent

(a) Summary of one simulation

20 25 30 35 40

Time

N
e
u
ro

n
s

0
1

2
3

4
5

6
7

8

●● ●● ● ● ● ● ● ● ● ●● ● ● ●

● ●

●●

● ●● ●

●

● ● ●●

● ●●

(b) Extract of the time simulation for neurons 0 to 9

Figure 2.4: Simulation for 𝑀 = 2, 𝜎 = 1, 𝜆∅ = 0.25. For each neuron inZ2, that have been requested in Steps 9:11,
except the neuron of interest (0, 0), have been counted the total number of requests, that is the number
of time a 𝑉𝑇 pointed towards this neuron (Steps 9 and 11) and the total time spent at this precise neuron
simulating a homogeneous Poisson process (Step 12). Note that since the simulation is on [0, 100] the
time spent at position (0, 0) is at least 100. On (a), the summary for one simulation with below the plot,
number of points accepted at neuron (0, 0) and total number of points that have been simulated. Also
annotated on (a), with labels between 0 and 8, the 9 neurons for which the same simulation in [20,40]
is represented in more details on (b). More precisely on (b), in abscissa is time and the neuron labels in
ordinate. A plain dot represents an accepted point, by the thinning step (Step 20 of Algorithm 3), and an
empty round, a rejected point. The blue pieces of line represent the non empty neighborhoods that are
in V.

27

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

●

●

●

●
●

●●● ●

●
●

●

●

●
●●

●
●

●

●
●

●●
●

●
●

●

●

●

●

● ●

●

●

●

● ●

●
●

●●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●●●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

−20

0

20

−20 0 20

Accepted at (0,0): 86 Produced : 2001

2

4

6

8

Time_Spent

Nb_Requests

●

●

5

10

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
● ●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−30

−20

−10

0

10

20

−20 −10 0 10 20

Accepted at (0,0): 154 Produced : 1204

1

2

3

4

5

Time_Spent

Nb_Requests

●

●

●

●

●

●

1

2

3

4

5

6

●

●●

●

● ●

●

●
●

●

●●●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●
●

●
●
●

●

●

●●●●

●

●

●
●

●

●

●●●
●
●●
●

●
●

●
●

●

● ●

●

●

●●
●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

● ●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−20

0

20

40

−40 −20 0 20 40

Accepted at (0,0): 490 Produced : 15901

1

2

3

4

Time_Spent

Nb_Requests

●

●

●

20

40

60

●

●●
●

●
●●

●

●

●
●
●
●

●

●
●

●●●●●● ●

●
●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

● ● ●●

●

●

●

●
● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

● ●●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●
●●●

●
●

●
●

●

●

●

●

●

● ●
●●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

● ●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

−20

0

20

−20 0 20

Accepted at (0,0): 969 Produced : 15378

1

2

3

4

Time_Spent

Nb_Requests

●

●

●

●

●

10

20

30

40

50

Figure 2.5: Simulation for 4 other sets of parameters, all of them with 𝜎 = 3. Summaries as explained in Figure 2.4.
On top, 𝑀 = 2; on bottom, 𝑀 = 20. On the left part, 𝜆∅ = 0.25, on the right part, 𝜆∅ = 0.5.

�.� Conclusion

We derived a new algorithm for simulating the behavior of one neuron embedded in an infinite network.
This is possible thanks to the Kalikow decomposition which allows picking at random the influencing
neurons. As seen in the last section, it is computationnally tractable in practice to simulate open systems
in the physical sense. A question that remains open for future work is whether we can prove that such a
decomposition exists for a wide variety of processes, as it has been shown in discrete time (see [8, 9, 18]).

�.� Link between Algorithm � and the Kalikow decomposition

Toprove thatAlgorithm2 returns the desired processes, let us use some additional andmoremathematical
notation. Note that all the points simulated on neuron 𝑖 before being accepted or not can be seen as coming
from a common Poisson process of intensity 𝑀, denoted Π𝑖. For any 𝑖 ∈ I, we denote the arrival times of
Π𝑖, (𝑇 𝑖

𝑛)𝑛∈Z, with 𝑇 𝑖
1 being the first positive time.

28

2.8 Link between Algorithm 2 and the Kalikow decomposition

As in Step 6 of Algorithm 2, we attach to each point of Π𝑖 a stochastic mark 𝑋 given by,

𝑋𝑖
𝑛 =

⎧⎪
⎨
⎪⎩

1 if 𝑇 𝑖
𝑛 is accepted in the thinning procedure

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(2.8.1)

Let us also define 𝑉 𝑖
𝑛 the neighborhood choice of 𝑇 𝑖

𝑛 picked at random and independently of anything
else according to 𝜆𝑖 and shifted at time 𝑇 𝑖

𝑛.

In addition, for any 𝑖 ∈ I, define 𝑁 𝑖 = (𝑇 𝑖
𝑛, 𝑋𝑖

𝑛)𝑛∈Z an 𝐸-marked point process with 𝐸 = {0; 1}. In
particular, following the notation in Chapter VIII of [2], for any 𝑖 ∈ I, let

𝑁 𝑖
𝑡 (𝑚𝑎𝑟𝑘) = ∑

𝑛∈Z
1𝑋𝑖

𝑛=𝑚𝑎𝑟𝑘1𝑇 𝑖
𝑛≤𝑡 for 𝑚𝑎𝑟𝑘 ∈ 𝐸

ℱ 𝑁
𝑡 = ⋁

𝑖∈I
𝜎(𝑁 𝑖

𝑠(0), 𝑁 𝑖
𝑠(1); 𝑠 ≤ 𝑡) and ℱ 𝑁(1)

𝑡 = ⋁
𝑖∈I

𝜎(𝑁 𝑖
𝑠(1); 𝑠 ≤ 𝑡).

Moreover note that (𝑁 𝑖
𝑡 (1))𝑡∈R is the counting process associated to the point processs P simulated by

Algorithm 2. Let us denote by 𝜑𝑖(𝑡), the formula given by (2.4.1) and shifted at time 𝑡. Note that since the
𝜙𝑣

𝑖 ’s are ℱ 𝑖𝑛𝑡
0− = ℱ 𝑁(1)

0− , 𝜑𝑖(𝑡) is ℱ 𝑁(1)
𝑡− measurable. We also denote 𝜑𝑣

𝑖 (𝑡) the formula of 𝜙𝑣
𝑖 shifted at time

𝑡.

With this notation, we can prove the following.

Proposition 2. The process (𝑁 𝑖
𝑡 (1))𝑡∈R admits 𝜑𝑖(𝑡) as ℱ 𝑁(1)

𝑡 -predictable intensity.

Proof. Following the technique in Chapter 2 of [2], let us take 𝐶𝑡 a non negative predictable function with
respect to (w.r.t) ℱ 𝑁 𝑖(1)

𝑡 thatis ℱ 𝑁(1)
𝑡− measurable and therefore ℱ 𝑁

𝑡− measurable . We have, for any 𝑖 ∈ I,

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝑁 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E(𝐶𝑇 𝑖

𝑛
1𝑋𝑖

𝑛=1)

Note that by Theorem T35 at Appendix A1 of [2], any point 𝑇 should be understood as a stopping time,
and that by Theorem T30 at Appendix A2 of [2],

ℱ 𝑁
𝑇 − = ⋁

𝑗
𝜎{𝑇 𝑗

𝑚, 𝑋𝑗
𝑚 such that 𝑇 𝑗

𝑚 < 𝑇 }

So

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝑁 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E(𝐶𝑇 𝑖

𝑛
E(1𝑋𝑖

𝑛=1|ℱ 𝑁
𝑇 𝑖

𝑛
−, 𝑉 𝑖

𝑛)) =
∞

∑
𝑛=1
E

⎛
⎜
⎜
⎝
𝐶𝑇 𝑖

𝑛

𝜑𝑉 𝑖
𝑛

𝑖 (𝑇 𝑖
𝑛)

𝑀

⎞
⎟
⎟
⎠
.

Let us now integrate with respect to the choice 𝑉 𝑖
𝑛 , which is independent of anything else.

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝑁 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E

⎛
⎜
⎜
⎜
⎝

𝐶𝑇 𝑖
𝑛

𝜆𝑖(∅)𝜑∅
𝑖 + ∑

𝑣∈𝒱 ,𝑣≠∅
𝜆𝑖(𝑣) × 𝜑𝑣

𝑖 (𝑇 𝑖
𝑛)

𝑀

⎞
⎟
⎟
⎟
⎠

= E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡
𝜑𝑖(𝑡)
𝑀

𝑑Π𝑖(𝑡)
⎞
⎟
⎟
⎠
.

29

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

Since Π𝑖 is a Poisson process with respect to (ℱ 𝑁
𝑡)𝑡 with intensity 𝑀, and since 𝐶𝑡

𝜑𝑖(𝑡)
𝑀 is ℱ 𝑁

𝑡− measurable,
we finally have that

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝑁 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

= E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝜑𝑖(𝑡)𝑑𝑡
⎞
⎟
⎟
⎠
,

which ends the proof.

�.� Proof of Proposition �

Proof. We do the proof for the backward part, starting with 𝑇 = 𝑇𝑛𝑒𝑥𝑡 as the next point after 𝑡0 (Step
4 of Algorithm 3), the proof being similar for the other 𝑇𝑛𝑒𝑥𝑡 generated at Step 23. We construct a tree
with root (𝑖, 𝑇). For each point (𝑗𝑇 ′, 𝑇 ′) in the tree, the points which are simulated in 𝑉𝑇 ′ (Step 12 of
Algorithm 3) define the children of (𝑗𝑇 ′, 𝑇 ′) in the tree. This forms the tree ̃𝒯.

Let us now build a tree ̃𝒞 with root (𝑖, 𝑇) (that includes the previous tree) by mimicking the previous
procedure in the backward part, except that we simulate on the whole neighborhood even if it has a part
that intersects with previous neighborhoods (if they exist) (Step 11-12 of Algorithm 3). By doing so, we
make the number of children at each node independent of anything else.

If the tree ̃𝒞 goes extinct then so does the tree ̃𝒯 and the backward part of the algorithm terminates.

But if one only counts the number of children in the tree ̃𝒞, we have a marked branching process whose
reproduction distribution for the mark 𝑖 is given by

• no children with probability 𝜆𝑖(∅)

• Poissonian number of children with parameter 𝑙(𝑣)𝑀 if 𝑣 is the chosen neighborhood with proba-
bility 𝜆𝑖(𝑣)

This gives that the average number of children issued from a node with the mark 𝑖 is

𝜁𝑖 = 𝜆𝑖(∅) × 0 + ∑
𝑣∈𝒱 ,𝑣≠∅

𝜆𝑖(𝑣)𝑙(𝑣)𝑀.

If we denote ̃𝒞 𝑘 as the collection of points in the tree ̃𝒞 at generation 𝑘, and by 𝐾𝑇 ′ the set of points
generated independently as a Poisson process of rate 𝑀 inside 𝑉𝑇 ′ , we see recursively that

̃𝒞 𝑘+1 = ⋃
𝑇 ′∈ ̃𝒞 𝑘

𝐾𝑇 ′

But
E(|𝐾𝑇 ′||𝑇 ′) = 𝜁𝑗𝑇 ′ .

Therefore, if we denote the total number of sites in ̃𝒞 𝑘 by 𝑍(𝑘), we have

E(𝑍(𝑘+1)| ̃𝒞 𝑘) ≤ 𝑍(𝑘) sup
𝑖∈𝐼

𝜁𝑖.

30

2.9 Proof of Proposition 1

One can then conclude by recursion that,

E(𝑍(𝑘)) ≤ (sup
𝑖∈𝐼

𝜁𝑖)𝑘 < 1.

The last inequality use the sparsity neighborhood assumption. Then we deduce that, the mean number of
children in each generation goes to 0 as 𝑘 tends to infinity. So by using classical branching techniques in
[14], we conclude that the tree ̃𝒞 will go extinct almost surely. This also implies that, the backward steps
end a.s.

Acknowledgements

This work was supported by the French government, through the UCA𝐽𝑒𝑑𝑖 Investissements d’Avenir man-
aged by the National Research Agency (ANR-15-IDEX-01) and by the interdisciplinary Institute forMod-
eling in Neuroscience and Cognition (NeuroMod) of the Université Côte d’Azur. The authors would like
to thank Professor E.Löcherbach from Paris 1 for great discussions about Kalikow decomposition and
Forward Backward Algorithm.

References for Chapter �

1. P. K. Andersen, O. Borgan, R. D. Gill, and N. Keiding. Statistical models based on counting processes.
Springer Science & Business Media, 2012.

2. P. Brémaud. Point processes and queues: martingale dynamics. Vol. 50. Springer, 1981.

3. P. Brémaud and L. Massoulié. “Stability of nonlinear Hawkes processes”. The Annals of Probability,
1996, pp. 1563–1588.

4. F. Comets, R. Fernández, and P. A. Ferrari. “Processes with long memory: regenerative construction
and perfect simulation”. The Annals of Applied Probability 12:3, 2002, pp. 921–943.

5. A. Dassios andH. Zhao. “Exact simulation ofHawkes process with exponentially decaying intensity”.
Electronic Communications in Probability 18, 2013, pp. 1–13.

6. V. Didelez. “Graphical models for marked point processes based on local independence”. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 70:1, 2008, pp. 245–264.

7. R. Fernández, P. Ferrari, and A. Galves. “Coupling, renewal and perfect simulation of chains of infi-
nite order”. Lecture Notes for the vth Brazilian school of Probability, Ubatuba 2001, 2001.

8. A.Galves andE. Löcherbach. “Infinite systems of interacting chainswithmemory of variable length—a
stochastic model for biological neural nets”. Journal of Statistical Physics 151:5, 2013, pp. 896–921.

9. A. Galves and E. Löcherbach. “Modeling networks of spiking neurons as interacting processes with
memory of variable length”. Journal de la Société Française de Statistique 157:1, 2016, pp. 17–32.

10. P. Hodara and E. Löcherbach. “Hawkes processes with variable length memory and an infinite num-
ber of components”. Advances in Applied Probability 49:1, 2017, pp. 84–107.

31

2 Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal
Networks

11. S. Kalikow. “RandomMarkov processes anduniformmartingales”. Israel Journal ofMathematics 71:1,
1990, pp. 33–54.

12. P.W. Lewis andG. S. Shedler. “Simulation of nonhomogeneous Poisson processes by thinning”.Naval
research logistics quarterly 26:3, 1979, pp. 403–413.

13. C. Mascart, A. Muzy, and P. Reynaud-Bouret. “Efficient Simulation of Sparse Graphs of Point Pro-
cesses”. arXiv preprint arXiv:2001.01702, 2020.

14. S. Méléard. Aléatoire: Introduction à la théorie et au calcul des probabilités. Editions Ecole Polytech-
nique, 2010.

15. J. Møller and J. G. Rasmussen. “Perfect simulation of Hawkes processes”. Advances in applied proba-
bility 37:3, 2005, pp. 629–646.

16. A. Muzy. “Exploiting activity for the modeling and simulation of dynamics and learning processes
in hierarchical (neurocognitive) systems”.Computing in Science & Engineering 21:1, 2019, pp. 84–93.

17. Y.Ogata. “OnLewis’ simulationmethod for point processes”. IEEE transactions on information theory
27:1, 1981, pp. 23–31.

18. G. Ost and P. Reynaud-Bouret. “Sparse space–time models: Concentration inequalities and Lasso”.
In:Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 56. 4. Institut Henri Poincaré.
2020, pp. 2377–2405.

19. E. A. Peters et al. “Rejection-free Monte Carlo sampling for general potentials”. Physical Review E
85:2, 2012, p. 026703.

20. P. Reynaud-Bouret and S. Schbath. “Adaptive estimation forHawkes processes; application to genome
analysis”. The Annals of Statistics 38:5, 2010, pp. 2781–2822.

21. K. Tocher. “PLUS/GPS III Specification”. United Steel Companies Ltd, Department of Operational
Research, 1967.

22. D. Vere-Jones and T. Ozaki. “Some examples of statistical estimation applied to earthquake data”.
Annals of the Institute of Statistical Mathematics 34:1, 1982, pp. 189–207.

23. B. P. Zeigler, A. Muzy, and E. Kofman. Theory of modeling and simulation: discrete event & iterative
system computational foundations. Academic press, 2018.

24. B. Zeigler. “Theory of modeling and simulation. Jhon Wiley & Sons”. Inc., New York, NY, 1976.

32

� Kalikow decomposition for counting
processes with stochastic intensity

Written by T.C. Phi

Status: Submitted and in revision in Advances in Applied Probability

33

3 Kalikow decomposition for counting processes with stochastic intensity

�.� abstract

We propose a new Kalikow decomposition and the corresponding Perfect Simulation algorithm for con-
tinuous time multivariate counting processes, on potentially infinite networks. We prove the existence of
such a decomposition in various cases. This decomposition is not unique and we discuss the choice of the
decomposition in terms of algorithmic efficiency. We apply these methods on several examples: linear
Hawkes process, age dependent Hawkes process, exponential Hawkes process.

�.� Introduction

Multivariate point (or counting) processes on networks have been used to model a large variety of situ-
ations : social networks [11], financial prices [2], genomics [22], etc. One of the most complex network
models comes from neuroscience where the number of nodes can be as large as billions [16, 19, 23]. Sev-
eral counting process models have been used to model such large networks: Hawkes processes [12, 13],

Galves-Löcherbach models [10] etc. If the simulation of such large and potentially infinite networks is
of fundamental importance in computational neuroscience [16, 19], also the existence of such processes
in stationary regime and within a potentially infinite network draws a lot of interest (see [10, 14, 18] in
discrete or continuous time).

Kalikow decompositions [15] have been introduced and mainly used in discrete time. Such a decom-
position provides a decomposition of the transition probabilities into a mixture of more elementary tran-
sitions. The whole idea is that even if the process is complex (infinite memory, infinite network), the
elementary transitions look only at what happens in a finite neighborhood in time and space. Once the
decomposition is proved for a given process, this can be used to write a Perfect Simulation algorithm [10,

14, 18]. Here the word ”perfect” refers to the fact that it is possible in finite time to simulate what happens
on one of the nodes of the potentially infinite network in a stationary regime. The existence of such an
algorithm guarantees in particular the existence of the process in stationary regime. Most of the papers re-
ferring to Kalikow decomposition and Perfect Simulation are theoretical and aim at proving the existence
of such processes on infinite networks in stationary regime [10, 14].

In the present paper, we propose to go from discrete to continuous time. Therefore, we will decompose
conditional intensities rather than transition probabilities. This leads to serious difficulties that usually
prevent a more practical application of the Perfect Simulation algorithm. Indeed, up to our knowledge,
the only work dealing with continuous time counting processes, is the one by Hodara and Löcherbach
[14]. Their decomposition is constructed under the assumption that there is a dominating Poisson process
on each of the nodes, from which the points of the processes under interest can be thinned by rejection
sampling (see also [17] for another use of thinning in simulation of counting processes). To prove the
existence of a Kalikow decomposition and go back to a more classic discrete time setting, the authors
need to freeze the dominating Poisson process, leading to a mixture, in the Kalikow decomposition, that
depends on the realization of the dominating Poisson process. Such amixture is not accessible in practice,
and this prevents the use of their Perfect Simulation algorithm for more concrete purposes than mere
existence.

34

3.3 Notation and Kalikow decomposition

More recently, in a previous computational article [19], we have used another type of Kalikow decom-
position, which does not depend on the dominating Poisson process. This leads to a Perfect Simulation
algorithm, which can be used as a concrete way for Computational Neuroscience to simulate neuronal
networks as an open physical system, where we do not need to simulate the whole network to simulate
what happens in a small part [19].

In the present work, we want to go further, by proposing an evenmore general Kalikow decomposition,
which does not assume the existence of a dominating Poisson process at all. We also prove (and this is
not done in [19]) that such decomposition exists on various interesting examples, even if these decompo-
sitions are not unique. Finally we propose a corresponding Perfect Simulation algorithm and we discuss
its efficiency with respect to the decomposition that is used.

The paper is organized as follows. In Section 3.3, we introduce the basic notation and give the precise
definition of a Kalikow decomposition. In Section 3.4, we present two methods to obtain a Kalikow de-
composition for a counting process having stochastic intensity. The first method is very general and based
on adequate choices of neighborhoods and weights. As an application, we study a classical example, the
linear Hawkes process [12, 13], and a very recent and promising process, the age dependent Hawkes pro-
cess [20]. Though very simple cases of Hawkes processes are treated, it is worth to note that our method
can be generalized very easily. The second method exists only for Hawkes processes and is based on Tay-
lor expansion. Finally, in Section 3.5, we present a modified Perfect Simulation algorithm based on the
Kalikow decomposition written in Section 3.4, and we discuss the efficiency of the algorithm with respect
to the Kalikow decomposition.

�.� Notation and Kalikow decomposition

�.�.� Notation and Definition

We start this section by recalling the definition of counting processes and stochastic intensity. We refer
the reader to [3] and [7] for more complete statements.

Let I be a countable index set. A counting process 𝑍 𝑖, 𝑖 ∈ I, can be described by its sequence of jump
times inR, (𝑇 𝑖

𝑛)𝑛∈Z [3]. Consider (ℱ𝑡)𝑡∈R the past filtration of the process 𝑍 = (𝑍 𝑖)𝑖∈I:

ℱ𝑡 = 𝜎(𝑍 𝑖
𝑠, 𝑖 ∈ I, 𝑠 ≤ 𝑡).

Since a point process is fully characterized by its arrival times [3], we can denote by 𝒳 the canonical
path space of 𝑍:

𝒳 = {({𝑡𝑖
𝑛}𝑛∈Z)𝑖∈I such that ∀𝑛, 𝑖, 𝑡𝑖

𝑛 < 𝑡𝑖
𝑛+1 and 𝑡𝑖

0 ≤ 0 < 𝑡𝑖
1},

where {𝑡𝑖
𝑛}𝑛∈Z denotes a possible realization of (𝑇 𝑖

𝑛)𝑛∈Z. Denote 𝒳𝑡 the canonical path space of 𝑍 before
time 𝑡:

𝒳𝑡 = 𝒳 ∩ (−∞, 𝑡)𝐼.

A past configuration 𝑥𝑡 is an element of 𝒳𝑡 which is a realization of arrival times of 𝑍 before 𝑡.

35

3 Kalikow decomposition for counting processes with stochastic intensity

Under suitable assumptions, the evolution of the point process 𝑍 𝑖 with respect to (ℱ𝑡)𝑡∈R is fully char-
acterized by its stochastic intensity which depends on the past configuration, see Proposition 7.2.IV of
[7]. Hence, in this paper, for any 𝑥𝑡 ∈ 𝒳𝑡, given that the past before time 𝑡 is 𝑥𝑡, we denote by 𝜙𝑖,𝑡(𝑥𝑡)
the corresponding stochastic intensity of the process 𝑍 𝑖 at time 𝑡 for any 𝑖 ∈ I. More precisely, for any
𝑥𝑡 ∈ 𝒳𝑡, we have

P(𝑍𝑖 has jump in [𝑡, 𝑡 + 𝑑𝑡) ∣ past before time 𝑡 = 𝑥𝑡) = 𝜙𝑖,𝑡(𝑥𝑡)𝑑𝑡.

Togetherwith the path space𝒳𝑡, we denoteV𝑡 a countable collection of finite space-timeneighborhoods
𝑣𝑡, in which each neighborhood 𝑣𝑡 is a Borel subset of I × (−∞, 𝑡). More precisely, we call 𝑣𝑡 a finite
neighborhood if there exists a finite subset 𝐽 ⊂ I and a finite interval [𝑎, 𝑏] such that:

𝑣𝑡 ⊂ 𝐽 × [𝑎, 𝑏].

For convenience, we denote 𝒳 the canonical path space of 𝑍 before time 0 instead of 𝒳0. In addition, a
past configuration before 0 is denoted by𝑥 and the intensity at time 0 is𝜙𝑖(𝑥) instead of𝜙𝑖,0(𝑥0). Moreover,

if 𝑥 = ({𝑡𝑖
𝑛}𝑛∈Z−)𝑖∈I

∈ 𝒳, then for any 𝑖 ∈ I, we denote the point measure associated to index 𝑖 by

𝑑𝑥𝑖
𝑠 = ∑

𝑚∈Z−
𝛿𝑡𝑖

𝑚
(𝑑𝑠)

in which 𝛿𝑡(.) is a Dirac measure at 𝑡. Throughout this article, without further mentioning, the integral ∫𝑏
𝑎

stands for ∫[𝑎,𝑏) with 𝑎, 𝑏 ∈ R.
Let 𝑥𝑡 = ({𝑡𝑖

𝑛}𝑛∈Z)𝑖∈I ∈ 𝒳𝑡 and denote 𝑥←𝑡
𝑡 ∶= ({𝑡𝑖

𝑛 − 𝑡}𝑛)𝑖 ∈ 𝒳 the shifted configuration. In this
paper, if we do not mention otherwise, we always consider time homogeneous point processes, which in
our setting can be defined as follows.

Definition 3.3.1. For a given 𝑖 ∈ I, a counting process 𝑍𝑖 with stochastic intensity (𝜙𝑖,𝑡(𝑥𝑡))𝑡∈R is said to
be time homogeneous if

𝜙𝑖,𝑡(𝑥𝑡) = 𝜙𝑖(𝑥←𝑡
𝑡)

for all 𝑡 ∈ R and 𝑥𝑡 ∈ 𝒳𝑡.

Before giving the definition of a Kalikow decomposition, we introduce the definition of a cylindrical
function as follows.

Definition 3.3.2. For any neighborhood 𝑣𝑡 ∈ V𝑡 and 𝑥𝑡, 𝑦𝑡 ∈ 𝒳𝑡, we say 𝑥𝑡
𝑣𝑡= 𝑦𝑡 whenever 𝑥𝑡 = 𝑦𝑡 in 𝑣𝑡.

This means that, for all 𝑖 ∈ I, 𝑛 ∈ Z, such that 𝑡𝑖
𝑛 ∈ 𝑥𝑡 and (𝑖, 𝑡𝑖

𝑛) ∈ 𝑣𝑡, we have 𝑡𝑖
𝑛 ∈ 𝑦𝑡 and vice-versa. A

real valued function 𝑓 is called cylindrical in 𝑣𝑡 if 𝑓(𝑥𝑡) = 𝑓(𝑦𝑡) for any 𝑥𝑡
𝑣𝑡= 𝑦𝑡, and we usually stress the

dependence in 𝑣𝑡 by denoting 𝑓 𝑣𝑡(𝑥𝑡).

In what follows, we give the definition of the Kalikow decomposition for a counting process 𝑍𝑖 with
stochastic intensity 𝜙𝑖,𝑡(𝑥𝑡).

Definition 3.3.3. We say a time homogeneous process 𝑍𝑖 for some 𝑖 ∈ I admits the Kalikow decompo-
sition with respect to (w.r.t) a neighborhood family (V𝑡)𝑡∈R and a sequence of subspaces (𝒴𝑡)𝑡∈R of 𝒳∞,

36

3.3 Notation and Kalikow decomposition

if for all 𝑡, the intensity 𝜙𝑖,𝑡(𝑥𝑡) admits a convex decomposition for any past configuration 𝑥𝑡 ∈ 𝒳𝑡 ∩ 𝒴𝑡 ,
that is, for any 𝑣𝑡 ∈ V𝑡 there exists a cylindrical function 𝜙𝑣𝑡

𝑖,𝑡(.) on 𝑣𝑡 taking values inR+ and a probability
density function 𝜆𝑖,𝑡(.) such that

∀𝑥𝑡 ∈ 𝒳𝑡 ∩ 𝒴𝑡, 𝜙𝑖,𝑡(𝑥𝑡) = 𝜆𝑖,𝑡(∅)𝜙∅
𝑖,𝑡 + ∑

𝑣𝑡∈V𝑡,𝑣𝑡≠∅
𝜆𝑖,𝑡(𝑣𝑡)𝜙

𝑣𝑡
𝑖,𝑡(𝑥𝑡) (3.3.1)

with 𝜆𝑖,𝑡(∅) + ∑
𝑣𝑡∈V𝑡,𝑣𝑡≠∅

𝜆𝑖,𝑡(𝑣𝑡) = 1.

We say process 𝑍 = (𝑍 𝑖)𝑖∈I satisfies a Kalikow decomposition w.r.t (V𝑡)𝑡∈R and (𝒴𝑡)𝑡∈R if for all
𝑖 ∈ I each process 𝑍𝑖 satisfies a Kalikow decomposition w.r.t (V𝑡)𝑡∈R and (𝒴𝑡)𝑡∈R. For simplicity, all the
conventions of (𝒳𝑡)𝑡∈R will be used for (𝒴𝑡)𝑡∈R, such as 𝒴0 being replaced by 𝒴, etc.

Remark 5. Note that the function 𝜆𝑖,𝑡(.) in Definition 3.3.3 is a deterministic function, that is why this
decomposition is unconditional, whereas in [14], 𝜆𝑖,𝑡(.) was depending on the dominating Poisson pro-
cesses (see Introduction). Secondly, we do not restrict ourself to a bounded intensity, which is a notable
improvement compared to [19].

In the following subsection, we show that we can translate the decomposition at time 0 to any time 𝑡
when dealing with time homogeneous processes.

�.�.� From the decomposition at time � to the decomposition at any time 𝑡.

In the context of time homogeneous process, for any 𝑡 ∈ R, we define

𝒴𝑡 = 𝒴 →𝑡 = {𝑥 + 𝑡|𝑥 ∈ 𝒴}.

For all 𝑖 ∈ I, assume that Equation (3.3.1) is satisfied at time 𝑡 = 0 for any 𝑥 ∈ 𝒳 ∩ 𝒴, we then prove
that, for time homogeneous processes, this equation is achieved at any time 𝑡, for any 𝑥𝑡 ∈ 𝒳𝑡 ∩ 𝒴𝑡, for a
particular choice ofV𝑡. Hence, to show that a counting process𝑍𝑖, 𝑖 ∈ I satisfies aKalikowdecomposition,
it is then sufficient to write the Kalikow decomposition at time 0 only.

Consider a neighborhood family at time 0, V0. Take a neighborhood 𝑣 ∈ V0 and for 𝑡 ≥ 0, denote
𝑣→𝑡 = {(𝑖, 𝑢 + 𝑡) ∶ (𝑖, 𝑢) ∈ 𝑣}, i.e, shift to the right the time component of the neighborhood 𝑣 by 𝑡 and
define

V𝑡 = V→𝑡 ∶= {𝑣→𝑡 ∶ 𝑣 ∈ V0}. (3.3.2)

Since Equation (3.3.1) is satisfied at time 0 for any 𝑥 ∈ 𝒳 ∩ 𝒴 and since 𝑥←𝑡
𝑡 ∈ 𝒳 ∩ 𝒴, this implies that

𝜙𝑖(𝑥←𝑡
𝑡) = 𝜆𝑖,0(∅)𝜙∅

𝑖,0 + ∑
𝑣∈V0,𝑣≠∅

𝜆𝑖,0(𝑣)𝜙𝑣
𝑖,0(𝑥←𝑡

𝑡).

Define the cylindrical function 𝜑𝑣→𝑡

𝑖,𝑡 , that is cylindrical on 𝑣→𝑡 such that 𝜑𝑣→𝑡

𝑖,𝑡 (𝑥𝑡) = 𝜙𝑣
𝑖,0(𝑥←𝑡

𝑡) and
𝜑∅

𝑖,𝑡 ∶= 𝜙∅
𝑖,0. Moreover, for any nonempty neighborhood 𝑣 in V0, we consider 𝜆𝑖,𝑡(𝑣→𝑡) = 𝜆𝑖,0(𝑣). Since

𝑍 𝑖 is a time homogeneous process, by Definition 3.3.1, we have that

37

3 Kalikow decomposition for counting processes with stochastic intensity

𝜙𝑖,𝑡(𝑥𝑡) = 𝜆𝑖,𝑡(∅)𝜑∅
𝑖,𝑡 + ∑

𝑣→𝑡∈V𝑡,𝑣→𝑡≠∅
𝜆𝑖,𝑡(𝑣→𝑡)𝜑𝑣→𝑡

𝑖,𝑡 (𝑥𝑡) (3.3.3)

with
𝜆𝑖,𝑡(∅) + ∑

𝑣→𝑡∈V𝑡,𝑣→𝑡≠∅
𝜆𝑖,𝑡(𝑣→𝑡) = 1.

This shows that Equation (3.3.1) is satisfied at any time 𝑡. Thus, by definition, 𝑍 𝑖 admits a Kalikow
decomposition w.r.t the neighborhood family (V𝑡)𝑡∈R whereV𝑡 = V→𝑡. In addition, (V𝑡)𝑡∈R is completely
determined once the neighborhood family at time 0, V0, is determined. From now on, it is sufficient to
mention V0 whenever we speak about the Kalikow decomposition.

�.�.� About the subspace 𝒴

The role of the subspace 𝒴 is to make the Kalikow decomposition achievable. There are many possible
choices for such a subspace, depending on the model under consideration. In this paper, we focus for
instance on the choice 𝒴 = 𝒳 >𝛿, the subspace of 𝒳 where the distance between any two consecutive
possible jumps is greater than 𝛿. More precisely,

𝒳 >𝛿 = {𝑥 = ({𝑡𝑖
𝑛}𝑛∈Z−)𝑖∈I such that ∀𝑛, 𝑖 𝑡𝑖

𝑛+1 − 𝑡𝑖
𝑛 > 𝛿 and 𝑡𝑖

0 ≤ 0}. (3.3.4)

Another possible choice of a subspace 𝒴 that we consider guarantees that the intensity is finite, by
introducing

𝒴 = {𝑥 ∈ 𝒳, ∀𝑖 𝜙𝑖(𝑥) < ∞}.

In practice, either the process is known, namely, the formula of the intensity is given, and we dispose of
theoretical results that guarantee for instance that 𝑥 ∈ 𝒴 almost surely, or we handle the decomposition by
creating a certain threshold. Before the process reaches this threshold, we are able to achieve the Kalikow
decomposition by following one of the methods described in the following section. However, after having
reached this threshold we can not say anything any more. This depends of course on the initial condition,
and if we start for instance with no point on (−∞, 0), the intensity is in many cases likely to be finite at
least at time 0. To proceed further with a Perfect Simulation algorithm is more tricky since we need to
check that the intensity remains finite during all steps of the algorithm. This will be the main object of a
future work.

�.� Main results

�.�.� The first method

In this section, we present step by step a generalmethod to prove the existence of a Kalikowdecomposition
for the counting process 𝑍𝑖, 𝑖 ∈ I. We start by discussing the relevant family of neighborhoods.

For any subset 𝐽 ⊂ I we say a process 𝑍 𝑖 is locally dependent on a subprocess 𝑍𝐽 ∶= (𝑍𝑗)𝑗∈𝐽 if
the intensity 𝜙𝑖(𝑥) is a cylindrical function on 𝐽 × (−∞, 0). Roughly speaking, a process 𝑍 𝑖 is locally
dependent on a subprocess 𝑍𝐽 if the information of process 𝑍𝑗 with 𝑗 ∈ 𝐽 is compulsory to compute the

38

3.4 Main results

intensity of process 𝑍𝑖. For short, we say 𝑖 is locally dependent on 𝐽. A more formal definition of local
dependence can be found at [9]. Denote

𝒱.→𝑖 ∶= {𝑗 ∈ I such that 𝑖 is locally dependent on 𝑗} (3.4.1)

and 𝒮 𝑖 ∶= 𝒱.→𝑖 × (−∞, 0).
We denote by (P, ≤) a countable, ordered set. To simplify notation, in what follows, we consider P to be

N, but depending on the concrete examples, different sets P will be considered, for exampleN ×N, etc.
Define a family of finite space-time neighborhoods at time 0 associated to the dynamic of 𝑍𝑖:

V𝑖 = {(𝑣𝑖
𝑘)𝑘∈P ⊂ I × (−∞, 0) such that ∪𝑘 𝑣𝑖

𝑘 = 𝒮 𝑖} (3.4.2)

with the convention that 𝑣𝑖
0 = ∅.

In order to prove that 𝑍 𝑖 admits a Kalikow decomposition w.r.t the neighborhood family V𝑖 and a
convenient subspace 𝒴, we use the following condition. Once this condition is fulfilled, we will show in
Proposition 3 below that we can derive the corresponding Kalikow decomposition.

Assumption 1. There exists a non-negative sequence of functions (Δ𝑖
𝑘(𝑥))𝑘∈P which are cylindrical on 𝑣𝑖

𝑘
such that 𝑛

∑
𝑘=0

Δ𝑖
𝑘(𝑥) → 𝜙𝑖(𝑥)

as 𝑛 → ∞, for every 𝑥 ∈ 𝒳 ∩ 𝒴.

Now, we present a method to obtain a Kalikow decomposition under Assumption 1.
Step 1: For any 𝑘 ≥ 0, take Δ𝑖

𝑘(𝑥) from Assumption 1, it then guarantees that 𝜙𝑖(𝑥) can be written as
follows:

𝜙𝑖(𝑥) = Δ𝑖
0 + ∑

𝑘≥1
Δ𝑖

𝑘(𝑥)

where Δ𝑖
0 ∶= Δ𝑖

0(𝑥) is a constant, that is, it does not depend on 𝑥 since 𝑣𝑖
0 = ∅. Note that, for 𝑘 ≥ 1, by

definition, Δ𝑖
𝑘(𝑥) is cylindrical on 𝑣𝑖

𝑘 and non negative.
Step 2: Define a deterministic nonnegative sequence (𝜂𝑖

𝑘)𝑘∈P such that

∑
𝑘≥0

𝜂𝑖
𝑘 = 1.

Obviously, 𝜙𝑖(𝑥) can be written as:

𝜙𝑖(𝑥) = 𝜂𝑖
0

Δ𝑖
0

𝜂𝑖
0

+ ∑
𝑘≥1

𝜂𝑖
𝑘

Δ𝑖
𝑘(𝑥)

𝜂𝑖
𝑘

with the convention that 0/0 = 1. We can set 𝜂𝑖
𝑘 to 0 whenever Δ𝑖

𝑘(𝑥) equals 0 for all 𝑥 and even discard
the corresponding neighborhood from V𝑖.

39

3 Kalikow decomposition for counting processes with stochastic intensity

Proposition 3. Consider a point process 𝑍𝑖, 𝑖 ∈ I, with intensity at time 0, 𝜙𝑖(𝑥), for any 𝑥 ∈ 𝒳. For
the neighborhood family V𝑖 defined in (3.4.2), if 𝜙𝑖(𝑥) satisfies Assumption 1, then 𝑍𝑖 has the following
Kalikow decomposition with respect to V𝑖 and the subspace 𝒴:

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜆𝑖(∅) = 𝜂𝑖
0

𝜙∅
𝑖 =

Δ𝑖
0

𝜂𝑖
0

𝜆𝑖(𝑣𝑖
𝑘) = 𝜂𝑖

𝑘

𝜙
𝑣𝑖

𝑘
𝑖 (𝑥) =

Δ𝑖
𝑘(𝑥)

𝜂𝑖
𝑘

for any choice of non negative weights (𝜂𝑖
𝑘)𝑘∈P such that

∑
𝑘≥0

𝜂𝑖
𝑘 = 1.

Remark 6. From Step 2, it is clear that such a Kalikow decomposition is not unique. However, to perform
the Perfect Simulation algorithm (see Section 3.5), (𝜂𝑖

𝑘)𝑘∈P can not be chosen arbitrarily. These weights
need to satisfy several conditions, for example: the stopping condition, see Proposition 7 below, which
enables the algorithm to end. On the other hand, for the simulation purposes, these weights should be

chosen carefully to avoid the explosion of 𝜙
𝑣𝑖

𝑘
𝑖 (𝑥). In addition, they also influence the mean number of

total simulated points of this algorithm, and therefore the efficiency of the algorithm (see Section 3.5). To
illustrate this point more clearly, one example is considered in Section 3.5.

�.�.� Examples of the first method

Linear Hawkes process.

In the following, we consider a linear Hawkes process [12, 13], where the intensity at time 0, 𝜙𝑖(𝑥), is given
as follows. For any 𝑥 ∈ 𝒳,

𝜙𝑖(𝑥) = 𝜇𝑖 + ∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠,

where ℎ𝑗𝑖(.) measures the local dependence of process 𝑍𝑖 on 𝑍𝑗 and 𝜇𝑖 refers to the spontaneous rate of
process 𝑍𝑖.

We consider the following assumption for the method to work.

Assumption 2. For all 𝑖, 𝑗 ∈ I, ℎ𝑗𝑖(.) is a non negative function.

Denote 𝜖 an arbitrary, fixed and positive number. Then we have

𝜙𝑖(𝑥) = 𝜇𝑖 + ∑
𝑗∈I

∑
𝑛∈N∗ ∫

−𝑛𝜖+𝜖

−𝑛𝜖
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠.

Furthermore, in this example, we have

𝒱.→𝑖 = {𝑗 ∈ I such that ℎ𝑗𝑖 ≠ 0}.

40

3.4 Main results

Since I is at most countable, we may enumerate the indices in I by 𝑗𝑙 for 𝑙 ∈ N∗. In this example we put
P = N∗ ×N∗, and we consider the neighborhood family V𝑎𝑡𝑜𝑚 as follows: for 𝑙, 𝑛 ≥ 1

𝑣𝑖
(𝑙,𝑛) ∶= {𝑗𝑙} × [−𝑛𝜖, −𝑛𝜖 + 𝜖).

We define, for all 𝑙, 𝑛 ≥ 1:

Δ𝑖
(𝑙,𝑛)(𝑥) ∶= ∫

−𝑛𝜖+𝜖

−𝑛𝜖
ℎ𝑗𝑙𝑖(−𝑠)𝑑𝑥𝑗𝑙

𝑠 ≥ 0,

and Δ𝑖
(0,0) ∶= Δ𝑖

(0,0)(𝑥) ∶= 𝜇𝑖. Applying the Monotone Convergence theorem, we obtain

Δ𝑖
(0,0) +

(𝐿,𝑁)

∑
(𝑙,𝑛)=(1,1)

Δ𝑖
(𝑙,𝑛)(𝑥) → 𝜙𝑖(𝑥),

when (𝐿, 𝑁) → (∞, ∞).
Notice that the intensity 𝜙𝑖(𝑥) is finite if and only if the series converges. However, what we do here is

more general, since we allow the intensity to be infinite.

Thus, Assumption 1 is fulfilled. As a consequence, relying on Proposition 3, we conclude that 𝑍𝑖 has a
Kalikow decomposition with respect to V𝑎𝑡𝑜𝑚 with

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜆𝑖(∅) = 𝜂(0,0)

𝜙∅
𝑖 =

𝜇𝑖
𝜂(0,0)

𝜆𝑖(𝑣𝑖
(𝑙,𝑛)) = 𝜂(𝑙,𝑛)

𝜙
𝑣𝑖

(𝑙,𝑛)
𝑖 (𝑥) =

∫−𝑛𝜖+𝜖
−𝑛𝜖 ℎ𝑗𝑙𝑖(−𝑠)𝑑𝑥𝑗𝑙

𝑠

𝜂(𝑙,𝑛)
,

for any choice of non negative weights (𝜂𝑖
(𝑙,𝑛))(𝑙,𝑛)∈N∗×N∗

such that

𝜂𝑖
(0,0) + ∑

𝑙,𝑛≥1
𝜂𝑖

(𝑙,𝑛) = 1.

Remark 7. Note that under mild conditions (see for instance [8]) it is well-known that the process exists
in a stationary regime. On the other hand, for our purpose it is sufficient to consider the subspace 𝒴 =
{𝑥 ∈ 𝒳 | ∀𝑖 𝜙𝑖(𝑥) < ∞} such that for all 𝑥 ∈ 𝒳 ∩ 𝒴, 𝜙𝑖(𝑥) and 𝜙𝑣

𝑖 (𝑥) are finite.

Age dependent Hawkes process with hard refractory period.

In this section, we are interested in writing a Kalikow decomposition for Age dependentHawkes processes
with hard refractory period. Up to our knowledge, this process was first introduced in [6] and no Kalikow
decomposition has been proved, even in a conditional framework, for this type of process. In our setting,
the stochastic intensity of an Age dependent Hawkes process with hard refractory of length 𝛿 > 0 can be
written as follows. For any 𝑖 ∈ I and 𝑥 ∈ 𝒳,

41

3 Kalikow decomposition for counting processes with stochastic intensity

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿 (3.4.3)

with the convention that 𝑎𝑖
0(𝑥) = −𝐿𝑖

0(𝑥) and

𝐿𝑖
0(𝑥) = sup{𝑡𝑖

𝑘 ∈ 𝑥 such that 𝑡𝑖
𝑘 < 0} = 𝑡𝑖

−1

is the last jump before 0 of process 𝑍𝑖, if it has at least one jump. Otherwise, we put 𝐿𝑖
0(𝑥) = −∞. Again,

we have

𝒱.→𝑖 = {𝑗 ∈ I such that ℎ𝑗𝑖 ≠ 0} ∪ {𝑖}.

By definition of stochastic intensity (3.4.3), we observe that the distance of any two consecutive jumps
have to be larger than 𝛿. This observation leads us to consider the subspace 𝒴 = 𝒳 >𝛿 that is introduced
in (3.3.4). To prove a Kalikow decomposition, we consider the following assumptions.

Assumption 3. (i) For all 𝑖, 𝑗 ∈ I, ℎ𝑗𝑖(.) is a non negative, non increasing 𝐿1 function. Moreover, for
every 𝑖

∑
𝑗∈I

‖ℎ𝑗𝑖‖𝐿1
< ∞.

(ii) For every 𝑖, 𝜓𝑖(.) is an increasing, non negative continuous function.

On the other hand, we build a neighborhood family V𝑛𝑒𝑠𝑡𝑒𝑑 by introducing a non decreasing sequence
(𝑉𝑖(𝑘))𝑘≥0 of finite subsets of I such that

𝑉𝑖(0) = ∅, 𝑉𝑖(1) = {𝑖}, 𝑉𝑖(𝑘 − 1) ⊂ 𝑉𝑖(𝑘) and ∪𝑘 𝑉𝑖(𝑘) = 𝒱.→𝑖 ∪ {𝑖 }. (3.4.4)

Consider P = N and set 𝑣𝑖
𝑘 = 𝑉𝑖(𝑘) × [−𝑘𝛿, 0), then we obtain by construction an increasing, nested

neighborhood sequence (𝑣𝑖
𝑘)𝑘∈N. By applying the methodology of Section 3.4.1, we prove the following

Proposition.

Proposition 4. Consider 𝒳 >𝛿 defined as in (3.3.4). For any past configuration 𝑥 ∈ 𝒳, suppose that the
intensity is of the form

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿.

If Assumption 3 is fulfilled, then the corresponding Kalikow decomposition with respect to V𝑛𝑒𝑠𝑡𝑒𝑑 and
𝒳 >𝛿 is for 𝑘 ≥ 1

⎧
⎪
⎨
⎪
⎩

𝜆𝑖(𝑣𝑖
𝑘) = 𝜂𝑖

𝑘

𝜙
𝑣𝑖

𝑘
𝑖 (𝑥) =

Δ𝑖
𝑘(𝑥)

𝜂𝑖
𝑘

with

(i) any positive sequence (𝜂𝑖
𝑘)𝑘≥1 such that ∑𝑘≥1 𝜂𝑖

𝑘 = 1,

42

3.4 Main results

(ii)

Δ𝑖
𝑘(𝑥) = 𝜓𝑖

⎛
⎜
⎜
⎝

∑
𝑗∈𝑉𝑖(𝑘)

0

∫
−𝑘𝛿

ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗
𝑠
⎞
⎟
⎟
⎠
1𝑎𝑖

0(𝑥)>𝛿

− 𝜓𝑖

⎛
⎜
⎜
⎝

∑
𝑗∈𝑉𝑖(𝑘−1)

0

∫
−𝑘𝛿+𝛿

ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗
𝑠
⎞
⎟
⎟
⎠
1𝑎𝑖

0(𝑥)>𝛿

for 𝑘 ≥ 2 and Δ1
𝑖(𝑥) = 𝜓𝑖(0)1𝑎𝑖

0(𝑥))>𝛿.

Remark 8. Note that 𝜆𝑖(∅) does not appear in the above Kalikow decomposition. Amazingly, this does
not cause any problems for the Perfect Simulation algorithm (see Section 3.5). We stress that this is one
of the main differences with [14], the other one being that the decomposition does not depend on the
dominating Poisson processes.

Proof. For any 𝑥 ∈ 𝒳 >𝛿, 𝑖 ∈ I and 𝑘 ≥ 2, consider

Δ𝑖
𝑘(𝑥) = 𝜓𝑖(∑

𝑗∈𝑉𝑖(𝑘)
∫

0

−𝑘𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿

− 𝜓𝑖(∑
𝑗∈𝑉𝑖(𝑘−1)

∫
0

−𝑘𝛿+𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿. (3.4.5)

By Assumption 3, (Δ𝑖
𝑘(𝑥))𝑘∈N is well-defined, non negative and cylindrical on 𝑣𝑖

𝑘. Moreover, we set
Δ𝑖

0 = 0 as well 𝜂𝑖
0 = 0 and Δ1

𝑖(𝑥) = 𝜓𝑖(0)1𝑎𝑖
0(𝑥))>𝛿. Let

𝑟[𝑛]
𝑖 (𝑥) ∶=

𝑛

∑
𝑘=1

Δ𝑖
𝑘(𝑥) = 𝜓𝑖(∑

𝑗∈𝑉𝑖(𝑛)
∫

0

−𝑛𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿

and let us show that 𝑟[𝑛]
𝑖 (𝑥) → 𝜙𝑖(𝑥) when 𝑛 → ∞. Consider the inner-term of the parenthesis,

∑
𝑗∈𝑉𝑖(𝑛)

∫
0

−𝑛𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠 = ∫𝐼×R−
ℎ𝑗𝑖(−𝑠)1(𝑗,𝑠)∈𝑣𝑖

𝑛
𝑑𝑥𝑗

𝑠𝑑𝜅𝑗,

where we denote 𝑑𝜅 the counting measure on the discrete set I.

We have that (ℎ𝑗𝑖(−𝑠)1(𝑗,𝑠)∈𝑣𝑖
𝑛)𝑛∈Z

is non negative and non decreasing sequence in 𝑛. In addition,
it converges to ℎ𝑗𝑖(−𝑠)1(𝑗,𝑠)∈𝒱.→𝑖×(−∞,0) as 𝑛 → ∞. Moreover, since 𝜓𝑖(.) is a continuous and increasing
function, theMonotone convergence theorem for Lebesgue Stieltjesmeasures implies that 𝑟[𝑛]

𝑖 (𝑥) → 𝜙𝑖(𝑥)
as 𝑛 → ∞. As a consequence, Assumption 1 is fulfilled, and by Proposition 3, the conclusion follows.

43

3 Kalikow decomposition for counting processes with stochastic intensity

Remark 9. Denote 𝐷𝑘
𝑖 (𝑥) = {𝑧 ∈ 𝒳 >𝛿 ∶ 𝑧

𝑣𝑖
𝑘= 𝑥}. Clearly,

𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿 = 𝜓𝑖(∑
𝑗∈𝑉𝑖(𝑘)

∫
0

−𝑘𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠+

+ ∑
𝑗∈𝑉𝑖(𝑘)

∫
−𝑘𝛿

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠 + ∑
𝑗∉𝑉𝑖(𝑘)

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠)1𝑎𝑖
0(𝑥)>𝛿.

By Assumption 3, we conclude that,

inf
𝑧∈𝐷𝑘

𝑖 (𝑥)
𝜓𝑖(∑

𝑗∈I
∫

0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿 = 𝜓𝑖(∑
𝑗∈𝑉𝑖(𝑘)

∫
0

−𝑘𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿.

The equality is achieved when we consider the configuration 𝑧 having points only inside the neighbor-
hood 𝑣𝑖

𝑘.
Hence, for 𝑘 ≥ 2, we observe that

Δ𝑖
𝑘(𝑥) = inf

𝑧∈𝐷𝑘
𝑖 (𝑥)

𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿

− inf
𝑧∈𝐷𝑘−1

𝑖 (𝑥)
𝜓𝑖(∑

𝑗∈I
∫

0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑧𝑗

𝑠)
1𝑎𝑖

0(𝑥)>𝛿.

The above prescription corresponds to the classical method of obtaining a Kalikow decomposition in
discrete time, discussed in [10, 14].

�.�.� Another method for nonlinear Hawkes processes

In this section, we present a second method to prove the existence of a Kalikow decomposition for non-
linear Hawkes processes [4]. In the setting of this section, we suppose that the intensity of the nonlinear
Hawkes process 𝑍𝑖, 𝑖 ∈ I, is given by

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)

for any 𝑥 ∈ 𝒳.
We work under the following assumptions.

Assumption 4. (i) For any 𝑖, 𝑗 ∈ I, the function ℎ𝑗𝑖(.) is non negative and belongs to 𝐿1. Moreover,
for every 𝑖, we have

∑
𝑗∈I

‖ℎ𝑗𝑖‖𝐿1
< ∞.

(ii) For every 𝑖 ∈ I, 𝜓𝑖(.) is an analytic function onRwith radius of convergence about 0 which is given
by 𝐾, for some positive 𝐾. Moreover, its derivative of order 𝑛, 𝜓 (𝑛)

𝑖 (0), is non negative for all 𝑛 ≥ 1,
and 𝜓𝑖(0) is non negative as well.

44

3.4 Main results

In this section, to develop our series using Taylor expansion, we choose

𝒴 𝐾 =
{

𝑥 | sup
𝑖 (∑

𝑗 ∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
< 𝐾

}
.

We now describe our method. We fix 𝜖 an arbitrary positive parameter, and we put 𝐷 = I × N. An
index in 𝐷 is 𝛼 = (𝑗, 𝑛) where 𝑗 ∈ I and 𝑛 ∈ N. We put |𝛼| ∶= |𝑗|+𝑛. For any 𝑥 ∈ 𝒳 ∩𝒴 𝐾, we introduce

𝑎𝛼(𝑥) ∶= ∫
−𝑛𝜖

−(𝑛+1)𝜖
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠.

Note that, whenever 𝑥 ∈ 𝒳 ∩ 𝒴 𝐾, we have 𝑎𝛼(𝑥) converges to 0 when |𝛼| → ∞. Furthermore, we have

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∑
𝑛∈N

∫
−𝑛𝜖

−(𝑛+1)𝜖
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
= 𝜓𝑖(∑

𝑗∈I
∑
𝑛∈N

𝑎𝑗𝑛(𝑥)
)

= 𝜓𝑖(∑
𝛼∈𝐷

𝑎𝛼(𝑥)
)

.

We suppose moreover that

Assumption 5. For any 𝑖 ∈ I, there exist a deterministic sequence (𝜂𝑖
𝛼𝑘

)𝛼𝑘∈𝐷 ∈ (0, 1) such that

∑
𝑛≥1

∑
𝛼1,…,𝛼𝑛∈𝐷

𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼𝑛

< 1.

Let us consider P = ∪∞
𝑛=1𝐷𝑛 where 𝐷𝑛 ∶= 𝐷 × 𝐷 × … × 𝐷 (𝑛 times). We construct the neighborhood

family V𝑇 𝑎𝑦𝑙𝑜𝑟 by defining for 𝛼1∶𝑘 = (𝛼1, … , 𝛼𝑘),

𝑣𝑖
𝛼1∶𝑘

= 𝑣𝑖
(𝛼1,…,𝛼𝑘) ∶= ∪𝑘

𝑙=1𝑤𝛼𝑙
, (3.4.6)

where 𝑤𝛼𝑙
∶= {𝑗} × [−(𝑛 + 1)𝜖, 𝑛𝜖) if 𝛼𝑙 = (𝑗, 𝑛), and 𝑣𝑖

0 ∶= ∅.

Proposition 5. Consider a non linear Hawkes process 𝑍𝑖, 𝑖 ∈ I, with intensity 𝜙𝑖(𝑥) given by

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∫
0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)
.

Under Assumption 4 and 5, 𝑍𝑖 has a Kalikow decomposition with respect to the neighborhood family
V𝑇 𝑎𝑦𝑙𝑜𝑟 defined by (3.4.6) and 𝒴 𝐾 as follows:

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜆𝑖(∅) = 1 − ∑𝑘≥1 ∑𝛼1,…,𝛼𝑘∈𝐷 𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼𝑘

𝜙∅
𝑖 =

𝜓𝑖(0)
𝜆𝑖(∅)

𝜆𝑖(𝑣𝑖
𝛼1∶𝑘

) = 𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼𝑘

𝜙
𝑣𝑖

𝛼1∶𝑘
𝑖 (𝑥) =

𝜓 (𝑘)
𝑖 (0)
𝑘!

𝑎𝛼1
(𝑥)

𝜂𝑖
𝛼1

…
𝑎𝛼𝑘

(𝑥)

𝜂𝑖
𝛼𝑘

,

45

3 Kalikow decomposition for counting processes with stochastic intensity

for any weights (𝜂𝑖
𝛼𝑘

)𝛼𝑘∈𝐷 satisfying Assumption 5 and for 𝛼 = (𝑗, 𝑛), 𝑎𝛼 defined by

𝑎𝛼(𝑥) ∶= ∫
−𝑛𝜖

−(𝑛+1)𝜖
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠.

Proof. FromAssumption 4, (ii), and noticing that for any 𝑥 ∈ 𝒳 ∩𝒴 𝐾, we have 0 ≤ ∑𝑗∈I ∑𝑛∈N 𝑎𝑗𝑛(𝑥) =
∑𝛼∈𝐷 𝑎𝛼(𝑥) < 𝐾, we have a Taylor expansion of 𝜙𝑖(𝑥):

𝜙𝑖(𝑥) = 𝜓𝑖(∑
𝑗∈I

∑
𝑛∈N

𝑎𝑗𝑛(𝑥)
)

= 𝜓𝑖(∑
𝛼∈𝐷

𝑎𝛼(𝑥)
)

= 𝜓𝑖(0) + ∑
𝑘≥1

𝜓 (𝑘)
𝑖 (0)
𝑘! (∑

𝛼=(𝑗,𝑛)∈𝐷
𝑎𝛼(𝑥)

)

𝑘

= 𝜓𝑖(0) + ∑
𝑘≥1

∑
𝛼1…𝛼𝑘∈𝐷

𝜓 (𝑘)
𝑖 (0)
𝑘!

𝑎𝛼1
(𝑥) … 𝑎𝛼𝑘

(𝑥).

Thus, to obtain the Kalikow decomposition, take (𝜂𝑖
𝛼𝑘

)𝛼𝑘∈𝐷 from Assumption 5, then the conclusion
follows.

Remark 10. The parameter (𝜂𝑖
𝛼𝑘

)𝛼𝑘∈𝐷 plays the same role here as (𝜂𝑖
𝑘)𝑘∈N in the previous section. Again,

the choice of this parameter is discussed in Section 3.5.

In the following, we give several examples in which we can apply the second method.

�.�.� Examples of second method

In this section, we always consider a deterministic sequence (𝜂𝑖
𝛼𝑘

)𝛼𝑘∈𝐷 that satisfies Assumption 5.

Example 1. Exponential Hawkes process with 𝜓𝑖(.) ∶= exp(.). In this case we have 𝐾 = ∞, 𝜓𝑖(0) = 1
and 𝜓 (𝑘)

𝑖 (0) = 1 for 𝑘 ≥ 1. Therefore,

𝜙𝑖(𝑥) = exp
(∑

𝑗∈I
∫

0

−∞
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠)

= 1 + ∑
𝑘≥1

∑
𝛼1…𝛼𝑘∈𝐷

1
𝑘!

𝑎𝛼1
(𝑥) … 𝑎𝛼𝑘

(𝑥).

Then, the Kalikow decomposition of 𝑍𝑖 with respect to the neighborhood familyV𝑇 𝑎𝑦𝑙𝑜𝑟 in (3.4.6) and
𝒴 ∞ is given by

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

𝜆𝑖(∅) = 1 − ∑
𝑘≥1

∑
𝛼1,…,𝛼𝑘∈𝐷

𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼𝑘

𝜙𝑖(∅) = 1
𝜆𝑖(∅)

𝜆𝑖(𝑣𝑖
𝛼1∶𝑘

) = 𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼𝑘

𝜙
𝑣𝑖

𝛼1∶𝑘
𝑖 (𝑥) = 1

𝑘!
×

𝑎𝛼1
(𝑥)

𝜂𝑖
𝛼1

…
𝑎𝛼𝑘

(𝑥)

𝜂𝑖
𝛼𝑘

.

46

3.5 Modified Perfect Simulation algorithm

Example 2. We consider the non-linear Hawkes process with 𝜓𝑖(𝑢) = 𝑐ℎ(𝑢) where 𝑐ℎ(𝑢) = 𝑒𝑢 + 𝑒−𝑢

2
.

Then 𝐾 = ∞, 𝜓𝑖(0) = 1, and for 𝑘 ≥ 1, we have 𝜓 (2𝑘)
𝑖 (0) = 0 and 𝜓 (2𝑘−1)

𝑖 (0) = 1
2
.

Therefore, 𝑍𝑖 has the followingKalikowdecompositionwith respect to the neighborhood familyV𝑇 𝑎𝑦𝑙𝑜𝑟

in (3.4.6) and 𝒴 ∞ is given by

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜆𝑖(∅) = 1 − ∑𝑘≥1 ∑𝛼1,…,𝛼2𝑘−1
𝜂𝑖

𝛼1
… 𝜂𝑖

𝛼2𝑘−1

𝜙𝑖(∅) = 1
𝜆𝑖(∅)

𝜆𝑖(𝑣𝑖
𝛼1∶2𝑘−1

) = 𝜂𝑖
𝛼1

… 𝜂𝑖
𝛼2𝑘−1

𝜙
𝑣𝑖

𝛼1∶2𝑘−1
𝑖 (𝑥) = 1

2(2𝑘 − 1)!
×

𝑎𝛼1
(𝑥)

𝜂𝑖
𝛼1

…
𝑎𝛼2𝑘−1

(𝑥)

𝜂𝑖
𝛼2𝑘−1

.

Remark 11. It is well-known that the Exponential Hawkes process may explode in finite time with prob-
ability non null [5] (that is, produce an infinite number of jumps within a finite time interval). To perform
the Perfect Simulation, in this case, we shall consider the process having empty past before time 0, in
other words, the process starting from 0. However, the difficulty lies on the fact that we need to check that
the process stays in 𝒴 ∞. To avoid this difficulty, we shall not consider the Exponential Hawkes process
or other potentially explosive processes in the following section. The discussion of potentially explosive
process will be the main object of upcoming work, as we mentioned earlier.

�.� Modified Perfect Simulation algorithm

In the following, we present a Perfect Simulation algorithm that simulates the process 𝑍𝑖 on an interval
[0, 𝑡𝑚𝑎𝑥], for some fixed 𝑡𝑚𝑎𝑥 > 0 in the stationary regime. Our algorithm is a modification of the
method described in [19]. The procedure consists of backward and forward steps. In the backward steps,
thanks to the Kalikow decomposition, we create a set of ancestors, which is a list of all the points thatmight
influence the point under consideration. On the other hand, in the forward steps, where we go forward in
time, by using the thinning method [17] we give the decision (keep or reject) to each visited point based
on its neighborhood until the state of all considered points is decided. Further discussion can be found in
[10, 14, 19].

For this algorithm to work, we introduce a subspace 𝒴 as follows:

𝒴 = {𝑥 ∈ 𝒳 such that ∀𝑣, 𝑖 ∶ 𝜙𝑣
𝑖 (𝑥) ≤ Γ𝑖},

where Γ𝑖 is a positive constant. We assume that the process generated by the algorithm stays in 𝒴 almost
surely. For example, in the case of age dependent Hawkes processes in Section 3.4.2, we show in Proposi-
tion 9 below that Δ𝑖

𝑘(𝑥) are bounded. Thus, with an adequate choice of weights (𝜆𝑖(.))𝑖∈I and (Γ𝑖)𝑖∈I, the
algorithm remains in 𝒴 almost surely. Moreover, for any 𝑥 ∈ 𝒴, we have

𝜙𝑖(𝑥) = 𝜆𝑖(∅)𝜙∅
𝑖 + ∑

∅≠𝑣∈V𝑖

𝜆𝑖(𝑣)𝜙𝑣
𝑖 (𝑥) ≤ Γ𝑖,

47

3 Kalikow decomposition for counting processes with stochastic intensity

which means that the intensity is bounded.
Furthermore, for any 𝑡 and 𝑥𝑡 ∈ 𝒴𝑡, by the time homogeneity assumption,

𝜙𝑖,𝑡(𝑥𝑡) = 𝜙𝑖(𝑥←𝑡
𝑡) ≤ Γ𝑖.

�.�.� Backward procedure

Initial step. Fix 𝑖, set the initial time to be 0.
Step 1. Move to the first possible jump 𝑇 of 𝑍𝑖 after 0 by taking

𝑇 ← 0 + 𝐸𝑥𝑝(Γ𝑖).

Step 2. Recall thatV𝑖 is the neighborhood family associated to index 𝑖. Independently of anything else,
pick a random neighborhood 𝑉𝑖,𝑇 of (𝑖, 𝑇) according to the distribution (𝜆𝑖(𝑣))𝑣∈V𝑖 , which corresponds
to the Kalikow decomposition of intensity 𝜙𝑖,𝑇(𝑥𝑇) in (3.3.1) where 𝑥𝑇 ∈ 𝒴𝑇.

More precisely, this means that we attach to (𝑖, 𝑇) a random variable 𝑉𝑖,𝑇 with values in (V𝑖)→𝑇 . For
any 𝑣 ∈ V𝑖,

P(𝑉𝑖,𝑇 = 𝑣→𝑇) = 𝜆𝑖(𝑣).

Assume that 𝑉𝑖,𝑇 = 𝑣→𝑇 and define the projection to the second coordinate of 𝑣 by

𝜋𝑗(𝑣) ∶= {𝑡 ∈ R|(𝑗, 𝑡) ∈ 𝑣},

for any 𝑗 ∈ I. Notice that if for some 𝑗, (𝑗, 𝑡) ∉ 𝑣 for all 𝑡, then 𝜋𝑗(𝑣) = ∅.
Simulate Poisson processes in 𝑣→𝑇, that is for each 𝑗 ∈ I, we simulate a Poisson process Π𝑗 with intensity

Γ𝑗 on 𝜋𝑗(𝑣→𝑇). Put these points in 𝒞 1
𝑖,𝑇, call it the first set of ancestors of (𝑖, 𝑇):

𝒞 1
𝑖,𝑇 = ⋃

𝑗∈I
{(𝑗, 𝑡)|𝑡 ∈ Π𝑗(𝜋𝑗(𝑣→𝑇))}.

Step 3. Recursively, we define the 𝑛𝑡ℎ set of ancestors of (𝑖, 𝑇),

𝒞 𝑛
𝑖,𝑇 = ⋃

(𝑗,𝑠)∈𝒞 𝑛−1
𝑖,𝑇

𝒞 1
𝑗,𝑠 ⧵ (𝒞 1

𝑖,𝑇 ∪ … ∪ 𝒞 𝑛−1
𝑖,𝑇),

and for each (𝑗, 𝑡′) ∈ 𝒞 𝑛
𝑖,𝑇, we perform Step 1 and Step 2.

The backward scheme stops when 𝒞 𝑛
𝑖,𝑇 = ∅. We denote

𝑁𝑖,𝑇 = inf{𝑛 ∶ 𝒞 𝑛
𝑖,𝑇 = ∅}.

The genealogy of (𝑖, 𝑇) is given by
𝒞𝑖,𝑇 = ∪

𝑁𝑖,𝑇
𝑘=1𝒞 𝑘

𝑖,𝑇.

Remark 12. Let us emphasize that 𝜆𝑖(∅) does not need to be strictly positive in the present Kalikow
decomposition. This means that there is a chance that at every step of the Backward steps, we need to

48

3.5 Modified Perfect Simulation algorithm

simulate a Poisson process in a non empty neighborhood. However, if there is no point simulated in these
intervals, then we do nothing in the next step. Hence, the Backwards steps end. This is one of the main
advantage of this Kalikow decomposition with respect to [10, 14].

Remark 13. Notice that, comparing to the original Backward procedure [10, 14], here, we start by simu-
lating a point in the ”future” by adding an exponential random variable to the initial time. Unfortunately,
due to this additional step, the algorithm always requires that the intensity is bounded in 𝒴. This is one
of the main drawback of this new algorithm.

�.�.� Forward procedure

We now attach to each point in 𝒞𝑖,𝑇 a random variable 𝜒 whose value is either 0 or 1, where 1 means that
this point is accepted.

For any point (𝑖, 𝑡) in the Backward steps, we know its neighborhood which contains all the points that
might influence the state of (𝑖, 𝑡), but we do not know yet the state 𝜒 of the points in the neighborhood.

We start with the point (𝑗, 𝑠) ∈ 𝒞𝑖,𝑇 which is the smallest in time, so that its associated neighborhood
is either empty (𝑣 = ∅) or non empty but without any point of the Poisson process in it.

Step 1. Assign 𝜒𝑗,𝑠 by Bernoulli variable with parameter
𝜙

𝑉𝑗,𝑠
𝑗,𝑠 (𝑥𝑠)

Γ𝑗
where 𝑉𝑗,𝑠 is the neighborhood of

(𝑗, 𝑠) . If 𝜒𝑗,𝑠 = 1, this means we accept this point.

Step 2. Move to the next point of 𝒞𝑖,𝑇 in increasing time order. Repeat Step 1:2 until 𝜒𝑖,𝑇 is determined.

Update step. Update the starting time of the initial step by 𝑇. Repeat the Backward and Forward proce-
dures until the starting time is greater than 𝑡𝑚𝑎𝑥.

Remark 14. When implementing the algorithm on a computer, it is worth noticing that, whenever we
simulate in an interval that intersects with previously simulated intervals, we will not simulate in the
intersecting parts. In particular, no additional points is simulated in {𝑖} × (0, 𝑇) where (𝑖, 𝑇) is the first
simulated point.

�.�.� Do we construct the right intensity?

For any 𝑖 ∈ I, we denote the arrival times of Π𝑖 in Step 2 of the Backward steps by (𝜏 𝑖
𝑛)𝑛∈Z, with 𝜏 𝑖

1 being
the first positive time. Indeed even if we have simulated it on the randomly generated neighborhood, since
the intensity is always the same, we can assume that all these points come only from one single Poisson
process.

As in Step 1 of the Forward steps, we attach to each point of Π𝑖 a stochastic mark 𝜒 given by,

𝜒 𝑖
𝑛 =

⎧⎪
⎨
⎪⎩

1 if 𝜏 𝑖
𝑛 is accepted,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

49

3 Kalikow decomposition for counting processes with stochastic intensity

In addition, for any 𝑖 ∈ I, define 𝒵 𝑖 = (𝜏 𝑖
𝑛, 𝜒 𝑖

𝑛)𝑛∈Z an 𝐸-marked point process with 𝐸 = {0; 1}. In
particular, following the notation in Chapter VIII of [3], for any 𝑖 ∈ I, let

𝑑𝒵 𝑖
𝑡 (𝑚𝑎𝑟𝑘) = ∑

𝑛∈Z
1𝜒 𝑖

𝑛=𝑚𝑎𝑟𝑘𝛿𝜏𝑖
𝑛
(𝑑𝑡) for 𝑚𝑎𝑟𝑘 ∈ 𝐸,

ℱ 𝒵
𝑡− = ⋁

𝑖∈I
𝜎(𝒵 𝑖

𝑠(0), 𝒵 𝑖
𝑠(1); 𝑠 < 𝑡) and ℱ 𝒵(1)

𝑡− = ⋁
𝑖∈I

𝜎(𝒵 𝑖
𝑠(1); 𝑠 < 𝑡).

Moreover note that (𝒵 𝑖
𝑡 (1))𝑡∈R is the counting process associated to the accepted points of the algo-

rithm. With these notations, we can prove the following result. This proof is already done in [19] but we
add it here for sake of completeness.

Proposition 6. If we suppose that the process (𝒵 𝑖
𝑡 (1))𝑡∈R stays in (𝒴𝑡)𝑡∈R almost surely then it admits

𝜙𝑖,𝑡(𝑥𝑡) as ℱ 𝒵(1)
𝑡− -predictable intensity.

Proof. Take 𝐶𝑡 a non negative predictable process with respect to ℱ 𝒵 𝑖(1)
𝑡 , that is ℱ 𝒵(1)

𝑡− measurable and
therefore ℱ 𝒵

𝑡− measurable . We have, for any 𝑖 ∈ I,

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝒵 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E(𝐶𝜏𝑖

𝑛
1𝜒 𝑖

𝑛=1).

Note that by Theorem T35 at Appendix A1 of [3], any point 𝑇 should be understood as a stopping time,
and that by Theorem T30 at Appendix A2 of [3],

ℱ 𝒵
𝑇 − = ⋁

𝑗∈I
𝜎{𝜏𝑗

𝑚, 𝜒 𝑗
𝑚 such that 𝜏𝑗

𝑚 < 𝑇 , 𝑇 }.

Therefore,

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝒵 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E(𝐶𝜏𝑖

𝑛
E(1𝜒 𝑖

𝑛=1|ℱ 𝒵
𝜏𝑖

𝑛
−, 𝑉 𝑖

𝑛)) =
∞

∑
𝑛=1
E

⎛
⎜
⎜
⎜
⎝

𝐶𝜏𝑖
𝑛

𝜙𝑉 𝑖
𝑛

𝑖,𝜏𝑖
𝑛
(𝑥𝜏𝑖

𝑛
)

Γ𝑖

⎞
⎟
⎟
⎟
⎠

,

where we denote 𝑉 𝑖
𝑛 for the neighborhood of 𝜏𝑖

𝑛.
Let us now integrate with respect to the choice 𝑉 𝑖

𝑛 , which is independent of anything else.

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝒵 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

=
∞

∑
𝑛=1
E

⎛
⎜
⎜
⎜
⎝

𝐶𝜏𝑖
𝑛

𝜆𝑖(∅)𝜙∅
𝑖,𝜏𝑖

𝑛
+ ∑

𝑣∈V→𝜏𝑖
𝑛,𝑣≠∅

𝜆𝑖(𝑣) × 𝜙𝑣
𝑖,𝜏𝑖

𝑛
(𝑥𝜏𝑖

𝑛
)

Γ𝑖

⎞
⎟
⎟
⎟
⎠

= E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡
𝜙𝑖,𝑡(𝑥𝑡)

Γ𝑖
𝑑Π𝑖(𝑡)

⎞
⎟
⎟
⎠
.

Since Π𝑖 is a Poisson process with respect to ℱ 𝒵
𝑡 with intensity Γ𝑖, and 𝐶𝑡

𝜙𝑖,𝑡(𝑥𝑡)
Γ𝑖

is ℱ 𝒵
𝑡− measurable, we

finally have that

50

3.5 Modified Perfect Simulation algorithm

E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝑑𝒵 𝑖
𝑡 (1)

⎞
⎟
⎟
⎠

= E
⎛
⎜
⎜
⎝

∞

∫
0

𝐶𝑡𝜙𝑖,𝑡(𝑥𝑡)𝑑𝑡
⎞
⎟
⎟
⎠
,

which ends the proof.

�.�.� Why does the Backward steps end?

We construct a tree with root (𝑖, 𝑇). For each point (𝑗𝑇 ′, 𝑇 ′) in the tree, the points which are simulated in
𝑉𝑗𝑇 ′,𝑇 ′ (Step 2 of the Backward steps) define the children of (𝑗𝑇 ′, 𝑇 ′) in the tree. This forms the tree ̃𝒯.

Let us now build a tree ̃𝒞 with root (𝑖, 𝑇) (that includes the previous tree) by mimicking the proce-
dure in the Backward steps, except that we simulate – independently on anything else – on the whole
neighborhood even if it has a part that intersects with previous neighborhoods (if they exist) (Step 3 of
the Backward steps). By doing so, we make the number of children larger but at each node, they are
independent of anything else.

If the tree ̃𝒞 goes extinct, then so does the tree ̃𝒯 , and the backward part of the algorithm terminates.
To formulate a sufficient criterion that implies the almost sure extinction of ̃𝒞, let us denote the product

measure 𝑃 on I ×R, defined on the product sets that generate the Borel subsets of I ×R, as follows.

𝑃 (𝐽 × 𝐴) ∶= ∑
𝑗∈𝐽

Γ𝑗 𝜇(𝐴)

for any 𝐽 ⊂ I, where 𝐴 is a Borel subset of R and where 𝜇 is the Lebesgue measure. The following
proposition is already proved in [19], but without precisely defining 𝑃.

Proposition 7. If
sup
𝑖∈I ∑

𝑘≥1
𝑃 (𝑣𝑖

𝑘)𝜆𝑖(𝑣𝑖
𝑘) < 1 (3.5.1)

then the Backward steps in the Perfect Simulation algorithm terminate almost surely in finite time.

Remark 15. For any neighborhood 𝑣, we have

∑
𝑗∈𝑣
E(Π𝑗(𝜋𝑗(𝑣))) = 𝑃 (𝑣).

This implies that ∑𝑘≥1 𝑃 (𝑣𝑖
𝑘)𝜆𝑖(𝑣𝑖

𝑘) is the mean number of children issued from one point of type 𝑖. Then,
the condition (3.5.1) says that the number children in each step should be less than one in average, for the
tree to go extinct almost surely. That is a very classical result in Branching process [1].

�.�.� The complexity of the algorithm

In this section, we study the effect of (𝜆𝑖(𝑣𝑖
𝑘))𝑖,𝑘 on the number of points simulated by our algorithm. Until

the end of this section, we suppose that

Assumption 6. The index set I is finite, namely

|I| = 𝑁 < ∞.

51

3 Kalikow decomposition for counting processes with stochastic intensity

Let us mention several notations that will be useful in the sequel. We denote 𝑒𝑖 the 𝑖-th unit vector
of R𝑁, 1 is the vector (1, 1, … , 1)𝑇 and 𝜇 always stands for the Lebesgue measure. Finally, by a positive
vector, we mean that all its components are positive.

Coming back to our problem, since the tree ̃𝒞 dominates ̃𝒯, to give an upper bound of the number of
points of ̃𝒯, it is sufficient to study the number of points of ̃𝒞. Recall that the root of the tree ̃𝒞 is of type
𝑖 ∈ I. For 𝑛 ≥ 1, write 𝐾𝑖(𝑛) for the vector containing the numbers of ancestors in the 𝑛𝑡ℎ set of ancestors
of a single point of index 𝑖. We consider

𝐾𝑖(𝑛) =

⎛
⎜
⎜
⎜
⎜
⎝

number of ancestors in the 𝑛𝑡ℎ set of ancestors of type 1
number of ancestors in the 𝑛𝑡ℎ set of ancestors of type 2

…
number of ancestors in the 𝑛𝑡ℎ set of ancestors of type 𝑁

⎞
⎟
⎟
⎟
⎟
⎠

,

with the convention that 𝐾𝑖(0) = 𝑒𝑖 for every 𝑖. For every 𝑗 ∈ I, denote 𝑋𝑗
𝑖 ∶= 𝐾𝑗

𝑖 (1) the number
of ancestors of type 𝑗 in the first set of ancestors with initial point of type 𝑖. Moreover, as we discussed
earlier, 𝑋𝑗

𝑖 is the cardinal of the points that a Poisson process of intensity Γ𝑗 puts on 𝜋𝑗(𝑉𝑖), where 𝑉𝑖 is the
random neighborhood from a point of type 𝑖. In other words, if we denote 𝒫 the Poisson distribution,
conditioning on 𝑉𝑖 = 𝑣, we have

𝑋𝑗
𝑖 ∼ 𝒫(Γ𝑗𝜇(𝜋𝑗(𝑣))).

In addition, we denote 𝑋𝑖 = (𝑋1
𝑖 , 𝑋2

𝑖 , … , 𝑋𝑁
𝑖)𝑇 and for any 𝜃 ∈ R𝑁, we consider the log-Laplace

transform of 𝑋𝑖:
𝜙𝑖(𝜃) ∶= logE𝑖(𝑒𝜃𝑇𝑋𝑖)

where we denote P𝑖 the law of a random tree ̃𝐶, whose root is of type 𝑖 and E𝑖 the corresponding expec-
tation.

For 𝑛 ≥ 2, given the population in the first set of ancestors 𝑋𝑖, we have the following relationship
between the (𝑛 − 1)𝑡ℎ set of ancestors and the 𝑛𝑡ℎ set of ancestors in ̃𝐶,

𝐾𝑖(𝑛) = ∑
𝑗∈I

𝑋𝑗
𝑖

∑
𝑝=1

𝐾 (𝑝)
𝑗 (𝑛 − 1),

where 𝐾 (𝑝)
𝑗 (𝑛 − 1) is the vector of the number of ancestors in the (𝑛 − 1)𝑡ℎ set of ancestors issued from the

𝑝-th point of type 𝑗 in the first generation. In addition, for 𝑝 = 1, …, 𝑋𝑗
𝑖 , we have that the 𝐾 (𝑝)

𝑗 (𝑛 − 1)’s
are independent copies of 𝐾𝑗(𝑛 − 1). Note that this equation is trivial for 𝑛 = 1.

Moreover, we consider

𝑊𝑖(𝑛) =
𝑛

∑
𝑘=0

𝐾𝑖(𝑘)

the total number of ancestors in the first 𝑛 set of ancestors.

The log Laplace transform associated to the random vector 𝑊𝑖(𝑛) is given by:

Φ(𝑛)
𝑖 (𝜃) ∶= logE𝑖(𝑒𝜃𝑇𝑊𝑖(𝑛)

).

52

3.5 Modified Perfect Simulation algorithm

Finally we put Φ(𝑛)(𝜃) = (Φ(𝑛)
1 (𝜃), … , Φ(𝑛)

𝑁 (𝜃))𝑇.
Denote the derivative of 𝜙(.) at 0 by the matrix 𝑀 = 𝐷𝜙(0). Now, let us take a closer look to the

function 𝜙𝑖(𝜃),

𝜙𝑖(𝜃) = logE𝑖(𝑒𝜃𝑇𝑋𝑖) = logE𝑖(

𝑁

∏
𝑗=1

𝑒𝜃𝑗𝑋
𝑗
𝑖
)

.

Therefore the gradientmatrix 𝑀 satisfies 𝑀𝑗𝑖 = E𝑖(𝑋
𝑗
𝑖) for 𝑖, 𝑗 ∈ I. Recall that, conditioning on 𝑉𝑖 = 𝑣,

𝑋𝑗
𝑖 ∼ 𝒫(Γ𝑗𝜇(𝜋𝑗(𝑣))), therefore we have

𝑀𝑗𝑖 = ∑
𝑘

Γ𝑗𝜇(𝜋𝑗(𝑣𝑖
𝑘))𝜆𝑖(𝑣𝑖

𝑘). (3.5.2)

Introduce 𝑊𝑖(∞) ∶= lim𝑛→∞ 𝑊𝑖(𝑛), if it exists, and let 𝑊𝑖 = 1𝑇𝑊𝑖(∞) be the total number of points
of ̃𝐶. The log-Laplace transform of 𝑊𝑖(∞) is given by

Φ𝑖(𝜃) ∶= logE𝑖(𝑒𝜃𝑇𝑊𝑖(∞)
),

and we write again Φ(𝜃) = (Φ1(𝜃), Φ2(𝜃), … , Φ𝑁(𝜃))𝑇.
With this approach, we can prove the following exponential inequality. This result is inspired by Lemma

1 of [21]. Define ‖.‖1 a 1− norm onR𝑁 and the ball with respect to this norm onR𝑁 by 𝐵(.).

Proposition 8. Grant Assumption 6 and assume that the weights (𝜆𝑖(.))𝑖∈I satisfy the following condition:

sup
𝑖∈I ∑

𝑘≥1
𝑃 (𝑣𝑖

𝑘)𝜆𝑖(𝑣𝑖
𝑘) < 1.

Suppose moreover that there exists a positive number 𝑟 that depends on the matrix 𝑀 such that, for all
positive vectors 𝜃 belonging to 𝐵(0, 𝑟), we have

sup
𝑖

𝜙𝑖(𝜃) = sup
𝑖 ∑

𝑗
log

(∑
𝑘

𝜆𝑖(𝑣𝑖
𝑘) exp [(𝑒𝜃𝑗 − 1)Γ𝑗𝜇(𝜋𝑗(𝑣𝑖

𝑘))])
< ∞.

Then for all 𝜃 ∈ 𝐵(0, 𝑟), we conclude that Φ𝑖(𝜃) < ∞ and moreover

Φ(𝜃) = 𝜃 + 𝜙(Φ(𝜃)).

In particular, for 𝜗 ∈ R+ such that 𝜃 = 𝜗1 ∈ 𝐵(0, 𝑟), there exists a constant 𝑐0 that depends on 𝑀 and
𝑖 such that

P(𝑊𝑖 > E(𝑊𝑖) + 𝑥) ≤ 𝑐0𝑒−𝜗𝑥 (3.5.3)

for all 𝑥 > 0.

Remark 16. From Chapter V of [1] , we have

E(𝐾𝑖(𝑛)) = 𝑀𝑛E(𝐾𝑖(0)) = 𝑀𝑛𝑒𝑖.

53

3 Kalikow decomposition for counting processes with stochastic intensity

Therefore, the total number of points simulated of the tree ̃𝐶 with initial point of type 𝑖 is

E(𝑊𝑖(𝑛)) = E
(

𝑛

∑
𝑘=0

𝐾𝑖(𝑘)
)

=
(

𝑛

∑
𝑘=0

𝑀𝑘
)

𝑒𝑖.

It leads us to conclude that,

E(𝑊𝑖) = 1𝑇
(

∞

∑
𝑘=0

𝑀𝑘
)

𝑒𝑖,

where the matrix 𝑀 is defined in (3.5.2).

To conclude, if we think the complexity of the algorithm in terms of the number of simulated points,
𝑊𝑖 is a good bound, and by (3.5.3) we see that we can grasp the complexity of the algorithm by studying
(3.5.3).

Proof. First, we prove that 𝜙𝑖(𝜃) is well defined for all 𝜃 ∈ 𝐵(0, 𝑟). Indeed, since (𝑋𝑗
𝑖)𝑗=1,…,𝑁 are inde-

pendent, we have

𝜙𝑖(𝜃) = logE𝑖(∏
𝑗
exp (𝜃𝑗𝑋

𝑗
𝑖)

)

= ∑
𝑗
logE𝑖(exp (𝜃𝑗𝑋

𝑗
𝑖)).

Moreover, by conditioning on the first random neighborhood of type 𝑖, 𝑉𝑖, we have

𝑋𝑗
𝑖 |𝑉𝑖 = 𝑣𝑖

𝑘 ∼ 𝒫(Γ𝑗𝜇(𝜋𝑗(𝑣𝑖
𝑘))).

Therefore, we conclude that

E𝑖(exp (𝜃𝑗𝑋
𝑗
𝑖)|𝑉𝑖 = 𝑣𝑖

𝑘) = exp [(𝑒𝜃𝑗 − 1)Γ𝑗𝜇(𝜋𝑗(𝑣𝑖
𝑘))].

Finally, we obtain that

𝜙𝑖(𝜃) = ∑
𝑗
log

(∑
𝑘

𝜆𝑖(𝑣𝑖
𝑘) exp [(𝑒𝜃𝑗 − 1)Γ𝑗𝜇(𝜋𝑗(𝑣𝑖

𝑘))])
< ∞.

In the following, we prove that Φ(𝑛)
𝑖 (𝜃) satisfies the following recursion

Φ(𝑛)
𝑖 (𝜃) = 𝜃𝑇𝐾𝑖(0) + 𝜙𝑖(Φ(𝑛−1)(𝜃)).

Indeed, by definition of 𝑊𝑖(𝑛) we have

E𝑖(𝑒𝜃𝑇𝑊𝑖(𝑛)
) = 𝑒𝜃𝑇𝐾𝑖(0)E𝑖(𝑒𝜃𝑇 ∑𝑛

𝑘=1 𝐾𝑖(𝑘)
).

54

3.5 Modified Perfect Simulation algorithm

In addition, from the definition of 𝐾𝑖(𝑘) we obtain,

E𝑖(𝑒𝜃𝑇 ∑𝑛
𝑘=1 𝐾𝑖(𝑘)

) = E𝑖(
𝑒𝜃𝑇 ∑𝑛

𝑘=1 ∑𝑁
𝑗=1 ∑

𝑋𝑗
𝑖

𝑝=1 𝐾 (𝑝)
𝑗 (𝑘−1)

)

= E𝑖(

𝑁

∏
𝑗=1

𝑒𝜃𝑇 ∑𝑛
𝑘=1 ∑

𝑋𝑗
𝑖

𝑝=1 𝐾 (𝑝)
𝑗 (𝑘−1)

)

= E𝑖[
E

(

𝑁

∏
𝑗=1

𝑒𝜃𝑇 ∑𝑛
𝑘=1 ∑

𝑋𝑗
𝑖

𝑝=1 𝐾 (𝑝)
𝑗 (𝑘−1)|𝑋𝑖)]

.

Since conditioning on 𝑋𝑖, 𝐾 (𝑝)
𝑗 (𝑘 − 1)’s are independent, we have that

E𝑖(𝑒𝜃𝑇 ∑𝑛
𝑘=1 𝐾𝑖(𝑘)

) = E𝑖[

𝑁

∏
𝑗=1
E

(
𝑒𝜃𝑇 ∑𝑛

𝑘=1 ∑
𝑋𝑗

𝑖
𝑝=1 𝐾 (𝑝)

𝑗 (𝑘−1)|𝑋𝑗
𝑖)]

= E𝑖

⎡
⎢
⎢
⎣

𝑁

∏
𝑗=1

𝑋𝑗
𝑖

∏
𝑝=1
E(𝑒𝜃𝑇 ∑𝑛

𝑘=1 𝐾 (𝑝)
𝑗 (𝑘−1) ∣ 𝑋𝑗

𝑖)
⎤
⎥
⎥
⎦

= E𝑖

⎡
⎢
⎢
⎣

𝑁

∏
𝑗=1

𝑋𝑗
𝑖

∏
𝑝=1
E(𝑒𝜃𝑇 ∑𝑛

𝑘=1 𝐾 (𝑝)
𝑗 (𝑘−1)

)
⎤
⎥
⎥
⎦

= E𝑖[

𝑁

∏
𝑗=1

(E(𝑒𝜃𝑇𝑊𝑗(𝑛−1)
))

𝑋𝑗
𝑖

]

= E𝑖[

𝑁

∏
𝑗=1

𝑒Φ(𝑛−1)
𝑗 (𝜃)𝑋𝑗

𝑖

]
= E𝑖[𝑒Φ(𝑛−1)(𝜃)𝑇𝑋𝑖] = 𝑒𝜙𝑖(Φ(𝑛−1)(𝜃)).

Finally, we conclude that

Φ(𝑛)
𝑖 (𝜃) = 𝜃𝑇𝐾𝑖(0) + 𝜙𝑖(Φ(𝑛−1)(𝜃)).

This equation holds for every 𝑖, therefore we have

Φ(𝑛)(𝜃) = 𝜃 + 𝜙(Φ(𝑛−1)(𝜃)). (3.5.4)

Let us consider the column sums of the matrix 𝑀:

∑
𝑗∈I

𝑀𝑗𝑖 = ∑
𝑗∈I
E𝑖(𝑋

𝑗
𝑖) = ∑

𝑘≥1
𝑃 (𝑣𝑖

𝑘)𝜆𝑖(𝑣𝑖
𝑘).

Hence, ‖𝑀‖1 = sup‖𝑥‖1≤1{‖𝑀𝑥‖1} = sup𝑖 ∑𝑗∈I |𝑀𝑗𝑖| < 1where‖.‖1 is the inducednorm formatrix
onR𝑁×𝑁. Therefore, ‖𝐷𝜙(0)‖1 ≤ 𝐶 < 1. Moreover the norm is continuous and 𝐷𝜙(𝑠) is likewise, there
is a 𝑟 > 0 such that, for ||𝑠||1 ≤ 𝑟,

‖𝐷𝜙(𝑠)‖1 ≤ 𝐶 < 1.

55

3 Kalikow decomposition for counting processes with stochastic intensity

Hence, 𝜙(𝑠) is Lipschitz continuous in the ball 𝐵(0, 𝑟) and moreover 𝜙(0) = 0, which implies that

‖𝜙(𝑠)‖1 ≤ 𝐶‖𝑠‖1

for ‖𝑠‖1 ≤ 𝑟.

Moreover, take 𝜃 such that
‖𝜃‖1
1 − 𝐶

≤ 𝑟, hence ‖𝜃‖1 ≤ 𝑟. By induction we can show that

‖Φ(𝑛)(𝜃)‖1 ≤ ‖𝜃‖1(1 + 𝐶 + … + 𝐶𝑛) ≤ 𝑟 < ∞.

In addition, (𝑊𝑖(𝑛))𝑛≥1 is a positive, increasing vector sequence. Here, for any 𝑢, 𝑣 ∈ R𝑁, we say 𝑢 ≥ 𝑣
if (𝑢 − 𝑣) is a positive vector.

For any 𝜃 such that
‖𝜃‖1
1 − 𝐶

≤ 𝑟, by using the theorem of monotone convergence, we have

Φ(𝑛)(𝜃) → Φ(𝜃)

when 𝑛 → ∞. Moreover, ‖Φ(𝜃)‖1 < ∞, and passing to the limit 𝑛 → ∞ in equation (3.5.4), we conclude
that

Φ(𝜃) = 𝜃 + 𝜙(Φ(𝜃)).

In particular, choosing 𝜃 = 𝜗1 ∈ 𝐵(0, 𝑟) with 𝜗 ∈ R, we have

E𝑖(𝑒𝜗𝑊𝑖) < ∞,

where 𝑊𝑖 = 1𝑇𝑊𝑖(∞) is the total number of point of ̃𝐶.

The last point is concluded by using Markov’s inequality, that ends the proof.

�.�.� Efficiency of the algorithm and discussion of the choice of the weights on a
particular example

Finally, to illustrate the effect of 𝜂 to the complexity of Perfect Simulation algorithm, we consider the age
dependent Hawkes process with hard refractory period of length 𝛿. We consider the setting of Proposition
4 and assume moreover that 𝜓𝑖(.) is an 𝐿-Lipschitz function, where 𝐿 is the Lipschitz constant. In this
case we obtain an explicit upper bound for Δ𝑖

𝑘(𝑥), for any 𝑥 ∈ 𝒳 >𝛿.

Proposition 9. For any 𝑘 ≥ 1, we have

Δ𝑖
𝑘(𝑥) ≤ 𝐿 ×

[∑
𝑗∈𝑉𝑖(𝑘)⧵𝑉𝑖(𝑘−1)

∑
0≤𝑚<𝑘

ℎ𝑗𝑖(𝑚𝛿) + ∑
𝑗∈𝑉𝑖(𝑘−1)

ℎ𝑗𝑖((𝑘 − 1)𝛿)
]

.

To prove this proposition we use the following lemma, which is a particular case of Lemma 2.4 in [20].

56

3.5 Modified Perfect Simulation algorithm

Lemma 1. For any 0 ≤ 𝑘 < 𝑙, 𝑗 ∈ I, 𝑧 ∈ 𝒳 >𝛿, 𝑡 ∈ R we have

∫
𝑡−𝑘𝛿

𝑡−𝑙𝛿
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑧𝑗

𝑠 ≤ ∑
𝑘≤𝑚<𝑙

ℎ𝑗𝑖(𝑚𝛿).

Proof of Lemma 1. For any 𝑗, fixed 𝜖 > 0, we have

∫[𝑡−𝑙𝛿,𝑡−𝑘𝛿−𝜖]
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑧𝑗

𝑠 = ∑
𝑘≤𝑚<𝑙

∫[𝑡−(𝑚+1)𝛿−𝜖,𝑡−𝑚𝛿−𝜖]
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑧𝑗

𝑠

≤ ∑
𝑘≤𝑚<𝑙

ℎ𝑗𝑖(𝑚𝛿 + 𝜖)

by Assumption 3 and the fact that there is at most one jump in the interval of length 𝛿. Therefore,

∫[𝑡−𝑙𝛿,𝑡−𝑘𝛿)
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑧𝑗

𝑠 = lim
𝜖↓0 ∫[𝑡−𝑙𝛿,𝑡−𝑘𝛿−𝜖]

ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑧𝑗
𝑠

≤ lim
𝜖↓0 ∑

𝑘≤𝑚<𝑙
ℎ𝑗𝑖(𝑚𝛿 + 𝜖)

≤ ∑
𝑘≤𝑚<𝑙

lim
𝜖↓0

ℎ𝑗𝑖(𝑚𝛿 + 𝜖)

≤ ∑
𝑘≤𝑚<𝑙

ℎ𝑗𝑖(𝑚𝛿),

by using the theorem of monotone convergence and the fact that ℎ𝑗𝑖(.) is a decreasing function according
to Assumption 3. This completes the proof of Lemma 1.

Proof of Proposition 9. By (ii) of Assumption 3, we have

Δ𝑘
𝑖(𝑥) ≤ 𝐿 ×

[∑
𝑗∈𝑉𝑖(𝑘)⧵𝑉𝑖(𝑘−1)

∫
0

−𝑘𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠 + ∑
𝑗∈𝑉𝑖(𝑘−1)

∫
−𝑘𝛿+𝛿

−𝑘𝛿
ℎ𝑗𝑖(−𝑠)𝑑𝑥𝑗

𝑠]
.

Applying Lemma 1 we conclude that

Δ𝑖
𝑘(𝑥) ≤ 𝐿 ×

[∑
𝑗∈𝑉𝑖(𝑘)⧵𝑉𝑖(𝑘−1)

∑
0≤𝑚<𝑘

ℎ𝑗𝑖(𝑚𝛿) + ∑
𝑗∈𝑉𝑖(𝑘−1)

ℎ𝑗𝑖((𝑘 − 1)𝛿)
]

which ends the proof.

Remark 17. In addition, from (i) of Assumption 3, we have

∑
𝑗∈𝑉𝑖(𝑘)⧵𝑉𝑖(𝑘−1)

∑
0≤𝑚<𝑘

ℎ𝑗𝑖(𝑚𝛿) + ∑
𝑗∈𝑉𝑖(𝑘−1)

ℎ𝑗𝑖((𝑘 − 1)𝛿) → 0

as 𝑘 → ∞. Therefore Δ𝑖
𝑘(𝑥) → 0 when 𝑘 → ∞.

In what follows, to simplify the computation, we consider that I = Z, and for all 𝑖, we set

57

3 Kalikow decomposition for counting processes with stochastic intensity

1. ℎ𝑗𝑖(𝑡) = 𝛽𝑗𝑖 exp (−𝛼𝑡) where 𝛽𝑗𝑖, 𝛼 are positive constants for all 𝑗, 𝑖. In addition, we take 𝛼 = 1
𝛿

and

𝛽𝑗𝑖 = 1
2|𝑗 − 𝑖|𝛾 for 𝑗 ≠ 𝑖 with a positive number 𝛾 and 𝛽𝑖𝑖 = 1.

2. 𝑉𝑖(0) = ∅, 𝑉𝑖(1) = {𝑖}, … , 𝑉𝑖(𝑘) = {𝑖 − 𝑘 + 1, … , 𝑖, 𝑖 + 1, … , 𝑖 + 𝑘 − 1} ∀𝑘 ≥ 2.

3. 𝜂𝑖
𝑘 = 𝜂𝑘 = 𝑐𝜂

1
𝑘𝑝 , ∀𝑘 ≥ 1, where 𝑝 is a positive constant and 𝑐𝜂 is a normalization constant.

From Proposition 9, we can choose

Γ𝑖 = sup
{

𝐿
𝑐𝜂

, sup
𝑘≥2[

𝐿𝑘𝑝

𝑐𝜂 (
1 − 𝑒−𝑘

1 − 𝑒−1 ∑
𝑗∈{𝑖−𝑘+1,𝑖+𝑘−1}

𝛽𝑗𝑖 + 𝑒−𝑘+1
∑

𝑗∈𝑉𝑖(𝑘−1)
𝛽𝑗𝑖)]}

= sup
{

𝐿
𝑐𝜂

, sup
𝑘≥2[

𝐿𝑘𝑝

𝑐𝜂 (
1 − 𝑒−𝑘

(𝑘 − 1)𝛾(1 − 𝑒−1)
+ 𝑒−𝑘+1

(
1 +

𝑘−2

∑
𝑚=1

1
𝑚𝛾))]}

∶= Γ.

Since we define 𝜂𝑖
𝑘 are independent of 𝑖, so we can consider that all points have the same type. Instead of

comparing the Backward Steps to amultitype branching process, wemay therefore put 𝐾(𝑘) ∶= 𝐾𝑖(𝑘) ∶=
∑𝑗 𝐾𝑗

𝑖 (𝑘) and 𝑊 (𝑛) ∶= 𝑊𝑖(𝑛) ∶= ∑𝑗 𝑊 𝑗
𝑖 (𝑛) such that 𝐾(𝑘) is the total number of ancestors in the 𝑘𝑡ℎ

set of ancestors and 𝑊 (𝑛) is the total number of ancestors in the first 𝑛 set of ancestors. Hence, all the
vector 𝐾(𝑘) ∶= 𝐾𝑖(𝑘) and 𝑊 (𝑛) = 𝑊𝑖(𝑛) in Proposition 8 now are numbers.

Moreover, 𝑣𝑖
𝑘 = 𝑉𝑖(𝑘) × [−𝑘𝛿, 0) and we set

𝜁 = ∑
𝑘′≥1

𝑃 (𝑣𝑖
𝑘′)𝜆(𝑣𝑖

𝑘′) = ∑
𝑘′≥1

𝜂𝑘′ 𝑘′𝛿 ∑
𝑗∈𝑉𝑖(𝑘′)

Γ𝑗

= ∑
𝑘′≥1

𝑐𝜂
1

𝑘′𝑝 𝑘′𝛿(2𝑘′ − 1)Γ ∶= 𝑓(𝑝).

By a classical well-known result in Branching processes [1] , we have for 𝑘 ≥ 1

E(𝐾(𝑘)) = 𝜁𝑘.

Therefore, the total expected number of simulated points 𝑊 ∶= 𝑊 (∞) is given by

E(𝑊) = 1
1 − 𝜁

.

Now we are looking for values of 𝑝 such that:

(a) (𝜂𝑘)𝑘 defines a probability,

(b) the algorithm stays in 𝒴,

(c) the Kalikow decomposition exists (Proposition 4),

(d) the branching process goes extinct in finite time almost surely.

58

3.6 Conclusion

Once all these condition are fulfilled, we choose 𝑝 such that it minimizes 𝑓(𝑝), so that the total number
of simulated points is minimal.

(𝑎) ∶ ∑
𝑘

𝜂𝑘 = 1 ⇒ 𝑝 > 1

(𝑏) ∶ Γ < ∞ ⇒ 𝑝 < 𝛾

(𝑐) ∶ ∑ ∫ ℎ𝑗𝑖 < ∞ ⇒ 𝛾 > 1

(𝑑) ∶ 𝜁 < 1 ⇒ 𝑝 − 2 > 1

Finally, we conclude that 3 < 𝑝 < 𝛾. Moreover, we want to choose 𝑝 such that 𝑓(𝑝) to be smallest
possible, which means that we need to take 𝑝 largest possible. Hence, we take 𝑝 close to 𝛾.

�.� Conclusion

Prior research has investigated the Perfect Simulation based on a conditional Kalikow decomposition in
continuous time point processes [14]. However, it is impossible to implement this study in practice. In the
present study, we continue our work in [19], to extend the class of point processes which satisfies a new
Kalikow decomposition. This decomposition plays a vital role to build a tractable algorithm in practice.
In addition, we also improve the results in [14] and [19] on the existence of the Kalikow decomposition.
Most notably, this is the first study to our knowledge to establish a Kalikow decomposition for a stochastic
intensity in general context. Our results provide a general method to write a Kalikow decomposition for
large class of point processes, for example: linear Hawkes processes, exponential Hawkes processes and
including very complex Hawkes processes: age dependent Hawkes processes. However, some limitations
are worth noting. Although, we succeed to write the Kalikow decomposition for a variety of Hawkes pro-
cesses, we still have to restrict ourselves to a bounded intensity to implement the Perfect Simulation. This
is due to the simulation of the first jump in the Backward Steps. Future work should focus on removing
totally the upper bound of the intensity and extending the Perfect Simulation to the unbounded intensities.

Acknowledgements

This paper is dedicated to the Institute of Mathematics Hanoi, where the author was honored to work for
more than three years. The author would like to express his very great appreciation to his supervisors
Patricia Reynaud-Bouret and Eva Löcherbach for their patient guidance, enthusiastic encouragement and
useful critiques on this research.

This work was supported by the French government, through the UCAJedi and 3IA Côte d’Azur In-
vestissements d’Avenir managed by the National Research Agency (ANR-15- IDEX-01 and ANR- 19-
P3IA-0002), by the CNRS through the ”Mission pour les Initiatives Transverses et Interdisciplinaires”
(Projet DYNAMO, ”APPModélisation duVivant”), by the interdisciplinary Institute forModeling inNeu-
roscience and Cognition (NeuroMod) of the Université Côte d’Azur, and directly by theNational Research
Agency (ANR-19-CE40-0024) with the ChaMaNe project.

59

3 Kalikow decomposition for counting processes with stochastic intensity

References for Chapter �

1. K. B. Athreya, P. E. Ney, and P. Ney. Branching processes. Courier Corporation, 2004.

2. E. Bacry, S. Delattre, M. Hoffmann, and J.-F. Muzy. “Some limit theorems for Hawkes processes and
application to financial statistics”. Stochastic Processes and their Applications 123:7, 2013, pp. 2475–
2499.

3. P. Brémaud. Point processes and queues. Martingale dynamics, Springer Series in Statistics. Springer-
Verlag, New York-Berlin, 1981, pp. xviii+354. isbn: 0-387-90536-7.

4. P. Brémaud and L. Massoulié. “Stability of nonlinear Hawkes processes”. Ann. Probab. 24:3, 1996,
pp. 1563–1588. issn: 0091-1798. doi: 10.1214/aop/1065725193. url: https://doi.org/10.
1214/aop/1065725193.

5. L. Carstensen, A. Sandelin, O. Winther, and N. R. Hansen. “Multivariate Hawkes process models of
the occurrence of regulatory elements”. BMC bioinformatics 11:1, 2010, pp. 1–19.

6. J. Chevallier. “Mean-field limit of generalized Hawkes processes”. Stochastic Processes and their Ap-
plications 127:12, 2017, pp. 3870–3912.

7. D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Second. Proba-
bility and its Applications (New York). Elementary theory and methods. Springer-Verlag, New York,
2003, pp. xxii+469. isbn: 0-387-95541-0.

8. S. Delattre, N. Fournier, and M. Hoffmann. “Hawkes processes on large networks”. The Annals of
Applied Probability 26:1, 2016, pp. 216–261.

9. V. Didelez. “Graphical models for marked point processes based on local independence”. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 70:1, 2008, pp. 245–264.

10. A.Galves andE. Löcherbach. “Infinite systems of interacting chainswithmemory of variable length—
a stochastic model for biological neural nets”. J. Stat. Phys. 151:5, 2013, pp. 896–921. issn: 0022-4715.
doi: 10.1007/s10955-013-0733-9. url: https://doi.org/10.1007/s10955-013-0733-9.

11. E. C. Hall and R.M. Willett. “Tracking dynamic point processes on networks”. IEEE Transactions on
Information Theory 62:7, 2016, pp. 4327–4346.

12. A. G. Hawkes. “Point spectra of some mutually exciting point processes”. J. Roy. Statist. Soc. Ser. B
33, 1971, pp. 438–443. issn: 0035-9246. url: http://links.jstor.org/sici?sici=0035-
9246(1971)33:3%3C438:PSOSME%3E2.0.CO;2-G&origin=MSN.

13. A. G. Hawkes. “Spectra of some self-exciting and mutually exciting point processes”. Biometrika 58,
1971, pp. 83–90. issn: 0006-3444. doi: 10.1093/biomet/58.1.83. url: https://doi.org/10.
1093/biomet/58.1.83.

14. P. Hodara and E. Löcherbach. “Hawkes processes with variable length memory and an infinite num-
ber of components”. Adv. in Appl. Probab. 49:1, 2017, pp. 84–107. issn: 0001-8678. doi: 10.1017/
apr.2016.80. url: https://doi.org/10.1017/apr.2016.80.

15. S. Kalikow. “Random Markov processes and uniform martingales”. Israel J. Math. 71:1, 1990, pp. 33–
54. issn: 0021-2172. doi:10.1007/BF02807249. url:https://doi.org/10.1007/BF02807249.

60

http://dx.doi.org/10.1214/aop/1065725193
https://doi.org/10.1214/aop/1065725193
https://doi.org/10.1214/aop/1065725193
http://dx.doi.org/10.1007/s10955-013-0733-9
https://doi.org/10.1007/s10955-013-0733-9
http://links.jstor.org/sici?sici=0035-9246(1971)33:3%3C438:PSOSME%3E2.0.CO;2-G&origin=MSN
http://links.jstor.org/sici?sici=0035-9246(1971)33:3%3C438:PSOSME%3E2.0.CO;2-G&origin=MSN
http://dx.doi.org/10.1093/biomet/58.1.83
https://doi.org/10.1093/biomet/58.1.83
https://doi.org/10.1093/biomet/58.1.83
http://dx.doi.org/10.1017/apr.2016.80
http://dx.doi.org/10.1017/apr.2016.80
https://doi.org/10.1017/apr.2016.80
http://dx.doi.org/10.1007/BF02807249
https://doi.org/10.1007/BF02807249

3.6 Conclusion

16. C. Mascart, A. Muzy, and P. Reynaud-Bouret. “Discrete event simulation of point processes: A com-
putational complexity analysis on sparse graphs”. arXiv preprint arXiv:2001.01702, 2020.

17. Y. Ogata. “On Lewis’ simulation method for point processes”. IEEE Transactions on InformationThe-
ory 27:1, 1981, pp. 23–31. doi: 10.1109/TIT.1981.1056305.

18. G. Ost and P. Reynaud-Bouret. “Sparse space-time models: concentration inequalities and Lasso”.
Ann. Inst. Henri Poincaré Probab. Stat. 56:4, 2020, pp. 2377–2405. issn: 0246-0203. doi: 10.1214/
19-AIHP1042. url: https://doi.org/10.1214/19-AIHP1042.

19. T. C. Phi, A. Muzy, and P. Reynaud-Bouret. “Event-scheduling algorithms with Kalikow decompo-
sition for simulating potentially infinite neuronal networks”. SN Computer Science 1:1, 2020, p. 35.

20. M. B. Raad, S.Ditlevsen, andE. Löcherbach. “Stability andmean-field limits of age dependentHawkes
processes”.Ann. Inst.Henri Poincaré Probab. Stat. 56:3, 2020, pp. 1958–1990. issn: 0246-0203. doi:10.
1214/19-AIHP1023. url: https://doi.org/10.1214/19-AIHP1023.

21. P. Reynaud-Bouret and E. Roy. “Some non asymptotic tail estimates forHawkes processes”.Bull. Belg.
Math. Soc. Simon Stevin 13:5, 2006, pp. 883–896. issn: 1370-1444. url: http://projecteuclid.
org/euclid.bbms/1170347811.

22. P. Reynaud-Bouret and S. Schbath. “Adaptive estimation forHawkes processes; application to genome
analysis”. Ann. Statist. 38:5, 2010, pp. 2781–2822. issn: 0090-5364. doi: 10.1214/10-AOS806. url:
https://doi.org/10.1214/10-AOS806.

23. G. Scarella, C. Mascart, A. Muzy, T. C. Phi, and P. Reynaud-Bouret. “Reconstruction de la connec-
tivité fonctionnelle en Neurosciences: une amélioration des algorithmes actuels”. In: 52èmes Journées
de Statistique de la Société Française de Statistique (SFdS). 2021.

61

http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.1214/19-AIHP1042
http://dx.doi.org/10.1214/19-AIHP1042
https://doi.org/10.1214/19-AIHP1042
http://dx.doi.org/10.1214/19-AIHP1023
http://dx.doi.org/10.1214/19-AIHP1023
https://doi.org/10.1214/19-AIHP1023
http://projecteuclid.org/euclid.bbms/1170347811
http://projecteuclid.org/euclid.bbms/1170347811
http://dx.doi.org/10.1214/10-AOS806
https://doi.org/10.1214/10-AOS806

� New methods for simulating point
processes.

This chapter iswritten in collaborationwith PaulGresland during hismaster internship, under supervision
of Patricia Reynaud-Bouret and Alexandre Muzy.

Status: working progress.

63

4 New methods for simulating point processes.

�.� Introduction

Simulating neural networks has received a lot of attention in recent years, for example, there exist several
grand projects such as the Human Brain Project in Europe, the Brain Mapping in Japan and the Brain
Initiative in the United States. A complete simulated model will help reduce the cost of performing bi-
ological experiments and create an important premise before the actual experiments. In practice, there
are many approaches to simulate neural networks, to cite but a few [1, 15, 23]. Here, we will focus on the
point process approach, especially the simulation algorithm using the classical Ogata’s thinning method
[16]. However, it has been found to be too expensive for the huge network, see [14]. Instead, Mascart et al
[14] considered a sparse network, that is a node is only connected to only few other nodes. This algorithm
[14] can not apply to a complete graph with a huge number of nodes.

Another way to handle this problem is to combine the classical Ogata algorithm and Kalikow decom-
position [13]. There has been extensive research regarding this combination for theoretical purposes. For
example, in probability theory, for discrete-time processes, the authors of [4, 5, 6] developed a Perfect
simulation algorithm by using Kalikow decomposition (see also Galves et al. [7, 8]). However, although
the numerous studies in discrete time, little attention has been paid to the continuous-time processes.
Up to our knowledge, there only exists one theoretical result, which was developed in [12]. Despite the
excellent result in theory, their algorithm is not feasible in practice (see the discussion in [19] and also
Chapter 2). Another notable limitation of [12] is the boundedness hypothesis of the intensities. Recently,
Phi et al [19](see also Chapter 2 of this thesis) showed an interesting result by using a new type of Kalikow
decomposition. More precisely, we have successfully simulated the activity of one neuron embedded in
an infinite network without simulating the whole network. However, it rather focuses on simulating the
activity of a part of neural networks than the whole network.

In this chapter, we will focus on simulating the neural networks with a large but not infinite number
of neurons and for mathematical interest, we focus on the case where no deterministic upper bound for
intensities exists at prior. This chapter is organized as follows. In the first section, we give themathematical
definitions and several useful notation. In Section 4.3, we present four algorithms, two aremodifications of
the classical Ogata’s algorithm, two are the combination of Ogata’s algorithm and Kalikow decomposition.
All the proposed algorithms in this section are written for point processes having deterministically upper
bounded intensity. In Section 4.4, we provide a modification of Ogata’s algorithm and a combination of
Ogata andKalikow decomposition when such a deterministic bound does not exist. In Section 4.5, several
numerical results are presented.

�.� Mathematical definitions and notation

We consider 𝑁 point processes in the time interval [0, 𝑡𝑚𝑎𝑥] and assume that no events occurred before the
time 0. Let I be the set of indices of these processes, I = {1, 2, … , 𝑁}. Denote 𝑍 𝑖 the counting process
associated with index 𝑖. For any 0 ≤ 𝑠 < 𝑡 < 𝑡𝑚𝑎𝑥, 𝑍 𝑖((𝑠, 𝑡]) records the number of points produced by
the process 𝑍𝑖 during the interval (𝑠, 𝑡]. Denote ℱ a history of the process 𝑍 = (𝑍 𝑖)𝑖∈𝐼 (see Introduction
of the thesis, Chapter 1). Let us recall that (𝜙𝑖(𝑡|ℱ𝑡))𝑡 is the intensity function of process 𝑍 𝑖.

64

4.2 Mathematical definitions and notation

�.�.� Deterministic and stochastic upper bound of intensities

To the end of this chapter, we focus on two different assumptions of intensity. Either the intensity is
bounded by a deterministic number, that is

Assumption 7 (Deterministically bounded intensity). There exist deterministic positive numbers (𝑀𝑖)𝑖

that dominate the intensities (𝜙𝑖(𝑡|ℱ𝑡))𝑡 respectively, namely

𝜙𝑖(𝑡|ℱ𝑡) ≤ 𝑀𝑖 ∀𝑖 ∈ I, ∀𝑡 ∈ [0, 𝑡𝑚𝑎𝑥].

For any arrival time 𝑇, let us denote 𝑛𝑍(𝑇) the next arrival time after 𝑇 of the process 𝑍

𝑛𝑍(𝑇) = inf{𝑇 ′ ∈ 𝑍 such that 𝑇 ′ > 𝑇 }

and we also consider that
𝐿𝑍(𝑡) = sup{𝑇 ∈ 𝑍 such that 𝑇 < 𝑡}

the last arrival time before time 𝑡 of the process 𝑍, with the convention that 0 is the last arrival time before
the first event of any process 𝑍.

The second assumption consists in saying that the intensity now is bounded by a particular stochastic
predictable function. In this case, we construct a dominating intensity point after point, gradually start-
ing from a initial point 𝑇 = 0. I remove the measuring in the following assumption since we have not
constructed the extended filtration. We have not constructed Π and don’t have the notations 𝑋.

Assumption 8 (Stochastically bounded intensity). There exists a dominating point process Π = (Π𝑖)𝑖

such that

1. At any 𝑇 of the dominating process Π, there exists 𝑀𝑖(𝑇) a random variable such that

sup
𝑡>𝑇

𝜙𝑖(𝑡|ℱ𝑡)1𝑍((𝑇 ,𝑡))=0 ≤ 𝑀𝑖(𝑇) < ∞ (4.2.1)

2. For each index 𝑖, Π𝑖 has intensity

Λ𝑖(𝑡) = ∑
𝑇

𝑀𝑖(𝑇)1𝑇 <𝑡≤𝑛Π(𝑇). (4.2.2)

Note that, Λ𝑖(𝑡) ≥ 𝜙𝑖(𝑡|ℱ𝑡) almost surely and that therefore one might deduce points of 𝑍 by thinning
points of Π. Intuitively, as soon as no point is produced, the intensity function is bounded by a (bounded)
predictable function. That allows us to construct an upper bound to find a candidate for the next arrival
time 𝑛Π(𝑇) , that is needed for the thinning algorithm, which will be introduced in the upcoming section.

�.�.� Point structure

All the algorithms described below consist in generating points according to a dominating process Π𝑖,
which will be

65

4 New methods for simulating point processes.

• either a Poisson process with intensity 𝑀𝑖 if Assumption 7 is satisfied,

• or a more intricate dominating process Π𝑖 of stochastic intensity Λ𝑖 if Assumption 8 is satisfied.

In both cases, these points are going to be accepted or rejected according to various marks or uniform
variables that are drawn at each step.

This is the reason why we define a 𝑝𝑜𝑖𝑛𝑡 (written in italic) as a vector whose components are given in the
following table. The number of the components can be extended if needed. For example, in the second
part, we need to draw several uniform random variables. Also, for the choice of the neighborhood in
Kalikow decomposition, it is more convenient to add 𝑉𝑇, the neighborhood picked at time 𝑇.

Component Terminology Meaning
𝑇 ∈ [0, 𝑡𝑚𝑎𝑥] Time definition When the 𝑝𝑜𝑖𝑛𝑡 occurred

𝑗𝑇 ∈ I Index definition Where the 𝑝𝑜𝑖𝑛𝑡 occurred.

𝑋𝑇 ∈ {0, 𝑛.𝑎, 1} Thinning mark indicates if the 𝑝𝑜𝑖𝑛𝑡 is rejected (𝑋𝑇 = 0), selected (𝑋𝑇 = 1) or
still unknown (𝑋𝑇 = 𝑛.𝑎).

𝑈𝑇 ∈ [0, 1] Uniform Uniform random variable in [0, 1].

𝑉𝑇 Neighborhood Random neighborhood associated to the 𝑝𝑜𝑖𝑛𝑡, only needed if we
use Kalikow decomposition.

Table 4.1: Definition of a 𝑝𝑜𝑖𝑛𝑡

A 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 is of index 𝑖 and at time 𝑇. Saying that a 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖

𝑇 is produced means that the simulation of the
Poisson process Π𝑖 has an event at time 𝑇. As soon as 𝑆 𝑖

𝑇 is produced, it is said to be unknown (𝑋𝑇 = 𝑛.𝑎)
and 𝑈𝑇 is randomly set as an Uniform random variable on [0, 1].

A produced 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 is said to be known if the thinning mark 𝑋𝑇 ≠ 𝑛.𝑎 . More precisely 𝑆 𝑖

𝑇 is said to be
accepted if 𝑋𝑇 = 1 and rejected if 𝑋𝑇 = 0. For instance, in the Ogata’s algorithm for the deterministic
bounded intensity, 𝑋𝑇 is defined as the following

𝑋𝑇 =
⎧⎪
⎨
⎪⎩

1 if 𝑈𝑇 ≤ P(𝑋𝑇 = 1|ℱ𝑇),

0 otherwise.
(4.2.3)

where P(𝑋𝑇 = 1|ℱ𝑇) is the ratio between the intensity 𝜙𝑖(𝑇 |ℱ𝑇) and 𝑀𝑖.
From now on, to simplify writing and to use notation coming from neural networks, we say 𝑠𝑝𝑖𝑘𝑒 for an
accepted 𝑝𝑜𝑖𝑛𝑡.

�.�.� Neuron structure

With the thinningmethod, several processes are taken into account to produce and accept a 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇. The

analogy between a biological neuron and a point process reaches its limits. That is why we introduce a
formal definition of a 𝑛𝑒𝑢𝑟𝑜𝑛 (written in italic). A 𝑛𝑒𝑢𝑟𝑜𝑛 is a mathematical structure that includes all the
variables required to produce and accept the 𝑝𝑜𝑖𝑛𝑡𝑠 as well as the produced 𝑝𝑜𝑖𝑛𝑡𝑠 themselves (whether

66

4.3 First part: Deterministically bounded intensities and Parallelization

they are spikes that are accepted or not).

If a 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 is produced, we also say that the 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 produced this 𝑝𝑜𝑖𝑛𝑡. In the same way if 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖

𝑇 is
accepted, we also say that the 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 accepted this 𝑝𝑜𝑖𝑛𝑡 or equivalently that the 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 produced the
𝑠𝑝𝑖𝑘𝑒 𝑆 𝑖

𝑇.

The component of a 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 is given in the following table. These following components are designed for
the bounded intensity case.

Component Meaning
𝑖 ∈ I Index of the 𝑛𝑒𝑢𝑟𝑜𝑛.

𝑀𝑖 ∈ R+ Upper bound of the firing rate of the 𝑛𝑒𝑢𝑟𝑜𝑛 (Assumption 7)

𝑛𝑖 ∈ N Number of 𝑝𝑜𝑖𝑛𝑡𝑠 produced by the 𝑛𝑒𝑢𝑟𝑜𝑛, which obeys a Poisson distribution
with parameter 𝑀𝑖 𝑡𝑚𝑎𝑥.

(𝑇 𝑖
𝑘)𝑘∈[|1,𝑛𝑖|] ∈ R𝑛𝑖 Vector of times of the 𝑝𝑜𝑖𝑛𝑡𝑠 produced by the 𝑛𝑒𝑢𝑟𝑜𝑛

𝒮 𝑖 = (𝑆 𝑖
𝑇)𝑇 ∈(𝑇 𝑖

𝑘)𝑘
Vector of the 𝑛𝑖 𝑝𝑜𝑖𝑛𝑡𝑠 produced by the 𝑛𝑒𝑢𝑟𝑜𝑛

(𝑈𝑇)𝑇 ∈(𝑇 𝑖
𝑘) ∈ [0, 1]𝑛𝑖

Vector of the uniform random variables each linked to a unique 𝑝𝑜𝑖𝑛𝑡
produced by the 𝑛𝑒𝑢𝑟𝑜𝑛

(𝑋𝑇)𝑇 ∈(𝑇 𝑖
𝑘) ∈ {0, 𝑛.𝑎, 1}𝑛𝑖 Vector of the thinning marks of the 𝑝𝑜𝑖𝑛𝑡𝑠 produced by the 𝑛𝑒𝑢𝑟𝑜𝑛

Table 4.2: Definition of a 𝑛𝑒𝑢𝑟𝑜𝑛

�.� First part: Deterministically bounded intensities and
Parallelization

This section is devoted to present four algorithms: two based on Ogata’s thinning methods and the two
other methods being a combination of Ogata’s algorithm and Kalikow decomposition. To simplify, we
write our algorithms in a particular example: the Linear Hawkes processes with refractory period [3, 20].

The general algorithms can be constructed very similarly, we give more details in the remarks at the end of
each algorithm (if needed). Recall that the intensity of Linear Hawkes process with hard refractory period
is given by

𝜙𝑖(𝑡|ℱ𝑡) =
(

𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

0
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠)
1𝑡−𝐿𝑍𝑖(𝑡)>𝛿 (4.3.1)

where recall that 𝐿𝑍𝑖(𝑡) = 𝑠𝑢𝑝{𝑇 ∈ 𝑍 𝑖 such that 𝑇 < 𝑡}, 𝜇𝑖’s positive real numbers and ℎ𝑗𝑖 the non
negative functions with support inR+.

We begin with two modifications of Ogata’s algorithms. The first one called OtS, is the classical Ogata’s
thinning algorithm in [16]. The second, called OtpP, is a partially parallelized version of OtS.

67

4 New methods for simulating point processes.

�.�.� Sequential Ogata’s thinning algorithm

Ogata’s thinning algorithm

The modificated Ogata’s thinning method aims to simulate all the processes 𝑖 ∈ I in two steps: seeding
step and thinning step:

i. Seeding step : For each index 𝑖 ∈ I, a list of candidate points is built by simulating Π𝑖 a homogeneous
Poisson process with intensity 𝑀𝑖 defined in Assumption 7.

ii. Thinning step: Each of the candidate points are selected or rejected via an exact computation of the
intensity at the corresponding time.

The algorithm presented in this section is a rewriting of Ogata’s algorithm [16] in accordance with our
programming method.

Remark 18. This method is indeed a modification of Ogata’s algorithm [16] since in the original paper,
Ogata constructs a dominating intensity process point after point before performing the thinning step.
Throughout this chapter, whenever we say Ogata’s algorithm, it refers to this modification of Ogata’s algo-
rithm, and not the original one in [16].

Overall description

As this algorithm is essentially the Ogata thinning method (Section 4.3.1), it is also written in two main
steps.

During the first step each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 ∈ I produced the set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 𝑖. In particular, the vector (𝑇 𝑖
𝑘)𝑘∈[|1,𝑛𝑖|]

corresponds to the times arrival of a homogeneous Poisson process with intensity 𝑀𝑖. Then the whole set
of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 is built as the unions of all sets 𝒮 𝑖. The set 𝒮 is sorted to finally contain all the 𝑝𝑜𝑖𝑛𝑡𝑠 in an
increasing 𝑇-order, that is 𝑆𝑖

𝑇 is ”smaller” than 𝑆𝑗
𝑇 ′ if and only if 𝑇 < 𝑇 ′.

During the second step, for each 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 in the set 𝒮, the intensity 𝜙𝑖(𝑇 |ℱ𝑇) is computed using the

Hawkes formula with refractory period (4.3.26). The algorithm splits this formula to isolate the Hawkes
process intensity 𝜓𝑖(𝑇 |ℱ𝑇) from the refractory period constraint:

𝜙𝑖(𝑇 |ℱ𝑇) = 𝜓𝑖(𝑇 |ℱ𝑇)1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 (4.3.2)

where
𝜓𝑖(𝑇 |ℱ𝑇) = 𝜓𝑖(𝑇 |𝒮𝑇) = 𝜇𝑖 + ∑

𝑗∈I
∑

𝑇 ′∈𝑍𝑗

ℎ𝑗𝑖(𝑇 − 𝑇 ′)1𝑋𝑇 ′=1. (4.3.3)

If 1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 = 0, the refractory period is not respected, 𝜙𝑖(𝑇 |ℱ𝑇) = 0 without the need to compute
𝜓𝑖(𝑇 |ℱ𝑇). On the other hand, if 1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 = 1 then 𝜙𝑖(𝑇 |ℱ𝑇) = 𝜓𝑖(𝑇 |ℱ𝑇) only depends on 𝒮𝑇, the
set of the 𝑝𝑜𝑖𝑛𝑡𝑠 produced before 𝑇. Since we treat each point in increasing 𝑇-order, we know if the 𝑇 ′ in
4.3.3 satisfy 𝑋𝑇 ′ = 1 or not.

68

4.3 First part: Deterministically bounded intensities and Parallelization

Remark 19. We define a relation " ⪯ " between two configurations of thinning marks on 𝒮𝑇: 𝒮 1
𝑇 and 𝒮 2

𝑇 .
We say 𝒮 1

𝑇 ⪯ 𝒮 2
𝑇 if all the accepted point in 𝒮 1

𝑇 is also included and accepted in 𝒮 2
𝑇 , that is

∀𝑆 𝑖
𝑇 ∈ 𝒮 1

𝑇 , if 𝑋𝑇 = 1 then 𝑆 𝑖
𝑇 ∈ 𝒮 2

𝑇

It is worth noting that 𝜓𝑖(𝑇 |𝒮𝑇) is increasing with respect to the configuration of thinning marks on 𝒮𝑇,
that is

𝜓(𝑇 |𝒮𝑇) ≤ 𝜓(𝑇 |𝒮 ′
𝑇)

whenever 𝒮𝑇 ⪯ 𝒮 ′
𝑇 . It also implies that the intensity function 𝜙𝑖(𝑇 |𝒮𝑇) is increasing with respect to the

configuration of thinning marks on 𝒮𝑇.

Knowing 𝜙𝑖(𝑇 |ℱ𝑇) allows computing the probability to select the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 using the thinning formula

P(𝑋𝑇 = 1|ℱ𝑇) =
𝜙𝑖(𝑇 |ℱ𝑇)

𝑀𝑖
. (4.3.4)

Then the thinning mark 𝑋𝑇 can be defined as a realization of a random variable Bernoulli with parameter
P(𝑋𝑇 = 1|ℱ𝑇) (formula 4.2.3).

Once every 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 gets its final thinning mark, the 𝑠𝑝𝑖𝑘𝑒𝑠 train is obtained by keeping only the selected

points.

69

4 New methods for simulating point processes.

Pseudo-code

Algorithm 4 Algorithm OtS (for Ogata’s thinning Sequential)

▷ Step 1: Seeding step
1: for each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 do
2: Compute the number of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝑛𝑖 follows a 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(𝑀𝑖 𝑡𝑚𝑎𝑥).
3: for each 𝑝𝑜𝑖𝑛𝑡 indexed by 𝑘 ≤ 𝑛𝑖 do
4: Simulate the time : 𝑇 𝑖

𝑘 follows a 𝑈([0, 𝑡𝑚𝑎𝑥]) distribution
5: Define the uniform : 𝑈𝑇 𝑖

𝑘
follows a 𝑈([0, 1]) distribution

6: Set the 𝑝𝑜𝑖𝑛𝑡 as unknown : the thinning mark 𝑋𝑇 𝑖
𝑘

= 𝑛.𝑎
7: end for
8: end for

▷ Step 2: Thinning
9: Define the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝒮 = ⋃ 𝒮 𝑖

10: Sort this set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 in an increasing 𝑇-order
11: for each point 𝑆 𝑖

𝑇 ∈ 𝒮 do
12: Compute the intensity 𝜙𝑖(𝑇 |ℱ𝑇) with formula (4.3.2)

13: Compute the probability P(𝑋𝑇 = 1|ℱ𝑇) =
𝜙𝑖(𝑇 |ℱ𝑇)

𝑀𝑖
to accept 𝑆 𝑖

𝑇

14: Determine the thinning mark 𝑋𝑇 of the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 (4.2.3)

15: end for
▷ Final step : format the spikes trains

16: Delete the points that have a thinning mark 𝑋𝑇 = 0

Remark 20. The algorithm OtS stops after a finite number of steps almost surely. Indeed only a finite
number of 𝑝𝑜𝑖𝑛𝑡𝑠 are produced after the seeding step.

70

4.3 First part: Deterministically bounded intensities and Parallelization

�.�.� Partially parallelized Ogata’s thinning algorithm

Remark 21. The algorithm OtS cannot be parallelized without an adaptation. Indeed, at line 12 of Al-
gorithm 4 to compute 𝜙𝑖(𝑇 |ℱ𝑇), we need the past before time 𝑇, ℱ𝑇. This past is available only if the
𝑝𝑜𝑖𝑛𝑡𝑠 in 𝒮 are sorted in time and we go through point by point. In the case of parallel computation, the
𝑝𝑜𝑖𝑛𝑡𝑠 are at best partially sorted. Hence when a 𝑝𝑜𝑖𝑛𝑡 𝑆𝑇 is computed it may exist 𝑆𝑇 ′ with 𝑇 ′ < 𝑇 where
𝑋𝑇 ′ = 𝑛.𝑎.

To deal with the problem in Remark 21, let us note that even if the intensity 𝜙𝑖(𝑇 |ℱ𝑇) cannot be de-
termined, it remains possible to provide nontrivial bounds for 𝜓𝑖(𝑇 |𝒮𝑇), the part without the refractory
period. Indeed, we already note (Remark 19) that 𝜓𝑖(𝑇 |𝒮𝑇) is increasing with respect to any thinning
mark of the 𝑝𝑜𝑖𝑛𝑡𝑠 produced before 𝑇. Hence it should be possible to build two sets 𝒮 𝑚𝑖𝑛

𝑇 and 𝒮 𝑚𝑎𝑥
𝑇 of

𝑝𝑜𝑖𝑛𝑡𝑠 all known (that is none with the thinning mark n.a) such that

𝜓𝑖(𝑇 |𝒮 𝑚𝑖𝑛
𝑇) ≤ 𝜓𝑖(𝑇 |𝒮𝑇) ≤ 𝜓𝑖(𝑇 |𝒮 𝑚𝑎𝑥

𝑇). (4.3.5)

For any 𝑝𝑜𝑖𝑛𝑡 𝑆𝑇 ′ ∈ 𝒮𝑇, we define the 𝑝𝑜𝑖𝑛𝑡𝑠 𝑆𝑚𝑖𝑛
𝑇 ′ and 𝑆𝑚𝑎𝑥

𝑇 ′ as the 𝑝𝑜𝑖𝑛𝑡 𝑆𝑇 ′ with the respective thinning
mark 𝑋𝑚𝑖𝑛

𝑇 ′ and 𝑋𝑚𝑎𝑥
𝑇 ′ such that

𝑋𝑚𝑖𝑛
𝑇 ′ =

{
0 if 𝑋𝑇 ′ = 𝑛.𝑎

𝑋𝑇 ′ otherwise
(4.3.6)

𝑋𝑚𝑎𝑥
𝑇 ′ =

{
1 if 𝑋𝑇 ′ = 𝑛.𝑎

𝑋𝑇 ′ otherwise
(4.3.7)

The sets 𝒮 𝑚𝑖𝑛
𝑇 = ⋃ 𝑆𝑚𝑖𝑛

𝑇 ′ and 𝒮 𝑚𝑎𝑥
𝑇 = ⋃ 𝑆𝑚𝑎𝑥

𝑇 ′ satisfy the relation (4.3.5). Our goal is to use the bounds
for 𝜓𝑖(𝑇 |𝒮𝑇) to determine bounds for the acceptance probability of the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖

𝑇. We are looking for
P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) and P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇) such that

P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) ≤ P(𝑋𝑇 = 1|ℱ𝑇) ≤ P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇). (4.3.8)

Since the relation (4.3.5) provides bounds for 𝜓𝑖(𝑇 |ℱ𝑇) and not for 𝜙𝑖(𝑇 |ℱ𝑇) we have to discuss three
possible cases concerning the refractory period.

i. Case 1 : The refractory period is not respected if ∃𝑆𝑖
𝑇 ′ with 𝑇 − 𝛿 ≤ 𝑇 ′ < 𝑇 and 𝑋𝑇 ′ = 1. In this

case 𝑆 𝑖
𝑇 is surely rejected (𝑋𝑇 = 0):

P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) = P(𝑋𝑇 = 1|ℱ𝑇) = P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇) = 0. (4.3.9)

ii. Case 2 : The respect of refractory period cannot be determined if ∃𝑆𝑖
𝑇 ′ with 𝑇 − 𝛿 ≤ 𝑇 ′ < 𝑇 and

𝑋𝑇 ′ = 𝑛.𝑎. In this case :

⎧⎪
⎨
⎪⎩

P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) = 0

P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇) = 𝜓𝑖(𝑇 |𝒮 𝑚𝑎𝑥
𝑇)

𝑀𝑖
.

(4.3.10)

71

4 New methods for simulating point processes.

ii. Case 3 : The refractory period is respected if ∀𝑆𝑖
𝑇 ′ with 𝑇 −𝛿 ≤ 𝑇 ′ < 𝑇 the thinningmark 𝑋𝑇 ′ = 0.

Hence 𝜙𝑖(𝑇 |ℱ𝑇) = 𝜓𝑖(𝑇 |𝒮𝑇) then

⎧⎪
⎨
⎪⎩

P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) = 𝜓𝑖(𝑇 |𝒮 𝑚𝑖𝑛
𝑇)

𝑀𝑖

P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇) = 𝜓𝑖(𝑇 |𝒮 𝑚𝑎𝑥
𝑇)

𝑀𝑖
.

(4.3.11)

If the range of probability [P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇),P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇)] is small enough, this allows us to
determine the thinning mark.

𝑋𝑇 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 if 𝑈𝑇 ≤ P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇)

0 if 𝑈𝑇 ≥ P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇)

𝑛.𝑎 otherwise.

(4.3.12)

Overall description

To build a parallelized algorithm we introduce the structure 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 consisting on a subset of the set
of the 𝑛𝑒𝑢𝑟𝑜𝑛𝑠. Let K be the set of index of 𝑁𝐾 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠, K = {1, … , 𝑁𝐾}. The set of 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
forms a partition of the set of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠. This means that each 𝑛𝑒𝑢𝑟𝑜𝑛 belongs to exactly one 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.
The algorithm computes sequentially each 𝑛𝑒𝑢𝑟𝑜𝑛 within the same population and the 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 of two
different 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 are computed in parallel.

During the seeding step, the computation of each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is completely independent. Indeed this step
consists in simulating independent Poisson processes for each 𝑛𝑒𝑢𝑟𝑜𝑛. 𝒮 𝑘

𝑝𝑜𝑝, the set of produced 𝑝𝑜𝑖𝑛𝑡𝑠
for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 is sorted in an increasing 𝑇-order. Then to prepare for the next step, the complete
set of produced 𝑝𝑜𝑖𝑛𝑡𝑠 is established as 𝒮 = ⋃𝑁𝐾

1 𝒮 𝑘
𝑝𝑜𝑝.

The thinning step is an alternation between parallel computation and sequential information sharing.
During a parallel phase, each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 goes through the set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 𝑘

𝑝𝑜𝑝 trying to determine as
many thinning marks as possible. Then, the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 synchronize, each one waiting for the others to
finish their computation. During the sequential phase, the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 is updated with the thin-
ning marks determined by each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. The alternation between the parallel and sequential phase is
operated as long as there are still unknown 𝑝𝑜𝑖𝑛𝑡𝑠.

72

4.3 First part: Deterministically bounded intensities and Parallelization

Pseudo-code

Algorithm 5 Algorithm OtpP (for Ogata’s thinning partially parallelized)

▷ Step 1: Seeding step
1: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in parallel do
2: for each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 ∈ population do
3: Compute the number of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝑛𝑖 follows a 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(𝑀𝑖 𝑡𝑚𝑎𝑥).
4: for each 𝑝𝑜𝑖𝑛𝑡 indexed by 𝑙 ≤ 𝑛𝑖 do
5: Simulate the time : 𝑇 𝑖

𝑙 follows a 𝑈([0, 𝑡𝑚𝑎𝑥]) distribution
6: Define the uniform : 𝑈𝑇 𝑖

𝑙
follows a 𝑈([0, 1]) distribution

7: Set the 𝑝𝑜𝑖𝑛𝑡 as unknown : the thinning mark 𝑋𝑇 𝑖
𝑙

= 𝑛.𝑎
8: end for
9: end for

10: Define 𝒮 𝑘
𝑝𝑜𝑝 = ⋃ 𝒮 𝑖 the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 belonging to the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

11: Sort this set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 𝑘
𝑝𝑜𝑝 = ⋃ 𝒮 𝑖 in an increasing 𝑇-order

12: end for
13: Define the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝒮 = ⋃ 𝒮 𝑘

𝑝𝑜𝑝
▷ Step 2: Thinning

14: while At least one 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 ∈ 𝒮 is unknown do

15: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in parallel do
16: for each unknown 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖

𝑇 ∈ 𝒮 𝑘
𝑝𝑜𝑝 do

17: Compute the upper bound probability P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇) (4.3.8)
18: Compute the lower bound probability P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇) (4.3.8)
19: Determine the thinning mark 𝑋𝑇 if it is possible (4.3.12)
20: end for
21: end for
22: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in sequence do
23: Update the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 with the thinning marks
24: end for
25: end while

▷ Final step : format the spikes trains
26: Delete the points that have a thinning mark 𝑋𝑇 = 0

Remark 22. The algorithm OtpP stops after a finite number of steps almost surely. Indeed only a finite
number of 𝑝𝑜𝑖𝑛𝑡𝑠 are produced after the seeding step. Then at each WHILE loop, at least one 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
accepts or rejects a 𝑝𝑜𝑖𝑛𝑡. Indeed the 𝑝𝑜𝑖𝑛𝑡 with the smallest time can always be accepted or rejected.

Remark 23. The algorithm OtpP is more general than the algorithm OtS (the sequential version). Indeed
the algorithm OtpP with a single 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is completely equivalent to the Algorithm OtS.

Remark 24. The algorithm OtpP is only partially parallelized. In particular, there is an alternation be-
tween a parallel loop (line 15) and a sequential loop (line 22). There is also a sequential computation (line
13) that separates the two steps of the thinning.

73

4 New methods for simulating point processes.

Remark 25. A crucial hypothesis that is needed for the algorithm OtpP works is the construction of
P𝑚𝑖𝑛,P𝑚𝑎𝑥. In general, the algorithm OtpP works as soon the intensity is increasing with respect to the
configuration of thinning marks, that is

𝜙(𝑇 |𝒮𝑇) ≤ 𝜙(𝑇 |𝒮 ′
𝑇)

whenever 𝒮𝑇 ⪯ 𝒮 ′
𝑇 . In words, more accepted points more chances to emit a new spike.

The synchronization between the two steps seems to us unavoidable. On the other hand, it might be pos-
sible to avoid sequential computations within the second step. However, we have encountered difficulties
with the use of the python multiprocessing package. When dynamic information was shared by parallel
procedures, it generated synchronizations that we could not control. This is why, in the algorithm OtpP,
the information managed by a 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is always inaccessible to the information managed by another.
This of course has a cost, as we regularly interrupt parallel computation to consolidate and share informa-
tion (line 22). Further discussion can be found in Section 4.5 of this chapter.

Remark 26. A criticism that can be made about the algorithm partially parallelizing Ogata’s thinning is
the presence of the WHILE loop (line 14). As far as we know it is not possible to get rid of it.

However, it remains possible to reduce the number of iterations using Kalikow decomposition. Since the
intensity using Kalikow decomposition depends on a smaller number of past event, the probability range
[P𝑚𝑖𝑛(𝑋𝑇 = 1|ℱ𝑇),P𝑚𝑎𝑥(𝑋𝑇 = 1|ℱ𝑇)] to accept 𝑝𝑜𝑖𝑛𝑡 (4.3.8) should be smaller in many cases.

In addition, the advantages are not limited to the case of parallel computing. Asmentioned earlier (Remark
27), Kalikow decomposition could allow making linear the execution time with respect to the number of
neurons, even in the case of sequential computation. This is why the first algorithm we present is sequen-
tial. We called it KOtS for Kalikow-Ogata’s thinning Sequential. In a second sub-section, we present a
partially parallelized version called KOtpP for Kalikow-Ogata’s thinning partially parallelized.

These two algorithms are also based on the Ogata thinning method, which is a building of the 𝑠𝑝𝑖𝑘𝑒 trains
in two steps. The first step produces the 𝑝𝑜𝑖𝑛𝑡𝑠 by simulation of Poisson processes (seeding step). The
second step selects some of the 𝑝𝑜𝑖𝑛𝑡𝑠 to build the 𝑠𝑝𝑖𝑘𝑒 trains (thinning step).

�.�.� Sequential Kalikow-Ogata’s thinning algorithm

Kalikow decomposition

In this section, by adding Kalikow decomposition to the classical Ogata algorithm, we introduce two new
algorithms in order to reduce the complexity of algorithms in previous sections. The Kalikow decompo-
sition used here is unconditional see [18] and also Chapter 2 and Chapter 3.
Recall thatV𝑇 a family of the neighborhood is a set of all possible neighborhoods 𝑣𝑇 (we refer to the formal
definition of the neighborhood in Chapter 2 and Chapter 3). 𝑉𝑇 is a random variable, taking values inV𝑇.
We also assume that ∅ belongs to V𝑇 for all 𝑇.

74

4.3 First part: Deterministically bounded intensities and Parallelization

On the neighborhood family V𝑇, we define a probability distribution 𝜆(.) such that P(𝑉𝑇 = 𝑣𝑇) = 𝜆(𝑣𝑇).
For any neuron 𝑖, suppose that the intensity 𝜙𝑖(𝑡|ℱ𝑡) obeys a Kalikow decomposition for all 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥].
This means that, at each time 𝑡, there exists a neighborhood family V𝑡, in which, we define a probability
distribution 𝜆𝑖(𝑣𝑡) and functions 𝜙𝑣𝑡

𝑖 (𝑡|ℱ𝑡) that depend only on the spikes in neighborhood 𝑣𝑡 such that

𝜙𝑖(𝑡|ℱ𝑡) = ∑
𝑣𝑡∈V𝑡

𝜆𝑖(𝑣𝑡)𝜙
𝑣𝑡
𝑖 (𝑡|ℱ𝑡).

To illustrate our result, we focus on a very specific choice of neighborhood 𝑣𝑇
1, which is given by:

𝑣𝑇 = {𝑗} × [𝑇 − (𝑛 + 1)𝛿, 𝑇 − 𝑛𝛿) (4.3.13)

with 𝑗 ∈ 𝐼 ⋃{∅} and 𝑛 ∈ N. With this concrete definition, the associated intensity 𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) is as

follows

𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) =

⎧⎪
⎨
⎪⎩

𝜇𝑖1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿

𝜆𝑖(𝑣𝑇) if 𝑗 = ∅
1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿

𝜆𝑖(𝑣𝑇) ∫𝑇 −𝑛𝛿
𝑇 −(𝑛+1)𝛿 ℎ𝑗𝑖(𝑇 − 𝑡)𝑑𝑍𝑗

𝑡 if 𝑗 ≠ ∅.
(4.3.14)

Remark 27. The intensity 𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) (after picking the neighborhood) is simpler than 𝜙𝑖(𝑇 |ℱ𝑇). It de-

pends at most on only one pre-synaptic 𝑛𝑒𝑢𝑟𝑜𝑛 and on a very small range of the past time. This is themost
important motivation for using the Kalikow decomposition. It can be used to upper bound the number
of past events that must be known to determine the selection or rejection of a 𝑝𝑜𝑖𝑛𝑡. If this upper bound
remains constant whatever the number of neurons is, this could allow making linear the execution time
with respect to the number of neurons. Moreover, as the Kalikow decomposition allows to simplify the
dependencies, it is an efficient tool to implement a parallelized algorithm.

Remark 28. 𝑀𝑖, the upper bound of the intensity 𝜙𝑖(𝑇 |ℱ𝑇) is not an upper bound of the intensity
𝜙𝑉𝑇

𝑖 (𝑇 |ℱ𝑇). However, asmentioned in Chapter 2 in the case of theHawkes process with refractory period,
it remains possible to provide an upper bound of 𝜙𝑉𝑇

𝑖 (𝑇 |ℱ𝑇).

The upper bound of 𝜙𝑉𝑇
𝑖 (𝑇 |ℱ𝑇) depends on the interaction functions and the chosen decomposition. For

the simulation purpose, let us assume that the upper bound exist.

Assumption 9. i. For any 𝑖, 𝑇 and neighborhood 𝑣𝑇 ∈ V𝑇, there exists a deterministic positive num-
ber 𝑀𝑣𝑇

such that
𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) ≤ 𝑀𝑣𝑇
.

ii. Grant the first hypothesis (i.), there exists moreover a deterministic positive number 𝑀𝑖 such that

sup
𝑇

sup
𝑣𝑇∈V𝑇

𝑀𝑣𝑇
≤ 𝑀𝑖.

Remark 29. Here for each neighborhood 𝑣𝑇, we suppose that there exists a deterministic upper bound
𝑀𝑣𝑇

for 𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇). This hypothesis eventually guarantees to do thinning on each neighborhood 𝑣𝑇.

1Note that, we write this neighborhood notation here informally. In fact, 𝑣𝑇 in the previous chapter equal to 𝑣𝑇 ∪{𝑖}×(𝑇 −𝛿, 𝑇)

75

4 New methods for simulating point processes.

Finally, by assume the second hypothesis (ii.), it ensures that the thinning procedure is applicable for
every neighborhood 𝑣𝑇.

Remark 30. In our case, a neighborhood is written as the Cartesian product of two subsets (4.3.13), one
for space and the other for a time.

Thus, the probability 𝜆(𝑣𝑇) can be written as the product of two probabilities, one in space, one in time:

𝜆(𝑣𝑇) = 𝜆𝑠𝑝𝑎𝑐𝑒({𝑗}) × 𝜆𝑡𝑖𝑚𝑒({𝑛}) (4.3.15)

Remark 31. Note that, in our settings in Section 4.3.5, 𝜆𝑠𝑝𝑎𝑐𝑒({𝑗}) and 𝜆𝑡𝑖𝑚𝑒({𝑛}) can be computed inde-
pendently of 𝑇.

Overall description

As this algorithm is based the Ogata thinning method (Section 4.3.1), it is also written in two main steps.

During the first step, as for the algorithm OtS, each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 ∈ I produced the set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 𝑖. In par-
ticular , the vector (𝑇 𝑖

𝑘)𝑘∈[|1,𝑛𝑖|] corresponds to the time arrivals of a homogeneous Poisson process with
intensity 𝑀𝑖.

In addition, a neighborhood 𝑣𝑇 is randomly drawn for each 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇. As notice in Remark 30, 𝑣𝑇 is the

Cartesian product of two independent subset of the past information. We decompose the neighborhood
in a neighborhood in space {𝑗} and a neighborhood in time [𝑇 −(𝑛+1)𝛿, 𝑇 −𝑛𝛿] that are drawn indepen-
dently, respectively with probability 𝜆𝑠𝑝𝑎𝑐𝑒({𝑗}) and 𝜆𝑡𝑖𝑚𝑒({𝑛}). Then, the knowedge of the neighborhood
𝑣𝑇 allows to perform a first thinning, called a pre-thinning. Indeed, as mentioned in Remark 29, the in-
tensity 𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) is upper bounded by a deterministic constant 𝑀𝑣𝑇
smaller than 𝑀𝑖. This allows to

eventually reject the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 by setting its thinning mark as follows.

𝑋𝑇 =
⎧⎪
⎨
⎪⎩

0 if 𝑈𝑇 >
𝑀𝑣𝑇
𝑀𝑖

𝑛.𝑎 otherwise.
(4.3.16)

In the case of our implementation 𝑀𝑣𝑇
only depends on the neighborhood in space {𝑗}. For this reason,

the algorithm checks first the 𝑝𝑜𝑖𝑛𝑡𝑠 that are rejected then picks the neighborhoods in time only for still
unknown 𝑝𝑜𝑖𝑛𝑡𝑠.

Then the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 is built as the unions of all sets 𝒮 𝑖. The set 𝒮 is sorted to finally contain all
the 𝑝𝑜𝑖𝑛𝑡𝑠 in an increasing 𝑇-order.

During the second step, for each unknown 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 in the set 𝒮, the intensity 𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) is computed
using the formula defined in the section about Kalikow decomposition (4.3.14). The algorithm split this
formula to isolate the Hawkes process intensity 𝜓𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) from the refractory period constraint:

𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) = 𝜓𝑣𝑇

𝑖 (𝑇 |ℱ𝑇)1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 (4.3.17)

76

4.3 First part: Deterministically bounded intensities and Parallelization

with 𝜓𝑣𝑇
𝑖 defined as follows.

𝜓𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) =

⎧⎪
⎨
⎪⎩

𝜓∅
𝑖 (𝑇 |ℱ𝑇) = 𝜇𝑖

𝜆𝑖(𝑣𝑇) if 𝑗 = ∅
1

𝜆𝑖(𝑣𝑇) ∫𝑇 −𝑛𝛿
𝑇 −(𝑛+1)𝛿 ℎ𝑗𝑖(𝑇 − 𝑡)𝑑𝑍𝑗

𝑡 if 𝑗 ≠ ∅.
(4.3.18)

If 1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 = 0, the refractory period is not respected, 𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) = 0 without the need to compute

𝜓𝑣𝑇
𝑖 (𝑇 |ℱ𝑇). In the opposite case, if 1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿 = 1 then 𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) = 𝜓𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) only depends on 𝒮 𝑣𝑇 ,

the set of the 𝑝𝑜𝑖𝑛𝑡𝑠 produced inside the neighborhood 𝑣𝑇.

𝜓𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) = 𝜓𝑣𝑇

𝑖 (𝑇 |𝒮 𝑣𝑇) =
⎧⎪
⎨
⎪⎩

𝜇𝑖
𝜆𝑖(∅) if 𝑗 = ∅

1
𝜆𝑖(𝑣𝑇) ∑𝑆𝑗

𝑇 ′∈𝒮 𝑣𝑇 ℎ𝑗𝑖(𝑇 − 𝑇 ′)1𝑋𝑇 ′=1 if 𝑗 ≠ ∅.
(4.3.19)

Remark 32. Again, similarly to Remark 19, we observe that 𝜓𝑣𝑇
𝑖 (𝑇 |𝒮 𝑣𝑇) is increasing with respect to the

configuration of thinning marks in 𝑣𝑇.

Remark 33. In the case where 𝑗 ≠ ∅, since the time neighborhood [𝑇 − (𝑛 + 1)𝛿, 𝑇 − 𝑛𝛿] has a length
equals to a refractory period 𝛿, only one term of the sum is a non zero term. In other words, 𝜓𝑣𝑇

𝑖 (𝑇 |𝒮 𝑣𝑇)
depends on at most one previous event. It was mentioned within Remark 27 as a condition to make the
execution time linear with respect to the number of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠.

The algorithm can then compute the probability to select the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 using the thinning formula with

the intensity 𝜙𝑣𝑇
𝑖 (𝑇 |ℱ𝑇) :

P(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) =
𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇)
𝑀𝑖

. (4.3.20)

Then the thinning mark 𝑋𝑇 can be defined as a realization of a random variable Bernoulli with parameter
P(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇).

Once every 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 get its final thinning mark, the 𝑠𝑝𝑖𝑘𝑒𝑠 train is obtained by keeping only the selected

𝑝𝑜𝑖𝑛𝑡𝑠.

77

4 New methods for simulating point processes.

Pseudo-code

Algorithm 6 Algorithm KOtS (for Kalikow-Ogata’s thinning Sequential)

▷ Step 1: Seeding step
1: for each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 do
2: Compute the number of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝑛𝑖 follows a 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(𝑀𝑖𝑡𝑚𝑎𝑥).
3: for each 𝑝𝑜𝑖𝑛𝑡 indexed by 𝑘 ≤ 𝑛𝑖 do
4: Simulate the time : 𝑇 𝑖

𝑘 follows a 𝑈([0, 𝑡𝑚𝑎𝑥]) distribution
5: Define the uniform : 𝑈𝑇 𝑖

𝑘
follows a 𝑈([0, 1]) distribution

▷ Step 2: Kalikow step and pre-thinning
6: Pick neighborhood in space : {𝑗} wp 𝜆𝑠𝑝𝑎𝑐𝑒

𝑖 ({𝑗})
7: Compute the upper bound 𝑀𝑣𝑇 𝑖

𝑘
which only depends on 𝑗

8: if 𝑈𝑇 𝑖
𝑘

>
𝑀𝑣𝑇 𝑖

𝑘
𝑀𝑖

then
9: Reject the 𝑝𝑜𝑖𝑛𝑡 : the thinning mark 𝑋𝑇 𝑖

𝑘
= 0

10: else
11: Set the 𝑝𝑜𝑖𝑛𝑡 as unknown : the thinning mark 𝑋𝑇 𝑖

𝑘
= 𝑛.𝑎

12: Pick neighborhood in time : [𝑇 𝑖
𝑘 − (𝑛 + 1)𝛿, 𝑇 𝑖

𝑘 − 𝑛𝛿] wp 𝜆𝑡𝑖𝑚𝑒
𝑖 ({𝑛})

13: end if
14: end for
15: end for

▷ Step 3 : Thinning
16: Define the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝒮 = ⋃ 𝒮 𝑖

17: Sort this set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 in an increasing 𝑇-order
18: for each point 𝑆 𝑖

𝑇 ∈ 𝒮 do
19: Compute the intensity 𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇) with formula (4.3.17)

20: Compute the probability P(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) =
𝜙𝑣𝑇

𝑖 (𝑇 |ℱ𝑇)
𝑀𝑖

to accept 𝑆𝑖
𝑇

21: Determine the thinning mark 𝑋𝑇 of the 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 (4.2.3)

22: end for
▷ Final step : format the spikes trains

23: Delete the points that have a thinning mark 𝑋𝑇 = 0

Remark 34. For a general choice of neighborhood, it suffices to replace Step 2 by choosing a neighborhood
𝑣𝑇 𝑖

𝑘
with a general Kalikow decomposition and do pre-thinning for each 𝑇 𝑖

𝑘.

�.�.� Partially parallelized Kalikow-Ogata’s thinning algorithm

Remark 35. The problem is very similar to the case of algorithms without Kalikow decomposition.

We follow the same pattern as in Section 4.3.2 in which we proposed a parallelized version of Ogata’s thin-
ning algorithm. The main issue was to define bounds for the intensity if it cannot be exactly computed.
Let us start with the intensity without considering the refractory period. We are looking for bounds for
𝜓𝑣𝑇

𝑖 (𝑇 |𝒮 𝑣𝑇) if there exist a 𝑝𝑜𝑖𝑛𝑡 𝑆𝑗
𝑇 ′ ∈ 𝒮 𝑣𝑇 with the thinning mark 𝑋𝑇 ′ = 𝑛.𝑎.

78

4.3 First part: Deterministically bounded intensities and Parallelization

By Remark 33 we know that a unique 𝑝𝑜𝑖𝑛𝑡 of the neighborhood will be selected at the end. This remark
simplifies the procedure. First, if a 𝑝𝑜𝑖𝑛𝑡 𝑆𝑗

𝑇 ′ has already been selected we know that it is the only one and
that the other 𝑝𝑜𝑖𝑛𝑡𝑠 will be rejected. Hence 𝜓𝑣𝑇

𝑖 (𝑇 |𝒮 𝑣𝑇) can be exactly computed as follows

𝜓𝑣𝑇
𝑖 (𝑇 |𝒮𝑇) =

ℎ𝑗𝑖(𝑇 − 𝑇 ′)
𝜆𝑖(𝑣𝑇)

. (4.3.21)

Otherwise there is no accepted 𝑝𝑜𝑖𝑛𝑡 in 𝒮 𝑣𝑇 , in this case, the lower bound of 𝜓𝑣𝑇
𝑖 (𝑇 |𝒮𝑇) is 0. It remains

to find the upper bound. We define a set 𝒮 𝑣𝑇,𝑚𝑎𝑥
𝑇 such that

0 ≤ 𝜓𝑣𝑇
𝑖 (𝑇 |𝒮𝑇) ≤ 𝜓𝑣𝑇

𝑖 (𝑇 |𝒮 𝑣𝑇,𝑚𝑎𝑥
𝑇). (4.3.22)

With the same remark as before we can build 𝒮 𝑣𝑇,𝑚𝑎𝑥
𝑇 as a set of a unique 𝑝𝑜𝑖𝑛𝑡, the one not rejected that

maximize the interaction function ℎ𝑗𝑖, with 𝑗 fixed by 𝑣𝑇. Hence the bounds are as follows

0 ≤ 𝜓𝑣𝑇
𝑖 (𝑇 |𝒮𝑇) ≤ 1

𝜆𝑖(𝑣𝑇)
max

𝑆𝑗
𝑇 ′∈𝒮 𝑣𝑇

ℎ𝑗𝑖(𝑇 − 𝑇 ′)1𝑋𝑇 ′≠0. (4.3.23)

Then we use the bounds for 𝜓𝑣𝑇
𝑖 (𝑇 |𝒮𝑇) to build bounds for P(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) by discussing cases

on the refractory period as we did in previous section:

P𝑚𝑖𝑛(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) ≤ P(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) ≤ P𝑚𝑎𝑥(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇). (4.3.24)

If this range of probability [P𝑚𝑖𝑛(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇),P𝑚𝑎𝑥(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇)] is small enough it
allows to determine the thinning mark.

𝑋𝑇 =

⎧⎪
⎪
⎨
⎪
⎪⎩

1 if 𝑈𝑇 ≤ P𝑚𝑖𝑛(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇)

0 if 𝑈𝑇 > P𝑚𝑎𝑥(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇)

𝑛.𝑎 otherwise.

(4.3.25)

Remark 36. Note that, in our setting,P𝑚𝑖𝑛 stay to be 0 until one point in 𝑣𝑇 is said to be accepted. In this
case, P𝑚𝑖𝑛 = P𝑚𝑎𝑥 = P.

79

4 New methods for simulating point processes.

Pseudo-code

80

4.3 First part: Deterministically bounded intensities and Parallelization

Algorithm 7 Algorithm KOtpP (for Kalikow-Ogata’s thinning partially parallelized)

▷ Step1: Seeding step
1: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in parallel do
2: for each 𝑛𝑒𝑢𝑟𝑜𝑛 𝑖 ∈ population do
3: Compute the number of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝑛𝑖 follows a 𝑃 𝑜𝑖𝑠𝑠𝑜𝑛(𝑀𝑖𝑡𝑚𝑎𝑥).
4: for each 𝑝𝑜𝑖𝑛𝑡 indexed by 𝑘 ≤ 𝑛𝑖 do
5: Simulate the time : 𝑇 𝑖

𝑙 follows a 𝑈([0, 𝑡𝑚𝑎𝑥]) distribution
6: Define the uniform : 𝑈𝑇 𝑖

𝑙
follows a 𝑈([0, 1]) distribution

▷ Step2: Kalikow step and pre-thinning
7: Pick neighborhood in space : {𝑗} wp 𝜆𝑠𝑝𝑎𝑐𝑒

𝑖 ({𝑗})
8: Compute the upper bound 𝑀𝑣𝑇 𝑖

𝑙
which only depends on 𝑗

9: if 𝑈𝑇 𝑖
𝑙

>
𝑀𝑣𝑇 𝑖

𝑙
𝑀𝑖

then
10: Reject the 𝑝𝑜𝑖𝑛𝑡 : the thinning mark 𝑋𝑇 𝑖

𝑙
= 0

11: else
12: Set the 𝑝𝑜𝑖𝑛𝑡 as unknown : the thinning mark 𝑋𝑇 𝑖

𝑙
= 𝑛.𝑎

13: Pick neighborhood in time : [𝑇 𝑖
𝑙 − (𝑛 + 1)𝛿, 𝑇 𝑖

𝑙 − 𝑛𝛿] wp 𝜆𝑡𝑖𝑚𝑒
𝑖 ({𝑛})

14: end if
15: end for
16: end for
17: Define 𝒮 𝑘

𝑝𝑜𝑝 = ⋃ 𝒮 𝑖 the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 belonging to the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
18: Sort this set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 𝑘

𝑝𝑜𝑝 = ⋃ 𝒮 𝑖 in an increasing 𝑇-order
19: end for
20: Define the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 : 𝒮 = ⋃ 𝒮 𝑘

𝑝𝑜𝑝
▷ Step3 : Thinning

21: while At least one 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖
𝑇 ∈ 𝒮 is unknown do

22: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in parallel do
23: for each unknown 𝑝𝑜𝑖𝑛𝑡 𝑆 𝑖

𝑇 ∈ 𝒮 𝑘
𝑝𝑜𝑝 do

24: Compute the upper bound probability P𝑚𝑎𝑥(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) (4.3.24)
25: Compute the lower bound probability P𝑚𝑖𝑛(𝑋𝑇 = 1|𝑉𝑇 = 𝑣𝑇, ℱ𝑇) (4.3.24)
26: Determine the thinning mark 𝑋𝑇 if it is possible (4.3.25)
27: end for
28: end for
29: for each 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑘 in sequence do
30: Update the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠 𝒮 with the thinning marks
31: end for
32: end while

▷ Final step : format the spikes trains
33: Delete the points that have a thinning mark 𝑋𝑇 = 0

81

4 New methods for simulating point processes.

Remark 37. 1. With more general choices of neighborhood, it suffices to accept/reject all unknown
points in neighborhood 𝑣𝑇 to construct P𝑚𝑖𝑛,P𝑚𝑎𝑥, as long as the intensities are monotone with
respect to 𝒮𝑇.

2. In addition, withmore general choices of neighborhood, it suffices to replace the Step 2 by choosing
a neighborhood 𝑣𝑇 𝑖

𝑙
by Kalikow decomposition and do pre-thinning for each 𝑇 𝑖

𝑙 .

3. Again, the crucial hypothesis in this section is the existence ofP𝑚𝑖𝑛 andP𝑚𝑎𝑥. This is guaranteed as
soon the intensity restricted to any neighborhood 𝑣𝑇 is increasing with respect to the configuration
of thinning marks in neighborhood 𝑣𝑇, that is

𝜙𝑣𝑇(𝑇 |𝒮 𝑣𝑇
𝑇) ≤ 𝜙𝑣𝑇(𝑇 |𝒮 ′

𝑇
𝑣𝑇)

whenever 𝒮 𝑣𝑇
𝑇 ⪯ 𝒮 ′

𝑇
𝑣𝑇 .

�.�.� Applications

In this section, we explain howwe concretely apply the algorithms to amultivariate linear Hawkes process
with a hard refractory period 𝛿, where the intensity of index 𝑖 is recalled below.

𝜙𝑖(𝑡|ℱ𝑡) = 𝜓𝑖(𝑡|ℱ𝑡)1𝑡−𝐿𝑍𝑖(𝑡)>𝛿 =
(

𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

0
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠)
1𝑡−𝐿𝑍𝑖(𝑡)>𝛿. (4.3.26)

Settings

An interaction function ℎ𝑗𝑖 is an exponentially decreasing function multiplied by a constant 𝛽𝑗𝑖 which
depends on the distance |𝑖 − 𝑗| between the two 𝑛𝑒𝑢𝑟𝑜𝑛𝑠.

ℎ𝑗𝑖(𝑡) = 𝛽𝑗𝑖 exp(−𝛼𝑡) (4.3.27)

with 𝛽𝑗𝑖 as follows

𝛽𝑗𝑖 =
⎧⎪
⎨
⎪⎩

1
2|𝑗 − 𝑖|𝑝 if 𝑗 ≠ 𝑖

1 if 𝑗 = 𝑖.
(4.3.28)

Upper bounds intensities for Ogata’s thinning algorithm

The computation of the upper bound 𝑀𝑖 is the same as pointed out in Lemma 1 of Section 4.6 of [18] or

Chapter 3. We recall that 𝑀𝑖 = 𝜇𝑖 +
∑𝑗 𝛽𝑗𝑖

1 − exp (−𝛼𝛿)
the dominating intensity for index 𝑖.

Upper bounds intensities for Kalikow-Ogata’s thinning algorithm

We prove the existence of 𝑀𝑣 and 𝑀𝑖 for a multivariate linear Hawkes process with the hard refractory
period. The following calculations and proofs are mostly based on [18] or Chapter 3. Since it is sufficient
to do the calculus at a time 𝑇 arbitrary, hence to simplify, we omit the subscript 𝑇 at the notations. We

82

4.3 First part: Deterministically bounded intensities and Parallelization

consider the family of neighborhood V with 𝑣 = {𝑗} × [𝑇 − (𝑛 + 1)𝛿, 𝑇 − 𝑛𝛿) for 𝑗 ∈ I and 𝑣∅ = ∅.
Following themethod in [18], it admits a Kalikow decomposition at time 𝑇, for 𝑣 = {𝑗}×[𝑇 −(𝑛+1)𝛿, 𝑇 −
𝑛𝛿)

⎧
⎪
⎨
⎪
⎩

𝜆𝑖(𝑣) = 𝜆𝑗𝑖 > 0

𝜙𝑣
𝑖 (𝑇 |ℱ𝑇) =

∫𝑇 −𝑛𝛿
𝑇 −(𝑛+1)𝛿 ℎ𝑗𝑖(𝑇 − 𝑠)𝑑𝑍𝑗

𝑠

𝜆𝑗𝑖
1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿.

(4.3.29)

Otherwise, if 𝑣 = ∅, we have
⎧⎪
⎨
⎪⎩

𝜆𝑖(𝑣) = 𝜆𝑖(∅) > 0

𝜙𝑣
𝑖 (𝑇 |ℱ𝑇) =

𝜇𝑖
𝜆𝑖(∅)

1𝑇 −𝐿𝑍𝑖(𝑇)>𝛿
(4.3.30)

with any sequence (𝜆𝑗𝑖)𝑗 such that ∑𝑗 𝜆𝑗𝑖 = 1 − 𝜆𝑖(∅).
Moreover, we also choose

𝜆𝑗𝑖 = 𝐶
2|𝑗 − 𝑖|𝑝 = 𝐶𝛽𝑗𝑖

with 𝐶 is a renormalization constant.
Also from Lemma 1 in Section 4.6 of [18] we can give the dominating intensities 𝑀𝑖 and 𝑀𝑣 as follow:

for 𝑣 = {𝑗} × [𝑇 − (𝑛 + 1)𝛿, 𝑇 − 𝑛𝛿), we have

𝑀𝑣 = 𝑒−𝑛𝛿

𝐶
.

Otherwise, if 𝑣 = ∅ we have
𝑀∅ =

𝜇𝑖
𝜆𝑖(∅)

.

Therefore, we can choose

𝑀𝑖 = sup
𝑣

𝑀𝑣 = max{
𝜇𝑖

𝜆𝑖(∅)
, 𝑒−𝛿

𝐶 }.

83

4 New methods for simulating point processes.

�.� Second part: Stochastically bounded intensities

Most of the time, finding a constant that dominates the intensity of a neuron for the whole time of simula-
tion is impossible, for example, the Linear Hawkes process [10], etc. However, as stated earlier, it remains
possible to construct a dominating intensity, which changes over time and dominates the intensity of every
neuron as we go along, see Assumption 8. This idea is not new, it can be found in [16]. This dominating
intensity is updated point after point, so we construct it gradually.

For the simulation purposes, recall that the point processes we consider have empty past, i.e no point
before time 0. To simplify thewriting, throughout this section, we set 𝑡𝑚𝑎𝑥 = ∞ and the goal is to simulate
the first 𝑛0 (deterministic) spikes. We focus on the two following versions of Linear Hawkes process.

[Linear Hawkes process] 𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

0
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠 (4.4.1)

and

[Linear Hawkes process with bounded support 𝐴 > 0] 𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

𝑡−𝐴
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠.

(4.4.2)

For the classical version of the Linear Hawkes process, we show later that in some cases, the dominating
intensity Λ𝑖(𝑡) might be a non-decreasing simple predictable function [22]. In otherwords, the dominating
intensity may explode in finite time. This explains why we propose to stop the algorithm after obtaining
𝑛0 spikes.

For the Linear Hawkes process with bounded support, the dominating intensity Λ𝑖(𝑡) now can be de-
creased after a delay of time 𝐴.

With stochastically bounded intensity, the Ogata’s algorithm [16] can be rewritten as follow

i. Seeding step: We construct the dominating intensity Λ𝑖(𝑡) gradually. For each point 𝑆 𝑖
𝑇, we update

the dominating intensity to find a candidate point.

ii. Thinning step: It is selected or rejected via an exact computation of the intensity at the correspond-
ing time.

�.�.� Sequential Ogata’s thinning algorithm

Overall description

In the following, recall that the dominating process Π𝑖 correspond to index 𝑖 and has intensity Λ𝑖(𝑡).
Moreover, recall that Π = (Π𝑖)𝑖 and denote Π(1) for the list of accepted points after the thinning steps.
We consider the filtration ̄ℱ such that Λ𝑖(𝑡) is adapted to ̄ℱ𝑡 for every 𝑖:

̄ℱ𝑡 = ⋁
𝑗∈I

{(𝑇 , 𝑋𝑇) ∶ 𝑇 ∈ Π𝑗 ∩ [0, 𝑡)} (4.4.3)

84

4.4 Second part: Stochastically bounded intensities

with 𝑋𝑇 is the thinning random variable corresponds to 𝑇. Because ̄ℱ includes the accepted points, one
can see ̄ℱ as an extension of ℱ. In addition, with this extended filtration, the intensity of Linear Hawkes
process can be written as

𝜙𝑖(𝑡| ̄ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∑
𝑇 <𝑡∶𝑇 ∈Π𝑗

ℎ𝑗𝑖(𝑡 − 𝑇)1𝑋𝑇=1 (4.4.4)

which is ̄ℱ𝑡 predictable. Similarly for Linear Hawkes process with bounded support defined in (4.4.2). In
addition, we define the first time where the system has 𝑛0 points.

𝜏 = inf{𝑡 such that ∑
𝑇 ≤𝑡,𝑇 ∈Π

1𝑋𝑇=1 ≥ 𝑛0}.

Note that the dominating process Π will be constructed on [0, 𝜏], outside of this interval, its value is 0.
Similarly to the deterministically bounded intensity, the proposed algorithm consists of two steps: seed-

ing step and thinning step.

1. At the seeding step, we create a candidate to find the next point after time 𝑇. At this stage, we
compute the dominating intensity 𝑀(𝑇) = ∑𝑁

𝑖=1 𝑀𝑖(𝑇) at time 𝑇, that creates a candidate 𝑇 ′ by
adding an exponential random variable of parameter 𝑀(𝑇). We attribute a mark to this received
candidate. This candidate 𝑇 ′ belongs to neuron 𝑖 with probability 𝑀𝑖(𝑇)/𝑀(𝑇).

2. At the thinning step, assuming that it belongs to neuron 𝑖, we then assign to it a thinning mark with
Bernoulli distribution of parameter P(𝑋𝑇 ′ = 1| ̄ℱ𝑇 ′) ∶= 𝜙𝑖(𝑇 ′| ̄ℱ𝑇 ′)/𝑀𝑖(𝑇).

Remark38. Note that, in order to find the next spike after time𝑇, we use𝑀𝑖(𝑇)/𝑀(𝑇) and𝜙𝑖(𝑇 ′| ̄ℱ𝑇 ′)/𝑀𝑖(𝑇).
They are ̄ℱ𝑇 measurable, in other words, we only need the information up to time 𝑇 and 𝑇 included.

The thinning rate at the candidate point of time 𝑇 ′ is given as follow:

𝑋𝑇 ′ =
⎧⎪
⎨
⎪⎩

1 if 𝑈𝑇 ′ ≤ P(𝑋𝑇 ′ = 1| ̄ℱ𝑇 ′)

0 otherwise.
(4.4.5)

Remark 39. 1. In comparison to previous section, where we start by simulating a Poisson process on
each neuron, here the dominating intensity needs to be constructed gradually, point after point.
This prevents us to do parallel computation.

2. Note that, this algorithm is a modification of the original paper of Ogata [16]. In the original paper,
Ogata do labelling task. More precisely, at each candidate point, he assigns amark from 0 to𝑁where
0 means rejection. To do this task, we need to compute the convolutional sumof the intensities. This
idea also appeared in [14]. However, when the number of neuron is huge, compute the convolutional
sum of the intensities is very expensive. Whereas, in our algorithm, we only need to compute 𝑀𝑖(𝑇)
for all 𝑖.

85

4 New methods for simulating point processes.

Pseudo-code

Algorithm 8 Algorithm OtSS for Ogata thinning sequential with stochastically bounded in-
tensity

1: Initialize 𝑇 = 0.
2: Initialize the number of spikes 𝑛 = 0.
3: while 𝑛 ≤ 𝑛0 do

▷ Step 1 : Seeding
4: Compute the dominating intensity 𝑀(𝑇) = ∑𝑖 𝑀𝑖(𝑇), where 𝑀𝑖(𝑇) is defined in

Assumption 8.
5: Draw a candidate 𝑇 ′ ← 𝑇 + 𝐸𝑥𝑝(𝑀(𝑇))
6: Distribute to 𝑇 ′ a mark 𝑖 with probability 𝑀𝑖(𝑇)/𝑀(𝑇)

▷ Step 2: Thinning
7: Assume that, this candidate belongs to neuron 𝑖.

8: Compute the thinning rate P(𝑋𝑇 ′ = 1| ̄ℱ𝑇 ′) =
𝜙𝑖(𝑇 ′| ̄ℱ𝑇 ′)

𝑀𝑖(𝑇)
9: Determine the thinning mark 𝑋𝑇 ′ by Equation (4.4.5). If accepted, increase 𝑛 by 1.

10: Update 𝑇 ← 𝑇 ′

11: end while
▷ Final step : format the spikes trains

12: Delete the points that have a thinning mark 𝑋𝑇 = 0

Remark 40. 1. Note that, by the assumption of stochastically bounded intensity Assumption 8, for
any 𝑇 ′ = 𝑇 + 𝐸𝑥𝑝(𝑀(𝑇)) a candidate after time 𝑇, we have

𝜙𝑖(𝑇 ′| ̄ℱ𝑇 ′) ≤ 𝑀𝑖(𝑇).

It means
𝜙𝑖(𝑇 ′| ̄ℱ𝑇 ′)

𝑀𝑖(𝑇)
is well defined as a probability.

By using Proposition 1 in [16], we can prove that the simulated points after Step 1 is a multivariate point
process Π = (Π𝑖)𝑖 having conditional intensity (Λ𝑖(𝑡))𝑖 up to stopping time 𝜏. We can prove that

Proposition 10. Conditioning on the event {𝜏 < ∞}, the point process Π𝑖(1) obtained points by Algo-
rithm 9 admits 𝜙𝑖(𝑡| ̄ℱ𝑡) as ̄ℱ𝑡-predictable intensity up to the stopping time 𝜏.

Proof. This proposition is a particular case of Proposition 11. We accept it for a moment.

�.�.� Sequential KalikowOgata algorithm

Overall description

For any neuron 𝑖, suppose that the intensity 𝜙𝑖(𝑡|ℱ𝑡) satisfies aKalikowdecomposition for all 𝑡. Thismeans
that, at each time 𝑡, there exists a neighborhood family V𝑡, in which, we define a probability distribution
𝜆𝑖(𝑣𝑡) and cylindrical functions 𝜙𝑣𝑡

𝑖 (𝑡|ℱ𝑡) such that

𝜙𝑖(𝑡|ℱ𝑡) = ∑
𝑣𝑡∈V𝑡

𝜆𝑖(𝑣𝑡)𝜙
𝑣𝑡
𝑖 (𝑡|ℱ𝑡).

86

4.4 Second part: Stochastically bounded intensities

Assumption 10 (Stronger version of the stochastically bounded intensity). There exists a dominating
point process Π = (Π𝑖)𝑖 such that

1. At any 𝑇 of the dominating process Π, there exists 𝑀𝑖(𝑇) a ̄ℱ𝑇 measurable random variable such
that

sup
𝑡>𝑇

sup
𝑣𝑡∈V𝑡

𝜙𝑣𝑡
𝑖 (𝑡|ℱ𝑡)1𝑍(𝑇 ,𝑡)=0 ≤ 𝑀𝑖(𝑇) < ∞. (4.4.6)

2. For each index 𝑖, Π𝑖 has ̄ℱ intensity

Λ𝑖(𝑡) = ∑
𝑇

𝑀𝑖(𝑇)1𝑇 <𝑡≤𝑛Π(𝑇) (4.4.7)

Note that, Λ𝑖(𝑡) ≥ 𝜙𝑖(𝑡|ℱ𝑡) almost surely and that therefore one might deduce points of 𝑍 by thinning
points of Π and recall that ̄ℱ is the extended filtration of ℱ (4.4.3).

Intuitively, as soon as no point is produced, whatever the picked neighborhood 𝑣 is, the intensity func-
tion restricted to this neighborhood is bounded by a predictable function. That allows us, at the same
time, to construct the dominating intensity and do a thinning step.

Remark 41. Assumption 10 is stronger than Assumption 8. Indeed, from Assumption 10, we conclude
that

𝜙𝑖(𝑡|ℱ𝑡)1𝑍(𝑇 ,𝑡)=0 ≤ 𝑀𝑖(𝑇) ∀𝑖 ∈ I, ∀𝑡 > 𝑇 , ∀𝑇 .

Analogous to Ogata’s algorithm, we start with the seeding step, followed by a Kalikow step where we
pick a random neighborhood. Finally, we do a thinning step to determine the marks. More precisely,

1. At the seeding step, we create a candidate to find the next point after time 𝑇. At this stage, we
compute the dominating intensity 𝑀(𝑇) = ∑𝑁

𝑖=1 𝑀𝑖(𝑇) at time 𝑇, that creates a candidate 𝑇 ′ by
adding an exponential of parameter 𝑀(𝑇). We attribute the neuronmark to this received candidate
𝑇 ′, this candidate belongs to neuron 𝑖 with probability 𝑀𝑖(𝑇)/𝑀(𝑇). This is exactly step 1 of the
previous algorithm

2. At the Kalikow step, by using the Kalikow decomposition, we pick a random neighborhood of 𝑇 ′.
Without loss of generality, assume that 𝑉𝑇 ′ = 𝑣𝑇 ′ .

3. At the thinning step, we then assign to it a thinning mark with Bernoulli distribution of parameter
P(𝑋𝑇 ′ = 1|𝑉𝑇 ′ = 𝑣𝑇 ′, ̄ℱ𝑇 ′) = 𝜙𝑣𝑇 ′

𝑖 (𝑇 ′| ̄ℱ𝑇 ′)/𝑀𝑖(𝑇) .

The thinning mark at the candidate 𝑇 ′ is determined by

𝑋𝑇 ′ =
⎧⎪
⎨
⎪⎩

1 if 𝑈𝑇 ′ ≤ P(𝑋𝑇 ′ = 1|𝑉𝑇 ′ = 𝑣𝑇 ′, ̄ℱ𝑇 ′)

0 otherwise.
(4.4.8)

87

4 New methods for simulating point processes.

Pseudo-code

Algorithm9AlgorithmKOtSS for KalikowOgata thinning sequential with stochastic bounded
intensity

1: Initialize 𝑇 = 0.
2: Initialize number of spikes 𝑛 = 0.
3: while 𝑛 ≤ 𝑛0 do

▷ Step 1: Seeding
4: Compute the dominating intensity of the candidate 𝑀(𝑇) = ∑𝑖 𝑀𝑖(𝑇), where 𝑀𝑖(𝑇)

is defined in Assumption 10.
5: Draw a candidate 𝑇 ′ ← 𝑇 + 𝐸𝑥𝑝(𝑀(𝑇))
6: Distribute to 𝑇 ′ a mark 𝑖 with probability 𝑀𝑖(𝑇)/𝑀(𝑇)

▷ Step 2: Kalikow
7: Assume that, this candidate belongs to neuron 𝑖.
8: Pick a neighborhood 𝑉𝑇 ′ = 𝑣𝑘 with probability 𝜆𝑖,𝑇 ′(𝑣𝑘) in Kalikow decomposition.

To simplify set 𝑣𝑇 ′ = 𝑣𝑘.
▷ Step 3: Thinning

9: Compute the thinning rate P(𝑋𝑇 ′ = 1|𝑉𝑇 ′ = 𝑣𝑇 ′, ̄ℱ𝑇 ′)
10: Determine the thinning mark 𝑋𝑇 ′ by Equation (4.4.8). If accepted, increase 𝑛 by 1.
11: Update 𝑇 ← 𝑇 ′

12: end while
▷ Final step : format the spikes trains

13: Delete the points that have a thinning mark 𝑋𝑇 = 0

By using Proposition 1 in [16], we can prove as before that the simulated points after Step 1 is a mul-
tivariate point process Π = (Π𝑖)𝑖 having conditional intensity (Λ𝑖(𝑡))𝑖 respectively up to time 𝜏. We can
prove that

Proposition 11. Conditioning on the event {𝜏 < ∞}, the point process Π𝑖(1) obtained by Algorithm 9
admits 𝜙𝑖(𝑡| ̄ℱ𝑡) as ̄ℱ𝑡-predictable intensity up to the stopping time 𝜏.

Proof. The proof is similar to Proposition 2. Take 𝐶𝑡 a positive, predictable function with respect to ̄ℱ𝑡.
Let us denote 𝑇 with 𝑗𝑇 = 𝑖 by 𝑇 𝑖

𝑘 for some 𝑘. We have

E(∫
𝜏

0
𝐶𝑡𝑑Π𝑖

𝑡(1)) = ∑
𝑘∈N

E(𝐶𝑇 𝑖
𝑘
1𝑋𝑇 𝑖

𝑘
=11𝑇 𝑖

𝑘≤𝜏).

Conditioning on {𝑉𝑇 𝑖
𝑘
, ̄ℱ𝑇 𝑖

𝑘
}, we have

E(∫
𝜏

0
𝐶𝑡𝑑Π𝑖

𝑡(1)) = ∑
𝑘
E(𝐶𝑇 𝑖

𝑘
E(1𝑋𝑇 𝑖

𝑘
=11𝑇 𝑖

𝑘≤𝜏|𝑉𝑇 𝑖
𝑘
, ̄ℱ𝑇 𝑖

𝑘))

= ∑
𝑘
E

⎛
⎜
⎜
⎜
⎝

𝐶𝑇 𝑖
𝑘

𝜙
𝑉𝑇 𝑖

𝑘
𝑖 (𝑇 𝑖

𝑘| ̄ℱ𝑇 𝑖
𝑘
)

𝑀𝑖(𝐿Π(𝑇 𝑖
𝑘))
1𝑇 𝑖

𝑘≤𝜏

⎞
⎟
⎟
⎟
⎠

.

Note that 𝜙𝑣(.| ̄ℱ𝑡) is the cylindrical function that only depends on the points on the neighborhood 𝑣.

88

4.4 Second part: Stochastically bounded intensities

Let us now integrate with respect to the choice 𝑉𝑇 𝑖
𝑘
, which is independent of anything else. Since for

any 𝑇, Λ𝑖(𝑇) = 𝑀𝑖(𝐿Π(𝑇)), we conclude that

E(∫
𝜏

0
𝐶𝑡𝑑Π𝑖

𝑡(1)) = ∑
𝑘
E

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐶𝑇 𝑖
𝑘

∑
𝑣𝑇 𝑖

𝑘
∈V𝑇 𝑖

𝑘

𝜆𝑖(𝑣𝑇 𝑖
𝑘
)𝜙

𝑣𝑇 𝑖
𝑘

𝑖 (𝑇 𝑖
𝑘| ̄ℱ𝑇 𝑖

𝑘
)

Λ𝑖(𝑇 𝑖
𝑘)

1𝑇 𝑖
𝑘≤𝜏

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= E(∫
𝜏

0
𝐶𝑡

𝜙𝑖(𝑡| ̄ℱ𝑡)
Λ𝑖(𝑡)

𝑑Π𝑖
𝑡).

by definition of Kalikow decomposition for 𝜙𝑖(𝑡| ̄ℱ𝑡) and the fact that Π𝑖 is empty outside the interval
[0, 𝜏]. Moreover, since Π𝑖

𝑡 is constructed as point process with ̄ℱ𝑡 intensity Λ𝑖(𝑡), it leads us to conclude
that

E(∫
𝜏

0
𝐶𝑡𝑑Π𝑖

𝑡(1)) = E(∫
𝜏

0
𝐶𝑡𝜙𝑖(𝑡| ̄ℱ𝑡)𝑑𝑡).

This holds for any 𝐶𝑡 that is ̄ℱ𝑡 predictable. Therefore, it implies that 𝜙𝑖(𝑡| ̄ℱ𝑡) is the ̄ℱ𝑡 intensity of Π𝑖(1). In
other words, the obtaining points fromAlgorithm 9 admits 𝜙𝑖(𝑡| ̄ℱ𝑡) as stochastic intensity. This completes
our proof.

Remark 42. To prove Proposition 10, it is then sufficient to consider the Kalikow decomposition in a
particular case, where the neighborhood 𝑉𝑇 takes the whole past before time 𝑇 with probability 1. Indeed,
Ogata’s algorithm is a particular case of the KalikowOgata algorithm by considering the neighborhood
family V𝑇 having only one element: the whole past before time 𝑇.

�.�.� Applications

To illustrate our simulation algorithms, in this section, we consider Linear Hawkes processes [10, 11] and
the Linear Hawkes processes with a bounded support [9]. Recall that the intensities are given as follow:

[Linear Hawkes process] 𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

0
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠 (4.4.9)

and

[Linear Hawkes process with a bounded support] 𝜙𝑖(𝑡|ℱ𝑡) = 𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

𝑡−𝐴
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠 (4.4.10)

where 𝐴 is a positive number.

Settings

We consider the parameters in very general settings, that is

• 𝜇𝑖 a positive number, provides the intensity of the Hawkes process 𝑖 when it does not interact with
any process in the network.

89

4 New methods for simulating point processes.

• Each interaction function (ℎ𝑗𝑖) ∶ R+ ↦ R+ continuous and non increasing function, that rep-
resents the strength of the synaptic connection between the pre-synaptic process 𝑗 and the post-
synaptic process 𝑖 [21].

Stochastic upper bounds for the intensities in Ogata’s thinning algorithm

For any 𝑇 and 𝑖, we recall the definition of upper stochastical bound 𝑀𝑖(𝑇) in Assumption 8,

sup
𝑡>𝑇

𝜙𝑖(𝑡|ℱ𝑡)1𝑍(𝑇 ,𝑡)=0 ≤ 𝑀𝑖(𝑇).

In the following of this example (and only in this example), we will write ℎ𝑗𝑖 as ℎ𝑖
𝑗 to remove any unex-

pected confusion to the notations.

With the Linear Hawkes process (4.4.1), we split the integral into two parts

sup
𝑡>𝑇

𝜙𝑖(𝑡|ℱ𝑡)1𝑍(𝑇 ,𝑡)=0 = 𝜇𝑖 + sup
𝑡>𝑇 (∑

𝑗 ∫
𝑇

0
ℎ𝑖

𝑗(𝑡 − 𝑠)𝑑𝑍𝑗
𝑠 + ℎ𝑖

𝑗𝑇
(𝑡 − 𝑇)1𝑋𝑇=1)

.

Finally, since ℎ𝑖
𝑗 is non increasing function, we set

𝑀𝑖(𝑇) = 𝜇𝑖 + 𝑍((0, 𝑇))max
𝑗

ℎ𝑖
𝑗(0) + ℎ𝑖

𝑗𝑇
(0)1𝑋𝑇=1.

In which, we recall that 𝑍((𝑎, 𝑏)) counts the number of spikes of the process 𝑍 in the interval (𝑎, 𝑏).
Moreover, Λ𝑖(𝑡) = ∑𝑇 𝑀𝑖(𝑇)1𝑇 <𝑡≤𝑛Π(𝑇) is ℱ Π

𝑡 predictable, non decreasing function where recall that
𝑛Π(𝑇) is the next point after time 𝑇 of the process Π. Indeed, denote 𝑇 ′ = 𝑛Π(𝑇), we have

𝑀𝑖(𝑇) = 𝜇𝑖 +𝑍((0, 𝑇))max
𝑗

ℎ𝑖
𝑗(0)+ℎ𝑖

𝑗𝑇
(0)1𝑋𝑇=1 ≤ 𝜇𝑖 +𝑍((0, 𝑇 ′))max

𝑗
ℎ𝑖

𝑗(0)+ℎ𝑖
𝑗𝑇 ′(0)1𝑋𝑇 ′=1 = 𝑀𝑖(𝑇 ′).

We also can construct a more precise dominating intensity that decreases after each rejected point by
considering

𝑀𝑖(𝑇) = 𝜇𝑖 + ∑
𝑗 ∫

𝑇

0
ℎ𝑖

𝑗(𝑇 − 𝑠)𝑑𝑍𝑗
𝑠 + ℎ𝑖

𝑗𝑇
(0)1𝑋𝑇=1.

That is also ℱ Π
𝑇 measurable. Moreover, if 𝑇 ′ = 𝑛Π(𝑇) is the candidate point after 𝑇 and 𝑋𝑇 ′ = 0, we have

𝑀𝑖(𝑇 ′) = 𝜇𝑖 + ∑
𝑗 ∫

𝑇

0
ℎ𝑖

𝑗(𝑇
′ − 𝑠)𝑑𝑍𝑗

𝑠 + ℎ𝑖
𝑗𝑇

(0)1𝑋𝑇=1 < 𝑀𝑖(𝑇)

since ℎ𝑖
𝑗 is a non-increasing function.

We obtain a similar result with the Linear Hawkes process with bounded support (4.4.10),

𝑀𝑖(𝑇) = 𝜇𝑖 + 𝑍([𝑇 − 𝐴, 𝑇))max
𝑗

ℎ𝑖
𝑗(0) + ℎ𝑖

𝑗𝑇
(0)1𝑋𝑇=1.

Clearly, for each 𝑇 ′ rejected and until we meet a spike, the dominating intensity will decrease after delays
of length 𝐴.

90

4.4 Second part: Stochastically bounded intensities

Stochastic upper bounds for the intensities in KalikowOgata’s thinning algorithm

Firstly, we begin to write Kalikow decomposition for the intensity function 𝜙𝑖(𝑡|ℱ𝑡). Let us consider the
neighborhood familyV𝑡 with 𝑣𝑘 = {𝑘}×[0, 𝑡) for 𝑘 ∈ I. Follow themethod in [18], the intensity of Linear
Hawkes process admits a Kalikow decomposition at time 𝑡 for 𝑘 > 0:

⎧
⎪
⎨
⎪⎩

𝜆𝑖(𝑣𝑘) = 𝜆𝑘𝑖 > 0

𝜙𝑣𝑘
𝑖 (𝑡|ℱ𝑡) =

∫𝑡
0 ℎ𝑘𝑖(𝑡 − 𝑠)𝑑𝑍𝑘

𝑠

𝜆𝑘𝑖

(4.4.11)

and for 𝑘 = 0, 𝑣0 = ∅:
⎧⎪
⎨
⎪⎩

𝜆𝑖(∅) = 𝜆0𝑖 > 0

𝜙∅
𝑖 (𝑡) =

𝜇𝑖
𝜆0𝑖

.
(4.4.12)

Then, at each 𝑇, by Assumption 10,

sup
𝑡>𝑇

sup
𝑘

𝜙𝑣𝑘
𝑖 (𝑡|ℱ𝑡)1𝑍((𝑇 ,𝑡))=0 ≤ 𝑀𝑖(𝑇).

We set 𝑀𝑖(𝑇) = sup(sup𝑘(
1

𝜆𝑘𝑖
(𝑍𝑘((0, 𝑇)) + 1)ℎ𝑘𝑖(0)),

𝜇𝑖
𝜆0𝑖).

For the Linear Hawkes process with bounded support, the result is very similar. We have Kalikow
decomposition at time 𝑡 for 𝑘 > 0:

⎧⎪
⎨
⎪⎩

𝜆𝑖(𝑣𝑘) = 𝜆𝑘𝑖 > 0

𝜙𝑣𝑘
𝑖 (𝑡|ℱ𝑡) =

∫𝑡
𝑡−𝐴 ℎ𝑘𝑖(𝑡 − 𝑠)𝑑𝑍𝑘

𝑠

𝜆𝑘𝑖

(4.4.13)

and for 𝑘 = 0, 𝑣0 = ∅:
⎧⎪
⎨
⎪⎩

𝜆𝑖(∅) = 𝜆0𝑖 > 0

𝜙∅
𝑖 (𝑡) =

𝜇𝑖
𝜆0𝑖

.
(4.4.14)

We conclude that

𝑀𝑖(𝑇) = 𝑠𝑢𝑝(sup
𝑘 (

1
𝜆𝑘𝑖

(𝑍𝑘((𝑇 − 𝐴, 𝑇)) + 1)ℎ𝑘𝑖(0)),
𝜇𝑖
𝜆0𝑖).

91

4 New methods for simulating point processes.

�.� Numerical results

In this section, we prove statistically that the algorithms in Section 4.3 return Hawkes processes with the
right intensity and assert that the new algorithms outperform the classical Ogata’s algorithm [16]. The
simulation is performed with a laptop computer with a processor Intel(R) Core(TM) i7-1165G7, base fre-
quency 2,80 GHz, RAM 16 Go, and 4 hearts. The algorithms were implemented in Python programming
language (version 3.8.3). The algorithms were run in parallel by using package multiprocessing in Python
(version 3.8.3). The plots and statistical analysis were obtained by using Python (version 3.8.3), part of it
using library statsmodels (v0.13.2).

�.�.� Statistical test

In 1988, Ogata [17] introduced a standard method to assess if the data obey a point process with a given
intensity, in particular Hawkes processes. This method is based on the time rescaling theorem (see for
instance [2]), which says that if 𝜆(.) is the conditional intensity of the point process 𝑍 and Λ(𝑡) = ∫𝑡

0 𝜆𝑠𝑑𝑠,
then the point process �̃� = {Λ(𝑇), 𝑇 ∈ 𝑍} is the homogeneous Poisson process with rate 1. Ogata then
derived a method to test a point process 𝑍 has a given intensity 𝜆(.) as follows:

• Applying the transform formula Λ to each arrival time of 𝑍 to obtain �̃�.

• Test 1: Test that the consecutive delay between points of �̃� obeys the exponential distribution of
rate 1, by using the Kolmogorov-Smirnov test.

• Test 2: Test that the points of �̃� are uniformly distributed by using the Kolmogorov-Smirnov test.

• Test 3: Test that the delays between points of �̃� are independent, for instance, we perform an auto-
correlation test between delays with a certain lag, here we choose up to lag 9.

We perform a test with the 200 neurons that are simulated during 5s (i.e 𝑡𝑚𝑎𝑥 = 5). We consider the
Hawkes process with a hard refractory period and bounded support with intensity is given by:

𝜙𝑖(𝑡|ℱ𝑡) =
(

𝜇𝑖 + ∑
𝑗∈I

∫
𝑡

𝑡−𝐴
ℎ𝑗𝑖(𝑡 − 𝑠)𝑑𝑍𝑗

𝑠)
1𝑡−𝐿𝑍𝑖(𝑡)>𝛿.

with 𝜇𝑖 = 1∀𝑖, 𝐴 = 0.1, 𝛿 = 0.01, I = {1, 2, … , 200} and ℎ𝑗𝑖 is defined in (4.3.27) and (4.3.28) with
𝛼 = 2, 𝑝 = 6.

If we have indeed simulated a right Hawkes processes, the p values should be uniformly distributed in
Test 1 and Test 2. In addition, in Test 3, we choose 8 neurons randomly. The auto-correlation function
should be around 0 if the delays between points are independent.

Remark 43. The OtpP algorithm is extremely slow, even worse than OtS, hence it is out of interest in
practice. Therefore, we will not present its result in this section.

92

4.5 Numerical results

Algorithm OtS

Figure 4.1: The cumulative distribution function (c.d.f) of the p values of Test 1 and Test 2 for OtS algorithm. The
red diagonal line is the c.d.f of uniform random variable on [0,1]. The dashed blue line is the c.d.f of p
values corresponds to Test 1. The dashed green line is the c.d.f of p values corresponds to Test 2.

On Figure 4.1, we can observe that the dashed blue line and green line is close to the red line. This
means that the p values of Test 1 and Test 2 are uniformly distributed.

On Figure 4.2, we can observe that the vertical lines stay on the blue shaded region. This means that
there is no significant correlation between the delays.

93

4 New methods for simulating point processes.

Figure 4.2: On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-correlation at
that number of lags. By default, the plot starts at lag = 0 and the auto-correlation will always be 1 at lag
= 0. The blue shaded region is the confidence interval with a default value of 𝛼 = 0.05.

94

4.5 Numerical results

Algorithm KOtS

Figure 4.3: The c.d.f of the p values of of Test 1 and Test 2. The red diagonal line is the c.d.f of uniform random
variable on [0,1]. The dashed blue line is the c.d.f of p values corresponds to Test 1. The dashed green
line is the c.d.f of p values corresponds to Test 2.

On Figure 4.3, we can observe that the dashed blue line and green line is close to the red line. This
means that the p values of Test 1 and Test 2 are uniformly distributed.

95

4 New methods for simulating point processes.

Figure 4.4: On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-correlation at
that number of lags. By default, the plot starts at lag = 0 and the auto-correlation will always be 1 at lag
= 0. The blue shaded region is the confidence interval with a default value of 𝛼 = 0.05.

On Figure 4.4, we can observe that the vertical lines stay in the blue shaded region. This means that
there is no significant correlation between the delays.

96

4.5 Numerical results

Algorithm KOtpP

Figure 4.5: The c.d.f of the p values of of Test 1 and Test 2. The red diagonal line is the c.d.f of uniform random
variable on [0,1]. The dashed blue line is the c.d.f of p values corresponds to Test 1. The dashed green
line is the c.d.f of p values corresponds to Test 2.

On Figure 4.5, we can observe that the dashed blue line and green line is close to the red line. This
means that the p values of Test 1 and Test 2 are uniformly distributed. On Figure 4.6, we can observe that
the vertical lines stay in the blue shaded region. Thismeans that there is no significant correlation between
the delays.

97

4 New methods for simulating point processes.

Figure 4.6: On each subfigure, the x-axis displays the number of lags and the y-axis displays the auto-correlation at
that number of lags. By default, the plot starts at lag = 0 and the auto-correlation will always be 1 at lag
= 0. The blue shaded region is the confidence interval with a default value of 𝛼 = 0.05.

98

4.5 Numerical results

�.�.� Execution time of the algorithms

Figure 4.7: Execution time of the algorithms sequential Ogata’s thinning, sequential Kalikow-Ogata’s thinning, and
partially parallel Kalikow-Ogata’s thinning with 2 and 4 𝑝𝑜𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠: For each number of neurons, the
algorithms are run 3 times. They simulate the process during 5s. The median values are used to perform
a polynomial regression of degree 2

.

With the Algorithm OtS we reach the simulation of 3 000 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 in 342.2 seconds (median). The per-
formances of the algorithms based on the Kalikow decomposition are much better with 400 000 𝑛𝑒𝑢𝑟𝑜𝑛𝑠
sequentially simulated in 494.6 seconds (median). Using parallel computing, the algorithmKOtpP reaches
the same number of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 in 384.3 seconds (median) with 2 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and 289.25 seconds (median)
with 4 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠. Parallel computation with 4 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 decreases the execution time by 41.5% for
simulating 400 000 𝑛𝑒𝑢𝑟𝑜𝑛𝑠. In general, in the huge network (more than 20 000), the KOtpP performs
significantly better than OtS, and better than KOtS.

However, with the number of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 smaller than 20 000, the parallelization lost performances. Two
reasons are noticed. The first one is the existence of a fixed cost in time with parallel computation. We
assume that this is the synchronization time, it would probably be reducedwith fewer alternations between
sequential and parallel phases of computations. The other reason is the fact that for a small number of
neurons it becomes more efficient to sort the whole set of 𝑝𝑜𝑖𝑛𝑡𝑠. Indeed we noticed that the smaller

99

4 New methods for simulating point processes.

the number of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠, the larger the number of 𝑝𝑜𝑖𝑛𝑡𝑠 unknown after the first iteration. This can be
explained by the fact that when the number of 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 is small the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 are small. Therefore
𝑛𝑒𝑢𝑟𝑜𝑛𝑠 are more likely to have important interactions with 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 from other 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠. In other
words, the larger a 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, the more independent it is. We can see it well for 4 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 and several
𝑛𝑒𝑢𝑟𝑜𝑛𝑠 between 10 and 100. In this interval, the execution time decreases with respect to the number of
𝑛𝑒𝑢𝑟𝑜𝑛𝑠.

Remark 44. However, it is worth noting that, Python is not suitable for parallel computing. There are
2 paradigms of parallel computing: multithreading and multiprocessing. There exist a mechanism in
Python called ”Global Interpreter lock” or GIL that prevents two or more thread from executing simul-
taneously. Therefore it is impossible to benefit from multithreading in Python. For multiprocessing, it is
possible to run two ormore Python processes in parallel, as each process has its interpreter. However, each
process exists in its memory stack and is thus unable to exchange data unless an external synchronization
mechanism (for example, MPI) is employed. To conclude, Paul Gresland and the engineers in NeuroMod
and Inria (Sophia Antipolis) are working together to recode the algorithms in C++ to benefit the parallel
computing.

References for Chapter �

1. R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J.M. Bower, M. Diesmann, A. Morrison,
P.H. Goodman, F. C. Harris, et al. “Simulation of networks of spiking neurons: a review of tools and
strategies”. Journal of computational neuroscience 23:3, 2007, pp. 349–398.

2. E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L.M. Frank. “The time-rescaling theorem and
its application to neural spike train data analysis”. Neural computation 14:2, 2002, pp. 325–346.

3. J. Chevallier. “Mean-field limit of generalized Hawkes processes”. Stochastic Processes and their Ap-
plications 127:12, 2017, pp. 3870–3912.

4. F. Comets, R. Fernández, and P. A. Ferrari. “Processes with long memory: regenerative construction
and perfect simulation”. The Annals of Applied Probability 12:3, 2002, pp. 921–943.

5. R. Fernández, P. Ferrari, and A. Galves. “Coupling, renewal and perfect simulation of chains of infi-
nite order”. Lecture Notes for the vth Brazilian school of Probability, Ubatuba 2001, 2001.

6. P. A. Ferrari, R. Fernández, and N. L. Garcia. “Perfect simulation for interacting point processes, loss
networks and Ising models”. Stochastic Processes and their Applications 102:1, 2002, pp. 63–88.

7. A. Galves, N. Garcia, E. Löcherbach, and E. Orlandi. “Kalikow-type decomposition for multicolor
infinite range particle systems”. The Annals of Applied Probability 23:4, 2013, pp. 1629–1659.

8. A.Galves andE. Löcherbach. “Infinite systems of interacting chainswithmemory of variable length—a
stochastic model for biological neural nets”. Journal of Statistical Physics 151:5, 2013, pp. 896–921.

9. N. R.Hansen. “Hawkes processes and combinatorial transcriptional regulation”. PhD thesis. Citeseer,
1910.

10. A. G. Hawkes. “Point spectra of some mutually exciting point processes”. Journal of the Royal Statis-
tical Society: Series B (Methodological) 33:3, 1971, pp. 438–443.

100

4.5 Numerical results

11. A. G. Hawkes. “Spectra of some self-exciting andmutually exciting point processes”.Biometrika 58:1,
1971, pp. 83–90.

12. P. Hodara and E. Löcherbach. “Hawkes processes with variable length memory and an infinite num-
ber of components”. Advances in Applied Probability 49:1, 2017, pp. 84–107.

13. S. Kalikow. “RandomMarkov processes anduniformmartingales”. Israel Journal ofMathematics 71:1,
1990, pp. 33–54.

14. C. Mascart, A. Muzy, and P. Reynaud-Bouret. “Efficient Simulation of Sparse Graphs of Point Pro-
cesses”. arXiv preprint arXiv:2001.01702, 2020.

15. C. Mascart, G. Scarella, P. Reynaud-Bouret, and A. Muzy. “Simulation scalability of large brain neu-
ronal networks thanks to time asynchrony”, 2021.

16. Y.Ogata. “OnLewis’ simulationmethod for point processes”. IEEE transactions on information theory
27:1, 1981, pp. 23–31.

17. Y. Ogata. “Statistical models for earthquake occurrences and residual analysis for point processes”.
Journal of the American Statistical association 83:401, 1988, pp. 9–27.

18. T. C. Phi. “Kalikow decomposition for counting processes with stochastic intensity”. arXiv preprint
arXiv:2104.00495, 2021.

19. T. C. Phi, A. Muzy, and P. Reynaud-Bouret. “Event-scheduling algorithms with Kalikow decompo-
sition for simulating potentially infinite neuronal networks”. SN Computer Science 1:1, 2020, pp. 1–
10.

20. M. B. Raad and E. Löcherbach. “Stability for Hawkes processes with inhibition”. Electronic Commu-
nications in Probability 25:none, 2020, pp. 1–9. doi: 10.1214/20-ECP312. url: https://doi.
org/10.1214/20-ECP312.

21. P. Reynaud-Bouret, V. Rivoirard, and C. Tuleau-Malot. “Inference of functional connectivity in neu-
rosciences via Hawkes processes”. In: 2013 IEEE global conference on signal and information process-
ing. IEEE. 2013, pp. 317–320.

22. P. Tankov. Financial modelling with jump processes. Chapman and Hall/CRC, 2003.

23. H. Yamaura, J. Igarashi, and T. Yamazaki. “Simulation of a human-scale cerebellar network model
on the k computer”. Frontiers in neuroinformatics 14, 2020, p. 16.

101

http://dx.doi.org/10.1214/20-ECP312
https://doi.org/10.1214/20-ECP312
https://doi.org/10.1214/20-ECP312

Bibliography

1. E. Bacry, I. Mastromatteo, and J.-F. Muzy. “Hawkes processes in finance”.Market Microstructure and
Liquidity 1:01, 2015, p. 1550005.

2. P. Brémaud. Point processes and queues: martingale dynamics. Vol. 50. Springer, 1981.

3. P. Brémaud and L. Massoulié. “Stability of nonlinear Hawkes processes”. The Annals of Probability,
1996, pp. 1563–1588.

4. J. Chevallier. “Mean-field limit of generalized Hawkes processes”. Stochastic Processes and their Ap-
plications 127:12, 2017, pp. 3870–3912.

5. E. Choi, N. Du, R. Chen, L. Song, and J. Sun. “Constructing disease network and temporal progres-
sion model via context-sensitive hawkes process”. In: 2015 IEEE International Conference on Data
Mining. IEEE. 2015, pp. 721–726.

6. F. Comets, R. Fernández, and P. A. Ferrari. “Processes with long memory: regenerative construction
and perfect simulation”. The Annals of Applied Probability 12:3, 2002, pp. 921–943.

7. A. Dassios andH. Zhao. “Exact simulation ofHawkes process with exponentially decaying intensity”.
Electronic Communications in Probability 18, 2013, pp. 1–13.

8. P. A. Ferrari, R. Fernández, and N. L. Garcia. “Perfect simulation for interacting point processes, loss
networks and Ising models”. Stochastic Processes and their Applications 102:1, 2002, pp. 63–88.

9. P. A. Ferrari, A. Maass, S. Martı�nez, and P. Ney. “Cesaro mean distribution of group automata
starting from measures with summable decay”. Ergodic Theory and Dynamical Systems 20:6, 2000,
pp. 1657–1670.

10. A. Galves, N. Garcia, E. Löcherbach, and E. Orlandi. “Kalikow-type decomposition for multicolor
infinite range particle systems”. The Annals of Applied Probability 23:4, 2013, pp. 1629–1659.

11. A.Galves andE. Löcherbach. “Infinite systems of interacting chainswithmemory of variable length—a
stochastic model for biological neural nets”. Journal of Statistical Physics 151:5, 2013, pp. 896–921.

12. A. G. Hawkes. “Point spectra of some mutually exciting point processes”. Journal of the Royal Statis-
tical Society: Series B (Methodological) 33:3, 1971, pp. 438–443.

13. A. G. Hawkes. “Spectra of some self-exciting andmutually exciting point processes”.Biometrika 58:1,
1971, pp. 83–90.

14. P. Hodara and E. Löcherbach. “Hawkes processes with variable length memory and an infinite num-
ber of components”. Advances in Applied Probability 49:1, 2017, pp. 84–107.

103

Bibliography

15. P. Hodara and E. Löcherbach. “Hawkes processes with variable length memory and an infinite num-
ber of components”. Adv. in Appl. Probab. 49:1, 2017, pp. 84–107. issn: 0001-8678. doi: 10.1017/
apr.2016.80. url: https://doi.org/10.1017/apr.2016.80.

16. S. Kalikow. “RandomMarkov processes anduniformmartingales”. Israel Journal ofMathematics 71:1,
1990, pp. 33–54.

17. W. S. Kendall and J. Møller. “Perfect simulation using dominating processes on ordered spaces, with
application to locally stable point processes”.Advances in applied probability 32:3, 2000, pp. 844–865.

18. P.W. Lewis andG. S. Shedler. “Simulation of nonhomogeneous Poisson processes by thinning”.Naval
research logistics quarterly 26:3, 1979, pp. 403–413.

19. C. Mascart, A. Muzy, and P. Reynaud-Bouret. “Efficient Simulation of Sparse Graphs of Point Pro-
cesses”. arXiv preprint arXiv:2001.01702, 2020.

20. J. Møller and J. G. Rasmussen. “Approximate simulation of Hawkes processes”. Methodology and
Computing in Applied Probability 8:1, 2006, pp. 53–64.

21. J. Møller and J. G. Rasmussen. “Perfect simulation of Hawkes processes”. Advances in applied proba-
bility 37:3, 2005, pp. 629–646.

22. Y. Ogata. “On Lewis’ simulation method for point processes”. IEEE Transactions on InformationThe-
ory 27:1, 1981, pp. 23–31. doi: 10.1109/TIT.1981.1056305.

23. Y.Ogata. “OnLewis’ simulationmethod for point processes”. IEEE transactions on information theory
27:1, 1981, pp. 23–31.

24. Y. Ogata. “Seismicity analysis through point-process modeling: A review”. Seismicity patterns, their
statistical significance and physical meaning, 1999, pp. 471–507.

25. G. Ost and P. Reynaud-Bouret. “Sparse space–time models: Concentration inequalities and Lasso”.
In:Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 56. 4. Institut Henri Poincaré.
2020, pp. 2377–2405.

26. T. C. Phi. “Kalikow decomposition for counting processes with stochastic intensity”. arXiv preprint
arXiv:2104.00495, 2021.

27. T. C. Phi, A. Muzy, and P. Reynaud-Bouret. “Event-scheduling algorithms with Kalikow decompo-
sition for simulating potentially infinite neuronal networks”. SN Computer Science 1:1, 2020, pp. 1–
10.

28. J. G. Propp and D. B. Wilson. “Exact sampling with coupled Markov chains and applications to sta-
tistical mechanics”. Random Structures & Algorithms 9:1-2, 1996, pp. 223–252.

29. M. B. Raad and E. Löcherbach. “Stability for Hawkes processes with inhibition”. Electronic Commu-
nications in Probability 25:none, 2020, pp. 1–9. doi: 10.1214/20-ECP312. url: https://doi.
org/10.1214/20-ECP312.

30. J. G. Rasmussen. “Temporal point processes: the conditional intensity function”. Lecture Notes, Jan,
2011.

104

http://dx.doi.org/10.1017/apr.2016.80
http://dx.doi.org/10.1017/apr.2016.80
https://doi.org/10.1017/apr.2016.80
http://dx.doi.org/10.1109/TIT.1981.1056305
http://dx.doi.org/10.1214/20-ECP312
https://doi.org/10.1214/20-ECP312
https://doi.org/10.1214/20-ECP312

Bibliography

31. P. Reynaud-Bouret and S. Schbath. “Adaptive estimation forHawkes processes; application to genome
analysis”. The Annals of Statistics 38:5, 2010, pp. 2781–2822.

32. L. Zhu. “Nonlinear Hawkes processes”. PhD thesis. New York University, 2013.

105

	Introduction
	Mathematical background
	Point process
	Stochastic intensity

	Neuroscience motivation
	Hawkes process
	Simulation algorithms and Kalikow decomposition
	Ogata's algorithm
	Kalikow decomposition
	Perfect simulation

	Presentation of the thesis
	Main contributions
	State of the works

	Event-Scheduling Algorithms with Kalikow Decomposition for Simulating Potentially Infinite Neuronal Networks
	abstract
	Introduction
	Event-scheduling simulation of point processes
	Kalikow decomposition
	Backward Forward algorithm
	Illustration
	Conclusion
	Link between Algorithm 2 and the Kalikow decomposition
	Proof of Proposition 1

	Kalikow decomposition for counting processes with stochastic intensity
	abstract
	Introduction
	Notation and Kalikow decomposition
	Notation and Definition
	From the decomposition at time 0 to the decomposition at any time t.
	About the subspace Y

	Main results
	The first method
	Examples of the first method
	Another method for nonlinear Hawkes processes
	Examples of second method

	Modified Perfect Simulation algorithm
	Backward procedure
	Forward procedure
	Do we construct the right intensity?
	Why does the Backward steps end?
	The complexity of the algorithm
	Efficiency of the algorithm and discussion of the choice of the weights on a particular example

	Conclusion

	New methods for simulating point processes.
	Introduction
	Mathematical definitions and notation
	Deterministic and stochastic upper bound of intensities
	Point structure
	Neuron structure

	First part: Deterministically bounded intensities and Parallelization
	Sequential Ogata’s thinning algorithm
	Partially parallelized Ogata’s thinning algorithm
	Sequential Kalikow-Ogata's thinning algorithm
	Partially parallelized Kalikow-Ogata's thinning algorithm
	Applications

	Second part: Stochastically bounded intensities
	Sequential Ogata's thinning algorithm
	Sequential KalikowOgata algorithm
	Applications

	Numerical results
	Statistical test
	Execution time of the algorithms

	Bibliography

