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ABSTRACT

Orchestration is the art of composing a musical discourse over a combinatorial
set of instrumental possibilities. For centuries, musical orchestration has only
been addressed in an empirical way, as a scientific theory of orchestration
appears elusive. Indeed, whereas harmony and counterpoint can rely on solid
theoretical grounds, orchestration remains taught from collections of examples
drawn from the repertoire.

In this work, we address these questions within the machine learning frame-
work, by proposing the first projective orchestration system. Hence, we start
by formalizing this novel task. We focus our effort on projecting a piano piece
(seen as an harmonic draft) onto a full symphonic orchestra, in the style of
notable classic composers such as Haydn, Mozart or Beethoven. Hence, the first
objective is to design a system of live orchestration, which takes as input the se-
quence of chords played by a pianist and generate in real time its orchestration.
Afterwards, we relax the real-time constraints in order to use slower but more
powerful models and to generate scores in a non-causal way, which is closer to
the writing process of a human composer.

By observing a large dataset of orchestral music written by composers and
their reduction for piano, we hope to be able to capture through statistical learn-
ing methods the mechanisms involved in the orchestration of a piano piece.
Deep neural networks seem to be a promising lead for their ability to model
complex behaviour from a large dataset and in an unsupervised way. More
specifically, in the challenging context of symbolic music which is characterized
by a high-dimensional target space and few examples, we investigate autore-
gressive models. At the price of a slower generation process, auto-regressive
models allow to account for more complex dependencies between the different
elements of the score, which we believe to be of the foremost importance in the
case of orchestration.
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RESUME

L’orchestration est 1’art de composer un discours musical en combinant les
timbres instrumentaux. La complexité de la discipline a longtemps été un frein
a l'élaboration d’une théorie de 1’orchestration. Ainsi, contrairement a 1’harmo-
nie ou au contrepoint qui s’appuient sur de solides constructions théoriques,
I'orchestration reste de nos jours encore essentiellement enseignée a travers
I'observation d’exemples canoniques.

Notre objectif est de développer un systeme d’orchestration automatique de
piéce pour piano en nous appuyant sur des méthode d’apprentissage statistique.
Nous nous focalisons sur le répertoire classique, cette technique d’écriture étant
a I'époque courante pour des compositeurs tels que Mozart ou Beethoven qui
réalisaient d’abord une ébauche pianistique de leurs pieces orchestrales. Ainsi,
notre premier objectif a été de réaliser un systeme capable d’orchestrer en temps
réel I'improvisation d’un pianiste. Dans un second temps, nous abandonnons
les contraintes liées au temps-réel afin d’utiliser des modeles de génération non
linéaires dans le temps, plus proches du processus compositionel d'un humain,
mais dont 1'étape de génération est plus lente.

En observant une large base de donnée de pieces pour orchestre et leurs
réductions pour piano, nous évaluons l’aptitude des réseaux de neurones a
apprendre les mécanismes complexes qui régissent 1’orchestration. La vaste
capacité d’apprentissage des architectures profondes semble adaptée a la diffi-
culté du probléme. Cependant, dans un contexte orchestrale, les représentations
musicales symboliques traditionnelles donnent lieu a des vecteurs parcimonieux
dans des espaces de grande dimension. Nous essayons donc de contourner
ces difficultés en utilisant des méthodes auto-régressives ou en cherchant des
représentations mieux adaptées.

viii
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We can distinguish four orchestral "translation" prob-
lems, represented by the four arrows on the figure. Pi-
ano reduction and projective orchestration take place
in the symbolic domain (framed in green) and link an
orchestral score with its possible arrangements for pi-
ano. Orchestral rendering and transcription link the
symbolic domain with the audio domains (framed in
blue). Computer-assisting tools have already been devel-
oped for all these translation tasks, with the exception of
the projective orchestration task (red arrow), which we
propose to address in this work. 7

(Left) The top-most part of the figure represents an ex-
cerpt of the musical score from Pictures at an Exhibition,
a piece for piano composed in 1874 by Modest Mus-
sorgsky (top), and the musical score of its orchestration
by Maurice Ravel (1929) (bottom). (Right) First bars of
the fourth movement of Beethoven’s gth symphony (bot-
tom) and its reduction for two pianos by Liszt (top). See
how the combination of the bass sections (Trombe, Fagotti
and Contrafagotto) and the roll of the Timpani section are
rendered altogether by repeated 16" notes at the left
hand of the Second Piano. 9

First bars of Notebook for Anna Magdalena Bach using
the standard western notation (left) and the piano-roll
representation (right). 12

We propose to tackle projective orchestration with a
statistical learning approach. Statistical inference consists
in learning a set of rules by the repeated observation of a
reference dataset. Once the rules have been inferred, new
orchestrations can be generated for previously unseen
piano scores. 23

A neural network is a connectionist architecture where
simple computational units called neurons are organized
in layers. Layers are stacked on top of each other, and
the input of a neuron is a weighted sum of the output of
the all the previous layer’s neurons. The weights W' con-
necting the layer / and [ 41 are graphically represented
by arrows. The red arrows are positive coefficients while
blue arrows are negative ones On the graph, inputs are
binary values while hidden layers are real values rep-
resented in grey-scale and one can observe how hidden
units represent co-activations in the input vector. 28

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5
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Example of a 1-dimensional convolution layer. A kernel
W is convolved along the inputs of layer / — 1. Important
benefits of convolutional layers are their reduced number
of weights (3 in this figure) and enforcing translation
invariance of the detected patterns along the convolved
axis. 28

(Left) Graphical representation of a Restricted Boltzmann
Machine (RBM). The weight W;; represent the connection
between visible and hidden units. Visible (respectively
hidden) units are conditionally independent from each
other. (Right) Gibbs sampling can be used to obtained a
sample from a distribution close to the true distribution
of the RBM. It consists in iteratively sampling the value
of one unit given the others through their conditional
probabilities. The independence of the hidden and visi-
ble units allows for a fast implementation known as block
Gibbs sampling. 30

The gradient descent algorithm is a numerical iterative
method for minimizing a function. Here the evolution
of the algorithm is represented for a single parameter
6 with error of the model E(f). The parameter value
is successively modified in the direction of the steepest
gradient of the error surface curve (represented by a blue
arrow) until it reaches the optimal value in red. 33
(Left) Over-fitting on a polynomial regression problem.
The blue curve is the target polynomial of degree 3. The
red curve represents a polynomial of degree 8 fitted over
4 points. We can see that the red polynomial perfectly
approximates the original function on the 4 training
points, but completely fails outside the bounds of these
training points. Hence its generalization error would be
important. (Right) Early-stopping can be used to prevent
over-fitting. The evolution of the train (blue) and valida-
tion (red) errors along the training process are compared.
After the 25th epoch, the validation error stops decreas-
ing while the training error is still diminishing. This
indicates that the model looses in generalisation power
and the training process should be stopped after this
epoch (green arrow). 34

K-fold partition of a dataset with K=6. The black part is
the test set kept for evaluation while the 5 other blocks
are used for training. Among the K — 1 training blocks,
one would typically be used as a validation set for de-
tecting over-fitting 35
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Figure 4.1 (Left) A time series processed with a standard feed-
forward neural network. The receptive field of the model
has a fixed temporal horizon which can be increased
only at the cost of more parameters. (Right) State space
models encode information about all the previous frames
of the input time series in hidden vectors h. 37

Figure 4.2 As weights are time-invariant, a more compact repre-
sentation of the graph can be obtained by representing
recurrent weights U with a curved arrow. Similarly to
the MLP architecture, layers can be stacked on top of
each others in order to extract successively more abstract
representation. The gating mechanisms allow to control
the information flowing through the model along time
(output nodes are omitted for clarity). The input at x;_»
is blocked and the hidden state is preserved. Between
t — 1 and ¢, the hidden state is reset. The colours illus-
trate how the different informations are selected and
combined. 38

Figure 4.3 The Back-Propagation Through Time (BPTT) algorithm al-
lows to train recurrent architecture. By unrolling along
the time axis the recurrent network, we can observe the
multiple influence of each weight matrix over the error
function at each time-step. Hence, back-propagating
each error term E; for t in [0, ..., T] along recurrent con-
nections allows to modify the weights considering this
influence over time. For instance, all the terms framed
with green circles will contribute to the update of WO, 40

Figure 4.4 The FiLM conditioning mechanism applies a linear trans-
formation to each unit of a feature vector h. Thus, any
intermediate hidden layer in the network can be modu-
lated by different FiLM layers. 42

Figure 4.5 CRBM. The weights Ay; and By; model the influence of
the past visible states on the biases of the current visible
and hidden units. 42

Figure 4.6 A style-gated FGcRBM. The three sub-models are rep-

resented by three different colors. The style features are
gated on the three interactions: weights between visible
and hidden units (in red), bias on hidden units (green),
bias on visible units (blue) 43

Figure 4.7 The training procedure of the Orderless Deep Neural Auto-
regressive Distribution Estimation ODNADE consists in
randomly sampling an ordering and an order (or step).
These determine the known units in the input (green
circles) and those unknown which are masked out (red
circles). The opposite mask is applied to the error func-
tion so that only the unknown units are used for back-
propagation (blue circles). 45
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Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5
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Projective orchestration is defined as the mapping be-
tween a multidimensional time-series representing a pi-
ano score and a multidimensional time-series represent-
ing an orchestral score. 52
Causal (left) and random walk (right) generation processes.
The temporal horizon for the contextual information of
both the piano and orchestral scores is delimited by the
black arrow. The contextual information (blue frames)
is used to generated the current orchestral frame (red
frame). The next orchestral frames to be generated are
represented with dotted frames. Hence, one can ob-
serve that in the causal case, the orchestral frames are
successively generated, while a random-walk over the
temporal indices is performed in the second case. The
random-walk generation process implies two major dif-
ferences: the future of the orchestral score can be used
in the contextual information (blue frame), but all the
orchestral score needs to be initialised (green frames).
53
Precision, recall and accuracy measures are based on
counting the number of correct prediction (true positive
and true negative) and mistakes (false positive and false
negative). 57
The cross-entropy is denoted X-ent on the figure, and
a lower value indicate a better predictive power. (Left)
Each point represents the cross-entropy and accuracy
obtained for one prediction of a model. We can see
that the two measure do not rank predictions similarly.
(Right) An example of a target vector and a prediction
which obtains an extremely low accuracy score and an
average cross-entropy. This is due to the sparsity of the
target vector and the fact that the modified accuracy
does not treat true positives and true negatives equally,
whereas the cross-entropy does. 58
Comparison of frame-level and event-level time quanti-
sation. We can see that the number of repeated frames
increase with the quantisation. This becomes problem-
atic for statistical learning since the model might mostly
focus on learning repetitions. Event-level representation
alleviate this issue by discarding the duration informa-
tion. To preserve rhythmic information, the duration can
be added to each vector of the event-level representation.

59
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Figure 6.1

Figure 6.2

Figure 6.3

Figure 7.1

Figure 7.2

Piano-roll representation of a piano score (Top) and its
corresponding orchestration (Bottom). The different in-
struments of the orchestral piano-roll have been summed
along the pitch axis instead of concatenated for reducing
the size of the representation, which we refer to as flat-
ten orchestra. The Needleman-Wunsch algorithm allows
to find the optimal alignment of two time-series which
proves to be crucial in order to study frame-to-frame
correlations. 63

Needleman-Wunsch (NW) algorithm for aligning scores
x and y based on their event-level pitch-class represen-
tation (Left). An equivalent but more compact repre-
sentation of a pitch-class vector can be given as a list of
activated class, (Right), In the construction of the score
matrix S, black arrows illustrate the forward iterative
process while the back-tracking process is represented
by the red arrows. The gap insertion parameter y used
in this example is equal to 3. 64

Activation ratio per pitch in the whole orchestral score
database. For one bin on the horizontal axis, the height
of the bar represents the number of notes played by
this instrument divided by the total number of frames
in the database. This value is computed for the event-
level representation. The tessitura of each instrument is
indicated underneath the pitch axis, and one can observe
the peak in the activation ration curve around the mean
tessitura of each instrument. 66

Conditioning a RBM with a set of context units ¢ can
be achieved by using in-painting and concatenating the
context vector c to the visible units v. The context units
are clamped to their known values when Gibbs sampling
is performed, which is represented with hatched circles.
The weights for clamped context and non-clamped vis-
ible units are separated into a matrix W and a matrix
B, but can be manipulated as a single matrix Wgsyckeq =
(W, B). For projective orchestration, the context vector is
defined as the concatenation of the piano and orchestra
contexts ¢ = (Pf, Of). 70

The FGcRBM model applied to projective orchestration.
Context units c represent the orchestral context Of, while
the label units [ represent the piano context Pi. The
triangle represent the factor units. 72
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Figure 7.4
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Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4
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A modular approach developed with feed-forward neu-
ral networks. The different informations from the piano
and orchestral scores are processed by different modules.
Past and future events of the piano and orchestral scores
are encoded by temporal models. The piano frame P;
is processed separately by a stack of dense layers and
possibly a first 1-dimensional convolutional layer. To
combine the information extracted by the different mod-
ules, affine conditioning is illustrated here. 73

The results of a leave-one-out evaluation ran on the POD
database is reported here. Each bar represents the score
obtained by the same model on the unique test file.
The colour corresponds to the four different subgroups
in the POD database. The Liszt-Beethoven subset is
represented in green, and show a good consistency. The
outlier files were inspected carefully, and most of them
showed pathological encodings, such as a violin vibrato
written as a repeated note 78

The beginning of the second movement of Antonin Dvotédk
9 is an example of overly repeated notes due to the ac-
companiment section. On top of each frame is indicated
the accuracy score obtained by the repeat model. On the
second frame, there is 7 true positive, and 1 false positive
and 1 false negative due to the melody. 81
Accuracy score obtained by a RNN model on a 10-fold
evaluation scheme for different temporal horizon. The
lowest temporal order which obtains an optimal score is
equal to 5. 84

(Left) Accuracy score obtained by a RNN model with or
without the dynamic information. Without the dynam-
ics information, the model obtains an average score of
42.70%, slightly better than the 42.46% it obtains when
informed with the dynamics. (Right) Influence of the
dynamic information. 85

Comparison of the accuracy score obtained when per-
forming data augmentations of amplitude o, 1 and 3 and
a model implementing a 1-dimensional convolution as
its first layer. 88

New examples can be artificially created from purely
orchestral scores by reducing them to a piano version by
overlaying all the instrumental sections in a single piano
score. The piano score is a very rough approximation of
a piano reduction. It can be observed that it contains too
many notes for being playable by one pianist. However,
we hypothesised that this approximation could be useful
pre-training material. 89

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]

XX1



Xxii

LIST OF FIGURES

Figure 8.5

Figure 9.1

Figure 9.2

Figure 10.1

Figure 10.2

Figure 10.3

The training process can be scheduled by presenting
successively different subsets of the database. The idea is
to benefit from a large collection of files, while preserving
a stylistic consistency by progressively focusing on a
more coherent subset. 91

The NADE framework can be applied to perform pro-
jective orchestration by concatenating the embedding of
the piano and orchestral contexts to the orchestral vector
Oy. 98

The piano and orchestral notes co-occurrence matrix can
be used to automatically mask out orchestral units before
starting the generation step (red frame and arrows).
During the generation, inter-orchestral co-occurrences
(blue frame) can be used to mask other orchestral units
each time an orchestral unit has been predicted (blue
arrows). 99

The Live Orchestral Piano (LOP) is a system for perform-
ing real-time orchestration of a piano performance. The
system consists in a Max/MSP patch which receives the
output of a MIDI piano keyboard, sequences it, and for
each frame, requests its orchestration to a Python server
which implements an already trained neural network.
The network performs a forward pass and sends its
output back to the Max/MSP patch, who uses it for dis-
playing a musical score and to be rendered as an audio
signal. 104

The Max/MSP interface of the Live Orchestral Piano
allows to see both the piano input and the generated
orchestration on a musical score generated as the user
plays (green frames). Different models trained before-
hand can be loaded in the Max/MSP (red frame). 105
A piano vector is built each time a MIDI event is re-
ceived by the Max/MSP patch. For the Python server,
these vectors are processed in the event-level framework,
thus dropping the duration information. The real-time
framework requires a causal generative scheme to be
employed, and zero-initialisation is used for unknown
orchestral frames. 105
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Figure 12.3

LIST OF FIGURES

A symbolic frame can be represented as a list of notes.
On the figure, the piano frame P; contains 3 notes, and
is orchestrated with an orchestral frame O; containing 6
notes. A given note is represented by the concatenation
of three vectors representing the pitch-class, octave and
instrument. The interest of this representation is that
each vector is now a one-hot vector. Hence, the last layer
can implement a softmax function which conveys more
information about the structure of the output than in-
dependent Bernoulli. Besides, each one-hot vector has a
limited dimension (12 for the pitch-classes, 8 for the oc-
taves and 12 for the instruments, using the instrumental
simplifications we used in LOP). Using this representa-
tion (blue frame), a sequence-to-sequence model can be
used, each frame being consider as a sequence. Time
dependency can be ensured by conditioning the piano
embedding at time t under the value of the piano embed-
ding at time ¢ — 1. Note that piano and orchestral frames
at previous time step (dotted circles) do not necessar-
ily contain the same number of notes, which is made
possible by the sequence-to-sequence framework. 112
An entropy function can be computed over the piano
score. Depending on the value of the entropy, a different
model could be used. The red part, associated with an
important change in the score would be orchestrated by
a model which does not attempt to ensure a continuous
voice leading for each instrumental section. 112

An embedding space which accounts for spectral dis-
tances can be built using siamese networks (red frame).
The two networks with orange connections are one same
network duplicated (called siamese networks). That du-
plicate network is trained to minimise the distance in
the embedding space of symbolic vectors which are as-
sociated to sounds which are spectrally close. A possible
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MUSICAL ORCHESTRATION

1.1 ORCHESTRAL MUSIC COMPOSITION

Orchestration is the art of writing music for the orchestra [88]. The almost
infinite palette of sounds offered by combining the properties of different
instruments represents an astoundingly expressive medium for composers.
However, this variety comes at the cost of an overwhelming compositional
complexity. An extended knowledge about each instrument and the way they
blend together appears as an absolute necessity. This complexity adds up to the
usual subtleties of elaborating a musical discourse. Therefore, orchestration is
often considered as a pinnacle among different musical disciplines.

1.1.1  The art of manipulating timbre

Timbre, or tone colour, defines the perceived sound qualities of a musical event.
While there is no consensus over its precise definition, it is commonly referred
to as the property that allows listeners to distinguish two sounds produced
at the same pitch, loudness, duration and environment (e.g. identical room
reverberation) [73]. Hence, timbre often embeds perceptual attributes such as
the brightness [118] or roughness [78] of a sound. Compared with solo works,
the range of timbre that can be created by an orchestra is gigantic, and the
search for a particular sound becomes a central aspect of the creative process.
Hence, orchestration is often referred to as the art of manipulating instrumental
timbres [70].

Johan Sebastian Bach’s Cantata Brich dem Hungrigen dein Brot" testifies about
the early preoccupation of composers for timbre in orchestral music. In this
example, a simplistic melody is spread across the different instruments of the
orchestras to create a sensation of instability and movement.

The structuring role of timbre is particularly noticeable in didactic pieces such
as Benjamin Britten’s Young person’s guide to the orchestra®> or Maurice Ravel’s
Bolero3 which features constant re-orchestrations of the same theme.

The Klangfarbenmelodie (melody of timbre) is a concept which appeared and
have been extensively used in the early XX™. It consists in splitting a melody
between several instruments. Anton Webern’s Concerto for nine instruments,
Op.24* is one of the most notable example of Klangfarbenmelodie.

Johan Sebastian Bach - Brich dem Hungrigen dein Brot, BWV 39 (1726):
https:/ /www.youtube.com/watch?v=pDnwQ-YIA0oQ
Benjamin Britten - Young  person’s  guide  to the  orchestra (1945):

https:/ /www.youtube.com/watch?v=4vbvhU22uAM

Maurice Ravel - Bolero (1928): https:/ /www.youtube.com/watch?v=pNIXrdJFTAM

Anton Webern - Concerto for nine instruments, Op.24 (1934):
https:/ /www.youtube.com/watch?v=pVQambrIKNo
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Timbre became an intense source of reflection for contemporary composers.
Among the many notables examples we can cite Quattro pezzi su una nota sola>
written by Giacinto Scelsi. Each of the four piece is constructed on a single note
which serves as a foundation for exploring orchestral timbre. In the early 1970s,
the spectral approach to music composition emerged under the impulsion
of Tristan Murail and Gérard Grisey. It is based on the study of the spectral
representations of the different instruments of the orchestra in an attempt to
merge their timbral properties in order to create unique sounds. Gerard Grisey
has been the pioneer of this movement and his piece Partiels® has notably
influenced the next generations of composers.

1.1.2 Learning orchestration

Orchestration involves a wide set of intricate mechanisms, most of which
have not yet been satisfactorily theorized. Indeed, some renowned composers
conjectured that orchestration would remain an empirical discipline, which
could only be learned through experience and never axiomatised in books [61].
Even if several notable musicians have written treatises [9, 33, 61, 97], those
mostly provide a collection of existing orchestration examples from which one
can draw inspiration. This scarce set of knowledge is to be compared with
other traditional composition domains, like harmony, which benefits from a
long history of theoretical principles and research [94, 116]. Finally, even for
a trained composer, finding the instrumental combination that best express a
musical idea can remain particularly elusive.

Hence, the combinatorial complexity carried by orchestration, the difficulty to
predict the resulting sound of an instrumental mixture and the harder control
over the final performance are three of the major difficulties faced by composers.
We detail these issues and what they entail in the following three subsections.

1.1.2.1  Combinatorial complexity

Charles Koechlin pointed out that "most likely an orchestration treatise would not
be complete given the richness of the sonic material and their combinations." [61, p.1].
Indeed, given the number of different instruments in a symphonic orchestra,
their respective tessitura, intensity ranges and variety of playing styles, one
can foresee the extensive combinatorial complexity embedded in the process
of orchestral composition. If we consider an orchestra only composed by 5
instruments, each of them having a pitch range of 2 octaves (24 notes) and
3 possible intensities, we can derive a widely under-estimated lower-bound
of the number of possible combinations for a symphonic orchestra equal to
(24 % 3)° > 10%. One can easily understand the impossibility for a composer
(or even a computer) to exhaustively explore all of the existing orchestral
combinations.

Giacinto Scelsi - Quattro pezzi su una nota sola (1959):
https:/ /www.youtube.com/watch?v=MfTjz6emdyc
Gerard Grisey - Partiels (1975): https:/ /www.youtube.com/watch?v=X657W8BkKmw
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1.1.2.2  Unpredictability of instrumental mixtures

Instrumental mixtures are complex phenomena and being able to accurately
predict their resulting timbre is extremely difficult, even for a trained musician.
Orchestral effects, such as blends in which the timbre of several instruments
are transformed into a unique sound from which the original sources are
undistinguishable, have been observed [111]. Hence, not only an accurate
knowledge about each individual instrument is necessary, but also an extended
experience about the resulting sound of their combinations.

1.1.2.3 Control over the performance

The notation used in classical western music for orchestral scores allows to
define the melodic, rhythmic, harmonic and timbral structure of the piece.
However, many aspects are not covered by the traditional notation and depend
on the interpretation of the score. For instance, performers often take the
freedom to slightly bend the precise rhythmic structure described in the score
by adding subtle accelerations and decelerations.

This observation is particularly true in the case of orchestral pieces, where the
conductor has to carefully balance the different instrumental sections to create
the desired sound. This demanding task is particularly important in order to
faithfully recreate the orchestral effects imagined by a composer.

However, the notation does not permit to precisely specify this balance, and
important variations in the sonic rendering of the piece may occur between dif-
ferent interpretations of the same piece. Learning the ability to anticipate which
orchestral arrangement will be prone to important variations is particularly
difficult for composers.

1.2 SCIENTIFIC INVESTIGATIONS OF ORCHESTRATION

In the preceding section, we detailed the considerable difficulties that com-
posers may be facing when writing orchestral music. Walter Piston wrote that
"orchestration [is] an art and not a science" [88, p.356], and that it might be the
reason why there is not necessarily an explanation for what sounds "good" or
not. However, perhaps these difficulties are to some extent due either to our
limited understanding of the acoustical laws and the principles underlying
human sound perception, or to the inability of the human brain to embrace
the wide number of combinations offered by an orchestra. Hence, investigating
the art of orchestration through the scope of acoustics, signal processing and
computer science could provide useful insights for composers by disentangling
the relations between written scores and their perception. Ideally, this could
lead to the development of tools for assisting composition.

We can distinguish to axes underpinning a scientific investigation of orches-
tration. The first axis is an attempt to decipher the mechanisms behind the
human perception of orchestral music. It intensely relies on perceptual studies
and acoustics, and mostly have an analytical purpose. The second axis attempt
to exploit the resources of computers to develop generative tools for assisting
composers.
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1.2.1  Acoustics and perception

1.2.1.1  Characterising timbre

As discussed earlier, timbre is often defined as the quality which allows to distin-
guish two sounds played at the same pitch, loudness, duration and environment
[73]. This negative definition of timbre might be intuitively satisfying, but it is
clearly not convenient to manipulate. Besides, it provides no information about
the relation between a given waveform propagated in a room to a listener and
the timbre perceived by that same listener. This remark suggests two axes of
research: studying how waveforms propagate and mix in an acoustic space,
and studying the link between a given waveform heard by a listener and the
corresponding perceived timbre.

The first problem is related to waveform propagation in a medium, which
involves highly non-linear and complex mechanisms [37, 41]. This phenomenon
is modelled by equations, and methods for solving them have been investigated
for centuries. Closed form solutions have been found for the simplest ones,
while numerical approximations are usually accessible for the most complex
ones [6].

The second question relates to how the human brain processes a physical
sound and associates it with a perceived timbre. Researches in signal processing
have provided various spectro-temporal descriptors [86]. While most of them
have originally been designed for music information retrieval tasks, such as
genre classification [85], some of these descriptors correlate well with perceptual
attributes such as the brightness or roughness of a sound [86], thus providing a
mathematical definition for some aspects of timbre.

1.2.1.2 Timbre as a structuring force in music

The variations in timbre along a composition can segment and structure a
musical discourse into logical units. McAdams and al. introduces the concept
of auditory streams which is a psychological grouping of musical events which
are interpreted by the listener as a coherent "whole" [70, 71]. A taxonomy of the
different types of grouping is proposed, from which powerful analysis methods
can be derived to extract large-scale structuring elements from a complex
orchestral score [44]. The extracted structure provides a clear presentation of
the temporal organisation of the piece and layering scheme among the different
voices of the orchestra. In particular, this analysis scheme has been used for
developing Orchard 7, an annotated database of orchestral scores.

1.2.2  Computer-sciences

We mentioned in Subsection 1.1.2.1 the combinatorial complexity of orchestral
music. Computers are particularly adapted for rapidly exploring large ensemble
of solutions and, thus, prove to be helpful for assisting composers in the many
aspects of their compositional process.

In particular, "translation” tasks from a medium to another one can be partic-
ularly tedious for composers, while computer can excel at doing them. These

7 https:/ /orchard.actor-project.org/search/
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Symbolic

Piano Projective
Reduction Orchestration

Orchestral  ———-—— - __ \
rendering

Figure 1.1: We can distinguish four orchestral "translation" problems, represented by
the four arrows on the figure. Piano reduction and projective orchestration
take place in the symbolic domain (framed in green) and link an orchestral
score with its possible arrangements for piano. Orchestral rendering and
transcription link the symbolic domain with the audio domains (framed in
blue). Computer-assisting tools have already been developed for all these
translation tasks, with the exception of the projective orchestration task (red
arrow), which we propose to address in this work.

four translation tasks, transcription, rendering, reduction and orchestration, are
depicted on Figure 1.1 and detailed in the following paragraph.

TRANSCRIPTION  We refer to transcription as writing the musical score cor-
responding to a perceived sound. The ensemble of timbre possibly created by
an orchestra forms a wide and convoluted space. As discussed earlier, how the
exploration of this space is complex for composers, because of the number of
possible combinations and the intricacy of instrumental mixtures. To address
this question, several systems have been proposed, [35, 92, 102] which aim at
assisting composers for navigating in the space of instrumental combinations.

Hence, when a composer wants to produce a certain sound with an orchestra
(often in the form of a recorded sound, such as a screaming person or a creaking
door), these systems try to produce an orchestration that best mimic this target
while focusing on the micro-temporal structure of sounds.

ORCHESTRAL RENDERING Rendering an orchestral score is usually done by
an orchestra playing the music written. Rendering software allow composers
to better imagine how their piece will sound when played by a real orchestra
by simulating a performance. Most of the recent notation software, such as
Sibelius or Finale, and digital audio workstations, such as Logic Pro, embed
rendering engines dedicated to the orchestra. Most of these tools are based on
concatenating recordings of individual notes played by the different instruments
of the orchestra. However, these tools often lack of realism as the articulation
between the successive notes or the balance between the different sections
is grossly rendered. Hence, more advanced tools such as OrchSim have been
developed, which allow for a more precise control of these dynamics aspect,
and a more realistic rendering.
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PIANO REDUCTION  The reduction of an orchestral score is the generation of
a piano score which preserve the melodic, harmonic and rhythmic structure of
the original orchestral score while being playable for a pianist. As the number
of notes that can simultaneously be played by a pianist is limited, performing a
reduction often involves removing some notes of the original orchestral score.
Famous examples of orchestral reductions can be found in the repertoire, such
as Franz Liszt reductions of Ludwig Von Beethoven’s Symphonies.

The exercise undoubtedly has a pedagogical interest, as it requires to be able
to synthesize a complex orchestral work and reduce it to its most essential
elements. However, being able to automatically perform reductions would be
extremely useful for pianists in order to be able to rapidly obtain a playable
solo version of their favourite orchestral music. This complex task has been
addressed with complex probabilistic models, for instance in [34].

PROJECTIVE ORCHESTRATION Among the different writing techniques for
the orchesstra, one of them consists in first laying an harmonic and rhythmic
structure in the form of a piano score and then adding the orchestral timbre
by spreading the different voices over the various instruments [88]. We refer
to this operation of extending a piano draft to an orchestral score as projective
orchestration. This technique has been widely used by classic composers. One
such example is the orchestration by Maurice Ravel of Pictures at an Exhibition,
a piano work written by Modest Mussorgsky (see Figure 1.2). By observing an
example of projective orchestration (see Figure 1.2), we can see that this process
involves more than the mere allocation of notes from the piano score across the
different instruments.

To our best knowledge, no computer-assisting tool has been developed for
addressing this task. The objective of this work is to design the first system for
automatic projective orchestration.
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Figure 1.2: (Left) The top-most part of the figure represents an excerpt of the musical

score from Pictures at an Exhibition, a piece for piano composed in 1874
by Modest Mussorgsky (top), and the musical score of its orchestration by
Maurice Ravel (1929) (bottom). (Right) First bars of the fourth movement
of Beethoven’s gth symphony (bottom) and its reduction for two pianos by
Liszt (top). See how the combination of the bass sections (Trombe, Fagotti
and Contrafagotto) and the roll of the Timpani section are rendered altogether
by repeated 16" notes at the left hand of the Second Piano.
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AUTOMATIC COMPOSITION

Computer-aided composition refers to algorithms and softwares designed to
help composers writing music. Hence, the definition of this research field might
cover a wide range of scientific domains. Indeed, the development of a diverse
range of audio synthesis methods [20, 106] and digital effects (filters, delay,
reverberation, spatialization) [99] benefited from intensive research in signal
processing, acoustics and auditory perception. Furthermore, theoretical works
in mathematics led to the development of a variety of representations for sounds
or scores, with applications in both compression tools [83] or music analysis
[7, 12]. Music composition has also been a wonderful playground for computer
science and artificial intelligence. The overarching challenge of creating an
automatic composition system is still one of the most vivid and thrilling issue
for the computer music community [101].

The field of automatic music generation has been widely investigated since
the 1950s and led to important advances in musical creation. One of the first
example of such research is probably the Illiac Suite, a string quartet created
by an algorithm designed by Lejaren Hiller and Leonard Issacson in 1957. The
piece has been automatically generated by sampling various musical quantities,
such as the pitch and rhythm, from probability distributions [104]. Since this
seminal work, computer-generated music has been a substantial source of
inspiration for composers. Stochastic processes have been further investigated
by many composers. In particular, Iannis Xenakis explored a wide range of
different distributions in some of his pieces (for instance the ST series ). Magnus
Lindberg developed an algorithm based on constraint programming for his
piece Engine 2. Since these pioneering creations, the field has considerably
evolved, from rudimentary probabilistic models and rule-based systems to the
latest innovations in machine learning. Last year, Daniele Ghisi created the
music of La Fabrique des monstres 3, for which entire sections of audio have been
generated using neural networks.

These artistic productions illustrate the evolution of the automatic compo-
sition field, which was itself widely influenced by the successive trends in
computer science. In particular, formal grammars, constraint programming and ma-
chine learning have been intensely investigated at different periods and shaped
the successive generations of automatic composition systems [101].

Across these research, one of the most major distinction between different
approaches is the type of information manipulated. Two modalities are com-
monly distinguished and referred to as signal and symbolic representations (see
Figure 1.1). First, audio recording allows to store the musical information as
the variation of atmospheric pressure caused by the propagation of sound
waves. As such, audio recording is the closest representation of the physical
phenomenon. By extension, signal representations encompass time-frequency

1 Jannis Xenakis - ST/10=1,080262 (1956-1962): https:/ /www.youtube.com/watch?v=9XZjCy18qrA
2 Magnus Lindberg - Engine (1996): https:/ /www.youtube.com/watch?v=yKJgTqRWsKg
3 Daniele Ghisi - La Fabrique des monstres (2018): https:/ /vimeo.com/groups/494916/videos /275248479
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Figure 2.1: First bars of Notebook for Anna Magdalena Bach using the standard western
notation (left) and the piano-roll representation (right).

representations such as the Fourier Transform of an audio waveform. Gen-
erative systems for raw audio have been recently proposed, with promising
results [75, 8o]. However, these systems have been essentially applied to speech
synthesis and their development mainly focused on the quality of the audio
signal generated rather than the coherency of the macro-temporal structure.
More abstract representations may prove useful to manipulate higher-level mu-
sical structures. Symbolic representations designate any compressed encoding
of the sound using a set of discrete symbols describing musical events. A typical
example of symbolic representation is the western classical musical notation
which has long been used as a communication medium between composers
and performers. In order to develop tools for automatic composition, symbolic
representations seem to be the most adapted, as it seems easier for an artificial
intelligence to grasp the temporal organization and important high-level fac-
tors. Here, we will focus on symbolic representations as they allow to capture
higher-level relations in complex multi-instrument relations.

In Section 2.1, we review the most widespread symbolic representations for
music. In Section 2.2, we review algorithms for automatic music generation
and outline the lack of research applied to orchestral music. Then, we review
orchestral research in Section 2.3 while trying to bridge the gap with more tra-
ditional and extensively investigated problems of computer-aided composition.
Finally, we present our approach and detail the structure for the remainder of
this thesis in Section 2.4.

2.1 SYMBOLIC REPRESENTATIONS OF MUSIC

A crucial step when building a generative system for symbolic music is to find
an adapted representation of the musical information. Several symbolic repre-
sentations have been developed for different musical styles and purposes. As an
exhaustive list would be too long, we introduce here only the representations
that were used in this thesis, which focuses on western classical music.

2.1.1  Western classical notation

The most common symbolic representation for western classical music is the
musical scores with western notations, as represented on Figure 2.1 (left). As we
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can see, both time and frequencies are discretised. The rhythmic information is
represented as fractions of a given symbolic temporal unit (typically a quarter
note) which relates to an absolute time duration by defining the tempo of the
piece. Fundamental frequencies are mapped to a discrete pitch scale, whose
degrees are represented equivalently by the vertical position on staves or by a
letter between A to G (possibly modulated by a sharp or bemol) in the English
system. The relationship between a note on the stave and its frequency is
determined by the clef. However, depending on the period and the instruments
played, the scale may vary, even though it tends to be standardised nowadays
(12-tone equal temperament with A4 being equal to 440Hz).

The number of scanned musical scores available on internet in an image
format is gigantic, and the notation is usually accurate. However, this format is
particularly difficult to parse with a computer. To address that issue, the field
of Optical Music Recognition (OMR) [96, 117] provides promising results, but as
of today, no system is sufficiently robust for orchestral scores.

2.1.2 Standard MIDI files

The Musical Instrument Digital Interface (MIDI) is a technical standard pub-
lished in 1983 and intended to unify the communication protocols and interfaces
between synthesizers and computers [125]. Originally designed for live perfor-
mances, the MIDI protocol is based on sending a message each time an event
occur (such as a key being pressed). By assigning timestamps to MIDI messages,
sequence of events can be stored in a file in order to be played back later. The
MIDI format became one of the most widespread digital score format, and is
still widely used in audio synthesizers.

The same pitch scale as in musical scores is used, but labelled by a number
ranging from o to 127 with Ao being mapped to 21. The use of timestamps
enforces a form of time discretisation. However, it is easy to choose a minimum
duration smaller than the shortest event occurring in the score. Hence, if that
condition is respected, the MIDI format is lossless regarding the pitch, time and
intensity information contained in the standard western score notation.

Finally, MIDI has been an extremely popular format with the apparition
of synthesizers, and many classical scores have been encoded into MIDI files
available on the internet. Hence, the MIDI format can provide a large collection
of data, which are easily parsed by a computer.

2.1.3 MusicXML

In the same way that MIDI has been invented for unifying the communications
between electronic music instruments, the MusicXML format has been specifi-
cally designed for sharing sheet music files between applications [126]. Based
on the Extensible Markup Language (XML), MusicXML is extremely convenient
to automatically parse and manipulate, while a lot of meta-data can easily be
embedded. The major drawback of the MusicXML format is the relative paucity
of data available.
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2.1.4 Piano-roll

The piano-roll representation of a score is a two-dimensional matrix with its
dimensions representing the discretised time and pitch and its values contain the
intensity of notes (see Figure 2.1). The intensity is typically normalised between
o and 1, o being a silence and 1 the loudest possible sound (corresponding to
127 in the MIDI format).

2.2 AUTOMATIC SYMBOLIC MUSIC COMPOSITION

Automatic symbolic music generation has been a major topic of interest since
the premises of computer science, and the field has witnessed many evolutions.
Here, we start by introducing the seminal problems addressed in automatic sym-
bolic music composition. In the following subsections, the different approaches
used to tackle these tasks are detailed. We divide the literature between rule-
based approaches and probabilistic inference methods. In the last subsection, the
different contributions to the field of automatic composition are summarized,
and two important aspects, the data representation and evaluation measures,
are discussed.

2.2.1  Seminal problems

Creating a system able to automatically generate interesting and novel music
appears as a daunting task. Indeed, depending on the genre, the whole music-
writing process is composed of several compositional sub-problems. Each of
these sub-problems constitutes a fertile source of questions for the algorithmic
music community, allowing to both reduce the initial complexity of the task to
a more manageable question, while exploring a wider variety of methods.

First, a distinction can be made between systems generating monophonic
music (a single voice melody is played), and polyphonic music (multiple voices
are simultaneously conducting independent melodies with concurrent notes).
Second, the input representation may vary depending on the musical genre.
Classical music is usually written in the western notation system, whereas in
Jazz music only the melody and chord chart are often indicated. Chord chart
are sequences of symbolic chords, a compact representation of an harmonic
information in the form of a bass note and the chord’s quality (e.g. major, minor,
seventh).

Monophonic music generation consists in creating a sequence of non-overlapping
notes played successively. Musically, it refers to the generation of a single voice.
It can be unconstrained, related to a solo monophonic instrument score [1, 25,
110, 119—-121], or constrained, related to the generation of a single voice in a
polyphonic score (one voice in a cantata) [38, 81]. We refer to that last case as
monophonic in a polyphonic context. An example of application is a jazz solo
generation over a chord chart [11, 13, 43].

Polyphonic music generation refers to a system that jointly generates several
concurrent voices. This problem is widely more challenging than monophonic
generation due to the intricate relations between different voices. Furthermore,
the dimension of the generation space increases with the number of voices.
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Similarly to the monophonic case, polyphonic generation can be constrained
or not. Hence, a common application is to generate a set of voices that could
best accompany a given fixed melody. We refer to this task as harmonization. For
instance, harmonization of Bach’s chorales has been an extremely popular topic
[2, 27, 30, 49], but this task has also been investigated for other musical genres
[119]. Recently, unconstrained polyphonic music generation has been one of the
most proficient topic, with a wide variety of approaches proposed [16, 21, 28,
31, 32, 48, 63, 67, 72, 76, 108, 114, 122].

Symbolic chords are also widely used in classical music for analysing pieces
or drafting a work. Hence, chord sequence generation is another popular task in
the polyphonic context. The symbolic notation for chords allows to drastically
reduce the dimension of the generation space (compared with the polyphonic
case) and to focus on the harmonic aspect of music. Chord sequence generation
can be unconstrained [82], but will often be constrained by a melody [15, 40,
124]. As that case is very similar to the previously introduced harmonization
task, we refer to it as symbolic chord harmonization.

Note that generative symbolic models can be used as prior for other tasks.
Automatic transcription is a notorious example in which a generative model can
be used for discriminating between different detected notes by deciding which
one is the most musically relevant given the context [103, pp. 41—44].

2.2.2  Existing approaches

The two major families of approaches that have been investigated in the au-
tomatic music composition field are rule-based systems and probabilistic models.
These families reflect two essential aspects of a compositional process. First,
a musical style can be characterized by a set of rules which entail a partic-
ular vertical and horizontal organisation of the notes. However, a composer
will sometimes seek to bend these rules in an unexpected way in order to
create various types of effects and attract the attention of the listener. Hence,
rule-based approaches strive to integrate musical theory in generative systems
while probabilistic approaches attempt to model the crucial variability in a
creative process. Both approaches complement one another and some systems
actually aim at combining them [1, 25, 42, 72, 121]. However, there always is a
predominant aspect in a given approach. Here, we present various systems for
automatic composition based on this classification.

2.2.2.1  Rule-based approaches

The underlying idea behind rule-based systems is to encode music theory
knowledge as a set of rules able to drive a generative algorithm. In this category,
formal grammars, constraint programming and evolutionary algorithms provide
powerful frameworks that have been the most widely used for music generation.

FORMAL GRAMMARS Formal grammars can generate strings of symbols
with complex patterns from a simple set of rewriting rules. The repeated appli-
cation of these rules iteratively transform and extend an initial seed sequence.
Originally developed for modelling human languages, musical patterns can
also be elegantly represented by formal grammars [52, 98]. However, generating
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sequences of symbols at a fine-grain level (each note for instance) will necessi-
tate the tedious elaboration of a large number of rules. Hence, formal grammars
have been mostly used for relatively simple tasks such as monophonic melody
generation. A particular type of formal grammar which has been profusely used
in music composition for their simplicity and ability to generate convoluted
patterns are L-systems [72, 114]. The purely deterministic behaviour of formal
grammars in their simplest form can be prejudicial in a music creation context.
Hence, adding stochasticity in rewriting rules has been extensively used in
order to emulate the multiplicity of potential choices in music [25, 72, 114, 121].
An other solution is to automatically infer the rules using statistical learning on
a corpus of desired examples [25, 43]. This approach is closely related to the
probabilistic methods that we detail in Subsection 2.2.2.2.

CONSTRAINT PROGRAMMING Music theory can also be interpreted as a set
of constraints, which implicitly designates which notes can be played depending
on the context. For instance, a student trying to learn counterpoint will typically
explore the different possibilities for each successive note before selecting one of
them. Constraint Satisfaction Problems (CSP) is a computer science field, which
aims at solving problems stated as a list of constraints over a given domain. A
musical example could be to generate a sequence of 10 pitches with only fourth
and fifth intervals, and without the pitch C. Here both the interval and pitch
removal conditions are constraints over the set of allowed sequences. Constraint
programming refers to the family of techniques which attempt to solve CSP.
Assisting tools based on constraint solver have been designed by composers and
led to the creation of renowned musical pieces, such as Engine written in 1996
by Magnus Lindberg. 4). Convincing systems for automatic music generation
have been proposed in the constraint programming framework [3, 30, 110]. The
two main advantages of this approach is that the constraints are conveniently
enunciated in a declarative style, which directly translates sentences such as
"intervals must be lower than 5 semitones" into rules for the generative system.
Furthermore, it provides the user with a lot of control over the algorithm and
allows for proposing an entire ensemble of potential candidates instead of a
unique solution. Hence, it is possible to build an interactive system where the
user can browse this proposed ensemble of solutions [110].

EVOLUTIONARY ALGORITHMS Traditional algorithms for CSP struggle in
high-dimensional search spaces, and the time needed for finding solutions
might be prohibitive. Evolutionary algorithms are approximate search proce-
dures that seek to alleviate this issue [107]. To do so, an initial population of
solutions is randomly generated and the best solutions are selected thanks to a
fitness function. Similarly to the mechanisms of genetic evolution, the selected
subset of solutions is increased by crossovers and mutations. This process allows
for a fast, but non-exhaustive search.

The design of the fitness function is of paramount importance. However, in the
musical context, defining a measure of musical quality is a tedious and intricate
task [81, 119]. An interesting alternative is to use human feed-back for selecting
the best examples in the population [13, 56]. Corpus-based distances have also

4 https:/ /www.youtube.com/watch?v=yKJgTqRWsKg
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been developed, which evaluate the proximity of the generated examples with
some reference musical pieces [1, 42, 120]. A particularly interesting refinement
in the context of creative systems is to define a multi-objective fitness function.
Hence, rather than a unique solution, an ensemble of propositions (referred to
as the Pareto front) is selected as providing various qualities over the selected
dimensions [27, 36, 40], which is a desirable feature for a computer-assisted
composition tool.

2.2.2.2 Probabilistic models

Music can hardly be modelled by a deterministic mapping because it is ex-
tremely rare that only a single solution is acceptable given a certain context.
Instead, a variety of solutions are all musically relevant and interesting to
various degrees. Furthermore, the relative preferences inside this set appear
to be mostly subjective. Besides, a desirable property for a creative system
is to be able to propose different solutions, even though the same context is
repeatedly presented. A first solution consists in returning as many solutions
as possible and let the user chose (as in interactive constraint solving systems
and evolutionary algorithms). A second option is to incorporate a form of
stochasticity in the system to emulate the variability of human decisions (which
is done in most of the aforementioned systems, in the choice of transition rules
for formal grammar or the choice of mutations for evolutionary algorithms).

This choice for stochastic systems can be pushed further by embedding the
compositional problem in a probabilistic framework, where the different musical
variables are sampled from probability distributions. Parametric probabilistic
models have benefited from intensive research over the last decades [45, pp.12-
26] and efficient parameter inference techniques allow to design elaborated
models in order to tackle complex musical tasks. In the next paragraphs, we
review graphical probabilistic models and neural networks applied to various
automatic music composition tasks.

GRAPHICAL PROBABILISTIC MODELS The term graphical models refers to a
general probabilistic framework in which complex joint probability distribu-
tions are modelled in the form of products of conditional probabilities. These
factored distribution can be compactly represented as graphs in which nodes
are random variables and directed edges represent conditional dependencies.

Markov Models (MM) are a particular class of directed graphical model, which
have been specifically designed for modelling causal dependencies. Their suc-
cessful applications to various time series modelling problems [14, pp.605-607]
logically drew the attention of the computer music community. Hidden Markov
Models (HMM) introduce a modelling of unobserved hidden explanatory factors
of the visible observations. This idea can be illustrated by considering a singer
performing a solo improvisation over a sequence of chords. Only the melody is
heard (observed), but the choice of notes is largerly driven by the (hidden) chord
progression. Both MM [15, 38] and HMM [2] have been widely investigated
in the context of harmonization of Bach’s chorales. A system for polyphonic
music generation has been proposed in [76]. In this approach, all the musical
parameters (rhythm, chords progression and melodic curves) are successively
generated by different modules implemented as a MM or HMM.
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Unfortunately, for modelling polyphonic music, the number of states in a HMM
grows exponentially with the number of voices, which will result in a pro-
hibitive training time. Some workarounds can be introduced to maintain a
reasonable number of state (such as using symbolic chords), but they artificially
restrict the possibilities of the model. Hence, more elaborated graphical proba-
bilistic models have been proposed, which model the activation of each pitch
separately. In [63], Directed Random Markov Fields are investigated the authors
propose to use a lattice of binary units directly derived from the piano-roll
representation to generate classical piano music. However, drastic loss of infor-
mations, such as the octave and rhythm structure, are made in order to reduce
the complexity of their model which may prove to be prejudicial for in the most
general musical context. A binary tree graphical model is proposed in [82] for
modelling jazz chord sequences of fixed length. A measure of perceptual simi-
larity between chords is developed, which allows for modelling a probability
of substitution between chords. This substitution mechanism elegantly allows
the model to play chords unseen during the training process. Recently, [49]
proposed a maximum entropy model which allows for efficiently modelling
polyphonic sequences with a fixed number of voices. The value of each note
is conditioned by all neighbouring notes, either temporally (horizontally) and
harmonically (vertically). The flexibility of this model allows to address a vari-
ety of tasks, from complete generation to harmonization. Besides, it allows to
select a fragment of the score and generate alternative version of this precise
fragment, which can be a stimulating feature for composers.

NEURAL NETWORKS Neural networks can be cast as a special case of graphi-
cal probabilistic model that allow to model complex distributions, at the cost
of an approximate parameters inference procedure (see Chapter 3 for a more
detailed presentation) [14, pp.225-232]. Both the modelling power and efficiency
of the learning process allowed to manipulate larger databases [45, p.18]. Conse-
quently, increasingly complex tasks in music composition have been addressed,
such as unconstrained polyphonic generation [28, 67, 122]. Furthermore, new
datasets appeared, which considerably widened the spectrum of musical genres
addressed by automatic composition systems [10, 77, 93].

In this family of models, Recurrent Neural Networks (RNN) have been specifically
designed for modelling time series [45, pp.367-368]. An early attempt was made
for generating chord and melody sequences in the style of blues music [32].
Their approach consisted in encoding a musical score as a time-series (here a
piano-roll), and use RNN as one-step predictors to generate successive musical
frames. The same one-step predictive scheme has been applied to the generation
of Irish reels in [31], folk music in [108].

A hierarchical organisation of RNN layers has been proposed in [21], in which
each layer is in charge of a different temporal granularity. Indeed, there system
generates pop music and output three information (a melodic line, a drum track
and a chord sequence) at different rates. The layers in charge of the drums and
chord sequences generate one output per bar, while the melodic layers output
a value for each quarter note. Besides, by conditioning the melody and chord
sequence generation under a musical scale, they reduce the number of possible
outputs and decrease the chance of musically aberrant generations, but at the
price of a system dedicated only to pop music.
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In [69], a biaxial RNN architecture is used, which instantiates recurrent connec-
tions both along the time axis and the pitch axis of a piano-roll representation.
The bidirectional structure of their model is very similar to the Markov Random
Field architecture developed by Lavrenko et al. in [63]. Both approaches suffer
from the same conceptual flaw which is to consider that the pitch axis is directed
from the lowest to the highest note, which has no musical justification. However,
this architecture allows to efficiently implement a form of pitch translation
invariance by sharing weights across all networks of the time axis. Indeed, most
qualities of a musical piece are preserved when transposing it a few pitches
up or down. Hence, to model this relative insensitivity to pitch translation, the
weight sharing mechanism ensures that each note is processed in a manner
which is independent of its absolute pitch location, but only relies on the pre-
ceding notes along the time and pitch axes. A style-labelling mechanism allows
to condition the generation on the style of a particular composer, specified by a
one-hot vector.

In [48] Hadjeres et al. proposed a RNN-based architecture based on a pseudo-
Gibbs sampling process to generate Bach chorales. This generative procedure is
very similar to the maximum-entropy model they proposed in [49], and also
based on the construction of a probability distribution modelling the individual
notes of one voice conditioned by the surrounding notes. This approach differ
in the use of RNN instead of exponential families. On the same task, an earlier
proposal was made by mixing energy-based models (another form of graphical
model) with recurrent neural networks [11, 16].

A recent trend in machine learning has been to use a secondary neural network
to act as a loss to train the primary model instead of traditional error functions
such as the mean squared error. This approach is called Generative Adversarial
Networks (GAN) [45, pp.265-266]. Several works underlined the fact that tradi-
tional measures may not be suited for musical applications and that adversarial
approaches provide an adequate way to circumvent that issue [45, pp.265-266].
Using GAN s, several systems were proposed for polyphonic music generation
[28, 122] with a convolutional architecture. The same model has been applied
to lead sheet generation and arrangement in [67]. However, a major drawback
of adversarial training is that the optimisation process is particularly unstable,
mostly relies on heuristic and requires a lot of training data.

Although neural networks are agnostic approaches that do not naturally pro-
vide a declarative encoding of music theory concepts, the reward function of a
reinforcement learning system can be designed with such musical rules [57].

2.3 AUTOMATIC SYMBOLIC ORCHESTRATION

Unfortunately, orchestral music did not receive as much attention from the
algorithmic music community as the polyphonic automatic composition did.
One of the major reasons behind this lack might be that the supposedly simpler
question of automatically generating mono-instrumental music is already far
from being adequately addressed. However, a wide range of satellite tasks
revolve around orchestral composition and offer thrilling challenges.
Unavoidable analogies with mono-instrumental music can lead to attempting
to adapt the previously introduced methods. However, the intricate relations
between instruments bring a new order of complexity which prevents from tack-
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ling orchestration simply as a mere stacked version of the previous problems.
Indeed, as mentioned in Chapter 1, timbre is a central question in orchestration.
However, very few information about timbre is provided in a musical score.
Even though the instrument names are indicated, inferring the resulting sound
from this reduced information is a difficult task. Besides, methods such as
constraint programming do not scale properly with the combinatorial explosion
of orchestral possibilities. Hence, orchestration represents a daunting challenge
for the computer music community and we present the few systems revolv-
ing around symbolic orchestral music which have been developed so far in
Subsection 2.3.1.

However, useful insights can be gained from the past experiences in poly-
phonic music generation, in particular in the choice of data representation and
the design of an evaluation measure. Hence, we review the major contribu-
tions in Subsection 2.3.2 for the data representations, and Subsection 2.3.3 for
evaluation measures.

2.3.1  Symbolic orchestral music tasks

First, the inverse problem of automatically reducing an orchestral score to a
playable piano version has been tackled in [54] and [109] with a rule-based
approach. In [34], a modular approach in a probabilistic framework is proposed.
An interesting representation of chords in the form of a list of notes instead of
the usual piano-roll allows to resort to relatively simple probabilistic models
such as HMM, while obtaining impressive results.

One of the first attempt to produce an automatic orchestration system tried
to cast the question as a Constraint Satisfaction Problem (CSP) [17, 113]. Those
tools are limited to symbolic constraints, typically enclosed to the set of se-
lected instruments and the notes they are allowed to play (pitch-range or
inter-instruments symbolic relationships). However, a major flaw of all these
systems is that timbre is not taken into consideration, whereas it is a fundamen-
tal dimension of orchestration. This remains a critical limitation as symbolic
constraints are not expressive enough to tackle the spectral complexity of
orchestration.

As discussed in Section 1.2, some approaches were proposed to orchestrate
a given sound target. However, as the introduction of signal information dra-
matically increases the dimensions of the search space, approximate search
procedures have to be used, such as evolutionary algorithms in [36].

Automatic accompaniment has been addressed in [24]. Given a certain style
and a melodic line, the system generates an accompaniment by a full symphonic
orchestra. However, this approach heavily relies on a tedious implementation
of a large set of musical rules and heuristics.

As mentioned in the previous section, the recent progresses in machine
learning and particularly the advent of deep neural networks allow to tackle
increasingly more complex tasks. In [28, 67], a complex end-to-end system
was proposed to generate multi-track music. This system generates pop music
composed by five tracks (bass, drums, guitar, piano and strings) by relying on
complex and deep generative architectures trained using adversarial networks.
In [28], the system is composed by two modules where the first one generates
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lead-sheet scores (a melody and chords with no orchestration) and the second
one is dedicated to the arrangement of the previously generated lead-sheet.

In summary, very few attempts have been made to tackle automatic orchestral
generation. Constraint programming allows to efficiently encode symbolic
constraints such as instruments tessitura. However, the lack of expressiveness
of symbolic constraint drove to include spectral constraints. Unfortunately,
spectral representations lie in high-dimensional spaces, and only approximated
search procedure can be used, such as evolutionary algorithms. On the other
side, machine learning have recently witnessed important developments and
the field seems mature enough to tackle difficult tasks such as orchestration, as
recent research showed.

2.3.2 Data representations

Machine learning approaches necessitate to find an adequate mathematical
representation of a musical score. We detailed in the first section the different
formats used for encoding symbolic music.

The piano-roll representation of a musical score and has been used in many
systems [16, 69]. However, compact representations can be extracted from this
piano-roll. For instance, the pitch-class representation consists in removing
the octave information, hence obtaining pitch vectors of dimension 12 [28,
67]. The pitch-class representation is often used for its compactness if the loss
of the octave information is not prejudicial to the target task or as a rough
approximation of the harmonic content (such as for chord detection). However,
pitch-class representation remains a discretisation of the frequency and time
axes, which do not radically differ from a piano-roll.

Most systems employ a more refined data representation specifically tailored
to the tackled problem. For monophonic music, Cruz-Alcazar et al. [25] pro-
posed to encode a melody as the difference in semitones between two successive
notes (C4 to D4 would then be equal to 2). This data representation has the
advantage of being invariant to transposition (except for the first note). Indeed,
transposition preserves most of the musical qualities of a piece, and such rep-
resentations allow to enforce a form of pitch translation invariance. A similar
idea is developed in [2] for polyphonic music, where the three upper voices of
Bach’s chorales are encoded as a difference from the root note.

For probabilistic models, the chosen data representation directly impacts
the shape of the distribution used for modelling musical events. For instance,
a binary piano-roll representation will likely be modelled by a product of
independent Bernoulli distributions. In [49], the four voices of chorale music are
represented as four different piano-rolls. As each piano-roll is now monophonic,
a softmax distribution can be used, which provides more information about the
overall relationships inside the data to be modelled. Besides, it becomes easy to
condition each voice over the others, which is not easily possible in piano-roll
representations. The problem of this representation is that it is not adapted
to cases where the number of voices is unknown. This assumption over the
number of voices can be relaxed by representing each chord as a list of notes
which may have various length at different time frames. However, this data
representation, which is developed in [34], is less easy to manipulate, as it each
frame is now a list of various lengths.
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2.3.3 Evaluation measures

In order to compare different models, separate evaluation frameworks have
been developed for each task. Unfortunately, as only few attempts have been
made to develop a system for automatic orchestration, there is no reference
evaluation framework for this task. However, the closely-related task of poly-
phonic orchestration can provide insights and directions for developing our
own evaluation framework that we will introduce in Chapter 5.

For polyphonic music generation, models are frequently evaluated through
a one-step predictive task [16, 63] using either the binary cross-entropy or the
prediction accuracy measure. These two quantitative evaluation frameworks
will be further explored in Section 5.3.

However, these mathematical criteria do not account for human preferences.
Hence, more truthful measures of performance could be obtained by performing
listening tests on a sufficiently large group of individuals. Recently, most articles
include these listening tests in order to assess the perceptual qualities of the
automatically-generated examples. In [48], listeners have to guess whether an
example is generated by Bach or the proposed algorithm. In [67], different
variations of the generative model are compared by a voting system. Similarly,
a pair-wise comparison between different models is led in [28].

Qualitative evaluations based on human preferences provide a more truthful
evaluation of a model. However, the time needed for obtaining the feedbacks
of all tested candidates might be prohibited, and not adapted at an early de-
velopment stage of a project. Hence, quantitative criteria provide convenient
proxies for roughly and rapidly evaluating the performances of a system. Finally,
both frameworks complement each others, and a framework for both quantita-
tive and qualitative evaluation of orchestral music generation is introduced in
Chapter 5.

2.4 OBJECTIVES AND MOTIVATIONS
2.4.1  Orchestrating a piano score

In this work, our objective is to build a system able to automatically perform
the projective orchestration of a piano score (see Figure 2.2). The input piano
score provides an harmonic, melodic and rhythmic structure, and the role of
the system is to output an orchestral score which enhance this structure with
a learned timbre expressiveness. Because orchestrating a piano-score often
requires harmonic enhancement or doubling, this problem is more complex
than the mere allocation of the different voices of the original piano score to
different instruments.

Our approach differs from previous proposals (such as Orchids [36]) as the
orchestration is not driven by a sound target, but rather by an harmonic,
melodic and rhythmic template given in the form of a piano score. However,
our proposal is very close from the arrangement module proposed in [28]. The
main differences in our work is that the piano score is imposed beforehand and
not generated, and that we focus on classical orchestral music ranging from
the late XVIII™ to the early XX centuries, approximately corresponding to
classical and romantic periods. Hence, the number of possible instruments is
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Figure 2.2: We propose to tackle projective orchestration with a statistical learning
approach. Statistical inference consists in learning a set of rules by the
repeated observation of a reference dataset. Once the rules have been
inferred, new orchestrations can be generated for previously unseen piano
scores.

much larger in our case (typically 12 against 5 in [28]), while fewer examples
are available.

2.4.2 Using purely symbolic information?

Almost no attempts have been made to tackle a scientific exploration of orches-
tration based solely on the study of musical scores. Indeed, as discussed in
Chapter 1, timbre is a prevailing aspect in orchestration. Hence, it may seem
illogical to rely solely on symbolic information. Yet, symbolic representations
implicitly convey high-level information about the spectral knowledge that
composers have exploited for timbre manipulation. Here, we target that this
implicit knowledge about timbre that appears through the observation of a
large set of purely symbolic information.

2.4.3 Anill-conditioned problem?

A single piano score could produce a very large variety of orchestrations in
a given style, with all of these being "valid" in the sense that they respect the
musical rules of the style. Besides, there is no objective criterion for ranking the
different propositions except for personal preferences. In that regard, the task
addressed in this thesis may seem ill-conditioned. However, a similar problem
is faced when attempting to create polyphonic music generative systems, and
addressed by reducing this complex problem to a simpler one-step predictive
task. This is the approach we adopt in this thesis and that will be developed in
Section 5.2

2.4.4 Proposed approach

In this work, we investigate parametric probabilistic models, and more partic-
ularly neural network architectures. Indeed, the strong correlations that exist
between a piano score and its orchestral counterpart appear as a fertile frame-
work for statistical learning methods. Besides, the recent developments of the
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neural network framework suggest that the field is mature enough for tackling
complex practical tasks such as projective orchestration. A review about neural
networks and statistical learning is detailed in Chapter 3 and 4.

Neural networks necessitate to first embed a given problem inside a specific
mathematical framework. Hence, we introduce the projective orchestration task in
Chapter 5.

Statistical learning requires a large collection of reference data. In the case
of projective orchestration, as we mentioned in Chapter 1, examples can be
found in the repertoire, such as the orchestration by Maurice Ravel of Modest
Moussorgsky piano piece Pictures at an exhibition (see Figure 1.2). Hence, the
objective of our work is to automatically infer musical rules from the repeated
observation of orchestration performed by famous composers, in order to be
able to orchestrate previously unseen piano scores (see Figure 2.2). To do so, the
construction of a first-of-kind database for projective orchestration is detailed
in Chapter 6.

In Chapter 7, specific neural networks and energy-based models are imple-
mented and evaluated on the projective orchestration task. Chapter 8 details
further experimentations to evaluate the crucial parameters and factors for pro-
jective orchestration. Given the challenging context of projective orchestration,
we introduce in Chapter 9 a novel and more informed method based on the
Neural Auto-regressive Distribution Estimation method.

Finally, Chapter 10 is dedicated to the real-time implementation of the pre-
viously presented models, in which we build a live orchestral piano that can
orchestrate the input of a piano player instantaneously.
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ARTIFICIAL NEURAL NETWORKS

In this chapter, we review artificial neural networks and the fundamental
principles of machine learning. For the sake of brevity, we restrict this discussion
to the fundamental aspects used throughout this work. However, more thorough
development of machine learning’s theory can be found in [14] and in [45]
specifically for neural networks.

Originally designed in the forties to model the behaviour of neurons inside a
biological brain [74], neural networks have then become independently stud-
ied as statistical models. Presumed flaws in neuron’s architecture lead to a
decline of their popularity. However, a spectacular renewal of interest has been
witnessed over the last ten years, due to both theoretical improvements and a
dramatic increase of computational power. Indeed, neural networks recently ex-
hibited exceptional efficiency on several seminal machine learning tasks such as
classification and regression. Successful applications in image classification and
generation, speech recognition and synthesis, or text generation, have drawn
the attention of the artificial intelligence community [45, p.22-26]. Nowadays,
neural networks are employed in a wide range of applicative domains such as
biology [4, 18, 95] or astrophysics [23, 89, 100].

3.1 FEED-FORWARD ARCHITECTURES

A feed-forward neural network is composed by many simple computational
units called neurons. Those neurons are connected together by weighted con-
nections and organized by layers. A neuron in a given layer receives as input a
weighted sum of the output of neurons from the previous layer. It outputs the
result of its activation function applied to this input (see Figure 3.1).

Input units take the value of a data vector x which can represent any kind
of information (images, text or music) and will be discrete or real valued
depending on the application. The propagation of information through the I
layer of the network is defined by

h = o(W LRt + b (3.1)

where i/~ is the input to that layer and /' its output. The layer indexing starts
at [ = 1, while the first layer is defined as the input h° = x. The output of the
last layer is noted y = ht. W € RF*N and b € R¥ are learnable parameters.
o is the activation function, which is chosen to be non-linear, monotonic and
differentiable. The list of candidates is long, but we can cite the sigmoid function
for its historical importance and naturalness in binary classification problems
[14, p.227-228], the hyperbolic tangent, widely used in temporal models, and the
more recent Rectified Linear Unit (ReLU) which gained considerable popularity
over the past decade for its improved performances [64].

In the standard feed-forward neural networks illustrated in Figure 3.1, the
information flows from the input units through successive hidden layers and

27
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Figure 3.1: A neural network is a connectionist architecture where simple computa-
tional units called neurons are organized in layers. Layers are stacked on top
of each other, and the input of a neuron is a weighted sum of the output of
the all the previous layer’s neurons. The weights W! connecting the layer I
and [ + 1 are graphically represented by arrows. The red arrows are positive
coefficients while blue arrows are negative ones On the graph, inputs are
binary values while hidden layers are real values represented in grey-scale
and one can observe how hidden units represent co-activations in the input

(0000
0000

Figure 3.2: Example of a 1-dimensional convolution layer. A kernel W is convolved
along the inputs of layer | — 1. Important benefits of convolutional layers are
their reduced number of weights (3 in this figure) and enforcing translation
invariance of the detected patterns along the convolved axis.

44

up to the output layer. The depth of an architecture refers to the number of
such layers. Hence, a deep neural network is simply an architecture with a large
number of computing layers.

3.1.1 A hierarchical pattern detector
The weights W and b of a given layer [ represent co-activation patterns between
the dimensions of its input vector '~1. Hence, the output k' can be understood
as an encoding of these internal correlations. When stacking layers on top
of each other, higher-level correlations are detected. Intuitively, more abstract
representations of the input data are successively extracted and more complex
structures are encoded as the information is processed through the network.
This idea is depicted on Figure 3.1.

Depending on the nature of the data, the computation performed by hidden
units may take various forms. For instance, images naturally embed transla-
tional invariance along there axes, as any given shape (for instance a cat) can
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appear everywhere on a picture. This a priori knowledge about the translation
invariance property of images can be used to compute hidden representations
more efficiently. Thus, Convolutional Neural Networks (CNN) implement filters
that are convolved along the image instead of computing an affine transforma-
tion of all pixels (see Figure 3.2). The original paper introducing convolutional
layers traces back to 1998 [66] and tackles the digit-recognition task on the now
famous MNIST dataset [65].

3.1.2  Universal function approximator

A neural network can also be seen as a function, which computes an output
vector y given an input data x. This function can be written as the composition
of affine transformations and non-linear mappings

y=c( . oW [o(Wix+p)] +6) (3-2)

The Cybenko theorem states that feed-forward neural networks such as the one
defined in the above Equation 3.2 can approximate any function defined on any
compact subset of R" [26, 53].

Hence, if a problem can be stated in the form of a mapping between input
and output values, then, there exists a neural network able to implement that
function. Finding the set of parameters which optimally fits that ideal function
is called the training procedure and is detailed in Section 3.3.

3.1.3 Probabilistic formulation

Real life data are prone to uncertainty, either due to intrinsic variability (a
drawn digit admits a large number of valid shapes) or measurement errors. To
account for these variability, neural networks can be embedded in a probabilistic
framework. Hence, instead of outputting a deterministic value, neural networks
rather define a probability distribution p(y|x,6) conditioned over the input x
and the network parameters 6.

3.2 ENERGY-BASED MODELS

Recently, traditional feed-forward neural networks have been extremely popular
[45]. However, alternative architectures such as auto-encoders or energy based
models provide interesting properties. Indeed, in traditional feed-forward
architectures all units of a given layer are assumed to be independent from each
others. In particular, this hypothesis might not be desirable for the output layer.
Oppositely, energy-based models can represent the joint probability of a set of
variables with no independence assumption.

More precisely, given a vector of random variables x, the probability distribu-
tion is defined as [39]

(3-3)
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Figure 3.3: (Left) Graphical representation of a Restricted Boltzmann Machine (RBM).
The weight Wj; represent the connection between visible and hidden units.
Visible (respectively hidden) units are conditionally independent from each
other. (Right) Gibbs sampling can be used to obtained a sample from a
distribution close to the true distribution of the RBM. It consists in iteratively
sampling the value of one unit given the others through their conditional
probabilities. The independence of the hidden and visible units allows for a
fast implementation known as block Gibbs sampling.

where E(x) is called the energy function and Z = ¥, e £ is the partition
function that ensures that probabilities sum to one. The definition of this energy
function will shape the form of the modelled probability distribution.

The Restricted Boltzmann Machine (RBM) is a particular instance of energy-
based models [39]. A RBM is defined by a set of m visible units v = (v, ..., V)
and n hidden units i = (h(1),...,h(n)). The parameters of the model are the
weights W;; between visible and hidden units, the biases over visible units 4;
and the biases over hidden units b; (see Figure 3.3 (Left)). The energy function
of a RBM is given by

m n m n
E(U,h) = — Zaivi — Z b]h] — Z Z ZJZ'WZ']']’Z]' (34)
i=1 j=1

i=1j=1

Even for a reduced number of dimensions, sampling directly from the joint
distribution (Equation 3.3) is impossible because the sum over all possible
configurations in the partition function is intractable. A solution consists in
approximating the joint distribution by performing Gibbs sampling [14, p.542].
This method allows to obtain the joint probability by successively sampling
each individual variable given the other variables. In the particular case of the
RBM, the visible (respectively hidden) units are independent from each others
when conditioned on the hidden (respectively visible) units

pvi=1h) =0 (ﬂi + Zwijhj> (3.5)
]
p(h] = 1|Z)) =0 (b] + ZWZ']'Z)Z) (36)

where o(x) = H% is the sigmoid function. Hence, the particular shape of
these conditional probabilities allows for an efficient block sampling strategy
where all the visible units are sampled at the same time given the value of
the hidden units. Then, all the hidden units can be sampled given the visible

units. This process can be repeated until convergence is reached (see Figure 3.3
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(Right)). In practice, this may take infinite time and only a limited number of
step is performed, ranging from 1 to 100 depending on the application. This
efficient sampling method was introduced in [50] and is often referred to as
Gibbs block sampling.

3.3 TRAINING NEURAL NETWORKS

The main assumption of probabilistic models is that an underlying probability
distribution structures the data that we try to represent. Hence, the training
procedure aims at finding the set of parameters for which a given neural
network best approximates this hypothetical data distribution.

An important distinction has to be made between the feed-forward architec-
tures and energy-based models. Feed-forward architectures model a mapping
between input data x and target data y, whereas energy-based models directly
represent the input data x. This difference implies distinct modelling of a same
problem, and the distribution of interest is p(y|x) in the first approach while it
is p(x) in the second case.

Hence, feed-forward neural networks can be trained in a supervised way,
by observing examples of input x and corresponding target ¢ collected from
observations of the desired mapping gathered in a dataset D = {(x, f) }. Energy-
based models are trained in an unsupervised fashion, by the observation of
a dataset composed by vector’s singletons D = {x}. In both approaches, the
distribution of interest can only be accessed through the observation of points
in D, and its inference is conducted in fashion similar to the approximation of
a function by interpolation.

This learning process requires designing an error function, which evalu-
ates how tightly the neural network approximates the true distribution. Then,
optimization techniques can be used to find the parameters” values which
minimize this error function. The large number of parameters and the highly
non-convex nature of the error function in the case of neural networks represent
a tremendous challenge for optimization.

3.3.1 Error function

3.3.1.1 Supervised models

The error function Ep(6) aims at evaluating how closely the neural network
p(y|x,0) approximates the true data distribution by evaluating the model
performances on a set of known data points x and corresponding targets y
drawn from a dataset D. Hence, a natural measure of a probabilistic model’s
performances is to evaluate how likely the data in D could have been generated
by the model. This measure is the likelihood of a dataset under a model
assumption and is defined as the product of all dataset points likelihood

LDe)= T prylx6)
(xy)eD

To simplify this product to a sum and improve numerical stability, the log
of the likelihood is often used. Historically, machine learning algorithms have
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been conceived as the minimization of an error function. Hence, the negative
log-likelihood is preferred. Therefore, for a given set of observed data D, the
error criterion is defined as

Ep(0) = —log(L(D|0))
= ), —log(p(ylx,0))

(xy)eD

A frequent assumption is made that the dimensions of the output of a feed-
forward neural network are independent. Thus, the negative log-likelihood of a
single vector vy is given by

—log(p(ylx,0)) = — log(] [ p(vilx, ) (37)

=) —log(p(yilx,0))

Hence, in the special case of binary targets y, the output distribution is a product
of independent Bernoulli distributions and the negative log-likelihood is equal
to the binary cross-entropy

—log(p(ylx,0)) = ( ; Y —yilog(pi) — (1 —y;)log(1 — p;) (3.8)
xy)€D i

where p; = p(§; = 1|x,0) is the probability for the unit i to be equal to one.

3.3.1.2  Unsupervised models

Energy-based models directly represent the probability distribution of a given
variable of interest through p(v) = Y, p(v, h). Their training process is unsu-
pervised and an error criterion is the likelihood of a visible vector v is this time
given by p(v) and can be computed by marginalizing out the hidden units

exp—E(v,h)

p(v) = ;p(v,h) = ZT (3.9)

h

At this point, the free energy is often introduced to lighten the notations

F(v) = —log (Eexp_E(U'h)> (3.10)
T

With this notation, for a given set of observations, the error criterion is defined
as

E(@0) =) [F(o) = F(9)] (3.11)

veD

where 7 is obtained by initializing a Gibbs chain with the sample v and com-
puting one full step of Gibbs sampling.

This criterion is an approximation of the likelihood of a sample under a
model distribution. A detailed explanation can be found in Chapter B.
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Figure 3.4: The gradient descent algorithm is a numerical iterative method for mini-
mizing a function. Here the evolution of the algorithm is represented for
a single parameter 6 with error of the model E(). The parameter value is
successively modified in the direction of the steepest gradient of the error
surface curve (represented by a blue arrow) until it reaches the optimal
value in red.

3.3.2 Setting parameter values: back-propagation

Training a neural network is defined as an optimization problem over the error
function with respect to its parameters. However, the error function has a highly
non-linear dependency over the model parameters (as it is a composition of
several non-linear functions). Furthermore, it usually contains a large number
of local minima, and their occurrences increase with the model complexity. In
the end, finding a closed-form solution for minimizing the error function of an
even relatively small neural network is usually impossible [14, p.236-237].

A solution to this issue is to rely on the gradient descent method, which is a
numerical iterative technique [14, p.239-241]. At each step of the process, the
parameters are modified in the direction which provides the largest reduction
of the error function

9t+1 = Bt - )\V(E(Qt)) (3.12)

where V is the gradient operator and A is the learning rate which sets the
amount of modification made at each iteration (usually set around 1le73). A
small value of A can avoid missing (jumping over) local minima but at the
cost of a longer convergence time. Visually, gradient descent can be seen as
performing small jumps along the steepest slope of the error surface as depicted
in Figure 3.4.

The vanilla gradient descent algorithm suffers from several flaws [45, p82-83].
Depending on the function to optimize or the current position in the parameter
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space, the optimal value for the learning rate might vary widely. Besides, vanilla
gradient descent can still easily be trapped in saddle-points, which happen to
be frequent in the high-dimensional error functions of neural networks. For
these reasons, the convergence may remain very slow for high-dimensional
problems.

Recently, Kingma et al. proposed ADAM [59], an optimizer that proved
to be particularly efficient for sparse gradients in high-dimensional spaces,
which is often the case when training neural networks. ADAM also depends on
hyper-parameter values such as the learning rate. However, unlike vanilla SGD
and like most of the recent optimization techniques, they do not require to be
carefully tuned.

3.4 TRAINING PROCESS AND HEURISTICS

3.4.1 Early-stopping

Early stopping

Validation
error

Training error

0 2 4 6 8 10
0 75 so 75 10 135 150 175 200 Epoch

Figure 3.5: (Left) Over-fitting on a polynomial regression problem. The blue curve is
the target polynomial of degree 3. The red curve represents a polynomial of
degree 8 fitted over 4 points. We can see that the red polynomial perfectly
approximates the original function on the 4 training points, but completely
fails outside the bounds of these training points. Hence its generalization
error would be important. (Right) Early-stopping can be used to prevent
over-fitting. The evolution of the train (blue) and validation (red) errors
along the training process are compared. After the 25th epoch, the validation
error stops decreasing while the training error is still diminishing. This
indicates that the model looses in generalisation power and the training
process should be stopped after this epoch (green arrow).

A frequent issue when performing statistical learning is that a model over-fits
the distribution of the training data and looses its generalisation ability. This
phenomenon is depicted on Figure 3.5. This issue can be prevented by moni-
toring the performances of the model on a distinct validation set. A decrease
in the performance over the validation set reveals that the model begins to
over-fit the training set. Early stopping consists in monitoring the validation
performances and stop the learning process when this quantity increases signifi-
cantly. However, error curves rarely evolve smoothly, and making the distinction
between a temporary and a consistent increase is not straightforward. Hence,
early-stopping heavily rely on heuristics.

The UP-criterion presented in [91] appears to be a robust early-stopping
criterion with a good trade-off between training time and final performance.
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Fold 0

Figure 3.6: K-fold partition of a dataset with K=6. The black part is the test set kept
for evaluation while the 5 other blocks are used for training. Among the
K —1 training blocks, one would typically be used as a validation set for
detecting over-fitting

Considering the evolution of the validation score over the successive iterations,
the UP-criterion checks that the measure is increasing (or diminishing in the
case of a validation error) on s successive strips of a certain size k. A more
detailed description of the algorithm can be found in Chapter B.

Note that, in the most general case, the measure used for assessing the
validation error can be different than the one used during the training process.
An evaluation framework for the projective orchestration task will be detailed
in Chapter 5.

3.4.2 K-fold validation for time-series

The validation set used to prevent over-fitting usually cannot be used to compare
different models. Indeed, early-stopping is part of the training process and the
validation set could be over-fitted too. For that reason, a third distinct dataset
called test set is used to assess the performances of different trained models.

Usually, these three datasets are obtained by splitting one large collection
of data into distinct subsets. (80% for the training set, 10% for the validation
and 10% for the test set are usual proportions). However, when a low amount
of data is available, the score of the same model can vary greatly depending
on the dataset division, and, consequently, the ranking between models, which
is problematic for selecting the best one. To avoid that issue, a K-fold evalu-
ation is recommended [14, p32-33]. It consists in partitioning a dataset in K
approximately equally sized parts (see Figure 3.6). The model is successively
evaluated on each of the K parts after being trained on the excluded points. The
pseudo-code of this training process can be found in Chapter B.

3.4.3 Hyper-parameters search

Hyper-parameters define the set of parameters not optimized during the train-
ing process. Hyper-parameters will vary depending on the model considered,
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but typical examples for neural networks architectures would be the number of
units and layers, the weight decay coefficient or dropout probability.

Common practices in machine learning is to perform either a grid search or
a random search on the hyper-parameters space [45, p.422-429]. A requisite
of these non-informed methods is that a sufficient number of configurations
are evaluated to densely sample the hyper-parameter space. However, the
required number of configuration increases exponentially with the number of
hyper-parameters.

Hence, Bergstra et al. introduces an hyper-optimization search framework
based on Bayesian optimisation [8]. Essentially, the search procedure consists
in building a probability distribution p(score|con figuration), which relies on a
set of priors for each parameter and is iteratively updated as more pairs (score,
configuration) are evaluated. To speed-up the process, the next configuration
to be evaluated is chosen among the most promising points in the hyper-
parameters space (those with a large probability to obtain a high score). This
framework has been implemented in a Python package named Hyperopt'.

1 https://github.com/hyperopt/hyperopt
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DEEP LEARNING FOR AUTOMATIC PROJECTIVE
ORCHESTRATION

In this chapter, more elaborate structures with features particularly relevant
to the context of automatic projective orchestration are presented. First, time
dependencies require a special care when attempting to generate musical
sequences. Hence, Section 4.1 introduces deep learning models dedicated to
temporal data. Second, in the projective orchestration task, the piano score and
its orchestral counterpart are strongly correlated. Conditioning mechanisms,
which allow to modify the behaviour of a model depending on an external
set of conditioning data (in our case the piano score) are explored in Section
4.2. Finally, Section 4.3 is dedicated to auto-regressive models, developed for
modelling dependencies between the units of the predicted vector.

4.1 TIME MODELLING IN NEURAL NETWORKS

Structuring patterns in musical scores can occur at different time scales with
related events separated by long temporal intervals. Hence, modelling musical
series represents a daunting task for machine learning.

The receptive field of a computational unit designates the extent inside the
input data that this unit can access to. By extension, we can designate the
receptive field of a model as the receptive field of its last layer, which delineates
all the information available to the model for making a prediction. This concept
is crucial in time series modelling as it delimits the temporal regions from which
a model can search for correlations. A naive approach to time series modelling
could be to input several successive frames of the series to a feed-forward
neural network. However, as we observe on Figure 4.1, with this approach, the
receptive fields have a fixed length, and increasing their size comes at the price
of a concomitant increase in the number of parameters.

4.1.1  Recurrent architectures

In order to efficiently increase the size of the receptive field, state space models
have been proposed [14, p.609-610]. At each time step ¢, the information about

hy hi_o he hy

}QOTOOO —(000)—(0OO)—(000
n?\):lm ¢ _—

L2 Tt—1 Lt

Figure 4.1: (Left) A time series processed with a standard feed-forward neural network.
The receptive field of the model has a fixed temporal horizon which can be
increased only at the cost of more parameters. (Right) State space models
encode information about all the previous frames of the input time series in
hidden vectors h.
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Figure 4.2: As weights are time-invariant, a more compact representation of the graph
can be obtained by representing recurrent weights U with a curved arrow.
Similarly to the MLP architecture, layers can be stacked on top of each
others in order to extract successively more abstract representation.
The gating mechanisms allow to control the information flowing through
the model along time (output nodes are omitted for clarity). The input at
x¢—2 is blocked and the hidden state is preserved. Between t — 1 and ¢, the

hidden state is reset. The colours illustrate how the different informations
are selected and combined.

all past events of the time series is encoded in a single vector h;_;. Hence, this
vector evolves as a function of its previous value h;_; and the current frame of
the input time series x;

hy = f(hi-1,x1) (4.1)

where f is a function (which does not depend on time). Interestingly, state
space models can theoretically access all of the previous samples in the input
time series (see Figure 4.1), while maintaining a reasonable number of trainable
parameters.

Recurrent neural networks are a type of state space model. They extend the
feed-forward architecture by implementing the function f in Equation 4.1 as

hy =oc(W.x+ Uk, +b) (4-2)

were parameters are similar to Equation 3.1 but the temporal information is
added through vector h;_; transformed with parameter matrix U. Similarly to
simple feed-forward architectures presented in Section 3.1, recurrent layers can
be stacked on top of each others in order to extract higher-level representations
(see Figure 4.2).

4.1.2  Modelling longer time dependencies

Although state space models allow for theoretically infinite receptive fields,
long-term correlations are actually diluted along the recurrent connections by
the input time series. To alleviate this problem, an architecture called Long
Short-Term Memory (LSTM) units was proposed in 1997 by Hochreiter and
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Schmidhuber [51]. Each LSTM unit is composed by a cell ¢ which stores a value
akin to an internal memory. Three gates allow to control how the information
is flowing through the unit by implementing forget f, input i and output o
mechanisms. These gates scale the different values which enter and leave the
cell. f controls the cell’s value at previous time steps, i controls the input vector
and o the value going to the output [47]:

fr =0g(Wexy + Ugcy 1 + by)

iy =0 (Wix; + Ujci—1 + b;)

0y =0 (Woxs + Upct—1 + by)

¢t =fr ©®cr—1 + it © 0 (Wexy + Uccy—q + be)
hy =0 © oy, (ct)

where matrices Wy, U, and vectors by are trainable weights, © is the element-
wise (or Hadamard) product, and oy, 0. and o, are non-linear activation functions.
A usual choice is to use a sigmoid for ¢, and an hyperbolic tangent for o, and
0. These gating mechanisms provide different useful operations for modelling
long-term dependencies. The internal memory of the cell can be reset if f; is
null, the input information x; can be bypassed if i; is null, and the output
disabled if o; is null ( see Figure 4.2)

Many variations around the LSTM units have been developed with the Gated
Reccurent Units (GRU) being one of the most popular [22]

Zt :Ug<wzxt + Uhy—1 + bz)
Tt :Ug(wrxt + Urciq + br)
ht =z; ® ht—l + (1 — Zt) ® Uh(tht + Uh(rt ® ht—l) + bh)

Here, the internal state is removed and the hidden units / are directly propa-
gated along time. Besides, the input and forget gates are merged as a single
vector z; which acts as a balance between the previous state value and the new
candidate.

Unfortunately, contradictory results have been found in different empirical
studies. Chung et al. suggests that GRUs lead to better performances [22] than
the LSTM, while a more recent study claims the opposite [47]. Overall, results
seem sensibly identical and we did not observe radical differences in terms of
performances between the two architecture (see Section C.1). However, GRU
provides a lower amount of parameters and we will use them in the rest of this
thesis unless specified.

4.1.3  Back-propagation through time

Gradient-based methods for updating the weights of a network can easily be
adapted to recurrent models. A solution consists in Back-Propagating Through
Time (BPTT) the error calculated at each time frame [84] (see Figure 4.3, where
the model has been unrolled along time axis). Mathematically, if we consider
a one-layer recurrent neural network, and a parameter 6 which is either a
recurrent connection or an input weight (either U or W in Equation 4.2), the
derivative of the error function E is given by
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Figure 4.3: The Back-Propagation Through Time (BPTT) algorithm allows to train recurrent
architecture. By unrolling along the time axis the recurrent network, we
can observe the multiple influence of each weight matrix over the error
function at each time-step. Hence, back-propagating each error term E;
for t in [0, ..., T| along recurrent connections allows to modify the weights
considering this influence over time. For instance, all the terms framed with
green circles will contribute to the update of W°.
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The chain terms g—,’;; account for the propagation of the gradient backward

in time (see the horizontal chain in Figure 4.3). As they define a geometric
series, the values of the chain term can either shrink to zero or explode if
their successive values are smaller or greater than 1. These phenomena are
called respectively vanishing and exploding gradients. Exploding gradients can
suddenly push the parameters very far from their current position, possibly in
a zone where the error is much larger. Reciprocally, vanishing gradients can
prevent long-term correlations to be learnt.

The gating mechanisms implemented in LSTM and GRU help fighting these
diverging gradients. Indeed, in the case of GRU, if the z gate is locked to 1
between two distant time indices f, and t;, then the derivative between these
two states is equal to one (g% = 1) and the gradient is preserved during the
propagation. ’

However, gating mechanisms are not a sufficient guarantee against gradient’s
divergence. The risk increases with the sequence length, as the size of the chain
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and, thus, the number of terms grows. A solution called gradient clipping [84]
consists in normalizing the gradient by its norm when it exceeds a threshold

N K .
82@8 if lgll>K (4.3)

where ¢ = VE(0) is the gradient of the error function with respect to the
model’s parameters, ||.|| is a matrix norm (typically the L2-norm), and K is a
threshold value (typically set to 1).

4.2 CONDITIONING MECHANISMS

A number of canonical problems in artificial intelligence require the ability to
condition a generative model under a set of observed inputs, such as text-to-
speech generation, image captioning or question answering [29]. Implementing
a conditioning mechanism usually boils down to finding a way to modulate
the behaviour of a model depending on the value of a conditioning vector z.
Depending on the type of conditioning information, z can take different forms,
such as one-hot encodings for representing mutually exclusive class-belonging,
or three-dimensional real-valued vectors accounting for coordinates in space.
Note also that, in the case of time series conditioning, the condition itself
depends on the time frame and is denoted z;.

A major challenge in conditioned generative models is to factor the informa-
tion and structures which are shared across different conditioning. For instance,
a model generating music in the style of Mozart and another model specialized
in Beethoven probably both learnt structures which could be informative for the
other. Various sources of information can be encoded by distinct sub-networks
(or sub-modules) and then combined through concatenation. For inputs x and
conditioning z, intermediate representations ¥ and Z are computed by sub-
networks fy and f,, These representation are concatenated and processed by
the network ¢ which predicts the output 7

4.2.1 Feature-wise conditioning

Bringing this idea further, the Feature-wise Linear Modulation FiLM is a general
and powerful framework for feature-wise conditioning [87]. The main idea is to
modify the values of intermediate hidden representations (also called features)
by shifting and scaling them by variables computed from the conditioning
vector. If h is a hidden representation extracted at any point of the model, its
value can be modulated as

h=(z) ©h+B(2) (4.4)

where 7(.) and B(.) can be any transform of the conditioning vector, typically
defined as neural networks with trainable parameters. (see Figure 4.4). This
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Figure 4.4: The FiLM conditioning mechanism applies a linear transformation to each
unit of a feature vector h. Thus, any intermediate hidden layer in the
network can be modulated by different FiLM layers.
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Figure 4.5: CRBM. The weights Ay; and By; model the influence of the past visible
states on the biases of the current visible and hidden units.

equation defines a FiLM layer [87] and can be added after any hidden represen-
tation, but different functions -y and B might be used if the conditioning occurs
at several places in the network.

4.2.2  Conditioning for RBMs

The strict theoretic framework of RBMs does not allow for feature-wise con-
ditioning. However, a solution lies in modifying directly the weights of the
network instead of the computed features. In a RBM the shape of the density
function p(x) depends on the weight values. Hence, modulating these weights
modifies the shape of the energy function and, consequently, the distribution of
the visible units.

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



4.2 CONDITIONING MECHANISMS

Features

Input layer
(previous frames) Factors

(v<t) (rers ) (©)

——  Style- features connections
——  Weights
—— Visible units bias

—— Hidden units bias

Figure 4.6: A style-gated FGcRBM. The three sub-models are represented by three
different colors. The style features are gated on the three interactions:
weights between visible and hidden units (in red), bias on hidden units
(green), bias on visible units (blue)

4.2.2.1 cRBM: modulating biases

The conditional Restricted Boltzmann machine (cRBM) is a conditioned gen-
erative model proposed in [112] for modelling an animated character walking
with different motion styles. A set of conditioning labels can modulate the
behaviour of a standard RBM by dynamically modifying its biases. Thus, the
energy function of a cRBM is given by

E(v, hilver) = =Y a0 — Y Wijvithie — Y bjihj (4-5)
i ij j

where the biases are defined by 4; = a; + ) Ay <+ and ?)]- = bj + Yk Bijvx,<t-

Here, a and b are static biases as in the RBM model, and Ay; and By; model the
influence of the context on the visible ad hidden states respectively (see Figure
4.5). The same inference and generative methods as in a standard RBM (see
Section 3.2) can be performed by simply replacing the static biases a and b by
their dynamic counterparts.
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4.2.2.2  FGcRBM: a multiplicative influence over bidirectional weights

Instead of modifying the biases, another conditioning mechanism consists in
modulating the bi-directional weights W [112]. Hence, the energy function
becomes

E(v, h|x) = =) Wijvixy — ch]vl Zavl Y bjhj (4.6)
j

ijk

where Wi, are the components of a 3-dimensional tensor and c;; are gated
biases.

The computational cost implied by the manipulation of 3-dimensional tensors
can be reduced by factoring W into a product of pairwise interactions such that
Wik = Ls WZ}W}}W,ff (where the superscript indicates which unit the weight
refers to and f indexes the factors). If I ~ | ~ K ~ N, this assumption over
the shape of W leads to a decrease in the number of parameters from N° to
3N2. Besides, gated biases c can also be abandoned further reducing the model
complexity.

When modelling time series, an other proposed improvement [112] is to
separate the influence of the recent past events from the conditioning units.
Hence, the recent past is modelled using dynamic biases, and the labels z; are
gated to both the bi-directional weights W and the dynamic matrices A and B.
Finally, the energy function of this Factored-Gated cRBM (FGcRBM) is equal to

E(vt, htlv<t, z) ZZ szUz th],tzlt - Zﬂz Uit — Zb],th],t (4.7)
fijl j

where the dynamic biases of the visible and hidden units are defined by

<t
alt—al+ZZA A ALy Uk <121t
m .kl

b h po<t
bj/t :b]—'—ZZB]ﬂB;(Jn Blznvk,<tzl,t
n ki

where m indexes the factor for the gated interactions between features, input
and visible units and 7 the factor for the interactions between features, input
and hidden units. The training process is similar to the RBM’s procedure.
However, the conditional probabilities are now expressed by

p(vi=1lh,c,z) =0 (az +E fz vaWlle> (4-8)
p(hi=1lv,c,z) =0 (Ej + ZWJ-}} EW}}UI-WIZle> (4-9)
f ik
A graphical representation of this model can be observed on Figure 4.6.

4.3 NEURAL AUTO-REGRESSIVE DISTRIBUTION ESTIMATION
In Section 3.1, we introduced the feed-forward neural networks architecture

whose output variables can model independent Bernoulli distributions when
a sigmoid activation is used in the last layer (see Equation 3.7). In some cases,
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Figure 4.7: The training procedure of the Orderless Deep Neural Auto-regressive Distribu-
tion Estimation ODNADE consists in randomly sampling an ordering and an
order (or step). These determine the known units in the input (green circles)
and those unknown which are masked out (red circles). The opposite mask
is applied to the error function so that only the unknown units are used for
back-propagation (blue circles).

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



46

DEEP LEARNING FOR AUTOMATIC PROJECTIVE ORCHESTRATION

this independence assumption over the dimensions of the output may not
be justified. For instance, when considering the case of image generation,
the intensity of pixels in an image may strongly depend on the value of the
surrounding pixels.

Neural Auto-regressive Distribution Estimation (NADE) [62] has been proposed
for modelling any joint probability of a set of variables by using neural networks.
NADE is based on a solid theoretical framework. For the sake of brevity, only
the algorithm is presented here without its theoretical justification. We refer
interested readers to [115] for a thorough explanation.

NADE on the chain rule, which states that any joint distribution over a set
of variables {y;,i € [1,D]} can be decomposed in a product of conditional
distributions

D

P, yp) = [ [ PWoul¥o_,) (4.10)
d=1

where o0 is a permutation in [1, D], and o, designate its d — 1 first elements. In
theory, any ordering can be chosen.

In principle, each conditional probability p(yo,|v._,) could be modelled by a
different feed-forward neural network. Instead, the main idea of NADE is to
share the same unique network between all conditionals. This weight sharing
assumption amounts to consider that any two variables are always related in
the same manner, independently of the ordering.

In practice, the conditioning vector y,_,, whose length |04 depends on
the step d, is fed to this unique network through a fixed-size input vector x.
The vector x,_, can be set to the known values y,.4, while the other values
x,., are set to zero. This idea is implemented using a binary mask m,_, =
[1{60< s 1Deo_,], which indicates the units already that are already predicted
at step d, and allows to mask in or out the known or unknown information
in the input vector. Finally, for a data vector x, an ordering o0 and a network
composed by L layers denoted each by /', a feed-forward pass can be derived
as

W= xom,,_,
ad = Wit + bl

l . (4.11)
W= o(a)

ht = sigmoid(a®)

where ¢ is any activation function (typically a ReLU) (see Figure 4.7). Finally,
the probability distribution of the unit o4 is given by p(y,,|x) = hf,.

4.3.1  Orderless NADE

Training a neural network with the process described above is slow, as only a
scalar value &l is predicted for a complete forward pass and, thus, can be used
for back-propagation. An efficient training procedure called Orderless Deep
NADE (ODNADE) has been proposed in [115]. It relies on two essential ideas.
First, it uses all the unknown units h5_ , for computing the error function instead
of a single unit. Second, the ordering 0 and order d are considered as stochastic
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variables over a uniform distribution, and the error function is computed as an
expectation over the ordering and order.

As discussed earlier, any ordering can be used in the chain rule decomposition
of a joint probability (see Equation 4.10). Hence, at a given step d, all the indices
that are not in 04 are potential candidates for o4, and all units hg> , can be used
for computing and back-propagating the error function.

When considering the ordering and order as random variables, the error
function in a NADE architecture is the expectation of the negative log-likelihood
under the ordering and order distributions. This quantity is intractable in most
cases, and an approximation is obtained by sampling both o and 4.

Finally, in the case of binary output units, an ordering and order are sampled
at each iteration, and the negative log-likelihood is computed as a masked
binary cross-entropy

o~ U(Sp)
i~  U(1,D)
E(0) = phm(1—ml,) [-x©log(ht) — ((1—x) ©log(1—ht))]

where m,; is a binary mask, U/ the uniform distribution, and &p all the
permutations over D elements D%d“ normalises the error function by the
number of units used for computing the error, which depends on the order d.

The masking mechanism does not allow the model to distinguish between
zero-valued inputs or missing values. To alleviate this issue, it is recommended
to concatenate the mask to the input, thereby replacing h° in Equation 4.11 by

W = (x ©mq_,,m,_,)

If, theoretically, any order can be chosen for decomposing the joint probability
of the output variables, in practice, conditionals are only approximated during
the training process, and different orderings will not assign the same probability
to a given output value. To alleviate this issue, it is recommended to use an
ensemble of randomly chosen orderings {0*}X_| and use the average probability
% Y (hH)k as an estimator [115].
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SYMBOLIC PROJECTIVE ORCHESTRATION
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THE PROJECTIVE ORCHESTRATION TASK

In this section, we introduce and formalise the projective orchestration task.
In Section 5.1, we derive a mathematical framework, in which the projective
orchestration task is defined as a mapping between two multidimensional
time-series. In Section 5.2, we introduce a probabilistic formulation of the task
adapted to statistical learning approaches. Finally, in order to evaluate and
compare different models, we propose a one-step predictive task and discuss
its relevance in Section 5.3.

5.1 MATHEMATICAL FORMULATION

Here, we consider the piano-roll representation (see Figure 5.1) of a musical
score, which can be interpreted as a multidimensional time-series. We denote
p = (p1,-- pL,) and 0 = (01,...,01,) the piano-rolls of a piano and orchestral
scores. The subscript indices represent time and L, and L, are the respective
length of the two time-series. Each piano frame py is a real-valued vector defined
on [0,1]™r, where N, represents the tessitura of the piano (typically 88 notes).
Hence, p;[i] is a real value between o and 1 representing the intensity of the
pitch i at time ¢, 0 representing a note off and 1 the maximum intensity. Each
orchestral frame o; is defined on [0, 1]N0 where N, is equal to the sum of the
tessitura of the different instrument of the orchestra. In this framework, the
projective orchestration of a piano score if a mapping f : p — 0 between an
input piano time-series p and an output orchestral time-series o (see Figure 5.1).

5.1.1 Preserving the overall structure

In the most general setting, the length of the orchestral sequence L, is not neces-
sarily equal to the length of the input piano score L,. For instance, an orchestral
score can be longer than the original piano score if repetitions are inserted in the
orchestral version. However, this thesis focuses on mapping an existing melodic,
rhythmic and harmonic structure to a given orchestra without modifying it.
Therefore, we purposely restrict ourselves to an orchestration which does not
alter the temporal organisation of the original piece. Consequently, the two
time-series p and o will share the same length L = L, = L.

Besides, for a given time index ¢, the piano frame p; and the orchestral frame
0; share the same harmonic and melodic function. In other words, there is a
frame-to-frame correspondence between the two time-series p and o.

5.1.2  Binary representation
We consider a simpler orchestration problem, which consists solely in deciding

which notes of the orchestral score are played but not their intensities. Hence,
the orchestral time-series becomes a binary multidimensional time-series, and
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Figure 5.1: Projective orchestration is defined as the mapping between a multidimen-
sional time-series representing a piano score and a multidimensional time-
series representing an orchestral score.

each frame o; is now a binary vector defined on {0,1}"°. We argue that the
operations of deciding which notes will be played and their intensities can be
performed in two successive steps, and we focus only on the first one.

However, the situation is different regarding the piano score, since its dy-
namics structure can dramatically impact the choice of instruments used in
its orchestration. For example, a fortissimo passage may combine the powerful
timbres of the trumpets, trombones and a bass trombone doubling at an octave
lower [61, p.293], whereas a different choice of instruments will probably be
used for orchestrating a pianissimo. Hence, the dynamics information of the
piano score is theoretically important, and will be studied in detail in Chapter
8.

5.2 SPECIFYING THE TASK FOR STATISTICAL LEARNING APPROACHES

In the following of this thesis, the upper case will denote random variable,
while the lower case designates values. To keep notations uncluttered, we use
the unambiguous notation p(x) for denoting p(X = x), the probability for a
random variable X to take the value x.

As discussed in Chapter 1, a single piano score can be orchestrated in many
different ways. Sampling from a probability distribution provides an elegant
and efficient mechanism for emulating this variability. Hence, for an input
piano score p, we consider a model f which outputs a probability distribution
over all possible orchestrations f(p) = p(O), where O has the same length as p.

Modelling the joint probability distribution of the successive frames of an
orchestral time-series given a piano score p(O) = p(Oy, ..., OL|P) is most likely
intractable. Hence, the problem is frequently simplified by modelling indepen-
dently each orchestral frame O;. We present two different ways achieve this: a
causal and a random walk decomposition (see Figure 5.2). Both approaches are
presented in Subsection 5.2.1.

At training time, both piano and its orchestration by a famous composer
are accessible. Thus, the rich information contained in the known orchestral
score can be advantageously used to further simplify the task. This is not the
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Figure 5.2: Causal (left) and random walk (right) generation processes. The temporal
horizon for the contextual information of both the piano and orchestral
scores is delimited by the black arrow. The contextual information (blue
frames) is used to generated the current orchestral frame (red frame). The
next orchestral frames to be generated are represented with dotted frames.
Hence, one can observe that in the causal case, the orchestral frames are
successively generated, while a random-walk over the temporal indices is
performed in the second case. The random-walk generation process implies
two major differences: the future of the orchestral score can be used in the
contextual information (blue frame), but all the orchestral score needs to be
initialised (green frames).

case during the generation step, as a reference orchestral score no longer exists.
Hence, we review the differences between the two steps in Subsection 5.2.2.

5.2.1 Generative schemes

5.2.1.1  Causal decomposition

The chain rule states that a joint probability can be decomposed into a product
of conditional probabilities over any ordering of the variables. For time series,
causal ordering appears as a natural decomposition

L

p(OO,..., OL|P) = HP(Ot|P1 O<t)
t=0

Ideally, the whole piano score P and orchestral past O~; would be used for
inferring the orchestral frames O;. However in practice, when L is large, only
fragments of these time-series are used to limit the computational cost. We
denote as X;,., the sequence extracted from the time series X between time
indices t, and t, and we define the piano context as Pf = P;_7;.r and the
orchestra context as Of = O;_r.;—1 where T defines the temporal horizon of the
model (the value of this parameter will be discussed in Section 8.1). Using a
reduced piano context centred around the same time index t is only possible
because we hypothesized in Subsection 5.1.1 that the piano and orchestral
scores share the same structure.
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L

p(OO,...,OL|P Hp Ot|Pt,OC
t=0

Besides, when orchestrating a piano score from scratch, the contextual infor-
mation on the orchestral score is obtained from the orchestral frames previously
generated by the model or initialised, that we denote of. Finally, for a model f
whose output represents the individual distribution f(Pf, Of) = p(O¢|Pf, Of),
the causal generation process consists in sampling 0; for the successive values
of time index, and is described by the following algorithm

fort € [1,L] do
0f = 0r—Tit—1
pr ~ f(pi,0f)
end
Different initialisation strategies can be adopted for time indices smaller than
the temporal horizon T and will be discussed in Section 5.2.2.2.

5.2.1.2 Random walk generation

The causal decomposition does not accurately reflect human approach to or-
chestrating a piano score, which is rarely a linear process in time. Indeed, a
composer often writes a first draft of the piece and then goes back an forth
to perform corrections while incrementally refining the score. That writing
strategy can be approximately rendered by re-sampling orchestral frames at
time indices randomly chosen, in a process akin to a random-walk along the
time axis. Then, for each time index chosen, all contextual information is used,
and the orchestral context is now equal to Of = (O;_1.4_1, Ot 4 1.4+ 1)

Hence, the random walk generative process consists in repeatedly sampling
the time index from a uniform distribution t ~ #/(1, L) and update the orchestral
frame at time t with the sampled value o;.

for i € [1, Nygpie] do

t~U(1,L)
0¢ = (O—1:t—1, Ot 1:447)
or ~ f(P,0f)

end

The whole orchestral score needs to be initialised before the generation
process, and the initial values are progressively replaced by the sampled values.
The crucial initialisation step is discussed in Section 5.2.2.2.

Finally, both the causal and random-walk generation boil down to building a
probabilistic model f of individual orchestral frames

f(pt, o) = plotlpt, of) (5.1)

The only differences are the definition of the orchestral context and the genera-
tive process. Hence, similar models can be implemented in place of f for the
two approaches, and we detail our proposition in Chapter 7.
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5.2.2  Differences between training and generating

5.2.2.1 Training with teacher forcing

We explained in Chapter 3 that the parameters of a parametric probabilistic
model can be inferred by minimising an error function which is equal to the
negative log-likelihood of a training dataset Dj,;,. In the case of projective
orchestration, the dataset contains piano scores and their corresponding ground-
truth orchestration written by famous composers Dy, = {(p,0)}.

Both the causal and random walk decompositions detailed in the previous
subsection lead to the probabilistic independence of the orchestral frames, and
a negative log-likelihood over the training dataset which is equal to

L
E,D)=— Y. Y log(p(oilps,of)) (5.2)

(p,0) € Dyryin t=0

where o; is taken form the ground-truth orchestration.

A major difference between training and generative steps is that the complete
orchestral score is known at any moment during the training process. Hence,
the ground-truth orchestral context of can be used instead of the generated or
initialised value of in Equation 5.2. This is necessary as reusing the orchestral
frames generated by the model may quickly lead to a strong divergence from
the ground-truth orchestration and reach a point where the two contexts of
and of are so widely different that predicting the ground-truth o; given the
context 0f does not make sense any more. This strategy is frequently used when
training temporal models and known as teacher forcing [55].

5.2.2.2 Initialisation strategies during generation

During generation, teacher forcing can not be used as the orchestral score is
unknown at the beginning of the generative process. In particular, as most
models require a temporal horizon for predicting an orchestral frame, it become
necessary to provide the algorithm with an initial seed for the orchestration.

In the causal case, only the first T frames of the orchestral score have to
be initialised. However, in the random-walk generative process, the whole
orchestral score has to be initialised.

Regarding the value of the initialisation, we explored two options, either by
sampling from a Bernoulli distribution or setting all units to a constant value.
Both approaches are detailed and explored in Section 8.3.

5.3 EVALUATION FRAMEWORK

The advent of artificial intelligence promulgated a quantitative approach of
algorithmic composition [16, 63]. In particular, assessing the quality of models in
an objective manner would require to define a rigorous evaluation framework.

However, defining a quantitative metric for music appears to be a dubious
endeavour as it mostly relies on subjective evaluations. Nevertheless, some
tendencies and preferences about musical excerpts might emerge from a given
group of individuals. Perceptual tests aim at assessing if such preferences exist
in a statistically significant way [58].
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As they directly evaluate the preferences of human listeners, perceptual listen-
ing tests seem to be the most reliable method for comparing musical excerpts.
However, gathering a group of subjects sufficiently large for extracting statistics
and collecting the corresponding amount of results is a tedious process, which
cannot be used in the development stage of a system. Hence, it is necessary to
develop a computable quantitative measure of the model performances.

5.3.1 Corpus similarity measures

In order to design an evaluation measure for music, a logical choice might be to
rely on a rule-based system which would encode the music theory principles.
However, it might be inherently biased and, most of all, limited to a specific
set of musical genres. Instead, corpus-based measures are often preferred
for probabilistic models. These aim at evaluating how distant the examples
generated by a model are from a set of reference examples. In the remainder,
Diest = {(p,0)} designates a ground-truth set of piano and corresponding
orchestration drawn from the existing repertoire.

The iterative generative process described in Section 5.2 suggests a frame-by-
frame comparison between the model output and a test dataset. Hence, we can
define the overall error of a given model as

E(f, Dest) =}, Y d(f(pi.of), o) (5-3)

(plo)eptest t

where f is a model for projective orchestration, and d is a frame-to-frame metric.
As discussed in Section 3.3.1, the negative log-likelihood appears as the
most natural choice for evaluating probabilistic models. However, the accuracy
measure has been extensively used in the music generation field [16, 63]. We
introduce and compare both of these measures in the following paragraphs.

5.3.1.1 Negative log-likelihood

The negative log-likelihood is the usual training measure for many probabilis-
tic models, and has already been introduced in Equation 5.2. We remind its
definition for a test dataset Dy

1 L
LODrest) = =1 Y, Y —log(p(oipr,op)) (5-4)
’ ’ (p/U)EDfest t=0

In the special case where the model outputs independent Bernoulli distribu-
tions, we explained in Section 3.3.1 that the negative log-likelihood is equal to
the binary cross-entropy

Xent (o) = — log(p(ot|pt, of))
=—o0;-10g(q) — (1 —o¢) - log(1 —¢q)

where g = p(O; = 1|p§, 0f) and - is the scalar product.
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Figure 5.3: Precision, recall and accuracy measures are based on counting the number
of correct prediction (true positive and true negative) and mistakes (false
positive and false negative).

5.3.1.2 Accuracy measure

In the field of decision theory, precision, recall and accuracy measures are com-
monly used to evaluate how closely a model is able to predict a given target
[90]. These measures are based on counting the number of matching elements
between the two vectors. In the context of music prediction, the target vector is
the set of orchestral notes o; extracted from the test dataset. The prediction is
sampled from the model 0, and depends on the piano and orchestral contexts
pi and of extracted from the test dataset.

We denote as TP (true positives) the number of notes correctly predicted
(notes played in both o; and o0;). TN (true negative) is the number of silence
correctly predicted (notes off in both 0; and o). FP (false positive) is the number
of notes predicted that are not in the original sequence (notes played in o; but
not in 0;). FN (false negative) is the number of unreported notes (notes absent
from 0y, but played in o;). Figure 5.3 represents the four possible cases.

In the case where the model output is a probability distribution over binary
values (here 0; ~ p(O;) with p(O;) being a Bernoulli distribution)?, the acti-
vation probabilities (i) = p(O;(i) = 1|p§, 0f) can be used directly, in order to
avoid adding noise by sampling from the distribution

TP =q-o0; (5.5)
TN =(1-q) - (1-o0)
FP =q-(1—o0)

FN =(1—q)-o;

The traditional accuracy, precision and recall measures are ratio of the afore-
mentioned quantities. However, in the case of music generation, targets vectors
o; are highly sparse. Therefore, the impact of the number of true negatives can
rapidly overweight the other quantities, and bias the accuracy to favour models
which predict only zeros. Hence, a modified accuracy measure has been used

1 If the dimension of o; is N, p(O;) is actually N independent Bernoulli distributions.
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Linear regression between accuracy and Xent. Target Prediction
MSE = 2.85706

302
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Accuracy: 0.32%
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X-ent: 2.28

accuracy

Figure 5.4: The cross-entropy is denoted X-ent on the figure, and a lower value indicate
a better predictive power. (Left) Each point represents the cross-entropy and
accuracy obtained for one prediction of a model. We can see that the two
measure do not rank predictions similarly. (Right) An example of a target
vector and a prediction which obtains an extremely low accuracy score and
an average cross-entropy. This is due to the sparsity of the target vector and
the fact that the modified accuracy does not treat true positives and true
negatives equally, whereas the cross-entropy does.

as a reference for evaluating models in the automatic music generation task [16,
63, 123]

TP

A — 1004 -
MA(gi,01) =100 % 75y

Finally, the modified accuracy of a model over a test dataset is given by

1
MA@ Dest) = . Y. Y. MA(qs,0) (5.6)
’ ’ (P/D)EDtest telL

5.3.1.3 Comparison

The Figure 5.4 compares the two measures. Each point represent a prediction,
its abscissa being the accuracy score and its ordinate the cross-entropy. We
can clearly see that the two measures do not rank models similarly. Here, the
points which obtain a good cross-entropy but a poor accuracy are sparse targets
with no true positive prediction. Indeed, positive and negative targets roles
are symmetric in the case of the cross-entropy, while it is not the case for the
accuracy. However, we intuitively do not want these empty predictions to obtain
a good score. This underlines the fact that we give more importance to true
positives than true negatives in sparse targets.

A qualitative evaluation of the best examples selected with the two measures
led to the conclusion that the binary cross-entropy is not adapted in the context
of projective orchestration task and using a piano-roll representation. Indeed,
the cross-entropy validation error quickly reaches its maximum value. Hence,
over-fitting occurs very early in the training process (around the epoch 1 or
2). On the other side, the accuracy validation curve is much smoother and
the over-fitting detection occurs after the 20" epoch. When listening at the
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Figure 5.5: Comparison of frame-level and event-level time quantisation. We can see
that the number of repeated frames increase with the quantisation. This
becomes problematic for statistical learning since the model might mostly
focus on learning repetitions. Event-level representation alleviate this issue
by discarding the duration information. To preserve rhythmic information,
the duration can be added to each vector of the event-level representation.

generated orchestrations using one or the other criterion for selection®, the
results are clearly in favour of the accuracy measure, even though it has some
imperfections.

This observation raises the question of which training criterion and selection
measure should be used in the context of projective orchestration. Hence, we
investigate alternative training and evaluation measures in Section 7.2.1.

5.3.2 Event-level quantisation

The piano-roll representation extracted from a piano score depends on the
choice of the rhythmic quantisation (see Figure 5.5). This parameter defines the
symbolic duration of the smallest event. A coarse rhythmic quantisation may
lead to missed events. On the other side, the number of repeated successive
frames increases as the quantisation gets finer. As a consequence, even for
relatively large quantization of one frame per quarter note, a model which
simply repeats the previous frame O;_ at time t obtains an high accuracy score.
As the quantization gets finer, the results of the repeat model dramatically
increase (see Table 5.1). This effect can also be observed in the field of polyphonic
music generation, where the state of the art system obtains an accuracy score of
33.12% on a dataset of Bach’s chorales [16], whereas the repeat model obtain a
score of 39.60%.

Hence, we propose to rely on a more robust event-level framework, which
measures the similarity between a true and a predicted frame each time a new
event occurs, instead of every new time frame (see Figure 5.5). In that case,
models will also be trained using the event-level representation.

Note that the orchestration task can be learned with an event-level repre-
sentation, but easily transformed back to a frame-level quantisation output for
generation. Indeed, it can be done by simply applying the rhythmical structure
of the original piano score to the generated event-level orchestral score.

2 https://qsdfo.github.io/LOP/results.html#xent_vs_acc
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The event-level representation amounts to discard the rhythmic information.
However, note durations might condition the decisions regarding orchestral
choices. To restore that information, a solution is to append the duration
information to the piano-roll representation. This is investigated in Section
8.1.3.

The results comparing the score obtained by a recurrent neural network
(implementations are detailed in Section 7.1.2) with a repeat model can be
observed Table 5.1. The score of the repeat model diminishes with the event-
level quantisation, but it still outperforms the RNN model. Besides, the ratio
between the repeat and RNN scores is similar for all representations.

Even though there is quantitatively no obvious advantage of one representa-
tion over the other one, we preferred the event-level for several reasons. First,
because the resulting representation is more simplistic and compact. Second,
because it does not depend on the definition of a rhythmic quantisation param-
eters. Finally, because it is more adapted to the real-time implementation we
will present in Chapter 10.

Frame-level Frame-level Event-level
Model accuracy (Q =4) accuracy (Q =8) accuracy

Random 0.73 0.73 0.72
Repeat 58.36 76.66 47.91
RNN 56.60 63.21 42.47

Table 5.1: Results of a different models on the projective orchestration task based
on frame-level accuracies with a quantization of 4 and 8 and event-level
accuracies.
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A DATABASE LINKING PIANO AND ORCHESTRAL MIDI
SCORES

In the previous chapter, we introduced the projective orchestration task along
with a framework for building probabilistic models using statistical learning.
However, this framework heavily relies on the construction of a large database
of piano midi files and corresponding orchestration. As only very few attempts
have been made to work on symbolic orchestral data, no reference dataset exists
for this task. Hence, we detail in this chapter the creation of two first-of-kind
datasets.

o the Symbolic Orchestral Database (SOD) is a collection of orchestral MIDI
scores

e the Projective Orchestral Database (POD) is a collection of piano scores and
corresponding orchestrations

Because the quality of collected examples will strongly impact the final perfor-
mances of the system, we selected examples written by famous composers or
orchestration teachers, and manually checked the files. The databases are freely
available on a website ' along with Python scripts for importing the data.

As most of the files were collected on the internet, the piano score and
its orchestral version were most of the time not aligned. This proves to be
problematic for the approach we proposed in Section 5.2 which relies on a
frame-by-frame comparison of the two scores. Hence, we introduce a method
for automatically aligning a piano score and its orchestration. Finally, we review
the specificities of the POD database and the challenges when tackling the
projective orchestration task with statistical learning methods.

6.1 ORCHESTRAL SYMBOLIC DATABASES

ORGANIZATION OF THE SYMBOLIC ORCHESTRAL DATABASE (SOD) The
SOD contains 5876 MIDI and MusicXML orchestral files. The files have been
collected from several free-access databases. Files are organized in folders
reflecting their origins and a sub-folder indexed by a number.

ORGANIZATION OF THE PROJECTIVE ORCHESTRAL DATABASE (POD) The
POD contains 392 MIDI files. Those files are grouped in pairs containing a
piano score and its orchestral version. Each pair is stored in a folder indexed by
a number. The files have been collected from several free-access databases or
created by professional orchestration teachers. The list of composers and their
respective representativeness can be found in Table B.1.

INSTRUMENTATION  As the files gathered in the database have various
origins, different instrument names were found under a variety of aliases and

1 https://qsdfo.github.io/LOP/database
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abbreviations. Hence, we provide a comma-separated value (CSV) file associated
with each MIDI file in order to normalize the corresponding instrumentations.
In these files, the track names of the MIDI files are linked to a normalized
instrument name.

METADATA At the root of the database, CSV files provide the name of the
composer and the piece for the orchestral and piano works.

INTEGRITY Both the meta-data and instrumentation CSV files have been
automatically generated but manually checked. We followed a conservative
approach by automatically rejecting any score with the slightest ambiguity
between a track name and a possible instrument (for instance bass can refer to
double-bass or voice bass).

FORMATS Links to Python parsers for both MIDI and MusicXML formats
can be found on the companion website . For a given rhythmic quantization,
these functions output the piano-roll representations of the scores. Tools for
piano-rolls manipulations such as event-level representation extraction (see
Section 5.3) are also provided.

In the MIDI files of our corpus, the intensities are encoded as an integer
between o and 127 which we normalize to the real range [0, 1] by dividing by
127. Intensities are encoded with literal musical dynamics in the MusicXML
format . The mapping between the tags and the real values can be found in
Table B.2.

To facilitate further research work, we also provide pre-computed piano-roll
representations (see Section 2.1.4). These matrices can be found in Python (.npy)
and raw (.csv) data formats.

SCORE ALIGNMENT Two versions of the database are provided. The first
version contains unmodified MIDI files. The second version contains MIDI files
automatically aligned using the Needleman-Wunsch [79] algorithm as detailed in
the next Section 6.2.

6.2 AUTOMATIC ALIGNMENT

Given the diverse origins of the MIDI files, a piano score and its corresponding
orchestration are almost never aligned temporally (see Figure 6.1). These mis-
alignments are very problematic for learning or mining tasks, and in general
for any processing which intends to take advantage of the joint information
provided by the piano and orchestral scores. Hence, we propose a method to
automatically align a single-instrument score to a corresponding multi-track
score. More precisely, we consider the piano-roll representations that interpret
scores as a sequence of vectors. By defining a specific distance between two
piano-roll frames, the problem of aligning two scores can be cast as a univariate
sequence-alignment problem. We provide the Python implementation on the
companion website 3.

2 https://qsdfo.github.io/LOP/code
3 https://qsdfo.github.io/LOP/code
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Pitch

Piano -
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Figure 6.1: Piano-roll representation of a piano score (Top) and its corresponding
orchestration (Bottom). The different instruments of the orchestral piano-
roll have been summed along the pitch axis instead of concatenated for
reducing the size of the representation, which we refer to as flatten orchestra.
The Needleman-Wunsch algorithm allows to find the optimal alignment of
two time-series which proves to be crucial in order to study frame-to-frame
correlations.

6.2.1 Needleman-Wunsch

The Needleman-Wunsch (NW) algorithm [79] is a dynamic programming tech-
nique which searches for the optimal alignment between two symbolic se-
quences by allowing the introduction of gaps (empty spaces) in the sequences.

An application of the NW algorithm to the automatic alignment of musical
performances was proposed in [46]. As pointed out in that article, NW is the
most adapted technique for aligning two sequences with important structural
differences, such as skipped parts for instance 4.

Depending on the domain of application, a possible variation of the original
NW algorithm consists in deleting symbols instead of inserting gaps. Indeed,
replacing gaps with silences in music seems misleading as it would relate
them with non-silent events. On the other side, deletions perfectly handle the
aforementioned structural differences by completely obliterating the unmatched
section. Hence, deletions have been preferred over gaps.

We consider two time series x = (xp, ..., xny) and y = (Yo, ..., ym) and a frame-
to-frame distance d(i,j). A deletion in one of the two series is associated with a
negative score <. Hence, a numerical score can be assigned to any alignment
between two time-series and the goal of the NW algorithm is to find the
alignment with the highest score.

Let S(7,j) be the highest possible score for aligning the sub-sequences x,
and xg;;. Thus, S(N, M) is equal to the maximum score possible when aligning

A modified algorithm is actually proposed in [46] in order to allow both dilations and deletions
operations when aligning the scores. This is of the foremost importance when trying to align
audio data, since both deformations can occur. However, in the case of event-level symbolic
series, dilation are not expected to happen, and the traditional version of NW is preferable.
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Binary
. 7 9 11
event-level i ® H .
pitch-class 0 0 2 r

representation

Figure 6.2: Needleman-Wunsch (NW) algorithm for aligning scores x and y based on
their event-level pitch-class representation (Left). An equivalent but more
compact representation of a pitch-class vector can be given as a list of acti-
vated class, (Right), In the construction of the score matrix S, black arrows
illustrate the forward iterative process while the back-tracking process is
represented by the red arrows. The gap insertion parameter y used in this
example is equal to 3.

the complete sequences x and y. The matrix S can be iteratively constructed
by observing that the value S(i, ) is computed from the surrounding values
S(i—1,j), S(i,j — 1) and S(i —1,j — 1) which covers all the possible cases
(symbols are matched, or a deletion is inserted in one of the two series)

S(i—1,j—1)+4d(i,j) diagonal
S(ij)=max S S(i—1,]) + v horizontal (6.1)
S(H,j—1)+7 vertical

The direction indicates whether a deletion or a match has been chosen, and
the optimal alignment can be found by back-tracking the path taken to reach
S(N, M). An illustration of the computation of matrix S is given in Figure 6.2.

6.2.2  Similarity Function

The design of a frame-to-frame measure d(i, j) strongly determines the efficiency
of the NW algorithm. While it can be a particularly complex and delicate task
in many contexts, a relatively coarse measure proved to be sufficient in the
projective orchestration framework. Indeed, aligning a piano score with a
corresponding orchestration is actually not an extremely challenging task as
both time-series will exhibit similar harmonic, rhythmic and melodic structures
at a fine temporal precision. Differences between the two time-series will mostly
occur in the instrumentation and doubling of notes. By finding a common
representation that discards these differences, the two time-series can be easily
compared. Hence, to find the best alignment path between a piano score and
its orchestral counterpart, we propose to extract the following representation as
illustrated on Figure 6.2

e compute the event-level piano-roll of both scores
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e flatten the orchestral score by summing all instruments along the pitch
dimension.

e discard intensities by representing notes being played as one and zero
otherwise.

e compute the pitch-class representations of the two matrices, which flattens

all notes to a 12 dimensional vector by discarding the octave information.

In our case, we set the pitch-class to one if at least one note of the class is
played. For instance, we set the pitch-class of C to one if there is any note
with pitch C played in the piano-roll vector. This provides an extremely
rough approximation of the harmony, which proved to be sufficient for
aligning two scores.

e if one of the vectors is only filled with zeros (silence) the similarity is
automatically set to zero (note that the score function can take negative
values).

Then, we define the score function between two frames x; = (x?, ..., x11) and

yi= (v}, yj') as

Yytod(xf +v})

d(i,j) =C x max(||x; +yjl|1,1)

(6.2)

where ¢ is defined as:

0 ifx=o0
d(x) = -1 ifx=1
1 ifx=2

C is a tunable parameter and ||x||; = }; |x;| is the £1 norm.

Based on the values recommended in [79] and our own experimentations, we
set C to 10. The gap-open parameter, which defines the cost of introducing a
gap in one of the two sequences, is set to —3 and the gap-extend parameter,
which defines the cost of extending a gap in one of the two sequences, is set to
—1.

63 SPECIFICITIES OF THE pOd DATABASE

In Chapter 5 we showed that the projective orchestration task is akin to a
multi-label classification problem for time-series. However, the POD database
has inherent differences with traditional datasets for multi-label classification.

6.3.1 Imbalance

Figure 6.3 highlights the activation ratio of each pitch (4 {pitch#iﬁi}til;?;i}tch o]

where # is the cardinal of an ensemble) across the orchestral scores of the
dataset. Note that this activation ratio does not take the duration of notes into
consideration, but only their number of occurrences. The pitch range of each
instrument is depicted beneath the horizontal axis.
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Figure 6.3: Activation ratio per pitch in the whole orchestral score database. For one
bin on the horizontal axis, the height of the bar represents the number of
notes played by this instrument divided by the total number of frames in
the database. This value is computed for the event-level representation. The
tessitura of each instrument is indicated underneath the pitch axis, and
one can observe the peak in the activation ration curve around the mean
tessitura of each instrument.

Two different kinds of imbalance can be observed in Figure 6.3. First, the
activation ratio of each individual note is much lower than one (< 0.06) This
implies that any given pitch is only rarely played. This is problematic because
a model learning on these sparse activation data might be pushed towards a
constantly null prediction.

Second, some pitches are played way more often than others. This imbalance
might push the model to always choose the same notes and never take the risk
to play the notes at the extremes of the instrument ranges.

Class imbalance is known as being problematic for machine learning systems
These two observations highlight how challenging the projective orchestration
task is. More statistics about the whole database can be found in Chapter B.

6.3.2  Stylistic consistency

The wide stylistic range covered by our dataset can be problematic in the
learning context we investigate. Indeed, a kind of stylistic consistency is a priori
necessary in order to extract coherent sets of rules. On the other side, given the
paucity of data, reducing the dataset to an even smaller and more consistent
dataset might prove even more problematic. In chapter ch:8, we will explore
these aspects and show how to alleviate this issues by scheduling the learning
process by successively focusing on smaller subsets.
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IMPLEMENTED MODELS

The projective orchestration task has been formalised as a one-step predictive
task in Section 5.2. To address it, a fundamental stage is to model the probability
distribution of a single orchestral frame O; given the piano and orchestra
context, Pf and Of. Depending on the generative scheme, causal or random-
walk, context vectors accept different definitions (see Section 5.2). To tackle this
task, we investigate two classes of parametric probabilistic models which have
been introduced in Chapter 3: energy-based models and feed-forward neural
networks. Here, we detail how to apply them to the projective orchestration
task.

To evaluate which approach is best suited for the projective orchestration task,
we assess the performances of several models belonging either to energy-based
or feed-forward neural network models. In Section 5.2, we mentioned that
different generative schemes and simplifications can lead to slightly different
variations of our task. In order to be able to fairly compare the different models,
a common evaluation framework is presented in Section 7.2, along with the
results obtained by the different models proposed.

7.1 PROBABILISTIC MODELS FOR PROJECTIVE ORCHESTRATION

In the projective orchestration task, the main challenge is to efficiently encode
and combine the various informations of the known piano score Py and already
generated orchestral parts Of.

First, the piano score contains the crucial information of the harmonic pro-
gression around the orchestrated frame. Hence, P; strongly conditions the notes
that can be played in the subsequent orchestral frame O;. Second, a common
rule in classical music is to ensure continuous melodic lines for each instru-
mental section. This principle is sometimes referred to as voice leading, and is
based on minimising the distance between the successive pitches in a given
voice. Hence, the prediction of the orchestral frame O; needs to be informed by
the orchestral context Of, composed by the orchestral past, and future in the
case of random-walk generation).

7.1.1  Energy-based models

In RBM-based models, the visible units represent the input that we are trying
to model. Thus, in the projective orchestration case, the visible units model an
orchestral frame v = O;. The piano and orchestral contexts can be concatenated
in a single context vector c = (P5, Of) (see Figure 7.2).

The simplest way to condition the generation of the visible units v by the
context vector ¢ in a RBM is to concatenate the visible and context vector
together ¥ = (v,c). At generation time, the value of the context vector ¢ is
clamped to its known value, and the Gibbs sampling procedure described in
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Figure 7.1: Conditioning a RBM with a set of context units ¢ can be achieved by
using in-painting and concatenating the context vector c¢ to the visible
units v. The context units are clamped to their known values when Gibbs
sampling is performed, which is represented with hatched circles. The
weights for clamped context and non-clamped visible units are separated
into a matrix W and a matrix B, but can be manipulated as a single matrix
Wtacked = (W, B). For projective orchestration, the context vector is defined
as the concatenation of the piano and orchestra contexts ¢ = (Pf, Of).

Section 3.2 can be applied as in a normal RBM. This technique is known as
in-painting [39], as it consists in filling in missing values of the visible vector 9.

More sophisticated approaches consist in defining a set of conditioning units
that modulate the network weights. The Conditional RBM (cRBM) architecture
consists in simply adding a term to the visible and hidden biases, while in the
Factored Gated Conditional (FGcRBM) model, both the biases and weight matrices
are modified, as detailed in Section 4.2.2.

In the cRBM model, a set of conditioning units c alter the value of the static
biases 2 and b by adding a term

Ad=a+A-c
hb=b+B-c
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where - is the scalar product, A and B weight matrices, and ¢ = (Pf, Of) as for
the RBM in-painting case. 4 and b are referred to as dynamic biases, as their
value depends on the context vector ¢ and will differ depending on the context.

The weight matrix of the visible units of the in-painting model can be sepa-
rated in two parts. One part is associated with the context vector and denoted
B, and the other part is associated with the orchestral frame and denoted W.
Then, the probability distribution of the hidden units given the visible units
becomes

p(h=1lv,c) =c(b+B-c+W-0)

=o(b+W-0)

Hence, we observe that the probability distribution of the hidden units given
the visible and context units is strictly similar to the in-painting RBM case.
However, a major difference between the two models is that the context units
also directly influence the distribution of the visible units through the dynamic
biases 4 in the case of the cRBM.

The FGcRBM allows to dissociate the influence of the orchestra and piano
contexts by modelling them with two separate sets of units. Hence, the condi-
tioning units now represent the orchestra context c = Of while the label units
represent the piano context | = Pf. This implementation is depicted on Figure
7.2. Instead of directly encouraging the activations in the hidden or visible units,
as this is the case for the in-painting RBM and CRBM, here, the multiplicative
influence of the style vector acts directly on the weight matrices of the model.
Hence, the style units can inhibit or favour the correlations extracted by the
sub-graph formed by the visible, hidden and context units.

We mentioned in Section 3.3.1 that a single step of Gibbs sampling was
performed during training. If this proves to be sufficient for estimating the
steepest direction of the gradient, this is not sufficient for obtaining a decent
approximation of the joint probability of the hidden and visible units. In practice,
we observed that 10 Gibbs sampling steps was sufficient.

7.1.2  Feed-forward architectures

Feed-forward neural networks offer an extremely flexible framework for repre-
senting and manipulating various sources of information. Their interpretation
as a composition of functions (see Section 3.1.2) allows to structure the whole
network as sub-graphs, each of them processing a different information. Hence,
the output of each sub-graph can be seen as another representation of its input,
and the term embedding is sometimes used for these intermediate represen-
tations. This modular view proves to be particularly convenient in the case
of projective orchestration as it allows to easily manipulate and combine the
different sources of information.

Hence, the sequences O, O, P<; and P-; are processed by Recurrent
Neural Networks (RNN) (see Section 4.1). We used stacked RNNs composed
by Gated Recurrent Units (GRU) and used the last output frame of the last layer
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Piano score

N
%

OO0 =00

Orchestral score

Figure 7.2: The FGcRBM model applied to projective orchestration. Context units c
represent the orchestral context Of, while the label units I represent the
piano context Pf. The triangle represent the factor units.

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



7.1 PROBABILISTIC MODELS FOR PROJECTIVE ORCHESTRATION 73

: (7, 8)
embedding Ofe —_
Ptcc. :: Cx%zt )CX/S(Zt)

Orchestral [ 1
score
Temporal
del
mode Merge
informations
Piano
embedding
Piano A ()
score p ( Ot ) t
Compute error
embedding function

Figure 7.3: A modular approach developed with feed-forward neural networks. The
different informations from the piano and orchestral scores are processed
by different modules. Past and future events of the piano and orchestral
scores are encoded by temporal models. The piano frame P; is processed
separately by a stack of dense layers and possibly a first 1-dimensional
convolutional layer. To combine the information extracted by the different
modules, affine conditioning is illustrated here.
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as the embedding of the time-series (see Figure 7.3). Different units have been
tested and the results can be found in Section C.1.

The current piano frame P; could have been included in the past and future
information of the piano score and processed in the recurrent modules. However,
we mentioned in the introduction that this information is of the foremost
importance for predicting the orchestral frame, as it strongly conditions the
possible notes in the orchestration. Hence, we purposely dissociate the current
piano frame from the piano time-series and process it separately through a
stack of densely connected layers (see Figure 7.3).

In all feed-forward architectures, Rectified Linear Units (ReLU), relu(x) =
max(0, x), are used in every layer, except in the recurrent units, where sigmoid

function, sigm(x) = HJW’ are used for the activations and hyperbolic tangent,

tanh(x) = %, for the recurrent activations, and in the last layer, where
sigmoids are used to output a value in the range [0, 1].

We saw in Subsection 2.2.2.2 that some generative models for polyphonic
music attempt to model a form of invariance along the pitch axis. This idea
comes from the observations that, first, the transposition of a musical piece
would preserve most of its musical qualities, and second, that similar patterns
can be observed at different pitch heights. This statement is obliterating all
considerations about timbre, as the same musical phrase will produce widely
different effects if played at different pitch heights. However, this assumption
is acceptable for transpositions of a reasonable amplitude, while allowing for
introducing strong structuring elements in a model. In particular, we mentioned
in Section 2.2.2.2 that convolutional layer has been used to implement a form
of transposition invariance in the context of music generation. Hence, we also
evaluated the performances when using a 1-dimensional convolution as the
first layer of the module processing the piano frame P;.

Each sub-network is in charge of processing the most adapted representa-
tion in order to predict the orchestral frame O;. To combine the output of the
different modules, we investigated two approaches: simply concatenating the
extracted representations, or combining them through an affine transformation
as proposed in the FILM framework (see Section 4.2). The affine conditioning
requires to make a distinction between the conditioned and conditioning vari-
ables. Several options are possible here, but conditioning the current piano
frame P; by all the others embeddings seemed a logical choice to us, as P
represents the critical information of the harmonic content. Affine conditioning
is illustrated on Figure 7.3.

Finally, the network outputs a vector il of the same dimension as the orches-
tral frame O;. The values of this output vector i’ are scaled in the range [0, 1]
by implementing a sigmoid function as its non-linearity sigm(x) = H% These
values correspond to the probability of activation of each note in the predicted
orchestral frame p(O; = 1) = h!. Hence, a binary prediction can be obtained by
sampling from a Bernoulli distribution with parameters equal to the network’s
output values, 6; ~ Bernoulli(h").
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7.2 RESULTS

In the previous section, we presented two families of model for addressing the
projective orchestration task: energy-based models and feed-forward neural
networks. The goal of this section is to compare in a very general way the
respective advantages of both approaches, in order to select the architecture
best suited for projective orchestration and further investigate it in Chapter 8.

The goal here is to obtain a first estimation of the capabilities of different mod-
els. Hence, we evaluate various architectures in a relatively simple framework,
which allows for reasonable training and evaluation time. To do so, we rely
on a causal one-step predictive task, as defined in Subsection 5.2.1. We restrict
the piano score information to the single frame P; and discard its intensities.
Consequently, both piano and orchestral piano-rolls have binary values. Besides,
the event-level representation described in Subsection 5.3.2 is used.

7.2.1 Alternate training criterion

In Section 5.3, we observed that the binary cross-entropy and the accuracy do
not rank models similarly. Hence, using the first as a training criterion and the
second as a test measurement may seem dubious. The binary cross-entropy
seems to be the most logical choice in a probabilistic framework. However,
we observed that using the binary cross-entropy for selecting models leads to
qualitatively unsatisfying results 5.3.

Hence, our objective in this subsection is to propose an alternate training crite-
rion. In particular, we believe that emphasizing the impact of the true positives
in the prediction is necessary in the context of highly sparse orchestral vectors.
We investigate four training criteria: directly using the modified-accuracy, a
weighted modified accuracy and two weighted binary cross-entropy.

Their accuracy scores are given in Table 7.1, and the measures are analysed
in the following paragraphs. To gain better insight about the properties of the
different training criteria, their error surfaces in a simplified two-dimensional
targets case can be observed in Figure C.6.

MODIFIED ACCURACY The modified accuracy is equal to

TP

Accuracy_mod(Oy, Or) = 100 TP+ EP+ EN

This is the measure defined in Chapter 5 as an evaluation criterion. Note
that when used as a training error, its opposite value is used. However, the
modified accuracy is a poor training criterion. Indeed, because true negative
are completely removed from the equation, plateaus are created along the zero
targets axes, and the generated orchestration are not sparse enough.

WEIGHTED ACCURACY To alleviate this issue, the true negative term can be
re-introduced in the accuracy measure. To maintain a greater influence of the
true positive terms, we introduce a weighted accuracy measure

TP+ ATN

Accuracy_mod(0r, Or) =100+ 755 P 37N
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where different values of the parameter A will weight differently the influence
of the true negatives.

For large values of the true negative weight (A > 0.02), the model simply
learns silences since it is the optimal strategy (most of the notes are equal to
zero). For small values (A < 0.02), the model learns an optimal combination of
notes on and off, and play that combination disregarding the piano input.

Hence, using the accuracy measure or a modified version with weighted true
negatives leads to a very poor model that predicts a constant vector. Indeed,
the non-strictly convex shape of these function may poorly condition the use of
optimisation algorithms.

WEIGHTED CROSS-ENTROPY To lower the influence of the true negatives
in the learning process, a solution consists in weighting the negative part of
the binary cross-entropy function. This lead to the definition of the following
function

W — Xent = —x.log(p) — A (1 —x).log(1 — p) (7.1)

A grid-search over the value of the parameter led to set A = 0.3. We could
not link this value with a sensible statistic. Indeed, a reasonable value could
have been the ratio between positive and negative values, However, this term is
equal to

positive

— ~ 0.016
negative

PER NOTE WEIGHTED CROSS-ENTROPY A refinement of the weighted cross-
entropy is to weight individually each output unit depending on its mean
activation across the database (see Figure 6.3). Pitches which are rarely played
should have more influence on the positive activation to counter. Hence, we
proposed the following error function

W — Xent = — log(;) x.log(p) — (1 —x).log(1 — p) (7.2)
where g is the mean activation over the dataset defined in Equation 8.1. % is

takes values on [1,00), and the logarithm limits the strong derivative of the
inverse function.

X-ent | M-acc | W-acc | WX-ent | NWX-ent

42.74 | 399 | 449 | 4387 4426

Table 7.1: Best results obtained by a LSTM model mean over a 10-fold validation
procedure. Rows are validation measure and column the training measure.
The colour indicate the how we qualitatively evaluate the results, green being
good, orange medium and red poor. We retained the measures in green for
perceptual test on a group of listeners.

An unfortunate consequence of lowering the negative part of the binary

cross-entropy is that the impact of the false positives is also reduced. As a
consequence, the orchestration become more crowded as too much notes are
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predicted at each time step. The weighted binary cross-entropy suffers from
this bias for both the per-note and standard versions. Figure D.2 illustrates
this effect for the per-note weighted binary cross-entropy on the beginning of
the second movement of the 7" symphony of Ludwig van Beethoven (see the
original on Figure D.1). When diminishing the weight A, this effect becomes
even more tangible (Figure D.3).

Using the weighted binary cross-entropy as a selection criterion did not
produce convincing results, as it can be observed on figure D.4. Using this
criterion, over-fitting is detected after only 1 epoch. When listening at the
generated examples, an important number of notes are completely out of the
harmony defined by the piano score. All these examples can also be observed
and listened to on the companion website *.

Finally, the use of an alternative training criterion quantitatively improved the
results of the models, but caused undesired effects in the generated examples.
Hence, the problem of finding an adequate evaluation measure for orchestral
vectors remains unsolved. In the remainder of this thesis, the pair binary cross-
entropy and accuracy is used for training and evaluating.

7.2.2 Database: building a coherent test set

We used the POD database which has been detailed in Chapter 6. A first
observation is that an important number of instruments (120) are represented
in the entire database. However, most of them scarcely appear in the different
scores. Hence, to avoid dramatically sparse target vectors, which are prejudicial
in a learning context, instruments have been grouped together to finally obtain
12 different instrumental sections (Table B.3 in appendix details the sections).
For each instrument, only the pitches observed in the database are taken into
consideration, reducing the dimension of the orchestral score from 12 x 127 =
1524 to 604, where 127 stands for the usual number of possible pitches in the
MIDI format. The effect of this reduction on the activation ratio of the output
targets can be observed in annex on Figure B.1.

A second observation is that this database covers a relatively wide range of
orchestration styles from different periods (see Table B.1 in appendix for details).
Hence, we believe that the dataset needs to be structured in such a way that
a model can focus on a particular style of orchestration. Fortunately, the POD
database contains all the Symphonies of Ludwig van Beethoven and their
piano reduction by Franz Liszt, which constitutes an important and stylistically
coherent subset. Besides, the scores of this subset have been encoded with
particular care, and the scores are clean from notation errors.

This observation is confirmed when running a leave-one-out training and
evaluation on the POD database. It consists in training a model with all the files
contained in the database except one, which is used for measuring the test error.
It allows to detect outliers scores, which often exhibit issues in the notations.
The leave-one-out evaluation of a RNN model can be observed on Figure 7.4.
Several types of outliers were detected.

1 https://qsdfo.github.io/LOP/results.html#alternate_measures
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Leave-one-out evaluation on POD database
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Figure 7.4: The results of a leave-one-out evaluation ran on the POD database is re-
ported here. Each bar represents the score obtained by the same model on
the unique test file. The colour corresponds to the four different subgroups
in the POD database. The Liszt-Beethoven subset is represented in green,
and show a good consistency. The outlier files were inspected carefully,
and most of them showed pathological encodings, such as a violin vibrato
written as a repeated note

0 25 150
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e files which obtained extremely high scores because of overly repeated
notes. For instance, the most precise way to encode a tremolo in the string
sections in the MIDI format is to write fast repeated notes (see Figure 7.4).

e scores with long percussive sections Indeed, while MIDI allows for en-
coding drums, the encoding used in the different files was not consistent
across the database. This needs to be addressed in a later version of the
database.

e the leave-one-out evaluation surprisingly detected the files that were
stylistically too different from the other files. Hence, the model obtained
very poor results on the three pieces written by Schoenberg or Stravinsky,
which use a widely different musical language than the other composers.

The Liszt-Beethoven subset shows a great consistency in the accuracy score
obtained by the model. Hence, we decided to rely solely on this subset for
testing the performances of the different models. However, all files can be used
for training purposes.

7.2.3 Benchmark

In this subsection, we evaluate the performances of different models belonging
either to the feed-forward or the energy-based family. The results are presented
in Table 7.2, and implementation details are provided below. The codes for
running these experiments is available on Github 2.

A baseline is provided by a Random model which consists in N, independent
Bernoulli distributions of parameter 0.5, where N, is the dimension of an or-
chestral frame (typically 604). Repeat refers to a model which simply repeats
the previous orchestral frame o0;_; as a prediction for O;.

Four feed-forward architectures are evaluated. In the MLP model, both the
piano and orchestral contexts are embedded using stacked densely connected
layers. RNN designates models for which the orchestral context is embedded
with a recurrent neural network. Conv is appended when the piano context is
embedded using a 1-dimensional convolutional layer. FiLM is appended when
the piano and orchestral embedding are combined using the FiLM framework
instead of a simple concatenation.

Three energy based model corresponding to the three architectures we in-
troduced in Subsection 7.1.1 are evaluated: an in-painting RBM, cRBM and
FGcRBM.

To evaluate each model, we rely on a 10-fold evaluation (see Section 3.4) of
the Liszt-Beethoven subset from the POD database. Hence, the training files are
composed by the files not in the fold evaluated, plus all the files not in the Liszt-
Beethoven subset. It is important to perform the split of the database into folds
on the tracks themselves and not fragment of tracks. Indeed, classical musical
pieces are often redundant, especially for long works such as symphonies, in
which themes are often re-exposed and developed. Hence, if the segmentation
in folds is directly made on time frames, there is an important risk that the
same frame occurs both in training and test sets. Besides, due to the important
variability in the database, the 10-fold split has been computed once, and is

2 https://forge-2.ircam.fr/acids/team/leopold/lop
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always the same for all models and configurations. By doing so, we ensure that
the mean score over the folds can be compared between models.

The hyper-parameter space of each model has been searched relying on
the Bayesian framework described in Subsection 3.4.3. 40 points in the hyper-
parameter space were evaluated for each model.

Accuracy (%)

Random 0.72
Repeat 47.91
MLP 42.50
RNN 42.74
RNN-Conv 40.46
RNN-FiLM 12.30
RBM 1.39
CRBM 27.67
FGCRBM 25.80

Table 7.2: Quantitative evaluation for different models. The score displayed is obtained
on the mean score over a 10-fold splitof the database, and the best result
obtained over a 40 configurations of hyper-parameters. The first group are
simple baseline model, composed by a random prediction and a model
which repeat the previous frame. The second group are feed-forward neural
networks, while the third group are energy-based models.

Overall, the feed-forward neural networks obtained better accuracy scores
than the energy-based models. These results are confirmed by the observation
of generated scores3. We mentioned in Subsection 5.2.1 that the orchestral score
needs to be initialised for time indices smaller than the temporal horizon of the
model. Here, the known orchestration is used to seed the first four events.

It can be observed on Table 7.2 that a model which simply repeats the
previous events obtains the best results. An explanation is that a relatively
frequent case in orchestral scores is that a large number of notes are sustained
while few instruments develop the melody (see Figure 7.5).

The fact that the repeat model obtained the best performances is problematic,
and denote a problem either in the data representation or evaluation measure.
The alternate training criteria we proposed in Subsection 7.2.1 did not solve
that issue, and we did not manage to solve that issue in this thesis.

Among the different feed-forward architectures, a simple RNN obtained the
best results. The convolutional layer do not improve the results. The FiLM layer
considerably reduces the performances. Indeed, we believe that the piano and
orchestral contexts both convey equally important informations, and that the
concatenation is the most efficient way to combine the information. Besides, for
obtaining embeddings of the same size, FILM requires more weights, and thus
a more complex training procedure.

3 Energy-based model VS feed-forward neural networks: https://qsdfo.github.io/LOP/results.html#energy_vs_ff
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Figure 7.5: The beginning of the second movement of Antonin Dvoték gt is an example
of overly repeated notes due to the accompaniment section. On top of each
frame is indicated the accuracy score obtained by the repeat model. On
the second frame, there is 7 true positive, and 1 false positive and 1 false

negative due to the melody.
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The influence of the hyper-parameters over the performances of the RNN
model, which obtained the best scores, can be observed in annex (Chapter C).
From this hyper-parameter analysis it is important to underline that relatively
small architectures composed by two stacked GRU layers with a number of
units close to 2000 obtained the best results. Increasing the number of layers and
units reduces the performances of the model. Indeed, the database is actually
rather small (each fold comprises approximately 1500 batches of 128 training
points each, for a total of 192000 points).
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In Chapter 7, we evaluated the performances of different architectures on
the projective orchestration task which has been defined in Section 5.2. We
determined that a relatively simple model based Recurrent Neural Networks
(RNN) was rank the best (see Table 7.2).

In this chapter, we attempt to improve the quality of the orchestration gener-
ated by this basic architecture. Hence, all experiments presented in the following
sections are led using same model. Unless specified, it is composed by a 2 layer
recurrent neural network using GRU units, which embeds the orchestral past
O« and one layer of densely connected units, which embeds the piano frame
P;. These two embeddings are concatenated and passed through a densely
connected layer. ReLU activation function are used.

In the remainder of this chapter, a model designates the types of units, choice
of layers and their organisation, but is not associated with a value for the
hyper-parameters (such as the number of layer or number of units). To refer to a
model and an associated set of values for its hyper-parameters, we use the term
architecture. Hence, when evaluating one given model in different contexts (e.g.
use of training set or generative scheme), the same model name may actually
refer to different architectures, since the optimal value of hyper-parameter will
be different.

In Section 8.1 we evaluate the impact of passing different informations as
input to the network. In particular, the impact of the temporal order, and the dy-
namics and durations of the piano scores on the predictive power of a model are
discussed. In Chapter 6, we mentioned two pitfalls of the Projective Orchestral
Database (POD): class-imbalance, which refers to the fact that notes activation
are sparse and not equally distributed across the different instruments, and the
paucity of data.

In Section 8.2 we attempt to alleviate the first issue using pre-computed
biases, and the second by using purely orchestral scores to increase the number
of examples observed by a model. Finally, we mentioned in Subsection 5.2.1
that two generative schemes could be adopted for orchestrating a piano score:
a causal and a random-walk approach. Both are investigated in Section 8.3.

8.1 INPUT INFORMATIONS

An important aspect when designing a neural networks is to determine which
informations are useful in order to best accomplish the desired task. In the case
of projective orchestration, the temporal order and the dynamics and durations
of notes in the piano score are theoretically important in order to decide the
notes played by the orchestra. We investigate their impact in the following
subsections.

83
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Figure 8.1: Accuracy score obtained by a RNN model on a 10-fold evaluation scheme
for different temporal horizon. The lowest temporal order which obtains an
optimal score is equal to 5.

8.1.1  Temporal order

As defined in Section 5.2.1, the temporal order T of a model defines the length
of the piano and orchestral context fed to a network. The influence of the
temporal order parameter on the accuracy score can be observed on Figure 8.1.
The performances of the model improve with the temporal order until a value
of T = 5. For longer temporal horizon, the performances do not increase, but
remain comparable.

When considering this results, It is important to remember that it takes
place in the event-level framework (see Section 5.3.2). Hence, the actual context
observed by the network will strongly depend on the rhythm of the score
being observed, ranging from 1 beat to several bars. However, in rapid sections
such as a 16™ notes melodic line, a value of 5 would still ensure a scope of
approximately 1 beat, depending on the measure. This value seems small,
but it is actually sufficient for grasping most informations necessary for basic
voice leading. However, the result indicates that the model fails at using longer
temporal relations to inform its predictions.

Note that the same number of hidden layer is used for all architectures, which
may seems to disadvantage longer temporal horizon which would need more
statistical power. However, increasing the number of layers for models with a
longer temporal order did not yield better results.

8.1.2  Dynamics
Intuitively, the intensity in the piano score seems to be of the foremost impor-

tance. Indeed, we mentioned in Section 5.2 how the dynamics of a passage
influence the choice in the instruments used for orchestrating it.
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Performances of the same architecture
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Figure 8.2: (Left) Accuracy score obtained by a RNN model with or without the dy-
namic information. Without the dynamics information, the model obtains
an average score of 42.70%, slightly better than the 42.46% it obtains when
informed with the dynamics. (Right) Influence of the dynamic information.

Dynamics in the piano score are a indicate by a real value between 0 and
1. No pre-processing or normalisation proved to be necessary. The accuracy
obtained by the same model with or without the dynamic information can be
observed on Figure 8.2 (left).

It appears that our architecture fails at using the dynamic information to
improve its predictive ability. This can be explained by the fact that the model
is trained on a one-step predictive task. Hence, the objective of ensuring a
continuous voice leading in the orchestration probably surpasses the dynamic
information. In other words, the voice leading constraint dominates the dynamic
information. This seems logic, as the orchestration of a single frame given all
the surrounding context does not involve the choice in instruments, but rather
to continue the choices made in the initialisation.

8.1.3 Durations

Event-level rhythmic quantization (see Section 5.3.2) has the disadvantage that
the notes duration is no longer represented. However, this information might
be important when orchestrating a score. Indeed, instruments with a sharp and
precise attack might be preferred for rapid sections, whereas slower passages
may admit a larger number of instrument being used with no risk of sounding
clumsy.

To include this information in an event-level piano-roll, a dimension which
encodes the duration of each event in number of quarter notes is added. The
longest duration observed was equal to 9.3 quarter notes. Hence, we normalise
the symbolic durations as

i
=X
where g is the duration in quarter notes and K a normalization constant. Dif-
ferent values of K are tested and the results are reported on Figure 8.2. The
influence of the duration information over the predictive performances of the
model is not significant. Similarly to the case of the dynamics information, we
believe that this is due to the overly constrained framework of the one-step
predictive task.
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8.2 MANIPULATING THE pod DATASET
8.2.1  Pre-computed bias

We mentioned in Chapter 6 that two kinds of imbalance were observed in the
POD database. Between-class imbalance refers to the fact that some instruments
are more rarely played than others, whereas class imbalance refers to the fact
that a given note is rarely played in the whole set of scores, resulting in highly
sparse target vectors.

The alternative training criteria we proposed in Subsection 7.2.1 where a first
attempt at addressing sparsity issues by adding a term in the error function
which favours sparse predictions. Here, we investigate another solution, which
consists in providing to the network the information of the ratio of activation of
each notes before starting the training process. The idea was that by informing
the network about which notes are supposed to be played rarely or not, the
training process should speed-up, and possibly a better score could be reached.

Passing this information can be done via the initialisation of the biases in
the last layer of the network. Indeed, a network designed to perform projective
orchestration uses a sigmoid function in the last-layer in order to output a
vector whose values are comprised in range [0, 1]. These values correspond to
the probability of activation p(O;; = 1) for each note indexed by i (see Section
7.1.2).

Hence, if h'~! denotes the output of the penultimate layer, W the weights
from the previous layer and b the static biases, the probability activation is
given by :

p(O; = 1) = sigm(W.hE"1 + b)

where sigm(x) = 1= is the sigmoid function.

In the absence of any input information (x = 0), a reasonable prediction for
the network would be to output the probability of activation of the different
notes observed over the training dataset

sigm(b) =¢q
with
1

9= 1A
| ‘ (pr) Dirain

h\»—‘

L
Z (8.1)

Then, a reasonable value for the static biases of the predictive layer is
b = sigm~[min(q,€)]

where sigm™!(x) = In({%.) is the inverse sigmoid and € is a small value
preventing passing zeros to the logarithm.

Hence, to reduce the computational load over the network and initialise it in
a state closer to its optimal set of parameters, an idea is to initialise the biases
to the mean activation value of each note. Two options are possible:
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e maintaining a fixed value for the biases b = b in the last layer. This pa-
rameter is not modified during the training process, and all the variability
expressed in the last layer is in charge of the weights W.

e modelling the biases as b = b + blearnapie Where bispinapie is a trainable
parameter. The purpose of this decoupling is to reduce the modelling
effort of the trainable bias to some smalls variations around the pre-
computed mean activation.

The final performances of the models with pre-computed biases are very
similar to the result obtained by models with biases initialised to zero. The
results are 42.77%, 42.66% and 42.47% for for respectively the fixed bias, variable
bias and standard architecture. Besides, no significant speed-up in the training
process was observed when using pre-computed biases, with 19.8 and 18.9
epochs in average before over-fitting against 19.6 with a zero initialisation.

We concluded that the initialisation of the biases with pre-computed value
was useless with the architectures we investigated.

8.2.2  Transposition invariance

The POD dataset contains relatively few data points (approximately 192000
training points depending on the fold), which proves to be problematic in
statistical learning context. A method frequently used to compensate for the
paucity of reference examples is to perform data augmentations. This technique
consists in artificially increasing the number of training points by creating new
valid examples from the one observed in the original database. When learning
on musical sequences, a standard data augmentation consists in performing
pitch transpositions of the observed musical excerpts. The assumption here is
that the transposition of a musical piece constitutes a valid example as well.

In the case of orchestration, pitch translation is a very delicate operation. In-
deed, transposing a whole orchestral score might conduct in instruments being
played out of their tessitura. Besides, instruments” timbre changes depending
on the register, which can affects the whole timbre of the orchestra. Conse-
quently, orchestral effects might suffer from transposition, even in a reasonable
range. For instance, the sound of a given chord might change substantially
depending on whether or not open chords are used for the string sections, and
this occurs for a transposition of only a semi-tone. Finally, pitch transposition
can considerably increase the technical difficulty of a passage for some instru-
ments. After discussing with composers, we decided that a pitch transposition
of three semitones up and down would be the most extreme transposition still
acceptable as a rough approximation.

An other way to introduce a form of transposition invariance is to use
convolutional layers. By replacing the first layer of the piano and orchestra
embedding networks with a one-dimensional convolution, the model should
have the ability to identify the same patterns transposed.

Figure 8.3 compares the accuracy scores obtained when using several ranges
of data augmentation and when replacing the first layer of the same model
with a convolution. 50 hyper-parameters configurations have been ran for each
model.
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Convolution VS Pitch shifting as data augmentation (accuracy)
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Figure 8.3: Comparison of the accuracy score obtained when performing data augmen-
tations of amplitude o, 1 and 3 and a model implementing a 1-dimensional
convolution as its first layer.

The RNN model obtained slightly better results than the convolution model
when no data augmentations are used. However, it can be observed that he
accuracy score decreases when the range of the data augmentation increases.
This can be explained by the fact that when performing data augmentation,
the dimension of the target orchestral vector increases. Indeed, the tessitura of
each instrument is computed on the dataset, so that the orchestral vector has
the lowest possible dimension. For example, considering the simple case of 4
instruments of range 20 pitches each, the dimension of the orchestral vector is
80, but if a data augmentation of 3 semi-tones up and down for each instrument
is allowed, the orchestral vector now has a dimension of 80 +4 * 3 x 2 = 104.
Hence, the additional information provided by the data augmentation does not
counterbalance that increase in the dimensionality.

8.2.3 Scheduled learning

We mentioned in Chapter 6 the stylistic inconsistency of the dataset. Many
styles of orchestration have been developed at different periods. To be able to
extract an orchestration style, we believe that it is necessary to have a coherent
dataset.

We mentioned in Subsection 7.2.2 that the models are evaluated solely on
the subset of the POD database composed of Beethoven’s Symphonies and
their piano reduction performed by Liszt. However, the other files not in the
Liszt-Beethoven subset were used as training data, despite the fact that the
orchestration style can be different, and the encoded information of poorer
quality. Hence, how does the presence of these file in the training set impact
the performances of the learnt model ?
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On the other side, deep learning models usually require a large amount
of data to efficiently infer parameter values. However, the POD dataset we
presented in Chapter 6.1 is rather small. To increase the size of the dataset, we
try to take advantage of the large quantity of orchestral files contained in the
SOD dataset which is composed solely by orchestral files, but not associated
with a piano reduction (see Section 6.1). Hence, we attempt to artificially create
piano scores by reducing all the different instrumental sections in a single piano
score (see Figure 8.4), and hypothesize that this rough approximation of a piano
reduction is sufficient to be used as a warm-up training set and initialise the
weights of a model in a good setting before fine-tuning it on a dataset of better
quality.

Here, we investigate how to schedule the learning process by progressively
reducing the training dataset to smaller consistent ensembles. We define the
three following subsets:

SUBSET A consists in Beethoven symphonies and their reductions for piano by
Liszt. It contains 34 pairs of files, each file being a whole movement of
symphony.

SUBSET B is composed by 162 pairs of files containing clean and manually
checked examples of orchestrations. However, they cover a wide periods,
from baroque pieces to a few scores from the XX century.

SUBSET C contains 5867 orchestral scores of famous classical pieces. However,
they cover a wide range of styles.

To compare the effect of the different subsets on the performances of a model,
we propose to train a same architecture using three different training strategies,
while evaluating them only on the smallest subset A which corresponds to the
Liszt-Beethoven dataset. The strategies are:

e training is performed only on A.
e the model is pre-trained on B and fine-tuned on A.
e the model is pre-trained on C then on B and finally on A.

During the pre-training steps, a validation subset is extracted from the pre-
training dataset to detect over-fitting. A 10-fold split is performed on the subset
A. However, the same pre-trained model is used for all folds of the subset A.
This is done to avoid running several times the pre-training step, which can be
particularly long (more than 10 hours) in the case of the subset C.

Figure 8.5 summarizes the results obtained for the different training strate-
gies. The best strategy is to train on both B and A. Hence, it seems that the
information contained in the subset B helps the model to improve its predictive
capacities over the subset A. However, pre-training on the dataset C does not
improve the performances. We believe that this is due to the brutal method we
used for generating the piano reductions. Hence, the information grasped by
the model on these examples is overly simplistic and does not help the model
to be accurate on more subtle examples. A confirmation of that assumption
is the particularly high validation score obtained by the model at the end of
the pre-training step on the subset C, which is equal to 73.73% to be compared
with the maximum score of 42.74% obtained on the subset A.
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Figure 8.5: The training process can be scheduled by presenting successively different
subsets of the database. The idea is to benefit from a large collection of files,
while preserving a stylistic consistency by progressively focusing on a more
coherent subset.

8.3 GENERATION SCHEMES

By observing the proposed orchestrations, it appears that there is a lack of
continuity inside the voices, and the model partly fails to ensure a satisfying
voice leading. For instance, in Figure D.2, the Oboe, Bassoon and Trumpet
sections exhibit particularly fragmented melodic lines.

A first hypothesis was that the discontinuity might be due to a form of imbal-
ance between the influences of the orchestral context and piano embeddings. In
the architecture we proposed, the concatenated embeddings and prediction are
directly connected and not separated by any intermediate layer. This allows for
directly observing the influence of each input over the prediction, through the
observation of the weights connecting these two last layers Hence, we thought
that applying a different weight decay penalty for each part of the weight matrix
could be used to enforce a stronger influence of one of the two embeddings.
However, by observing this weight matrix (see Figure C.7), there does not
seem to be any imbalance in its structure, suggesting that both information are
equally weighted.

Another approach we investigated in this section consists in trying to improve
the continuity in the proposed orchestrations by adopting alternative generation
schemes. Several variants are proposed, but the main idea is to "smooth" the
orchestration by performing several generative passes over the score, instead
of a single forward pass over the successive frames of the piano score. Indeed,
all the model presented in the previous section relied on the causal generative
scheme introduced in Subsection 5.2.1. However, in that same section, we also
mentioned the possibility to orchestrate the frames of a piano score in random
order, by performing a random-walk over the time indices. We insisted on
the fact that the exact framework can be used for training such model, as it
also relies on a one-step predictive task. The main difference with the causal
generation being that the future orchestra O.; is now used for predicting
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the orchestral frame O;. More precisely, we propose four generative schemes,
combining in different ways the causal and random-walk generative processes.
We describe them in the following subsection.

8.3.1  Algorithms

FORWARD A purely causal generative scheme in which the orchestration is
generated in a single forward pass. Orchestral frames are generated following
an incremental order of the time indices (see Algorithm 1 in Section 5.2.1).

FORWARD-BACKWARD By simply reversing along the time axis all training

sequences, the exact same architecture as the one developed for building a causal

model can be used for building an anti-causal model. Such model generates

an orchestration by browsing time indices in decremental order, starting from

the last index. By combining a causal and anti-causal model, forward and

backward generative passes over the piano scores can be performed, in order

to successively refining the orchestration. After initialising the orchestral score

(discussed below), the generation can be described by the following algorithm
for pass € range(1,Ky,) do

for t € range(T,L) do

0f = 0p-T:—1

pe~ f(pi,0F)

end

ort e range(L—T,1,—-1) do

0f = Opy1:t4T

pr~ f(pi,05)

end

——

end

where T is the temporal order of the model, range(L — T,1, —1) decrements
indices between L — T and 1, and K b denotes the number of forward-backward
pass. Different values of this parameter have been tested and discussed in
Subsection 8.3.3.

RANDOM-WALK This strategy is the direct application of the random-walk
generative process described in Subsection 5.2.1. The time indices of the or-
chestral frames generated follows a random-walk (see Algorithm 2). The total
number of sampling steps performed is a parameter we denoted N;ample.
However, a more relevant parameter is the average number of pass over a
single frame, which we denote K,;,. Both parameters are linked by the following
equation Nsample = K, * L, where L is the dimension of an orchestral frame
(604 in most of the aforementioned training context). Different values of the
parameter K, are discussed in Subsection 8.3.3.

FORWARD AND RANDOM-WALK We mentioned in Subsection 5.2.1 that
the entire orchestral score needs to be initialised in the case of the random-
walk generative process. We speed-up the convergence of the random-walk
generation, we investigate a strategy which consists in first initialising the
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orchestral score by performing a forward pass.
for t € range(T,L) do

0f = 0t-Tit1

pr ~ f(pi,0t)

end

for pass € range(1, K, * L) do

t~U(1,L)

0 = (011,04 141 7)

or ~ f(P,0;)

end

where U(1,L) denotes the uniform distribution over the interval [1, L].

8.3.2 Initialisation

All four approaches require to initialise parts or the entire orchestral score, as
depicted on Figure 5.2. So far, we used the known orchestral score as a seed for
the generation, which greatly simplified the task. However, when orchestrating
an new piano score for which no existing orchestration has already been
proposed, such initialisation seed is not available.

We explained in Subsection 5.2.2.2 that both the causal and random-walk
generative processes require the initialisation of a fragment of the orchestral
score. The causal generation only needs the first T frames of the orchestral
score, where T designates the temporal order of the model used. However, the
random walk process requires the initialisation of the entire score. In the last
generative scheme we proposed in the previous subsection, the forward pass
performed before the random-walk generation acts as an initialisation.

Three initialisations are compared

e a zero-initialisation, where all unknown orchestration simply takes the
value 0.

e constant initialisation with a value equal to 0.1 or g ~ 0.01, with g the
mean activation per note defined in Equation 8.1.

e random initialisation from a Bernoulli of parameter 0.1 or 0.01

8.3.3 Results

A quantitative comparison of the different generative schemes is not really

possible here as the tasks are not defined in the same manner. In particular,

the accuracy scores of the random-walk models evaluated on a single-frame

predictive task are much higher than the scores obtained by causal models.

Indeed, the orchestra contextual information in the case of the random-walk
model is defined as of = (0;_1.4_1), 0t11:44n])- By consequence, for a same RNN
architecture, a causal model obtains an accuracy score of 53.45% whereas the
same model obtained a score of 42.74% using a causal generative scheme.

Orchestrations of Liszt reduction of Beethoven 7" Symphony using different
generative schemes can be downloaded from the website *.

1 https://qsdfo.github.io/LOP /results.html#generation_strategies
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Random and constant initialisation with an high parameter value of 0.1
generated too crowded orchestrations. This was to be expected, since orchestral
vectors are supposed to be sparse. Zero and constant initialisation with a low
parameter value of 0.01 produced similar results. Indeed, a very low constant
value of random sampling parameter is not significantly different from a zero
initialisation, and eventually the three initialisations lead to similar results.
Random initialisation does not seem adapted as it can severely mislead the
model by indicating completely wrong orchestration. The conclusion is that a
simple zero initialisation is adapted for all generative schemes.

More surprisingly, the four generative schemes led to qualitatively similar
results. Increasing the number of pass in the forward backward generation, as
well as in the correction model did not improve the quality of the proposed
orchestration. It even tended to generate too sparse orchestration. Indeed, the
sparsity observed in the training orchestral vectors pushes the model to output
sparse vectors. Hence, notes are switched off after each successive pass.

We believe that the lack of improvement observed with the more sophisticated
generative schemes may be due to an important difference between the task
on which the model is trained and the actual generative context. A possible
solution is to schedule the learning process by progressively reducing the
amount of information passed when performing teacher forcing. By defining
a parameter in [0,1] which defines how much information is used. We are
currently investigating this solution, but no satisfactorily solution has been
obtained for now.

8.4 CONCLUSION

In this chapter, we further investigated the performances of the feed-forward
neural networks on the projective orchestration task. First, we studied the
impact on the predictive power of a network when passing it more information.
The model we developed are not able to take advantage of the additional
information passed to the network. Indeed, the one-step predictive task we
proposed is already extremely constrained, while these information do not
further specify the set of possible notes. Hence, we believe that these additional
informations might not be useful in the restrictive framework of one-step
prediction. Actually, we believe that these informations would be of the foremost
importance at precise locations in the score, such as at section changes. However,
the end-to-end approach we adopted is unlikely to be able to infer the structure
of the piece. We evoke a possible solution in future works (see Chapter 12.2).
The POD is a challenging dataset, which is constituted by sparse target
vectors. We proposed to implement pre-computed biases in order to inform
the model of the overall probability for each note to be played, but it did not
improved the results. Besides, the POD database covers a wide range of epochs.
We propose to evaluate the performances of a model on a restraint consistent
subset composed by Beethoven Symphonies and their piano reduction by Liszt.
While evaluating different training schedules which consists in presenting
successively different subsets, and tried to include a larger purely orchestral
dataset (SOD) (see Chapter 6). The examples contained in the SOD database
did not helped the model to obtain better results, probably because of the crude
method we used for automatically generating the piano reductions, which
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consists in mapping the notes of all instruments on a piano score. However,
reducing the training material only to the Liszt-Beethoven subset did not yield
better results. Hence, the other scores present in the POD help the model
increasing its predictive performances over Liszt-Beethoven subset.

Finally, we observed a lack of continuity in the orchestration generated by our
system. In an attempt to alleviate this issue we investigated different generative
schemes. Notably, we proposed procedures which perform several passes over
the generated orchestration in order to successively refine it. However, none of
the more sophisticated generative schemes proved to be better than the most
simple causal generative scheme, using a zero initialisation.

From these experiments, we had the feeling of a glass ceiling over the per-
formances. Our belief is that the one-step predictive task we defined is rather
constrained. However, few data are available. Hence, we believe that models
should be kept as simple as possible, but that they should be more informed.
In the next chapter we present an attempt to propose such architecture.
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Among the examples generated by the RNN model investigated in Chapter
8, a number of notes would be considered as errors in the stylistic context of
the classical period. Figure D.2 shows an example of a problematic semi-tone
appearing in one instrumental section. This observation illustrates the fact that
the model predicts each note without taking the other generated notes into
consideration. Indeed, by using a sigmoid activation in its last layer, a feed-
forward neural network model ht independent Bernoulli distributions, where
hl is the last layer dimension (see Subsection 3.3.1). However, even though all
output units are conditioned by the same penultimate layer h-~!, they are not
conditionally dependent. This assumption may not be adapted in a musical
context, as the notes of a same chord are strongly dependent from each others.
In Section 4.3, we introduced the NADE framework which has been developed
for modelling any joint probabilities of a set of variables. Hence, in Section
9.1, we explain how to apply the NADE framework in the case of projective
orchestration. Then, we detail how the inference mechanism of NADE can be
used for injecting musical knowledge in Section 9.2.

9.1 APPLICATION TO PROJECTIVE ORCHESTRATION

NADE has originally been designed for purely generative model. However, the
flexibility of the framework allows for easily combine various sources of infor-
mation. Hence, conditioning in NADE can be simply achieved by concatenating
the condition information to the input vector.

In the case of projective orchestration, the conditioning information is given
by the piano and orchestral contexts, that we denoted p; and Of in Section
5.2. These informations can be embedded by using a neural network before
being concatenated to the present orchestral vector 6; which is fed to the NADE
network. Hence, the exact same NADE procedure as the one described in
Equation 4.11 can be applied by simply modifying the input

hO:(x®m0<d , My, , emb) (9-1)

This process is illustrated on Figure 9.1.

An efficient training procedure, called Orderless Deep NADE (ODNADE),
consists in randomly sampling an ordering and an order (see Section 4.3).
However, during the generation process, each unit of the predicted vector
has to be sampled successively. Hence, the generation, ran at each validation
step, requires to perform a number of forward passes equal to the output
dimension. It rapidly becomes the time bottleneck of the training process for
high-dimensional spaces, such as orchestral vectors.

Two networks have been evaluated for embedding the piano and orchestral
context. A dense multi-layer architecture, denoted NADE-MLP, and a Recurrent
Neural Network, denoted NADE-RNN. Note that this embedding is shared
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Figure 9.1: The NADE framework can be applied to perform projective orchestration
by concatenating the embedding of the piano and orchestral contexts to the
orchestral vector O;.

across all orders, and needs to be computed only once at generation time. Hence,
the complexity of the embedding network does not impact the generation time.

9.2 INFORMED ORDERING

The piano-roll representation implies that a prediction has to be made for all
possible notes of the orchestra, whereas most of them are actually extremely
unlikely to be played, given the harmonic context of the piano score and other
notes in the orchestral frame. Determining a relation between the notes con-
tained in the piano frame p; and the notes allowed in the orchestral scores can
be defined by hand, relying on musical theory. However, this method requires
to be adapted for each different style of orchestration. A more automatized way
is to count the number of co-occurrences between all piano and orchestral notes.
The co-occurrence matrix CP? indicates for each pair of piano and orchestral
note if they appeared simultaneously in the training database. Hence, for

ClY =1 if ¥p0)epm Lt (Pe)i-(00)) > 1

V(i,j) € [1,Ny| x [1,N,]|,
D BN NG 7

(9-2)

The masking mechanism proposed in NADE allows to easily enforce orches-
tral units to be set to zeros during the generation process. Indeed, the notes in
the orchestral vector which have never been observed in the training set given
the current piano score can automatically be set to zero, and considered as
known. Hence, for a piano frame p;, the mask can be initialised to the value
m=1-— (pt)T.CP", since the scalar product between the transposed current
piano frame and the co-occurrence matrix indicates the possible notes in the
orchestral vector. The co-occurrence matrix can be observed in Figure 9.2 ().
Then, the remaining indices to sample correspond to the values equal to zero
in the mask, and are browsed in a random order.
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Figure 9.2: The piano and orchestral notes co-occurrence matrix can be used to auto-
matically mask out orchestral units before starting the generation step (red
frame and arrows). During the generation, inter-orchestral co-occurrences
(blue frame) can be used to mask other orchestral units each time an orches-
tral unit has been predicted (blue arrows).

Note that this procedure does not speed up the generation. Indeed, since the
ordering of the indices to be sampled is now dependent on the piano frame py,
the generation cannot be performed over a batch of inputs any more.

The same principle can be applied with the co-occurrences of notes in the
same orchestral frame. Each time an note is predicted in the orchestral vector
on, the other notes which never occurred simultaneously in the training data
can be automatically masked out. The inter-orchestral co-occurrence matrix C*
is defined by

00 =1 | | i(0r); > 1
i e (N 7 e 00
CZ-,]- =0 else

9:3)
and can be observed in Figure 9.2 (blue frame).

Whereas the piano to orchestral co-occurrences are used to initialise the
mask before the beginning of the generation process, the inter-orchestral co-
occurrences are used along the NADE inference procedure, each time a note is
predicted to be played.

9.3 RESULTS

The results obtained by different NADE architectures are compared in Table 9.1.
In Section 4.3, we detailed the ensemble of NADE architecture, which consists
in using the mean of several orderings as a prediction at generation time.
The results presented here are obtained by combining 5 orderings randomly
sampled.
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Accuracy (%)
RNN 42.74
NADE-MLP 40.78
NADE-RNN 43.36
NADE-informed 40.53

Table 9.1: Accuracy scores obtained by different architecture derived from the NADE
framework. All architectures are similar, the RNN part being composed of
two layers of 2000. The results are the mean score obtained over a 10-fold
evaluation.

The NADE-RNN slightly improves the performances of the model. However,
qualitatively, the results are almost the same. The orchestrations generated by
the different NADE models can be downloaded on the companion website
of the thesis '. However, we believe that we did not manage to completely
take advantage of the NADE framework. Indeed, by observing the weights
connecting the two last layers, it appears that the network does not seem to use
the mask information (see Figure C.8). However, that information is crucial to
distinguish between the notes which have been set to zero or the notes which
are not yet predicted. Hence, we believe the performances obtained here do
not reflect fully the potential of the NADE architecture and plan to further
investigate it.

Besides, the informed ordering did not improve neither the scores obtained
by the model. The co-occurrence matrix was a first attempt at embedding
theoretic knowledge in the NADE framework, but it does not seem to be
adapted. Indeed, the co-occurrence of a piano and orchestral note do not prove
that the piano note conditioned the presence of the orchestral note, which could
rather be associated to another note of that same piano vector. Using the ratio
of co-occurrence and applying a threshold over that value could alleviate this
issue, but with the risk of completely forbidding notes which are rare, but
extremely relevant in particular contexts. Finally, we believe that a very careful
rule-based masking could eventually be a better solution, that we are currently
investigating.

Enforcing theoretic musical knowledge in a neural network by directly alter-
ing its sampling process may seem dubious for two reasons. Indeed, because
these methods are often praised for allowing agnostic approaches of a problem.
However, the piano-roll representation may not be suited for tackling this task,
as the model has to make a prediction for each notes in the orchestral vector,
whereas the piano score actually strongly constrains the choice of possible
notes. Hence, when trying to model a particular style of orchestration, refusing
to use the musical rules associated with this style deprives the model from
a primordial information. In particular, the paucity of data available in the
database needs to be somehow counterbalanced with additional knowledge
and assumptions about the data structure.

1 https://qsdfo.github.io/LOP/results. htmI#NADE
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THE LIVE ORCHESTRAL PIANO ARCHITECTURE

In this chapter we describe the Live Orchestral Piano (LOP), a system for per-
forming the live projective orchestration of a piano input played by a human
performer. The Max/MSP patch we developed to that purpose is detailed in
Section 10.1, while the constraints introduced by the real-time framework over
the neural network performing the orchestration are detailed in Section 10.2.

Beside the recreational interest of developing this kind of real-time system
for orchestration, it allows to rapidly evaluate the different architectures inves-
tigated. Indeed, by simply plugging a trained model in this system, we can
directly test its capacity to orchestrate a piano input. Hence, the LOP provides
an interactive way to test a model, while avoiding the tedious task of writing
a musical score using an edition software for generating the orchestration of
original scores.

10.1 MAX/MSP IMPLEMENTATION

In this section, we detail the implementation of a Max/MSP patch for performing
the orchestration of a MIDI piano input in near real-time.

MIDI is primarily a communication protocol for electronic instruments (see
Section 2.1.2), and the output of a MIDI piano can easily replace the MIDI scores
we manipulated throughout this work. Max/MSP is a software for implementing
real-time transformations over flows of audio or symbolic data, which provides
a convenient way to retrieve and process that information. In our proposed
implementation for the live orchestration of a piano input, a Max/MSP client
collects the notes played on a MIDI piano keyboard and request its orchestration
to a Python server which performs a forward pass in a neural network. The
output of the neural network is a vector representing an orchestral frame,
which is sent back to the Max/MSP patch to be rendered as an audio waveform.
To do so, a Virtual Studio Technology (VST) plug-in for the rendering of
orchestral sounds is embedded in the Max/MSP patch. We used HALion". The
communication between the Max/MSP client and the Python server is based
on the Open Sound Control (OSC) protocol ?. OSC is a communication protocol
for computer and electronic instruments, and is a more modern equivalent of
MIDI. Figure 10.1 depicts the workflow of the system.

The sequence of notes played by a human performer needs to be converted
into a sequence of vectors. A vector is created by buffering all the MIDI events
occurring during a short period of time, usually a 32" note, using a tempo pa-
rameter defined by the user. The buffering mechanism is here to prevent small
delays occurring when the finger of the performer does not hit the keyboard ex-
actly at the same time while playing a chord. A vector is constructed only when
MIDI events are received by the Max/MSP client. Hence, the communication

1 https://www.steinberg.net/en/products/vst/halion_und_halion_sonic/halion.html
2 http://opensoundcontrol.org/introduction-osc
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Figure 10.1: The Live Orchestral Piano (LOP) is a system for performing real-time or-
chestration of a piano performance. The system consists in a Max/MSP
patch which receives the output of a MIDI piano keyboard, sequences it,
and for each frame, requests its orchestration to a Python server which
implements an already trained neural network. The network performs a
forward pass and sends its output back to the Max/MSP patch, who uses
it for displaying a musical score and to be rendered as an audio signal.

between the server and client is done asynchronously, and the client requests
an orchestration each time a buffer is ready.

From the user perspective, the Live Orchestral Piano takes the form a
Max/MSP patch whose interface can be observed in Figure 10.2. A musical
score displays both the piano input and the generated orchestration. The neural
network used by the Python server to perform the orchestration of the input
piano frames can easily be modified by selecting an already trained architecture
from a drop-down menu accessible in the Max/MSP patch. To convert the infor-
mation of the probability activation into binary values, either sampling from a
corresponding Bernoulli distribution, or selecting all the notes above a certain
threshold can be used. In that later case, the threshold value can be modified
on-line, resulting in more or less crowded orchestrations. A tempo parameter is
needed for quantifying the durations written on the displayed musical scores.
Its value can be modified by the user, and a metronome activated or not.

10.2 REAL-TIME GENERATION

In this section we detail the neural network architecture implemented on the
Python server side.

10.2.1  Forward generation

In this section we present the type of model which can be implemented on the
Python server. The framework introduced in Chapter 5 can easily be adapted
to real-time constraints. Indeed, by relying solely on the past information for
defining the piano and orchestral contexts, a causal generative model is adapted
to real-time constraints (see Figure 10.3). The orchestral score is initialised
with zeros for time indices smaller than the temporal order, as we observed in
Section 8.3 that it obtained convincing results.
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Figure 10.2: The Max/MSP interface of the Live Orchestral Piano allows to see both the
piano input and the generated orchestration on a musical score generated
as the user plays (green frames). Different models trained beforehand can
be loaded in the Max/MSP (red frame).
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Figure 10.3: A piano vector is built each time a MIDI event is received by the Max/MSP
patch. For the Python server, these vectors are processed in the event-
level framework, thus dropping the duration information. The real-time
framework requires a causal generative scheme to be employed, and zero-
initialisation is used for unknown orchestral frames.
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10.2.2  Event-level representation

The event-level representation is particularly adapted to the asynchronous
communication scheme we established between the server and client sides.
Indeed, the buffer vectors collected from the MIDI keyboard are sent to the
Python server every time an event is detected, but not necessarily at regular
time intervals (see Figure 10.3). Hence, in the event-level framework, the Python
server side simply needs to keep track of the successive buffer vectors sent by
the Max/MSP client and process them as they arrive, with no information about
their absolute time relations.

10.2.3 Time constraints

The forward pass in the neural network needs to be fast enough so that the
performer does not notice a delay between his playing and the production of
the sound. A forward pass in a RNN model composed by 2 layers of 2000 units
each implemented with the TensorFlow library takes less than 250 milliseconds
on the 2,6 GHz Intel Core i5 processor.

For musical applications, up to 20 milliseconds of latency can be considered
insignificant. Hence, our system is above that limit and, thus, is not fast enough
for being called real-time. However, we experienced that it is already sufficiently
reactive for providing the user with an interesting experience.

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



Part VI

CONCLUSIONS

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



[ December 4, 2018 at 16:41 — classicthesis v4.6 ]



CONCLUSIONS

In this work, we proposed to address for the first time the automatic projective
orchestration of a piano score in the symbolic domain. We investigated statistical
learning approaches, and more particularly neural networks models.

A first step was to gather a collection of piano scores and their orchestrations
by famous composers in the MIDI and MusicXML formats. As the files were
collected from various sources, important efforts were dedicated to establishing
a uniform nomenclature for the instrumentation. Besides, a method for auto-
matically aligning a piano score and its orchestration was proposed, to correct
the structural differences that sometimes appeared between the respective files.
This resulted in the creation of the Projective Orchestral Database (POD).

Then, a formalisation of the projective orchestration in the context of statisti-
cal learning was proposed, along with an evaluation framework. Both are based
on a one step predictive task, which consists in predicting a single orchestral
frame knowing the surrounding piano and orchestral contexts. The genera-
tion of a complete orchestration can then be performed in a frame-by-frame
manner. Then, to assess the performances of different models on the projective
orchestration task, we developed an evaluation framework similar to those
derived for polyphonic music generation. We compare two evaluation metrics
traditionally used for evaluating the predictive performances of a model, the
binary cross-entropy and the accuracy, and conclude that the accuracy is more
adapted in the case of orchestration.

In this framework, we implemented and evaluated several algorithms belong-
ing to two families of models: energy-based models and feed-forward neural
networks. In our proposed evaluation framework, feed-forward neural net-
works appeared to be the most suited architecture for addressing the projective
orchestration task.

Hence, we decided to focus on neural networks models and investigated
different solutions for improving their performances. A first attempt consisted
in passing more information to the network, by providing the dynamics and
duration of the notes, which are important parameters for a human orchestrator.
The results were not improved and showed the inability of the architecture
that we developed to take advantage of these informations. Our belief is that
this extra knowledge is not useful for a one-frame predictive task, because it is
already strongly conditioned by the contextual information of the piano and
orchestral score.

Orchestral vectors are highly sparse, and the ratio of activations strongly
varies depending on the instrument and pitch. To alleviate this issue, we
proposed to use pre-computed biases in the last layer and alternative training
criteria. These techniques quantitatively improved the performances of the
models, but undesirable effects occurred on the generated orchestration. In
particular, the reduced influence of the false positives led to more crowded
orchestration.
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The POD database covers a long period of time and consequently various
styles of orchestration. We decided to focus on trying to model a stylistically
coherent subset of the whole database, composed of Beethoven’s Symphonies
and their reductions by Franz Liszt. We investigated different training strategies
consisting in presenting as training material successively more reduced subsets.
We concluded that there is a trade-off between observing files from various
origins, which may also bring information about the style we attempt to imitate,
and maintaining a stylistic consistency in the dataset.

In the examples generated by our proposed models, we observed a lack
of continuity in each instrumental voices. In order to alleviate that issue, we
investigated different generative schemes which perform several passes over the
generated score. Causal and random-walk processes were combined in various
manner. However, the most simple forward generation with a zero initialisation
led to the most satisfying results. We believe that this is due to the important
differences between the training process and more sophisticated generative
schemes. Indeed, teacher forcing is used during the training step. The extremely
rich information provided to the model greatly reduce the complexity of the
prediction. However, it is not accessible at generation time.

The observation of aberrant co-occurrences of notes in a same chord in
the generated orchestration led us to try to introduce conditional dependen-
cies between the notes of a same orchestral vector. The Neural Auto-regressive
Distribution Estimation (NADE) framework provides an elegant way to model
joint distributions while relying on an efficient implementation based on feed-
forward neural networks. We proposed an informed NADE process in which
notes in the orchestral score are automatically masked out given the piano score,
and the orchestral notes already predicted at a given moment. In an attempt
to maintain an agnostic approach of the problem, we tried to automatically
infer the masking rules from the data. However, the crude approach we used
did not lead to convincing results, and discussed about the idea of enforcing
theoretic music knowledge specific to the style we are trying to model, which
might yield better results.

Finally, we proposed a system for the real-time orchestration of a piano
performance. The proposed system is based on a Max/MSP server which
receives the output of MIDI piano keyboard and request its orchestration to a
Python client which implements a neural network previously trained on the
projective orchestration task.

The ensemble of this work constitutes a first attempt at performing the auto-
matic projective orchestration of a piano score. The quality of the orchestrations
generated by our system are still far from being convincing, but they rather
define a baseline against which other models and approaches can be compared
in the future, and draw directions for the future works which we present in the
next chapter.
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12.1 SEQUENCE TO SEQUENCE

We observed a form of glass-ceiling over the performances of the different
approaches we investigated. We believe that this is partly due to the piano-roll
representation we used for the piano and orchestra scores. Indeed, it creates
high-dimensional sparse vectors which proved to be challenging in a learning
context. Hence, we believe that a more structured representation can be found,
with stronger assumptions over the shape of the prediction. A possibility would
be to represent each orchestral frame as a list of triplets containing the pitch-
class, octave and instrument name for each note. Using this representation,
a sequence-to-sequence model, similar to the one used for neural translation
tasks [5], can be used to predict a single frame (see Figure 12.1). The softmax
cross-entropy function that would be used in this framework contains much
more information about the structure of the data than the binary cross-entropy
function we used in this work. Similar approaches have been successfully
applied to music generation [48] and arrangement for piano [34].

To model temporal relations using this data representation, a bi-directional
RNN can be used and recurrent connections deployed over the final state of the
piano embedding. This idea is depicted on Figure 12.1.

12.2 DETECTING SECTIONS CHANGES

Orchestrating a piano score necessitates a thorough understanding of its struc-
ture. In particular, a temporal segmentation of the musical discourse in structur-
ing elements seems important in order to determine whether the orchestration
should ensure a smooth and continuous voice leading inside each instrument
section (in the middle of a musical phrase), or rather search for discontinuity
in the instrumentation (for example at the beginning of a new section, or if
a sentence is repeated twice). The approaches we proposed in this work lack
this crucial information, and we do not believe the end-to-end approaches we
investigated would be capable of learning to detect such structures. Musical
analysis is a complex discipline and leading a thorough analysis of a musical
piece demands a wide knowledge. However, we believe that unsupervised
methods could be used for teaching a model to extract useful informations
about the structure of a piece. Indeed, a neural network trained for polyphonic
music generation can be used to build a curve of "entropy" of the piece. This
entropy curve would be defined by measuring the prediction error of the model
on each frame (see Figure 12.2). Hence, high error frames could indicate brutal
changes in the musical discourse, whereas extremely low errors may indicate
repetitions or a steady structure. Also, variations in the dynamics, or in the
tempi could be used to detect important structures.

Such entropy curve could be used in several manner. A first possible solution
would be to pass the entropy value associated with the piano frame as an input
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A symbolic frame can be represented as a list of notes. On the figure, the pi-
ano frame P; contains 3 notes, and is orchestrated with an orchestral frame
O; containing 6 notes. A given note is represented by the concatenation
of three vectors representing the pitch-class, octave and instrument. The
interest of this representation is that each vector is now a one-hot vector.
Hence, the last layer can implement a softmax function which conveys
more information about the structure of the output than independent
Bernoulli. Besides, each one-hot vector has a limited dimension (12 for
the pitch-classes, 8 for the octaves and 12 for the instruments, using the
instrumental simplifications we used in LOP). Using this representation
(blue frame), a sequence-to-sequence model can be used, each frame being
consider as a sequence. Time dependency can be ensured by conditioning
the piano embedding at time ¢ under the value of the piano embedding
at time t — 1. Note that piano and orchestral frames at previous time step
(dotted circles) do not necessarily contain the same number of notes, which
is made possible by the sequence-to-sequence framework.
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An entropy function can be computed over the piano score. Depending
on the value of the entropy, a different model could be used. The red part,
associated with an important change in the score would be orchestrated
by a model which does not attempt to ensure a continuous voice leading
for each instrumental section.
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to the network performing orchestration. If the network manage to efficiently
use this information, it should adapt its behaviour depending on the degree of
uncertainty of the frame being orchestrated. A second solution would be to use
different models depending on the entropy value.

In particular, a model specifically tailored for orchestrating high-entropy
frames, could rely on a different paradigm than the one-step predictive frame-
work we proposed in this work. Indeed, these frames would ideally be associ-
ated with important structural changes. Thus, it can be the ideal location for
inserting interactivity by asking the user for a particular tone colour, or to select
the instruments to be used. Hence, more interactivity with the system could be
obtained by requesting the user to provide such inputs every time the system
hits a high-entropy frame.

12.3 MULTI-MODAL ARCHITECTURES
12.3.1 Metric learning embedding

A major pitfall when attempting to model symbolic sequences is that the usual
distances (such as the L2 norm) used to compare two frames of a piano-roll
representation do not account for the perceptive proximity between the two
corresponding sounds. This is particularly true in the case of orchestral music,
where various combinations of instruments, and thus widely different piano-
roll representations, can create very similar sounds. Hence, we believe that the
symbolic distances used to train and evaluate models are not relevant. Ideally,
two musical symbols should first rendered as audio waveform, and compared
in this modality. However, this is both time consuming and inadequate in a
statistical learning framework as the rendering operation is not differentiable.
A possible solution consists in creating an embedding space for the symbolic
representation in which geometric and perceptual distances are linked.

Building such space can be achieved by enforcing symbolic vectors which
produce perceptually similar sounds to be mapped to points which are close
from each others. A methods for automatically finding an embedding space
which accounts for pairwise similarity relying on siamese networks has been
proposed in [19]. A slightly more sophisticated approach relying on triplet
comparisons has been proposed in [105]. This idea could be applied to orchestral
vectors by assigning a binary label to pairs of symbolic vectors, depending on
their proximity in term of sound (see Figure 12.3).

The mapping toward this embedding space is a neural network, and, thus, is
differentiable. Hence, this space can be used for measuring the error function
of a model during its training step, as the gradient of the error can be back-
propagated through the embedding operation. Note that in the context of
projective orchestration, some constraints, such as respecting the harmonic
structure of the piano score, might be more clearly defined in a symbolic space
rather than in an embedding space as the one we described before. Hence, an
efficient training criterion would probably combine a symbolic measure with a
distance in the perceptually informed embedding space.

To decide the value of the label assigned to pairs of symbolic vectors, the
joint information of symbolic vectors and corresponding audio rendering is
necessary. It can be obtained either by collecting musical score and the record-
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Figure 12.3: An embedding space which accounts for spectral distances can be built
using siamese networks (red frame). The two networks with orange con-
nections are one same network duplicated (called siamese networks). That
duplicate network is trained to minimise the distance in the embedding
space of symbolic vectors which are associated to sounds which are spec-
trally close. A possible way to do so is to associate pairs of symbolic
vectors with a binary label which indicate whether or not their spectral
counterparts are close (blue frame), and use that label to modify the sign of
the distance used in embedding space for training the siamese architecture.
Once such architecture has been trained, it can be used to measure the dis-
tance between the prediction of an orchestral symbolic frame and a target
(green frame). Because the embedding is computed thanks to a differen-
tiable network, the error measured in that space can be back-propagated
through the embedding. Note that in that case, only the green weights
are modified, and the orange weights corresponding to the embedding
network are frozen.

ing of corresponding performances, or by using a rendering software. Both
approach have advantages and drawbacks. Using real performances leads to
more realistic audio examples, but the alignment and segmentation of the
audio file might be tedious (however solutions exist, such as in [46]). Besides,
finding an adequate measure to compare audio segments of different lengths
extracted from various sources might be difficult. On the other side, using a
rendering software provides a more controlled environment, but at the cost of
less realistic examples, in particular regarding complex orchestral effects such
as instrumental blending.

12.3.2 A latent space for transcription

We mentioned in the Section 12.2 that an interesting model for high-entropy
frames could include a user input asking fo a particular tone-colour. To achieve
this, a model able to generate symbolic vectors corresponding to particular
spectral descriptors has to be designed. This is actually very close to the task
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tackled by existing transcription systems such as Orchids [36] or SPORCH [92].
Hence, a solution would be to include them as a module of a more complex
system.

Another solution could be to train an encoder-decoder model on a tran-
scription task. The encoder would receive as input an information describing
the audio signal, either in the form of a waveform or a time-frequency repre-
sentation, and map it as a point in a latent space. That point is passed to the
decoder whose objective is to find the corresponding symbolic representation
(typically a frame of piano-roll). Variational inference can be used to obtain
latent representations drawn from a desired probability distribution [60]. The
advantage is that the latent space can then easily be sampled as the location of
relevant latent points is known.

This is particularly interesting in our case, as it provides a generation mecha-
nism for symbolic vectors. A priori, the latent space dimensions do not corre-
spond to spectral descriptors or any intuitive quantity, but most likely embed
informations about both the audio and symbolic domains. Exploring the prop-
erties of a latent space automatically inferred as being the most adapted for
connecting the two modality would surely be a thrilling experience.
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MACHINE LEARNING

A.1 ERROR FUNCTION IN A restricted boltzmann machine (rbm)

In a RBM, the parameters inference consists in minimizing the negative log-
likelihood of a training dataset. However, the likelihood of a set of visible units
is intractable in a RBM. We describe here the calculus that lead to a tractable
estimation of this quantity.

The likelihood of a visible vector v is given by

—E(v,h)

PO = Dpled) =L

h

The free-energy is frequently defined as

F(v) & —log (Ze‘E(U'h)>
T

Both the energy and free energy depend on the model’s parameters, but we
omit the term for keeping uncluttered notations.

Using the free-energy, the summation over the hidden vector possible values
can be hidden, which leads to a more compact expression of the likelihood

Hence, for a parameter of the model 6 € ®

0 0 e~ F@)
~ 2 10g[p(0)] = —mplog ]
0 d
= ﬁl—"(v) + ﬁlog(z)
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The second term is equal to
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The second term is the expectation of the free-energy value over the model
distribution. It can be approximated by averaging the value of the free-energy
computed over a fixed number of sample drawn from the model distribution.
A approximation which proved to be sufficient for the training step consists in
using only one sample for computing the mean, if this sample is drawn after
initializing the Gibbs chain with the known sample v. This process is known as
contrastive divergence. Finally, the derivative of the negative log-likelihood can
be approximated by

_awgézw ~ 2 [F(0) ~ F(0)

Hence, the difference between the positive and negative free energy can be
used as a differentiable criterion for training RBM

E(6) = F(v) - F(9)
A.2 UP CRITERION
Over-fitting can be detected by observing the error function of the model over a
set of validation data which is distinct from the training set. However, validation

errors curves are rarely monotonic, and detecting over-fitting is a complex task.
The UP-criterion is a heuristic for detecting over-fitting during the training
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process of a parametric probabilistic model, which checks if the validation error
increased repeatedly over successive intervals.
Data: V: list containing the validation score at each iteration epoch: the
index of the current epoch
S: number of strips
k: validation order
Result: Overfitting: boolean, true if the training process has to be
stopped
s=0;
Overfitting = True;
while s < S do
t = epoch - s;
tmk =t-k;
if V[t] > (V[tmk] - €) then
| Opverfitting = False

end
s=s+k
end

Algorithm 1: The UP-s algorithm checks that on S successive strips of size
k the validation score has increased at least once. If this is not the case, the
training process is stopped. The validation score is assumed to be increasing
with the quality of the model and the algorithm has to be modified if a
decreasing validation error is used instead.

A.3 K-FOLD VALIDATION

When few data are available, the score obtained by a model on a test subset
may vary importantly depending on the selected subset. To alleviate this issue,
a technique consists in partitioning the entire dataset in K folds and evaluate
the model on each folds, while training it on the remaining data.
Data: M: model
D: dataset
K: split order
Result: Res: list of length K containing the model’s evaluation on each
part
Partition D in equally sized parts Dy, ..., Dx_1
for fold in range(K) do
initialize M
train M on D — D;
score := evaluate on D;
Res[fold] := score
end
Algorithm 2: K-fold evaluation algorithm. The output is a list containing
the performance of a given architecture on each K partition of a dataset D.
Note that between each fold, the model is re-initialized and trained
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LOP DATABASE

Original Simplified
Piccolo Flute
Flute Flute
Alto-Flute Flute
Soprano-Flute Flute
Tenor-Flute Flute
Bass-Flute Flute
Contrabass-Flute Flute
Pan Flute Remove
Recorder Flute
Ocarina Remove
Oboe Oboe
Oboe-d Amore Oboe
Oboe de Caccia Oboe
English-Horn Oboe
Heckelphone Remove
Piccolo-Clarinet-Ab Clarinet
Clarinet Clarinet
Clarinet-Eb Clarinet
Clarinet-Bb Clarinet
Piccolo-Clarinet-D Clarinet
Clarinet-C Clarinet
Clarinet-A Clarinet
Basset-Horn-F Clarinet
Alto-Clarinet-Eb Clarinet
Bass-Clarinet-Bb Clarinet
Bass-Clarinet-A Clarinet
Contra-Alto-Clarinet-Eb Clarinet
Contrabass-Clarinet-Bb Clarinet
Bassoon Bassoon
Contrabassoon Bassoon
Soprano-Sax Remove
Alto-Sax Remove
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Tenor-Sax Remove
Baritone-Sax Remove
Bass-Sax Remove
Contrabass-Sax Remove
Horn Horn
Harmonica Remove
Piccolo-Trumpet-Bb Trumpet
Piccolo-Trumpet-A Trumpet
High-Trumpet-F Trumpet
High-Trumpet-Eb Trumpet
High-Trumpet-D Trumpet
Cornet Trumpet
Trumpet Trumpet
Trumpet-C Trumpet
Trumpet-Bb Trumpet
Cornet-Bb Trumpet
Alto-Trumpet-F Trumpet
Bass-Trumpet-Eb Trumpet
Bass-Trumpet-C Trumpet
Bass-Trumpet-Bb Trumpet
Clarion Remove
Trombone Trombone
Alto-Trombone Trombone
Soprano-Trombone Trombone
Tenor-Trombone Trombone
Bass-Trombone Trombone
Contrabass-Trombone Trombone
Euphonium Remove
Tuba Contrabass
Bass-Tuba Contrabass
Contrabass-Tuba Contrabass
Flugelhorn Remove
Piano Piano
Celesta Remove
Organ Violin and Viola and Violoncello and Contrabass
Harpsichord Remove
Accordion Remove
Bandoneone Remove
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Harp Remove
Guitar Remove
Bandurria Remove
Mandolin Remove
Lute Remove
Lyre Remove
Strings Violin and Viola and Violoncello and Contrabass
Violin Violin
Violins Violin
Viola Viola
Violas Viola
Viola de gamba Viola
Viola de braccio Remove
Viola dAmore Remove
Violoncello Violoncello
Violoncellos Violoncello
Contrabass Contrabass
Basso continuo Remove
Bass drum Remove
Glockenspiel Remove
Xylophone Remove
Vibraphone Remove
Marimba Remove
Maracas Remove
Bass-Marimba Remove
Tubular-Bells Remove
Clave Remove
Bombo Remove
Hi-hat Remove
Triangle Remove
Ratchet Remove
Drum Remove
Snare drum Remove
Steel drum Remove
Tambourine Remove
Tam tam Remove
Timpani Remove
Cymbeal Remove

[ December 4, 2018 at 16:41 — classicthesis v4.6 ]

125



126

LOP DATABASE

Castanets Remove
Percussion Remove
Voice Violin and Viola and Violoncello and Contrabass
Voice soprano Violin
Voice mezzo Viola
Voice alto Viola
Voice contratenor Viola
Voice tenor Violoncello
Voice baritone Violoncello
Voice bass Contrabass
Ondes martenot Remove
Unknown Remove

Table B.3: To reduce the dimensionality of the target space, several instruments are

grouped under the same section name. We tried to link together instruments
belonging to the same family, and thus sharing similar timbres. For instance,
all the possible flutes are grouped under the same section named "flute".
The timbre of a bass flute is widely different from the one of a Piccolo.
However, depending on the pitch associated to the flute section, it can easily
be decided the type of flute best suited for playing this section.

In term of structure for the training algorithms, this grouping is rather
challenging, as the tessitura of each section is large, and they widely overlap
between them.

On the other side, the notations used in some scores are in some rare
cases fuzzy, as in "Strings". In that case, we can associate this notation with
several instruments, for instance "Violin and Viola and Violoncello and
Contrabass". In that case, the notes played in that track will be associated to
the corresponding instruments if the pitch range corresponds. For instance,
if in the "Strings" track some notes are played in the range of the double-bass
and violoncello, these notes will be associated to these two sections.

Some extremely rare instruments, such as the Pan Flute are simply removed
from the score when encountered. Percussions have also been removed as
there were too many different notations across the database.
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Number of | Percentage Number of Percentage
Composer Period piano files | piano frames | orchestra files | orchestra frames
Arcadelt. Jacob 1507-1569 1 0.07
Arresti. Floriano 1667-1717 3 0.57
Bach. Anna Magdalena 1701-1760 3 0.43
Bach. Johann Sebastian 1685-1750 9 4.57 4 0.81
Banchieri. Adriano 1568-1634 1 0.32
Beethoven. Ludwig Van 1770-1827 1 0.60 38 42.28
Berlioz. Hector 1803-1869 1 0.14
Brahms. Johannes 1833-1897 3 0.28
Buxtehude. Dietrich 1637-1707 1 0.21
Byrd. William 1538-1623 1 0.13
Charpentier. Marc-Antoine 1643-1704 2 0.38
Chopin. Frederic 1810-1849 2 0.44
Clarke. Jeremiah 1674-1707 1 0.23
Debussy. Claude 1862-1918 1 0.59 6 0.90
Dvorak. Anton 1841-1904 6 2.42
Erlebach. Philipp Heinrich 1657-1714 1 0.10
Faure. Gabriel 1845-1924 1 0.60
Fischer. Johann Caspar Ferdinand | 1656-1746 1 0.10
Gluck. Christoph Willibald 1714-1787 1 1.61
Grieg. Edvard 1843-1907 1 2.10
Guerrero. Francisco 1528-1599 1 0.12
Handel. George Frideric 1685-1759 4 1.00 1 0.75
Haydn. Joseph 1732-1809 6 1.01
Kempff. Wilhelm 1895-1991 1 1.58
Leontovych. Mykola 1877-1921 2 0.22
Liszt. Franz 1811-1886 34 39.98
Mahler. Gustav 1860-1911 1 0.85
Mendelssohn. Felix 1809-1847 2 1.41
Moussorgsky. Modest 1839-1881 1 0.04
Mozart. Wolfgang Amadeus 1756-1791 1 0.71 8 1.45
Okashiro. Chitose ?-alive 3 1.09
Pachelbel. Johann 1653-1706 1 0.15
Praetorius. Michael 1571-1621 2 0.14
Purcell. Henry 1659-1695 1 0.08
Ravel. Maurice 1875-1937 6 6.49 8 6.69
Rondeau. Michel 1948- 2 0.25 1 0.14
Schonberg. Arnold 1874-1951 1 0.21
Schumann. Robert 1810-1856 1 0.05
Shorter. Steve 1958-? 1 0.26
Smetana. Bedrich 1824-1884 1 0.61
Soler. Antonio 1729-1783 1 0.54
Strauss. Johann 1825-1899 1 0.04
Strauss. Richard 1864-1949 1 0.22
Stravinsky. Igor 1882-1971 4 0.94
Tchaikovsky. Piotr Ilyich 1840-1893 36 20.08
Telemann. Georg Philipp 1681-1767 2 1.04
Unknown. 107 40.18 28 7.47
Vivaldi. Antonio 1678-1741 4 2.94
Walther. Johann Gottfried 1684-1748 1 0.14
Wiberg. Steve 1974-? 1 0.75
Zachow. Friedrich Wilhelm 1663-1712 1 0.32 2 0.23

Table B.1: This table describes the relative importance of the different composers present

in the database. For each composer, the number of piano and orchestral files
are given in number of files, and in number of frames. The number of frames

depends also on the duration of each file, and is more relevant in a learning

context as it determines the number of training points from one composer a
model will observe. The period of each composer is indicated.
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Intensity tag | Value

PPP 16

pp 32

13 48

mp 64

mf 80

f 96

tf 112

fff 127

Table B.2: Corresponding MIDI intensity used for the dynamic tags when parsing
MusicXML files. Values found in Logic Pro 9 User Manual [68, p.474]
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Figure B.1: This figure represents the pitch ratio activations over the complete database
when limiting the instrumental range to the tessitura observed in the
database (Left) and not (Right). Limiting the tessitura allows to dramatically
reduce the dimension of the orchestral vector, from 1409 to 606. Furthermore,
it leads to a better conditioning of the orchestral vectors in order to be used
for statistical learning, as it avoids units always set to zeros.
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Performances of different recurrent units (10-fold evaluation)

48 -
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N
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RNN LSTM GRU
Recurent unit type

Figure C.1: Performances obtained with three different types of recurrent units on

the predictive orchestration task. The boxes illustrate the results over a
10-fold evaluation, for a recurrent network made of 2 layers of 2000 units
each and using weight decay as regularization. RNN refers to the vanilla
implementation of recurrent units. The GRU surpasses the LSTM and
Simple RNN units on this particular taskx
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Figure C.2: Influence of the number of recurrent layers on the accuracy performances

of the GRU model
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Figure C.3: Influence of the number of units in the two layers recurrent networks of
the orchestral embedding on the accuracy performances of the GRU model.
Each dot represent a model, and its diameter is the mean accuracy obtained
over a 10-fold validation.
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Figure C.4: Influence of the dropout value on the accuracy performances of the GRU
model The poor results obtained when a larger value of dropout is used
is probably related to the fact that we used ReLU in intermediate layers.
Indeed, ReLU already have a tendency to output sparse intermediate rep-
resentations. Hence, applying dropout with an high probability on top of
ReLU will likely shut down most of the intermediate layers units.
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GRU: weight_decay_coeff
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Figure C.5: Influence of the weight decay parameter on the accuracy performances of
the GRU model

Modified-accuracy Weighted-accuracy

Figure C.6: This figure represents the error surfaces of the negative modified-accuracy,
negative weighted accuracy, binary cross-entropy and a weighted binary
cross-entropy in the case of a two dimensional target. The two axis represent
the probability of activation, which has value between o and 1. For each
measure, the top-left surface correspond to a target value (0,0), top-right
(0,1), bottom-left (1,0) and bottom-right (1,1).
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Figure C.8:

C.2 ERROR SURFACES

Mean : -0.0407, Min : -1.9845, Max : 1.0393 v
Std : 0.1775, Sum : -73803.3359 0s

Orchestra Piano

The piano and orchestra embeddings are concatenated before being used for
prediction. Hence, the weights connected the embeddings to the prediction
directly represent the respective influence of each information. However,
we detected no significant differences in the structure of the weight matrix.
Note that, for the purpose of this experiment, no weight decay has been
applied to this layer to avoid enforcing a Gaussian distribution of the
weights. The results were not deteriorated by doing this.

Mean : -0.0318, Min : -1.9834, Max : 2.1664
Std : 0.1137, Sum : -61623.7422

Orchestral
prediction
Embedding Orchestral Mask
frame

In our proposed architecture relying on the NADE framework, the last layer
weights connect the concatenation of the embedding, orchestral frame and
mask to the orchestral prediction. However, the weights corresponding to
the binary mask are set to zeros, indicating that the model discard that
crucial information.
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4=200 /=176
Flute, Flauti A S T T T T |
D4 1 T i i 1 1 1 1 1
) I I I
Oboe, Oboi A S T T T T |
SRS 1 = H i 1 1 1 1 1

Bb Clarinet, Clarinetti

Bassoon, Fagotti

Horn in F, Corni

Violas, Viole

Strings, Violoncelli

Strings, Contrabassi

Figure D.1: Beginning of the second movement of the 7" Symphony written by Ludwig
van Beethoven
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Figure D.2: Orchestration generated by a RNN model using the per-note weighted
binary cross-entropy. One can notice the crowded orchestration compared
with the original. The original piano score was the reduction by Franz Liszt
of the second movement of the 7" symphony of Ludwig von Beethoven.
The melodic lines of the Oboe, Bassoon and Trombone are particularly
fragmented (red frame). The system also makes obvious mistakes, such as
the presence of a D in the cello section played over an A major chord (blue
frame). The presence of the fourth (D) is problematic here, first because
the piano score (blue dotted frame) contains only the root and fifth, and
second because the fourth is extremely rarely played over a major chord.
Besides, the presence of a semi-tone in the same instrumental section (the
cello) in such consonant harmony is out of context.
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Figure D.3: Orchestration generated by a RNN model using the weighted binary cross-
entropy with a negative weight value of A = 0.1. The reduce impact of
the false positive is extremely tangible here, as the orchestration becomes
rapidly extremely crowded. The original piano score was the reduction by
Franz Liszt of the second movement of the 7" symphony of Ludwig von
Beethoven.
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Figure D.4: Orchestration generated by a RNN model using the per-note weighted
binary cross-entropy as a training and testing criterion. A lot of notes are
out of harmony. The original piano score was the reduction by Franz Liszt
of the second movement of the 7" symphony of Ludwig von Beethoven.
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