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Abstract
The forthcoming space-based gravitational wave observatory LISA will open a newwindow for the measurement of gravitational waves, making it possible to observeemitting systems hardly visible with the current Earth-based observatories.Among these sources, the detection of galactic binaries as sources of gravitationalwaves promises an unprecedentedwealth of information about these systems, but alsoraises several challenges in signal processing. In particular the large number of expec-ted sources and the presence of both complex instrumental noise and artifacts taintingthe data call for the development of robust methods.We describe here an original non-parametric recovery of the imprint of galactic bi-naries in measurements affected by instrumental noise typical of the space-based gra-vitational wave observatory LISA. This method, based on a denoising procedure, aimsat separating from noise the sum of all signals coming from galactic binaries. Its per-formance is sturdily benchmarked and its applicability is successfully demonstrated ona simple example involving verification galactic binaries recently proposed in LISA datachallenges (LDC 1-3).We then show how to make the most of this simple model to mitigate the impactof one of the most problematic type of artefacts : missing data. Whether being plan-ned or not, gapped data reduce our ability to detect faint signals like galactic binariesand increase the risk of mis-detection and biased identification. Inspired by advancesin signal processing, we introduce a non-parametric inpainting algorithm based on thesparse representation of the galactic binary signal in the Fourier domain. In contrast totraditional inpainting approaches, noise statistics are known theoretically on ungappedmeasurements only. This calls for the joint recovery of both the ungapped noise andthe galactic binary signal. This process limits noise leakage and recovers accurately themissing signal to the extent that it can un-bias an identification process conducted onthe corrected data even when about 30% of the data is lost. Additionally, we highlightthat the proposed algorithm produces a statistically consistent ungapped noise esti-mate. We further evaluate the performances of the proposed inpainting methods torecover the gravitational wave signal on LDC 1-3.Finally, a more robust characterization of galactic binaries signals calls for a moreaccurate modeling of galactic binaries signals. We propose a non-parametric learning-based approach to galactic binaries signal modeling resulting in several promising ap-plications for LISA. Among them are the signal representation in a restricted, low di-mensional basis, but also signal denoising, galactic binaries detection, source separa-tion and fast parameter partial estimation. Themodel performances are assessed overthese different applications.

Keywords : Gravitational waves, Galactic binaries, Sparse modeling, Missing data, In-painting, Learned representation, Auto-encoder
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Résumé
Le futur observatoire spatial d’ondes gravitationnelles LISA ouvrira une nouvellefenêtre de mesure des ondes gravitationnelles, permettant d’observer des systèmesémetteurs difficilement visibles avec les observatoires terrestres actuels.Parmi ces sources, la détection de binaires galactiques comme sources d’ondes gra-vitationnelles promet une richesse d’informations sans précédent sur ces systèmes,mais soulève également plusieurs défis dans le traitement du signal. En particulier, legrand nombre de sources attendues et la présence à la fois de bruit instrumental com-plexe et d’artefacts entachant les données nécessitent le développement de méthodesrobustes.Nous décrivons ici une méthode originale de reconstruction non paramétrique del’empreinte des binaires galactiques dans les mesures affectées par le bruit instrumen-tal typique de l’observatoire spatial d’ondes gravitationnelles LISA. Cette méthode, ba-sée sur une procédure de débruitage, vise à séparer du bruit la somme de tous lessignaux provenant des binaires galactiques. Ses performances sont solidement éva-luées et son applicabilité est démontrée avec succès sur un exemple simple impliquantdes binaires galactiques de vérification récemment proposées dans les défis d’analysede données LISA (LDC 1-3).Nousmontrons ensuite comment tirer lemeilleur parti de cemodèle simple pour at-ténuer l’impact des interruptions de prises de données. Qu’elles soient prévues ou non,les donnéesmanquantes réduisent notre capacité à détecter les signaux faibles commeles binaires galactiques et augmentent le risque de mauvaise détection et d’identifica-tion biaisée. Inspirés par les progrès du traitement du signal, nous introduisons un al-gorithme d’inpainting non paramétrique basé sur la représentation parcimonieuse dusignal binaire galactique dans le domaine de Fourier. Contrairement aux approches tra-ditionnelles d’inpainting, la statistique du bruit est théoriquement connue uniquementsur des mesures non lacunaires. Il est donc nécessaire de récupérer conjointement lebruit et le signal binaire galactique. Ce processus limite les fuites de bruit et récupèreavec précision le signal manquant, au point de pouvoir débiaiser un processus d’iden-tification mené sur les données corrigées, même lorsque jusqu’à environ 30% des don-nées sont perdues. En outre, nous soulignons que l’algorithme proposé produit uneestimation statistiquement cohérente du bruit sans lacune. Nous évaluons ensuite lesperformances desméthodes d’inpainting proposées pour récupérer le signal des ondesgravitationnelles sur le défi LDC1-3.Enfin, une caractérisation plus robuste des signaux binaires galactiques nécessiteune modélisation plus précise de ces signaux. Nous proposons une approche non-paramétrique basée sur l’apprentissage pour la modélisation des signaux binaires ga-lactiques, ce qui donne lieu à plusieurs prometteuses applications à LISA. Parmi celles-ci, on trouve la représentation du signal dans une base restreinte et de faible dimen-sion, mais aussi le débruitage du signal, la détection des binaires galactiques, la sépa-ration des sources et l’estimation partielle rapide des paramètres. Les performancesdu modèle sont évaluées sur ces différentes applications.

Mots clés : Ondes gravitationnelles, Binaires galactiques,Modélisationparcimonieuse,Données manquantes, Inpainting, Représentations apprises, Auto-encodeur
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Abbreviations

EM Electro Magnectic
GW Gravitational Waves
LIGO Laser Interferometer Gravitational waves Observatory
LVC LIGO-Virgo Collaboration
LISA Laser Interferometer Space Antenna
SKA Square Kilometre Array – Radio telescope project
ESA European Space Agency
NASA National Aeronautics and Space Administration
MBHB Massive Black Hole Binary
EMRI Extreme Mass Ratio Inspiral
S/C Spacecraft
PSD Power Spectral Density
LPF LISA PathFinder
TDI Time Delay Interferometry
INReP Initial Noise Reduction Pipeline
LDC LISA Data Challenges
GB Galactic Binary, Galactic Binaries
SSB Solar System Barycenter
MCMC Markov Chain Monte Carlo
FP, FPR False Positive, False Positive Rate
FN, FNR False Negative, False Negative Rate
SNR Signal-to-Noise Ratio
MAD Median Absolute Deviation
CS Compressed Sensing
CI Classical Inpainting
BCD Block Coordinate Descent
MI Modified Inpainting
FPC Fixed Point Continuation
KL Kullback-Leibler
PCA Principal Component Analysis
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BSP Barycentric Span Projection
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Notations

The two (or more) bodies problem in gravitation : from Newton to
gravitational waves

−→
F A→B(t) Newton’s gravitational interaction between A and B
G Gravitational constant, equals to 6.67430× 10−11m3.kg−1.s−2

mA,mB Masses of bodies A and B
−→
AB(t) Distance between bodies A and B
ΦA Newtonian gravitational potential generated by A
−→x ,−→x A(t) Coordinates of a random vector, coordinates of body A
ma,mI Acceleration mass, inertial mass
Gαβ Einstein’s tensor
Tαβ, T

αβ Stress energy tensor
gαβ, g

αβ Spacetime metric
ηαβ Minkowski metric
hαβ Strain of a gravitational wave (metric small variation)
r Radial distance
∂

∂xβ Partial derivative with regard to variable xβ
I ij(t) Second mass momentum
µ Mass density distribution
x(t), y(t), z(t) System coordinates with time
R,M,Ω System radial distance to observer, system mass and system orbital frequency
L(t) = L∗ + δL Distance between two test masses, observing a variation δL

The LISA project

h+, h× Gravitational waves polarizations
ν0 Laser nominal frequency
C(t) Laser frequency fluctuations
y1(t), y2(t) Interferometric measurements
L1, L2 Michelson interferometer arm lengths
n1(t), n2(t) Noises other than laser noise for each arm
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h1(t), h2(t) Gravitational wave strain measured for each arm
c Speed of light in vacuum, equals to 299.792.458m.s−1

X, Y, Z Pseudo-Michelson interferometric measurements, reconstructed by TDI.
A,E, T De-correlated TDI

Bayesian Data Analysis for LISA

v[n], v[k] Data in time domain, data in frequency domain
d,dI Measurements for all channels / for channel I
h,hI Signal for all channels / for channel I
ĥ, ĥI Signal estimator for all channels / for channel I
n,nI Noise for all channels / for channel I
S, SIJ Cross power spectral density, Cross power spectral density between chan-nels I and J in frequency domain
E[X] Mathematical expectation of random variable X
θ,ΘGB Waveform parameters , Set of admissible waveform parameters
θ = (θint, θext) Separation between extrinsic and intrinsic parameters
h(θ),hI(θ) Signal for all channels / for channel I corresponding to parameter θ
f0, ḟ , β, λ,A, ι, ψ, ϕ0 Parameters for a GB waveform : frequency, frequency derivative, ecliptic la-titude, ecliptic longitude, amplitude, inclination, polarization, initial phase
p Probability density
L Log-likelihood
Lp Log-likelihood with regard to waveform parameters
Lint Log-likelihood with regard to intrinsic parameters
Tm Dictionary representing source typem

Sparse signal modeling

T Dictionary representing the signal
∥α∥0 =

∑
j 1[αj = 0] Norm 0 of h in dictionaryT (counts the number of non-zero com-ponents of a signal h when approximated by T)

14



∥α∥p =
(∑

j |αj|p
)1/p Norm p of α

∥α∥1 =
∑

j |αj| Norm 1 of α
tk = e2πikn/N Fourier atom for DFT at frequency fk
⟨v1,v2⟩S Inner product of v1 and v2 reweighted by covariance matrix S
ASI

(vI),AS(v) Signal amplitude per Fourier atom for channel I / for all channels
γ[k] Threshold associated to k-th Fourier atom
χ2
Q Probability distribution of a χ2 of order Q
ρ Rejection rate
x0 p-value associated to rejection rate ρ
γm[k] Threshold associated to k-th Fourier atom, computed at iteration

m

ϵγ Stopping criteria for threshold computation
κ Parameter used to compute γm which values impacts the re-weighting process
B =

{
Bi

}
i

Fourier domain decomposition over disjoint frequency rangesBi

AB
S (v) Signal amplitude per neighborhood of Fourier atoms B ∈ B

γB[B], γmB [B] Threshold associated to Fourier neighborhood B, threshold as-sociated to Fourier neighborhood B, computed at iterationm
ϕ(t) Phase of GB signal with time
ρtree Rejection rate associated to BlockTree algorithm
ρreweighting Rejection rate associated to reweighting process
E2(h, ĥ) Quadratic relative error made when estimating h by ĥ
QdB(h, ĥ) Quality factor (also known as Normalised Mean Square Error)
RFP False Positive rate
RFN False Negative rate
h0(SNR) Signal’s amplitude computed to reach chosen SNR
σMAD PSD correction computed for LDC1-3
Seff Corrected PSD used to participate to LDC1-3
rI Residual on channel I

Inpainting LISA gapped data
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m[n] Mask time function
dg Observed gapped data
dm Missing data
M Mask operator
Mv Gapped data
Ker(M) Kernel of operatorM
Ran(M) Range of operatorM
Id Identity operator
Sgap Noise PSD for a gapped signal
d̂m Missing data estimator
J (v,u) Cost function associated with classical inpainting algorithm
dp+1
m Missing data iterative solution, converging to d̂m

hp+1 Signal iterative solution, converging to ĥ

n̂ Noise estimator
u Dummy variable for missing data. u ∈ Ker(M)

q Dummy variable for noise
np
g Gapped estimated noise at iteration p

np+1 Noise iterative solution, converging to n̂

dp Updated full data at iteration p
fCI(vg) Classical inpainting operator (inpaints gapped data vg)
DN Difference between gapped and inpainted data
nsamp Random noise sample drawn according to the noise expected distribution
np+1gap Gapped noise at iteration p augmented with gapped sampleMnsamp
Lgap, Tgap Gap length and period
fc Cut-off frequency of operator fCI

ηI Whitened noise
DKL[k] Kullback-Leibler divergence at frequency k
F Matrix of Fourier coefficients
CI Noise correlation matrix in time domain
LvI

(qI ,Λ) Lagrangian function associated to the problem
proxτG Proximal operator of function G
D,D Primal domain, dual domain
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proxDG(u) Proximal operator for pre-conditioned algorithm
E,V Expectation, Variance

Learned Representations for GW

M Manifold of plausible GB signals
Θtrain Training set physical parameters
s Input element of auto encoder
Φ Encoder
Ψ Decoder
E2rec Reconstruction error
Ttrain Training set
Ninput Input size for auto encoder
Ttest Test set
ei Anchor point
{λi}i Barycentric coordinates
I Interpolator in latent space
ABSP,

{
λBSPi (s)

}
i

Amplitude and coordinates estimated by BSP{
λ̂i(x)

}
i

Barycentric coordinates after interpolation is applied
Lj Wavelet transform scale
Jmax Maximal scale for wavelet transform
SNRest Estimated SNR on the recovered waveform
µest, σest Mean and standard deviation of estimated SNR distribution produced byIAE for noise-only inputs
H0,H1 Hypothesis tested with p-value test
SNRlim Detection limit based on estimated SNR
A(s),Λ(s), T Multi-BSP amplitudes, barycentric coordinates and delays
Hk Hypothesis associated to the presence of k sources
Λtrain Set of barycentric coordinates for all training set elements
{λtesti }i Barycentric coordinates of an element of the test set

17



Chapter 1

Introduction

This thesis deals with the characterization of galactic binary systems by gravitatio-nal waves in the framework of the Laser Space Interferometer Antenna (LISA) mission.LISA is a space-based gravitational wave detector scheduled for launch in 2034. By itsdesign it will be able to detect gravitational wave sources of much lower frequenciesthan terrestrial observatories. These include all the galactic binaries in the galaxy - afew million systems. However, LISA has only a limited number of information chan-nels and will have to limit itself to measuring the sum of these signals. In this context,characterizing them individually is a real challenge, in particular because other sourcesof gravitational waves are also present, but also because LISA is subject to a complexinstrumental noise and presents many artifacts (interruptions of data taking, glitches).
LISA data analysis must take into account the characteristics of noise and artifactsand prove that it is robust against them. It is in this context that I propose to introducenon-parametric methods of data analysis ; these methods, if they do not allow the di-rect identification of the systems, are very complementary with the Bayesian approachwhich is most represented today within the consortium. This is a framework that alsoallows to integrate easily the presence of noise and artifacts in the data.
In a first step, I show how the classical framework of sparse signal representationcan be adapted to the gravitational wave sources we are looking for. Based on thesimple assumption that the signals of binaries are quasi periodic and therefore sparsein the Fourier basis, I show that we can have a good detection and reconstruction ofthese signals. We easily include the presence of a colored Gaussian noise in the mo-deling of the data. This first model allowed us to submit a solution to the LISA DataChallenge 1-3 during which we detected all the sources, and only the injected sources.
I have pushed the capabilities of this model further by showing the benefits it couldbring when interruptions of data taking occur. This particular case can be directly rela-ted to compressed sensingmethods, which I used to develop algorithms to compensatefor the impact of interruptions on the data - and on the parametric analysis that can bedone with it. These algorithms are able to cope with losses of up to nearly 30% of thedata - which could be a realistic order of magnitude for the mission.
Finally, I propose an alternative approach to sparse modeling that allows to pushthe process of galactic binary signal characterization much further. This new approach,based on learning, allows to accurately represent the galactic binary signals. Such amodel shows very good performances in terms of detection capacity, but also signalestimation and source separation. It presents interesting possibilities for the LISA mis-sion because it relies heavily on the compressibility of the signal and on an underlying
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low dimensionality representation. I have conducted an extensive benchmark of its per-formances and propose many interesting avenues in the context of LISA data analysis.
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Chapter 2

The two (or more)-body problem in
gravitation : from Newton to
gravitational waves

2.1 From Newton to Einstein to gravitational waves
Gravity is a key phenomenon to understand the world around us. Even if it is easilyobservable, it took centuries to reach the current description that we make of it. Thedevelopment of General Relativity – the theory of Gravitation – in the course of the 20thcentury has literally transformed our vision of the world and has not only contributedto explain many phenomena but also led to many discoveries.

2.1.1 Where Einstein finds a solution to Newton’s model limits
Newton theory of gravity has long been the best to describe the phenomenon ofgravitational attraction as the equationswere simple and it could describe very complexbehaviors, such as Kepler’s orbits, ballistics or even the three-body problem.In this representation, gravitation is seen as a conservative central force (i.e. deriving

from a central potential) −→F A→B that a body A with gravitational mass mA exerts on abody B with gravitational massmB :
−→
F A→B(t) = −G · mAmB∥∥∥−→AB(t)

∥∥∥2
2

·
−→
AB(t)∥∥∥−→AB(t)

∥∥∥
2

. (2.1.1)

This force derives from the central potential generated by the mass distribution ρ des-cribing the massive bodies :
∇2Φ = 4πGρ . (2.1.2)

The Poisson field equation (2.1.2) depends linearly on the mass distribution ρ [1].However, in 1859 an important deviation from themodelwas observedwhenMercu-ry’s expected perihelion did notmatch with the observation [2] by an importantmargin.An other phenomenon also challenged this representation : with the rise of atomicclocks, precise measurements showed that clocks at different gravitational potentialwere experiencing different time flows.
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In fact, Newton’s theory was relying on several implicit axioms : the existence of anabsolute time, the existence of Newtonian potential (2.1.2), the motion equation thatensues for massive bodies and the equality of inertial mass and gravitational mass.Moreover, a byproduct of Eq.(2.1.2) is that any movement or change of body A is ins-tantaneously propagated to body B with infinite speed [1] : there is no delay betweenthe movement of A and its effect on B.Einstein designed the theory of general relativity with these elements inmind. Chan-ging the spacetime geometry was the simplest way to explain the clock deregulationdepending on the gravity potential. One element he could still not explain and that wasconsidered as an axiom of his theory is the apparent equality between inertial massand gravitational mass.
Equivalence principle : (also called "Principle of Relativity") : "Experiments in a suf-ficiently small freely falling laboratory, over a sufficiently short time, give resultsthat are indistinguishable from those of the same experiments in an inertialframe in empty space." [3]).

The very principle of General Relativity is to consider both time and space (i.e. space-time) as parameters of a geometry which evolution is governed by mass distribution :
Spacetime curved geometry : "Space acts on matter, telling it how to move. Inturn, matter reacts back on space, telling it how to curve" [1].
Based on these principles, the new unknown that has to be understood to describethe universe is its geometry, and more precisely its metric. Key element of this theoryis Einstein’s field equation :

Gαβ = 8πTαβ . (2.1.3)
(stated here under classical convention c = 1, G = 1 1).It explains howmatter through the energy-momentum tensorTαβ acts on spacetimecurvature and metric, as Einstein tensorGαβ can be expressed as a non-linear functionof the metric gαβ and its derivatives of order 1 and 2 [1; 3].
Analogy with the electro-magnetic field : Einstein’s equation Eq.(2.1.3) describesthe behavior of spacetime curvature as a function of a source termTαβ . It is really similarto Maxwell’s electro-magnetic (EM) field equations. In EM, a charged particle movingin a field is subjected to a force (the Lorentz force) which binds its trajectory. Thenretroactively the charged particle and its movement act as a source term (charge andcurrent density) for Maxwell’s equations, and thus result in variations of the EM field.Einstein’s equations abide by a similar phenomenon. A free-falling massive body’smovement is subject to gravitational field through spacetimemetric and curvature thatbind its trajectory along the spacetime geodesics. Retroactively, the massive body actsas a source term for Einstein’s equation and thus plays a role in spacetime’s curvatureand metric variations.
2.1.2 Gravitational waves

As previously stated, Einstein’s equation Eq. (2.1.3) is a non-linear equation whichunknown is the spacetimemetric gαβ . Confronted with such a complex equation, scien-tists adopted two strategies. The first strategy was to look for explicit solutions of the
1. This convention will only be used in this section.
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problem with a very simple source term : this resulted in Schwarzschild geometry ([1],chapter 31) and Kerr-Newman geometry [1], chapter 33). The second one was to try tolinearize Einstein’s field equation. But linearize with respect to what? And under whathypothesis ?As the metric gαβ is the unknown, the linearization was done under the assumptionthat far from any matter source, this metric should be close to Minkovski’s metric ηαβ .This is directly justified by the equivalence principle ; this type of development is called"Post Minkovskian" 2 .The linearized metric writes :
gαβ︸︷︷︸

spacetimemetric

= ηαβ︸︷︷︸
flatmetric

+ hαβ︸︷︷︸
smallvariation

, (2.1.4)

with |hαβ| << 1 (the strain). Using Lorentz Gauge (thus performing the correspondingchange of variable) :
hαβ = hαβ −

1

2
ηαβh , (2.1.5)

with h = hαα , (2.1.6)
using Einstein’s summation convention. Performing this change in Eq. (2.1.3), develo-ping and keeping only first order terms with regard to hαβ , we obtain the followingequation :

□hαβ = −16πTαβ . (2.1.7)
This is a wave equation with source term Tαβ that admits solutions called gravita-

tional waves (GWs). Still, they were obtained after so many approximations that thewhole scientific community wondered : are these waves real ? Or are they only a ma-thematical artefact coming from the way the theory was stated?These questions literally split the scientific community for decades between thosewho believed in their existence and those who did not - even Einstein was doubtfultoward this result, as too many assumptions were made to obtain a proper, simplelinearized equation.It is only after their first indirect detection in 1982 (Taylor, Weisberg and Hulse linkeda a pulsar orbit energy loss to the energy of the GWs they hypothetically emitted [4])that this was accepted as one of the outcomes - and a proof of validity - of generalrelativity. GW first direct detection in 2015 by LIGO-Virgo collaboration (LVC) [5] thenopened a new window to probe the universe around us.

2.2 Gravitationalwaves signal in a very simplified case :
the galactic binaries

In this section, we showhow to compute a first solution of Eq.(2.1.7) based on severalmore approximations : the GW source moves slowly (long wavelengths), GW amplitudeis weak and the observer is far away from the source. Even if the solution is not exact,it is good enough so that we can rely on it to give several semi-quantitative propertiesof the expected GW signals.
2. Other types of linearizations are possible, like Post Newtonian developments.
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The computations presented here follow the argument of [3] (chapters 22 and 23).We tried to detail them as much as possible to to make the text self-contained. Morethan an exact result, what we want to outline here is the physical origin of the pheno-menon and how it affects its surroundings.
GW equation Eq.(2.1.7) is a traditional wave equation with a source term. Using Greenfunctions we know that the general solution at position −→x of space and time t can beexpressed as an integral of the delayed source (here the energy-momentum tensor

Tαβ) :
h
αβ
(t,−→x ) = 4

∫
d3x′

Tαβ(t−
∥∥∥−→x −

−→
x′
∥∥∥
2
,
−→
x′ )∥∥∥−→x −

−→
x′
∥∥∥
2

, (2.2.1)
using the convention c = 1. In absence of other interaction than gravitation and underthe assumption that the source has a low velocity (compared to the velocity of light),the energy-momentum tensor is dominated by the rest mass density µ [3] :

T tt = µ(t,−→x ) , (2.2.2)
where µ(t,−→x ) gives the mass density at time t and position −→x of space for the systemunder study. Let us consider the case of compact binary stars : two bodies with identicalshapes and masses m = M are rotating one around another with null eccentricity.Choosing the origin of space coordinates as the center of mass of the system and anorthogonal coordinate system (x, y, z) in which the compact binary stars orbit in the
(xy)-plane, one of the bodies has time coordinates :

x(t) = R cos(Ωt)

y(t) = R sin(Ωt)

z(t) = 0

, (2.2.3)

the other body having opposite coordinates. We understand easily that the mass den-sity here is only made of the two bodies (and their position in space at time t) : µ hasfinite support in space. Thus, the integral described in Eq.(2.2.1) also has finite support
for −→x′ within the binary plausible positions. For an observer at position −→x far from the
source (i.e. ∥−→x ∥ = r >> R), we have ∥∥∥−→x −

−→
x′
∥∥∥
2
≃ r. Consequently :

h
αβ
(t,−→x ) −−−−→

r→+∞

4

r

∫
d3x′Tαβ(t− r,

−→
x′ ) . (2.2.4)

Now, taking into account the energy conservation for the energy-impulsion tensorfor flat spacetime (which is, to linear order, equal to our spacetime), we have :
∂Tαβ

∂xβ
= 0 , (2.2.5)

for any α ∈ {t, 1, 2, 3}. This is similar to the principle of charge conservation within aclosed system, but generalized to the energy-momentum tensor in a flat spacetime.Considering first :
∂T tβ

∂xβ
= 0 , (2.2.6)
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and then time-derivating, yields :
∂2T tt

∂t2
= −

∑
j∈{1,2,3}

∂

∂xj

[
∂T tj

∂t

]
. (2.2.7)

Now, the energy-momentum tensor being symmetric, we can swap the indices : T tk =
T kt. Applying one more time the conservation law Eq. (2.2.5), we get :

∂2T tt

∂t2
=

∑
i∈{1,2,3}
j∈{1,2,3}

∂2T ij

∂xi∂xj
. (2.2.8)

We multiply both sides of the equation by xkxℓ and we integrate by part :
1

2

d2

dt2

∫
d3x′ x′kx′ℓT tt(t,

−→
x′ ) =

∫
d3x′ T kℓ(t,

−→
x′ ) . (2.2.9)

We recognize here the second mass moment of classical mechanics :
Ikℓ(t) =

∫
d3x′ x′kx′ℓT tt(t,

−→
x′ ) =

∫
d3x′ x′kx′ℓµ(t,

−→
x′ ) . (2.2.10)

and get the final formula :
h
kℓ
(t,−→x ) −−−−→

r→+∞

2

r

d2

dt2
[
Ikℓ(t− r)

]
. (2.2.11)

Before going further, we can notice two important points : first, GW emission is di-rectly related to the mass distribution and its trajectory with time. Second, as the term
r− t only marks a delayed response and thus has no impact on the signal’s amplitude,the GW amplitude decreases as 1/r. In comparison, EMwaves decrease as 1/r2 : for thesame energy density of emission, an observer at distance r from the emitting body willsee that GW are less attenuated than their EM counterparts.We can push a bit further the computations to get a more precise modeling of thesignal. For this, we use the trajectory of the binary system presented in Eq.(2.2.3). Let
2M = M +M be the total mass of the system (i.e. the sum of the two body masses).Using Eq.(2.2.10), the second mass moments (taking into account the two stars) are :

Ixx(t) = 2MR2 cos2(Ωt) =MR2 (1 + cos(2Ωt))

Ixy(t) = 2MR2 cos(Ωt) sin(Ωt) =MR2 sin(2Ωt)

Iyy(t) = 2MR2 sin2(Ωt) =MR2 (1− cos(2Ωt))

(2.2.12)

All other momenta are zero.

h
kℓ
(t,−→x ) −−−−→

r→+∞
−8Ω2MR2

r


cos
(
2Ω(t− r)

)
sin
(
2Ω(t− r)

)
0

sin
(
2Ω(t− r)

)
− cos

(
2Ω(t− r)

)
0

0 0 0

 (2.2.13)

Even if this formula is approximate, it provides insightful features on the GW signalemitted by a two-body system. Firstly, we get a GW frequency that is twice the orbital
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frequency of the emitting bodies. This is still verified in more precise computations. Theamplitude of the GW decreases as 1/r. Secondly, we can now compute an order ofmagnitude of the wave’s amplitude, as it is here defined by h0 = 8Ω2MR2/r. Using datawith representative order of magnitude for galactic binary systems, we get :
8Ω2MR2

r
∼ 10−21 . (2.2.14)

GWare ripples propagating through spacetime. These ripples directly affect the spa-cetimemetric and can be measured. They originate from an asymmetry of the quadru-polar moment, meaning that any system breaking spherical symmetry can emit GWs.Among these systems, there are of course the binary systems, but also others like theasymmetric explosions of supernovae. Similar computations can be performed to de-termine the signal they emit, but they require different approximations taking into ac-count the system’s specifics. However, spacetime is very rigid : these perturbations havea really low amplitude.

2.3 Motivations for GW observation
GWmeasurement is a new information channel that can be used to probe the Uni-verse. It will critically complement the EM observations already in use in Astrophysicsand Cosmology. Among the many elements motivating the observation of GWs, let uslist the following :
Multi-messenger astronomy : using GWs, we can detect in advance signals pre-dicting events with important EM emissions, among which we find some blackhole mergers and supernovae. We can even use GWs to spot systems with a lo-wer imprint in the visible spectrum, such as binary neutron stars. Moreover, wecan organise space GW detector - ground GW detector collaborations to observeon longer runs events which frequency increases with time. Moreover, there willbe synergies between all detector – both ground and space based, detecting GWor EM waves – such as with SKA [6], the Athena mission [7], LVC and the LISAmission [8; 9].
A window to unexplored time : As we explained in Section 2.2, GW dampening isslower than EM wave damping. We could potentially observe phenomena thatoccur everywhere in the universe. Not only could we look further, we could alsolook "earlier" : no EM observations can be done before the apparition of thecosmic microwave background about 380.000 years after Big Bang. However,there is a possibility that GW signals emitted before that moment could be seen[10].
A new description of our galaxy : some objects are not (or hardly) EM detectablebut could be GW detectable, like galactic binaries. Some objects are hard to de-tect using EM waves if we are not already aware of their presence. GW detectioncan improve cosmological models : the LVC has already started to characterizethe population of compact binary objects emitting GWs in our Galaxy [11].
Discovery potential : We could measure new types of signals corresponding tonew physics. We could also probe several theoretical extensions of GR or per-form precision tests of GR in the strong coupling regime [10; 12].
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Figure 2.1 – Left : LIGO interferometers detection principle. This is based on Michelson interferometer.(source : [13]) Right : Testmassmotion in spacetime in absence of GWs corresponding to a flat spacetime(orange, labelled as "Flat") and when a GW is passing (blue, labelled as "GW")

2.4 Gravitational waves observation : how to observe
the non-visible?

GWs may propagate far, but they still have an amplitude so low that it is a real chal-lenge to measure their imprint. Many experiments were designed to directly detectthem [13], but only few are actually able to do so.
2.4.1 Indirect detection

The existence of GWswas first confirmed in 1982. In their article [4], Taylor andWeis-berg explain that the decay of the orbital period of the binary pulsar PSR 1913+16 canexactly be explained by the quantity of energy radiated through GWs. The Nobel Prizein Physics of year 1993 was dedicated to this discovery and the possibilities it broughtto science.A few decades later, the Pulsar Timing Array (PTA) [14] method is now presentedto the community as a "natural detector" for GW. It relies on the idea that pulsar emitextremely periodic EM pulses than can be observed with ground-based detectors likeSKA. Their time of arrival could be perturbed by incoming GW signals. By looking at cor-relations between arrival delays of the pulses coming from different pulsars, scientistsexpect to detect GW signatures indirectly. This work is still ongoing [15].
2.4.2 Direct detection

The first successful direct detection of GWs was realized in 2015 within the LVC colla-boration, and was awarded the Nobel Prize in Physics of year 2017. The detectors of thecollaboration are based on a laser Michelson interferometer[16] measuring with greatprecision the distance between two "free-falling" test masses separated by a wide dis-tance, as shown in Fig.2.1 (left). The test masses are free from any interaction exceptfrom gravity, and a distance variation between the two can be interpreted as the effectof a passing GW. Fig.2.1 (right) shows the variation of distance between two test masses
A andB (taking the position ofA as a reference) in a flat spacetime when a GW passes.
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The amplitude of the variation remains very small : for a wave propagating along the
z-axis, we can estimate the variation of the distance between two testmasses separatedby L∗ in a flat spacetime. Taking one of the test masses as a reference, and consideringthe other one along the x-axis, we get ([3], chapter 16) :

L(t) =

∫ L∗

0

dx
[
1 + hxx(t, 0)

]1/2 ≃ L∗[1 + 1

2
hxx(t, 0)

]
. (2.4.1)

Thus, writing L(t) = L∗ + δL(t) :
δL

L∗ =
1

2
hxx(t, 0) ∼ 10−21 , (2.4.2)

using the order of magnitude Eq.(2.2.14) : the wider the arms of the interferometer, thegreater the distance variation δL that should be measured.For LIGO, the armlength is 4 km (the effective armlength iswider thanks to a complexassembly ofmirrors increasing the laser beamoptical path length), thus can only detectphenomena with amplitude that is high (for instance, binary black holes mergers). Thedetection capacity of this detector is limited in lower frequencies by the Earth seismicnoise. The detected sources have a frequency around 102 Hz restricting the observationto certain types of sources [17].Having an observatory with wider arms and freed from seismic noise would openmany doors in terms of observation. The joint ESA-NASA project "Laser Interferome-ter Space Antenna" (LISA for short) is an answer to both requirements, as it will be aninterferometer in space with armlength of 2.5 million km.
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Chapter 3

The LISA project

LISA is a space-based GW observatory which has been developed since 1997 as acollaboration between ESA and NASA. The project experienced a critical phase whenNASA retracted from it in 2011, optimistic prospects were simultaneously triggered bythe first direct detection of GW in 2015 by LVC (announced at the beginning of the year2016) and the success of the demonstrator LISA PathFinder (LPF) in december 2015.LPF was a demonstrator aiming at validating the technologies that will be used du-ring LISA mission. The results were impressive, as final noise levels were much lowerthan the requirements. Following these two events, NASA re-entered the project in 2016.Finally, in June 2017 LISA was selected as a ESA L3 mission ; phase A was completed inDecember 2021 and we are now in phase B1 that will last until mission validation mid2024.The following description of the LISA project is data-analysis oriented, and thus isnon-exhaustive. More details about the mission can be found in [1; 2]

3.1 LISA Objectives and Scientific objectives
LISA measurements are based on the principle of interferometry that described inSection 2.4.2. Nonetheless, LISA’s armlengths were desigendmuch wider than the onesof LVC to observe ranges of phenomenon inaccessible to the LVC.Fig.3.1 displays the known GW sources with regard to their expected emission fre-quency range. Some events, like merging black hole binaries or supermassive blackholes, are visible by both LISA and Earth-based GW observatories. As many of theseevents have EM counterparts, this should lead to fruitful cooperationswith the differentkinds of observatories to conduct multimessenger astronomy [3].A detailed description of sources and associated scientific objectives can be foundin [1; 4; 5]. The main observable sources are :
Massive Black Holes Binaries (MBHBs) : Twomassive black holes rotating one aroundanother during in-spiral phase, ending up merging. The amplitude of the expec-ted transient signal can become strong at merging time, making it one of themost visible sources for this mission.
Galactic Binaries (GBs) : Two bodieswith similarmasses rotating one around ano-ther, far enough from merging time producing a low amplitude, periodic conti-nuous signal. It includes white dwarfs, neutron stars but also stellar-origin blackholes. Tens of millions of such systems are present in our Galaxy ; among them,
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Figure 3.1 – GW sources sorted according to their expected emission frequencies. Different types ofinterferometers are sensitive to different frequency ranges, and thus will observe different phenomena– with potential overlaps. The "Merging white dwarfs in our Galaxy" represent most part of GB signalsthat will be observed by LISA. (Source : https://www.esa.int/ESA_Multimedia/Images/2021/09/The_
spectrum_of_gravitational_waves)

it should be possible to identify the sky position and the physical characteristicsof about 20.000 of them. The GW signals coming from unidentified systems willform a non-negligible background noise (also called "Confusion Noise"). A moreprecise description can be found in [6].
Extreme Mass Ratio In-spirals (EMRI) : A very light body orbiting around a heavybody. After a long in-spiral phase where the two bodies get closer, the light bodyshouldmergewith the heavy body. These systems are expected to produce com-plex signals that are hard to model. Nonetheless, they could help putting to testgeneral relativity as the movement of the light body gives a precise cartographyof the gravity field around the heavy body. It is hard to estimate the detectabilityrate of these sources – between 0 and 1, 000 of such events could happen duringthe whole mission.
Stellar Origin Black Holes (SOBH) : They are the sources themost detectedby LVC.They should also be visible by LISA in their early in-spiral phase. This calls for sy-nergies between the two devices : LISA could detect the merger long before ithappens and produce a warning to alert LVC that an event is likely to happen ina near future.
Stochastic Background : Of cosmological origin, this background was created inthe early universe. Its detection could help understand better the changes thathappen at that time and give new directions regarding cosmological phenomenathat happened in the early Universe. It is one of the fewexperimental possibilitiesto probe this epoch in the history of the Universe.
GW bursts and unforeseen sources : As the first survey observatory scanning the
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gravitational universe in this frequency range, LISAmaydetect unforeseen sourcesand trigger unexpected exciting developments in physics.
Emitted GW signals depend on the sources physical characteristics. If we can mea-sure the signals, we might be able to trace the characteristics of the bodies, such astheir positions in the Galaxy, their orientation and their masses. LISA greatly differsfrom the LVC observatory not only in the frequency range of observation, but also inthe amount of sources that are expected to be seen. When the LVC reports detectingabout 1 source per week [7], LISA will observe thousands of continuous phenomenasuperposed to transients GW bursts similar to that of LVC observations.
Many of these sources produce an EM counterpart at critical moments of their lifethat are often preceded by GW emission over long time periods. LISA could play therole of a trigger to forecast EM bursts visible by EM observatories.

3.2 Measurement principle : Time Delay Interferome-
try

Figure 3.2 – Left : The LISA constellation follows the Earth on its orbit around the Sun. It forms a 60 de-grees angle with the ecliptic plane. (Source : [1]) Right : One of the three spacecrafts of the LISA constel-lation. Two laser beams are pointing toward the other spacecrafts. (Source :[8])

LISA is a constellation of three satellites separated by 2.5 million km one from ano-ther. As shown in Fig.3.2 (left), this constellation rotates around its center while follo-wing the Earth’s orbit around the Sun. The three satellites play symmetrical roles, andhave the same structure illustrated in Fig.3.2 (right).
One satellites is made of two main parts [2] : the interferometer measurement sys-tem and the disturbance reduction system - insuring the stability of the system evenin presence of disturbances. We introduce here the measurement principle, and wetackle the noise questions in the next section.
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Figure 3.3 – Simplified diagram of the two optical benches aboard a spacecraft and the interferometricmeasurements s1, s′1, τ1, τ ′1 that are done. Each bench has its own laser (p1, p′1), making compulsory to
compare the inputs and outputs on the two benches. The optical benches movement ∆⃗1, ∆⃗

′
1 and the

test-masses movements δ⃗1, δ⃗′1 must be taken into account. The real system relies on more than onelaser per optical bench and a more complex optical path. (Source : [9])

3.2.1 Interferometric measurement system
LISA is a constellation of three satellites, also called "spacecrafts". Each spacecraft(S/C) includes two optical benches. Each one is composed of a laser, a test mass andtwophotodetectors [9] performing various interferometricmeasurements between thelocal and incoming laser beams.

Figure 3.4 – GW are transverse waves admitting two types of polarization : h+ and h×, forming an angleof π/4 Rad in the plane orthogonal to the direction of propagation. Were LISA constellation in that plane,the inter-satellite distance would be affected by the GW in a continuous deformation depending on thewave polarization. The distance variation measured on each arm will be different. (Source : [2])
The test masses are continuously free falling along a geodesic of the gravitationalfield. Thus, any distance variation between the two masses can only be interpreted asthe passage of a GW. Fig.3.4 shows the effect of a passing GW on the LISA constellationfor the two polarizations h+ and h× : the variation observed for each arm is differentand depends on the polarization of the incoming GW.On one optical bench, three interferometric measurements based on Doppler ef-fect are done [2] : a laser beam is emitted by a spacecraft at a nominal frequency, and
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any passing GW signal modulates the frequency of this beam. This modulation is equi-valent to a Doppler shift of the laser frequency ; it can be measured by comparing themodulated beam with a laser at nominal frequency. However, this calls for a precisecontrol of lasers nominal frequency that is hard to reach because many non-coherentlaser sources are used.To palliate this issue, we compare through interferometricmeasurements the lasersemission frequencies with a reference. TheMain Interferometer compares the receivedlaser beam frequency to the bench reference laser frequency (serving as a local oscil-lator). The Test Mass Interferometer compares the transmitted laser beam frequencyto the bench reference laser frequency. The Reference Interferometer compares thetransmitted laser beam frequency to the other bench reference laser frequency. A sim-plified version of the assembly is shown in Fig.3.3 : the two optical benches performinterferometric measurements between the incoming laser beam and the local laser.Interferometric measurements are also realised between the two benches.

Figure 3.5 – Michelson interferometer with two different armlengths L1, L2 and two interferometricmeasurements y1, y2. The laser is stabilized around frequency ν0 but has small fluctuations C(t). In thiscase, we can find a combination of the delayedmeasurements depending on the armlengths that cancelsthe laser fluctuations. (Source : [9])
The specificity of LISA as an interferometer comes from the way the measurementitself is done. Indeed, this interferometer has three arms that are unusually wide withvariable lengths. On the one hand, the inter-satellite distance being 2.5 million km, thereceived light power is about a few hundreds pW whereas it was about 1 W at emission[2]. As only few photons reach the other spacecraft after being emitted, this preventsthe light beam from going back and forth between two spacecrafts : the beam powerwould not be bright enough to be detected.One laser beam can only go from one spacecraft to another : this makes it una-voidable to use at least one laser per spacecraft. But knowing that the constellationrotates around its center, the Sagnac effect must be accounted for. The propagationtime of light between two satellites will not be the same if the light propagates in thedirection of rotation or in the opposite direction. Thus, between spacecraft i and spa-
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cecraft j, we must measure the propagation time of light from i to j, but also from jto i. Thus, there is a total of 6 lasers exchanges. These lasers were built to emit beamsaround a nominal frequency ν0. However, each of them produces independently itsown fluctuations around the nominal frequency. This is called laser noise - it has anamplitude that is 8 orders of magnitude above any detectable GW signal [9].
Furthermore the distance between satellites (i.e. the interferometer armlength) varywith time and differ from one arm to another as the satellites are not rigidly linkedtogether. Satellites trajectories can deviate from the geodesic they follow because ofexternal events (solar wind, etc). Even without these external solicitations, the theoreti-cal trajectory along a geodesic implies for the inter-satellites distance to change slowlyover time. This create an additional effect that must be considered to obtain preciseinterferometry. This does not fit Michelson’s traditional frame : classically, equal arm-length ensures laser noise suppression as only one laser is present. Therefore, it wasnecessary to find a way to remove the laser noise while maintaining the signal of inter-est.

3.2.2 Time Delay Interferometry

The Time Delay Interferometry (TDI) [9] was the first method developed to deal withlaser noise. We will provide here the simplest example given in [9] as we believe thisis enough to understand its underlying principle. More details can be found in [9] andreferences therein.
Fig.3.5 shows a simplified layout for a two-arm Michelson interferometer with dif-ferent armlengths L1, L2. The laser emits a beam at frequency ν0 with time fluctuations

C(t) that we want to suppress. Given two interferometric measurements y1(t), y2(t),and under the hypothesis that we know exactly the armlengths L1 and L2, it is possibleto completely remove the laser noise.
The signal yi(t)measured at time tmeasures the difference between the laser fre-quency at time t and the incoming laser beam (emitted by the same laser at time

t− 2Li/c). The laser frequency is defined by ν0 + C(t). Meanwhile, the laser beam fre-quency that was emitted at frequency ν0+C(t− 2Li/c) is tainted by GW signature hi(t)and residual noise ni(t). Therefore, the interferometric measurements write :

y1(t) =

[
ν0 + C

(
t− 2

L1

c

)
+ h1(t) + n1(t)

]
−
[
ν0 + C(t)

]
,

y2(t) =

[
ν0 + C

(
t− 2

L2

c

)
+ h2(t) + n2(t)

]
−
[
ν0 + C(t)

]
. (3.2.1)

The same laser fluctuation C(t) is measured twice through y1 and y2. However, thedelayed fluctuationC(t−Li/c) also appears in themeasured signal : simply subtractingonemeasurement to the other is not enough to cancell all the laser noise. Yet, if insteadwe build a combination of the two measurements at different times :

X ≡ [y1(t)− y2(t)]−
[
y1

(
t− 2

L2

c

)
− y2

(
t− 2

L1

c

)]
. (3.2.2)
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The laser noise is cancelled and we get :

X =

[
h1 (t)− h1

(
t− 2

L2

c

)]
−
[
h2 (t)− h2

(
t− 2

L1

c

)]
︸ ︷︷ ︸

Signal
+

[
n1 (t)− n1

(
t− 2

L2

c

)]
−
[
n2 (t)− n2

(
t− 2

L1

c

)]
︸ ︷︷ ︸

Residual Noise

. (3.2.3)

The signal is still there in a form mixing the signals present on the two arms taken atdifferent times. This new GW signature is now detectable if its amplitude is high enough
to surpass that of the residual noise.

The case of LISA is much more complicated, as we have 6 laser beams and thus 6independent laser noises to cancel using all the interferometricmeasurements. Moreo-ver, the armlengths are unknowns that also have to be estimated in the process. In theend, in a similar fashion, we obtain three "pseudo-Michelson" measurements, usuallyreferred to as X , Y and Z. Nevertheless, the residual noises in these three measure-ments are correlated as the delayed residual noises from different lasers can appearin several of the measurements.
For statistical purposes, it can be easier to work on data with de-correlated noises.For TDI of first generation 1, they are defined as :

A =
Z −X√

2
, (3.2.4)

E =
X − 2Y + Z√

6
, (3.2.5)

T =
X + Y + Z√

3
. (3.2.6)

Channel T is known as "null channel", because it is less sensitive to low-frequency GW[9; 10]. It can be used for other purposes than GW search, such as noise monitoring.
Many more TDI combinations are possible [11], depending on the assumptions werely on. Even more, several versions of TDI are available, each of them responding tomore and more realistic modeling of the instrument (armlength rigid or not, equal ornot, large wavelength approximation). All the different versions are reported in [9]. [12]also proposes a generalized version of TDI based on principle component analysis thatcould bypass the armlengths estimation.
It is still possible to work on data with de-correlated noises for TDI later versions :[5] states the existence of de-correlated TDI as a mission requirement. In the followingwork, we often rely on de-correlated data as it is statistically easier to process (no cross-correlation terms have to be taken into account when computing a likelihood for ins-tance) in a joint analysis of TDI channels.

36



Figure 3.6 – LISA noise origin. Frequency dependence and origin of the noise in Fourier domain. (Source :[13])

3.3 Disturbances & noise sources

3.3.1 Noise sources
Many events can impact the viability of themeasurements ; they are classified underthe "noise" or the "artifact" labels. Fig.3.6 indicates the dominant noise contributions asa function of Fourier frequency range. They originate mostly from either physical originor from the optical metric system.Noises of physical origin mainly correspond to forces acting on the test-masses, beit magnetic forces, thermal fluctuations or others. They create test-mass position per-turbations that do not correspond to GW signal. On Fig.3.6, they mostly correspond tolow-frequency noises (f < 3mHz).Noises originating from the Optical Metric System directly happen during themeasu-rement process : among themwe find the laser noise, the photon shot noisemisleadingthe phase measurement, clock noise, spacecraft jitters, misalignment issues on the op-tical path, temperature effect on electrical components (that could also taint the datawith correlated noises), but also the impact of switching on and off any device on aspacecraft. This last noise source was actually observed during the LPF mission [14]. OnFig.3.6, they mostly correspond to higher frequencies noises (f > 3mHz).Taking into account all the different types of noise, we can give a "current best esti-mate" of instrumental noise performances. Keeping scientific objectives in mind, theyshould remain as much as possible below the requirements stated in the LISA ScienceRequirement Document [5]. The LPFmission, that was build as a demonstrator for LISAinstrument, showed that the testmasses feedback control system can efficiently reducethe level of the noise related to that origin [15; 16].Fig.3.7 shows this current best estimate compared to various source types that areexpected : MBHBs, GBs and EMRIs. The computations related to the instrumental sen-sitivity are detailed in [17].
1. Each new TDI generation is based on hypothesis that are less restrictive than the previous one.More information can be found in [9].
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Figure 3.7 – LISA sensitivity strain curve with Fourier frequency. Over this sensitivity curve are represen-ted the main GW sources that should be detected by LISA. (source : [1])

As a first approximation,most of these noises can bemodeled as a zero-meanGaus-sian colored noise in Fourier domain which estimated power spectral density (PSD) isgiven by the noise current best estimate. Yet, several other disturbances cannot bemodelled as such. We gather them under the "artifacts" label.
3.3.2 Artifacts

In order to compute LISA sensitivity, the maximum interferometric noise level andtest mass acceleration noise level are assumed to be known. Based on arm responsesimulations, they are propagated to compute the final instrumental sensitivity [17]. Inreality, these noise sources could be greater than expected and other noise sourcescould deteriorate the performances. This is why they have to be dealt with before (as apre-processing step) or during data analysis.First and foremost, the laser noise has to be cancelled immediately as it representsthe noise source with the highest amplitude among all. This is done trough the appli-cation of the TDI process that was presented in Section 3.2.2. More generally, the InitialNoise Reduction Pipeline (INReP) aims at suppressing Optical Metric System originatednoises as much as possible (laser noise, clock noise, etc). This is the first step - and oneof the most important - of data pre-processing.After applying the TDI, many noise sources are left. Any noise that is not included inthe description made in Fig.3.7 is assimilated to a noise artifact ; an exhaustive listingof all of them can be found in [18]. Two types of artifacts are of interest here :
Glitches : Their occurrences were observed during the LPF mission [15; 16]. A studywas lead to determine their characteristics [14] in order to build a realistic si-mulator for the LISA mission. They have either electronic or mechanical origins(test-mass accelerations that are damped by the Drag-Free system)
Gaps : Data taking interruptions are likely to happen as it was observed during LPFmission. However, if they are too frequent, they will impact data analysis not onlybecause a large amount of data will be missing, but also because several typesof studies are directly conducted in Fourier domain. For LISA, data gaps could be
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scheduled (spacecraft maintenance), unscheduled (if the spacecraft goes intosafety mode for instance), or we could even "gap" the data (as putting aside datasequences) that are too noisy to be used, if too many glitches are present forinstance. The duty cycle (ratio of usable data measurement) could drop down to75% [19].
Other types of artifacts exist, like the spectral lines (noises appearing at a specific fre-quency) or non-stationary noises. They are not investigated here.Since these non-gaussianities could affect the production of LISA science from therawmeasurements, they have to be carefully described and integrated in the data ana-lysis. In the following work, we will mainly focus on data gaps. However, a part of thework we present could presumably be adapted to deal with glitches (be it for detectionor subtraction).
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Chapter 4

Data analysis methods for
gravitational wave signals

In this chapter are gathered the necessary elements to understand the work I didduring my thesis. The object of study (galactic binaries) is presented and we define thedata models (in terms of signal and noise) that will be used throughout themanuscript.We also introduce the Bayesian approach to LISA data analysis – this is the most com-monly used approach in the community. Its functioning is demonstrated on a simpleexample based on a sampling code that I developed. The non-parametric approach todata analysis is then introduced as a complementary approach to Bayesian analysis.

4.1 Galactic Binaries : parametric representation

4.1.1 Single GB source

Figure 4.1 – Frame changes between the Solar System Barycenter frame (left) and the source frame(right). This involves a rotation of angle ψ illustrated by the picture in the middle. (Source :[1])
Most part of my work focused on GB sources from modeling them to dealing withthem in presence of data gaps. As described in Section 3.1, we call a system of "ga-lactic binary" two bodies with similar masses, rotating one around another, far fromcoalescence and thus emitting a quasi-periodic GW signal. For instance it can be madeof black holes, neutron stars or white dwarfs. We illustrated in Section 2.2 that in thesource frame such a systemwithout eccentricity emits a sinusoidal signal. In reality, thephase has to take into account an additional term [2] :

Φ(t) = ϕ0 + 2πf0t+ πḟ0t
2 , (4.1.1)
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with Φ0 the initial phase and f0 the emission frequency that is twice the orbital fre-quency. The term πḟ0t
2 conveys that the system is not strictly periodic : its emissionfrequency can change over time due to e.g. tidal effects or the two stars getting closer.We want to deduce the GW signature that such a system will leave on the TDI chan-nels. This is done in several steps taking into account both the source position and theinstrument characteristics :

■ First, the signal has an amplitude h0 and is decomposed into its two polarizations[1] :
hS+ = h0(1 + cos2 ι) cos [Φ(t)] , (4.1.2)
hS× = −2h0 cos ι sin [Φ(t)] . (4.1.3)

■ Then, we apply the change of frame from the Source frame to the Solar SystemBarycenter (SSB) frame detailed in Fig.4.1 (more details can be found in [1]). Theframe change introduces the sky position of the source in terms of the eclipticlatitude λ and longitude β, as well as the system’s polarization angle ψ.
■ The third step is to combine the GW signal in the SSB frame with the LISA orbit tocompute the instrumental response : This can be done for an analytical simpleorbit, as in [2]. With this step, one is able to compute the different interferometricmeasurements.
■ The final step consists in computing the signal in the TDI channels used in dataanalysis. An example of computation is detailed in [2].

Figure 4.2 – GB waveform with central frequency f0 = 3 mHz. Left column : modulus of the signal inFourier domain ; Right column : signal in time domain. Top : full signal ;Bottom : zooms. In time domain,we observe that the "high frequency" signal, which is the one that we seek, admits a very low frequencyenvelop that is due to LISA constellation movement around the Sun. In Fourier domain, this Dopplereffect causes the signal to spread over neighboring Fourier frequencies.
After applying all these steps, we obtain the signature of a GW signal emitted by aGB directly visible on the TDI channels. A typical example is represented in Fig.4.2 : in
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time domain, the measured signal (also called waveform) locally appears as sinusoidal.However, when considering data on a larger timescale, we can see that the signal’s am-plitude is modulated by the instrument’s orbits. In Fourier domain, the signal appearsfrom afar as a single peak (which is expected for a monochromatic signal). However,when zooming on the peak, we observe that it has a width : the signal spreads overseveral frequencies because the instrument’s motion generates a Doppler shift thatdepends on the position of the GB system.

Intrinsic Parameters Extrinsic Parameters

Frequency f0 Hz Amplitude h0 Strain
Frequency Derivative ḟ0 Hz−2 Inclination ι ∈ [0, π] Rad
Ecliptic Latitude β ∈ [−π

2
, π
2
] Rad Polarization ψ ∈ [3π

4
, 5π

4
] Rad

Ecliptic Longitude λ ∈ [−π, π] Rad Initial Phase ϕ0 ∈ [π
2
, 3π

2
] Rad

Table 4.1 – Parameters needed to fully describe a GB without eccentricity. The parameters can be split intwo categories : intrinsic parameters and extrinsic parameters, corresponding to their roles in parameterestimation.
Therefore, we have a computable formula for GB expected TDI signal based on the8 parameters gathered in Table 4.1. They are often split into two categories : intrinsicand extrinsic parameters, as the two categories play asymmetric roles in Bayesian pa-rameter estimation.These parameters can be related to quantities of interest in astrophysics and cos-mology. The amplitude h0 and the frequency derivative can be related to the systemchirp massMc and its distance to the Sun DL [2] :

Mc =
m

3/5
1 m

3/5
2

(m1 +m2)1/5
, (4.1.4)

ḟ0 =
48

5× 2π

(
GMc

2c3

)5/3

(2πf0)
11/3 , (4.1.5)

h0 =
4(GMc)

5/3

c4DL

[
f0
π

]2/3
, (4.1.6)

wherem1,m2 are the respectivemasses of the two stars,G is the gravitational constantand c is the light celerity 1. The chirp massMc and the distance to the SunDL are quan-tities that characterize the position and composition of the observed GBs [3].We will denote a set of parameters by :
θ = (f0, ḟ , β, λ︸ ︷︷ ︸

θint

, h0, ι, ψ, ϕ0︸ ︷︷ ︸
θext

) = (θint, θext) . (4.1.7)

At this point, we take the opportunity to distinguish between two types of parameters :extrinsic parameters θext and intrinsic parameters θint. This distinction is linked to ob-servations that were made in order to speed up parameter estimation [2] where they
1. c = 299 792 458m s−1, G = 6.67430× 10−11 m3kg−1s−2
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play asymmetric roles. See Section 4.3 and then App. A where this separation is explai-ned in detail.For any type of system emitting GW, we call waveform the function generating theLISA measurements corresponding to the physical parameters θ. For some systemslike GBs, [1] provides a fast algorithm to produce these signals in the case where thecorresponding system has a non-eccentric orbit.As GB signals are quasi-stationary with low amplitudes, it is easier to spot them di-rectly in Fourier domain because all the information is gathered around the emissionfrequency f0. This is why the search and identification of GB signal is usually conduc-ted directly in this domain. It enables to localize the search over restricted frequencyranges (instead of considering all of the timemeasurements) which contributes greatlyto speeding up detection and identification. From its observed signature, one of thestakes of data analysis is to trace back the source and its corresponding physical pa-rameters ; Bayesian parameter estimation provides a framework that can address thisinverse problem.
4.1.2 Realistic data : the Galaxy challenge

Figure 4.3 – In Fourier domain, simulation of realistic data containing the GB signals emitted within agalaxy (red), MBHB signals (green) and instrumental noise (corresponding noise PSD in black). The totalsignal is plotted in blue. The galaxy is made of millions of GB systems, all emitting GWs in a restrictedfrequency band. Some signals are brighter than the others, whichwill facilitate their identification. Otherswill be assimilated to a continuous background noise, the "confusion noise". (Source :[4], challenge 2a)
Reality is much more complex than the case of a single GB : scientists estimate thatGB population in our Galaxy could reach about tens of million systems [3]. A realisticsimulation of the signal produced by such a population is presented in Fig.4.3 : all thesystems are emitting in the same frequency range 1 − 20 mHz, many are overlappingand mixing up making the identification really hard.Among all these systems, the scientific objective is to identify about 20, 000 – theleftovers will be assimilated to a Gaussian, non-stationary noise [3].
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4.2 Data & Noise modeling

4.2.1 Data modeling
Weadopt the following notations : the datawill be observed on a set ofCMichelson-type channels denoted by the index I . For instance, we can have I ∈ {X, Y, Z} (C = 3)or I ∈ {A,E} (C = 2) if one prefer to consider channels with de-correlated noises – seeSection 3.2.2 for their definition. The observed data on channel I will be noted dI , and

the overall data d =


dI1...
dIC

 will gather the data on all channels.

The measurements are done on an observation duration of Tobs with time step ∆t.This represents N =
⌈
Tobs
∆t

⌉ data points, taken at time tn = n∆t. The Fourier transformof the data is defined for for frequencies fk = kδf , with δf = 1
Tobs and k ∈ [−K,K],

K =
⌈
N
2

⌉.To keep notations compact, we will use the same symbols dI ,d for functions ortheir Fourier transform, and use the argument to distinguish both : dI [n],d[n] (resp.
dI [k],d[k]) for the time (resp. frequency) dependence. The discrete Fourier transformconvention used here is the following :

dI [k] =
N∑

n=1

dI [n]e
−2iknπ

N . (4.2.1)
The inverse discrete Fourier transform is defined as :

dI [n] =
1

N

K∑
k=−K

dI [k]e
−2iknπ

N . (4.2.2)

d[k] is the concatenation of the data in frequency domain : d[k] =

dI1 [k]...
dIC [k]


The measurements on channel I are the sum of the GW signal hI and the instru-mental noise nI :

dI = hI + nI , (4.2.3)
d = h+ n . (4.2.4)

hI is the signalmeasured on the TDI channel I , and thus directly depends on the systemparameters θ. We will directly highlight this dependence by writing hI(θ)when needed.In fact, hI(θ) designate the waveform – i.e. the function that produces the time measu-rements on the TDI channel I from the physical parameters θ.
4.2.2 Noise modeling

In a first approximation, the noisenI is supposed to be Gaussian and colored in Fou-rier domain. Thus, its distribution is characterized by itsmean (assumed to be 0-valued)
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and its PSD, defined in Fourier domain. The expected noise PSD for LISA is the one pre-sented in Fig.3.7. The PSD associated to the channel I is denoted by SI . It is assumedto be diagonal (noises at different frequencies are de-correlated). The cross-correlationPSD between TDI channels I and J will be denoted by SIJ . The corresponding PSD on
d reads :

S =


SI1 . . . SI1IC... . . . ...
SICI1 . . . SIC

 . (4.2.5)

In case where the TDI channels are de-correlated in noise, this matrix is diagonal – i.e.
SIk is diagonal for any k and SIjIk = 0 for any j ̸= k – because all the cross-correlationterms vanish.The noise PSD on channel I is defined by :

SI [k] = E [nI [k] · nI [k]
∗] . (4.2.6)

More details about the PSD can be found in Appendix D.4 and in [5]. Under the hypo-thesis that the noise is zero-mean, stationary, Gaussian colored in Fourier domain, thenoise model writes :
nI [k] ∼ N

(
0,

SI [k]

2

)
+ i · N

(
0,

SI [k]

2

)
, (4.2.7)

where N (µ, σ2) denotes the Gaussian law of mean µ and variance σ2.

4.3 Bayesian estimators for the signal and the parame-
ters

4.3.1 The Bayesian vision of data analysis
Bayesian inference is a framework often used to deal with data analysis based onstatistical models. Suppose that the observed data is given by :

d = h∗ + n , (4.3.1)
with h∗ the "true" signal to estimate and n the noise with statistical description presen-ted in Section 4.2.2. The Bayesian framework allows to estimate the probability of the
underlying signal being h if the observation is d, and then set an estimator ĥ of h∗ asthe maximum a posteriori of the estimated probability distribution.For any signal h, the probability density of observing the data d knowing that theunderlying signal is h for sure, noted p(d|h), is given directly by the distribution of theresidual d − h = n, which exactly corresponds to the noise distribution. Assumingthe noise follows the distribution that we presented in the Section 4.2.2, its probabilitydensity is the one of a Gaussian noise realization :

p(d|h) = 1√
2π det(S)

CN
exp

[
− 1

2
(d− h)†S−1(d− h)︸ ︷︷ ︸

⟨d− h,d− h⟩S

]
, (4.3.2)
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where † denotes the conjugate transpose of a vector and asmentioned above,N (resp.
C) stands for the number of data points (resp. channels). This involves the inner product
⟨·, ·⟩S defined as :

⟨uI ,vJ⟩SIJ
=
∑
k

uI [k]S
−1
IJ [k]vJ [k]

⟨u,v⟩S =
∑
I ̸=J

⟨uI ,vJ⟩SIJ
+
∑
I

⟨uI ,vI⟩SI
(4.3.3)

Now, we would like to solve the opposite problem, i.e. to estimate the probability ofpresence p(h|d) of a signalh knowing themeasurementsd. This is possible using Bayes’theorem :
p(h|d) = p(d|h)p(h)

p(d)
, (4.3.4)

where p(h) contains the prior information on the signal h and p(d) is the model evi-dence associated to data d. p(d|h) is the likelihood of measuring d when the under-lying signal is h. The probability of presence p(h|d) is called posterior distribution ; forsimplicity and when there is no ambiguity about the data vector d, we will denote it
L(h).Usually, we work with the logarithm of the posterior distribution :

log p(h|d) = logL(h) = log [p(d|h)] + log [p(h)]− log [p(d)]

∼ −1

2
⟨d− h,d− h⟩S + log [p(h)] , (4.3.5)

as we only keep the terms depending on the waveform h 2. The maximum a posterioriestimator of the signal is defined by maximizing the log-posterior :
ĥ = Argmax

h
logL(h) . (4.3.6)

Equivalently, we can directly write an estimator for the parameters associated to thesignal h just by introducing a slight change in Eq. (4.3.6) :
θ̂ = Argmax

θ
logLp(θ) , (4.3.7)

using the associated log-posterior :
logLp(θ) = −1

2
⟨d− h(θ),d− h(θ)⟩S + log [p(θ)] . (4.3.8)

Two remarks are in order. First, we define estimators Eq.(4.3.6) and Eq.(4.3.7) basedon the hypothesis that, when using a waveform representing exactly the real signal,then the maximum is unique and unbiased. But even if there is no evidence that thishypothesis is verified, this approach is successful [6] in presence of non-artifact instru-mental noise.Second, we would like to highlight that Eq.(4.3.5) and Eq.(4.3.7) are two distinct es-timators. The first one relies on the signal morphology (and the prior is set directly onthe signal : p(h)) whereas the second one relies on the parametrized waveform (witha prior set on the parameters : p(θ)). The two types of prior can be fundamentally dif-ferent ; most of the data analysis done so far has been using the estimator Eq.(4.3.7),whereas our work can be recast as a variante of estimator Eq.(4.3.5) as we will illustratein Section 5.1.3 and Section 7.3.1.
2. In this simplified case we do not try to estimate the number of sources that are present. Thus wecan discard all the terms that are related to the model since we are not performing model selection.
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4.3.2 Sampling the posterior distribution

Figure 4.4 – Plot realised using [7]. Sampling realised using [8; 9]. Behavior of the log-posterior Lp(θ)with regard to two of its variables, marginalizing the others. From up to down (and from left to right) :
log10 h0, f0 (mHz), log10 ḟ0, sin(β),λ,cos(ι),ψ,ϕ0. Estimating the true values of the parameters (blue line)can be hard because the log-posterior is multi-modal and has not the same sensitivity with regard to allparameters.

Even if we defined the estimator as the argument maximizing the posterior, lookingfor the extremum of the log-posterior is not enough. It is more interesting to estimatethe behavior of the log-posterior around the maximum since it can provide a way tocompute error bars on the estimator.
Markov Chain Monte Carlo algorithms

This is usually done using an algorithm of type Markov Chain Monte Carlo (MCMC),such as [8; 9; 10]. The most popular are of type Metropolis-Hastings and generically
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possess the following two stages :
Initialization : Set a number of walkers that will probe the search space. To each ofthem corresponds a Markov Chain. Initialize them randomly over the plausibleparameters set. Set a probability distribution g(θ′|θ) that suggests a sample θ′for the next iteration given that the current sample is θ. Most of the time, g issymmetric : g(θ′|θ) = g(θ|θ′).
Evolution : For each Markov chain :

■ From the current sample θt at iteration t, draw a new sample θ′ according toprobability g
■ Compute the acceptance rate α = min

(
p(h(θ′)|d)
p(h(θt)|d)

, 1

)
■ Accept or reject : draw u ∼ U([0, 1]), compare α to u :— If u ≤ α : accept the new sample : θt+1 = θ′.— If u > α : reject the new sample : θt+1 = θt.

This basic algorithm can be declined on much more complex processes, involving forinstance interactions between the different chains, parallel-tempered chains or manymore [10].The final result is obtained by looking at the distribution of the Markov chains overthe parameter space : if the chains are long enough, they converge to a stationary dis-tribution p(θ|d) with no residual effect from the starting point.
Contribution & Typical results

I developed my own parameter estimation code based on the principles describedin Section 4.3 and App. A. The sampler we use is PTEMCEE [9] with 4, 000 walkers andchains with 3, 000 steps. The number of temperatures was set to 5. The computing timeneeded to obtain a sampling with fair quality remains high, even if it can be decreasedby using multiple cores or CPU. It takes about 30minutes on 96 cores on our calculatorto estimate the parameters of a single GB.In order to sample properly the log-posterior, we did not directly work on the phy-sical parameters described in Section 4.1. Instead, we worked with transformations ofthe parameters detailed in Table 4.2 on which we applied very simple priors p(θ).This choice of prior is justify by the following approach :
■ Uniformprior overλ, sin(β) : this distribution results in a sampling that is uniformover the sphere, i.e. over the sky location 3.
■ Uniformprior overψ, cos(ι) : this distribution results in a sampling that is uniformover the sphere, i.e. over all the possible local orientations.
■ Uniform prior over ϕ0 : we do not have any information about the initial phase.
■ Uniform prior over mf0 : without any more physical information over the GBpopulation, this prior enables to search over all the possible main frequenciesuniformly.
■ Uniform prior over log10(A), log10(ḟ) : prior used for a fast first search to have anestimate of the order of magnitude of these parameters. While it might not bemathematically correct, it makes it possible to probe several order of magnitudeat once – the first guess hence obtained can be used for a more detailed searchwith uniform priors directly over the parameters (A, ḟ ). We stopped at the rough

3. The sin originates from the definition of β as the co-latitude (see Fig.4.1).
50



Parameter Prior

Frequency mf0 = 10−3f0 ∼ U([fmin, fmax])
Frequency Derivative log10(ḟ0) ∼ U([−19,−15])

Ecliptic Latitude sin(β) ∼ U([−1, 1])

Ecliptic Longitude λ ∼ U([−π, π])

Amplitude log10(h0) ∼ U([−24,−20])

Inclination cos(ι) ∼ U([−1, 1])

Polarization ψ ∼ U([0., 2π])

Initial Phase ϕ0 ∼ U([0., 2π])

Table 4.2 – Priors p(θ) used for the sampling Fig.4.4.

estimate as it was only meant to be used as a simple way to compare our workwith what is currently done in the community.
We can give a visual representation of this posterior distribution such as Fig.4.4. Aswe are sampling a function of parameters that are not necessarily independent, wehave to consider the joint impact of the parameters. The corner plot [7] Fig.4.4 showsthe behavior of the log-posterior Lp(θ)with regard to two of its variables, marginalizingthe others. Several observations can be done : first, the log-posterior is a multi-modalfunction, especially with regard to the variables ψ and ϕ0. The estimation of some para-meters is particularly challenging, such as the frequency derivative ḟ0. Some parame-ters can be highly correlated, for instance the amplitude h0 and the inclination ι, or thefrequency and its derivative. Finally, other parameters such as f0, β and λ seem to beindependent from the others, and are the easiest to estimate.

Advantages & limits of the Bayesian approach

This approach has many advantages : for one, it gives an estimation of the physicalparameters of the system emitting the GW signal, as well as the corresponding wave-form. Moreover, using the results of the sampling, it is possible to assess the reliabilityof the results, for instance by giving error bars on the parameter estimates. Finally, thisframework can be adapted to the case where more than one signals are present (sim-ply by changing the model and the parameter space) or if the total number of sourcesis unknown [6]. It can be straightfowardly extented to handle different types of sourcesas long as one has a parametric representation of the sources. More details about thesampling algorithms developed for LISA can be found in [11].
Nevertheless, the log-posterior function is very ill-conditioned. Proof is that severalparameters are highly correlated and the multi-modality of the log-posterior with re-gard to other parameters. This results in a high computational cost, even if it can bereduced by using multiple cores or CPUs. MCMC are subject to the curse of dimensiona-

lity : looking jointly for the parameters of several sources corresponds to such a widespace that it becomes arduous to probe. Particularly, not only are all the parameters
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potentially correlated, but also the regions corresponding to highly probable parame-ters become more and more distant one from another. Of course, the same principleapplies when searching for an unknown number of sources as the model dimensiona-lity has also to be assessed.Moreover, this technique is extremely model dependent : the results are good aslong as the parametric model somehow fits reality. But as we announced in Section 4.1,waveform parametricmodels are developed under simplified assumptions : theymightnot fit exactly the "true" signals. For instance for GBs, waveforms taking into accountdifferent kinds of effect like tidal [12] or magnetic [13] effects are under development ;these effects create waveforms with three strongly correlated peaks instead of a singleone resulting in a real change in the harmonic structure of the sought signal. Further-more, some sourcesmight not have a parametricmodel – wemust always keep inmindthat unexpected signals could be seen by LISA.Finally, we have to highlight that the sampling is highly impacted by the parameterswe work with and the related priors that we consider. The one we used to computethe results shown in Fig.4.4 are gathered in Table 4.2 : they did make the samplingmore efficient, but working with the log of a parameter does not give the same finalestimation precision than working with the parameter itself.

4.4 Artefacts : data gaps, glitches
Some recent studies [14; 15] showed that missing data can have a huge impact onBayesian data analysis. In [15], the authors detail the impact of a gap on a MBHB pa-rameter estimation. As the information related to these systems is localized aroundthe merging time, the impact of a data gap depends on its position and its duration.Complementarily in [14] the authors investigate the impact of missing data on GB pa-rameter estimation. In this case, classical parameter estimation is realized in Fourierdomain : the occurrence of data gaps in time domain results in a deformation of thenoise PSD that has potential repercussion on the detectability of GBs and their iden-tification. This phenomenon is detailed in Chapter 6. A generalized sampling processis proposed where the missing data is considered as a parameter and thus estimatedalong the physical parameters.Glitches also have an impact on the noise distribution. But since they are transient-like perturbations (similar to a Dirac) on the time measurements, they will have a les-ser effect than the gaps on the Fourier transform because their Fourier transform isspread over the whole frequency spectrum; however their occurrence rate could bemis-interpreted as a signal : Since we did not investigate this issue, we will not developany further on this subject.Truth is that there is a lot of work to be done concerning artefacts. LISA Data Chal-lenges are encouraging the community to start taking them into account through DataChallenge 2b [4].

4.5 Non-parametric analysis : a complementary approach
In data analysis, any type of GW source calls for three courses of action :
Detection : first step towards analysis, we have to be able do recognize an eventhappening and to categorize it as a known – or unknown – source type.
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Subtraction : Cleanly subtracting the signal related to one source type can helprecovering the signals related to other sources types, but also to estimate thenoise PSD.
Identification : If the source waveform is known, it might be possible to estimatethe physical parameters of the source from the measurements.
We would like to stress out the importance of the two first points, as the third onehas an obvious outcome in the scientific community. Indeed, the detection step hasits importance as it must be able to "see" events that may have not been foreseen bythe scientific community. LISA has a high potential for new discoveries, and this shouldbe taken into account from the start as to not automatically assign a detection with aknown source type. The key of a detection process is to be able to confront differentmodels and to propose several assumptions – which "unknown" and "glitch" are alsopart of – to explain a given GW event.Secondly, we have to consider our ability to efficiently subtract any type of signalfrom the data. Two major applications can be thought of : noise PSD estimation andparameter estimation. At the beginning of data taking, the noise distribution will still beunknown and will have to be estimated. A proper way to do that would be to subtractany type of event from the data – be it GW event or glitches or other systematics –and then estimate the noise distribution. Concerning parameter estimation, as only thesum of all GW signals are observed, signals of different source types could potentiallycontaminate each other, making the identification process harder or even biased. Abasic solution to this issue would be to subtract the signals coming from all types ofsources other than the one we are working on to facilitate the identification process.
At the same time, one has to think of dealingwith the artefacts : should it be done as apre-processing? During the detection step? Considering a parametrizable glitch, shouldits parameters be estimated at the same timeas trueGWsource parameters?Or shouldit be identified and dealt with before starting the analysis ? The same questions can beasked for gapped data : should gaps be dealt with before performing the analysis, orduring the analysis ?The natural answer would be to do a joint analysis of artifacts and data in orderto simultaneously identify all of the components of the measured signal. In practice,that will likely be too complex to be performed properly. The question of performing apre-processing step before the analysis is done is worth asking as it could prove to bea good approach to analyze such complex data.In this context, we want to explore the relevance impact of non-parametric analysisfor LISA physics. Non-parametric modeling is a framework relying on a signal repre-sentation that is not based on the physical parameters θ, but on what we expect toobserve – i.e. the signal’s morphology. Such methods were already introduced in theGW community [16; 17; 18] – essentially within LVC – but their use remained limited.[18] states clearly the stakes of non-parametric search : "Transient GW searches canbe divided into two main families of approaches : modelled and unmodelled searches,based onmatched filtering techniques and time-frequency excess power identificationrespectively. The former, mostly applied in the context of compact binary searches,relies on the precise knowledge of the expected GW phase evolution. [...]The goal of non-parametric modeling is to obtain the best possible representationof the sought-for signal without using the physical parameters, while still ensuring thelow-dimensionality of the representation. This low-dimensionality principle is crucial as
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it proves to be helpful when dealing not only with instrumental noise but also with thefact that many different types of sources are present in the data, each of them pre-senting a specific morphology. A non-parametric framework can lead to a wide rangeof applications, such as detection (Chapters 5, 7), source separation (Chapter 7), signalestimation (Chapters 5, 7) and a way to deal with data gaps (Chapters 6) - to cite the oneclosest to the above mentioned issues. Moreover, as it relies on signal’s compressibi-lity, it opens a world of possible with regard to fast waveform production andwaveformapproximations (Chapter 5,7).

4.6 Contributions
My PhD focuses on exploring non-parametric data analysis methods for LISA dataanalysis. By "non-parametric ", we mean that the model should not rely explicitly onthe GB system physical parameters. Instead, we build a signal estimator based on fin-ding a representation that is "adapted" to its expected shape. All the algorithms weredeveloped while working on GB signals, but in principle could be generalized to othertypes of signals – being GW signals or artifacts such as glitches – to perform efficientdata pre-processing.From a very simple non-parametric model, we prove that we are able to detect GBsignals and deal efficiently with data gaps. We demonstrate the performances of theproposed algorithms over an extensive benchmark. This lead to two publications [19;20].Then we present an innovative way to build non-parametric non-linear models forGW signals with promising results in terms of representation quality, source separa-tion and fast parameters estimation. We explore several applications possible for thesetypes ofmodels and showhow they could be used by the LISA community. A publicationcorresponding to this work is currently in preparation.
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Chapter 5

Sparse signal modeling

5.1 The Sparse Way
Robust source detection and signal subtraction are the connecting threads of mywork. In a context where identification relies on waveforms designed under simplifyingassumptions (absence of eccentricity, etc) that still potentially require noticeable com-puting cost 1, it is interesting to provide fast accurate detection algorithms that do notrely too much on parametric models (that could be biased since they are simplified).Similarly, quickly extracting all signals coming from a specific source type without iden-tifying them presents an interest : for instance to estimate the noise PSD; or to studyanother type of source which signal could be impacted by the presence of the afore-mentioned source type.In the field of signal processing, the sparsity framework is particularly well adaptedto address these questions. Sparse representations are already used in the LVC pipelineCoherent Waveburst [1] to improve detection. In this pipeline, the Wilson-Daubechies-Meyer transform is applied to themeasurements. This transform represents the data ina redundant dictionary ; sparsity is used to focus the signal’s power over the fewest co-efficients possible to improve its detectability. Then this sparse representation is com-pared (using a graph) to the sparse representation of a bank of templates in order toidentify the physical parameters of the source [2]. In [3], the authors directly try to re-cover the polarizations h+, h× of GW signals.Sparsity was proved to be an efficient tool that is well adapted to GW context. Wenow wish to introduce this framework to the LISA community as it is flexible enough todeal with many problems faced by data analysis today. Among these, we can mentionsource detection, source separation and data gaps.

5.1.1 Sparsity Framework
Sparsity is highly linked to the concept of signal compressibility. Let us consider adictionary T =

{
tj
} which atoms tj are typically elementary templates representingadequately the signal. Then a time signalx ∈ RN canbe expressedwith in the dictionary

T :
x = Tα =

NT∑
j=1

αjtj . (5.1.1)
1. The unit production cost is not necessarily high. But MCMC type methods make hundreds of thou-sands of calls to the waveform, hence the significant computational cost.
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We say that x is "encoded" by α because it can fully be recovered from the coefficients
αj . Compression takes place when only few αj carry maximal information, i.e. few αjhave a large amplitude, and the others have small amplitude in comparison. Two dis-tinct configurations can be thought of.
Exact sparsity

Exact sparsity (or strong sparsity) is the idea that the signal x can be encoded exactlyby L elements of dictionary T. Let ΛL be the set of the L indices required to encode x ;then we have :
x =

∑
j∈ΛL

αjtj , (5.1.2)
since αj = 0 for any j /∈ ΛL. The fewer elements are needed, the more the signal iscompressible and the more the signal is sparse in T. In this context, we say that x is
sparse in T if it is encoded only by few non-zero coefficients, i.e. if α = {αj}j has manynull components.
Weak sparsity

Figure 5.1 – Left : A random picture of my mom’s cat. (credit : A. Blelly ) Right : Sorted normalizedamplitudes of the Bi-orthogonal wavelet transform atoms at chosen scale. They decrease like a powerlaw of the coefficient index.
In many situations x is not strictly sparse, i.e. it mostly has non-zero components.However if the dictionary T is well chosen, then the α coefficients coding x will have abehavior characterizing what we call "weak sparsity" : a small proportion of coefficientswill have a large amplitude, but this amplitude will fastly decrease to zero. A typicalexample of this phenomenon that we can mention is the power law-like decrease ofFourier coefficients associated to a smooth periodic signal in Fourier domain. We ob-serve similar behaviors when applying bi-orthogonal wavelet transforms to images [4].Fig.5.1 gives an example of this phenomenon : the bi-orthogonal wavelet transformprovides a dictionary that is well-adapted to representing pictures as the coefficients’amplitudes decrease relatively fast.
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In this case, a natural move is to try to approximate x based on its L largest coeffi-cients in the dictionary T :
x ≃

∑
j∈ΛL

αjtj , (5.1.3)
with ΛL the set containing the indices of the L largest coefficients αj . The bigger theconsidered set ΛL, the smaller the approximation error :

lim
L→NT

∥∥∥∥∥x−
∑
j∈ΛL

αjtj

∥∥∥∥∥
2

2

= 0 . (5.1.4)

This is the principle of signal compression : approximating a signal x by a L-sparse signalin a dictionary T – i.e. a signal with only L non-zero components in the dictionary T.To go back to the example of Fig.5.1, we could try to approach the cat picture by fewelements of the bi-orthogonal wavelet transform : this is exactly the principle of theJPEG 2000 image compression format [5]. Such an approach results in an approximationerror that also decreases as a power law of the number of non-zero coefficients usedto approximate the signal [4].More generally, we seek to give the best representation possible of x that will usethe fewest components of T :
Argmin

α
∥α∥0 such that ∥x−Tα∥2 ≤ σ , (L0)

where ∥α∥0 (known as "norm 0") counts the number of non-zero components of thevector α, ,and σ is the approximation error.
What is the interpretation of (L0)? (L0) states that we are looking for an ap-proximation of x in T such that the approximation error does not exceed σ. Mo-reover, this approximation Tα must rely on as few non-zero coefficients ∥α∥0 aspossible. It is "the best" approximation of x based on "the fewest" atoms of T.

It has been shown [6] that Eq.(L0) can be relaxed as :
Argmin

α
∥α∥p such that ∥x−Tα∥2 ≤ σ , (Lp)

with p ≤ 1 and ∥α∥p =
(∑

j |αj|p
)1/p. In this case and under certain conditions, (L0)

and (Lp) have the same solution. This relaxation is interesting because contrary to (L0),the problem (Lp) is continuous and can even become convex if we set p = 1. This is anoticeable result, evenmore since both continuity and convexity contribute to facilitatethe search for the minimum. For more details, we refer the interested reader to [7; 4;8; 9].
5.1.2 Sparse modelling for Galactic Binaries

The sparsity framework suits particularly well GBs. As mentioned in Section 4.1, GBsemit smooth, stationary, nearly sinusoidal signals. Based on this observation, the best
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Figure 5.2 – Left : For a fixed threshold γ (dashed red line), we approximate a waveform (in blue) basedon the largest 34 (upper row) and 80 (lower row) components. The corresponding approximations areplotted in orange. (To increase the number of coefficients used to approximate the signal, we increasedthe input signal’s amplitude while keeping the threshold at constant value). Middle : The number ofcomponents used for the approximationwillmainly impact the estimation of the signal time envelop. Theapproximation gets better with increasing number of atoms considered for the approximation. Right :Zooming over a short time period, both estimates (with 34 and 80 components) are in phase with thereal signal they try to approximate.

solution is to proceed to their study directly in Fourier domain where all the informa-tion is gathered mostly on a few Fourier atoms. Hence, we can say that they are natu-rally weakly sparse in the Fourier atoms dictionary. This statement can be illustratedby a very simple example. Fig.5.2 shows the approximation of a GB waveform by its Llargest coefficients and the impact of this approximation on the time-representationof the waveform. Only considering the few Fourier atoms with the largest amplitude(left picture), the recovery in time domain already has a perfect phase match – even ifthe amplitude is poorly recovered. Now, doubling the number of coefficients improvesconsiderably the amplitude recovery while keeping the phase match.More generally, Fig.5.3 shows how the number of Fourier coefficients (and thus Fou-rier atoms) used to approximate the signal impacts the quality of approximation QdB(the quality factor QdB will be defined in Section 5.5). The evolution of the quality as afunction of the number of coefficients used for the approximation evolves in two stages.At first, the progression slope is steep : each added coefficient contributes greatly to theimprovement of the signal quality. But after a certain number of coefficients (the limit isaround 40 coefficients in this example), the slope breaks and the improvement broughtby the addition of a coefficient becomes much weaker.Nonetheless, in presence of noise the recovery plot is degraded and the task ofestimating the signal despite the noise becomes a real challenge.
5.1.3 Practical Resolution

Two elements must be accounted for : first, our GB signal x in only weakly sparsein T. Second, it is tainted with complex instrumental noise. These two elements are
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Figure 5.3 – Quality QdB of GB signal approximation with number of Fourier atoms ∥∥∥ĥ∥∥∥
0
used to ap-

proximate the signal. Two regimes are observed : the first 40 atoms are key to obtain a trustworthyapproximation. Considering more atoms then still improves the approximation, but with a lesser im-pact.

enough to understand that the recovery scheme Eq.(L0) will not be perfect. However,using the sparsity denoising principle [4], we can build a good approximation of thesignal underlying the noisy data. This denoising principle is founded on a thresholdingprocess applied to the atoms coefficients αj . There are many possibilities ; the one weselected is obtained solving the LASSO convex problem [8] :
Argmin

α
γ ∥α∥1 +

1

2σ2
∥x−Tα∥22 , (LASSO)

where σ stands for the noise standard deviation in case where the noise is Gaussian.
What does (LASSO) do? It can be interpreted as a tradeoff between "finding the

sparsest solution possible", embodied by the ∥·∥1 term on the left, and "finding the
solution that fits the measurements the best", embodied by the data fitting term onthe right, that evaluates the square distance between the measurement x and itsrepresentation in the dictionary Tα. This tradeoff is balanced through the choiceof the regularizing parameter γ.
(LASSO) has been used in many contexts because of its efficiency on denoising pro-blems (i.e. the problem consisting in recovering a signal from a noisy measurement)[3; 4; 8]. Going back to GBs and the realistic case presented in Section 4.1.2, we unders-tand that only a small part of the GB signal will exceed noise level. Moreover, manypeaks (corresponding to GB signals) are likely to rise above noise level. Ultimately whatis proposed here with (LASSO) is to approximate the sum of all GB signals at once usingthe sparsest representation possible in Fourier dictionary. We investigate the viabilityof this strategy, first by using a problem directly similar to (LASSO), and then by intro-ducing a notion of "information cluster"[7; 4] that will help to improve the overall signalestimate.
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In the case of GBs, if we work with the dictionary of Fourier atoms, then α exactlycoincides with the signal’s Fourier coefficients. This means thatT can be assimilated tothe Fourier transform operator, which is an invertible isometry – with T−1 the inverseFourier transform. In this context, Parseval identify yields :
|| x︸︷︷︸

Timedata
−Tα||22 = || T−1x︸ ︷︷ ︸

Frequencydata
−α||22 . (5.1.5)

Thus we can express (LASSO) directly in Fourier domain :
Argmin

α
γ ∥α∥1 +

1

2σ2
∥x[k]−α∥22 , (REF-L1)

where x[k] is the Fourier transform of the time signal x[n], as introduced in Section 4.2.We will work directly with (REF-L1) as it admits the same solution as (LASSO) but withthe great advantage of not requiring to apply any transform. This makes the solutioncomputation faster.

5.2 Notations
Using formulation (REF-L1), we directly work in Fourier domain. We introduced inSection 4.2 the corresponding data d[k]. For any k ∈ [−K,K], the k-th coefficient ofdata d[k] is the Fourier coefficient associated to the Fourier atom :

tk = e−
2πikn

N (5.2.1)
We will also refer to tk as the k-th frequency (since it corresponds to frequency fk =
k · δf ). We consider the de-correlated TDI channels (see Section 3.2.2) I ∈ {A,E}. Wedo not consider the channel T as it has by design a low sensitivity to low-frequency GW.Wewill denote byv the signal variable expressing the optimisationproblem (REF-L1).We introduce the vector of relative signal amplitude for every Fourier atom on channel
I with regard to the noise level :

ASI
(vI) = {ASI

(vI)[k]}k =

{√
v∗
I [k] · vI [k]

SI [k]

}
k

=

{
|vI [k]|√
SI [k]

}
k

. 2 (5.2.2)
This quantity is interesting because it directly shows if there is a power excess of the
data with regard to the noise level. Moreover,∑

k

ASI
(vI)[k] can be interpreted as the

norm 1 of vI re-weighted (or whitened) by the noise standard deviation :
∥ASI

(vI)∥1 =
∑
k

|ASI
(vI)[k]| =

∥∥∥S−1/2
I vI

∥∥∥
1
=
∑
k

|vI [k]|
S
1/2
I [k]

. (5.2.3)
Note here that we assumed that the noise power spectrum is colored in Fourier domain.Concretely, this means that the noise associated to two different atoms will not havethe same standard deviation : this has to be taken into account to properly recover the

2. Since S is diagonal (refer to noise modeling described in Section 4.2.2), it is easy to compute S1/2

by simply taking the square root of the diagonal elements of S.
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signal. It is all themore true as the noise PSD can vary over several orders of magnitude(See Fig.3.7).Aswedecided to consider the dictionarymadeof Fourier atoms,we impose a "sparsedistribution of signal amplitudes" in this dictionary as a prior,i.e. we want the coeffi-cients of the identified signal to be spread over the fewest Fourier atoms possible. The"sparse" variable will therefore be the signal amplitude.The advantage of Eq. (5.2.2) is that it can easily be generalized to the multi-channelcase. As it should be done for uncorrelated channels, the total quadratic amplitude as-sociated to the atom kwill be given by the sumof the quadratic amplitudes of individualchannels :

AS(v) =

{√∑
I

v∗
I [k] · vI [k]

SI [k]

}
k

=


√∑

I

A2
SI
(vI)[k]


k

. (5.2.4)
In this case, the sum over atoms still enforces the sparsity with a 1-norm, but this timeover the overall amplitude. This means that the coefficients related to the kth Fourieratom are either zero for all channels, or non-zero for all channels (see the reasons forintroducing this operator in Section 5.3.2 ).Last, we will use the Hadamard product⊙ such that for two vectors u,v of identicalsize : (

u⊙ v
)
[k] = u[k]v[k] ∀k ∈ [−K,K] . (5.2.5)

5.3 A separable sparse model : unstructured sparsity

The work presented in the following sections was published in Physical Review D[10]. We consider the following data model :
dI = hI + nI , (5.3.1)
d = h+ n . (5.3.2)

hI is the sought signal and is assumed to be sparse in Fourier basis. nI is the Gaussiannoise contaminating the data.

5.3.1 Single channel model
Let us now rewrite the general reference problem (REF-L1) taking into account thespecificities mentioned in Section 5.2. Those include the colored noise distribution overFourier atoms, and the notion of "amplitude" that we expect to sparsify.For a single channel I , the data dI is expressed by its coordinates in Fourier dictio-nary. This means that we directly look for its sparsest approximation hI in the Fourierdictionary :

ĥI = Argmin
v

[
γ ∥ASI

(vI)∥1︸ ︷︷ ︸
γ
∑
k

ASI
(vI)[k]

+
1

2
⟨dI − vI ,dI − vI⟩SI︸ ︷︷ ︸

∥dI − vI∥22,SI

]
. (5.3.3)
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We recognize a problem with a structure similar to the one described in Eq.(REF-L1).The data fitting term is weighted by the expected noise PSD, and the sparsity term isapplied as mentioned before directly to the estimated signal amplitude.Nevertheless, the reweighted L1 formulation [11] advises to consider a model a bitmore general to limit the bias induced by the coefficient γ on the recovered solution :
ĥI = Argmin

v

[∑
k

γ[k]ASI
(vI)[k] +

1

2
⟨dI − vI ,dI − vI⟩SI

]
, (5.3.4)

where the regularizing parameter γ of Eq. (5.3.3) is replaced by an atom-dependentpositive real regularizing parameter {γ[k]}−K≤k≤K . This choice will be justified whenconsidering the impact of the parameter γ on the corresponding analytical solution ;thiswill also help setting the value of this parameter. Following the notations introducedin Section 5.2, we can rewrite the single channel problem as :
ĥI = Argmin

v

[
∥γ ⊙ASI

(vI)∥1 +
1

2
⟨dI − vI ,dI − vI⟩SI

]
, (L1, I)

Fourier atoms are orthogonal ; therefore the problem is entirely separable 3. The esti-
mator ĥI can now be computed analytically atom by atom. The solution is given by theso-called soft-thresholding operator :

ĥI [k] =


ASI

(dI)[k]− γ[k]

ASI
(dI)[k]

dI [k] if ASI
(dI)[k] ≥ γ[k] ,

0 otherwise . (5.3.5)
The regularizing parameter γ acts as a threshold since the measurement dI [k] corres-ponding to atom k will be discarded if its amplitude is smaller than γ[k], and will bereplaced by its excess to γ[k] otherwise. We will label the atom k as active if the signalamplitude exceeds the threshold γ, and inactive otherwise.The soft thresholding process is illustrated on Fig.5.4 on a very simple sinusoidalsignal : soft thresholding consists in zeroing all sub-threshold amplitudes in Fourierdomain, whereas the amplitudes above threshold are decreased by a factor γ. Thisexplains why the sparse estimate in time domain does not have the right amplitude.We remark that the result would have been the same if we had considered Eq.(5.3.3)instead of Eq.(L1, I), only that γ[k] would have been a constant.In the following sections, we will lay down a joint analysis of the A and E channels,and further elaborate on the choice of the threshold γ. However, the structure of theconsidered problem will always remain the same throughout the chapter. Only thesparsity-enforcing term and the minimizing algorithm will be sophisticated in order toadapt them to data processing situations of increasing modeling complexity.
5.3.2 Combining different information channelswith joint sparsity

While the solution stemming from (L1, I) provides important insights into the algo-rithmic nature of the problem, it does not benefit from the redundancy of the physicalcontent over multiple channels, which have been so far treated separately. Indeed theinformation contained in TDI channels are highly correlated (the imprint of the same
3. We can solve the equation independently for each Fourier atom.
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Figure 5.4 – Soft thresholding applied to a sinusoidal signal. The true signal is in light orange, the noisysignal is in blue and the corresponding sparse solution is in dashed green. The constant threshold γ isrepresented in dashed red. Left : Signal in time domain ; Right : Amplitude in Fourier domain. Soft thre-sholding consists in setting to 0 any coefficient below the threshold γ ; the coefficients above thresholdare kept up to a coefficient depending on the threshold. The amplitude bias is directly related to thechoice of threshold γ, and has consequences on the time series amplitude.

GW is encoded in all channels), whereas the noise is totally uncorrelated (see Section4.2.2). This leads to the following two observations :
■ A signal emitted by a physical source at a given frequency f0 will be measured inall channels, although with different amplitudes. For instance, this signal couldbe visible in one channel, but more difficult to detect in the other one.
■ The noise impacting the coefficient of the kth Fourier atom could be exceptionallyhigh on a channel (i.e. be an outlier), but low on the others. An independentanalysis of the two channels could output a false positive signal on one (andonly one) channel for this noise realisation.Jointly processing all the channels addresses both problems and is the natural exten-sion of the preceding development.
The very structure of the problem of constructing the sparse estimator ĥI is preser-ved by making use of the compact notation ĥ gathering all information channels (seeSection 4.2.1 ). Using the definition of the joint amplitude Eq. (5.2.4) over multiple datachannels, a joint sparse representation over multiple channels is achieved through :

ĥ = Argmin
v

[
∥γ ⊙AS(v)∥1 +

1

2
⟨d− v,d− v⟩S

]
, (Joint L1)

where γ = {γ[k]}−K≤k≤K still denotes a positive real threshold that is shared by allchannels. As in Eq. (5.3.5), the analytical solution is given by :

ĥ[k] =


AS(d)[k]− γ[k]

AS(d)[k]
d[k] if AS(d)[k] ≥ γ[k] ,

0 otherwise . (5.3.6)

The problem is still separable and can still be solved atom by atom, even if we nowjointly examine all the channels. The role played by γ is still clearly that of a threshold,but now it is the combined amplitude A(v)[k] of the channels that should excess thethreshold to tag a Fourier atom as active.
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Similar approaches for multi-channels data processing with sparse signal represen-tations can be found in [12].
5.3.3 Fixing the threshold as hypothesis testing

Whether based on (L1, I) (see Section 5.3.1) or (Joint L1) (see Section 5.3.2) sparsity-enforcing terms, building estimators for GB events eventually led to a thresholdingoperation over Fourier atoms’ coefficients. Going back to the simple example shownin Fig.5.4, we understand that we want a threshold high enough so that all Fourier co-efficients corresponding to noise will be put to zero, while keeping it as low as possibleso that the amplitude is not too biased.It turns out that fixing the threshold γ can be recast as an hypothesis testing pro-blem, which provides important insights into the construction of the estimator itself.This threshold choice can be performed independently for each atom k.We classically define the two hypotheses H0 and H1 :
H0 : there is no GW signal at the k-th Fourier atom;
H1 : there is a GW signal at the k-th Fourier atom.
We assumed (Section 4.2.2) that the real and imaginary parts of nI [k] obey inde-pendent standardnormal distributions. Consequently, underH0 (only noise)ASI

(dI)
2[k]admits a chi-square distribution with 2 degrees of freedom. Now if we consider C un-correlated channels for joint resolution, thenAS(d)

2[k] admits a chi-square distributionwith 2 · C degrees of freedom.Elaborating on Eq. (5.3.5) and Eq. (5.3.6), this provides a criterion to set the thre-shold value based on a p-value test. Adopting a priori a rejection rate ρ and defining thereal number x0 by the value of the cumulative distribution function :
P(χ2

2C ≥ x0) = ρ , (5.3.7)
the hypothesis H0 (resp. H1) is adopted for frequency k if AS(d)

2[k] ≤ x0 = γ2[k] (resp.
AS(d)

2[k] > x0 = γ2[k]). The same test can be adopted for a single channel I by setting
C = 1.If the noise distribution is not assumed to be standard normal, then AS(d)

2[k] willnot obey a χ2 distribution. However, the reasoning above can be adapted to the actualdistribution ofAS(d)
2[k], and the principle of fixing the threshold as hypothesis testingremains.

5.3.4 Reweighted minimization

As discussed in Section 5.3.1, the estimator ĥI [k]derived fromEq. (5.3.5) or Eq. (5.3.6)
is a rescaling of the noisy signal d̂I [k] by a multiplicative factor in [0, 1], which makesit intrinsically biased. This is understandable considering the case where the data isexactly the signal : d = h. Then, the estimator writes :

ĥ[k] =


AS(h)[k]− γ[k]

AS(h)[k]
h[k] if AS(h)[k] ≥ γ[k] ,

0 otherwise . (5.3.8)
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For a threshold γ[k] that is non-zero, the estimated amplitude of the signal is biased by a
factor AS(h)[k]− γ[k]

AS(h)[k]
∈ [0, 1]. This bias becomes even more noticeable as γ increases.

This was already shown in Fig.5.4.In the general case of noisy data d = h+ n, we are faced with a dilemma :
■ Either we set a low γ : the bias is low, but there is a high probability of detectingan atom as active whereas it only corresponds to noise (false positive).
■ Or we set a high γ : in this case, the probability of false positive is low, but thebias on the solution is important.In the best case scenario, we want to have both a low false-positive rate and a lowbias on the estimated signal amplitude.We present here an iterative process, named reweighting and described in [11], tocorrect this bias. It consists in iteratively alternating at each step m ∈ N between a re-

solution phase, yielding a signal estimator ĥm
I [k], and a threshold determination phase,producing a regularizing parameter γm[k]. The idea is, after a first selective step of de-tection, to set a low threshold for active atoms and keep a high threshold for the others.Therefore the bias correction only acts on active atoms. The convergence of this al-gorithm has been established in [9] and in practice only few (about 3-4) iterations areneeded.As in Section 5.3.3, we set a rejection rate ρ and define a (square of) threshold x0through Eq. (5.3.7). We initialize the iterative procedure with the following threshold :

γ0[k] =
√
x0 ∀k ∈ [−K,K] . (5.3.9)

We target a residual ϵγ > 0which will act as a stopping criterion : the algorithmwill stopat the first stepm such thatmax
k

|γm+1[k]−γm[k]| < ϵγ . Each iteration of the reweighting
procedure performs as follows :

Phase 1 : Using γm[k], compute the estimator ĥm at stepm from Eq. (5.3.6).
Phase 2 : Using ĥm, evaluate the threshold γm+1[k] as described in [11] :

γm+1[k] =
(γ0[k])2

κAS(ĥm)[k] + γ0[k]
, (5.3.10)

where κ is a positive real parameter that is set either to amplify (κ > 1) or toreduce (κ < 1) the basic reweighting (κ = 1). Using κ ∈ {1, . . . , 10} yields quanti-tatively similar results, and we have set κ = 3 throughout this study.
Note that the reweighting procedure impacts only active atoms (i.e. the atoms k sa-

tisfyingA(ĥm)[k] > 0). The higher the norm of the solution, the greater is the correctionand the lower becomes the bias, as shown in Fig.5.5.

5.4 Adding physical information to the model through
structured sparsity

Whether dealing with one or several channels, none of the methods we introducedso far make use of any physical input on the shape of the GW signal beyond its quasi-monochromatic nature. Since these methods use no information about the structureof the GB waveform, they will be further dubbed unstructured sparsity-based methods.
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Figure 5.5 – GW signals on channel E as a function of time : target noiseless signal hE [n] (green) andsparse recovery ĥE [n] (red). Upper row : signal estimation without reweighting process. The thresholddetermination causes an underestimation of the signal. Lower row : signal estimation with reweighting.The bias is mostly corrected. (Figure extracted from Ref.[10])

To provide more insight into these methods, we will more specifically consider the fol-lowing two phenomena :
■ A Fourier atom for which no signal should be detected has been tagged as active.We will refer to it as false positive (FP). This situation is illustrated in Fig.5.6.
■ A Fourier atom for which a signal should be detected has not been tagged asactive.Wewill refer to it as false negative (FN). This situation is illustrated in Fig.5.6.In particular, estimating the coefficient attributed to a Fourier atom independently fromthe values taken by the others like in Eq. (5.3.5) or Eq. (5.3.6) leads to a high rate of bothFPs and FNs.If we consider the problemof detecting GB systems to create a catalogue of sources,then its viability will be limited if there is a high number of detected FPs. To be able todetect a low amplitude peak, the chosen initial threshold should not be too high. Ho-wever, the lower the threshold, the higher the probability to get a FP signal. Therefore,an efficient and robust method to separate genuine signals from FPs is much needed.This separation can be achieved by implementing the simple yet important remark :a GB signal is not exactly monochromatic. Instead, because of the constellation move-ments, the measured signal has a frequency that vary with time due to a Doppler ef-fect. In practice, ameasured GB signal will spread over few frequencies neighboring themain emission frequency f0. The signal power will be distributed over the correspon-ding Fourier atoms, as shown in Fig.5.6 - upper row. The presence of a signal inducesa significant correlation of the coefficients corresponding to atoms that are close infrequency (see upper figure). On the contrary, a FP is often the manifestation of a rarepowerful noise realization impacting an isolated Fourier atom (see Fig.5.6, lower figure)on a single channel. Considering the large number of records (the original time seriescontain tens of millions of data points), the presence of FPs is naturally expected.Note that there are also simple mechanisms providing FNs. For example, choosinga atom-independent threshold leads to the rejection of all atoms with amplitudes lyingtoo low, such as Fig.5.6 (upper figure) whereas the signal is clearly spread over neigh-boring Fourier atoms, forming a peak.Nevertheless, for FPs aswell as FNs, scrutinizing the content of the signal over blocksof neighbouring atoms appears as a natural solution to solve both problems at once.
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More precisely, it is unlikely that a noise-related FP activates several contiguous Fourieratoms. In contrast, a GB signal activates a dozen of Fourier coefficients. Therefore ave-raging over the neighborhood of atoms should allow the discrimination of a FP fromgenuine signal peak.
Why should we use a block decomposition? Unstructured approaches areknown to provide biased estimators of the signal with sub-optimal convergence ratein terms of quality recovery [4]. Treating clusters of atoms jointly instead of treatingthem individually relieves partially the bias and improves the recovery quality.

Figure 5.6 – Joint signal amplitude AS(d)[k] as a function of Fourier atom frequency (solid blue) andcompared to the threshold γ (dashed orange). Upper row :When the signal is present, there is a powerexcess over all Fourier atoms with frequency close to f0, forming a peak. However, within the peak, someharmonics have amplitudes that are lower than the chosen threshold, and thus will not be interpretedas signals, generating FN. Lower row : An isolated noise realisation jumps above threshold and is likelyto be detected as a signal, generating a FP.

5.4.1 Notations
This time, instead of treating independently the Fourier atoms, we will jointly pro-cess all the Fourier atoms that are "close" one to another. These neighborhoods ofFourier atoms will gather only few elements - even if it means aggregating several ofthem to cover a GB signal.In practicewewill consider fixeddisjoint sets of consecutive frequenciesB =

{
k
}
kmin≤k≤kmax(and thus the corresponding Fourier atoms) such that :

{−K, . . . ,+K} =
⋃

1≤j≤J

Bj with Bj ∩Bj′ = ∅ for j ̸= j′ , (5.4.1)
any neighborhood Bj being referred to as a block which number of elements (orcardinal) is designated by |Bj|.The set of all the neighborhoods is therefore a partition of the atoms, and is noted :

B = {Bj}1≤j≤J . (5.4.2)
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This partition contains |B| = J disjoint neighborhoods, and includes all the Fourieratoms. Of course, several partitions are possible : this will be investigated later on.Now, the idea is to consider that the signal is modeled not only over each Fourieratom, but also over each neighborhoodB. The sparsity prior that was "finding the spar-sest solution possible over the dictionary Fourier atoms" has to be adapted to the newdecompositionB because the signal has to be modeled both on Fourier atoms and onFourier neighborhoods. The updated prior is directly stated on B : "the sought signalcan be represented over few Fourier neighborhoods".In the end, this new approach remains very similar to the previous one. Introducingthe joint signal amplitude over the block decomposition :
AB

S (v) =


√√√√∑

k∈B

[∑
I

v∗
I [k] · vI [k]

SI [k]

]
B∈B

=


√∑

k∈B

A2
S(v)[k]


B∈B

, (5.4.3)
where the squared joint amplitude is the sum of the squared amplitudes of the atomsbelonging to the block, we will seek the signal the closest to the observed data with thesparsest joint amplitude distribution overB.
5.4.2 Problem formulation over a block-structured domain

Exactly as in Eq. (L1, I) and Eq. (Joint L1), we can generalize the problem REF-L1 tothe block distribution by simply modifying the term responsible for sparsity.Being provided a partitionB of the measured frequency range {−K, . . . ,+K}, theblock-sparse estimator of the signal requires to solve the following optimisation pro-blem :
ĥ = Argmin

v

[∑
B∈B

γB[B]AB
S (v)[B] +

1

2
⟨d− v,d− v⟩S

]
, (5.4.4)

which is simplified using the notations of Section 5.2 by :
ĥ = Argmin

v

[∥∥γB ⊙AB
S (v)

∥∥
1
+

1

2
⟨d− v,d− v⟩S

]
. (LB

1,2)
Analogously to the problem (Joint L1) which was separable by atom, the problem (LB

1,2)is separable by block. Moreover, within each block, the problem can be solved atom byatom. For an atom k ∈ B, the solution indeed writes :
ĥ[k] =


AB

S (d)[B]− γB[B]

AB
S (d)[B]

d[k] if AB
S (d)[B] ≥ γB[B] ,

0 otherwise , (5.4.5)

which displays the same pattern as the unstructured solution Eq. (5.3.6). We thus fore-see the need for reweighting elaborating on the discussion of Section 5.3.4 ; this issuewill be addressed below in Section 5.4.4. This leaves us with two questions :
1. For a given partitionB, what is the best choice for the threshold?
2. What is the best choice for the partitionB ?
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Setting the threshold

The process is very similar to what was done in the unstructured case in Section5.3.3 except that this time we look for power excess on Fourier atoms neighborhoods
B ∈ B instead of power excess on single Fourier coefficients.We now consider aχ2-testby block and will assess :

H0 : there is no GW signal in block B ;
H1 : there is a GW signal in block B.

Since we assumed that the real and imaginary parts of nI [k] obey independent nor-mal distributions (Section 4.2.2,5.3.3), under H0 (noise only) (AB
S (d)[B]

)2 admits a χ2-distribution with 2C · |B| degrees of freedom χ2
2C·|B|. We can adopt a hypothesis testsimilar to the one proposed in Section 5.3.3.Adopting as above a rejection rate ρB, and again defining the real number x0 by thevalue of the cumulative distribution function :

P(χ2
2C·|B| ≥ x0) = ρB , (5.4.6)

the hypothesis H0 (resp. H1) is adopted for block B if AB
S (d)[B] ≤ √

x0 = γB[B] (resp.
AB

S (d)[B] >
√
x0 = γB[B]).

5.4.3 Improving the domain decomposition : BlockTree algorithm
The remaining question deals with the choice of the partitionB. This choice is sen-sitive as it can impact greatly the solution : there is no reasons for all partitions B of

{−K, . . . ,+K} to yield the same sparse signal estimators. Optimal solutions wouldstem from an optimization of the overall domain decomposition, which is a NP-hardproblem : the computing cost of its resolution with current computers is prohibitivelyexpensive. And yet, a suboptimal approximation of the best decomposition can alreadyimprove the signal estimation. We hereby propose a suboptimal, yet pragmatic and ef-ficient, solution to the domain decomposition problem.Tree-based block decompositions were introduced in sparsity-based signal proces-sing methods so as to adapt them better to the structures of the signals to be recove-red. In different contexts, tree-based block decompositions have been used in signaland image denoising (see [13] and references therein). The approach we will developbelow has been inspired by [14] where the authors build an adaptive block decomposi-tion directly from the observed data through a dyadic process. We adapted the advo-cated top-down building of the dyadic tree to a bottom-up process binding the fate ofadjacent Fourier atoms depending on the presence or absence of signal.
GB signal bandwidth

Following the terminology introduced in Section 5.3.1, we will say that a block B ⊂
{−K, . . . ,+K} is an active block (resp. inactive block) if the joint amplitude of the signalover the block is larger (resp. lower) than a given threshold.If series of measurements contain only noise, summing over connected blocks willact as an averaging process. If the block is big enough (i.e. includes the right amount ofatoms), outliers –which scarcely occur on two neighboring Fourier atoms – will vanishand the FP rate will decrease. On the contrary, if the block is too big (i.e. includes toomany atoms), a nearly monochromatic signal may be drowned into the noise and there
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is the risk that the signal cannot be detected anymore. Since the amplitude of GB signalscan be quite close to that of the noise, this case cannot a priori be excluded. At last, if alarge block is tagged as active whereas it is not, then its impact on the sparse solutionwill be proportionally important to its size. Thus we intuitively understand that activeblocks should neither be too small nor too large.To begin with, let us consider a uniform domain decomposition, i.e. a partition of
{−K, . . . ,+K}made of blocks of the same size. It seems natural to select a block sizesimilar to the width of the peak of the expected GW signal. According to [15], the TDIsignal instant phase is given by :

ϕ(t) = 2π

(
f0t+

1

2
ḟ0t

2 + (f0 + ḟ0t)R cos(β) cos(Ωt+ η0 − λ)

)
, (5.4.7)

where we note ϕ the instant phase, f0 the emission frequency, ḟ0 the frequency deriva-tive, β, λ the ecliptic coordinates, η0 the position of LISA around the sun at time t = 0,
Ω = 2π/(1 year) LISA’s orbital frequency and R = 1 astronomical unit. Under the as-sumption ḟ0t << f0, the instant frequency is approximated by :

ϕ̇(t) ≃ 2πf − 2πf cos(β)RΩ sin(Ωt+ η0 − λ) , (5.4.8)
which means that, for an observation duration long enough (Tobs > 1 year), the obser-ved half peak width in Fourier domain at first order is given by |2πf0 cos(β)RΩ|. It meansthat a wide range of signal morphologies can correspond to a given emission frequency
f0. Fig.5.7 portrays this diversity through two examples where the signals are obtainedusing exactly the same physical parameters except for the ecliptic latitude β. On theupper figure, choosing β = 0means that the source is in the ecliptic plane : this settingmaximizes the Doppler broadening of the frequency peak. On the other hand, on thelower figure choosing β = π/2 corresponds to a source that is at local noonwith regardsto the ecliptic plane. This setting minimizes the Doppler broadening of the frequencypeak. Both peaks are presented with the parameters indicated in Appendix B.2.

Figure 5.7 – For an observation duration long enough, the peak width is proportional to | cos(β)|, where
β is the ecliptic latitude for the observed GB. Thus, the largest peak is obtained for β = 0 (top plot),whereas the thinnest peak is obtained for β = π/2 (bottom plot). (Figure extracted from Ref.[10])

To fit as best as possible the scenario where the signal is only spread on few Fourieratoms (Fig.5.7, lower row), we set a minimal block size |B| ≃ 10. It is adapted to thecharacteristic width of the signals we are looking for with a sampling period ∆T = 15sand a total observation period of about 2 years.
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Figure 5.8 – Illustration of the BlockTree algorithm. We use the notations of Algorithm 3. Evolution ofthe domain decomposition in a simple case. The red blocks represent inactive blocks, i.e. those whichsignal power do not exceed the block threshold. The green blocks represent active blocks, i.e. thosewhich signal power exceeds the block threshold. The top row represents the initial block decomposition,where all blocks have the same size nB . There are a signal peak in the middle and a FP on the right. ThisFP will be discarded during the first iteration (middle row). The bottom row represents the final blockdecomposition. The two blocks on the left side are not merged because their sizes are too different(their ratio is larger than Rcomp). (Figure extracted from Ref.[10])

The BlockTree algorithm

Such a small block size |B| = 10 does not allow a efficient enough averaging process.This calls for the possibility of merging adjacent blocks to foster this averaging. For thatpurpose we developed the BlockTree algorithm, which is a bottom-up approach tofrequency domain decomposition :
Initialisation Start from a uniform decomposition of blocks with minimal size.
Iterationm Try to merge adjacent blocks 2 by 2 (only if they are of similar sizes) :

■ If a signal was detected in one of the blocks at the iteration m − 1, but isnot detected at the current one : this signal was a FP, so we keep the blockresulting of the merging.
■ If a signal was detected in one of the blocks at the iterationm− 1, and is stilldetected at the current one : this signal was not a FP, so we do not mergeblocks.
■ If no signalwas detected in both blocks at the iterationm−1, wemerge blocks.

The detailed implementation is described in Appendix B.3, Algorithm 3. The first ite-ration aims at cutting drastically the number of FPs. An illustration of the algorithmbehavior is shown in Fig.5.8. The parameters that are usually used for this code aresummarized in Appendix B.3.2.
The BlockTree approachbrings amajor improvement : we can set a threshold linkedto a probability much lower than the one chosen in the case of unstructured sparsitysincewe are able to discard FPs, paving theway to the detection ofmoreGB signals. Theeasier detection of low amplitude signals enhances the robustness of signal detection.This point will be quantitatively assessed in Section 5.5.
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5.4.4 Reweighted Block Sparsity
We now adapt the discussion of Section 5.3.4 to block-structured data. Reweightingwill not participate to the tagging of a block as active or inactive but it will just correctthe bias introduced 4 by Eq. (5.4.5). There are two main options to extend the previousdiscussions to frequency blocks :
1. Set a unique threshold for each block.
2. Set a Fourier atom-dependent threshold within each block.

The second option arises from the observation of amplitude variations between conse-cutive peaks (see Fig.5.6).
Block threshold reweighting : Similarly to Section 5.3.4, a reweighting procedurecan be implemented to correct for the bias induced by the proposed block thresholding.This is described by following steps :

Phase 1 Using γmB [B], compute the estimator ĥm at stepm from Eq. (5.3.6).
Phase 2 Using ĥm, compute the new threshold γm+1

B [B] as follows :
γm+1
B [B] =

(γ0B[B])2

κAB
S (ĥ

m)[k] + γ0B[B]
. (5.4.9)

Following Section 5.3.4, κ is a positive real parameter that allows to control thestrength of the reweighting procedure. It is again fixed to κ = 3 for the blockthreshold procedure.
The initial block threshold γ0B[B] is chosen as a threshold for a χ2

2C·|B| test as explai-ned in Section 5.4.2. With the same notations, the choice of the threshold is given by
γ0B[B] =

√
x0.

Atom reweighting for block sparsity : A potential drawback of the global block re-weighting is that the correction factor, which appears in Eq. (5.4.9), is identical for allatoms of an active block. Therefore, this might not be as effective as the entrywise re-weighting introduced in Section 5.3.4 to unbias the thresholding procedure. As shownthere, an entrywise reweighting scheme allows to adapt to the amplitude of individual
entries of the estimated signal ĥ. In order to get the best of both the block-based ap-proach and the atom-based reweighting, we further propose to perform both alterna-
tely. In brief, a first estimate ĥ is computed using the block-based thresholding proce-dure. This allows to carefully account for FPs, and identify active/inactive blocks. Theexact same atom-based reweighting introduced in Eq. (5.4.9) is further applied to theatoms of the active blocks. This allows to preserve the detection performances of theblock-based procedure while significantly enhancing the quality of the detected signals.Thus, two rejection rates are to be considered :

1. the first one is associated to the BlockTree, and therefore will be used to sortout real signals and FPs. Typically, we will choose ρtree such that there is less than1 FP for the considered input size.
4. This is similar to the introduction of a bias through Eq. (5.3.5) and Eq. (5.3.6) as made manifest bythe common structure of these thresholding equations.
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2. The second rejection rate is used for the atom-based reweighting. Since we al-ready selected the active atoms, we will chose a rejection rate rather high, typi-cally ρreweighting = 0.9 (we would like to keep active most of the atoms that havebeen pre-selected with the BlockTree).

5.5 Performances Benchmark

The code that we used for this study is released as an open source code. More in-formation can be found in Appendix B.1.

5.5.1 Quality checking tools

Several criteria will be used to assess the quality of the solutions. The detectabi-lity of a signal, and its recovery, greatly depend on the noise realisation. Thus we willbenchmark our algorithms with multiple noise realisations.
Rejection Rate : In the remaining of the article, we will refer to the rejection rate ρdefined by :

P(H0 is rejected under H0) = ρ , (5.5.1)
ρ is defined through Eq.(5.3.7) for the unstructured sparsity, and through Eq.(5.4.6) forthe block-structured sparsity.

The rejection rate describes the probability to reject H0 for a given frequency ora given block whereas H0 is in fact true. For a uniform domain decomposition (i.e. adecomposition frequency by frequency or with uniform blocks), it corresponds to theexpected FP rate. Its interpretation is a bit more involved in the case of an adapteddomain decomposition, as we will show below.
Signal-to-Noise Ratio (SNR) : it estimates the signal power compared to the noisepower. The greater it is, the more the signal is "visible". The definition of SNR for LISAcanbe found in [16].Whenworking onnoise de-correlated TDI channels, the SNRwrites :

SNR2(v) = 4δf
∑
I

∑
k

|vI [k]|2

SI [k]
= 4δf

∑
k

AS(v)[k]
2 . (5.5.2)

More information about SNR computations can be found in Appendix D.4.

Quadratic relative error : for a signal ĥ approximating a true signal h, we want to
quantify the error of approximation. We define this error E2(h, ĥ) by :

E2(h, ĥ) =
⟨h− ĥ,h− ĥ⟩S

⟨h,h⟩S
. (5.5.3)

The lower the relative error, the better the approximation.
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Quality factor (dB) : it measures the quality of approximating a signal h by an esti-
mator ĥ. It is measured in decibel based on the reconstruction relative error :

QdB(h, ĥ) = −10 log10

[
E2(h, ĥ)

]
. (5.5.4)

The greater it is, the better the approximation. QdB gives an idea of the global qualityof the reconstructed signal. However, it does not provide any information about theFP and FN rates. This quantity is also known as "Normalised Mean Square Error" inclassical signal processing field.
FP rate : The number and the amplitude of FPs can greatly impact the signal recovery.In absence of ameaningful signal, the FP rate is defined as the averagenumber of atomsdetected as activewhereas they should not. For a given rejection rate ρ, we can estimatethe FP rate as :

RFP (ρ) =
#FP
Nf

, (5.5.5)
where #FP denotes the number of FPs for the rejection rate ρ.
FN rate : We can define the FN rate in a similar fashion as the FP rate : this is theaverage number of atoms detected as inactive whereas they are active (because theycarry signal). In practice, we define a FN rate as follow : for a given rejection rate ρ forwhich the FP rate is low, the FN rate will essentially depend on the input signal SNR(i.e. its power compared to the noise power). It will be obtained as an average over
NNoise different noise realisations. For each input signal at chosen SNR and each noiserealisation, one will assess whether the signal was detected by the algorithm. Then, theFN rate will be defined as the proportion of experiments (noise realisations) for whichthe signal was not detected :

RFN(SNR) =
1

NNoise

NNoise∑
i=1

ϵi , (5.5.6)

where ϵi =
{
1 if signal with chosen SNR is undetected when added to i-th noise realisation,
0 otherwise.

5.5.2 Building a representative set
In order to assess the overall performance of our algorithm, it is important to consi-der the wide variety of waveforms that the algorithm could encounter. To representproperly this diversity, we will benchmark our algorithms on a set of 1000 waveformssampled through the parameter space. The prior used for this sampling are detailed inTable 5.1. The overall results of the benchmark will be obtained by averaging the resultsover the randomly chosen waveforms.The amplitude of the signal can be computed as a function of the wanted SNR :if we produce the signal with an initial amplitude h0 = 1, we then compute the finalamplitude as a function of the SNR given by Eq.(5.5.2) : for any multiplicative factor h0and initial signal v, we have :

SNR2(h0v) = h20SNR
2(v) , (5.5.7)
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Parameter Prior

Frequency f0 ∼ U([1mHz, 10mHz])
Frequency Derivative ḟ0 = 0

Ecliptic Latitude sin(β) ∼ U([−1, 1])

Ecliptic Longitude λ ∼ U([−π, π])

Amplitude Computed to obtain the target SNR
Inclination cos(ι) ∼ U([−1, 1])

Polarization ψ ∼ U([3π
4
, 5π

4
])

Initial Phase ϕ0 ∼ U([π
2
, 3π

2
])

Table 5.1 – The algorithmswill be tested on a set of 1000 waveformswhich parameters have been chosenaccording to the the laws reported here.

meaning that any wanted SNRwanted for signal v can be achieved through multiplying
v by the amplitude h0 computed by :

h20 =
SNR2wanted
SNR2(v)

. (5.5.8)
We will often assess the performances of the algorithm over the set composed ofwaveforms at fixed SNR. The noise will be generated according to the process descri-bed in Section 4.2.2.

5.5.3 Individual versus Joint estimation performances
In order to show the advantage of a joint resolution over several channels comparedto single channel resolution, wewill consider the answer of the algorithms to the test setpresented in Sec. 5.5.2 for signalswithSNR = 50 5. The fastwaveformsproducedby theLDC code [17] are restricted to a small frequency range of about 30, 000 frequency binscentered on f0 (for the chosen simulation parameters). We assess the performancesof the recovery over this restricted range. Two different solutions were considered :the first one is a separate resolution for channels I ∈ {A,E}, and the second one isa joint resolution. Both are using the bias correction algorithm (reweighting process)introduced in Sec.5.3.4.In Fig.5.9, we plot the average quality factor QdB as defined in Eq. (5.5.4) over thetest set for the solution obtained with a separate resolution (labelled as "mono"), andthe one obtained with joint resolution (labelled as "multi").For a high rejection rate ρ, the averageQdB is really low because the FP rate is impor-tant. Decreasing ρ greatly improves the results, with the best performance achieved for

ρ = 10−4. Then, when ρ becomes even lower, the FN rate becomes prominent, whichdegrades the estimation quality - evenwith a bias correction such as the one introducedin Sec.5.3.4.
5. This value was set after computing the SNR of LDC 1-3 verification binaries. They are given as anindicator in Section 5.6.2
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The joint resolution performs better than the single channel resolution as it de-creases the atom FN rate. Around the value of interest ρ = 10−4 (i.e. 1 FP at most forthe considered input size 30, 000) where the best performance is reached, there is morethan a 1 dB difference between the qualities of the two estimates, which makes moreinteresting to use joint estimation. We also observe that the multi-channel estimate ismore robust to the choice of rejection rate ρ as the average solution quality is modera-tely impacted by ρ = 10−4 being below the "best-case" scenario.

Figure 5.9 – Average QdB as a function of the chosen rejection rate ρ for a single binary detection fora single channel resolution ("mono" in blue, corresponding to problem (L1, I)) and joint channels reso-lution ("multi", in orange, corresponding to problem (Joint L1)). The averaging is done over the resultsobtained for a set of 1000 waveforms with parameters randomly sampled and SNR = 50.
For the following study, we will only focus on the joint resolution, leaving the sepa-rate resolution aside.

5.5.4 Estimation of the FP rate
We argued in Section 5.4.3 that the uniform domain decomposition (be it atom byatom or uniform blocks decomposition as in Fig.5.8) presents a high FP rate compa-red to the adapted domain decomposition given by the BlockTree. To illustrate thispoint, we plot an estimation of the median FP rate as defined in Eq. (5.5.5) over 100noise realisations over the whole frequency domain 6, for various rejection rates andthe three families ofmethods : unstructured sparsity, uniformblock decomposition and

BlockTree decomposition – for both structured and unstructured estimates. Fig.5.10shows the evolution of the FP rate with the rejection rate ρ.For the unstructured sparsity and structureduniformblock-based approaches (Fig.5.10,left), the FP rate coincides with the rejection rate. This is expected since both domaindecompositions are uniform. For the structured BlockTree domain decomposition,thanks to the averaging process, the effective FP rate is much lower than the rejec-tion rate. Indeed, the probability threshold remains the same (i.e. the block threshold
x0 is always computed based on the same probability, its variations from one block toanother are only due to the change in block size), but the final number of blocks ismuchlower than for a uniform decomposition, which explains that less blocks result in a FP.

6. Herewe consider the 2·106measurement points in Fourier domain, independently of the frequencyrange of interest.
78



Figure 5.10 – Evolution of the FP rate as a function of different initial thresholds for different resolutionclasses : unstructured sparsity (blue), uniform blocks resolution with a block size |B| = 10 (orange), adap-ted blocks BlockTree resolution based on the previous uniform decomposition (green). The probabilitythreshold is chosen so that under H0, P(χ2 > x0) = ρ. Left : For structured block sparsity. Right : Forunstructured block sparsity. The expected value is given by the first bisector, which is perfectly matchedby the two first methods. The BlockTree enables to have an effective FP rate that is much lower than theexpected value due to the averaging process. Moreover, unstructured block sparsity has lower FP ratethan structured block sparsity.

Unstructured block sparsity (Fig.5.10, right) produces a lower FP rate for both uniformblocks and BlockTree, making it particularly advantageous in a context where we wantto limit the FP rate as much as possible.
5.5.5 Evolution of quality factor QdB with input SNR

In order to characterize the sensitivity of the proposed methods with respect to theinput signal’s amplitude, we investigated the evolution of the quality factor QdB withthe input SNR at constant noise level.For a given test set as described in Sec.5.5.2, we adapt signal’s amplitude accordingto Eq. (5.5.8) so that the signal has the target SNR. Then, we draw noise over all theatoms of Fourier domain and we add it to the signal. The measurements write :
d = h0(SNR) · h+ n . (5.5.9)

We apply the algorithm of reweigthed unstructured sparsity Eq.(Joint L1) and blocksparsity Eq.(5.4.5) combinedwith both a uniform block decomposition and a BlockTreedecomposition, performing either block reweighting or unstructured reweighting in-side the blocks. We set the detection threshold based on Fig.5.10 such that the falsepositive rate is inferior to 1 for the considered input size (around 30.000 frequency bins).This corresponds to :
Unstructured sparsity : ρ ∼ 10−5

Uniform block sparsity : ρuniform ∼ 10−4

BlockTree sparsity : ρtree ∼ 10−3

Fig.5.11 shows the quality factor of recovered solutions for various rejection ratesaround these values : ρ ∈ {10−5, 10−7}, ρuniform ∈ {10−3, 10−4}, ρtree = 10−3. For thelowest rejection rate (lower row), all methods did not present any FPs. In this case, wecan see that the block decompositionmethods are prettymuch equivalent, and providea better result than the unstructured sparsity method.
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Block Reweighting Atom Reweighting

Figure 5.11 – Evolution of average QdB with SNR for the 3 main methods presented here : resolutionatom-by-atom ("Unstructured", blue triangles), with uniform domain decomposition ("Uniform blocks",orange circles) andwith the BlockTreedomain decomposition ("BlockTree ", green squares). For the twoblock decompositions, the reweighting is operated by block (left) and atom-by-atom (right), for differentsets of parameters. The "unstructured" solution is identical on both sides. Up : Unstructured sparsity :
ρ = 10−4 ; Block decompositions : ρuniform = ρtree = 10−3. For atom reweighting, ρreweighting = 10−1

. Down : Unstructured sparsity : ρ = 10−6 ; Block decompositions : ρuniform = 10−4,ρtree = 10−3. Foratom reweighting, ρreweighting = 10−1 . The "unstructured" solution has a high rate of both FN and FP.

Several observations can be done :
1. Unstructured sparsity produces a recovery of lower quality than any other me-thods. This is due to the important number of FPs and, to a lesser extent, thenumber of FNs. It has more difficulties detecting signals with low SNRs. Decrea-sing the rejection rate improves the recovery quality because there are less FPsat the cost of reducing the detectability of signals at low SNR.
2. In absence of FPs, atom reweighting and block reweighting give results of similarquality.
3. In absence of FPs, uniform blocks decomposition has a recovery quality that issimilar to the one obtained using BlockTree.
4. Even for a high rejection rate ρtree = 10−3, the BlockTree decomposition neverpresented a FP.
In conclusion, the best solution is to use the BlockTree approach to estimate thesignal. Indeed, since it is a block-structured approach, its results are better than when
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using an unstructured approach. Moreover, BlockTree enables to use higher rejectionrates than uniform blocks decomposition for lower FP rate.

5.5.6 FN rate
In Fig.5.12 is represented the evolution of the average FN rate (defined as in Eq. (5.5.6))with the input SNR. The averaging is realised over a set of 1, 000 signals chosen as ex-plained in Section 5.5.2 and amplitudes computed as in Eq. (5.5.8).

Figure 5.12 – Average evolution of FN rate with SNR. for unstructured sparsity (Joint L1)(blue,"Unstructured") and BlockTree algorithm (LB
1,2) (orange,"Blocktree"). BlockTree has a better de-tection rate than Unstructured sparsity.

Because it considers Fourier atoms independently, the unstructured sparsity hasmore difficulties detecting low-SNR signals. This is not the case for the BlockTreedomain decomposition : the averaging process gives a certain robustness to our al-gorithm. The uniform block decomposition is an intermediate case between the twomethods.One could be surprised by the FN rate of the BlockTree algorithm, that can seemrather high. While building the algorithm, we made the choice to favor having the lessFPs possible instead of having the less FNs possible, since we would rather have fewerbut safer data than more but more uncertain data. This explains that our FN rate is notthe best among all techniques that we tried, whereas the FP rate shown in Fig 5.10 goesin favor of our algorithm robustness.

5.5.7 Sensivity to the minimal block size
As explained in Section 5.4.3, the block size can have an impact on the signal reco-very realised by the algorithm.Fig.5.13 shows the average factor quality QdB sensitivity with respect to the choiceof block size |B|. The averaging is done over a set of 1, 000 signals chosen as in Section5.5.2, with SNR = 50. We set the parameter ρtree = 10−4 according to the value foundin Sec.5.5.4 for the considered input size. For a block size inferior to 32 atoms, the blocksize only has little impact on the quality of estimation. In order to limit the impact ofa block if it where to be a FP, it is better to have a block size that is not too wide. Butwe still want it to be large enough to detect – through averaging process – low-SNRsignals. For that purpose, we selected |B| = 10 as a minimal block size.
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Figure 5.13 – Average quality QdB of signal recovered using BlockTree for rejection rate ρtree = 10−4.Input signals have a SNR of 50. There is an operating plateau between |B| = 4 and |B| = 20. The areafilled in light blue shows how 95% of the values are distributed around their average (dark blue line).

5.6 Application to LISA Data Challenges
The LISA Data Challenges (the datasets and their description) can be found at [17].LDC1-3 deals with ten verification GBs. The corresponding LISA signal, as expected forthe TDI channel A as a function of frequency, is displayed on Fig.5.14.

Figure 5.14 – LDC1-3 : Verification galactic white-dwarf binaries : 10 verification binaries have to be foundin this signal which noise was generated with the LISACode noise generator. The target signal h is thesum of all GB signals.

5.6.1 PSD estimator
For the LISA Data Challenge 1 (LDC1), the noise was created using the LISACode noisesimulator [17]. This code simulates a Gaussian noise in time domain, then realises asub-sampling and a high frequency filtering in the spirit of what will be realised for LISAreal data. The LDC code provides an estimation of the noise PSD (which we will refer
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Figure 5.15 – In blue : standard deviation σMAD computed with the MAD estimator and a samplingwindow length of 5000 points. In red, polynomial fit of order 3 of σMAD , referred to as σpol. (Figureextracted from Ref.[10])

to as theoretical PSD and denote Sth in the following) that does not take the last twoprocessing steps into account (i.e. sub-sampling and filtering).The proposedmethods are highly sensitive to the PSD (through both data whiteningand threshold choices). Consequently, the straightforward use of the theoretical PSDdid not give satisfying results. Indeed the real and imaginary parts of each signal inFourier domain whitened by the theoretical PSD is expected to obey a standard normallawN (0, 1) (this is true because only few GBs are present : they do not impactmuch theglobal noise distribution). It turns out that at high frequencies the noise distribution offrequency blocks does not follow the expected χ2 distribution as several instrumentaleffects are not taken into account.The MAD (Median Absolute Deviation) estimator :
σMAD =

Median(|X −Median(X)|)
sMAD

, (5.6.1)
with X a window-sample of the initial data and sMAD ≃ 0.674, is an empirical estima-tor of the dispersion of stochastic distributions, which has mainly been advertised inrobust statistics [18]. We use it here to estimate the standard deviation for the real andimaginary parts of signals dI , I ∈ {A,E}. The MAD estimate of the standard deviationfor ℜ(dE[k]) in presented in Fig.5.15.Without the aforementioned sub-sampling and high frequency filtering effects, thisestimator should roughly be equal to 1. Asmademanifest by Fig.5.15, this is not the casein practice, and the deviation from the expected value is significant enough to impactthe behavior of our algorithm. Thus, for f < 0.027Hzwe computed the MAD estimatorsof the standard deviation of ℜ(dA[k]), ℑ(dA[k]), ℜ(dE[k]) and ℑ(dE[k]) using a slidingsampling window of 5, 000 points. We restricted ourselves to f < 0.027Hz because hi-gher frequencies are too much impacted by the high frequency filtering - this is not aproblem since the signals we are looking for have lower frequencies. The size of the sli-ding window was chosen by finding a trade-off between a window big enough to havean important averaging and awindow small enough to have an accurate representationof the correction.Each of these four estimators can be fitted by a polynomial of degree 4 to enforcesmoothness of the PSD, and each of these polynomials can be reliably approximated bytheir average σpol described in App. B.4. The impact on the whitened noise distributionis illustrated in Fig.5.16.
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Figure 5.16 – Impact of the PSD correction on the noise distribution. The random variable |AS(d)[k]|2for a frequency k is expected to follow a law of χ2
4 as explained in Section 5.3.3. On the left, the signal isnormalized with the theoretical PSD PSDth, whereas it is normalized with the effective PSD PSDeff onthe right, for f < 0.027Hz. We computed the noise distribution directly on the signal as the amount ofsignal is negligible compared to the amount of noise. (Figure extracted from Ref.[10])

To summarize, instead of using the theoretical PSD Sth, we used the effective PSD
Seff defined by :

Seff [k] = σ2
pol[k]Sth[k] , (5.6.2)

to obtain the results presented in the following sections.We designed our PSD estimator in this case taking into account that the amountof GB signals was negligible compared to the amount of noise. Our estimator of thenoise PSD directly works in Fourier domain, and is hardly sensitive to the GB frequencypeaks of the considered dataset. Only high frequencies are impacted by filter distor-tions. Here, we limited ourselves to f < 27mHz because the evolution of the PSD cor-rection could be modeled rather precisely with a simple polynomial function –whichwas not the case if we took more frequencies into account.
5.6.2 LDC results

The algorithm parameters used in our code to compute the following results aresummarized in Appendix B.3.2.Fig.5.17 shows the results that can be expected from the structured sparsitymethodcombined with the BlockTree algorithm. The left column features in upper row the so-lution found in the Fourier domain in red and the target (real signal without noise) ingreen : all frequency peaks were recovered, and no FP was detected. The lower plotshows a zoom of the solution on the last frequency peak from the left. This gives an in-sight on the algorithm behavior : all signals above noise level were recovered. However,this also shows that we have a poor representation of the waveform tails 7.The right column upper row represents in the time domain the corresponding so-lution in red and the target in green. The lower plot is a zoom on the solution on a dayportion. The phase of the solution matches really well with the one of the target, but
7. By "tail" we mean the signal’s structure outside the main peak, which amplitude quickly goes to 0.
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Peak SNR QdB (ρtree = 10−3)
1 26.6 9.513

2 22.5 9.081

3 12.0 4.85

4 9.56 1.918

5 65.3 15.773

6 52.7 13.199

7 48.7 13.661

8 19.8 4.927

9 12.3 2.696

10 72.5 13.719

Global 13.108

Table 5.2 – Peak to peak recovery quality factor QdB . Peak are numbered from lowest frequency (1) tohighest frequency (10). For the chosen rejection rate ρtree = 10−3, no FP was detected. We added the
SNR as an indicator to match the results with what was found in Fig.5.11.

Figure 5.17 – Results for the LDC challenge with ρ = 10−6 and a minimal block size |B|min = 10. Forthis rejection rate, no FP was found. The global solutions are displayed in the upper row, and a zoomwas done on the lower row. Left : solutions in Fourier domain, with a zoom on the 10th peak (from theleft). Right : solutions in time domain, with a zoom on the solutions. The phases match quite well, theagreement between amplitudes is less satisfactory.
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the amplitude of the extracted signal is still weaker than the one of the input signal.This is to be expected since the basis that we use do not represent the waveform tailsin Fourier domain : the energy loss is unavoidable.
Peak-to-peak QdB We assessed the performances of the algorithm through estima-ting a peak-to-peak and a global QdB.We define the peak-to-peak QdB as follow :

■ We window both the noiseless signal and the extracted signal around the ith
peak of interest in frequency domain : hI,(i),ĥI,(i). The window in Fourier domainis defined as follow :
1. We chose a probability threshold (pwindow = 0.9 for instance).
2. We compute the bandwidth over which the signal exceeds noise level withcertainty pwindow

3. We select the regions of the whitened signal that rise above this threshold.
Each region corresponds to a frequency peak neighborhood. Thereafter, a fre-quency peak will be considered as "detected" only if there is at least 1 detectedfrequency in the detection region defined as above.

■ We compute the quality factor based on these partial signals : QdB(hI,(i), ĥI,(i))The results are presented in Tab. 5.2 for ρtree = 10−3 according to what was found inSection 5.5.4. For the chosen settings, all the sources are detected without any FP. Ourmain objective is thus completed. Moreover, based on the sources SNR, the quality ofestimation for each individual source matches with the prediction made in see Section5.5.5 : the recovery algorithm worked just as planned.
5.6.3 Residuals study

The residuals for the channel I ∈ {A,E} is defined by :
rI = dI − ĥI . (5.6.3)

Fig.5.18 represents the distribution of |AS(r)[k]|2 among all frequencies k such that
|kδf | < 0.027Hz 8. The residuals seem to follow is in good agreement with a law of
χ2
4, which is expected since it is the law followed by the noise (and we only subtracteda few number of frequencies).

5.7 Conclusion and Prospects
Based on a simple signal modeling, we are able to detect and retrieve the imprintof GBs at a very low computational cost. The proposed algorithm is robust to noise,with controllable FP rate and can detect rather low-SNR sources thanks to an avera-ging process. Moreover, it can deal with several GB sources superposition ; thus it is adirect answer to the topics of signal detection and subtraction. We proved on realisticdata (LDC 1-3) that we could detect and extract signal even in presence of complex ins-trumental noise. This model, though very simple, has a direct application when part ofthe data is missing ; this will be developed further on in the next chapter.
8. We focused on a frequency range containing a priori all GB signals.
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Figure 5.18 – In green is represented the distribution of whitened residuals |AS(r)[k]|2 in Fourier domain.In red is plotted the probability density of the law χ2
4. The residuals manifestly follow the expected law.(Figure extracted from Ref.[10])

Prospects : The framework is flexible : it can easily be adapted to other types ofsources. For instance, transient massive blackhole binary signals (see Section 3.1) arewell represented with Wilson wavelets [2]. We could also contemplate using this ap-proach to massively remove glitches from the data by choosing an adapted dictionary– or even learning an appropriate dictionary based on the data collected during LISAPathFinder. Learning the best representation is still a possibility as this theory can alsoadapt to the case where the dictionary has redundancies [4]. Finally, we could studythe usability of such a flexible framework to search for unmodelled or hard-to-modelsources like EMRIs (see Section 3.1).Yet, many elements could be improved : for one, the present modeling does notallow to separate GB signals that are close. Indeed, the model is not precise enough(as it does not represent the structures intrinsic to the signal, neither does it representthe waveform "tails"). Another element is that there is no visible way to identify GBsindividually – this is also related to the simplicity of themodel. Wewill show in Chapter 7that we can build a reliable non-parametric model precise enough that it could be usedin a context of identification. A third point is that the proposed algorithms rely on theknowledge of the noise PSD – which will be unknown in reality. A process alternatingbetween noise PSD estimation and signal estimation could surely lead to promisingresults and would not change much the current algorithms.
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Chapter 6

Inpainting for LISA gapped data

6.1 Introduction
In Chapter 5, we introduced a novel, general, non-parametric framework for thedetection and recovery of GBs based on a sparse representation of the sought signal.Being non-parametric, it yields a fast low-bias estimate of the GBs signal, without priorknowledge of their number. This new tool permits a precise detection of GBs, with anaccurate control of the false discovery rate, which makes it an effective approach torobustly deal with the noise that contaminates the LISA data.In the field of computer science, dealing with gapped data has long been consideredin the framework of sparsity-based signal processing, leading to sparse data inpaintingmethods (see [1; 2] and references therein). In this chapter, we therefore propose aninnovative method that combines the non-parametric GBs recovery method we intro-duced in [3] and sparse data inpainting to mitigate the impact of data gaps on LISAscience. Elaborating on our prior knowledge of the ungapped noise distribution, weestimate not only the missing signal but also the missing noise. We show that it canefficiently recover missing data ; based on a simple example we also show that it cancorrect posterior distributions for parameter estimation. The work presented here waspublished in MNRAS [4].The general context of our work, the corresponding framework and data modellingare presented in Section 6.1. Section 6.2 describes the two algorithms thatwe developedto mitigate the impact of gaps on LISA data - detailed proofs and information can alsobe found in Appendices C.2,C.3,C.4. Section 6.3 focuses on assessing the performancesof the two algorithms in various configurations. Last, Section 7.5 draws conclusions andprospects over the present study.

6.1.1 Gaps and data analysis
One of the main challenges we will have to face to perform data analysis is the pre-sence of data gaps [5]. In this section, we present the characteristics of the expectedgaps, and we show that they have an important impact on GB identification.

Different types of data gaps

The document [5] gives a detailed list of the elements that could impact the robust-ness of data analysis. Among them, data gaps will happen in various ways that can be
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sorted into three categories :
Long, unplanned gaps : During the LISA Pathfinder mission, a 5-day-long data gapoccurred, during which the device went into safety mode and could not collectdata. This can also happen during the LISAMission : the device will not always beable to collect data. Themission duty cycle is estimated around 75%, whichmeansthat there will be around 25% of missing data in the form of long duration gaps.
Maintenance gaps : Regularly the antennas need to be realigned. This process isexpected to take place once every two weeks and last approximately 7 hours. Nomeasurements can be taken in the meanwhile.
Short, unplanned gaps : It is still possible to have daily short events that will causedata loss. Such events are likely to happen every day, over a short time period(from a few seconds to a few hours). For instance, this could be the result of"gapping" the signal in presence of data glitches.
These gaps will impact data analysis both on the short and the long run. This willdeteriorate the observability of any GW phenomenon. For instance, transient signalslike MBHBs are mainly visible during merger ; yet it is very likely that a gap – even short– could happen at this very time. The SNR loss would be important and would degradethe identification quality [6]. For continuous signals like GBs, this is the quasi-periodicityof the gaps and the cumulated amount of lost data that will impact their SNR.

Impact of gaps on data Fourier transform

Figure 6.1 – Fourier transform of simulated noise for an ungapped signal (in orange) and a gapped signal(in blue) for daily short unplanned gaps and maintenance gaps (see simulation details in Sec. 6.3.1). Thepresence of gaps in time domain leads to a modification of the expected noise distribution in Fourierdomain. This modification impacts the mHz frequency band of interest. (Figure extracted from Ref.[4])
Fig.6.1 represents the noise amplitude in Fourier domain for the ungapped signal(labelled as ’real’) and the gapped signal (labelled as ’gapped’). The presence of gapscreated a distortion in the noise PSD and added correlation between the different fre-quencies (whereas the noise is initially supposednot to contain any correlation betweenfrequencies in Fourier domain).The presence of gaps in the data leads to a significantly more challenging problem :
Loss of signal power : In presence of gaps, the waveform is distorted and is notsparse anymore : Fig.6.2 shows the waveform resulting from a gapped signal inthe Fourier domain. Even if the main part of the waveform seems unchanged(Fig.6.2, lower row), there is a gap-dependent power loss – not visible on thepicture – that is due to the information originating from the incompleteness ofthe data. In practice, this can lead to inaccurate detection and identification.
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Figure 6.2 – Simulated signal received from a GB inFourier domain : in orange the real, ungapped si-gnal, and in blue the gapped signal (small and plan-ned gaps). Up : Full data. Down : Zoom around thetheoretical GB signal. The gaps in time domain leadto a deformation of the signal in Fourier domain :the gapped signal is ’less sparse’ than the ungappedsignal. The more information we lose, the greaterthe deformation of the signal.

Figure 6.3 – Fourier transform of LDC1-3 data, com-posed of 10 verification binaries, for the real ungap-ped signal (orange) and the signal that we gappedwith daily short unplanned gaps and maintenancegaps (blue).Up : Full data.Down : Zoomaround thefrequency range where the sought signals lie. Si-gnals that could have been identified without gapsare now completely drowned in noise.

Noise leakage : Fig.6.3 shows how gaps impact a signal simulated for the first LISAData Challenge [7]. This experiment illustrates how gaps also result in a noiseleakage, and radically change the statistics of the noise in the Fourier domain.With respect to noise, gaps again hamper the detection and identification of GBsas a significantly larger amount of GB signals will be drowned in noise in the caseof a gapped signal.
To mitigate the impact of gaps on data analysis, several strategies can be thoughtof :
Do nothing : Fourier-transform the data as such and conduct the usual analysisbased on fast waveforms. It is the worse strategy possible : we will show in thenext paragraphs that gaps can bias parameter estimation.
Apodize the gaps : Smooth the gaps, Fourier-transform the data and conduct theusual analysis based on fast waveforms. Unfortunately, apodization does notcompletely mitigate the impact of gaps, it can still lead to biased parameter esti-mation.
Work in time domain : Conduct the analysis directly in time domain using wave-forms in time domain. This way, taking the gaps into account becomes mucheasier (as we just have to apply a mask to the waveforms). It is the most accu-rate strategy among all since the missing data can be taken exactly into accountduring the analysis. However, conducting the analysis in time domain has a com-puting cost much higher than when doing it in Fourier domain – at least for GBs :this can be prohibitive.
Correct the data : Correct the effect of missing data – for instance by filling thegaps with information. Then Fourier-transform the data and conduct the usualanalysis based on fast waveforms. We chose to follow this approach because itallows a good compromise between analysis precision and computational cost.
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Within the last category, the bayesian "data augmentation" algorithm [8] was deve-loped in order to make it possible to proceed with data analysis even when the datais gapped. The core idea behind the method is to consider the missing data as a va-riable that has to be estimated just like the physical parameters. The missing data andthe parameters are then jointly estimated using a MCMC process. The algorithm wasassessed over gaps that can be assimilated to the small and medium-sized gaps weconsider here, in presence of a single GB source.
The method we introduce here, even if it also relies on the estimation of missingdata, is fundamentally different in that it is a "source-agnostic" alternative based onour non-parametric modeling of GB signals. The estimation process depends on aninpainting mechanism that radically differs from the Bayesian approach used in [8].

Gaps Apodization

Tomitigate the impact ofmissing data on the Fourier transform, a classical approachconsists in apodizing the gaps. The principle of apodization is presented in Fig.6.4 : whe-reas the missing data can be modeled by multiplying the full data by a crenel mask of 0(when the data is missing) and 1 (when the data is measured), the apodization consistsin using a mask with smooth transitions between the sequences of missing points andthe sequences of observed data. More data is impacted by the new mask, but this isnegligible in comparison with the total amount of lost data.

Figure 6.4 –Gaps apodization : instead of considering a crenel mask (blue), it is often considered a betteridea to smooth the crenel, i.e. to use the orange mask instead, using for instance a cosine function.

Multiplying data d[n] by a maskm[n] in time domain is equivalent to convolving theFourier transformof the datad[k] by themask Fourier transformm[k]. The sharperm[n]is, the slower its Fourier coefficient amplitudes |m[k]| will go to 0, and the greater willbe the impact on observed gapped data dg[k] (See Section 6.1.3 for more precisions.).
Fig.6.5 shows the impact of crenel and smooth masks on noise distribution : whe-reas both present a huge discrepancy compared to the expected distribution at lowerfrequencies, applying the smooth mask makes the distribution closer to the expectedone above 2 mHz compared to the crenel mask that distorts the whole millihertz fre-quency range.
On the other hand, Fig.6.6 shows the impact of both masks on a waveform in themillihertz frequency band. In this frequency range, both masks produce the same de-formation on the waveform (no visible difference), which information is spread over awider frequency range than when the signal is ungapped. The chosen waveform has

93



Figure 6.5 – Impact of apodization on noise distri-bution. Upper row : For crenel gaps ; Lower row :For smooth gaps. When using smooth gaps, thenoise distribution seems to have the right PSD onhigher frequencies (f > 2mHz).

Figure 6.6 – Impact of apodization on waveform :an ungappedGB signal (orange) is superposed on acrenel-gapped signal (up, blue) and on a smoothly-gapped signal (down, green). The gapped signalsaremore spread than the ungapped signal. Aroundthe emission frequency, smooth or crenel gapshave similar impact on the signal deformation :apodization does not correct waveforms.

central frequency around 6mHz, where Fig.6.5 yet indicates that the impact of gaps issupposed to be low (no visible deformation of the noise PSD around this frequency).
Impact of gaps on parameter estimation

As explained in Section 4.1, GB data analysis is generally directly performed in Fou-rier domain, as a fast waveformwas developed to produce directly GB signatures in fre-quency domain. On the one hand, this makes analysis faster as we can only focus on afew frequency bins of interest. On the other hand, taking into account phenomena thathappen in time domain (data interruptions for instance, but also transient glitches) be-comes much harder. In particular, trying to conduct classical parameter estimation ona gapped signal directly in Fourier domain could lead to bias the parameter estimation,as the gapped waveform does not match the full-data waveform (i.e. the theoreticalwaveform). This is illustrated in Fig.6.6 : the missing data in time domain results in thewaveform spreading in the Fourier domain in addition to the power loss due to themissing data points. The theoretical waveform does not match the observed waveformanymore.Study [6] quantifies the impact of gaps on MBHB parameter estimations. Depen-ding on when the data is missing, the source SNR can be heavily impacted making theidentification harder. Nevertheless, the setup is different since for MBHBs the parame-ter estimation is directly conducted in time domain : it is easier to take the data maskinto account than when the analysis is performed in frequency domain.The impact of gaps on GB parameter estimations is studied in [8]. In this article, theauthor shows that if the analysis is directly conducted on gapped data, the estimationbias could become important, especially at lower frequencies where the data mask hasmore impact. Nonetheless, the study does not consider long gaps that have the mostimpact on the observed SNR in Fourier domain.Here we want to stress the impact of mixed types of gaps on parameter estimation.We ran the sampling code that we developed to estimate parameters of a GB given
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Crenel gaps Smooth gaps

Figure 6.7 – Posteriors obtained with MCMC parameter estimation for one GB with parameters presen-ted in Appendix C.1, for a full, ungapped signal (green), a signal gapped with crenel gaps (blue,left) and asignal gapped with smooth gaps (blue,right) for parameters f0, β, λ. f0 is estimated in milliHertz (asmf0)and sin(β) is estimated instead of β. Priors are the same than in Table 4.2. All three types of gaps arecombined resulting in about 28% of data loss. The real parameters are spotted with a red line and label-led as "Truth". The contour plots delimit the 95% presence probability. The presence of gaps – smoothor crenel – that are not taken into account for the analysis create a bias in the estimation. Moreover, theposteriors for gapped data are more spread than the one for full data.

in LDC1-3, reported in Appendix C.1, with typical LISA noise with and without gaps. Wepresent the final posterior found in the two cases for three parameters : the main fre-quency f0 and the ecliptic coordinates β and λ in Fig.6.7.Using aMCMC algorithmwe estimate the parameters values by themaximumof thejoint posterior distributions. Fig.6.7 shows that the posteriors foundwhen sampling thefull signal exhibit maxima a posteriori that are close to the true values. In contrast, theposteriors obtained after sampling gapped signals – be it with crenel or smooth gaps –are biased. In this case, even if smoothing the gaps corrects a bit the bias on sky location(β, λ), it creates a bias much stronger on frequency estimate.
Two conclusions can be drawn when working directly in Fourier domain : gaps mustbe accounted for in the analysis process, and smoothing them is not enough to correcttheir impact on the signal.

6.1.2 Gapped measurements modeling

The full data model was introduced in Section 4.2.1 and comes down to :
d = h+ n . (6.1.1)
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Let us introduce the "mask" time functionm :
m[n] =

{
0 if the data is missing at time nδt ,
1 otherwise . (6.1.2)

Thus, the gapped data dg is defined, in time domain, by :
dg[n] = m[n]

(
h[n] + n[n]

)
∀n ∈ [0, Nt] . (6.1.3)

Conjointly we can define themissing data dm by :
dm[n] = d[n]− dg[n]

= (1−m[n])
(
h[n] + n[n]

)
∀n ∈ [0, Nt] . (6.1.4)

Their Fourier transforms will be respectively noted dg[k] and dm[k], as stated in Section4.2.1. Thus, we have the relation between variables :
d = dg + dm . (6.1.5)

For more simplicity, we will note :
dg =M(h+ n) ,

dm = (Id −M)(h+ n) , (6.1.6)
withM the mask operatorM associated in time domain to the mask time function mwhich effect is described in Eq. (6.1.3) and Eq. (6.1.4) and Id the identity operator. Inparticular, for any data u, the operatorM is defined in time domain as :

Mu[n] = m[n]u[n] ∀n ∈ [0, NT ] , (6.1.7)
andMu[k]will refer to the elements of the Fourier transform ofMu[n]. AsM is a simpleprojector in time domain, we will use the following algebra notations :

Ker(M) : kernel ofM (data vectors u such thatMu = 0),
Ran(M) : range ofM (image of data vectors in time domain byM ),
Id : identity operator.

By definition, we have dg ∈ Ran(M) and dm ∈ Ker(M) = Ran(Id −M).
In this chapter, we will have to deal with both time domain and Fourier domain at thesame time. In order to facilitate understanding, we would like to point out that :
■ Themask operatorM is defined through timemeasurements, and thus operateson time variables v[n]
■ The amplitude operator introduced in Eq. (5.2.4) is defined over Fourier coeffi-cients, and thus operates over frequency variables v[k].
■ Identically, the inner product ⟨·, ·⟩S is weighted by a PSD S that is defined in Fou-rier domain, and thus operates over frequency variables v[k].Following this statement, we will not specify the variables when using these operatorsto alleviate the notations as much as possible.In the Notation Table (p.17) we provide a synthesis of our writing conventions withthe list of the most frequently used variables of this study. In particular, bold lowercase letters are used for data, for estimators (denoted by a hat) and for the sequentialsolutions of optimization problems (denoted by sequence index p). Upper case letters(S,M ) are used for operators.
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6.1.3 Dealing with incomplete data in sparse signal processing fra-
mework

Incomplete data and sparse modeling

Let us go back to the sparsity-based model that was introduced in Section 5.1.1. Asignal x can be represented in a dictionary T if it can be written as :
x = Tα =

NT∑
j=1

αjtj . (6.1.8)
Additionally, if x is weakly sparse in T, then the information it carries can be compres-sed over few non-zero coefficients αj that can be determined by solving the (L0) pro-blem :

Argmin
α

∥α∥0 such that ∥x−Tα∥2 ≤ σ , (L0)
Now we observe a gapped version xg of signal x. The maskM applies, and the measu-rements write :

xg =Mx =MTα =

NT∑
j=1

αjMtj . (6.1.9)
Yet, the underlying signal x is still weakly sparse in T : there is only a change in thenumber of measurements that were done. Therefore, we would like to adapt Eq.(L0) tothe missing data context as :

Argmin
α

∥α∥0 such that ∥xg −MTα∥2 ≤ σ , (6.1.10)
Without any other hypothesis, this problem does not necessarily produce an accuraterecovery of the ungapped data. However, under the additional strong assumption thatthe dictionaryT is incoherent with the measurement domain, the compressed sensingtheory [9; 10; 11; 2] states that the problem is well-posed if enough measurements areavailable 1.The incoherence principle – also known as Heisenberg uncertainty principle [12] – canbe explained plainly as : "if x is sparse inT then it should be the least sparse possible inmeasurement domain". Applied to Fourier domain (where GBs are sparse) versus timedomain (where measurements are performed and data is missing), there is an idealmaximal incoherence : a Dirac in Fourier domain – sparsest signal possible – corres-ponds in time domain to a sinusoid carrying information at any time.If x is strongly sparse in T and T is strongly incoherent with the measurement do-main, then a perfect recovery is possible [12].Whennoise is present andx is still stronglysparse, then the recovery is not perfect anymore but the error can be bounded depen-ding on the sparsity level of x [9]. In our case, x is only weakly sparse. We cannot say forsure that the error is bounded ; yet an approach similar to that of Section 5.1.3 experi-mentally conducts to a proper signal estimate. Like in Section 5.1.3 this problem can berelaxed using the norm ∥·∥1 instead of ∥·∥0 (see [13] and references therein) :

Argmin
α

γ ∥α∥1 +
1

2σ2
∥xg −MTα∥22 . (CS)

1. The "enough" is directly quantified by the compressibility of x in T, i.e. the number of non-zerocoefficients needed to approximate x accurately.
97



Comparing Eq.(CS) with Eq.(LASSO) announces forthcoming troubles : before, wecould use the inverse Fourier transform T−1 to work solely with Fourier data x[k] ins-tead of time data x[n]. However this is not the case anymore : the operatorM acts intime domain and does not commute with T, neither with T−1. Eq.(CS) is a formulationstuck between time domain and Fourier domain, which makes its resolution much har-der. Another key element is that in CS context, σ is the noise standard deviation on the
gapped signal. In our case, we have prior knowledge on the noise PSD for ungappedsignal, the difference between the two is illustrated in Fig.6.1. We cannot use Eq.(CS) assuch.
LISA data specificities

As justified above, the LISA missing data model writes :
dg =M(h+ n) . (6.1.11)

Applying (CS) to the recovery of GB signals from gapped data dg would write :
ĥ = Argmin

v

[∥∥γ ⊙ASgap(v)
∥∥
1
+

1

2
⟨dg −Mv,dg −Mv⟩Sgap︸ ︷︷ ︸

(dg−Mv)†S−1
gap(dg−Mv)

]
, (6.1.12)

where Sgap stands for the gapped noise PSD in Fourier domain, as highlighted before(see Fig.6.1 to understand how Sgap differs from S).Standard CS methods generally make the assumption that the noise statistics isknown at the level of the measured data, i.e. that Sgap is known. This puts to light thespecificity of the problem of LISA gapped data : we have prior information on both thesignal and the noise in absence of gaps. Sgap could of course be computed based on theexpected noise PSD S and the maskM , but the computation would be costly and thecorresponding problem would still remain hard to solve. Moreover, it would be a full,
dense matrix as the gaps introduce complex time correlations that have repercussionsin Fourier domain.Accounting for the proper noise distribution is particularly important as it allowsone to carefully control the false positive rate of the sought-after GB signal [3]. Thisis however a key discrepancy with respect to standard methods since the theoreticalnoise statistics has to be modelled accurately in the Fourier domain. We therefore pro-pose an innovative sparse inpainting algorithm that aims at retrieving both the ungappedsignal and noise.
Inpainting LISA data

To that end, we introduce a new estimator d̂m of the missing data dm as defined in
Eq. (6.1.4). d̂m includes both missing signal and missing noise. We have :

d̂m ∈ Ran(Id −M) = Ker(M) =⇒ M d̂m = 0 . (6.1.13)
Thus we will search for d̂m on the set of variables u such thatMu = 0.We rewrite the problem of estimating the gapped signal as a joint estimation of thefull, sparse signal and the missing data. The new formulation remains close to that of
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Eq. (REF-L1) and Eq.(6.1.12) :
(ĥ, d̂m) = Argmin

(v,u)
Mu = 0

[
∥γ ⊙AS(v)∥1 +

1

2
⟨dg + u− v,dg + u− v⟩S

]
. (6.1.14)

How does inpainting work here? Eq.(6.1.14) comes down to re-creating an un-gapped data dg+uwhich noise PSD is similar to the expectation S. We then enforcesparsity of the full signal contained in the recovered full data dg+u through the ∥·∥1term.
Estimating themissing data dm implies that we also estimate themissing noise. Thismay not be intuitive, but can be explained by the colored nature of the noise in Fourierdomain. The smoothly frequency dependent PSD (Fig.3.7) entails that the ungappednoise has an inherent structure 2 in Fourier domain that has to be recovered in the pro-cess to limit leakage as much as possible between noise and signal. If the missing datais recovered, both the priors on the ungapped signal (i.e. sparsity) and the ungappednoise (i.e. the expected noise PSD) can be used.Let us notice that the resulting optimization problem now exhibits a mixed formu-

lation with terms expressed both in time and frequency : the minimization constraint
Mu = 0 is in time domain, whereas the sparsity and data adequacy terms are written inFourier domain. Consequently, it does not admit a closed-form solution and the mini-mizer needs to be computed numerically with an iterative algorithm, which is describedin the next section.
Interpretation as a deconvolution problem

Inpainting is sometimes misconceived as a procedure that artificially creates newinformation beyond the available observational data. Here, we want to highlight thatdata ungapping can be equivalently formulated as an ill-posed deconvolution problem.Eq.(6.1.14) aims at deconvoluting the data from the mask in Fourier domain based onthe aforementioned assumptions : signal sparsity and noise structure.Indeed, in time domain gapping the data using a mask m is equivalent in Fourierdomain to convolving the Fourier transform of the maskm with the Fourier transformof the sought signal. The inpainting algorithms that we propose equivalently aims atcorrecting the observation from the impact of themask. The huge advantage of thinkingabout this problem as a deconvolution one is that we can directly make use of thesparsity prior that we have on the sought signal. In fact, the application of the maskmultiplicative operator in time domain, or its equivalent convolution operator in Fourierdomain, results in a less-sparse observed signal. Enforcing the sparsity of the solutionthen allows to efficiently correct for the mask effect [1]. Considering colored noise andgappeddata, and then Fourier transforming the gapped signal results in several effects :
■ a SNR loss due to the lost data and the convolution with the mask,
■ a deformation of the noise spectrum : gapping in time domain is equivalent tocreating noise correlations in Fourier domain,

2. This colored noise is equivalent to having noise time correlation lengths depending on the noisefrequency. As the noise is not white, we have to account for its behavior as much as possible.
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■ a loss of spectral resolution, also because of the convolution with the mask thatspreads Dirac distributions.
Solving the deconvolution problem becomes harder as the amount of missing data be-comes more important and depending on the gap distribution we are facing, as shownin Fig. 6.8. It represents the superposition of the Fourier transform of a discrete sinewith finite horizon and the Fourier transform of the same signal but gapped with themask represented on the left-hand side column. The comparison between lines oneand two shows that the spread of the signal increases as the gap size increases. Linetwo and three show the impact of the gap distribution on the final result (as there is thesame amount of missing data but with different distributions in time) : for a randomdistribution (line three), the presence of gaps can even be perceived as an additionalnoise.

Figure 6.8 – Impact of gaps on the Fourier transform of a discrete sine with finite horizon dependingon the amount of lost data and its distribution. The mask m applied to the monochromatic signal isdisplayed on the left in time domain. On the right, the corresponding ungapped and gapped data arerepresented in Fourier domain. Upper row : single small gap equivalent to a 5% data loss.Middle row :single big gap equivalent to a 25% data loss. Bottom row : randomly placed small gaps equivalent to a25% data loss. (Figure extracted from Ref.[4])

100



6.2 Algorithms & implementation
Within the scope of LISA data processing, the goal of data inpainting is twofold. Onthe one hand, and following the approach introduced in [3], it aims at providing anestimate of the total signal originating from GBs that is robust with respect to noiseand gaps. On the second hand, data inpainting can be deemed a general pre-processingstep for LISA data treatment, whose objective is to deliver estimated ungapped data.The latter more specifically emphasizes an accurate signal estimation with no powerloss as well as an estimate of the noise that matches the expected statistics. Doing so,the resulting inpainted data can be used as inputs to classical identification techniquessuch as Bayesian inference. In that regard the sparsity framework has the advantage ofbeing a non-parametric methodology, which works independently from the actual

number of GW sources. To that purpose we hereafter introduce two algorithms thatboth tackle these two views of the inpainting problem.
6.2.1 Resolution Algorithm

The problem in Eq. (6.1.14) benefits from certain properties, which can be used tobuild an efficientminimization algorithm. Indeed, it is not only a strictly convex problem,but also a block-convex problem : it is convex with regard to the variables v while u iskept fixed and vice versa. Let us now denote the global cost function to be minimizedas :
J (v,u) = ∥γ ⊙AS(v)∥1 +

1

2
⟨dg + u− v,dg + u− v⟩S . (6.2.1)

Thanks to the block-convexity of the problem in Eq. (6.1.14) both variables u and v canbe sequentially and iteratively updated. For that purpose, we make use of a block co-ordinate descent (BCD) algorithm [14] which can be summarized with the two followingsteps : 
dp+1
m = Argmin

u
Mu=0

J (hp,u) ,

hp+1 = Argmin
v

J (v,dp+1
m ) ,

(BCD)

with initialization h0 = 0. The sequence {(hp+1,dp+1
m )}p converges to the sought esti-

mators of signal and missing data (ĥ, d̂m), the solution of Eq. (6.1.14) [15]. We now detaileach of these steps.
Updating the noise

Instead of estimating the full signal and the missing data in the gaps, it can be moreconvenient to think in terms of full, ungapped signal and full, ungapped noise. Themis-sing data is then the sum of full signal and full noise in the gaps. Let us introduce theestimator of the ungapped noise n̂. It is related to the other estimators by the followingequation :
dg + d̂m︸ ︷︷ ︸
Completeddata

= ĥ+ n̂ . (6.2.2)

For the sake of simplicity, we can rewrite the proposed BCD-based algorithm (BCD) sothat the global signal and the noise in the gaps are computed sequentially. To that end,
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let us consider the update of dp+1
m :

dp+1
m = Argmin

u
Mu=0

J (hp,u)

= Argmin
u

Mu=0

1

2
⟨dg + u− hp,dg + u− hp⟩S . (6.2.3)

We could remove the sparsity term ∥·∥1 as it only depends on hp.Introducing q the noise variable defined by the following change of variables :
q = dg + u︸ ︷︷ ︸

Completed observednoisy signal

− hp︸︷︷︸
Estimatednoiseless signal

, (6.2.4)

one can recast Eq. (6.2.3) as an equation on noise. We define the estimated noise out-side the gaps (i.e. observed noise) at iteration p :
np
g = dg −Mhp . (6.2.5)

This eventually leads to the following equivalent problem :
np+1 = Argmin

q
np
g=Mq

1

2
⟨q,q⟩S , (6.2.6)

where np converges to the noise estimator n̂ for p→ +∞.
What is np+1 ? In Eq.(6.2.6), we are looking for the noise q that matches the ob-servation np

g = dg −Mhp outside the gaps and which PSD would match S in Fourierdomain. The solution np+1 is the noise realization that is equal to np
g outside thegaps and that minimizes the residuals (reweighted by the PSD S) in Fourier domain.

Solving this problem is challenging because the noise PSD S is known in Fourier do-main while the equality constraint np
g = Mq is defined in time domain. This problemdoes not admit a closed-form expression. To evaluate numerically its minimizer, weuse the Chambolle and Pock primal-dual algorithm [16]. This algorithm has two mainadvantages : i) it remains computationally simple, and ii) it can further be preconditio-ned to speed up convergence, which is particularly convenient since the noise PSD isill-conditioned. We refer to Appendix C.4 for more details about this algorithm and itsimplementation.

Updating the signal

Let us introduce the full updated data :
dp+1 = dg + dp+1

m , (6.2.7)
which is the data whose gaps have been filled in at the p-th iteration. If dp+1

m is solutionof Eq.6.2.3 and np+1 is solution of Eq.6.2.6, then they are related through the change ofvariable Eq.6.2.4 by :
np+1 = dg + dp+1

m − hp . (6.2.8)
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From Eq. (6.2.6), we get that :
dp+1
m = (Id −M)dp+1

m because dp+1
m ∈ Ran(Id −M)

= (Id −M)(hp + np+1 − dg)

= (Id −M)(hp + np+1) because dg ∈ Ker(Id −M) . (6.2.9)
Then the full updated data writes :

dp+1 = dg + dp+1
m

= dg + (Id −M)(hp + np+1) . (6.2.10)
The full updated data dp+1 is exactly what we expect it to be : we fill the gaps of dg withthe missing signal (Id −M)hp and the missing noise (Id −M)np+1.Consequently, the signal estimation step in Eq.(BCD) can be recast as the estimationof the signal over the ungapped data dp+1 :

hp+1 = Argmin
v

[
∥γ ⊙AS(v)∥1 +

1

2
⟨dp+1 − v,dp+1 − v⟩S

]
. (6.2.11)

Quite remarkably, thanks to the particular structure of our inpainting algorithm, theupdate of the signal hp+1 can be done from pseudo measurementswhere the noise is in-painted. This allows to use the theoretical PSD rather than themore complex PSD of thegapped noise. The resulting update is then equivalent to the denoising problem inves-tigated in Chapter 5. More precisely, the signal hp+1 admits a closed-form expressionwhich takes the form of a specific thresholding applied to dp+1 in the Fourier domain.
Classical inpainting (C.I.) algorithm : The overall algorithm of classical inpainting(C.I.) is described in Alg. 1.
Algorithme 1 : Classical data inpainting algorithm (C.I.)
Input : dg,M,S, ϵ
Initialization : h0 = 0;
while max

k
|AS(h

p+1 − hp)[k]| > ϵ do
np+1gap = dg −Mhp;
np+1 = Argmin

q

np+1gap =Mq

1

2
⟨q,q⟩S ;

dp+1 = dg + (I −M)(hp + np+1) ;
hp+1 = Argmin

v

[
∥γ ⊙AS(v)∥1 +

1

2
⟨dp+1 − v,dp+1 − v⟩S

]
.

It was further highlighted that a block-sparsity regularization leads to significantlybetter detection and estimation precision [1; 3]. In the algorithms descriptions, we usedthe unstructured sparsity formulation because the notations were lighter than for theblock formulation. However, the results shown later onwere basedon theblock-sparsityformulation.
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Figure 6.9 – Upper row : Inpainted noise in time domain in a gap for classical inpainting algorithm (C.I.).We only recover noise frequencies for which the correlation length is superior to the gap size. This is nota shortcoming, as Fig.6.1 shows that the PSD deformation is more important for low frequencies thanhigh frequencies. Lower row : Comparison between gapped signal and inpainted signal in frequencydomain : the noise spectrum was corrected from the imprint of the gaps. (Figure extracted from Ref.[4])

Based on Section 5.4 and keeping here the same notations, the block formulationof the overall problem writes :
(ĥ, d̂m) = Argmin

(v,u)
Mu = 0

[∥∥γB ⊙AB
S (v)

∥∥
1
+

1

2
⟨dg + u− v,dg + u− v⟩S

]
, (6.2.12)

We can still split the resolution in two steps. The resolution with regard to noise is stillgiven by Eq. (6.2.6), with the only change in the sparsity term of the signal update equa-tion :
hp+1 = Argmin

v

[∥∥γB ⊙AB
S (v)

∥∥
1
+

1

2
⟨dp+1 − v,dp+1 − v⟩S

]
. (6.2.13)

The solution is then analytical, as in Sections 5.4.2 and 5.4.4.
6.2.2 Behavior of the inpainted noise in a gap

In this section, we illustrate the performances of the proposed inpainting algorithmespecially on typical LISA noise. For that purpose, we consider simulated noise reali-zations for LISA (not containing any gravitational signal), whose statistics is describedby the theoretical PSD of the LDC1-3 (see Section 4.2.2). Gapped data are generatedwith small unplanned gaps and planned gaps (see Section 6.3.1 for more details aboutgaps generation). Next, inpainting is applied to the resulting gapped noise according toEq. (6.2.6). The solution is displayed in Fig.6.9 with a zoom on a single gap in the timedomain (upper row) ; the Fourier transform of the global solution is also represented(lower row).
104



In the time domain, the inpainted noise inside a gap only exhibits a low-frequency
smooth variation, which already allows for a good signal extraction. Indeed, this algo-rithm is completely deterministic and cannot generate information lost in the gaps.More specifically, such an inpainting methods basically fills out gaps by exploiting cor-relations propagating farther than the size of the gaps. This entails that within a gap,the retrieved information content tends to have low frequencies, corresponding to wa-velengths larger than the size of the gap (see Section 6.3.2 for more details). Higherfrequency information cannot be recovered and is definitely lost. As we will see moreprecisely below, this results in an unavoidable power loss on the frequency spectrumof the recovered noise compared to the expected distribution, even if in Fig.6.9 the in-painted noise seems to follow the expected noise PSD. This shows that Eq. (6.2.6) actslike a low-pass filter with regard to the ungapped data.Finally, we have to highlight the behavior of the algorithm with the gaps size. Theinpainting algorithm takes more time to converge when two phenomena occur : whenthe missing data rate increases and when the gaps lengths increases. It is expected asin these two cases, the deconvolution problem becomes harder to solve as more dataare missing.Even if this correction already seems to mitigate the impact of gaps in Fourier do-main, Fig.6.9 highlights that locally in time domain the noise does not follow the expec-ted noise distribution. This is due to the fact that we can only recover lower frequenciesof themissing noise. However, if one needed to perform part of the analysis in time do-main after applying the correction, this last point could be problematic. In order to pro-vide amore consistent noise inpainting procedure, we describe in the following sectionan extension of our algorithm.
6.2.3 Modified Sparse Data Inpainting

Let us recall that the objective of our inpainting approach is twofold : designing aninpainting algorithm that i) provide an efficient detection and reconstruction of the GBsignal and ii) more generally yield a statistically consistent inpainted noise. In the pre-vious section, we pointed out that a traditional sparsity-enforced inpainting does notreach the second objective as it leads to a gap-dependent noise power loss. In this pa-ragraph, we propose extending sparse inpainting to further correct for this effect.A straightforward approach would consist in adding a high-frequency stochasticterm to this low-frequency solutionwithin the gaps in timedomain. However, thiswouldonly produce a poor solution, as the added high-frequency noise in the gaps would notbe compatible with the one observed outside the gaps. This incompatibility at the boun-daries of the gaps would create high frequency artifacts. The main challenge then boilsdown to finding a high frequency noise correction that matches both the expected dis-tribution and the boundary condition on the border of every gap. To that purpose, wepropose now amethod that combines the approach of Alg. 1 with the use of a stochasticterm in order to create an appropriate inpainted noise solution.
Generation of a compatible high frequency term : To that end, for any gappedmeasurement vg we define the function fCI(vg) as :

fCI(vg) = Argmin
q

vg =Mq

1

2
⟨q,q⟩S . (6.2.14)
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fCI(vg) is the inpainted noise solution corresponding to observed gapped data vg ob-tained after solving Eq.(6.2.6). In particular, it is equal to vg out of the gaps. In the caseof classical inpainting Alg.(1), we had :
np+1 = Argmin

q
dg−Mhp=Mq

1

2
⟨q,q⟩S = fCI(dg −Mhp) (6.2.15)

Let us draw an ungapped noise random sample nsamp that follows the expectednoise distribution (see Section 4.2.2, Eq.(4.2.7)). The corresponding gapped measure-ment is vg =Mnsamp. Let DN be the difference :
DN = fCI(Mnsamp)− nsamp . (6.2.16)

What is DN ? By construction, fCI(Mnsamp) has the same value as nsamp out-side the gaps. Thus DN is a signal term whose value is 0 outside the gaps. Additio-nally, since fCI(Mnsamp) only keeps the low frequency information of nsamp (see Sec-tion 6.2.2),DN only contains information at high frequency since the low-frequencycontent has been removed. DN is a high frequency term, defined only where datais missing, and that is compatible with any inpainted noise fCI(Mn).By "compatible" we mean that it could have been the high frequency part of thenoise that we could not recover using classical inpainting Eq.(6.2.6). Consequently,
it can be virtually added to any gappedmeasurement that has been inpainted
with C.I. without altering the noise PSD.
The resulting modified noise inpainting writes :

np+1 = fCI(n
p
g)︸ ︷︷ ︸

Low frequency
+ fCI(Mnsamp)− nsamp︸ ︷︷ ︸

DN : High frequency
= fCI(n

p
g +Mnsamp)− nsamp , (6.2.17)

where Eq.(6.2.14) exhibits a linearity property with regard to its input, as demonstrated inAppendix C.2.
Modified inpainting (M.I.) algorithm : The modified algorithm builds upon the C.I.algorithm by adding to the noise solution a stochastic component, like in Eq. (6.2.17).We further prove in Appendix C.3 that the overall process consists in minimizing a costfunction that shares similarities with the standard inpainting defined in Eq. (6.2.1), but towhich we added a correcting term. It can be solved using the exact same minimizationscheme based on the BCD architecture up to a modification of the input and output.More precisely, the resulting algorithm is detailed in Alg. 2.To further evaluate the impact of the newalgorithmon the inpainted noise, wemakethe exact same test as in Section 6.2.2.We consider simulated noise realizations for LISA(not containing any GW signal), whose statistics is described by the theoretical PSD ofthe LDC1-3 (see Section 4.2.2). Gapped data are generated with small unplanned gapsand planned gaps (see Section 6.3.1 for more details about gaps generation). Then, in-painting is applied to the resulting gapped noise according to Eq. (6.2.17). Fig.6.10 showsthe solution which has been inpainted with the proposed algorithm. This time the realsignal and the inpainted one do not visually show any differences. The power loss wascorrected using the added stochastic term. Performances of both algorithms are asses-sed in details in Section 6.3.
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Algorithme 2 :Modified data inpainting algorithm (M.I.)
Input : dg,M,S, ϵ
Initialization : h0 = 0 , draw nsamp ∼ N

(
0, S

2

)
+ i · N

(
0, S

2

) ;
while max

k
|AS(h

p+1 − hp)[k]| > ϵ do
np+1gap = dg −Mhp +Mnsamp;
np+1
CI = Argmin

np+1gap =Mq

1

2
⟨q,q⟩S = fCI(n

p+1gap ) ;
np+1 = np+1

CI − nsamp ;
dp+1 = dg + (Id −M)(hp + np+1) ;
hp+1 = Argmin

v

[
∥γ ⊙AS(v)∥1 +

1

2
⟨dp+1 − v,dp+1 − v⟩S

]

6.2.4 Implementation
Compensating the power loss

Although Alg. 1 improves the effective PSD, the final estimated noise PSD does notexactly match the expected distribution. Indeed the estimated PSD (after noise inpain-ting) and the expected one are empirically identical up to a multiplicative coefficientmatching the amount of data that was lost. This phenomenon is a manifestation of po-wer loss, and is mainly related to the fact that the inpainting algorithm C.I. can onlyinpaint lower frequencies - this can be easily understood by looking at Fig.6.9.This power loss impacts the detection capacity of the C.I. algorithm since we set thethreshold γ, as reminded in Section 6.1.3, with regard to the theoretical noise distribu-tion whereas it should be set with regard to the effective noise distribution. Since theeffective PSD is lower than the expected one due to power loss, it corresponds to choo-sing a threshold that is higher than what it should be, therefore increasing the risk ofnon-detection. We correct it by adjusting the noise level, computing an effective PSD
Seff as follow :

Seff = rdataS , (6.2.18)
with :

rdata =
1

NT

NT∑
n=1

m[n] , (6.2.19)
the proportion of remaining information evaluated from the mask M. This first-ordercorrection yields a decent description of the noise distribution after the use of the C.I.algorithm, but becomes imperfect as the proportion of lost data increases.
Improving the speed of convergence

From the viewpoint of optimization, themore data is missing the slower the conver-gence of the iterative minimization algorithms is. Limiting this phenomenon can bedone by making use of the fixed point continuation or FPC [17], which advocates com-puting sequential estimates with decreasing regularization parameters. In the presentcontext, instead of setting a fixed threshold γ as explained in [3], it is first set to a largevalue and then decreased towards the final objective threshold γfinal. Implementingthe FPC significantly improves the convergence speed.
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Figure 6.10 – Upper row : Inpainted noise in time domain in a gap for modified inpainting algorithm(M.I.). The red line shows the position of the gap. Lower row : Comparison between gapped signal andinpainted signal in frequency domain : the noise spectrum was corrected from the imprint of the gaps.(Figure extracted from Ref.[4])

6.3 Experimental Results
The performances of our algorithms are assessed on three main outcomes : (i) thedetection capacity (comparatively to the ungapped case), (ii) the statistics of the reco-vered noise and (iii) the quality of extracted signal.As mentioned above, this work could be used as a pre-processing step in the LISApipeline, and we evaluate the performances of the algorithms with this potential ap-plication in mind. We also assess the impact of gaps by estimating the quality of theextracted signal compared to the signal we would have extracted without gaps. Thispart is entirely dependent on the chosen extraction method.Finally the proposed algorithms are evaluated on the realistic simulations LDC1-3 [7]to which gaps have been added. This goes beyond the proof-of-concept stage wherethese algorithms are probed on test cases containing gaps and either noise only (likein Fig.6.9 and Fig.6.10) or both noise and one GB signal.

6.3.1 Gaps generation
Data gaps are characterized by two parameters : their durationLgap and their period

Tgap (timeperiod overwhichweobserve one gap). In Section 6.1.1 we described the threedifferent types of gaps that we consider here. The numerical values used for this studyare reported in Table 6.1.Small and medium-sized gaps are frequent events that will happen for sure. To si-mulate them, we split the signal in consecutive blocks of length Tgap. For each block, werandomly position a gap of length Lgap with a uniform distribution over a time intervalof duration Tgap. Large gaps are related to the duty cycle – estimated to 75%. During LPFmission, the longest data taking interruption lasted 5 days [5]. Based on this observa-
108



Type Duration Lgap Period Tgap
Small 10 min Every 24 hours

Medium 7 hours Every 2 weeks
Large 3 days Every 12 days

Table 6.1 – Description of the three types of gaps used for the study. Small and large gaps are bothunplanned, whereas medium sized gaps represent the planned interruptions (or maintenance gaps).We simulate one gap of length Lgap once every Tgap.

tion, the duty cycle is simulated as a series of long-lasting interruptions distributed overthe whole observation duration. Two consecutive large gaps of lengthLgap = 3 days areseparated by a duration given by a Poisson law 3 of parameter λ = 9 – making approxi-mately a 25% data loss.
6.3.2 Noise inpainting evaluation
Independence of the solution with respect to the chosen sample

Since the M.I. algorithm Alg. 2 makes use of an extra stochastic term, we first eva-luate its sensitivity to the particular drawing of nsamp. The answer is partially containedin Alg. 2 itself. We explained in Section 6.2.3 that the lower-frequency part of the solu-tion only depends on the measurements –meaning that it is independent from nsamp–whereas the higher frequency component mainly depends on nsamp. In order to assessthis dependence, let us consider a single input of the form :
dI =MnI , (6.3.1)

with nI a noise sample following the expected ungapped noise distribution. Inpaintednoise solutions are then computed with the M.I. algorithm Alg. 2 for various draws of
nsamp.Fig.6.11 displays the standard deviation of the difference between the real noise andthe solutions obtained for each sample in Fourier domain, frequency by frequency,for different types of gaps. This difference has further been whitened with the inversetheoretical noise PSD. Fig.6.11 quantitatively shows that inpainting leads to a low-passfilter effect confirming the qualitative features discussed in Sections 6.2.2 and 6.2.3.Additionally, we point out two more features of the algorithms : the presence of a cut-off frequency and the behavior of themaximumdeviation to the real noise distribution.The cut-off frequency, labelled as fc on the plot and defined as :

fc =
1

2Lgap

, (6.3.2)
matches the effective cut-off frequency of the filter-like behavior of Alg. 2. As the gapduration increases, the cut-off frequency decreases : the noise component can only berightfully recovered when its half-wavelength is superior to the size of the gap. Belowthe cut-off frequency, the recovered noise is quite close to the real noise. Above thisfrequency, there is a deviation that becomes more important as the amount of lostdata increases.

3. Private communication from N. Korsakova.
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Figure 6.11 –Distribution over 50 samplesnsamp of real and imaginary parts ofS−1/2
(
fCI(M(n+nsamp))−

nsample−n
) , withn the input noise (before gaps) and fCI(M(n+nsamp))−nsamp the recovered inpaintednoise for M.I. algorithm and sample nsamp. Left : Small gaps.Middle :Medium gaps. Right : Large gaps.The algorithm acts like a low-pass filter of order 1. The sample that we use in order to fill the gaps onlyimpacts frequencies higher than the cut-off frequency fc (represented as a dashed black line), which isdirectly linked to the gap size. The cut-off frequency depends on the gap duration Lgap (in seconds) as :

fc = 1/(2Lgap). (Figure extracted from Ref.[4])

Recovered noise distribution

We emphasized previously that Alg. 1 and Alg. 2 could be used as a pre-processingstep for filling out gaps prior to performing further analysis such as event identification.To that end, we assess the impact of the inpainting on the noise statistics using theKullback-Leibler divergence as a performance indicator.
Kullback-Leibler divergence (DKL) : The Kullback-Leibler (KL) divergence [18] mea-sures a discrepancy between the expected and the recovered noise distributions. Wenormalize the noise estimator n̂ (limit of the sequence {np}) in frequency domain as :

ηI = S
−1/2
I n̂I . (6.3.3)

If the recovered noise follows the expected law, we expect both the real part and theimaginary part of ηI to be drawn from a reduced centered normal law at any frequency
f . Thus, we will measure the discrepancy of the law of the normalized noise compa-red to the reduced centered normal law. Under this approximation, the KL divergencewrites [19] :

DKL(f) =
1

2

(
σ(f)2 + µ(f)2 − 1− lnσ(f)2

)
, (6.3.4)

where σ(f) is the measured standard deviation at frequency f and µ(f) is the esti-mated expectation for the same frequency. As we only have one noise realization ateach frequency f , we estimate the expectation and the standard deviation over a smallneighborhood of frequencies around f . Technical details can be found in App. C.5.For an input constituted of noise only, as :
dg =Mn , (6.3.5)

we computed the solutions given by the two inpainting algorithms for various inputnoises nI and various samples nsamp. We compared the final noise distribution to theexpected distribution through the KL divergence.
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Figure 6.12 – Evolution of Kullback-Leibler divergence versus frequency for reference ungapped signal(blue), gapped signal (orange), signal inpainted with C.I. (green) and signal inpainted with M.I. (red) fordifferent types of gaps. Left : Small gaps. Middle : Medium gaps. Right : Large gaps. The power lossbecomesmore important as the gap size increases, which explains the incompatibility between referencenoise statistic and C.I. noise statistic. Gaps impact noise distribution in the mHz band in a non-negligibleway. C.I. is effective for small- and medium-sized gaps, but less on large gaps as it cannot make up forthe power loss. (Figure extracted from Ref.[4])

Fig.6.12 represents the KL divergence evolution with frequency over 50 samples
(M,n,nsamp), when different types of gaps are present, for the ungapped signal, thegapped signal and the inpainted signals. Looking at the discrepancy of the gapped si-gnal, we note that the frequency band of interest (the mHz band) is impacted by thepresence of gaps, whatever the type of gaps. Small but frequent gaps impact mostthe expected noise distribution (top plot). However, these are also the easiest type ofgaps to deal with, as C.I. is enough to correct the noise distribution in Fourier domain.Planned gaps (middle plot), even though they are not that wide, show the limits of thisinpainting algorithm. As the amount of data loss becomes more important, it cannotmake up for the power loss : this explains the inconsistency between the expected dis-tribution and the inpainted distribution. The M.I. algorithm can handle this power loss.Large gaps (bottom plot) associated with important amount of data loss, are the mostdifficult to mitigate as the corresponding power loss is even more sensible than forplanned gaps. This case makes plain the necessity to use M.I. in order to compensatethis huge power loss.

To summarize : the two algorithms help mitigate the impact of data gaps. Alg. 1 can-not compensate the power loss, but reaches a noise distribution that is –up to a mul-tiplicative coefficient– similar to the expected noise distribution. However scrutinizingthe local noise statistic in the neighborhood of a gap, one finds that it is very differentfrom the expected distribution. On the contrary Alg. 2 enables to reach a final noisestatistic matching the expected one both locally and globally, correcting the power lossalong the way.

6.3.3 Impact on the detection capacity

The following experiment evaluates the global performance of the overall algorithm(combining inpainting and signal extraction) in terms of false positive detection rate, i.e.in proportion of signals that are detected where there is no corresponding input signal.In order to assess the detection capacity, we evaluated the number of false positive (FP)signals. We consider the same definition of FP rate as the one introduced in Section
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Figure 6.13 – FP rate with rejection rate for real ungapped signal (blue), gapped signal (red), signal in-painted with C.I. (orange) and signal inpainted with M.I. (green) for different types of gaps. Left : Smallgaps. Middle : Medium gaps. Right : Large gaps. The FP rate for algorithms C.I. and M.I. is identical tothe one obtained for an ungapped signal.

5.5.1, Eq.(5.5.5). Considering an input constituted of noise only as :
dg =Mn , (6.3.6)

and a fixedmaskM , we computed the solutions given by the two inpainting algorithmsfor various input noises n and various samples nsamp. We then computed the FP ratecorresponding to these experiments for various rejection rate ρ. The results are presen-ted in Fig.6.13. For all types of gaps, the FP rate obtained for both inpainting algorithmsis identical to the one obtained for ungapped data. Thus the combination of signal ex-traction and noise inpainting does not create any kind of detection artifact.

6.3.4 Quality of the extracted signal
We now assess the performances of the overall algorithms (combining both inpain-ting and signal extraction) in terms of the quality of the recovered signal. To that end,computing the quality factor QdB (defined in Eq.(5.5.4)) between the expected signaland the recovered signal quantifies the loss that originates from the gaps and which

cannot be recovered. By construction QdB is large when the sparse estimate ĥ is closeto the real solution h. It provides insights into the global quality of the reconstructedsignal. However it does not provide any information about the FP and FN rates.Consider an input of form :
d =M(h0(SNR) · h+ n) , (6.3.7)

where h is the signal emitted by the GB with parameters detailed in Table 5.1, receivedon channel I ∈ {A,E}. h0(SNR) is the signal amplitude computed such that h0(SNR) ·
hhas the SNRwewant – this processwas already detailed in Section 5.5.2.We examinedthree fixed masks, each corresponding to a different gap situation. For a given SNR,the median QdB is obtained as the median of the QdB of the solutions found for a totalof 10 noise and signal realizations.In Fig.6.14 we presented the quality factor obtained for an ungapped signal and fora gapped signal using the C.I. and M.I. algorithms for the three types of gaps. As saidbefore, each point corresponds to the median over only 10 different situations. We
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Figure 6.14 – Median QdB with input SNR for different types of gaps. Left : Small gaps. Middle : Me-diumgaps.Right : Large gaps. This was realized over 10 samples for each point.We compare the recoveryquality in absence of gaps (green, labelled as "REF") and in presence of gaps using classical inpainting(blue, labelled as "C.I.") and modified inpainting (orange, labelled as "M.I."). The envelops of correspon-ding colors show the repartition of all samples. In presence of small or medium gaps, the finalQdB is notaffected. However, larger gaps deteriorate the quality of extracted signal.

could not afford to do more because of the high computational cost 4. Therefore, thestatistical relevance of the median can be questioned. This is why we display at thesame time the envelop of the QdB values reached for a given SNR input. Looking atsmall andmedium-sized gaps, we see that even if themedian results ofQdB seem lowerfor inpainted data, the envelops of the results are compatible. We can say that smalland medium-sized gaps have little impact on the final QdB : the recovered signal hasthe same quality for a gapped and an ungapped signal. This is true because only a smallportion of the information was lost. With larger gaps (corresponding to a data loss of
25% in this case – which corresponds to realistic previson of mission duty cycle), therecovered results are impacted by the information loss. Indeed, we see that the envelopof recoveredQdB for inpainted signals are not compatible anymore with the reference.The amount of recovered information is still acceptable ; nevertheless, the signal powerloss is harder to compensate, which results in a deterioration of the extracted signalcompared to the case without gaps.We can get a better idea of the efficiency of the algorithms by studying the quality ofrestitution for a specific signal (which parameters are given in App.C.6) in the presenceof different types of gaps. Fig.6.15 shows the median quality factor this signal set atdifferent SNR, with different noise and gaps realizations. The phenomenon observedin Fig.6.14 is confirmed : for small and medium-sized gaps, the signal quality is fullyrecovered. Large gaps impact more the quality of the result.At this stage only, we can notice a difference between the two algorithms perfor-mances : Alg. 1 seems to perform better than Alg. 2. This performance spread can beexplained by the fact that Alg. 2 reintroduced higher frequency noise in the gaps andthus results in a noisier extracted signal.
Application to LDC1-3 with gaps We applied Alg. 1 and Alg. 2 to a more realistic case.The dataset was produced for the LISA Data Challenge LDC1-3 which can be found on-line [7]. It consists in 10 verification binaries that can be seen in Fig.6.3. We modified itwith the three types of gaps presented in Table 6.1, which corresponds to a loss ratio

4. The code works on a single core. It takes about 2 hours to process a 2 years data set with 28% ofdata loss ; thus experiments requiring repetitive solving of the problem having high computing cost. Itcould probably be re-written to be more efficient, but I did not have the time to do so.
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Figure 6.15 –MedianQdB with input SNR for different types of gaps. Left : Small gaps.Middle :Mediumgaps. Right : Large gaps. The finalQdB is not affected by small and medium-sized gaps. However, largergaps deteriorate the quality of extracted signal. C.I. performs better than M.I. as it virtually increases the
SNR by not making up for the power loss in the gaps. On the central plot, the outlier observed for M.I.is due to a FP detection.

of about 27%, and we evaluated the quality of the signal extracted by both algorithms.Results are presented in Table 6.2 and are compared to the quality of extracted signalfor ungapped data (computed in [3]).We computed a local QdB corresponding to the quality of each extracted source,and a global QdB corresponding to the quality of the total extracted signal. The QdBdepend on the chosen algorithm and noise configuration. The C.I. algorithm tends tobetter detect signals that are close to the noise level (peaks 3, 8 and 9), whereas theM.I.algorithm tends to yield better signals with high amplitude (peaks 5, 6, 7 and 10). Bothmissed peak 4 : too much information was lost, the remaining signal does not exceednoise level anymore. Thus, it could not be recovered. This was expected since its initial
SNR was the lowest of all (SNR = 9.56) : according to previsions of Fig.6.15, this isbelow detectability level in presence of large gaps.On the overall, Alg. 1 and Alg. 2 extract signals of similar quality but that might notbe the case for other types of sources.

6.3.5 Inpainting & parameter estimation
We now want to give an intuition of the impact that inpainting could have on para-meter estimation. We do not provide a thorough study, but we will show the impact ofinpainting on the example that we used in introduction in Section 6.1.1. We applied bothinpaintingmethods to the crenel-gappedGB signal, and then estimated the parametersusing the MCMC code that we developed.We compared the sampling of the gapped and full data presented in Fig.6.7 withthe sampling of inpainted data. The results are presented in Fig.6.16. The sampling rea-lized on inpainted data, contrary to the one realized on gapped data, leads to posteriordistributions that are very close to the one obtained by sampling the log-posterior ofthe ungapped signal. Looking at the sky position (β, λ), we observe no difference bet-ween the classical inpainting and modified inpainting results : both could correct thebias induced by the presence of gaps. Themain difference between the two algorithmsis observed on the frequency estimate : for modified inpainting, the posterior distribu-tion has tails that are heavier than for classical inpainting. However, this effect remainsmarginal and cannot yet be held as an inpainting effect without being verified through
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Peak SNR REF C.I. M.I.

1 26.6 9.513 7.566 8.806

2 22.5 9.081 7.067 7.936

3 12.0 4.85 3.086 1.799

4 9.56 1.918 0.0 0.0

5 65.3 15.773 12.047 13.604

6 52.7 13.199 10.972 11.456

7 48.7 13.661 11.180 11.467

8 19.8 4.927 3.897 2.199

9 12.3 2.696 0.834 0.743

10 72.5 13.719 10.677 10.575

Global 13.108 12.177 10.235

Table 6.2 – Peak to peak QdB for extracted signal from ungapped signal (REF), with classical inpainting(C.I.) and modified inpainting (M.I.). Peaks are ordered from lowest to highest frequency. For this expe-riment the rejection rate was set to ρ = 10−6.

a thorough study. In the end, what matters is that the maximum a posteriori is close tothe true value.Here, we understand the advantage of using inpainting algorithms to correct theimpact of gaps ondata analysis : using basic sparse signal representation, we are able toestimate the sum of all signals that are presentwithout having to go through identification.Finally, we showed that the gain can be huge on parameter estimation, as the biasthat was present has been completely corrected. We can potentially correct at once allthe biases caused by the gaps on every GB signal that are detected.

6.4 Conclusions
With a foreseen duty cycle of 75%, data gaps will constitute an important feature ofrealistic LISA measurements that may impact the scientific deliverables of the mission.To date only a handful of studies have addressed the problem of gap mitigation. Wecontributed to this effort by introducing a new non-parametric method, in the form oftwo complementary algorithms. Based on the sparsity framework introduced in [3] weshowed that it is possible to fill the gapswith both signal and noise so that the recoverednoise distributionmatches the expected one and the signal power loss is compensated.More precisely, the proposed inpainting algorithms could mitigate the impact of gapsfor all GB signals at once, without needing to identify them, for a computing time thatis essentially related to the amount of missing data and not the number of sources.We conducted extensive tests of this non-parametric approach and demonstratedthe performances of both algorithms when confronted to different types of gaps. Wealso considered a more realistic case where more than 27% of the data was lost in pre-sence of multiple GB sources. The algorithms achieve similar performances in terms

115



Classical Inpainting Modified Inpainting

Figure 6.16 – Comparison of the posteriors obtained for a full, ungapped signal (green), a crenel-gappedsignal (blue) and an inpainted signal (orange). For the gapped and full signal, the posteriors are identicalto the one presented in Fig.6.7. The data loss rate is about 28%, combining the three types of gaps. Left :Using classical inpainting. Right : Using modified inpainting. In both cases, the posteriors of inpainteddata are really close to the full data posteriors. Using inpainting corrects the impact of the mask on thesignal, and thus helps improving the parameter estimation. Using modified inpainting makes the mainfrequency f0 estimation a bit harder, as it also adds noise around that frequency. For the sky location,both inpainting methods provide similar results.

of noise distribution, detection capacity, accuracy of extracted signal or even improve-ment for parameter estimation, to situations with ungapped data. More precisely theC.I. algorithm yields an efficient signal reconstruction but outputs a less satisfactorynoise distribution. On the contrary the M.I. algorithm successfully recovers the expec-ted noise distribution but is challenged by the extraction of low SNR signals. We sho-wed on an example that both could help un-biasing the parameter estimation if partof the data is missing. The benefits of the M.I. algorithm mainly lies in the fact that itcan recover more precisely the noise distribution, especially in the gaps : whereas theC.I. algorithm provides a smooth solution that correct the overall noise distribution inFourier domain but seems "incorrect" locally in time domain (see Fig. 6.9), the M.I. algo-rithm successfully recovers a solution that corrects the noise distribution both globallyand locally (see Fig. 6.10). This feature will play a central role if one has to perform adata analysis directly in time domain after inpainting the gaps.
Prospects : The general framework described here can be used both as a detectionmean and a pre-processing step in the LISA pipeline. As it can be adapted to a widerange of gravitational events providing that the source admits a sparse representationon a specific domain, the present study paves the way for further investigations andextensions of this type of methods.
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The algorithms depend on the noise modeling through the definition of the thre-shold γ with regard to the noise level. However the adaptation to the case where thenoise distribution is unknown (but still supposed Gaussian in frequency domain) isstraightforward and only requires an estimation of the PSD during the resolution pro-cess.The current limitations of the proposed algorithms are mainly related to the signalextraction component. As we adopted here a model-independent approach through arepresentation of the signal in Fourier domain, there is natural room for improvementin thematching of the solution that we findwith the expectedwaveforms.We anticipatea marked improvement of the recovered signal quality in presence of large gaps withthe use of an adequate representation. For instance, the inpainting algorithms couldbe combined with other types of representations like the learned representation wepresent in Chapter 7.
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Chapter 7

Learning-based representations for
GW signals

7.1 Introduction
We already emphasized in Chapter 5 (see also [1]) that non-parametric algorithmsbased on a simplified modeling of the sought data could already enable not only aprecise detection that is robust to noise, but could also help to efficiently mitigate theimpact ofmissing data (Chapter 6) on the analysis. One of the outcome of our algorithmwas an estimate of the total sum of all GB signals detected. This could be convenientin the case where the main objective is to detect all GB signals and to subtract themfrom the measurements. However this approach does not allow to characterize theGBs individually ; we have yet to tackle this issue.

7.1.1 Designing a new non-parametric model
GB characterization requires to study GB signals individually. The model developedin Chapter 5 could approximate GB signals properly in absence of noise, but had moredifficulties identifying the signal properly when the SNR became low. This can be explai-ned by the lack of constraint the model was imposing on the sought signal. The onlyconstraint was "sparsity in the Fourier dictionary", which is not enough to define a GBsignal. Moreover, even if sparsity could compress the signal over few Fourier atoms,the number of Fourier coefficients required to have an accurate approximation wasstill quite high compared to the number of physical parameters needed to generatethe signal. This lack of constraints made the search fast, but impaired the possibility toseparate close signals and to characterize them.Therefore, we wish to build a new model that would represent accurately the GBsignals – even in presence of noise. Considering what we said before, themodel shouldbe as low-dimensional as possible, and yet must properly represent a wide range ofGB signals. All this should also be parameters-agnostic, i.e. it should only rely on thesignal’s observedmorphology.

7.1.2 Linear Models
The physical parameters θ of a GB are bounded for both geometrical reasons (angu-lar parameters β, λ, ι, ψ, ϕ0 – their bounds are defined in Table 4.1 ) and physical reasons
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(f0, ḟ0, h0 are constrained by the composition of the system). We can thus define ΘGBas the set of admissible parameters θ for a binary system. Now, if we consider h thesignature of a GB signal observed on the TDI channels, the set of all possible signaturesis defined by :
M = {h(θ) , θ ∈ ΘGB} , (7.1.1)

and describes a manifold which dimension is that of the space of parameters ΘGB , i.e.at most 8.Fig.7.1 (left) illustrates this schematically : the manifold described by the set of GBsignatures has a complex geometry that can be explained by the non-linearity of thewaveform h. Trying to create a model of GB signals is the same as modeling this mani-fold and the elements lying on its surface. AsM is low-dimensional, we would like themodel to be low-dimensional too.

Figure 7.1 – Left : eachGB signal is characterized by a set of 8parameters θ. The correspondingwaveformis a function h of θ. The set produced by all the signals corresponding to all the plausible parameters forGBs ΘGB defines a low-dimensional manifold M. Right : as the manifold M has a complex geometry,using a linear model such as PCA as an approximation is likely to give poor results, even more if weimpose the PCA to be low dimensional.

In this context, using a linear model is not optimal. Indeed, we have already studiedthe implementation of such a model in Chapter 5 ; it was based on Fourier atoms andsparsity ensured the low-dimensionality. But it did not constrain enough the soughtsignals and therefore limited our ability to characterize the GBs individually.A similar - yet different – approach would be to learn a model that would be locallylinear. Typically, this would involve learning a sparse adapted dictionary (more adaptedthan the dictionary of Fourier atoms) ; but for the learning process to be efficient, itmustrely on a large bank of templates to learn from, which is not always possible. Moreover,this would result in a large dictionary that is difficult to handle.We could also investigate the applicability of an "optimal" linear model of the PCAtype [2]. Fig.7.1 (right) sketches the reason why such a model is unlikely to be able torepresent the manifold well : the geometry of M is too complex to be approximateduniformly by a low-dimensional linear model.We can find similar approaches in LVC. [3] proposes an approach to detect poorlymodeled GW transients of short durations. The proposed linear model is based on PCAvectors that were learned from a data base. On a different note, [4; 5] used reducedordermodeling of a bank of GW templates based on a linearmodel to accelerate detec-tion and parameter estimation in LVC. Thesemethods have been combinedwith neuralnetworks to improve their performances [6; 7; 8]. Yet, in order to represent accurately
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the whole bank of templates, the reduced basis has generally a dimension that is muchhigher than the manifold actual dimension.
7.1.3 Non-linear Models & Learned Representations

Retaining the distinctive feature of the non-linear dependence of GWwaveforms ontheir parameters, the investigation of the applicability to this field of learned non-linearrepresentations comes as a natural approach. They intersect non-negligibly with mo-dels based on learning ; they have also demonstrated significant performance in thisarea [9]. In LVC, [10] already proposed to learn a model starting from the physical para-meters to produce faster waveforms and thus speed up parameter estimation. Here,we consider a different approach that focuses on learning from the signal’smorphologyindependently of the physical parameters.Like in Section 7.1.2, wewant to create amodel of elements lying over a low-dimensionalmanifold. In this context, themost adapted network is the auto-encoder (AE) [9]. AEs arenetworks used in deep learning to build data representation models. They are knownto successfully build low dimensional representations for complex data – like the GBsignal – while ensuring an efficient recovery. More generally they have been used fordata compression, data denoising and many more applications [9].Classified as unsupervised learning, the AE principle is based on learning an encoder
Φ and a decoder Ψ such that :

■ For any signal s, the low-dimensional encoded value is c = Φ(s). c is also calledthe latent variable or code.
■ For any encoded information, we can recover an estimate of the correspondingwaveform simply by applying the decoder Ψ : ŝ = Ψ(c).
■ Φ and Ψ are learned so that they minimize the global reconstruction error :

E2rec =
∑
s

∥∥∥∥∥∥s−Ψ(Φ(s)︸︷︷︸
c

)

∥∥∥∥∥∥
2

2

. (7.1.2)

The low-dimensionality is generally directly engraved by the network "bottleneck" ar-chitecture illustrated in Fig.7.2 : the dimension of the code c is usually much lower thanthe one of input s.Nevertheless, twomain drawbacks could deter their use in GWwaveform represen-tation case : these networks are known to need a huge training set (i.e. a large set ofwaveforms) to learn a low-dimensional model generalizing well. In GW case, the wa-veforms are potentially very costly to produce and to store, the size of the requiredtraining set could be prohibiting. Moreover, the more layers the network has, the hea-vier the training is (both in terms of complexity and computing resources) – this canquickly become prohibitive.In the midst of all existing AE models, only few present the capacity to learn on asmall-sized training set. Among them, the interpolatory auto-encoder [11; 12], referredto as IAE, is an AE designed specifically to address this last point. This is the network ar-chitecture that we selected to demonstrate how non-parametric methods can produceprecise models for GW signals.
Contribution : We developed a non-linear, non-parametric model for GB signals ba-sed on the IAE principle. We provide with a sparsity-based extension of this network
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Figure 7.2 – Scheme of a basic auto-encoder : the data s is encoded to a low-dimensional latent spaceusing the encoder Φ. The low-dimensionality is ensured by the architecture which brings large inputs tosmall-sized encrypted data c. This specific network design is widely known as the "bottleneck" architec-ture. The encoded information c can then be decoded using the decoderΨ to recover an approximation
ŝ of the input.

that promotes low-dimensionality for the model. We show that this new model has itssensitivity increased compared to the sparsity-basedmodel presented in Chapter 5, notonly in terms of detection but also in terms of recovery accuracy. We illustrate manypotential applications for LISA from simple detection to source partial characterization.We outline how a detection pipeline could be based on this model.We present the IAE concept in Section 7.2 and how the new model is built based onthis concept. Section 7.3 provides a thorough investigation of themodel’s performancesand the perspectives it offers. Conclusions are drawn in Section 7.5.

7.2 Learninga representationwithan interpolatory auto-
encoder

We describe here the training set and the principle of IAE. We demonstrate its per-formances in terms of waveform approximation on a training set and show that it per-forms better than a linear model.
7.2.1 Data overview : building the training set

The training set Ttrain is composed of samples from the manifold that the modelmust learn to represent. To ensure that the model is generalizable, it has to cover awide range of plausible signal morphologies that is representative of all possible signal’smorphologies. To cover the morphological diversity as best as possible, we propose tobuild the training set based on a sampling of the physical parameters space ΘGB. Thewaveform selection was made according to the distributions presented in App.D.3.1.A typical input for IAE is presented in Fig.7.3. It is built according to the followingprocess :
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Figure 7.3 – Training set waveform example. Upper row : typical element contained in the training set.
Lower row : Logarithm of its module. The waveform module can take values with several orders ofmagnitude.

1. Setting the observation duration Tobs, the time step ∆t and sets of waveformparameters θ, we produce the waveforms using the LDC-Sangria code [13] (fastwaveforms). The sets of parameter θ is chosen according to a sampling processdetailed in App.D.3.1. We choose to work with the TDI channels A and E.
2. For each signal, we only keep Ninput points of the signal. We select these datapoints such that the selected signal is centered, as in Fig.7.3
3. We separate the real and imaginary parts to work on real-valued data. As thisis only a demonstrator, we proceed with disjoint analysis for the different chan-nels of information : for now, we do not force any special relation between thedifferent channels 1. We only learn the network on the real part of channelA andapply it to all information channels (real and imaginary parts of A and E) 2.
4. We normalize amplitudes of the waveform such that :∑

k

|s[k]| = 1 . (7.2.1)
The signal’s amplitude will be estimated when fitting the model to the data.

With this inmind, we build two sets : the training set Ttrain to train the network and a testset Ttest to assess the generalizability of the network. The detailed number of elementsper set can be found in Appendix D.3.2.
7.2.2 Interpolatory Auto-Encoder model
IAE Principle

The IAE is an AEwhich architecture differs from the usual "bottleneck" one describedin Fig.7.2. Its principle is illustrated in Fig.7.4 : we consider the training set Ttrain described
1. In further developments, this should be investigated properly. It is all the more possible that inves-tigations tend to show that latent space organization is correlated to the values of physical parameters.2. It can seem like a harsh approximation. However, we did not notice any additional bias by applyingthe model learned on real part of A to all other channels.
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Figure 7.4 – IAE principle : it is impossible to describe any signal s in the direct domain as a linear combina-tion of the anchor points {ei} because of data complexity. However, we can learn a non-linear transform
Φ such that, in the transformed domain, Φ(s) is now a linear combination of the transformed anchorpoints {Φ(ei)}i.

in the previous section fromwhichwe label a certain numberNa of elements as "anchorpoints" (APs) (ei on the figure).Now, we aim at learning a non-linear transform Φ such that the transform of anypoint of the training set s, Φ(s), can be expressed as a linear interpolation of the trans-formed APs {Φ(ei)}i. De facto, it is like looking for an alternative domain in which thedata has a linear representation. In spirit, Φ is a transform that can "unfold" the ma-nifold M described by the elements of the training set. The selected APs work as arepresentation dictionary in the encoded space, also called "latent space".In parallel, we also learn a decoderΨ that can transform back the interpolated datainto a waveform. Therefore, any waveform s ∈ Ttrain is encoded by its barycentric co-ordinates {λi}i, i.e. its pseudo-coordinates in the dictionary of representation {Φ(ei)}i.Moreover, it is possible to produce a signal which morphology is similar to that of awaveform by applying Ψ on any vector from Span({Φ(ei)}i).Contrary to classical auto-encoders, IAE’s architecture does not have to bebottleneck-ed. The bottleneck is associated with a projection on a low-dimensional vector sub-space ; here, the interpolation plays this part. The low-dimensionality then only comesfrom the number Na of anchor points that were initially selected as the dimensionalityreduction happens during the interpolation process happening in the latent space.
Architecture & Learning

The global learning process is represented in Fig.7.5 : the elements x of the trainingset Ttrain are encoded with Φ and then interpolated on the transformed APs {Φ(ei)}iusing the interpolator I. Then the interpolated result is decoded using Ψ, and the ob-tained output Ψ (I[Φ(x)]) is compared to the corresponding input x. The three mainblocks of an IAE that are the encoder Φ, the decoder Ψ and the interpolator I - combi-ned with the choice of APs - entirely define the model.We set the encoder Φ and decoder Ψ as classical dense neural networks with thesame input and output dimensions combined with the respective activation functions
125



Figure 7.5 – Global learning process : elements x of the training set Ttrain are encoded with Φ and theninterpolated on the transformedanchor points {Φ(ei)}i using interpolator I. Then the interpolated resultis decoded using Ψ, and the obtained output is compared to the corresponding input x.

mish [14] and sft [15]. Both Φ and Ψ are made of two hidden layers with the same in-put/output sizes. We choose a network that does not enforce dimension reduction asthe interpolator I is responsible for this step.For any interpolator I , the learning process is described by Eq. (7.2.2) :
Φ,Ψ = Argmin

Φ,Ψ

[
µ
∑

x∈Ttrain

∥∥x−Ψ
(
I
[
Φ(x)

])∥∥2
2︸ ︷︷ ︸

Reconstructionerror

+
∑

x∈Ttrain

∥∥Φ(x)− I
[
Φ(x)

]∥∥2
2︸ ︷︷ ︸

Interpolationerror

]
. (7.2.2)

We look for Φ and Ψ as the applications that minimize the global error. The latter issplit in two terms : the first one represents the reconstruction error in the direct do-main, i.e. the quadratic error between the input x and the estimation given by the net-work Ψ(I[Φ(x)]). The second one is the interpolation error, i.e. the error made wheninterpolating Φ(x) on the transformed APs in the latent domain. µ is called the regula-rization parameter and balances the effects of the two types of errors on the generalcost function. The parameters used in our code can be found in App.D.3.2.Two elements will play a crucial role in the quality of the finalmodel : the APs and theinterpolator. They have to be mutually accounted for because they jointly impact thefinal result. The interpolator impacts the quality of approximation in the latent domain,whereas the APs impact the quality of both the interpolation and signal recovery. Com-bining this fact with the constraint of low dimensionality, it is clear that a viable selectionstrategy is required. This selection process should answer the following questions :
1. How many APs are needed?
2. What waveforms should be selected as APs (i.e. finding a selection criterion) ?
3. Is there an optimal choice for APs?

We can give a partial answer to these questions. About the required number of APs,based on the idea that the transform Φ is unfolding the manifold and that all the datashould have a linear representation after that, we can say that the required number ofAPs is directly correlated with the dimension of the manifold. Here, the dimension ofthe manifold is 7 (corresponding to all the physical parameters except for the ampli-tude). Ideally, considering the interpolation scheme that we use, we would need 8 APs.However, this is only an optimistic lower bound, as the shape of the manifold is verycomplex and its features hard to learn.Regarding the AP choice, the strategy consisting in randomly selecting a small num-ber of elements in the training set often results in a poor representation of the training
126



set. This suggests that there is indeed a "best choice" for the AP set. We propose adetailed analysis of the stakes posed by AP selection, as well as a way to perform thisselection in the next section.
7.2.3 Interpolation & anchor points selection

This is the interpolator that defines how the data is approximated in the latent do-main. Moreover the interpolator also turns the IAE to a generativemodel : we can easilyapproximate any GBwaveform only from the APs. Fig.7.4 shows how the IAEworks witha linear interpolator of type :
I(x) =

Na∑
i=1

λ̂i(x)Φ(ei) . (7.2.3)

The main issue now revolves around computing the barycentric coordinates λ̂i, whichis a priori no easy task as this is highly correlated to the number and the choice of APs.In this section, we investigate how to automatically select the APs. Such a process wouldautomatically yield the number of APs needed to have an accurate model. It would alsosolve the question of the optimal set of APs. Subsequently, we will provide a process toselect a small-sized set of suboptimal APs.
Direct projection

The λ̂i were first computed to minimize the quadratic error of approximation :{
λ̂i(x)

}
i

= Argmin
{λi}i s.t.∑

i |λi|=1

∥∥∥∥∥Φ(x)−∑
i

λiΦ(ei)

∥∥∥∥∥
2

2

. (7.2.4)

We enforce a supplementary constraint of type∑i |λi| = 1. This removes a degree offreedom and adds an implicit constraint during the learning process, making it morerobust.A direct projection on the APs gives satisfying results when only few APs are consi-dered. Yet, without any prior knowledge on how to select them, an easy choice – evenif it goes against the model’s low-dimensionality – can be to consider a large set of APschosen randomly among the training set elements. In this case having a large num-ber of APs becomes problematic because Eq. (7.2.4) becomes hard to solve as the APs(and a priori their transforms) tend to be highly correlated. This creates large numericalerrors when solving the least square problem.
Regularized projection

We can address the direct projection issue by regularizing Eq.(7.2.4). As stated be-fore, without any prior knowledge on how to select APs, it is tempting to consider a largeset of them so that the model fits the data well. Still, we do not want to compromiseon the low-dimensionality constraint as it is one of the model strong points. Since weare working to reduce as much as possible the number of APs, a first step toward thatgoal is to minimize for every input x the number of APs needed to give a good approxi-mation of x. In short, we will ask for each Φ(x) to be represented with few elements of
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{Φ(ei)}i : this is exactly the sparsity framework we introduced in Chapter 5. Thus, thenorm 1 comes forward as a natural regularization for this problem.Replacing Eq. (7.2.4), the new regularized projector write as Eq. (7.2.5) :{
λ̂i(x)

}
i

= Argmin
{λi}i s.t.∑

i |λi|=1

∥∥∥∥∥Φ(x)−∑
i

λiΦ(ei)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Projection onAnchor Points

+
∑
i

γi|λi|︸ ︷︷ ︸
EnforcingSparsity

. (7.2.5)

The projection term is the same as in Eq. (7.2.4). The new right hand side term corres-ponds to a weighted norm 1 for barycentric coefficients {λi}i, which weights {γi}i arealso learned during the process. Eq. (7.2.5) is still a convex problem. However, thereis no analytical solution to it : we approximate the solution using the first iterations ofISTA 3 [16].

Figure 7.6 – We trained a IAE network based on 50 APs on the training set. The evolution of the glo-bal error Eq.(7.2.2) of the two interpolators Eq.(7.2.4) ("Direct projection",blue) and Eq.(7.2.5) ("Sparse",orange) are plotted against the number of learning iterations. The interpolator based on direct projec-tion has some numerical issues which prevent it from reaching a low reconstruction error. On the otherhand, the regularized interpolator (Sparse) converges fast to a low error (between 2 and 3 orders of ma-gnitude below the one obtained by direct projection).
From this change, two observations can be done : first, this is not a problem any-more to consider a (reasonably) large set of APs. Fig.7.6 shows that using a set of 50APs randomly chosen in the training set, the numerical problem that was observedusing Eq.(7.2.4) is corrected, and the global error on the training set is greatly reduced.

This change of behavior originates from how the {λ̂i}i are computed : solving Eq.(7.2.4)requires to inverse an ill-conditionedmatrix 4, whereas Eq.(7.2.5) does not require to in-verse anymatrix and is well-posed thanks to the regularization. Second, aswe constrainthe elements of the training set to be represented with as little APs as possible, someAPs end up being used a lot more than the others, as if they were carrying more infor-
mation. Some others are little to never used to represent the data, as if they were tooredundant with the "main" APs.

3. We use an improved version of ISTA that only performs the 10 first iterations ; the correspondinggradient steps are learned as model parameters to increase the convergence speed.4. The matrix is ill-conditioned because the APs are correlated. The more APs are considered, thegreater the correlation, the more ill-conditioned the matrix is. This is the origin of numerical instabilities.
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Figure 7.7 – Distribution of normalized module of barycentric coordinates on the training set for severalanchor points. The text above each figure gives the proportion of elements that are 0-valued. Left :Anchor point widely used by training set elements : most of the time, the corresponding barycentriccoordinate has a high, non-zero value. Middle : Anchor point often used by training set elements. In
20% of cases, due to sparsity constraint the anchor point barycentric coordinate is 0. However, in 80%of cases, this value is non-zero, making it essential to describe well the data. Right : Anchor point neverused by training set elements : the corresponding barycentric coordinate is always 0. We can remove thisanchor point as it is not used to represent the data.

Automatic anchor points selection

Using this new interpolator, we enforce a stage of information compression. Forour training set Ttrain described in Section 7.2.1, information compression is noticeably
efficientwhen starting from a rather high number of APs (20-25 - this is high comparedto the expected dimension, meaning that there is a lot of information redundancy) andusing the interpolator Eq. (7.2.3, 7.2.5). This last observation gives a "natural" approachto conduct an automatic AP selection : we can alternate between a learning stageand an elimination stage. The learning stage consists in iteratively solving Eq. (7.2.2)with a fixed number of APs. The elimination stage consists in assessing the usage rateof every APs on the whole training set at fixed Φ and Ψ and eliminate the least usedones. Fig.7.7 shows howwe processwith this selection : plotting the normalizedmoduleof barycentric coordinates for each AP on the training set, we assess its extent of use.Then we rule out the ones that are the less used, i.e. the ones which take themost oftenvalues that are close to 0. The APs thus selected are shown in App.D.5. They present awide morphological diversity.
7.2.4 Pre-processing stage

The GB signal clearly presents several features : short wavelength variations – withvariations of one order of magnitude – and long wavelength variations – the globalstructure of the signal in Fourier domain. Experiments showed that large scale varia-tions are harder to learn by IAE. A simple way to deal with this is to apply a scale-awarepreprocessing, for which wavelets are well adapted.Wavelet transforms aim at giving a multi-scale decomposition of a given signal [17].Here, we will designate the scale at level j by Lj from the coarsest (j = 0) to the finest(j = Jmax). Fromall the scales it is possible to fully recover a signal using the right inversewavelet transform. Many fast algorithms are developed to this aim.Numerical tests showed that the results were better when the signal was decompo-sed over the different scales, and a separate model is learned for each scale Lj . Oneexplanation may be that the change of representation – now as wavelet coefficients– as well as the separation of scales allow to split a complex signal in "less-complex"sub-signals that are easier to learn from. There is a sort of de-correlation of some of
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Figure 7.8 –Wavelet transform based preprocessing. We decompose the signal over several scales andwe learn onemodel per scale. APs are the same for the three scales.We recombine the estimates over thedifferent scales and estimate the amplitude of each scale so that the residuals are as small as possible.

the effects making the initial signal complex.Then the models are combined to identify the global signal.In our case, using the python module pywt [18] with the wavelet transform asso-ciated with sym2 (symlets of order 2) and maximal scale of 2 (so including 3 scales
L0, L1, L2), we learn 3 separate models that are then recombined to create an estimateof the signal. The global process in presented in Fig.7.8 : starting from the raw data s,one has to apply the wavelet transform and then normalize each scale Lj to performthe learning. In order to reconstruct the global signal, one retrieves the output of eachscale model, and look for their optimal linear combination : the one that represent thebest the initial signal when the inverse wavelet transform is applied. The global signalrecovery thus relies on the wavelet transform linearity. We apply the inverse wavelettransform independently to each scale, and then fit the amplitudes corresponding toevery scale so that we minimize the quadratic error between the initial full signal s andits reconstruction 5. This scale amplitude fit is a low-dimensional least square : the so-lution can be computed really fast and does not present any issue. The performanceresults of the next section are computed after recombining the different scales.Let us highlight that the global model is still low-dimensional since we constrain allthe scales to be as low-dimensional as possible through sparsity (as in Eq.(7.2.5)) andwe impose the APs to be identical for all the scales.During the benchmark performance, we will designate by "multi-scale " the IAE mo-del based on this preprocessing ; the model based on the full data (without this pre-

5. We need to retrieve amplitude because we learned a normalized model for each scale, loosing theamplitude information at input.
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processing) will be labelled as "full". The multi-scale model has 3 scales (from j = 0 to
Jmax = 2) and uses 9 APs that are the same for all the scales. The full model uses 28 APs.Efforts will be made to show the pros and cons of each model. We will discuss the prosand cons of each model in the following sections.

7.3 Use, applicability & performances
We will show how the IAE model is used in practice and what are the performancesthat can be expected from it. We will then demonstrate the performances of these twomodels in various situations : waveform approximation, detection, denoising, but alsosource separation. When it calls for, we will compare the results of the IAE models withthe ones obtained using the unstructured block sparsity (combined with BlockTree)described in Section 5.5.The performance indicators remain the same as those introduced in Section 5.5.1 :the quality factor QdB (Eq.(5.5.4)), the false positive rate (FPR, defined in Eq.(5.5.5)), thefalse negative rate (FNR, defined in Eq.(5.5.6)), and the SNR (defined in Eq.(5.5.2), ef-fective computation in App.D.4).

7.3.1 Using IAE to approximate waveforms

Use & interpretation of IAE

In this section, we assume that the IAE model {Φ, I,Ψ} has already been built andlearned following Section 7.2.2. We demonstrate how to use this model on a practicalexample.Any GB waveform s can be approximated by finding the amplitude ABSP and the
barycentric coordinates

{
λBSPi

}
i

encoding at best the information contained in s :

ABSP,
{
λBSPi (s)

}
i

= Argmin
A,{λi}i

∥∥∥∥∥s−A ·Ψ
(∑

i

λiΦ(ei)

)∥∥∥∥∥
2

2

= Argmin
A,{λi}i

∥s−A ·Ψ({λi}i)∥22 . (BSP)
This process is called barycentric span projection. Since the network was learned on
normalized data, we have to jointly estimate the amplitude ABSP of the signal.

What does Barycentric Span Projection do? It performs a projection of a si-gnal s on the span of the APs in the latent domain.

De facto, Eq.(BSP) is solved using JAX [19] optimization tools. For the sake of simpli-city, we use the notation Ψ({λi}i) instead of Ψ(∑i λiΦ(ei)
). We do not have a massivetraining set ; yet having a continuous representation of the signals like the one IAE cangenerate is beneficial since we simply interpolate the missing waveforms from the onethat we already know in the latent domain. Choosing the anchor points among the ele-ments of the training set helps making the model robust despite the low size of Ttrain.
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Figure 7.9 – Example of waveform approximation of a real signal (dotted blue) by PCA (orange) andIAE (green). The upper row shows one of the signals present in the test set as such, and the lower rowrepresents the logarithm of its module. In this case, IAE performs much better than PCA as PCA couldnot capture all of the variations of the waveform.

Waveform approximation

APs play the same role as dictionary atoms in Section 5.1.1 but contrary to our pre-viousmodel, the associated transform is not linear. Choosing the APs (and limiting theirnumber) is like selecting the atoms representing best the signal (i.e. resulting inminimalrecovery error). In a similar way, if we were considering a linear model with the samerestrictions (low-dimensionality, best representation possible) then the best set of "an-chor points" would be given by PCA components associated with its L largest principalvalues [2].The IAE model used here has 9 APs and includes a preprocessing step for the datathat is detailed in the next sections. In order to have a reference for performance as-sessment, we will compare IAE to the waveform approximation given by projecting thetraining set and the test set on the L = 9 first vectors given by the PCA of the trainingset. Since PCA is the "best linear approximation based on L components" 6, any linearapproximation based on the same number of components is likely to give an approxi-mation of lesser quality : this we will show by projecting directly the training set and thetest set on 9 elements randomly chosen in the training set. This last approximation willbe referred to as "APs" 7.Fig.7.9 shows a typical example of waveform approximation by PCA (using linearprojection) and IAE (using BSP). As expected, we observe that IAE could seize details thatPCA was unable to because of the low number of PCA components that we considered.This is exactly the phenomenon that we explainedwith Fig.7.1 : a low-dimensional linearmodel is not adapted to the approximation of a manifold with a complex geometry.This phenomenon can be quantified at larger scales. Fig.7.10 shows the distributionof the quality estimatorQdB, defined in Eq. (5.5.4), of the recoveries of the training set’selements and the test set’s elements. The performances of IAE, PCA and projection onelements of the training set ("APs") are represented. As stated before, the "APs" ap-
6. In terms of approximation quadratic error.7. It is like approximating the data by a linear combination of the APs in the direct domain using alinear projection.
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Figure 7.10 – Distribution of the quality estimator QdB when the waveforms of the training set (left) andtest set (right) are approximated using IAE (green), PCA (blue) and projection on elements of the trainingset (orange). All methods generalized well (errors are consistent between training set and test set), butIAE gives waveform approximations 10 times better (in terms of recovery quality) than PCA for the chosennumber of components.

proximation gives lower quality estimations than PCA as it is a linear model that wasnot specifically designed for this data set. PCA already shows improvements in compa-rison : there is a heavy distribution tail of elements having a better recovery. However,PCA is much less efficient than IAE : there is an order of magnitude between the meanapproximation error made by PCA and the one made by IAE for the same number ofcomponents. Moreover, the distribution of the quality estimator ismore homogeneousfor IAE than PCA approximation quality. Thismeans that when constraining the numberof PCA components to be as low as possible, PCA cannot give a good approximation ofthe waveforms.
We observed that considering more PCA components reduces the approximationerror. This is expected because we increased the model dimension. But there wouldhave been less information compression in that case, which can prove to be problema-tic when we consider noisy data : in a context of trying to estimate a signal from noisymeasurements, low-dimensionality helps limiting over-fitting.

7.3.2 Waveform denoising

Linear model versus non-linear model

Our initial objective was to characterize a GB from noisy measurements. In thiscontext, it is central to have a model that is robust against noise. We tackle this ro-bustness by considering inputs of form :
d = h0(SNR) · h+ n , (7.3.1)

where h is an element of the test set, and h0 is an amplitude computed such that thesignalh0·hhas a targetedSNRwith regard to noisen. This processwas already detailedin Section 5.5.2. We try to estimate the underlying signal for various SNR. We studycomparatively the quality of the estimated signal made by a low dimensional IAEmodel(based on multi-scale decomposition and 9 APs, like in Section 7.3.1) and the two linearmodels already mentioned in Section 7.3.1. We compare the performances of IAE, PCA
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and APs 8 in this context for a test set with three SNRs : SNR ∈ {20, 40, 100} ; a typicalinput is shown in Fig.7.11. Fig.7.12 presents the distribution of the quality factor QdB forwaveform estimations given by the three models in the proposed cases.
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Figure 7.11 – For a noisy input (grey) corresponding to the dotted blue signal at SNR = 50, example ofwaveform denoising by PCA (orange) and IAE (green). Upper row : comparison in linear scale. Bottomrow : module in log scale. For the same model dimension, the IAE recovers all the variations of the wa-veform whereas PCA can only capture part of the waveform morphology features.
First, we notice that PCA and APs provide signal estimates which quality do not im-prove as the SNR increases. In fact, the quality of estimation remains strictly the same :this is the proof that the error is due not to the noise but to the fact that the modelrepresents poorly the sought signals. On the contrary, the IAE has a performance thatimproves as the SNR increases. Moreover, it performs much better than both APs andPCA : in the "worst case scenario" (SNR = 20), the IAE-estimated signal has in average aquality 3 times better than the PCA or APs one. The impact of this difference of recoveryquality is illustrated in Fig.7.11 : for a noisy input at SNR = 20, we can see the recoveriesgiven by IAE and PCA compared to the true signal. While IAE remains really close to thereal signal, this is not the case for PCA.Themain conclusion here is that non-linearmodels can efficiently reproduce a com-plex signal. We surely could use more PCA components to approximate the signal. Ho-wever, PCA vectors are hardly interpretable in terms of parameter estimation. On thecontrary, the organisation of the latent space is highly correlated to the signal shape,and thus directly to the physical parameters (see Section 7.4.3 for more information).This could be a way to perform a fast parameter estimation on the signal – this work isstill ongoing, and is presented in Section 7.4.3.

Sparse modeling versus IAE modeling

One of the goals of changing the waveform model from a sparse representationto a non-linear model was to improve the signal representation. This improvement isrelated to two levels of information : first, representing the signal itself. Second, beingable to characterize the system from the model. Here, we tackle the first level. Thesecond level is probed in an exploratory work presented in Section 7.4.3.
8. Direct projection on elements of the training set
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Figure 7.12 – Distribution of quality estimatorQdB for various input SNR for IAE (green), PCA (blue) andAPs (orange). Left : SNR = 20, Middle : SNR = 40, Right : SNR = 100. IAE performance improves withthe SNR at variance with the two other models.

We consider the same test set which elements are transformed as :
d = h0(SNR) · h+ n , (7.3.2)

such that all elements have a fixed SNR. We study comparatively the answers of sparserepresentation versus IAE models - both full and multi-scale- in terms of the recoveryquality QdB for both channels A and E.For the sparse representation, we selected the combined approach "atom reweigh-ting for block sparsity" described in Section 5.4.4 (labelled simply as "sparse" here) .We have to highlight that IAE models were learned over the frequency range [2, 3]mHz,which is more restricted than for the sparse representation benchmark (the main fre-quency was in [1, 10]mHz). Hence the sparse representation benchmark realized herehaving slightly different results than the one presented in Section 5.5.5.

101 102
SNR

0

5

10

15

20

25

Q
dB

Sparse
IAE MS
IAE Full

Figure 7.13 –Quality factor of the recovered signal for sparse signal modeling combined with BlockTreealgorithm (labelled as "Sparse", blue triangles), for classical IAE (labelled as "IAE Full", green squares) andfor multi-scale IAE (labelled as "IAE MS", orange circles).
Fig.7.13 shows the evolution of recovery quality with the input SNR. The quality ofthe sparsity-based approach increases linearly with SNR for these types of inputs. Incomparison, IAE models are characterized by two behaviors. The IAE full model also
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has a recovery quality that improves linearly with the input SNR, faster than for thesparse model. For input SNR at 110, there is already a 5 dB difference of quality inthe recovery. Looking at this statement, we can conclude that our objective of buildinga model that represents waveforms better has been fulfilled. On the other hand, themulti-scale IAE performs as well as the full IAE at low SNR but falters at higher SNR.This is due to the fact that we reach themodel’s limit : because of its low-dimensionality,fine details of the signal escape an IAE model with a low number of APs. We foresee atradeoff between the low-dimensionality and the accuracy of the IAE representation.This remark concerns only the IAE architecture and not the principle of the detectionalgorithm. A bias clearly appears at high SNR and dominates the approximation error.
7.3.3 Detection algorithm performance
IAE behavior in absence of signal

The IAE can provide a signal estimate for any type of input, as noisy as it can be. Thisis still true in the extreme case where the input consists in noise only. This is illustratedin Fig.7.14 : for an input consisting in noise only, IAE is still able to estimate a signal
with maximal likelihood of presence. However, its amplitude is close to noise ampli-tude : the detected signal is merely noise over-fitting. This gives us the right quantityto consider to tell apart noise and signal : the SNR of the estimated signal. We will call it"estimated SNR" and denote it by SNRest in the following study.
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Figure 7.14 – Comparison between an input consisting in noise only (light grey) and the signal estimatethat IAE performs in this case (green) in linear scale (upper row) (scale on which IAE works) and log scale(lower row) of the module. IAE estimates a signal which amplitude is close to noise level.
Going back to an input containing signal like in Eq.7.3.2, it is now interesting to ana-lyze the behavior of SNRest depending on the SNR of input signals. In Fig.7.15 we plottedthe distributions of SNRest, the response of IAE for inputs with various SNRs (SNR = 10,

SNR = 5 and SNR = 0 - this corresponds to noise-only inputs). In order to get the tar-get SNR on the test set, we proceed similarly as in Sec. 7.3.2.Let us first look at the IAE response to noisy test sets with SNR = 10 and SNR = 5.Even if all input signals have the same SNR, the repartition of the estimated SNR
SNRest on the output corresponds to a normal distribution with a mean and a stan-dard deviation depending on the input SNR. This spread is due to the fact that the

136



multi-scale model Full model

4 6 8 10 12 14
Estimated SNR

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
SNRlim

Noise only
SNR =   5
SNR =  10

4 6 8 10 12 14
Estimated SNR

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
SNRlim

Noise only
SNR =   5
SNR =  10

Figure 7.15 – Estimated SNR on IAE output for an input consisting in noise only (blue), in signal withSNR = 5 (orange) and in signal with SNR = 10 (green). The dashed red line shows the limit of detectabilityset like in Eq.(7.3.7). Left :multi-scale model ; Right : Full model. Bothmodels give coherent results whenassessing the detectability threshold.

identification is not perfect because of the noise. The lower the SNR, the more biasedis the mean of the estimated SNR with regard to the input SNR. This behavior canbe explained : when the SNR is low, the signal amplitude is close to the noise level.In this context, it is harder for IAE to separate the signal from the noise, and the riskof over-fitting noise becomes more important. Noise over-fitting artificially increasesthe recovered signal SNR (compared to the input SNR), this explains why SNRest isusually higher than the input SNR when signals are close to the noise level.The aforementioned case where the signal is totally absent (i.e. SNR = 0 for the in-put) corresponds to the blue distribution on Fig.7.15. We observe in Fig.7.16 that thedistribution of SNRest can still be assimilated to a Gaussian distribution SNRest ∼
N (µest, σ2est) which mean µest and standard deviation σest can be estimated :{

µest = 5.992 ,

σest = 0.5356 ,
(7.3.3)

for the multi-scale model – we found a similar distribution in the full model case (µest =
6.067, σest = 0.5423). We can use this distribution to set a detectability threshold abovewhich we are practically certain that there is a signal. The multi-scale IAE and full IAEmodels yield close distributions with nearly equal selection thresholds.This characteristic no-signal behavior can be used as a founding stone for a detec-tion process. It is based on a hypothesis test similar to the ones we conducted beforein Chapter 5 and it would confront two hypothesis :

H0 : There is no signal.
H1 : There is a signal.

The choice is made according to a p-value statistical test : we set a probability thresholdcorresponding to the expected false positive rate pFPR when trying to distinguish a signalfrom noise. Then the corresponding limit SNRlim is defined such that :
P (SNRest > SNRlim) = pFPR . (7.3.4)
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Figure 7.16 – For an input made of noise only, the IAE-estimated SNR matches with a Gaussian distribu-tion.

It can be interpreted as the limit of detectability upon which we accept or rejectH1 :
AcceptH0 , RejectH1 ⇐⇒ SNRest ≤ SNRlim , (7.3.5)
RejectH0 , AcceptH1 ⇐⇒ SNRest > SNRlim . (7.3.6)

False negative rate

The false negative rate (FNR) quantifies the detection capacity of the model for theproposed hypothesis test. This rate will depend on the input SNR. To assess the FNR,we apply IAE to the noisy test set with SNR varying between 0 and 30, and we apply thehypothesis test proposed above to the IAE output with a threshold probability pFPR =
0.01. Then we compute the proportion of undetected signals. For the chosen pFPR, thelimit SNR is :

SNRlim = 7.238 . (7.3.7)
(we found SNRlim = 7.33 for the full model). This detection threshold is representedin Fig.7.15 : whatever falls on the left hand side will be assimilated to noise, everythingfalling on the right hand side will be detected as signal. With this value, we compute theproportion of undetected signals.

Fig.7.17 displays the evolution of the estimated FNR with the input SNR compa-red to the performances of the unstructured sparse representation combined with the
BlockTree algorithm realised in Section 5.5.6. For SNR > 7, all signals are detected.When the SNR decreases to 0, the detection becomes harder as the signals estimated
SNR are more likely to be compatible with noise. Yet we see that IAE is able to detectsignals with very low SNR – down to SNR = 2, even if their recovery has a poor qua-lity. Moreover, we notice a huge improvement when comparing the performances ofthe new algorithm to the detection performed when using sparse modeling. Indeed,signals are detected by IAE at a much lower SNR than using sparse modeling. The cor-responding false negative rate decreases much faster with SNR : at SNR = 7, nearlyall signals are detected by IAE, whereas less than 10% are detected by sparsemodeling.
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Figure 7.17 – False negative rate (FNR) as a function of SNR for IAE models (in green, labelled as "IAE")compared to the one obtained for BlockTree sparse modeling (in orange, labelled as "Blocktree"). Left :multi-scale IAE model ; Right : Full IAE model. IAE models perform a more precise detection than the
BlockTree algorithm as they are able to detect a signal with a much lower SNR.

7.4 Towards a pipeline for GB characterization
The study conducted in Section 7.3 focuses on the ability of IAEmodels to representindividual GB signals, centered in the analysis window - whether with or without noise.In fact, the data we expect are much more complex. Fig.4.3 is a simulated example ofa GW signal produced by all GBs in the galaxy : it is not known how many sources arepresent and detectable and where they are located ; moreover, the signals may havesignificant overlap. Under these conditions, characterizing GB signals becomes muchmore complex. It is necessary to develop a framework answering several questions :
■ How to localize GBs?
■ How to separate overlapping GB signals?
■ How to determine the number of GBs emitting in a given frequency range?
■ How to characterize an individual signal ?These questions are key elements to build a robust GB characterization pipeline.We propose here several answers based on IAE models.

7.4.1 Detection
The detection test lead in Section 7.3 focused on inputs similar to what the trainingset contains, i.e. centered signals to which noise is added. In a more realistic situation,even if we focus on a limited frequency range, we do not know a prioriwhere individualGB signal stand. Previously, we showed that the estimated SNR could play the role ofa selection criterion for detection. Here we want to show that it is still adapted to detectthe position of a signal.We consider the following situation : a full data set containing only one GB signalroughly located between fmin and fmax. IAE is applied to windows of consecutive fre-quency data like the one delimited in orange in Fig.7.18 (left). This window slides from

fmin to fmax ; for each input the IAE estimates the underlying signal and its correspon-
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ding SNR (Fig.7.18, right). We can make three observations : first, SNRest only exceedsthe detection threshold SNRlim when the signal is within the detection window. Se-cond, the estimated SNR reaches its maximum values when the signal is centered inthe input window. Indeed, Fig.7.18 (right) displays the position of the window for which
SNRest is maximal : the GB peak is right in the middle. Third, we observe that the lear-ned model admits a slight translation invariant : the SNR varies relatively little as longas the signal remains around the center of the input window.

Figure 7.18 – Left :Module of the whitened signal with Fourier frequency index. There is 1 GB signal thatwe want to detect. Right : Estimated SNR of signal found vs sliding window starting index. The SNR ismaximal when the signal is centered in the input window.

7.4.2 GB sources separation
Going toward more realistic data - such as the galaxy signal proposed during theLISA Data Challenges 1 and 2 [20], we wish to have a model that is adapted to thecase where themeasurement s is the sum of several overlapping signals. When severalsources are lying in the same frequency range of interest, their identification becomesmore complicated as they get closer in frequency, because their signalsmutually conta-minate each other by overlapping. This phenomenon is represented in Fig.7.19 : whenonly the sum of two signals is measured, separating the individual signals becomeschallenging. Even estimating the precise number of sources is difficult.To face this problem, one can adopt a simple pursuit strategy, i.e. estimating at eachstep which signal seems to correlate the most with the residuals of the previous steps.This strategy can work if the signals do not overlap too much or if overlapping signalspresent very different characteristics (for instance, if one bright source is overlappingwith a low SNR source, it might be possible to first identify the bright source and aftersubtracting the signal to identify the other one without any loss). However, there isgenerally no guarantee that the signals will be properly estimated without any leakageor over-fitting others overlapping signals. The presence of other signals is likely to biasthe identification of one source.Amore appropriate strategy is to conduct a joint search of the signals : this way, thecontamination that happenswhen signals are overlapping is directly taken into accountduring the search. Such a strategy can be conducted using an IAE-based algorithm, in afashion similar to the barycentric span projection algorithm that we described earlier.Indeed, the search Eq. (BSP) can be generalized for the case where K > 1 sources

140



Figure 7.19 – Left : Example of overlapping GB signals in linear scale (upper row) and the log of itsmodule(lower row). Right : In practice, we only observe the sum of the two signals (upper row in linear scale andlower row in log scale). This makes identification complicated, as signals are contaminating each others.Even estimating the exact number of sources can become challenging.

are lying in the same frequency range of interest (i.e. the frequency range serving as
input for IAE). To the k-th signal, we can associate its barycentric coordinates {λ(k)i }i, itsamplitudeA(k) and a shift τk – for now and on, signals are not centered anymore. Thenwe can identify the characteristics of each signal solving the joint problem :

A(s),Λ(s), T = Argmin

A = {A(k)}
Λ = {λ(k)i }i,k
T = {τk}k

∥∥∥∥∥s−
K∑
k=1

Dτk

[
A(k) ·Ψ

(
{λ(k)i }i

)]∥∥∥∥∥
2

2

, (multi-BSP)

where Λ(s) gathers the barycentric coordinates of all the sources identified in s, A(s)is the collection of amplitudes, T is the vector of shifts for each source and Dτ is thedelay operator applying the shift τ to a source. More details can be found about shiftestimation in App.D.6. De facto, Eq.(multi-BSP) is solved using JAX [19] optimizing tool.In the next paragraph, we demonstrate the performances of source separation withIAE for an observation composed of a superposition of two sources and, elaboratingon this example, we investigate a process to identify the number of sources that arepresent.
Signal estimation

We consider 1, 000 observations of type :
d = h10(SNR1) · h1 + h20(SNR2) · h2 + n , (7.4.1)

where h1,h2 are two signals with amplitudes h10, h20 computed such that they reach achosen SNR with regard to noise n. Their main frequencies are chosen in [2, 3] mHzsuch that the two signals are overlapping. For this benchmark, the SNR is chosen ac-
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cording to a uniform law : SNR ∼ U([10, 30]) 9. We investigate here the relevance ofusing the multi-BSP instead of a classical BSP.

Figure 7.20 – Result of source separation using IAE for a sumof overlapping signals such that SNR1 = 44and SNR2 = 32.
Fig.7.20 (left) shows the type of input we are dealing with : the two signals can be soclose that they nearly totally overlap, and have different SNRs. On the middle plot, thenoisy input is compared to the noiseless sum of signals and the recovery done by IAE.The IAE estimate is close to the superposition of signals, even in the presence of noise.The right hand side plot displays the residuals once the IAE estimate has been subtrac-ted. After applying the detection test proposed in Section 7.3.3, they do not presentany power excess that could be interpreted as signal leftover or as an undetected si-gnal. Performing a joint estimate of the signals proves to be better than subtractingthe signals one by one in a "pursuit" fashion. Indeed, if two GB signals overlap, thenestimating the signals one by one can importantly mislead the results. Fig.7.21 (middleplot) compares the results given by IAE, either combined with the simple BSP or themulti-BSP. For the simple BSP, we display the residual signal after identifying one singlesource (which corresponds to the first step of a pursuit mechanism) to show that thepresence of two signals bias the recovery process. Indeed, the simple BSP blindly iden-tifies a signal that lies exactly between the sum of signals, leaving significant residuals.

Figure 7.21 – Result of source separation using IAE simple BSP (red) and multi-BSP (green) for a sum ofoverlapping signals such that SNR1 = 25 and SNR2 = 51. Performing a pursuit (i.e. trying to estimatethe signals in presence one after another) would result on an erroneous signal estimation.
We can directly compare the quality of recovered signals when applying simple BSPor multi-BSP. The distribution of the quality factor Eq.(5.5.4) is displayed in Fig.7.22 forthe simple BSP and multi BSP. Using the multi-scale IAE model, we see that multi-BSPcontributes to improve the quality of the recovered signal in average by a factor 2. On
9. We chose this interval as it was plausible considering the SNR found for sources of LDC1-3.
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the other hand, the full IAE model estimates signals of equivalent qualities when usingsimple BSP and multi-BSP. It reaches the same quality distribution as when using themulti-BSP of the multiscale model. Here, we see a clear difference of behavior betweenthe twomodels : the full model cannot distinguish whether there are one or two signals(since both hypothesis result in average in the same approximation quality) whereasthe multi-scale model can. Indeed, in presence of two signals using the multi-BSP pro-duces an approximation of better quality than when using the simple BSP. Based onthat, we can build a criterion to estimate the number of sources that are present in afrequency range – i.e. for model selection.
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Figure 7.22 – For an input that is the superposition of two GB signals, we apply BSP and multi-BSP toestimate the underlying content. We plot the histogram of the global signal recovery quality in blue forBSP (labelled as ’simple’) and in orange for multi-BSP (labelled as ’multi’). Left : For multi-scale IAEmodel ;
Right : For full IAE model. Using multi BSP enables to double the quality of the recovered signal. Separa-ting the scales (and thus reducing the dimensionality) results in a more pronounced separation betweenthe quality of signals estimated by BSP and multi-BSP.

7.4.3 Prospective work
There are many points deserving further exploration. We present here several pre-liminary results that will pave the ground of our future work along the lines of repre-sentation learning.

Criterion to estimate the number of sources

This work is based on the results of Section 7.4.2 on the quality of recovered signalfor the full model and multi-scale model. The simple-BSP IAE identifies a single sourcewhich borrows features from the two true signals and leaves residuals with a mani-fest power excess at two separated locations reminiscent of the main frequencies ofthe corresponding GBs. This is a case of source confusion. In fact, this power excessprovides us a criterion to identify the number of sources : if hypothesis
Hk : exactly k sources are present,
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is true, then for any i < k, we will see a power excess showing that the model cannot fitthe sources in presence. In order to check if such a power excess can be a valid selec-tion criterion when applying IAE, we applied the simple BSP to the residuals obtainedby subtracting the estimated signal (for both simple and multi BSP) to the observedsuperposition. Then, we applied the detection described in Section 7.3.3 to check if theresiduals are compatible with noise.On Fig.7.23, we plotted the distribution of the estimated SNR over the residuals ob-tained after applying simple BSP and multi-BSP, for a full IAE model and a multi-scaleIAE model. In the case of IAE multi-scale model problem, we notice that the residualsobtained after applying the multi-BSP model are globally compatible with noise, whe-reas this is scarcely the case for simple BSP. Thanks to the low dimensionality of themodel, we can clearly discriminate hypothesis H1 and H2 using the usual detectabilitythreshold. On the other hand, the full IAE model does not allow to discriminate the twohypothesis since all the residuals – for both simple and multiple BSP – are compatiblewith noise. Because the dimension of the model is too high, it cannot constrain enoughthe shape of the sought signal.
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Figure 7.23 – Applying simple BSP on the residuals after subtracting the signal found by either simpleBSP (blue) or multi-BSP (orange), we estimate the SNR of the result to check its compatibility with noise.As multi-BSP has a better recovery quality than simple BSP, the residuals better compare to noise.

IAE & fast parameter estimation

The last step towardsGB characterization is the identification of the individual sourcesbased on the measurements. We present here preliminary results about partial para-meter estimation for GB systems using IAE.An IAE model learns from signals morphology ; and the morphology is directly (al-though non-linearly) related to the physical parameters used to generate the signals.This is why we expect that the latent space organization is somehow correlated to thephysical parameters, or at least shows sensitivity to some of them. Here we typicallythink about the parameter β : as mentioned in Section 5.4.3, cos(β) is related to thesignal’s width in Fourier domain. To a lesser extent, λ also has an impact on the signal’smorphology.
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Let us consider the training set Ttrain with corresponding known parameters θ ∈
Θtrain. We also know their barycentric coordinates in the latent space :

Λtrain = {{λi(s)}i, s ∈ Ttrain} . (7.4.2)
We would like to estimate the parameters θtest of a waveform that does not belong tothe set but which parameters are still compatible with the distribution over which thetraining set parameters were sampled. For that purpose, we propose to make use ofthe latent space to recover (at least partially) parameters β and λ.We perform a simple "nearest neighbor" estimate on the barycentric coordinates :using (BSP), we can estimate the waveform’s barycentric coordinates {λtesti }i. Then wecompute the distance between {λtesti }i and all of the elements of Λtrain :

d({λi}i, {λtesti }i) =
∑
i

(
λtesti − λi

)2 for any {λi}i ∈ Λtrain (7.4.3)
Ideally, the element of Λtrain minimizing the distance with {λtesti }i should have parame-ters that are closewith the sought parameters. Fig.7.24 shows for an element of the testset the distance between {λtesti }i and the elements of Λtrain as a function of parameter
cos(β) and λ. The "closest neighbor" minimizing the distance has parameters that areclose to the true parameters.

Figure 7.24 – Distance between the barycentric coordinates of an unknown waveform and the bary-centric coordinates of the elements of the training set. Using this distance, the closest neighbor in thetraining set (orange square) has ecliptic coordinates that are close to the one of the unknown waveform(green triangle).
On the overall test set, this is often verified. However, since the training set has alimited size, an estimator only based on the closest neighbor can only have limited per-formances. Fig.7.25 shows the distribution of the quadratic error on the overall test setwithout and with noise. Without noise, there is a accurate estimation of β with quadra-tic error essentially inferior to 0.01. For sin(λ), the approximation is less efficient : thedistribution tails are heavier, and the standard deviation is bigger.When noise is added,the estimation is further degradedwith heavier distribution tails. Yet the approximationseems to be close to the real value in number of cases.The error is mainly due to 2 elements : first and already mentioned is that the ap-proximation is based on few elements, i.e. the elements available in the training set.
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Figure 7.25 – Fast parameter estimation through nearest neighbor. Quadratic error when using a fastparameter estimation basedon closest neighbor.Upper line :without noise. Lower line :With high noiselevel. Most times, the parameters are properly estimated. Noise degrades the quality of the estimation(the distribution tails are heavier), but the results remains encouraging.

The low size of the training set does not provide a fine enough discretization of thejoint parameter space for (β, λ) to have amore precise approximation. The second ele-ment is related to the number of APs and information redundancy : two elements withclose shapes can be encoded using two different APs that are highly correlated. This is
a priori not the case since we tried to select APs as much as possible, but 26 APs (for thefull model) is still too many in comparison with the underlying number of parameters.This can mislead the closest neighbor search.

To palliate this issue, we could either increase the number of elements in the trai-ning set, use several neighbors instead of only 1, or change the estimator. For instance,we could learn a multi-layer perceptron (MLP) directly based on the latent domain toperform a regression in the parameter space. We could even imagine that this MLPwould be learned simultaneously with the IAE encoder and decoder.
If we were able to estimate quickly intrinsic parameters β, λ, f0, we would have avery strong prior to perform parameter estimation : App. A detailed how the samplingcan be accelerated when separating intrinsic and extrinsic parameters.

7.5 Conclusion

We introduced a way to create a non-parametric model for GB signals which, tothe best of our knowledge, has so far not been considered in the field of GW analysis.By non-parametric, we mean that the model does not rely explicitly on the GB systemphysical parameters Even if the parameters are implicitly contained in the choice of the
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training set, we do not rely on them to estimate the signal. Instead, we rely on the useof "pseudo-parameters" (A, {λi}i).This model can represent a wide range of signal morphologies and can be used ei-ther to compress information related to GB waveforms or to perform the denoisingof observed signals. We paved the way for a new pipeline that could be dedicated toGB detection and partial characterization by extending the spectrum of potential ap-plications to detection, partial parameter identification and source separation. On thewhole, we expect IAE models to prove useful to LISA data analysis – not only becauseit is very simple to apply to any type of data, but also because of the wide range ofapplications it opens.
Prospects : Many improvements can be thought of to enrich this model. First of all,processing jointly all data channels is the first step towards a model that would evenbetter constrain the extraction of sought signals. We can also think about changingthe architecture of the encoder Φ and decoder Ψ, for instance by using convolutionallayers. These convolutional layers could replace our wavelet-transform preprocessingfor a preprocessing thatwould be evenmore adapted to the datawewant to learn from.Then, there is the question of the frequency range on which the model is learned. Fornow, it is quite restricted to a range of about 1 mHz. However, the final goal should beto have a model that can represent all types of GB signals.Finally, there is still a lot more work to do on the potential applications. Many morecould come to mind, they would need to be investigated thoroughly. In particular, wethink that IAE models bears some resemblance with the reduced basis models [5; 21;22; 23; 24] introduced in LVC. In our opinion this connection deserves some furtherinvestigation.
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Chapter 8

Conclusion

Major results & prospects
Wesummeduphere the "take home"messages concerning the results of this thesis.

Sparse Signal Representation : We developed a model based on a very simple hy-pothesis that enables to get an instantaneous estimate of the underlying GB signals. Itworks independently of the number of sources. This type ofmodel can be used in caseswhere we do not know precisely the waveform of the signal we seek, but neverthelessknow some of its characteristics that could be used to identify it regardless. There isalso a potential application with glitches fast detection and removal. On a wider scale,sparse modeling could be used to operate source separation.
Inpainting LISA data : We proposed two algorithms that can mitigate the impact ofgaps on data analysis. In particular, the noise distribution is recovered, and signals aredetected properly. These algorithms recreate the missing signals and missing noise,and the processing time is independent of the number of detected sources – all sourcesare managed simultaneously without having to identify them individually. The algo-rithms proved to be efficient with as much as 28% of missing data, and was shown tocorrect posteriors of MCMC identification on an example. Of course, we would like toextend this algorithm to the context where several types of sources are present – in par-ticular transients in time domain. The generalized inpainting algorithm is expected tokeep a similar layout, alternating between signal and noise estimation. We also wish tocompare the inpainting technique with other existing methods dealing with data gaps.
Learning-based representation : We introduced a model based on the interpola-tory auto-encoder that ensures the low-dimensionality of the underlying representa-tion. Thanks to this property, the denoising process is efficient and can lead to highdetection rates. Moreover, the training set is kept to an acceptable size. Many moreapplications can be thought of, such as template bank compression or source sepa-ration. There are many other points to investigate : first, an improvement is expectedwhen processing jointly all information channels. Then the latent space also showed or-ganizational properties that could lead to a fast parameter estimation ; this should beinvestigated thoroughly. Finally, we could of course develop similar models for othersource types or even for glitches.
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Final words
There is so much left to do and so little time ! Working on LISA data analysis is a realchallenge that twisted my brain for the last three years. Nonetheless, I am glad I wasgiven the opportunity to work on such complex and yet thrilling problems.
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Annexe A

Parameter Estimation

In this section, we present the asymmetric role intrinsic and extrinsic parametersplay in data analysis, and how it can be exploited when performing Bayesian data ana-lysis. We follow the argument of [1].

A.1 Origin of the separation between intrinsic and ex-
trinsic parameters

The distinction made in Tab.4.1 between extrinsic and intrinsic parameters origi-nates directly from the form of the expected waveform for GBs. Indeed, any GB GWsignal hI(θ) can be written under the form [2; 1] :
hI

(
θ = (θint, θext)

)
=

4∑
j=1

aj(θext)hI(θext = θ0ext,j, θint)︸ ︷︷ ︸
hj
I(θint)

=
4∑

j=1

aj(θext)h
j
I(θint) , (A.1.1)

and the θ0ext,j are constants defined as in Table A.1.
θ0ext,1 θ0ext,2 θ0ext,3 θ0ext,4

h0 1 1 1 1

ι π
2

π
2

π
2

π
2

ψ 0 π
4

0 π
4

ϕ0 0 0 π
2

π
2

Table A.1 – Extrinsic parameters needed to compute hj
I(θint) in Eq.(A.1.1). Source : [3]

Eq.(A.1.1) presents a great interest for parameter estimation, as there is a separationbetween the impact of the two types of parameters. The idea is now tomake use of theasymmetry between intrinsic and extrinsic parameters by first estimating the intrinsicparameters and then deducing the corresponding extrinsic parameters.Basically, if the log-posterior writes :
logLp(θ = (θint, θext)) = −1

2

(
d−

4∑
j=1

aj(θext)h
j
I(θint)

)†

S−1

(
d−

4∑
j=1

aj(θext)h
j
I(θint)

)
+log [p((θint, θext))] .

(A.1.2)
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Then we will work in the "reduced" log-posterior, restricted to intrinsic parameters :
logLint(θint) = max

{αj}j

−1

2

(
d−

4∑
j=1

αjh
j
I(θint)

)†

S−1

(
d−

4∑
j=1

αjh
j
I(θint)

)
+ log [p(θint)]

 .

(A.1.3)Solving the max with regard to parameters {αj}j is simply solving the least squares mi-nimizing the residuals between the data d and its approximation on the set of functions
{hj

I(int)}j .We can define the estimator of intrinsic parameters as :
θ̂int = Argmax

θint

[
logLint(θint)

]
. (A.1.4)

Now, if one has found themaximumof the log-posterior θ̂int, one can build an estimatorfor the extrinsic parameters based on the {αj}j . Let us introduce the amplitudes of thetwo GW polarizations : {
h+0 = h0(1 + cos2 ι) ,

h×0 = 2h0 cos ι .
(A.1.5)

Then the {αj}j are related to the extrinsic parameters as :
α1 = h+0 cosϕ0 cos 2ψ − h×0 sinϕ0 sin 2ψ ,

α2 = h+0 cosϕ0 sin 2ψ + h×0 sinϕ0 cos 2ψ ,

α3 = − h+0 sinϕ0 cos 2ψ − h×0 cosϕ0 sin 2ψ ,

α4 = − h+0 sinϕ0 sin 2ψ + h×0 cosϕ0 cos 2ψ .

(A.1.6)

A.2 Solving the extrinsic parameters
Conversely, we can compute the extrinsic parameters knowing the {αj}j , by setting :{

A = α2
1 + α2

2 + α2
3 + α2

4 = h+2
0 + h×2

0 ,

D = α1α4 − α2α3 = h+0 h
×
0 .

(A.2.1)
Then, we have :

h+0 =
1

2

(√
A+ 2D +

√
A− 2D

)
, (A.2.2)

h×0 =
1

2

(√
A+ 2D −

√
A− 2D

)
, (A.2.3)

h0 =
1

2

(
h+0 +

√
h+2
0 − h×2

0

)
, (A.2.4)

cos ι =
h×0
2h0

, (A.2.5)
and :

tan 2ϕ0 =
2(α1α3 + α2α4)

α2
3 + α2

4 − α2
1 − α2

2

, (A.2.6)
tan 4ψ =

2(α1α2 + α3α4)

α2
1 + α2

3 − α2
2 − α2

4

. (A.2.7)
This can lead to consequent optimization when doing parameter estimation.
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Annexe B

Sparse Signal Representation

B.1 Open Source code

The code is open source and can be found online at https://github.com/GW-IRFU/
gw-irfu on version 3 of the GPL (GPLv3).

B.2 Galactic binary parameters

The example of Fig.5.7 was plot choosing the GB physical parameters contained inTab.B.1.

Parameter Value

Frequency f0 = 3mHz
Frequency Derivative ḟ0 = 2.04973995 · 10−18Hz2

Ecliptic Latitude β = 0. or π/2 Rad
Ecliptic Longitude λ = −2.18009 Rad
Amplitude h0 = 1.76276 · 10−22 Strain
Inclination ι = 0.523599 Rad
Polarization ψ = 3.61909315 Rad
Initial Phase ϕ0 = 2.97459105 Rad

Table B.1 – Parameters values used to generate the GB signal.

These parameters are the one needed to create a GB signal by the LDC code [1].
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B.3 BlockTree Algorithm

B.3.1 BlockTree

Algorithme 3 : BlockTree
Result : BlockTree
Data : p : threshold probability
Data : nB : minimal block size
Data : tree0 : initial tree of identical size blocks (size nB)
Data : γ[B, p] : threshold, function of block B and probability p
Data : Rcomp : Comparability ratio : max ratio until which we consider that 2blocks have comparable sizes
while

(
treen−1 ̸= treen

)
do

if First Iteration then# Try to group elementary blocks by 4 ;For blocks Bk, Bk+1, Bk+2, Bk+3 :
B = ∪k+3

i=kBi

Compute D =
∥∥∥Û∥∥∥

B;2,2
;

if D < γ[B, p] then# Try to group elementary blocks by 2 ;Merge Bk, Bk+1, Bk+2, Bk+3 into Bk ;
else

B1 = Bk ∪Bk+1 ;
B2 = Bk+2 ∪Bk+3 ;
Compute D1 =

∥∥∥Û∥∥∥
B1;2,2

;
Compute D2 =

∥∥∥Û∥∥∥
B2;2,2

;
if D1 < γ[B1, p] thenMerge Bk, Bk+1 into Bk ;
end
if D2 < γ[B2, p] thenMerge Bk+2, Bk+3 into Bk+2 ;
end

end
GO TO next 4 blocks ;

else#Try to group blocks 2 by 2 ;For blocks Bk, Bk+1 :
if max(|Bk|, |Bk+1|)

min(|Bk|, |Bk+1|)
< Rcomp then

B = Bk ∪Bk+1 ;
Compute D =

∥∥∥Û∥∥∥
B;2,2

;
if D < γ[B, p] thenMerge Bk, Bk+1 into Bk ;
end

end
GO TO next 2 blocks

end
end 159



B.3.2 BlockTree algorithm parameters
Unless otherwisementioned, when using the BlockTree Algorithm 3 combinedwiththe unstructured reweighting as in Section 5.4.4, we use the following parameters :
nB = 10 (minimal block size)
Rcomp = 5 (comparability ratio)
ρtree = 10−6 (BlockTree rejection rate)
ρunstructured = 0.5 (reweighting rejection rate)
γ0 = 1 (initial weight in frequency domain)
κ = 3 (Reweighting coefficient)
ϵγ = 0.1 (convergence criterion for the reweighting algorithm :maxk |γn+1[k]−γn[k]| <

ϵγ)

B.4 PSD correction parameters
The polynomial correction that we used for LDC1-3 for frequencies f < 0.027 Hz isgiven by :

σpol(f) = a4f
4 + a3f

3 + a2f
2 + a1f + a0 ,

with : 

a4 = 6.04730527 · 106 Hz−4 ,

a3 = −2.05476168 · 105 Hz−3 ,

a2 = 3.47246590 · 103 Hz−2 ,

a1 = −1.38239339 · 101 Hz−1 ,

a0 = 9.94485004 · 10−1 .

(B.4.1)
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Annexe C

Inpainting for LISA gapped data

C.1 Parameter estimation with data gaps

Parameter Value

Frequency f0 = 1.25313mHz
Frequency Derivative ḟ0 = 9.15958730e− 19

Ecliptic Latitude β = −0.529009

Ecliptic Longitude λ = −2.51031

Amplitude h0 = 1.36368e− 22

Inclination ι = 0.244346000e− 01

Polarization ψ = 2.22942636

Initial Phase ϕ0 = 2.64414439

Table C.1 – Waveform parameters. Signal used to show the impact of gaps on parameter estimation.This is one of the verification binaries used in LDC data sets.
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C.2 Linearity of low frequency inpainting algorithm
Let us denote :

F =

{
1√
NT

exp
− 2iπkn

NT

}
0≤n≤NT−1
k∈[−K,K]

, (C.2.1)
the matrix containing the coefficients needed to perform the discrete Fourier trans-form. F is invertible such that :

F−1 = F † . (C.2.2)
For any measurement V ∈ RNT x2 we have :

v[k] = Fv[n] . (C.2.3)
Using the Fourier operator F , we can express the noise correlation matrix in time do-main :

CI = F †SF . (C.2.4)
We denote by C the joint time correlation matrix for all the channels.Letvg[n]be a gappedmeasurementwithmaskM .Wewant to study the dependenceof :

fCI(vg) = Argmin
q

Mq[n]=vg [n]

1

2
⟨q[k],q[k]⟩S

= Argmin
q

Mq[n]=v[n]

1

2
⟨q[n],q[n]⟩C . (C.2.5)

with the input vg. The lower line is the same expression as the upper line, but in timedomain. The resulting cost function is separable with respect to each channel. For achannel I , the Lagrangian of this problem writes solely in time domain as :
LvI

(qI ,Λ) =
1

2
qT
I F∗S−1

I FqI + ⟨Λ,vI −MqI⟩ , (C.2.6)
where ⟨, ⟩ denotes the classical hermitian inner product. The solution of the problemcan be written using the Lagrangian :

fCI(v) =

(
Argmin

qI

Argmax
Λ

LvI
(qI ,Λ)

)
I∈{A,E}

. (C.2.7)
The optimality conditions read :

∂LvI

∂qI

(qI ,Λ) = F∗S−1
I FqI −MΛ = 0 ,

∂LvI

∂Λ
(qI ,Λ) = vI −MqI = 0 .

(C.2.8)

They result in : {
qI = (F∗S−1

I F)−1MΛ ,

MqI = vI .
(C.2.9)
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Thus : {
qI = (F∗S−1

I F)−1MΛ ,

M(F∗S−1
I F)−1MΛ = vI .

(C.2.10)
The solution of the Lagrangian problem thus linearly depends on vI , i.e. for any mea-surements v1,v2 gapped with the same maskM , we have :

fCI(v
1 + v2) = fCI(v

1) + fCI(v
2) . (C.2.11)

C.3 Algorithms : proofs of convergence

Aswebuilt Alg. 1 as a block coordinate descent (BCD) procedure (the variables (ĥ, d̂m)minimize the cost function (6.2.1)), the argument of [1; 2] applies and establishes theconvergence of Alg. 1. In order to prove that Alg. 2 also converges, we similarly recast itas the minimization of a cost function through a BCD procedure.Consider a fixed noise sample :
nsamp ∼ G(0,S) , (C.3.1)

corresponding to the expected noise distribution in frequency domain, and the follo-wing algorithm :

np+1gap = dg −Mhp +Mnsamp ,
np+1
CI = fCI(ngap) ,

np+1 = np+1
CI − nsamp ,

dp+1 = dg + (I −M)(hp + np+1) ,

hp+1 = Argmin
v

[
∥γ ⊙AS(v)∥1 +

1

2
⟨dp+1 − v,dp+1 − v⟩S

]
,

(C.3.2)

initialized with h0 = 0.Instead of looking for the solution as a decomposition signal/noise (ĥ, N̂), we seek
the decomposition in terms of signal/missing data (ĥ, d̂m). To this aim, we change va-riables similarly to Eqs. (6.2.3-6.2.4) that link the noise variable q and the missing datavariable u. This relation writes :

dg +Mnsamp + u = hp + q . (C.3.3)
By definition :

np+1gap = dg −Mhp +Mnsamp , (C.3.4)
and the constraint on the noise solution reads :

np+1gap =Mq , (C.3.5)
Combining both with the change of variables formula provides :

dg −Mhp +Mnsamp =M (dg − hp +Mnsamp + u) . (C.3.6)
because dg ∈ Ran(M). Thus, the constraint on the missing data variable u writes :

Mu = 0 . (C.3.7)
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Considering the alternate gapped data :
d′
g = dg +Mnsamp , (C.3.8)

and its corresponding Fourier transform, the equation on themissing data (for classicalinpainting) reads :
dp+1
m,CI = Argmin

u
Mu=0

1

2

∥∥d′
g + u− hp

∥∥2
2,S

, (C.3.9)
and thanks to the change of variables the following equality holds :

d′
g︸︷︷︸

dg +Mnsamp
+ dp+1

m,CI = hp + np+1
CI . (C.3.10)

Subtracting nsamp from both sides yields :
dg + dp+1

m = dp+1 , (C.3.11)
which can be plugged in the equation for hp+1 :

hp+1 = Argmin
v

[
∥γ ⊙AS(v)∥1 +

1

2

∥∥dp+1 − v
∥∥2
2,S

]

= Argmin
v

[
∥γ ⊙AS(v)∥1 +

1

2

∥∥dg + dp+1
m,CI − (I −M)nsamp[k]− v

∥∥2
2,S

]
(C.3.12)

before expanding the quadratic norm :∥∥dg + dp+1
m,CI − (I −M)nsamp[k]− v

∥∥2
2,S

=
∥∥dg + dp+1

m,CI +Mnsamp[k]− v
∥∥2
2,S

+ ∥nsamp[k]∥22,S
− 2ℜ⟨dg + dp+1

m,CI +Mnsamp[k]− v,nsamp[k]⟩S .(C.3.13)
As we are optimizing with regard to the variable v, we can remove all the terms thatare independent of it. Finally hp+1 is defined as :
Argmin

v

[
∥γ ⊙AS(v)∥1 +

1

2

∥∥dg + dp+1
m,CI +Mnsamp[k]− v

∥∥2
2,S

+ℜ⟨v,nsamp⟩S
]
. (C.3.14)

The cost function :
JM.I.(v,u) =

[
∥γ ⊙AS(v)∥1+

1

2
∥dg + u+Mnsamp[k]− v∥2

2,S
+ℜ⟨v,nsamp⟩S

]
, (C.3.15)

is block-convex and its minimum can be reached through :
dp+1
m,CI = Argmin

u
Mu=0

JM.I.(hp,u) ,

hp+1 = Argmin
v

JM.I.(v,dp+1
m,CI) ,

(C.3.16)

with initialization h0 = 0. We recognize the form of a BCD algorithm, hence justifyingthe convergence of the system (C.3.2) to the global minimum of the cost function JM.I..
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C.4 Solving thenoisewith theChambolle-Pockalgorithm

To keepnotations compact, wewill respectively denoteD = RNT×2 andD = C(2Nf+1)×2

the time and frequency domains.
C.4.1 Primal-dual formulation

Chambolle and Pock developed the primal-dual algorithm to solve problems withthe general form :
Argmin

x∈D
G(x) + F (Kx) , (C.4.1)

whereK is a matrix, F and G are convex functions also satisfying some extra assump-tions [3] not reminded here.Denoting by K∗ the conjugate operator of K and by F ∗, G∗ the conjugate applica-tions of F,G (see [4] for a definition of conjugate applications), it was shown in [3] thatusing the following primal-dual algorithm :
yp+1 = proxλF ∗ (yp + λKxp) ,

xp+1 = proxτG (xp − τK∗yp+1) ,

xp+1 = xp+1 + θ(xp+1 − xp) .

(C.4.2)

the sequence (xp)p∈N converges to the solution of the optimization problem Eq. (C.4.1).The induction (C.4.2) can be initialized with arbitrary x0 ∈ D, y0 ∈ D and x0 = x0. Theparameters θ ∈ (0, 1) and λ, τ are chosen to fulfill the criterion :
τλL2 < 1 , (C.4.3)

where L denotes the norm of the matrixK. The proximal function proxαf is defined fora function f and a real α > 0 by :
proxαf (u) = Argmin

z

[
αf(z) +

1

2
∥z − u∥22,2

]
. (C.4.4)

In the present context of gapped data in LISA, we have to minimize a function de-fined in the Fourier domain D (where the PSD is diagonal) subjected to the constraint
u ∈ Ker(M) expressed in the time domain D. The inpainted noise within the gaps issolution of Eq. (6.2.6) reminded here :

np+1
CI = Argmin

np+1
gap =Mq

1

2
∥q∥22,S

= Argmin
q

1
[
np+1
gap =Mq

]
+

1

2
∥q∥22,S , (C.4.5)

where np+1
gap = dg −Mhp+1 and the characteristic function 1 satisfies :

1[np+1
gap =Mq] =

{
0 if np+1

gap =Mq

+∞ otherwise . (C.4.6)
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This problem is amenable to a resolution with the Chambolle-Pock algorithm with thefollowing identification : 
Kv = S−1/2v[k] ,

F (v′) = 1
2
∥v′∥22 ,

Gp(v) = 1[dg −Mhp+1 =Mv] .

(C.4.7)

After some algebra involving Moreau’s identity, we obtain :
proxτGp

(v) = (dg −Mhp+1) + (Id −M)v , (C.4.8)
proxαF (v

′) =
1

1 + α
v′ , (C.4.9)

proxλF ∗(v) =
1

1 + λ
v . (C.4.10)

C.4.2 Preconditioned formulation
The parameters τ and σ are constrained by Eq. (C.4.3) involving the norm of thema-trix K , i.e. the norm of the inverse square root of the noise PSD. Since this PSD is veryill-conditioned, we will have to select very small τ, λ to satisfy Eq. (C.4.3) which leadsto a slow convergence. This calls for a preconditioning of the primal-dual formulationalong the lines of [5]. The main idea consists in changing the inner products equippingthe timeD and frequency D domains. This results in a mere modification of the proxi-mal operators used in the iteration (C.4.2) which leaves its computational complexitybasically unchanged.We thus define new prox operators using two symmetric definite positive matrices

T and Λ :
proxDG(u) = Argmin

z
G(z) +

1

2
∥u− z∥22,2,T , (C.4.11)

proxDF (u) = Argmin
z

F (z) +
1

2
∥u− z∥22,2,Λ . (C.4.12)

The preconditioned primal-dual algorithm writes :
yp+1 = proxDG (yp + ΛKxp) ,

xp+1 = proxDF (xp − TK∗yp+1) ,

xp+1 = xp+1 + θ(xp+1 − xp) ,

(C.4.13)

with the same initialization as before at arbitrary x0 ∈ D, y0 ∈ D and x0 = x0. Thisalgorithm converges if the norm of the matrix Λ1/2KT 1/2 is (strictly) smaller than 1.In the case of LISA data with a known PSD Σ, we chose the following :
Λ = S1/2 , (C.4.14)
T = min(S1/2) . (C.4.15)

Thanks to this choice, the prox operators can still be computed in closed form.
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C.5 Effective computation of KL-Divergence
For a frequency fk, let us define a neighborhood of size nk :

Ink
(fk) = {fj}k−nk

2
≤j≤k+

nk
2
. (C.5.1)

Then defining :
Ω(fk) = {Re(ηjI), Im(ηjI), j ∈ Ink

(fk), I ∈ {A,E}} , (C.5.2)
an approximation 1 of Kullback-Leibler divergence is given by :

D̃KL(fk) =
1

2

(
V[Ω(fk)] +E[Ω(fk)]

2 − 1− lnV[Ω(fk)]
)
, (C.5.3)

whereV[Ω(fk)] andE[Ω(fk)] respectively denote the variance and the expectation overthe elements of Ω(fk).For the plots, we chose a window width of ∆f = 0.1 mHz with an overlap of fre-quencies between two consecutive estimations of the divergence.

C.6 Inpainting behavior on a specific GB
The study was conducted choosing the parameters reported in Table C.2 for theconsidered GB signal :

Parameter Value

Frequency f0 = 3mHz
Frequency Derivative ḟ0 = 2.04973995 · 10−18Hz2

Ecliptic Latitude β = 0. Rad
Ecliptic Longitude λ = −2.18009 Rad
Amplitude h0 = 1.76276 · 10−22 Strain
Inclination ι = 0.523599 Rad
Polarization ψ = 3.61909315 Rad
Initial Phase ϕ0 = 2.97459105 Rad

Table C.2 – Parameters values used to generate the GB signal used for the performance assessment.
These parameters are those needed to create a GB signal by the LDC code [6].

C.7 Algorithms Parameters
Signal extraction : We refer to [7] for details about the implementation of the si-gnal extraction algorithm for ungapped data and the tuning of its parameters.
1. In the sense that we consider that the KL divergence is constant over a few consecutive frequencybins
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ϵ = 10−3 : Convergence parameter for the BCD algorithm (global convergence pa-rameter).
ϵCP = 10−5 : Convergence parameter for the Chambolle-Pock algorithm.
Nit,BCD = 20 : Maximal number of iterations for the BCD algorithm.
Nit,CP = 500− 2, 000 : Maximal number of iterations for the Chambolle-Pock algo-rithms for small/medium and large gaps.
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Annexe D

Learning Based representation

D.1 Open source code
IAE [1] code is open source and canbe foundonline at https://github.com/jbobin/

IAE on version 3 of the GPL (GPLv3).

D.2 Notation index & definitions
Norm 1 : for a signal h in discrete Fourier domain, denoting h = {h[k]}k :

∥h∥1 =
∑
k

|h[k]| . (D.2.1)
Norm 2 : for a signal h in discrete Fourier domain, denoting h = {h[k]}k :

∥h∥22 =
∑
k

|h[k]|2 =
∑
k

h[k]h[k]∗ , (D.2.2)
where h[k]∗ is the complex conjugate of h[k].

D.3 Simulation parameter settings

D.3.1 Parameter space
Our training, validation and test sets are composed of waveformswhich parametersare sampled under the statistic distributions described in Tab.D.1. The waveforms wereproduced using the LDC code [2], with observation parameters set as follow :
Total Observation duration : Tobs = 31457280 s (for one year of data)
Time step : ∆t = 15 s

D.3.2 IAE model parameters
The sets used for the learning and the tests are composed of :
Training set : 5, 000 waveforms
Validation set : 1, 000 waveforms
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Parameter Prior

Frequency f0 ∼ U([2mHz, 3mHz])
Frequency Derivative ḟ0 = 0

Ecliptic Latitude sin(β) ∼ U([−1, 1])

Ecliptic Longitude λ ∼ U([0, 2π])

Amplitude Computed to obtain the desired norm
Inclination cos(ι) ∼ U([−1, 1])

Polarization ψ ∼ U([0, 2π])

Initial Phase ϕ0 ∼ U([0, 2π])

Table D.1 – The algorithms will be tested on a set of 1, 000 waveforms which parameters have beenchosen according to the the laws reported here.

Test set : 1, 000 waveforms
The network parameters are chosen as :
Noise level : σtrain = 0.01

Regularization parameter : µ = 1, 000

Training duration : Niterations = 2, 500

D.4 Signal-to-noise ratio
In [3], the SNR is defined by :

SNR2 = 4ℜ

[∫ fmax

0

df
X̃(f)X̃∗(f)

Sn(f)

]
. (D.4.1)

Discretizing this equation results in :
SNR2 = 4ℜ

[
df

∑
0≤k≤K

X̃[k]X̃∗[k]

Sn[k]

]
. (D.4.2)

Now, the one-sided PSD Sn is defined by :
Sn[k] = E

[
2|XFFT(k)|2∆t

N

]
= E

[
2|XFFT(k)|2∆t2

Tobs

]
, (D.4.3)

where XFFT is the Fourier transform of X produced by python FFT, X̃ = ∆tXFFT and
df = 1/Tobs.Now, when simulating the noise as :

nI [k] = σ[k](G(0, 1) + iG(0, 1)) , (D.4.4)
we get :

E

[
|X̃[k]|2

]
= E

[
∆t2|XFFT[k]|2

]
= 2σ[k]2 = σeq[k]

2 . (D.4.5)
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Thus :
Sn[k] = 2σeq[k]

2df . (D.4.6)
Hence :

SNR2 = 4ℜ

[
df

∑
0≤k≤K

X̃[k]X̃∗[k]

Sn[k]

]
= 4ℜ

[
df

∑
0≤k≤K

X̃[k]X̃∗[k]

2σeq[k]2df

]

= ℜ

[ ∑
0≤k≤K

X̃[k]X̃∗[k]

σ[k]2

]

=
∑

0≤k≤K

|X̃[k]|2

σ[k]2
. (D.4.7)

Now, when considering multiple noise-decorrelated channels, we define the total SNRas :
SNR2total = SNR2

A + SNR2
E . (D.4.8)

D.5 Anchor Points selection

Some of the APs selected by the process described in Section 7.2.3 are presented inFig.D.1.

Figure D.1 – Several APs selected by the process described in Section 7.2.3. There is a widemorphologicaldiversity.
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D.6 Estimating the shift
De facto, solving Eq.(multi-BSP) is not trivial – in particular because it requires toestimate the shift. To make the resolution easier, we consider that the shift can be ob-tained directly from comparing the observation as the delaymaximizing the correlation

betweenA(k)·Ψ
(
{λ(k)i }i

) and the residual s−∑k−1
j=1 Dτj

[
A(j) ·Ψ

(
{λ(j)i }i

)]. This correla-
tion is computed according to the method investigated in [4]. The overall minimizationis done using JAX [5] minimizers that perform well in such cases.
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Annexe E

Synthèse en français

E.1 Introduction
Cette thèse porte sur la caractérisation des systèmes binaires galactiques (GBs) parondes gravitationnelles dans le cadre de la mission LISA (Laser Space InterferometerAntenna) [1]. LISA est un détecteur spatial d’ondes gravitationnelles dont le lancementest prévu en 2034. Constitué de trois satellites formant des bras interférométriques de2.5 millions de km de longueur, il sera capable de détecter des sources d’ondes gra-vitationnelles de fréquences beaucoup plus faibles que les observatoires terrestres.Parmi elles, les scientifiques estiment que les binaires galactiques seront des sourcesomniprésentes, car notre galaxie en compte plusieurs millions. Toutefois, seulementquelques dizaines de milliers seraient potentiellement identifiables, car ces sourcessont de faible amplitude. De plus, LISA ne présente qu’un nombre limité de canauxd’observation et mesurera la somme de ces signaux. Dans ce contexte, les caractéri-ser individuellement est un véritable défi car d’autres sources d’ondes gravitationnellessont, elles aussi, présentes. De plus, LISA sera sujet à un bruit instrumental complexeet présente de nombreux artéfacts (interruptions de prises de données, glitches) [2].L’analyse des données LISA doit tenir compte des caractéristiques du bruit et desartéfacts et prouver qu’elle est robuste face à eux. C’est dans ce cadre que je proposed’introduire des méthodes non paramétriques d’analyse de données ; ces méthodes,si elles ne permettent pas l’identification directe des systèmes, sont très complémen-taires avec l’approche Bayésienne qui est la plus représentée aujourd’hui au sein duconsortium. Elles proposent un cadre permettant d’intégrer facilement la présence debruit et d’artéfacts dans les données.

E.2 Modélisationparcimonieusedes signaux issusdebi-
naires galactiques

Modélisation parcimonieuse
La parcimonie [3; 4; 5] est un cadre qui convient particulièrement bien aux signauxde GB. En effet, les GB émettent des signaux lisses, stationnaires et presque sinusoï-daux. Sur la base de cette observation, lameilleure solution est de procéder à leur étudedirectement dans le domaine de Fourier où toute l’information se rassemble principa-lement sur quelques atomes de Fourier. Par conséquent, nous pouvons dire qu’ils sont
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Figure E.1 – Qualité d’approximation QdB d’un signal GB en fonction du nombre d’atomes de Fourier∥∥∥ĥ∥∥∥
0
utilisés pour approcher le signal. Deux régimes sont observables : les 40 premiers atomes contri-

buent fortement à améliorer la qualité de la solution. Au-delà, tout atome supplémentaire considéré necontribue que faiblement à l’amélioration de la qualité d’approximation.

naturellement faiblement parcimonieux dans le dictionnaire des atomes de Fourier.Cette affirmation peut être illustrée par un exemple très simple. La Fig.E.1 montrecomment le nombre de coefficients de Fourier (et donc d’atomes de Fourier) utiliséspour approcher le signal impacte la qualité de l’approximation QdB. L’évolution de laqualité en fonction du nombre de coefficients utilisés pour l’approximation évolue endeux temps. Au début, la pente de progression est forte : chaque coefficient ajoutécontribue fortement à l’amélioration de la qualité du signal reconstruit. Mais au-delàd’un certain nombre de coefficients (la limite se situe autour de 40 coefficients danscet exemple), la pente se casse et l’amélioration apportée par l’ajout d’un coefficientsupplémentaire est beaucoup plus faible. Néanmoins, en présence de bruit, la courbede récupération est dégradée et la tâche d’estimer le signal malgré le bruit devient unvéritable défi.
Application & Résultats

Nous proposons de construire une approximation parcimonieuse d’un jeu de me-sures bruité afin de séparer les signaux GB du bruit. Cette séparation s’appuie sur unalgorithme de type LASSO [6] pour lequel nous proposons plusieurs versions permet-tant de prendre en compte plusieurs canaux d’information ainsi qu’une modélisationbasique de la morphologie des signaux recherchés. Ce dernier point s’appuie sur lamise en place d’une parcimonie dite "par blocs" [4; 3] permettant de traiter conjoin-tement des clusters d’information. Ces blocs sont adaptés aux mesures via la mise enplace d’un arbre (algorithme dit "BlockTree") et contribuent fortement à améliorer laqualité de reconstruction du signal ainsi que les capacités de détection. Nous effec-tuons par la suite une étude de performances détaillée afin de mieux caractériser lecomportement du modèle. Ce travail a conduit à une publication [7].Nous avons appliqué notre modèle au cas proposé lors du LISA Data Challenge 1 [8]sur l’ensemble des binaires de vérification (challenge 1-3). Lamesure était composée de10 signauxGB entâchés de bruit instrumental complexe. En Fig.E.2 nous présentons l’es-timation de signal que produit notre modèle. Toutes les sources ont été identifiées etaucune "fausse détection" (faux positif) n’a été observée. Les signaux reconstruits dans
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Figure E.2 – Application au LDC 1-3 : extraction des signaux GB à partir demesures bruitées simulées parmodélisation parcimonieuse. Le signal réel est représenté en bleu et le signal estimé par notre modèleest représenté en orange. Les solutions globales sont représentées en ligne supérieure, et des zoomssont représentés sur la ligne inférieure. Gauche : solutions dans le domaine de Fourier, avec un zoomsur le 10ème pic en partant de la gauche.Droite : solutions dans le domaine temporel, avec un zoom surune période temporelle d’environ 45 minutes. Le modèle a extrait un signal dont la phase correspondexactement à celle du signal réel. En revanche, l’amplitude est moins bien estimée.

le domaine temporel ont une phase qui coincide très bien avec celle du signal recher-ché, mais l’amplitude est moins bien estimée. Ce dernier point pourrait être amélioréen prenant mieux en compte les spécificités des signaux GB.

E.3 Corriger les données manquantes par inpainting
LISA subira des interruptions temporelles de prises de données de fréquences etdurées variables [2]. Nous montrons que ces interruptions peuvent impacter la qualitéd’identification des GB car elle se fait directement dans le domaine de Fourier pour desraisons de coûts calculatoires.Prendre en compte ces interruptions dans l’analyse pourrait se faire simplement sil’estimation des paramètres se faisait sur les données temporelles. Mais le coût calcula-toire serait alors beaucoup plus élevé. Afin de pouvoir continuer à réaliser l’analyse di-rectement dans le domaine de Fourier même en présence d’interruptions de prises dedonnées, nous proposons uneméthode consistant à estimer les données manquantes– à la fois le signal et le bruit – via deux algorithmes d’inpainting. Dans les deux cas,l’estimation jointe du bruit est nécessaire en raison des caractéristiques du bruit ins-trumental.Le premier algorithme, appelé Inpainting Classique, est entièrement déterministe etne peut recouvrir que des bruits basses fréquences dans les périodes d’interruptions.Le deuxième, appelé Inpainting Modifié, et une variante du premier permettant de re-couvrir les bonnes distributions de bruit au niveau des trous. La Fig.E.3 représente unbruit typique estimépar le premier algorithmedans un trou.Malgré une estimation trèslisse du bruit, la transformée de Fourier du signal ainsi corrigé admet bien un spectre debruit qui correspond à celui attendu, modulo une perte de puissance (due à l’absencede bruits haute fréquence dans les trous). L’algorithme d’Inpainting Modifié permet de
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Figure E.3 – Haut : Estimation de bruit réalisée par un de nos algorithmes d’inpainting (C.I.) au niveaud’une interruption temporelle de prises de données. Cet algorithme peut uniquement recouvrir les fré-quences de bruit dont la longueur de corrélation est supérieure à la taille du trou. Bas : Comparaisonentre l’amplitude du bruit pour un signal troué (bleu) et un signal inpainté (orange). Dans le domaine deFourier, le spectre du bruit a bien été corrigé de l’empreinte des trous.

Figure E.4 – Comparaison des distributions a posteriori obtenues par échantillonnage des transforméesde Fourier d’un signal complet (vert), d’un signal troué (bleu) totalisant 28% de pertes et du même signaltroué corrigé par inpainting (orange). L’estimateur utilisé est le maximum de la postérieure, et doit serapprocher le plus possible de la valeur vraie (trait rouge). Alors que l’estimation sur des données trouéesdonne lieu à un biais dans les paramètres estimés, l’inpainting permet de corriger ce biais.

corriger cette perte de puissance et de recouvrir une distribution de bruit très similaireà celle attendue.
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Dans les deux cas, le signal est efficacement recouvert en utilisant le modèle parci-monieux mis au point auparavant. Les algorithmes ont été éprouvés pour des pertesallant jusqu’à 28% des données totales observées. Les résultats de l’étude détaillée descomportements des algorithmes ont été publiés [9].La Fig. E.4 illustre l’impact que peut avoir une telle correction de signal sur l’esti-mation de 3 paramètres liés à un signal GB : la fréquence centrale f0 et la positiondans le ciel β, λ. Alors que travailler directement sur des données trouées (avec 28%de donnéesmanquantes) biaise l’estimation des paramètres, travailler sur les donnéescorrigées produit une estimation des paramètres très similaire au cas où toutes lesdonnées sont observées.

E.4 Utiliser un modèle appris pour mieux caractériser
les signaux binaires galactiques

Figure E.5 – Principe de l’IAE : dans le domaine direct, il n’est pas possible de décrire n’importe quel signal
s comme une combinaison linéaire des points d’ancrages {ei} car les données sont trop complexes. Onpeut toutefois apprendre une transformation non-linéaire Φ telle que, pour n’importe quel signal GB s,
Φ(s) puisse être exprimé comme une combinaison linéaire des transformations des points d’ancrages
{Φ(ei)}i.

On touche à la limite du modèle de représentation parcimonieuse lorsqu’on com-mence à s’intéresser aux signaux GB individuellement. En effet, l’hypothèse de parci-monie ne permet pas de séparer des signaux de fréquences proches, ni de caractériserde manière précise la morphologie du signal détecté. Nous avons donc développé unnouveau modèle de faible dimensionnalité, toujours non-paramétrique 1 et capable dereprésenter de manière précise la diversité morphologique des signaux issus de GB.Nous avons choisi d’utiliser un modèle non linéaire en raison de la non-linéarité quiexiste entre les paramètres physiques d’un système et le signal correspondant observé.Dans ce contexte, les Auto-Encodeurs sont les modèles non-linéaires construits par ap-prentissage qui donnent les meilleurs résultats [10]. Parmi tous les modèles existants,
1. Par cela, nous entendons que la morphologie du signal est modélisée indépendamment des para-mètres physiques qui ont servi à générer le signal.
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Figure E.6 – Exemple d’approximation d’un signal GB (en pointillés bleus) par le modèle IAE (en vert) etpar une PCA à 9 éléments (orange) en échelle linéaire (haut). La ligne basse représente le logarithme dumodule des signaux réel et approchés. L’IAE donne une meilleure approximation que la PCA car la PCAn’arrive pas bien à capturer toutes les variations du signal.

nous en avons sélectionné un qui permet d’apprendre demanière efficace à partir d’unensemble d’entraînement de taille réduite : l’Auto-Encodeur Interpolatoire (IAE) [11; 12].
Le fonctionnement de l’IAE est illustré en Fig.E.5 : on considère un ensemble d’ap-prentissage Ttrain à partir duquel nous étiquetons un certain nombre d’éléments en tantque "points d’ancrage" (ei sur la figure). Nous cherchons maintenant à apprendre unetransformation non linéaire Φ telle que la transformée de tout élément de l’ensembled’apprentissage s, Φ(s), puisse être exprimée comme une interpolation linéaire destransformées des points d’ancrages {Φ(ei)}i. De facto, cela revient à chercher un do-maine alternatif dans lequel les données ont une représentation linéaire. En parallèle,nous apprenons également un décodeur Ψ qui peut retransformer les données inter-polées en signaux GB. La réduction de dimensionnalité se fait au moment de l’interpo-lation : si l’on choisit peu de points d’ancrages, alors lemodèle sera de faible dimension.
Une partie du travail réalisé pour la construction du modèle est liée au choix "opti-mal" de ces points d’ancrages. Une autre partie se concentre sur les applications pos-sibles, à savoir : générer un modèle approximatif de signaux GB de faible dimension,débruiter des observations, détecter la présence de signaux GB au sein d’une mesurebruitée, mais aussi séparer des sources GB proches et réaliser une estimation rapidepartielle des paramètres physiques correspondant au signal.
La Fig.E.6 illustre la possibilité d’approcher des signauxGBpar desmodèles de faibledimension ; on compare avec un modèle linéaire de même dimensionnalité, à savoirune reconstruction basée sur les vecteurs principaux d’une PCA 2 apprise sur l’ensembled’entrainement. Si l’on contraint lemodèle à avoir une très faible dimensionnalité, alorsle modèle linéaire approche très mal les signaux car ils sont trop complexes. En re-vanche, le modèle appris arrive à représenter les données demanière précise. De plus,il est possible d’extraire des informations plus précises sur la source qui a émit le signal,comme typiquement sa position dans le ciel.
2. Principal Component Analysis
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E.5 Conclusion
Nous résumons ici les messages à retenir concernant les résultats de cette thèse.

Représentation parcimonieuse des signaux : Nous avons développé un modèlebasé sur une hypothèse très simple qui permet d’obtenir une estimation instantanéedes signaux GB sous-jacents. Il fonctionne indépendamment du nombre de sources.Ce type de modèle peut être utilisé dans les cas où nous ne connaissons pas préci-sément la forme d’onde du signal que nous recherchons, mais nous connaissons cer-taines de ses caractéristiques qui pourraient être utilisées pour l’identifier malgré tout.Il existe également une application potentielle avec la détection et la suppression ra-pide des glitches. A plus grande échelle, la modélisation parcimonieuse pourrait êtreutilisée pour opérer la séparation des sources.
Corriger les données manquantes par inpainting : Nous avons proposé deux al-gorithmes qui peuvent atténuer l’impact des lacunes des données sur leur analyse. Enparticulier, la distribution du bruit est récupérée, et les signaux sont détectés correcte-ment. Ces algorithmes recréent le signalmanquant et le bruit manquant, et le temps detraitement est indépendant du nombre de sources détectées : toutes les sources sontgérées simultanément sans avoir à les identifier individuellement. Les algorithmes sesont avérés efficaces avec jusqu’à 28% de données manquantes, et il a été démontréqu’ils corrigeaient les distributions a posteriori de l’identificationMCMCsur un exemple.Bien entendu, nous aimerions étendre cet algorithme au contexte où plusieurs typesde sources sont présents – en particulier les transitoires dans le domaine temporel.L’algorithme d’inpainting généralisé devrait conserver une disposition similaire, alter-nant entre l’estimation du signal et du bruit. Nous souhaitons également comparer laméthode d’inpainting avec celle proposée dans [13].
Représentation apprise des signaux GB : Nous avons introduit un modèle basé surun auto-encodeur interpolatoire qui garantit la faible dimensionnalité de la représen-tation sous-jacente. Grâce à cette propriété, le processus de débruitage est efficace etpeut conduire à des taux de détection élevés. De plus, l’ensemble d’apprentissage estmaintenu à une taille acceptable. De nombreuses autres applications peuvent être en-visagées, comme la compression de banques de modèles ou la séparation de sources.Il existe de nombreux autres points à étudier : tout d’abord, une amélioration est at-tendue lors du traitement conjoint de tous les canaux d’information. Ensuite, l’espacelatent a égalementmontré des propriétés organisationnelles qui pourraient conduire àune estimation rapide des paramètres ; ceci devrait être étudié de manière approfon-die. Enfin, nous pourrions bien sûr développer des modèles similaires pour d’autrestypes de sources ou même pour les glitches.
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Titre : Caractérisation des systèmes binaires galactiques par ondes gravitationnelles
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Résumé : Le futur observatoire spatial d’ondes
gravitationnelles LISA ouvrira une nouvelle fenêtre
pour la mesure des ondes gravitationnelles, per-
mettant d’observer des sources difficilement vi-
sibles avec les observatoires terrestres actuels.

Parmi ces sources, la détection des binaires ga-
lactiques promet une richesse d’informations sans
précédent, mais soulève également plusieurs dé-
fis d’analyse de données. En particulier, le grand
nombre de sources attendues et la présence à la
fois de bruit et d’artefacts entachant les données

nécessitent le développement de méthodes d’ana-
lyse robustes.

Grâce à une modélisation simple des signaux
recherchés, nous montrons qu’il est possible de dé-
tecter les signaux en présence de bruit et de les esti-
mer. Nous expliquons ensuite comment ce modèle
peut être utilisé pour atténuer efficacement l’im-
pact des données manquantes sur l’analyse. Enfin,
nous étudierons ce qu’un nouveau modèle appris
peut apporter en termes de caractérisation du si-
gnal.

Title : Characterization of galactic binaries by gravitational waves
Keywords : Gravitational waves, Galactic binaries, Sparse modeling, Missing data, Inpainting, Learned
representation, Auto-encoder

Abstract : The forthcoming space-based gravita-
tional wave observatory LISA will open a new win-
dow for the measurement of gravitational waves,
making it possible to observe emitting systems
hardly visible with the current Earth-based obser-
vatories.

Among these sources, the detection of galac-
tic binaries promises an unprecedented wealth of
information about these systems, but also raises
several challenges in signal processing. In particu-
lar the large number of expected sources and the

presence of both complex instrumental noise and
artifacts tainting the data call for the development
of robust methods.

Through simple modeling of the sought si-
gnals, we show that it is possible to detect them
accurately in presence of instrumental noise and to
recover the signals. We then explain how this mo-
del can be used to efficiently mitigate the impact
of missing data on the analysis. Finally, we inves-
tigate what a new learning-based model can bring
in terms of signal characterization.
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