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Abstract
Geometry optimization is a fundamental step in numerical modelling of chemi-

cal reactions. Many thermodynamic and kinetic properties are closely related to

the structure of the reactant, product, and the transition states connecting them.

Different from reaction and product, which are local minima on the potential en-

ergy surface, transition state is the first order saddle point with only one negative

curvature. Over years, many methods have been devised to tackle the problem.

Locating stable structures is relatively easy with reliable algorithm and high accu-

racy. One can follow the gradient descent direction to pursuit the local minimum

until convergence is reached. But for transition state, Either up-hill or down-hill

direction allowed in the process makes the determination more challenging.

Motivated by the difficulty of the obstacle, many well-designed optimization

algorithms are elaborated specifically to stress the problem. The performance of

geometry optimization is affected by various aspects: the initial guess structure,

the coordinate system representing the molecule, the accuracy of initial Hessian

matrix, the Hessian update schemes, and the step-size control of each iteration.

In this thesis, we propose a new geometry optimization algorithm considering all

the important components. More specifically, in Chapter 2, a new set of robust

dihedral and redundant internal coordinates are introduced to effectively represent

the molecular structures, and a computational efficient transformation method to

generate a guess structure. In Chapter 3 and 5, a sophisticated robust algorithm

is presented, and tested to solve intricate transition state optimization problem.

In Chapter 4, A novel algorithm to generating reaction path based on redundant

internal coordinates is illustrated with real chemical reactions. Last but no least,

iii



in Chapter 6, a systematic exploration between different methods available in the

optimization is conducted. A well-performed combination of optimization methods

is drawn for generic optimization purpose.

All the methods and algorithm introduced in this thesis is encompassed in

our open-source Python package named GOpt. It’s general-purposed library that

can work conjunction with major quantum chemistry software software including

Gaussian. More features are under development and await to be released in the

coming update.
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Chapter 1

Introduction

1.1 Introduction

At its most fundamental level, chemistry is the study of how chemical bonds cleave

and form to create new substances, along with the properties of these substances.

The detailed sequence of steps by which a new substance is created is called the

reaction mechanism. Key structures on the reaction path include the starting

structure (the reactant), the final structure (the product), stable structures along

the way (reactive intermediates), and first-order saddle points (transition states

between stable structures along the path). The lowest-energy pathway connect

the reactant to the product is called the intrinsic reaction coordinate or minimum-

energy reaction path [1]. The reaction path reveals, in atomistic detail, how the

reactant transforms into the product. Some reaction paths are relatively simple for

chemists to guess, or relatively easy to determine computationally. But this is not

always the case: there are many reactions where it is difficult, both conceptually

and computationally, to find key transition states, much less to fully characterize

the reaction pathway. The goal of this thesis is to develop new computational

methods to find transition states and location chemical reaction pathways that
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work even for the most difficult reactions. This is especially important for reactions

that are inaccessible (e.g., astrochemistry)[2, 3], dangerous (e.g., decomposition of

high-energy materials)[4, 5], or unhealthy (e.g., metabolism of toxic substances) to

experimentalists.[6, 7] Our specific goal is to leverage recent advances in computer

hardware and software, new innovations in quantum chemistry, and new algorithms

we shall develop to extend the range of chemical reactions for which detailed

mechanistic computational studies can be performed.

The characteristics of a chemical reaction are largely determined by the molec-

ular structures associated with the reactant, the product, the transition state,

and the path connecting them. Therefore, locating the stationary points on the

molecular potential surface is the first step towards successful numerical modeling.

Mathematically, reactants, products, and reactive intermediates are local minima

on the potential energy surface. Two local minima are connected by a stationary

point which is a maximum along the reaction path but a minimum in all other

directions. This saddle point is called the transition state (TS) between the two

local minima.[8] Once all the important stationary points on the potential surface

have been located, one can model the whole reaction process, including the mech-

anism(s) of the reaction and its kinetic and thermodynamic properties (reaction

rate, equilibrium constant, exothermicity, etc.).[9] For multistep reactions, the ex-

istence of intermediate(s) complicates the reaction mechanism. In addition, there

may be multiple possible reaction paths, wherein different intermediate structures

connect the same reactants and products. In these complicated scenarios, hav-

ing a complete minimum-energy path showing how reactants and products are

connected by various sequences of structures is especially useful, as it provides re-

searchers with atomistic detail about the reaction mechanism. This can be useful,

2
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for example, for designing better catalysts.[10]

In computational studies of reaction mechanisms, three sorts of structure op-

timizations occur: minimization (for reactants, products, and reactive intermedi-

ates), saddle-point optimization (for transition states), and pathfinding (for the

reaction coordinate). Each optimization is typically treated as a separate prob-

lem, and over the years researchers have developed many methods for each task.

The effectiveness and efficiency of a these algorithms are affected by many factors,

among them the choice of coordinate system, the initial guess structure(s), the

initial Hessian, the Hessian update method, stepsize control methods, etc..[11–13]

Finding a local minimum on the potential surface is considered an easy task.

One may simply follow the gradient descent direction until a minimum is reached,

since a structure with lower energy is always preferred. For a transition state, the

structure needs to be the maximum in only one dimension and a minimum in all

others, so it is impossible to know whether a step should increase or decrease the en-

ergy without further (nonlocal) information about the structure. Researchers have

designed multiple optimization algorithms to address the difficulty of transition-

state optimization.[11, 14–17] Disappointed by the speed and robustness of cur-

rent approaches, we developed a new set of algorithms to (a) effectively generating

initial guess structures for transition-states, (b) optimize transition-states using

chemical information about key internal coordinates, and (c) find reaction path-

ways in a more robust way. All these features and algorithms are included in our

forth coming quantum chemistry software GOpt.

3
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1.2 The Potential Energy Surface

Within the Born-Oppenheimer approximation, the electronic energy of a molecule

is determined by its geometric structure, which is defined by the relative positions

of its constituent atoms. To obtain the total energy of a system, one needs to solve

the Schördinger equation,

H |Ψ� = E |Ψ� (1.1)

where H is the quantum-mechanical operator for the energy, the Hamiltonian. The

explicit expression of H is[18]

H = −
N�

i=1

1
2∇2

i −
M�

A=1

1
2MA

∇2
A −

N�

i=1

M�

A=1

ZA

riA

+
N�

i=1

N�

j>i

1
rij

+
M�

A=1

M�

B>A

ZAZB

RAB

(1.2)

In the Eqn1.2, MA is the ratio of mass between nucleus A and one electron. ZA

is the nuclear charge of atom A. The first and second terms in H are the kinetic

energy operators for the electrons and the nuclei respectively. The third term is

the potential of the electron-nuclei attraction and the last two terms represent the

Coulomb repulsion between electrons and between nuclei.

1.2.1 The Born-Oppenheimer Approximation

Because atomic nuclei are much more massive than electrons, it is sensible to

assume the electrons adapt instantaneously to the relatively slow motions of the

nuclei. That is, from the viewpoint of the electrons, the nuclei are clamped in well-

defined positions. This is the basis for the Born-Oppenheimer approximation, and

it leads to the concept of a molecular potential energy surface. As the nuclear

4
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positions are assumed fixed, the nuclear kinetic energy (the second term in H)

is zero and the nuclear-nuclear repulsion (the last term in H) is constant. The

remaining terms define the electronic Hamiltonian, Helec,

Helec = −
N�

i=1

1
2∇2

i −
N�

i=1

M�

A=1

ZA

riA

+
N�

i=1

N�

j>i

1
rij

(1.3)

The electronic energy and wavefunction are determined by solving the electronic

Schördinger equation

HelecΨelec = EelecΨelec (1.4)

Note that the electronic wavefunction and energy change depending on the nuclear

positions:

Ψelec = Ψelec({ri}; {RA}) (1.5)

Eelec = Eelec({RA}) (1.6)

It is common to add the nuclear interaction term to the electronic energy to obtain

the potential energy surface on which the nuclei move, U({RA}),

U({RA}) = Eelec({RA}) +
M�

A=1

M�

B>A

ZAZB

RAB

(1.7)

If the nuclei are assumed to be classical, then they are treated as classical point-

particles moving on the potential energy surface. If the nuclei are assumed to be

quantum, then the potential energy surface defines the potential in the nuclear

Schrödinger equation. Because Etot depends on the nuclear positions, one needs

to repeatedly solve the electronic Schördinger equation. This task is normally

5
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handled by quantum chemistry software.

The energy of a molecule with M atoms is a function of 3M − 6 free vari-

ables. When the positions of each nuclei are specified by their Cartesian coordi-

nates, {XA, YA, ZA}, the molecular structure is defined by 3M coordinates. The

true potential energy surface is only 3M − 6-dimensional, however, because of

translation invariance (typically specified by the location of the center-of-mass,

(Xcom, Ycom, Zcom)) and rotational invariance (typically specified by three Euler

angles, {α, β, γ}). This leaves a total of 3M − 6 degrees of freedom (3M − 5 for a

linear molecule).

Characterization of the Potential Energy surface

The potential energy surface is a function which indicates the relative stability of

different arrangements of the atomic nuclei. Just like a geographical landscape, a

potential energy surface has peaks, valleys, and pathways that connect them.

Valleys on the potential energy surface represent stable structures like reactants,

products, and reactive intermediates. These structures are usually associated with

the local minima at the bottom of the associate valley on the potential energy sur-

face. Since any change of nuclear coordinates away from a local minima increases

the energy, these are stable structures. Local minima are connected by paths

on the potential energy surface. The most interesting paths are minimum-energy

pathways (MEP), which specify the lowest-energy way to transform one structure

to another; these reaction paths are parameterized by reaction coordinates. The

highest-energy point on a reaction path is the transition state of that reaction.

Mathematically, a transition state is the 1st order saddle point on the potential

6
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energy surface. That is, a transition-state structure is the maximum in one direc-

tion (tanget to the reaction coordinate) and the minimum in all other directions.

Given the energies and energy-derivatives of the reactant, product, and transition

state, one can easily estimate the thermodynamic and kinetic properties of the

reaction using the (free) energy differences between structures.

In some reactions, there are pathways linking the same reactant and product

structures.[19, 20] In these cases, paths with similar energy represent competing

reaction mechanisms. The relative importance of mechanisms can be ascertained

from the energy profile of the pathways. This is especially important for studies

of chemical synthesis. Catalysts can be designed by preferentially lowering the

barrier(s) of any of the feasible reaction pathways.

Mathematical Characterization of the Potential Energy surface

The potential energy surface, U({RA}), is a function which, given a specification

of the molecular geometry, returns a real number. This real number will usually

be substantially below zero, since it takes energy to dissociate a molecule into

atoms, and the energy of a molecule where all the atoms are infinitely far apart

is the sum of the atomic energies, which are themselves negative (with magnitude

equal to the energy required to remove all the electrons from the molecule). The

potential energy surface is positive, then, only when two or more atomic nuclei are

extremely close together.

Key chemical structures correspond to stationary points on the potential en-

ergy surface, that is, places where the gradient of the potential energy is zero:

∇U({RA}) = 0. Generalizing to arbitrary choices for the coordinate system used

7
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to specify the molecular geometry, we introduce the vector-notation, g(x), as short-

hand for the gradient of the potential:

g(x) = ∇U(x) =




∂U(x)
∂x1

∂U(x)
∂x2

...




(1.8)

At a given structure x with potential U(x), the gradient g(x) is the negative of

the force exerted on the nuclei,

F(x) = −g(x) (1.9)

In order to distinguish between stable molecular structures (minima) and tran-

sition states (first-order saddle points) on the potential energy surface, one uses the

second derivative matrix, or Hessian, of the potential energy function, ∇∇T U({RA}).

The notation ∇∇T denotes the outer product of the gradient operators. Again,

we introduce a matrix-notation for the Hessian, H(x),

H(x) = ∇∇T U(x) =




∂2U
∂x2

1

∂2U
∂x1∂x2

· · ·
∂2U

∂x2∂x1
∂2U
∂x2

2
· · ·

... ... . . .




(1.10)

The Hessian matrix is symmetric and describes the curvature of the potential

energy surface for the specified molecular structure. The eigenvalues’ signs specify

whether a structure is in a valley (all eigenvalues are positive), near a first-order

saddle point (one and only one negative eigenvalue), or at a higher-order sad-

dle point (which is usually chemically irrelevant, as such points do not lie along
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minimum-energy pathways between stable structures. First-order saddle points

are transition-states between stable molecular structures: if one starts in the di-

rection of the eigenvector associated with the negative eigenvalue (which defines

the negative-curvature direction) and then follows the steepest descent gradient

pathway, one locates the reactant and product structures associated with the ini-

tializing transition state. The steepest-descent path one follows is a minimum

energy pathway, and is often called the intrinsic reaction coordinate

1.2.2 Numerical Calculations on Potential Energy Surfaces

The potential energy surface is a function of coordinates specifying the molecular

geometry, x. With a known initial structure x0, one can estimate the potential of

nearby points, x, by Taylor expansion,[21]

U(x) = U(x0) + ∇U(x0) · (x − x0)

+1
2(x − x0)T · ∇∇T U(x0) · (x − x0)

+...

(1.11)

Due to the computational expense associated with computing and using higher-

order derivatives, Eqn 1.11 is normally truncated after the second-order derivative:

E(x) ≈ E(x0) + gT
0 Δx + 1

2ΔxT H0Δx (1.12)

where Δx = (x − x0) and g0 and H0 are the gradient and the Hessian of the

potential energy surface, evaluated at x0, respectively.

Traditional geometry optimization methods require the analytic calculation of

energy and the gradient at each iteration; for most quantum chemistry methods
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the gradient can be computed relatively cheaply after the electronic wavefunction

and energy have been determined.[22] For example, in the steepest-descent algo-

rithm for determining local minima structures, one repeatedly takes small steps in

the gradient-descent direction until one reaches a local minimum. The steepest-

descent method does not work for transition states, because one needs to know

the Hessian eigenvalues to determine in which direction the energy will be min-

imized, and in which directions it will be maximized. If the analytic Hessian is

available, Newton’s method is an effective strategy for optimizing both minima

and transition-states. Unfortunately, analytic computation of the Hessian is sig-

nificantly more expensive than analytic computation of the energy and gradient,

so approximate Hessians are often used. The accuracy of approximate Hessians is

strongly affected by the coordinate system one uses to specify the molecular geom-

etry; it is favorable to choose a coordinate-system in which the coupling between

coordinates (as indicated, for example, by off-diagonal elements in the Hessian) is

relatively small.

1.3 Coordinate System

While any coordinate system which uniquely specifies the positions of the atoms

in the system will suffice for geometry optimization, in practice, certain choices

give better computational performance.[23–25]

1.3.1 Cartesian Coordinates

Conceptually, the simplest coordinate system is to use the Cartesian coordinates

of the atoms, {(Xα, Yα, Zα)}. For molecule with M atoms, there are 3M Cartesian

10
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coordinates. In popular quantum chemistry packages, Cartesian coordinates are

used to compute the energy and its derivatives, so using Cartesian coordinates

is the most straightforward choice. However, direct use of the Cartesian coordi-

nates has several drawbacks. Most importantly, the relative position of atoms in

Cartesian coordinates are highly coupled. A simple change in a single Cartesian

coordinate for one atom changes the bond distances and bond angles between that

atom and all of its neighbors. Conversely, a simple change in the interatomic dis-

tance between two atoms tends to change the Cartesian coordinates not only of the

two atoms involved in the bond, but also of all the other atoms connected to those

atoms. The highly-coupled nature of molecular motions in Cartesian coordinates

is reflected in the Hessian matrix, which has large off-diagonal elements. The large

number of nonzero elements in the Hessian matrix and the relatively large changes

in the coordinates, gradient, and Hessian that occur after simple chemical changes

make the Hessian difficult to approximate.

1.3.2 Internal Coordinates

Building on chemical intuition, one can specify the molecule’s geometry with in-

ternal coordinates (bond lengths, bond angles, and dihedral angles). These coor-

dinates are more descriptive and intuitive at characterizing molecular structures,

and because they depend only on relative atomic positions, they automatically

impart rotational and translation invariance. Internal coordinates are less cou-

pled, so there are fewer off-diagonal elements in the Hessian, making it easier to

approximate.

For a nonlinear molecule with M atoms, only 3M − 6 independent internal

coordinates are needed to fully define the structure. However, the number of

11
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internal coordinates one can specify is far higher. For example, for a molecule

with three atoms, one can specify three bond angles and three bond lengths.

There are many ways to remove the redundant coordinates: one can use three

bond lengths, one bond length and two angles, or two bond lengths and one angle.

It is unclear what the best choice will be. The redundancy problem becomes more

severe with increasing molecule size, as it is not uncommon that the number of

internal coordinates is an order of magnitude larger than 3M − 6.[26, 27]

The inherent redundancy of the internal coordinates can be removed auto-

matically or manually, by explicit construction. The most common manual ap-

proach is to define a set of non-redundant internal coordinates by constructing a

Z-matrix.[28] In a Z-matrix, each atom’s position is specified by one bond length,

one bond angle, and one dihedral angle. This gives 3M coordinates. The extra

redundancy is removed by defining one atom as a reference atom, and not specify-

ing any of its three coordinates relative to other atoms. A second atom’s position

is defined with a reference bond (one interatomic distance to an atom, typically

the reference atom), but no bond angle or dihedral angle. A third atom’s position

is defined with a second reference bond and a bond angle (typically defined as the

angle between the two reference bonds), but not dihedral coordinate.

The Z-matrix strategy performs seamlessly in many cases, though the perfor-

mance can be sensitive to the specific bond lengths, angles, and dihedrals included.

The transformation between Cartesian coordinates and the Z-matrix internal co-

ordinates is likewise straightforward: bond lengths, angles, and dihedrals can be

determined with straightforward trigonometry and, because the Z-matrix is nonre-

dundant, any change in Z-matrix can be realized by a corresponding change in

Cartesian coordinates. The Z-matrix strategy, however, performs poorly for cyclic
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molecules, because one of the bonds in the ring will be missing.[29, 30] For ex-

ample, in ozone, which is a bent molecule, there is an obvious choice for the two

bonds and the one bond angle that should be included in the Z-matrix. How-

ever, for isoozone, which is an equilateral triangle structure, picking the correct

bonds and angles is ambiguous, and the molecular symmetry of the structure is

not respected. Therefore, for a cyclic molecule, the bond which closes the ring is

missing, the elongation and contraction of this bond can only be described using

the other bonds and angles in the ring. These bonds and angles are therefore

tightly coupled, and the Hessian matrix has significant off-diagonal structure.

The problem of rings, along with other problems associated with arbitrary user

choices that need to be made when constructing a Z-matrix, leads to the idea of

explicitly using redundant internal coordinates.[11] A set of primitive redundant

internal coordinate is formed by including all chemically-sensible bonds, angles,

and dihedrals, along with out-of-plane bends. The number of redundant internal

coordinates in a system is larger than the 3M −6 degree of freedom. To reduce the

dimensionality of the redundant internal space to the desired 3M − 6, one takes

suitable linear combinations of the redundant internal coordinates. One popular

way to do this is to generate delocalized internal coordinates, but there are other

choices.[26, 31]
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1.3.3 Transformation between Cartesian coordinates and

redundant internal coordinates

The Cartesian coordinates are normally used in quantum chemistry software pack-

ages to compute the energy and its derivatives. However, as mentioned in the pre-

vious section, internal coordinates are more suitable for geometry optimization.

Therefore, one must be able to interconvert Cartesian and internal coordinates,

along with the gradient and Hessian in these coordinate systems. At each op-

timization step, the gradient and (approximate) Hessian in internal coordinates

will be used to compute a displacement of the internal coordinates, which then

needs to be transformed back to Cartesian space so that the energy, gradient, and

possibly Hessian can be computed for the next step.

The key tool in these transformations is the Wilson B matrix, which is the

Jacobian of the transformation from Cartesian to internal coordinates, with ele-

ments,[32]

bij = ∂qi

∂xj

(1.13)

With Wilson B matrix, one can convert an infinitesimal change in Cartesian space

to its corresponding change in redundant internal coordinates.

δq = B · δx (1.14)

For most molecules with more than a few atoms, the number of redundant inter-

nal coordinates is far greater than 3M , so B is rectangular and singular (because

internal coordinates, but not Cartesian coordinates, are invariant to molecular
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translation and rotation). To compute the change in Cartesian coordinates in-

troduced by an infinitesimal change in internal coordinates, the Moore-Penrose

pseudo-inverse, B+, is used

B+ · δq = δx (1.15)

The gradient and Hessian can be converted between the internal, (gq, Hq), and

Cartesian, (gx, Hx), coordinate systems using:

gx = BT gq (1.16)

gq =
�
BT

�+
gx (1.17)

Hx = BT HqB + K (1.18)

Hq =
�
BT

�+�
Hx − K

�
B+ (1.19)

where K is the matrix including the second derivatives of the internal coordinates

with respect to Cartesian coordinates,

kjk =
Nint�

i=1

�
gq

�
i

∂2qi

∂xj∂xk

=
Nint�

i=1

�
gq

�
i

∂bij

∂xk

(1.20)

Unlike the (explicit) transformation from Cartesian to internal coordinates,

the transformation from internal coordinates to Cartesian coordinates cannot be

expressed as a simple formula, and various iterative methods are used. Suppose

the optimization starts from an initial structure x0, and its corresponding internal

representation q0. The target structure we wish to converge is denoted similarly
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as xtarget with internal qtarget. The first step towards the target is computed as

s0 = qtarget − q0 (1.21)

x1 = x0 + B+s0 (1.22)

q1 = q(x1) (1.23)

s1 = Δq = qtarget − q1 (1.24)

At the kth iteration, the new structure xk is computed

xk = xk−1 + B+sk−1 (1.25)

sk = qtarget − qk (1.26)

until xk and xk+1 are sufficiently close together. However, this fixed-point iteration

method does not always work. Typically, but not always, this failure is due to

(nearly) linear bond angles.

We propose a different, robust, method for converting structures from internal

coordinates to Cartesian coordinates. The strategy is based on the idea that only

a (3M − 6)-dimensional manifold within the Nint-dimensional internal-coordinate

space correspond to physically realizable molecular geometries, and therefore it is

only points on this manifold that have Cartesian-coordinate representations. Our

am is to choose the Cartesian structure, x, on this manifold, q(x), that is closest

to the target set of internal coordinates qtarget,

min����
x

�
qtarget − q(x)

�T
W

�
qtarget − q(x)

�
(1.27)
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Here W is a positive-definite diagonal matrix with weight wi for each internal

coordinates. Eq.1.27 minimizes the weighted-squared deviation between the op-

timized and target structures. By default W matrix is the identity matrix, but

sometimes it is beneficial to prioritize certain internal coordinates over others (e.g.,

in a constrained optimization).

1.4 Numerical Methods for Optimization

Newton-Raphson Method

Starting from the initial structure on the potential energy surface with coordinates

x0 and energy U0, the nearby energy contour can be estimated through Taylor

expansion

E(x) = E(x0) + gT
0 (x − x0) + 1

2(x − x0)T H0(x − x0) + ... (1.28)

Due to the limitation of computation power, high order derivatives of energy versus

coordinates are not regularly available. This expansion is normally approximated

with only the first and second-order derivatives. The same Taylor expansion can

also be applied to the gradient at x0.

g(x) = g0 + H0(x − x0) + ... (1.29)

Truncating any higher order derivative after Hessian matrix, Eqn.1.29 becomes

g(x) = g0 + H0Δx (1.30)
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where Δx is the step defined as x − x0 under given coordinate system.

Points of interest like reaction, product, or transition state are all stationary

points on the potential energy surface with zero gradient, g(x) = 0.

0 = gx = g0 + H0Δx (1.31)

Reform the above equation, one can obtain the formula for optimizaiton step

H0Δx = −g0 (1.32)

Δx = −H−1
0 g0 (1.33)

The step Δx in Eqn.1.33 is Newton step. One can update the structure x0 with

the Newton step to x1 = x0 +Δx. If the potential energy is exact as the quadratic

approximation where all the higher-order derivatives are zero, the gradient of g(x1)

will be exact zeros and the optimization is finished. But this is not the case in

most scenarios. When the quadratic model is not exact, one needs to repeat the

procedures until convergence is reached. This iterative process of solving the linear

equation is called Newton–Raphson method.

Newton–Raphson method is based on the hypothesis that the initial point is

on a contour which can be approximated by a paraboloid. It’s an efficient way to

achieve optimization goal when the high order derivative is small. It’s the funda-

mental basis for other more sophisticated numerical optimization algorithm.[33–

36] However, if the step Δx is too big, the surface does not follow the quadratic

approximation in the range. The high order derivatives omitted in 1.33 become

crucial. The Newton step from 1.33 is no longer reliable. Certain constraints
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need to be applied to ensure the step does not reach out to the region where the

quadratic approximation is inaccurate. One of the common approach is to set a

trust radius such that �Δx� < τ . The τ is set to ensure the proper behaviour of

the Newton step.[37, 38] The trust radius is updated based on the performance

of each iteration. Another solution is to guarantee the decrease of gradient in

each iteration by optimization xi = xi−1 + αΔx, where α is the parameter to be

optimized.

1.4.1 Quasi-Newton method

Newton’s method is accurate and efficient when the quadratic approximation is

accurate on the potential energy surface. It also requires the analytic computation

of the Hessian matrix. Unlike energy and gradient evaluation, computation of

the Hessian matrix is a time-consuming process. It’s computationally prohibitive

for a large molecule to take Newton’s step at every optimization iteration. Mo-

tivated by the limitation, quasi-Newton methods are brought forward as a more

efficient substitute. The biggest improvement of the quasi-Newton method is it

uses the gradient(s) calculated from previous successive iterations(s) to approxi-

mate the Hessian matrix of the new configuration. Because gradient calculation

is at the comparable cost as the energy calculation, the quasi-Newton method can

successfully replace the tedious Hessian evaluation in the optimization process.

At the beginning of the optimization, the first Hessian matrix used in the pro-

cedure can be computed analytically through ab initio methods, or approximated

by either semi-empirical or numerical methods.[39, 40] It’s also possible to intro-

duce a Hessian with a low accurate molecular mechanical force field[41–43] or even

a pure identity matrix with a scaling factor but it may lead to slow convergence
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or even failures due to the lack of information regarding the potential surface

curvature.[44]

After each iteration, a new step sn is taken place. With the new structure

xn+1 = xn + sn, one can obtain the energy En+1 and gradient gn+! through a

standard computation. The updated Hessian needs to ensure the gradient changes

match the step taken under the quadratic approximation for local potential.

Δgn ≈ Hn+1Δxn (1.34)

y, denoted as secant condition, is defined as

y = Δgn = (gn+1 − gn) (1.35)

Secant condition y is the key to many different quasi-newton update schemes.

Various methods adapted y for a more flexible version.

Broyden-Fletcher-Goldfarb-Shanno (BFGS)

BFGS is the most famous and widely used quasi-Newton update,[45–49]

Hnew = Hold + yyT

yΔx −
�
HoldΔx

��
HoldΔx

�T

�
ΔxT

�
HoldΔx

(1.36)

One of the great features of the BFGS method is it preserves the positive-definite

nature of the original Hessian matrix, given it is positive-definite as well. All the

positive eigenvalues ensure the update step is always towards the energy decreasing

direction. This feature makes BFGS the ideal choice for minimization, such as
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locating reaction and product, but not effective for transition state where uphill

steps may be taken during the process.

Symmetric-Rank-1 (SR1)

SR1 is a simple and straightforward rank-one update methods,[50]

Hnew = Hold +

�
y − HoldΔx

��
y − HoldΔx

�T

�
y − HoldΔx

�T
Δx

(1.37)

The SR1 method does not guarantee a positive-definite matrix. This feature makes

SR1 a better candidate for transition state optimization than BFGS. There is also

a drawback to this method. When the value of HoldΔx is very close to y, a

numerical problem would be raised due to division over zero. To circumvent this

problem, one can check the value of y − HoldΔx first and conduct the Hessian

update when the difference is not negligible.

Powell-symmetric-Broyden (PSB)

PSB is a rank-two Hessian update method. It has the advantage of an accu-

rate rank-two level adjustment without constraining the update to be positive-

definite,[51]

Hnew = Hold +

�
y − HoldΔx

�
ΔxT + Δx

�
y − HoldΔx

�T

�Δx�2

−
�Δx ·

�
y − HoldΔx

�

�Δx�4

�
ΔxxT (1.38)

21



Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

Bofill

Both RS1 and PSB are proper candidates for geometry optimization. Bofill pro-

posed a mixed method combining SR1 and PSB methods.[52]

HBofill = φHSR1 + (1 − φ)HP SB

φ =

���(y − HoldΔx)T Δx
���

2

�y − HoldΔx�2�Δx�2 (1.39)

The Bofill method takes a linear combination of the two methods. Combining the

advantages from each to form a great candidate for transition state optimization.

The Hessian matrix for transition state needs to have exact one negative eigen-

value. It’s corresponding eigenvector is tangent to the reaction direction at given

structure. Knowing the information about bond-breaking and forming can also

improve the performance and effectiveness of the optimization process. In Chap-

ter3, we introduce a new optimization algorithm to exploit the chemical intuition

from the reaction. From the difference between the reactant and product, the

algorithm can recognize the key internal coordinates as a reduced representation

of the reaction. These reduced coordinates guides the Hessian matrix to have the

correct eigenvalue information.

1.5 Iteration strategies

In the optimization process, One starts from the initial structure x0 to iterate

towards the points of interest on the energy surface. The iterative process is

terminated when a result is reached within the preset threshold. With gradient gi,
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Hessian Hi of current point xi and previous points xi−1, xi−2...x0, a proper step

need to be determined.

1.5.1 Line Search method

In linear search method, a direction vector pi is chosen. The algorithm optimize

along the direction for a point with a lower energy or smaller gradient magnitude.

The direction vector simplifies a multidimensional optimization problem into a

dimension optimization problem. To find the proper answer, one need to solve

min� �� �
α>0

f(xi + αpi) (1.40)

The exact minimization may take too expensive and unnecessary as too many

trial steps is required. Instead, a point with approximate minimum value is more

preferred. With the new point xi+1, a new pi+1 is selected, and the algorithm is

repeated.[44]

Steepest Descent

When choosing a optimization direction, the easiest choice the the direction of

−∇U(xi), namely, −gi. This is the direction along with the energy of the system

decreases most rapidly. Following the gradient descent direction, the energy change

of the system is approximated by the Taylor’s expansion up to the second order

derivatives,

ΔU ≈ f(xi + αpi) − f(xi) = αpT
i ∇fi + 1

2α2pT
i (∇2fi)pi (1.41)
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To minimize the value of ΔU is equivalent to

min� �� �
pi

pT
i ∇fi = min� �� �

pi

�pi��∇fi�cosθ (1.42)

where pi is a unit vector, �pi� = 1. The Eqn.1.42 takes minimum value when the

cosθ = −1.

Linear search along the steepest descent direction is an effective way lowing

the energy of the system. One can minimize the energy of the system without

computing the Hessian matrix. When taking the step, the direction of the move

is perpendicular to the contour of the energy surface. It’s effective when the

contour of the objective function is well scaled in each directions. However, when

the contour is off regular shape, steepest descent can take many extra iterations

before converging.[53]

Newton direction

Besides steepest descent direction, Newton’s direction is another important one for

line search method. The direction is derived from Eqn.1.33 with local quadratic

approximation. For minimization, linear search method requires a positive-definite

Hessian matrix to fulfill the descent requirement. When adapting Newton step,

the scalar factor α is not applied when the step generate a structure with energy

reduction.

Newton step leads to a fast and more robust convergence. Utilizing the extra

information from Hessian matrix, the step taken is impartial from the curvature of

each direction. The limitation to Newton step is the computation cost for Hessian

matrix in each iteration. Without explicitly compute the Hessian matrix, one
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can either using finite-difference to estimate the Hessian or using quasi-Newton

method in 1.4.1 to approximate the Hessian matrix according to the information

from previous structure.

1.5.2 Trust-Region Methods

To compute a more accurate and consistent step for optimization, a model function

is normally taken to estimate the potential energy at near region. The newton

step from 1.33 is calculated premising the quadratic energy model. The model is

accurate when the step is close to current structure xi. If the step is too long, the

higher order derivatives omitted in the quadratic model become non-negligible.[44,

54] Then the approximated energy from the local model will no longer be accurate.

Tn ensure a proper step size, it is sensible to limit the maximum length of the step

at each iteration,

�Δx� ≤ τ (1.43)

where τ is the trust radius set according to the accuracy of current model. When

a step surpass the trust radius, the step is deemed risky and need to be rescaled.

When the step from Eqn.1.33 is larger than τ , a constrined optimization is needed,

(H + λ̃I)Δx = −g (1.44)

where λ̃ is the Lagrange multiplier. When minimizing the objective function, λ̃ is

set to be positive. For maximizing problem, λ̃ is set to be negative. Expanding

Hessian matrix with spectral theorem,

H =
Nint�

i=1
λiχiχ

T
i (1.45)
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The solution for optimizaiton step is rewritten as[52, 55]:

Δx(λ̃) =
Nint�

i=1

−1
λi + λ̃sgn(λi)

χiχ
T
i g (1.46)

where λ is determined at the constraint that

���Δx(λ̃)
��� = τ (1.47)

sgn(λi) denotes the sign of each eigenvalue. This shift ensures the negative eigen-

value remains negative while scale down the relative step length along the eigen-

vector direction. The τ from previous iteration need to be updated with respect to

the accuracy of local quadratic approximation. A conventional method is compar-

ing the real energy difference between two structures with approximated energy

change from the model

ρ = E(x + Δx) − E(x))
gT Δx + 1

2ΔxHx (1.48)

When the two energy is close, the quadratic model is considered accurate, so τ

is increased in the next iteration. If the energy is poorly matched, the radius is

decreased. If the model generates moderate result, the radius is keep unchanged.

The generic method applies the same λ̃ for both positive and negative eigen-

values. There is also revised version where separate values are used for negative-

curvature and positive-curvature respectively,

Δx = −1
λ1 − λn

χ1χ
T
1 g +

Nint�

i=2

−1
λi + λp

χiχ
T
i g (1.49)

λp and λn are selected so that λ1 − λn < 0 and λi + λp > 0.
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Another popular method is rational function optimization(RFO) method.[56–

59] In the RFO method, the quadratic approximation is replaced by a rational

function model. This shift allows higher order derivatives to be approximated

through Padé approximation. The energy change is expressed as

ΔE(x) =
gT Δx + 1

2ΔxT HΔx
1 + ΔxT SΔx (1.50)

To minimize the energy change, the equation is rewritten as sets of linear equations




Hold gold

(gold)T 0






Δx

1


 = 2

�
ΔE

�



S 0

0T 1






Δx

1


 (1.51)

where S is normally chosen to be a scalar times the identity matrix, S = ξI

After solving the Eqn.1.51, the smallest eigenvalue are a proper candidate for min-

imization tasks, while the second smallest eigenvalue is more suitable for transition

state optimization.

To derive a more generic solution to 1.49, one can solve two separate generalized

eigenvalue problems of negative-curvature and positive-curvature respectively for

the Lagrange multiplier.




λ1 xT
1 g

gT x1 0


 vn = λn




ξ 0

0 1


 vn (1.52)
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


λ2 0 0 . . . xT
2 g

0 λ3 0 . . . xT
3 g

... . . . . . . . . . ...

0 0 . . . λ3N−6 xT
3N−6g

gT x2 gT x3 . . . gT x3N−6 0




vp = λp




ξ 0 0 . . . 0

0 ξ 0 . . . 0
... . . . . . . . . . ...

0 0 . . . ξ 0

0 0 . . . 0 1




vp (1.53)

The absolute value of the largest eigenvalue from 1.52 is assigned to λn while the

absolute value of the smallest eigenvalue of 1.53 is allocated to λp. In this case, the

minimization is taken place in all the other space while the negative eigenvector

is left to ascend the energy barrier towards the transition state on the potential

energy surface.

1.6 Transition State Optimization

There are two main tasks for geometry optimization: minimization, and saddle

point optimization. Maximization problem can be convert to a minimization prob-

lem by multiplying the objective function with -1. When conducting minimiza-

tion, the procedures are relatively straightforward. One can take a step towards

the energy descent direction until a convergence is reached. The saddle point op-

timization is more complicated. As a stationary point on the PES, the structure

is the maximum in some directions but minimum in the other directions. When

taking a step towards the desired saddle point, the energy can go either uphill or

downhill. It’s also possible to observe an increase in the magnitude of gradient

when taking a good step towards the transition state. Without extra information
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about the uphill landscape, saddle optimization remains an obscure problem.

To approach the transition state of interest, three categories of methods are

generally used. The most common one is to generate a guess based on chemical

intuition. The guess structure is expected to be close to the target transition

state structure. The numerical optimization procedures can effectively optimize

the guess structure to the saddle point from the input geometry. Other methods

trying to automate the searching procedure by exploiting the information from the

reaction, product or both.

1.6.1 Single-Ended Method

One common methods is to start the geometry optimization from one end of the

reaction, normally the reactant or product, but it is not necessary. The path

to the transition state requires the initial structure go uphill on the potential

energy surface. Beginning from a near minimum point, every direction is a energy-

ascending direction. Selecting a proper direction to drive the energy higher is

crucial to the success of the algorithm.

Coordinate driving method premises the reaction can be characterized by one

coordinate. The algorithm takes major steps towards the direction of the selected

coordinates. At each iteration, a constrained optimization is performed to min-

imize all the other coordinates. The selected coordinate is believed to carry the

reaction from the reactant to product through the transition state. Coordinate

driving method creates a line path consist of each optimized point. The point

with the highest energy is regarded as the best transition state guess. This is an

effective algorithm when a reaction can be simply characterized by one internal

coordinate. But when the path is curved where the driving coordinate changes
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during the reaction process, the coordinate driving method is not effective and

may fail due to the lack of flexibility.[60–63]

To extend the applicability of coordinate driving, one can select more proper

internal coordinate as the driven coordinate or compound current coordinates to

form a new coordinate representation. For example, in the hydrogen transfer

reaction where the hydrogen atom need to travel from on end to the other such

as isomerization from HCN to CNH. The bond angle �HCN changing from 0° to

180° is a sensible choice. If the reaction involving an atom moving directly from

one donor to the acceptor, such as the atom transfer reaction from AB · · · C to

A···BC, the difference between to two bonds q = RBC −RAB is a more descriptive

driving coordinate.

Another simple but effective method to drive energy uphill is the direction-

of-least-ascent.[64, 65] This method leads the structure to go uphill towards the

direction with the least energy ascending. It performs well for small molecules with

simple mechanism. When the molecules are large, the vibration modes increases,

Following the lest-ascent direction normally ends up reaching a conformational

changes rather than a reaction product. For large molecule, a safer choice is to

select the eigenvector of the Hessian matrix that corresponds to the reaction path

of interest. [66, 67]

Besides, dimer method is also an applicable method to drive the energy uphill

to the desired transition state.[68–71] In the dimer method, two points are kept

at a fixed small distance. In each iteration, the curvature is calculated by finite

difference between the dimers along the axis. The direction of next step is deter-

mined by rotating dimers to align with the lowest curvature direction. Then a

displacement is taken place for the midpoint along the transition state. Without
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calculating the Hessian matrix exactly, the dimers method provides a versatile

method for finding the best reaction direction. The efficiency of the method is

mainly determined by the rotation of the dimers for the lowest eigenvalue mode.

Gradient-extremal path is an alternative useful method to construct a path

from one stationary point to another stationary point on the potential energy

surface.[72–74] At each stationary point, the gradient g is a eigenvector of the

Hessian matrix H(s)g(s) = 0 · g(s). The gradient extremal path is locally defined

path where each point on the path x(s) follows

H(s)g(s) = λ(s)g(s) (1.54)

where s is the arc length in the path, g(s) and H(s) is the gradient and Hessian

at x(s). Starting from any point on the potential energy surface, one can follow

Eqn.1.54 to generate a path towards a stationary point on the surface. Gradient-

extremal path is designed to pass through stationary point such as minimum,

transition state, or high order saddle point. Paths starting from different initial

structures intersect at the stationary structures. There are also some drawbacks

in the gradient-extremal method. It has the tendency to form a circuitous path on

the surface. The path generated from gradient-extremal is also dependent on co-

ordinate system. Also, in each step, an analytical calculation for Hessian matrix is

required. A direct implementation of the gradient-extremal path is computational-

heavy.

The reduced-gradient-following(RGF) method is also devised for stationary

points searching.[75–77] In RGF, the direction of gradient in each iteration is fixed

by a constant. Like the gradient-extrmal path, In RGF path, though starting from
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different direction, different trajectories intersect at the stationary points on the

surface.

All these methods have some intrinsic drawbacks as the algorithm is searching

for a one-dimensional parameterized path for transition state. The performance is

good when the molecule is small. But when the system is large, these methods are

no longer reliable because the excessive dimensionanlity of the objective energy

surface. Multi-dimensional surface walking is a more advantageous choice when

dealing with more complicated system.[78–81] One can select several key internal

coordinates involving in the reaction as the reduced space to generate a reduced

potential energy surface. The reduced surface is characterized by the key internal

coordinates while keep all the other coordinates minimized.

These multi-dimensional surface walk approaches are more robust as all the

important coordinates are properly included. But these methods are also compu-

tationally costly. Properly selecting the reduce internal coordinates is crucial to

the success of the algorithm.

1.6.2 Double-Ended Methods

Double-ended methods, unlike its single-ended counterparts searching from one

end, exploiting the information from both reactant and product for a more com-

prehensive description of the reaction and the transition state. In the double-ended

methods, the reaction path is initially represented by a series points interpolated

by the structure difference between the reactant and the product. During the op-

timization process, each point are optimized from their initial guess structure to

the desired equilibrium state on the reaction path.

32



Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

One of the most popular double-ended method is nudged elastic band (NEB)

method.[82–90] In NEB method, the reaction path is consist of several equal spaced

points. All the points are connected by a virtual spring of zero equilibrium length.

V spring = 1
2

�
�xi − xi−1�2 + �xi+1 − xi�2

�
(1.55)

At each point, the gradient of the point is the sum of potential surface and the

spring

g = gspring + gP ES (1.56)

where gspring = dV spring

ds
and gP ES is the surface potential gradient. NEB method

projects out the perpendicular components of spring gradient and the parallel

components of the surface potential gradient during the optimization. The force

at each point is

gNEB = gspring
� + gP ES

⊥ (1.57)

gspring
� = ττT gspring (1.58)

gP ES
⊥ = (I − ττT )gP ES (1.59)

where τ is the unit vector tangent to the reaction path. The gspring
� component in

gNEB is solely for displace equal distance between points while the gP ES
⊥ is used for

drag the point downhill to the optimal position in the perpendicular space. This

separation decouples the interference of spring force from the relaxation process,

prohibiting the cutting-corner path when the reaction path is curved.

For some reactions, the energy of the system changes rapidly without enough

restoring force acting on it. This situation causes a kinky reaction path, slows
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down the convergence. To solve this problem, a switch function is introduced into

NEB method to gradually increase the perpendicular components of the spring

force.
˜gNEB = gNEB + f(φ)

�
gspring − gspring

�
�

(1.60)

where the switch function, f(φ), change from 0 to 1 as the angle of the path change

from 0° to 90°.

f(φ) = 1
2(1 + cos(πcos(φ))) (1.61)

The drawback of the NEB method is it couples the neighbouring points on the

reaction path, resulting in a slow optimization convergence.

In string method(SM), the reaction path is set to be a smooth one-dimensional

curve connecting the reactant and product.[91–96] The curve is parameterized by

the reaction progress, x(t), where t is normalized to be 0 for the reactant and 1

for the product. The initial guess string is generated as an interpolation from the

reactant to the product. The string path is expected to fit the minimum energy

path(MEP) of the reaction after the optimization. This requires the tangent unit

vector τ of the path to be parallel to the gradient

τ = dx(t)
dt

∝ g (1.62)

The force of each point on the path when not at the MEP is

F = −g⊥ = (I − ττT )gP ES (1.63)

Following the Eqn.1.63 the force gradually evolves the initial guess towards the

desired MEP. Impossible to optimize infinite points one the path, the practical
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implementation is to present the string path with discrete states and connecting

through all the states by a interpolation curve, normally a cubic spline. The

object of the optimization is to minimize the �
i

���g(i)
⊥

��� at each state along the

whole string path. One can adopt various numerical optimization methods such

as steepest-decent or Quasi-Newton method to update the state.

Unlike NEB method, there’s no direct spring energy between neighbouring

points, Less coupled states make string method converge more smoothly. Without

the nudged force, the displacement of each state on the string is need to be redis-

tributed to ensure adequate coverage near the transition state region. Also, extra

"kinking" force is required to straighten out the path.

In growing string method (GSM), the number of states representing the path

increases over iterations.[97–100] Starting from both ends, the states grows system-

atically until both part meet and form a complete reaction path. A parameterized

density function and a indicator function are defined to keep track of the newly

added points and the spacing. When the growing string step into new interior,

the density function and indicator function are evolved adaptively to ensure a

uniformly distribution. The optimization is carried separately between the two

segments of the united path. The highest energy point interpolated on the united

path is the optimal transition state guess for further optimization. To reduced

the computational burden, low-level computational method are used to sketch the

string path with a relative efficient optimization algorithm. Then a more advanced

ansatz is applied for a more accurate result.
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1.7 Summary

Effectively modelling chemical reactions is one of the most fundamental and im-

portant problem in theoretical chemistry. There are many aspects of the problem

need to be carefully handled to achieve a satisfactory result including accurately

determination of stable structures on the potential energy surface, properly gen-

eration of transition state guess, effectively location of transition state, and the

detailed description of reaction path.

In this chapter, we reviewed recent works of popular methods for geometry op-

timization. The difficulty of geometry optimization lies in many different aspects

of the problem. A good initial guess structure is important for geometry optimiza-

tion. It’s relatively easy to generate a good starting point for minimization such

as the reaction, product, or the intermediate. It’s more challenging and obscure

to find a good guess for transition state. Different types of geometry optimization

methods are introduced in chapter.1.6. In chapter.2, a new efficient and unam-

biguous method is introduced. The generated structure is a interpolation between

the structures of the reactant and the product. Besides, a new set of robust di-

hedrals are also implemented to facilitate a more comprehensive representation of

molecules during the optimization process.

The optimization process is based on the Taylor expansion of the local potential

approximation. When high order derivatives after Hessian matrix are omitted, the

update step is denoted as Newton step or quasi-Newton step, depends on whether

the Hessian is analytic or approximated. Various quasi-Newton update schemes

are introduced in chapter.1.4. Transition state optimization requires the Hessian

matrix to have one exact negative eigenvalue. We presents a new hybrid method
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incorporating the reaction information. The entries associated with reaction space

are explicitly evaluated through finite difference while the remaining elements are

updated through quasi-Newton method. This new approach combined the advan-

tage of accurate Hessian information with fast update method. In Chapter.3, a

systematic testing proves the promising potential for effectively converge transition

state optimization.

In Chapter.5, a comprehensive testing is conducted to measure the performance

of our new approach. Different initial guess structure are generated by a certain

amount perturbation from the transition state structure. The difficulty increases

as the perturbation change from 0.1 to 0.4 atomic units. The result shows our new

approach are better converging optimization task even the initial guess is poor.

Compared with locating transition state, finding a reaction path on the poten-

tial. Depends on where the reaction path was initiated, the methods are cate-

gorised into single-ended and double-ended methods. Chapter1.6. In Chapter.5,

we introduced a new approach to generate the path point sequentially by a bisec-

tion optimization algorithm. The optimization technique it utilizes is the same

technique as the one in Chapter.3 except the key coordinates is selected as the

reaction reaction vector. Unlike the transition state optimization looking for a

saddle point, at each iteration of the path point, a local minimum in the hyper-

plane perpendicular to the reaction path is found.

The key innovations of this thesis are released as a free and open-source software

package, GOpt, written in Python 3. GOpt is designed to work with Gaussian, but

is easily adapted to in quantum chemistry software method that prints energies

and gradients in a commonly accessible format. In addition to the methodological

innovations in GOpt, GOpt is distinguished from other packages by its reliance
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on modern software engineering practices, including comprehensive documentation

and complete testing of code correctness, quality, and readability. GOpt is designed

to be used as a Python library by other Python packages, and its API is designed

to facilitate this usage.
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Chapter 2

Generating Initial Guesses for

Transition States with Redundant

Internal Coordinates and Robust

Dihedrals

2.1 Abstract

A new set of robust dihedral indicators are designed to circumvent the problem

of ill-defined geometry changes associated with the dihedral angle with collinear

bonds. Using the robust internal coordinates, an interpolation algorithm is used

to generate a high-quality initial guess for the transition-state structure using only

the reactant and product structures. A comprehensive assessment confirms the

robustness and efficiency of this procedure for guessing transition-state structures.
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2.2 Introduction

The performance of geometry optimization methods is sensitive to the coordinate

system that is used to specify the molecular geometry.[1–3] Using atoms’ Carte-

sian coordinates is the most straightforward choice, and is implemented by de-

fault in many modern quantum chemistry software packages including Gaussian,[4]

Psi4,[5] and HORTON.[6] However, during the molecular geometry changes, atoms’

Cartesian coordinates are tightly coupled together, which makes this set of coordi-

nates inefficient for geometry optimization.[7] For example, during a simple bond-

breaking process represented by Cartesian coordinates, one may keep one group

unchanged while moving the others away from the reaction site. To accomplish

the stretch, all atoms in the second group have to change their {x, y, z} coordi-

nates synchronously to maintain the same relative position. This coupling only

becomes more extensive, and more difficult to decode into chemical insight, for

more complicated reaction mechanisms.

Therefore, for geometry optimization it is usually more efficient and intuitive to

optimize using internal coordinates including interatomic distances, the angle be-

tween bonds, and the dihedral/torsion angles for rotation around bonds. Internal

coordinates have direct chemical interpretation and are more weakly coupled, so

the second-derivative (Hessian) of the potential energy surface is more diagonally

dominant when using internal coordinates than when using Cartesian coordinates.

However, there are many different ways to choose internal coordinates, and in some

systems (especially heavily-branched molecules and molecules with rings), no sin-

gle intuitive choice for the internal coordinates exists, and defining a sensible set of

internal coordinates using, e.g., a Z-matrix,[8] becomes difficult. Especially in such
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cases, it is helpful to use redundant internal coordinates, wherein all chemically

intuitive interatomic bonds, bond angles, and dihedrals are included.[9–11] This

resolves the difficulty of making an arbitrary choice of internal coordinates, but

introduces two new problems:

• An arbitrary change in redundant internal coordinates generally does not

correspond to a physically realizable change in molecular geometry. For

example, in the ozone molecule, anytime the bond angles are changed so

that their sum is not 180 degrees, the structure is not physically realizable.

• When three or more atoms are collinear, a dihedral angle is ill-defined be-

cause all choices for the dihedral angle describing rotation about one of the

collinear bonds give the same molecular geometry. This causes numerical ill-

conditioning of the derivatives of the potential energy surface with respect

to the dihedral angle for systems with (nearly) collinear bonds.

Here we present solutions to these issues. First, we provide a specific method

for constructing redundant internal coordinates. Then we discuss how the ill-

conditioning of the dihedral angle can be removed by using an alternative specifi-

cation that is robust for near-linear bonds. We then present a method, based on

projecting points from the high-dimensional redundant internal-coordinate space

to the (3N −6)-dimensional manifold of physically-realizable molecular structures,

that maps nonrealizable changes in redundant internal coordinates to the closest-

possible physically-realizable change. This robust algorithm makes it possible to

perform computational studies using sets of redundant internal coordinates that
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are far from physically realizable, which allows larger step-sizes in geometry opti-

mization. It also allows one to generate good guesses for transition-state geome-

tries by interpolating between the reactant and product structures in redundant

internal coordinates.

2.3 Methodology

2.3.1 Normal Redundant Internal Coordinates

The geometry of a molecule with N atoms can be described by 3N Cartesian

coordinates, {Xi}3N
i=1. It can also be characterized by internal coordinates: bond

lengths, bond angles, dihedral angles, etc., {qi}Mint
i=1 . Each internal coordinates can

be calculated directly from the Cartesian coordinates:

qbond
AB = �RAB� (2.1)

qangle
ABC = cos−1

�
RBA · RBC

�RBA��RBC�

�
(2.2)

qdihed
ABCD = cos−1

�
RBA × RBC · RCB × RCD

�RBA × RBC��RCB × RCD�

�
(2.3)

where RAB is the interatomic vector in Cartesian coordinates,

RAB = (xB − xA, yB − yA, zB − zA) (2.4)

Since the transformation from Cartesian to internal is a non-linear transfor-

mation, the inverse cannot be expressed as a matrix. However, small changes in

Cartesian coordinates can be mapped into small changes in internal coordinates

by a linear transformation. Specifically, the Jacobian matrix of the transformation
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is called the Wilson B matrix, with elements:[12]

bij = ∂qi

∂xj

(2.5)

Owing to the redundancy of the internal coordinates, the B matrix is rectangular

with M rows and 3N columns; typically M � 3N . For a change in Cartesian

coordinates δx, the corresponding change in internal coordinates can be expressed

as:

δq = B · δx (2.6)

Since the internal coordinates are invariant to molecular translations and rota-

tions but the Cartesian coordinates are not, the Wilson B matrix is always sin-

gular. Therefore the Moore-Penrose pseudoinverse, B+, is used for the inverse

transformation,

δx = B+ · δq (2.7)

Given a set of Cartesian coordinates {x0}, we can easily construct a set of

internal coordinates {q0} through 2.1 - 2.3. However, given an arbitrary set of

redundant internal coordinates, {q1}, it may not be possible to reconstruct a

corresponding set of Cartesian coordinates. If {q1} is close to the known x0(q0),

one can use 2.7 to estimate the Cartesian structure,

x1 ≈ x0 + B+(q1 − q0) (2.8)

If the internal coordinates corresponding to x1 are not close enough to q1, then

we can iterate this procedure by setting x0 = x1 and q0 = q(x1) and reevaluating

Eq. (2.8) until eventually convergence,[10, 11, 13–26] which occurs where x0 and
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x1 are sufficiently close to each other. This fixed-point iteration method is used in

most geometry optimization software, but it does not always converge.

2.3.2 Robust Redundant Internal Coordinates

Inspired by the method for selecting internal coordinates in the Dalton pro-

gram,[27] we specify a protocol to define a set of redundant internal coordinates.

Interatomic Distance

Five types of interatomic distances are considered.

1. Regular (covalent) bonds are defined between all pairs of atoms, α and β,

whose distance is less or equal than the 1.3 times the sum of their covalent

radii:

Rαβ ≤ 1.3 ∗ (rcov
α + rcov

β ) (2.9)

2. Hydrogen bonds are designated between hydrogen atoms covalently bonded

to one atom with strong electronegativity, X = N, O, F, P, S, Cl, and located

in the peripheral area of another strong electronegative atom, Y = N, O, F,

P, S, Cl. The H-Y distance is required to be less than 0.9 times the sum of

their van der Waals radii and the angle between X-H-Y must be larger than

90°.

RHY ≤ 0.9 ∗ (rvdW
H + rvdW

Y ) (2.10)

�XHY > 90° (2.11)
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3. Interfragment bonds are included when the system has more than one frag-

ment. Atoms connected by a regular bond are assigned to the same fragment

group in the system. Between different fragments, interfragment bonds are

added.

(a) If each fragment is a single atom, then the interatomic distance is in-

cluded.

(b) If one fragment is an atom and the other fragment is polyatomic, three

coordinates are added, including at least two inter-fragment bonds.

(c) If both fragments are polyatomic, six internal coordinates, including at

least two inter-fragment bonds, will be added.

In cases (b) and (c), at least two interfragment bonds are necessary to spec-

ifying the relative positions of the fragments. By default, the two shortest

interfragment bonds are selected. Additional interfragment bonds are added

when atoms in different fragments are closer than 2 Å or closer than 1.3

times the shortest interfragment distance.

RXY ≤ max(1.3 ∗ Rmin
inter, 2Å) (2.12)

In some cases (e.g., two sheet-like molecules stacked on top of each other),

the number of interfragment bonds becomes prohibitively large. To avoid

this, the total number of bonds is not allowed to exceed the number of non-

hydrogen atoms in the fragments.
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4. To describe rotations of functional groups linked by long linear chaings, a

special linear-chain bond is defined. Specifically, for a molecule with long-

chain structure, the distance between the first and last atoms of the chain is

added.

5. Auxiliary bonds are added between any two atoms that are closer than 2.5

times the sum of their covalent radii is counted. Most auxiliary bonds de-

scribe Urey-Bradley (1-3) interactions.[28] Unlike the aforementioned bond

types, auxiliary bonds are not used when constructing bond angles and di-

hedrals.

RXY ≤ 2.5 ∗ (rcov
x + rcov

y ) (2.13)

Bond Angles

For every atom α that connects two other atoms β, γ by non-auxiliary bonds, the

angle �βαγ is counted as an essential internal coordinate.

Conventional Dihedral Angles

Dihedral �αβγδ is defined as the angle between two planes, the first defined by the

positions of atoms αβγ and the second defined by the positions of atoms βγδ. The

dihedral angle can therefore be computed as the angle between the normal vectors

of these planes. The normal vectors can be defined from the cross products of the

R̂βα = Rα − Rβ

�Rα − Rβ� (2.14)
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where R̂βα denotes the unit vector of bond linking atom β and α. The normal

vector n̂ is defined as,

n̂αβγ = R̂βγ × R̂βα���R̂βγ × R̂βα

���
(2.15)

The dihedral angle is the angle between these two normal vectors,

�αβγδ = cos−1 (n̂αβγ · n̂βγδ) (2.16)

Including all possible dihedrals in the system would lead to the explosion of internal

coordinates. To reduce the unnecessary redundancy, we restrict the dihedrals to

be the one including non-auxiliary bond. More specifically, given a non-auxiliary

bond Rβγ, among all the atoms connected to β, we select α as the one with the

most bonded neighbours. Any atoms that are connected to γ are included in the

dihedrals αβγ∗ and added to the internal coordinates set. Symmetrically, δ is

selected to be the most bonded atom among γ’s neighbour atoms. All dihedrals

∗βγδ are appended to the internal coordinates set. The above description doesn’t

include every situation. Sometimes, the dihedral is consist of planes αβγ and δβγ

where α and δ are both bonded to atom β. This kind of improper dihedral is used

to describe puckering motions for center atom in near-planar structures. For this

situation, we will include the dihedral, denoted as αβγδ, if the sum of the angles

�αβγ, �αβδ, and �γβδ is greater than 345°.

Robust Dihedral indicators

There are still numerical issues associated with torsions around bonds for which

the αβγ angle or the βγδ angle is nearly 180 degrees. In such cases, a small change

in the position of the terminal atom can cause an enormous change in the dihedral
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angle. To circumvent the problem, we developed two new robust dihedral descrip-

tors to replace the traditional dihedral angle in our implementations. Specifically,

we use the cosine of the angle between the αβ and γδ bonds and the volume of

the parallelepiped enclosed by αβγδ.

R̂βα · R̂γδ (2.17)

R̂βγ ·
�
R̂βα × R̂γδ

�
(2.18)

These robust dihedral descriptors prevent the failure of redundant internal coor-

dinates in the geometry optimization algorithms because, when the position of

an atom is changed by a small amount, the corresponding changes in the robust

dihedral descriptors is also small. To test the performance of the robust dihedral

indicators, the comprehensive test results are demonstrated and discussed in the

next chapter.

2.3.3 Mapping between Internal coordinates and Carte-

sian coordinates

The other issue associated with redundant internal coordinates is that converting

Cartesian to/from redundant internal coordinates is not unique. Notably, most

values of the redundant internal coordinates do not correspond to any permissible

molecular structure. We avoid this using a manifold projection method to find the

Cartesian structure whose redundant internal coordinates is as close as possible to

the specified redundant internal coordinates.
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Figure 2.1: Illustration of internal coordinates consist of 4 atoms

Based on the protocol we proposed in the previous section, the amount of

selected robust internal coordinates should be way higher than 3N - 6. Randomly

selecting 3N - 6 internal coordinates is very unlikely to represent a physically

realizable structure. The feasible structure of certain molecule is located on a 3N

- 6 Manifold inside a Mint-dimensional space.

For a random structure represented in internal coordinates, it’s highly possible

there isn’t a corresponding Cartesian counterpart. In order to map every point

from the M dimenstion space onto the 3N − 6 manifold consistently, a mapping

scheme f : RM �→ R3N−6 is constructed as follow. Given a set of redundant

internal coordinates of interest, q(target), the closest point on the 3N - 6 q(x)

manifold, measured by following cost function, is selected,

x(q(target)) = arg min� �� �(q(x) − q(target))T W(q(x) − q(target)) (2.19)
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where W is a weight matrix with only diagonal elements. It is used to demon-

strate the importance of each internal coordinates when conducting the manifold

mapping. Initially, W is the identity matrix. Under different circumstances, the

value can vary according to one’s desire. If some coordinates are selected as frozen

ones, a large value will be assigned, When conventional dihedral is included in the

system, its weight is adjusted to sin2�αβγsin2�βγδ to reduce the impact of the

possible collinear situation. The objective cost function of transformation adapted

square function for bonds and robust indicators while utilizing cosine function as

a discrepancy measurement for angles,

costbond =
�
q(x) − q(target)

�2
(2.20)

costangle =
�
cos(θ(x)) − cos(θ(target))

�2
(2.21)

As for conventional dihedral,

costdihed =
�
cos(φ(x)) − cos(φ(target)

�2
+

�
sin(φ(x)) − sin(φ(target)

�2
(2.22)

The complete objective function to be minimized is defined as,

f(q) =
�

bonds

�
qαβ(x) − q

(target)
αβ

�2
+

�

robust

�
qαβγδ(x) − q

(target)
αβγδ

�2

+
�

angle

�
cos(θαβγ) − cos(θ(target)

αβγ )
�2

+
�

dihedral

�
cos(φ(x)) − cos(φ(target)

�2
+

�
sin(φ(x)) − sin(φ(target)

�2
(2.23)

With the assistance of redundant internal coordinates and the manifold projec-

tion method, We adopted the double-ended scheme to generate a reasonable initial

63



Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

guess structure. After the reactant and product structures have been expressed

in terms of redundant internal coordinates, it is important to generate a sensible

guess for the transition-state structure. To achieve this, we make a line segment

that interpolates from the reactant to the product, and (in the absence of further

information) choose the midpoint of this segment as a guess for the transition-state

structure.

qguess = (1 − p)qreactant + pqproduct (2.24)

In general, the transition-state-guess in redundant coordinates will not be real-

izable, so the manifold projection method is used to find corresponding atomic

positions. We observe that this structure is, in most cases, an excellent initial

guess for transition-state optimization.

Cguess(p) = min� �� �
x

|q(x) − [(1 − p)qreactant + pqproduct]|2w (2.25)

xguess(p) = arg min� �� �
x

|q(x) − [(1 − p)qreactant + pqproduct]|2w (2.26)

where p is the fractional variable determining the interpolation ratio. When p =

0, the guess structure is the same as the reactant, or p = 1 for the product.

The choice of p value indicates the resemblance of the guess to either of the two

known structures. Without further information about the reaction mechanism, it

is sensible to select p = 0.5 as an impartial starting value.
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2.4 Results and Discussion

2.4.1 Testing Protocol

A set of 32 chemical reactions involving various mechanisms is constructed as the

test set. It includes proton or hydrogen transfer reactions, pericyclic reactions,

Diels-Alder reactions, intramolecular reactions, Sn2 reaction, free radical, etc.

The detailed reaction information is presented in the appendix.

All the calculations are conducted at HF level with 6-31+G basis, except two

reactions using 6-31+G(d,p). The reactant and product structures used in the

double-end method are obtained from an intrinsic reaction coordinate(IRC) pro-

cess of the known TS. The transition state optimization update is performed by

GOpt, a geometry optimization package developed by us along with Gaussian 16

for computing Energy and gradient at each optimization iteration.

2.4.2 Overview of result

When constructing the guess conformation, the union of the coordinates from the

reactant and product are used. Robust dihedral and conventional dihedral are

deployed separately to form the respective initial guess structure, as well as in the

following optimization iterations. The optimization process is handled by GOpt

towards the same target TS. All other meta parameters are set to be the same.

The purpose is to evaluate the efficiency, robustness, and consistency of the two

different sets of dihedrals.
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2.4.3 Result and Discussion

First of all, we generalize the basic trends derived from the table 2.1. Later we

analyze the performance on specific cases to draw out a more comprehensive un-

derstanding of the new method.

Negative eigenvalues of the hessian matrix indicate the number of directions

along which the potential surface are maxima. For a TS structure, only one neg-

ative eigenvalue is preferred because it is only the maximum along the reaction

path while the minima among the rest. The capability of generating the right

amount of eigenvalues is crucial to the TS optimization, especially when the initial

guess structure is far from the ideal position. From the 2.1, the average number of

negative eigenvalues are 0.97 and 1.03 respectively, within the same error range of

±0.3. Both are qualified for generating a plausible initial guess with GOpt double-

end method. Based on the test data, there isn’t a noticeable difference between

the two methods.

The average convergence iterations needed for robust dihedral, 7.94 steps, is at

the same level as the conventional dihedral’s 7.15 steps for the successful cases.

No substantial difference is observed from the average result directly. However,

the convergence rate is quite different. All the reactions converges to the expected

TS with robust dihedrals while 5 out of 32 reactions failed instantly due to the ill-

defined conventional dihedral. The remedy for this problem is possible. Thanks to

the extra redundancy in the redundant internal coordinates, all the failed system

are still well-specified after the failed conventional dihedrals being removed. The

results in Tab.2.3 shows the number of iterations needed after the alteration. If

these results are also included to represents conventional dihedral’s performance,

the total average steps of conventional dihedrals increase slightly to 7.47.
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Though the average result looks very close between the two methods, their

performance varies depending on different types of reactions and their initial ge-

ometries. Among all the reactions successfully converged, conventional dihedral

outperforms robust dihedral in 9 reactions with less iterations, reaches a draw in

13 reactions, and only behaves worse in 5 cases. It is a sensible result. Unlike the

conventional dihedral, which is represented by the cosine angle between the two

planes, robust dihedral implemented two different indicators rather than one. For

a molecule with M dihedral planes, 2M robust dihedral indicators are included

in the system. Though more information is preserved, the extra redundancy also

leads to slower convergence. As the number of internal coordinates increases, the

dimension of the space the molecule resides increases, resulting in a harder min-

imization problem when projecting the internal structure back to its Cartesian

counterpart through manifold projection. When a nonphysical configuration is

obtained, compromise in coordinates change are inevitably made between all re-

dundant internal coordinates. All these factors contribute to the slow convergence

of the highly redundant system.

Convention dihedral is a commonly used internal coordinates in many optimiza-

tion occasions. It’s not a suitable candidate for dealing with collinear systems by

definition,

cos(φ) = nA · nB

|nA||nB| (2.27)

where nA and nB are the normal vectors of the two planes. If b1, b2, and b3 are

constituting vectors of the two planes, the dihedral angle can be reformed as,

cos(φ) = (b1 × b2) · (b2 × b3)
|b1 × b2||b2 × b3|

(2.28)
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when any two adjacent bi vectors are near collinear, the norm of the cross product

is near 0. This design leads to an error-prone internal representation of a molecule.

Moreover, the transformation matrix between internal and Cartesian coordinates

is approximated by the Wilson B matrix, which is defined as Bij = ∂x
∂q

. This

approximation is established when both changes are minuscule. However, at the

near collinear situation, tiny changes in Cartesian may result in drastic changes in

internal, undermining the stability and validity of the transformation.

Viewed from the Tab.2.1, multiple reactions failed without further alteration

due to the collapse of the conventional dihedrals. In these reactions, at least

three atoms are collinear. Fortunately, the TS structure resides in the same line

space defined by the collinear atoms. The information reserved by the redundant

internal coordinates is normally more than enough to specify the system. With

only bonds, angles, and other dihedrals, the system is still well defined. By simply

removing the defective dihedrals, these guess structures can converge to the desired

TS without difficulty. After reducing the redundancy, most of the failed reactions

performed even better compared to their robust counterpart. The drawback of

removing collinear dihedrals is that the out-of-line movement is also eliminated

from the optimization process. Without the constraints from certain dihedrals,

taking a step out of the collinear structure becomes a harder task. Fortunately,

all the test reactions, that converge after the tweak, all have their TS achieved

without extra moves for peripheral atoms.
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2.5 Conclusion

First, five types of bonds are built, including covalent bonds, hydrogen bonds,

interfragment bonds, long-distance bonds for linear chains, and auxiliary (Urey-

Bradley) bonds. Second, the cosine of all the bond angles between all pairs of

non-auxiliary bonds are added; the cosine is used because it naturally includes the

periodicity of the bond angle. Adding dihedral angles for all (nonauxiliary) bonds

leads to a prohibitively large number of dihedral coordinates. In GOpt, for every

non-auxiliary bond βγ, the atoms α is selected as the atom bonded to β with

the most bonds connection to other atoms. Then all possible αβγ are included.

Symmetrically, the dihedrals defined by ∗βγδ are also added to the system where

δ is set to be the atom with the most bonded atom.

In this chapter, we introduced a new set of robust dihedral indicators to deal

with the troublesome linear system in geometry optimization. Based on the tests,

the robust dihedral has shown promising results compared to the traditional dihe-

dral. The robustness and consistency are the key advantages of the new represen-

tation.

Among all 32 test reactions, robust dihedral compete all the tasks with 7.94

number of iterations and 100% successful rate while conventional dihedral with

7.15 steps and 0.84% rate. Though averagely, robust dihedral indicators converge

slightly slower, It exhibits great potential and robustness tackling collinear struc-

tures where conventional dihedral usually performs poorly or even fail.

The main drawback of this new indicators is their slightly slower convergence

in optimization process. In redundant internal coordinates, the total amount of

specified dihedrals are normally more than the degree of freedom. Using two
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indicators for dihedrals brings extra redundancy to the system. In the test, for

the cases both methods succeed to converge without modification, conventional

dihedral excels in 33% of the total tests regarding to optimization iteration, while

only been outperformed for 19% of the tests.

Though slightly slower compared to the conventional dihedral, the new dihedral

indicators excels in consistency and robustness. These properties serve these new

indicators to be a promising candidate for solving chemical reaction involving

collinear structures.
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Table 2.1: Number of iterations and negative eigenvalues for gen-
erated guess structures

index Reaction Num. of neg. eigval. Num. of opt. iter.
Conv. Dihed Spe. Dihed Conv. Dihed Spe. Dihed

1 C4H6 + C2H4 1 1 6 6
2 C5H6 + C2H4 1 1 4 4
3 C4H4Si + C2H4 1 1 4 4
4 C6H8O + C2H4 1 1 5 5
5 C4H5N + C2H4 1 1 5 5
6 C4H6 1 1 4 4
7 C6H8 1 1 3 3
8 C8H8 1 1 4 4
9 C12H18 1 1 6 6
10 N2O + C2H4 1 1 5 5
11 N3 + C2H4 1 1 12 11
12 N2C2 + C2H4 1 1 5 6
13 ONC + C2H4 1 1 8 11
14 N2CH + C2H4 1 1 6 5
15 HF + C2H4 1 1 6 10
16 C2H4 + H2 1 1 9 10
17 HCN + H2 1 1 6 6
18 HNC + H2 1 1 11 7
19 C2H6 + SiH2 1 1 5 5
20 HONS 1 1 5 5
21 HNCS 1 1 71 36
22 C3H4O2 1 1 6 7
23 C6H8 1 1 6 8
24 CH3F + Cl− 1 1 - 10
25 CH3Cl + F − 1 2 - 8
26 CH3F + F − 0 1 - 11
27 CH3OH + F − 1 1 - 6
28 CH3OH + ·OOH 1 1 10 11
29 CH3OH + ·CH3 2 1 9 11
30 HF + ·CH3 1 2 - 7
31 N2O + ·H 1 1 9 13
32 H2O + ·CH3 0 0 14 16
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Table 2.2: Average performance of conventional dihedrals and
robust dihedrals

Stats
Methods Conv. Dihed Special Dihed

Average Neg. Eigenvalues 0.97 1.03
Average iteration 7.15 7.38
Convergence rate 84.4% 100%
Median iteration 6 6

Table 2.3: Optimization iteration needed after removing ill-
defined conventional dihedrals

Index Reaction Conventional Special
24 CH3F + Cl− 6 10
25 CH3Cl + F − 5 8
26 CH3F + F − 8 11
27 CH3OH + F − 7 6
30 HF + ·CH3 20 25
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Chapter 3

A Robust Algorithm for geometry

optimization and transition state

search with Reduced Internal

Coordinates

3.1 Abstract

A robust algorithm for geometry optimization is proposed in this chapter. One

of the salient advantage of this method is the separation between key internal

coordinates, The total 3N - 6 reduced internal coordinates space is divided into

the key-space corresponding the bond-breaking and bond-forming process, and

the non-key space with leftover coordinates. Quasi-Newton update schemes are

deployed each iteration to ensure an efficient optimization process. When the

elements of Hessian matrix associated with the reaction activate site are inaccurate,

finite difference is applied to correct the Hessian matrix. Redundant internal

coordinates are constructed with bonds, angles, and the robust dihedral indicators.
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A trust radius scheme is adopted to constrain the gradient information as well

as a Hessian modification scheme to adjust the Hessian eigenvalues in a proper

form. A set of 32 reactions consist of various reaction types are used to compare

the performance between our algorithm and the popular Berny algorithm. All

the energy and gradient evaluation is computed in Gaussian[1]. Compared with

Berny algorithm, our new approach exhibits more robust and consist performance.

The new algorithm and all the advanced features will be accessible in our coming

open-source Python package GOpt.

3.2 Introduction

Geometry Optimization is a vital procedures in many quantum chemistry re-

searches regarding reaction mechanism and molecular reactivity. To effectively

model a chemical reaction, one needs the structures of the reactant, product, and

the transition state(TS) connecting them. Mathematically, these structures corre-

spond to stationary points on the potential energy surface(PES) with reactant and

product as the local minima, and TS as the first order saddle point. It’s relatively

easy to locate the reactant and product as one may follow the gradient downhill to

the minimum. However, finding the TS is a more challenging task. For a first order

saddle point, it’s the maximum along only one dimension while minimum in all

the other perpendicular ones. Many sophisticated optimization methods have been

developed in the last several decades. Three major types of methods are devised

to explore the transition state. The first one is a straightforward optimization

method starting from a guess structure. This method is effective when the guess

structure is relatively close to the real transition state. The performance is highly
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dependent on the quality of the initial guess and the researcher’s chemical intu-

ition. The other two methods can be devided into two categories: the single-ended

method and the double-ended method according to the starting point structure.

The most popular optimization method is the Berny algorithm.[2] It starts

from a provided initial guess structure. With the calculated Hessian matrix at the

first step, the algorithm displaces the guess along the direction with the negative

eigenvalue. As an efficient method, Berny algorithm has made a great success and

was regarded as one of the enhanced and effective algorithm. It is the default

option in Gaussian series software for geometry optimization. Berny algorithm is

sensitive to the initial structure. A guess conformation without exact one negative

eigenvalue is not welcome. It also requires the researcher to be keen on possible

active sites when involving complicated mechanism.

Single-ended methods normally start from the reactant or the product, one of

the valley on the potential energy surface. An ascending direction is selected to

drive the energy go uphill towards the transition state. The simplest method is

the coordinate driving.[3] One coordinate is selected as the dominant coordinate

to propel the reaction process. More advanced methods such as least-ascent,[4–7]

and dimer-methods[8–11] are introduced to utilizing the eigenvector information.

Gradient-extremal-method[12–14] and reduced-gradient-following[15–17] are also

effective methods in generating paths passing through stationary points. Though

these paths are normally not the lowest-energy-path but they sheds light on dis-

covering more possible transition states.

Two-ended methods, on the other hand, do not directly rely on the initial guess

structure. These methods start with the input reactant and product coordinates.

Many elaborated methods, such as nudged elastic band (NEB) method,[18–26]
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string method (SM),[27–32] and growing string method (GSM),[33–36] have been

developed. Among these methods, Synchronous Transit-Guided Quasi-Newton

(STQN) is one of the most renowned. STQN uses a linear synchronous tran-

sit(LST)[37] or quadratic synchronous transit(QST)[38] method to connect the

two end points. An minimum-energy path is obtained on the PES as the initial

guess for TS optimization. It’s a relative expensive approach since multiple energy

and gradient evaluations are needed. Besides, QST approximated paths are often

very different from the real reaction paths.

Though continual progress has been made for various computational meth-

ods, exploring TS is still an unpleasant experience. Optimization Failures still

frequently occur. These inconsistency may attribute to (1) computation failure

from the underlying quantum chemistry software, (2) unphysical structure ob-

tained during the optimization process, (3) Inaccurate Hessian matrix resulting

poor convergence.

Many factors may contribute to the success of a TS optimization, such as the

choice of coordinates, the selection of initial Hessian matrix, the Newton or Quasi-

Newton update method, and step control scheme.[39–41] Motivated by the prob-

lems of existing methods, we herein propose a robust algorithm with minimal

efficiency loss, the GOpt algorithm.

In GOpt algorithm, we adapted the redundant internal coordinates from the

work of Pulay. We specify a set of redundant internal coordinates with bonds,

angles, and robust dihedrals to determine the molecular structure. The redundancy

of internal coordinates is to be eliminated by forming a set of 3N − 6 delocalized

coordinates through linear combination. The method implemented in GOpt is

similar to the one proposed by Baker.[42, 43]
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3.3 Methodology

3.3.1 Overview

Geometry optimization is difficult because the number of stationary points grows

exponentially as the number of atoms increases. This is especially problematic

for transition states, where a specific transition state connecting the reactant and

product structure is desired, and not another, quite possibly nearby, transition

state associated with a different chemical transformation or conformation change.

At a mathematical level, then, geometry optimization is nearly intractable. Yet

chemists are frequently able, through intuition and experience, to suggest plausible

molecular structures for reactants, products, and transition states.

To build a mathematical formulation for these chemical insights, we note that

chemists’ intuition is guided by the realization that during a chemical reaction,

typically only a few key internal coordinates change significantly. These coordi-

nates are typically interatomic distances associated with the formation and frac-

ture of chemical bonds and/or the opening or closing of bond angles. These key

chemical coordinates define a reduced-dimensionality potential energy surface (all

other coordinates are minimized over or thermally-averaged). A system with M

internal coordinates can then be characterized, mechanistically, with many fewer

key coordinates, are also called the reduced coordinates. The most accurate way

to effectively identify the key internal coordinates is to allow the researcher run-

ning the software to specify them explicitly. However, for large datasets, this may

be impractical, and then key internal coordinates can be identified based on the

changes between the structure of the reactants and the products.

To use this intuition in a practical geometry optimization method, we treat the
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key internal coordinates and the non-key internal coordinates separately. After

selected the K key internal coordinates, the remaining non-key coordinates are

determined. The non-key coordinates are then reduced to form a nonredundant

set of 3N – 6 – K coordinates, all of which are linear combinations of the origi-

nal redundant internal coordinate set. Combining the key internal basis and the

nonreduced internal basis, a reduced-internal transformation V matrix is obtained.

During the optimization process, we map the molecular structure from Carte-

sian coordinates to the redundant internal coordinates, then to reduced internal

coordinates. Using the V matrix, the conversion of the gradient and Hessian to

nonredundant reduced+nonreduced coordinates is straightforward, and an opti-

mization step can be determined. Because determining the Hessian is expensive,

but having accurate values for the Hessian is most important only for the block

associated with key coordinates, the key-coordinate-Hessian is approximated with

a finite-difference approximation, and the eigenstructure of the key-coordinate and

the non-key-coordinate blocks of the Hessian are forced to have appropriate eigen-

structure.

With these revisions, a quasi-Newton algorithm for both geometry minimiza-

tion and transition-state finding become straightforward. The cost is superficially

more than a typical quasi-Newton method because additional gradient calculations

are needed for the finite-difference updates of the key-coordinate portions of the

Hessian, but these updates are infrequently required and relatively affordable, and

their impact on increasing the convergence rate is important.
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3.3.2 Selection of redundant internal coordinates

The details of selecting redundant internal coordinates in GOpt is fully describly

in Chapter 2. Here, we briefly recap its salient features. Interatomic bonds,

bond angels, and dihedrals are used to fully describe the molecular structure. Five

types of bonds are built including covalent bonds, hydrogen bonds, inter-fragments

bonds, long distance bonds for linear chains, and auxiliary bonds. All these bonds

are measure in atomic unit. Bond angles are measured between any two non-

auxiliary bonds. The value is measure in cosine function rather than in direct

angle for more robust performance at near collinear structure. One of the major

improvement is the selection of dihedrals compared to normal redundant internal

schemes. In GOpt, for every non-auxiliary bond βγ, the atoms α is selected as

the atom bonded to β with the most bonds connection to other atoms. Then

all possible αβγ∗ are included. Symmetrically, the dihedral defined by ∗βγδ are

also added to the system where δ is set to be the atom with the most bonded

atom. Normal conventional dihedral may fail frequently when the system is in

the collinear structure. When three atoms in the dihedral are located near one

line, the plane defined by these atoms is very inconsistent. A small change in the

Cartesian coordinates of these atoms may result in enormous shift in the dihedral

angle. To circumvent the problem, we proposed the robust dihedral indicators as

substitutes. They are defined as,

R̂βα · R̂γδ (3.1)

R̂βγ · (R̂βα × R̂γδ) (3.2)
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where

R̂βα = Rα − Rβ

|Rα − Rβ| (3.3)

is the unit vector along the direction βα bond. It’s worth noting the geometri-

cal meaning of these indicators. Eqs 3.1 represents the cosine angle of the two

ending bonds included in the dihedral. Eqs 3.2 computes the volumn of the par-

allelpiped enclosed by αβγδ. These indicators can effectively prevent the collapse

of redundant internal coordinate in geometry optimization process. When a small

perturbation is imposed on one coordinates, the corresponding changes in the

transformed coordinates will be small as well, guarantees the consistency of the

coordinates transformation.

3.3.3 Coordinate transformations

The Cartesian coordinate is the direct and straightforward representation yet non-

efficient nor intuitive for chemistry while the internal coordinate is ideal for op-

timization but clumsy when computing energy and it’s derivatives. That’s why

a functional and robust transformation scheme is indispensable in geometric op-

timization process. Because the transformation from Cartesian to internal is not

linear, the best approximation for the transformation is by Wilson B matrix. It is

the Jacobian matrix of the transformation from the 3Natoms Cartesian coordinates

to the Nint internal coordinates. The entries of the Jacobian matrix is defined as,

bij = ∂qi

∂xj

(3.4)

These elements can be obtained from trigonometric functions. Usually, the B

matrix is rectangular because the internal coordinates are normally way more

84



Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

than 3N . Since only 3N − 6(5) degree of freedom is needed to fully specify it’s

structure, the B matrix is also singular with only 3N − 6(5) nonzero singular

values. Their corresponding vectors are called the delocalized internal coordinates.

By rearranging eqn. 3.4, we obtained the the matrix format,

Bδx = δq (3.5)

This equation expresses the change of internal coordinates when a small change

occurred in Cartesian coordinates. Because B matrix is rectangular, there isn’t

a unique inverse. We adapted Moore-Penrose pseudoinverse of B matrix for the

inverse transformation,

B+δq = δx (3.6)

It’s worth noting that not every changes in internal coordinates is realizable. For

example, three atoms forming a triangular structure. Any change leads to the

sum of three angles other than 60° is not physically allowable. To converted these

nonphysical internal coordinates, we project them onto realizable space spanned

by B matrix with minimum error distance,

δq̃ = P̂δq (3.7)

where

P̂ = BB+ (3.8)
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3.3.4 Transformation between Reduced Internal and Carte-

sian

In the numerical optimization process, most software compute the energy, energy

gradient, and its Hessian matrix in Cartesian coordinates. Here we use x, gx, Hx

and q, gq, Hq to denote the energy, gradient, and Hessian in Cartesian and internal

coordinates, respectively. If known the Willson B matrix,

gx = BT gq (3.9)

Hx = BT HqB + K (3.10)

K is calculated by

Kjk =
�

i

[gq]ib�
ijk (3.11)

where b�
ijk is defined as,

b�
ijk ≡ ∂2qi

∂xj∂xk

= ∂bij

∂xk

(3.12)

It’s the derivative of elements in B matrix. Inversely, the energy derivatives in

internal coordinates can be computed through,

gq = (BT )+gx (3.13)

Hq = (BT )+(Hx − K)B+ (3.14)

Equation 3.13 is essential because most quantum chemistry software compute en-

ergy and its derivatives in Cartesian coordinates. Due to the nonlinear trans-

formation between cartesian and internal coordinates, the transformation is only

valid when the changes in each system is infinitesimal. Points in cartesian space
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are of 3N dimensions while in internal space of Nint dimension which is usually

way bigger than 3N . Converting from cartesian X to internal is straightforward

trigonometric application. The inverse is not always clearly defined. If one starts

with xk and its corresponding internal coordinates q(x)k, after a non-infinitesimal

optimization step s, new ideal internal coordinates qk+1 would be

qk+1 = q(x)k + s (3.15)

This new configuration in internal coordinates space will rarely located on the

3N − 6 manifold representable by Cartesian coordinates. That is

x = xk + B+sk (3.16)

will not be the exact counterpart of the target internal coordinates. To maintain a

consistent transformation between two system, we choose xk+1 as the closest point

on the 3N − 6 manifold to the target internal value, qk+1,

xk+1 ≡ arg min� �� �
x

|q(x) − qk+1|2 (3.17)

The detailed implementation can be found in 2.

3.3.5 Select key internal coordinates in optimization

For most chemical reactions, the active reaction sites can be characterized by a

few key internal coordinates. These coordinates are usually related to bond form-

ing, breaking, and angle swing. Motivated by this idea, a reduced-dimensionality
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potential energy surfaces can be generated to describe the energy changing dur-

ing the reaction. Given a system consisting of n internal coordinates, the crucial

information related to the reaction mechanism is located in the few key internal

coordinates space. The PES around the reaction site will be also changes depends

on the changes of these key internal coordinates. To effectively identify the key

internal coordinates, the most accurate way would be getting it directly from the

researcher. The users could specify the key internal coordinates involved in the

reaction based on their chemical intuition as the input for the program.

If no user input is provided, a sets of protocol is conducted to select proper

key internal coordinates based on the difference between the reactant and product

structure. Initially, a union set of internal coordinates are generated from the

internal coordinates of the reactant, product, and the TS guess structure.

The coordinates would be selected as the key internal coordinates if:

• An inter-atomic distance changes more than half the sum of the composing

covalent radii

• An angle changes by at least 30◦

No intuitive and reliable criterion can be easily generalized to describe the

behaviors of dihedrals, so they are not included in the auto-selection scheme.

3.3.6 Construct delocalized reduced internal coordinates

We developed a geometry optimization algorithm based on the reduced internal

coordinates. It is similar to the idea proposed to Baker. The geometry of a

chemical system can be specified by 3N −6 independent coordinates. To effectively

represent the reaction process without introducing extra redundancy, we treat the
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key internal coordinates and the non-key internal coordinates separately. After

selected the K key internal coordinates, the non-key coordinates are constructed

thought a linear combination of all the other redundant internal coordinates.

v(j) =
Nint�

i=1
v

(j)
i qi (3.18)

The V matrix to transform reduced delocalized internal coordinates to redundant

internal coordinates. is denoted as

V =




v
(1)
1 v

(2)
1 . . . v

(3Natoms−6)
1

v
(1)
2 v

(2)
2 . . . v

(3Natoms−6)
2

... ... ...

v
(1)
Nint

v
(2)
Nint

. . . v
(3Natoms−6)
Nint




(3.19)

To construct V matrix, 3Natoms − 6 non-zero singular vectors are selected Wilson

B matrix through singular value decomposition. These vectors are denoted as

a(i) =
�
a

(i)
1 a

(i)
2 . . . a

(i)
Nint

�
i = 1, 2, . . . , 3Natoms − 6 (3.20)

These vectors spans the same space as Baker’s delocalized internal coordinates as

the singular vectors are eigenvectors of matrix BBT.

BNint×3N = UNint×Nint
· ΣNint×3N · V∗

3N×3N (3.21)

BBT = UNint×Nint
· Λ · UT

Nint×Nint
(3.22)

To separate the changes in key internal coordinates space and non-internal coordi-

nates space, we impose a small changes each key internal coordinates successively
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without changing others. This operation usually results in an unrealizable struc-

ture. We then project the unrealizable structure to the realizable space through,

b(j) = Pê = BB+ê(j) (3.23)

where ê(j) is a unit vector with 1 in the jth position but 0s anywhere else. These b(j)

delocalized vectors correspond to the changes when the key internal coordinates

changes the redundant internal coordinates space.

The vectors b(j) are not orthonormal, we orthogonalize it through,

BBT = VΛVT (3.24)

where B = [b(1), b(2), . . . , b(k)]. We pick the eigenvectors vi from U with non-zero

eigenvalues λi.

Vkey =
�
v1 v2 . . . vk

�
(3.25)

where k is the number of independent reduced coordinates. Normally, k should

be equal to the number of key internal coordinates. If not, it indicates that there

is redundancy in the key internal space. We then reduced the dimensionality of

key-internal space by only including the independent eigenvectors.

To construct full V space for the non-key internal coordinates, we need to

project out the key-internal space through

d(j) ≡ (I − Pkey)a(j) (3.26)

= a(j) − VkeyVT
keya(j) (3.27)
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where Pkey is the projection operator of the key internal space. After projecting

out key internal space, the leftover vectors D = [d(1), b(2), . . . , d(3N−6−k)] are not

orthonormal. The same procedures are conducted for the non-key space to generate

a orthonormal set:

DDT = V�ΛV�T (3.28)

There are 3N − 6 − k eigenvectors with non-zero eigenvalues in the V�.

Vnonkey =
�
v�

1 v�
2 . . . v�

3N−6−k

�
(3.29)

Combining the key reduced space and non-key reduced space,

V =
�
VkeyVnonkey

�
(3.30)

we obtained the complete V matrix for transforming redundant internal coordi-

nates to delocolized reduced internal space.V matrix need to be construct in each

iteration of the optimization process. The choice of the basis for non-key internal

space is almost arbituary, so the V determined may vary dramatically between

each iteration. To keep the minimal variance between each V matrix, a rotation

is applied for maximum overlap,

Vnew = QVold (3.31)

Q = VnewVT
old (3.32)

= UΣWT (3.33)
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The optimal orthonormal rotation matrix is

Q(min) = UWT (3.34)

and the maximally aligned new basis is

Vnew = Q(min)Vold (3.35)

During the optimization process, we map the molecular structure from Carte-

sian coordinates to redundant internal coordinates, then to reduced internal coor-

dinates. With the V matrix, the conversion of gradient, Hessian, and optimization

step is straightforward,

gv = VT gq (3.36)

gq = Vgv (3.37)

Hv = VT HqV (3.38)

Hq = VHvVT (3.39)

Δv = VT Δq (3.40)

Δq = VΔv (3.41)

(3.42)

3.3.7 The secant condition in reduced coordinates

In the GOpt algorithm, the Hessian matrix of energy is updated through Quasi-

Newton methods where the value is updated based on the difference of gradient
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between iterations. Due to the main optimization is conducted in reduced coordi-

nates space, the secant condition for Hv is selected to be

Hold
v δv ≈ δgv − (Vold)T

�
(Bold)T

�+�
(Bold)T δVgold

v + (δB)T gold
q

�
(3.43)

3.3.8 Quasi-Newton Updates

In GOpt optimization process, the Hessian matrix is updated by quasi-Newton

methods. These methods approximate the Hessian with the properties changes

from the near iteration points. The four methods we introduce here are using the

last step

s(k)
v = v(k+1) − v(k) (3.44)

and the secant condition

y(k) = (g(k+1)
v −g(k)

v )−(V(k)T
�

(B(k))T
�+

�
(B(k))T (V(k+1)−V(k))g(k)

v +(B(k+1)−B(k))T g(k)
q

�

(3.45)

The four major methods we consider in GOpt are the simple-rank-one update(SR1)

Hv
k+1 =





H(k)
v

���(y(k)
v −H(k)

v s(k)
v )·s(k)

v

������y(k)
v −H(k)

v s(k)
v

���·
���s(k)

v

���
) ≤ 1e−9

H(k)
v + (y(k)

v −H(k)
v s(k)

v )(y(k)
v −H(k)

v s(k)
v )T

(y(k)
v −H(k)

v s(k)
v )·s(k)

v

Otherwise

(3.46)
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the Powell-symmetric-Broyden update (PSB)

Hv
k+1 = H(k)

v + (y(k)
v − H(k)

v s(k)
v )(s(k)

v )T + s(k)
v (y(k)

v − H(k)
v s(k)

v )T

(s(k)
v )T s(k)

v

−
�

(y(k)
v − H(k)

v s(k)
v )T (s(k)

v )
(s(k)

v )T s(k)
v

�
s(k)

v (s(k)
v )T

(3.47)

the Broyden-Fletcher-Goldfarb-Shanno update (BFGS)

Hv
k+1 = H(k)

v + y(k)
v (y(k)

v )T

(y(k)
v )T s

(k)
v

− (H(k)
v s(k)

v )(H(k)
v s(k)

v )T

(s(k)
v )tH(k)

v s(k)
v

(3.48)

and Bofill’s 1994 update (Bofill), which is a mixed method of the SR1 and PSB

updates

H(k+1)
Bofill = (1 − ψ)H(k+1)

SR1 + ψH(k+1
P SB (3.49)

ψ = 1 − |s(k)
v · y(k)

v − H(k)
v s(k)

v |2
|s(k)

v |2|y(k)
v − H(k)

v s(k)
v |2

(3.50)

= |s(k)
v × y(k)

v − H(k)
v s(k)

v |2
|s(k)

v |2|y(k)
v − H(k)

v s(k)
v |2

(3.51)

ψ is the square of the sine value of the angle between the step, s(k + 1), and the

error in the v Hessian’s approximation to the change in gradient that accompanies

the step. The form of the SR1 update is designed to avoid numerical problems

when y(k)
v − H(k)

v s(k)
v is close to 0. BFGS method avoids this kind misbehavior

by making the Hessian update to be positive definite. SR1 and PSB does not

preserve the positive semi-definite during the Hessian update process. In the TS

optimization, it is crucial to maintain one negative eigenvalue during the process.

This makes SR1, PEB, and Bofill to be the idea candidate for TS optimization,

leave BFGS as the good choice for minimization.
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3.3.9 Hessian Finite Differences Update

GOpt is an efficient algorithm as it can effectively describe PES changes within the

key-reduced space. It is important to keep the Hessian as an accurate approxima-

tion during the whole optimization process. We update the first R rows/columns

for the key reduced coordinates with finite difference when needed. Assume the

perturbation in the rth key reduced coordinate is δv = �er, where er is the unit

vector with all 0’s except a ’1’ at the rth position. The update formula for the rth

row/column of the Hessian matrix is similar to Eqn. 3.43,

Her = dgv

d�
− VT (BT )+

�
BT dV

d�
gv +

�dB
d�

�T
gq

�
(3.52)

The rth row/columns of the Hessian matrix is approximate by

df(v + �er)
d�

= f(v + �er) − f(v)
�

(3.53)

The � we used in the GOpt is set to 0.001.

Finite difference method is a time-consuming step, requiring an additional en-

ergy and derivative evaluation by quantum chemistry software. It is inefficient

and unnecessary to update hessian at each iteration of the process. With the

proper choice of Quasi-Newton method, the Hessian matrix especially the first R

rows/columns, corresponding to the key reduced space, are often accurate during

the optimization. Finite difference method is only invoked when the following
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criterions are met:

|g(r)
v | > ω

|gv|√
3Natoms − 6

(3.54)

|H(k)
v er − H(k−1)

v er| > ν|H(k−1)
v er| (3.55)

The user parameter ω and ν are tentatively selected as 1.0.

Criterion 3.54 is checking the norm of the gradient in a specific direction com-

pared with overall gradient in case the optimization along that direction is hin-

dering the convergence efficiency. Criterion 3.55 compares the hessian update

difference by the quasi-Newton method. When the difference is small, it reflects

the update for that row of the Hessian is highly possible accurate enough without

the need for finite-difference update.

3.3.10 Hessian Modification

Transition state is the saddle point on the PES. This requires the structure to have

exactly one negative eigenvalue in the Hessian matrix. The corresponding eigen-

vector features the direction along which the energy is maximum on the reaction

path.

It is important for Hessian to preserve exact one negative eigenvalue with its

eigenvector related to the chemical reaction. But it’s not always the case when the

molecular structure under optimization is far from the TS or the approximated

Hessian is inaccurate. We circumvent this problem by modifying the Hessian

matrix to conform with the ideal structure.

First, we do not want the negative eigenvalue happen in the region non-related
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to the chemical reaction. To do so, we ensure the non-key reduced block of the Hes-

sian matrix to be positive semi-definite. If not, we replace the negative eigenvalue

in the subblock to zero and reconstruct the block.

Second, one exact sufficiently negative eigenvalue in the key-reduced space is

needed. We diagonalize key reduced subblock and check its eigenvalue(s). If the

smallest eigenvalue is larger than a threshold λn (default selected as -0.005), we

set the value to that threshold. If there are more than one negative eigenvalues,

we set all the other less nagative eigenvalues to 0 and reconstruct the key-reduced

block.

Third, after examine the two subblock separately, we then do a complete diag-

nose on the entire Hessian matrix.

H(k)
v = UΛUT (3.56)

where λ is the diaganol matrix with ith eigenvalues at λii. We list the eigenvalues

in ascending order, λ1 ≤ λ2 . . . λ3N−6. If there’s only one negative eigenvalue less

than the threshold λn, with all the other positive eigenvalue greater than threshold

λp. This is the most observed situation.

λ1 ≤ λn (3.57)

λi ≥ λp i = 2, 3, . . . , 3N − 6 (3.58)
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However, sometimes the Hessian matrix do not satisfied the criterion. If there is

one negative eigenvalues, but not meet the requirements, we modify them by,

λ1 = min(λ1, λn) (3.59)

λi = max(λi, λp) i = 2, 3, . . . , 3N − 6 (3.60)

If there are multiple negative eigenvalues, we would pick the one whose corre-

sponding eigenvector has the most overlap with the key-reduced space. For each

eigenvector with a negative eigenvalue, we sums up its components in the key-

reduced space,

pi =
R�

r=1
|χi;r|2 (3.61)

χi:r is the rth element of the ith eigenvector. We then retain the negative eigenvlue

of the eigenvector with the largest pi value, replacing all the other eigenvalues to

max(λp, λi).

If no negative eigenvalue is presented, the pi is computed for each eigenvector.

Among all the eigenvectors with pi ≥ 0.5, we pick the one with the smallest

eigenvalue as the candidate, modifying its eigenvalue to λn. The other positive

eigenvalues are set to max(λp, λi).

3.3.11 Step Size Control

Given a non-stationary structure with its Hessian Hv and gradient gv, we can

locate the TS through Newton step on the Potential energy surface. Starting from

the structure vk, the TS, which has zero gradients, is expected to be at vk+1 such
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that,

gv;k + Hv;k(vk+1 − vk) = 0 (3.62)

the step to obtain the TS is then,

sv;k = vk+1 − vk = −H−1
v;kgv;k (3.63)

Expanding 3.63 with Spectral theorem

sv;k = −
3N−6�

i=1

�
χiχ

T
i gv;k

λi

�
=

3N−6�

i=1

�
χT

i gv;k

λi

�
χi (3.64)

The step, sv;k would lead to the exact TS structure When the objective function

is quadratic and the Hessian matrix is analytical. However, the PES is way more

complicated. The above step is only valid if the vk and vk+1 lands within the PES

quadratic approximation where the high order corrections are negligible. To ensure

during the iteration, the sv;k would not step out the valid region, a spherical region

defined by radius τ is introduced.[44, 45] When the calculated stepsize from 3.63

is larger than the trust radius τ , it need to be re-scaled to fit in the trust region.

Trust-region image potential (TRIM)

To scale down oversized optimization step, TRIM modifies the eigenvalues by an

undetermined variable λ̃ ≥ 0,

sk
v(λ̃) =

�
χT

1 gv;k

λ1 − λ̃

�
χ1 +

3N−6�

i=2

�
χT

i gv;k

λi + λ̃

�
χi (3.65)

until

|sk
v(λ̃)| = τ (3.66)
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3.3.12 Trust Radius Determination

In each step of the optimization, the (quasi-)Newton step is computed in the

nonredundant internal coordinate space, sv = −H−1g. The step, sv would lead

to the exact TS structure if one were very close to the solution or if the objective

function were quadratic. Sometimes these conditions are nearly satisfied, but

when the new coordinates, vk+1, are far from the previous coordinates vk, the

quadratic approximation fails because higher order corrections are nonnegligible.

To ensure the step, sv, does not exceed the region where the quasi-Newton Hessian

is reliable, a spherical region defined by the trust radius τ is introduced. When

the calculated step-size is larger than the trust radius τ , the step is reduced by

the trust-radius image method to fit in the trust region. We implemented separate

energy-based (for minimization) and gradient-based (for transition states) methods

for determining appropriate trust radii during the optimization processes.

The value of τ should be neither too large to violate the validity of 3.63 validity,

nor too small to hinder the optimization convergence. The step should also be

impartial towards small or large system. To make sure the step is under proper

range, we define the trust radius as,

τinit = 0.35
�

Natomsa.u. (3.67)

τmin = 0.1
�

Natomsa.u. (3.68)

τmax =
�

Natomsa.u. (3.69)

(3.70)

where τinit is the initial stepsize of the first optimization step.

In the algorithm, in the GOpt algorithm, gradient decreasing is a preferred
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result. If the magnitude of the gradient after taking a step decreases, the opti-

mization step is accepted and the trust radius range is to be updated with either

"the energy-based criterion" or the "gradient-based criterion". If the gradient in-

creases instead, the step length is shortened by a facotr of 4, τnew = τold

4 , and

recompute the new step. If the step is too small, τnew < τmin/10, then the step

would be set to τnew = τmin and taken no matter the magnitude of the gradient

change. This criterion is implemented to make sure when the structure is far from

the ideal TS, the guess structure can make a step towards the uphill direction from

a near minimum area. Two types of trust-radius updating approaches are included

in GOpt

Energy-based update

Energy-based update compares the actual energy difference between the new ge-

ometry and the previous geometry to the approximated quadratic energy. The

method uses the ratio of these two values to assess the accuracy of the local

quadratic approximation,

Δm(k) = g(k)
v · s(k)

v + 1
2(s(k)

v )T H(k)
v s(k)

v (3.71)

ΔU (k) = U(x(k+1)) − U(x(k)) (3.72)

Where Δm is the approximated energy in v-space and ΔU is the actual energy

difference between the latest two structures. When

2
3 <

Δm(k)

ΔU (k) <
3
2 , (3.73)

then τnew = min(max(2τold, τmin), τmax) (3.74)
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It indicates the quadratic approximation of local potential energy is vary accurate

because the actual approximated energy is close to the real one. We then double

the trust radius with enough confidence.If

1
3 <

Δm(k)

ΔU (k) < 3, (3.75)

then τnew = max(τold, τmin) (3.76)

It shows the quadratic model is moderate accurate. It is safer to keep the trust

radius unchanged. In other situations, we regards the energy approximation inac-

curate for such a big step. So a reduced step is expected for the next optimization

iteration

τnew = max(1
4τold, τmin) (3.77)

Gradient-based update

The energy-based method is an outstanding method in minimization. But when re-

fer to locating transition state, it’s more intuitive and appropriate to use gradient-

based updating scheme. This method, as it’s name suggests, uses the difference

between actual and approximated gradient to evaluate the accuracy of local po-

tential surface model. The predicted gradient is calculated as

g(k+1)
v;predict = g(k)

v + H(k)
v s(k+1

v (3.78)

There are two indicators used in gradient-based method,
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• The change of magnitude of gradient between the predicted and actual ones,

measured by the ratio.

ρ =
|g(k+1)

v;predict| − |g(k)
v |

|g(k+1)
v | − |g(k)

v |
(3.79)

• The change in direction of gradient between the predicted and actual ones,

measured by the cosine value

cos(θ) =
(g(k+1)

v;predict − g(k)
v ) · (g(k+1)

v − g(k)
v )

|g(k+1)
v;predict − g(k)

v | · |g(k+1)
v − g(k)

v |
(3.80)

The angle aligned by the gradient difference is a sensitive measurement to the

dimension of the system. As the dimension get larger, the chance of two vectors

aligned in the same direction decreases. It’s more easily for two random vectors to

be aligned in low dimension space. For example, if one generates a large number

of random vectors in d dimensions, 10% of the them will fulfill Eqn.3.81 and 40%

will satisfy Eqn.3.82

cos(θ) ≥ p10(d) ≈
�

1.6424
d

+ 1.11
d2 (3.81)

cos(θ) ≥ p40(d) ≈
�

0.064175
d

+ 0.0946
d2 (3.82)

The approximated expression is derived by least-square fitting to a much more

complicated analytical expression.
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For gradient-based method, after a step is taken, if

4
5 < ρ <

5
4 (3.83)

and p10(3N − 6) < cos(θ) (3.84)

then τnew = min(max(2τold, τmin), τmax) (3.85)

This shows the approximation from the model is accurate and we double the trust

radius; if

1
5 < ρ < 6 (3.86)

and p40(3N − 6) < cos(θ) (3.87)

then τnew = max(τold, τmin) (3.88)

Otherwise, we deem the 3.78 inaccurate, so we halve the current trust radius,

τnew = max(1
2τold, τmin) (3.89)

recap

The trust radius update method:

1. If g(k+1) < g(k), accept the step and update the trust radius with (a) the

energy-based method or (b) the gradient-based method.

2. Otherwise, change the current trust radius τnew = 1
4τold. If τnew ≥ 1

10τmin

recompute a new step with the shorter length to go back to step 1. Otherwise,

set τnew = τmin and take the step anyway.
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3.3.13 Convergence Criterion

In GOpt, we uses similar criterion to the one proposed by Baker and Chan. We

regard the optimization has achieved convergence if the largest component of the

Cartesian gradient is less than 3.0×10−4 a.u. If the optimization doesn’t converge

in 100 iterations, it is then considered as a failed trial.

3.3.14 Summary of the Algorithm

Here, we put together all the components of the entire algorithm, the GOpt, for

geometry optimization

1. Collect Cartesian coordinates of the target system as the input for GOpt

algorithm

2. Form a complete set of redundant internal coordinates to describe the system

with preset protocols. Select the user specified coordinates as the key internal

coordinates. If not user input given, select the coordinates related to reaction

based on the difference between reactant and product.

3. Construct Wilson B matrix based on select redundant internal coordinates,

and reduced V matrix according to given key internal coordinates

4. Invoke external quantum chemistry software to compute the energy, energy

gradient (and Hessian for the inistial guess)

5. Transform gradient and Hessian from Cartesian space to redundant internal

space with B matrix and to reduced internal space with V matrix.
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6. Check if finite-difference is need to update the rows/columns corresponding

to the key reduced internal space. If criterion 3.54 and 3.55 are met, the

external software are invoked to conduct extra calculations.

7. Modify the hessian to ensure there is only one negative enough eigenvalues.

8. Compute the optimization step in V-space within the trust radius.

9. Express the step from reduced space to internal space. Then Using manifold-

projection convert the target internal coordinates to Cartesian coordinates.

Compute the energy and gradient of the new structure with external software.

10. If the magnitude of gradient decreases, accept the step. Otherwise, decrease

the step side depends on the trust radius update method, go back to step

8 to recompute a shorted new step. If the trust radius is less than τmin/10,

accept the step anyway.

11. Construct B matrix and V matrix for the new structure. Align the new V

with the previous one.

12. Update the Hessian matrix H with one of the quasi-Newton methods.

13. Check if the new structure meets the convergence criterion, if yes, return

the latest structure as the final TS result. if not, go back to 5 to start next

iteration of the optimization.
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3.4 Results and Discussion

3.4.1 Testing Protocol

To test the general performance of algorithm, we use GOpt to optimize the TS

for 30 randomly selected reactions of different types. Details of the reactions

are list in the appendix. All calculations were conducted by Gaussian 16 with

HF/6-31+G(d,p). The initial Hessian is computed analytically with Gaussian

and updated through Quasi-Newton method.

3.4.2 GOpt default methods

GOpt introduces many different methods and choices for geometry optimization.

Different combination may perform differently among different reaction types. We

select the methods with the best performance in most general reactions. The

details of the optimization comparison between different methods are listed in

chapter 5.

By default, GOpt uses Bofill as the quasi-Newton update scheme, TRIM as the

step control method, and gradient-based method for updating trust radius during

the iterations.

3.4.3 Comparison with Berny Algorithm

Berny Algorithm is one of the most popular geometry optimization algorithm

implemented in many renowned software including Gaussian. To compare the

performance, both algorithms starts from the same initial guess and trying to
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optimize the structure to the TS of interest. The result is presented in the next

section.

3.4.4 Results and Discussion

The data presented in the 3.1 show the performance difference between GOpt and

Berny algorithm. Viewing from the general result, GOpt needs averagely 7.38

steps to reach convergence, compared with 10.8 steps by Berny. Also, among all

the random sampled reactions, GOpt has converged all the guess structure to the

desired transition state while Berny failed in 1 test cases. 78.1% of the reactions

converges with the same or less gradient evaluation with GOpt. In test 32, the

guess structure was converged to a nonphysical structure where the SCF energy

calculation cannot converge, result in an SCF error. In test. 6, 11 and 29, the

performance of GOpt is substantially better. Using reduced internal step along

with proper step control methods help eliminate excessive energy oscillation.

All these results suggest that GOpt is a promising algorithm for geometry op-

timization with robustness, efficiency and versatility.
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Table 3.1: Number of gradient evaluation needed for transition
state optimization

index Reaction Num. of iterations
GOpt algorithm Berny Algorithm

1 C4H6 + C2H4 6 6
2 C5H6 + C2H4 4 5
3 C4H4Si + C2H4 4 6
4 C6H8O + C2H4 5 6
5 C4H5N + C2H4 5 6
6 C4H6 4 5
7 C6H8 3 6
8 C8H8 4 5
9 C12H18 6 20
10 N2O + C2H4 5 7
11 N3 + C2H4 11 30
12 N2C2 + C2H4 6 7
13 ONC + C2H4 11 9
14 N2CH + C2H4 5 10
15 HF + C2H4 10 6
16 C2H4 + H2 10 14
17 HCN + H2 6 8
18 HNC + H2 7 8
19 C2H6 + SiH2 5 12
20 HONS 5 8
21 HNCS 6 7
22 C3H4O2 7 14
23 C6H8 8 10
24 CH3F + Cl− 10 7
25 CH3Cl + F − 8 6
26 CH3F + F − 11 7
27 CH3OH + F − 6 17
28 CH3OH + ·OOH 11 13
29 CH3OH + ·CH3 11 54
30 HF + ·CH3 7 6
31 N2O + ·H 13 10
32 H2O + ·CH3 16 failed

Ave. iterations 7.38 9.37
Converge Rate 100% 93.8%

The number of gradient evaluation needed to achieve convergence
from the same TS guess for GOpt algorithm and berny algorithm.
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3.5 Summary

Here, we present a new algorithm GOpt for geometry optimization. It uses the

reduced internal coordinates with reaction-related key internal as the effective

representation of the system. Treating the key internal coordinates separately

allows the reaction to progress towards the direction we desires. GOpt also only

need to evaluate the Hessian matrix once for the first iteration. In the following

optimization process, the Quasi-Newton update and key space finite-differences

method, GOpt can accurately approximate the potential energy surface, leading

to a fast and robust convergence.

The optimization process is conducted in reduced internal space while the major

quantum chemistry properties, like energy, gradient, are computed in Cartesian

coordinates. To effectively convert geometries between different representation, we

introduced the robust dihedral descriptors and manifold-project method. These

methods provide us a fail-safe way to convert the non-linear transformation be-

tween redundant internal coordinates and Cartesian coordinates.

With these improvements, the transition-state algorithm performs significantly

better than those in traditional quantum chemistry software, e.g., Gaussian. Specif-

ically, the frequency of convergence failure is reduced by a factor of two or more,

at comparable computational cost.
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Chapter 4

Bisect hyperplane optimization

algorithm for reaction path

finding

4.1 Abstract

A novel double-ended bisection algorithm is proposed to locate reaction path.

The algorithm is based on the robust reduced internal coordinates introduced in

chapter3. The reaction vector is determined by the two end structure and updated

over the optimization process. Each state of the reaction path is optimized to

the minimum structure in the hyperplane perpendicular to the reaction vector.

Coordinated with quasi-Newton update methods and trust radius schemes, the

optimization is efficient and robust. With the generated path, the interpolated

chemical property is in great agreement with the result from analytical quantum

chemistry calculation. Real chemical reaction models are performed and discussed.
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4.2 Introduction

Chemical reactions represent the core field of many chemical researches. With

the fast development of the electronic structure theory, it is more feasible to fully

describe a reaction process with theoretical tools. The first step towards a effective

model of a chemical reaction is to identify the correct reaction path connecting

the reactant and product. This path is closely linked to the transition states and

intermediates, providing detailed information regarding the reaction mechanism.

Different methods have been devised and developed in the past several decades.

Based on the beginning structure(s) of the initial paths, these methods can be

categorize into the single-ended methods, and double-ended methods. The first

concept is going uphill on the potential energy surface from a single stable struc-

ture, either the reactant or the product, to search the possible transition state.

However, taking a random step towards any direction is an uphill move. Extra

information is needed to locates the desired transition. The most common one is

coordinate driving method.[1] This method relies on the researcher to pick one co-

ordinates associated with the reaction as the dominant direction. When optimizing

along the path, it is important to keep all other coordinates stay in the minimum.

But this method may not work well if the reaction involves multiple main co-

ordinates during the reaction process.[2–5] The alternative idea is to follow the

direction along the eigenvector of Hessian matrix with the smallest eigenvalue.[6–

9] This is equivalent to step towards the direction with the least energy ascent

on the potential energy surface. One more popular method is to follow the gradi-

ent extremal path to the transition state.[10–12] This method is designed to pass

through stationary points on the potential energy surface. Different pathways from
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gradient extremal intersect at transition states. There are two common drawbacks

for the latter methods. Firstly, the costly evaluation of Hessian matrix is required;

Secondly, kinky paths are hardly avoided when following Hessian related methods.

For gradient extremal method, the paths generated are normally different from

the minimum energy path.

Rather than looking for the TS from one side of the reaction, some other meth-

ods try to locate the path by a set of discrete points connecting the reactant

to the product, namely the chain-of-states methods. The nudged elastic band

(NEB) method and the string method (SM) are the two main group methods

in the double-ended family. For NEB method, One or more extra virtual spring

potentials are appended to the original potential expression of the system. The

gradient of the spring potential and surface potential are used to adjust the states

in the direction along the reaction path and the perpendicular hyperplane respec-

tively to maintain the equal spacing. In String method, the reaction pathway is

described as a string connecting the reactant and product. When implemented,

the string is represented by multiple discrete points through a spline path. During

the optimization, each point follows the steepest gradient descent in hyperplane of

reaction path. The chain-of-state methods like NEB and SM can effectively locate

the reaction path from the reactant to the product while bypassing the calcula-

tion of the exact transition state. With the complete pathway, one can effectively

conclude the reaction mechanism and the kinetic properties. The main drawback

of these chain-of-state methods is the demanding calculation requirement in the

optimization process for each state. High performance parallel computing is com-

monly implemented to circumvent the computation power limitation. Beside NEB
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and SM, other chain-of-states methods are also actively developed such as con-

jugate peak refinement,[13] replica path,[14–17] line-integral,[18–22] and different

derived string methods including zero temperature string methods,[23–26] finite

temperature string methods,[27] quadratic string method,[28] and growing string

methods.[29–34]

Here we presented a new bisection algorithm for locating a reaction pathway

to help identify the transition state between the reactant and the product. The

algorithm starts with two stable structures on the potential energy surface. By

connecting the two end points on selected coordinates space, a interpolated mid

structure is generated as an initial guess. Constrained minimization is performed in

the hyperplane perpendicular to the reaction vector. This procedure can effectively

locate the valley on the potential energy surface between the reactant and product.

Then an iterative bisection process is performed to complete the path with points

in between. Unlike the SM and NEB methods where the points are evenl spaced,

in the bisection algorithm, all the points are discretized depends on the reaction

and user’s desire. This provide the advantage to increase the resolution at near the

transition state structure. It also eliminates the kinky pathway on the surface as

the each points is optimized in its own hyperplane without disturbance from other

states. The remaining chapter elaborates the implementation details. Two reaction

examples are presented to illustrate the advantages of this methods. Discussion

and future improvement are augmented at the end of this paper.
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4.3 Methodology

4.3.1 Coordinates system

To effectively describe a chemical reaction with meaningful coordinates, we nor-

mally select internal coordinates system ,such as chemical bonds, angles, and di-

hedrals between planes, to represent the system during the reaction, denotes as

qNint
. There are various schemes to select different sets of internal coordinates. In

this chapter, we stick to the same internal coordinates selection procedures as the

one described in Chapter 2.

Redundant internal coordinates

Here, we briefly recap the coordinates selection idea for the redundant internal

coordinates. When given a structure, five types of inter-atomic bonds, including

covalent bond, hydrogen bond, inter-fragments bonds, long distance bonds as well

as auxiliary bonds, are added depends the types of atoms and the distance between

them. We include the angles forming by each pair of bonds, excluding auxiliary

bonds, connected to the same atom. For dihedrals, we replaces the conventional

one with our robust dihedral indicator which performs more robust and consistent.

To limit the number of dihedrals in the system, we only include the dihedral

consisting of αβγ∗ and ∗, βγδ where α and δ represent the most connected atoms

bonded to β and γ respectively, while * represents any non-selected atom bonded

the other atom.
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The transformation from Cartesian to redundant internal coordinates are im-

plemented by B matrix

q(x) = Bx (4.1)

while the inverse is done by an iterative manifold projection method

x(q(target)) = arg min� �� �(q(x) − q(target))T W(q(x) − q(target)) (4.2)

where x is the Cartesian representation; q(x) is the set of internal coordinates

corresponds to x; q(target) is the desired internal set but may not be a physical

structure. The forward and back transformation is not symmetric, because the

dimension in redundant internal coordinates are normally way higher than Carte-

sian. For a set of Cartesian coordinates, there is always a corresponding internal

representation but not vise versa.

Reduced internal coordinates

Though the redundancy of internal system grants us more connectivity informa-

tion, it slows down the optimization process, hindering convergence efficiency. To

fully specify a system, only 3N − 6 degree of freedom is needed. In this bisection

algorithm, we adapted the similar idea as the one elaborated in chapter 3 with

minor modification to fit our path-finding theme.

Rather than separate the reduced internal coordinates into key and non-key

partition, here we split the reduced internal space into the reaction space and the

non-reaction space.
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To generate the proper reduced space, we start with choosing 3N − 6 non-zero

singular vectors from B matrix, denotes as

a(i) =
�
a

(i)
1 a

(i)
2 . . . a

(i)
Nint

�
i = 1, 2, . . . , 3Natoms − 6 (4.3)

To separate the reaction path space from the non-reaction space, we compute

the coordinate displacement δqpath between the reaction and product

qpath = qstart − qend (4.4)

We project the reaction path indicator into the realizable space

q�
path = BB+qpath (4.5)

The Vreact is consist solely of reaction path vector

Vreact =
q�

path

|q�
path| (4.6)

To construct the full non-react space without the reaction path vector, we need to

project out the path vector first

d(j) ≡ (I − Preact)a(j) (4.7)

= a(j) − VreactVT
reacta(j) (4.8)
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where Preact is the projection operator of the key internal space. In the leftover D

space, we pick the 3N − 5 orthonormal as the basis,

DDT = V�ΛV�T (4.9)

There are 3N − 5 eigenvectors with non-zero eigenvalues in the V�.

These orthonormal vectors are the basis of the hyperplane perpendicular to the

reaction vector, denoted as

Vnonreact =
�
v�

1 v�
2 . . . v�

3N−5

�
(4.10)

4.3.2 Method overview

Especially for complicated multi-step reactions, it can be very difficult to locate

transition states, or even to propose reasonable reaction intermediates. In such

cases, it is best to determine the chemical reaction path directly. This is also

useful for detailed studies of reactions, where having an atomistic description of

the reaction pathway is useful.

Unfortunately, most existing methods for finding the minimum energy path

between reactant and product are prone to failure and unsuitable for parallel pro-

gramming, which is especially problematic given the cost of reaction-path-finding.

To remedy this, we developed a bisection method. Like other methods, the bisec-

tion method works by defining the reaction path as a sequence of points. Unlike

other techniques, every step in the bisection method is a simple, robust, local

minimization.

The first step in the bisection method is to take the reactant and product,
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denoted by qreactant and qproduct as their redundant internal coordinate repre-

sentation. The reaction path vector is initialised to the vector between the two

structures, qpath = qproduct − qreactant. Minimizing starting from the midpoint be-

tween the structures, qguess = (qproduct + qreactant)/2 on the hyperplane perpendicu-

lar to the reaction path vector is guaranteed to find a point on a minimum energy

path. The manifold projection algorithm is used to find a molecular structure

corresponding to qguess. Since the constrained minimization and the manifold

projection algorithm are robust, this method converges.

Note that this algorithm works for any two structures. Denoting the Cartesian

structures of two points as xstart and xend, one can uniquely define the redundant

internal coordinates, denoted as qstart and qend respectively. The reaction path

vector is qpath = qend − qstart and the initial guess state structure is a linear combi-

nation of each end qinit = (qstart + qend)/2, where the manifold projection method

is used to locate the closest structure q(x)init in Cartesian space.

Therefore, after the first point between the reactant and product is located, one

can bisect between this point and the reactant and product, setting up two parallel

constrained minimizations. This procedure can be repeated for each set of sequen-

tial points, with a maximum of 2n−1 simultaneous constrained optimizations at

each step. If at the end of this procedure, a continuous reaction path is obtained,

this is guaranteed to be a minimum energy reaction path. If a continuous reaction

path is not located (which can happen when the reactant and product structures

are very different and the topology of the potential energy surface is very com-

plicated, one nonetheless knows that every continuous segment of the curve is a

minimum-energy pathway. Then, by adding additional structures to extend these

curves, a full minimum energy pathway can be constructed, to whatever precision
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is desired (by bisecting to the degree desired). This method, therefore, eliminates

the non-robustness (convergence failures) and kinked-pathway problems (due to

local minimum tracks) that are associated with the competing elastic-band and

string methods.

Generate initial state on the path

The reaction path starts from two end structure, normally the reactant and the

product, but our bisection method do not restrict that. For simplicity, we denote

the Cartesian representation of the two ends as xstart and xend. Following the

protocol in 4.3.1, redundant internal coordinates are selected for both structures,

denoted as qstart and qend respectively. The initial guess state structure is a linear

combination of each end qinit = (qstart + qend)/2. However, the guess state in

internal coordinates space may not be a physical one in Cartesian space. An

iterative manifold projection method is used to locate the closest structure q(x)init

on 3N Cartesian space corresponding to qinit.

Construct non-react space

Redundancy in the internal coordinates is of great help when specifying the connec-

tivity of structure. On the other hand, it also hinders the optimization convergence

efficiency. For a system with N atoms, only 3N − 6 degree of freedom is needed.

From the redundant internal coordinates representation of the two end points, we

obtained the reaction path vector through qpath = qend − qstart. The actual unit

direction vector q̂path is the realizable unit counterpart of qpath:

q̂path = BB+qpath

|BB+qpath| (4.11)
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The unit direction vector solemnly consist of the Vreact space. Then the hyper-

plane perpendicular to the reaction space is the whole 3N − 6 space without the

reaction direction. To project out the reaction path space, one can easily follow

Eqn.4.10 to construct the non-react space Vnonreact.

Normally the energy, gradient, and Hessian (or approximate one) are computed

in Cartesian coordinates. The conversion between cartesian, redundant internal,

and reduced internal is the same as described in 3.36 expect the V is replaced with

the new Vnonreact.

Optimization process

After projecting out the reaction path vector, the reaction path finding task is

downgraded to a constrained minimization problem within the leftover subspace.

Energy, gradient, and Hessian are normally computed in Cartesian coordinates.

To conversion between different coordinate system are conducted through

g̃v = ṼT gq (4.12)

gq = Ṽg̃v (4.13)

H̃v = ṼT HqṼ (4.14)

Hq = ṼH̃vṼT (4.15)

Δṽ = ṼT Δq (4.16)

Δq = ṼΔṽ (4.17)

(4.18)
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Here, we use X̃ denoting all quantities in the Vnonreact space for concision. The

Newton step truncated at the second order derivative is

s̃ = −H̃−1g̃ (4.19)

Minimization is easy to reach as one can follow the gradient descend direction.

To ensure a proper direction is taken for the optimization step, the hessian matrix

is required to have all positive eigenvalues. If any eigenvalues are negative, an

increase in energy yet decrease in gradient structure is obtained. This step will

push the structure towards the transition state or even higher order saddle point.

When encounter Hessian matrix with negative eigenvalue, a Hessian shift function

is called to alter the negative or small positive value to the preset threshold λp.

λi =





λp if λi < λp

λi otherwise
(4.20)

Newton method is exact and swift if the contour is quadratic. However if the

potential energy surface is usually elusive and complicated, a simple Newton step is

incapable to locate the minimum. The Hessian evaluation in the Newton methods

is time-consuming yet unnecessary, especially for minimization. To circumvent the

problem, the quasi-Newton method is adapted. Rather than exact hessian, quasi-

Newton approximate the Hessian matrix based on the difference between previous

step(s). It can be expressed in general,

Hnew = Hold + ΔH (4.21)
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so that the new step is

snew = −(Hnew)−1g (4.22)

There are many different ways of updating Hessian matrix like SR1, Bofill fam-

ily, Broden family and so on. Among those methods, BFGS is one of the most

successful. The general update scheme for BFGS is expressed as:

Hnew = Hold + Δg(Δg)T

(Δg)T s − (Hs)(Hs)T

sT Hs (4.23)

One of the greatest feature for BFGS method is the output matrix is always

positive-definite, make it an ideal candidate for quasi-Newton method in mini-

mization.

Eqn.4.19 is only valid when the potential energy surface fulfill the quadratic

approximation. This estimation is appropriate if the optimization step taken is

within a certain trust radius τ .[35, 36]

τinit = 0.35
�

Natomsa.u. (4.24)

τmin = 0.1
�

Natomsa.u. (4.25)

τmax =
�

Natomsa.u. (4.26)

(4.27)

where τinit is the initial stepsize of the first optimization step. The trust radius

is updated every time a new step is taken. The approximated energy change by

quadratic estimation is

ΔE = g · s + 1
2(s)T Hs (4.28)
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while the actual energy difference is

ΔU = Enew − Eold (4.29)

We use the ratio of the estimated energy difference against the real one as the

indicator guiding the trust radius update. When the ratio is between [ 2
3 , 3

2 ], we

regards the quadratic approximation as an accurate estimate. So it’s safe to expand

τ . If the ratio falls in the range between 1
3 and 3,then the quadratic model is

considered moderate, so we keep the trust radius unchanged. However, if the ratio

doesn’t land in the above ranges, the quadratic model is not accurate for the same

size step we just took. It’s sensible at this situation reduce the trust radius. The

detailed scheme can be generalized as follow

τnew =





min(max(2τold, τmin), τmax) 2
3 < ΔE

ΔU
< 3

2

max(τold, τmin) 1
3 < ΔE

ΔU
< 3

max(1
4τold, τmin) otherwise

(4.30)

Convergence Criteria

Since the reaction path point optimization is not as rigid as minimization or tran-

sition state optimization, here we adapted the similar strategy proposed by Baker

and Chan yet with a slight loosen standard. We consider the optimization con-

verged when the largest component of Cartesian gradient corresponding to the

non-react Vnonreact space is less then 1 × 10−3. If the process doesn’t reach con-

vergence in 100 steps, a Converge Failure error would be raised.
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4.4 Examples and Cases

4.4.1 Muller-Brown Potential

Muller-Brown potential is a two-variable parametric potential.[37] It is an ideal

testing ground for the algorithm. The minimum energy path connects the reactant

and product through a intermediate and two saddle points. Also, the path is

deviated from the linear interpolation of the two minimum points where a non-

convex minimization is needed.

Figure 4.1: Reaction path finding on Muller-Brown surface with
Bisection method
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To better illustrate the process, we implemented the algorithm on the Muller-

Brown two-parametric potential. The whole process is presented in the Fig. 4.1.

Clearly we can see there are three minima along with two transition states. To ob-

tain the starting points, two individual unconstrained optimizations are performed

with two initial guesses. For brevity, We denote these two starting points P0 an

P1 respectively. To find the first point on the path, a guess point is generated by

linear interpolation between P0 and P1 in selected coordinates. With the initial

guess G, and the reaction space spanned by direction vector connecting P0 and

P1, a constrained minimization is performed in the hyperplane perpendicular to

the direction vector. On the two dimensional potential surface, it is located at

the minimum on the bisector line P2 (Fig. 4.1A). After the first middle point P2

anchored on the potential surface, new points are generated with P2 as the starting

point (Fig. 4.1B). This process is continued until enough points are generated to

represent the reaction path. Unlike other popular reaction path methods, the Bi-

section hyperplane optimization does not keep the equidistant points. This grants

the algorithm the ability to put denser points at the area where the path curves,

providing a more detailed description among potential twist region.

The whole process is set to finish if certain number of points have been gener-

ated indicated by the users, or other preset criterions are met such the maximum

distance between nearby points are less than certain threshold measured in given

coordinates. In Fig. 4.1C & D, we generate 9 points and 17 points respectively to

describe the reaction path. There are three critical points on the path, the inter-

mediate and two saddle points. Because the Muller-Brown surface is analytical,

we can calculate the exact coordinates and potential of them. Comparatively, the
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same information is obtained through the reaction paths from bisetion optimiza-

tion method.

Table 4.1: Analytical and interpolated stationary points from the
reaction paths

Intermediate Saddle Point1 Saddle Point1
Coordinates & Potential

Analytic (-0.050, 0.467 ) (-0.822, 0.624) (0.212, 0.293)
-80.768 -40.665 -72.249

path 4.1C (-0.040, 0.473) (-0.845, 0.602) (0.222, 0.298)
-80.714 -40.421 -72.218

path 4.1D (-0.050, 0.464) (-0.814, 0.632) (0.220, 0.298)
-80.761 -40.633 -72.230

The data in Tab.4.1 illustrates the performance for different reaction path. The

intermediate and saddle points are interpolated by a cubic spline going through

all path points. The path in Fig. 4.1B is not shown in the table as a monotonic

curve is produced without enough data support. In the two sample reaction paths

shown in the table, the two saddle points and the intermediate are successfully

identified and located. The absolute error in coordinates is ±0.02 and ±0.01 for C

and D respectively. The energy difference between is ±0.2 for Path C and ±0.03

for D. The whole trend of the reaction path is quickly defined by the first several

round of points evaluation. On the two-dimensional Muller-Brown potential, after

projecting out the one direction vector, the hyperplane of the middle point is a

perpendicular line. The minimization process brings the initial guess to the valley

of the intersection. This guarantees a path-point in that local region a reaction

path must go through. The procedures is also independent from potential gradient

outside the hyperplane, preventing forming a kinky pathway.
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From the data in Fig.4.1 and Tab.4.1, Bisection optimization algorithm exhibits

great efficiency and accuracy as the method aims at describing the big picture

of the reaction path before elaborating the details in the local region. In the

real implementation, the generated path provides a proper guess for TS transition

optimization. Because every point is obtained through a constrained minimization,

no real Hessian matrix evaluation is required in the whole process.

4.4.2 Chemical Reactions

1. HCN Isomerization

The degree of freedom of a system is 3N −6 where N is the number of atoms in the

system. To test the bisection optimization method in real chemical reaction, the

HCN -> HNC isomerization is selected as the first multi-dimensional test example.

This isomerization reaction has been studied thoroughly both experimentally and

theoretically.[38–40] As a molecule of three atoms, the total degree of freedom

needed to fully specify the structure is 3. It functions as an idea reaction to testify

the performance of bisection method on multi-dimensional potential surface.

The two starting structure for taking the bisection optimization are optimized

with HF/6-31+G method. All the reaction path points optimization is also deter-

mined in the gas-phase with the same HF/6-31+G method.

If using the bond length of CH, CN and the angle between HCN as the three

independent variables, the bond length between C and N are of little change during

the whole process. To better illustrate the reaction path, we depict the CN bond

length as a constant to majorly emphasize the H transfer trajectory. The number
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Figure 4.2: Path points generated by Bisection algorithm

P0 and P1 are stable structures for reactant and product. The
following indices indicate the sequence of generation

Figure 4.3: Energy curve of reaction HCN -> CNH along the
reaction coordinates

in subscript represent the sequence being generated by the bisection algorithm if

performed no-parallelly.

As shown in Fig.4.2, the reaction path conforms with many experimental results.

Parameterizing the reaction path by the arc length between each adjacent path

points, an interpolated continuous reaction path is generated as shown in Fig.4.3.

To the interest of most researchers, the transition state of the isomerization is

obtained by interpolating the maximum on the spline curve. The results from
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Table 4.2: Transition state from interpolation and analytic Com-
putation for HCN -> CNH reaction

Interpolation Quantum Computation
Energy -92.72995 a.u. -92.72972 a.u.

CH bond 2.2801 a.u. 2.2862 a.u.
HCN angle 71.44° 71.83°

interpolation and quantum calculation is in Tab.4.2. The result from the reaction

path curve highly agrees with the exact calculation reference. Though only 7 points

are produced by the procedures, they suffice to provide a detailed description along

the reaction, especially among the area near transtion state. It is worthy noting

that in the actual result from the bisection optimization, the bond length between

is C and N is not constant. The actual bond is slight stretched from the initial

2.19 a.u. to maximal 2.26 a.u. near the transition state.

2. HSNO -> HONS Isomerization

The second reaction is HSNO -> HONS isomerization.[41–43] It may look alike

to the previous example, but the real reaction path behind is far more compli-

cated. Many computational researches have been conducted to disclose the reac-

tion mechanism. The simple H atom migration is involved with multiple available

route, intermediates, and transition states. The details is shown in Fig.4.4.

With such a complicated chemical reaction, more points along the reaction path

are need. Starting from the stable structure of HSON and HNOS, a reaction path

consisting of 17 points (including two starting points) is generated. The system

energy change along the chemical reaction process is shown in Fig.4.5.

From the structures of the points from the bisection optimization method, the
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Table 4.3: Transition state from interpolation and analytic Com-
putation for HSNO -> HONS reaction

Interpolation Quantum Computation Relative error
TS1 Energy -527.080177 a.u. -527.080348 a.u. 0.000032%
TS2 Energy -527.068519 a.u. -527.068274 a.u. 0.000046%

Intermediate Energy -527.192585 a.u. -527.189130 a.u. 0.00066%

path we obtained is the same as the reaction mechanism 1 in Fig.4.4A. The path

successfully goes through two transition states, and the connecting intermediate.

With the path, the energ of the structure of great interests are shown in the

Tab.4.3. Compared with the reference energy from quantum computation, the

interpolated the results are accurate to the third decimal places for transition

states, and the second decimal places for Intermediate. These points provide a

quantitatively description of the whole reaction process. Also from the the graph,

there’s a tiny peak around x = 0.13, which corresponds to the hydrogen rotation

barrier. Guided by the neighbouring points, the current path leads the structure

to the valley side of that rotation barrier.

4.5 Conclusion

The bisection optimization method introduced an efficient and accurate way to

generate a minimum energy pathway connecting the reactant and product. It is

designed to be kinky-free and flexible. No extra information is need about the

reaction except for two ends structures. No limitation is imposed on what starting

and ending points are along the reaction path.
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Figure 4.4: HSNO -> HONS isomerization mechanism

Figure 4.5: HSNO -> HONS Energy vs Reaction process

In bisection optimization methods, the reaction space is divided into the tan-

gent path-direction vector and it’s hyperplane. This simplifies the process into

a local constrained optimization problem. The generated energy path provides

quantitatively detailed characterization of the reaction process. Based on the re-

quired accuracy, more points can be added to the system and located at the region

where better description is needed.

Three examples of different difficulty levels illustrate the effectiveness. The first

example is a tricky two-variable parametrized potential surface where the energy
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is not convex when locating the minimum energy path. This obstacle is overcome

by GOpt hessian modification scheme. The numerical result is highly in agree

with the analytical one. The second example is the isomerization of HCN. This

is a simple 3-dimensional real reaction. However, the reaction path for this one

is relatively easy and straight forward. The pathway with 9 points can clearly

characterize the migration of H from one side to the other. The interpolated the

TS energy is every close to calculated one. The last example is the isomerization

of HSNO. This reaction involves two possible reaction mechanism, multiple saddle

points and intermediates. From the pathway generated by GOpt, it takes one

of the mechanism, goes through all the TS and intermediate on that path. The

interpolated energy of those key structures are as accurate as calculated with errors

less than 0.0007%.

Based on the promising performance of the bisection optimization algorithm,

we hope it along with GOpt can become a helpful and powerful tools for more

chemical researches and application.
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Chapter 5

Systematic Assessment on

performance and robustness of

GOpt algorithm

5.1 Abstract

A comprehensive and systematic test is conducted to assess the overall effective-

ness and robustness of the newly elaborated optimization algorithm GOpt. The

test set consist of 32 reactions from various types. A random perturbation is ap-

plied to the known transition state to generate 10 random initial structures. Both

GOpt algorithm and the benchmark Berny algorithm method are deployed to find

the desired transition state on the potential energy surface. The increments of per-

turbation range from 0.05, 0.1, 0.2, to 0.4 atomic unit. In general, GOpt performs

more efficient when the perturbation is small, and is marginally slower when the

perturbation increased to 0.4 a.u.. But GOpt possesses higher convergence rate

throughout all test scenarios, marking it a promising optimization candidate.
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5.2 Introduction

A novel algorithm for optimizing chemical structure is introduced in chapter 3.

In the proposed algorithm, quasi-Newton methods are adopted along with trust-

radius method to control the optimization step. Elaborated Hessian modification

method are implemented to locate the uphill direction for saddle point. The algo-

rithm exhibits promising efficiency and robustness at converging various geometry

optimization tasks in a straightforward tests.

In this chapter, a more systematic and thorough assessment is conducted to

explore the range of effectiveness. In 3.1, GOpt reaches less iteration cycles and

better convergence rate compared with Berny algorithm.[1] Its great performance

is partially accredited to the good initial guess from the interpolation methods, and

partially to the sophisticated algorithm leading the structure towards the proper

TS. When the reaction mechanism is relatively straightforward, the guess structure

is not too far away from the transition state, the optimization may only need to

take a few iterations to step towards the gradient decreasing direction. However,

a good initial guess is not always available. When the reaction mechanism is

complicated, multiple intermediates and TS involved, the optimization algorithm

may need to take a step towards a energy increasing or even gradient increasing

direction. Though GOpt has shown promising results in the general tests, it is still

not clear to what limit, GOpt can robustly handle the non-ideal initial guess.

In the default setting of GOpt, many meta-parameter are included to initialize

the optimization algorithm. To accustom to different optimization cases, we im-

plemented 2 cost functions for coordinate transformation, 4 different quasi-Newton

update schemes, 3 types of secant conditions, and 2 kinds of trust-radius updating
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protocols. Among all the choices compatible, the optimal combinations and the

premised condition are unknown.

Most often, when new approaches established, people normally test the new

idea against a small testset.

In this chapter, a systematic assessment is designed to investigate the perfor-

mance of GOpt under different parameter, and for different initial guess structure.

5.3 Testing protocol

A database of chemical reactions for testing

To effectively test a computational algorithm, it is crucial to construct a broad and

relevant database. Most of the reactions included were taken from the test sets

that we used for testing transition-state optimizer. The database involves various

reaction types such as Diels Alder,[2] electrocyclic,[3, 4] Huisgen cycloaddition,[5]

Addition, Proton transfer, SN2 substitution, free radical reactions.[6] Some reac-

tion were constructed by replacing or adding extra functional groups. This proce-

dure produced several sterially-hindered reactions that requires the optimization

algorithm to correctly identify the true transition state from other low-energy bar-

rier corresponding to conformation changes. All quantum chemistry computation

are conducted in Gaussian[7] 16 with HF/6-31+G. The exact Hessian is computed

on the very first step.

5.3.1 A Systematic Method for Generating Initial Guess

As a optimization algorithm, it’s important to perform consistent and robust with

initial structures of different quality. Our goal here is generate a set of random
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initial guesses by imposing a random perturbation of selected scale to the the true

transition state. We start with a random vector, a, in Cartesian coordinates. The

random vector is projected onto the Wilson B matrix and it’s pseudo-inverse,[8]

and then normalized

û = B+Ba
|B+Ba| (5.1)

This projection produces a random perturbation of the internal 3N-6 degree of

freedom without redundant translation and rotation. With the unit perturbation,

a set of random structures are generated by adding the transition state geometry

with a scaled perturbation.

xguess = xt.s. +
√

3N · �û (5.2)

The factor � is to adjust the average amount of perturbation on each atom in the

molecule. To average out extreme cases, we choose to generate 10 random initial

guess for each �. We also gradually increase the value of � until the test result

deteriorated dramatically. The � is selected to be 0.05, 0.1, 0.2, and 0.3.

When the � equals 0.3, it is observed that in many test cases, the initial guesses

failed instantly from quantum chemistry calculation due to illegitimate structure.

Large factor permits each atom in the system to deform away from their equi-

librium position, often leading to collision of near atoms or the distance between

them become unrealistic.

Here we propose another testing protocol involving only the key internal coor-

dinates. During the chemical reaction, key internal coordinates are selected as the

representation of the chemical process. The ability to stably converge a deformed

structure at near key-coordinates area is a strong indicator to the robustness of the
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testing algorithm. We started with a set of random generated variables a matches

the size of internal coordinates. The vector a has non-zero entries only at the key

internal space. We then project out the redundancy due to overly-defined internal

coordinates, and then normalized

v = BB+aint (5.3)

The generated perturbation are then applied to the target transition state struc-

ture. The transformation from the internal coordinates to Cartesian coordinates

are carried out by the manifold projection method introduced as Eqn.2.19,

min� �� �
xκ

|q(xκ) − (qt.s. + ·κv̂)|2 (5.4)

where qt.s is the redundant internal coordinates of the transition state and κ is the

factor to scale the perturbation applied on the equilibrium structure. The distance

of the perturbed Cartesian coordinates from the original transition state structure

is computed in Cartesian coordinates.

||xκ − xt.s.|| = � ·
�

Nkey (5.5)

Where Nkey is the number of key internal coordinates that are perturbed. In order

to remove the irrelevant rotation and translation as well as minimizing distance

calculated, we adapted Kabsch’s Algorithm to align the two structures.[9] Again,

We generate 10 random initial guesses for each choice of �. As the changes from

key internal coordinates are more accurate and tangential to transition state, we

choose a slightly larger set of �, 0.1, 0.2, 0.3, and 0.4.
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5.3.2 Criterion on Test assessment

We assess the performance of GOpt with default Berny algorithm in Gaussian by

the successful convergence rate and the gradient evaluation performed. As the

factor � get larger, the potential energy surface become more delicate and complex

than area near the transition state. A big initial step and aggressive step-size

update scheme may lead to a overshoot step among certain optimization direction.

Therefore, we tune down the initial stepsize in GOpt to 0.15 ∗
√

N where N is the

number of atoms in the system, and the step-size update factor from 2 to 1.5 in the

gradient-base approach. The adjustment of these hyper-parameters though may

result in a slightly slower convergence yet a less error-prune convergence process.

The upper limit of steps taken for GOpt is set to 100, if the optimization

process couldn’t converge in 100 steps, we deem it fails to reach the transition

state. Though the step limit is set to 100, some extra gradient evaluation maybe

need during GOpt optimization due to finite-difference hessian update or reject

step recalculation.

5.3.3 Results and Comparison

Here, we assess the performance of GOpt in comparasion with the default Berny

algorithm in Gaussian. In the geometry optimization process, the major time-

consumption step is determined by the gradient evaluation. The number of gra-

dient evaluation needed for the optimization process is an important indicator to

the efficiency. We also consider the convergence rate under different perturbation

factor. Though slow convergence is not preferred, we think the robustness of an

optimization algorithm is more critical.
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In Table.5.1, we compared the performance of GOpt with Berny algorithm

on test cases where all atoms are perturbed. The perturbation are measure as

distance between test structure and the real transition state structure in Cartesian

coordinates space. For small displacement when � = 0.05or0.1, GOpt converges

with less gradient evaluation than Berny’s. As the displacement get larger, the

quality of the test structure deteriorates, resulting the average evaluation needed

to reach the transition state increase dramatically. When � = 0.2, the evalution

needed by GOpt and Berny is close. And When � reaches 0.3, the Benry’s is the

slightly efficient one by tiny margin.

While the evaluation of gradient required to reach saddle points are close for

GOpt and Berny. The convergence rate trend is completely different. When the

� is 0.05. both methods perform excellent, more than 94% reactions converge

without problem. However, as the displacement increases, the result from Berny

deteriorate dramatically from 0.94 to 0.44 when � increase from 0.05 to 0.3. On the

contrary, the result from GOpt is very stable. The advantage of the robustness is

inconspicuous at the beginning when � is small. But as the displacement increases,

GOpt exhibits great competence converging initial guesses that are distorted and

skewed. At the most extreme case where �=0.3, the performance of GOpt is close

to two times better than the result from Berny, revealing that GOpt can be a

helpful and promising tools in locating transition state.

Fig.5.1 shows the trend of convergence rate increase as the number of gradient

evaluation increase. When the number of evaluation is less the 20, the curve for

GOpt and Gauss is almost overlapped. This correspond to the similar performance

of the two algorithms when the initial guess structure from the perturbation is in

good quality. As the guess structures quality deteriorate, more steps are needed
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to handle as well as more error-prune structure is formed, leading a less favorable

convergence result. We stop the graph at the 100th evaluation of the gradient as

at this point, the structure still running optimizations either have already failed

or are optimizing towards a wrong transition state. The robustness of GOpt is the

key feature of our algorithm. This mainly accredit to the proper predefined key-

internal coordinates. With a clear information of where the negative eigenvalue

would be located. Certain amount of perturbation would, though distorting the

structure, not affect the steps the algorithm takes towards the negative eigenvalue.

Moreover, GOpt are granted protocols to seek the proper direction to step uphill

when the current structure is with no negative eigenvalues or multiple negative

ones, lending GOpt the capability navigating towards the right structure.

Table 5.1: Test results from GOpt and Berny algorithm when
applied random perturbation in Cartesian coordinates

�(Bohr)
Methods GOpt Algorithm Berny Alogorithm

Average Gradient Evalution
0.05 7.5 9.7
0.10 13.7 17.2
0.20 28.2 29.0
0.30 41.7 41.0

Convergence Rate
0.05 0.98 0.94
0.10 0.97 0.89
0.20 0.95 0.75
0.30 0.81 0.44

In Tab.5.2, a more constructive random guess structures are used. With a more

reasonable starting point, the number of gradient evaluation shown in the Tab.5.2

are substantially smaller than the one needed in full-random test-cases. Viewing
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Table 5.2: Test results from GOpt and Berny algorithm when
applied random perturbation in key internal coordinates

�(Bohr)
Methods GOpt Algorithm Berny Alogorithm

Average Gradient Evalution
0.1 4.7 6.6
0.2 6.4 7.9
0.3 9.2 8.6
0.4 10.4 10.0

Convergence Rate
0.1 0.99 0.96
0.2 0.97 0.93
0.3 0.91 0.85
0.4 0.87 0.81

from the average gradient evaluation needed, Tab.5.2 share the similar trend as

Tab.5.1. GOpt possesses efficiency advantage over Gauss in small perturbation

but the latter quickly catchs up in tests when the perturbation is larger. Also in

Tab.5.2, the maximum displacement used is � = 0.4, provide a clearer view of the

trend. There are two factors contribute to this effect. One is the relative conserva-

tive step control scheme implemented in GOpt. Because the inital structure are far

from the real transition state, we encourage the algorithm take more small steps in

case sliping into unexpected energy saddle area. The second is GOpt is a Hessian-

free algorithm with any analytic evaluation of Hessian matrix in the optimization

process except the starting structure. This required the algorithm to take extra

gradient evaluation for the sake of hessian finite difference approximation.

As for convergence rate, the data from Tab.5.2 are also Superior than the cor-

responding ones from Tab.5.1. The difference between the two methods still exists

but way subtle than Tab.5.1. This is because the changes in key-internal space
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normally allow the guess structure retained the proper eigenvectors with negative

eigenvalues. This is a crucial improve when optimizting with Berny algorithm.

Though the leading margin is not as obvious as Tab.5.1, GOpt still outperformed

Berny in every tested � by 3 - 6 percentage, showing great consistency and robust-

ness in geometry optimization task.

Fig.5.2 exhibit a different trend of convergence rate to number of gradient eval-

uation than Fig.5.1. Due to the higher quality guess structure in each test cases,

both algorithms have 70% of their optimization tests converged in less than 20

rounds. The major divergence of the two lines takes place where number of gradi-

ent evalution = 15. This is majorly because when the guess structures are good,

both algorithm converge fast and swift, bring the structure close to the real tran-

sition state. But if the optimization takes more than 15 steps, there’s a chance the

initial guess is not of high quality. This leaves more challenges to the optimization

algorithm. Equipped with more tools and step control protocal, GOpt has the abil-

ity to handle these problems more effectively. This proves the GOpt is a promising

algorithm for geometry optimization with both efficiency and robustness.

5.4 Summary

The goals of this chapter is to construct a protocol for testing the perform ace of

different geometry optimization methods. Here we use out newly developed GOpt

and the the popular methods Berny algorithm from the Gaussian program as the

candidates.

There are many key features of this testing protocal, the first is a relative

large and broad database of 32 chemical reactions involving various reaction types.

155



Ph.D. – Xiaotian Yang; McMaster University& Sorbonne Université

All of the reactions provided involved in chapter 2. The Second, we designed a

method to systematic generating initial guesses with different level of perturbation.

This granted us the ability to construct testing cases of various quality. Two

kinds of perturbation methods are adapted here. (1) Generate a complete random

perturbation in every coordinates of every atom; (2) Generate a selected random

perturbation aiming certain reaction coordinates space.

The last but not least, we assess the two methods compared through this pro-

tocal, the Berny algorithm from Gaussian and our developed algorithm GOpt.

From the result, for both kinds of perturbation, GOpt outperformed Berny in

convergence rate and robustness. When the structure is relatively close to the real

transition state, GOpt is also the more efficient choice. Yet when the quality of

initial guess deteriorated, the Berny start to catup in efficiency. From the test

result, we can confidently conclude that GOpt is the more suitable candidate for

transition state optimization. We are also looking forward to more improvement

in the GOpt future performance.
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Figure 5.1: Convergence rate for random Cartesian perturbation

Figure 5.2: Convergence rate for random key internal perturba-
tion
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Chapter 6

Systematic Assessment on

components on the optimization

algorithm

6.1 Abstract

GOpt is a robust and efficient optimization algorithm. Different methods and

schemes are included in the software package for versatility and flexibility. A test

set consisting of 20 reactions of various sorts are selected to illustrate the general

performance of each candidates. Different methods from the same category are ar-

ranged in the same group. Starting from the same initial guess structure, different

methods are deployed to test the optimal combination for general optimization

tasks. The result are assessed from two aspects, efficiency (number of gradient

evaluations) and the robustness (the convergence rate). Viewed from the average

performance, BFGS and energy-based update is the best default choice for min-

imization tasks while Bofill with gradient-based update is the optimal choice for

transition state optimization.
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6.2 Introduction

Geometry optimization is a complicated process involving various fundamental

components. Designed as a user-friendly software, we provide users with a default

optimization configuration that fits the most-broad reaction types. We also offer

users the flexibility to choose or implement some components of their own. When

starting a optimization task. One can easily follow the template of our program

and write their own code to work seamlessly with existing GOPt package.

In GOpt algorithm, the Hessian matrix during the optimization is approximated

through a quasi-newton update. This estimation lower the computation cost of

the program, making GOpt more affordable when computing larger system. It

also broaden the compatibility of GOpt with other quantum chemistry software

without analytic Hessian calculation. When conducing a quasi-newton update, the

secant condition is the indispensable elements. Two coordinates transformation

are implemented in GOpt when converting strcture from Cartesian coordinates to

Internal coordinates, then to Reduced Internal coordinate. After each optimization

step is taken, the trust radius τ is required to be updated basic on the accuracy

of the current quadratic approximation.

The choices of quasi-Newton update schemes, the trust-radius update methods,

and the secant condition values , have great impact on the performance of GOpt

algorithm. Some methods are designed in favor of minimization than transition

than their counterparts. In the chapter, we are emphasizing the individual contri-

bution of each component to the overall optimization convergence. The idea is to

setup a set of test reactions from different reaction types for each candidates. All

the optimization will start from the same initial guess structure and towards the
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same final transition state. The performance is assessed by the convergence rate,

the iteration steps taken, and the gradient evaluation during the process.

6.3 Testing Protocol

To test the performance of different quasi-Newton update schemes, the trust-radius

update methods, and the secant condition values, a set of 20 test cases are picked

6 typical reaction types. To coordinate with new algorithm implemented in GOpt,

reduced internal coordinates are selected. The initial guess structure are generated

as a linear interpolation between the reduced internal coordinate representation of

the reactant and the product.

xinit(p) = arg min� �� �
x

����q(x) −
�
(1 − p)q(reactant) + pq(product)

����� (6.1)

Where x and q denote the system in Cartesian coordinates and in reduced internal

coordinates, respectively. The value p is a fractional number ranging from 0 to 1.

In this test, we set the value of p = 0.5.

The optimization of each test case starts from the initial guess structure gener-

ate from Eqn.6.1. The energy, gradient, and initial Hessian are computed through

external quantum chemistry software. The program employed during this test case

is Gaussian16. All calculation are performed at HF/6-31+G level.

6.3.1 Secant Condition

Analytic Hessian matrix evaluation is a time-consuming procedure. It is not com-

putationally sensible to compute the exact hessian matrix at each iterations during
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the optimization process and it’s especially prohibitive when the system is large.

One common way to substitute the Hessian matrix during the optimization is

using Quasi-Newton update to approximate the Hessian matrix through the in-

formation from previous several points. To do so, the first property needs to be

obtained is the secant condition y. The optimization step is calculated in the

reduced coordinates, so the secant condition in V space is

Hvδv ≈ gv(v + δv) − gv(v) (6.2)

Eqn.6.2 is derived from the original approximation in Cartesian coordinates

Holdδx = gx (6.3)

Following the chain rule of derivatives for transformation matrix B and V

Hold
v δv ≈ δgv − (Vold)T ((Bold)T )+

�
(Bold)T δVgold

v + (δB)T gold
q

�
(6.4)

Another secant condition is obtained by switching the variable

Hold
v δv ≈ δgv + (VoldT )(δB+)T gold

x + (δVT )gold
q (6.5)

When the local energy quadratic approximation is accurate, the gradient change

is the same when taking a step δv at Hold as taking a step −δv at Hnew.

Holdδv = Hnew − δv (6.6)
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Eqn.6.4 and 6.5 do not maintain the symmetry. So the third choice is proposed as

Hδv = δgv + 1
2

�
(Vold)T (δB+)T gold

x + (Vnew)T (δB+)T gnew
x + 1

2(δVT )(gold
q ) + gnew

q

�

(6.7)

6.3.2 Quasi-Newton Update

Quasi-Newton methods are used to update Hessian matrix approximation in each

iteration. In the GOpt algorithm, four most widely-used quasi-Newton update are

selected as the test objects: SR1,[1] PSB,[2] BFGS,[3–7] and Bofill.[8]

Symmetric-Rank-One update(SR1)

Hv
k+1 =





H(k)
v

���(y(k)
v −H(k)

v s(k)
v )·s(k)

v

������y(k)
v −H(k)

v s(k)
v

���·
���s(k)

v

���
) ≤ 1e−9

H(k)
v + (y(k)

v −H(k)
v s(k)

v )(y(k)
v −H(k)

v s(k)
v )T

(y(k)
v −H(k)

v s(k)
v )·s(k)

v

Otherwise

(6.8)

the Powell-symmetric-Broyden update (PSB)

Hv
k+1 = H(k)

v + (y(k)
v − H(k)

v s(k)
v )(s(k)

v )T + s(k)
v (y(k)

v − H(k)
v s(k)

v )T

(s(k)
v )T s(k)

v

−
�

(y(k)
v − H(k)

v s(k)
v )T (s(k)

v )
(s(k)

v )T s(k)
v

�
s(k)

v (s(k)
v )T

(6.9)

the Broyden-Fletcher-Goldfarb-Shanno update (BFGS)

Hv
k+1 = H(k)

v + y(k)
v (y(k)

v )T

(y(k)
v )T s

(k)
v

− (H(k)
v s(k)

v )(H(k)
v s(k)

v )T

(s(k)
v )tH(k)

v s(k)
v

(6.10)
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Bofill’s 1994 update (Bofill)

H(k+1)
Bofill = (1 − ψ)H(k+1)

SR1 + ψH(k+1
P SB (6.11)

ψ = 1 − |s(k)
v · y(k)

v − H(k)
v s(k)

v |2
|s(k)

v |2|y(k)
v − H(k)

v s(k)
v |2

(6.12)

= |s(k)
v × y(k)

v − H(k)
v s(k)

v |2
|s(k)

v |2|y(k)
v − H(k)

v s(k)
v |2

(6.13)

6.3.3 Trust Radius Update

At each iteration, the optimization step is calculated through (quasi-)Newton step

s = H−1g. When the energy is exact quadratic, the step would lead to the

exact stationary point of interest. However, if the higher orders of the energy

approximation is non-negligible, the premise of the optimization is no longer valid.

In GOpt algorithm, the trust radius are imposed to adjust the step-size in case the

optimization step reaching area beyond the quadratic optimization. It is defined as

a spherical region centered at current optimization point. Each step calculated is

constrained by �s� ≤ τ .[9, 10] Based on the accurate of local energy approximation,

the radius τ is updated accordingly. The value of τ should behave unbiased towards

the size of system.

When a new optimization point is obtained, the trust radius is subjected to

update based on the information difference between the current electronic property

and the previous one. In GOpt, we implemented two general types of trust radius

update schemes to cater minimization such as stable structure optimization and

saddle point optimization such as transition state determination.
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6.3.4 Energy-Based Trust Radius Update

In the energy-based method, the estimation of the accuracy of the quadratic ap-

proximation is measured by the energy difference. The predicted energy change is

calculated

Δmk+1 = gk · sk + 1
2sT

k Hksk (6.14)

while the real energy change is ΔUk+1 = U(xk+1 − xk). The accuracy of the

approximation is divided into three cases. If

2
3 <

Δmk

ΔUK

<
3
2 (6.15)

Then, τnew = min(max(2τold, τmin), τmax)). If

1
3 <

Δmk

ΔUK

< 3 (6.16)

Then, τnew = max(τold, τmin). Any cases do not fall into the two situation will

have τnew = min(1
4τold, τmin)

Gradient-Based Trust Radius Update

When searching for the stationary points rather than minimization, the gradient is

a better indicator to the process of the optimization. In the gradient-based scheme,

the trust radius is updated based on the latest gradient and the one of previous

step. When adjusting the trust radius, both the magnitude and the direction of
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the gradient vector are considered,

ρ =

���gk+1
predict

��� −
���gk

���
�gk+1� − �gk� (6.17)

cos(θ) =
(gk+1

predict − gk) · (gk+1 − gk)���gk+1
predict − gk

����gk+1 − gk�
(6.18)

As dimension increases, the chance of two gradient vectors aligned in the same

direction decreases. To normalize the affect of high-dimension system, two bench-

mark values are produced to characterize the accuracy. The first one is p10 rep-

resenting the 10% of total random vector in the space satisfying the requirement

cos(θ) ≥ p10(d) ≈
�

1.6424
d

+ 1.11
d2 (6.19)

The second one is at 40 percentile stage,

cos(θ) ≥ p40(d) ≈
�

0.064175
d

+ 0.0946
d2 (6.20)

At a new structure,

4
5 < ρ <

5
4 (6.21)

p10(3N − 6) < cos(θ) (6.22)

then τnew = min(max(2τold, τmin), τmax). If

1
5 < ρ < 6 (6.23)

p40(3N − 6) < cos(θ) (6.24)
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then τnew = max(τold, τmin), Otherwise, τnew = min(1
2 , τmin).

6.3.5 Testing Methods

The same version of GOpt package is used in all the tests. The initial guess

structure are selected from various reactions from different types. The initial

reactant and product structures are from a normal IRC of a known transition

state. Initial Hessian matrix of the initial guess structure is computed analytically.

Each methods from each categories are tested independently. If any crush or non-

convergence within 100 steps happened in the optimization process will be marked

as failure. The average number of gradient evalution is the main indicator to assess

the performance of each method.

6.4 Results and Discussion

The Table.6.1 compared the performance between different secant conditions. The

overall results is quite across each method. The first variant with straight chain-

rule implementation of HvδV generate a slight over result in both steps and gradient

evaluation needed by a margin of less 5%. The symmetric version of secant condi-

tion doesn’t exhibit extra advantage over the general ones. The main contributor

to the secant condition is the δgv. Confined by trust radius in each optimization

step, the configuration change introduced is insignificant. The variation of the

secant value resulted from δB and δV is normally in a smaller magnitude than

δgv. In general, all three methods are qualified to compute a competent y vector.

Quasi-newton methods are more relevant to the performance of the optimizer.

Table.6.2 shows the direct comparison between each methods. Viewed from a
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comprehensive perspective, Bofill generates the most promising result, followed by

PSB, SR1, and BFGS. It is not surprising that BFGS is the least efficient one. As

mentioned in Chapter.1.4.1, BFGS is designed to maintain positive semi-definite

of the original Hessian matrix. This property ensures optimization step generated

from BFGS method towards a energy decreaseing direction, making salient method

for minimization optimization but not transition state determination. Though,

in GOpt, a Hessian modification is implemented to guarantee a proper negative

eigenvalue in key-internal coordinates space, the extra step of correction slows

down the overall efficiency. Taking Bofill as a benchmark, BFGS takes more than

two times of gradient evaluation and 50% more steps to reach the convergence.

SR1, PSB, and Bofill are good candidates when updating Hessian matrix with

negative eigenvalues. Relatively, Bofill and PSB have the better performance than

SR1 with near 50% less gradient evalution and 25% less iteration steps. This

advantage is largely accredit to the rank-two level update. In rank-two update, the

Hessian matrix is updated by two rank-one matrices. Rank-two updates produces

a more accurate Hessian matrix approximation with slightly extra computation

power. However, as the major time-consuming step in the geometry optimization

is the quantum chemistry computing procedure. The extra cost for the rank-two

hessian correction is actually insignificant.

The difference between the two trust-radius update method is not very con-

spicuous. The gradient-based method lead the result by a tiny margin. At most

optimization task, the initial guess generated by GOpt is a good strcture not too

far from the trasition state. When the quadratic approximation is moderate, both

energy-based and gradient-base update schemes fulfill the tasks. It is normally

more dirable using gradient-based update when the initial structure are far from
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the transition state. It’s sensible to use energy-based method for minimization as

any energy decrease direction is preferable while in transition state optimization,

not only the change of energy, gradient change magnitude but also the direction

of the change have a great impact on the optimization result.

The conclusion are drawn from the GOpt program calculation, but the efficiency

of different methods is also applied to other quantum chemistry optimization pack-

age using the similar technique. Based on the results across different methods, we

also setup the default choice for users with the general optimization purpose while

still reserving customization to advanced user. For minimization task, the default

combination is secant condition 1, BFGS method, and energy-based trust-radius

update method while for transition state searching, Bofill method, and gradient-

based trust-radius update are deployed with the same secant condition.
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Table 6.1: Test results for different secant conditions

Secant 1 6.4 Secant 2 6.5 Secant 3 6.6

Converge Rate 100% 100% 100%
Steps 9.15 9.45 9.6
Gradient Eval. 10.9 11.35 11.4

The number of steps and gradient evaluations needed to achieve
convergence from the same GOpt algorithm but different secant
conditions.

Table 6.2: Test results for different quasi-Newton update methods

BFGS SR1 PSB Bofill

Converge Rate 100% 100 % 100% 100%
Steps 15.35 12.65 9.9 9.15
Gradient Eval. 24.85 19.75 11.55 10.9

The number of steps and gradient evaluations needed with the same
GOpt algorithm but different Quasi-Newton methods.

Table 6.3: Test results for different trust-radius update methods

Energy-Based Gradient-Based

Converge Rate 100% 100%
Steps 9.35 9.15
Gradient 11.65 10.9

The number of steps and gradient evaluations needed with the same
GOpt algorithm but different trust-radius update schemes.
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