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RESUME DE LA THESE EN FRANÇAIS  

La biominéralisation regroupe l’ensemble des phénomènes biologiques à l’œuvre dans la 

formation des tissus durs (os, dents, coquille d’œuf…) par les êtres vivants.1 Les cristaux de 

carbonate de calcium (CaCO3) biogéniques, par exemple, sont largement produits par la faune 

aquatique (mollusques, coraux, oursins, etc.) comme outils de protection, de reproduction ou 

de vision. Ces fonctions vitales dépendantes des biominéraux calcaires peuvent être assurées 

en raison d’un contrôle biologique pointu. Celui-ci détermine notamment la morphologie, la 

composition chimique, et la structure des cristaux, en établissant des conditions de synthèse 

contrôlées (concentrations chimiques, acidité du milieu, localisation de la minéralisation 

notamment).  

Le milieu biologique présente des conditions de synthèses dites « douces ». Les ions impliqués 

dans la formation du carbonate de calcium (Ca2+ et CO3
2-) sont présents en quantités modérées, 

de l’ordre de quelques dizaines de millimoles. Les matériaux sont par ailleurs formés à 

température et pression ambiantes. Les synthèses de biominéraux requièrent ainsi un coût 

énergétique, et donc environnemental, faible.  

Parallèlement au faible coût énergétique de leur production, les propriétés mécaniques de ces 

minéraux dépassent celles des cristaux obtenus en laboratoire par mélange de sels. Les cristaux 

biogéniques présentent par exemple une meilleure résistance à l’impact, à la torsion ou à 

l’élongation que leur équivalent synthétique.2–4 Ces propriétés améliorées sont notamment 

issues de leur structure hybride, consistant en un arrangement tridimensionnel de matériaux 

organique et inorganique à différentes échelles. Développer des composites biomimétiques, 

basés sur notre compréhension des phénomènes biologiques, est donc d’un intérêt particulier 

pour la chimie des matériaux. 

L’observation des biominéraux calcaires au cours du siècle passé a permis d’établir certaines 

caractéristiques de leur formation. Pour de nombreux bivalves, la croissance s’effectue au 

niveau du liquide extrapalléal par minéralisation épisodique créant des couches de croissance 

dans le cristal.5 À l’échelle microscopique, les cristaux sont organisés en couches alternées de 

carbonate de calcium et de matrice organique. Chaque couche minérale est elle-même 

nanostructurée (nano-granules de quelques dizaines de nanomètres, organisées en 

arrangement dense).6 Les cristaux formés découlent ainsi d’un contrôle en termes de structure 

(polymorphisme), de morphologie et d’orientation cristalline. Celui-ci permet d’obtenir des 

cristaux de calcite, vatérite ou aragonite spatialement distincts, sous forme de prismes, de 

plaquettes ou encore de sphérulites.7 Des polymorphes non-cristallins du carbonate de calcium 

ont également été identifiés,8 leur rôle dans la biominéralisation calcaire restant à préciser. Les 

biominéraux calcaires croissent donc par couches, tout en subissant un contrôle 

polymorphique et morphologique aigu.  

Malgré de conséquentes avancées dans la compréhension de la formation des cristaux 

biogéniques, certaines clés manquent encore aujourd’hui pour définir un modèle biologique. 

La difficulté de compréhension des mécanismes en jeu est notamment liée au fait que les 

cristaux biogéniques rassemblent des propriétés inhabituelles. Leurs formes extrêmement 

complexes, sans faces cristallines développées, et leurs structures composées d’un assemblage 
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compact de grains sphéroïdaux de quelques dizaines de nanomètres, sont autant d’écarts aux 

processus décrits par la théorie classique de la nucléation cristalline, et sont ainsi révélateurs 

d’un chemin de cristallisation complexe. Ces grains, malgré la fine enveloppe organique qui les 

entoure, partagent localement une même orientation cristalline et peuvent être assemblés en 

monocristaux étendus sur plusieurs millimètres. Ces grains ont été associés à un intermédiaire 

amorphe précédant la cristallisation.9 L’existence de ces états intermédiaires rend 

indispensable le suivi temporel des phénomènes biologiques associés, pour parvenir à une 

compréhension des étapes menant à la formation du cristal.  

Malheureusement, une approche dynamique in vivo est extrêmement complexe. Les espaces 

de minéralisation sont réduits, et l’observation de dépôts minéralisés est difficile, en raison du 

stress imposé à l’animal durant l’observation et de la difficulté de mener des études non 

invasives, mais permettant d’accéder aux paramètres pertinents de la biominéralisation. Une 

alternative aux contraintes imposées par les études in vivo consiste à réaliser des synthèses 

biomimétiques en laboratoire. Il est en effet possible dans ce cadre de suivre les variations de 

paramètres environnementaux clés (pH, concentrations, nature des espèces formées) de façon 

dynamique et sans perturber le milieu de synthèse. Ainsi, les modèles synthétiques peuvent 

apporter des éléments primordiaux dans la compréhension des phénomènes physico-

chimiques à l’œuvre dans la biominéralisation.  

Le développement des modèles synthétiques ces dernières décennies a souligné la grande 

diversité des chemins de cristallisation du carbonate de calcium,10 au-delà du chemin décrit 

par la théorie classique. Des états intermédiaires amorphes, rappelant le chemin de 

cristallisation biologique, ont notamment été décrits.11 Un second intermédiaire, également 

proposé de manière récurrente, correspond à un liquide dense, enrichi en solutés, et précurseur 

du carbonate de calcium amorphe.12 Cet intermédiaire liquide serait le résultat d’une 

séparation de phase liquide-liquide dans le milieu réactionnel.13 La présence de cet 

intermédiaire dans le milieu biologique étant très difficile à démontrer, l’utilisation de 

synthèses en laboratoire peut permettre d’évaluer si son existence au cours des phénomènes 

biologiques est une addition réaliste au modèle biologique actuel. 

L’approche développée au cours de ce travail de thèse reprend cette analyse et utilise ainsi une 

synthèse modèle pour améliorer la compréhension des chemins de formations des cristaux 

biogéniques. En permettant la compréhension de chaque étape de la formation des cristaux 

synthétiques et de son impact sur les propriétés finales du matériau formé, les synthèses 

modèles doivent apporter des clés pour mieux appréhender la biominéralisation.  

La synthèse choisie est dite « PILP » (Polymer-Induced Liquid Precursor). Ce type de synthèses 

est basé sur l’ajout au milieu de synthèse de polyélectrolytes portant des fonctions acides, qui 

stabilisent l’intermédiaire liquide dense. Cet ajout est pertinent du point de vue biomimétique, 

car la plupart des protéines impliquées dans la biominéralisation comportent de nombreux 

acides aminés acides dans leur séquence.14 Plus précisément, la synthèse modèle retenue 

consiste à exposer une solution de calcium et de polyacrylate de sodium à une atmosphère de 

dioxyde de carbone (CO2) et d’ammoniac (NH3) résultant de la sublimation d’une poudre de 

carbonate d’ammonium. La dissolution combinée de l’ammoniac et du dioxyde de carbone 

provoquent l’augmentation du pH et de la sursaturation de la solution vis-à-vis de la 

précipitation du carbonate de calcium, notamment à proximité de l’interface eau-air. Ce type 

de synthèses permet ainsi de produire des cristaux bidimensionnels de carbonate de calcium, 
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sous forme de films nanostructurés à la surface de la solution,15 qui rappellent la cristallisation 

en couche des biominéraux calcaires.  

Les cristaux formés lors de ces synthèses modèles sont ensuite caractérisés du point de vue 

chimique et structural, puis comparés à des cristaux biogéniques modèles – les prismes 

calcitiques de bord de coquille de l’huître perlière de Polynésie française, Pinctada margaritifera 

(Pm) – afin de valider la pertinence du modèle biomimétique. 

La première partie de l’étude (Chapitre 3, Amorphous calcium carbonate film synthesis) se 

concentre sur les mécanismes d’apparition et la caractérisation des films de carbonate de 

calcium amorphe formés lors de ces synthèses. La variation des paramètres de synthèses 

(concentrations ionique et polymère) permet de moduler la morphologie du film. On passe 

ainsi de films discontinus, formés d’un arrangement compact de disques de taille micronique 

(~5µm) et peu polydisperses aux faibles concentrations en calcium (20 mM) et polymère (20 

ppm), à des films continus pour lesquels les disques ne sont plus identifiables pour les plus 

fortes valeurs de concentrations (100 mM, 100 ppm). Une illustration de la modulation de 

morphologie du film, obtenue par variation de la quantité de polymère en solution pour un 

taux de calcium moyen (50 mM) est présenté en Figure 1. Ainsi, à concentration de calcium 

constante (50 mM), la quantité de polymère défini une morphologie en disques microniques 

(Figure 1.a, 20 ppm de polymère), un film discontinu au motif partiellement fusionné (Figure 

1.b, 50 ppm de polymère), ou un film continu (Figure 1.c, 100 ppm de polymère). 

 

Figure 1 - Micrographies optiques d’absorption de films d’interface extraits à l’état amorphe du 

milieu réactif par dépôt sur nitrure de silicium. Après séchage sous vide, les films sont observés 

en microscopie optique. Les solutions réactives ont une concentration en calcium de 50 mM, et 

de Polyacrylate de sodium de a) 20 ppm, b) 50 ppm, c) 100 ppm. Les films sont extraits du milieu 

réactif à 18h, 16h et 18h, respectivement. Échelle = 50 µm. 

Le film amorphe se construit sur plusieurs heures, avant de se dissoudre au profit de phases 

cristallines, thermodynamiquement plus stables. Prélevé avant cristallisation, le film peut être 

caractérisé ex situ à l’aide de techniques d’analyse morphologique (SEM, TEM, Cryo-TEM) et 

chimique (Raman, STXM). Les films produits ont une épaisseur variant entre 500 et 700 nm, 

comparable à celle des couches présentes chez l’huître perlière Pm. Ils sont par ailleurs 

composés d’un arrangement compact de nanoparticules amorphes (de quelques dizaines de 

nanomètres, Figure 3), rappelant là encore l’arrangement de grains sphéroïdaux présents chez 

Pm. 
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Figure 2 - Micrographie électronique (MEB) d’un film extrait à l’état amorphe après 18h 

d’exposition d’une solution de concentration en calcium de 20 mM et en polymère de 20 ppm à 

une poudre de carbonate d’ammonium. Afin de visualiser la nanostructure interne du film, une 

craquelure dans le film amorphe est observée. Le film est constitué d’un arrangement de 

nanoparticule dans l’épaisseur. Échelle = 500 nm 

Le suivi temporel de la synthèse des films discontinus permet de proposer un mécanisme de 

formation. Des observations par microscopie électronique d’échantillons de films amorphes 

prélevés à temps courts (<1h) suggèrent l’existence d’une séparation de phase liquide/liquide 

se produisant par décomposition spinodale. Cette décomposition induit la formation d’un 

motif interfacial (disques) qui sera conservé jusqu’à la cristallisation du film. Par la suite, le film 

amorphe croit par additions de nanoparticules, formées en solution. Des courants de 

convection, observables à l’œil nu, provoquent un apport massif de nanoparticules vers la 

surface qui induisent l’épaississement progressif du film. Ainsi, les films de carbonate de 

calcium amorphes sont obtenus grâce à un mécanisme de formation en deux étapes, 

nouvellement décrit (Figure 3): la formation et la croissance radiale de disques émergeant 

d’une séparation de phase liquide-liquide, et un épaississement progressif dans la direction 

perpendiculaire à l’interface lié à l’agrégation irréversible de nanoparticules amorphes formées 

dans la solution. 
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Figure 3 - Représentation schématique du mécanisme de formation par étape du film de 

carbonate de calcium. a) Séparation de phase liquide-liquide menant à l’émergence de disques 

fins qui croient radialement. b) croissance du film en épaisseur, du a l’agrégation de particules 

du volume de la solution (flèche rouge). c) film amorphe dont l’épaisseur ne varie plus. 

La deuxième partie de mon travail de thèse a été consacrée à la cristallisation des films de 

carbonate de calcium amorphe et à l’évolution de la structure des films, aux différentes échelles 

spatiales, lors de leur cristallisation. Trois conditions de cristallisation ont été successivement 

étudiées : la cristallisation induite par chauffage à 300°C (Figure 4.a), censée favoriser une 

transformation solide-solide du film sans modifications morphologiques (transformation 

pseudomorphique) ; la cristallisation induite par exposition du film à une atmosphère humide 

(98% d’humidité relative, Figure 4.b) à température ambiante, associée à des phénomènes de 

dissolution-reprécipitation ; enfin, la cristallisation spontanée, dans le milieu réactionnel de 

synthèse (Figure 4.C), obtenue en laissant vieillir le film amorphe à l’interface eau-air. Dans tous 

les cas, les films transformés présentent de larges domaines de calcite iso-orientés. Le suivi de 

l’évolution des caractéristiques morphologiques et structurales du film au cours de la 

cristallisation (modification de la nanostructure et /ou de la morphologie globale) a permis de 

discuter du type de transformations à l’œuvre, et de suggérer en particulier l’intervention d’un 

mode de cristallisation hybride associant mécanismes de dissolution/re-précipitation locale et 

transformation solide/solide lors de la cristallisation induite par chauffage.  

 

Figure 4 - Micrographies optiques de biréfringence. Le film de départ est un film amorphe 

constitué d’arrangement de disques microniques ([Ca2+] = 20 mM, [PANa] = 20 ppm)  

a) après chauffage 300°C durant 3 heures, b) après exposition à une humidité élevée (98% HR) 

durant 14 jours. c) après cristallisation dans le milieu réactif pendant 5 jours. Échelles = 100 µm 

Les propriétés cristallines résultant des différents modes de transformation ont été étudiées 

par des techniques spatialement résolutives, telles que la ptychographie optique vectorielle ou 
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la ptychographie X de Bragg. La ptychographie vectorielle est une technique d’imagerie 

applicable aux matériaux optiquement anisotropes tels que les matériaux cristallins, permettant 

d’obtenir des cartographies des propriétés cristallines (biréfringence effective, orientation de 

l’axe extraordinaire, qualité de l’ordre cristallin dans l’épaisseur de l’échantillon) avec une 

résolution de microscopie optique. Les caractérisations menées par ptychographie vectorielle 

confirment la forte influence des conditions de cristallisation sur les propriétés des films 

calcitiques formés : les films chauffés sont composés de domaines iso-orientés de quelques 

microns et présentent une légère désorganisation cristalline dans le plan d’observation, tandis 

que les cristaux d’interface ont une organisation quasi-parfaite sur une échelle de taille dix fois 

supérieure. Cette technique permet également d’identifier une variation des propriétés 

cristallines au cours de la croissance des cristaux sous humidité contrôlée (existence de 

domaines iso-orientés au point de nucléation cristalline, et organisation radiale de l’axe rapide 

du cristal en bord de structure). La ptychographie vectorielle met donc en lumière que la nature 

des transitions amorphe-cristal impacte fortement les propriétés finales des cristaux formés, 

de sorte que la connaissance des propriétés cristallines des biominéraux devrait permettre 

d’identifier un scénario de croissance réaliste parmi les synthèses modèles disponibles.  

La ptychographie de Bragg permet de prolonger ces considérations à l’échelle nanométrique. 

Cette technique, qui nécessite l’utilisation d’un faisceau X cohérent issu d’une source 

synchrotron, permet de reconstruire en trois dimensions les propriétés cristallines 

(déformations, désorientations et cohérence cristalline) présentes dans les cristaux obtenus, à 

l’échelle de la dizaine de nanomètres. Ainsi, les distorsions des mailles cristallines sont 

quantifiables, apportant une description sans équivalent des défauts produits par chaque 

transformation cristalline. Il apparaît que les cristaux de calcite sont composés de domaines 

cristallins iso-orientés et iso-déformés dont la taille varie entre environ 200 nm et 2 microns. 

Ces domaines sont eux-mêmes composés de régions de forte cohérence cristalline (cristal sans 

défaut), de taille et caractéristiques dépendant de la transformation. Les iso-domaines et la 

cohérence cristalline sont ainsi décrits pour chaque condition de cristallisation. La 

ptychographie de Bragg permet d’illustrer l’impact des conditions de transition amorphe-

cristal sur la structure fine des mono-cristaux de calcite. 

La comparaison des propriétés cristallines à l’échelle des iso-domaines cristallins entre les 

modèles de synthèse et la structure des prismes de Pm, met en évidence une similitude 

remarquable entre le cristal biogénique16 et le cristal biomimétique produit à l’interface, 

similitudes qui ne sont pas vérifiées avec les cristaux produits par chauffage ou de façon 

contrôlée par exposition à une atmosphère humide.  

Ce travail de thèse a donc permis de conduire l’analyse fine des propriétés structurales 

(morphologiques et cristallines) de films de carbonate de calcium issus d’intermédiaires liquide 

et solide amorphe, et cristallisés sous trois conditions différentes. Les résultats de cette analyse 

peuvent être mis en parallèle des données obtenues sur les cristaux biogéniques issus de 

prismes de Pinctada Margaritifera : dans les deux cas, les cristaux formés sont organisés en 

couche de 500 à 700 nm, et ont une nanostructure, caractéristiques partagées avec le 

biominéral. La similarité constatée entre les structures synthétique et biologique constitue une 

validation des synthèses modèles choisies et permet de suggérer un mécanisme de 

biominéralisation faisant intervenir, comme dans les synthèses modèles, une étape de 

croissance bidimensionnelle associée à une séparation de phase liquide-liquide et une étape 

de croissance en épaisseur par agrégation de nanoparticules déjà formées.  
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INTRODUCTION: BIOMINERALS, A CHALLENGE FOR MATERIALS 

CHEMISTRY  

With their myriad of crystal shapes and sizes, created by finely controlled crystallization 

pathways, biominerals captivate the materials chemists. Impressive examples of the wide 

morphological diversity resulting from calcareous biomineralization are highlighted in Figure 

5: coccolithophores constituted of specialized body and appendage coccoliths (Figure 5.a), 

millimetric corals with intricate structures (Figure 5.b) or micronic mineralizing animals like 

foraminifera (Figure 5.c). This glimpse of the morphology diversity underlines how developed 

the control of the biomineralization process must be.  

 

 

Figure 5 - Electron micrographs (SEM) and photographs showing representative examples of the 

wide variety of biogenic calcium carbonate crystals. a) Appendage-bearing coccolithophore, 

Ophiaster formosus (SEM). From Young at al.17 Scale bar = 5 µm. b) Coral, Acropora solitaryensis 

(Photograph). From Bay et al.18 Scale bar = 10 mm. c) Foraminiferas, Cibicides reflugense, 

Uvigerina spp., Quiqueloculina spp. (SEM). From Pilarczyk et al.19 Scale bar = 100 µm.  

Calcareous biominerals sustain many biological functions. The protection value of a mollusk 

shell has been known for centuries, but some intricate functions such as the CaCO3 

photoreceptors of the brittle star were only elucidated recently.20 Table 1 presents a variety of 
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functions of calcium carbonate biominerals, as they are used as protective, visual or even 

reproductive devices. The functions covered by these materials are far from being minor, and 

the survival of many marine species actually depends on it.  

Table 1 - Adapted from Mann et al. (2001).1 Variety of calcium carbonate utilities among 

biominerals, and associated polymorphs. 

 

The three anhydrous crystalline polymorphs of calcium carbonate can be found in biominerals: 

calcite, aragonite and vaterite (see Table 1). However, biomineralization clearly involves 

polymorphic selection: different polymorphs can be synthesized simultaneously, but in a regio-

selective way, by a given animal,21 thanks to a spatially differentiated mineralizing tissue. An 

illustration of this spatial control is found in various mollusks shells (ex. superfamilies of 

Pinnacea, Pteriacea, Amnomiacea,…).7 In these superfamilies, the outer layer is formed of a 

calcitic layer, while the inner layer is constituted of aragonite. The spatial distribution of these 

two layers in a bivalve, along with the complex structure of the animal at the mineralization 

area is shown in Figure 6. In the extrapallial cavity, where mineralization occurs, both aragonite 

(nacreous layer) and calcite (prismatic layer) are formed next to each other. Ultimately, the 

spatial differentiation of polymorphs relies on a perfect control of the crystallization event by 

biological means. 

 

Mineral Organism Location Function 

Calcite  Trilobite Eye lens Optical imaging 

 Mollusks Shell Exoskeleton 

 Crustacean Crab cuticle Mechanical strength  

 Echinoderms Shell/spines Strength/Protection 

Aragonite Cephalopods Shell Buoyancy device  

 Fish Head Gravity receptor 

 Gastropods Love darts Reproduction 

 Mollusks Shell Exoskeleton 

Vaterite  Ascidians  Spicules Protection 

 Gastropods Shell Exoskeleton 



INTRODUCTION: BIOMINERALS, A CHALLENGE FOR MATERIALS CHEMISTRY 

16 

 

Figure 6 - Schematized morphology of a bivalve constituted of an external prismatic layer, and 

an internal nacreous layer, at the growing shell edge. From Marin et al.22 

The controlled morphology of these crystals correlates with their enhanced mechanical 

properties.23 For example, biogenic calcite in mollusk shells are 50% to 70% harder than 

geological calcite.4 Besides, biogenic aragonite has a better resistance against fractures, and a 

better tensile strength than its synthetic counterpart.24 These striking observations have 

motivated materials chemists to produce new materials using a bio-inspired approach, to reach 

better resistance and strength.2,3 However, even though efforts have been made to replicate 

the calcareous biogenic crystal properties,25 biomineralization pathways still lead to crystals 

with better properties that those made in laboratories. To be able to replicate the enhanced 

mechanical properties of calcareous biominerals, the physico-chemical conditions of their 

formation must be elucidated. 

The biomineralization process takes place under “soft” physico-chemical conditions. Indeed, 

an additional trait of biomineralization is the capacity of the animals to create properties-

enhanced crystals at ambient pressure and temperature. This term of ‘soft conditions’ could 

also apply to chemical concentrations, as the medium surrounding the mineralizing animals 

(sea or fresh water) is a (very) dilute saline solution. In the case of bivalves, the ion concentration 

in the mineralizing fluid, called the extrapallial fluid,26 remains in the millimolar range, similar 

to the one of sea water. It must be stressed that local variations in the ion concentration can 

happen in the extrapallial space27, for a reason that remains a great mystery of the 

biomineralization process. These soft conditions are of particular interest to materials 

chemistry, as they represent a prospect to cost-effective and environmentally-friendly 

syntheses.  



INTRODUCTION: BIOMINERALS, A CHALLENGE FOR MATERIALS CHEMISTRY 

17 

In addition, the development of bio-inspired carbonated materials could have a positive 

environmental impact by playing a role in solving one of the major problems of the 21st century: 

CO2 storage. Indeed developing alternative ways to sequestrate CO2 is of prime importance 

owing to the impact of CO2 increase on global warming. Until now, marine life28 has been a 

major source of CO2 intake. Approximately a third of the world’s atmospheric carbon dioxide 

is dissolved in the ocean, as estimated by Gruber et al. between 1994 and 2007.29 But this 

massive dissolution of continuously increasing amounts of CO2 has led to ocean acidification, 

which in turn strongly affects biomineralizing species.30 Ocean acidification negatively 

influences calcareous biomineralization by inducing shell dissolution.31 A pH drop could be 

catastrophic to biomineralizing species, as calculations predict that carbonate concentration in 

the ocean could even drop below supersaturation levels of calcite and aragonite32 (crystalline 

forms of CaCO3 widely distributed in biominerals). Bio-inspired calcium carbonate syntheses 

could therefore be a powerful tool to store CO2 under the form of high-value materials, this 

way protecting our source of inspiration, but requires an in-depth understanding of 

biomineralization, which is still lacking today.  
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1. STATE OF THE ART 

1.1 CALCAREOUS BIOMINERALS: A COMMON UNDERLYING FORMATION MECHANISM 

It is still to date difficult to apprehend how, from ions solvated in liquid, crystals with properties 

close to those of biominerals can emerge. This difficulty derives from a limited knowledge on 

the conditions of biomineralization, but also from the unusual crystallization pathway, 

overlooked by classical crystallization theories, encountered during biominerals formation. To 

understand how they form, one should first look thoroughly at biominerals and identify clues 

of their formation pathway.   

 

 Inorganic/organic hybrid structure 

The biomineral design includes an organic scaffolding surrounding the calcium carbonate 

crystals. For example, aragonite tablets of the triangular mussel Hyriopsis Cumingii are 

separated by an organic scaffold, called “biopolymer membrane” in Figure 7.a. Pinna nobilis 

calcitic prims (birefringence microscopy in Figure 7.c) present a similar scaffold, revealed in 

Figure 7.d after etching the shell. The scaffold surrounding the prisms is also visible on Figure 

7.e, on an elongated cut of a shell. Biominerals are therefore hybrid organic/inorganic 

materials.  
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Figure 7 - Electronic micrographs (SEM) and Optical Micrograph (BM) of the organic scaffolding 

in two biominerals, Hyriopsis Cumingii and Pinna Nobilis. a) FE-SEM image of pristine nacre 

tablets in Hyriopsis Cumingii. b) FE-SEM image of etched nacre tablets in Hyriopsis Cumingii, 

revealing the organic scaffold. c) Pinna Nobilis, section observed under crossed polarizers. The 

scaffold is marked with a “w” (“walls”). The single crystalline nature of the film is shown by the 

homogeneous intensity within each prism. d) Pinna nobilis etched prisms, transverse cut, 

revealing the scaffold, marked with “w” (“walls”). e) Pinna nobilis, etched prism, vertical section. 

The scaffold (“w”) are visible, along with horizontal growth lines, matching between prisms. a-b) 

From Greiner et al.33 c-e) From Dauphin et al.34 
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In addition to the scaffolding that surrounds the inorganic crystals, organic matter is also 

present in the form of molecules entrapped within the crystalline part of the biominerals 

(discussed further in part 1.1.3 of this chapter). 

The extraction of the shell organic matrix yields between 1 and 5% by mass of the hybrid 

material (Marin 2004). The matrix is composed of a variety of components: polysaccharides, 

pigments, lipids and proteins (for more details on the composition, see Marin et al.).35 The 

diversity of these molecules makes it extremely complex to understand the mechanisms at 

work in biomineralization. For example, proteins that are involved in biomineralization are 

composed of specific amino-acid sequences, making them capable of performin several 

functions. One should note however that domains rich in Asx (Aspargine or Aspartic acid, 

sensitive to extraction treatment) and Glx (glutamine or glutamic acid, sensitive to extraction 

treatment) are identified in high amount in the aragonitic and calcitic structures of 

bivalves.14,36,37 

 

 Cyclic growth process 

Striations on the surface of the shells, corresponding to different seasonal growth rates, 

indicate the cyclical nature of the biomineralization process. Considering a smaller time scale, 

it has been suggested during the last century that the calcifying organism produces daily 

growth layers.38 Today, the existence of mineral growth layers at the micrometer scale is 

established for some bivalves and echinoderms.39 As an illustration, the transversely cut and 

etched prisms in Figure 7.e are composed of mineral layers of micronic thickness. The 

continuity of a layer is then preserved from one prism to the other. The thin layers between the 

crystals are sulfated (XANES analysis) and are therefore attributed to an organic deposit.40 

Recently, Duboisset et al. proposed that the growth layers of calcitic prisms of pinctada 

margaritifera could be as thin as 500 nm.41 

 

 Non-euhedral, iso-oriented crystals 

Single crystalline behavior is a shared characteristic of many biominerals, even when they come 

in intricate shapes. For example, the calcitic prisms presented in Figure 7.c show a birefringence 

pattern typical of single crystals (i.e. crystalline iso-oriented domains), with a homogeneous 

coloration between crossed polarizers. As discussed in the previous section (1.1.2), the cyclic 

growth process of the shell induces layering in the biomineral. For the prism to be single 

crystalline, orientation between the growth layers must therefore be preserved. 

A striking example of an impeccable morphology and crystallinity control is the sea urchin 

spine, as depicted by Figure 8.a and .b. The spine has a radial organization, and an intricate 

pattern of holes in its structure. Despite being very complex, the structure is smooth at the 

micron scale (Figure 8.b) and behaves like a single crystal (Figure 8.c). This is particularly 

surprising, since single crystals grown in solution are expected to be faceted. The 

biomineralization found a way to overcome this issue, and to produce single crystals with 

complex morphologies.  
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Figure 8 - Single-crystal character of sea urchin spine. a) and b) Electronic micrographs (SEM) of 

fractured sea urchin spine at two different magnifications. c) X-ray diffraction pattern of the spine. 

The diffraction pattern is representative of single crystal. From Bergström et al. 42  

When a biogenic crystal, behaving like a single crystal, is broken, it does not break by revealing 

the least energetic crystal planes but a rugged surface43 (conchoidal fracture), which is 

unexpected for a single crystal. The exposed surface reveals that the biogenic crystals are 

constituted of space-filling sub-micronic grains.39 This particular organization is a reminiscence 

of the biomineralization process, and is not present when calcium carbonate single crystals are 

synthesized geologically, or in laboratories. Consequently, the organization and chemical 

nature at the nanoscale must be further presented. 

The presence of sub-micronic grains is a feature shared by most of the calcareous biominerals, 

and is independent of the polymorphs, crystallinity, or microscopic morphology. Figure 9 

presents AFM observations of these granules among several biogenic crystals. In their review 

dedicated to the prevalence of granular textures in calcareous biomineralization, Wolf et al.6 

states that the granule size varies among species but stays in the range of tens to hundreds of 

nanometers.6 These objects appear to be the building units of the biogenic crystals. Their 

prevalence among calcareous biominerals likely reveals the existence of a shared formation 

mechanism. The space-filling granules are not fused with each other, which would make them 

undetectable, but rather separated by a narrow region exhibiting a different contrast in AFM 

(see Figure 9). These darker areas surrounding the grains in phase-lag AFM mappings of Figure 

9 are presented as “higher concentrations of organic phases” by Cuif et al.,39 due to their 

difference in interaction with the AFM tip. Similar arguments are presented by Wolf et al.,44 

while Jacob et al.45 observed a higher concentration of carbon in the inter-granular space, 

agreeing with Cuif’s conclusion on its high organic content. Therefore, from these observations, 

one could state that the inter-granular space is mostly filled with organic molecules. 
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Figure 9 - Uniformity of the pattern in mollusks and coral skeletons as shown by phase-lag AFM 

mapping (except for (c)) at comparable magnification. (a) Calcite prisms of Pinctada m.; (b) 

Aragonite from the nacreous layer of Pinctada m; (c) same surface viewed in amplitude mode, 

an AFM tapping mode that emphasizes the changes in surface slopes; (d) nacre of a Pinctada 

pearl. This signal is the direct expression of the surface topography. (e) Aragonite of a Scleractinia 

coral skeleton (Favia); (f) Organ-pipe coral (Tubipora), a calcitic Alcyonaria; (g,h) The white coral 

(Corallium johnsoni): another calcitic Alcyionaria; (i) The blue coral (Heliopora coerulea), the only 

aragonitic Alcyonaria; (j–l) The red coral (Corallium rubrum). From Cuif et al. 39 

A mechanism leading to mineral grains surrounded by concentrated organics has been 

proposed by Seto et al.9 A major difference in their observation is that the inter-granular space 

is also composed of amorphous calcium carbonate (ACC). The prevalence of this calcium 

carbonate polymorph will be discussed in the following section.  

 

 Amorphous calcium carbonate 

In the larval stage, of Merceneria m. and  Litechinus p. notably, studies report that the first 

mineral formed is amorphous calcium carbonate (ACC).46,47 However, the generality of the 

observation has been challenged with other species, such as Crassostreas n., for which the larval 

stage does not seems to involve amorphous calcium carbonate.48  

In Mytilus galloprovincialis, the calcium carbonate formed in the larval stage is assumed to 

consist of stable ACC.49 Indeed, ACC can be an integral part of the microstructure established 

during biomineralization, and remain stable. For example, the spicules of Pyura 

pachydermatina consist of an amorphous calcium carbonate core surrounded by a calcite 

layer.50 A physical separation (organic layer) between the crystalline and amorphous phases is 

then developed during the growth process.51 A study on the stable ACC of three different 

species showed that the amorphous phase actually possesses a local order (XAS) and that the 
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material is hydrated, containing one water molecule per CaCO3 ion-pair.52 

In parallel to stable ACC, the existence of transient amorphous calcium carbonate phase has 

also been proposed in the litterature. For example, based on the observation of ACC around 

the nano-grains in biogenic crystals, Seto et al.9 proposed that crystallization in biominerals 

goes through an amorphous calcium carbonate phase, and that its crystallization leads to the 

exclusion of organic molecules. The exclusion of organics would then stop crystallization when 

the organic concentration becomes too high, leading to an inter-granular space filled with both 

ACC and organics. A similar model is proposed by Nassif et al. where the exclusion of macro-

molecules during crystallization leads to a thin layer of ACC in aragonite tablets of Haliotis 

laevigata. A most recent study described a similar phenomenon in Pinctada margaritifera 

prisms formation.41 The transient nature of ACC requires a time-resolved approach to be con-

firmed.  
 

Transient ACC was indeed detected by monitoring the self repair of a broken spicule,53 or by 

looking at the nacre grow front,54 and inferred from the existence of ACC inclusions in 

crystalline biogenic aragonite.55 Different « poly-amorphs » are even described,8 as having 

different levels of hydration55 or organization.56 Namely, the hypothesis of the dehydration of 

the ACC prior to crystallization is proposed.55,57 Demonstrations of ACC as a transient state 

have been made on some species, but the prevalence of this crystallization pathway must be 

enlarged.  

In summary, calcareous biomineralization results in complex structures of calcium carbonate. 

If specificities among groups or species exist, global common properties emerge. Thus, the 

incorporation of organic materials in complex microstructures, the cyclic growth, the 

nanostructure within iso-oriented domains and finally the presence of amorphous calcium 

carbonate are properties common to a number of species. These features suggest common 

underlying mechanisms for the formation of these calcareous biominerals. 

Ideally, to understand the biological events happening during biomineralization, one should 

investigate the mineralization dynamics and answer the following questions: How does the 

supersaturation evolves? Where does calcium carbonate precipitate? Are there dissolution 

events? etc. Considerable efforts have been made in this direction, by looking at reconstructing 

minerals,55 or aging animals.58 Nevertheless, these approaches have limitations as they rely on 

post-mortem observations. Even though post-mortem analyses have allowed numerous 

advances in the field, in vivo observations would be ideal. Unfortunately, they are very hard to 

perform, because of spatial constraints (reduced extra-pallial space) or due to the animal stress 

that disrupts biomineralization during observations. Looking at synthetic bio-inspired models 

is an effective way to characterize the mineralization dynamics, although not in vivo. It can help 

to gain valuable knowledge on the mineralization pathway, by untangling the complex 

biological events. 

 

1.2 AMORPHOUS CALCIUM CARBONATE IN MODEL SYNTHESES  

Multiple model syntheses have allowed us to reconsider the classical theories of crystal 

nucleation and to uncover other pathways for crystal formation10. Notably, pathways going 

through amorphous phase formation have been described. These observations resonate with 
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biogenic calcium carbonates, for which both stable and transient forms of ACC are found (see 

1.1.4). 

ACC has been transiently stabilized in different model syntheses. It has been detected at high 

supersaturation values (with respect to calcite) 59–62 or in the presence of additives.12,15,63,63–66 

The conditions of precipitation determine the composition, shape and size of the ACC 

produced. An overview of the synthetic models producing ACC will be presented in this section, 

along with the known mechanisms of ACC formation. 

 

 Intermediate states to crystallization: deviation from classical crystal nucleation 

Classical nucleation theories (CNT) rely on the assumption that ion clustering produces the first 

crystalline aggregates stable against redissolution and that the transient clusters preceding the 

final crystal already have the symmetry and composition of the bulk crystal.67 However, non-

crystalline transient states have been reported prior to crystallization. For instance, ion 

clusters,68 amorphous particles,60 or reactant-rich liquid droplets12 that separate from the 

precursor solution via a liquid-liquid phase separation, have been recently identified in calcium 

carbonate systems. An overview of the so-called “non-classical” crystallization pathways, via 

intermediate states, is presented in Figure 10. 

In their description of these alternative routes, De Yoreo et al.10  have in particular described 

two crystallization pathways that go through an amorphous state (Figure 10). Such routes may 

need to be considered to explain biogenic crystal formation, as some observations are not 

accounted for by the classical nucleation theory (smooth intricate designs, conchoidal 

breakage of single crystal43 and space-filling nanograins). Model syntheses that produce an 

amorphous intermediate prior to crystallization must therefore be investigated, as they might 

actually mimic the mechanisms at play in biocrystallization.   
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Figure 10 - Crystallization pathways in non-classical nucleation proposed by De Yoreo et al.10 

Several transitory states proposed in opposition the ion-by-ion crystal growth. From De Yoreo at 

al.10  

 

 Amorphous calcium carbonate precipitates 

A fast and effective method to obtain amorphous calcium carbonate is to use fast mixing.59–62 

In this technique, two reactive solutions are rapidly mixed, leading to the precipitation of 

submicron-sized ACC particles. Different combinations of solutions can be used: fast addition 

of a calcium chloride solution into a carbonate solution under stirring,61,62 direct mixing of 

ammonium carbonate solution and calcium chloride solution,59 or sudden addition of a sodium 

hydroxide solution into a methyl carboxylate and calcium chloride solution.60 With this latter 

technique, the composition62 and size of the particles can be controlled.60,61 As an example, 

Albéric et al. have used this method to include different amounts of polyaspartic acid or ionic 

additives in ACC particles by controlling the additive concentration in the carbonate solution 

before mixing62. In addition, modifying the initial supersaturation or synthesis temperature is a 

way to vary the size of the ACC particles (from 60 nm to 800 nm).60,61 To be observed, the ACC 

particles must be extracted so as to avoid its subsequent crystallization. They are therefore 

separated by filtration, and dried either with ethanol61,62,69 or acetone.60  

Titration is an alternative to rapid mixing for producing amorphous calcium carbonate particles. 

In Gebauer’s experiments,70 the addition of a calcium solution in a carbonate buffer is 

performed at a injection rate of 10µL/min, i.e., much slower than in the experiments mentioned 

above. The titration method can produce ACCs of different solubility depending on the solution 
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pH,68 which is maintained throughout the titration process, or by adding polymeric additives 

in the calcium solution.70  

A third route to produce transient ACC material is to put a calcium solution in contact with a 

CO2 gas atmosphere. Thus, atmospheric CO2 that dissolves in a saturated Ca(OH)2 solution 

produces ACC particles, which aggregate at the air-solution interface.71,72 Alternatively, the 

decomposition of ammonium carbonate powder into CO2 and NH3 gases (ammonia-diffusion 

method, ADM) close to a calcium solution produces an ACC film at the air-solution interface73 

in the presence of minute amount of polyelectrolyte additive. This last synthesis involves a new 

intermediate, named PILP, which is a salt-enriched liquid phase, as discussed in more details in 

section 1.2.5. 

 

 Polyamorphism of calcium carbonate 

The ACC local structure and composition depend on the synthesis conditions. Similarly to the 

polymorphism characterizing some crystalline compounds, poly-amorphism can be observed 

among amorphous materials,8 and in particular with calcium carbonate. More precisely, one 

should distinguish poly-amorphism and pseudo poly-amorphism.  

Poly-amorphism refers to a structural difference: a given chemical compound exhibits different 

amorphous structures with no difference in composition. When their short-range order is close 

to the one of the existing crystalline polymorphs, these amorphous structures are said to be 

‘proto-crystalline’. In the case of calcium carbonate, structural features of aragonite and vaterite 

have been identified by Tribello et al.74 in calculated amorphous calcium carbonate phases. 

Using 13C NMR and FTIR spectroscopies, Gebauer et al. have defined three ACC proto-

crystalline compounds: proto-vaterite,75 proto-calcite75 and proto-aragonite.76 Experimentally, 

the selection of a proto-structure is made by controlling the pH and temperature in titration 

experiments.75,76 Nevertheless, it must be noted that the proto-order of the transient ACC does 

not necessarily result in the formation of the crystalline polymorph with the same local order. 

Indeed, proto-vaterite can lead to pure calcite, and proto-calcite to a mix of calcite and vaterite.  

In contrast to polyamorphism, pseudo-polyamorphism refers to a compositional difference. 

The water content is a major source of pseudo-polyamorphism in ACC. Polymers64 and 

inorganic ions, like Mg2+,77 can also be trapped in ACC during synthesis, this way modifying its 

composition and leading to pseudo-polyamorphism. During synthesis, the amount of polymer 

in ACC, as well as water content, usually decreases prior to crystallization.65 Since the variation 

of composition is gradual, this generates a whole family of amorphous compounds that can 

show no structural difference. This phenomenon is therefore referred to as pseudo-

polyamorphism rather than poly-amorphism, which points to only a few structurally distinct 

amorphous compounds.  

However, at least in the case of water, compositional differences may lead to structural 

differences. Indeed, in addition to structural water, which shows restricted mobility,78 particles 

larger than 30 nm contains a certain amount of mobile water.79 Goodwin et al. have numerically 

shown that these mobile water molecules evolve in a calcium-poor channel network.80 

Therefore, water might not be homogeneously distributed in large ACC particles, unlike smaller 
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ACC particles which only exhibit structural water with no percolating channel network.  

As presented here, polyamorphism and pseudo-polyamorphism are driven by the synthesis 

conditions (pH, reaction time, etc.). One can wonder how this structural and chemical variation 

impacts the stability of ACC with respect to crystallization. Stabilization mechanisms resulting 

from pseudo-polyamorphism (water and molecule inclusions) exist and will be detailed in the 

next section.  

 

 ACC stability 

The stability of ACC is strongly dependent on both the particle size and the water content. 

Using molecular dynamics simulations, it has been shown that ACC particles smaller than 4 nm 

can be more stable than calcite (Figure 11.a), owing to a lower surface energy.81 However, with 

increasing particle size, this stability can only be achieved thanks to the incorporation of water 

molecules which reduce the bulk enthalpy of the particles. Experiments have indeed confirmed 

the increased amount of mobile water with particle size (Figure 11.b).79 Thus, during a synthesis, 

ACC particles will become more and more hydrated up to the point they become unstable with 

respect to calcite owing to their size. They will then dehydrate59 (Figure 11.c) and crystallize.  

 

Figure 11 - Hydration evolution in ACC during its formation. a) Thermodynamically favored water-to-
calcium ratio as a function of cluster size (CaCO3 units). Plot based on theoretical (red) and experimental 
(blue) entropy corrections. From Raiteri et al.81 b) Hydration of ACC particle as a function of their growth 
time. The bigger the particle, the more hydrated, as demonstrated by the beam-induced defects on the 
particles. From Du et al.79 c) Dehydration rate α as a function of ACC-SiO2 incubation time in pure water. 
From Ihli et al. 59 

The chemical nature and the amount of added species (water, ions, polymer) in ACC influence 

the ACC crystallization. For example, magnesium and polyelectrolyte in ACC appear to delay 

the crystallization process in solution.63,69,77 Coincidentally, higher crystallization activation 
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energy under heat is observed when ionic species (Mg2+) or polyelectrolytes (PAsp) are present 

within the ACC particles.62 Similarly, the activation energy of ACC crystallization under heat 

decreases with increasing hydration level.59,79 Therefore, both the lack of water79 and the 

presence of added molecules inside ACC can act as stabilizers69 against crystallization, 

presumably by reducing the ion mobility and therefore ion rearrangements towards crystalline 

structures.  

 

 Liquid precursor in ACC syntheses 

The idea of a liquid intermediate is developed in different ACC model syntheses.12,60,73,82–84 The 

presence of a liquid intermediate for amorphous calcium carbonate was first proposed in a gas 

diffusion synthesis in which a solution of calcium and polyelectrolyte is exposed to an 

ammonium carbonate powder (Figure 12). In the setup, the exchange between the gaseous 

phase, containing ammonia and carbon dioxide, from the sublimation of the powder, and the 

aqueous phase takes place through a bubble positioned at the top of the solution. A diffusion 

barrier is placed on the powder (Parafilm, punched three times), enabling a slow introduction 

of these decomposition products into the solution. A flowing liquid phase (microscopic 

observations) appears in solution, making it turbid. Some liquid accumulates below the bubble 

as well. These observations being related to the presence of polyelectrolyte (Polyaspartic acid) 

the phenomenon is therefore termed "Polymer Induced Liquid Precursor" (PILP). 

 

Figure 12 - Schematic representation of the Ammonia Diffusion Method (ADM) as orginally 

presented by Laurie Gower. A dish (CD) filled with calcium carbonate and poly-electrolyte 

solution (CS). At the surface a bubble is trapped (AB) underneath a glass slide (GS) to create an 
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exchange between the gas phase and the solution. The gas phase is created in a sealed glass 

chamber by decomposition of ammonium carbonate powder (AC). Diffusion of the decomposition 

product in the solution (I) leads to a liquid phase separation (II). A dense liquid accumulates at 

the bottom of the air bubble (III) and falls at the bottom of the dish to form a film (IV). From 

Gower et al.12 

At the bottom of the crystallizing dish containing the solution, a film of amorphous calcium 

carbonate, composed of fused droplets is observed. This film, half a micron thick, finally 

crystallizes into iso-oriented or spherulitic domains when left in solution. The formation 

mechanism proposed by Gower and Odom12 for this film is presented in Figure 13. First, 

droplets of liquid accumulates at the bottom of the dish and fuse together (“A” in Figure 13). 

Then, solidification occurs, creating a solid amorphous calcium carbonate film (“B” in Figure 

13), where crystallization can take place (“C” in Figure 13). Finally, a calcium carbonate film fully 

cristallized (“D” in Figure 13) is formed.  

  

 

Figure 13 - Film formation at the bottom of the dish. A: fall and coaslescence of the dense liquid 

droplets. B: Film solidification to amorphous calcium carbonate. C: crystallization and growth. D: 

Crystalline film. From Gower et al.12 

Following these original observations, liquid precusors have been identified in several systems. 

First, its detection was based on morphological analysis, such as the presence of spheres60 in 

bulk solution (Figure 14.a), hemi-spheres on solid interfaces73 (Figure 14.b referred to as “liquid-

like colloids”) or the obtention of fibers resulting from a perfect filling of track etch membranes 

pores82 (Figure 14.c). Alongside these post-mortem observations, cryo-TEM observations have 

shown emulsion-like83 and smooth irregular “droplets” of calcium carbonate (Figure 14.d). 

Based on these morphological considerations, liquid-liquid phase separations were inferred in 

fast mixing systems and so-called PILP syntheses.  
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Figure 14 - Evidence of liquid-like behavior in calcium carbonate system. a) ACC spherical 

particles resulting from a spinodal decomposition after fast mixing (SEM micrograph). From Faatz 

et al.60 b) ACC hemispheres deposited on mica before crystallization by gaz diffusion (SEM 

micrograph). From Xu et al.73 c) Pilp induced mineralized fibers resulting from mineralization in 

the vicinity of track-etched membranes. From Schenk et al.82 Spinodal decomposition pattern 100 

ms after fast mixing (cryo-TEM). From Rieger et al.83  

 

LLPS is a thermodynamically-driven phenomenon that consists in the demixing of an original 

solution into two distinct liquid phases, with different solute concentrations. In our systems, 

such a demixing will result in an “ion-rich” and an “ion-poor” liquid phases. The possibility of 

an LLPS is determined by the position of the chemical system in the phase diagram (Figure 

15.a.) The liquid can phase-separate according to two different mechanisms: either binodal 

nucleation or spinodal decomposition.  
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Figure 15 - a) Phase diagram of a liquid system exhibiting a liquid-liquid phase separation. The 

metastable region, in dark green, is delimited by the binodal and spinodal lines. The unstable 

region is delimited by the spinodal line. Tc represents the critical temperature, above which the 

system remains monophasic. b) Variations of concentration during LLPS. Left part (‘Nucleation 

and growth’) shows the concentration variations during phase nucleation in the binodal regime. 

Right part (‘Spinodal’) represents the concentration variations during a spinodal decomposition. 

From Guskov.85 

When the solute concentration, χ, increases, the system crosses the binodal line and becomes 

metastable with respect to a LLPS. In the metastability domain (exemplified by point B in Figure 

15.a), the new phases appear by nucleation and growth process (Figure 15.b). The 

concentration of the new phases is constant along time (Figure 15.b, “Nucleation and growth”), 

and equal to χ1 and χ2 respectively (see Figure 15.a). The number of nucleation events increases 

as the initial concentration χ approaches the spinodal line.  

At higher χ values, the solution crosses the spinodal line (exemplified by point “S” in Figure 

15.a) and becomes unstable with respect to liquid demixing. The concentration fluctuates in all 

the liquid, this way generating the two new phases. The concentration interface is not sharp 

(as presented in Figure 15.b, “Spinodal”), and evolves progressively with time until it reaches 

the ion-poor (χ1 in Figure 15.a) and ion-rich (χ2 in Figure 15) phase concentration values. 

Spinodal decomposition is observed when the system crosses the metastability region fast 

enough to prevent a nucleation-growth process. Therefore a rapid chemical or thermic quench 

must be made.  

We have shown that a LLPS can develop following two different mechanisms, either nucleation 

and growth, or spinodal decomposition. The type of ongoing LLPS can be inferred from the 

morphology of the emerging two-phase pattern at short times. Indeed, while binodal 

nucleation always produces spherical droplets, spinodal decomposition generates a 

bicontinuous network at short times, which persists at later stages when the two liquid phases 

are present in the same amount (50:50 binary mixture) (see Figure 16.a). Nevertheless, if the 
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two phases are in different amounts (off-symmetric mixture), a spherical morphology can later 

develop during spinodal decomposition (as seen in Figure 16.b). Therefore, the channel-like 

bicontinuous pattern is the only one that distinguishes spinodal decomposition from binodal 

nucleation.  

 

Figure 16 - Morphological evolution of liquid domains resulting from spinodal decomposition. (a) 

50:50 binary mixture. (b) 45:55 binary mixture. From Datt et al. 86 

Determining the power law that describes the growth of the liquid domain is another way to 

identify the LLPS scenario. Spinodal decomposition goes through three regimes of domain 

growth with time87 : diffusion, viscous and inertial, with a theoretical power law for the domain 

growth of t1/3, t, and t2/3, respectively. Each regime has a specific duration, which depends on 

the region of the phase diagram. Thakre et al. demonstrated that depending on the 

temperature applied during the quench process, the diffusive regime may be observed at a 

longer time scale, or be too short to be seen.87 In parallel, binodal nucleation exhibits different 

power laws for the liquid domain growth, with initially a power law t1/2, and then t1/3 during 

coarsening by Ostwald ripening.88 In principle, the distinction between binodal nucleation and 

spinodal decomposition can therefore be achieved by determining the power law 

characterizing the complete dynamics of the liquid domain growth.  

However, a direct evidence of the existence of a liquid liquid intermediate in inorganic systems 

is still scarce to this date. Sebastiani et al.89 proposed that a non-linear behavior in THz 

absorption (derived from Tera Hertz spectroscopy measurements) prior to CaCO3 precipitation 

events in a titration experiment was due to the co-existence of two liquids. By combining ACC 

syntheses by titration experiments and 13C NMR spectroscopy techniques, Bewernitz and coll.84 

revealed the involvement of a liquid precursor in ACC formation, both in the absence and in 

the presence of a polymer additive. The polymer additive (polyaspartate) was shown to stabilize 

the liquid phase rather than inducing its formation. Since the liquid precursor exist without the 

presence of polymer, although short-lived, it will be further reffered to as a polymer-stabilized-

liquid-precursor (PSLP) instead of PILP as the polymer only stabilizes the liquid precursor long 
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enough to allow its detection.  

This study also evidences the formation of stable pre-nucleation ion clusters prior to the liquid 

phase appearance. Stable pre-nucleation ion clusters have been first described by Gebauer et 

al in 2008 by titration of calcium into a carbonate solution.68 

They are described as thermodynamically stable species that are observed in both under- and 

supersaturated calcium carbonate solutions.68 In their study, Gebauer et al. demonstrated that 

part of the calcium ions are bound in solution by the carbonate species, prior to any nucleation 

event. Analytical ultracentrifugation (AUC) measurements revealed the presence of 2 nm 

structures, present in solution before the precipitation of ACC. Their existence seems to 

contradict the classical description of crystal nucleation, which considers that pre-nucleation 

clusters will always redissolve until they reach a critical radius, beyond which point they start 

to grow, this way initiating the crystal nucleation process.  

Theoretical calculations, based on force-field models, have confirmed that stable ion clusters 

can indeed exist in solution90,91 and that they can serve as precursors to the formation of a 

dense liquid phase, and, then, after dehydration, of ACC particles.92  

In conclusion, both experimental and calculative arguments have been proposed in favor of 

the existence of stable pre-nucleation ion clusters, that would generate a liquid precursor and 

ultimately ACC. Still, although the occurrence of a liquid-like precursor in calcium carbonate 

systems appears now well-established, its molecular nature remains controversial. Xu and coll.93 

have indeed proposed that the fluid observed during calcium carbonate synthesis in the 

presence of polyelectrolyte would be in fact an arrangement of 2 nm diameter ACC 

nanoparticles, and not a true molecular liquid. Therefore, a better understanding of the 

structure of the liquid precursor in calcium carbonate crystallization is still needed. Its 

acknowledged occurrence in synthetic models, however, makes it a serious candidate for 

explaining the astonishing morphologies observed in calcareous biomineralization. 

 

1.3  AMORPHOUS TO CRYSTALLINE TRANSFORMATION 

As mention earlier, the tendency of ACC to crystallize strongly depends on its structural 

properties (its size in particular) and composition, which define its thermodynamic stability. It 

also depends on the environmental conditions of the crystallization. We will review hereafter 

the different types of amorphous-to-crystal transformations reported in the literature and 

detail the conditions that trigger each transformation. 

 

 Dissolution-Crystallization 

The dissolution-crystallization (D/C) transformation corresponds to the dissolution of the 

unstable amorphous phase followed by the nucleation of the stable crystalline phase. This kind 

of transformation occurs systematically when ACC is kept in a liquid environment, and relies 

on the diffusion of the ion species from the site of dissolution to the site of nucleation and 

growth of the new crystal. 
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While following the transformation in solution of ACC particles into calcite rhomboedra,94 

Aizenberg et al. evidenced the formation of an ACC-depleted area surrounding each crystal, 

which corresponds to ACC particles that have dissolved to feed the growing crystals (Figure 

17 .a). Joint observations of morphology changes and increased concentration of dissolution 

products (carbon and calcium) in solution have also been made by Rodriguez-Navarro et al.72 

(Figure 17 .b), and Zou et al.61 (Figure 17 .c). These results all point to a D/C process for the 

amorphous-to-crystal transformation in solution.  

 

 

Figure 17 - a) ACC precipitated on gold substrate functionalized with hydroxyl functions. The 

substrate is left in CaCl2 in contact with the gaseous atmosphere resulting from ammonia 

carbonate decomposition (gas diffusion method). When left in solution amorphous calcium 

carbonate (marked “ACC”) dissolves to the profit of calcite crystals (marked “C”). The depletion 

zone left by ACC dissolution in highlighted with a double white arrow. From Aizenberg et Han.94 

b) Interfacial (air-solution) ACC (marked “ACC”) and calcite rhomboedras resulting from their 

dissolution (“Cc”). A saturated Ca(OH)2 solution is left 35 min under atmospheric CO2 to observe 

this. From Rodriguez-Navarro et al.72 c) Crystallization of 200 nm ACC particles (produced by fast 

mixing) that are left in solution. Left : ACC particles coexisting with calcite rhomboedra (~300 s). 

Right: at 600 s, only calcite (rhomboedra) and vaterite (spheres) crystals are visible. From Zou et 

al.61  
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Atmospheric water can also induce a D/C transformation. Indeed, while studying the stability 

of ACC exposed to air, Konrad et al. 95 determined the critical amount of atmospheric water 

(0.25 mol per CaCO3 unit ) needed to start the crystallization process of a dry, additive-free 

ACC. Beyond this amount of water (estimated to four atomic layers), crystallization is induced 

by a D/C process. Konrad et al. nevertheless precise that if the crystallization is triggered by a 

D/C process, is it not necessarily the only process at play in their system. A similar result was 

provided by Ihli et al.59 who emphasized that crystallization at ambient temperature is 

necessarily initiated by a partial D/C process, as the free energy barrier of direct solid/solid 

transformation is too high to occur in such conditions. Thus, ACC exposed to atmospheric 

water will begin to crystallize via a dissolution-crystallization process.  

Since atmospheric water can trigger crystallization, it is interesting to look at the influence of 

relative humidity (RH) on the crystallization process. Xu et al.96 exposed ACC films to varying 

RH in the ranges 35% to 90% and, considering the modification of the film nanostructure, 

suggested that a D/C mechanism was at work in their experiment. Indeed, at all RH values, 

crystallization resulted in the appearance of pores in the film structure, which was initially a 

dense arrangement of ACC nanoparticles. The pores became larger at higher RH, with clear 

fusion between nanoparticles. Such morphological features provide evidence of matter 

displacement, and therefore of a dissolution process.    

Performing in situ total X-ray scattering during an amorphous-to-crystal transformation at high 

relative humidity (85%), Albéric et al.69 could detect both short- and long-range order 

reorganization during crystallization, consistent with a D/C transformation which involves 

solute diffusion. By contrast, a solid-solid transformation (see section 1.3.2) would actually only 

result in short-range rearrangement. 

In view of the previous results, the only way to stabilize ACC particles is therefore to take them 

out of the solution and dry them.12,69  

When exposed to gas moisture, only a thin layer of liquid is deposited on the particles, so that 

the growth of 3D crystals, as observed when D/C takes place in solution (see Figure 17.a, .b 

and .c), is not possible anymore. For example, films removed from the solution before 

crystallization and exposed to air moisture (Figure 17.a) do not transform into calcite 

rhombohedra, but keep a flat morphology (Figure 18.a). ACC films exposed to humid air 

develop 2D spherulitic polycrystalline patterns that depend on the relative humidity (Figure 18 

b.c.). The available volume, the ion diffusion coefficient and the supersaturation are actually 

different when the liquid is an absorbed layer and when it corresponds to the bulk solution, 

which leads to different morphologies.97 
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Figure 18 - a) Crystal resulting from the transformation of ACC particles formed on an 

hydroxylized substrate after exposure to a humid atmosphere (SEM micrograph). ACC particles 

before transformation are the same as in Figure 17.a (spheres). Illustration from Aizenberg et 

Han.94 b) ACC film (produced by gas diffusion) exposed to 60% RH (birefringence microscopy). c) 

ACC film (gas diffusion) exposed to 90% RH (birefringence microscopy). b-c : Scale bars = 100 

µm. Illustration b-c from Xu et al. 96 

 

 Solid-state transformation 

Solid-state transformation, or solid-solid transition, takes place without the support of an 

external liquid phase. It is a pseudomorphic transformation as the reorganization of ions leads 

to the appearance of a new phase without morphological changes. First, the terminology of 

solid-solid transition will be specified, then its occurrence in calcium carbonate systems as an 

amorphous-to-crystal transformation will be discussed.  

A solid-solid transformation can follow two mechanisms, either “diffusion-less” or “diffusional”.  

A diffusionless transformation corresponds to a coordinated movement of atoms. The 

placement of atoms between parent and daughter phases is related by a mathematical linear 

transformation. For example, as described by Du et al.,98 diffusionless transformation can be 

induced by elongation or shear transformation of the crystalline cell. Experimental observations 

of such a transformation have been made using colloidal particles, so as to make “atomic” 

displacements visible.99,100 This type of transformation implies a well-ordered crystalline mother 

phase, so in the case of ACC it will be left apart.  

In contrast, diffusional transformation implies the unrelated displacement of atoms. The 

diffusion length can be restricted, as in the different movements described by Christian et al. 
101 where the atoms only run the length of a chemical bond. However, long-range diffusion, 

associated with the appearance of a liquid intermediate during a solid-solid transition in 

crystals has also been described in colloidal modeling.102 Likewise, the presence of a liquid 

phase during solid-solid transition has been described in metallic glass-to-crystal 

transformations.103,104 Such solid-solid transitions thus rely on either short- or long-range 

diffusive motion and should therefore be classified as diffusional processes. Still, because the 

range of atomic displacement in a solid-solid transition is reduced, this kind of transition only 

induces minor morphology modification (although not yet described in the case of a solid-

solid transition via a liquid intermediate).  

Shape-preserving crystallization has been observed in calcium carbonate model syntheses, 
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when ACC is crystallized in solution or by a heat treatment, and referred to as solid-solid, or 

rather “pseudo-solid-state” transformation as water in ACC may play a role in ion 

reorganization during crystallization.64 Thus, it has been shown that an ACC film produced by 

gas diffusion can preserve its morphology at the microscale when it crystallizes at the air-

solution interface.64,105 In addition, the crystallizing film retains its granular morphology while 

iso-oriented (Figure 19.a) or polycrystalline (Figure 19.b) domains are formed (Figure 19.c). The 

conservation of the nanoscale morphology has also been recently observed by De Yoreo et al. 

during the crystallization of ACC particles in solution.106 Thanks to in situ TEM study, De Yoreo 

and collab. could follow the progressive densification of 100 nm ACC particles without 

morphology changes. Therefore, in solution, ACC particles can transform into crystalline 

particles via a pseudomorphic transformation, retaining the shape of the amorphous phase at 

both the micro and nano scales.  

 

Figure 19 - Pseudomorphic amorphous-to-crystalline transformation at the air-solution interface. 

a) Partial pseudomorphic transformation at the air-solution interface (Crossed polarizer with 

lambda-plate micrograph). The purple coloration is representative of an optically isotropic 

material. The blue coloration is crystalline, and representative of a homogeneously oriented 

domain. The morphology between the amorphous part of the film (“ACC”) and the crystalline 

part, (“Crystal”) is kept. From Gower et al.64 b) Crossed polarizer micrograph of interfacial ACC 

film left to crystallize in solution. The pseudomorphic transformation results into 2D spherulitic 

calcite crystals. c) Atomic force micrograph of interfacial spherulitic crystal, topological height. d) 

Atomic force micrograph of interfacial spherulitic crystal, phase image. b-d From Wolf et al.15 

Other environmental conditions allowing shape-preserving amorphous-to-crystalline 

transition corresponds to thermal activation. Indeed, Xu et al. 96 have noticed that the 

nanogranular structure of an ACC film could be preserved during a heat-induced crystallization 

at 300°C (Figure 20.a), and Zou et al. observed the shape-preserving crystallization of 100 nm 
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particles at 200°C (Figure 20.b).61 Still, some reorganization is visible in the form of 10 nm to 

20 nm pores, which is attributed to internal water loss. Finally, when heating, the water present 

in ACC is excluded, which triggers a solid-solid transition. As a matter of fact, the energy barrier 

needed to trigger crystallization by heating is linked to the amount of internal water. When the 

ACC is previously dried, the energy barrier becomes greater, probably due to reduced 

molecular mobility,79 as discussed in section 1.2.4.  

 

Figure 20 - Pseudomorphic amorphous-to-crystalline transformation under heat. a) AFM- 

Tapping mode – Nano-metric structure of an ACC film (gas-diffusion) b) AFM- tapping mode, 

Nanometric structure of film a) exposed to 300°C, transformed into calcite. Illustrations a) and b) 

from Xu et al.96 c) TEM micrograph of a 200nm ACC particle (fast mixing) before (left) and after 

(right) exposure to 200°C. After exposition to heat, the ACC particle crystallized into calcite, while 

keeping its round shape. The smoothness on the edge of the ACC particle is disturbed during the 

crystallization process. After heat, the particle edge becomes rougher. From Zou et al.61 

In summary, ACC-to-crystalline transformation can rely on different mechanisms. In solution, 

both dissolution/crystallization and solid-solid (pseudo-morphic) transitions can happen, while 

heating leads to solid-solid transition. Hybrid mechanism could be, and have been, proposed 

with a dissolution/crystallization process a the solid surface followed by a solid-solid 
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transition.59 Transformation of ACC into crystals is therefore a complex phenomenon, and the 

pathway leading to crystallization might be influenced by the ACC formed in the first place 

(pseudo-polymorphism discussed in section 1.2.4).  

 

1.4 THESIS 

This thesis aims at deepening the understanding of calcareous biomineralization mechanisms 

by evaluating a hypothetical nucleation pathway formulated on the basis of the knowledge 

gained from observations of biogenic and synthetic materials. First of all, amorphous 

intermediates have been observed in the calcareous biominerals nucleation pathway of several 

genera. Besides, the calcareous biominerals adopt forms unrelated to the idiomorphic forms 

of the associated polymorph. Their nanostructure consists of a compact arrangement of sub-

micronic granules, putting forth some fluidity of the latter during the elaboration of the crystal. 

Then, the model syntheses enabled to reveal a liquid intermediate in the formation of 

amorphous calcium carbonate. In parallel, an amorphous to crystal transition allows the 

conservation of the nanostructure of a calcium carbonate film in liquid medium. All these data 

allow to formulate the hypothesis that the generic scenario of growth in calcareous biominerals 

could rely on the formationof a dense liquid intermediate, which would transform into an 

amorphous solid, and then into the crystal through a pseudo-morphic transformation 

maintaining the amorphous solid nanogranularity.  

In order to test this hypothesis, a model synthesis including a dense liquid intermediate is 

chosen in order to produce calcium carbonate crystals gathering common properties with the 

biominerals. A biogenic model is also chosen to assess the agreement between the 

synthetically produced crystals and the biominerals. 

 

 Choice of a synthetic model: PILP synthesis with Ammonia Diffusion Method  

To assess the relevance of a liquid intermediate to calcium carbonate biomineralization, a 

model synthesis going through this route is chosen: PSLP synthesis with the ammonia diffusion 

method. 

This type of ADM results in the formation of a nanostructured ACC films (half-micron thick12) 

via a liquid intermediate. Like biominerals, the film includes some organics (polymer, from 30% 

to 1 wt% in Dai et al.65) and is therefore a hybrid structure. The concentration and temperature 

conditions that have been shown to generate a liquid intermediate are in accordance with 

biomineralization values (see Introduction). Thus, the PSLP synthesis is a good model synthesis 

to test our hypothesis on the biomineralization pathway. Syntheses have been carried out with 

sodium polyacrylate, as this polyelectrolyte offers many acidic –COOH functions, similarly to 

the biomolecules involved in the crystallization of Pinctada m.14 
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 Choice of a biogenic model : the black-lip pearl oyster. 

The chosen biological model is the shell of the black lip pearl oyster (Pinctada margaritifera), 

which exhibits two spatially distributed polymorphs, namely aragonitic platelets and calcitic 

prisms (Figure 21.a) like all shells of the Pinctada family. It has been extensively studied and 

described in the literature,14,41,107,108 as its structure is rather simple, though displaying features 

common to many other calcareous biominerals. First, both the aragonitic nacre and the calcitic 

prisms are composed of space-filling nanoparticles (Figure 21.b). Its growth involves an 

amorphous calcium carbonate intermediate, as described by Huang et al.107 in aragonitic 

growth and by Duboisset et al. in calcitic growth.41 The shell grows in a layer-by-layer mode, 

as shown on the calcitic prism in Figure 21.c. Each layer is about 500 nm thick.41 At the very 

border of the shell, the visible early prisms are a few microns wide,108 and composed of only a 

few growth layers. In addition, their uniform birefringence indicates that they are 

cristallographically iso-oriented (Figure 21.d). Finally, the soluble matrix is composed of acidic 

proteins whose amino-acids are described.14 Given their numerous properties in common with 

other calcareous biominerals, the young calcitic prisms of Pinctada margaritifera seem to be 

the perfect biogenic crystals to test the selected model synthesis, and its associated nucleation 

pathway, by carrying out a structural comparison of synthetic and biogenic crystals. 

 

Figure 21 - a) Electronic micrograph (SEM). Calcitic prisms of Pinctada margaritifera. The prisms 

are situated on the external part of the shell. From Dauphin et al.34 b) AFM- micrographs of calcite 
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from the external part of Pinctada margaritifera shell (left) and aragonite from the internal part 

of the shell. Both polymorphs have the nanogranulated structure shared by many calcareous 

biominerals. From Cuif et al.39 c) SEM micrograph. Elongated section of the calcitic prism of 

Pinctada margaritifera. The prisms are separated by an organic scaffold (vertical lines) and shows 

growth layers shared between prisms (horizontal lines). d) Crossed-polarizers micrograph. Iso-

oriented prism of a shell border. The iso-orientation is deduced from the even coloration unity 

inside a prism. (c-d) From Cuif et al.108  

 

 Methodological approach 

The aim of my PhD work was to produce CaCO3 crystalline films following a nucleation pathway 

that involves a dense liquid intermediate, and to determine whether such a synthesis can bring 

structural features close to those of the model biomineral (shell of Pinctada m.). First, I have 

produced an amorphous nanostructured film, using PLSP syntheses, so as to mimic the 

synthesis of a growth layer in biominerals. A multi-technique characterization of the sample 

has been carried out to specify the nucleation pathway and make sure it was consistent with 

the liquid precursor pathway initially selected. Then, I have triggered the crystallization of the 

ACC film according to different transformation pathways (dissolution/crystallization or solid-

solid), either in situ or ex situ. To characterize the resulting crystals and compare them to 

Pinctada m. prisms, the crystallized samples have been analyzed using state-of-the-art 

techniques (3D Bragg and Vectorial Ptychography), which revealed their crystalline properties 

at the nanoscale. The crystalline properties induced by each amorphous-to-crystalline 

transformation have thus been determined, and their resemblance to the biomineral properties 

have been assessed.  

The data provided by this experimental work will allow me to conclude on the relevance of the 

‘liquid precursor’ assumption to explain the observed biomineral features.  
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2 MATERIALS AND METHOD 

2.1 SYNTHESES 

 Reproducibility issues 

The implementation of the syntheses as presented hereafter is the result of numerous 

experiments, which allowed me to identify the key environmental factors affecting the 

reproducibility of the syntheses. 

As  matter of fact, the reproducibility of the ammonia diffusion method is a well-known concern 

for experimentalists in the field. This difficulty comes from the multiple equilibria that take 

place simultaneously: powder sublimation, gas dissolution and precipitation in solution. 

Extensive studies, made to solve this reproducibility issue, have identified key factors to control 

this reaction:11,109 the amount of ammonium carbonate, the extent of the solution free surface, 

the nature of the gas diffusion barrier and the calcium concentration should strictly remain the 

same to ensure reproducibility. In addition to those, new parameters have been identified 

during my PhD thesis, which have been overlooked in the literature until now: the granularity 

of the ammonium carbonate powder and the relative humidity value of the environment when 

setting up the synthesis.  

The granularity of the powder is of prime importance, as it determines the total area of the 

powder in contact with the air, and therefore affects the speed of sublimation110. As an 

illustration of this effect, 350 mg of both crushed and uncrushed ammonium carbonate were 

continuously weighted for 1000 min. The weight loss over time is presented in Figure 22. After 

1000 minutes, it was four times superior for the crushed powder than for the uncrushed powder 

(30 mg of uncrushed carbonate, 126 mg of crushed carbonate after 20 min). This means that a 

good reproducibility can ony be achieved if the granularity of the powder is well controlled 

and maintained throughout the syntheses. 

Powder crushing made manually is a source of irreproducibility, as the resulting grain size 

distribution is strongly dependent on the experimentalist. Sifting the powder was therefore 

used in ‘pellet’ syntheses (see definition below) to reduce this effect.  
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Figure 22 - Weight loss of both uncrushed (red) and crushed ammonium carbonate (blue, dashed) 

with time. 

In addition, the influence of water, which is a product of ammonium carbonate decomposition 

products, in the atmosphere is often ignored. However, I observed that when setting up a 

synthesis in a humid environment the reaction kinetics was considerably slowed down. By 

following the appearance of the film with the naked eye, I could actually estimate that the 

induction time was 3 times longer when the powder was prepared at 66% relative humidity 

(RH) than at 45% (3 h instead of 45 min). As a result, to reduce the influence of the relative 

humidity on the reaction kinetics, grinding, sifting and weighing were all made in a dry 

environment (~35% RH). 

 

 ‘Cap’ and ‘pellet’ syntheses 

During this work, two methods were used to perform the syntheses. In the first one, ammonium 

carbonate is introduced in the reaction chamber as free powder, covered with parafilm to slow 

down the diffusion of gas vapors. In the second one, ammonium carbonate is dispersed in a 

KBr pellet, which is introduced as such in the reaction chamber. 

 ‘Cap’ synthesis:  

Ammonium carbonate (Hartshron salt, >30% NH3 basis) is crushed in a mortar. Then, 100 mg 

of the crushed powder is poured in a cap, the surface of which is 0.95 cm², and its free surface 

is flattened by gentle tapping of the cap. The cap is finally covered with one layer of 

unpunctured parafilm. Three such caps are placed at 3 cm from the center in a 150 mm 

diameter Petri dish (VWR) as shown in Figure 23. A 35 mm diameter Petri dish, which contains 

3 mL of filtered (0.22 µm Miller PES filter) calcium chloride solution (AVS titrinorm-VWR) mixed 

with sodium poly-acrylate salt (5.100 kDa, Aldrich) is then positioned at the center of the large 

Petri dish. Finally, the lid of the reaction chamber (i.e. the 150 mm diam. Petri dish) is put back 

on, and two layers of parafilm tape are used to close the Petri dish on the side (see Figure 23). 

The synthesis is performed at 20°C in a temperature-controlled cabinet.  
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Figure 23 - Schematics of the set-up corresponding to a ’cap’ synthesis. A 35 mm diameter Petri 

dish (reactor) is filled with the reactive solution in blue. Three caps containing the ammonium 

carbonate powder and covered by a single layer of unpunched parafilm sheet are distributed in 

the Petri dish. The chamber is a 150 mm Petri dish closed by a double layer of parafilm. The 

parafilm is schematized in yellow color. The sublimation products dissolving into the solution are 

schematized with white arrows.  

 

‘Pellet’ synthesis: 

Ammonium carbonate (Hartshron salt, >30% NH3 basis) is crushed in a mortar and then sifted 

to only retain the fraction corresponding to sizes in the range from 50 to 150 µm. The powder 

is mixed with dry potassium bromide to obtain a 10% wt (NH₄)₂CO₃-containing mixture. To do 

so, 10 mg of (NH₄)₂CO₃ and 90 mg of KBr are weighted, mixed and crushed together before 

being pressed under 10 T for 10 s to create a 1.3 cm² pellet. A 35 mm diameter Petri dish, which 

contains 3 mL of filtered (0.22 µm Miller PES filter) calcium chloride solution (AVS titrinorm-

VWR) mixed with sodium poly acrylate salt (5.100 kDa, Aldrich) is then positioned at the center 

of the large Petri dish. The pellet is added as represented in Figure 24 (at 3 cm from the center 

of the Petri dish) just before closing the chamber. The lid of the reaction chamber (150 mm 

diam. Petri dish) is put back on and the air inside the chamber is pressed out to ensure proper 

closing. The hermeticity is insured by a foam seal fixed to the side of the petri. The synthesis is 

performed at 20°C in a temperature-controlled cabinet.  
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Figure 24 - Schematics of the set-up. A sealed 150 mm Petri dish contains a 35 mm diameter 

Petri dish filled with the reactive solution in blue. The pellet containing 10%wt of ammonium 

carbonate is represented in white. The foam seal is represented in green. The sublimation 

products dissolving into the solution are schematized with the white arrow. 

 

 Sampling : drying and conservation.  

Sampling of the interfacial mineralized structures was made using substrates that have been 

exposed to an O2 plasma (0.3 mbar, 5 min) in order to increase their hydrophilicity. Introducing 

the substrate with an angle in the solution and, then, taking it out slowly allowed to collect one 

layer of film. The substrate used was either: silicon nitride membrane (0.5x0.5 mm membrane, 

200 nm thick), glass substrate, carbon-covered copper TEM grid (30 nm carbon membrane, 

200 mesh) or golden TEM grid (uncovered). 

The samples were dried after collection by blowing dry gas (N2 or air) on them, or by exposure 

to a primary vacuum. In the case of vacuum drying, samples were blotted dried on a Kimtech 

precision paper then kept 5 min at -0.08 MPa (0.2 bar).  

The impact of the drying mode on the film morphology was observed by in situ optical 

microscopy. First, the morphology of a film at low polymer content (20 ppm) of the mineralizing 

solution was observed (Figure 25). The film is composed of an arrangement of micron-sized 

discs. Samples produced in the same conditions (three separate syntheses) are collected and 

dried either under vacuum or under a dry nitrogen flow. The micron-sized disc morphology 

was observed in all samples, so that both drying techniques (Figure 26.a and .b) appear to 

preserve the film morphology. 



MATERIALS AND METHOD 

46 

 

Figure 25 - Optical Micrograph (AM) of a disc patterned interfacial film ([Ca2+] = 50 mM, 

[PANa] = 20 ppm), observed in situ. Scal bar = 50 µm. 

 

 

Figure 26 - Optical micrographs (AM) of the morphology of film samples ([Ca2+] = 50 mM, [PANa] 

= 20 ppm). a) The upper line corresponds to samples dried 5 min under vacuum  - 0.08 MPa. b) 

the lower line corresponds to samples dried under a dry-N2 flow. Each row represents samples 

from the same synthesis. Scale= 50 µm. On the synthesis represented by the two images on the 

right, the density of the micronic disc is reduced, possibly due to heterogeneity of the film at the 

interface. Scale bar = 50 µm.  

However, exposing the sample 5 min at 0.2 bar vacuum allows to dry it more quickly and very 

homogeneously. In addition, drying under gas flow can induce a partial detachment of the film 

from the substrate. To achieve a better reproducibility and ensure a homogeneous drying 

process, drying was therefore performed under vacuum for experiments going beyond large-

scale morphology analysis.  

In experiments reported in the literature,96 washing with ethanol is a commonly used method 

to dry the surface of the ACC film produced by ADM synthesis (see Chapter 1 section 1.3.1). 
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With the sampling method used in my PhD work, rinsing with ethanol induces severe loss in 

material, as the film detaches from the substrate. However, the Raman spectra of the ethanol- 

quenched film, when available, was was fully similar to that of a vacuum-dried sample, as shown 

in the table of figure 5. With both drying methods, a spectrum with a single broad peak at 

about 1080 cm-1 is obtained, similar to the Raman spectrum (see reference data in this chapter, 

section 2.6.1.2) of a sample flushed with ethanol shown in Figure 27.  

 

Figure 27 - Raman spectrum of an interfacial ACC film dried with ethanol. The table compares 

the peak characteristics for the two drying methods (ethanol quench and vacuum drying). Data 

are extracted by fitting the peak with a Gaussian function. 

 

 Long-term conservation of the collected film samples 

Long-term conservation is ensured by keeping the sample in a low humidity atmosphere, so 

as to prevent dissolution-crystallisation process due to air humidity (see 1.3.1). A solution of 

saturated LiBr ( ≥ 99%, Reagent plus) is used to establish a 7% relative humidity111 in a closed 

container. The samples are deposited on a 3D-printed support above the LiBr solution, as 

depicted in Figure 28.a. The kinetics of establishment of the atmosphere has been monitored 

by a HIH4000-001 Honeywell sensor, and is presented in Figure 28.b. The sensor was fixed to 

the inside of the chamber lid, and controlled by an Arduino MKR ZERO. After only 10 min, the 

relative humidity in the chamber reaches 10%, and then slowly goes down to the expected 

value (Figure 28). 
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2.2 CRYSTALLIZATION CONDITION 

Three conditions of crystallization are discussed in this work: interfacial crystallization, 

thermally-induced crystallization and humidity-induced crystallization. Each mode of 

crystallization corresponds to a specific protocol, which will be presented in this section. 

 

  Interfacial crystallization.  

The film remains at the air/solution interface for several days before collection. Sampling is 

made using the protocol described in part 2.1.3 of this chapter: the crystalline film is collected 

at the interface using a hydrophilized substrate and dried for 5 min under -0.08 MPa.  

 

 Thermally induced crystallization,  

Right after collection, as described in part 2.1.3, the optical isotropy of the film sample is 

verified under crossed polarizers (BM, see 2.3.2.2 of this chapter). The sample is then 

immediately exposed to a high temperature at 300°C,on a heating plate, to trigger its 

crystallization. During heating, the temperature compension of the plate induces +/6 10°C 

oscillations. The standard crystallization protocol is 3 h at 300°C on a heating plate.  

 

 Humidity induced crystallization 

Right after collection, as described in part 2.1.3, the optical isotropy of the film is checked under 

crossed polarizers (BM, see 2.3.2.2 of this chapter). Crystallization is then initiated by placing 

the sample in a well-controlled atmosphere. More precisely, the set-up described in section 

2.1.4 is used here again, but in combination with other hygroscopic salts in order to vary the 

relative humidity value. The different chemicals used to control the atmosphere humidity are 

Figure 28 - a) Set-up for long-term conservation of samples. The sample (in grey) is placed 

on a 3D printed support (in white), above a saturated solution of lithium bromide. b) Relative 

humidity inside the chamber as a function of time. 
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presented in Table 2. In these conditions, full crystallization of the samples is observed after 

several days. 

Table 2 - Chemicals used to control the atmosphere humidity, and achieved relative humidity. 

Salt  Expected RH (20°C) Product reference  

MgCl2 33% ≥ 99% Bio Xtra, Sigma-aldrich  

NaCl 75.5% ≥ 99.5% Sigma-aldrich 

K2SO4 97,5% ≥ 99% Bio Xtra, Sigma-aldrich  

 

The kinetics of establishment of the relative humidity condition after closing the chamber was 

monitored (Figure 29) using a humidity sensor (HIH-4000, +/- 3,5% RH) has been hermetically 

fixed on top of the chamber. The sensor was controlled by an Arduino MEGA 250 connected 

to a computer for data collection. These measurements have shown that the expected value of 

relative humidity (Table 3) is reached within 10 min, whatever the targeted relative humidity 

value.  

 

Figure 29 - Kinetics of establishment of the atmosphere. Relative humidity value (% RH) as a 

function of time, under the influence of K2SO4 (green), NaCl (blue) and MgCl2 (orange) salt. For 

each measurement, the experiment was triplicated, and the standard deviation calculated. The 

standard deviation is plotted then as a mute colored area around each curve.  
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2.3 OPTICAL MICROSCOPY  

Absorption microscopy (AM) was used to determine the morphology of our samples. When 

combined with image processing, it allowed us to evaluate the size of the interfacial objects. 

Nevertheless, in case of very thin objects (a few tens of nanometers thick), absorption 

microscopy was insufficient, while phase constrast microscopy enabled the detection of the 

objects of interest.  

In parallel, to evaluate the amorphous nature (2.1.4) and the organization of the crystalline 

domains, birefringence microscopy was used. FInally, to make birefringence images while 

observing the morphology of optically isotropic segments, waveplate birefrigence microscopy 

was employed. 

 

 Phase contrast microscopy (PCM) 

 Principle 

Phase contrast microscopy (PCM) is used to image fully transparent specimens (like biological 

cells) for which light absorption is too weak to allow absorption contrast imaging. On the 

contrary, such objects can be detected by phase contrast microscopy, as this one makes it 

possible to detect slight phase shift due to small refractive index variation (like at the cell 

membrane). The phase shift is translated into an amplitude variation in the observation plane. 

This conversion is possible by the combined action of a condenser annulus and a phase plate 

(Figure 30). The annulus selects the direct beam (unmodified by the sample) and focalizes it 

onto the focal image plane. The beam diffracted by the sample goes through the thicker zone 

of the phase plate, inducing an important phase shift. The phase shift induces either 

constructive interferences (negative phase microscopy) or destructive interferences (positive 

phase microscopy). The interferences modify the amplitude of the wavefield at the image focal 

plane, which is then directly measurable by the intensity sensitive detector. 
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Figure 30 - PCM microscope configuration 

The phase shift induced by crossing of a sample of refractive index 𝑛 is:  

𝛿 =
2𝜋 (𝑛0 − 𝑛) 𝑒

𝜆
 

where 𝑛 is the refractive index of the object, 𝑛0 the refractive index of the surrounding medium, 

𝑒 the sample height, and 𝜆 the wavelength of the incident beam.  

 

 Birefringence microscopy (BM) and Wave plate assisted birefringence microscopy (WBM) 

 Principle 

Birefringent materials are materials that exhibit a refractive index dependent on both the 

polarization and the direction of the illumination. This is the case of crystals, and in particular 

of calcium carbonate polymorphs, which are all optically anisotropic.  

Any direction along which light propagates in the same way as in an isotropic material (no 

birefringence effect) is called optical axis of the crystal. Birefringent crystals can have one 

(uniaxial) or more optical axes. In the case of a uniaxial crystal like CaCO3 polymorphs, one 

should define two refractive indices: the ordinary index no that determines the speed of light 

that travels along the optical axis (and is therefore polarized perpendicularly to this axis), and 

the extraordinary index ne, which specifies the speed of light that is polarized along the 

direction of the optical axis. In the case of a positive uniaxial crystal : ne > nO, whereas in the 

case of a negative uniaxial crystal, one gets nO > ne. 

The birefringence of a material can be detected by observation between crossed polarizers. 

The inlet polarizer is used to deliver a linearly polarized light onto the sample. After crossing 

the sample, the change in light polarization is analyzed thanks to the outlet polarizer, called 
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‘analyzer’, which is oriented at 90° from the polarizer. If the material is isotropic, the polarization 

of light remains the same, and no light passes through the analyzer. In the case of a birefringent 

material, if its neutral axes are not parallel or perpendicular to the polarizer axis, the linear 

incident wave experiences a double refraction, both along the neutral axes of the material, one 

being perpendicular to the other. Each refracted wave propagates at a different velocity 

through the sample, which results in an elliptically-polarized light past the sample. In this case, 

some of the light is transmitted through the polarizer, and the birefringent material appears as 

bright, gray or colored, areas on the camera.  

The Michel-Levy Diagram112 (Figure 31) provides the interference colors arising from the 

superposition of the two propagating waves exiting the sample at the analyzer, assuming that 

the sample axes are oriented at 45 deg of the polarizer. The diagram presented in Figure 31 

highlights the relationship between the sample’s thickness, the birefringence and the path 

difference in nm. We can see that for thin samples, the birefringence effect translates into 

shades of gray under crossed polarizers. A technique to be visually sensitive to the 

birefringence effect is to add a retardance wave-plate, which allows to reach the first order 

color-range (530 nm). In this range, minor shift in the retardance will create a major coloration 

shift.  

 

Figure 31 - Michel Levy diagram. The diagram provides the interference color resulting from the 

crossed-polarized illumination of a sample, depending on the sample birefringence and thickness. 

From Sørensen et al. 112  

In the case of a sample of homogeneous thickness, the addition of a lambda wave-plate to a 

birefringence microscope allows highlighting changes of the optical axis orientation, i.e., of 

crystalline domain orientation.  
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 Calcium carbonate crystals as birefringent materials  

The birefringence properties of the anhydrous polymorphs of calcium carbonate113 are 

summarized in the following table, along with the refractive index of amorphous calcium 

carbonate114 (ACC): 

 Birefringence Values 

Calcite Uniaxial negative nO = 1.658 ; ne = 1.486 

Vaterite Uniaxial positive nO = 1.550 ; ne = 1.645 

Aragonite Biaxial negative nα = 1.531 nβ =1.680 nγ=1.686 

ACC None n= 1.51-1.58 

 

Every crystalline form presented here is a birefringent material. Under crossed polarizers they 

will therefore be visible (if the optical axis isn’t perpendicular to the sample plane). ACC, on the 

other hand, is optically isotropic, being therefore invisible in this kind of setup. Birefringence is 

therefore a tool to determine the amorphous nature of calcium carbonate.12,96,115,116 

 

 Experimental set-up 

Observations are performed either on an Olympus BX61WI equipped with a DP74 camera or 

an Olympus BX41 equipped with a DP70 camera. Olympus Analyzer and polarizers are used to 

perform BM. An Olympus U-TP530 (530 nm) wave plate is added to perform WBM. Olympus 

UPLFLN-PH objectives are used with their matching annulus in PCM mode.  

 

 Image processing for data extraction and analysis  

The analysis of the disc size distribution was performed using ImageJ software fromimages 

acquired in optical absorption microscopy. A protocol was developed to separate the discs 

from the background in an OM micrograph (Figure 32.a), individualize them and measure their 

size.  

In a first step, the discs are separated from the background. For this, a machine learning module 

named WEKA117 is used as a segmentation tool. This tool allows to define "classes" of objects 

to separate (in this case a "disc" class and a "background" class) from a reference image. The 

attribution of manually chosen pixels to a class allows the numerical calculation of a 

segmentation model ("classifier"). This model can then be directly applied to the images of 

other samples in order to have an automatic separation of the discs from the background. The 

result of the separation protocol (Figure 32.b) can be used to select the discs only, by 

thresholding (Figure 32.c). Then, the "Watershed" option is used to separate the discs that have 

merged (Figure 32.d). Finally the particle analysis gives access to many parameters, including 
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the Feret diameter, which is used to characterize the size of the discs. 

 

Figure 32 - Optical micrographs and data treatment. a) Original micrograph of the interfacial 

mineralized structures. b) Segmentation with Weka machine learning. c) Post thresholding of the 

segmented image. d) Applied “ watershed”. Scale bars= 50 µm 

The Feret diameter is a measure of the dimension of a single particle. It is the distance between 

two parallel tangents at the opposite sides of the particle118. In the case of circular particles, it 

is equivalent to the diameter of a particle. The representation of the Feret diameter of a random 

particle and a sphere are presented in Figure 33.  

 

 

Figure 33 - Feret diameter in the case of a random particle (left) and in the case of a disc (right). 
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2.4 ELECTRONIC MICROSCOPY 

 Transmission Electron Microscopy (TEM) 

 Principle 

Transmission electron microscopy (TEM) is a technique which is widely used to characterize 

thin samples (~100 nm, depending on the sample density and constituting elements) and 

nanoparticles. An electron gun (heated wire, or field emission tip) is used to produce a beam 

of electrons that are accelerated under a voltage of hundreds of kV, under a high vacuum, 

inside the microscope chamber. The beam is focused onto the sample thanks to 

electromagnetic lenses. If a sample placed under the beam is thin enough, electrons will be 

transmitted, this way allowing imaging of the transmission properties of the sample. Figure 34 

shows the various interactions taking place when the beam goes through a sample. 

 

Figure 34 - Schematic representation of the interactions taking place during sample illumination 

by an electron beam. 

Indeed, the interaction of the sample with the electron beam leads to the emission of 

characteristic X-ray photons, but also Auger electrons, secondary electrons, or backscattered 

electrons.119 The transmitted electron beam is composed of inelastically and elastically 

scattered electrons, as well as electrons that have not been scattered by the sample (direct 

beam). We used bright-field TEM, meaning the detection area integrates the direct beam and 

the beam scattered in its surroundings. Depending on the detection angle, contrast can 

originate either from mass-thickness contrast or from diffraction-contrast. 119 

 

 Experimental 

A Philips CM12 electron microscope at an operating voltage of 80 kV was used for the 

investigation. A Gatan camera was used to capture the images. Hydrophilized carbon-coated 

copper grids were used for sampling. Air/water interface objects were fished directly with the 



MATERIALS AND METHOD 

56 

grid, while bulk species were deposited with a pipette. Samples were immediately blotted on 

a Kimtech paper then dried under vacuum as described in section 2.1.3.  

In order to distinguish the products of syntheses from the artifacts generated by the drying 

process, samples of reference solutions (calcium chloride solution alone, polymer solution 

alone, calcium chloride and polymer solution without exposure to ammonium carbonate) were 

also imaged, following the same drying treatment. 

 

 Image analysis  

TEM images were analyzed with ImageJ software. To follow the evolution with time of the 

statistical size distribution, a series of sample images recorded between 0 min and 25 min of 

reaction were processed identically. The objects of interest were separated from the 

background by using local contrast enhancement and thresholding. This generated a binary 

image on which some particles may appear fused. They were separated using a “watershed” 

transformation. Then, representative objects were selected according to their circularity, 

defined as :  

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 

 

Only objects that have a circularity above 0.3 were selected, in order to eliminate background 

noise (square particles created by the watershed operation).  

The edges of the particles were smoothed in order to counterbalance the numerical artifact 

that increases the perimeter of the particle, and have a proper circularity calculation. Objects 

that have a circularity above 0.8 were finally analyzed.  

When pictures were more contrasted (reaction tim of 35 min in chapter 3), they were 

thresholded by hand following local contrast adjustments and the final circularity test was set 

to 0.7 (as later discussed in the document, the circularity of the objets is reduced at that time, 

so the restrictions on circularity have to be loosened to count a proper number of particles). 

Area, perimeter, Feret diameter and circularity were measured. 
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Figure 35 - Numerical treatment of an TEM image. a) Original picture b) Result after treatment. 

Selected particles in the final analysis are presented in white. 

To present the Feret diameter distribution (or definition see section 2.3.4 of this chapter), violin 

plots were used. The different statistical data that can be displayed in a single violin diagram 

are presented in Figure 36. The white dot is the median value, the ends of the box represent 

the inter-quartile space (i.e., the range of values that covers 25% of the measurements on either 

side of the median), and the upper and lower points of the black line represent the inter-centile 

space (i.e., 98% of the measurements). The Kernel density estimation is plotted in a mirror 

representation on each side of the violin. A kernel density estimation is a calculative method 

to retrieve the probability density function in a dataset.120 Voilin plot are an alternative to 

histograms, which more effectively highlights multimodal distributions.  

 

 

Figure 36 - Violin plot example, with annoted statistical data. 
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 Cryogenic Transmission Electron Microscopy (cryo-TEM)   

 Principle 

Cryo-TEM imaging relies on the same principle as TEM imaging (see section 2.4.1.1 of this 

chapter) but is specifically adapted to liquid or highly hydrated samples. Indeed, cryogenic TEM 

effectively avoids drying artifacts (aggregation, precipitation, etc.) by freezing the sample to be 

imaged in liquid ethane, so as to preserve its “native” hydrated state. More precisely, the sample 

is first deposited on a holey-carbon grid, then dry-blotted, and finally plunged in liquid ethane. 

The whole process takes about 20 s, and results in the formation of a thin film (50 nm to 200 

nm) of amorphous ice that surrounds the hydrated objects. The frozen sample is then observed 

on a TEM microscope equipped with a cryo-holder, which ensures a constant temperature of 

about 180 °C throughout the measurement.  

Energy Dispersive Spectroscopy (EDS) 

Elemental analysis is possible with TEM microscopy, through the analysis of the emitted X-Rays 

(Figure 34). During beam-illumination, electron from the inner shells of the sample atoms can 

be ejected. The energy of the X-rays produced by the de-excitation process (transfer of an 

electron from an outer shell to the emptied inner shell) is then atom specific. Measuring the 

emitted X-rays energy is therefore used to deduce which atoms are present in the sample.  

 

 Experimental 

Observations were made on three different cryo-TEM microscopes using the following 

protocols: 

- JEOL JEM 2100 Film samples were deposited by fishing at the solution/air interface 

on plasma pre-treated copper grids covered with holey carbon film (Quantifoil 

R2/2). After the excess liquid on the grid was blotted using a Whatman filter paper, 

the grid was promptly dipped in liquid ethane to form a thin film of vitreous ice. 

The cryo-TEM observations were carried out at -180°C using a JEOL JEM 2100 mi-

croscope operated at 200 kV. A Gatan Ultra Scan US1000 camera was used to cap-

ture the images. EDS was perfomed using XEDS JEOL (Japan) EX Si(Li) (138 eV res-

olution) detector. Experiments were performed at the Institut de Minéralogie, de Phy-

sique des Matériaux et de Cosmochimie in Paris. 

 

- JEOL 2010 FEG microscope : Cryo-TEM samples were prepared using the automated 

Vitrobot System (FEI Company). A 5 μL drop of aqueous sample solution was de-

posited on plasma pre-treated copper grids covered with a holey carbon film 

(Quantifoil R2/2). For interfacial objects, the deposition was made by fishing at the 

solution/air interface. After the excess liquid on the grid was blotted by filter paper, 

the grid was promptly dipped in liquid ethane to form a thin film of vitreous ice. 
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The cryo-TEM observations were carried out at -180°C using a JEOL 2010 FEG mi-

croscope operated at 200 kV. A Gatan camera was used to capture the images. Ex-

periments were performed at the Laboratoire de Physique du Solide in Orsay. 

 

- JEOL 2200FS FEG microscope : Deposition was made on plasma pre-treated copper 

grids covered with a holey carbon film (Quantifoil R2/2, by fishing at the solution/air 

interface. After the excess liquid on the grid was blotted by filter paper, the grid was 

promptly dipped in liquid ethane to form a thin film of vitreous ice. The cryo-TEM 

observations were carried out at -180°C using a JEOL 2010 FEG microscope oper-

ated at 200 kV. A Gatan camera was used to capture the images. Experiments were 

performed at the Institut Curie in Orsay. 

 

 Scanning electron microscopy (SEM) 

 Principle 

Scanning electron microscopy (SEM) is a technique that is widely used to characterize 

submicronic objects. An electron gun (heated wire, or field emission tip) produces a flux of 

electrons. The electrons are accelerated under an electrical voltage of several kV (between 1 

and 20 kV) and focused onto the sample thanks to electromagnetic lenses. The equipment is 

operated under high vacuum. When positioned under the beam, the sample interacts with the 

electron beam by emitting scattered, secondary or Auger electrons, as already presented earlier 

(see Figure 34). In this study, the detection of secondary electrons was mainly used, as it 

provides information on the topography, of major interest for the characterization of our 

samples.  

Elemental detection was performed using EDS (Energy Dispersive Spectroscopy) and crystalline 

orientation was determined using EBSD (Electron Back-Scatter Diffraction), as detailed below. 

 

 Secondary electron 

Emission of secondary electrons is possible when a sample is illuminated by an electron beam. 

These electrons are ejected from their original atom and have a low energy. Only secondary 

electrons close to the surface of the sample manages to exit the sample and reac the detector. 

The variation of topography is directly linked to the secondary electron emission coefficient, as 

the minimum escape depth fluctuates as shown in Figure 37.  
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Figure 37 - Minimum escape depth depending on the topolograohy. 1: The incident beam hits a 

flat surface, the minimum escape depth is maximized. 2: The incident beam hits a tilted surface, 

the minimum escape depth is reduced. More secondary electrons are emitted in case 2.  

 

 EBSD 

Electron back scattered diffraction is based on the collection of the Kikuchi pattern while 

scanning the sample121. This pattern formed on the detector is specific to the crystalline cell 

parameters and to its orientation, allowing EBSD spectroscopy to produce orientation maps of 

crystalline samples. 

 

 Experimental 

Observations were made on a SEM Gemini Zeiss 500 (FESEM) on unmetallized samples. Two 

secondary electron detectors were used, namely HE-SE and In-lens. The geometry of these 

detectors is presented in Figure 38. 
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Figure 38 - Configuration of the Gemini 500. The main components are indicated in the figure. 

In this work, only secondary electron detectors were used, to investigate the topography (Figure 

37). Both a detector in the beam axis (in lens) and a detector tilted with regard to the sample 

(HE-SE detector) were used.  

The In-lens detector detects SE electrons directly in the beam path, whereas the side 

SE detector was used to enhance the topography of the sample (HE-SE). The images 

were acquired at low electron acceleration voltage in order to obtain high-resolution 

images of the nanoscopic structure located at the surface of the sample. 

To estimate the sample thickness and to perform EBSD measurements, the samples 

were tilted at 70° angle in the SEM. A EDAX Hikari super detector was used for EBSD 

measurements.  

 

 

2.5 LENSLESS MICROSCOPY 

Two kinds of lensless microscopy are presented in this work. Optical and crystalline properties 

are investigated by ptychography techniques, while topographical measurements on thin 

objects resulting from interfacial mineralization are made with atomic force microscopy (AFM).  

Ptychography is a microscopy method based on a computational approach122. It makes use of 

a series of diffraction intensity patterns, acquired with a coherent beam (such as the one 
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produced by a laser in optics). In contrast to a classical microscope, where the image is obtained 

in the image plane, the measurements are performed in the Fourier space of the sample, which 

provides access to the intensity distribution of the scattered (or diffracted) field. In order to 

retrieve the sample image (i.e., propagating this acquired information in the image plane, 

numerically), one needs to retrieve the phase of the diffracted field, knowing its diffracted 

intensity which is equal to the squared amplitude of the field. This is achieved numerically, with 

phase retrieval algorithms, which iteratively retrieve the lost information by propagating back 

and forth the field between the measurement plane and the sample plane123. In order to ensure 

the convergence of the algorithm, additional information must be added to compensate for 

the loss of the phase. In ptychography, this information is obtained by scanning the sample 

with a finite size probe, making sure that the step size between two successive acquisitions is 

sufficiently small to ensure a strong overlap between the two illuminated areas. This 

redundancy is key for the convergence of the inversion process. At the end, the full field is 

retrieved (including phase and amplitude) and can be propagated in any plane of the space, 

including the sample plane.  

 

 Vectorial Ptychography (VP) 

 General principle of vectorial ptychography 

In this work we have used an implementation in the visible optical regime designed to address 

specifically microscopic specimens that affect the state of polarization of light.124 Those are 

samples which are refered to as optically anisotrope materials. The principle of the so-called 

vectorial ptychography measurement is illustrated in Figure 39. The specimen is illuminated at 

several overlapping positions by a finite-size laser beam. Light polarization is controlled by 

means of a polarizer and an analyzer placed before and after the specimen, respectively. The 

recorded raw data are the series of diffracted intensity patterns acquired for all scanning 

positions, for all combinations of orientations of polarizer and analyzer. 

These raw data are processed by an iterative algorithm aiming to solve an inverse problem, i.e., 

finding an optical map of the specimen that gives rise to a set of calculated diffraction patterns 

as similar as possible to the experimental ones. Under the assumption that 

- the specimen behaves as optically thin (which excludes volume effects such as multiple 

scattering), 

- the relative illumination positions are known, 

- the laser beam is stable during the measurement (intensity, shape, wavefront), 

- the measurement geometry is known, 

it has been shown that the specimen properties can be reconstructed as so-called Jones 

maps,124 which encompass a wide set of optical parameters125 (see below).  
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Figure 39 - General principle of vectorial ptychography 

 

 Methods 

The optical parameters extracted from the Jones matrix, and presented in Chapter 4, are 

presented, as well as the material properties they are derived from. 

Unwrapped phase  Given in radian.  

Optical definition: The phase refers to the phase shift of the light wave that has travelled 

through the specimen. A global phase shift ∅ (modulo 2π) is retrieved by the ptychography 

algorithm. The unwrapped phase ∅𝑢 is obtained by applying an unwrapping algorithm to the 

global phase shift ∅, ensuring that ∅𝑢 = 0 in the region without specimen. 

 

∅ =
2𝜋

𝜆
𝑛𝑜𝑑 + 𝐶 (mod 2π)       ∅𝑢 =

2𝜋

𝜆
𝑛𝑜𝑑 

 

where 𝑛𝑜 is the ordinary index of the material, d its thickness,  the wavelength of light and C 

a constant. 

Phase shift Unwrapped phase 
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Material property: If the material has a ordinary index that is constant across its thickness, the 

unwrapped phase value is directly proportional to a sample effective thickness d and ordinary 

index n0. Therefore, if n0 is known, the quantification of the thickness is possible.  

Limitations: The algorithmic calculation relies on continuous phase variations to determine the 

unwrapped phase. If the phase jump between two pixels is too great, a physically impossible 

height description can result. Sharp edges, inducing strong phase modification in the object 

plane, are thus problematic for this calculation. 

 

Retardance : Given in radian. Values between 0 and π. 

Optical definition: Phase retardation between the waves polarized along the fast axis and slow 

axis of the crystal. The retardance is expressed by the following equation: 

∆∅ =
2𝜋

𝜆
∆𝑛𝑒𝑓𝑓𝑑 

Where d is the thickness of the sample, Δneff is the effective birefringence, and λ is the incident 

wavelength.  

Material properties: The effective birefringence ∆𝑛𝑒𝑓𝑓 is related to the intrinsic birefringence of 

the material and accounts for the tilt of the crystal c-axis with respect to the sample plane, as 

described by Baroni.126 The retardance of a known material therefore depends on two 

parameters: the sample thickness and the orientation of the c-axis. Unless the thickness is 

known by another way, the two parameters cannot be separated solely with the retardance 

value. A material showing strong retardance can have either a significant thickness or a c-axis 

close to the sample plane, as shown in Figure 40. 
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Figure 40 - Retardance in calcite as a function of the crystal thickness and c-axis tilt. The tilt is 

noted in degrees with respect to the normal to the sample plane. 

 

Fast-axis orientation Given in deg, values between 0 and 180 deg (in the object plane). 

Optical definition: In a birefringent material, light polarized along certain directions in the plane 

travel in the material without change of polarization. These two directions are referred to as 

neutral axes of the material. The one corresponding to the fastest propagation is called fast 

axis.  

Material property: For a negative uniaxial material such as calcite, one can show that the fast-

axis orientation corresponds to the projected direction of the c-axis in the object plane125. 

Note: random values of fast-axis orientation are returned when an isotropic material is 

considered. 

 

Eigenpolarization : shown as ellipses with major, resp. minor, axis oriented along the fast, resp. 

slow, axis of the anisotropic material. Becomes a line when the eigenpolarization is linear. 

Optical definition: Eigenpolarizations refer to states of light polarization that are undisrupted 

when travelling through the specimen. Mathematically they correspond to the eigenvalues of 

the Jones matrix. They are plotted as lines or ellipses and their orientations figure out the 

projection of the fast and slow axis of the crystal in the object plane.  

Material property: In a uniaxial material, a perfect single crystal has linear orthogonal 

eigenpolarizations. The misalignment of the crystalline layers parallel to the sample plane 
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induces elliptical eigenpolarizations.125  

 

Ellipticity : Eigenpolarization shape quantification. In principle between -1 and 1, although we 

will be only interested in the absolute value, between 0 and 1. 

Optical definition: The ellipticity of the eigen value quantifies its shape in regard to a circle. An 

ellipticity of 0 is observed when the eigen value is a linear polarization, and +/- 1 when the 

eigen value is a left/right circular polarization.  

 

c-axis tilt : Given in deg, values between 0 and 90 deg. 

Definition: Angle between the c-axis of the crystal and the normal to the sample plane. 

Material property: For a known material, 𝑛𝑜 is known. The simultaneous knowledge of 𝜙𝑢 and 

∆𝜙 allows to determine independently the effective birefringence ∆𝑛𝑒𝑓𝑓, since: 

∆𝑛𝑒𝑓𝑓 =
∆𝜙

𝜙𝑢
𝑛𝑜 

One can show125 that the c-axis tilt to the image plane can be directly estimated from 𝑛𝑜 and 

∆𝑛𝑒𝑓𝑓. 

 

Limitations: A problem in the calculation of the unwrapped phase is often observed in our 

samples, owing to abrupt phase changes, which makes the tilt angle calculation impossible. 

Nevertheless, the “tit ratio” 
∆𝜙

𝜙𝑢
 remains a constant if the tilt angle is not modified. This ratio is 

therefore used to evaluate local tilt variations of the c-axis in the sample.  

 

 Experimental 

All measurements were carried out on a custom setup124 operating at the wavelength of 635 

nm, adapted to an inverted microscope body (IX73, Olympus). The specimen was placed on a 

motorized stage (U-780, Physik Instrumente). Depending on the objective that was used (40x-

ACHN-P NA 0.65, resp. 20x-ACHN-P NA 0.4, Olympus), the average scanning step was set to 7 

µm (resp. 10 µm), and the reconstructed Jones maps were spatially sampled at 0.48 μm (resp. 

0.8 µm). At each scanning position, three linear polarizations (at angles 0, 60, 120°) of the 

incident light and three analyzer polarizations (at angles of 0, 60, 120°) were used, resulting in 

nine different combinations. Depending on the scanned area, data acquisitions took between 

5 and 15 min. Reconstruction of the specimen Jones matrix was performed by means of a 

conjugate gradient algorithm (typical computing time between 2 and 10 hours)127, and further 

processed to extract all optical parameters125 (typical computing time 2-5 min). 
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 Bragg Ptychography (BP) 

 Principle 

The other approach which is base on the ptychography principles is Bragg ptychography. In 

Bragg ptychography,128 the crystalline sample is illuminated by a monochromatic coherent X-

ray beam. Owing to the internal atomic periodicity of the crystalline sample (i.e. its crystal 

lattice), the X-ray beam is diffracted in specific directions of space, leading to strong intensity 

maxima in space, the so-called Bragg peaks, that are well-separated from the incident 

illumination. The description of Bragg ptychography measurements requires the introduction 

of the wavevector transfer q, defined as q = kf – ki in the 3D frame (q1, q2, q3) displayed in 

Figure 41 (ki and kf being the incident and exit wave vectors, respectively). The sample is said 

to be in Bragg condition with respect to the crystalline planes (hkl), when these planes are 

normal to the wavevector transfer q, or, equivalently, when q is equal to the Bragg vector Ghkl, 

defined as the vector normal to the (hkl) crystalline planes (inset of Figure 41), with |Ghkl| = 

2/dhkl where dhkl is the inter-reticular distance. In Bragg ptychography experiment, the sample 

is positioned in Bragg configuration with respect to some crystalline planes (hkl), and the full 

3D signal intensity of the Bragg peak (hkl) is measured on a detector as a function of the 

momentum transfer q, as presented in Figure 41. 

 

Figure 41 - Configuration of the Bragg ptychography experiment. ki is the incident wave vector 

and kf the exit wave vector. q is the vector transfer resulting from the difference between the 

incident and exit wave vector. The 3D frame for q is depicted by (q1,q2,q3) in the Figure. q1 and 

q2 are along the detector frame, q3 is along the rocking curve direction, i.e. it is explored by 

rotating the sample along the ω angle. Inset : when the crystalline planes are oriented in Bragg 

configuration, q is equal to Ghkl. Ghkl is normal to the planes and its norm is linked to the inter-

reticular space between the (hkl) planes. 
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In the illuminated volume, small variations of the crystalline lattice (strain and orientational 

mismatch) induce variations in the norm and orientation of the Bragg vector, as described in 

Figure 39. In particular, a rotation of an angle α of the crystalline plane around q2 directly 

translates into a rotation ω of the Bragg vector Ghkl (Figure 42.a). The same rational is applicable 

to the rotation of the crystalline planes around q3 (Figure 42.b). A variation of the inter-reticular 

space translates into a variation in the magnitude of Ghkl (Figure 42.c).  

 

 

Figure 42 - Representation of 3D the displacement of the G (from Ghkl to G’) vector induced by : 

a) tilting of the crystalline planes around q2 b) tilting of the crystalline planes around q3 c) 

stretching of the crystalline plane.  

By redundantly scanning the probe along the sample and by performing an angular 

exploration, at each illumination position, along the so-called rocking curve (i.e. along  in 

Figure 41 and Figure 42), one can access the full 3D intensity distribution in the Fourier space, 

at each position. These 3D intensity patterns are collected and used in the reconstruction 

process. In Bragg ptychography, the sample scattering function resulting from the 3D 

reconstruction process is expressed by:  

      𝜌 =  |𝜌| 𝑒𝑖𝜙   (Equation 1) 

where the phase ϕ, is proportional to the crystalline displacement field u, as described by the 

expression:  

 𝜙 = 𝑮ℎ𝑘𝑙 . 𝒖 

The crystalline displacement field u, which depicts the mismatch between the crystal planes in 

the sample with respect to an arbitrary perfect crystalline reference, contains information on 

the 3D crystalline properties. Hence, from the phase, uhkl, the projection of the displacement 

field on the Bragg vector can be extracted and analyzed. As an illustration of the behavior of 

the displacement with respect to the crystalline properties, a linear increase (or decrease) of 

uhkl with respect to the real space coordinate corresponds to a perfect crystal (no crystalline 

defect), either homogeneously strained with respect to a chosen crystalline reference or mis-

oriented with respect to the chosen reference orientation. Over this distance, where the u hkl 

(or the phase) is evolving linearly with the spatial coordinate, the crystal is perfectly periodic 

and we refer to this as crystalline coherence in this work. On the opposite, a change in the 
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gradient of uhkl results from local crystalline deformations (strain and orientation) in the 

crystal.129  

Therefore, the derivative of uhkl is calculated to extract the crystalline defects, the two rotation 

angles, referred to as Tilt 1 and Tilt 2, and the relative strain, all represented in Figure 43. The 

frame used is the orthogonal (x, y, z) frame presented in Figure 43: x and y are in the sample 

plane, and z is along the thickness. The strain quantifies the relative variation of the inter-

reticular distance dhkl to a reference crystal (chosen as geological calcite in this study). It 

corresponds to the following equation and is unitless: 

𝑠𝑡𝑟𝑎𝑖𝑛 =  
𝑑ℎ𝑘𝑙(𝑟𝑒𝑓) −  𝑑ℎ𝑘𝑙(𝑠𝑎𝑚𝑝𝑙𝑒)

𝑑ℎ𝑘𝑙(𝑟𝑒𝑓)
 

 

 

Figure 43 - Representation of the tilts and strain calculated from the displacement field 

derivatives. (x,y,z) is defined by the sample : x and y correspond to the sample plane, and z to the 

thickness direction. Tilt 1 and 2 are represented both in the measurement space (the set-up) and 

at the scale of the crystalline plane in Bragg conditions (in the inset). The strain, ie the relative 

variation of the inter-reticular distance compared to a reference crystal, is represented along the 

crystalline planes (inset). Note that Tilt1 and Tilt 2 correspond to  and , respectively, in Figure 

42.  

 

 Experimental 

The experiments were carried out at the ID13 nanobranch at ESRF, during two different 

experimental campaigns, using the extremelly brilliant source of the upgraded ESRF. The 

focused beam was produced with a set of Si nanofocusing lenses, resulting in a beam size of 

~ 250x300 nm2 at 15.2 keV with a photon flux of about 1011 ph/s. The diffracted signal was 

recorded with a Maxipix 2D detector (526 x 526 pixels, 55 m each) placed at about 1.9 m from 

the sample on a trail, allowing displacement of the detector in the horizontal plane, only. The 

sample was installed vertically onto a translation stage, itself placed on a rotation device (a 

hexapod, acting as a pseudo-motor). The transmission diffraction geometry was chosen. For 
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the Bragg ptychography acquisition, the sample was raster-scanned across the beam in steps 

of about 50 nm and this 2D map was repeated for a series of angles in the vicinity of the Bragg 

angle, covering about 3-6°, in steps of about 0.01°. For each of these spatial and angular 

positions, a 2D diffraction pattern was recorded. 

In order to optimize the signal quality, the most intense calcite reflection was chosen (i.e., the 

(104) Bragg reflection), when it was accessible in the horizontal scattering plane. However, in 

some cases, this reflection was not accessible and we had to resort to e.g., the (012) and (113) 

reflections. 

The data analysis was done at Institut Fresnel, using an in-house inversion code, developed for 

the inversion of Bragg ptychography data. The procedure is similar to the one used in 

Mastropietro16 and is not detailed here, as it goes beyond the scope of this work. Once the real 

space information is obtained (description of the sample in the laboratory frame, in 3D), a data 

treatment is applied to extract the crystalline information. 

 

 Accessible information from the data treatment.  

The same data treatment was performed on all studied samples. For the sake of clarity, an 

example of a dataset processing is shown below. In Chapter 4, only the main results will be 

presented in the text, the rest of the data being in the Appendix.  

The Bragg ptychography reconstruction provides access to the sample scattering function as 

defined in eq. 1. Our analysis makes use of the retrieved phase in order to extract the tilts and 

strain, from the calculation of its derivative. The three maps shown in Figure 44 present 

respectively the distribution of strain and tilts in the sample plane (xy). This representation 

allows the visual analysis of the crystalline properties distribution. Interestingly, some domains 

appear, characterized by a homogeneous color, corresponding to a rather homogeneous value 

of the tilts and strain (150 nm wide). We refer to these domains as iso-domains (or iso-oriented, 

iso-strained domains). In the whole volume represented, the distribution of strains and tilts can 

be presented as histograms (Figure 45). In the shown example, we observe that the strain has 

a typical standard variation of about +/- 0.004, and that the tilt distributions are rather 

homogeneous in the investigated angular range, indicating that they likely expand beyond a 

few degrees. When the angular range is sufficient to have all the values of Tilt 1 and Tilt 2, their 

standard deviation is calculated, then the standard deviation for the global tilt is calculated 

with the following formula, because the choice of the two axis (q2 and q3) are not specific to 
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the sample geometry. 

𝑇𝑖𝑙𝑡 =  √(𝑇𝑖𝑙𝑡 1)2 + (𝑇𝑖𝑙𝑡 2)2 

 

 

 

Figure 44 - Maps of the crystalline properties in the (xy) plane. From left to right, Strain, Tilt1 and 

Tilt 2 values of the same area are shown. An iso-domain, homogeneous in strain and tilts, is 

surrounded by a red dashed line. The color scales are provided on the plot, for the strain (unitless) 

and tilts (in degrees). 
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Figure 45 - Histograms of Strain, Tilt 1 and Tilt 2 variations in the volume presented in Figure 43. 

For the strain, the standard deviation is noted in green. Note that in this case, the distributions of 

tilts are rather homogeneous and indicate a much larger tilt distribution than the one captured 

by the angular exploration performed during the Bragg ptychography data acquisition. In 

consequence, no standard deviation is given and lower bounds of tilt range are instead provided. 

To investigate fine variations in the crystalline structure, some domains of iso-strain and iso-

orientation along tilt axes are extracted. In Figure 44, the area outlined by a red dotted line is 

chosen with these considerations for further investigation. The extracted area is presented in 

Figure 46 within the (xy) and (xz) planes. On these maps, one can see that the strain, Tilt 1 and 

Tilt 2 are homogeneous in the two planes (by definition).  
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Figure 46 - Crystalline properties of the domains extracted in Figure 44. The spatial distribution 

of each parameter (from left to right : strain, Tilt 1 and Tilt 2) are shown in (xy) and (xz) planes.  

In order to go further, the reconstructed phase map of the chosen domain is shown in Figure 

47. The inset shows the phase map in the (xy) plane while the main representation shows the 

phase in 3D. This representation is useful to evaluate the phase homogeneity, revealing the 

crystalline coherence. Here, the crystalline coherence length, represented by the bright blue 

area, is estimated to about 50 nm in the plane, and 200 nm along the sample thickness. The 

gray volumes superimposed on the 3D image correspond to regions of higher strain values. In 

the present case, they appear at the edge of the crystalline coherent volume and propagate 

along the thickness.  
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Figure 47 - Plot of the phase variation in the iso-tilt, iso-strain domain. a) 3D phase map of the 

iso-strain iso-tilt domain presented in Figure 103 with scale (xyz) = 30 nm. b) 2D phase map of 

the investigated domain.  

In summary, in this work, Bragg Ptychography was used to:  

- Evaluate the variations in the 3D crystalline properties of the sample : strain and tilts 

- Quantify the size of the iso-domains  

- Determine the crystalline coherence length  

This whole set of information was finally used to compare the crytals produced in supposedly 

biomimetic syntheses to the reference biogenic crystal16. 

 

 Atomic force microscopy (AFM) 

 Principle 

Atomic Force Microscopy is used for topographic measurements of samples, at the nanometer 

scale. The topographic analyses are based on the measurement of the deflection of a probe (a  

sharp tip, with a radius of curvature of 5 to 50 nm at the apex, at the end of a cantilever) 

resulting from its interaction with the sample, when getting in contact with it.  

 

  Experimental 

Atomic Force Microscopy (AFM) imaging was performed on a Nano-Observer microscope 

(CSInstruments), equipped with a scanner allowing a maximum area of 100 μm × 100 μm. The 

images were acquired in contact mode, using a 240-AC-PP AFM tip (70 kHz, 2 N/m, tetrahedral 
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shape, <25 nm radius) , in one direction only. 

2.6 SPECTROSCOPY 

 Raman spectroscopy 

 Principle  

Raman spectroscopy relies on the inelastic scattering of light by polarizable molecules. Under 

the excitation of a monochromatic laser, molecules with polarizable vibrational states will 

interact with incident photons and release scattered photons with either lower (Stokes effect) 

or higher energy (anti-Stokes), as shown in Figure 48. The energy difference between the 

incident and scattered photons is directly related to the energy of the vibrational levels of the 

molecule, and is thus part of the chemical signature of the molecule. Raman spectra are usually 

displayed as a function of the wavenumber difference (expressed in cm-1), called the ‘Raman 

shift’, between the incident and scattered photons (see Figure Figure 48).  

Vibration modes that are visible, or Raman ‘active’, are those corresponding to excited states 

of modified polarizability with respect to the initial vibrational state. In calcium carbonate, as 

in many carbonates,130 CO3
2- vibrations and lattice modes (Ca-O vibrations) are thus visible. 

 

Figure 48 - Representation of Rayleigh, Stokes and anti-Stokes scattering. Ein is the energy of the 

incident photon, and Eout the energy of the scattered photon. 

Lattice vibrational modes are visible at low wavenumbers, that is, under 700 cm-1. Around 700 

cm-1
, one can find the symmetric bending modes (ν4a and ν4b). Symmetric stretching (ν1) and 

asymmetric stretching (ν3) are visible at around 1060 cm-1 and 1400 cm-1, respectively. The 

asymmetric bending mode is not visible in Raman, but only in infrared spectroscopy. 

 

 Literature review of calcium carbonate Raman spectra 

As thermodynamically stable crystalline polymorphs of calcium carbonate, aragonite and 

calcite are widely reported among biominerals. However, ionic and organic inclusions in such 
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biominerals slightly modify the Raman signature of both polymorphs, resulting in a variety of 

reported spectra for biogenic CaCO3 crystals. The corresponding Raman shifts, along with those 

of synthetically produced crystals and amorphous CaCO3, are presented in Table 4.  

Table 4 - Reported Raman shifts of several biogenic and synthetic calcium carbonates. Raman 

shifts extracted from Figure 49. are also displayed . 

Polymorph ν1  ν2 ν4 Lattice modes ref 

Calcite biogenic 1085 / 711 155, 282 21 

Calcite, synth 1085 

1085.9 

/ 

/ 

711 

712 

154, 280 

155, 281.6 

131 

This 

study 

Vaterite, biogenic 1074, 1079, 

1090 

873 680, 748 / 132 

Vaterite, synth  1074, 1089 

1074, 1080, 

1090 

 

1073.8, 1080, 

1089.5 

/ 

874 

 

 

/ 

738, 750 

666, 671, 

684, 738, 

743, 751 

737.4, 743.4, 

750 

301, 268, 118 

123, 146, 167, 208, 234, 

271, 302, 326 

 

117.9, 147.1, 177.4, 

208.8, 266, 300, 334 .9 

131 

133 

 

 

This 

study 

Aragonite, 

biogenic 

1083 / 702 149, 178, 189, 204, 246, 

256, 270,280 

134 

Aragonite, synth 

 

1084 

1085.5 

/ 

/ 

700, 705  

702.3, 706.8 

152, 205 

143.8, 154, 180.9, 191.5, 

206.7, 215.4 

131 

This 

study 

ACC, biogenic 1082 

1085 

/ 

/ 

/ 

/ 

Broad band 

Broad band 

133 

46 

 

Raman spectra of the three anhydrous calcium carbonate polymorphs in their expected habitus 

(rhombohedral calcite, needle-like aragonite and flower-like vaterite) were acquired. These 

crystals were produced using the ADM synthesis (2.1.2) without polymer additive. The resulting 

spectra are reported in Figure 49. 
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Figure 49 - Raman spectra of the three anhydrous CaCO3 polymorphs produced in a ADM 

synthesis in the absence of polymer additive: calcite (blue), aragonite (orange) and vaterite 

(green). 

 

 Experimental 

The spectrometer used was a Renishaw Invia reflex with a YAG emitting at 532 nm, coupled to 

Wire software. The detector is a charge-coupled device. To avoid sample alteration, the laser 

was used to 5% of its full power, and the spectra were accumulated 20 times for 10 seconds. 

 

 Scanning Transmission X-ray Microscopy (STXM) and X-ray Absorption Spectroscopy (XAS) 

 Principle 

STXM is a synchrotron-based scanning technique which allows recording absorption-contrast 

images, with a typical space resolution of 20 to 100 nm, while varying the incident photon 

energy (soft X-ray energy spans the interval 0.1 – 3 keV). By tuning the photon energy around 

the absorption edge of specific elements, STXM can provide elemental 2D mappings within 

the sample plane,135 and, beyond that, information on the coordination symmetry of the 

considered element. The shape of the XAS spectrum actually depends on the transitions 

between core states and empty states, which are strongly sensitive to the local chemical 

environment. Thus, the electric field produced by the non-spherical distribution of charge 

(ligands) around the element results in the breaking of electron level degeneracies and in new 

allowed transitions (crystal field splitting).136 

In the case of calcium, the 2p to 3d orbital transition results in the so-called L2,3 edges 

(differentiated by spin-orbit coupling), which are observable in the energetic range between 

340 eV and 360 eV. Owing to crystal-field splitting, the L2,3 lines each split into two energy 

levels, corresponding to eg and t2g molecular orbitals.137,138 The transition to these orbitals 

generates two peaks in the XAS spectrum, which energy distance is called the ‘peak splitting’ 
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and depends on the symmetry of the coordination polyhedra around the calcium ions and on 

the strength of the crystal field (see Figure 50). The peak splitting value, Δ0, is equal to the 

energy gap between the 3d orbitals eg and t2g. In an octahedral configuration, eg have a higher 

energy than t2g. In this configuration: 

𝐸0 = 𝐸𝑒𝑔
− 0.6 × ∆0  

Where E0 is the energy of the d-orbitals with soherically distributed ligands, Eeg is the eg d 

orbitals energy, and Δ0 is the peak splitting. 

STXM technique at the calcium L-edge is used to study calcium carbonate samples. The 

symmetry of carbonate ions around calcium ions differs according to the CaCO3 crystalline 

polymorph. For calcite, it corresponds to the octahedral symmetry. The closer the distribution 

of the carbonate ligands around the calcium ions is to a spherical distribution, the smaller the 

peak splitting will be. Thus, measuring the peak splitting for the L2 and L3 transitions amounts 

to studying the level of organization of the CO3
2- around the Ca2+ ions. The literature has indeed 

used this technique to probe the hydration level of synthetic139 and biogenic55 calcium 

carbonate. 

 

 

Figure 50 - Energy diagram of 3d orbitals. Left: free ion, all the orbitals have the same energy. 

Middle: the ion is complexed in a random way (in a spherical symmetry). The orbital energy rises, 

but in the same way for all orbitals. The energy level is called E0, and is specific to the complexing 

ligand. Right: the ligands are organized in an octahedral symmetry around the central ion. The 

3d orbitals of the central ion have 2 energy levels : eg and t2g. The energy difference between the 

orbitals is noted Δ0.  

Little data is available about peak splitting values, but some are proposed by Gong et al. from 

biogenic ACC and calcite in Table 5.  
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Table 5 - Peak splitting value at L2 and L3 resonnances extracted from Gong et al.55 

 L3, Δ0 (eV) L2, Δ0 (eV) 

Hydrated ACC 1.04 1.03 

ACC 1.08 1.14 

Calcite 1.22 1.24 

 

 

 Experimental Set-up  

X-ray absorption spectra at both the Ca L-edge and O K-edge were collected on the HERMES 

beamline of SOLEIL synchrotron. The STXM microscope (Research Instruments GmbH) was 

equipped with a 50 nm outer ring width Fresnel zone plate (FZP) lens and an order-sorting 

aperture to focus the monochromated, linearly polarized beam down to a diameter of 

approximately 60 nm. The TEM grid windows supporting the film samples were fixed on an 

XYZ scanning stage, Z being the direction collinear with the X-ray beam propagation and used 

to bring the sample onto the FZP focal plane. STXM images were captured by raster scanning 

the XY position and recording the transmitted photons using a photomultiplier tube (PMT). 

Hyperspectral images were also acquired by recording image stacks over the 345 – 360 eV 

interval with energy steps as low as 0.07 eV.  

Energy stacks were recorded using the following parameters:  

Calcium L-edge :  

From 345 to 349 eV, step of 0.5 eV  

From 349.07 to 356 eV, step of 0.07 eV  

From 356.5 to 360 eV, step of 0.5 eV 

Oxygen K-edge :  

From 530 to 536 eV, step of 0.5 eV  

From 536.2 to 555 eV, step of 0.2 eV  

From 555.5 to 565 eV, step of 0.5 eV 

Axis2000 software was used to correct sample drift during acquisition, thanks to Jacobsen’s 

correction. Then, the intensity maps were converted into optical density (OD) maps, where OD 

= I/I0, and I0 is the background intensity. Unfortunately, owing to the presence of at least 

residual calcium ions everywhere in our samples, I0 values could not be satisfactorily extracted 

from the image background. To overcome this problem, a linear extrapolation of the L3 pre-

edge (in the range 345 to 348.5 eV) was made and used as I0. Following this conversion step, a 

linear regression on the pre-edge part of the L3 peak (345 - 347.5 eV) was performed and used 

to zero all OD values in this part of the spectra. Then the spectra were normalized by 

performing a linear regression on the L2 post-edge (356.5 - 360 eV), which was used to set all 
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OD values to 1 over this energy range.  

Finally, Lorentzian functions along with two arctangent functions were used to fit the data. The 

two arctangent functions are defined so that their zero value position coincide with the L3,2 

edge position in the absence of peak splitting (as calculated from the calcite reference 

spectrum – see Figure 51), and their height has a 2:1 ratio. Finally, two Lorentzian functions are 

used for both eg and t2g deconvolution.  

 

Figure 51 - X-Ray absorption spectrum of commercial calcite (acquired by STXM). The spectrum 

deconvolution includes two arctangents (in yellow), L3 t2g (b’) and eg (b) absorption peaks in red 

and L2 t2g (b’) and eg (b) absorption peaks in blue. The sum of the deconvolution is in gray, while 

the experimental data are plotted as a black dashed line.  

 

The characteristic values, i.e. peak splitting and E0, of the X-ray absorption spectrum of the 

commercial calcite are then extracted and presented in the following table: 

 L3, Δ0 (eV) L2, Δ0 (eV) E0 (L2) (eV) 

Reference calcite 1.31 1.29 353.78  

 

 

2.7 IN SITU SET-UPS  

 Synthesis reactor for in situ optical microscopy 

A 150 mm Petri dish was drilled and equipped with an optical glass (Trajan, Serie 1). To allow 

the phase contrast objective to fit into the system without reducing the gas volume, a 3D 

printed lid was adapted and equipped with an optical glass window (PLA). The synthesis was 

carried as described (2.1.2 of this chapter) at 20°C under illumination. The formation and 

evolution of the interfacial film were followed by phase contrast microscopy with a 10x phase-
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contrast objective. Note that due to the height of the solution, the Köhler setting cannot be 

optimal, so that light is unevenly distributed along the sample. This nevertheless allows a 

qualitative analysis in phase contrast mode. The reaction was followed with an Olympus DP74 

camera, and the data were collected using Cellsens software.  

 Monitoring of environmental parameters 

   pH  

The pH of the solution directly controls the supersaturation of the solution with respect to 

calcium carbonate precipitation. Indeed, as presented in Figure 52, the acid-base equilibria 

between carbonate and its protoned species are governed by the pH value.  

 

Figure 52 - pH dependence of the carbonate system, calculated from MINTEQ (the species 

distribution at fixed pH when introducing 100 mM of carbonate in solution are calculated every 

0.1 pH unit). Blue curve : H2CO3 concentration (mM) as a function of pH in 100 mM carbonate 

solution. Orange curve : HCO3
- concentration (mM) as a function of pH in 100 mM carbonate 

solution. Gray curve : CO3
2- concentration (mM) as a function of pH in 100 mM carbonate 

solution. 

The pH was taken manually using pH strips (Fisher Brand) at the end of each experiment (from 

1 min to 7 days). The small volume of solution (3 mL) used in standard syntheses actually did 

not allow in situ pH measurement using a pH electrode. A dedicated set-up including a pH 

microelectrode was therefore designed with a comparable gas volume (0.157 L) but enough 

liquid (6 mL) to make a pH measurement using a microelectrode. A (NH4)2CO3-containing 

pellet, similar to the one used in standard syntheses was placed in the reactor, close to the Petri 

dish containing 6 mL of chosen solution. A 3D-printed gasket was used to ensure tightness 

between the reactor and the microelectrode. The pH micro-electrode (Metrohm 6.0234.100) 

was calibrated before each measurement using triple point calibration. The pH evolution as a 

function of time was recorded using the Tiamo software. As shown in Figure 53, both kinds of 

measurements provided fully compatible results. 
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Figure 53 - Discrete pH measurements using pH strips - 3 mL solution (orange dots). The error is 

estimated to 1 pH unit due to visual pH identification. Continuous pH measurement using a 

micro-electrode in 6 mL solution. The solution considered here is [Ca2+]  = 20 mM and 

[PANa] = 20 ppm. 

 

 Atmospheric carbon dioxide 

The partial pressure of CO2 in the reactor atmosphere was measured using a IR-based detector 

sensor (SCD30 from Sensirion). The sensor was exposed at least once a day to atmospheric CO2 

pressure for calibration purposes. Using a laser-cutting device, the sensor was included directly 

in the reaction chamber and glued. An Arduino MKR Zero in association with an SD card was 

used to record the data (codes available in the appendix). 

 

 Humidity-controlled cell for in situ crystallization follow-up 

In order to follow humidity-induced crystallization by in situ optical microscopy, we have 

designed a microscopy-adapted crystallization cell, which enables the active control of the 

relative humidity. The relative humidity is determined by a saturated salt solution (see 2.2.3) 

which is located in the reservoir (Figure 54.a). To achieve a fast establishment of the desired 

humidity rate, several key parameters are controlled, such as rapid closure, reduced volume of 

the chamber, homogeneous salt distribution, and airtightness. Two 3D-printed seals are placed 

in the cell to ensure airtightness, as represented in Figure 54. 
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Figure 54 - In situ crystallization cell schematics and performance. a) Schematics of the in situ 

crystallization cell : seal is represented in yellow, optical glass windows in blue. b) Relative 

humidity inside the cell (t = 0 min being the closing time) as a function of time.  

To assess the reproducibility and speed of establishment of the atmosphere, relative humidity 

was measured using a HIH-4000 sensor controlled by an ARDUINO MEGA 250. Each 

measurement was triplicated and standard deviations are visible on each curve. The relative 

humidity inside the cell is established within a few minutes, as demonstrated in Figure 54.b.  

  

a)

) 

b) 
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3 AMORPHOUS CALCIUM CARBONATE FILM SYNTHESIS 

In order to determine whether a liquid precursor could be involved in calcareous 

biomineralization, amorphous calcium carbonate films were produced at the air-solution 

interface using ammonia diffusion method (ADM) syntheses in the presence of sodium 

polyacrylate. The structural properties of these films were characterized at all scales (i.e. 

between the atomic to the mm scale) by using ex situ techniques, providing evidence that 

before crystallization they exhibit a space-filling nanostructure similar to the one of 

biominerals. In a second step, time-resolved studies were carried out at early reaction times, 

which highlighted a two-step mechanism of the film formation: first, a spinodal decomposition 

takes place at the interface, which defines a nanometer-thin smooth mineralized pattern in the 

form of interconnected micro-sized discs; then, the film thickens by irreversible aggregation of 

bulk amorphous nanoparticles. This scenario appears to be common to the two fully 

investigated syntheses ([Ca2+] = 20 mM, [PANa] = 20 ppm and [Ca2+] = 100 mM, [PANa] = 50 

ppm) although in the case of a higher polymer content it leads to a fully continuous film with 

only remnants of discs. 

 

3.1 INTERFACIAL MINERALIZED FILM SYNTHESIS USING THE AMMONIA DIFFUSION 

METHOD 

To ensure the reliability of our study, great care has been taken to set up a reproducible 

synthesis method. Indeed, as described in the chapter Materials and methods (section 2.1.1), 

ADM syntheses are extremely sensitive to variations of the environmental parameters, and in 

particular to variations of the gas atmosphere through time. The use of dry ammonium 

carbonate powder, sieved for a well-controlled particle size distribution and included in a KBr 

pellet, has greatly improved the reproducibility of the syntheses.  

 

 Production of mineralized amorphous films in biomimetic syntheses 

The ammonia-diffusion method was chosen for the syntheses because there is some evidence 

that it involves a dense liquid precursor. Following our hypothesis, it should be able to mimic 

some generic aspects of the calcareous biomineralization, especially the one involved in 

calcifying mollusks. Indeed ADM-produced synthetic minerals have much in common with 

biominerals (as described in Chapter 1).  

Figure 55 recalls the ADM method and the main chemical species involved in the formation of 

the calcium carbonate film. The set-up (volumes and concentration used) is precisely described 

in the Materials and methods chapter. In short, a calcium chloride solution is put in contact 

with an atmosphere composed of NH3 and CO2 gases formed by the spontaneous 

decomposition of ammonium carbonate, (NH₄)₂CO₃. Ammonia dissolution induces a rapid 

increase of the solution pH, which in turn promotes CO2 dissolution, hydration and dissociation 

into carbonate species. This way, the calcium carbonate supersaturation index rises in the 
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solution, which soon leads to mineralized structure formation, especially at the interface. 

 

 

Figure 55 - Ammonia diffusion method (ADM). a) Chemical species during gas diffusion. A 

solution of calcium chloride is exposed to gaseous carbon dioxide and ammonia. b) The gaseous 

species dissolve in solution, leading to ammonium and carbonated species in bulk. The film 

formed at the interface is represented in gray and covers the free surface. The inset presents an 

optical microscopy transmission image of an interfacial film produced with [Ca2+] = 20 mM, 

[PANa] = 20 ppm and deposited on SiN membrane after 18 hours of reaction. Scale bar = 50 

µm.  

When the synthesis is conducted in the absence of added polymer, crystalline rhombohedra 

(Figure 56.a) and flower-like crystals (Figure 56.b) are seen both at the gas-solution interface 

and at the bottom of the dish. A few needle-like crystals are also seen. Raman spectra, 

presented in the Materials and methods (2.6.1.3), identified these crystals as the anhydrous 

crystalline polymorphs of CaCO3: calcite, vaterite and aragonite, respectively.  

 

Figure 56 - Optical micrograph (AM) of crystals grown with the ADM method (without added 

polymer). 100 mM calcium chloride solution exposed to ammonium carbonate for 18h. a) Flower-

like crystals b) Rhomboedral crystals. Scale bar = 50 µm 
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In order to induce a Polymer Stabilized Liquid precursor (PSLP) mechanism, polymer molecules 

are added in the solution. As discussed in the previous chapter, sodium polyacrylate has been 

selected owing to its highly acidic character. Performing biomimetic syntheses additionally 

requires using millimolar range of calcium concentration (see IntroductionIntroduction), with 

little polymer amount (1.1.1). 

In the presence of added polyelectrolyte, the dissolution of the gaseous species and their 

chemical reaction with the other species in solution lead to the formation of an interfacial 

mineralized film. Figure 55.b shows a typical film formed at the interface when the 

concentrations in solution are 20 mM of calcium chloride and 20 ppm of sodium polyacrylate. 

These films appear to be made of amorphous calcium carbonate, as further discussed in section 

3.1.4. 

The previous observations have been made after the collection of the film sample on a solid 

substrate in order to allow ex situ analyses. In this case, a drying step is necessary to stop the 

reaction and prevent ex situ precipitation/crystallization events. The film sample is therefore 

dried under vacuum (0.2 bar) and then stored in a dry atmosphere before further analysis or 

use. Dry storage is provided by placing the film in a LiBr-regulated atmosphere, that is, at 6-

7% RH (see the set-up presented in 2.1.4).  

 

 Characteristic pattern of the mineralized films synthesized at low calcium and polymer 

concentrations (20 mM, 20 ppm) 

The films produced at low polymer concentration (20 ppm) present a striking particularity: they 

exhibit a pattern of interconnected discs. This disc pattern is seen both using ex situ and in situ 

imaging (section 2.1.3), so that one can guarantee it is not due to some artifact related to film 

sampling or drying. In addition, it appears for the two kinds of synthesis described in the 

Materials and methods, as long as the polymer concentration is 20 ppm, which are: 

- the “cap synthesis”, for which approximately 18 hours of reaction is needed to obtain 

a film.  

- the “pellet synthesis”, for which approximately one hour is needed to obtain a film. 
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Figure 57 - Optical micrographs (AM) of the interfacial film acquired in situ. The amount of PANa 

in both syntheses is 20 ppm a) Cap synthesis, with 50 mM of CaCl2 b) Pellet synthesis, with 20 

mM of CaCl2. Differences in lighting and image sharpness are due to the use of two different 

microscopes and cameras. Scale bar = 50 µm. 

A qualitative analysis of the optical micrographs of the film reveals the presence of a 

homogeneous disc population. Using machine learning for object detection, statistical size 

distributions can be obtained (see detailed procedure in Materials and methods). 

Corresponding histograms are presented in Figure 58. Size distributions are 5.6 +/- 1.0 µm for 

the cap synthesis and 4.1 +/- 0.7 µm for the pellet synthesis, which confirm the narrowness of 

the disc size distribution. 

 

Figure 58 - Feret diameter distribution calculated from image analysis. a) [Ca2+] = 20 mM, 

[PANa] = 20 ppm cap synthesis. Data from two separated syntheses b) [Ca2+] = 20 mM, 

[PANa] = 20 ppm pellet synthesis. Data from two separated syntheses. The Feret diameter, as 

presented in the Materials and methods, is used to retrieve the diameter of a circular object. 

The disc pattern (appearance, size distribution), although evidenced during my PhD work in 

more than sixty syntheses, is very sensitive to any change in the synthesis parameters (relative 

humidity, ammonium carbonate granularity for instance). Unwanted deviations from the 

reference conditions can for example produce larger discs, continuous films or even a lack of 

interfacial film. This is fully in line with the reported difficulty, mentioned by different scientific 

teams, to replicate ADM syntheses109 owing to its high sensitivity to environmental parameter 

changes. However, thanks to the specificity of the disc pattern, it was quite easy to discard 
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problematic syntheses, thus ensuring the reliability of our results 

 

 Macroscopic morphology tuning with synthesis parameters 

For a given set of synthesis parameters, the film morphology after 18 hours of reaction appears 

highly reproducible. However, varying the concentrations of calcium and polymer creates a 

variety of film morphologies. We varied the composition of sodium polyacrylate from 20 ppm 

to 100 ppm, and the calcium concentration from 20 mM to 100 mM. As a consequence, the 

observed morphology ranges from discontinuous films (with a disc-like pattern) to continuous 

films.  

At low polymer concentration (20 ppm), the disc morphology is present whatever the amount 

of calcium in solution (Figure 59.a .b .c). However, at calcium concentration above 20 mM, 

image analysis cannot effectively separate the discs, as these are very often fused to each other. 

Still, the disc diameter appears unchanged in Figure 59.a .b and .c. Increasing the calcium 

amount leads to a denser film, to the point that for 100 mM of calcium the discs are barely 

visible. 

 

Figure 59 - Optical Micrographs (AM) of the morphology exhibited by the interfacial film upon 

variation of the calcium content. The films are taken out after 18 hours of cap synthesis. From 

left to right, calcium concentration is 20 mM, 50 mM and 100 mM respectively. The polymer 

concentration is kept at 20 ppm. Scale bar = 50 µm. 

Raising the polymer concentration while maintaining the calcium content constant results in 

the disappearance of the discs. As illustrated by Figure 60, increasing the amount of polymer 

results in the widening of the discs (see the larger structures in Figure 60.b) and leads to a 

continuous film at 100 ppm. 
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Figure 60 - Optical Micrographs (AM) of the morphology of the interfacial film upon variation of 

the polymer content. The films are taken out after a) 18, b) 16 and c) 18 hours of cap synthesis. 

From left to right, polymer concentration is 20 ppm, 50 ppm and 100 ppm respectively. The 

calcium content is kept at 50 mM. Scale bar = 50 µm. 

Thus the morphology of the interfacial mineralized structures at long reaction times (~18h) 

evolves from discontinuous films, at 20 ppm, to continuous films at polymer concentration 

above 50 ppm. 

At the microscale, the disc pattern, characteristic of discontinuous films (Figure 61.a, [Ca2+] = 

20 mM, [PANa] = 20 ppm)), is visible on continuous films as well (Figure 61.b,  [Ca2+] = 100 

mM, [PANa] = 50 ppm), but as traces only. These remnants of discs are undetectable by optical 

microscopy, as they are poorly constrasted. Still, they reveal a common mechanism in the 

formation of all interfacial films. 

 

Figure 61 - Electron micrographs (SEM) showing the disc morphology in two synthesis conditions. 

a) [Ca2+] = 20 mM, [PANa] = 20 ppm, 18 h of reaction, heated 300°C 3h. HE-SE detector, 1 kV. 

Scale bar = 2 µm. b) [Ca2+] = 100 mM, [PANa] = 50 ppm, 18 h of reaction, heated 300°C 3h. 

Traces of disc morphology are visible on the continuous film. HE-SE detector, 1 kV. Scale bar = 2 

µm. Cracks in both a) and b) are induced by the heat treatment. As presented in section 4.1.1, 

due to the heat treatment, the films are crystalline.  

 

 Assessment of film amorphism (local atomic ordering) 

Right after sampling and drying, the amorphism/crystallinity of the film is probed using 

birefringence microscopy (BM). As presented in the Materials and methods section (2.3.2), 
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birefringence imaging is a tool to identify whether our film is crystalline or amorphous, as only 

crystalline forms of calcium carbonate are birefringent. After 18 hours of reaction (with either 

cap or pellet synthesis), the film, either continuous or discontinuous depending on the 

synthesis conditions, is non-birefringent, as exemplified in Figure 62.b, and hence amorphous. 

The observations are completed by waveplate-assisted birefringence microscopy (WBM) 

imaging, as it allows both to image the film morphology at the micron scale and to detect any 

optical anisotropy (Figure 62.c).  

 

Figure 62 - Optical micrographs of the disc-patterned film ([Ca2+] = 20 ppm, [PANa] = 20 mM) 

sampled after 18h of reaction. Right after sampling, the film is observed in a) OM b) BM. The 

black coloration indicates that the material observed is optically isotropic. c) WBM. The pink 

coloration indicates that the material observed is optically isotropic. Scale bar = 100 µm. 

In addition, Raman spectroscopy was used to study the differences that may exist between 

amorphous films collected at different times, or produced from different initial solution 

compositions. As described in the Materials and methods amorphous calcium carbonate owns 

a specific signature with a broad band in the ν1 region. The Raman spectra of the films 

synthesized at [Ca2+] = 20 mM, [PANa] = 20 ppm and [Ca2+] = 100 mM, [PANa] = 100 ppm 

respectively, presented in Figure 63, both exhibit a broad 1 band at 1081 cm-1. The width of 

the 1 band is about 30 cm-1, larger than its crystalline counterparts, as expected. These features 

are in full agreement with the Raman spectra of synthetic and biogenic ACC reported in the 

literature (see section 2.6.1.2).  
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Figure 63 - Typical Raman spectra of film samples produced at [Ca2+] = 20 mM, [PANa] = 20 

ppm (17h sampling) in orange and at [Ca2+] = 100 mM, [PANa] = 100 ppm (17h sampling) in 

blue. The spectrum of calcite is shown in green as a reference.  

The 1 position is independent of the sampling time (1h to 28h), as demonstrated by the values 

reported in Table 2. The spectroscopic signature of ACC is similar for all different 

concentrations investigated (Figure 63) and different sampling times.  

Table 6 - Position and width of the ACC 1 band at different sampling times for  

[Ca2+] = 20 mM, [PANa] = 20 ppm. 

Sampling 

time 

Ammonium 

carbonate source 

Shift (cm-1) Width (cm-1) 

1h30 Pellet 1080  39 

28h Pellet 1080 27 

17h Cap 1081 40 

 

The protocol for amorphous conservation appears fully effective in preserving the film 

characteristics for at least three months after sampling. As shown in Figure 4, both the 

birefringence and spectral properties of the amorphous film sample remained unchanged over 

this period. 
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Figure 64 - a) Optical micrograph (WBM). Left image is made right after sampling, right image 

is made after a three-month storage. b) Schematic of the set-up used for long-term conservation. 

Saturated LiBr solution controls the relative humidity of the atmosphere. Sample (represented 

with a gray square) is placed above the solution. c) Raman spectrum of a film sample 

([Ca2+] = 100 mM, 100 ppm), collected after 17 hours of reaction) and kept for 3 months in LiBr. 

Scale bar = 100 µm.  

 

 

Amorphous calcium carbonate films could be successfully produced using the ADM method 

with some added sodium polyacrylate. The syntheses resulted in either discontinuous or 

continuous films, depending on the salt and polymer concentrations used, all of which exhibit 

micron-sized discs as, at least transient, microscale structures.  
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3.2 STRUCTURAL PROPERTIES OF THE INTERFACIAL AMORPHOUS FILMS  

Continuous films have a biomimetic aspect, as they resemble the mineral layers deposited in 

oyster shells. However, the peculiar morphology of the discontinuous films, composed of disc-

like units, can be very helpful to understand the film formation and the mechanisms at play 

during the crystallization process, as they are very easy to follow. For a more thorough 

investigation, we therefore focused on the two following conditions: the condition [Ca2+] = 20 

mM; [PANa] = 20 ppm, which produces discontinuous films with a disc pattern, and the 

condition [Ca2+] = 100 mM; [PANa] = 50 ppm, for which continuous films were observed. 

Further mention of “disc patterned” or “continuous” film will refer to these two conditions.  

 

 Structural features at the microscale 

The in-plane film morphology was observed using scanning electron microscopy. The observed 

discontinuous films (Figure 65.a) show fused discs of a few microns (~4µm, 3.1.2), in agreement 

with the optical microscopy images. A corona of pores (highlighted in the inset of Figure 65.a) 

is visible at the disc edges. The discs appear rather smooth, although a poorly defined 

nanostructure can be visible in some parts of the discs.  

The continuous film is mostly homogeneous, but it is speckled by bumps on its surface (white 

arrow in Figure 65.b). Remnants of discs are present on some parts of the film (left side of 

Figure 65.b). The edges of the discs are made of a porous layer (red arrow in of Figure 65.b), 

similar to the one visible in discontinuous films. The film is nanostructured, as presented in the 

inset of Figure 65.b. Large cracks distributed over the film, resulting from heat treatment 

(detailed in the next paragraph), create wrinkles in the continuous film. 

Due to the limited availability of the equipment, SEM observations could only be performed 

on amorphous disc patterned films, whereas in the case of the continuous films there were 

performed on heated films. Still, it is unlikely that the observed nanostructure in the latter case 

would be due to heating, as heating of ACC film at 300°C for 3 hours has been shown to rather 

induce a solid-state shape-preserving transformation.96  



AMORPHOUS CALCIUM CARBONATE FILM SYNTHESIS 

94 

 

Figure 65 - Electron micrographs (SEM) of disc patterned and continuous films. a) Amorphous 

disc patterned Calcium carbonate film ([Ca2+] = 20 mM, [PANa] = 20 ppm, 18.5 h).  

Scale bar = 5 µm. Inset, zoom. HE-SE detector, 2 kV. Scale bar = 1 µm. b) Crystallized continuous 

Calcium carbonate film ([Ca2+]  = 20 mM, [PANa]  = 20 ppm, 17 hours). The white arrow points 

towards the matter scattered on the continuous film. The red arrow highlights the porous matter 

at the end of remnent discs (highlighted by red dashed circles). HE-SE detector, 1 kV.  

Scale bar = 5 µm. Inset, zoom. Scale bar = 1 µm. 

Further SEM observations, performed at the film edges, allowed us to provide an estimate of 

the film thickness. These observations were made on cracks available in the film by tilting the 

sample by 70° (Figure 66). Observations of disc patterned films reported in Figure 66.a, Figure 

65.a and Figure 67.a were carried out on amorphous material. The amorphous nature of the 

sample, following vacuum and beam exposure, was verified by birefringence microscopy on 

the imaged area. Partial crystallization was noticed in some regions of the film, not presented 

here. On these films, the vacuum inside the SEM chamber was sufficient to peel the film off 

and reveal the film edges through the cracks, allowing for a thickness evaluation of 640 +/- 90 
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nm. 

In the case of continuous amorphous films, cracks were induced by heating the sample very 

fast (sample deposited on already hot heating plate, at 300°C) resulting in rapid crystallization 

of the film. As a result of these SEM observations, the film thickness could be estimated to and 

530 +/- 40 nm for the continuous film. 

A closer look at Figure 66.a shows that in the case of the disc-patterned film the thickness is 

not actually constant but rather varies along the discs, the thickness being usually maximum at 

the center of the discs, and much smaller at the periphery. In Figure 66.a the orange dashed 

lines highlight such a thickness variation: the circular dashed line outlines a thin disc-shaped 

layer, while the straight dashed line highlights the increase in thickness at the center of the 

disc. This thickness variation results in areas where the thin layer was torn and did not detach 

from the substrate under vacuum (orange arrow in Figure 66 a). 

On the continuous film, a layer is visible everywhere along the edge, which is illustrated by the 

plain white arrows in Figure 66 b).  
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Figure 66 -  Electron micrographs (SEM) leading to film thickness estimate. The thickness 

measured between white dashed arrows is written in both a) nd b). a) Disc-pattern film  

([Ca2+] = 20 mM, [PANa] = 20 ppm). The dashed orange line underlines the thickness variation 

of a thin disc, the thickness being maximum at the center of the line. The orange arrow highlights 

some part of the film that did not detach from the substrate under vacuum. On this image, only 

the side initially in contact with the air-solution interface is visualized. HE-SE detector, 5 kV. 

Scale bar = 5 µm. b) Continuous film ([Ca2+] = 100 mM, [PANa] = 50 ppm) that has detached 

from the substrate. The side initially in contact with the solution is indicated by a yellow pentagon. 

For better visualization, a schematic representation (in blue) of the area investigated has been 

added. HE-SE detector, 1 kV. Scale bar = 2 µm.  
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 Structure at the nanoscale 

SEM observations on broken edges have revealed the internal structure of the film (Figure 67). 

Particles of a few tens of nanometers are packed in a space-filling manner (Figure 67 a and b), 

thus forming a very homogeneous structure.  

 

Figure 67 - Electron micrographs (SEM) of the film internal structure. Broken edges are 

investigated in a) Disc-pattern film ([Ca2+] = 20 mM, [PANa] = 20 ppm) HE-SE detector, 2 kV. 

Scale bar = 1 µm. b) continuous film ([Ca2+] = 100 mM, [PANa] = 50 ppm), heated at 300°C. 

The face initially in contact with the solution is indicated by a yellow pentagon. HE-SE detector, 

1 kV. Scale bar = 500 nm. 

The two superimposed layers which compose the continuous film that were visible in Figure 

66 b are again visible in the magnified picture of a broken edge shown in Figure 67 b. This 

picture reveals an upper layer (in blue), a bottom layer (in pink) and a pear-shaped hole that 

extends through the entire film thickness (Figure 68). The blue and pink areas have a similar 

nanostructure. The separation between the two layers appears to be a region of accumulation 

of pores (see the white arrow that points to this region in Figure 68). The pear-shaped holes 
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are commonly observed at the broken edges of the continuous film (three of them are visible 

on Figure 66b), likely because they correspond to points of film fragility.  

 

Figure 68 - Electron micrograph (SEM) showing the internal structure of a continuous film. The 

interface in contact with water is indicated by a yellow pentagon. The upper layer is highlighted 

in blue while the bottom layer is colored in pink. The white arrow shows the higher density of 

pores at the junction between the two layers. In lens detector, 1 kV. Scale bar = 200 nm. 

 

 

3.3 INVESTIGATION OF THE MECHANISMS OF FILM FORMATION 

In order to get information on the mechanisms of film formation, and more particularly on the 

putative formation of a liquid precursor phase, we carried out experiments providing a 

characterization of the temporal evolution of the system. Both the bulk and interface chemical 

evolution were recorded, either by in situ measurements (pH measurement, optical microscopy 

imaging) or by ex situ observations after quenching of the reaction (cryo-TEM, STXM). All the 

results presented in this section were obtained with pellet synthesis of the reference disc-

patterned films at concentrations [Ca2+] = 20 mM and [PANa] = 20 ppm. 

 

The amorphous films produced by ADM syntheses exhibit a sub-micron thickness and a space-

filling nanostructure whatever the synthesis conditions. 
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 Time scale of interface and bulk mineralization 

Observations with the naked eye indicate that the interface mineralization is already at work 

after 40 min of reaction. Thin white strands are indeed visible at the interface, which turns into 

a complete film at the air-solution interface over time (Figure 69a).  

 

Figure 69 - Photographs showing the film formation as visible to the naked eye. a) Elongated 

white strands first become visible after 40 min. b) After 60 min, mineralized structures cover the 

whole interface. c) After 5 hours, a complete film has formed. The KBr pellet is on the left side of 

the Petri dish.  

In parallel, light scattering species become visible in the bulk a few minutes after the first 

observations of the interfacial mineralized structures. They form large convection rolls that are 

easily detected also with the naked eye (Figure 70 a, b and c). The rolls are located underneath 

the elongated white strands. This clearly indicates a coupling between the bulk and interface 

mineralization.  

 

Figure 70 -  Photographs showing light scattering species evolution in bulk a) 5 min after film 

appearance. White vertical lines appear in solution. b) 6 min after film appearance. The lines 

intensify. c) 7 min after film appearance. The light scattering species expand laterally at the 
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surface, forming the rolls. 

Following the appearance of the convection rolls, the solution becomes completely turbid (~90 

min of reaction). It further progressively clarifies until it becomes transparent and the bottom 

of the Petri is covered with a white deposit (~3 hours of reaction). The presence of scattering 

species in bulk is thus limited in time. 

 

 Evolution of the interfacial mineralized structures with time 

In order to decipher the mechanisms of film formation, an in-depth study of the evolution of 

the interfacial structures morphology with time has been performed. Before 18 min of reaction, 

no interfacial structures could be detected by in situ optical microscopy owing to a lack of 

contrast. Putative structures were therefore sampled out of the reactor and observed ex situ by 

TEM or phase contrast microscopy (PCM). As TEM has a better space resolution than PCM, it 

was used for the precise characterization of the mineralized interfacial structures.  

The resulting TEM images are presented in Figure 71. Most interfacial objects, already present 

at short reaction time, have a round disc-like shape (Figure 71 a-f). They present an 

homogeneous contrast and their typical size increases with time. Owing to the used sampling 

method, the density of collected objects may substantially differ from the interfacial object 

density. Therefore, density quantification after sampling has not been used in this study. 

On the contrary, the size evolution was thoroughly characterized by extracting the distribution 

of Feret diameter from the images, as described in the Materials and methods. The statistical 

size distribution for each reaction time is presented in Figure 71.g, using the so-called violin 

plots. As a reminder, the envelope of the colored area represents the kernel density plot, that 

is, the probability density function that describes the size statistical distribution. The increase 

of the interfacial structures diameter with time is further reported in Table 7 where the mean 

diameters are provided. After one minute, the mean Feret diameter is of 1.26 +/- 0.23 µm. The 

interfacial objects grow radially until 10 min of reaction (blue dashed line in Figure 71.g), at 

which time their mean diameter is 3.32 +/- 0.7 µm. Then, the growth stops and the diameter 

of the objet remains constant (as highlighted by the orange pointed line) until 35 min of 

reaction. Finally, at 35 min of reaction, the mean diameter is 5.11 +/- 0.54 µm, which is similar 

to the diameter of the discs observed in the mature ACC film. This means that the interfacial 

structures stop growing radially after 35 min of reaction (Figure 58.b).  
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Figure 71 - Electron micrographs (TEM) of the interfacial mineralized structures at early reaction 

times. a-f) Interfacial mineralized objects at a) 1 min, b) 2 min, c) 5 min, d) 10 min, e) 18 min f) 

25 min. Scale bar = 2 µm. g) Violin plots: statistical size distribution of the particle Feret diameter 

with time. Description of the violin plots is available in the Material and methods, 2.4.1.3. The 

blue dashed line present the radial growth of the particle up to 10 min. The orange dashed line 

highlights the steady Feret diameter evolution between 10 and 25 min. At 35 min, the Feret 

diameter rises again.  
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Table 7 - Mean Feret diameter and standard deviation for each sampling time. 

time (min) 1 2 5 10 18 25 35 

Feret diameter (µm) 1.26 1.68 2.45 3.32 3.45 3.18 5.11 

Standard deviation 

(µm) 

0.23 0.35 0.35 0.7 0.6 0.45 0.54 

Number of particles 

counted 

350 650 1060 450 430 2650 265 

 

Between 18 and 25 min of reaction, the center of the discs shows a stronger contrast than the 

periphery (Figure 72.a and b). This contrast difference was not observed at shorter times (1 to 

10 min).  

 

Figure 72 - Electron Micrographs (TEM) of the discs. A denser region is visible in the disc center. 

a) 18 min. b) 25 min. Scale bar = 2 µm.  

AFM measurements allow evaluating the thickness of the interface objects. For example, the 

disc formed after 20 min of reaction shown in Figure 73 is 4 nm thick at its edge, then gradually 

thickens to 5 nm at the center. As these measurements were performed late in the course of 

the thesis, the generalization of these observations to different times is lacking, but similar 

height variations are present on the objects at 10 min and 30 min, as presented in the Appendix 
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(Figure A. 1).  

 

Figure 73 - AFM imaging of discs after 20 min of reaction a) Topography mapping. b) Height 

profile of the segments traced in a). The height is averaged between the dashed line for a better 

signal. The measurement is performed following the observation in STXM spectroscopy, presented 

in Figure 80.  Scale bar = 3 µm.  

In addition, double-emulsion patterns (indicated by blue asterisks inf Figure 74) are identified 

for reaction times of 1 min and beyond. These patterns correspond to large rounded-shaped 

domains with void inclusions in Figure 74 b and c). Finally, dumbbell-like fusion patterns and 

elongated shapes are highlighted in Figure 74 with yellow asterisks. They suggest the existence 

of coalescence mechanisms between the disc-shaped objects. 
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Figure 74 - Electron micrographs (TEM) showing the double-emulsion and fusion patterns at the 

interface at a) 1 min, b) 2 min, c) 5 min, d) 10 min, e) 18 min, f) 25 min, g) 35 min. Double 

emulsion patterns are marked with a blue asterisk, and fusion patterns with a yellow one. 

Scale bar = 2 µm.  

In parallel of TEM imaging, cryo-TEM observations were carried out so as to avoid potential 

artifacts due to sample drying. At 5 min of reaction, the discs and double-emulsion patterns 

are also visible using this technique, as presented in Figure A. 2. (see Appendix). However, due 

to a lack of sensitivity and to a poor statistic of observations, this method was not used further 

in the study. 

As mentioned in the section 3.3.1 of this chapter, the film becomes visible to the naked eye 

after about 40 min. TEM observations confirm that the interfacial structures change drastically 

around this time of reaction, both at the nano- and microscale. Instead of the homogeneous 

population of discs observed at earlier times, the mineralized structures now exhibit three 

different levels of contrast (Figure 75.a) observed for the same reaction time (35 min). These 

three contrasts are characteristic of three types of structures, named I, II and III and shown in 

Figure 75.  

Structures of type I, marked in yellow in Figure 75.a, correspond to homogeneous discs that 
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poorly absorb the electron beam (object of highest intensity value, in yellow in Figure 75.b ). 

These discs are fully similar to those observed at earlier times of reaction (see Figure 75.c 18 

min and Structure I).  

Structures of type II, marked in orange in Figure 75 a, also correspond to discs, but exhibit a 

higher contrast with respect to the background than structures of type I. As a matter of fact, 

they appear to be about twice as absorbing as structures of type I (see Figure 75.b ). These 

structures show rapid spatial variations in intensity, which evidences some granularity at the 

nanoscale (Figure 75.c Structure II). Finally, these structures are surrounded by a corona of lower 

contrast (see Figure 76.b).  

Last, structures of type III are characterized by a strong heterogeneity of contrast. Whereas 

their edge show the same contrast as the discs of type II, their inside absorb much more the 

electron beam, due to an increased thickness (as attested by SEM images, see Figure 65) and 

possibly increased density. Like structures of type II, structures of type III exhibit a 

nanostructure (Figure 75.c Structure III and Figure 76.a). And like structures of type II, they are 

surrounded by a weakly-contrasted layer (Figure 76.a, region between the two arrows). On the 

color intensity map of a TEM picture displaying the three structures, the intensity of this layer 

appears to be the same as the intensity of the corona in the structures of type II, or as the mean 

intensity in the structures of type I (see Figure 76.b, light purple color).  

At 35 minutes, the edges of the three kinds of structures have lost the smoothness of early 

discs edges (observed between 1 and 25 min) and now appear nanostructured (see Figure 

75.c).  
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Figure 75 - Electron micrographs (TEM) of a film sampled at 35 min nad 18 min a) TEM 

micrograph at 35 min. The three types of intensities are marked I, II and III. Scale bar = 5 µm. b) 

Pixel intensity along the arrow drawn in a). The three intensity plateaus are colored in yellow, 

orange and blue respectively. They correspond to the regions along the arrow partitioned with 

the same color in a). c) TEM images of the three structures. From left to right: disc at 18 min, 

structure I (35 min), structure II (35 min) and structure III (35 min). 
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Figure 76 - Electron micrograph (a. SEM, b. TEM). Imaging of an ACC film sampled after 35 min 

a) Structure III, Scale bar = 2 µm, the inset highlights the thin layer present on the disc edge with 

white dashed arrows. In lens detector, 1 kV. Scale bar = 1µm. b) Colored map of the pixel intensity. 

The three identified types of structures are labeled I,II and III respectively. The purple color of 

structures I is visible on the periphery of structures II and III (highlighted by white dashed arrows 

on a structure III in the inset).  

PCM observations on film samples collected on solid substrates at similar reaction times 

confirm the TEM observations, revealing the coexistence of the three types of structures, with 

a larger statistic, beyond 35 min (Figure A. 3).  

AFM measurements show that the type II structures (at 35 min) are thicker than the objects 

collected at earlier times, measuring 15 nm in thickness (Figure 77). 
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Figure 77 - AFM imaging of type II structure after 35 min of reaction. a) Topography mapping. b) 

Height profile of the segments traced in a). The height is averaged between the dashed line for a 

better signal. Scale = 10 µm.  

In parallel, to see the evolution of the interfacial structures at a large scale, and without 

sampling artifacts, a set-up was developed to allow for in situ observations with a phase 

contrast microscope. These observations revealed a large increase in the optical contrast of the 

film when the structures of type III become visible in TEM (35 min). The intensity varies from a 

clear gray to a dark-blue coloration surrounded by a white halo (Figure 78.a and .b). The highly 

contrasted areas develop as elongated domains (Fig. 24 a), resembling the morphology of the 

white strands visible with the naked eye at the same time (Figure 69). Underneath the film, 

small bulk species are visible by PCM at 35 min (Figure A. 4). 

 

Figure 78— Optical micrograph (PCM in situ) of the interfacial film. a) Surface of the solution at 

35 min of reaction. Scale bar = 50 µm. b) Close-up of a). Scale bar = 20 µm. c) Schematic 

representation of the interfacial pattern, providind an explanation on the observed structures in 

a and b. 

Based on previous observations, we propose that this contrast increase is due to the 

appearance of structures of type III. The fact that these structures are thicker, or denser, than 

the structures of type I and II (Figure 75 a), could explain that a halo effect is observed in PCM, 

which hides the disc-like border of the structures, as proposed in Figure 78 c).  

The contrast develops in the form of a propagation front (Figure 79 a, b and c). While 

developing, the contrast intensifies following the pre-existing pattern formed by the discs. 

Figure 79 illustrates the “filling” of the pre-existing pattern, by matter deposition that creates 

contrast in PCM (inset of Figure 79 a), then develops to fill (inset of Figure 79 b), and exceed, 

the pre-existing pattern (inset of Figure 79 c).  
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Figure 79 - Optical micrograph (PCM in situ). Phase contrast microscopy. Evolution of the phase 

contrast with time. Insets, all numerically enhanced, provide a zoomed-in view of this evolution. 

a) Time “t” = 45 min of reaction. b) t + 4.5 min. c) t + 52.5 min. The black arrows point to a 3D 

rhombohedral crystal grown at the interface. Scale bars = 100 µm; inset scale bars = 20 µm.  

To highlight possible chemical differences among the three structures, STXM microscopy was 

performed at the calcium L-edge on the HERMES beamline (SOLEIL synchrotron). Images of 

the different structures acquired at the calcium L3-edge (351.2 eV) are in qualitative agreement 

with the TEM images (Figure 80). Thus, disc and double-emulsion patterns are observed here 

as well. However, unlike with TEM, probably because of sensitivity issues, a corona of weaker 

absorption is already visible surrounding the discs after 10 min of reaction (Figure 80.a). This 
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corona remain visible at longer reaction times, from 20 to 30 min, similar to what was observed 

in TEM (Figure 80.b .c). At 40 min, STXM images reveal type I, II and III structures, (Figure 80.d 

highlights an area with type II and III structures) and evidence a stronger absorption in the 

center of type III structures. Therefore, the structures visible in TEM are equally visible in soft 

X-ray transmission microscopy at the Ca L-edge.  

However, hyperspectral imaging at the Ca L-edge makes it additionally possible to identify 

changes in the calcium chemical environment, either due to ligand exchange or crystallization 

(see Materials and methods). Therefore, as described in the Materials and methods, stacks of 

images were acquired while mapping the L2 and L3 resonances. The L2 and L3 peak splitting as 

well as the E0 energy (i.e., the energy of the L2,3 edges in the case of a spherical charge 

distribution around the calcium ions – see the Materials and methods) were calculated by 

deconvolving spectra averaged in selected regions. The deconvolution procedure is available 

in the Materials and methods, and all the deconvolutions are available in the appendix (6.2.1). 

 

Figure 80 – STXM image at the calcium L3-edge (351.2 eV) of a film sampled at a) 10 min of 

reaction. Inset: enhanced contrast, revealing the corona. b) 20 min c) 30 min d) 40 min. Type II 

and III structures, as defined earlier in this section, are identified by Roman numbers.  

Scale bar = 5 µm. 



AMORPHOUS CALCIUM CARBONATE FILM SYNTHESIS 

111 

The result of such a deconvolution applied to a normalized disc spectrum at 30 min of reaction 

is shown in Figure 81. As a reminder, peak splitting affects both the L2 and L3 transitions. Only 

samples at short times ( < 40 min) could be measured, as the thickness of film sampled at later 

times is too large to allow for calcium L-edge spectroscopy. Data extracted from spectra 

deconvolution at early times of reaction are gathered in Table 8. They show that there are no 

major differences regarding the chemical environment of calcium ions between the analyzed 

reaction times (Table 8). The peak splitting is always much smaller to that of calcite (1.29, see 

Materials and methods), pointing to a much more disordered structure than in the crystal, and 

fitting with ACC data (Materials and methods). It should be noted that a possible cause for the 

lack of difference between the spectra of the samples at early times could be due to the intense 

vacuum in the STXM chamber (10-5 mbar). The intense vacuum could dehydrate the sample 

and erase hydration differences, without inducing crystallization though.  

 

Figure 81 - Normalized X-ray absorption spectrum of the disc formed at 30 min of reaction. 

Measurements have been performed at the Ca L-edge. Two arctan functions, in green, and four 

Lorentzian functions (in red for the L3 resonance and in blue for the L2) have been used for 

deconvolution. The sum of these functions yields the gray spectrum, while the experimental curve 

is drawn in light blue. Inset: Optical density map at Ca L-edge . The spectrum is taken from the 

averaged of the green area. Scale bar = 0.4 µm. 
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Table 8 - Peak splitting (Δ0) and energy of the theoretical spherical complexation of the calcium 

ion (E0) in samples taken at 10 min, 20 min, 30 min and 40 min of reaction. At 40 minutes, 

structures II and III are measured.  

t (min) 10  10 (corona) 30 30 (corona) 40 (structure II) 40 (structure III)  

Δ0 (L3) 0.98 0.98 1.06 1.08 1.13 1.04 

Δ0 (L2) 1.10 1.10 1.08 1.06 1.04 1.10 

E0 353.74 353.75 353.77 353.78 353.81 353.81 

 

When the reaction is more advanced, at 1 hour, the discs are no more transparent in cryo-TEM. 

They are surrounded by a corona composed of loosely interconnected particles (Figure 

82).Both discs and coronas were investigated with EDS measurements. This analysis is 

qualitative, as ratios between calcium, carbon and oxygen cannot be precisely determined 

because of the signal arising from the ice layer and holey carbon support. Still, both the dark 

disc, corresponding to a type III structure, and the thin corona around it appear to be 

composed of calcium (Kα= 3,692 keV, Kβ= 4,013 keV), carbon (Kα= 0.277 keV) and oxygen (Kα= 

0.525 keV), fully consistent with calcium carbonate material. 

 

Figure 82 - Electron micrograph (cryo-TEM) and EDS measurements of a film sample collected at 

a reaction time of 1 hour. a) Cryo-TEM image. Red and green squares correspond to the areas 

investigated by EDS analysis. Scale bar = 2 µm. b) Zoomed-in view of the upper region of the 

central disc. Scale bar = 200 nm. c) EDS analysis of the corona (red square in a)). d) EDS analysis 

of the disc center (green square in a)). The specific signals of the available elements are expected 

at the following energy values: carbon (Ka = 0.277 keV), calcium (Ka = 3.692 keV, Kb = 4.013 keV), 

and oxygen (Ka = 0.525 keV). A small signal from copper (originating from the grid) is also visible  

(La = 0.928 KeV, Lb = 0.947 keV). The slight signal at ~1.7 keV is attributed to silicon 
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contamination. 

 

 Environmental parameters variation with time 

The supersaturation of the solution with respect to CaCO3 precipitation is dependent on the 

calcium and carbonate concentrations in solution. The carbonate concentration, in turn, is 

determined by two control parameters, which are the solution pH and the partial CO2 pressure 

(pCO2) in the gas atmosphere. Actually, if the solution is in equilibrium with the gas 

atmosphere, the CO2 pressure determines the amount of dissolved carbonated species 

according to the Henry’s law. Finally, the pH value controls the ratio between the different 

carbonated species (see Materials and methods).  

In order to specify the chemical environment of the syntheses, measurements of the pH and 

CO2 atmospheric pressure were performed in situ, as a function of time (see the protocol of 

measurement in the Materials and methods for each) and are presented in Figure 83, Figure 

84.  

When 6 mL of the reference solution (20 mM/20 ppm) is poured in the reactor chamber in the 

presence of ammonium carbonate, the pH of the solution rises from 6 to 10 within 10 minutes 

(Figure 83 b). Then, the pH slowly decreases with time (Figure 83 a), to finally reach 8.6 after 16 

hours and keeps this pH value for up to 16 days (not shown here).  

Interfacial mineralized structures already exist after 1 min of reaction, grow radially with time 

until 35 min, then thicken by developing a granular nanostructure.  
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Figure 83 - pH evolution over time in 6 mL of [Ca2+] = 20 mM, [PANa] = 20 ppm. a) Evolution 

over 160 min. b) Evolution over the first 20 min. Gray area represents the standard deviation in 

each point. Measurements have been triplicated until 72 min, and then duplicated. 

In parallel, the CO2 level rises promptly (within 2 min) in the reactor chamber and remains at 

high values (~2000 ppm) for 3 to 4 hours (Figure 84 a). It then gradually decreases to the 

atmospheric value after 10 hours (500 ppm, not shown here).  
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Figure 84 - In situ recording of CO2 partial pressure inside the reactor chamber. Long-term (7.5 

hours) recording of the atmosphere in contact with a [Ca2+] = 20 mM,  

[PANa] = 20 ppm solution.  

Assuming that the solution is in equilibrium with the gas atmosphere, one could estimate the 

amount of carbonated species in solution at any time. For example, at 75 min, 2000 ppm of 

CO2 are present in the gas phase (Figure 84), and the pH value in the solution is of 9.5, so that, 

according to the Henry’s law (Henry’s constant is 1.78 102 M/atm at this pH), 1.1 mmol of 

carbonated species should be dissolved in solution. This value is quite too high, since the 

maximum amount of dissolved CO2 in a pellet synthesis is 0.1 mmol. Therefore, the solution is 

not in equilibrium with the gas phase during the syntheses, making it impossible to calculate 

the supersaturation index of the solution from the pH and pCO2 values.  

Nevertheless, evidence of mineralization in the bulk solution, established from visual inspection 

(convection rolls) and optical microscopy (particles), led us to further analyze the bulk 

composition through time. 

 

 Bulk mineralization 

To determine the morphology of the scattering species, present in the bulk and that compose 

the observed convection rolls, a sample was pipetted at 38 min and observed by TEM 

microscopy (Figure 85). The sample is made of large aggregates (several microns wide) of 

nanoparticles. The nanoparticles size determination is, however, difficult to estimate using 

these observations. In addition, sample preparation, which includes drying, may have favored 

particle aggregation. 

Supersaturation values vary strongly during the first hour of reaction as the pH rises from 6 to 

10 (within 10 min) and CO2 levels from ambient to 2000 ppm.  
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Figure 85 - Electron micrograph (TEM) of a bulk sample collected at 38 min of reaction (reference 

conditions 20 mM / 20 ppm). Sampling was made in the light-scattering area of the solution. The 

sample was dried under primary vacuum (Materials and methods 2.1.3) before TEM imaging. 

Scale bar = 1 µm. 

These aggregates were further analyzed in STXM, resulting in the spectrum presented in Figure 

86. The peak splitting Δ0 (i.e., the energy difference between eg and t2g d-orbitals) is measured 

at the L2 and L3 edges from the deconvolution (Figure 86). As for E0, it is calculated from the t2g 

and eg energy values, assuming an octahedral configuration of the carbonate ions around the 

calcium ion (Materials and methods, Figure 18).  

We thus find Δ0(L2) = 1.06 eV and Δ0(L2) = 1.05 eV, respectively, while E0= 353,78 eV in particles. 

This is consistent with amorphous calcium carbonate references (See materials and methods, 

2.6.2.2). It has a weaker crystalline field than our reference calcite spectra, but the same ligand 

environment. (Δ0 = 1.29 eV, E0 = 353,77 eV, see materials and method). 
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Figure 86 - Normalized X-ray absorption spectrum of bulk particles at 42 min of reaction. 

Measurements have been performed at the Ca L-edge. Inset: image of the particles acquired at 

351.2 eV. Scale bar = 1 µm. The red dashed square shows the area considered for hyperspectral 

imaging: the spectrum was extracted by averaging the signal over a few particles in this area. For 

deconvolution, two arctan functions, in green, and four Lorentzian functions (in red for the L3 

resonance and in blue for the L2) have been used. The sum of these functions yields the gray 

spectrum, while the experimental curve is drawn in light blue. 

The same aggregates could also be observed by cryo-TEM, when sampled in the close vicinity 

of the interface at 1h of reaction (Figure 87.a). Due to the rapid quenching in liquid ethane, 

which results in an amorphous ice layer, the sample was here conserved in its native state. The 

size of the particles composing the aggregates can be estimated to 30 nm.  

An elemental analysis (Figure 87.b) indicates the presence of carbon (Kα= 0.277 keV), calcium 

(Kα= 3.692 keV, Kβ= 4.013 keV) and oxygen (Kα= 0.525 keV, confirming that the observed 

objects are made of calcium carbonate. 
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Figure 87 - Electron micrograph (cryo-TEM) and EDS analysis of the bulk particles. a) Observation 

of the bulk species at 1h reaction time. Scale bar = 200 nm. b) Objects are analyzed in EDS (right). 

The specific signals of the available elements are expected at the following energy values: carbon 

(Ka= 0.277 keV), calcium (Ka= 3.692 keV, Kb= 4.013 keV), and oxygen (Ka= 0.525 keV). A small 

signal from copper (originating from the grid) is also visible (La= 0.928 KeV, Lb= 0.947 keV). The 

slight signal at ~1.7 keV is attributed to silicon contamination.  

 

3.4 DISCUSSION  

By combining ex situ and in situ measurements throughout the synthesis, from the atomic to 

the micro scale, the reported study of ACC film formation by ADM syntheses brings new 

information on the temporal evolution of the mineralized structures, both at the interface and 

in the bulk of the mineralizing solution. The large dataset collected thus makes it possible to 

suggest a mechanism of formation, independent of the crystallization mechanisms that follow. 

It therefore decorrelates the processes of amorphous formation from those of crystallization, 

as might be the case in biomineralization. 

In this discussion, we will first focus on the temporal evolution of the chemical synthesis 

conditions, based on the available evidence. As a matter of fact, the solution undergoes a 

significant pH quench at the very beginning of the reaction. Thus, the possibility of a phase 

separation resulting from these conditions is considered, as well as the potential mechanism 

of demixing that occurs. Subsequently, the dramatic change in growth mechanism of the 

interface mineralized structures is discussed in relation with the formation of bulk mineralized 

species. Finally, a model of interface amorphous film formation is proposed, as well as a 

consideration of the impact of the polymer quantity in the reactive medium on the film 

a) b) 
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morphology. 

 

 Environmental condition evolution 

Carbon dioxide and ammonia gases induce opposing effects on the pH of the solution when 

they dissolve into the calcium mineralizing solution. Indeed, ammonia dissolution leads to the 

basification of the solution, whereas carbon dixode acidifies it. The pH value is seen to undergo 

a rapid increase from 6 to 10 (within 10 min, see Figure 83), before it slowly decreases until it 

reaches pH 8.6 after 16 h of reaction.  

The initial increase of the pH above 10 results from a non-stoichiometric dissolution of the 

gases. Indeed, the Henrys’ constant of ammonia , which dictates its solubility, is 62 M/atm,140 

that is, about 2.103 times higher than that of CO2 (0.034 M/atm140), if the dissociation of both 

species in solution is neglected.140 At the starting pH (~6), ammonia actually undergoes acid-

base dissociation into ammonium ions, whereas CO2 molecules only undergo an hydration 

process, furthermore limited by a slow kinetics.141 As a result, the effective ammonia Henry’s 

constant  (2.5 105 M/atm for a 10 ppm NH3 pressure, Phreeqc calculation) is  about 5.106 times 

higher than that of CO2 (0.05 M/atm, Phreeqc calculation - Figure 88.a), and leads to a massive 

dissolution of ammonia in solution and a pH jump. 
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Figure 88 - Henry’s constant of CO2 and NH3 gases as a function of pH. The blue curve 

corresponds to CO2 gas, and the orange curve to NH3 gas. The data have been calculated using 

PHREEQC software (https://www.usgs.gov/software/phreeqc-version-3), by considering a partial 

pressure of 10 ppm only for the two gases in order to ease the calculations. 

The ammonia dissolution therefore induces a pH quench of the solution, even faster at the 

interface than in the bulk of the solution, where the measurements were carried out.  

Once a pH above 9 is reached, CO2 gas becomes much more soluble as shown by its increased 

Henry’s constant (equal to 102 M/atm at pH = 9.5, just like that of ammonia, see Figure 88.b). 

In addition, its hydration is much faster at these higher pH values,141 therefore allowing its 

effective dissociation into bicarbonate and carbonate ions. Still, the CO2 level remains quite 

high during the first hours of the synthesis, since the thermodynamic equilibrium is not reached 

(as discussed in 3.3.3). After 10 hours, the atmospheric CO2 level returns to the value of the 

room atmosphere.  

In the literature, pH monitoring in ADM-based calcium carbonate syntheses have already been 

reported in similar systems,11,109 although very few include polymer additives.93,105 In particular, 

Ihli et al.109 have studied the influence of different chemical and physical parameters – namely 

the solution volume, concentration, physical barriers to gas diffusion – on syntheses performed 

in the absence of polymer in the mineralizing solution. The difference between Ihli’s syntheses 

and those reported in this manuscript, apart from the absence of polymer additive in Ihli’s 

https://www.usgs.gov/software/phreeqc-version-3
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work, lies in two aspects: first, the volume-to-surface ratio of the solution is twice as large in 

Ihli's work as compared to the work reported here (1.4 in Ihli’s study instead of 0.7 in this work), 

which slows down the gas dissolution process and the solution homogenization; second, the 

amount of ammonium carbonate powder is also larger (31 mmole of (NH4)2CO3 for 70 mL of 

25 mM CaCl2 solution, instead of 0.1 mmole for 6 mL of 20 mM solution in this work), which 

likely results in a higher supersaturation index at long reaction times in the solution. Still, the 

curve obtained for the temporal evolution of the pH value is in qualitative agreement with our 

observations: the pH increases up to a value close to 10, and then decreases and stabilizes at 

9.25 from 20 to 50 hours of reaction time. The early plateau at pH lower than 9.5, sometimes 

observed at the beginning of the reaction in Ihli’s work, is likely due to a longer homogenization 

time, as it disappears when the solution is stirred or when the height of the solution is 

decreased, leading to conditions similar to ours (Figure 83). Given the ion diffusion coefficient 

in water (10-9 m²/s) and the solution height in our system (0.62 cm), the diffusion-based 

homogeneization would be too long (4.104 s) to explain the observation. Thus, the rapid 

homogenization in absence of stirring is likely induced by convection movements (solutal142,143 

or evaporation-induced).144 Harris et al.11,105 have reported a rise in pH with no intermediate 

plateau as well. In particular, the authors noticed11 that the rise in pH was even faster when the 

volume of the reaction chamber is decreased, which is likely due to a faster increase in the gas 

partial pressures, and fully matches our experimental observations.  

To my knowledge, the monitoring of the partial CO2 pressure has not been reported yet in the 

literature. Although such a monitoring does not provide access to the supersaturation index in 

the bulk, since the solution is not in equilibrium with the gas phase, it does highlight potential 

variability between syntheses, which can still occur in spite of an increased control of the 

powder state (% RH and grinding, see Materials and methods 2.1.1).  

In conclusion, our measurements evidence an initial pH quench of the mineralizing solution, 

which strongly favors the dissolution and dissociation of carbon dioxide, especially at the air-

solution interface. CO2 pressure monitoring further shows that the mineralizing solution is not 

in thermodynamic equilibrium with the gas phase, at least at short reaction times, when the 

pH is rather low, so that the pCO2 value cannot be used to determine the temporal evolution 

of the bulk carbonate concentration. Still, the initial pH jump strongly favors the increase of 

the supersaturation index in the solution, and thus the precipitation of calcium carbonate 

throughout the solution after some induction time.  

 

 Quench-induced liquid/liquid phase separation 

Between 10 min and 30 min reaction time interfacial mineralized objects appear as thin discs 

that are a few nanometers thick (Figure 73 and Figure A. 1). Despite their small mean thickness, 

AFM microscopy evidences that they are thicker in the center than at the edge (variation from 

4 nm to 5 nm, Figure 73). This variation in thickness is not associated with any variation in 

calcium chemical environment, as proven by STXM measurements (Table 8). The bulge in the 

center is therefore attributed to the initial lens shape resulting from the spreading of a drop at 

the interface (Figure 89 “In solution”). The existence of a liquid transient state is further 

confirmed by the fusion and double-emulsion patterns observed in TEM pictures (see Figure 

74).  
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Still, the height of the collected objects does not gradually return to zero at the edge of the 

discs, as expected in the case of a drop deposited on a solid substrate (Figure 89 “Liquid-like 

sampling”), but rather quickly jumps to zero, indicating that the drops were already partially or 

fully solidified prior to sampling in view of AFM measurements (Figure 89 “Solidified 

sampling”). The collected mineralized objects would therefore be liquid droplets spontaneously 

solidified at the interface, or solidified in response to the introduction of dry air when the 

reaction chamber was opened for sample collection. When considering the size evolution 

reported in Figure 71, one can see that the Feret diameter increases from 1 to 10 min and then 

stays constant until 35 min, at which time it appears to have increased a bit. A reaction time of 

10 min could therefore correspond to a time when the disc assembly has already solidified at 

the air-solution interface. 

 

Figure 89 - Morphology of a liquid droplet at the air-solution interface. “In solution”: The surface 

tension influences the morphology of the wetting liquid. “Liquid-like sampling”: expected 

morphology and AFM profile of the droplet when taken out of the solution as a liquid. “Solidified 

sampling”: expected morphology and AFM profile of the droplet when taken out of the solution 

after solidification (left: fully solidified, right: partially solidified). Not to scale.  

The detection of liquid droplets at the interface points to a liquid-liquid phase separation. 

However, this one might be restricted to the air-solution interface, as no scattering signal from 

the bulk could be detected during preliminary SAXS measurements over the period of time 

corresponding to the interfacial discs formation. Two mechanisms could lead to the observed 

liquid-liquid phase separation at the interface, as described in the introductory chapter (1.2.5), 

namely, binodal nucleation and spinodal decomposition. Still, a particular feature of our 

interfacial objects, namely the occurrence of double-emulsion patterns (Figure 74), points to 

as spinodal decomposition. Indeed, in binary mixtures, the presence of double-emulsion 

patterns has been associated with spinodal decomposition only, in the case of bicontinuous 

phase separation resulting from a deep quench.145 Indeed, when phase separation occurs by 

spinodal decomposition, the interface between the ion-rich and the ion-poor phases is diffuse 

in the beginning.85 Consequently, if the growth of the interface is rapid, the achieved local 

concentration can lie in the binodal nucleation zone. As a consequence, nucleation of a new 

phase can occur, and a double-emulsion pattern is observed.  

Liquid/liquid phase separation in synthetic calcium carbonate systems has first been proposed 

in 2000 by L. Gower and D. Odom12 and then reported in several other CaCO3 synthesis 

studies,146–149 with often limited direct evidence though, owing to the fact that it is very difficult 

to demonstrate the liquid character of a transient phase (see 1.2.5). In particular, Gower et al.12 

have described the accumulation of dense liquid droplets at the water-air interface in ADM 

syntheses performed in the presence of poly-aspartic acid. Later on, Cantaert et al.146 have 

described droplets fusion at the air-solution interface, and imaged bulk liquid droplets using 
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cryo-TEM, in ADM syntheses performed in the presence of a positively charged polyelectrolyte 

(poly(allylamine hydrochloride). The authors then attributed the increase in turbidity observed 

during ADM synthesis to light scattering by phase-separated liquid droplets, which later 

convert into amorphous particles. In syntheses relying on CO2 diffusion into Ca(OH)2 solution 

droplets, devoid of polymer additive and deposited on Si or glass substrates, Rodriguez-

Navarro et al.72 have observed bicontinuous patterns, typical of spinodal decomposition. 

Interestingly, the latter syntheses have led to the formation of micron-sized ACC hemispheres 

in compact arrangement at the gas-liquid interface, instead of the flat discs observed in our 

experiments. Still, in both cases, the spinodal decomposition was enabled by the deep chemical 

quench induced by the gas diffusion (of CO2 only in Rodriguez-Navarro’s study).  

In the ADM syntheses reported here, although a surface-directed liquid-liquid phase 

separation has been clearly evidenced, no occurrence of a bulk liquid/liquid phase separation 

could be detected. 

No studies until now have explicitly mentioned the formation of interfacial disc-like droplets at 

the air-solution interface during ADM syntheses. This could be due to the very low thickness 

of the discs (~5 nm), which makes it difficult to detect them with optical microscopy, and to 

their transient nature when the polymer additive allows their subsequent fusion by stabilizing 

long enough the liquid intermediate. As a consequence, these interfacial objects appear to 

have been fully overlooked. However, in a different kind of syntheses, which relies on the rapid 

CO2 outgassing of a CaCO3 solution,150 similar structures, not mentioned in the paper though, 

clearly appear in the pictures acquired using waveplate-assisted birefringence microscopy (see 

Figure 90). 

 

Figure 90 - Similarity of interfacial structure as presented in Amos et al.150 and our experiment. 

a) Interfacial ACC film (in purple) going throught a crystallization process (in blue and yellow), 

during a PSLP experiment. Scale bar = 100 µm. b) Electronic micrograph (SEM) of an amorphous 

calcium carbonate film ([Ca2+] = 20 mM, [PANa] = 20 ppm, 

18.5 h of reaction) created during this work. The image is taken at 2 kV with HE-SE detector. 

In summary, our results clearly indicate that a liquid-liquid phase separation occurs at the 

interface, leading to an assembly of disc-like droplets, of micron diameter and thickness less 

than 5 nm. This phase separation is achieved by a spinodal decomposition mechanism, allowed 

by the rapid quench in pH resulting from the ammonium carbonate decomposition. To my 

knowledge, this study is the first to identify these discs as a signature of an interface spinodal 
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decomposition and to report the radial growth of the disc-like droplets at the air-solution 

interface (see Figure 71). Then, likely after about 10 min of reaction, the spinodal 

decomposition is arrested by spontaneous dehydration of the liquid phase which leads to its 

solidification. In this way, liquid-liquid phase separation directs the formation of a mineralized 

pattern at the air-solution interface.  

 

 Thickening by bulk particle aggregation 

After 35 min of reaction, three kinds of structures are observed (Figure 75). Structures of type 

I have a similar structure to the objects observed at shorter times (<35 min) and are about 5 

nm thick in their center (AFM measurements). Structures of type II have a more pronounced 

nanostructure and a greater but still homogeneous contrast. AFM measurements (Figure 77) 

have shown that type II structures are thicker (~20 nm) than type I. Finally, structures of type 

III are characterized by an increase in absorption due to a nanostructured material (TEM). This 

higher absorption is attributed to an increase in thickness (SEM observations).  

The coexistence of these three types of structures raises the question of their relations to each 

other, and to the early disc-shaped structures, and finally suggests a sequence of formation. 

The type II structures being of the same contrast and homogeneity as the edge of the type III 

structures, it seems that the latter are in fact type II structures modified by a localized 

aggregation of nanoparticles. In contrast, the aggregation of nanoparticles does not occur on 

the type I structures, which remain homogeneous and smooth. Type II structures may arise 

from the homogeneous deposition of particles on structures of type I as they follow exactly 

the shape of structures of type I and show a constant thickness (Figure 75.a, homogeneous 

coloration of type II structures). Aggregation may also take place on the periphery of the disc 

at this stage, as the border of the structures of type II is not smooth (see Figure 75.c), in addition 

to previously observed objects. Moreover, the diameter of the discs is larger at 35 min, pointing 

to the addition of material at the border of the disc at this reaction time. Since the structures 

of type I are similar to the discs at shorter time, it is likely that they exist prior to the formation 

of type II, and therefore type III structures. Thus, the temporality of the thickening would be: 

I  II  III. This can be summarized by saying that, after an initial radial growth, the interfacial 

discs undergo a nanostructured thickening. 

This thickening process most likely arises from the irreversible aggregation of bulk 

nanoparticles. Light-scattering species are indeed detected in solution at the time when the 

interface objects start to thicken (~40 min). These species correspond to aggregates of 

amorphous nanoparticles, as shown by TEM and STXM images. When collected close to the 

interface, they appear as loose aggregates composed of 30 nm particles (cryo-TEM pictures). 

These aggregates do not exhibit smooth round morphologies, typical of liquid droplets (Figure 

87) and therefore appear to be amorphous solid particles. They look very much the same as 

the loose prenucleation cluster aggregates observed by Dey et al.151, using cryo-TEM, in 

calcium phosphate syntheses.  

The detection of the light-scattering bulk particles is in line with the reported observations on 

calcium carbonate ADM sytheses.93,109,152 Ihli et al.109 have described an increase in the 

measured turbidity of the solution, associated with the precipitation of calcium carbonate, 
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without specifying the particle size however. In Ihli’s study, the reported induction  as measured 

in turbidimetry time was shorter (15 min) as expected in the absence of added polyelectrolyte. 

Xu et al.93 determined that in presence of ds-DNA, a precipitation event take place after 150 

min of reaction, opacifying the solution. In their seminal paper152, Gower and Odom actually 

mentioned a turbidity increase, detected by visual inspection only, that they associated with 

the presence of liquid droplets in solution. Still, no experimental demonstration was actually 

carried out. The results presented here are, to my knowledge, the first actual characterization 

of the interplay between the interface and bulk mineralization, based on time-resolved 

measurements of both processes. 

The presence of light-scattering bulk particles highlights the formation of large convection rolls 

in the solution (~45 min Figure 70), until the solution becomes fully turbid (90 min, not shown 

here). As a matter of fact, the morphology of the film at long reaction time (60 min, Figure 91.a) 

is similar to Marangoni cells observed in systems subjected to Rayleigh-Bénard-Marangoni 

convection,153 and may actually result from a solutal Rayleigh-Bénard-Marangoni instability 

owing to the concentration gradient at the free surface of the mineralizing solution154. In the 

case of combined thermal and solutal Marangoni convections (Figure 91.b), the patterns at the 

interface of a binary fluid (water and saline solution) fully resemble our observations. To my 

knowledge, the existence of convection rolls has never been mentioned in the literature 

concerning PILP-related ADM syntheses. 

Both the observation of convection rolls in solution and the pattern formed at the interface 

point towards a convection-assisted thickening of the interfacial film. The localized appearance, 

at the start of the thickening process, of a phase contrast in the film (Figures 66 and Figure 78), 

and the propagation of a thickening front would hence be triggered by the arrival of an upward 

flow of nanoparticles, owing to localized ascending currents in convection rolls.  

 

Figure 91 - Interfacial pattern a) formed in our system after 60 min of reaction in a pellet 

synthesis. (b) formed by convection Shadowgraph taken at the air-water interface of an 

evaporating binary fluid (Water-NaCl solution). From Zhang et al.155  

Finally, while type III structures clearly result from the reported thickening process, the fact that 

the structures of type II follow the shape of the early discs, and exhibit constant thickness is 

confusing. Traces of intermediate states between type I and type II structures have not been 
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detected, maybe owing to a lack of data at intermediate reaction times, so that the 

transformation mechanism from type I to II could not be evidenced. One could imagine though 

that bulk particles diffuse and then homogeneously adsorb on the early discs before 

convection rolls developed. Alternatively, the structures of type II could result from the 

spreading of a liquid-like assembly of ACC clusters, similar to the one proposed by Xu et al.93 

to explain PILP mechanisms of crystal formation, on the early discs.  

 

During the thickening process, nanoparticles not only aggregate underneath the interface 

structures, but also likely at the edge of the structures. This assumption is supported by the 

presence of a porous corona surrounding the interfacial mineralized structures (Figure 65). The 

V-shaped junction between the core and the corona of the mineralized discs (see Figure 92.a) 

is reminiscent of the three-phase contact line all around the droplets at the interface (see the 

red arrow in Figure 92.b). This junction, creating an irregularity at the particles aggregation 

point could very well be a source of defects during the thickening process (similarly to the 

pinhole defects observed in PVD processes156), therefore creating pores around the edges of 

the former droplet. 

 

Figure 92 - Morphological traces of the thickening process. a) Electron micrograph (SEM) of a film 

([Ca2+] = 20 mM, [PANa] = 20 ppm, 19 h of reaction) heated at 300 °C directly after sampling. 

The observations are made with a 70° angle, at 15 kV, with the HE-SE detector. Scale bar = 10 

µm. b) Schematic representation of the attachment process of bulk particles (in yellow) in the 

case of a disc patterned (left) and continuous (right) film. The addition of particles leads to the 

thickening of the film (yellow dashed line). The red arrow indicates the location of the three-

phase contact line surrounding the initially liquid droplet. 
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In summary, following the initial patterning of the interface by a surface-directed LLPS, the 

assembly of disc-like droplets solidify and thicken by an irreversible aggregation of bulk 

amorphous nanoparticles. Over time, this thickening process is strongly enhanced by the 

development of convection rolls in the bulk, which both homogenize the concentrations 

throughout the solution and generate upward flows of particles towards the interface. This 

process ends up when sedimentation, probably due to aggregation of nanoparticles in bulk, 

finally takes place. 

 

 New model proposition 

The reported findings evidence a two-step mechanism of film formation (Figure 93). First, a 

chemical quench causes a surface-directed liquid-liquid phase separation by spinodal 

decomposition at the interface. The denser calcium carbonate liquid phase then wets the 

interface forming slightly bulging discs of micron size and nanometer thickness (Figure 73). 

The discs grow radially, without any change in their chemistry, until they reach a size of about 

3.5 µm.  

In a second step, a homogeneous layer of nanostructured material is deposited on the 

interfacial discs, which cover their entire surface, this way initiating a first thickening of the 

mineralized structures. Bulk nanoparticles, brought to the interface by convection rolls, then 

adsorb on this second layer (Figure 93), inducing a fast thickening of the mineralized structures, 

until the sedimentation of the bulk aggregates takes place and the thickening of the film stops.  

 

Figure 93 - Schematic representation of the amorphous film formation at the interface. In each 

panel, a cross-section of the bulk solution and interface objects (“side view”) and a bottom view 

of the interface objects only (“Bottom view”) are represented a) Domains of liquid spread at the 
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interface grow radially with time. b) A homogeneous layer of particles is added first to the disc 

pattern. Then, bulk particles, broughtto the surface by convection rolls massively aggregate onto 

the disc pattern, leading to strong thickness heterogeneities. c) Finally, a mature ACC film of 

constant thickness is formed. 

This two-step mechanism is believed to be common to both discontinuous and continuous 

films, as the latter exhibit traces of micron-sized discs formed at early reaction times (Figure 

65). However, the larger amount of polymer additive in the continuous film syntheses likely 

provides a longer-term stabilization of the phase-separated liquid, thus allowing the near-

complete coalescence of the interfacial liquid droplets before the liquid dehydrates and 

solidifies.  

In conclusion, the mechanism of ACC film formation in ADM syntheses has been deciphered 

by combining in situ and ex situ structural analyses, this way evidencing the involvement of 

both a surface-directed liquid-liquid phase separation and amorphous nanoparticle 

aggregation in the formation process. Although the generality of this process needs to be 

investigated further, it appears in line with experimental observations reported in the literature. 

In particular, the templating effect of the phase-separated liquid is fully consistent with the 

observations of a “surface membrane on the vaterite crystals”157 or “membraneous substrate 

that mediate the growth of CaCO3 crystals”158 reported long ago in CaCO3 syntheses in the 

presence of poly-aspartic acid polymer. Occasionally, we could actually see patches of the film 

detaching from the interface and falling down in the solution, along with helicoid crystals, 

similar to the one reported in references,157,158 at the bottom of the Petri dish.  
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4 CONTROL OF CRYSTALLIZATION: INCIDENCE ON CRYSTALLINE 

PROPERTIES 

In the previous chapter, I have shown that amorphous calcium carbonate films of controlled 

morphology can be synthesized using ADM syntheses in the presence of sodium poly-acrylate. 

Amorphous calcium carbonate is a metastable state, and therefore appears as a transient state 

prior to crystallization. Its consistent observation in biominerals indicates that it plays a key role 

in the biocrystallization pathway, although not fully understood to date. This observation led 

me to study the crystallization of the synthesized amorphous films following three distinct 

crystallization pathways, so as to decipher the influence of the crystallization conditions on the 

produced crystals. In this chapter, I will therefore present these three crystallization routes, 

corresponding to thermal heating, exposure to a high humidity atmosphere, and spontaneous 

crystallization at the air-solution interface, respectively.  

These different pathways have indeed produced crystalline films with different morphology, 

nanostructure and crystalline properties. For each type of transformation, the structural 

features of the crystallized film have been determined, using both microscopy and 

spectroscopy techniques, providing informations on the structure at the microscale (WBM, 

SEM), nanoscale (SEM) and atomic scale (Raman, STXM). Vectorial and Bragg ptychography 

imaging have provided further insights into the crystalline properties, in terms of distribution 

of crystalline orientations, crystal coherence length and defects distribution. Although all three 

crystallization routes lead to iso-oriented calcite crystals, the shape and nanostructure of the 

latter differ from one to the other.  

As a conclusion of this chapter, the impact of the crystallization conditions on the resulting 

crystals will be highlighted and the mechanisms of the amorphous-to-crystalline 

transformation will be discussed. 

 

4.1 HEAT-INDUCED CRYSTALLIZATION 

The amorphous-to-crystalline transformation involves the dehydration of the amorphous 

phase, which is thermodynamically unfavourable. It is therefore associated with an activation 

energy barrier that needs to be overcome in order to trigger the crystallization process. In 

particular, thermal heating can be used as a crystallization trigger. In this section we will present 

the crystals resulting from the heating, at 300°C, of amorphous calcium carbonate films 

produced by ADM syntheses. The temperature used was chosen by considering the results of 

Xu et al.,96 where such a temperature was shown to allow the complete transformation of ACC 

material into calcite, without any change in the nanostructure. In their work on the dehydration 

and crystallization of ACC in air,59 Ihli et al. further confirm that this temperature is enough to 

induce the full dehydration of the amorphous calcium carbonate, whatever its initial hydration 

level.  

In the following, unless otherwise specified, only the results for disc-patterned films will be 

presented, as this allows a better visualization of the change in morphology during 
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crystallization. The corresponding analysis for continuous films will be presented in the 

appendix (6.3.1). 

 

 Microscale crystallinity 

When heated at 300°C for three hours, the amorphous disc-pattern film becomes birefringent. 

Under birefringence wave plate-assisted microscopy (BWM), it now exhibits domains about ~1 

to a few 10 microns in size, whose color differs from the “sensitive tint”, i.e. the pink color that 

is characteristic of the non-birefringent materials. The film has therefore crystallized, while 

retaining its microscale morphology. In Figure 94, the preservation of the morphology is 

evidenced by the presence of the very same disc pattern before (Figure 94.a) and after (Figure 

94.b) heating. Large domains of homogeneous color are visible, which encompass several discs 

but sometimes terminate in the middle of a disc (Figure 94.b, inset). Some parts of the film 

remain pink, however, after the heating process (see the blue and yellow arrows in Figure 91.b). 

This could of course mean that they did not crystallize. Yet, other effects could explain the 

absence of detected birefringence: 

- the sample could be too thin to exhibit birefringence; this might explain the absence of 

birefringence of the low-absorbing discs in the left-hand part of the picture (blue ar-

rows); 

- the c-axis of the crystal (extra-ordinary axis) could be perpendicular to the image plane 

or one of the neutral axes of the crystal could be oriented along the polarizer direction; 

this undoubtedly explains the pink colour of some discs in the right-hand part of the 

picture, which are surrounded by discs of colour other than pink. 

  

 

Figure 94 - Optical micrographs (WBM) of a disc patterned film before and after heat treament. 

a) Film immediately after sampling (17h in pellet synthesis, [Ca2+] = 20 mM, [PANa] = 20 ppm). 

Scale bar = 50 µm. b) Same film heated at 300°C for 3h just after initial observation.  

Scale bar = 50 µm. Inset: Zoom showing areas with abrupt changes of coloration within discs. 

Blue and yellow arrows highlight untransformed coloration areas. 
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Therefore, heating at 300°C the disc-pattern films triggers the amorphous-to-crystalline 

transformation of the discs, almost everywhere in the sample, while preserving the disc pattern.  

Continuous film: Birefringent domains were less developed in the case of continuous films, 

unless they were deposited on conductive substrates, like gold or copper TEM grids, prior to 

heating. In addition, these domains were located mostly along cracks. (Figure A. 21). 

 

 Structure at the nanoscale: surface and edges analysis. 

SEM microscopy was used to investigate the morphological features of the crystallized film at 

the nanoscale. It evidences once again the preservation of the micron-sized discs during 

crystallization, and additionally shows that cracks have been induced everywhere in the disc 

assembly by the heating process. These cracks separate discs from each other, thus revealing 

the internal structure of the film. 

Although all discs exhibit a surface nanostructure, some appear smoother than others owing 

to a more compact nanostructure (Figure 95a). This surface nanostructure is not even 

homogeneous within a single disc. Last, the discs are surrounded by a corona approximately 

250 nm wide (Figure 95), reminiscent of that of the amorphous discs (Figure 67). However, the 

core and the corona of the discs do not differ in nanostructure (Figure 96.a and .b). One can 

sometimes observe a lack of nanogranular material at the junction between the core and 

corona.  

 

Figure 95 - Electron micrograph (SEM) of a disc-patterned film heated at 300°C for 3h. HE-SE 

detector, 1 kV. Scale bar = 2 µm.  
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Figure 96 - Electron micrograph (SEM) of the border of a disc with its corona. The red rectangle 

corresponds to the enlarged image shown in b). In lens detector, 1 kV. Scale bar = 400 nm. b) 

Zoomed-in view of the corona. In lens detector, 1 kV. Scale bar = 200 nm.  

In back-scattered electron mode (sensitive to the atomic number Z in the investigated area), 

the corona is indistinguishable from the core (Figure 97.a). Elemental analysis based on EDS 

measurements (Figure 97.b, .c, .d and .e) actually shows that the corona is chemically identical 

to the core. Calcium, carbon and oxygen distributions are indeed the same everywhere within 

the discs (Figure 97.b), meaning that in addition to being structurally similar the core and 

corona are made of the same material. 

 

Figure 97 - Elemental maps based on EDS measurements performed on a crystallized disc-

patterned film. a) SEM micrograph in back-scattered electron mode. b) Composite image of the 

elemental maps shown in c, d and e. c) Calcium distribution in the investigated area. d) Carbon 

distribution. e) Oxygen distribution. The elemental maps are not quantitative, the intensity scale 

has been selected in each case to optimize the visualization of the distribution. Scale bar = 5 µm. 

Heating produces cracks in the sample, thus exposing some edges and revealing the internal 

structure of the film. On broken edges, the nano-structuring inside the film appears visible by 
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SEM (Figure 98). The crystallized disc-patterned films are shown to be homogeneously 

composed of aggregated nanoparticles, like their amorphous counterparts.  

 

Figure 98 - Electron micrographs (SEM) showing the edges of discs following the heat treatment. 

a) and b) correspond to different discs and different angle of observation. In lens detector, 1 kV. 

Scale bars = 200 nm. 

 

Continuous films: The morphology of the heated continuous films was already presented in 

Chapter 2 (Figure 65.b, Figure 67.b and Figure 68) and is in particular characterized by a space-

filling nanostructure, very similar to the disc-patterned films presented here. 

 

 Polymorph selection 

The crystals produced at 300°C are made of calcite, as shown by Raman spectroscopy (Figure 

99). The detected vibration bands actually correspond to the vibration bands visible on the 

reference spectrum of calcite (Materials and methods 2.6.1.2). 

 

Figure 99 - Raman spectrum of a heated disc-patterned fIlm sample - (cap synthesis, 16h30 of 

reaction) heated for 3 hours at 300°C. The bands fit the calcite reference spectrum as 1 band is 
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located at 1085.3 cm-1, 4 at 711.2 cm-1, and lattice bands at 279.9 cm-1and 153.8 cm-1.  

Calcite signal is systematically detected when the light-absorbing discs in Figure 94 are 

analyzed by Raman spectromicroscopy. Therefore, the light-absorbing discs that remained pink 

after heating are actually crystallized, their crystalline orientation making however their 

detection by birefringence microscopy impossible. On the contrary, the thinner discs, 

highlighted by blue arrows in Figure 94, do not emit any Raman signal, so that it is not possible 

to conclude whether they are uncrystallized regions or crystallized regions too thin to be 

detected. 

Continuous films: Although non-birefringent, continuous films exhibit a Raman spectrum with 

a clear calcite signature (Figure A. 21). Therefore, the lack of birefringence is probably due to 

the orientation of the neutral or extraordinary axes (as mentioned in 4.1.1).  

 Calcium environments in the crystallized films 

In order to investigate the calcium environment, and to obtain a high spatial resolution imaging 

of the calcite distribution in the sample, I performed STXM spectroscopy at the L2, L3 edge of 

calcium (Materials and method, 2.6.2). Owing to the very strong resonance at the Ca L-edge, 

only samples thinner than a couple of 100 nm can be analyzed by STXM. The usual film 

thickness produced from the synthesis protocol I have established, is around 500 nm to 700 

nm, making it too thick for STXM analysis. We therefore focused on thinner areas of the sample 

as presented in Figure 100.a, where typical OD at the L2 edge is under 2 (most absorbing 

investigated area, in Figure 7.b). 

 

 

Figure 100 - a) STXM absorption map at 351.2 eV. The area corresponding to the red square was 

investigated by hyperspectral imaging and analysed in b-e). Scale bar = 5 µm. b-d) Optical 

density maps at the Ca L-edge showing the three different regions (colored areas) where XAS 

spectra have been averaged to provide the curves displayed in e). e) X-ray absorption spectra at 

the calcium L2 edge in different places of the film sample. The blue spectrum was averaged over 

the blue area in b), the orange spectrum over the orange area in c) and the yellow spectrum from 

the yellow area in d).  
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Different calcium environments are detected in the heated-film sample. These environments 

are characterized by two parameters: the peak splitting Δ0 and the energy level E0. As a 

reminder (see Materials and methods 2.6.2) the peak splitting is the energy difference between 

the two non-degenerate d-orbitals eg and t2g, resulting from the crystal field effect, that is, from 

the anions structuring around the calcium ions. The stronger the crystal field effect in the 

investigated sample, the greater the degeneracy breaking of the d-orbitals and, therefore, the 

wider the peak splitting. On the other hand, E0 is the energy of the calcium 3d orbitals when 

the anions distribution around calcium ions is fully spherical so that the 3d-orbitals are fully 

degenerated (i.e., the crystal splitting effect vanishes). As explained in the Materials and 

methods, E0 was calculated by assuming that the acquired spectrum results from an octahedral 

configuration of the carbonate ions around the calcium ions, similar to the calcite configuration 

in which each calcium ions is surrounded by six carbonate ions. For this calculation, only the L2 

resonance is shown, but the full spectra (including the L3 and L2 resonances) are available in 

the Appendix Figure A. 13, Figure A. 14 and Figure A. 15). 

The most-absorbing part of the disc (Figure 100.b, blue spectrum) has the same peak splitting 

as calcite (Δcalcite = 1.29 eV, E0 = 353.78 eV). Therefore, one can state that it has actually 

crystallized into calcite, although the film thickness in the investigated region is much smaller 

than the mean thickness of the film (Figure 100.a).  

The intermediate absorption area (Figure 100.c, orange spectrum) has a weaker crystal field 

(weaker Δ0), but similar E0 as calcite. This means it has a less organized structure although 

calcium ions are still surrounded by 6 carbonate ions. This could be the spectral signature of 

either pure amorphous calcium carbonate with little organization, or of a mixture of both 

amorphous calcium carbonate and calcite.  

Finally, the less-absorbing area (Figure 100.d, yellow spectrum) has the weakest crystal field 

(weaker Δ0), but still the same E0 as calcite. Moreover, the L3-t2g peak is almost absent (see 

Figure 100). The value of the L2 peak splitting and the decrease of the L3-t2g peak is 

characteristic of a purely amorphous calcium carbonate, in a dehydrated state55. Therefore, the 

thin part of the film, did not crystallize despite the heat treatment. This result suggests that the 

low-absorbing discs in Figure 91.b, which are not birefringent, may actually be amorphous. 

There are therefore at least two coexisting calcium chemical environments in the heated 

sample, one corresponding to calcite and the other one to an amorphous state.  

 Table 9 - Peak splitting and E0 energy values, calculated from Figure 100 spectra.  

Component  L3, Δ0 (eV) L2, Δ0 (eV) E0 (eV) 

Yellow spectra 1.07 1.08 353.64 

Orange spectra 1.17 1.18 353.64 

Blue spectra 1.25 1.25 353.66 



CONTROL OF CRYSTALLIZATION: INCIDENCE ON CRYSTALLINE PROPERTIES 

136 

 

 Crystal orientation: in-plane and thickness distribution 

To go beyond the birefringence analysis of the crystalline orientation within the films, vectorial 

ptychography measurements were carried out on heated film samples at a spatial resolution 

similar to optical microscopy. The investigation was performed in an area where the thickness 

of the discs is equal to the mean film thickness (~500 – 700 nm) (not shown here). Based on 

previous observations (4.1.3 of this chapter), the discs are made of calcite crystals. They exhibit 

birefringence (the fast axis observed in the sample plane being a projection of the c-axis of the 

crystal), so vectorial ptychography can be used to retrieve mappings of their crystalline 

properties. 

Heat-induced crystals exhibit a weak retardance ( ∆𝑛𝑒𝑓𝑓 𝑑), inferior to 1.5 rad in all our 

measurements (Figure 101.a). When it is inferior to 0.5 rad (dark blue in Figure 101.a), it cannot 

be distinguished from the background noise anymore. A weak retardance indicates a c-axis 

close to the normal of the image plane, or a thin sample. 

The ratio between the unwrapped phase and the retardance, which amounts to the ratio 

between 𝑛0 and ∆𝑛𝑒𝑓𝑓 (Materials and methods 2.5.1.2), is not constant in the whole sample (‘tilt 

ratio’, Figure 101.b), mostly because the retardance could have significantly different values 

from one disc to another (Figure 101.a), while the unwrapped phase (Figure 101.e) remains 

relatively constant. This latter finding indicates that the disc thickness in the investigated area 

is rather constant (assuming that the materials is homogeneous with a constant 𝑛0 value). The 

space variations of the unwrapped phase-to-retardance ratio therefore suggest that ∆𝑛𝑒𝑓𝑓, and 

consequently the tilt of the c-axis with regard to the image plane, varies across the sample, 

with nevertheless groups of discs in close contact having the same tilt ratio, represented by 

constant coloration in Figure 101.b.  

As a first summary, on the whole investigated area, the c-axis tilt with respect to the image 

plane, and hence the fast-axis orientation, varies. Both parameters can be locally constant 

(Figure 101.b and .c). Domains of shared orientation are distributed over the image. 

The eigenpolarizations have a ellipticity of about 0.2 (Figure 101.d, measured for retardance 

values > 0.5 rad). As a reminder, ellipticity of the eigenmodes is a consequence of the 

misalignment of the crystalline layers in the sample thickness (see Materials and methods 

2.5.1.2). The shape of the eigenpolarizations can be visualized in Figure 101.e and f. The 

observed values suggest a reasonable level of crystalline order in the film thickness. 

Figure 101.e shows the eigenpolarizations, and highlights the difference in fast axis orientation 

among the iso-oriented domains. Figure 101.f, which is an enlarged view of Figure 101.e, 

evidences two neighboring iso-oriented domains composed of several discs. It further shows 

that the change in orientation occurs in the middle of a disc (red dashed line).  

Film crystallized under heat retain their original shape and remain nanostructured. They are 

made of iso –oriented domains of calcite from a 1 µm to ~10 µm. The thinner parts of the film 

remains amorphous despite the heat treatment.  
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Figure 101 - Vectorial ptychography analysis of a heated film. The film sample has been collected 

at the surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 18h of reaction, and heated 

at 300°C for 3h. a) Retardance (in radians, 0 to 1.5). b) c-axis tilt ratio (a.u.). c) Fast-axis 

orientation (in degrees, from 0 to 180) d) Ellipticity (absolute value, 0 to 1; 0 corresponds to a 

linear polarization and 1 to a circular one. e) Composite map of unwrapped phase (in radians, 0 

to 5) and eigenpolarizations (black). Eigenpolarizations are plotted only between 0.5 and 1 rad 

of retardance. Owing to the low values of retardance, unwrapped phase is used for the sake of 

understanding. The unwrapped phase is less intense in the center of some discs in Figure 101.e 

and f. It is attributed to a slight focus misalignment (also visible on the reconstructed transmission 

data). f) Zoom from e) for better visualization of the eigenpolarizations. The red dashed line 

separates two iso-oriented domains. Scale bars: a,b,c,d = 20 µm; e= 20 µm; f= 5 µm.  
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In summary, iso-oriented domains do not identify with discs, but rather encompass several 

discs, before they abruptly end anywhere within the sample plane, and possibly within a disc. 

Their typical size, as determined from vectorial ptychography pictures is consistent with the 

value determined by birefringence, that is 10 µm to 20 µm. Vectorial ptychography additionaly 

reveals some crystal disorder in the film thickness, although rather limited. 

 

Continuous film: The birefringence in continuous film being mainly situated along cracks, 

quantitative vectorial ptychography could not be performed . 

 

 Crystalline coherence length and defect distribution 

Bragg ptychography allows one to go even further in the characterization of the crystalline 

properties, and to retrieve the distribution of crystalline defects (strain and tilts) with a space 

resolution of a few tens of nanometers. 

The strain, defined as the relative variation of the inter-reticular spacing between the inspected 

crystal and geological calcite, and the tilts of the crystalline planes around two axes (namely 

Tilt 1 and Tilt 2) are derived from the measurements. For a complete description of the strain, 

tilts as well as a complete explanation of the Bragg ptychography data analysis, see the 

Materials and methods (2.5.2.3). Here again, for the sake of clarity, only the results on the disc-

patterned films will be presented, although a comparison of these results with those reative to 

the continuous films is made at the end of the section. The data related to the continuous films, 

not presented here, are available in the appendix (Figure A. 24).  

In the disc-patterned heated films, the distribution of defects (Figure 102) shows that the 

sample is composed of domains of rather homogeneous strain and tilts values, refer to as iso-

strain, iso-tilt areas. Their shapes are clearly visible on the Tilt 1 and Tilt 2 maps, characterized 

by homogeneous color on both representations (see for instance the domain circled by a red 

dashed line in Figure 102). In the investigated area (0.7 µm x1.35 µm), the relative strain shows 

a standard deviation of +/- 0.0040, while the tilt range is greater than about 1.2° for Tilt 1 and 

than 3.0° for Tilt 2 (Figure A. 16). Areas of iso-strain and iso-tilt can be extracted. Such a domain, 

about 200 nm wide (xy) and 400 nm long (z), is visible in Figure 103. 
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Figure 102 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), retrieved from the Bragg ptychography data. The film sample was collected at the free 

surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 18.5h of reaction, and heated at 

300 °C for 3 h. The red dashed line surrounds the iso-strain et iso-tilt domain shown in Figure 

103. 

 

 

Figure 103 - Iso-strain, iso-tilt domain extracted from Figure 102. The strain, Tilt 1 and Tilt 2 

maps are presented in the sample plane (xy) and along the sample thickness (z). Heated film at 

300 °C for three hours ([Ca2+] = 20 mM, [PANa] = 20 ppm, 18.5 h reaction time).  

 

Inside the chosen domain, the phase variation (Figure 104) can be extracted and plotted in 

three dimensions. It allows addressing the crystalline coherence length (i.e., the length over 
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which the crystal is perfect, without any defect). It is represented by the bright blue area in 

Figure 104.a and .b, and estimated to about 50 nm laterally (xy) and 300 nm along the z 

direction. The high-strains regions (represented in gray in Figure 104.a) are located in the 

periphery of the constant phase domain, and extend throughout the whole thickness.  

 

Figure 104 - Plot of the phase variation in the iso-tilt, iso-strain domain. a) 3D phase map of the 

iso-strain iso-tilt domain presented in Figure 103 with scale (xyz) = 30 nm. The high strain values 

(> 0.004) are shown in gray. b) 2D cross section of the phase map.  

 

The crystals resulting from the heating of the continuous films show defect distribution values 

(Figure A. 17, Figure A. 18) similar to those presented in Figure 105. Iso-strain and iso-tilt 

domains of 200 nm (Figure A. 19) can be extracted, and their phase variation and high-strain 

values can be plotted as well. The domains have a coherence length of 50 nm wide (xy) and 

150 nm to 200 nm in z, with high-strains values distributed around the continuous phase. A 

comparison of the defect distribution resulting from the heating of the disc-patterned and 

continuous film is summarized in Figure 105. The tilt angle distribution in the continuous film 

is narrower, with a standard deviation of 0.66° (since the whole Bragg peak is investigated in 

this case, the global tilt range is calculated, see Materials and method), instead of a tilt variation 

larger than 3.0° for the disc-patterned film. Nevertheless, the transformation creates crystals 

with comparable strain values, and same coherence length.  
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Figure 105 - Comparison of the crystalline properties of a disc-patterned (scale (xyz) = 30 nm) 

and a continuous (scale (xyz)= 100 nm) heated film retrieved from Bragg ptychography data. The 

crystalline properties (strain, tilt), the coherence length and 3D phase map, with high-strain 

represented in gray (> 0.004 in the disc-patterned film, > 0.003 in the continuous film) are shown.  

 

4.2 HUMIDITY-INDUCED CRYSTALLIZATION 

Alternatively, crystallization could be induced by the presence of water in the atmosphere. 

Amorphous films were exposed to a controlled humidity rate for 5 days (see Materials and 

methods 2.2.1), which resulted in the development of crystalline films.  

First, the crystallinity and structure at the microscale of films crystallized under three different 

relative humidity values (33%, 75% and 98%), are presented. Based on these results, the 

structure and crystalline properties at the nanoscale are described for crystals grown under 

high relative humidity (98%) only. Finally, the crystal defect distributions and coherence length, 

probed by Bragg ptychography, are reported. In the following, unless otherwise specified, only 

results on the disc-patterned films are shown, as it allows better visualization of the change in 

morphology during crystallization. Still, similar results were obtained on continuous films when 

investigated (at 98% RH). 

 

 Influence of the relative humidity percentage: microscale crystallinity and polymorphism 

Three different relative humidity rates in the chamber were used to induce crystallization: 33%, 

75% and 98%. At the microscale, it translated into different crystalline morphologies. At 33% 

Film crystallized under heat both retain their disc-pattern morphology and their 

nanostructure.They are made of iso–oriented domains of calcite from a 1 µm to ~20 µm. The 

thinner part of the film remains amorphous despite the heat treatment. At the nanoscale, the 

crystal is composed of iso-strain, iso-tilt domains about 200 nm wide and 400 nm long, and 

exhibit a coherence length of about 50-200 nm, with minor strain values (~0.004) but a 

significant tilt. 
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RH, the disc morphology is preserved after crystallization, and polycrystals form, encompassing 

the disc pattern (Figure 106.a and a’). Crystallization might be only partial as the coloration in 

WBM shows little changes. At 75% RH (Figure 106.b), spherulites grow while keeping the disc 

pattern in their core only (Figure 106.b’). Elongated flat crystals form at the spherulite border 

(Figure 106.b’). At high humidity rate (98% RH, (Figure 106.c), 2D spherulites form, with long 

elongated crystalline domains, named branches hereafter (Figure 106.c’’), radiating from a 

crystalline core (Figure 106.c’).  

The specific disc pattern, as visible in Figure 106.a’ and .b’ is not seen under birefringence 

microscopy at high relative humidity value, but its presence will be further discussed in section 

4.2.2. A few discs with a very weak birefringence signal remain visible next to the spherulite 

(yellow arrow in Figure 106.c’’). In this case, the discs appear rather co-oriented with each other 

and with the branch they are connected to. In the background, light pink discs, probably 

uncrystallized, are observed (blue arrow in Figure 106.c’’). Continuous films exposed to high 

humidity conditions produce similar elongated crystals (Figure A. 21). 

 

Figure 106 - Optical micrographs (WBM) of film samples crystallized under controlled relative 

humidity. The crystalline samples originate from the same film, collected after 18h of reaction at 

the surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution. a) Film kept under a 33% RH 

atmosphere for 5 days. a’) Zoomed-in view of a slightly birefringent polycrystalline area. b) Film 

kept under a 75% RH atmosphere for 5 days. b’) Remaining discs at the spherulite center, zoom-

in view from b). b’’) Elongated crystals, zoomed-in view from b). c) Film kept under a 98% RH 

atmosphere for 5 days. c’) Radial symmetry around the spherulitic center, zoomed-in view from 

c). c’’) Elongated crystal tip, zoomed-in view from c). The yellow arrow highlights the presence of 

discs that are co-oriented with the top of the neighboring branch. The blue arrow points to the 

remaining optically isotropic discs. Scale bars = 50 µm 

 

Furthermore, the change in relative humidity enables the crystallization to be driven towards 

different polymorphs. Table 10 summerizes the Raman characterization results. It shows that 

at low relative humidity (33%), vaterite is observed in 100% of the syntheses, against only 30% 

for calcite. At 75% RH, the trend is reversed (30% vaterite, 100% calcite). Finally, at 98% RH, 

only calcite is observed. Directing the crystallization to calcite is therefore possible using high 
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relative humidity rate. 

Table 10 - Polymorphs occurence in crystallized films when exposed to controlled % RH 

atmosphere. Based on Raman spectra analysis (three syntheses are investigated for 33% RH and 

75% RH datas, five for 98% RH). Film crystallized at 33% and 75% RH showed both calcite and 

vaterite on the same sample. 

 

 

33% RH 75% RH 98% RH 

Vaterite occurence 100% 60% 0% 

Calcite occurrence 60% 100% 100% 

 

Continuous films: under high relative humidity (98% RH) branched calcitic spherulites are 

observed (Figure A. 21).  

In conclusion, exposure to a highly humid environment results in long, calcitic spherulites with 

iso-oriented branches. The observed morphology transformation implies an important 

displacement of matter during the amorphous-to-crystal phase transition. On the contrary, low 

humidity atmosphere allows for shape preservation, but results in a poor control over 

polymorph selection and crystallinity (single versus poly-crystallinity). Intermediate relative 

humidity, like 75%, produces intermediary mechanisms with discs remaining in the crystal core, 

but gradually disappearing towards the edge, where elongated crystals form. In the context of 

this study, focused on iso-oriented calcitic domains to allow a comparison with the biogenic 

prismatic layer of Pinctada m., I have restricted my work to high humidity 98% RH crystallization 

condition, for which such domains are mostly produced.  

 

 High relative humidity: temporality of crystal growth 

Using transmission optical microscopy, I could follow the temporal evolution of a film sample 

exposed to a relative humidity rate of 98%. After 2.5 days of exposure, branched spherulites 

are already formed, as shown in Figure 107.a, where the spherulites edges provide a strong 

optical contrast (appearing as black lines in Figure 107) owing to a refraction effect. However, 

as emphasized below, their evolution is not yet complete. 

Discs are still visible around the sperulites (inset of Figure 107.a), as well as in the spherulite 

branches and around the crystal nucleation point (Figure 107.a, blue arrows), i.e. around the 

center of the spherulite (see Figure 106.c’). In this latter region, the discs appear embedded 

within the spherulitic crystals. 

The poorly contrasted discs outside the spherulites are not birefringent, as evidenced by 

observations performed in parallel (not shown here), and appear to fade away with time, as 
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they become less and less light-absorbing (Figure 107 b, after 7 days of exposure). After 30 

days, the discs have almost completely disappeared (Figure 107 c). Still, the shape of the large 

crystals has not changed from 2.5 days to 30 days of exposure. As for the discs embedded 

within the spherulites, they remain visible throughout the observation period, although subtle 

changes may affect them. 
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Figure 107 – Optical micrograph (AM) showing the evolution of remnant discs when exposed to 

high humidity for a long period of time. Sample collected after 18h at the interface of a [Ca2+] = 

20 mM, [PANa] = 20 ppm solution. a) 2.5 days exposure to 98% RH atmosphere. The blue arrows 

points to the center of the spherulites. The yellow arrow in the inset highlights the border of the 

crystals (black lines). b) 7 days exposure to 98% RH atmosphere. c) 30 days exposure to 98% RH 

atmosphere. Scale bar = 100 µm.  
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The observations reported above were made by taking the sample out of the crystallization 

chamber. However, in order to avoid possible artefacts produced by the atmosphere change, 

crystallization under high humidity was further observed using an in situ set-up (see Chapter 

Materials and Methods, 2.7.3). In the crystallization chamber used for in situ observations, the 

relative humidity increases faster, and stabilizes to a slightly higher humidity value (99% RH) 

than in the pot-crystallization chamber (as described in the Materials and Method, 2.2.3). This 

likely explains the slightly different morphology of the developed spherulites, which now 

appear as a dendritic, or ‘seaweed’, structures see Figure 108).159 

Figure 108 shows the evolution of a growing branch length over time. The crystal first grows 

rapidly, with a linear increase of the branch length through time (Figure 108.d), and then more 

slowly after about 50 min of exposure to humid air (break in the curve of Figure 108.d). At this 

time, a second crystal starts to grow (blue crystal indicated by the yellow arrow in Figure 108.b, 

and shown in the inset of Figure 108.b). After 9 hours of crystallization, the growth of the branch 

stops, as evidenced by the plateau on the curve in Figure 108.d. This corresponds to the time 

when neighboring spherulites contact each other, so that their growth is inhibited. One can 

guess that the observed slow down of the growth kinetics at about 50 min was due to first 

interactions with the neighboring growing crystals, through the depletion of the surrounding 

medium in ionique species.   

 

Figure 108 - Optical micrographs (in situ WBM) of the crystallization under high humidity 

(99%RH). Observations were made with the crystallization cell directly under the microscope. The 

observation time, given as the time elapsed since the cell was closed, is: a) 10s; b) 58 min; and c) 

9.5h. The dashed line in b) highlights the branch used for the growth measurement plotted in d) 

Inset of b): close-up that provides a better view of the crystal indicated by the arrow. Scale bar = 

100 µm. d) Branch length evolution as a function of time. The times when pictures a), b) and c) 

were taken are marked on the plot. 
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In summary, the temporal follow-up of the crystallization under high humidity thus reveals a 

dissolution process, which impacts a large number of amorphous discs and feeds the growing 

spherulitic crystals.  

 

 High relative humidity: structural features at the micro- and nanoscale. 

Spherulites were observed in SEM to get a better understanding of their structural organization 

and morphology (Figure 109). In Figure 109, two branched spherulites are visible in the center 

of the image, while a complete spherulite lies in the background, as highlighted by the blue 

arrow. The branches vary cyclically in thickness, in a step-like manner. The thickness increases 

with a gentle slope and then drops sharply, creating a step. When visible, the edges of the 

steps appear located at the same distance from the center for all branches of a given spherulite, 

as highlighted by the orange and yellow dashed lines in Figure 109. Similarly, the complete 

spherulite in the background has circular step-like height variation.  

 

Figure 109 - Electron micrographs (SEM) of spherulites resulting from the crystallization of an 

amorphous disc-patterned film kept under high humidity (98% RH) for 30 days. Orange and 

yellow dashed lines highlight the equal distance of the steps from the center on four different 

branches. Two branched sherulites are observed in the center. The blue arrow points to a space-

filling spherulite, exhibiting visible steps arranged circularly. For the observation, the sample was 

tilted by 70°. HE-SE detector, 5 kV. Scale bar = 20 µm. 

The center of the branched spherulite is not flat (Figure 109), but composed of circular bumps, 

whose size corresponds to that of the original amorphous discs (~5 µm). These bumps are 

further observed in Figure 110, along with remnants of the amorphous disc pattern everywhere 



CONTROL OF CRYSTALLIZATION: INCIDENCE ON CRYSTALLINE PROPERTIES 

148 

on the crystal surface (as highlighted by the red dashed ellipses in Figure 110.a). These discs 

are still nanostructured while the crystalline material between them appears very smooth 

(Figure 110.b,c). A corona, reminiscent of the one observed in heat-induced crystallization, is 

visible on the periphery of those discs (Figure 109.c). Finally, the space between spherulites is 

covered with disc imprints (highlighted by the green dashed lines in Figure 110). Those imprints 

correspond to ghosts of discs (Figure 110.d) that have likely been dissolved during the 

crystallization process. 

 

Figure 110 - Electron micrographs (SEM) of a spherulite resulting from the crystallization of an 

amorphous disc-patterned film kept under high humidity (98% RH) for 30 days. a) Large-scale 

view of the spherulite. Red dashed ellipses point to traces of discs at the surface of the spherulite. 

Green dashed ellipses point to disc imprints in between the crystals. HE-SE detector, 5 kV. Scale 
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bar = 20 µm. b) Disc shapes at the surface of the spherulitic crystal. The red dashed lines outline 

the discs edges. The nanostructure is different in the discs and in the space between them. HE-SE 

detector, 1 kV. Scale bar = 1 µm. c) Zoom-in view, corresponding to the yellow dashed rectangle 

in b). The red double arrow shows the radial extent of the corona that surrounds the discs. In-

Lens detector, 1 kV. Scale bar = 400 nm. d) Disc imprints in between the crystals. The disc edge 

is outlined by a green dashed line. In lens detector, 1 kV. Scale bar = 400 nm. 

When seen from the side, the spherulites appear as the superposition of two layers: a thin 

smooth layer on the top, covering a thick granular underlayer (Figure 111.a), the ensemble 

being approximately 700 nm thick. During crystallization, the top layer of the amorphous film 

was in direct contact with the humid atmosphere and was therefore more prone to dissolve. In 

some places, the tip of the long branches (i.e. longer than a few tens of microns) exhibits even 

more layers, as shown in Figure 111.b. There, each crystalline layer corresponds to a 

juxtaposition of platelets arranged radially (relative to the centre of the spherulite), the most 

distal one being ~700 nm thick. 

 

Figure 111 - Electron micrographs (SEM), taken with a tilt of 70°, of spherulitic branch tips. The 

film was kept at 98% RH for 30 days. a) Short branch (~10 µm) HE-SE detector, 5 kV. Scale bar 

= 2 µm. Inset: close-up of the area in the yellow dashed rectangle. HE-SE detector, 5 kV. Scale 

bar = 1 µm. b) Long branch (~100 µm) with a layered structure on the tip. HE-SE detector, 2 kV. 

Scale bar = 2 µm.  

The crystallized discs at the tip of the spherulite (mentioned in section 4.2.1 of this chapter) 

were further analysed with respect to their crystalline properties (Figure 112.a). As shown by 

WBM (Figure 112.a) and EBSD (Figure 112.b), they form large iso-oriented crystalline domains, 

co-oriented with the closest spherulite branch. The discs exhibit an advanced dissolution 

process, resulting in a strongly contrasted nano-granular structure (Figure 112.c). The 

nanostructure of these discs appears fully similar to that of the underlayer of the spherulite 

branches. As a matter of fact, no separation between the two nanostructures is visible, the 

former appearing as the continuation of the latter. 
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Figure 112 - Optical (WBM) and electron micrographs (SEM at 70°) of a film sample crystallized 

by exposure to a 98% RH atmosphere for 30 days. Iso-oriented discs crystallized in continuity 

with a nearby spherulite are visible. a) Large-scale WBM micrograph. Scale bar = 50 µm. b) EBSD 

image corresponding to the green dashed rectangle shown in c). Oriented calcite crystalline cells 

(in yellow) have been indicated in two places, namely at the branch tip and in the neighboring 

crystallized discs (the c-axis is the longest side of the hexagonal cell). Scale bar = 3 µm. c) SEM 

micrograph of the spherulite tip investigated by EBSD. HE-SE detector, 5 kV. Tilt angle 70°, Scale 

bar = 1 µm.  

In summary, the structural analysis of the crystals produced by exposure to a high relative 

humidity shows that the disc pattern is still very prominent, although a large number of 

amorphous discs have dissolved away. Discs are in particular embedded within the spherulitic 

crystals, which actually retain a granular nanostructure, reminiscent of the amorphous discs 

nanostructure.  

 

 Calcium chemical environment within the crystallized film 

STXM spectromicroscopy at the Ca L-edge was performed at the border of a spherulite branch. 

Owing to the crystal thickness (~ 700 nm), very little signal was received by the detector, often 

below the detector noise level. Still, areas could be selected that allow t2g and eg identification 

and peak splitting calculation. In particular, the thinner extremity of a branch (see Figure A. 23) 
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allowed the extraction of the peak splitting value. The peak splitting values were calculated to 

be 1.29 eV for the L3 d-orbitals, and 1.28 eV for the L2 d-orbitals, confirming the calcitic nature 

of the crystals (see materials and Methods 2.6.2 for reference values). 

 

 Quantitative investigation of crystalline properties  

Vectorial ptychography was again used to retrieve the crystalline properties of the sample at 

the microscale, now in the case of high-humidity-induced branched spherulites. Within a given 

spherulite, two kinds of domains were evidenced, which differ by their behavior regarding to 

the orientation of their neutral axes. They correspond respectively to the center and the branch 

tip of the spherulite, successively presented hereafter.  

In the very center of the spherulite, the retardance ( ∆𝑛𝑒𝑓𝑓 𝑑) is low (< 0.5 rad), while it 

increases toward the branches (Figure 113.a). A low retardance can result either from a thin 

sample or from a c-axis orientation normal to the image plan. However, analyzing the tilt ratio 

variation ( 
∆𝜙

𝜙𝑢
=

∆𝑛𝑒𝑓𝑓

𝑛0
 - see Materials and methods 2.5.1.2) in the central region, one observes 

that this ratio is rather constant, at least in the outermost part (Figure 113.b, red pixels). 

Therefore, the decrease in retardance observed in this central region is indeed due to a 

reduction in the sample thickness.  

In addition, the analysis of the fast axis orientation (Figure 113.c) shows that the center of the 

spherulite is made of domains of constant fast-axis orientation, which are angularly distributed 

around the center. Each domain exhibits a radial crystalline orientation, i.e. one of the neutral 

axes of the crystal is directed towards the center. The transition between domains can be either 

gradual (yellow-to-orange transition in Figure 113.c) or abrupt (dark-blue to pink in Figure 

113.c). The existence of these domains is further illustrated in the plots of the 

eigenpolarizations (108.e and .f), which additionnaly shows that the fast axis is everywhere 

roughly oriented towards the center.  
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Figure 113 - Vectorial ptychography analysis of the center of a spherulite. The film sample has 

been collected at the surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 18h of reaction, 

and left 14 days under high relative humidity (98%). a) Retardance (in radians, 0 to π). b) c-axis 

tilt ratio (a.u.). c) Fast-axis orientation (in degrees 0 to 180). d) Ellipticity (absolute value, 0 to 1). 

Note that in the low retardance regions, which appear as optically isotropic, no ellipticity can be 

measured. e) Composite map of retardance (coloration, in radian, 0 to π) and eigenpolarizations 

(black). f) Zoom from e) for better visualization of the eigenpolarizations. The red dashed lines 

separate iso-oriented domains. Scale bar = 20 µm. 

The eigenpolarizations show little ellipticity (~0.1, see Figure 113.d). The reduced ellipticity of 

the eigenpolarization is further illustrated in Figure 113.e. In this picture, the identification of 

the iso-oriented domains paving the center of the spherulite is easily achieved. The rapid 

change in orientation between iso-oriented domains is highlighted in Figure 113.f, where a 

dashed red lines indicate the limit between the neighboring domains. 

Then, vectorial ptychography analysis was performed on a branch emerging from the 

spherulite center (Figure 114) and revealed a slightly different crystalline behavior. First, at the 



CONTROL OF CRYSTALLIZATION: INCIDENCE ON CRYSTALLINE PROPERTIES 

153 

tip of the spherulite, the eigenpolarizations does not show a constant orientation but rather a 

radial orientation, as highlighted by the white dashed arrows that extend the direction of the 

eigenpolarizations. Therefore, the branch tip does not form an iso-oriented domain. On the 

contrary, the c-axis tilt ratio exhibits little variations (Figure 114.b), meaning that the tilt to the 

image plane is constant, like in the spherulite core. The ellipticity remains low (~0.1) in this part 

of the crystal (Figure 114.c), which confirms the crystal is well-ordered in depth. 

 

Figure 114 - Vectorial ptychography analysis of a branch emerging from the center of a 

spherulite. The film sample has been collected at the surface of a [Ca2+] = 20 mM, [PANa] = 20 

ppm solution after 18h of reaction, and left 14 days under high relative humidity (98%). a) 

Composite map of retardance (coloration, in radians) and eigenpolarizations (black). The white 

dashed arrows show the orientations of the fast-axis at the branch tip. b) c-axis tilt ratio (a.u.). c) 

Ellipticity of the eigenpolarizations. Scale bars: (a) = 20 µm. (b,c) = 50 µm. 

Information on the c-axis orientation could also be extracted from EBSD measurements. First, 

these measurements show a same c-axis orientation is shared by most spherulites (Figure 

115.a), as the light green to dark blue coloration is mostly present. The center of the spherulites 

shows no orientation in EBSD, most probably because is it not flat enough (as observed in 

Figure 109.a and Figure 110.a), making the measurement of the orientation difficult. The 
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orientation of the crystalline cell for these coloration are shown in Figure 115.b, which shows a 

spherulite with oriented hexagonal crystalline cells. The c-axis of the calcite crystal is oriented 

along the longest side of the hexagonal cell. In all branches, the orientation of the c-axis 

appears almost parallel to the sample plane. 

 

Figure 115 - EBSD measurement of branched spherulites. The film sample has been collected at 

the surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 18h of reaction, and left 30 days 

under high relative humidity (98%). a) Large-field view containing several spherulites. The 

coloration in the inset encodes the crystalline orientation. The orientation in the center could not 

be estimated owing to of a lack of flatness in this region. b) Zoomed-in view, crystalline cells 

represent the crystalline orientation on a given branched spherulite.  

 

Continuous films: Measurements made on continuous films show similar results. Figure A. 24 

illustrates the properties of a spherulite core following its growth under high relative humidity 

(98% RH). The core of the spherulite contains iso-oriented domains (delimited by the red lines), 

with a neutral axis oriented radially with respect to the center and a weak ellipticity (linearity of 

eigenpolarizations). 
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In summary, the spherulitic crystals grown under humid atmosphere are characterized by a fast 

axis which is everywhere, at least on average, radially oriented (i.e. towards the center of the 

spherulite). The central part of the spherulite is made of micron-sized iso-oriented domains 

that are azimuthally distributed and are separated by regions of rapides changes in the fast-

axis direction. Conversely, branch tips exhibit gradual changes of the fast-axis orientation. The 

tilt of the c-axis appears almost constant both at the center and in the branches, and likely 

thoughout the spherulite. Finally, the spherulitic crystal appears well-ordered in depth as the 

ellipticity is low everwhere in the structure. 

 

 Crystalline coherence length and defect distribution  

The nanoscale distribution of the crystalline defects in a film exposed to 98% relative humidity 

was retrieved by Bragg ptychography, in the same way as in sections 4.1.6 

The tip of the branch of a spherulite was investigated, resulting in the distribution of strain and 

tilts (Figure A. 25), which shows that the sample is composed of iso-strain and iso-tilt areas. 

Overall, the strain distribution has a standard deviation of 0.0049 while the tilt has a standard 

deviation of 0.44° for Tilt 1, and a range variation larger than 2.1° for Tilt 2 (Figure A. 26). Areas 

of iso-strains and and iso-tilts can be extracted. An iso-strain, iso-tilt domain, about 400 nm 

wide in the sample plane (and 800 nm along the thickness), is presented in Figure 116. 

 

 

Figure 116 - Iso strain, iso-tilt domain extracted from (Figure A. 12). The strain, Tilt 1 and Tilt 2 

maps are presented in the sample plane (xy) and along the sample thickness (z). Film crystallized 

at 98% RH for 14 days ([Ca2+] = 20 mM, [PANa] = 20 ppm, 16.5 h reaction time).  
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In this domain, the phase varies rapidly as seen on the 3D (Figure 117.a) and 2D (Figure 117.b) 

representations. The largest measured coherence length is about 100 nm (xy) and goes down 

to 50 nm in depth. In addition, the domain presents a large number of highly strained regions, 

propagating through the entire thickness (shown in gray in Figure 117.a).  

 

Figure 117 - Phase maps of the iso-strain iso-tilt domain presented in Figure 116. a) 3D phase 

map with scale (xyz)= 30 nm. The gray iso volumes correspond to regions of large strains (> 

0.005). b) 2D-cross section of the phase map.  

The Bragg ptychography analysis on a continuous film was performed at the center of a 

spherulite (Figure 118, “Continuous film”). The crystalline properties are different than the one 

retrieved for the disc-patterned film exposed to 98% RH (Figure 118, “Disc patterned film”). 

First, the iso-strain, iso-tilt domains are bigger (1.2 µm). Second, the resulting crystal has 

smaller strain (+/- 0.0011) and tilt (+/- 0.066°) standard deviation. The crystalline coherent 

domains are much larger, up to 600 wide nm, and 400 nm deep (in z). Finally, the high strain 

regions are observed at the periphery of the crystalline domain only (they were rather observed 

inside the domain in the disc-patterned film).  
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Figure 118 - Comparison of the crystalline properties, extracted from Bragg ptychography data, 

of a disc-patterned and continuous film crystallized at 98% RH. The crystalline properties (strain, 

Tilt 1 and Tilt 2), the coherence length (size of constant phase domains) and 3D phase maps with 

high strain (> 0.005 for the disc-patterned film, > 0.002 for the continuous film) are provided. 

 

Changing the relative humidity to induce crystallization allows controlling the shape and 

polymorph of the resulting crystals. At high relative humidity (98%), branched spherulites are 

formed, which are composed of a smooth layer (where the original disc pattern is still visible), 

and a nanostructured thick layer. The crystalline properties varies between the spherulite core 

and its branches although the crystalline orientation appears everywhere radial.  

 

 

4.3 INTERFACIAL CRYSTALLIZATION 

The monitoring of the film formation has evidenced that when left at the air-solution interface, 

most of the film dissolves away and that 3D crystals grow at the interface. After 5 days, very 

little film material remains at the air-solution interface. Still, some iso-oriented or 

polycrystalline domains are detected (Figure 119). The initially produced disc-like pattern is still 

observable in these domains. In particular, large patches of iso-oriented crystallized discs are 

visible, ranging from a few microns to a hundred microns in size. On continuous films, single- 

or poly-crystalline domains, 500 µm x 500 µm wide, that is, as large as the used silicon nitride 

membrane itself, could be sampled. The formation of these large iso-oriented domains will be 

presented below because of the similarity of these domains to biogenic crystals. However, due 

to time constraints, interfacial crystallisation could not be studied as thoroughly as the two 

transformation routes presented above, so that the reported observations relate to a small 

number of samples. Thus, further confirmation will certainly be needed before definitive 

conclusions can be drawn.  

 



CONTROL OF CRYSTALLIZATION: INCIDENCE ON CRYSTALLINE PROPERTIES 

158 

 Spectroscopic overview of the remaining crystals 

Both iso-oriented and polycrystalline patches are collected at the interface for a given synthesis 

(Figure 119.a and .b) The Raman analysis of the iso-oriented domains (Figure 119.a) reveals 

four vibration bands between 100 cm-1 and 1150 cm-1, at 1086, 712, 281 and 155 cm-1. These 

bands match well with the 1, 2, and two lattices bands of calcite, respectively (see Materials 

and methods 2.6.1.2 for reference values). In contrast, the Raman spectrum of the 

polycrystalline domain (Figure 119.b) presents the Raman bands of vaterite (1 = 1074 cm-1, 

1083 cm-1 and 1090 cm-1 ; Lattice bands = 297 cm-1 and 265 cm-1). 

 

Figure 119 - Optical micrographs (BM) and Raman spectra of both single-crystalline and 

polycrystalline interfacial 2D crystals. Lb stands for lattice bands. a) Single-crystal resulting from 

the interfacial crystallization of a film ([Ca2+] = 20 mM, PANa = 20 ppm) left at the interface for 

5 days. The peak positions, provided by deconvolution, are 1086 cm-1 for 1, 712 cm-1 for 4, 281 

and 155 cm-1 for Lb. b) Poly-crystalline structure resulting from the interfacial crystallization of a 

film ([Ca2+] = 20 mM, PANa = 20 ppm) left at the interface for 3 days. The peak positions, 

provided by deconvolution, are 1074 cm-1, 1083 cm-1 and 1090 cm-1 for 1; 297 and 265 cm-1 for 

Lb. Due to lack of signal, the 4 band of calcite and the other lattice bands are not visible.  
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Continuous film: The iso-oriented calcitic domains can be as large as the silicon nitride 

membrane (500 µm, Figure A. 31 and Figure A. 32). 

 

 Orientation of the calcitic domains 

Rotating a film sample exhibiting iso-oriented domains between crossed polarizers evidences 

that the crystalline orientation changes randomly from one iso-oriented region to the 

neighboring one. This is illustrated in Figure 120 where three iso-oriented domains are 

highlighted in green, and light up at different angles. At 0° (Figure 120.a), the domain in the 

middle appears fully dark, in contrast with the neighboring domains which transmit some light. 

At a 40° rotation angle (Figure 120.b), the domain in the middle strongly transmits light, while 

the neighboring domains are almost totally black. Since the domains have different extinction 

angles, they have a different orientation of their neutral axis.  

 

Figure 120 - Optical micrographs (BM) of a film sample crystallized at the air-solution interface. 

The film was produced by ADM synthesis ([Ca2+] = 20 mM, PANa = 20 ppm) and left at the 

interface for 5 days. a) Iso-oriented patches. The green dashed line contours three adjacent 

patches of different intensities. b) Iso-oriented patches similar to (a) but observed after a 40° 

rotation of the sample. The green dashed line contours three adjacent patches of different 

intensities. Scale bar  = 100 µm.  

 

 Structure at the nanoscale 

Using SEM, the usual and distinctive disc morphology is again observed at the microscale 

(Figure 121.a). At the surface, protrusions composed of oriented pillars are visible in some areas 

(Figure 121.a). Disc edges also appear to be decorated with pillars of same angular orientation 

as the surface pillars (as further detailed later in this paragraph in figure Figure 123). These 

pillars, although not faceted, are likely crystalline overgrowths, which reveal the actual 

crystalline orientation of the underneath or adjacent discs. 
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In parallel, at the nanoscale, the structure is loose (Figure 121.b) on the surface that was in 

contact with air. In some regions, a myriad of small crystals (20 nm in size), resembling 

rhombohedra, are sometimes visible (not shown here). Therefore, although the microscale 

morphology is preserved, an unusual surface nanostructure is observed, which was not present 

in the amorphous film. 

 

Figure 121 – SEM micrograph of a film sample. a Side view of the film crystallized at the air-

solution interface. The film was produced by ADM synthesis ([Ca2+] = 20 mM, PANa = 20 ppm) 

and left at the interface for 5 days. The visible side of the film was the one in contact with the 

atmosphere during the synthesis. Oriented pillars are seen on the surface (orange arrows), and 

between the discs (blue arrow). HE-SE detector, 2 kV. Scale bar = 10 µm. b) Structure of surface 

of the film. HE-SE detector, 1 kV. Scale bar = 400 nm . 

 

The investigation of the nanostructure in the film thickness was carried out by observing disc 

broken edges resulting from the film rupture owing to the vacuum in the SEM chamber. It 

revealed three layers of different nanostructural properties (Figure 122). A nano-granulated 

structure is present in both the top and bottom layers (Figure 122. b). The nanostructure of the 

inner layer in between is hard to identify as, depending on the observations, the inner layer 

appears to be either very smooth (Figure 122.a) or more nanostructured (Figure 122.c).  
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Figure 122 - Electron micrographs (SEM) of films produced by ADM synthesis ([Ca2+] = 20 mM, 

PANa = 20 ppm) and left at the interface for 5 days, observed at 70°. The upper side of the film 

was the one in contact with the atmosphere during the synthesis. Three different areas are 

investigated. a) HE-SE detector, 2 kV. Scale bar = 2 µm. b) In-lens detector, 1 kV. Scale bar = 400 

nm c) HE-SE detector, 2 kV. Scale bar =1 µm.  

The film thickness is not fully constant over the whole film sample, but rather exhibits some 

variations (from 500 to 600 nm), which seem to be due to a change in the external layer 

thickness and orientation of the pillar overgrowths. This is illustrated in Figure 123, where two 

areas of different thicknesses are shown, separated by a red dashed line. In the left part of the 

picture, the pillars, both on the edge of the disc, and on the surface, are oriented like the blue 

pillars drawn. The thickness of the granular external layer is about 100 nm. In the right side, no 

edge pillar can be distinguished on the disc broken edge, but those above on the surface are 

oriented to the left, and appear more tilted, like the orange drawn pillars. In addition, the 

granularity of the film on the surface is homogeneous. The interface between the two domains 

is sharp, as the thickness changes, and the external layer thins in the middle of a disc. 
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Figure 123 - Electron micrograph (SEM) of a disc-patterned film ([Ca2+] = 20 mM,  

[PANa] = 20 ppm) left at the air-solution interface for five days. The upper side of the film was 

the one in contact with the atmosphere during the synthesis. The red dashed line highlights the 

height difference between two domains. On both domains, elongated protusions are visible on 

the film side in contact with the atmosphere. Blue and yellow sketches highlight the tilt of the 

pillars for the left and right domains, respectively. Image is taken with the HE-SE detector at a 

voltage of 2 kV. Scale bar = 2 µm.  

 

In summary, these observations highlight a transformation that appears shape-preserving at 

the microscale. Dissolution processes could be at the origin of the change in the internal 

structure of the film, which now appears as a three-layer structure with a very compact inner 

layer surrounded by nanostructured top and bottom layers. Finally, crystal overgrowths, in the 

form of pillars, are often visible revealing the crystalline orientation of the adjacent discs. 

 

Continuous films: The film surface shows partial presence of a corona (smooth border in Figure 

A. 33.a, corona in .b). No rhombohedra or pillars are seen on the surface, the nanostructure on 

the surface is however loose, similarly to Figure 121.b. No cracks are visible on the continuous 

films crystallized at the interface, therefore, the nanostructure in the film thickness could not 

be probed.  

 

 Quantitative investigation of crystalline properties  

After 5 days at the air-solution interface, the crystallized film was not birefringent enough to 

allow vectorial ptychography (only noisy values of retardance, fast axis orientation and 

ellipticity could be obtained). On the other hand, ptychographic measurements could be 

carried out on a film with discs twice as large, and presumably thicker, likely owing to a slight 

change in the establishment of the gas atmosphere during the amorphous film synthesis. This 

one will therefore be presented hereafter. 
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The retardance ( ∆𝑛𝑒𝑓𝑓 𝑑) map shows two distinct main values, revealing a difference in the 

crystalline orientation and/or thickness (Figure 124.a).  

Nevertheless, the fast axis map (Figure 124.b) shows that the orientation of the optical axis in 

the sample plane is constant in the investigated domain. Moreover, the tilt ratio, 
∆𝑛𝑒𝑓𝑓

𝑛0
, (Figure 

124.b) is also constant. Therefore, the crystalline axes have a constant orientation throughout 

the sample (assuming that n0 does not change over the sample), which means the sample is 

fully iso-oriented. The observed retardance variation is therefore likely due to a thickness 

change. 

Finally, the ellipticity of the eigenpolarizations is rather weak in the sample (~0.1, Figure 124.d), 

which demonstrates that the crystalline orientation is very homogeneous across the film 

thickness, and that the whole sample forms a “single-crystal”, i.e. it is iso-oriented both in the 

plane and across the film thickness. Information regarding the fast-axis orientation and the 

eigenpolarizations ellipticity have been superimposed to the retardance map in Figure 124.e. 

To conclude, the investigated crystal is a single-crystal, highly ordered in depth and presenting 

abrupt thickness jumps.  
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Figure 124 - Vectorial ptychography analysis of a film sample crystallized at the air-solution 

interface. The film sample has been collected at the surface of a [Ca2+]  = 20 mM [PANa]  = 

20 ppm solution, after 28h of reaction. a) Retardance in radians (0 to π). b) Fast-axis orientation 

in degrees (0 to 180). c) c-axis tilt ratio (a.u) d) Ellipticity of the eigenpolarizations (0 to 1; 0 

corresponds to a linear polarization and 1 to a circular one). e) Composite map of retardance 

(coloration, in radians, 0 to π) and eigenpolarizations (black). Eigenpolarizations are plotted only 

when the retardance is above 0.5 radian. a,b,c,d = 20 µm; e = b: 5 µm 

Continuous films: the continuous films crystallized at the interface for 5 days show too little 

retardance for vectorial ptychography analysis to be performed.  

 

 Crystalline coherence length and defect distribution 

The distribution of the crystalline defects at the nanoscale, was retrieved by Bragg 

ptychography in the same way as in section 4.1.6.  
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The maps of strain and tilts, retrieved for the disc patterned film crystallized at the air-solution 

interface (Figure A. 34), show that the sample is composed of large iso-strain, iso-tilt domains 

(1.5-2 m wide). An iso-strain, iso-tilt domain, 2 µm large (xy), and 400 nm deep (z) is shown 

in Figure 125. 

On the whole investigated area, the strain presents a standard variation of +/- 0.0010 and a tilt 

standard variation of +/- 0.092° (Figure A. 34). Therefore, the sample crystallized at the interface 

has the smallest strain and tilt values among all examined samples (see the summary of results 

for comparison, section 4.4).  

 

Figure 125 - An iso-strain iso-tilt domain extracted from Figure A. 12. The strain, Tilt 1 and Tilt 2 

maps are presented in the sample plane (xy) and along the sample thickness (z). The film sample 

was collected at the surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution, after 5 days of 

reaction.  

Once again, the phase in this iso-strain, iso-tilt domain can be investigated. It is plotted in 

Figure 126, where constant phase values are observed over regions as large as 700 nm (bright 

green region), and 250 nm in depth. The high strain regions, corresponding to crystalline 

defects, are shown in gray in Figure 126, and are located at the periphery of the domain. 

. 
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Figure 126 - Phase map of the iso-strain iso-tilt domain presented in Figure 125 a) 3D phase with 

scale (xyz) = 100 nm. The gray iso volumes correspond to regions of large strains (> 0.001). b) 

2D cross-section of the phase map.  

The analysis of the continuous films grown at the interface shows similar results, as presented 

in Figure A. 35, Figure A. 37, Figure A. 39 and Figure 127. 

 

Figure 127 - Comparison of the crystalline properties, retrieved from Bragg ptychography data, 

of a disc-patterned (scale (xyz) = 100 nm) and continuous (scale (xyz) = 100 nm) film, crystallized 

at the interface. The crystalline properties (strain, Tilt 1 and Tilt 2), the coherence length (size of 

the iso-strain iso-tilt domain) and the 3D phase map with high strain regions (> 0.001 for the 

disc patterned-film, > 0.002 for the continuous film) are shown. 
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Structures crystallized at the air-solution interface represent a small part of the original 

amorphous film. Some of them behave like single crystal, up to 500 µm in size, under polarized 

microscopy. The detailed analysis of their crystalline properties show that they are formed of 

large iso tilted and iso-strain areas (1.5 to 2 µm), which exhibit a remarkable coherence length 

of up to 800 nm. 

 

 

4.4 SUMMARY OF THE RESULTS 

Results presented in this chapter are summarized in Table 11, for both disc patterned ([Ca2+] = 

20 mM; [PANa] = 20 ppm) and continuous ([Ca2+] = 100 mM; [PANa] = 50 ppm) films, with 

differences between the two highlighted when existing. As crystallization at the interface was 

investigated later in my thesis, fewer analytical data are available. These results will be discussed 

in the following section. 
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Table 11 - Summary of the results presented in this chapter.  
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4.5 DISCUSSION  

The results reported in this chapter allow us to discuss several aspects of the amorphous-to-

crystal transformations. First, the physico-chemical mechanisms underlying the different 

crystallization pathways will be described, based of the study of the micro- and nanometric 

morphological changes during crystallization. Then, the heterogeneity of the crystallization 

process within a given amorphous film is analyzed and the reasons leading to this 

heterogeneity are discussed. Finally, a comparison between the crystals synthetically produced 

and the biogenic crystals is carried out, considering in particular the crystalline properties as 

determined by Bragg ptychography. 

 

 Heat-induced amorphous-to-crystalline transition 

The heat-induced transformation retains the morphology of the amorphous film at all scales. 

At the micro-scale, the discs are preserved in the disc patterned films (Figure 94), still exhibiting 

a corona, like in the amorphous state. In continuous films, the few discs observed in the 

amorphous film (Figure 65.b), reminiscent of the liquid-liquid phase separation that initiated 

the film formation, are still visible after crystallization. At the nanoscale, a dense arrangement 

of particles is observed in both cases (Figure 98 and Figure 67.b), although the determination 

of the particle size is difficult using SEM.  

Thus, the heat-induced crystallization of the ACC films appears shape-preserving. It is in line 

with the literature, which depicts the ACC crystallization by heating as a solid-solid 

transformation characterized by a short-order structural rearrangement,69 which preserves the 

nanostructure for temperatures above 160°C.93 Still, the dehydration process that changes 

hydrated ACC into calcite, has been shown to induce a small compaction of the nanostructures, 

this way increasing slightly the surface roughness61 and generating pores. These observations 

are in full agreement with our observations of a more visible surface nanostructure after 

heating and with the appearance of pores Figure 95. 

As detected by Bragg ptychography, ACC crystallization at 300°C generates small (200 nm 

wide) iso-strain iso-tilt domains, meaning that multiple crystal nuclei are formed within the film 

(Figure 94), in agreement with a fast crystallization process.  

The preservation of an ACC layer after heating at 300°C for 3h is more puzzling owing to the 

reported data characterizing the dehydration and crystallization in air,59 which show that such 

a temperature induces the transformation of the ACC regardless of its initial hydration state. 

However, the thickness of this layer was roughly estimated to 1 to 2 nm, by comparing the L2 

post-edge optical density to the one of a nanometer-thick CaCO3 layer (considering the density 

of calcite, 2.71 g/cm3). Such a thin layer could indeed be thermodynamically stable81 or be 

stabilized by a high polymer content (degradation of PANa only occurs at about 400°C).160  
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 Humidity-induced amorphous-to-crystalline transition 

The extent of the morphology changes is much more important in the humidity-induced 

crystallization, and depends on the relative humidity rate imposed during crystallization. The 

nascent crystalline phase always takes the form of a spherulite. The crystal propagation then 

takes place with a more or less important conservation of the original disc pattern. At low 

relative humidity (33%), the disc pattern is preserved and can be observed by birefringence 

microscopy (Figure 106.a). At intermediate relative humidity (75%) (Figure 106.b), the crystals 

first grow while preserving the disc morphology, and then generate elongated branches that 

encompass the discs. At high relative humidity (98%), the discs appear fully embedded within 

the spherulitic structure, and cannot be detected by birefringence microscopy anymore, but 

only by transmission (Figure 107) or electron microscopy (Figure 109). Only a few isolated discs 

are visible, which show clear signs of a dissolution process (Figure 112), further confirmed by 

the disc imprints surrounding the spherulites everywhere (Figure 110). Therefore, it is quite 

clear that crystallization under high humidity (98% RH) relies on a dissolution-crystallization 

process, which involes species diffusion over large distances, up to several microns, contrarily 

to heat-induced crystallization. 

In our experiments, the physisorbed water layer that forms on top of the ACC film allows the 

diffusion of ions, albeit in a limited way due to the high viscosity within this layer. These 

conditions favour the formation of spherulites, which are polycrystalline structures typical of 

diffusion-limited crystal growth,161 arising during non-equilibrium crystallization at high 

supersaturation or in a high viscosity medium (Figure 128). While studying the crystallization 

of inorganic materials in a gel matrix, Oaki et al. demonstrated the influence of the driving force 

on the crystal morphology97. At low ion diffusivity (high medium viscosity), or high 

supersaturation, spherulites are observed, while at high ion diffusivity (low viscosity), or low 

supersaturation, single crystals form. Between these two extremes, intermediate morphologies 

can be observed, such as ordered single-crystalline or poly-crystalline dendrites. These 

concepts are also relevant to 2D spherulitic growth, for which Tegze et al.162 have shown that 

supersaturation and diffusivity direct faceted (oriented) or non-faceted (non-oriented) 

crystallization. In our experiments, one can note that when the relative humidity rate rises 

faster, and is slightly higher (99% RH) than in the standard conditions, the observed 

morphology evolves from spherulites to polycrystalline seaweed structures, that indeed are 

shown to appear at lower viscosity than spherulites. 
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Figure 128 - Variety of spherulites morphologies observed in polymeric systems. From Gránásy 

et al.163 

The core of the observed CaCO3 spherulite, at 98% RH, is divided into iso-oriented domains 

with a mean radial orientation, which often exhibit abrupt orientational changes between them 

(Figure 110). At the tip of the branches, the crystalline orientation is still radial but now varies 

gradually with the azimuthal position, as expected for spherulites. These observations are in 

agreement with the features of type 1 spherulites, as defined by Gránásy et al.,163 which develop 

radially from a transient single- or polycrystalline nucleus (as opposed to type 2 spherulites 

which develop from a thread-like fibre). However, most of the CaCO3 spherulites resulting from 

humidity-induced crystallization do not reach an isotropic shape (yet, fully-developed 

spherulites can be detected occasionally – see the blue arrow in Figure 109), but rather show a 

limited number of branches, likely owing to a limited crystallization process. Finally, the size of 

the spherulite is expected to exhibit a linear growth regime at early times,164–166 similarly to 

what was evidenced for the seaweed morphology (Figure 108).  

Spherulitic crystallization is a complex phenomenon characterized by multiple secondary 

nucleation events at the crystallization growth front, owing to static (impurities) or dynamic 

(quenched orientational defects) heterogeneities. These nucleation events result in non-

crystallographic branching of the developing crystal (tip splitting) and finally generate a great 

diversity of space-filling morphologies.167 However, in the experiments reported here, the 

observed spherulites exhibit open morphologies, most of the time with a few branches only 

emerging from the center, as well as with cyclic variations of the thickness along the branches 

(reported above as step-like variations). These specific features likely result from a coupling 

between the dissolution process, essential for the release of ions needed to feed the growing 

crystal, and the spherulite formation. If this dissolution process is too slow with respect to the 

kinetics of crystallization, the crystallization front is periodically arrested due to the depletion 

of free ions in the surrounding medium (this corresponds to the top of the steps, where the 

branch is thickest and where almost no dissolution had affected the underneath discs), and 

resumes its propagation after the dissolution has released sufficient ions in the surrounding 

medium (bottom of the steps, where a significant dissolution has occurred, thus allowing again 

crystal growth).  

While the development of the spherulite final morphology occurs within 2.5 days, a second 
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crystallization process occurs in parallel which lasts over a much longer period of time: indeed 

uncrystallized discs, which are still visible between crystals after 2.5 days (Figure 107), 

completely disappear in the course of the next weeks, while the crystal shape and dimensions 

remain identical. Thus, the dissolution of the uncrystallized discs feed a re-precipitation process 

that happens between the discs. This filling process seems to occur at the edge of the spherulite 

only, and not in the centre, where the discs remain therefore well differentiated and easy to 

distinguish. Crystallization under high-humidity atmosphere should therefore be explained 

considering this continuous dissolution process along with the observed preservation of some 

discs, embedded within the crystals, which retain their nanostructure throughout the 

crystallization process. Based on these two observations, a hybrid mechanism for crystallization 

is proposed. As a first step, a dissolution/crystallization process takes place in the physisorbed 

water layer at the surface of the ACC film, leading to the formation of a 2D spherulite on top 

of the disc assembly, owing to the low ion diffusivity and high supersaturation index in the 

medium. This process relies on the dissolution of some nanostructured ACC discs. 

Simultaneoulsy, the discs underneath the spherulitic 2D crystals start to crystallize in an iso-

oriented manner with respect to the spherulite, following a solid-solid, shape-preserving 

transformation. This leads to the observed nanostructured spherulitic crystals, with disc still 

visible. The dissolution-crystallization process remains active beyond this solid-solid phase 

transition. It then affects the still amorphous discs, at the periphery of the spherulite, this way 

releasing ions which precipitate into a smooth crystalline material, devoid of nanostructure, 

between the crystallized discs, owing to the now much lower supersaturation in the medium.  

In conclusion, crystallization under high-humidity atmosphere implies two related, although 

spatially-differentiated, crystallization mechanisms, namely dissolution-crystallization and 

solid-state transformation. Such an hybrid mechanism has already been hypothesized for the 

crystallization of ACC particles in air,59,95 but could not be demonstrated in the absence of 

specific features of the dissolution/reprecipitation process. The results presented here are 

therefore fully original as they clearly demonstrate such a hybrid mechanism, which partially 

preserves the micro- and nanoscale structure of the native ACC film. 

 

 Interfacial amorphous to crystalline transition 

The underlying mechanisms of the interfacial crystallization are more difficult to determine due 

to a less thorough study of this transformation, which in particular could not include any 

temporal study of the crystallization process. However, it is reasonable to assume that the 

interfacial crystallization is, like the humidity-induced crystallization, a surface-driven 

crystallization. One can actually imagine that crystallization starts with a nucleation event at the 

bottom surface of the film, in contact with the solution, either as a result of a dissolution-

crystallization event or from the attachement of a bulk crystal nucleus. The small number of 

nucleation events (even more limited in the 100 mM/50 ppm synthesis), leading to the 

observed large iso-oriented domains, supports this scenario as the supersaturation of the 

solution at this stage of the synthesis is likely quite low. A crystallization starting from the top 

side of the film is unlikely, as it would result, like in the humidity-induced crystallization, in 

spherulitic morphologies. Finally a purely solid-solid crystallization starting from the core of 

the film and propagating outwards is also improbable as it would require the dehydration of 

the amorphous state, which is kinetically hindered at room temperature owing to a high 
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activation energy.59  

The proposed mechanism is compatible with the observed microscale shape retention during 

interfacial crystallization. Indeed, the discs are still visible after crystallization. However, they do 

not show a corona anymore and the film thickness now shows a three-layer structure, the inner 

layer being much smoother than the original amorphous nanostructure or than the bottom 

and top layers, which appear quite granular. The difficulty to image by SEM the nanostructure 

could reveal a much more compact and space-filling nanostructure, or a partial disappearance 

of the nanostructure due to nanoparticle fusion. The nanostructure of the top and bottom 

layers is somehow similar to the one of the amorphous layer, although it could not be precisely 

characterized. 

In parallel, the existence of pillars at the edges and on the top surface of the discs, likely points 

to a dissolution/crystallization phenomenon occurring before film sampling. Parts of the film 

were seen to sink into the solution, which may favor such a dissolution/crystallization process. 

It is interesting to note that the tilt, with respect to the film surface, of the pillars (both at the 

edges of the discs and at the film surface) remains constant over the iso-oriented domains 

(Figure 123), likely revealing the local crystalline orientation of the underlying film. 

The thickness of the of the film changes from one domain to another (Figure 123), meaning 

that it depends on the local orientation of the film. This supports the hypothesis of a partial 

dissolution of the discs, of variable amplitude according to the local crystalline orientation, just 

like what happens for single crystals whose crystallographic faces present different interfacial 

energies, and thus solubility.168 Moreover, it has been reported that the unstable crystal faces 

of calcite undergo dissolution and epitaxial growth when exposed to solution64 in agreement 

with our observations. Therefore, a dissolution-recrystallization process likely follows the initial 

crystallization of the film and modifies its structural features without apparently affecting its 

crystalline properties. The inner layer of the film would therefore correspond to the unaltered 

crystalline structure resulting from the first crystallization of the film only. Yet, in the case of 

disc patterned films, we could show by vectorial ptychography that the crystalline film has a 

very low ellipticity, meaning that the recrystallization process has not induced disorder in the 

film thickness.  

The crystallized domains at the interface have a high quality of crystal organization over long 

lateral distances (iso-oriented domains of several tens of µm in WBM), Pseudomorphic 

transformation of interfacial ACC films has been reported in the literature in both iso-oriented64 

and spherulitic crystals.105 In the case of spherulitic crystals, the nanostructure at the surface of 

the film was shown to be the same as that of the amorphous film. In our case, the analysis of 

the nanostructure is not relevant on the surface, due to the dissolution process. Unfortunately, 

the analysis of broken edges did not allow us to determine the nanostructure of the crystalline 

inner layer, so that although highly probable the hybrid mechanism cannot be proven 

completely. To prove this scenario, it would be necessary to sample the crystalline film at 

shorter times, before dissolution occurs, or to characterize the nanostructure of the inner layer 

in a FIB cut of the crystal.  

In summary, crystallization at the interface corresponds to a transformation which is shape-

preserving at the microscale only, and produces micron-sized iso-oriented crystalline domains, 

likely by combining a dissolution/reprecipitation process on the side of the ACC film in contact 
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with the solution, and a solid/solid transformation that ensures the homoepitaxial 

crystallization of the rest of the film. A more detailed characterization of the mechanism would 

require a temporal follow-up of the film structure evolution.  

 

 Heterogeneities in the amorphous film: influence on the crystallization 

The influence of the environmental conditions has been addressed in the previous section and 

the mechanisms at work for each type of crystallization have been determined. However, the 

response of the ACC film to the crystallisation conditions is not homogeneous over the whole 

film, which likely reveals the heterogeneous nature of the amorphous film itself. For instance, 

upon exposure to 300°C, part of the film fails to crystallize (Figure 100, STXM), while, upon 

exposure to air moisture air moisture, some of the discs stay optically isotropic up to 7 days, 

meaning that they have not crystallized.  Finally, the interfacial film can be dissolved in favor of 

3D crystal growth, or it can retain its microscopic morphology and form either 2D vaterite 

spherulites or 2D calcite iso-oriented domains. Differences in products obtained when 

exposing the same film to the same crystallization conditions are likely due to heterogeneity 

in the original film. 

In the case of the heat-induced crystallization, the observed heterogeneities in response may 

result from the uneven hydration level of the ACC film, or from a heterogeneous polymer 

distribution within the film. Indeed, the ion mobility is known to influence the activation energy 

of the crystallization, so that a lower hydration rate59,79, or a larger amount of polymer, increases 

this energy barrier,69 making more difficult for the film to crystallize. In addition, it has been 

shown that this activation energy decreases with the size of the ACC particles. Thus, the uneven 

film thickness, arising from the heterogeneous particle aggregation during the amorphous film 

formation, could also explain the retention of the amorphous material, despite heating, where 

the film is thinner (Figure 100). 

When crystallization follows a dissolution process, the local supersaturation, resulting from ACC 

solubilization, influences both the polymorph selection and crystal morphology. The solubility 

will depend on the local composition (polymer content) of the amorphous calcium carbonate 

(see 1.2.4). Then, a higher supersaturation will lead to both an increase in polycrystallinity,97 

and to the preferential crystallization of vaterite169. Thus, the difference in polymorph selection 

and morphology observed in humidity-induced crystallization within the film may again 

originate from a spatially heterogeneous water and polymer content. 

 

 Comparison to Pinctada margaritifera crystalline properties.  

As described in the introductory chapter (1.4.2), the biomineral prisms that compose the outer 

part of the oyster Pinctada margaritifera shell are iso-oriented crystals108 of calcite.7 They are 

formed by an assembly of mineral layers (500 nm-thick)16 made of a compact arrangement of 

nanometric grains.170 Similarly, the crystals resulting from the chosen conditions in this work 

all show iso-oriented calcite domains and whose detailed crystalline properties have been 

accessed by Bragg ptychography.  
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The prisms of juvenile Pinctada margaritifera shell edges are thin enough39 to be analyzed with 

vectorial and Bragg ptychography approaches. First, quantitative analysis of the optical 

properties of the prisms confirms their iso-orientation.125 3D orientation mapping of the fast 

axis orientation shows that inside a prism (up to 20 µm in diameter) the orientation of the c-

axis of the crystal remains constant, both in the sample plane and in depth. Moreover, the 

ellipticity of the eigenpolarizations is low.16 Similar observations are made in the case of crystals 

crystallized at the interface, (Figure 124), by heating (Figure 101, although the ellipticity is 

slightly larger) and in the humidity-induced spherulites, yet in the core only (Figure 113). 

Nevertheless, it must be noted that the radial orientation of the iso-oriented domains in the 

spherulites core is not found in the calcitic prisms. 

In parallel, Bragg ptychography characterization of the shell prisms have revealed iso-strain 

iso-tilt domains in the crystal.16 Typical iso-strain and iso-tilt domains are 1.4 µm long and 

correspond to a strain distribution characterized by a standard deviation of +/- 0.002 relative 

to a reference calcite crystal. The tilt range is around 1.2° (Figure 129) and the coherence length 

is of 400 nm or more (Figure 130). These typical strain value and coherence length are again 

similar to those measured in interfacial crystallization (continuous film or not) and in the core 

of the spherulites (continuous film) (see summary of results). However, the tilt range of the 

synthetic crystals is inferior to those of the biogenic model. This difference could be explained 

by the geometrical constraints in the biogenic crystals (resulting from the growth on the flexible 

periostracum for example), which could enhance the tilt distribution.  

Finally, the samples that have crystalline properties (micro and nanoscale) corresponding to 

the biogenic crystals are those grown at the air-solution interface.  
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Figure 129 - Bragg ptychography on a Pinctada margaritifera calctic prism. A) Volume 

investigated in the prism. B) 3D map showing the tilt distribution in the probed volume (in 

degrees). C) 3D map showing the strain distribution in the probed volume. From Mastropietro et 

al.16 
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Figure 130 - 3D Bragg ptychography on a Pinctada margaritifera calctic prism. The phase (in 

rad) is shown in 3D in the investigated volume. Areas of continuous coloration (ex. dark blue) 

show a coherence length of 400 nm. Scale bar in 3D: 200 nm. From Mastropietro et al.16 

 

In conclusion of this chapter, the control of the crystallization conditions of a calcium carbonate 

film synthesized by the PSLP route effectively allows the control of the polymorph selection, 

morphology and polycrystallinity. Surprisingly, the micron disc pattern is maintained in all three 

crystallization pathways considered here, highlighting the robustness of the initial amorphous 

calcium carbonate morphology during crystallization. The preservation of the microscopic 

morphology does not prevent the production of crystals with different overall morphology and 

crystal properties. Interfacial crystallization is the shape-preserving transformation that leads 

to synthetic crystals closest to biogenic crystals.  
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5 CONCLUSIONS AND PERSPECTIVES  

In this concluding chapter, the main results will be summarized, and ideas for further 

development of the model will be proposed. Finally, perspectives for deepening the 

understanding of the biogenic system using model syntheses will be discussed.  

 

5.1 MINERALIZATION PATHWAY IN THE MODEL SYSTEM: FROM FREE IONS TO 

CRYSTALLINE LAYER.  

The gas diffusion synthesis implemented in this study yields two-dimensional calcium 

carbonate crystals through intermediate liquid and solid amorphous states to crystallization. 

During the synthesis, an amorphous calcium carbonate film is formed at the air-solution 

interface before being consumed by crystallization. The crystallization pathway can be 

interrupted to determine the mechanisms of the amorphous film formation, or drive its 

crystallization by various ex situ mechanisms. 

It has been shown that amorphous films with controlled morphologies can be produced in a 

reproducible manner by removing the film from the air-solution interface prior to 

crystallization. Depending on the initial composition of the solution, films are obtained as a 

discontinuous assembly of micron-sized discs (~5 µm) or as continuous films. Increasing the 

amount of calcium leads to a densification of the film, while increasing the amount of polymer 

produces a widening of the interface structures. In order to obtain continuous films, sufficient 

amounts of calcium (>50mM) and polymer (50 ppm) must be used. However, the presence of 

residual micron-sized discs embedded in the continuous films suggests that a common 

mechanism is at work in the formation of the amorphous films. Therefore, the synthesis 

conditions leading to discontinuous disc-patterned films were chosen as reference conditions 

to determine the formation mechanisms that lead to the production of amorphous 

nanostructured films of 500-700nm thickness.  

We could follow the evolution of the interfacial discs during the first hour of reaction, and this 

way show that the discs result from an interface-driven liquid-liquid phase separation occurring 

via spinodal decomposition. The chemical quench induced by ammonia dissolution actually 

results in a rapid pH increase and creates the conditions for the liquid-liquid phase separation. 

The shape of the discs, with thinner edges and thicker center (4 nm at the edge, 5 nm in the 

center) are evocative of liquid droplets that partially wet the surface of the solution. In addition, 

the observed double emulsion patterns are suggestive of a very low surface tension and 

unambiguously point to a demixing process that occurs via a spinodal decomposition process. 

The first stage of film formation therefore occurs via an LLPS process at the interface. This 

defines a 2D motif that subsequently thickens by irreversible aggregation of bulk amorphous 

nanoparticles. 

Diffusion, and then convection, enables bulk nanoparticles to aggregate on the pre-established 

motif. Nanoparticle aggregation is strongly enhanced by the appearance and development of 

convection rolls in the solution, which lead to a thickening propagation front within the film. 
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At the end of the formation process a disc-patterned film, made of densely packed 

nanoparticles, a few hundred nanometers thick, is formed. Such a nanostructured disc-like 

morphology is ideal for studying the crystallization process of an amorphous calcium 

carbonate layer whose structure39 and thickness41 are similar to those of Pinctada margaritifera 

growth layers. By stopping the reaction before the amorphous film crystallizes spontanesouly 

at the interface, one can trigger the ex situ crystallization of the film following two different 

pathways, namely heat-induced and humidity-induced crystallization pathways. A spontaneous 

crystallization of the ACC film at the air-solution interface was also considered, as it can lead 

to the development of large iso-oriented 2D calcite crystals.  

The disc pattern is retained after crystallization, at least to some extent, regardless of the trigger 

used to induce crystallization (heat, high relative humidity, or aging at the interface). In two 

conditions, namely heat exposure and aging at the interface, the crystals keep the microscale 

morphology of the ACC film. In contrast, under high humidity, the discs appear embedded in 

spherulitic structures and therefore do not define the crystal overall morphology like in the two 

other crystallization processes.  

First, under heat, the amorphous-to-crystal transition takes place via a solid-solid phase 

transition. The discs exhibit a compact nanostructure, similar to the one of the original 

amorphous discs. Iso-oriented domains, independent of the film morphology, up to 20 microns 

in size, are identified by wave plate-assisted birefringence microscopy. Vectorial ptychography 

shows that some disorientation exists in the crystal depth. With Bragg ptychography, we have 

identified that this transition gives rise to the largest relative strain in the crystal (+/- 4.0 x 10-

3), and to the smallest coherence length (200 nm). Crystallization by thermal initiation 

transforms the amorphous films into small calcite domains with significant strain.  

Then, under high humidity, crystallization occurs by a dissolution/crystallization mechanism 

followed by a solid-solid phase transition. Discs are still visible on SEM micrographs of the 

spherulite. However, different nanostructures are present in the discs and the filling between 

them. Our observations indicate that the discs crystallize by iso-oriented growth from the 

already crystallized layer in contact with the humid atmosphere, and a dissolution-

crystallization process fills the empty space between the discs. Vectorial ptychography shows 

that there is no disorientation in the depth of the crystals, and that the distribution of 

orientation of the fast axis depends on the growth stage of the spherulite. Thus, while the core 

consists of iso-oriented domains, the branch tip shows a spatially variable crystalline 

orientation. Bragg ptychography measurements, which were performed on different parts of 

the spherulite, could highlight some differences in the crystalline properties. However, in the 

core of the spherulite, where the disc morphology is well preserved, the coherence length is 

large (1 µm), and the relative strain is small (+/- 1.0 x 10-3).  

Finally, when left at the air-solution interface, the ACC film undergoes a pseudomorphic 

crystallization at the microscale. The film retain the disc assembly morphology, and iso-

oriented domains, several hundred microns long, are visible (WBM). However, at the nanoscale, 

the corona surrounding the discs has disappeared and the film now has a three-layer structure 

with the top and bottom layers exhibiting a very different nanostructure than the internal layer. 

In fact, no nanostructure associated with the inner layer could be clearly evidenced by SEM, 

which means that if such a nanostructure exists, it must correspond to a very compact assembly 

of nanoparticles. The surface of the film show signs of dissolution/recrystallization, with 
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features that apparently depend on the crystalline orientation of the underlying discs. Vectorial 

ptychography shows no disorientation within the crystal depth, and a constant fast axis 

orientation of the crystals over distances up to 100 µm. Bragg ptychography measurements 

show that the crystalline domain coherence length is large (up to 2 µm), and that the strain is 

mall (+/- 1.0 x 10-3). The interfacial crystallization thus produce large iso-oriented domain 

hundreds of microns in length, with small crystalline deformations.  

As a conclusion, all three crystallization conditions lead to the conservation of the initial disc 

pattern, at least to some degree. Nevertheless, the resulting crystals have different crystalline 

properties, which can be compared to those of biogenic crystals like Pincatada margaritifera 

oyster shell. The crytals grown a the interface and the core of the spherulites have crystalline 

properties closer to those of the biogenic crystals (iso-orientation, coherence length and 

strain/tilt values). Here, the humid environment favors the ACC film dissolution and the slow 

crystallization process allows the ACC to dehydrate before crystallization, in contrast to what 

happens in heat-induced crystallization where crystallization is very rapid (1 min). This slow 

process is likely a prerequisite to obtain “biogenic-like” crystals. These conclusions regarding 

the syntheses led us to re-examine the relevance of our model syntheses to reproduce the 

mechanisms at work in calcareous biomineralization. 

 

5.2 RELEVANCE OF THE CRYSTAL GROWTH MODEL WITH REGARD TO BIOMINERALIZATION 

In this section, the relevance of the growth scenario (see below), derived from the analysis of 

the model syntheses, to describe the processes of calcareous biomineralization will be 

assessed. The biomimetic character of the chosen environmental conditions, the occurence of 

a liquid/liquid phase separation, the possibility of convective motions in the biological 

mineralizing fluid, and finally the impact of an amorphous transient will be successively 

discussed.  

Our results on ADM-based CaCO3 syntheses indicate that it is indeed possible to induce 

calcium carbonate precipitation in a way which is shape-perserving at both the micro- and 

nanoscale, and delivers crystals with crystalline properties very similar to those of the 

biomineral. This minerallization pathway involves the build-up of a 2D amorphous pattern and 

its thickening by bulk nanoparticle aggregation, followed by a crystallization process 

combining localized dissolution/recrystallization and solid-solid transformation of the 

nanoparticle assembly, so as to ensure the formation of iso-oriented domains of micrometer 

size.  

The choice of ADM-based syntheses was made because these syntheses, when carried out in 

the presence of polyelectrolyte, allows the production of crystalline films that share some 

characteristic features with calcareous biominerals. However, these syntheses are associated 

with a strong pH increase, up to values of 9.5-10, i.e. much higher than the physiological pH 

that ensures the preservation of biological proteins in their native state. Accessing the pH and 

ionic concentration values during the biomineralization process has proved difficult owing to 

the limited space available and the potential disturbance induced by the measurements. 

Nevertheless, a recent study on the ocean quahog (a mollusc) has determined the spatial 

variations of pH, as well as calcium and carbonate concentrations within the extra-pallial fluid 
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(EPF).27 These experiments show that the pH remains around 7 most of the time, but that 

increases in pH occur sporadically. During these events, the pH near the mantle rises to 9.5, 

while the pH at the shell remains unchanged. Along with the pH increase, the calcium 

concentration rises. Dissolved inorganic carbon also varies in the EPF, although the dynamics 

of this change was not as well characterized. Therefore, the conditions used in our study, which 

trigger a liquid-liquid phase separation, could match with those prevailing during 

biomineralization.  

Liquid/liquid phase separation (LLPS) has already been highlighted in different biological 

systems as a way to compartimentalize cells and create membraneless organelles (to achieve 

filtration or concentration buffering for example).171 In calcium carbonate biomineralization 

however, there is no direct evidence of an LLPS to date, only the observation that crystals 

produced in syntheses involving an LLPS have many features in common with biominerals. It 

has therefore been proposed that the space-filling nanograins that compose calcareous 

biominerals could originate from an LLPS. However, the origin of the calcium carbonate liquid 

precursor is not clear. In corals, it was proposed that ionic species concentrate within the cells, 

which leads to mineralization after excretion of the concentrated liquid.172 In the case of oysters, 

it has been suggested, based on model experiments, that a liquid-liquid phase separation, 

induced by a specialized protein (Pif80) within the mantle cells, would generate a coacervate 

allowing the formation and stabilization of amorphous CaCO3 granules, later released in the 

extra-pallial fluid.173 In parallel, following observations of the growth of calcitic prisms in the 

Pinna nobilis mussel, Wolf et al.44 also proposed that a liquid mineral precursor is produced in 

vesicles that they called ‘calcosomes’, within the mantle cells, before it forms viscous 

nanoparticles aggregating onto the growing prisms. Thus, although appealing to explain the 

space-filling character of the biomineral nanostructure, the existence of an LLPS in calcareous 

biomineralization remains quite elusive. 

During the syntheses reported in this manuscript, no liquid-liquid phase separation could be 

detected in the bulk of the solution, contrarily to what was depicted on similar systems.12,84,174 

However, an interface-driven liquid-liquid phase separation could be evidenced. This LLPS 

allows the formation of a 2D pattern at the interface, on which specific addition of bulk 

amorphous nanoparticles takes place (thickening stage). These amorphous nanoparticles do 

not exhibit a fully liquid character, as assessed by cryo-TEM, but could be similar to the gel-like 

PILP droplets observed by Wolf et al.175 So far, the involvement of a 2D LLPS in the 

biomineralization processes has never been considered. For instance, the 2D radial growth of 

the early prisms (discs) of in the periostracal groove of Pinctada fucata oyster has been 

attributed to the inhibition of the 3D growth by the periostracum surrounding the growing 

discs176. Yet, a liquid precursor could explain the observed flexibility of the early discs during 

their radial growth.177 Therefore, the concept of an initially soft 2D pattern formed through a 

liquid-liquid phase separation could apply to biomineralisation and explain its early stage 

characteristics. 

Whether the mineral precursors are formed inside or outside the cells of the mineralizing 

epithelium, and how they travel to the growth site is still a matter of debate178. It has been 

observed that mantle cells of Pinctada fucata can synthesize calcium carbonate in vitro179. In 

addition, vesicles that transport crystalline calcium carbonate to prisms under repair could be 

identified in Crassostrea virginica180. Others suggest that the mineralizing mantle is in close 

contact with the crystalline layers during the episodes of crystallization27,39 so that a purely 
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diffusive process could be at play. In our synthetic mineralizing system, the displacement of 

the amorphous particles occurs by convection. One can thus wonder whether such a convective 

motion could develop in biomineralization. As a matter of fact, patterns strongly resembling 

convection-driven patterns have been identified in biominerals.181 The exothermic character of 

calcite precipitation would generate a temperature gradient across the extra-pallial fluid, which 

could induce a Rayleigh-Bénard instability. Therefore, the convection of particles demonstrated 

in this work could potentially take place during biomineral formation. Still, the convection of 

nanoparticles to the site of mineralization is not essential to the growth model outlined here, 

so that another process could take place without modifying the mineralization pathway.  

It has been demonstrated in several biological systems that crystallization occurs via an 

amorphous precursor.8 The transformation to crystal then requires passing through a 

dehydrated state6,54,55,57 before crystallising. This crystallization generates micron-sized iso-

oriented crystals that behave like single crystals although with a nanostructure.108 Calcium 

carbonate films produced with ADM syntheses and crystallized under humid atmosphere (and 

likely those crystallized at the interface) also result from an amorphous transient, and share the 

crystalline and morphological characteristics of the biogenic crystals. The growth model 

extracted from the analysis of these syntheses, thus appears fully relevant to describe 

biocrystallization, and was actually shown to involve a solid-state amorphous-to-crystal 

transformation, which is suspected to be at play in biocrystallization.53–55  

Our findings therefore validate the current views on amorphous-to-crystal transition in 

biominerals, and fully support the involvement of an LLPS in calcareous biomineralization. 

However, instead of the usually assumed bulk LLPS, we detected a surface-directed LLPS, which 

plays a crucial role in defining the mineral morphology. These results shed new light on the 

early mechanisms of biomineralization and open up new perspectives, presented in the 

following section. 

 

5.3 PERSPECTIVES ON THE CURRENT MODEL 

As direct perspectives of this work, one could consider carrying out a more thorough 

investigation of the bulk LLPS, as well as of the interfacial crystallization of the amorphous film.  

We could actually confirm that a liquid-liquid phase separation occurs in our system, but only 

in the vicinity of the air-solution interface. In contrast with statements of the literature related 

to similar systems,152 the occurrence of a bulk liquid-liquid phase separation, prior to bulk 

nanoparticle formation, could not be demonstrated in our experiments. Preliminary SAXS 

measurements did evidence an intensity increase at low q values, meaning that bulk 

nanoparticles are growing (data not shown), but this increase occurred at reaction times 

corresponding to the observation of already solidified amorphous particles in bulk (cryo-TEM). 

Still, SAXS measurements, if sensitive enough, would provide an effective way to highlight such 

a bulk LLPS and to decipher the actual mechanism involved (nucleation or spinodal 

decomposition) by characterizing the evolution of the droplet size with time. I therefore believe 

that performing SAXS studies in combination with time-resolved cryo-TEM imaging could 

provide a definitive answer on the existence of a bulk LLPS. A bulk LLPS could be part of the 

biological control over biomineralization, both by allowing the production of a patterned layer 
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of amorphous material, similar to what occurs in our ADM syntheses, and by carrying the ACC 

material from the cells to the mineralizing area.173 

In addition, as clearly stated in this manuscript, the investigation of the interfacial crystallization 

could not be fully carried out due to time constraints, so that the mechanisms at work in the 

amorphous-to-crystal transformation remains partly elusive. As the crystalline film resulting 

from an interfacial crystallization is the most closely related, in terms of crystalline properties, 

to the biogenic material, a thorough understanding of the mechanisms at play would be very 

valuable. To gain a complete insight into these mechanisms, both the dehydration of the 

amorphous film at the interface and its subsequent crystallization should be followed over 

time. Dehydration could be investigated by ATG measurements or STXM measurements 

performed in controlled humidity environment. As for crystallization, one could use SEM and 

possibly Bragg ptychography measurements to characterize the film crystalline structure at 

earlier times and, in particular, to prove or disprove that the three-layer crystalline structure 

arises from a dissolution-recrystallization process.  

Bragg ptychography proved to be a key technique to determine the crystal defects distribution 

and the typical crystal coherence length in given crystallization conditions. The acquisition time 

of such a technique has been considerably reduced by the advent of 4th generation synchrotron 

source,182 so that it is now conceivable to perform a series of measurements within a single 

beam time. It could therefore be used to decipher whether the large coherence length values 

observed for crystals formed at the air-solution interface result directly from the amorphous-

to-crystal transformation, or whether subsequent reorganizations after crystallization take 

place. Performing Bragg ptychography measurements over time would therefore provide hints 

on the nature of the amorphous to crystal transformation that takes place.  

 

Going further, a chemical modification of the model synthesis could be envisioned. Indeed, the 

techniques used during my PhD work did not allow the characterization of the polymer 

distribution both at the micro- and nano-scale. Still, such a distribution would be a very useful 

information as one expects the polymer to be trapped within the crystal for a solid/solid 

transformation, but to be released further away during a dissolution/crystallization process. 

However, owing to the very small quantity of materials available from the interface, the global 

amount of occluded polymer could not even be determined using ATG technique. To overcome 

this issue, a different polymer additive, containing for example nitrogen, could be used so as 

to visualize the polymer distribution by elemental analysis spectroscopy (EDS). Then, the 

displacement of the polymer additive during crystallization could be visualized by elemental 

mapping and give information on the transformation processes.  

Differently, fluorescently-labeled polyelectrolytes could also be introduced in the synthesis, as 

minor part of the polymer additive. This would allow following the microscale distribution of 

polymer by fluorescence microscopy during the whole mineralization process,183 and possibly 

help the detection of the bulk LLPS. Densification of the polymer at the interface and in bulk 

are valuable information to discover its role in the liquid/liquid phase separation. During 

crystallization, expulsion or occlusion of the polymer in the crystalline phase could provide an 

indication on the mobility of the macromolecular chain during crystallization and therefore on 

the viscosity of the surrounding medium. 
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Besides, my PhD work raises the question of the actual replication of the biological 

environment to study the formation, and subsequent crystallization, of amorphous calcium 

carbonate layers in really biomimetic conditions. During the syntheses reported in this 

manuscript, we observed the build-up of a dense mineral layer by aggregation, onto a 

predefined patterned layer (following a surface-driven LLPS), of amorphous particles in a high 

pH environment (pH >9.5). However, these conditions are only met, in the biological 

environment, in the vicinity of the mantle cells.27 The pH of the medium surrounding the 

mineralization site is much lower (~7.5), so that biomineralization takes place under a chemical 

gradient, which could impact the formation or transport of the amorphous particles. The 

implementation of a model synthesis that involves a spatial chemical gradient could allow one 

to reproduce the actual biological conditions and assess whether the nucleation of amorphous 

or liquid particles can occur in these conditions, specific to the extracellular environment. In 

their study, Stemmer et al.27 proposed that CaH-ATP ionic pumps regulate simultaneously the 

pH decrease and the calcium influx in the epithelial mantle. Although reproducing such a 

process in lab syntheses is unrealistic, one could imagine producing localized pH gradients in 

the solution by grafting pH-regulating biomolecules on a substrate.184  
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6 APPENDIX  

6.1 CHAPTER II 

 

Arduino code to collect Relative Humidity data with HIH 4000 sensor, controlled by an 

ARDUINO MEGA 2550  

int sensorPin = A0;  

int ledPin = 13;   

float sensorValue = 0;  

int RH =0; 

int RH1=0; 

void setup() { 

 pinMode(ledPin, OUTPUT); 

Serial.begin(9600);  

} 

void loop() { 

 sensorValue = analogRead(sensorPin)*5.0/1023; 

 digitalWrite(ledPin, HIGH); 

 delay(sensorValue); 

 digitalWrite(ledPin, LOW);  

 RH=((sensorValue/5)-0.16)/0.0062; 

 Serial.print("T (s):"); 

 Serial.print(" "); 

 Serial.println(millis()/1000); 

 Serial.print(" "); 

 Serial.print("RH :"); 

 Serial.print(RH); 
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 Serial.print("%");Serial.print(" "); 

 delay(1000); 

} 

Arduino code to collect CO2 (ppm) data with SCD30 sensor, controlled by an ARDUINO 

MKRZERO and included data collection on SD card.  

#include "SCD30.h"; 

#include <SD.h> 

#include <RTCZero.h> 

#include <Wire.h> 

 

RTCZero rtc; 

const byte seconds = 0; 

const byte minutes = 0; 

const byte hours = 0; 

 

void setup() { 

  

 Wire.begin(); 

 Serial.begin(115200); 

 rtc.begin(); // initialize RTC 

 // Set the date 

  rtc.setHours(hours); 

  rtc.setMinutes(minutes); 

  rtc.setSeconds(seconds); 

 delay(5000); 

 

 // initialize SD card: 

bool SDAvailable = SD.begin(28); 

 if (SDAvailable) { 

 String logFile = "DATALOG.CSV";  

 String ECH = "Capteur_CO2"; 

 File dataFile = SD.open(logFile, FILE_WRITE); 

 if (dataFile) { 

  dataFile.print(rtc.getHours()); 

  dataFile.print("/"); 

  dataFile.print(rtc.getMinutes()); 

  dataFile.print("/"); 

  dataFile.print(rtc.getSeconds()); 

  dataFile.println(); 

  dataFile.println(ECH); 

  dataFile.print("Time: "); 

  dataFile.print("CO2 (ppm): "); 

  dataFile.print("Temperature (°C)= "); 

  dataFile.println("Relative humidity (% RH)= "); 
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  delay(1000); 

 dataFile.println("SCD30 Raw Data"); 

dataFile.close();  

 } 

 delay(1000); 

analogReference(AR_EXTERNAL); 

 

 scd30.initialize(); 

 }  

} 

void loop() { 

File dataFile = SD.open("DATALOG.CSV", FILE_WRITE); 

 float result[3] = {0};  

Serial.print("test"); 

 if (scd30.isAvailable()) { 

  scd30.getCarbonDioxideConcentration(result); 

  dataFile.print(rtc.getHours()); 

 dataFile.print(":"); 

dataFile.print(rtc.getMinutes()); 

 dataFile.print(":"); 

dataFile.print(rtc.getSeconds()); 

 dataFile.print(" "); 

 dataFile.print(result[0]); 

  dataFile.print(" ppm "); 

 dataFile.print(result[1]); 

  dataFile.print(" celcius "); 

 dataFile.print(result[2]); 

  dataFile.println("% ");  

dataFile.close(); } 

 delay(2000); 

} 
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6.2 CHAPTER III 

 

Figure A. 1 - AFM topography mapping and height profiles of interfacial discs, following the 

observation in STXM spectroscopy. The height profiles have been measured along the segments 

traced in the topography mapping. The height is averaged over between the two dashed line for 

a better signal. a) 10 min of reaction. Scale bar = 3 µm. b) 20 min of reaction. Scale bar = 3 µm. 

c) 30 min of reaction. Scale bar = 3 µm.  
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Figure A. 2 - Electron micrographs (Cryo- TEM) of a film sample extracted at 5 min of reaction. 

[Ca2+] = 20 mM, [PANa] = 20 ppm. a) Raw image. b) Same image with visual aid (red dotted 

lines) to discern the discs shapes in the upper part of the image and double emulsion pattern at 

the bottom of the image. Scale bar = 2µm. 

 

 

Figure A. 3 - Optical micrographs (PCM) of a film sample ([Ca2+] = 20 mM, [PANa] = 20 ppm) 

collected after 35 min of reaction. The yellow, orange and blue arrows point to structures I, II and 

III respectively. These images were taken on adjacent holes of the TEM grid, is the same lighting 

conditions.  
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Figure A. 4 - Optical micrograph (AM) of bulk species underneath the film at 35 min of reaction. 

The dark dots, highlighted by orange dashed circles, are distributed in the depth of the solution. 

 

Annex A.5. To investigate the influence of the solute species (calcium and polymer) on the pH 

variations resulting from ammonium carbonate decomposition, pH monitoring through time 

was carried out in a calcium/polymer (20 mM/20 ppm), then calcium (20 mM) solution and, 

finally, pure water solution, in the ADM reaction chamber (Petri dish). The global shape of the 

curve is similar in the three cases, with a fast rise at early times and then a slow decrease leading 

to a plateau (see Figure A. 5.a). However, in the case of a calcium solution, the rise in pH is 

delayed and the pH reaches its highest value after 20 min (Figure A. 5.b) instead of about 10 

min in the two other cases. In addition, the two curves related to calcium/polymer and water 

solutions are undistinguishable before 10 min. They clearly separate after 37 min of reaction 

(separation of their respective standard deviation), as indicated by the dashed black line in 

Figure A. 5.b, the decrease in the calcium/polymer solution being then faster than the one of 

pure water. At longer reaction time (> 75 min) finally, the pH of the calcium/polymer and 

calcium solution overlap.  
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Figure A. 5 - pH evolution over time in a 6 mL solution. Blue, red and green curves represent the 

pH evolution in calcium solution with added polymer, pure calcium solution, and pure water, 

respectively. Concentrations are specified in the legend. Light gray, green and red areas represent 

the standard deviations of the blue, red and green curves, respectively. a) Measurements over 150 

min. b) Zoom-in of the pH evolution with time. Black dashed lines highlight the point where the 

blue and green curves start to differ. For both a) and b), the curve presented here are the average 

of: blue/ 3 measurements up to 74 min, then 2 measurements; red/ 5 measurements; green/ 3 

measurements.  

Similarly, to assess the influence of the salt solution on the development of the gas atmosphere, 

CO2 measurements have been repeated with pure water, and then without any solution in the 

reactor chamber, which resulted in the curves presented in Figure 84 b. The evolution of the 

CO2 pressure in the presence of the reference solution and in the presence of pure water are 

similar, as the standard deviation of both curves overlap, although partially, during most of 

measurement time in Figure 84 b. In contrast, the CO2 pressure in the absence of solution rises 

more slowly. The standard deviation is also significantly reduced, as it is 89 ppm, while it went 

up to 402 ppm and 470 ppm maximum with the reference solution, and pure water 

respectively. The presence of a solution therefore leads to a stronger (NH4)2CO3 sublimation. 
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Figure A. 6 - In situ recording of CO2 partial pressure inside the reactor chamber. Recording of 

the early times (> 50 min) of the establishment of the gaseous atmosphere in contact with: -

polymer-containing calcium solution ([Ca2+] = 20 mM; [PANa] = 20 ppm, green curve) -pure 

water (red curve) -no water (blue curve). The standard deviations are represented for each curve 

in their respective color but lightened. Each measurement was triplicated.  

 

 STXM 

 

Figure A. 7 - Normalized X-ray absorption spectrum of the core of the disc formed at 10 min of 

reaction. Measurements have been performed at the Ca L-edge. Two arctan functions, in green, 

and four Lorentzian functions (in red for the L3 resonance and in blue for the L2) have been used 

for deconvolution. The sum of these functions yields the gray spectrum, while the experimental 

curve is drawn in light blue. Inset: Optical density map at the Ca L-edge. The spectrum was 

averaged over from the green area. Scale bar = 0.5 µm 
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Figure A. 8-Normalized X-ray absorption spectrum of the corona of the disc formed at 10 min of 

reaction. Measurements have been performed at the Ca L-edge. Two arctan functions, in green, 

and four Lorentzian functions (in red for the L3 resonance and in blue for the L2) have been used 

for deconvolution. The sum of these functions yields the gray spectrum, while the experimental 

curve is drawn in light blue. Inset: Optical density map at the Ca L-edge. The spectrum was 

averaged over from the green area. Scale bar = 0.5 µm 

 

 

Figure A. 9 - Normalized X-ray absorption spectrum of the corona of the disc formed at 30 min 

of reaction. Measurements have been performed at the Ca L-edge. Two arctan functions, in green, 

and four Lorentzian functions (in red for the L3 resonance and in blue for the L2) have been used 

for deconvolution. The sum of these functions yields the gray spectrum, while the experimental 

curve is drawn in light blue. Inset: Optical density map at the Ca L-edge. The spectrum was 

averaged over from the green area. Scale bar = 0.3 µm 
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Figure A. 10 - Normalized X-ray absorption spectrum of the edge of a type II structure at 40 min 

of reaction. Measurements have been performed at the Ca L-edge. Two arctan functions, in green, 

and four Lorentzian functions (in red for the L3 resonance and in blue for the L2) have been used 

for deconvolution. The sum of these functions yields the gray spectrum, while the experimental 

curve is drawn in light blue. Inset: Optical density map at the Ca L-edge. The spectrum was 

averaged over from the green area. Scale bar = 0.4 µm 
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Figure A. 11 - Normalized X-ray absorption spectrum high optical density region of a type III 

structure at 40 min of reaction. Measurements have been performed at the Ca L-edge. Two arctan 

functions, in green, and four Lorentzian functions (in red for the L3 resonance and in blue for the 

L2) have been used for deconvolution. The sum of these functions yields the gray spectrum, while 

the experimental curve is drawn in light blue. Inset: Optical density map at the Ca L-edge. The 

spectrum was averaged over from the green area. 
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6.3 CHAPTER IV 

 Heat-induced crystallization 

 

Figure A. 12 - Optical micrograph (WBM) and Raman spectrum of a continuous film sample 

collected after 17h of reaction, at the surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution, 

and heated at 300°C for 3h. Scale bar = 100 µm. The zoomed-in area highlights cracks in the 

film, with surrounding iso-oriented areas (scale bar = 50 µm). Raman spectrum was taken on the 

very same film as shown in WBM. The 1 (1086 cm-1), 4 (712 cm-1) and lattices bands (Lb, 281 

cm-1 and 155 cm-1) fully match the reference spectrum of calcite (see Materials and methods IV.1). 
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Figure A. 13 - Normalized X-ray absorption spectrum of a disc in a disc patterned film heated at 

300°C for 3h. Measurements have been performed at the Ca L-edge. Two arctan functions, not 

visible due to their reduced little intensity, and four Lorentzian functions (in red for the L3 

resonance and in blue for the L2) have been used for deconvolution. The sum of these functions 

yields the gray spectrum, while the experimental curve is drawn in light blue. Inset: Optical density 

map at the Ca L-edge. The spectrum was averaged over from the green area. Scale bar = 0.6 µm 
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Figure A. 14 - Normalized X-ray absorption spectrum of a disc in a disc patterned film heated at 

300°C for 3h. Measurements have been performed at the Ca L-edge. Two arctan functions, not 

visible due to their reduced little intensity, and four Lorentzian functions (in red for the L3 

resonance and in blue for the L2) have been used for deconvolution. The sum of these functions 

yields the gray spectrum, while the experimental curve is drawn in light blue. Inset: Optical density 

map at the Ca L-edge. The spectrum was averaged over from the green area. Scale bar = 0.6 µm 
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Figure A. 15 - Normalized X-ray absorption spectrum of a disc in a disc patterned film heated at 

300°C for 3h. Measurements have been performed at the Ca L-edge. Two arctan functions, not 

visible due to their reduced little intensity, and four Lorentzian functions (in red for the L3 

resonance and in blue for the L2) have been used for deconvolution. The sum of these functions 

yields the gray spectrum, while the experimental curve is drawn in light blue Inset: Optical density 

map at the Ca L-edge. The spectrum was averaged over from the green area. Scale bar = 0.6 µm 
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Figure A. 16 - Histograms of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D 

maps presented in Figure 102. The strain standard deviation is noted in green, while the angular 

range of the Tilt 1 and Tilt 2 distribution are written in orange and blue, respectively. 

 

 

Figure A. 17 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), retrieved from the Bragg ptychography measurements. The film sample was collected at the 

free surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution after 18h of reaction, and heated 

at 300 °C for 1 h. 

 

Figure A. 18 - Histograms of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D 

maps presented in Figure A. 17. The standard deviation is noted in green for the strain, orange 

for Tilt 1 and blue for Tilt 2. 
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Figure A. 19 - Iso train, iso-tilt domain extracted from Figure A. 17. The strain, Tilt 1 and Tilt 2 

maps are presented in the sample plane (xy) and along the sample thickness (z).  

 

 

Figure A. 20. Phase map of the sub-region of the iso-strain iso-tilt domain shown in Figure A. 19 

a) 3D phase map. Scale (xyz) = 100 nm. The gray iso volumes correspond to regions of large 

strains (> 0.003). b) 2D cross section of the phase map. 
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 Humidity (98% RH) induced crystallization 

 

Figure A. 21 - Optical micrograph (WBM) of a continuous film sample collected after 18.5h at the 

surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution, and kept under 98% RH for 3h. Scale 

bar = 100 µm. 
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Figure A. 22 - Raman spectrum measured on the film shown in Figure A. 21. The 1 (1085 cm-1), 

4 (712 cm-1) and lattices bands (Lb, 280 cm-1 and 154 cm-1) fully match the reference spectrum 

of calcite (see Materials and methods IV.1) 
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Figure A. 23 - Deconvolution of the X-ray absorption spectrum corresponding to a submicronic 

area in the spherulite branch tip. Four Lorentzian and two arctan functions were used for the 

deconvolution. Experimental curve is in light blue, Lorentzian functions fitting the L3-edge is in 

red, Lorentzian functions fitting the L2-edge in dark blue, the arctan in green and the sum of the 

fitting finction in gray. Inset: Optical density map at the Ca L-edge. The spectrum was averaged 

over from the green area. Scale bar = 0.4 µm. 
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Figure A. 24 - Vectorial ptychography analysis of the center of a spherulite. The film sample has 

been collected at the surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution after 18h of 

reaction, and left 6 days under high relative humidity (98%). Composite map of retardance 

(coloration, in radian, 0 to π) and eigenpolarizations (black). The red dashed lines separate iso-

oriented domains. Scale bar = 20 µm. 
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Figure A. 25 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), calculated from the Bragg ptychography data. The film sample was collected at the free 

surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 16.5h of reaction, and kept under 

humidity (98% RH) for 14 days. 

 

 

Figure A. 26 - Histograms of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D 

maps presented in Figure A. 25. The strain standard deviation is noted in green, the Tilt 1 standard 

deviation is noted in orange and the angular range of the Tilt 2 distribution is written in blue. 
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Figure A. 27 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), retrieved from Bragg ptychography measurements. The film sample was collected at the free 

surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution after 18.5h of reaction, and kept under 

humidity (98% RH) for 6 days. 

 

Figure A. 28 - Histograms of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D 

maps presented in Figure A. 27. The strain standard deviation is noted in green, while the 

standard variation of Tilt 1 and Tilt 2 are written in orange and blue, respectively. 
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Figure A. 29 - Iso train and iso-tilted domain extracted from Figure A. 27. The strain, Tilt 1 and 

Tilt 2 distributions are presented in the sample plane (xy) and along the sample thickness (z).  

 

 

Figure A. 30 - Phase map of the iso-strain iso-tilt domain presented in Figure A. 29 a) 3D phase 

the with scale (xyz) = 100 nm. The gray iso volumes correspond to regions of large strains (> 

0.002). b) 2D cross section of the phase map. 
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 Interfacial crystallization 

 

Figure A. 31 - Optical micrograph (WBM) of a continuous film sample collected at the surface of 

a [Ca2+] = 100 mM, [PANa] = 50 ppm solution and after 5 days of reaction. Scale bar = 100 µm. 

 

 

Figure A. 32 - Raman spectrum of an iso-oriented domain of an interfacial continuous film (5 

days at the interface). The bands fit the calcite reference spectrum as 1 band is located at 1084.7 

cm-1, 4 at 710.7 cm-1, and lattice bands at 280.1 cm-1and 153.9 cm-1.  
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Figure A. 33 - Electron micrograph (SEM) of a continuous film sample collected at the surface of 

a [Ca2+] = 100 mM, [PANa] = 50 ppm solution after 5 days of reaction. Scale bars : a,b =10 µm; 

c= 1 µm. 

 

 

Figure A. 34 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), retrieved from the Bragg ptychography measurements. The film sample was collected at the 

free surface of a [Ca2+] = 20 mM, [PANa] = 20 ppm solution after 5 days of reaction. 
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Figure A. 35 - Histogram of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D maps 

presented in Figure A. 34. The strain standard deviation is noted in green, while the standard 

variation of Tilt 1 and Tilt 2 are written in orange and blue, respectively. 

 

 

Figure A. 36 - 2D maps of the crystalline properties (strain, Tilt 1 and Tilt 2) in the sample plane 

(xy), retrieved from the Bragg ptychography measurements. The film sample was collected at the 

free surface of a [Ca2+] = 100 mM, [PANa] = 50 ppm solution after 5 days of reaction.  
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Figure A. 37 - Histograms of the strain, Tilt 1 and Tilt 2 distributions corresponding to the 2D 

maps presented in Figure A. 36. The strain standard deviation is noted in green, while the 

standard variation of Tilt 1 and Tilt 2 are written in orange and blue, respectively. 

 

 

Figure A. 38 - Iso train and iso-tilt domain extracted from Figure A. 36. The strain, Tilt 1 and Tilt 

2 maps  are presented in the sample plane (xy) and along the sample thickness (z).  
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Figure A. 39 - Phase map of the iso-strain iso-tilt domain presented in Figure A. 37 a) 3D phase 

the with scale (xyz) = 100 nm. The gray iso volumes correspond to regions of large strains (> 

0.002). b) 2D cross section of the phase map. 
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FIGURE 96 - ELECTRON MICROGRAPH (SEM) OF THE BORDER OF A DISC WITH ITS CORONA. THE RED RECTANGLE 
CORRESPONDS TO THE ENLARGED IMAGE SHOWN IN B). IN LENS DETECTOR, 1 KV. SCALE BAR = 400 NM. B) 
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FIGURE 103 - ISO-STRAIN, ISO-TILT DOMAIN EXTRACTED FROM FIGURE 102. THE STRAIN, TILT 1 AND TILT 2 MAPS 
ARE PRESENTED IN THE SAMPLE PLANE (XY) AND ALONG THE SAMPLE THICKNESS (Z). HEATED FILM AT 300 
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FIGURE 110 - ELECTRON MICROGRAPHS (SEM) OF A SPHERULITE RESULTING FROM THE CRYSTALLIZATION OF AN 
AMORPHOUS DISC-PATTERNED FILM KEPT UNDER HIGH HUMIDITY (98% RH) FOR 30 DAYS. A) LARGE-SCALE 
VIEW OF THE SPHERULITE. RED DASHED ELLIPSES POINT TO TRACES OF DISCS AT THE SURFACE OF THE 
SPHERULITE. GREEN DASHED ELLIPSES POINT TO DISC IMPRINTS IN BETWEEN THE CRYSTALS. HE-SE 
DETECTOR, 5 KV. SCALE BAR = 20 µM. B) DISC SHAPES AT THE SURFACE OF THE SPHERULITIC CRYSTAL. THE 
RED DASHED LINES OUTLINE THE DISCS EDGES. THE NANOSTRUCTURE IS DIFFERENT IN THE DISCS AND IN 
THE SPACE BETWEEN THEM. HE-SE DETECTOR, 1 KV. SCALE BAR = 1 µM. C) ZOOM-IN VIEW, CORRESPONDING 
TO THE YELLOW DASHED RECTANGLE IN B). THE RED DOUBLE ARROW SHOWS THE RADIAL EXTENT OF THE 
CORONA THAT SURROUNDS THE DISCS. IN-LENS DETECTOR, 1 KV. SCALE BAR = 400 NM. D) DISC IMPRINTS 
IN BETWEEN THE CRYSTALS. THE DISC EDGE IS OUTLINED BY A GREEN DASHED LINE. IN LENS DETECTOR, 1 
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2 µM. INSET: CLOSE-UP OF THE AREA IN THE YELLOW DASHED RECTANGLE. HE-SE DETECTOR, 5 KV. SCALE 
BAR = 1 µM. B) LONG BRANCH (~100 µM) WITH A LAYERED STRUCTURE ON THE TIP. HE-SE DETECTOR, 2 KV. 
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WITH A NEARBY SPHERULITE ARE VISIBLE. A) LARGE-SCALE WBM MICROGRAPH. SCALE BAR = 50 µM. B) EBSD 
IMAGE CORRESPONDING TO THE GREEN DASHED RECTANGLE SHOWN IN C). ORIENTED CALCITE 
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IN THE NEIGHBORING CRYSTALLIZED DISCS (THE C-AXIS IS THE LONGEST SIDE OF THE HEXAGONAL CELL). 
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BEEN COLLECTED AT THE SURFACE OF A [CA2+] = 20 MM, [PANA] = 20 PPM SOLUTION AFTER 18H OF 
REACTION, AND LEFT 14 DAYS UNDER HIGH RELATIVE HUMIDITY (98%). A) RETARDANCE (IN RADIANS, 0 TO 
Π). B) C-AXIS TILT RATIO (A.U.). C) FAST-AXIS ORIENTATION (IN DEGREES 0 TO 180). D) ELLIPTICITY (ABSOLUTE 
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FIGURE 115 - EBSD MEASUREMENT OF BRANCHED SPHERULITES. THE FILM SAMPLE HAS BEEN COLLECTED AT THE 
SURFACE OF A [CA2+] = 20 MM, [PANA] = 20 PPM SOLUTION AFTER 18H OF REACTION, AND LEFT 30 DAYS 
UNDER HIGH RELATIVE HUMIDITY (98%). A) LARGE-FIELD VIEW CONTAINING SEVERAL SPHERULITES. THE 
COLORATION IN THE INSET ENCODES THE CRYSTALLINE ORIENTATION. THE ORIENTATION IN THE CENTER 
COULD NOT BE ESTIMATED OWING TO OF A LACK OF FLATNESS IN THIS REGION. B) ZOOMED-IN VIEW, 
CRYSTALLINE CELLS REPRESENT THE CRYSTALLINE ORIENTATION ON A GIVEN BRANCHED SPHERULITE. . 154 
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THE INTERFACE FOR 5 DAYS. THE PEAK POSITIONS, PROVIDED BY DECONVOLUTION, ARE 1086 CM-1 FOR 1, 

712 CM-1 FOR 4, 281 AND 155 CM-1 FOR LB. B) POLY-CRYSTALLINE STRUCTURE RESULTING FROM THE 
INTERFACIAL CRYSTALLIZATION OF A FILM ([CA2+] = 20 MM, PANA = 20 PPM) LEFT AT THE INTERFACE FOR 3 
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FIGURE 122 - ELECTRON MICROGRAPHS (SEM) OF FILMS PRODUCED BY ADM SYNTHESIS ([CA2+] = 20 MM, PANA 
= 20 PPM) AND LEFT AT THE INTERFACE FOR 5 DAYS, OBSERVED AT 70°. THE UPPER SIDE OF THE FILM WAS 
THE ONE IN CONTACT WITH THE ATMOSPHERE DURING THE SYNTHESIS. THREE DIFFERENT AREAS ARE 
INVESTIGATED. A) HE-SE DETECTOR, 2 KV. SCALE BAR = 2 µM. B) IN-LENS DETECTOR, 1 KV. SCALE BAR = 400 
NM C) HE-SE DETECTOR, 2 KV. SCALE BAR =1 µM........................................................................................... 161 

FIGURE 123 - ELECTRON MICROGRAPH (SEM) OF A DISC-PATTERNED FILM ([CA2+] = 20 MM, PANA = 20 PPM) LEFT 
AT THE AIR-SOLUTION INTERFACE FOR FIVE DAYS. THE UPPER SIDE OF THE FILM WAS THE ONE IN CONTACT 
WITH THE ATMOSPHERE DURING THE SYNTHESIS. THE RED DASHED LINE HIGHLIGHTS THE HEIGHT 
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FIGURE 130 - 3D BRAGG PTYCHOGRAPHY ON A PINCTADA MARGARITIFERA CALCTIC PRISM. THE PHASE (IN RAD) 
IS SHOWN IN 3D IN THE INVESTIGATED VOLUME. AREAS OF CONTINUOUS COLORATION (EX. DARK BLUE) 
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Résumé : Les biominéraux calcaires présentent une 

grande variété de formes et de fonctions biologiques, 

mais également un certain nombre de traits 

structuraux communs. En particulier, ils apparaissent, 

dans leur grande majorité, comme formés d’un 

assemblage de nanoparticules cristallines 

sphéroïdales, tout en ayant des propriétés cristallines 

voisines de celles d’un monocristal. La compacité de 

cette nanostructure suggère l’existence d’un 

transitoire liquide précédant la formation d’un état 

amorphe, quant à lui démontré dans un certain 

nombre de cas. Le chemin de cristallisation, qui 

mettrait ainsi en jeu des états intermédiaires typiques 

des processus de cristallisation dits non-classiques, 

n’est pas entièrement établi à ce jour. En particulier, 

l’existence d’une phase liquide enrichie en ions reste 

complexe à démontrer in vivo. Afin d’évaluer la 

pertinence d’une telle hypothèse, une approche 

basée sur un modèle synthétique incluant une phase 

liquide dense a été utilisée.  

Des films de carbonate de calcium amorphes 

d’épaisseur sub-micronique ont été produits par 

diffusion de CO2 gazeux dans une solution calcique 

en présence de polyelectrolyte anionique. Le 

mécanisme de formation des films, associant le 

développement d’un motif 2D par séparation de 

phase liquide-liquide et l’agrégation irréversible de 

nanoparticules amorphes formées en solution, a 

été démontré. Les films amorphes ont été 

cristallisés par chauffage, exposition à une 

humidité relative contrôlée, ou vieillissement dans 

le milieu réactionnel. La caractérisation de ces 

cristaux 2D, notamment par ptychographie de 

Bragg, a permis de décrire les mécanismes de 

transition amorphe-cristal et préciser les propriétés 

cristallines pour chaque condition de cristallisation. 

Certains cristaux présentent des propriétés très 

semblables aux cristaux biogéniques, appuyant 

ainsi l’hypothèse d’un intermédiaire liquide dans la 

biominéralisation calcaire. 
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Abstract: Calcareous biominerals present a great 

variety of forms and biological functions, but also a 

number of common structural features. In particular, 

they appear, in their great majority, to be formed by 

an assembly of spheroidal crystalline nanoparticles, 

while having crystalline properties close to those of a 

single crystal. The compactness of this nanostructure 

suggests the existence of a liquid transient prior to the 

formation of an amorphous state, which has been 

evidenced in a number of cases. The crystallization 

pathway, which would involve intermediate states 

typical of so-called non-classical crystallization 

processes, is not yet fully established. In particular, the 

existence of an ion-enriched liquid phase remains 

complex to demonstrate in vivo. In order to assess the 

relevance of such a hypothesis, an approach based on 

a synthetic model including a dense liquid phase was 

used.  

Amorphous calcium carbonate films of sub-micron 

thickness were produced by CO2 gas diffusion in a 

calcium solution in the presence of anionic 

polyelectrolyte. The mechanism of film formation, 

combining the development of a 2D pattern by 

liquid-liquid phase separation and the irreversible 

aggregation of amorphous nanoparticles formed in 

solution, was demonstrated. The amorphous films 

were crystallized by heating, exposure to controlled 

relative humidity, or aging in the reaction medium. 

The characterization of these 2D crystals, in 

particular by Bragg ptychography, has made it 

possible to describe the amorphous-crystal 

transition mechanisms and to specify the crystalline 

properties for each crystallization condition. Some 

crystals show properties very similar to biogenic 

crystals, thus supporting the hypothesis of a liquid 

intermediate in calcareous biomineralization. 

 

 


