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Abstract

The forthcoming space-based gravitational wave observatory LISA will open a new
window for the measurement of gravitational waves, making it possible to observe
emitting systems hardly visible with the current Earth-based observatories.

Among these sources, the detection of galactic binaries as sources of gravitational
waves promises an unprecedented wealth of information about these systems, but also
raises several challenges in signal processing. In particular the large number of expec-
ted sources and the presence of both complex instrumental noise and artifacts tainting
the data call for the development of robust methods.

We describe here an original non-parametric recovery of the imprint of galactic bi-
naries in measurements affected by instrumental noise typical of the space-based gra-
vitational wave observatory LISA. This method, based on a denoising procedure, aims
at separating from noise the sum of all signals coming from galactic binaries. Its per-
formance is sturdily benchmarked and its applicability is successfully demonstrated on
a simple example involving verification galactic binaries recently proposed in LISA data
challenges (LDC 1-3).

We then show how to make the most of this simple model to mitigate the impact
of one of the most problematic type of artefacts : missing data. Whether being plan-
ned or not, gapped data reduce our ability to detect faint signals like galactic binaries
and increase the risk of mis-detection and biased identification. Inspired by advances
in signal processing, we introduce a non-parametric inpainting algorithm based on the
sparse representation of the galactic binary signal in the Fourier domain. In contrast to
traditional inpainting approaches, noise statistics are known theoretically on ungapped
measurements only. This calls for the joint recovery of both the ungapped noise and
the galactic binary signal. This process limits noise leakage and recovers accurately the
missing signal to the extent that it can un-bias an identification process conducted on
the corrected data even when about 30% of the data is lost. Additionally, we highlight
that the proposed algorithm produces a statistically consistent ungapped noise esti-
mate. We further evaluate the performances of the proposed inpainting methods to
recover the gravitational wave signal on LDC 1-3.

Finally, a more robust characterization of galactic binaries signals calls for a more
accurate modeling of galactic binaries signals. We propose a non-parametric learning-
based approach to galactic binaries signal modeling resulting in several promising ap-
plications for LISA. Among them are the signal representation in a restricted, low di-
mensional basis, but also signal denoising, galactic binaries detection, source separa-
tion and fast parameter partial estimation. The model performances are assessed over
these different applications.

Keywords : Gravitational waves, Galactic binaries, Sparse modeling, Missing data, In-
painting, Learned representation, Auto-encoder



Résumé

Le futur observatoire spatial d'ondes gravitationnelles LISA ouvrira une nouvelle
fenétre de mesure des ondes gravitationnelles, permettant d'observer des systemes
émetteurs difficilement visibles avec les observatoires terrestres actuels.

Parmi ces sources, la détection de binaires galactiques comme sources d'ondes gra-
vitationnelles promet une richesse d'informations sans précédent sur ces systemes,
mais souléve également plusieurs défis dans le traitement du signal. En particulier, le
grand nombre de sources attendues et la présence a la fois de bruit instrumental com-
plexe et d'artefacts entachant les données nécessitent le développement de méthodes
robustes.

Nous décrivons ici une méthode originale de reconstruction non paramétrique de
I'empreinte des binaires galactiques dans les mesures affectées par le bruit instrumen-
tal typique de l'observatoire spatial d'ondes gravitationnelles LISA. Cette méthode, ba-
sée sur une procédure de débruitage, vise a séparer du bruit la somme de tous les
signaux provenant des binaires galactiques. Ses performances sont solidement éva-
luées et son applicabilité est démontrée avec succes sur un exemple simple impliquant
des binaires galactiques de vérification recemment proposées dans les défis d'analyse
de données LISA (LDC 1-3).

Nous montrons ensuite comment tirer le meilleur parti de ce modéle simple pour at-
ténuer I'impact des interruptions de prises de données. Qu'elles soient prévues ou non,
les données manquantes réduisent notre capacité a détecter les signaux faibles comme
les binaires galactiques et augmentent le risque de mauvaise détection et d'identifica-
tion biaisée. Inspirés par les progres du traitement du signal, nous introduisons un al-
gorithme d'inpainting non paramétrique basé sur la représentation parcimonieuse du
signal binaire galactique dans le domaine de Fourier. Contrairement aux approches tra-
ditionnelles d'inpainting, la statistique du bruit est théoriquement connue uniquement
sur des mesures non lacunaires. Il est donc nécessaire de récupérer conjointement le
bruit et le signal binaire galactique. Ce processus limite les fuites de bruit et récupére
avec précision le signal manquant, au point de pouvoir débiaiser un processus d'iden-
tification mené sur les données corrigées, méme lorsque jusqu’a environ 30% des don-
nées sont perdues. En outre, nous soulignons que l'algorithme proposé produit une
estimation statistiquement cohérente du bruit sans lacune. Nous évaluons ensuite les
performances des méthodes d'inpainting proposées pour récupérer le signal des ondes
gravitationnelles sur le défi LDC1-3.

Enfin, une caractérisation plus robuste des signaux binaires galactiques nécessite
une modélisation plus précise de ces signaux. Nous proposons une approche non-
paramétrique basée sur 'apprentissage pour la modélisation des signaux binaires ga-
lactiques, ce qui donne lieu a plusieurs prometteuses applications a LISA. Parmi celles-
Ci, on trouve la représentation du signal dans une base restreinte et de faible dimen-
sion, mais aussi le débruitage du signal, la détection des binaires galactiques, la sépa-
ration des sources et I'estimation partielle rapide des paramétres. Les performances
du modele sont évaluées sur ces différentes applications.

Motsclés: Ondesgravitationnelles, Binaires galactiques, Modélisation parcimonieuse,
Données manquantes, Inpainting, Représentations apprises, Auto-encodeur
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Notations

The two (or more) bodies problem in gravitation : from Newton to
gravitational waves

?A_}B(t) Newton’s gravitational interaction between A and B

G Gravitational constant, equals to 6.67430 x 10~''m?3. kg~ '.s2
ma, mpg Masses of bodies A and B

ﬁ(t) Distance between bodies A and B

Dy Newtonian gravitational potential generated by A

T At) Coordinates of a random vector, coordinates of body A
My, M Acceleration mass, inertial mass

Gap Einstein’s tensor

Top, T Stress energy tensor

G, 9P Spacetime metric

Mo Minkowski metric

hags Strain of a gravitational wave (metric small variation)

r Radial distance

25 Partial derivative with regard to variable z”

T'(t) Second mass momentum

1 Mass density distribution

x(t),y(t), z(t)  System coordinates with time

R, M,Q

System radial distance to observer, system mass and system orbital frequency

L(t) = L*+ 0L Distance between two test masses, observing a variation 6 L

The LISA project

ht, h* Gravitational waves polarizations

Vo Laser nominal frequency

C(t) Laser frequency fluctuations
y1(t),y2(t) Interferometric measurements

Ly, Ly Michelson interferometer arm lengths

nq (t), N9 (t)

Noises other than laser noise for each arm

13



hy(t), ha(t)

Gravitational wave strain measured for each arm

c Speed of light in vacuum, equals to 299.792.458 m.s™*

X,Y,Z
AET

Pseudo-Michelson interferometric measurements, reconstructed by TDI.

De-correlated TDI

Bayesian Data Analysis for LISA

v(n], V[k]
dd,
h . h;
h,h;
n,n;

sasIJ

E[X]

0,068

0= (emt, eext)
h(0),h.(9)

for BN AL L, o

Data in time domain, data in frequency domain
Measurements for all channels / for channel 1
Signal for all channels / for channel 1

Signal estimator for all channels / for channel 1
Noise for all channels / for channel 1

Cross power spectral density, Cross power spectral density between chan-
nels I and J in frequency domain

Mathematical expectation of random variable X

Waveform parameters, Set of admissible waveform parameters
Separation between extrinsic and intrinsic parameters

Signal for all channels / for channel I corresponding to parameter 6

Parameters for a GB waveform : frequency, frequency derivative, ecliptic la-
titude, ecliptic longitude, amplitude, inclination, polarization, initial phase

Probability density

Log-likelihood

Log-likelihood with regard to waveform parameters
Log-likelihood with regard to intrinsic parameters

Dictionary representing source type m

Sparse signal modeling

T

lallg = >2; Loy = 0]

Dictionary representing the signal

Norm o of hin dictionary T (counts the number of non-zero com-
ponents of a signal h when approximated by T)
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v[K]
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p

Ptree
Preweighting
£2(h, h)
Qap(h, )
Rrp

RFN
ho(SNR)
OMAD
Sers

ry

Norm p of «

Norm 1 of «

Fourier atom for DFT at frequency fx

Inner product of v! and v? reweighted by covariance matrix S
Signal amplitude per Fourier atom for channel I / for all channels
Threshold associated to k-th Fourier atom

Probability distribution of a y? of order Q

Rejection rate

p-value associated to rejection rate p

Threshold associated to k-th Fourier atom, computed at iteration
m

Stopping criteria for threshold computation

Parameter used to compute ™ which values impacts the re-
weighting process

Fourier domain decomposition over disjoint frequency ranges B;
Signal amplitude per neighborhood of Fourier atoms B € B

Threshold associated to Fourier neighborhood B, threshold as-
sociated to Fourier neighborhood B, computed at iteration m

Phase of GB signal with time

Rejection rate associated to BlockTree algorithm

Rejection rate associated to reweighting process

Quadratic relative error made when estimating h by h
Quality factor (also known as Normalised Mean Square Error)
False Positive rate

False Negative rate

Signal's amplitude computed to reach chosen SNR

PSD correction computed for LDC1-3

Corrected PSD used to participate to LDC1-3

Residual on channel I

Inpainting LISA gapped data
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fer(vy)
Dy

Nsamp
ng;rpl
Lgap7
fe

NI
D [K]

F
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Ly, (ar, A)
PIOX., ¢

D,D

T,

gap

Mask time function

Observed gapped data

Missing data

Mask operator

Gapped data

Kernel of operator M

Range of operator M

Identity operator

Noise PSD for a gapped signal

Missing data estimator

Cost function associated with classical inpainting algorithm
Missing data iterative solution, converging to d,,
Signal iterative solution, converging to h

Noise estimator

Dummy variable for missing data. u € Ker(M)
Dummy variable for noise

Gapped estimated noise at iteration p

Noise iterative solution, converging to n

Updated full data at iteration p

Classical inpainting operator (inpaints gapped data v,)

Difference between gapped and inpainted data

Random noise sample drawn according to the noise expected distribution

Gapped noise at iteration p augmented with gapped sample Mngamp

Gap length and period

Cut-off frequency of operator fc;

Whitened noise

Kullback-Leibler divergence at frequency k
Matrix of Fourier coefficients

Noise correlation matrix in time domain
Lagrangian function associated to the problem
Proximal operator of function G

Primal domain, dual domain

16



proxZ(u)  Proximal operator for pre-conditioned algorithm

E,V Expectation, Variance

Learned Representations for GW

M Manifold of plausible GB signals
Otrain Training set physical parameters
s Input element of auto encoder
P Encoder

v Decoder

Ex. Reconstruction error

Terain Training set

Ninput Input size for auto encoder

Tiest Test set

€e; Anchor point

{\i}i Barycentric coordinates

T Interpolator in latent space

ABSP {)\E‘SP(s)} Amplitude and coordinates estimated by BSP

)

{Xi(x)} Barycentric coordinates after interpolation is applied

L, Z Wavelet transform scale

Jmax Maximal scale for wavelet transform

SN Rest Estimated SNR on the recovered waveform

[lest, Test Mean and standard deviation of estimated SN R distribution produced by
IAE for noise-only inputs

Ho, H1 Hypothesis tested with p-value test

SN Rjim Detection limit based on estimated SN R

A(s), A(s), T Multi-BSP amplitudes, barycentric coordinates and delays

Hi Hypothesis associated to the presence of k sources
Atrain Set of barycentric coordinates for all training set elements
{Alest), Barycentric coordinates of an element of the test set
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Chapter 1

Introduction

This thesis deals with the characterization of galactic binary systems by gravitatio-
nal waves in the framework of the Laser Space Interferometer Antenna (LISA) mission.
LISA is a space-based gravitational wave detector scheduled for launch in 2034. By its
design it will be able to detect gravitational wave sources of much lower frequencies
than terrestrial observatories. These include all the galactic binaries in the galaxy - a
few million systems. However, LISA has only a limited number of information chan-
nels and will have to limit itself to measuring the sum of these signals. In this context,
characterizing them individually is a real challenge, in particular because other sources
of gravitational waves are also present, but also because LISA is subject to a complex
instrumental noise and presents many artifacts (interruptions of data taking, glitches).

LISA data analysis must take into account the characteristics of noise and artifacts
and prove that it is robust against them. It is in this context that | propose to introduce
non-parametric methods of data analysis; these methods, if they do not allow the di-
rect identification of the systems, are very complementary with the Bayesian approach
which is most represented today within the consortium. This is a framework that also
allows to integrate easily the presence of noise and artifacts in the data.

In a first step, | show how the classical framework of sparse signal representation
can be adapted to the gravitational wave sources we are looking for. Based on the
simple assumption that the signals of binaries are quasi periodic and therefore sparse
in the Fourier basis, | show that we can have a good detection and reconstruction of
these signals. We easily include the presence of a colored Gaussian noise in the mo-
deling of the data. This first model allowed us to submit a solution to the LISA Data
Challenge 1-3 during which we detected all the sources, and only the injected sources.

| have pushed the capabilities of this model further by showing the benefits it could
bring when interruptions of data taking occur. This particular case can be directly rela-
ted to compressed sensing methods, which [ used to develop algorithms to compensate
for the impact of interruptions on the data - and on the parametric analysis that can be
done with it. These algorithms are able to cope with losses of up to nearly 30% of the
data - which could be a realistic order of magnitude for the mission.

Finally, | propose an alternative approach to sparse modeling that allows to push
the process of galactic binary signal characterization much further. This new approach,
based on learning, allows to accurately represent the galactic binary signals. Such a
model shows very good performances in terms of detection capacity, but also signal
estimation and source separation. It presents interesting possibilities for the LISA mis-
sion because it relies heavily on the compressibility of the signal and on an underlying
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low dimensionality representation. | have conducted an extensive benchmark of its per-
formances and propose many interesting avenues in the context of LISA data analysis.
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Chapter 2

The two (or more)-body problem in
gravitation : from Newton to
gravitational waves

2.1 From Newton to Einstein to gravitational waves

Gravity is a key phenomenon to understand the world around us. Even if it is easily
observable, it took centuries to reach the current description that we make of it. The
development of General Relativity - the theory of Gravitation - in the course of the 20th
century has literally transformed our vision of the world and has not only contributed
to explain many phenomena but also led to many discoveries.

2.1.1 Where Einstein finds a solution to Newton’'s model limits

Newton theory of gravity has long been the best to describe the phenomenon of
gravitational attraction as the equations were simple and it could describe very complex
behaviors, such as Kepler's orbits, ballistics or even the three-body problem.

In this representation, gravitation is seen as a conservative central force (i.e. deriving
from a central potential) ?A%B that a body A with gravitational mass m,4 exerts on a
body B with gravitational mass mp :

mampg @(zﬁ)

Faslt) = —G- . |
A-B(t) G Hz@(t)HQ HA—B%)HQ

(2.1.1)

This force derives from the central potential generated by the mass distribution p des-
cribing the massive bodies :

V20 = 47Gp . (2.1.2)

The Poisson field equation (2.1.2) depends linearly on the mass distribution p [1].
However, in 1859 an important deviation from the model was observed when Mercu-
ry's expected perihelion did not match with the observation [2] by an important margin.
An other phenomenon also challenged this representation : with the rise of atomic
clocks, precise measurements showed that clocks at different gravitational potential
were experiencing different time flows.
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In fact, Newton'’s theory was relying on several implicit axioms : the existence of an
absolute time, the existence of Newtonian potential (2.1.2), the motion equation that
ensues for massive bodies and the equality of inertial mass and gravitational mass.
Moreover, a byproduct of Eq.(2.1.2) is that any movement or change of body A is ins-
tantaneously propagated to body B with infinite speed [1] : there is no delay between
the movement of A and its effect on B.

Einstein designed the theory of general relativity with these elements in mind. Chan-
ging the spacetime geometry was the simplest way to explain the clock deregulation
depending on the gravity potential. One element he could still not explain and that was
considered as an axiom of his theory is the apparent equality between inertial mass
and gravitational mass.

Equivalence principle : (also called "Principle of Relativity") : "Experiments in a suf-
ficiently small freely falling laboratory, over a sufficiently short time, give results
that are indistinguishable from those of the same experiments in an inertial
frame in empty space." [3]).

The very principle of General Relativity is to consider both time and space (i.e. space-
time) as parameters of a geometry which evolution is governed by mass distribution :

Spacetime curved geometry : "Space acts on matter, telling it how to move. In
turn, matter reacts back on space, telling it how to curve" [1].

Based on these principles, the new unknown that has to be understood to describe
the universe is its geometry, and more precisely its metric. Key element of this theory
is Einstein’s field equation :

Gaop = 8mTLp . (2.1.3)

(stated here under classical conventionc=1,G =1").

It explains how matter through the energy-momentum tensor 7,5 acts on spacetime
curvature and metric, as Einstein tensor G,z can be expressed as a non-linear function
of the metric g,5 and its derivatives of order 1 and 2 [1; 3].

Analogy with the electro-magnetic field : Einstein’s equation Eq.(2.1.3) describes
the behavior of spacetime curvature as a function of a source term 7, 5. It is really similar
to Maxwell's electro-magnetic (EM) field equations. In EM, a charged particle moving
in a field is subjected to a force (the Lorentz force) which binds its trajectory. Then
retroactively the charged particle and its movement act as a source term (charge and
current density) for Maxwell's equations, and thus result in variations of the EM field.

Einstein’s equations abide by a similar phenomenon. A free-falling massive body’s
movement is subject to gravitational field through spacetime metric and curvature that
bind its trajectory along the spacetime geodesics. Retroactively, the massive body acts
as a source term for Einstein’s equation and thus plays a role in spacetime’s curvature
and metric variations.

2.1.2 Gravitational waves

As previously stated, Einstein’s equation Eq. (2.1.3) is a non-linear equation which
unknown is the spacetime metric g,5. Confronted with such a complex equation, scien-
tists adopted two strategies. The first strategy was to look for explicit solutions of the

1. This convention will only be used in this section.
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problem with a very simple source term : this resulted in Schwarzschild geometry ([1],
chapter 31) and Kerr-Newman geometry [1], chapter 33). The second one was to try to
linearize Einstein's field equation. But linearize with respect to what? And under what
hypothesis?

As the metric g, is the unknown, the linearization was done under the assumption
that far from any matter source, this metric should be close to Minkovski’'s metric 7,4.
This is directly justified by the equivalence principle; this type of development is called
"Post Minkovskian"= .

The linearized metric writes :

9op = Nag + hap (2.1.4)
~~~ ~~—~ ~—~
spacetime flat. small

metric metric variation

with |h,s| << 1 (the strain). Using Lorentz Gauge (thus performing the corresponding
change of variable) :

_ 1
hog = hop — §na5h , (2.1.5)

with A = h, | (2.1.6)

using Einstein’'s summation convention. Performing this change in Eq. (2.1.3), develo-
ping and keeping only first order terms with regard to h,s, we obtain the following
equation :

Dhap = —167T,5 . (2.1.7)

This is a wave equation with source term 7,4 that admits solutions called gravita-
tional waves (GWs). Still, they were obtained after so many approximations that the
whole scientific community wondered : are these waves real? Or are they only a ma-
thematical artefact coming from the way the theory was stated?

These questions literally split the scientific community for decades between those
who believed in their existence and those who did not - even Einstein was doubtful
toward this result, as too many assumptions were made to obtain a proper, simple
linearized equation.

It is only after their firstindirect detection in 1982 (Taylor, Weisberg and Hulse linked
a a pulsar orbit energy loss to the energy of the GWs they hypothetically emitted [4])
that this was accepted as one of the outcomes - and a proof of validity - of general
relativity. GW first direct detection in 2015 by LIGO-Virgo collaboration (LVC) [5] then
opened a new window to probe the universe around us.

2.2 Gravitational waves signal in a very simplified case:
the galactic binaries

In this section, we show how to compute a first solution of Eq.(2.1.7) based on several
more approximations : the GW source moves slowly (long wavelengths), GW amplitude
is weak and the observer is far away from the source. Even if the solution is not exact,
it is good enough so that we can rely on it to give several semi-quantitative properties
of the expected GW signals.

2. Other types of linearizations are possible, like Post Newtonian developments.
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The computations presented here follow the argument of [3] (chapters 22 and 23).
We tried to detail them as much as possible to to make the text self-contained. More
than an exact result, what we want to outline here is the physical origin of the pheno-
menon and how it affects its surroundings.

GW equation Eq.(2.1.7) is a traditional wave equation with a source term. Using Green
functions we know that the general solution at position Z of space and time ¢ can be
expressed as an integral of the delayed source (here the energy-momentum tensor
Ty

7
, ')

%
T (t — H? —a
2

_>
H?— T

using the convention ¢ = 1. In absence of other interaction than gravitation and under
the assumption that the source has a low velocity (compared to the velocity of light),
the energy-momentum tensor is dominated by the rest mass density p [3] :

20T = 4 / S

, (2.2.1)

2

T = u(t, 2) , (2.2.2)

where pu(t, 7) gives the mass density at time ¢ and position Z’ of space for the system
under study. Let us consider the case of compact binary stars : two bodies with identical
shapes and masses m = M are rotating one around another with null eccentricity.
Choosing the origin of space coordinates as the center of mass of the system and an
orthogonal coordinate system (z,y, z) in which the compact binary stars orbit in the
(zy)-plane, one of the bodies has time coordinates :

x(t) = Rcos(2t)
y(t) = Rsin(Q) , (2.2.3)
z2(t) =0

the other body having opposite coordinates. We understand easily that the mass den-
sity here is only made of the two bodies (and their position in space at time ¢) : u has
finite support in space. Thus, the integral described in Eq.(2.2.1) also has finite support

for 2" within the binary plausible positions.ior an observer at position Z far from the
source (i.e. | Z| = r >> R), we have H7 — 2'|| ~r.Consequently:
2

Eaﬁ(t, ) —— il/d‘"’x’T‘“(t -, ?) . (2.2.4)

r—+oo 1T

Now, taking into account the energy conservation for the energy-impulsion tensor
for flat spacetime (which is, to linear order, equal to our spacetime), we have :

oT8
0xP
for any a € {t,1,2,3}. This is similar to the principle of charge conservation within a

closed system, but generalized to the energy-momentum tensor in a flat spacetime.
Considering first :

=0, (2.2.5)

oT'”
W =0 , (2.2.6)
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and then time-derivating, yields :

0T o [oT"
o Z @{ 875] ' (22.7)

je{1,2,3}

Now, the energy-momentum tensor being symmetric, we can swap the indices : T =
T*t. Applying one more time the conservation law Eq. (2.2.5), we get :

82Ttt aQTij 8
= — 2.2.
ot? ‘ 0xt0xI ( )
i€{1,2,3}
j€{1,2,3}
We multiply both sides of the equation by z*z* and we integrate by part :
1 d? = =
ST A3z’ 2R T (t, o) = /dgx' TH(t, 2') . (2.2.9)
We recognize here the second mass moment of classical mechanics :
— ‘ —
I"(t) = /d?’x' 2* Tt ) = /d3zv’ a* " u(t, o) (2.2.10)
and get the final formula :
—ht 2d? .,
h (t, 7) m} ;@ [I (t — T‘)] . (2.2.11)

Before going further, we can notice two important points : first, GW emission is di-
rectly related to the mass distribution and its trajectory with time. Second, as the term
r — t only marks a delayed response and thus has no impact on the signal's amplitude,
the GW amplitude decreases as 1/r. In comparison, EM waves decrease as 1/r? : for the
same energy density of emission, an observer at distance r from the emitting body will
see that GW are less attenuated than their EM counterparts.

We can push a bit further the computations to get a more precise modeling of the
signal. For this, we use the trajectory of the binary system presented in Eq.(2.2.3). Let
2M = M + M be the total mass of the system (i.e. the sum of the two body masses).
Using Eq.(2.2.10), the second mass moments (taking into account the two stars) are :

I**(t) = 2M R? cos*(Q2t) = M R? (1 + cos(20t))
I*(t) = 2M R?cos(Q2t) sin(Qt) = M R?sin(20t) (2.2.12)
I%(t) =2MR?sin?(t) = MR? (1 — cos(20t))

All other momenta are zero.

cos (2Q(t —r))  sin(2Q(Ft—r)) 0

sin (2Q(t —r)) —cos (2Q(t —7)) 0 (2.2.13)
0 0 0

- O2MR?
hke@’ ?> _8 R

r—-+00 r

Even if this formula is approximate, it provides insightful features on the GW signal
emitted by a two-body system. Firstly, we get a GW frequency that is twice the orbital
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frequency of the emitting bodies. This is still verified in more precise computations. The
amplitude of the GW decreases as 1/r. Secondly, we can now compute an order of
magnitude of the wave's amplitude, as it is here defined by hy = 8Q22M R? /r. Using data
with representative order of magnitude for galactic binary systems, we get :

802 M R?

r

~ 1072 . (2.2.14)

GW areripples propagating through spacetime. These ripples directly affect the spa-
cetime metric and can be measured. They originate from an asymmetry of the quadru-
polar moment, meaning that any system breaking spherical symmetry can emit GWs.
Among these systems, there are of course the binary systems, but also others like the
asymmetric explosions of supernovae. Similar computations can be performed to de-
termine the signal they emit, but they require different approximations taking into ac-
count the system’s specifics. However, spacetime is very rigid : these perturbations have
a really low amplitude.

2.3 Motivations for GW observation

GW measurement is a new information channel that can be used to probe the Uni-
verse. It will critically complement the EM observations already in use in Astrophysics
and Cosmology. Among the many elements motivating the observation of GWs, let us
list the following :

Multi-messenger astronomy : using GWs, we can detect in advance signals pre-
dicting events with important EM emissions, among which we find some black
hole mergers and supernovae. We can even use GWSs to spot systems with a lo-
wer imprint in the visible spectrum, such as binary neutron stars. Moreover, we
can organise space GW detector - ground GW detector collaborations to observe
on longer runs events which frequency increases with time. Moreover, there will
be synergies between all detector - both ground and space based, detecting GW
or EM waves - such as with SKA [6], the Athena mission [7], LVC and the LISA
mission [8; 9].

A window to unexplored time : As we explained in Section 2.2, GW dampening is
slower than EM wave damping. We could potentially observe phenomena that
occur everywhere in the universe. Not only could we look further, we could also
look "earlier" : no EM observations can be done before the apparition of the
cosmic microwave background about 380.000 years after Big Bang. However,
there is a possibility that GW signals emitted before that moment could be seen

[10].

A new description of our galaxy : some objects are not (or hardly) EM detectable
but could be GW detectable, like galactic binaries. Some objects are hard to de-
tect using EM waves if we are not already aware of their presence. GW detection
can improve cosmological models : the LVC has already started to characterize
the population of compact binary objects emitting GWs in our Galaxy [11].

Discovery potential : We could measure new types of signals corresponding to
new physics. We could also probe several theoretical extensions of GR or per-
form precision tests of GR in the strong coupling regime [10; 12].

25



Flat — GW

light storage arm test mass

Time

light storage arm

test mass test mass

test mass

beam
splitter photodetector

Xa L*

Figure 2.1 - Left : LIGO interferometers detection principle. This is based on Michelson interferometer.
(source : [13]) Right : Test mass motion in spacetime in absence of GWs corresponding to a flat spacetime
(orange, labelled as "Flat") and when a GW is passing (blue, labelled as "GW")

2.4 Gravitational waves observation : how to observe
the non-visible?

GWs may propagate far, but they still have an amplitude so low that it is a real chal-
lenge to measure their imprint. Many experiments were designed to directly detect
them [13], but only few are actually able to do so.

2.4.1 Indirect detection

The existence of GWs was first confirmed in 1982. In their article [4], Taylor and Weis-
berg explain that the decay of the orbital period of the binary pulsar PSR 1913+16 can
exactly be explained by the quantity of energy radiated through GWs. The Nobel Prize
in Physics of year 1993 was dedicated to this discovery and the possibilities it brought
to science.

A few decades later, the Pulsar Timing Array (PTA) [14] method is now presented
to the community as a "natural detector" for GW. It relies on the idea that pulsar emit
extremely periodic EM pulses than can be observed with ground-based detectors like
SKA. Their time of arrival could be perturbed by incoming GW signals. By looking at cor-
relations between arrival delays of the pulses coming from different pulsars, scientists
expect to detect GW signatures indirectly. This work is still ongoing [15].

2.4.2 Direct detection

The first successful direct detection of GWs was realized in 2015 within the LVC colla-
boration, and was awarded the Nobel Prize in Physics of year 2017. The detectors of the
collaboration are based on a laser Michelson interferometer[16] measuring with great
precision the distance between two "free-falling" test masses separated by a wide dis-
tance, as shown in Fig.2.1 (left). The test masses are free from any interaction except
from gravity, and a distance variation between the two can be interpreted as the effect
of a passing GW. Fig.2.1 (right) shows the variation of distance between two test masses
A and B (taking the position of A as a reference) in a flat spacetime when a GW passes.
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The amplitude of the variation remains very small : for a wave propagating along the
z-axis, we can estimate the variation of the distance between two test masses separated
by L* in a flat spacetime. Taking one of the test masses as a reference, and considering
the other one along the z-axis, we get ([3], chapter 16) :

I
L(t) = / dz [1 4 he,(t, 0)}1/2 ~ L*[1+ %hm(t, 0)] . (2.4.1)
0

Thus, writing L(t) = L* + 6L(¢) :

oL 1 o1
= §h”(t’0) ~ 107", (2.4.2)
using the order of magnitude Eqg.(2.2.14) : the wider the arms of the interferometer, the
greater the distance variation § L that should be measured.

For LIGO, the armlength is 4 km (the effective armlength is wider thanks to a complex
assembly of mirrorsincreasing the laser beam optical path length), thus can only detect
phenomena with amplitude that is high (for instance, binary black holes mergers). The
detection capacity of this detector is limited in lower frequencies by the Earth seismic
noise. The detected sources have a frequency around 10% Hz restricting the observation
to certain types of sources [17].

Having an observatory with wider arms and freed from seismic noise would open
many doors in terms of observation. The joint ESA-NASA project "Laser Interferome-
ter Space Antenna" (LISA for short) is an answer to both requirements, as it will be an
interferometer in space with armlength of 2.5 million km.
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Chapter 3
The LISA project

LISA is a space-based GW observatory which has been developed since 1997 as a
collaboration between ESA and NASA. The project experienced a critical phase when
NASA retracted from it in 2011, optimistic prospects were simultaneously triggered by
the first direct detection of GW in 2015 by LVC (announced at the beginning of the year
2016) and the success of the demonstrator LISA PathFinder (LPF) in december 2015.

LPF was a demonstrator aiming at validating the technologies that will be used du-
ring LISA mission. The results were impressive, as final noise levels were much lower
than the requirements. Following these two events, NASA re-entered the project in 2016.
Finally, in June 2017 LISA was selected as a ESA L3 mission; phase A was completed in
December 2021 and we are now in phase B1 that will last until mission validation mid
2024.

The following description of the LISA project is data-analysis oriented, and thus is
non-exhaustive. More details about the mission can be found in [1; 2]

3.1 LISA Objectives and Scientific objectives

LISA measurements are based on the principle of interferometry that described in
Section 2.4.2. Nonetheless, LISA's armlengths were desigend much wider than the ones
of LVC to observe ranges of phenomenon inaccessible to the LVC.

Fig.3.1 displays the known GW sources with regard to their expected emission fre-
quency range. Some events, like merging black hole binaries or supermassive black
holes, are visible by both LISA and Earth-based GW observatories. As many of these
events have EM counterparts, this should lead to fruitful cooperations with the different
kinds of observatories to conduct multimessenger astronomy [3].

A detailed description of sources and associated scientific objectives can be found
in [1; 4; 5]. The main observable sources are :

Massive Black Holes Binaries (MBHBs) : Two massive black holes rotating one around
another during in-spiral phase, ending up merging. The amplitude of the expec-
ted transient signal can become strong at merging time, making it one of the
most visible sources for this mission.

Galactic Binaries (GBs) : Two bodies with similar masses rotating one around ano-
ther, far enough from merging time producing a low amplitude, periodic conti-
nuous signal. It includes white dwarfs, neutron stars but also stellar-origin black
holes. Tens of millions of such systems are present in our Galaxy; among them,
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Figure 3.1 - GW sources sorted according to their expected emission frequencies. Different types of
interferometers are sensitive to different frequency ranges, and thus will observe different phenomena
- with potential overlaps. The "Merging white dwarfs in our Galaxy" represent most part of GB signals
that will be observed by LISA. (Source : https://www.esa.int/ESA_Multimedia/Images/2021/09/The_
spectrum_of_gravitational_waves)

it should be possible to identify the sky position and the physical characteristics
of about 20.000 of them. The GW signals coming from unidentified systems will
form a non-negligible background noise (also called "Confusion Noise"). A more
precise description can be found in [6].

Extreme Mass Ratio In-spirals (EMRI) : A very light body orbiting around a heavy
body. After a long in-spiral phase where the two bodies get closer, the light body
should merge with the heavy body. These systems are expected to produce com-
plex signals that are hard to model. Nonetheless, they could help putting to test
general relativity as the movement of the light body gives a precise cartography
of the gravity field around the heavy body. Itis hard to estimate the detectability
rate of these sources - between 0 and 1, 000 of such events could happen during
the whole mission.

Stellar Origin Black Holes (SOBH) : They are the sources the most detected by LVC.
They should also be visible by LISA in their early in-spiral phase. This calls for sy-
nergies between the two devices : LISA could detect the merger long before it
happens and produce a warning to alert LVC that an event is likely to happen in
a near future.

Stochastic Background : Of cosmological origin, this background was created in
the early universe. Its detection could help understand better the changes that
happen at that time and give new directions regarding cosmological phenomena
that happenedinthe early Universe. Itis one of the few experimental possibilities
to probe this epoch in the history of the Universe.

GW bursts and unforeseen sources : As the first survey observatory scanning the
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gravitational universe in this frequency range, LISA may detect unforeseen sources
and trigger unexpected exciting developments in physics.

Emitted GW signals depend on the sources physical characteristics. If we can mea-
sure the signals, we might be able to trace the characteristics of the bodies, such as
their positions in the Galaxy, their orientation and their masses. LISA greatly differs
from the LVC observatory not only in the frequency range of observation, but also in
the amount of sources that are expected to be seen. When the LVC reports detecting
about 1 source per week [7], LISA will observe thousands of continuous phenomena
superposed to transients GW bursts similar to that of LVC observations.

Many of these sources produce an EM counterpart at critical moments of their life
that are often preceded by GW emission over long time periods. LISA could play the
role of a trigger to forecast EM bursts visible by EM observatories.

3.2 Measurement principle : Time Delay Interferome-
try

N 1AU }; »

Figure 3.2 - Left : The LISA constellation follows the Earth on its orbit around the Sun. It forms a 60 de-
grees angle with the ecliptic plane. (Source : [1]) Right : One of the three spacecrafts of the LISA constel-
lation. Two laser beams are pointing toward the other spacecrafts. (Source :[8])

LISA is a constellation of three satellites separated by 2.5 million km one from ano-
ther. As shown in Fig.3.2 (left), this constellation rotates around its center while follo-
wing the Earth’s orbit around the Sun. The three satellites play symmetrical roles, and
have the same structure illustrated in Fig.3.2 (right).

One satellites is made of two main parts [2] : the interferometer measurement sys-
tem and the disturbance reduction system - insuring the stability of the system even
in presence of disturbances. We introduce here the measurement principle, and we
tackle the noise questions in the next section.

32



to S/C2

Figure 3.3 - Simpliﬁed diagram of the two optical benches aboard a spacecraft and the interferometric
measurements sy, s1, 71, 77 that are done. Each bench has its own laser (p1, p}), making compulsory to
compare the inputs and outputs on the two benches. The optical benches movement A1, A and the
test-masses movements 51,5’ must be taken into account. The real system relies on more than one
laser per optical bench and a more complex optical path. (Source : [9])

3.2.1 Interferometric measurement system

LISA is a constellation of three satellites, also called "spacecrafts". Each spacecraft
(S/C) includes two optical benches. Each one is composed of a laser, a test mass and
two photodetectors [9] performing various interferometric measurements between the
local and incoming laser beams.

Figure 3.4 - GW are transverse waves admitting two types of polarization : h™ and h*, forming an angle
of /4 Rad in the plane orthogonal to the direction of propagation. Were LISA constellation in that plane,
the inter-satellite distance would be affected by the GW in a continuous deformation depending on the
wave polarization. The distance variation measured on each arm will be different. (Source : [2])

The test masses are continuously free falling along a geodesic of the gravitational
field. Thus, any distance variation between the two masses can only be interpreted as
the passage of a GW. Fig.3.4 shows the effect of a passing GW on the LISA constellation
for the two polarizations 4™ and h* : the variation observed for each arm is different
and depends on the polarization of the incoming GW.

On one optical bench, three interferometric measurements based on Doppler ef-
fect are done [2] : a laser beam is emitted by a spacecraft at a nominal frequency, and

33



any passing GW signal modulates the frequency of this beam. This modulation is equi-
valent to a Doppler shift of the laser frequency; it can be measured by comparing the
modulated beam with a laser at nominal frequency. However, this calls for a precise
control of lasers nominal frequency that is hard to reach because many non-coherent
laser sources are used.

To palliate this issue, we compare through interferometric measurements the lasers
emission frequencies with a reference. The Main Interferometer compares the received
laser beam frequency to the bench reference laser frequency (serving as a local oscil-
lator). The Test Mass Interferometer compares the transmitted laser beam frequency
to the bench reference laser frequency. The Reference Interferometer compares the
transmitted laser beam frequency to the other bench reference laser frequency. A sim-
plified version of the assembly is shown in Fig.3.3 : the two optical benches perform
interferometric measurements between the incoming laser beam and the local laser.
Interferometric measurements are also realised between the two benches.

y,(®)

Figure 3.5 - Michelson interferometer with two different armlengths L, L, and two interferometric
measurements y1, yo. The laser is stabilized around frequency vy but has small fluctuations C(t). In this
case, we can find a combination of the delayed measurements depending on the armlengths that cancels
the laser fluctuations. (Source : [9])

The specificity of LISA as an interferometer comes from the way the measurement
itself is done. Indeed, this interferometer has three arms that are unusually wide with
variable lengths. On the one hand, the inter-satellite distance being 2.5 million km, the
received light power is about a few hundreds pW whereas it was about 1 W at emission
[2]. As only few photons reach the other spacecraft after being emitted, this prevents
the light beam from going back and forth between two spacecrafts : the beam power
would not be bright enough to be detected.

One laser beam can only go from one spacecraft to another : this makes it una-
voidable to use at least one laser per spacecraft. But knowing that the constellation
rotates around its center, the Sagnac effect must be accounted for. The propagation
time of light between two satellites will not be the same if the light propagates in the
direction of rotation or in the opposite direction. Thus, between spacecraft i and spa-
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cecraft j, we must measure the propagation time of light from i to j, but also from j
to i. Thus, there is a total of 6 lasers exchanges. These lasers were built to emit beams
around a nominal frequency vy. However, each of them produces independently its
own fluctuations around the nominal frequency. This is called laser noise - it has an
amplitude that is 8 orders of magnitude above any detectable GW signal [9].

Furthermore the distance between satellites (i.e. the interferometer armlength) vary
with time and differ from one arm to another as the satellites are not rigidly linked
together. Satellites trajectories can deviate from the geodesic they follow because of
external events (solar wind, etc). Even without these external solicitations, the theoreti-
cal trajectory along a geodesic implies for the inter-satellites distance to change slowly
over time. This create an additional effect that must be considered to obtain precise
interferometry. This does not fit Michelson's traditional frame : classically, equal arm-
length ensures laser noise suppression as only one laser is present. Therefore, it was
necessary to find a way to remove the laser noise while maintaining the signal of inter-
est.

3.2.2 Time Delay Interferometry

The Time Delay Interferometry (TDI) [9] was the first method developed to deal with
laser noise. We will provide here the simplest example given in [9] as we believe this
is enough to understand its underlying principle. More details can be found in [9] and
references therein.

Fig.3.5 shows a simplified layout for a two-arm Michelson interferometer with dif-
ferent armlengths L, L,. The laser emits a beam at frequency v, with time fluctuations
C'(t) that we want to suppress. Given two interferometric measurements vy (t), y(t),
and under the hypothesis that we know exactly the armlengths L, and L, it is possible
to completely remove the laser noise.

The signal y;(t) measured at time ¢ measures the difference between the laser fre-
quency at time ¢ and the incoming laser beam (emitted by the same laser at time
t —2L;/c). The laser frequency is defined by 1, + C(t). Meanwhile, the laser beam fre-
quency that was emitted at frequency vy + C(t — 2L;/c) is tainted by GW signature h;(t)
and residual noise n;(t). Therefore, the interferometric measurements write :

yi(t) = {1/0 +C (t - 2%) + hy(t) + nl(t)] - {1/0 + C(t)} :

yo(t) = {1/0 +C (t — 2%) + ho(t) + ng(t)] - [uo + C(t)] : (3.2.1)

The same laser fluctuation C(t) is measured twice through y; and y,. However, the
delayed fluctuation C(t— L;/c) also appears in the measured signal : simply subtracting
one measurement to the other is not enough to cancell all the laser noise. Yet, if instead
we build a combination of the two measurements at different times :

X = 1) — galt)] - [y (1-252) —ue 1= 25)} | (3:22)



The laser noise is cancelled and we get :

X = [hl (t) = I <t—2%)} — {hQ (t) = ho (t—2%>]

(. /

~
Signal

+ [nl (t) —nq (t — 2%)} — [nz (t) — ngy (t — 2%)] ) (3.2.3)

~
Residual Noise

The signal is still there in a form mixing the signals present on the two arms taken at
different times. This new GW signature is now detectable if its amplitude is high enough
to surpass that of the residual noise.

The case of LISA is much more complicated, as we have 6 laser beams and thus 6
independent laser noises to cancel using all the interferometric measurements. Moreo-
ver, the armlengths are unknowns that also have to be estimated in the process. In the
end, in a similar fashion, we obtain three "pseudo-Michelson" measurements, usually
referred to as X, Y and Z. Nevertheless, the residual noises in these three measure-
ments are correlated as the delayed residual noises from different lasers can appear
in several of the measurements.

For statistical purposes, it can be easier to work on data with de-correlated noises.
For TDI of first generation’, they are defined as :

Z—X
A= , 2.
NG (3.2.4)
X-2Y+Z
FE=———, 2.
7 (3.2.5)
X+Y+7
T = . .2.6
73 (3.2.6)

Channel T'is known as "null channel", because it is less sensitive to low-frequency GW
[9; 10]. It can be used for other purposes than GW search, such as noise monitoring.

Many more TDI combinations are possible [11], depending on the assumptions we
rely on. Even more, several versions of TDI are available, each of them responding to
more and more realistic modeling of the instrument (armlength rigid or not, equal or
not, large wavelength approximation). All the different versions are reported in [9]. [12]
also proposes a generalized version of TDI based on principle component analysis that
could bypass the armlengths estimation.

It is still possible to work on data with de-correlated noises for TDI later versions :
[5] states the existence of de-correlated TDI as a mission requirement. In the following
work, we often rely on de-correlated data as it is statistically easier to process (no cross-
correlation terms have to be taken into account when computing a likelihood for ins-
tance) in a joint analysis of TDI channels.
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3.3 Disturbances & noise sources

3.3.1 Noise sources

Many events can impact the viability of the measurements; they are classified under
the "noise" or the "artifact" labels. Fig.3.6 indicates the dominant noise contributions as
a function of Fourier frequency range. They originate mostly from either physical origin
or from the optical metric system.

Noises of physical origin mainly correspond to forces acting on the test-masses, be
it magnetic forces, thermal fluctuations or others. They create test-mass position per-
turbations that do not correspond to GW signal. On Fig.3.6, they mostly correspond to
low-frequency noises (f < 3 mHz).

Noises originating from the Optical Metric System directly happen during the measu-
rement process : among them we find the laser noise, the photon shot noise misleading
the phase measurement, clock noise, spacecraft jitters, misalignment issues on the op-
tical path, temperature effect on electrical components (that could also taint the data
with correlated noises), but also the impact of switching on and off any device on a
spacecraft. This last noise source was actually observed during the LPF mission [14]. On
Fig.3.6, they mostly correspond to higher frequencies noises (f > 3 mHz).

Taking into account all the different types of noise, we can give a "current best esti-
mate" of instrumental noise performances. Keeping scientific objectives in mind, they
should remain as much as possible below the requirements stated in the LISA Science
Requirement Document [5]. The LPF mission, that was build as a demonstrator for LISA
instrument, showed that the test masses feedback control system can efficiently reduce
the level of the noise related to that origin [15; 16].

Fig.3.7 shows this current best estimate compared to various source types that are
expected : MBHBs, GBs and EMRIs. The computations related to the instrumental sen-
sitivity are detailed in [17].

1. Each new TDI generation is based on hypothesis that are less restrictive than the previous one.
More information can be found in [9].

37



10-16 3

L Yo Galactic Background
\onth
[N day hour . | MBHBs at 2 =3

10-17 L S i % Verification Binaries
_ \.\ e = EMRI Harmonics
3 AN = LIGO-type BHBs
£ . ~18L [ VML — GW150914
on 10 Ty

\ year Gal. Bin. (SNR > T7)
)
e +
w
ERI; |
= \
& A Y
E
102
Observatory
Characteristic Strain
-21
1021 2 . ot
10° 10 10° 10" 10

Frequency (Hz)

Figure 3.7 - LISA sensitivity strain curve with Fourier frequency. Over this sensitivity curve are represen-
ted the main GW sources that should be detected by LISA. (source : [1])

As a first approximation, most of these noises can be modeled as a zero-mean Gaus-
sian colored noise in Fourier domain which estimated power spectral density (PSD) is
given by the noise current best estimate. Yet, several other disturbances cannot be
modelled as such. We gather them under the "artifacts" label.

3.3.2 Artifacts

In order to compute LISA sensitivity, the maximum interferometric noise level and
test mass acceleration noise level are assumed to be known. Based on arm response
simulations, they are propagated to compute the final instrumental sensitivity [17]. In
reality, these noise sources could be greater than expected and other noise sources
could deteriorate the performances. This is why they have to be dealt with before (as a
pre-processing step) or during data analysis.

First and foremost, the laser noise has to be cancelled immediately as it represents
the noise source with the highest amplitude among all. This is done trough the appli-
cation of the TDI process that was presented in Section 3.2.2. More generally, the Initial
Noise Reduction Pipeline (INReP) aims at suppressing Optical Metric System originated
noises as much as possible (laser noise, clock noise, etc). This is the first step - and one
of the most important - of data pre-processing.

After applying the TDI, many noise sources are left. Any noise that is not included in
the description made in Fig.3.7 is assimilated to a noise artifact; an exhaustive listing
of all of them can be found in [18]. Two types of artifacts are of interest here :

Glitches : Their occurrences were observed during the LPF mission [15; 16]. A study
was lead to determine their characteristics [14] in order to build a realistic si-
mulator for the LISA mission. They have either electronic or mechanical origins
(test-mass accelerations that are damped by the Drag-Free system)

Gaps : Data taking interruptions are likely to happen as it was observed during LPF
mission. However, if they are too frequent, they will impact data analysis not only
because a large amount of data will be missing, but also because several types
of studies are directly conducted in Fourier domain. For LISA, data gaps could be

38



scheduled (spacecraft maintenance), unscheduled (if the spacecraft goes into
safety mode for instance), or we could even "gap" the data (as putting aside data
sequences) that are too noisy to be used, if too many glitches are present for
instance. The duty cycle (ratio of usable data measurement) could drop down to

75% [19].

Other types of artifacts exist, like the spectral lines (noises appearing at a specific fre-
guency) or non-stationary noises. They are not investigated here.

Since these non-gaussianities could affect the production of LISA science from the
raw measurements, they have to be carefully described and integrated in the data ana-
lysis. In the following work, we will mainly focus on data gaps. However, a part of the
work we present could presumably be adapted to deal with glitches (be it for detection
or subtraction).
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Chapter 4

Data analysis methods for
gravitational wave signals

In this chapter are gathered the necessary elements to understand the work | did
during my thesis. The object of study (galactic binaries) is presented and we define the
data models (in terms of signal and noise) that will be used throughout the manuscript.
We also introduce the Bayesian approach to LISA data analysis - this is the most com-
monly used approach in the community. Its functioning is demonstrated on a simple
example based on a sampling code that | developed. The non-parametric approach to
data analysis is then introduced as a complementary approach to Bayesian analysis.

4.1 Galactic Binaries : parametric representation

4.1.1 Single GB source

Figure 4.1 - Frame changes between the Solar System Barycenter frame (left) and the source frame
(right). This involves a rotation of angle v illustrated by the picture in the middle. (Source :[1])

Most part of my work focused on GB sources from modeling them to dealing with
them in presence of data gaps. As described in Section 3.1, we call a system of "ga-
lactic binary" two bodies with similar masses, rotating one around another, far from
coalescence and thus emitting a quasi-periodic GW signal. For instance it can be made
of black holes, neutron stars or white dwarfs. We illustrated in Section 2.2 that in the
source frame such a system without eccentricity emits a sinusoidal signal. In reality, the
phase has to take into account an additional term [2] :

O(t) = po + 27 fot + T fot? (4.1.1)

42



with ®, the initial phase and f, the emission frequency that is twice the orbital fre-
quency. The term = fot? conveys that the system is not strictly periodic : its emission
frequency can change over time due to e.g. tidal effects or the two stars getting closer.
We want to deduce the GW signature that such a system will leave on the TDI chan-
nels. This is done in several steps taking into account both the source position and the
instrument characteristics :

B First, the signal has an amplitude hy and is decomposed into its two polarizations

[11:

hS = ho(1 + cos®t) cos [®(t)] , (4.1.2)
hS = —2hg cos tsin [B(t)] . (4.1.3)

B Then, we apply the change of frame from the Source frame to the Solar System
Barycenter (SSB) frame detailed in Fig.4.1 (more details can be found in [1]). The
frame change introduces the sky position of the source in terms of the ecliptic
latitude X and longitude 3, as well as the system'’s polarization angle .

B The third step is to combine the GW signal in the SSB frame with the LISA orbit to
compute the instrumental response : This can be done for an analytical simple
orbit, as in [2]. With this step, one is able to compute the different interferometric
measurements.

B The final step consists in computing the signal in the TDI channels used in data
analysis. An example of computation is detailed in [2].
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Figure 4.2 - GB waveform with central frequency f; = 3 mHz. Left column : modulus of the signal in
Fourier domain; Right column: signal in time domain. Top : full signal; Bottom : zooms. In time domain,
we observe that the "high frequency" signal, which is the one that we seek, admits a very low frequency
envelop that is due to LISA constellation movement around the Sun. In Fourier domain, this Doppler
effect causes the signal to spread over neighboring Fourier frequencies.

After applying all these steps, we obtain the signature of a GW signal emitted by a
GB directly visible on the TDI channels. A typical example is represented in Fig.4.2 : in
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time domain, the measured signal (also called waveform) locally appears as sinusoidal.
However, when considering data on a larger timescale, we can see that the signal's am-
plitude is modulated by the instrument’s orbits. In Fourier domain, the signal appears
from afar as a single peak (which is expected for a monochromatic signal). However,
when zooming on the peak, we observe that it has a width : the signal spreads over
several frequencies because the instrument’s motion generates a Doppler shift that
depends on the position of the GB system.

Intrinsic Parameters Extrinsic Parameters
Frequency fo Hz Amplitude ho Strain
Frequency Derivative | f, Hz? || Inclination L€ [0, Rad
Ecliptic Latitude Be[-%,2] | Rad | Polarization ¢ € [32,52] | Rad
Ecliptic Longitude A € [-m, 7] | Rad Initial Phase ¢o € [5,%] | Rad

Table 4.1 - Parameters needed to fully describe a GB without eccentricity. The parameters can be splitin
two categories : intrinsic parameters and extrinsic parameters, corresponding to their roles in parameter
estimation.

Therefore, we have a computable formula for GB expected TDI signal based on the
8 parameters gathered in Table 4.1. They are often split into two categories : intrinsic
and extrinsic parameters, as the two categories play asymmetric roles in Bayesian pa-
rameter estimation.
These parameters can be related to quantities of interest in astrophysics and cos-
mology. The amplitude h, and the frequency derivative can be related to the system
chirp mass M. and its distance to the Sun Dy [2] :

mil”/5m52"/5
M. = W ) (4.1.4)
. 8 (GMN\?
Jo= 5 x 27 ( 2¢3 ) (27Tf0)11/3 ’ (4:15)
4(GM., 5/3 2/3
ho = % {%] ) (4.1.6)

where my, my are the respective masses of the two stars, GG is the gravitational constant
and cis the light celerity*. The chirp mass M. and the distance to the Sun D, are quan-
tities that characterize the position and composition of the observed GBs [3].

We will denote a set of parameters by :

0 = (fO)fy/Bv)\a hO,L,@Z},gb()) = (eintaeezt) . (417)
Hint eemt

At this point, we take the opportunity to distinguish between two types of parameters:
extrinsic parameters 6.,; and intrinsic parameters 6;nt. This distinction is linked to ob-
servations that were made in order to speed up parameter estimation [2] where they

1. ¢=299792458 m s~ !, G = 6.67430 x 10~ m3kg—1s~2
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play asymmetric roles. See Section 4.3 and then App. A where this separation is explai-
ned in detail.

For any type of system emitting GW, we call waveform the function generating the
LISA measurements corresponding to the physical parameters 6. For some systems
like GBs, [1] provides a fast algorithm to produce these signals in the case where the
corresponding system has a non-eccentric orbit.

As GB signals are quasi-stationary with low amplitudes, it is easier to spot them di-
rectly in Fourier domain because all the information is gathered around the emission
frequency fy. This is why the search and identification of GB signal is usually conduc-
ted directly in this domain. It enables to localize the search over restricted frequency
ranges (instead of considering all of the time measurements) which contributes greatly
to speeding up detection and identification. From its observed signature, one of the
stakes of data analysis is to trace back the source and its corresponding physical pa-
rameters; Bayesian parameter estimation provides a framework that can address this
inverse problem.

4.1.2 Realistic data : the Galaxy challenge
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Figure 4.3 - In Fourier domain, simulation of realistic data containing the GB signals emitted within a
galaxy (red), MBHB signals (green) and instrumental noise (corresponding noise PSD in black). The total
signal is plotted in blue. The galaxy is made of millions of GB systems, all emitting GWs in a restricted
frequency band. Some signals are brighter than the others, which will facilitate their identification. Others
will be assimilated to a continuous background noise, the "confusion noise". (Source :[4], challenge 2a)

Reality is much more complex than the case of a single GB : scientists estimate that
GB population in our Galaxy could reach about tens of million systems [3]. A realistic
simulation of the signal produced by such a population is presented in Fig.4.3 : all the
systems are emitting in the same frequency range 1 — 20 mHz, many are overlapping
and mixing up making the identification really hard.

Among all these systems, the scientific objective is to identify about 20,000 - the
leftovers will be assimilated to a Gaussian, non-stationary noise [3].
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4.2 Data & Noise modeling

4.2.1 Data modeling

We adopt the following notations : the data will be observed on a set of C' Michelson-
type channels denoted by the index I. For instance, we can have I € {X,Y, Z} (C = 3)
orI € {A, E} (C = 2)if one prefer to consider channels with de-correlated noises - see
Section 3.2.2 for their definition. The observed data on channel I will be noted d;, and

d;

the overalldatad = | : | will gather the data on all channels.

1

dIC
The measurements are done on an observation duration of Tg,s with time step At.
This represents N = (TA—'ﬂ data points, taken at time t,, = nAt. The Fourier transform
of the data is defined for for frequencies f, = kéf, with of = ﬁ and k € [-K, K],
K =141
To keep notations compact, we will use the same symbols d;,d for functions or

their Fourier transform, and use the argument to distinguish both : d;[n], d[n| (resp.
d;[k], d[k]) for the time (resp. frequency) dependence. The discrete Fourier transform
convention used here is the following :

—2iknm

N
d;[k] =) dyfnle” ¥ (4.2.1)
n=1

The inverse discrete Fourier transform is defined as :

—2iknm

1 K
di[n] = + > dglkle ¥ (4.2.2)
k=—K

dh [k]
d[k] is the concatenation of the data in frequency domain : d[k] =
dfc [k]

The measurements on channel I are the sum of the GW signal h; and the instru-
mental noise n; :

d;=h;+n;, (4.2.3)
d=h+n. (4.2.4)

h; is the sighal measured on the TDI channel 7, and thus directly depends on the system
parameters 6. We will directly highlight this dependence by writing h;(#) when needed.
In fact, h;(6) designate the waveform - i.e. the function that produces the time measu-
rements on the TDI channel I from the physical parameters 6.

4.2.2 Noise modeling

In a first approximation, the noise n; is supposed to be Gaussian and colored in Fou-
rier domain. Thus, its distribution is characterized by its mean (assumed to be o-valued)
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and its PSD, defined in Fourier domain. The expected noise PSD for LISA is the one pre-
sented in Fig.3.7. The PSD associated to the channel I is denoted by S;. It is assumed
to be diagonal (noises at different frequencies are de-correlated). The cross-correlation
PSD between TDI channels I and J will be denoted by S;;. The corresponding PSD on
dreads:

S[l SIIIC
S = : : . (4.2.5)
S[C]1 S[

C

In case where the TDI channels are de-correlated in noise, this matrix is diagonal - i.e.
Sy, is diagonal for any k and S;,;, = 0 for any j # k - because all the cross-correlation
terms vanish.

The noise PSD on channel [ is defined by :

S;[k] = E [n;[k] - n;[k]"] . (4.2.6)

More details about the PSD can be found in Appendix D.4 and in [5]. Under the hypo-
thesis that the noise is zero-mean, stationary, Gaussian colored in Fourier domain, the

noise model writes :
n[k] ~ N (o, 812%]) +i- N (o, SITW) , (4.2.7)

where N (i, 0%) denotes the Gaussian law of mean ;. and variance o2.

4.3 Bayesian estimators for the signal and the parame-
ters

4.3.1 The Bayesian vision of data analysis

Bayesian inference is a framework often used to deal with data analysis based on
statistical models. Suppose that the observed data is given by :

d=h,+n, (4.3.1)

with h, the "true" signal to estimate and n the noise with statistical description presen-
ted in Section 4.2.2. The Bayesian framework allows to estimate the probability of the
underlying signal being h if the observation is d, and then set an estimator h of h, as
the maximum a posteriori of the estimated probability distribution.

For any signal h, the probability density of observing the data d knowing that the
underlying signal is h for sure, noted p(d|h), is given directly by the distribution of the
residual d — h = n, which exactly corresponds to the noise distribution. Assuming
the noise follows the distribution that we presented in the Section 4.2.2, its probability
density is the one of a Gaussian noise realization :

1 1
p(d]h) = v exp | —5(d—h)S'(d—h)]. (4.3.2)

27 det(S) - ol s
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where t denotes the conjugate transpose of a vector and as mentioned above, N (resp.
(') stands for the number of data points (resp. channels). This involves the inner product
(-,-)s defined as :

(ur,vi)s, = > wiklS [k]v[k]

(u,v)g = Z(UI, Vi)s,, + Z<UI>V1>SI (4.3.3)

I£J I

Now, we would like to solve the opposite problem, i.e. to estimate the probability of
presence p(h|d) of a signal h knowing the measurements d. This is possible using Bayes'

theorem:
p(db)p(h)
p(d)
where p(h) contains the prior information on the signal h and p(d) is the model evi-
dence associated to data d. p(d|h) is the likelihood of measuring d when the under-
lying signal is h. The probability of presence p(h|d) is called posterior distribution; for
simplicity and when there is no ambiguity about the data vector d, we will denote it
L(h).
Usually, we work with the logarithm of the posterior distribution :

log p(h|d) = log L(h) = log [p(d|h)] + log [p(h)] — log [p(d)]
~ —%(d “h,d — h)s + log [p(h)] | (4.3.5)

as we only keep the terms depending on the waveform h?. The maximum a posteriori
estimator of the signal is defined by maximizing the log-posterior :

h = Argnaxlog £(h) . (4.3.6)
h

p(h|d) = (4.3.4)

Equivalently, we can directly write an estimator for the parameters associated to the
signal h just by introducing a slight change in Eq. (4.3.6) :

h= Arggﬂax log £,(8) , (4.3.7)
using the associated log-posterior :
1
log £,,(6) = —5(d — h(9),d — h(6))s +log [p(0)] - (4.3.8)

Two remarks are in order. First, we define estimators Eq.(4.3.6) and Eq.(4.3.7) based
on the hypothesis that, when using a waveform representing exactly the real signal,
then the maximum is unique and unbiased. But even if there is no evidence that this
hypothesis is verified, this approach is successful [6] in presence of non-artifact instru-
mental noise.

Second, we would like to highlight that Eq.(4.3.5) and Eq.(4.3.7) are two distinct es-
timators. The first one relies on the signal morphology (and the prior is set directly on
the signal : p(h)) whereas the second one relies on the parametrized waveform (with
a prior set on the parameters : p(#)). The two types of prior can be fundamentally dif-
ferent; most of the data analysis done so far has been using the estimator Eq.(4.3.7),
whereas our work can be recast as a variante of estimator Eq.(4.3.5) as we will illustrate
in Section 5.1.3 and Section 7.3.1.

2. In this simplified case we do not try to estimate the number of sources that are present. Thus we
can discard all the terms that are related to the model since we are not performing model selection.
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4.3.2 Sampling the posterior distribution
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Figure 4.4 - Plot realised using [7]. Sampling realised using [8; 9]. Behavior of the log-posterior £, (6)
with regard to two of its variables, marginalizing the others. From up to down (and from left to right) :
10g,0 ho, fo (MHz), logy, fo. sin(B),\cos(c),,¢0. Estimating the true values of the parameters (blue line)
can be hard because the log-posterior is multi-modal and has not the same sensitivity with regard to all
parameters.

Even if we defined the estimator as the argument maximizing the posterior, looking
for the extremum of the log-posterior is not enough. It is more interesting to estimate
the behavior of the log-posterior around the maximum since it can provide a way to
compute error bars on the estimator.

Markov Chain Monte Carlo algorithms

This is usually done using an algorithm of type Markov Chain Monte Carlo (MCMC),
such as [8; 9; 10]. The most popular are of type Metropolis-Hastings and generically
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possess the following two stages :

Initialization : Set a number of walkers that will probe the search space. To each of
them corresponds a Markov Chain. Initialize them randomly over the plausible
parameters set. Set a probability distribution ¢(#'|¢) that suggests a sample ¢’
for the next iteration given that the current sample is . Most of the time, g is
symmetric : g(0'|0) = g(0|0).

Evolution : For each Markov chain:
B From the current sample 6, at iteration ¢, draw a new sample #" according to

probability g
. (p(h(¢)|d) )
B Compute the acceptance rate « = min | —————%—=,1
i P <p<h<et>|d>
B Accept or reject : draw u ~ U(]0, 1]), compare a to u :
— Ifu < «: accept the new sample: 0, = 6.
— If u > «:reject the new sample: 6,1 = 6,.

This basic algorithm can be declined on much more complex processes, involving for
instance interactions between the different chains, parallel-tempered chains or many
more [10].

The final result is obtained by looking at the distribution of the Markov chains over
the parameter space : if the chains are long enough, they converge to a stationary dis-
tribution p(#|d) with no residual effect from the starting point.

Contribution & Typical results

| developed my own parameter estimation code based on the principles described
in Section 4.3 and App. A. The sampler we use is PTEMCEE [9] with 4,000 walkers and
chains with 3, 000 steps. The number of temperatures was set to 5. The computing time
needed to obtain a sampling with fair quality remains high, even if it can be decreased
by using multiple cores or CPU. It takes about 30 minutes on 96 cores on our calculator
to estimate the parameters of a single GB.

In order to sample properly the log-posterior, we did not directly work on the phy-
sical parameters described in Section 4.1. Instead, we worked with transformations of
the parameters detailed in Table 4.2 on which we applied very simple priors p(9).

This choice of prior is justify by the following approach :

B Uniform priorover A, sin(/3) : this distribution results in a sampling that is uniform

over the sphere, i.e. over the sky location 3.

B Uniform prior over 1, cos(¢) : this distribution results in a sampling that is uniform
over the sphere, i.e. over all the possible local orientations.

B Uniform prior over ¢, : we do not have any information about the initial phase.

B Uniform prior over mf, : without any more physical information over the GB
population, this prior enables to search over all the possible main frequencies
uniformly.

B Uniform prior over log,,(A), log,,(f) : prior used for a fast first search to have an
estimate of the order of magnitude of these parameters. While it might not be
mathematically correct, it makes it possible to probe several order of magnitude
at once - the first guess hence obtained can be used for a more detailed search
with uniform priors directly over the parameters (A, f). We stopped at the rough

3. The sin originates from the definition of 8 as the co-latitude (see Fig.4.1).
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Parameter Prior

Frequency mfy =107 fy ~ U([frmins froar])
Frequency Derivative | log,,(fo) ~ U([—19, —15])
Ecliptic Latitude sin(B) ~ U([—1,1])

Ecliptic Longitude A ~U([—7, 7))

Amplitude logyo(ho) ~ U([—24, —20])
Inclination cos(t) ~U([—1,1])
Polarization W ~U([0.,27])

Initial Phase ¢o ~ U([0.,27))

Table 4.2 - Priors p(6) used for the sampling Fig.4.4.

estimate as it was only meant to be used as a simple way to compare our work
with what is currently done in the community.

We can give a visual representation of this posterior distribution such as Fig.4.4. As
we are sampling a function of parameters that are not necessarily independent, we
have to consider the joint impact of the parameters. The corner plot [7] Fig.4.4 shows
the behavior of the log-posterior £,(#) with regard to two of its variables, marginalizing
the others. Several observations can be done : first, the log-posterior is a multi-modal
function, especially with regard to the variables i) and ¢,. The estimation of some para-
meters is particularly challenging, such as the frequency derivative f,. Some parame-
ters can be highly correlated, for instance the amplitude hy and the inclination ¢, or the
frequency and its derivative. Finally, other parameters such as f,, 5 and )\ seem to be
independent from the others, and are the easiest to estimate.

Advantages & limits of the Bayesian approach

This approach has many advantages : for one, it gives an estimation of the physical
parameters of the system emitting the GW signal, as well as the corresponding wave-
form. Moreover, using the results of the sampling, it is possible to assess the reliability
of the results, for instance by giving error bars on the parameter estimates. Finally, this
framework can be adapted to the case where more than one signals are present (sim-
ply by changing the model and the parameter space) or if the total number of sources
is unknown [6]. It can be straightfowardly extented to handle different types of sources
as long as one has a parametric representation of the sources. More details about the
sampling algorithms developed for LISA can be found in [11].

Nevertheless, the log-posterior function is very ill-conditioned. Proof is that several
parameters are highly correlated and the multi-modality of the log-posterior with re-
gard to other parameters. This results in a high computational cost, even if it can be
reduced by using multiple cores or CPUs. MCMC are subject to the curse of dimensiona-
lity : looking jointly for the parameters of several sources corresponds to such a wide
space that it becomes arduous to probe. Particularly, not only are all the parameters
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potentially correlated, but also the regions corresponding to highly probable parame-
ters become more and more distant one from another. Of course, the same principle
applies when searching for an unknown number of sources as the model dimensiona-
lity has also to be assessed.

Moreover, this technique is extremely model dependent : the results are good as
long as the parametric model somehow fits reality. But as we announced in Section 4.1,
waveform parametric models are developed under simplified assumptions : they might
not fit exactly the "true" signals. For instance for GBs, waveforms taking into account
different kinds of effect like tidal [12] or magnetic [13] effects are under development;
these effects create waveforms with three strongly correlated peaks instead of a single
one resulting in a real change in the harmonic structure of the sought signal. Further-
more, some sources might not have a parametric model - we must always keep in mind
that unexpected signals could be seen by LISA.

Finally, we have to highlight that the sampling is highly impacted by the parameters
we work with and the related priors that we consider. The one we used to compute
the results shown in Fig.4.4 are gathered in Table 4.2 : they did make the sampling
more efficient, but working with the log of a parameter does not give the same final
estimation precision than working with the parameter itself.

4.4 Artefacts: data gaps, glitches

Some recent studies [14; 15] showed that missing data can have a huge impact on
Bayesian data analysis. In [15], the authors detail the impact of a gap on a MBHB pa-
rameter estimation. As the information related to these systems is localized around
the merging time, the impact of a data gap depends on its position and its duration.
Complementarily in [14] the authors investigate the impact of missing data on GB pa-
rameter estimation. In this case, classical parameter estimation is realized in Fourier
domain : the occurrence of data gaps in time domain results in a deformation of the
noise PSD that has potential repercussion on the detectability of GBs and their iden-
tification. This phenomenon is detailed in Chapter 6. A generalized sampling process
is proposed where the missing data is considered as a parameter and thus estimated
along the physical parameters.

Glitches also have an impact on the noise distribution. But since they are transient-
like perturbations (similar to a Dirac) on the time measurements, they will have a les-
ser effect than the gaps on the Fourier transform because their Fourier transform is
spread over the whole frequency spectrum; however their occurrence rate could be
mis-interpreted as a signal : Since we did not investigate this issue, we will not develop
any further on this subject.

Truth is that there is a lot of work to be done concerning artefacts. LISA Data Chal-
lenges are encouraging the community to start taking them into account through Data
Challenge 2b [4].

4.5 Non-parametric analysis:acomplementary approach

In data analysis, any type of GW source calls for three courses of action :

Detection : first step towards analysis, we have to be able do recognize an event
happening and to categorize it as a known - or unknown - source type.
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Subtraction : Cleanly subtracting the signal related to one source type can help
recovering the signals related to other sources types, but also to estimate the
noise PSD.

Identification : If the source waveform is known, it might be possible to estimate
the physical parameters of the source from the measurements.

We would like to stress out the importance of the two first points, as the third one
has an obvious outcome in the scientific community. Indeed, the detection step has
its importance as it must be able to "see" events that may have not been foreseen by
the scientific community. LISA has a high potential for new discoveries, and this should
be taken into account from the start as to not automatically assign a detection with a
known source type. The key of a detection process is to be able to confront different
models and to propose several assumptions - which "unknown" and "glitch" are also
part of - to explain a given GW event.

Secondly, we have to consider our ability to efficiently subtract any type of signal
from the data. Two major applications can be thought of : noise PSD estimation and
parameter estimation. At the beginning of data taking, the noise distribution will still be
unknown and will have to be estimated. A proper way to do that would be to subtract
any type of event from the data - be it GW event or glitches or other systematics -
and then estimate the noise distribution. Concerning parameter estimation, as only the
sum of all GW signals are observed, signals of different source types could potentially
contaminate each other, making the identification process harder or even biased. A
basic solution to this issue would be to subtract the signals coming from all types of
sources other than the one we are working on to facilitate the identification process.

At the same time, one has to think of dealing with the artefacts : should it be done as a
pre-processing? During the detection step? Considering a parametrizable glitch, should
its parameters be estimated at the same time as true GW source parameters? Or should
it be identified and dealt with before starting the analysis? The same questions can be
asked for gapped data : should gaps be dealt with before performing the analysis, or
during the analysis?

The natural answer would be to do a joint analysis of artifacts and data in order
to simultaneously identify all of the components of the measured signal. In practice,
that will likely be too complex to be performed properly. The question of performing a
pre-processing step before the analysis is done is worth asking as it could prove to be
a good approach to analyze such complex data.

In this context, we want to explore the relevance impact of non-parametric analysis
for LISA physics. Non-parametric modeling is a framework relying on a signal repre-
sentation that is not based on the physical parameters 6, but on what we expect to
observe - j.e. the signal's morphology. Such methods were already introduced in the
GW community [16; 17; 18] - essentially within LVC - but their use remained limited.

[18] states clearly the stakes of non-parametric search : "Transient GW searches can
be divided into two main families of approaches : modelled and unmodelled searches,
based on matched filtering techniques and time-frequency excess power identification
respectively. The former, mostly applied in the context of compact binary searches,
relies on the precise knowledge of the expected GW phase evolution. [...]

The goal of non-parametric modeling is to obtain the best possible representation
of the sought-for signal without using the physical parameters, while still ensuring the
low-dimensionality of the representation. This low-dimensionality principle is crucial as
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it proves to be helpful when dealing not only with instrumental noise but also with the
fact that many different types of sources are present in the data, each of them pre-
senting a specific morphology. A non-parametric framework can lead to a wide range
of applications, such as detection (Chapters 5, 7), source separation (Chapter 7), signal
estimation (Chapters 5, 7) and a way to deal with data gaps (Chapters 6) - to cite the one
closest to the above mentioned issues. Moreover, as it relies on signal’'s compressibi-
lity, it opens a world of possible with regard to fast waveform production and waveform
approximations (Chapter 5,7).

4.6 Contributions

My PhD focuses on exploring non-parametric data analysis methods for LISA data
analysis. By "non-parametric ", we mean that the model should not rely explicitly on
the GB system physical parameters. Instead, we build a signal estimator based on fin-
ding a representation that is "adapted" to its expected shape. All the algorithms were
developed while working on GB signals, but in principle could be generalized to other
types of signals - being GW signals or artifacts such as glitches - to perform efficient
data pre-processing.

From a very simple non-parametric model, we prove that we are able to detect GB
signals and deal efficiently with data gaps. We demonstrate the performances of the
proposed algorithms over an extensive benchmark. This lead to two publications [19;

1.

Then we present an innovative way to build non-parametric non-linear models for
GW signals with promising results in terms of representation quality, source separa-
tion and fast parameters estimation. We explore several applications possible for these
types of models and show how they could be used by the LISA community. A publication
corresponding to this work is currently in preparation.
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Chapters

Sparse signal modeling

5.1 The Sparse Way

Robust source detection and signal subtraction are the connecting threads of my
work. In a context where identification relies on waveforms designed under simplifying
assumptions (absence of eccentricity, etc) that still potentially require noticeable com-
puting cost’, it is interesting to provide fast accurate detection algorithms that do not
rely too much on parametric models (that could be biased since they are simplified).
Similarly, quickly extracting all signals coming from a specific source type without iden-
tifying them presents an interest : for instance to estimate the noise PSD; or to study
another type of source which signal could be impacted by the presence of the afore-
mentioned source type.

In the field of signal processing, the sparsity framework is particularly well adapted
to address these questions. Sparse representations are already used in the LVC pipeline
Coherent Waveburst [1] to improve detection. In this pipeline, the Wilson-Daubechies-
Meyer transform is applied to the measurements. This transform represents the data in
a redundant dictionary; sparsity is used to focus the signal's power over the fewest co-
efficients possible to improve its detectability. Then this sparse representation is com-
pared (using a graph) to the sparse representation of a bank of templates in order to
identify the physical parameters of the source [2]. In [3], the authors directly try to re-
cover the polarizations h™, h* of GW signals.

Sparsity was proved to be an efficient tool that is well adapted to GW context. We
now wish to introduce this framework to the LISA community as it is flexible enough to
deal with many problems faced by data analysis today. Among these, we can mention
source detection, source separation and data gaps.

5.1.1 Sparsity Framework

Sparsity is highly linked to the concept of signal compressibility. Let us consider a
dictionary T = {t;} which atoms t; are typically elementary templates representing
adequately the signal. Then atime signal x € R can be expressed with in the dictionary
T:

Nt
x=Ta= Z a;t; . (5.1.1)
j=1

1. The unit production cost is not necessarily high. But MCMC type methods make hundreds of thou-
sands of calls to the waveform, hence the significant computational cost.
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We say that x is "encoded" by a because it can fully be recovered from the coefficients
a;. Compression takes place when only few «; carry maximal information, i.e. few o;
have a large amplitude, and the others have small amplitude in comparison. Two dis-
tinct configurations can be thought of.

Exact sparsity

Exact sparsity (or strong sparsity) is the idea that the signal x can be encoded exactly
by L elements of dictionary T. Let A, be the set of the L indices required to encode x;
then we have :

X = Z a;t; (5.1.2)

JEAL

since o; = 0 for any j ¢ A.. The fewer elements are needed, the more the signal is
compressible and the more the signal is sparse in T. In this context, we say that x is
sparse in T if it is encoded only by few non-zero coefficients, i.e. if & = {«;},; has many
null components.

Weak sparsity

0.8

[=]
[}

(=]
F=y
L

Amplitude |a|;

0.2

0.0+

50 100 150
Coeff. index j (x103)

Figure 5.1 - Left : A random picture of my mom'’s cat. (credit : A. Blelly ) Right : Sorted normalized
amplitudes of the Bi-orthogonal wavelet transform atoms at chosen scale. They decrease like a power
law of the coefficient index.

In many situations x is not strictly sparse, i.e. it mostly has non-zero components.
However if the dictionary T is well chosen, then the « coefficients coding x will have a
behavior characterizing what we call "weak sparsity" : a small proportion of coefficients
will have a large amplitude, but this amplitude will fastly decrease to zero. A typical
example of this phenomenon that we can mention is the power law-like decrease of
Fourier coefficients associated to a smooth periodic signal in Fourier domain. We ob-
serve similar behaviors when applying bi-orthogonal wavelet transforms to images [4].
Fig.5.1 gives an example of this phenomenon : the bi-orthogonal wavelet transform
provides a dictionary that is well-adapted to representing pictures as the coefficients’
amplitudes decrease relatively fast.
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In this case, a natural move is to try to approximate x based on its L largest coeffi-
cients in the dictionary T :

X~ Z Oéjtj y (513)

JEAL

with A, the set containing the indices of the L largest coefficients «;. The bigger the
considered set Ay, the smaller the approximation error :

X — Z Oéjtj

JEAL

2

=0. (5.1.4)

2

lim
L— N

This is the principle of signal compression : approximating a signal x by a L-sparse signal
in a dictionary T - i.e. a signal with only L non-zero components in the dictionary T.
To go back to the example of Fig.5.1, we could try to approach the cat picture by few
elements of the bi-orthogonal wavelet transform : this is exactly the principle of the
JPEG 2000 image compression format [5]. Such an approach results in an approximation
error that also decreases as a power law of the number of non-zero coefficients used
to approximate the signal [4].

More generally, we seek to give the best representation possible of x that will use
the fewest components of T :

Argnin |||, suchthat |x—-Tall, <0, (Lo)

where ||a|, (known as "norm 0") counts the number of non-zero components of the
vector «, ,and ¢ is the approximation error.

What is the interpretation of (L,)? (L,) states that we are looking for an ap-
proximation of x in T such that the approximation error does not exceed o. Mo-
reover, this approximation Ta must rely on as few non-zero coefficients |||, as
possible. It is "the best" approximation of x based on "the fewest" atoms of T.

It has been shown [6] that Eq.(L) can be relaxed as :

Argnin |leef|, suchthat |x—Taf, <o, (L,)

1/p
withp < 1 and |[af|, = (Zj |ozj|p) . In this case and under certain conditions, (L)

and (L,) have the same solution. This relaxation is interesting because contrary to (L),
the problem (L,) is continuous and can even become convex if we set p = 1. This is a
noticeable result, even more since both continuity and convexity contribute to facilitate
the search for the minimum. For more details, we refer the interested reader to [7; 4;

; 9.

5.1.2 Sparse modelling for Galactic Binaries

The sparsity framework suits particularly well GBs. As mentioned in Section 4.1, GBs
emit smooth, stationary, nearly sinusoidal signals. Based on this observation, the best

59



—— Waveform
Sparse
approx.

—— Waveform —— Waveform
. Sparse 0.08004 ... Sparse

approx. approx.

Y

0.000021 |
0.00802 0,00001

0,00000 0.00000

Joint amplitude
Strain
Strain

e° -6.00002 -0.00001

-0.00004 -0.00002

5.857 5.859 5.86 0.00 .25 0.50 0.75 1.0 1.25 1.50 -] 500 1000 1500
Frequency (mHz) Time (s) le? Time (s) +1.5e7

—— Waveform 98,0002 - —— Waveform 8.00018 | —— Waveform

. Sparse ... Sparse ... Sparse
approx. approx. approx.

Y 8.0001 0.00005

06,0000 0,00000

Strain
Strain

10!

Joint amplitude

I ‘“"""""*, _____________ —9.0001 - -0.00005

-0.0002 1 -0.00010

5.857 5.859 5.86 0.00 0.25 0.50 0.75 1.00 1.25 1.50 0 500 1000 1500
Frequency (mHz) Time (s) 1le7 Time (s) +1.5e7

Figure 5.2 - Left : For a fixed threshold v (dashed red line), we approximate a waveform (in blue) based
on the largest 34 (upper row) and 80 (lower row) components. The corresponding approximations are
plotted in orange. (To increase the number of coefficients used to approximate the signal, we increased
the input signal's amplitude while keeping the threshold at constant value). Middle : The number of
components used for the approximation will mainly impact the estimation of the signal time envelop. The
approximation gets better with increasing number of atoms considered for the approximation. Right :
Zooming over a short time period, both estimates (with 34 and 80 components) are in phase with the
real signal they try to approximate.

solution is to proceed to their study directly in Fourier domain where all the informa-
tion is gathered mostly on a few Fourier atoms. Hence, we can say that they are natu-
rally weakly sparse in the Fourier atoms dictionary. This statement can be illustrated
by a very simple example. Fig.5.2 shows the approximation of a GB waveform by its L
largest coefficients and the impact of this approximation on the time-representation
of the waveform. Only considering the few Fourier atoms with the largest amplitude
(left picture), the recovery in time domain already has a perfect phase match - even if
the amplitude is poorly recovered. Now, doubling the number of coefficients improves
considerably the amplitude recovery while keeping the phase match.

More generally, Fig.5.3 shows how the number of Fourier coefficients (and thus Fou-
rier atoms) used to approximate the signal impacts the quality of approximation Q4p
(the quality factor Q45 will be defined in Section 5.5). The evolution of the quality as a
function of the number of coefficients used for the approximation evolves in two stages.
At first, the progression slope is steep : each added coefficient contributes greatly to the
improvement of the signal quality. But after a certain number of coefficients (the limit is
around 40 coefficients in this example), the slope breaks and the improvement brought
by the addition of a coefficient becomes much weaker.

Nonetheless, in presence of noise the recovery plot is degraded and the task of
estimating the signal despite the noise becomes a real challenge.

5.1.3 Practical Resolution

Two elements must be accounted for : first, our GB signal x in only weakly sparse
in T. Second, it is tainted with complex instrumental noise. These two elements are
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Figure 5.3 - Quality Q4p of GB signal approximation with number of Fourier atoms Hﬁ used to ap-
0

proximate the signal. Two regimes are observed : the first 40 atoms are key to obtain a trustworthy
approximation. Considering more atoms then still improves the approximation, but with a lesser im-
pact.

enough to understand that the recovery scheme Eq.(Lg) will not be perfect. However,
using the sparsity denoising principle [4], we can build a good approximation of the
signal underlying the noisy data. This denoising principle is founded on a thresholding
process applied to the atoms coefficients «;. There are many possibilities; the one we
selected is obtained solving the LASSO convex problem [&] :

Argminy ||a]|, + = [|[x — Ta|} , (LASSO)

202

where o stands for the noise standard deviation in case where the noise is Gaussian.

What does (LASSO) do? It can be interpreted as a tradeoff between "finding the
sparsest solution possible”, embodied by the ||-||, term on the left, and "finding the
solution that fits the measurements the best”, embodied by the data fitting term on
the right, that evaluates the square distance between the measurement x and its
representation in the dictionary Ta. This tradeoff is balanced through the choice
of the regularizing parameter ~.

(LASSO) has been used in many contexts because of its efficiency on denoising pro-
blems (i.e. the problem consisting in recovering a signal from a noisy measurement)
[3; 4, 8]. Going back to GBs and the realistic case presented in Section 4.1.2, we unders-
tand that only a small part of the GB signal will exceed noise level. Moreover, many
peaks (corresponding to GB signals) are likely to rise above noise level. Ultimately what
is proposed here with (LASSO) is to approximate the sum of all GB signals at once using
the sparsest representation possible in Fourier dictionary. We investigate the viability
of this strategy, first by using a problem directly similar to (LASSO), and then by intro-
ducing a notion of "information cluster"[7; 4] that will help to improve the overall signal
estimate.
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In the case of GBs, if we work with the dictionary of Fourier atoms, then « exactly
coincides with the signal’s Fourier coefficients. This means that T can be assimilated to
the Fourier transform operator, which is an invertible isometry - with T~! the inverse
Fourier transform. In this context, Parseval identify yields :

| ~Talf=| T 'x —alf}. (5.1.5)
Time Frequency
data data

Thus we can express (LASSO) directly in Fourier domain :

Ix[k] — exll5 (REF-L1)

Ar%nin'y |||, + 257

where x[k] is the Fourier transform of the time signal x[n], as introduced in Section 4.2.
We will work directly with (REF-L,) as it admits the same solution as (LASSO) but with
the great advantage of not requiring to apply any transform. This makes the solution
computation faster.

5.2 Notations

Using formulation (REF-L,), we directly work in Fourier domain. We introduced in
Section 4.2 the corresponding data d|[k]. For any k € [—K, K|, the k-th coefficient of
data d[k] is the Fourier coefficient associated to the Fourier atom :

_ 2mikn

tp=e¢ N (5.2.1)

We will also refer to t, as the k-th frequency (since it corresponds to frequency f, =
k- & f). We consider the de-correlated TDI channels (see Section 3.2.2) I € {A, E}. We
do not consider the channel T" as it has by design a low sensitivity to low-frequency GW.

We will denote by v the signal variable expressing the optimisation problem (REF-L;).
We introduce the vector of relative signal amplitude for every Fourier atom on channel
I with regard to the noise level :

Asxvf):{AsI(vf)[k]}k:{ %} :{"’S—“EQ]} o 22)

This quantity is interesting because it directly shows if there is a power excess of the
data with regard to the noise level. Moreover, Z As, (vr)[k] can be interpreted as the

k
norm 1 of v; re-weighted (or whitened) by the noise standard deviation :

[vi[K])
Sk

s, (vl = D 1As, (vl = 8772V | =37 (52.3)
k k

Note here that we assumed that the noise power spectrum is colored in Fourier domain.
Concretely, this means that the noise associated to two different atoms will not have
the same standard deviation : this has to be taken into account to properly recover the

2. Since S is diagonal (refer to noise modeling described in Section 4.2.2), it is easy to compute S'/2
by simply taking the square root of the diagonal elements of S.
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signal. Itis all the more true as the noise PSD can vary over several orders of magnitude
(See Fig.3.7).

As we decided to consider the dictionary made of Fourier atoms, we impose a "sparse
distribution of signal amplitudes" in this dictionary as a prior,i.e. we want the coeffi-
cients of the identified signal to be spread over the fewest Fourier atoms possible. The
"sparse" variable will therefore be the signal amplitude.

The advantage of Eq. (5.2.2) is that it can easily be generalized to the multi-channel
case. As it should be done for uncorrelated channels, the total quadratic amplitude as-
sociated to the atom k will be given by the sum of the quadratic amplitudes of individual

channels :
{\/Zw vk } \/ZASI vi)| ) (5.2.4)

In this case, the sum over atoms still enforces the sparsity with a 1-norm, but this time
over the overall amplitude. This means that the coefficients related to the k' Fourier
atom are either zero for all channels, or non-zero for all channels (see the reasons for
introducing this operator in Section 5.3.2).

Last, we will use the Hadamard product ® such that for two vectors u, v of identical
Size:

(uov)[k] =ulklv[k] Vke[-K, K]. (5.2.5)

5.3 A separable sparse model : unstructured sparsity

The work presented in the following sections was published in Physical Review D
[10]. We consider the following data model :

d; =h;+n;, (5.3.1)
d=h-+n. (5.3.2)

h; is the sought signal and is assumed to be sparse in Fourier basis. n; is the Gaussian
noise contaminating the data.

5.3.1 Single channel model

Let us now rewrite the general reference problem (REF-L,) taking into account the
specificities mentioned in Section 5.2. Those include the colored noise distribution over
Fourier atoms, and the notion of "amplitude" that we expect to sparsify.

For a single channel I, the data d; is expressed by its coordinates in Fourier dictio-
nary. This means that we directly look for its sparsest approximation h; in the Fourier
dictionary :

ﬂl = Argmin H.ASI(VI)”

72A81 V[

<d1 —vr,d; — V[)SI/ - (5.3.3)

[\DI»—t

-

)[K]

2
|dr — vrll3s,
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We recognize a problem with a structure similar to the one described in Eq.(REF-L,).
The data fitting term is weighted by the expected noise PSD, and the sparsity term is
applied as mentioned before directly to the estimated signal amplitude.

Nevertheless, the reweighted L1 formulation [11] advises to consider a model a bit
more general to limit the bias induced by the coefficient v on the recovered solution :

~ 1
h; = Argmin [ZV[MA&(VI)U{] + §<d[ —Vy, d; — VI)S;] s (5.3.4)
v k

where the regularizing parameter v of Eq. (5.3.3) is replaced by an atom-dependent
positive real regularizing parameter {v[k]}_x<k<x. This choice will be justified when
considering the impact of the parameter v on the corresponding analytical solution;
this will also help setting the value of this parameter. Following the notations introduced
in Section 5.2, we can rewrite the single channel problem as :

- ‘ 1

h; = Argmin | ||y © As, (vi)|l; + §<d1 —vr,dr — VI)S;] ; (L1, I)
Fourier atoms are orthogonal; therefore the problem is entirely separable 3. The esti-
mator h; can now be computed analytically atom by atom. The solution is given by the
so-called soft-thresholding operator :

As (K — AWK
Rk =4 As(agm G TAs(dnlk] =7l (535

0 otherwise .

The regularizing parameter « acts as a threshold since the measurement d;[k| corres-
ponding to atom k will be discarded if its amplitude is smaller than ~[k], and will be
replaced by its excess to y[k| otherwise. We will label the atom k as active if the signal
amplitude exceeds the threshold ~, and inactive otherwise.

The soft thresholding process is illustrated on Fig.5.4 on a very simple sinusoidal
signal : soft thresholding consists in zeroing all sub-threshold amplitudes in Fourier
domain, whereas the amplitudes above threshold are decreased by a factor . This
explains why the sparse estimate in time domain does not have the right amplitude.
We remark that the result would have been the same if we had considered Eq.(5.3.3)
instead of Eq.(L4, I), only that v[k] would have been a constant.

In the following sections, we will lay down a joint analysis of the A and E channels,
and further elaborate on the choice of the threshold ~. However, the structure of the
considered problem will always remain the same throughout the chapter. Only the
sparsity-enforcing term and the minimizing algorithm will be sophisticated in order to
adapt them to data processing situations of increasing modeling complexity.

5.3.2 Combiningdifferentinformation channels with joint sparsity

While the solution stemming from (L, I) provides important insights into the algo-
rithmic nature of the problem, it does not benefit from the redundancy of the physical
content over multiple channels, which have been so far treated separately. Indeed the
information contained in TDI channels are highly correlated (the imprint of the same

3. We can solve the equation independently for each Fourier atom.
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Figure 5.4 - Soft thresholding applied to a sinusoidal signal. The true signal is in light orange, the noisy
signal is in blue and the corresponding sparse solution is in dashed green. The constant threshold ~ is
represented in dashed red. Left : Signal in time domain; Right : Amplitude in Fourier domain. Soft thre-
sholding consists in setting to 0 any coefficient below the threshold ~; the coefficients above threshold
are kept up to a coefficient depending on the threshold. The amplitude bias is directly related to the
choice of threshold v, and has consequences on the time series amplitude.

GW is encoded in all channels), whereas the noise is totally uncorrelated (see Section
4.2.2). This leads to the following two observations :

B Asignal emitted by a physical source at a given frequency f, will be measured in
all channels, although with different amplitudes. For instance, this signal could
be visible in one channel, but more difficult to detect in the other one.

B The noise impacting the coefficient of the k£ Fourier atom could be exceptionally
high on a channel (i.e. be an outlier), but low on the others. An independent
analysis of the two channels could output a false positive signal on one (and
only one) channel for this noise realisation.

Jointly processing all the channels addresses both problems and is the natural exten-
sion of the preceding development.

The very structure of the problem of constructing the sparse estimator h;is preser-
ved by making use of the compact notation h gathering all information channels (see
Section 4.2.1). Using the definition of the joint amplitude Eq. (5.2.4) over multiple data
channels, a joint sparse representation over multiple channels is achieved through :

~ 1 .
h = Argmin ny@As(V)Hl—l-§<d—v,d—v)s : (Joint L,)

where v = {v[k]}_k<r<k still denotes a positive real threshold that is shared by all
channels. As in Eq. (5.3.5), the analytical solution is given by :

As(d)[K] = v[K]

hik] ={  As(d)[K]
0 otherwise .

dk] if As(d)[k] > ~[k] , (5.3.6)

The problem is still separable and can still be solved atom by atom, even if we now
jointly examine all the channels. The role played by ~ is still clearly that of a threshold,
but now it is the combined amplitude A(v)[k] of the channels that should excess the
threshold to tag a Fourier atom as active.
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Similar approaches for multi-channels data processing with sparse signal represen-
tations can be found in [12].

5.3.3 Fixing the threshold as hypothesis testing

Whether based on (L4, I) (see Section 5.3.1) or (Joint L,) (see Section 5.3.2) sparsity-
enforcing terms, building estimators for GB events eventually led to a thresholding
operation over Fourier atoms’ coefficients. Going back to the simple example shown
in Fig.5.4, we understand that we want a threshold high enough so that all Fourier co-
efficients corresponding to noise will be put to zero, while keeping it as low as possible
so that the amplitude is not too biased.

It turns out that fixing the threshold v can be recast as an hypothesis testing pro-
blem, which provides important insights into the construction of the estimator itself.
This threshold choice can be performed independently for each atom .

We classically define the two hypotheses H, and H; :

H, : there is no GW signal at the k-th Fourier atom;

H, : thereis a GW signal at the k-th Fourier atom.

We assumed (Section 4.2.2) that the real and imaginary parts of n;[k] obey inde-
pendent standard normal distributions. Consequently, under H, (only noise) As, (d;)?[£]
admits a chi-square distribution with 2 degrees of freedom. Now if we consider C un-
correlated channels for joint resolution, then Ag(d)?[k] admits a chi-square distribution
with 2 - C' degrees of freedom.

Elaborating on Eqg. (5.3.5) and Eq. (5.3.6), this provides a criterion to set the thre-
shold value based on a p-value test. Adopting a priori a rejection rate p and defining the
real number z by the value of the cumulative distribution function :

P(xX3c > z0) = p, (5.3.7)

the hypothesis Hy (resp. H;) is adopted for frequency k if Ag(d)?[k] < zq = 7?[k] (resp.
As(d)?[k] > zo = 7?[k]). The same test can be adopted for a single channel I by setting
C=1.

If the noise distribution is not assumed to be standard normal, then Ag(d)?[k] will
not obey a x? distribution. However, the reasoning above can be adapted to the actual
distribution of Ag(d)?[k], and the principle of fixing the threshold as hypothesis testing
remains.

5.3.4 Reweighted minimization

As discussed in Section 5.3.1, the estimator ﬂf [k] derived from Eq. (5.3.5) or Eq. (5.3.6)
is a rescaling of the noisy signal af[k:] by a multiplicative factor in [0, 1], which makes
it intrinsically biased. This is understandable considering the case where the data is
exactly the signal : d = h. Then, the estimator writes :

hik] =<  As(h)[A] (5.3.8)

As(h)[k] — 7[k:]h[/{;] if As(h)[k] > ~[k] ,
0 otherwise .
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For a threshold (k| thatis non-zero, the estimated amplitude of the signal is biased by a
As(h)[k] — (K]
As(h)[k]

This was already shown in Fig.5.4.

In the general case of noisy data d = h + n, we are faced with a dilemma :

B Either we set a low 7 : the bias is low, but there is a high probability of detecting

an atom as active whereas it only corresponds to noise (false positive).

B Or we set a high ~ : in this case, the probability of false positive is low, but the

bias on the solution is important.

In the best case scenario, we want to have both a low false-positive rate and a low
bias on the estimated signal amplitude.

We present here an iterative process, named reweighting and described in [11], to
correct this bias. It consists in iteratively alternating at each step m € N between a re-
solution phase, yielding a signal estimator ﬂ?[k], and a threshold determination phase,
producing a regularizing parameter 4™[k]. The idea is, after a first selective step of de-
tection, to set a low threshold for active atoms and keep a high threshold for the others.
Therefore the bias correction only acts on active atoms. The convergence of this al-
gorithm has been established in [9] and in practice only few (about 3-4) iterations are
needed.

As in Section 5.3.3, we set a rejection rate p and define a (square of) threshold z,
through Eq. (5.3.7). We initialize the iterative procedure with the following threshold :

VK = Ee  Vke[-K K] (5.3.9)

We target a residual e, > 0 which will act as a stopping criterion : the algorithm will stop
at the first step m such that max |y [k] —4™[K]| < €,. Each iteration of the reweighting

factor € [0,1]. This bias becomes even more noticeable as ~ increases.

procedure performs as follows :
Phase 1 : Using 4™[k]|, compute the estimator h™ at step m from Eq. (5.3.6).
Phase 2 : Using ﬂm, evaluate the threshold y""![£] as described in [11] :

SRR L)
rAs (B)[k] +1°[K]

¥ (5.3.10)
where k is a positive real parameter that is set either to amplify (x > 1) or to
reduce (x < 1) the basic reweighting (v = 1). Using x € {1,...,10} yields quanti-
tatively similar results, and we have set x = 3 throughout this study.

Note that the reweighting procedure impacts only active atoms (i.e. the atoms k sa-
tisfying A(h™)[k] > 0). The higher the norm of the solution, the greater is the correction
and the lower becomes the bias, as shown in Fig.5.5.

5.4 Adding physical information to the model through

structured sparsity
Whether dealing with one or several channels, none of the methods we introduced
so far make use of any physical input on the shape of the GW signal beyond its quasi-

monochromatic nature. Since these methods use no information about the structure
of the GB waveform, they will be further dubbed unstructured sparsity-based methods.
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Figure 5.5 - GW signals on channel E as a function of time : target noiseless signal hg[n] (green) and
sparse recovery hg [n] (red). Upper row : signal estimation without reweighting process. The threshold
determination causes an underestimation of the signal. Lower row : signal estimation with reweighting.
The bias is mostly corrected. (Figure extracted from Ref.[10])

To provide more insight into these methods, we will more specifically consider the fol-
lowing two phenomena :

B AFourier atom for which no signal should be detected has been tagged as active.

We will refer to it as false positive (FP). This situation is illustrated in Fig.5.6.
B A Fourier atom for which a signal should be detected has not been tagged as
active. We will refer to it as false negative (FN). This situation is illustrated in Fig.5.6.
In particular, estimating the coefficient attributed to a Fourier atom independently from
the values taken by the others like in Eq. (5.3.5) or Eq. (5.3.6) leads to a high rate of both
FPs and FNs.

If we consider the problem of detecting GB systems to create a catalogue of sources,
then its viability will be limited if there is a high number of detected FPs. To be able to
detect a low amplitude peak, the chosen initial threshold should not be too high. Ho-
wever, the lower the threshold, the higher the probability to get a FP signal. Therefore,
an efficient and robust method to separate genuine signals from FPs is much needed.

This separation can be achieved by implementing the simple yet important remark:
a GB signal is not exactly monochromatic. Instead, because of the constellation move-
ments, the measured signal has a frequency that vary with time due to a Doppler ef-
fect. In practice, a measured GB signal will spread over few frequencies neighboring the
main emission frequency f,. The signal power will be distributed over the correspon-
ding Fourier atoms, as shown in Fig.5.6 - upper row. The presence of a signal induces
a significant correlation of the coefficients corresponding to atoms that are close in
frequency (see upper figure). On the contrary, a FP is often the manifestation of a rare
powerful noise realization impacting an isolated Fourier atom (see Fig.5.6, lower figure)
on a single channel. Considering the large number of records (the original time series
contain tens of millions of data points), the presence of FPs is naturally expected.

Note that there are also simple mechanisms providing FNs. For example, choosing
a atom-independent threshold leads to the rejection of all atoms with amplitudes lying
too low, such as Fig.5.6 (upper figure) whereas the signal is clearly spread over neigh-
boring Fourier atoms, forming a peak.

Nevertheless, for FPs as well as FNs, scrutinizing the content of the signal over blocks
of neighbouring atoms appears as a natural solution to solve both problems at once.
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More precisely, it is unlikely that a noise-related FP activates several contiguous Fourier
atoms. In contrast, a GB signal activates a dozen of Fourier coefficients. Therefore ave-
raging over the neighborhood of atoms should allow the discrimination of a FP from
genuine signal peak.

Why should we use a block decomposition? Unstructured approaches are
known to provide biased estimators of the signal with sub-optimal convergence rate
in terms of quality recovery [4]. Treating clusters of atoms jointly instead of treating
them individually relieves partially the bias and improves the recovery quality.

3. 1 M‘M'

X 102 |

E 1073,

< Y

f (Hz)
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Figure 5.6 - Joint signal amplitude Ag(d)[k] as a function of Fourier atom frequency (solid blue) and
compared to the threshold v (dashed orange). Upper row : When the signal is present, there is a power
excess over all Fourier atoms with frequency close to fj, forming a peak. However, within the peak, some
harmonics have amplitudes that are lower than the chosen threshold, and thus will not be interpreted

as signals, generating FN. Lower row : An isolated noise realisation jumps above threshold and is likely
to be detected as a signal, generating a FP.

5.4.1 Notations

This time, instead of treating independently the Fourier atoms, we will jointly pro-
cess all the Fourier atoms that are "close" one to another. These neighborhoods of

Fourier atoms will gather only few elements - even if it means aggregating several of
them to cover a GB signal.

In practice we will consider fixed disjoint sets of consecutive frequencies B = {k}k

mzngk‘gkmaz
(and thus the corresponding Fourier atoms) such that :

{-K,....+K}= |J B; with B;nBy =0 forj#j . (5.4.1)
1<j<J

any neighborhood B; being referred to as a block which number of elements (or
cardinal) is designated by | B;|.

The set of all the neighborhoods is therefore a partition of the atoms, and is noted :

B ={Bj}i<j<s - (5.4.2)
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This partition contains |8| = J disjoint neighborhoods, and includes all the Fourier
atoms. Of course, several partitions are possible : this will be investigated later on.

Now, the idea is to consider that the signal is modeled not only over each Fourier
atom, but also over each neighborhood B. The sparsity prior that was "finding the spar-
sest solution possible over the dictionary Fourier atoms" has to be adapted to the new
decomposition 25 because the signal has to be modeled both on Fourier atoms and on
Fourier neighborhoods. The updated prior is directly stated on 9B : "the sought signal
can be represented over few Fourier neighborhoods".

In the end, this new approach remains very similar to the previous one. Introducing
the joint signal amplitude over the block decomposition :

B V?k'V[k’

{ /ZA%(V)[]{?]} : (5.4.3)
keB Bes

where the squared joint amplitude is the sum of the squared amplitudes of the atoms
belonging to the block, we will seek the signal the closest to the observed data with the
sparsest joint amplitude distribution over ‘8.

5.4.2 Problem formulation over a block-structured domain

Exactly as in Eq. (L1, I) and Eq. (Joint L), we can generalize the problem REF-L; to
the block distribution by simply modifying the term responsible for sparsity.

Being provided a partition 8 of the measured frequency range {— K, ..., +K}, the
block-sparse estimator of the signal requires to solve the following optimisation pro-
blem :

h = Argnin [ > 1m[BJAZ (v)[B] + %<d —v,d— V)s] : (5.4.4)

v Be®B
which is simplified using the notations of Section 5.2 by :

h= Argmin

1
“ng.A?(V)HI—|—§(d—v,d—v>sl ) (L‘fQ)

Analogously to the problem (Joint L;) which was separable by atom, the problem (L‘fQ)
is separable by block. Moreover, within each block, the problem can be solved atom by
atom. For an atom k € B, the solution indeed writes :

{A?(d)[B} — 3840 if AZ(@)[B) > 1w[B] .

hk] = AZ(d)(B]

0 otherwise ,

(5.4.5)

which displays the same pattern as the unstructured solution Eq. (5.3.6). We thus fore-
see the need for reweighting elaborating on the discussion of Section 5.3.4; this issue
will be addressed below in Section 5.4.4. This leaves us with two questions :

1. For a given partition 8, what is the best choice for the threshold?
2. What is the best choice for the partition B7?
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Setting the threshold

The process is very similar to what was done in the unstructured case in Section
5.3.3 except that this time we look for power excess on Fourier atoms neighborhoods
B € Binstead of power excess on single Fourier coefficients. We now consider a y*-test
by block and will assess :

Hy : thereis no GW signal in block B;
H; : thereis a GW signal in block B.

Since we assumed that the real and imaginary parts of n;[k] obey independent nor-
mal distributions (Section 4.2.2,5.3.3), under H, (noise only) (A?(d) [B])2 admits a y2-
distribution with 2C' - |B| degrees of freedom ch,‘B‘. We can adopt a hypothesis test
similar to the one proposed in Section 5.3.3.

Adopting as above a rejection rate py, and again defining the real number z, by the
value of the cumulative distribution function :

P(X3c.p) = o) = P , (5.4.6)

the hypothesis H (resp. H;) is adopted for block B if A% (d)[B] < /2o = ~=[B] (resp.
AS(d)[B] > /T = [ B])-

5.4.3 Improving the domain decomposition : BlockTree algorithm

The remaining question deals with the choice of the partition 8. This choice is sen-
sitive as it can impact greatly the solution : there is no reasons for all partitions B of
{=K,...,+K} to yield the same sparse signal estimators. Optimal solutions would
stem from an optimization of the overall domain decomposition, which is a NP-hard
problem : the computing cost of its resolution with current computers is prohibitively
expensive. And yet, a suboptimal approximation of the best decomposition can already
improve the signal estimation. We hereby propose a suboptimal, yet pragmatic and ef-
ficient, solution to the domain decomposition problem.

Tree-based block decompositions were introduced in sparsity-based signal proces-
sing methods so as to adapt them better to the structures of the signals to be recove-
red. In different contexts, tree-based block decompositions have been used in signal
and image denoising (see [13] and references therein). The approach we will develop
below has been inspired by [14] where the authors build an adaptive block decomposi-
tion directly from the observed data through a dyadic process. We adapted the advo-
cated top-down building of the dyadic tree to a bottom-up process binding the fate of
adjacent Fourier atoms depending on the presence or absence of signal.

GB signal bandwidth

Following the terminology introduced in Section 5.3.1, we will say that a block B C
{=K,...,+K} is an active block (resp. inactive block) if the joint amplitude of the signal
over the block is larger (resp. lower) than a given threshold.

If series of measurements contain only noise, summing over connected blocks will
act as an averaging process. If the block is big enough (i.e. includes the right amount of
atoms), outliers -which scarcely occur on two neighboring Fourier atoms - will vanish
and the FP rate will decrease. On the contrary, if the block is too big (i.e. includes too
many atoms), a nearly monochromatic signal may be drowned into the noise and there
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is the risk that the signal cannot be detected anymore. Since the amplitude of GB signals
can be quite close to that of the noise, this case cannot a priori be excluded. At last, if a
large block is tagged as active whereas it is not, then its impact on the sparse solution
will be proportionally important to its size. Thus we intuitively understand that active
blocks should neither be too small nor too large.

To begin with, let us consider a uniform domain decomposition, i.e. a partition of
{—K,...,+K} made of blocks of the same size. It seems natural to select a block size
similar to the width of the peak of the expected GW signal. According to [15], the TDI
signal instant phase is given by :

o(t) =2m (fot + %fotQ + (fo + fot)R cos() cos(Qxt + ny — )\)) , (5.4.7)

where we note ¢ the instant phase, f, the emission frequency, f, the frequency deriva-
tive, 8, A the ecliptic coordinates, n, the position of LISA around the sun at time ¢t = 0,
2 = 27 /(1year) LISA’s orbital frequency and R = 1 astronomical unit. Under the as-
sumption fot << fo, the instant frequency is approximated by :

b(t) ~ 2w f — 27 f cos(B)RQsin(Qt + 19 — \) | (5.4.8)

which means that, for an observation duration long enough (7,,s > 1 year), the obser-
ved half peak width in Fourier domain at first order is given by |27 f; cos(/5) RS2|. It means
that a wide range of signal morphologies can correspond to a given emission frequency
Jo-

Fig.5.7 portrays this diversity through two examples where the signals are obtained
using exactly the same physical parameters except for the ecliptic latitude 5. On the
upper figure, choosing 8 = 0 means that the source is in the ecliptic plane : this setting
maximizes the Doppler broadening of the frequency peak. On the other hand, on the
lower figure choosing § = 7/2 corresponds to a source that is at local noon with regards
to the ecliptic plane. This setting minimizes the Doppler broadening of the frequency
peak. Both peaks are presented with the parameters indicated in Appendix B.2.
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Figure 5.7 - For an observation duration long enough, the peak width is proportional to | cos(5)|, where
B is the ecliptic latitude for the observed GB. Thus, the largest peak is obtained for 8 = 0 (top plot),
whereas the thinnest peak is obtained for § = 7/2 (bottom plot). (Figure extracted from Ref.[10])

To fit as best as possible the scenario where the signal is only spread on few Fourier
atoms (Fig.5.7, lower row), we set a minimal block size |B| ~ 10. It is adapted to the
characteristic width of the signals we are looking for with a sampling period AT = 15s
and a total observation period of about 2 years.
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Figure 5.8 - lllustration of the BlockTree algorithm. We use the notations of Algorithm 3. Evolution of
the domain decomposition in a simple case. The red blocks represent inactive blocks, i.e. those which
signal power do not exceed the block threshold. The green blocks represent active blocks, i.e. those
which signal power exceeds the block threshold. The top row represents the initial block decomposition,
where all blocks have the same size ng. There are a signal peak in the middle and a FP on the right. This
FP will be discarded during the first iteration (middle row). The bottom row represents the final block

decomposition. The two blocks on the left side are not merged because their sizes are too different
(their ratio is larger than Rcomp). (Figure extracted from Ref.[10])

® ] WWWW

IE]

The BlockTree algorithm

Such asmall block size | B| = 10 does not allow a efficient enough averaging process.
This calls for the possibility of merging adjacent blocks to foster this averaging. For that
purpose we developed the BlockTree algorithm, which is a bottom-up approach to
frequency domain decomposition :

Initialisation Start from a uniform decomposition of blocks with minimal size.

Iteration m Try to merge adjacent blocks 2 by 2 (only if they are of similar sizes) :

B If a signal was detected in one of the blocks at the iteration m — 1, but is
not detected at the current one : this signal was a FP, so we keep the block
resulting of the merging.

B If a signal was detected in one of the blocks at the iteration m — 1, and is still
detected at the current one : this signal was not a FP, so we do not merge
blocks.

B Ifnosignal was detected in both blocks at the iteration m—1, we merge blocks.

The detailed implementation is described in Appendix B.3, Algorithm 3. The first ite-
ration aims at cutting drastically the number of FPs. An illustration of the algorithm
behavior is shown in Fig.5.8. The parameters that are usually used for this code are
summarized in Appendix B.3.2.

The BlockTree approach brings a majorimprovement: we can setathreshold linked
to a probability much lower than the one chosen in the case of unstructured sparsity
since we are able to discard FPs, paving the way to the detection of more GB signals. The
easier detection of low amplitude signals enhances the robustness of signal detection.
This point will be quantitatively assessed in Section 5.5.
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5.4.4 Reweighted Block Sparsity

We now adapt the discussion of Section 5.3.4 to block-structured data. Reweighting
will not participate to the tagging of a block as active or inactive but it will just correct
the bias introduced 4 by Eq. (5.4.5). There are two main options to extend the previous
discussions to frequency blocks :

1. Set a unique threshold for each block.
2. Set a Fourier atom-dependent threshold within each block.

The second option arises from the observation of amplitude variations between conse-
cutive peaks (see Fig.5.6).

Block threshold reweighting : Similarly to Section 5.3.4, a reweighting procedure
can be implemented to correct for the bias induced by the proposed block thresholding.
This is described by following steps :

Phase 1 Using 74| B], compute the estimator h™ at step m from Eq. (5.3.6).

Phase 2 Using h™, compute the new threshold v 71B] as follows :

o8B
5 AR (B) K] + 2§ B]

m+1

Yo [B] = (5.4.9)

Following Section 5.3.4, « is a positive real parameter that allows to control the
strength of the reweighting procedure. It is again fixed to x = 3 for the block
threshold procedure.

The initial block threshold %[ B] is chosen as a threshold for a X%o.ua test as explai-
ned in Section 5.4.2. With the same notations, the choice of the threshold is given by

%[B] = /o

Atom reweighting for block sparsity : A potential drawback of the global block re-
weighting is that the correction factor, which appears in Eq. (5.4.9), is identical for all
atoms of an active block. Therefore, this might not be as effective as the entrywise re-
weighting introduced in Section 5.3.4 to unbias the thresholding procedure. As shown
there, an entrywise reweighting scheme allows to adapt to the amplitude of individual
entries of the estimated signal h. In order to get the best of both the block-based ap-
proach and the atom-based reweighting, we further propose to perform both alterna-
tely. In brief, a first estimate his computed using the block-based thresholding proce-
dure. This allows to carefully account for FPs, and identify active/inactive blocks. The
exact same atom-based reweighting introduced in Eq. (5.4.9) is further applied to the
atoms of the active blocks. This allows to preserve the detection performances of the
block-based procedure while significantly enhancing the quality of the detected signals.
Thus, two rejection rates are to be considered :

1. the first one is associated to the BlockTree, and therefore will be used to sort
out real signals and FPs. Typically, we will choose p,,... such that there is less than
1 FP for the considered input size.

4. This is similar to the introduction of a bias through Eq. (5.3.5) and Eq. (5.3.6) as made manifest by
the common structure of these thresholding equations.
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2. The second rejection rate is used for the atom-based reweighting. Since we al-
ready selected the active atoms, we will chose a rejection rate rather high, typi-
cally preweighting = 0.9 (we would like to keep active most of the atoms that have
been pre-selected with the BlockTree).

5.5 Performances Benchmark

The code that we used for this study is released as an open source code. More in-
formation can be found in Appendix B.1.

5.5.1 Quality checking tools

Several criteria will be used to assess the quality of the solutions. The detectabi-
lity of a signal, and its recovery, greatly depend on the noise realisation. Thus we will
benchmark our algorithms with multiple noise realisations.

Rejection Rate :In the remaining of the article, we will refer to the rejection rate p
defined by :

P(H, is rejected under Hy) = p , (5.5.1)

p is defined through Eq.(5.3.7) for the unstructured sparsity, and through Eq.(5.4.6) for
the block-structured sparsity.

The rejection rate describes the probability to reject H, for a given frequency or
a given block whereas H, is in fact true. For a uniform domain decomposition (i.e. a
decomposition frequency by frequency or with uniform blocks), it corresponds to the
expected FP rate. Its interpretation is a bit more involved in the case of an adapted
domain decomposition, as we will show below.

Signal-to-Noise Ratio (SNR) : it estimates the signal power compared to the noise
power. The greater it is, the more the signal is "visible". The definition of SNR for LISA
canbefoundin[16]. When working on noise de-correlated TDI channels, the SNR writes :

SNR*(v) =45f> ) |‘g}%’2 =451 As(v)[K]*. (5.5.2)

More information about SNR computations can be found in Appendix D.4.

Quadratic relative error : for a signal h approximating a true signal h, we want to
quantify the error of approximation. We define this error £2(h, h) by :

= (h-hh-hy

£2(h.h) = .
(h,h) b h)s (5.5.3)

The lower the relative error, the better the approximation.
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Quality factor (dB) : it measures the quality of approximating a signal h by an esti-
mator h. It is measured in decibel based on the reconstruction relative error :

Qup(h,h) = —101og,, [52(}1, ﬁ)} . (5.5.4)

The greater it is, the better the approximation. Q5 gives an idea of the global quality
of the reconstructed signal. However, it does not provide any information about the
FP and FN rates. This quantity is also known as "Normalised Mean Square Error" in
classical signal processing field.

FPrate: Thenumberandthe amplitude of FPs can greatly impact the signal recovery.
In absence of a meaningful signal, the FP rate is defined as the average number of atoms
detected as active whereas they should not. For a given rejection rate p, we can estimate

the FP rate as :
#FP

Ny
where #FP denotes the number of FPs for the rejection rate p.

Rpp(p) = (5.5.5)

FN rate : We can define the FN rate in a similar fashion as the FP rate : this is the
average number of atoms detected as inactive whereas they are active (because they
carry signal). In practice, we define a FN rate as follow : for a given rejection rate p for
which the FP rate is low, the FN rate will essentially depend on the input signal SNR
(i.e. its power compared to the noise power). It will be obtained as an average over
Nnoise different noise realisations. For each input signal at chosen SN R and each noise
realisation, one will assess whether the signal was detected by the algorithm. Then, the
FN rate will be defined as the proportion of experiments (noise realisations) for which
the signal was not detected :

1 NNoise

NNOise Z i (556)

=1

Ren(SNR) =

where 1 if signal with chosen SNR is undetected when added to i-th noise realisation,
€ = .
0 otherwise.

5.5.2 Building a representative set

In order to assess the overall performance of our algorithm, it is important to consi-
der the wide variety of waveforms that the algorithm could encounter. To represent
properly this diversity, we will benchmark our algorithms on a set of 1000 waveforms
sampled through the parameter space. The prior used for this sampling are detailed in
Table 5.1. The overall results of the benchmark will be obtained by averaging the results
over the randomly chosen waveforms.

The amplitude of the signal can be computed as a function of the wanted SNR :
if we produce the signal with an initial amplitude hy = 1, we then compute the final
amplitude as a function of the SN R given by Eq.(5.5.2) : for any multiplicative factor h
and initial signal v, we have :

SNR*(hov) = hASNR*(v) , (5.5.7)
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Parameter

Prior

Frequency
Frequency Derivative
Ecliptic Latitude
Ecliptic Longitude

fo ~ U([1 mHz, 10 mHz|)

fo=0
sin(f3) ~ U([-1,1])
A ~U([—m, 7))

Amplitude Computed to obtain the target SN R
Inclination cos(t) ~U([—1,1])

Polarization Y ~ U2, 2E])

Initial Phase ¢o ~ U([Z,3])

Table 5.1 - The algorithms will be tested on a set of 1000 waveforms which parameters have been chosen
according to the the laws reported here.

meaning that any wanted SN Ryanteq fOr signal v can be achieved through multiplying
v by the amplitude hq computed by :
_ SNR;

wanted

hZ = —_—Wwanted
0 SNR2(v)

(5.5.8)
We will often assess the performances of the algorithm over the set composed of

waveforms at fixed SN R. The noise will be generated according to the process descri-
bed in Section 4.2.2.

5.5.3 Individual versus Joint estimation performances

In order to show the advantage of a joint resolution over several channels compared
to single channel resolution, we will consider the answer of the algorithms to the test set
presented in Sec. 5.5.2 for signals with SN R = 50 . The fast waveforms produced by the
LDC code [17] are restricted to a small frequency range of about 30, 000 frequency bins
centered on fj (for the chosen simulation parameters). We assess the performances
of the recovery over this restricted range. Two different solutions were considered :
the first one is a separate resolution for channels I € {A, F'}, and the second one is
a joint resolution. Both are using the bias correction algorithm (reweighting process)
introduced in Sec.5.3.4.

In Fig.5.9, we plot the average quality factor Q45 as defined in Eq. (5.5.4) over the
test set for the solution obtained with a separate resolution (labelled as "mono"), and
the one obtained with joint resolution (labelled as "multi").

For a high rejection rate p, the average Q)5 is really low because the FP rate is impor-
tant. Decreasing p greatly improves the results, with the best performance achieved for
p = 10~ Then, when p becomes even lower, the FN rate becomes prominent, which
degrades the estimation quality - even with a bias correction such as the one introduced
in Sec.5.3.4.

5. This value was set after computing the SN R of LDC 1-3 verification binaries. They are given as an
indicator in Section 5.6.2
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The joint resolution performs better than the single channel resolution as it de-
creases the atom FN rate. Around the value of interest p = 10~ (i.e. 1 FP at most for
the considered input size 30, 000) where the best performance is reached, there is more
than a 1 dB difference between the qualities of the two estimates, which makes more
interesting to use joint estimation. We also observe that the multi-channel estimate is
more robust to the choice of rejection rate p as the average solution quality is modera-
tely impacted by p = 10~ being below the "best-case" scenario.

151 —e— mono
multi

=
o (=]
L L

Quality Qgs
@

5] \
_la 4

107° 1077 107° 1073 107
Rejection rate p

Figure 5.9 - Average Q45 as a function of the chosen rejection rate p for a single binary detection for
a single channel resolution ("mono" in blue, corresponding to problem (L1, 1)) and joint channels reso-
lution ("multi", in orange, corresponding to problem (Joint L1)). The averaging is done over the results
obtained for a set of 1000 waveforms with parameters randomly sampled and SN R = 50.

For the following study, we will only focus on the joint resolution, leaving the sepa-
rate resolution aside.

5.5.4 Estimation of the FP rate

We argued in Section 5.4.3 that the uniform domain decomposition (be it atom by
atom or uniform blocks decomposition as in Fig.5.8) presents a high FP rate compa-
red to the adapted domain decomposition given by the BlockTree. To illustrate this
point, we plot an estimation of the median FP rate as defined in Eq. (5.5.5) over 100
noise realisations over the whole frequency domain®, for various rejection rates and
the three families of methods : unstructured sparsity, uniform block decomposition and
BlockTree decomposition - for both structured and unstructured estimates. Fig.5.10
shows the evolution of the FP rate with the rejection rate p.

For the unstructured sparsity and structured uniform block-based approaches (Fig.5.10,
left), the FP rate coincides with the rejection rate. This is expected since both domain
decompositions are uniform. For the structured BlockTree domain decomposition,
thanks to the averaging process, the effective FP rate is much lower than the rejec-
tion rate. Indeed, the probability threshold remains the same (i.e. the block threshold
xo is always computed based on the same probability, its variations from one block to
another are only due to the change in block size), but the final number of blocks is much
lower than for a uniform decomposition, which explains that less blocks result in a FP.

6. Here we consider the 2-10° measurement points in Fourier domain, independently of the frequency
range of interest.
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Figure 5.10 - Evolution of the FP rate as a function of different initial thresholds for different resolution
classes : unstructured sparsity (blue), uniform blocks resolution with a block size | B| = 10 (orange), adap-
ted blocks BlockTree resolution based on the previous uniform decomposition (green). The probability
threshold is chosen so that under Hy, IP(x? > ) = p. Left : For structured block sparsity. Right : For
unstructured block sparsity. The expected value is given by the first bisector, which is perfectly matched
by the two first methods. The BlockTree enables to have an effective FP rate that is much lower than the
expected value due to the averaging process. Moreover, unstructured block sparsity has lower FP rate
than structured block sparsity.

Unstructured block sparsity (Fig.5.10, right) produces a lower FP rate for both uniform
blocks and BlockTree, making it particularly advantageous in a context where we want
to limit the FP rate as much as possible.

5.5.5 Evolution of quality factor (),;3 with input SNR

In order to characterize the sensitivity of the proposed methods with respect to the
input signal's amplitude, we investigated the evolution of the quality factor Q5 with
the input SN R at constant noise level.

For a given test set as described in Sec.5.5.2, we adapt signal's amplitude according
to Eqg. (5.5.8) so that the signal has the target SN R. Then, we draw noise over all the
atoms of Fourier domain and we add it to the signal. The measurements write :

d=ho(SNR)-h+n. (5.5.9)

We apply the algorithm of reweigthed unstructured sparsity Eq.(Joint ;) and block
sparsity Eq.(5.4.5) combined with both a uniform block decomposition and a BlockTree
decomposition, performing either block reweighting or unstructured reweighting in-
side the blocks. We set the detection threshold based on Fig.5.10 such that the false
positive rate is inferior to 1 for the considered input size (around 30.000 frequency bins).
This corresponds to :

Unstructured sparsity : p ~ 107°
Uniform block sparsity : p,.;orm ~ 107
BlockTree sparsity : py.c. ~ 1073

Fig.5.11 shows the quality factor of recovered solutions for various rejection rates
around these values : p € {107°,107"}, puniform € {1073,1071}, pyree = 1073. For the
lowest rejection rate (lower row), all methods did not present any FPs. In this case, we
can see that the block decomposition methods are pretty much equivalent, and provide
a better result than the unstructured sparsity method.
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Figure 5.11 - Evolution of average Q45 with SN R for the 3 main methods presented here : resolution
atom-by-atom ("Unstructured”, blue triangles), with uniform domain decomposition ("Uniform blocks",
orange circles) and with the BlockTree domain decomposition ("BlockTree ", green squares). For the two
block decompositions, the reweighting is operated by block (left) and atom-by-atom (right), for different
sets of parameters. The "unstructured" solution is identical on both sides. Up : Unstructured sparsity :
p = 10~%; Block decompositions : puniform = piree = 1073, For atom reweighting, preweighting = 1071
. Down : Unstructured sparsity : p = 107%; Block decompositions : puniform = 1074, ptrec = 1073, For
atom reweighting, preweighting = 10! . The "unstructured" solution has a high rate of both FN and FP.

Several observations can be done:

1. Unstructured sparsity produces a recovery of lower quality than any other me-
thods. This is due to the important number of FPs and, to a lesser extent, the
number of FNs. It has more difficulties detecting signals with low SN Rs. Decrea-
sing the rejection rate improves the recovery quality because there are less FPs
at the cost of reducing the detectability of signals at low SNR.

2. In absence of FPs, atom reweighting and block reweighting give results of similar
quality.

3. In absence of FPs, uniform blocks decomposition has a recovery quality that is
similar to the one obtained using BlockTree.

4. Even for a high rejection rate p;... = 1073, the BlockTree decomposition never
presented a FP.

In conclusion, the best solution is to use the BlockTree approach to estimate the
signal. Indeed, since it is a block-structured approach, its results are better than when

80



using an unstructured approach. Moreover, BlockTree enables to use higher rejection
rates than uniform blocks decomposition for lower FP rate.

5.5.6 FN rate

In Fig.5.12is represented the evolution of the average FN rate (defined asin Eq. (5.5.6))
with the input SN R. The averaging is realised over a set of 1, 000 signals chosen as ex-
plained in Section 5.5.2 and amplitudes computed as in Eq. (5.5.8).

Lo i —d— Unstructured
B Blocktree

0.8

6.6

Ren

0.4

0.2

0.0 i

16t
SNR

Figure 5.12 - Average evolution of FN rate with SNR. for unstructured sparsity (Joint L)
(blue,"Unstructured") and BlockTree algorithm (L‘fQ) (orange,"Blocktree"). BlockTree has a better de-
tection rate than Unstructured sparsity.

Because it considers Fourier atoms independently, the unstructured sparsity has
more difficulties detecting low-SN R signals. This is not the case for the BlockTree
domain decomposition : the averaging process gives a certain robustness to our al-
gorithm. The uniform block decomposition is an intermediate case between the two
methods.

One could be surprised by the FN rate of the BlockTree algorithm, that can seem
rather high. While building the algorithm, we made the choice to favor having the less
FPs possible instead of having the less FNs possible, since we would rather have fewer
but safer data than more but more uncertain data. This explains that our FN rate is not
the best among all techniques that we tried, whereas the FP rate shown in Fig 5.10 goes
in favor of our algorithm robustness.

5.5.7 Sensivity to the minimal block size

As explained in Section 5.4.3, the block size can have an impact on the signal reco-
very realised by the algorithm.

Fig.5.13 shows the average factor quality Q.5 sensitivity with respect to the choice
of block size | B|. The averaging is done over a set of 1,000 signals chosen as in Section
5.5.2, with SN R = 50. We set the parameter p,... = 10~* according to the value found
in Sec.5.5.4 for the considered input size. For a block size inferior to 32 atoms, the block
size only has little impact on the quality of estimation. In order to limit the impact of
a block if it where to be a FP, it is better to have a block size that is not too wide. But
we still want it to be large enough to detect - through averaging process - low-SNR
signals. For that purpose, we selected | B| = 10 as a minimal block size.
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Figure 5.13 - Average quality Qgp of signal recovered using BlockTree for rejection rate py... = 1074,
Input signals have a SN R of 50. There is an operating plateau between |B| = 4 and |B| = 20. The area
filled in light blue shows how 95% of the values are distributed around their average (dark blue line).

5.6 Application to LISA Data Challenges

The LISA Data Challenges (the datasets and their description) can be found at [17].
LDC1-3 deals with ten verification GBs. The corresponding LISA signal, as expected for
the TDI channel A as a function of frequency, is displayed on Fig.5.14.
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Figure 5.14 - LDC1-3 : Verification galactic white-dwarf binaries : 10 verification binaries have to be found

in this signal which noise was generated with the LISACode noise generator. The target signal h is the
sum of all GB signals.

5.6.1 PSD estimator

For the LISA Data Challenge 1(LDC1), the noise was created using the LISACode noise
simulator [17]. This code simulates a Gaussian noise in time domain, then realises a
sub-sampling and a high frequency filtering in the spirit of what will be realised for LISA
real data. The LDC code provides an estimation of the noise PSD (which we will refer
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Figure 5.15 - In blue : standard deviation o);4p computed with the MAD estimator and a sampling
window length of 5000 points. In red, polynomial fit of order 3 of oarap, referred to as o,4. (Figure
extracted from Ref.[10])

to as theoretical PSD and denote S, in the following) that does not take the last two
processing steps into account (i.e. sub-sampling and filtering).

The proposed methods are highly sensitive to the PSD (through both data whitening
and threshold choices). Consequently, the straightforward use of the theoretical PSD
did not give satisfying results. Indeed the real and imaginary parts of each signal in
Fourier domain whitened by the theoretical PSD is expected to obey a standard normal
law N (0, 1) (this is true because only few GBs are present : they do not impact much the
global noise distribution). It turns out that at high frequencies the noise distribution of
frequency blocks does not follow the expected x? distribution as several instrumental
effects are not taken into account.

The MAD (Median Absolute Deviation) estimator :

Median(|X — Median(X)|)

OMAD = ; (5.6.1)
SMAD

with X a window-sample of the initial data and sy;4p ~ 0.674, is an empirical estima-
tor of the dispersion of stochastic distributions, which has mainly been advertised in
robust statistics [18]. We use it here to estimate the standard deviation for the real and
imaginary parts of signals d;, I € {A, E'}. The MAD estimate of the standard deviation
for R(dg[k]) in presented in Fig.5.15.

Without the aforementioned sub-sampling and high frequency filtering effects, this
estimator should roughly be equal to 1. As made manifest by Fig.5.15, this is not the case
in practice, and the deviation from the expected value is significant enough to impact
the behavior of our algorithm. Thus, for f < 0.027Hz we computed the MAD estimators
of the standard deviation of ®(d4[k]), S(dalk]), R(dg[k]) and S(dg[k]) using a sliding
sampling window of 5,000 points. We restricted ourselves to f < 0.027Hz because hi-
gher frequencies are too much impacted by the high frequency filtering - this is not a
problem since the signals we are looking for have lower frequencies. The size of the sli-
ding window was chosen by finding a trade-off between a window big enough to have
animportant averaging and a window small enough to have an accurate representation
of the correction.

Each of these four estimators can be fitted by a polynomial of degree 4 to enforce
smoothness of the PSD, and each of these polynomials can be reliably approximated by
their average o, described in App. B.4. The impact on the whitened noise distribution
is illustrated in Fig.5.16.
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Figure 5.16 - Impact of the PSD correction on the noise distribution. The random variable | As(d)[k]|?
for a frequency k is expected to follow a law of x2 as explained in Section 5.3.3. On the left, the signal is
normalized with the theoretical PSD PSD,,,, whereas it is normalized with the effective PSD PSD.;; on
the right, for f < 0.027Hz. We computed the noise distribution directly on the signal as the amount of
signal is negligible compared to the amount of noise. (Figure extracted from Ref.[10])

To summarize, instead of using the theoretical PSD S;;,, we used the effective PSD
Sers defined by :
Serslk] = o [k]Simlk] , (5.6.2)

to obtain the results presented in the following sections.

We designed our PSD estimator in this case taking into account that the amount
of GB signals was negligible compared to the amount of noise. Our estimator of the
noise PSD directly works in Fourier domain, and is hardly sensitive to the GB frequency
peaks of the considered dataset. Only high frequencies are impacted by filter distor-
tions. Here, we limited ourselves to f < 27mHz because the evolution of the PSD cor-
rection could be modeled rather precisely with a simple polynomial function -which
was not the case if we took more frequencies into account.

5.6.2 LDC results

The algorithm parameters used in our code to compute the following results are
summarized in Appendix B.3.2.

Fig.5.17 shows the results that can be expected from the structured sparsity method
combined with the BlockTree algorithm. The left column features in upper row the so-
lution found in the Fourier domain in red and the target (real signal without noise) in
green : all frequency peaks were recovered, and no FP was detected. The lower plot
shows a zoom of the solution on the last frequency peak from the left. This gives an in-
sight on the algorithm behavior : all signals above noise level were recovered. However,
this also shows that we have a poor representation of the waveform tails?.

The right column upper row represents in the time domain the corresponding so-
lution in red and the target in green. The lower plot is a zoom on the solution on a day
portion. The phase of the solution matches really well with the one of the target, but

7. By "tail" we mean the signal’s structure outside the main peak, which amplitude quickly goes to 0.
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Peak | SNR | Qap (piree = 1077)
1 26.6 9.513
2 22.5 9.081
3 12.0 4.85
4 9.56 1.918
5 65.3 15.773
6 52.7 13.199
7 48.7 13.661
8 19.8 4.927
9 12.3 2.696
10 72.5 13.719

Global 13.108

Table 5.2 - Peak to peak recovery quality factor Q5. Peak are numbered from lowest frequency (1) to
highest frequency (10). For the chosen rejection rate p;... = 1073, no FP was detected. We added the

SNR as an indicator to match the results with what was found in Fig.5.11.
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Figure 5.17 - Results for the LDC challenge with p = 10~ and a minimal block size |B|,i, = 10. For
this rejection rate, no FP was found. The global solutions are displayed in the upper row, and a zoom
was done on the lower row. Left : solutions in Fourier domain, with a zoom on the 10" peak (from the
left). Right : solutions in time domain, with a zoom on the solutions. The phases match quite well, the
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the amplitude of the extracted signal is still weaker than the one of the input signal.
This is to be expected since the basis that we use do not represent the waveform tails
in Fourier domain : the energy loss is unavoidable.

Peak-to-peak Q;,5 We assessed the performances of the algorithm through estima-
ting a peak-to-peak and a global Q4p.
We define the peak-to-peak @ 5 as follow :
B We window both the noiseless signal and the extracted signal around the "
peak of interest in frequency domain : hL(i),ﬁL(i). The window in Fourier domain
is defined as follow :

1. We chose a probability threshold (puwindow = 0.9 for instance).

2. We compute the bandwidth over which the signal exceeds noise level with
certainty puwindow

3. We select the regions of the whitened signal that rise above this threshold.

Each region corresponds to a frequency peak neighborhood. Thereafter, a fre-
quency peak will be considered as "detected" only if there is at least 1 detected
frequency in the detection region defined as above.
B We compute the quality factor based on these partial signals : Qqg(h; @), flw))
The results are presented in Tab. 5.2 for p;,... = 1073 according to what was found in
Section 5.5.4. For the chosen settings, all the sources are detected without any FP. Our
main objective is thus completed. Moreover, based on the sources SN R, the quality of
estimation for each individual source matches with the prediction made in see Section
5.5.5 : the recovery algorithm worked just as planned.

5.6.3 Residuals study
The residuals for the channel I € {A, E'} is defined by :

rr = d[ — ﬁ[ . (563)

Fig.5.18 represents the distribution of | Ag(r)[k]|> among all frequencies k such that
|kdf| < 0.027Hz®. The residuals seem to follow is in good agreement with a law of
x4, which is expected since it is the law followed by the noise (and we only subtracted
a few number of frequencies).

5.7 Conclusion and Prospects

Based on a simple signal modeling, we are able to detect and retrieve the imprint
of GBs at a very low computational cost. The proposed algorithm is robust to noise,
with controllable FP rate and can detect rather low-SN R sources thanks to an avera-
ging process. Moreover, it can deal with several GB sources superposition; thus it is a
direct answer to the topics of signal detection and subtraction. We proved on realistic
data (LDC 1-3) that we could detect and extract signal even in presence of complex ins-
trumental noise. This model, though very simple, has a direct application when part of
the data is missing; this will be developed further on in the next chapter.

8. We focused on a frequency range containing a priori all GB signals.
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Figure 5.18 - In green is represented the distribution of whitened residuals | Ag (r)[k]|? in Fourier domain.
In red is plotted the probability density of the law 2. The residuals manifestly follow the expected law.
(Figure extracted from Ref.[10])

Prospects : The framework is flexible : it can easily be adapted to other types of
sources. For instance, transient massive blackhole binary signals (see Section 3.1) are
well represented with Wilson wavelets [2]. We could also contemplate using this ap-
proach to massively remove glitches from the data by choosing an adapted dictionary
- or even learning an appropriate dictionary based on the data collected during LISA
PathFinder. Learning the best representation is still a possibility as this theory can also
adapt to the case where the dictionary has redundancies [4]. Finally, we could study
the usability of such a flexible framework to search for unmodelled or hard-to-model
sources like EMRIs (see Section 3.1).

Yet, many elements could be improved : for one, the present modeling does not
allow to separate GB signals that are close. Indeed, the model is not precise enough
(as it does not represent the structures intrinsic to the signal, neither does it represent
the waveform "tails"). Another element is that there is no visible way to identify GBs
individually - this is also related to the simplicity of the model. We will show in Chapter 7
that we can build a reliable non-parametric model precise enough that it could be used
in a context of identification. A third point is that the proposed algorithms rely on the
knowledge of the noise PSD - which will be unknown in reality. A process alternating
between noise PSD estimation and signal estimation could surely lead to promising
results and would not change much the current algorithms.
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Chapter 6

Inpainting for LISA gapped data

6.1 Introduction

In Chapter 5, we introduced a novel, general, non-parametric framework for the
detection and recovery of GBs based on a sparse representation of the sought signal.
Being non-parametric, it yields a fast low-bias estimate of the GBs signal, without prior
knowledge of their number. This new tool permits a precise detection of GBs, with an
accurate control of the false discovery rate, which makes it an effective approach to
robustly deal with the noise that contaminates the LISA data.

In the field of computer science, dealing with gapped data has long been considered
in the framework of sparsity-based signal processing, leading to sparse data inpainting
methods (see [1; 2] and references therein). In this chapter, we therefore propose an
innovative method that combines the non-parametric GBs recovery method we intro-
duced in [3] and sparse data inpainting to mitigate the impact of data gaps on LISA
science. Elaborating on our prior knowledge of the ungapped noise distribution, we
estimate not only the missing signal but also the missing noise. We show that it can
efficiently recover missing data; based on a simple example we also show that it can
correct posterior distributions for parameter estimation. The work presented here was
published in MNRAS [4].

The general context of our work, the corresponding framework and data modelling
are presented in Section 6.1. Section 6.2 describes the two algorithms that we developed
to mitigate the impact of gaps on LISA data - detailed proofs and information can also
be found in Appendices C.2,C.3,C.4. Section 6.3 focuses on assessing the performances
of the two algorithms in various configurations. Last, Section 7.5 draws conclusions and
prospects over the present study.

6.1.1 Gaps and data analysis

One of the main challenges we will have to face to perform data analysis is the pre-
sence of data gaps [5]. In this section, we present the characteristics of the expected
gaps, and we show that they have an important impact on GB identification.

Different types of data gaps

The document [5] gives a detailed list of the elements that could impact the robust-
ness of data analysis. Among them, data gaps will happen in various ways that can be
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sorted into three categories :

Long, unplanned gaps : During the LISA Pathfinder mission, a 5-day-long data gap
occurred, during which the device went into safety mode and could not collect
data. This can also happen during the LISA Mission : the device will not always be
able to collect data. The mission duty cycle is estimated around 75%, which means
that there will be around 25% of missing data in the form of long duration gaps.

Maintenance gaps : Regularly the antennas need to be realigned. This process is
expected to take place once every two weeks and last approximately 7 hours. No
measurements can be taken in the meanwhile.

Short, unplanned gaps : Itis still possible to have daily short events that will cause
data loss. Such events are likely to happen every day, over a short time period
(from a few seconds to a few hours). For instance, this could be the result of
"gapping" the signal in presence of data glitches.

These gaps will impact data analysis both on the short and the long run. This will
deteriorate the observability of any GW phenomenon. For instance, transient signals
like MBHBs are mainly visible during merger; yet it is very likely that a gap - even short
- could happen at this very time. The SN R loss would be important and would degrade
the identification quality [6]. For continuous signals like GBs, this is the quasi-periodicity
of the gaps and the cumulated amount of lost data that will impact their SN R.

Impact of gaps on data Fourier transform

1019 ’W“‘xm\

[frac
freq.]

-22 | )
__ 1o —— Gapped |
<£ Real "y ..A‘J.,f "
1078 1077 1076 103 104 103 102

f (Hz)

Figure 6.1 - Fourier transform of simulated noise for an ungapped signal (in orange) and a gapped signal
(in blue) for daily short unplanned gaps and maintenance gaps (see simulation details in Sec. 6.3.1). The
presence of gaps in time domain leads to a modification of the expected noise distribution in Fourier
domain. This modification impacts the mHz frequency band of interest. (Figure extracted from Ref.[4])

Fig.6.1 represents the noise amplitude in Fourier domain for the ungapped signal
(labelled as 'real’) and the gapped signal (labelled as ‘gapped’). The presence of gaps
created a distortion in the noise PSD and added correlation between the different fre-
guencies (whereas the noise is initially supposed not to contain any correlation between
frequencies in Fourier domain).

The presence of gaps in the data leads to a significantly more challenging problem :

Loss of signal power : In presence of gaps, the waveform is distorted and is not
sparse anymore : Fig.6.2 shows the waveform resulting from a gapped signal in
the Fourier domain. Even if the main part of the waveform seems unchanged
(Fig.6.2, lower row), there is a gap-dependent power loss - not visible on the
picture - that is due to the information originating from the incompleteness of
the data. In practice, this can lead to inaccurate detection and identification.
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Figure 6.2 - Simulated signal received from a GB in

Fourier domain : in orange the real, ungapped si-
gnal, and in blue the gapped signal (small and plan-
ned gaps). Up : Full data. Down : Zoom around the
theoretical GB signal. The gaps in time domain lead
to a deformation of the signal in Fourier domain :
the gapped ssignalis‘less sparse’ than the ungapped

Figure 6.3 - Fourier transform of LDC1-3 data, com-
posed of 10 verification binaries, for the real ungap-
ped signal (orange) and the signal that we gapped
with daily short unplanned gaps and maintenance
gaps (blue). Up : Full data. Down : Zoom around the
frequency range where the sought signals lie. Si-

gnals that could have been identified without gaps

signal. The more information we lose, the greater
are now completely drowned in noise.

the deformation of the signal.

Noise leakage : Fig.6.3 shows how gaps impact a signal simulated for the first LISA
Data Challenge [7]. This experiment illustrates how gaps also result in a noise
leakage, and radically change the statistics of the noise in the Fourier domain.
With respect to noise, gaps again hamper the detection and identification of GBs
as a significantly larger amount of GB signals will be drowned in noise in the case
of a gapped signal.

To mitigate the impact of gaps on data analysis, several strategies can be thought
of :

Do nothing : Fourier-transform the data as such and conduct the usual analysis
based on fast waveforms. It is the worse strategy possible : we will show in the
next paragraphs that gaps can bias parameter estimation.

Apodize the gaps : Smooth the gaps, Fourier-transform the data and conduct the
usual analysis based on fast waveforms. Unfortunately, apodization does not
completely mitigate the impact of gaps, it can still lead to biased parameter esti-
mation.

Work in time domain : Conduct the analysis directly in time domain using wave-
forms in time domain. This way, taking the gaps into account becomes much
easier (as we just have to apply a mask to the waveforms). It is the most accu-
rate strategy among all since the missing data can be taken exactly into account
during the analysis. However, conducting the analysis in time domain has a com-
puting cost much higher than when doing it in Fourier domain - at least for GBs :
this can be prohibitive.

Correct the data: Correct the effect of missing data - for instance by filling the
gaps with information. Then Fourier-transform the data and conduct the usual
analysis based on fast waveforms. We chose to follow this approach because it
allows a good compromise between analysis precision and computational cost.
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Within the last category, the bayesian "data augmentation" algorithm [8] was deve-
loped in order to make it possible to proceed with data analysis even when the data
is gapped. The core idea behind the method is to consider the missing data as a va-
riable that has to be estimated just like the physical parameters. The missing data and
the parameters are then jointly estimated using a MCMC process. The algorithm was
assessed over gaps that can be assimilated to the small and medium-sized gaps we
consider here, in presence of a single GB source.

The method we introduce here, even if it also relies on the estimation of missing
data, is fundamentally different in that it is a "source-agnostic" alternative based on
our non-parametric modeling of GB signals. The estimation process depends on an
inpainting mechanism that radically differs from the Bayesian approach used in [&].

Gaps Apodization

To mitigate the impact of missing data on the Fourier transform, a classical approach
consists in apodizing the gaps. The principle of apodization is presented in Fig.6.4 : whe-
reas the missing data can be modeled by multiplying the full data by a crenel mask of 0
(when the data is missing) and 1 (when the data is measured), the apodization consists
in using a mask with smooth transitions between the sequences of missing points and
the sequences of observed data. More data is impacted by the new mask, but this is
negligible in comparison with the total amount of lost data.

1.00 4
0.751
-
Y 9.50
=
0.25 —— Crenel
Smooth
0.00 —

3.69 3.70 3.71  3.72
Time (days)

Figure 6.4 - Gaps apodization : instead of considering a crenel mask (blue), it is often considered a better
idea to smooth the crenel, i.e. to use the orange mask instead, using for instance a cosine function.

Multiplying data d[n| by a mask m[n] in time domain is equivalent to convolving the
Fourier transform of the data d[k] by the mask Fourier transform m/[k|. The sharper m|n|
is, the slower its Fourier coefficient amplitudes |m[k]| will go to 0, and the greater will
be the impact on observed gapped data d,[k] (See Section 6.1.3 for more precisions.).

Fig.6.5 shows the impact of crenel and smooth masks on noise distribution : whe-
reas both present a huge discrepancy compared to the expected distribution at lower
frequencies, applying the smooth mask makes the distribution closer to the expected
one above 2 mHz compared to the crenel mask that distorts the whole millihertz fre-
quency range.

On the other hand, Fig.6.6 shows the impact of both masks on a waveform in the
millihertz frequency band. In this frequency range, both masks produce the same de-
formation on the waveform (no visible difference), which information is spread over a
wider frequency range than when the signal is ungapped. The chosen waveform has
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central frequency around 6 mHz, where Fig.6.5 yet indicates that the impact of gaps is
supposed to be low (no visible deformation of the noise PSD around this frequency).

Impact of gaps on parameter estimation

As explained in Section 4.1, GB data analysis is generally directly performed in Fou-
rier domain, as a fast waveform was developed to produce directly GB signatures in fre-
quency domain. On the one hand, this makes analysis faster as we can only focus on a
few frequency bins of interest. On the other hand, taking into account phenomena that
happen in time domain (data interruptions for instance, but also transient glitches) be-
comes much harder. In particular, trying to conduct classical parameter estimation on
a gapped signal directly in Fourier domain could lead to bias the parameter estimation,
as the gapped waveform does not match the full-data waveform (i.e. the theoretical
waveform). This is illustrated in Fig.6.6 : the missing data in time domain results in the
waveform spreading in the Fourier domain in addition to the power loss due to the
missing data points. The theoretical waveform does not match the observed waveform
anymore.

Study [6] quantifies the impact of gaps on MBHB parameter estimations. Depen-
ding on when the data is missing, the source SN R can be heavily impacted making the
identification harder. Nevertheless, the setup is different since for MBHBs the parame-
ter estimation is directly conducted in time domain : it is easier to take the data mask
into account than when the analysis is performed in frequency domain.

The impact of gaps on GB parameter estimations is studied in [&]. In this article, the
author shows that if the analysis is directly conducted on gapped data, the estimation
bias could become important, especially at lower frequencies where the data mask has
more impact. Nonetheless, the study does not consider long gaps that have the most
impact on the observed SN R in Fourier domain.

Here we want to stress the impact of mixed types of gaps on parameter estimation.
We ran the sampling code that we developed to estimate parameters of a GB given
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Figure 6.7 - Posteriors obtained with MCMC parameter estimation for one GB with parameters presen-
ted in Appendix C.1, for a full, ungapped signal (green), a signal gapped with crenel gaps (blue,left) and a
signal gapped with smooth gaps (blue,right) for parameters fy, 8, A. fo is estimated in milliHertz (as m fy)
and sin(f) is estimated instead of j3. Priors are the same than in Table 4.2. All three types of gaps are
combined resulting in about 28% of data loss. The real parameters are spotted with a red line and label-
led as "Truth". The contour plots delimit the 95% presence probability. The presence of gaps - smooth
or crenel - that are not taken into account for the analysis create a bias in the estimation. Moreover, the
posteriors for gapped data are more spread than the one for full data.

in LDC1-3, reported in Appendix C.1, with typical LISA noise with and without gaps. We
present the final posterior found in the two cases for three parameters : the main fre-
quency fy and the ecliptic coordinates 5 and A in Fig.6.7.

Using a MCMC algorithm we estimate the parameters values by the maximum of the
joint posterior distributions. Fig.6.7 shows that the posteriors found when sampling the
full signal exhibit maxima a posteriori that are close to the true values. In contrast, the
posteriors obtained after sampling gapped signals - be it with crenel or smooth gaps -
are biased. In this case, even if smoothing the gaps corrects a bit the bias on sky location
(B, \), it creates a bias much stronger on frequency estimate.

Two conclusions can be drawn when working directly in Fourier domain : gaps must
be accounted for in the analysis process, and smoothing them is not enough to correct
their impact on the signal.

6.1.2 Gapped measurements modeling

The full data model was introduced in Section 4.2.1 and comes down to :
d=h-+n. (6.1.1)
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Let us introduce the "mask" time function m :

0 if the data is missing at time ndt ,
1 otherwise .
Thus, the gapped data d, is defined, in time domain, by :
dy[n] = m[n](h[n] + n[n]) Vne[0,N,]. (6.1.3)
Conjointly we can define the missing data d,,, by :
d,ufn] = d[n] - d,[n]
= (1 = m[n])(h[n] +n[n]) Vne0,N]. (6.1.4)

Their Fourier transforms will be respectively noted d,[k| and d,,,[k], as stated in Section
4.2.1. Thus, we have the relation between variables :

d=d,+d,, . (6.1.5)
For more simplicity, we will note :
dg - M(h + n) )
d,, = (Ig— M)(h+n), (6.1.6)

with M the mask operator M associated in time domain to the mask time function m
which effect is described in Eq. (6.1.3) and Eq. (6.1.4) and I the identity operator. In
particular, for any data u, the operator M is defined in time domain as :

Mu[n] = m[n]u[n] Vn € [0, N7|, (6.1.7)

and Mulk] will refer to the elements of the Fourier transform of Mun|. As M is a simple
projector in time domain, we will use the following algebra notations :

Ker(M) : kernel of M (data vectors u such that Mu = 0),
Ran(M) : range of M (image of data vectors in time domain by M),
Iq4 : identity operator.

By definition, we have d, € Ran(M) and d,,, € Ker(M) = Ran(lq — M).

In this chapter, we will have to deal with both time domain and Fourier domain at the
same time. In order to facilitate understanding, we would like to point out that :

B The mask operator M is defined through time measurements, and thus operates

on time variables v[n]
B The amplitude operator introduced in Eq. (5.2.4) is defined over Fourier coeffi-
cients, and thus operates over frequency variables v[k].
B Identically, the inner product (-, -)s is weighted by a PSD S that is defined in Fou-
rier domain, and thus operates over frequency variables v|k].
Following this statement, we will not specify the variables when using these operators
to alleviate the notations as much as possible.

In the Notation Table (p.17) we provide a synthesis of our writing conventions with
the list of the most frequently used variables of this study. In particular, bold lower
case letters are used for data, for estimators (denoted by a hat) and for the sequential
solutions of optimization problems (denoted by sequence index p). Upper case letters
(S, M) are used for operators.
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6.1.3 Dealing with incomplete data in sparse signal processing fra-
mework

Incomplete data and sparse modeling

Let us go back to the sparsity-based model that was introduced in Section 5.1.1. A
signal x can be represented in a dictionary T if it can be written as :

Nt
x=Ta=>Y at;. (6.1.8)
j=1

Additionally, if x is weakly sparse in T, then the information it carries can be compres-
sed over few non-zero coefficients «; that can be determined by solving the (L) pro-
blem :

Argnin |||, suchthat |x—-Tall, <o, (Lo)

Now we observe a gapped version x, of signal x. The mask M applies, and the measu-

rements write :
Nt

Xy =Mx=MTa =Y a;Mt;. (6.1.9)
j=1
Yet, the underlying signal x is still weakly sparse in T : there is only a change in the
number of measurements that were done. Therefore, we would like to adapt Eq.(L) to
the missing data context as :

Argmin ||a||, suchthat |x, — MTal, <o, (6.1.10)

Without any other hypothesis, this problem does not necessarily produce an accurate
recovery of the ungapped data. However, under the additional strong assumption that
the dictionary T is incoherent with the measurement domain, the compressed sensing
theory [9; 10; 11; 2] states that the problem is well-posed if enough measurements are
available.

The incoherence principle - also known as Heisenberg uncertainty principle [12] - can
be explained plainly as : "if x is sparse in T then it should be the least sparse possible in
measurement domain". Applied to Fourier domain (where GBs are sparse) versus time
domain (where measurements are performed and data is missing), there is an ideal
maximal incoherence : a Dirac in Fourier domain - sparsest signal possible - corres-
ponds in time domain to a sinusoid carrying information at any time.

If x is strongly sparse in T and T is strongly incoherent with the measurement do-
main, then a perfect recovery is possible [12]. When noise is present and x is still strongly
sparse, then the recovery is not perfect anymore but the error can be bounded depen-
ding on the sparsity level of x [9]. In our case, x is only weakly sparse. We cannot say for
sure that the error is bounded; yet an approach similar to that of Section 5.1.3 experi-
mentally conducts to a proper signal estimate. Like in Section 5.1.3 this problem can be
relaxed using the norm ||-||; instead of ||-||, (see [13] and references therein):

Argnin e, + 5 x, — MTal? . (s)

202

1. The "enough" is directly quantified by the compressibility of x in T, i.e. the number of non-zero
coefficients needed to approximate x accurately.
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Comparing Eq.(CS) with EqQ.(LASSO) announces forthcoming troubles : before, we
could use the inverse Fourier transform T~ to work solely with Fourier data x[k] ins-
tead of time data x[n|. However this is not the case anymore : the operator M acts in
time domain and does not commute with T, neither with T~!. Eq.(CS) is a formulation
stuck between time domain and Fourier domain, which makes its resolution much har-
der. Another key element is that in CS context, ¢ is the noise standard deviation on the
gapped signal. In our case, we have prior knowledge on the noise PSD for ungapped
signal, the difference between the two is illustrated in Fig.6.1. We cannot use Eq.(CS) as
such.

LISA data specificities
As justified above, the LISA missing data model writes :
d,=MMh+n). (6.1.11)
Applying (CS) to the recovery of GB signals from gapped data d, would write :

~ 1
h = Argmin | ||y ® Asgap(V)H1 + 5 (dy — Mv,d;, — Mv)s

(dg*MV)tsgialp(dg*MV)

(6.1.12)

gap ’
o

where S,,, stands for the gapped noise PSD in Fourier domain, as highlighted before
(see Fig.6.1 to understand how S, differs from S).

Standard CS methods generally make the assumption that the noise statistics is
known at the level of the measured data, i.e. that S,,, is known. This puts to light the
specificity of the problem of LISA gapped data : we have prior information on both the
signal and the noise in absence of gaps. S, could of course be computed based on the
expected noise PSD S and the mask M, but the computation would be costly and the
corresponding problem would still remain hard to solve. Moreover, it would be a full,
dense matrix as the gaps introduce complex time correlations that have repercussions
in Fourier domain.

Accounting for the proper noise distribution is particularly important as it allows
one to carefully control the false positive rate of the sought-after GB signal [3]. This
is however a key discrepancy with respect to standard methods since the theoretical
noise statistics has to be modelled accurately in the Fourier domain. We therefore pro-
pose an innovative sparse inpainting algorithm that aims at retrieving both the ungapped
signal and noise.

Inpainting LISA data

To that end, we introduce a new estimator am of the missing data d,,, as defined in
Eqg. (6.1.4). d,,, includes both missing signal and missing noise. We have :

d,, € Ran(lq — M) = Ker(M) —  Md, =0. (6.1.13)
Thus we will search for am on the set of variables u such that AMu = 0.

We rewrite the problem of estimating the gapped signal as a joint estimation of the
full, sparse signal and the missing data. The new formulation remains close to that of
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Eqg. (REF-L;) and Eq.(6.1.12) :

P 1
(h,d,,) = A(rgmi)n Iy © As(v)|l, + §<dg—|—u—v,dg+u—v>s . (6.1.14)
v,u

Mu=0

How does inpainting work here? Eq.(6.1.14) comes down to re-creating an un-
gapped data d, +u which noise PSD is similar to the expectation S. We then enforce
sparsity of the full signal contained in the recovered full data d,+u through the ||-||,
term.

Estimating the missing data d,,, implies that we also estimate the missing noise. This
may not be intuitive, but can be explained by the colored nature of the noise in Fourier
domain. The smoothly frequency dependent PSD (Fig.3.7) entails that the ungapped
noise has an inherent structure? in Fourier domain that has to be recovered in the pro-
cess to limit leakage as much as possible between noise and signal. If the missing data
is recovered, both the priors on the ungapped signal (i.e. sparsity) and the ungapped
noise (i.e. the expected noise PSD) can be used.

Let us notice that the resulting optimization problem now exhibits a mixed formu-
lation with terms expressed both in time and frequency : the minimization constraint
Mu = 0isintime domain, whereas the sparsity and data adequacy terms are written in
Fourier domain. Consequently, it does not admit a closed-form solution and the mini-
mizer needs to be computed numerically with an iterative algorithm, which is described
in the next section.

Interpretation as a deconvolution problem

Inpainting is sometimes misconceived as a procedure that artificially creates new
information beyond the available observational data. Here, we want to highlight that
data ungapping can be equivalently formulated as an ill-posed deconvolution problem.
Eq.(6.1.14) aims at deconvoluting the data from the mask in Fourier domain based on
the aforementioned assumptions : signal sparsity and noise structure.

Indeed, in time domain gapping the data using a mask m is equivalent in Fourier
domain to convolving the Fourier transform of the mask m with the Fourier transform
of the sought signal. The inpainting algorithms that we propose equivalently aims at
correcting the observation from the impact of the mask. The huge advantage of thinking
about this problem as a deconvolution one is that we can directly make use of the
sparsity prior that we have on the sought signal. In fact, the application of the mask
multiplicative operator in time domain, or its equivalent convolution operator in Fourier
domain, results in a less-sparse observed signal. Enforcing the sparsity of the solution
then allows to efficiently correct for the mask effect [1]. Considering colored noise and
gapped data, and then Fourier transforming the gapped signal results in several effects :

B a SNR loss due to the lost data and the convolution with the mask,

B a deformation of the noise spectrum : gapping in time domain is equivalent to

creating noise correlations in Fourier domain,

2. This colored noise is equivalent to having noise time correlation lengths depending on the noise
frequency. As the noise is not white, we have to account for its behavior as much as possible.
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B a loss of spectral resolution, also because of the convolution with the mask that
spreads Dirac distributions.

Solving the deconvolution problem becomes harder as the amount of missing data be-
comes more important and depending on the gap distribution we are facing, as shown
in Fig. 6.8. It represents the superposition of the Fourier transform of a discrete sine
with finite horizon and the Fourier transform of the same signal but gapped with the
mask represented on the left-hand side column. The comparison between lines one
and two shows that the spread of the signal increases as the gap size increases. Line
two and three show the impact of the gap distribution on the final result (as there is the
same amount of missing data but with different distributions in time) : for a random
distribution (line three), the presence of gaps can even be perceived as an additional
noise.
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Figure 6.8 - Impact of gaps on the Fourier transform of a discrete sine with finite horizon depending
on the amount of lost data and its distribution. The mask m applied to the monochromatic signal is
displayed on the left in time domain. On the right, the corresponding ungapped and gapped data are
represented in Fourier domain. Upper row : single small gap equivalent to a 5% data loss. Middle row :
single big gap equivalent to a 25% data loss. Bottom row : randomly placed small gaps equivalent to a
25% data loss. (Figure extracted from Ref.[4])
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6.2 Algorithms & implementation

Within the scope of LISA data processing, the goal of data inpainting is twofold. On
the one hand, and following the approach introduced in [3], it aims at providing an
estimate of the total signal originating from GBs that is robust with respect to noise
and gaps. On the second hand, data inpainting can be deemed a general pre-processing
step for LISA data treatment, whose objective is to deliver estimated ungapped data.
The latter more specifically emphasizes an accurate signal estimation with no power
loss as well as an estimate of the noise that matches the expected statistics. Doing so,
the resulting inpainted data can be used as inputs to classical identification techniques
such as Bayesian inference. In that regard the sparsity framework has the advantage of
being a non-parametric methodology, which works independently from the actual
number of GW sources. To that purpose we hereafter introduce two algorithms that
both tackle these two views of the inpainting problem.

6.2.1 Resolution Algorithm

The problem in Eqg. (6.1.14) benefits from certain properties, which can be used to
build an efficient minimization algorithm. Indeed, it is not only a strictly convex problem,
but also a block-convex problem : it is convex with regard to the variables v while u is
kept fixed and vice versa. Let us now denote the global cost function to be minimized
as:

1
J(v,u) =y As(v)|l, + §<dg +u—v,d;,+u—v)s. (6.2.1)

Thanks to the block-convexity of the problem in Eq. (6.1.14) both variables u and v can
be sequentially and iteratively updated. For that purpose, we make use of a block co-
ordinate descent (BCD) algorithm [14] which can be summarized with the two following
steps :

d2! = Argmin J(h” u) ,

Mu=0 (BCD)
hP*t = Argnin J (v, d2™) |

with initialization h® = 0. The sequence {(h**! d2')}, converges to the sought esti-

mators of signal and missing data (ﬁ, (ﬂl), the solution of Eq. (6.1.14) [15]. We now detail
each of these steps.

Updating the noise

Instead of estimating the full signal and the missing data in the gaps, it can be more
convenient to think in terms of full, ungapped signal and full, ungapped noise. The mis-
sing data is then the sum of full signal and full noise in the gaps. Let us introduce the
estimator of the ungapped noise n. It is related to the other estimators by the following
equation :

dy+d,=h+1. (6.2.2)
——

Completed
data

For the sake of simplicity, we can rewrite the proposed BCD-based algorithm (BCD) so
that the global signal and the noise in the gaps are computed sequentially. To that end,
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let us consider the update of d?; ' :

d?t = Argmin J(h?, u)
Mu=0

1
= Argnin _(d, + u—h’,d, + u—h")s . (6.2.3)
Mllll:0

We could remove the sparsity term |||, as it only depends on h?.
Introducing q the noise variable defined by the following change of variables :

q= d, +u — (6.2.4)

p
\h,./ )
Estimated

Completed observed noiseless signal

noisy signal

one can recast Eq. (6.2.3) as an equation on noise. We define the estimated noise out-
side the gaps (i.e. observed noise) at iteration p :

ng =d, — Mh” . (6.2.5)

This eventually leads to the following equivalent problem :

1
nPt = Ar%nin §(q, q)s , (6.2.6)

nf=Mq

where n? converges to the noise estimator n for p — +oc.

What is n?*1? In Eq.(6.2.6), we are looking for the noise q that matches the ob-
servation nf = d, — Mh” outside the gaps and which PSD would match S in Fourier
domain. The solution n”*! is the noise realization that is equal to n? outside the
gaps and that minimizes the residuals (reweighted by the PSD S) in Fourier domain.

Solving this problem is challenging because the noise PSD S is known in Fourier do-
main while the equality constraint n? = Mq is defined in time domain. This problem
does not admit a closed-form expression. To evaluate numerically its minimizer, we
use the Chambolle and Pock primal-dual algorithm [16]. This algorithm has two main
advantages : i) it remains computationally simple, and ii) it can further be preconditio-
ned to speed up convergence, which is particularly convenient since the noise PSD is
ill-conditioned. We refer to Appendix C.4 for more details about this algorithm and its
implementation.

Updating the signal
Let us introduce the full updated data :
drtt =d, + 4o, (6.2.7)

which is the data whose gaps have been filled in at the p-th iteration. If d2! is solution
of Eq.6.2.3 and n”*! is solution of Eq.6.2.6, then they are related through the change of
variable Eq.6.2.4 by :

n’t =d, +d’" — h? . (6.2.8)
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From Eq. (6.2.6), we get that :

d?H = (I; — M)d?'  because d” € Ran(Iy — M)
= (Ig — M)(h* + n?*! — d,)
= (Ig — M)(h” + n”*')  becaused, € Ker(Ig — M) . (6.2.9)

Then the full updated data writes :

dr =d, +dr?
=d, + (Ig — M)(h? + n”™) . (6.2.10)

The full updated data d”*! is exactly what we expect it to be : we fill the gaps of d, with
the missing signal (I3 — M)h? and the missing noise (Iy — M)n?*!,

Consequently, the signal estimation step in Eq.(BCD) can be recast as the estimation
of the signal over the ungapped data d**! :

1
h**! = Argmin | ||y © As(V)]|, + §<d’”+1 —v,d"" —v)g| . (6.2.11)

Quite remarkably, thanks to the particular structure of our inpainting algorithm, the
update of the signal h?*! can be done from pseudo measurements where the noise is in-
painted. This allows to use the theoretical PSD rather than the more complex PSD of the
gapped noise. The resulting update is then equivalent to the denoising problem inves-
tigated in Chapter 5. More precisely, the signal h?*! admits a closed-form expression
which takes the form of a specific thresholding applied to d?*! in the Fourier domain.

Classical inpainting (C.l.) algorithm : The overall algorithm of classical inpainting
(C.l.) is described in Alg. 1.

Algorithme 1 : Classical data inpainting algorithm (C.l.)
Input:d,, M, S, e
Initialization : h° = (;
while max | Ag(h*™! — hP)[k]| > ¢ do

p+l __ _ p-
n’il=d, — Mh?;

1
n’*! = Argnin 5(01, a)s ;
q
ng;;,lzlwq

drtt =d, + (I — M)(h? + nPt?);

1
h?t = Argnin | [y © As(v)]], + §<dp+l —v,d"! —v)g

It was further highlighted that a block-sparsity regularization leads to significantly
better detection and estimation precision [1; 3]. In the algorithms descriptions, we used
the unstructured sparsity formulation because the notations were lighter than for the
block formulation. However, the results shown later on were based on the block-sparsity
formulation.
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Figure 6.9 - Upper row : Inpainted noise in time domain in a gap for classical inpainting algorithm (C.L.).
We only recover noise frequencies for which the correlation length is superior to the gap size. This is not
a shortcoming, as Fig.6.1 shows that the PSD deformation is more important for low frequencies than
high frequencies. Lower row : Comparison between gapped signal and inpainted signal in frequency
domain : the noise spectrum was corrected from the imprint of the gaps. (Figure extracted from Ref.[4])

Based on Section 5.4 and keeping here the same notations, the block formulation
of the overall problem writes :

(h.d,) = Arguin
(v,u
Mu=0

1
H’y%@A?(v)”l—l—§(dg—|—u—v,dg+u—v)sl , (6.2.12)

We can still split the resolution in two steps. The resolution with regard to noise is still
given by Eq. (6.2.6), with the only change in the sparsity term of the signal update equa-
tion:

h”™! = Argmin

v © A3 (V)]], + %<d”“ —v,d" - V>s] . (6.2.13)

The solution is then analytical, as in Sections 5.4.2 and 5.4.4.

6.2.2 Behavior of the inpainted noise in a gap

In this section, we illustrate the performances of the proposed inpainting algorithm
especially on typical LISA noise. For that purpose, we consider simulated noise reali-
zations for LISA (not containing any gravitational signal), whose statistics is described
by the theoretical PSD of the LDC1-3 (see Section 4.2.2). Gapped data are generated
with small unplanned gaps and planned gaps (see Section 6.3.1 for more details about
gaps generation). Next, inpainting is applied to the resulting gapped noise according to
Eq. (6.2.6). The solution is displayed in Fig.6.9 with a zoom on a single gap in the time
domain (upper row); the Fourier transform of the global solution is also represented
(lower row).
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In the time domain, the inpainted noise inside a gap only exhibits a low-frequency
smooth variation, which already allows for a good signal extraction. Indeed, this algo-
rithm is completely deterministic and cannot generate information lost in the gaps.
More specifically, such an inpainting methods basically fills out gaps by exploiting cor-
relations propagating farther than the size of the gaps. This entails that within a gap,
the retrieved information content tends to have low frequencies, corresponding to wa-
velengths larger than the size of the gap (see Section 6.3.2 for more details). Higher
frequency information cannot be recovered and is definitely lost. As we will see more
precisely below, this results in an unavoidable power loss on the frequency spectrum
of the recovered noise compared to the expected distribution, even if in Fig.6.9 the in-
painted noise seems to follow the expected noise PSD. This shows that Eq. (6.2.6) acts
like a low-pass filter with regard to the ungapped data.

Finally, we have to highlight the behavior of the algorithm with the gaps size. The
inpainting algorithm takes more time to converge when two phenomena occur : when
the missing data rate increases and when the gaps lengths increases. It is expected as
in these two cases, the deconvolution problem becomes harder to solve as more data
are missing.

Even if this correction already seems to mitigate the impact of gaps in Fourier do-
main, Fig.6.9 highlights that locally in time domain the noise does not follow the expec-
ted noise distribution. This is due to the fact that we can only recover lower frequencies
of the missing noise. However, if one needed to perform part of the analysis in time do-
main after applying the correction, this last point could be problematic. In order to pro-
vide a more consistent noise inpainting procedure, we describe in the following section
an extension of our algorithm.

6.2.3 Modified Sparse Data Inpainting

Let us recall that the objective of our inpainting approach is twofold : designing an
inpainting algorithm that i) provide an efficient detection and reconstruction of the GB
signal and ii) more generally yield a statistically consistent inpainted noise. In the pre-
vious section, we pointed out that a traditional sparsity-enforced inpainting does not
reach the second objective as it leads to a gap-dependent noise power loss. In this pa-
ragraph, we propose extending sparse inpainting to further correct for this effect.

A straightforward approach would consist in adding a high-frequency stochastic
term to this low-frequency solution within the gaps in time domain. However, this would
only produce a poor solution, as the added high-frequency noise in the gaps would not
be compatible with the one observed outside the gaps. This incompatibility at the boun-
daries of the gaps would create high frequency artifacts. The main challenge then boils
down to finding a high frequency noise correction that matches both the expected dis-
tribution and the boundary condition on the border of every gap. To that purpose, we
propose now a method that combines the approach of Alg. 1 with the use of a stochastic
term in order to create an appropriate inpainted noise solution.

Generation of a compatible high frequency term : To that end, for any gapped
measurement v, we define the function fc;(v,) as:

1
fer(vy) = Ar,g.:,rlnm §<q, Qs - (6.2.14)
vy = Mq
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fer(vy) is the inpainted noise solution corresponding to observed gapped data v, ob-
tained after solving Eq.(6.2.6). In particular, it is equal to v, out of the gaps. In the case
of classical inpainting Alg.(1), we had :

. 1
n’' = Argnin §(q, q)s = fer(dy — Mh?) (6.2.15)
dy— Mhr=Mq

Let us draw an ungapped noise random sample ngm, that follows the expected
noise distribution (see Section 4.2.2, EQ.(4.2.7)). The corresponding gapped measure-
ment is v, = Mngmp. Let Dy be the difference :

Dy = fCI(Mnsamp) — Nsamp - (6.2.16)

What is Dy ? By construction, fo;(Mns,mp) has the same value as ngmp out-
side the gaps. Thus Dy is a signal term whose value is 0 outside the gaps. Additio-
nally, since fo;(Mns,mp) only keeps the low frequency information of ng,mp (see Sec-
tion 6.2.2), Dy only contains information at high frequency since the low-frequency
content has been removed. Dy is a high frequency term, defined only where data
is missing, and that is compatible with any inpainted noise fo;(Mn).

By "compatible" we mean that it could have been the high frequency part of the
noise that we could not recover using classical inpainting Eq.(6.2.6). Consequently,
it can be virtually added to any gapped measurement that has been inpainted
with C.I1. without altering the noise PSD.

The resulting modified noise inpainting writes :

np+1 = fCI(np) + fCI(Mnsamp) — Nsamp
g
N ) N ~ '
Low frequency Dy : High frequency
= fCI(nZ + Mnsamp) — Nsamp (6.2.17)

where Eq.(6.2.14) exhibits a linearity property with regard to its input, as demonstrated in
Appendix C.2.

Modified inpainting (M.l.) algorithm : The modified algorithm builds upon the C.I.
algorithm by adding to the noise solution a stochastic component, like in Eq. (6.2.17).
We further prove in Appendix C.3 that the overall process consists in minimizing a cost
function that shares similarities with the standard inpainting defined in Eqg. (6.2.1), but to
which we added a correcting term. It can be solved using the exact same minimization
scheme based on the BCD architecture up to a modification of the input and output.
More precisely, the resulting algorithm is detailed in Alg. 2.

To further evaluate the impact of the new algorithm on the inpainted noise, we make
the exact same test as in Section 6.2.2. We consider simulated noise realizations for LISA
(not containing any GW signal), whose statistics is described by the theoretical PSD of
the LDC1-3 (see Section 4.2.2). Gapped data are generated with small unplanned gaps
and planned gaps (see Section 6.3.1 for more details about gaps generation). Then, in-
painting is applied to the resulting gapped noise according to Eq. (6.2.17). Fig.6.10 shows
the solution which has been inpainted with the proposed algorithm. This time the real
signal and the inpainted one do not visually show any differences. The power loss was
corrected using the added stochastic term. Performances of both algorithms are asses-
sed in details in Section 6.3.
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Algorithme 2 : Modified data inpainting algorithm (M.l.)
Input:d,, M, S, e
Initialization : h® = 0, draw nemp ~ N (0,3) +4i- N (0, %) ;
while max | Ag(h*™! — hP)[k]| > ¢ do

p+l .
ngap —_— dg - Mhp + Mnsamp,

1
p+1l : _ p+1y .
Ny = Argnln §<q> CI>S - fC’I(ngap ) '
1 p
nga'; =Mq
1 _ . p+l .
nt = oy — Nsgmp

drtl = dg + (]d _ M)(hp + np+1) :

2

1
bt = Arguin [H”YQAS(V)H1 S v )

6.2.4 Implementation

Compensating the power loss

Although Alg. 1 improves the effective PSD, the final estimated noise PSD does not
exactly match the expected distribution. Indeed the estimated PSD (after noise inpain-
ting) and the expected one are empirically identical up to a multiplicative coefficient
matching the amount of data that was lost. This phenomenon is a manifestation of po-
wer loss, and is mainly related to the fact that the inpainting algorithm C.l. can only
inpaint lower frequencies - this can be easily understood by looking at Fig.6.9.

This power loss impacts the detection capacity of the C.l. algorithm since we set the
threshold v, as reminded in Section 6.1.3, with regard to the theoretical noise distribu-
tion whereas it should be set with regard to the effective noise distribution. Since the
effective PSD is lower than the expected one due to power loss, it corresponds to choo-
sing a threshold that is higher than what it should be, therefore increasing the risk of
non-detection. We correct it by adjusting the noise level, computing an effective PSD
Scss as follow :

Seff = Tdatas ) (6218)
with :
1 &
Tdata = N_T Z m[n] ) (6219)
n=1

the proportion of remaining information evaluated from the mask M. This first-order
correction yields a decent description of the noise distribution after the use of the C.I.
algorithm, but becomes imperfect as the proportion of lost data increases.

Improving the speed of convergence

From the viewpoint of optimization, the more data is missing the slower the conver-
gence of the iterative minimization algorithms is. Limiting this phenomenon can be
done by making use of the fixed point continuation or FPC [17], which advocates com-
puting sequential estimates with decreasing regularization parameters. In the present
context, instead of setting a fixed threshold « as explained in [3], it is first set to a large
value and then decreased towards the final objective threshold ~;;,,;. Implementing
the FPC significantly improves the convergence speed.
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Figure 6.10 - Upper row : Inpainted noise in time domain in a gap for modified inpainting algorithm
(M.L.). The red line shows the position of the gap. Lower row : Comparison between gapped signal and
inpainted signal in frequency domain : the noise spectrum was corrected from the imprint of the gaps.
(Figure extracted from Ref.[4])

6.3 Experimental Results

The performances of our algorithms are assessed on three main outcomes : (i) the
detection capacity (comparatively to the ungapped case), (ii) the statistics of the reco-
vered noise and (iii) the quality of extracted signal.

As mentioned above, this work could be used as a pre-processing step in the LISA
pipeline, and we evaluate the performances of the algorithms with this potential ap-
plication in mind. We also assess the impact of gaps by estimating the quality of the
extracted signal compared to the signal we would have extracted without gaps. This
part is entirely dependent on the chosen extraction method.

Finally the proposed algorithms are evaluated on the realistic simulations LDC1-3 [7]
to which gaps have been added. This goes beyond the proof-of-concept stage where
these algorithms are probed on test cases containing gaps and either noise only (like
in Fig.6.9 and Fig.6.10) or both noise and one GB signal.

6.3.1 Gaps generation

Data gaps are characterized by two parameters : their duration L, and their period
Tyqp (time period over which we observe one gap). In Section 6.1.1we described the three
different types of gaps that we consider here. The numerical values used for this study
are reported in Table 6.1.

Small and medium-sized gaps are frequent events that will happen for sure. To si-
mulate them, we split the signal in consecutive blocks of length T,,. For each block, we
randomly position a gap of length L,,, with a uniform distribution over a time interval
of duration 7T},,,,. Large gaps are related to the duty cycle - estimated to 75%. During LPF
mission, the longest data taking interruption lasted 5 days [5]. Based on this observa-
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Type Duration L,,, | Period 7},,

Small 10 min Every 24 hours
Medium 7 hours Every 2 weeks

Large 3 days Every 12 days

Table 6.1 - Description of the three types of gaps used for the study. Small and large gaps are both
unplanned, whereas medium sized gaps represent the planned interruptions (or maintenance gaps).
We simulate one gap of length L, once every T,,,.

tion, the duty cycle is simulated as a series of long-lasting interruptions distributed over
the whole observation duration. Two consecutive large gaps of length L, = 3 days are
separated by a duration given by a Poisson law 3 of parameter A = 9 - making approxi-
mately a 25% data loss.

6.3.2 Noise inpainting evaluation

Independence of the solution with respect to the chosen sample

Since the M.I. algorithm Alg. 2 makes use of an extra stochastic term, we first eva-
luate its sensitivity to the particular drawing of ns,mp. The answer is partially contained
in Alg. 2 itself. We explained in Section 6.2.3 that the lower-frequency part of the solu-
tion only depends on the measurements -meaning that it is independent from ng,mp-
whereas the higher frequency component mainly depends on ngamp. In order to assess
this dependence, let us consider a single input of the form:

d[ = Ml’l[ 3 (631)

with n; a noise sample following the expected ungapped noise distribution. Inpainted
noise solutions are then computed with the M.I. algorithm Alg. 2 for various draws of
Nsamp.

Fig.6.11 displays the standard deviation of the difference between the real noise and
the solutions obtained for each sample in Fourier domain, frequency by frequency,
for different types of gaps. This difference has further been whitened with the inverse
theoretical noise PSD. Fig.6.11 quantitatively shows that inpainting leads to a low-pass
filter effect confirming the qualitative features discussed in Sections 6.2.2 and 6.2.3.
Additionally, we point out two more features of the algorithms : the presence of a cut-
off frequency and the behavior of the maximum deviation to the real noise distribution.

The cut-off frequency, labelled as f. on the plot and defined as :

1
2L,

gap

matches the effective cut-off frequency of the filter-like behavior of Alg. 2. As the gap
duration increases, the cut-off frequency decreases : the noise component can only be
rightfully recovered when its half-wavelength is superior to the size of the gap. Below
the cut-off frequency, the recovered noise is quite close to the real noise. Above this
frequency, there is a deviation that becomes more important as the amount of lost
data increases.

Je (6.3.2)

3. Private communication from N. Korsakova.
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Figure 6.11 - Distribution over 50 samples nsamp of real and imaginary parts of S~1/2 (for(M(n+ngamp))—
Nggmple —n) , with n the input noise (before gaps) and fo (M (n+nsamp)) —Ngamp the recovered inpainted
noise for M.1. algorithm and sample ngamp. Left : Small gaps. Middle : Medium gaps. Right : Large gaps.
The algorithm acts like a low-pass filter of order 1. The sample that we use in order to fill the gaps only
impacts frequencies higher than the cut-off frequency f. (represented as a dashed black line), which is
directly linked to the gap size. The cut-off frequency depends on the gap duration L, (in seconds) as :
fe =1/(2Lgyqp). (Figure extracted from Ref.[4])

Recovered noise distribution

We emphasized previously that Alg. 1 and Alg. 2 could be used as a pre-processing
step for filling out gaps prior to performing further analysis such as event identification.
To that end, we assess the impact of the inpainting on the noise statistics using the
Kullback-Leibler divergence as a performance indicator.

Kullback-Leibler divergence (D) : The Kullback-Leibler (KL) divergence [18] mea-
sures a discrepancy between the expected and the recovered noise distributions. We
normalize the noise estimator n (limit of the sequence {n”}) in frequency domain as :

n =S, A, .

(6.3.3)
If the recovered noise follows the expected law, we expect both the real part and the
imaginary part of n; to be drawn from a reduced centered normal law at any frequency
f. Thus, we will measure the discrepancy of the law of the normalized noise compa-
red to the reduced centered normal law. Under this approximation, the KL divergence
writes [19] :

Dics(f) = 5P +u(fP =1~ no(1)?)

where o(f) is the measured standard deviation at frequency f and u(f) is the esti-

mated expectation for the same frequency. As we only have one noise realization at

each frequency f, we estimate the expectation and the standard deviation over a small

neighborhood of frequencies around f. Technical details can be found in App. C.5.
For an input constituted of noise only, as :

(6.3.4)

dy = Mn, (6.3.5)

g

we computed the solutions given by the two inpainting algorithms for various input
noises n; and various samples ng,mp. We compared the final noise distribution to the
expected distribution through the KL divergence.
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Figure 6.12 - Evolution of Kullback-Leibler divergence versus frequency for reference ungapped signal
(blue), gapped signal (orange), signal inpainted with C.I. (green) and signal inpainted with M.l. (red) for
different types of gaps. Left : Small gaps. Middle : Medium gaps. Right : Large gaps. The power loss
becomes more important as the gap size increases, which explains the incompatibility between reference
noise statistic and C.l. noise statistic. Gaps impact noise distribution in the mHz band in a non-negligible
way. C.l. is effective for small- and medium-sized gaps, but less on large gaps as it cannot make up for
the power loss. (Figure extracted from Ref.[4])

Fig.6.12 represents the KL divergence evolution with frequency over 50 samples
(M, n, ngamp), When different types of gaps are present, for the ungapped signal, the
gapped signal and the inpainted signals. Looking at the discrepancy of the gapped si-
gnal, we note that the frequency band of interest (the mHz band) is impacted by the
presence of gaps, whatever the type of gaps. Small but frequent gaps impact most
the expected noise distribution (top plot). However, these are also the easiest type of
gaps to deal with, as C.I. is enough to correct the noise distribution in Fourier domain.
Planned gaps (middle plot), even though they are not that wide, show the limits of this
inpainting algorithm. As the amount of data loss becomes more important, it cannot
make up for the power loss : this explains the inconsistency between the expected dis-
tribution and the inpainted distribution. The M.I. algorithm can handle this power loss.
Large gaps (bottom plot) associated with important amount of data loss, are the most
difficult to mitigate as the corresponding power loss is even more sensible than for
planned gaps. This case makes plain the necessity to use M.I. in order to compensate
this huge power loss.

To summarize : the two algorithms help mitigate the impact of data gaps. Alg. 1 can-
not compensate the power loss, but reaches a noise distribution that is -up to a mul-
tiplicative coefficient- similar to the expected noise distribution. However scrutinizing
the local noise statistic in the neighborhood of a gap, one finds that it is very different
from the expected distribution. On the contrary Alg. 2 enables to reach a final noise
statistic matching the expected one both locally and globally, correcting the power loss
along the way.

6.3.3 Impact on the detection capacity

The following experiment evaluates the global performance of the overall algorithm
(combining inpainting and signal extraction) in terms of false positive detection rate, i.e.
in proportion of signals that are detected where there is no corresponding input signal.
In order to assess the detection capacity, we evaluated the number of false positive (FP)
signals. We consider the same definition of FP rate as the one introduced in Section
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Figure 6.13 - FP rate with rejection rate for real ungapped signal (blue), gapped signal (red), signal in-
painted with C.I. (orange) and signal inpainted with M.I. (green) for different types of gaps. Left : Small
gaps. Middle : Medium gaps. Right : Large gaps. The FP rate for algorithms C.I. and M.l. is identical to
the one obtained for an ungapped signal.

5.5.1, Eq.(5.5.5). Considering an input constituted of noise only as :
(6.3.6)

and a fixed mask M, we computed the solutions given by the two inpainting algorithms
for various input noises n and various samples ngmp. We then computed the FP rate
corresponding to these experiments for various rejection rate p. The results are presen-
ted in Fig.6.13. For all types of gaps, the FP rate obtained for both inpainting algorithms
is identical to the one obtained for ungapped data. Thus the combination of signal ex-
traction and noise inpainting does not create any kind of detection artifact.

6.3.4 Quality of the extracted signal

We now assess the performances of the overall algorithms (combining both inpain-
ting and signal extraction) in terms of the quality of the recovered signal. To that end,
computing the quality factor Q45 (defined in Eq.(5.5.4)) between the expected signal
and the recovered signal quantifies the loss that originates from the gaps and which
cannot be recovered. By construction Qg is large when the sparse estimate h is close
to the real solution h. It provides insights into the global quality of the reconstructed
signal. However it does not provide any information about the FP and FN rates.

Consider an input of form :

d= M(ho(SNR) -h+n), (6.3.7)
where h is the signal emitted by the GB with parameters detailed in Table 5.1, received
onchannel I € {A, E}. ho(SNR) is the signal amplitude computed such that ho(SNR) -
h has the SNR we want - this process was already detailed in Section 5.5.2. We examined
three fixed masks, each corresponding to a different gap situation. For a given SNR,
the median Q45 is obtained as the median of the ()5 of the solutions found for a total
of 10 noise and signal realizations.

In Fig.6.14 we presented the quality factor obtained for an ungapped signal and for
a gapped signal using the C.I. and M.. algorithms for the three types of gaps. As said
before, each point corresponds to the median over only 10 different situations. We
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Figure 6.14 - Median Q45 with input SN R for different types of gaps. Left : Small gaps. Middle : Me-
dium gaps. Right : Large gaps. This was realized over 10 samples for each point. We compare the recovery
quality in absence of gaps (green, labelled as "REF") and in presence of gaps using classical inpainting
(blue, labelled as "C.1.") and modified inpainting (orange, labelled as "M.1."). The envelops of correspon-
ding colors show the repartition of all samples. In presence of small or medium gaps, the final Q45 is not
affected. However, larger gaps deteriorate the quality of extracted signal.

could not afford to do more because of the high computational cost#. Therefore, the
statistical relevance of the median can be questioned. This is why we display at the
same time the envelop of the Q)5 values reached for a given SN R input. Looking at
small and medium-sized gaps, we see that even if the median results of @,z seem lower
for inpainted data, the envelops of the results are compatible. We can say that small
and medium-sized gaps have little impact on the final Q5 : the recovered signal has
the same quality for a gapped and an ungapped signal. This is true because only a small
portion of the information was lost. With larger gaps (corresponding to a data loss of
25% in this case - which corresponds to realistic previson of mission duty cycle), the
recovered results are impacted by the information loss. Indeed, we see that the envelop
of recovered Q) 5 for inpainted signals are not compatible anymore with the reference.
The amount of recovered information is still acceptable; nevertheless, the signal power
loss is harder to compensate, which results in a deterioration of the extracted signal
compared to the case without gaps.

We can get a better idea of the efficiency of the algorithms by studying the quality of
restitution for a specific signal (which parameters are given in App.C.6) in the presence
of different types of gaps. Fig.6.15 shows the median quality factor this signal set at
different SN R, with different noise and gaps realizations. The phenomenon observed
in Fig.6.14 is confirmed : for small and medium-sized gaps, the signal quality is fully
recovered. Large gaps impact more the quality of the result.

At this stage only, we can notice a difference between the two algorithms perfor-
mances : Alg. 1 seems to perform better than Alg. 2. This performance spread can be
explained by the fact that Alg. 2 reintroduced higher frequency noise in the gaps and
thus results in a noisier extracted signal.

Application to LDC1-3 with gaps We applied Alg. 1and Alg. 2 to a more realistic case.
The dataset was produced for the LISA Data Challenge LDC1-3 which can be found on-
line [7]. It consists in 10 verification binaries that can be seen in Fig.6.3. We modified it
with the three types of gaps presented in Table 6.1, which corresponds to a loss ratio

4. The code works on a single core. It takes about 2 hours to process a 2 years data set with 28% of
data loss; thus experiments requiring repetitive solving of the problem having high computing cost. It
could probably be re-written to be more efficient, but | did not have the time to do so.
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Figure 6.15 - Median Q4 with input SN R for different types of gaps. Left : Small gaps. Middle : Medium
gaps. Right : Large gaps. The final Q45 is not affected by small and medium-sized gaps. However, larger
gaps deteriorate the quality of extracted signal. C.I. performs better than M.. as it virtually increases the
SN R by not making up for the power loss in the gaps. On the central plot, the outlier observed for M.I.
is due to a FP detection.

of about 27%, and we evaluated the quality of the signal extracted by both algorithms.
Results are presented in Table 6.2 and are compared to the quality of extracted signal
for ungapped data (computed in [3]).

We computed a local Qup corresponding to the quality of each extracted source,
and a global Qg corresponding to the quality of the total extracted signal. The Q.5
depend on the chosen algorithm and noise configuration. The C.I. algorithm tends to
better detect signals that are close to the noise level (peaks 3, 8 and 9), whereas the M.1.
algorithm tends to yield better signals with high amplitude (peaks 5, 6, 7 and 10). Both
missed peak 4 : too much information was lost, the remaining signal does not exceed
noise level anymore. Thus, it could not be recovered. This was expected since its initial
SN R was the lowest of all (SNR = 9.56) : according to previsions of Fig.6.15, this is
below detectability level in presence of large gaps.

On the overall, Alg. 1 and Alg. 2 extract signals of similar quality but that might not
be the case for other types of sources.

6.3.5 Inpainting & parameter estimation

We now want to give an intuition of the impact that inpainting could have on para-
meter estimation. We do not provide a thorough study, but we will show the impact of
inpainting on the example that we used in introduction in Section 6.1.1. We applied both
inpainting methods to the crenel-gapped GB signal, and then estimated the parameters
using the MCMC code that we developed.

We compared the sampling of the gapped and full data presented in Fig.6.7 with
the sampling of inpainted data. The results are presented in Fig.6.16. The sampling rea-
lized on inpainted data, contrary to the one realized on gapped data, leads to posterior
distributions that are very close to the one obtained by sampling the log-posterior of
the ungapped signal. Looking at the sky position (5, A), we observe no difference bet-
ween the classical inpainting and modified inpainting results : both could correct the
bias induced by the presence of gaps. The main difference between the two algorithms
is observed on the frequency estimate : for modified inpainting, the posterior distribu-
tion has tails that are heavier than for classical inpainting. However, this effect remains
marginal and cannot yet be held as an inpainting effect without being verified through
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Peak | SNR | REF C... M.l
1 26.6 | 9.513 | 7.566 | 8.806
2 225 | 9.081 | 7.067 | 7.936
3 12.0 | 4.85 3.086 | 1.799
4 9.56 | 1.918 0.0 0.0
5 65.3 | 15.773 | 12.047 | 13.604
6 02.7 | 13.199 | 10.972 | 11.456
7 48.7 | 13.661 | 11.180 | 11.467
8 19.8 | 4.927 | 3.897 | 2.199
9 12.3 | 2.696 | 0.834 | 0.743
10 72.5 | 13.719 | 10.677 | 10.575

Global 13.108 | 12.177 | 10.235

Table 6.2 - Peak to peak Q4p for extracted signal from ungapped signal (REF), with classical inpainting
(C.l.) and modified inpainting (M.l.). Peaks are ordered from lowest to highest frequency. For this expe-
riment the rejection rate was set to p = 1076,

a thorough study. In the end, what matters is that the maximum a posteriori is close to
the true value.

Here, we understand the advantage of using inpainting algorithms to correct the
impact of gaps on data analysis : using basic sparse signal representation, we are able to
estimate the sum of all signals that are present without having to go through identification.

Finally, we showed that the gain can be huge on parameter estimation, as the bias
that was present has been completely corrected. We can potentially correct at once all
the biases caused by the gaps on every GB signal that are detected.

6.4 Conclusions

With a foreseen duty cycle of 75%, data gaps will constitute an important feature of
realistic LISA measurements that may impact the scientific deliverables of the mission.
To date only a handful of studies have addressed the problem of gap mitigation. We
contributed to this effort by introducing a new non-parametric method, in the form of
two complementary algorithms. Based on the sparsity framework introduced in [3] we
showed thatitis possible to fill the gaps with both signal and noise so that the recovered
noise distribution matches the expected one and the signal power loss is compensated.
More precisely, the proposed inpainting algorithms could mitigate the impact of gaps
for all GB signals at once, without needing to identify them, for a computing time that
is essentially related to the amount of missing data and not the number of sources.

We conducted extensive tests of this non-parametric approach and demonstrated
the performances of both algorithms when confronted to different types of gaps. We
also considered a more realistic case where more than 27% of the data was lost in pre-
sence of multiple GB sources. The algorithms achieve similar performances in terms
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Figure 6.16 - Comparison of the posteriors obtained for a full, ungapped signal (green), a crenel-gapped
signal (blue) and an inpainted signal (orange). For the gapped and full signal, the posteriors are identical
to the one presented in Fig.6.7. The data loss rate is about 28%, combining the three types of gaps. Left:
Using classical inpainting. Right : Using modified inpainting. In both cases, the posteriors of inpainted
data are really close to the full data posteriors. Using inpainting corrects the impact of the mask on the
signal, and thus helps improving the parameter estimation. Using modified inpainting makes the main
frequency f, estimation a bit harder, as it also adds noise around that frequency. For the sky location,
both inpainting methods provide similar results.

of noise distribution, detection capacity, accuracy of extracted signal or even improve-
ment for parameter estimation, to situations with ungapped data. More precisely the
C.l. algorithm yields an efficient signal reconstruction but outputs a less satisfactory
noise distribution. On the contrary the M.I. algorithm successfully recovers the expec-
ted noise distribution but is challenged by the extraction of low SNR signals. We sho-
wed on an example that both could help un-biasing the parameter estimation if part
of the data is missing. The benefits of the M.I. algorithm mainly lies in the fact that it
can recover more precisely the noise distribution, especially in the gaps : whereas the
C.1. algorithm provides a smooth solution that correct the overall noise distribution in
Fourier domain but seems "incorrect" locally in time domain (see Fig. 6.9), the M.I. algo-
rithm successfully recovers a solution that corrects the noise distribution both globally
and locally (see Fig. 6.10). This feature will play a central role if one has to perform a
data analysis directly in time domain after inpainting the gaps.

Prospects: The general framework described here can be used both as a detection
mean and a pre-processing step in the LISA pipeline. As it can be adapted to a wide
range of gravitational events providing that the source admits a sparse representation
on a specific domain, the present study paves the way for further investigations and
extensions of this type of methods.
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The algorithms depend on the noise modeling through the definition of the thre-
shold v with regard to the noise level. However the adaptation to the case where the
noise distribution is unknown (but still supposed Gaussian in frequency domain) is
straightforward and only requires an estimation of the PSD during the resolution pro-
cess.

The current limitations of the proposed algorithms are mainly related to the signal
extraction component. As we adopted here a model-independent approach through a
representation of the signal in Fourier domain, there is natural room for improvement
in the matching of the solution that we find with the expected waveforms. We anticipate
a marked improvement of the recovered signal quality in presence of large gaps with
the use of an adequate representation. For instance, the inpainting algorithms could
be combined with other types of representations like the learned representation we
present in Chapter 7.
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Chapter 7

Learning-based representations for
GW signals

7.1 Introduction

We already emphasized in Chapter 5 (see also [1]) that non-parametric algorithms
based on a simplified modeling of the sought data could already enable not only a
precise detection that is robust to noise, but could also help to efficiently mitigate the
impact of missing data (Chapter 6) on the analysis. One of the outcome of our algorithm
was an estimate of the total sum of all GB signals detected. This could be convenient
in the case where the main objective is to detect all GB signals and to subtract them
from the measurements. However this approach does not allow to characterize the
GBs individually; we have yet to tackle this issue.

7-1.1 Designing a new non-parametric model

GB characterization requires to study GB signals individually. The model developed
in Chapter 5 could approximate GB signals properly in absence of noise, but had more
difficulties identifying the signal properly when the SNR became low. This can be explai-
ned by the lack of constraint the model was imposing on the sought signal. The only
constraint was "sparsity in the Fourier dictionary", which is not enough to define a GB
signal. Moreover, even if sparsity could compress the signal over few Fourier atoms,
the number of Fourier coefficients required to have an accurate approximation was
still quite high compared to the number of physical parameters needed to generate
the signal. This lack of constraints made the search fast, but impaired the possibility to
separate close signals and to characterize them.

Therefore, we wish to build a new model that would represent accurately the GB
signals - even in presence of noise. Considering what we said before, the model should
be as low-dimensional as possible, and yet must properly represent a wide range of
GB signals. All this should also be parameters-agnostic, i.e. it should only rely on the
signal’'s observed morphology.

7.1.2 Linear Models

The physical parameters 6 of a GB are bounded for both geometrical reasons (angu-
lar parameters 3, A, ¢, 1, ¢o - their bounds are defined in Table 4.1) and physical reasons
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(fo, fo, ho are constrained by the composition of the system). We can thus define O¢p
as the set of admissible parameters 6 for a binary system. Now, if we consider h the
signature of a GB signal observed on the TDI channels, the set of all possible signatures
is defined by :

M={hl) , 0€Ogs}, (7.1.1)

and describes a manifold which dimension is that of the space of parameters O, i.e.
at most 8.

Fig.7.1 (left) illustrates this schematically : the manifold described by the set of GB
signatures has a complex geometry that can be explained by the non-linearity of the
waveform h. Trying to create a model of GB signals is the same as modeling this mani-
fold and the elements lying on its surface. As M is low-dimensional, we would like the
model to be low-dimensional too.

M = {s=h(0), 0 c OGB}

Figure 7.1 - Left:each GB signal is characterized by a set of 8 parameters 6. The corresponding waveform
is a function h of 4. The set produced by all the signals corresponding to all the plausible parameters for
GBs ©¢p defines a low-dimensional manifold M. Right : as the manifold M has a complex geometry,
using a linear model such as PCA as an approximation is likely to give poor results, even more if we
impose the PCA to be low dimensional.

In this context, using a linear model is not optimal. Indeed, we have already studied
the implementation of such a model in Chapter 5; it was based on Fourier atoms and
sparsity ensured the low-dimensionality. But it did not constrain enough the sought
signals and therefore limited our ability to characterize the GBs individually.

A similar - yet different - approach would be to learn a model that would be locally
linear. Typically, this would involve learning a sparse adapted dictionary (more adapted
than the dictionary of Fourier atoms); but for the learning process to be efficient, it must
rely on a large bank of templates to learn from, which is not always possible. Moreover,
this would result in a large dictionary that is difficult to handle.

We could also investigate the applicability of an "optimal" linear model of the PCA
type [2]. Fig.7.1 (right) sketches the reason why such a model is unlikely to be able to
represent the manifold well : the geometry of M is too complex to be approximated
uniformly by a low-dimensional linear model.

We can find similar approaches in LVC. [3] proposes an approach to detect poorly
modeled GW transients of short durations. The proposed linear model is based on PCA
vectors that were learned from a data base. On a different note, [4; 5] used reduced
order modeling of a bank of GW templates based on a linear model to accelerate detec-
tion and parameter estimation in LVC. These methods have been combined with neural
networks to improve their performances [6; 7; €]. Yet, in order to represent accurately
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the whole bank of templates, the reduced basis has generally a dimension that is much
higher than the manifold actual dimension.

7.-1.3 Non-linear Models & Learned Representations

Retaining the distinctive feature of the non-linear dependence of GW waveforms on
their parameters, the investigation of the applicability to this field of learned non-linear
representations comes as a natural approach. They intersect non-negligibly with mo-
dels based on learning; they have also demonstrated significant performance in this
area [9]. In LVC, [10] already proposed to learn a model starting from the physical para-
meters to produce faster waveforms and thus speed up parameter estimation. Here,
we consider a different approach that focuses on learning from the signal’'s morphology
independently of the physical parameters.

Like in Section 7.1.2, we want to create a model of elements lying over a low-dimensional
manifold. In this context, the most adapted network is the auto-encoder (AE) [9]. AEs are
networks used in deep learning to build data representation models. They are known
to successfully build low dimensional representations for complex data - like the GB
signal - while ensuring an efficient recovery. More generally they have been used for
data compression, data denoising and many more applications [9].

Classified as unsupervised learning, the AE principle is based on learning an encoder
® and a decoder ¥ such that :

B For any signal s, the low-dimensional encoded value is ¢ = ®(s). c is also called

the latent variable or code.

B For any encoded information, we can recover an estimate of the corresponding

waveform simply by applying the decoder ¥ : s = ¥(c).

B ® and V¥ are learned so that they minimize the global reconstruction error :

2

£ = —u(d . A
= |Is (2(s) (7.1.2)

s
c 2

The low-dimensionality is generally directly engraved by the network "bottleneck" ar-
chitecture illustrated in Fig.7.2 : the dimension of the code c is usually much lower than
the one of input s.

Nevertheless, two main drawbacks could deter their use in GW waveform represen-
tation case : these networks are known to need a huge training set (i.e. a large set of
waveforms) to learn a low-dimensional model generalizing well. In GW case, the wa-
veforms are potentially very costly to produce and to store, the size of the required
training set could be prohibiting. Moreover, the more layers the network has, the hea-
vier the training is (both in terms of complexity and computing resources) - this can
quickly become prohibitive.

In the midst of all existing AE models, only few present the capacity to learn on a
small-sized training set. Among them, the interpolatory auto-encoder [17; 12], referred
to as IAE, is an AE designed specifically to address this last point. This is the network ar-
chitecture that we selected to demonstrate how non-parametric methods can produce
precise models for GW signals.

Contribution: We developed a non-linear, non-parametric model for GB signals ba-
sed on the IAE principle. We provide with a sparsity-based extension of this network
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Decoder
Encoder

Figure 7.2 - Scheme of a basic auto-encoder : the data s is encoded to a low-dimensional latent space
using the encoder ®. The low-dimensionality is ensured by the architecture which brings large inputs to
small-sized encrypted data c. This specific network design is widely known as the "bottleneck" architec-
ture. The encoded information c can then be decoded using the decoder W to recover an approximation
s of the input.

that promotes low-dimensionality for the model. We show that this new model has its
sensitivity increased compared to the sparsity-based model presented in Chapter 5, not
only in terms of detection but also in terms of recovery accuracy. We illustrate many
potential applications for LISA from simple detection to source partial characterization.
We outline how a detection pipeline could be based on this model.

We present the IAE concept in Section 7.2 and how the new model is built based on
this concept. Section 7.3 provides a thorough investigation of the model's performances
and the perspectives it offers. Conclusions are drawn in Section 7.5.

7.2 Learningarepresentation with aninterpolatory auto-
encoder

We describe here the training set and the principle of IAE. We demonstrate its per-
formances in terms of waveform approximation on a training set and show that it per-
forms better than a linear model.

7.2.1 Data overview : building the training set

The training set Tgain is composed of samples from the manifold that the model
must learn to represent. To ensure that the model is generalizable, it has to cover a
wide range of plausible signal morphologies that is representative of all possible signal’'s
morphologies. To cover the morphological diversity as best as possible, we propose to
build the training set based on a sampling of the physical parameters space ©¢p. The
waveform selection was made according to the distributions presented in App.D.3.1.

A typical input for IAE is presented in Fig.7.3. It is built according to the following
process :
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Figure 7.3 - Training set waveform example. Upper row : typical element contained in the training set.
Lower row : Logarithm of its module. The waveform module can take values with several orders of
magnitude.

1. Setting the observation duration Tgps, the time step At and sets of waveform
parameters 0, we produce the waveforms using the LDC-Sangria code [13] (fast
waveforms). The sets of parameter 6 is chosen according to a sampling process
detailed in App.D.3.1. We choose to work with the TDI channels A and E.

2. For each signal, we only keep Nipy: points of the signal. We select these data
points such that the selected signal is centered, as in Fig.7.3

3. We separate the real and imaginary parts to work on real-valued data. As this
is only a demonstrator, we proceed with disjoint analysis for the different chan-
nels of information : for now, we do not force any special relation between the
different channels’. We only learn the network on the real part of channel A and
apply it to all information channels (real and imaginary parts of A and FE)>.

4. We normalize amplitudes of the waveform such that :
> Islk)l=1. (7.2.1)
k

The signal’'s amplitude will be estimated when fitting the model to the data.

With this in mind, we build two sets : the training set Tiain to train the network and a test
set Tiest tO assess the generalizability of the network. The detailed number of elements
per set can be found in Appendix D.3.2.

7.2.2 Interpolatory Auto-Encoder model

IAE Principle

The IAE is an AE which architecture differs from the usual "bottleneck" one described
in Fig.7.2. Its principleisillustrated in Fig.7.4 : we consider the training set Ty.in described

1. In further developments, this should be investigated properly. It is all the more possible that inves-
tigations tend to show that latent space organization is correlated to the values of physical parameters.

2. It can seem like a harsh approximation. However, we did not notice any additional bias by applying
the model learned on real part of A to all other channels.
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Figure 7.4 - IAE principle:itisimpossible to describe any signal s in the direct domain as a linear combina-
tion of the anchor points {e;} because of data complexity. However, we can learn a non-linear transform
® such that, in the transformed domain, ®(s) is now a linear combination of the transformed anchor

points {®(e;)};.

in the previous section from which we label a certain number N, of elements as "anchor
points" (APs) (e; on the figure).

Now, we aim at learning a non-linear transform @ such that the transform of any
point of the training set s, ®(s), can be expressed as a linear interpolation of the trans-
formed APs {®(e;)};. De facto, it is like looking for an alternative domain in which the
data has a linear representation. In spirit, ® is a transform that can "unfold" the ma-
nifold M described by the elements of the training set. The selected APs work as a
representation dictionary in the encoded space, also called "latent space".

In parallel, we also learn a decoder ¥ that can transform back the interpolated data
into a waveform. Therefore, any waveform s € Tyain is encoded by its barycentric co-
ordinates {\;};, i.e. its pseudo-coordinates in the dictionary of representation {®(e;)};.
Moreover, it is possible to produce a signal which morphology is similar to that of a
waveform by applying ¥ on any vector from Span({®(e;)};).

Contraryto classical auto-encoders, IAE’s architecture does not have to be bottleneck-
ed. The bottleneck is associated with a projection on a low-dimensional vector sub-
space; here, the interpolation plays this part. The low-dimensionality then only comes
from the number N, of anchor points that were initially selected as the dimensionality
reduction happens during the interpolation process happening in the latent space.

Architecture & Learning

The global learning process is represented in Fig.7.5 : the elements z of the training
set Tyain are encoded with ® and then interpolated on the transformed APs {®(e;)};
using the interpolator Z. Then the interpolated result is decoded using W, and the ob-
tained output ¥ (Z[®(z)]) is compared to the corresponding input z. The three main
blocks of an IAE that are the encoder @, the decoder ¥ and the interpolator Z - combi-
ned with the choice of APs - entirely define the model.

We set the encoder ¢ and decoder ¥ as classical dense neural networks with the
same input and output dimensions combined with the respective activation functions
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Figure 7.5 - Global learning process : elements z of the training set Ti..in are encoded with ® and then
interpolated on the transformed anchor points {®(e;)}; using interpolator Z. Then the interpolated result
is decoded using ¥, and the obtained output is compared to the corresponding input z.

mish [14] and sft [15]. Both ® and ¥ are made of two hidden layers with the same in-
put/output sizes. We choose a network that does not enforce dimension reduction as
the interpolator Z is responsible for this step.

For any interpolator Z, the learning process is described by Eq. (7.2.2) :

¢, U = Argnin |p Z Hx—\I/(Z[CI)(:L’)DH;—Q— Z |®(2) —I[@(m)]”i . (7.2.2)
oV felﬁrain 2E€Ttrain
Recons};uction Inter[;&ation
error error

We look for @ and U as the applications that minimize the global error. The latter is
split in two terms : the first one represents the reconstruction error in the direct do-
main, i.e. the quadratic error between the input = and the estimation given by the net-
work W(Z[®(x)]). The second one is the interpolation error, i.e. the error made when
interpolating ®(z) on the transformed APs in the latent domain.  is called the regula-
rization parameter and balances the effects of the two types of errors on the general
cost function. The parameters used in our code can be found in App.D.3.2.

Two elements will play a crucial role in the quality of the final model : the APs and the
interpolator. They have to be mutually accounted for because they jointly impact the
final result. The interpolator impacts the quality of approximation in the latent domain,
whereas the APs impact the quality of both the interpolation and signal recovery. Com-
bining this fact with the constraint of low dimensionality, itis clear that a viable selection
strategy is required. This selection process should answer the following questions :

1. How many APs are needed?
2. What waveforms should be selected as APs (i.e. finding a selection criterion)?
3. Is there an optimal choice for APs?

We can give a partial answer to these questions. About the required number of APs,
based on the idea that the transform @ is unfolding the manifold and that all the data
should have a linear representation after that, we can say that the required number of
APs is directly correlated with the dimension of the manifold. Here, the dimension of
the manifold is 7 (corresponding to all the physical parameters except for the ampli-
tude). Ideally, considering the interpolation scheme that we use, we would need 8 APs.
However, this is only an optimistic lower bound, as the shape of the manifold is very
complex and its features hard to learn.

Regarding the AP choice, the strategy consisting in randomly selecting a small num-
ber of elements in the training set often results in a poor representation of the training
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set. This suggests that there is indeed a "best choice" for the AP set. We propose a
detailed analysis of the stakes posed by AP selection, as well as a way to perform this
selection in the next section.

7.2.3 Interpolation & anchor points selection

This is the interpolator that defines how the data is approximated in the latent do-
main. Moreover the interpolator also turns the IAE to a generative model : we can easily
approximate any GB waveform only from the APs. Fig.7.4 shows how the IAE works with
a linear interpolator of type:

I(z) = Z Ni(z)®(e;) . (7.2.3)

The main issue now revolves around computing the barycentric coordinates i, which
is a priori no easy task as this is highly correlated to the number and the choice of APs.
In this section, we investigate how to automatically select the APs. Such a process would
automatically yield the number of APs needed to have an accurate model. It would also
solve the question of the optimal set of APs. Subsequently, we will provide a process to
select a small-sized set of suboptimal APs.

Direct projection

The \; were first computed to minimize the quadratic error of approximation :

{/):z(x)} = Argmin (7.2.4)
( {)\Z‘}Z‘ s.t.
S =1

d(x) — ZAZ@(@)

2
2

We enforce a supplementary constraint of type > . |\;| = 1. This removes a degree of
freedom and adds an implicit constraint during the learning process, making it more
robust.

A direct projection on the APs gives satisfying results when only few APs are consi-
dered. Yet, without any prior knowledge on how to select them, an easy choice - even
if it goes against the model's low-dimensionality - can be to consider a large set of APs
chosen randomly among the training set elements. In this case having a large num-
ber of APs becomes problematic because Eq. (7.2.4) becomes hard to solve as the APs
(and a priori their transforms) tend to be highly correlated. This creates large numerical
errors when solving the least square problem.

Regularized projection

We can address the direct projection issue by regularizing Eq.(7.2.4). As stated be-
fore, without any prior knowledge on how to select APs, itis tempting to consider a large
set of them so that the model fits the data well. Still, we do not want to compromise
on the low-dimensionality constraint as it is one of the model strong points. Since we
are working to reduce as much as possible the number of APs, a first step toward that
goal is to minimize for every input x the number of APs needed to give a good approxi-
mation of x. In short, we will ask for each ®(x) to be represented with few elements of
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{®(e;)}; : this is exactly the sparsity framework we introduced in Chapter 5. Thus, the
norm 1 comes forward as a natural regularization for this problem.
Replacing Eq. (7.2.4), the new regularized projector write as Eq. (7.2.5) :

2
{X(m)} = Argmin [|®(z) — Z N®(e)|| + Z Yil Al - (7.2.5)
i {/\z}z S.t.\ i 2 i
2 al=t Projec;?on on Enforcing
Anchor Points Sparsity

The projection term is the same as in EqQ. (7.2.4). The new right hand side term corres-
ponds to a weighted norm 1 for barycentric coefficients {\;};, which weights {~,;}; are
also learned during the process. Eq. (7.2.5) is still a convex problem. However, there
is no analytical solution to it : we approximate the solution using the first iterations of
ISTA3 [16].

10
—— Direct proj.
3 Sparse
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Figure 7.6 - We trained a IAE network based on 50 APs on the training set. The evolution of the glo-
bal error Eq.(7.2.2) of the two interpolators Eq.(7.2.4) ("Direct projection”,blue) and Eq.(7.2.5) ("Sparse",
orange) are plotted against the number of learning iterations. The interpolator based on direct projec-
tion has some numerical issues which prevent it from reaching a low reconstruction error. On the other
hand, the regularized interpolator (Sparse) converges fast to a low error (between 2 and 3 orders of ma-
gnitude below the one obtained by direct projection).

From this change, two observations can be done : first, this is not a problem any-
more to consider a (reasonably) large set of APs. Fig.7.6 shows that using a set of 50
APs randomly chosen in the training set, the numerical problem that was observed
using Eq.(7.2.4) is corrected, and the global error on the training set is greatly reduced.
This change of behavior originates from how the {Xi}i are computed : solving Eq.(7.2.4)
requires to inverse an ill-conditioned matrix 4, whereas Eq.(7.2.5) does not require to in-
verse any matrix and is well-posed thanks to the regularization. Second, as we constrain
the elements of the training set to be represented with as little APs as possible, some
APs end up being used a lot more than the others, as if they were carrying more infor-
mation. Some others are little to never used to represent the data, as if they were too
redundant with the "main" APs.

3. We use an improved version of ISTA that only performs the 10 first iterations; the corresponding
gradient steps are learned as model parameters to increase the convergence speed.

4. The matrix is ill-conditioned because the APs are correlated. The more APs are considered, the
greater the correlation, the more ill-conditioned the matrix is. This is the origin of numerical instabilities.
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Figure 7.7 - Distribution of normalized module of barycentric coordinates on the training set for several
anchor points. The text above each figure gives the proportion of elements that are 0-valued. Left :
Anchor point widely used by training set elements : most of the time, the corresponding barycentric
coordinate has a high, non-zero value. Middle : Anchor point often used by training set elements. In
20% of cases, due to sparsity constraint the anchor point barycentric coordinate is 0. However, in 80%
of cases, this value is non-zero, making it essential to describe well the data. Right : Anchor point never
used by training set elements : the corresponding barycentric coordinate is always 0. We can remove this
anchor point as it is not used to represent the data.

Automatic anchor points selection

Using this new interpolator, we enforce a stage of information compression. For
our training set 7i.in described in Section 7.2.1, information compression is noticeably
efficient when starting from a rather high number of APs (20-25 - this is high compared
to the expected dimension, meaning that there is a lot of information redundancy) and
using the interpolator Eq. (7.2.3, 7.2.5). This last observation gives a "natural" approach
to conduct an automatic AP selection : we can alternate between a learning stage
and an elimination stage. The learning stage consists in iteratively solving Eq. (7.2.2)
with a fixed number of APs. The elimination stage consists in assessing the usage rate
of every APs on the whole training set at fixed ® and ¥ and eliminate the least used
ones. Fig.7.7 shows how we process with this selection : plotting the normalized module
of barycentric coordinates for each AP on the training set, we assess its extent of use.
Then we rule out the ones that are the less used, i.e. the ones which take the most often
values that are close to 0. The APs thus selected are shown in App.D.5. They present a
wide morphological diversity.

7.2.4 Pre-processing stage

The GB signal clearly presents several features : short wavelength variations - with
variations of one order of magnitude - and long wavelength variations - the global
structure of the signal in Fourier domain. Experiments showed that large scale varia-
tions are harder to learn by IAE. A simple way to deal with this is to apply a scale-aware
preprocessing, for which wavelets are well adapted.

Wavelet transforms aim at giving a multi-scale decomposition of a given signal [17].
Here, we will designate the scale at level j by L; from the coarsest (j = 0) to the finest
(7 = Jmax)- From all the scales it is possible to fully recover a signal using the right inverse
wavelet transform. Many fast algorithms are developed to this aim.

Numerical tests showed that the results were better when the signal was decompo-
sed over the different scales, and a separate model is learned for each scale L;. One
explanation may be that the change of representation - now as wavelet coefficients
- as well as the separation of scales allow to split a complex signal in "less-complex"
sub-signals that are easier to learn from. There is a sort of de-correlation of some of
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Figure 7.8 - Wavelet transform based preprocessing. We decompose the signal over several scales and
we learn one model per scale. APs are the same for the three scales. We recombine the estimates over the
different scales and estimate the amplitude of each scale so that the residuals are as small as possible.

the effects making the initial signal complex.

Then the models are combined to identify the global signal.

In our case, using the python module pywt [18] with the wavelet transform asso-
ciated with sym2 (symlets of order 2) and maximal scale of 2 (so including 3 scales
Lo, Ly, Lo), we learn 3 separate models that are then recombined to create an estimate
of the signal. The global process in presented in Fig.7.8 : starting from the raw data s,
one has to apply the wavelet transform and then normalize each scale L; to perform
the learning. In order to reconstruct the global signal, one retrieves the output of each
scale model, and look for their optimal linear combination : the one that represent the
best the initial signal when the inverse wavelet transform is applied. The global signal
recovery thus relies on the wavelet transform linearity. We apply the inverse wavelet
transform independently to each scale, and then fit the amplitudes corresponding to
every scale so that we minimize the quadratic error between the initial full signal s and
its reconstruction >. This scale amplitude fit is a low-dimensional least square : the so-
lution can be computed really fast and does not present any issue. The performance
results of the next section are computed after recombining the different scales.

Let us highlight that the global model is still low-dimensional since we constrain all
the scales to be as low-dimensional as possible through sparsity (as in Eqg.(7.2.5)) and
we impose the APs to be identical for all the scales.

During the benchmark performance, we will designate by "multi-scale " the IAE mo-
del based on this preprocessing; the model based on the full data (without this pre-

5. We need to retrieve amplitude because we learned a normalized model for each scale, loosing the
amplitude information at input.
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processing) will be labelled as "full". The multi-scale model has 3 scales (from j = 0 to
Jmax = 2) and uses 9 APs that are the same for all the scales. The full model uses 28 APs.
Efforts will be made to show the pros and cons of each model. We will discuss the pros
and cons of each model in the following sections.

7.3 Use, applicability & performances

We will show how the IAE model is used in practice and what are the performances
that can be expected from it. We will then demonstrate the performances of these two
models in various situations : waveform approximation, detection, denoising, but also
source separation. When it calls for, we will compare the results of the IAE models with
the ones obtained using the unstructured block sparsity (combined with BlockTree)
described in Section 5.5.

The performance indicators remain the same as those introduced in Section 5.5.1:
the quality factor Q45 (Eq.(5.5.4)), the false positive rate (FPR, defined in Eq.(5.5.5)), the
false negative rate (FNR, defined in Eq.(5.5.6)), and the SN R (defined in Eq.(5.5.2), ef-
fective computation in App.D.4).

7.3.1 Using IAE to approximate waveforms

Use & interpretation of IAE

In this section, we assume that the IAE model {®,Z, I} has already been built and
learned following Section 7.2.2. We demonstrate how to use this model on a practical
example.

Any GB waveform s can be approximated by finding the amplitude A" and the

barycentric coordinates {)\ZBSP} encoding at best the information contained in s :

(2

ABSP,{AlBSP(s)} = Argnin s—A-\D(;A@@(ei)) 2

i A{ i} )
= Argmin [js — A- ¥ ({\; 1) . (BSP)

LN S

This process is called barycentric span projection. Since the network was learned on
normalized data, we have to jointly estimate the amplitude A®F of the signal.

What does Barycentric Span Projection do? It performs a projection of a si-
gnal s on the span of the APs in the latent domain.

De facto, Eq.(BSP) is solved using JAX [19] optimization tools. For the sake of simpli-
city, we use the notation ¥ ({),},) instead of ¥'( }_, X;®(¢;)). We do not have a massive
training set; yet having a continuous representation of the signals like the one IAE can
generate is beneficial since we simply interpolate the missing waveforms from the one
that we already know in the latent domain. Choosing the anchor points among the ele-
ments of the training set helps making the model robust despite the low size of T4in.
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Figure 7.9 - Example of waveform approximation of a real signal (dotted blue) by PCA (orange) and
IAE (green). The upper row shows one of the signals present in the test set as such, and the lower row
represents the logarithm of its module. In this case, IAE performs much better than PCA as PCA could
not capture all of the variations of the waveform.

Waveform approximation

APs play the same role as dictionary atoms in Section 5.1.1 but contrary to our pre-
vious model, the associated transform is not linear. Choosing the APs (and limiting their
number)is like selecting the atoms representing best the signal (i.e. resulting in minimal
recovery error). In a similar way, if we were considering a linear model with the same
restrictions (low-dimensionality, best representation possible) then the best set of "an-
chor points" would be given by PCA components associated with its L largest principal
values [2].

The IAE model used here has 9 APs and includes a preprocessing step for the data
that is detailed in the next sections. In order to have a reference for performance as-
sessment, we will compare IAE to the waveform approximation given by projecting the
training set and the test set on the L = 9 first vectors given by the PCA of the training
set. Since PCA is the "best linear approximation based on L components"®, any linear
approximation based on the same number of components is likely to give an approxi-
mation of lesser quality : this we will show by projecting directly the training set and the
test set on 9 elements randomly chosen in the training set. This last approximation will
be referred to as "APs" 7.

Fig.7.9 shows a typical example of waveform approximation by PCA (using linear
projection) and IAE (using BSP). As expected, we observe that IAE could seize details that
PCA was unable to because of the low number of PCA components that we considered.
This is exactly the phenomenon that we explained with Fig.7.1: a low-dimensional linear
model is not adapted to the approximation of a manifold with a complex geometry.

This phenomenon can be quantified at larger scales. Fig.7.10 shows the distribution
of the quality estimator Qqg, defined in Eq. (5.5.4), of the recoveries of the training set’s
elements and the test set's elements. The performances of IAE, PCA and projection on
elements of the training set ("APs") are represented. As stated before, the "APs" ap-

6. In terms of approximation quadratic error.
7. It is like approximating the data by a linear combination of the APs in the direct domain using a
linear projection.
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Figure 7.10 - Distribution of the quality estimator Q4 when the waveforms of the training set (left) and
test set (right) are approximated using IAE (green), PCA (blue) and projection on elements of the training
set (orange). All methods generalized well (errors are consistent between training set and test set), but
IAE gives waveform approximations 10 times better (in terms of recovery quality) than PCA for the chosen
number of components.

proximation gives lower quality estimations than PCA as it is a linear model that was
not specifically designed for this data set. PCA already shows improvements in compa-
rison : there is a heavy distribution tail of elements having a better recovery. However,
PCA is much less efficient than IAE : there is an order of magnitude between the mean
approximation error made by PCA and the one made by IAE for the same number of
components. Moreover, the distribution of the quality estimator is more homogeneous
for IAE than PCA approximation quality. This means that when constraining the number
of PCA components to be as low as possible, PCA cannot give a good approximation of
the waveforms.

We observed that considering more PCA components reduces the approximation
error. This is expected because we increased the model dimension. But there would
have been less information compression in that case, which can prove to be problema-
tic when we consider noisy data : in a context of trying to estimate a signal from noisy
measurements, low-dimensionality helps limiting over-fitting.

7.3.2 Waveform denoising

Linear model versus non-linear model

Our initial objective was to characterize a GB from noisy measurements. In this
context, it is central to have a model that is robust against noise. We tackle this ro-
bustness by considering inputs of form :

d=ho(SNR)-h+n, (7.3.1)

where h is an element of the test set, and kg is an amplitude computed such that the
signal ho-h has a targeted SN R with regard to noise n. This process was already detailed
in Section 5.5.2. We try to estimate the underlying signal for various SN R. We study
comparatively the quality of the estimated signal made by a low dimensional IAE model
(based on multi-scale decomposition and 9 APs, like in Section 7.3.1) and the two linear
models already mentioned in Section 7.3.1. We compare the performances of IAE, PCA
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and APs 8 in this context for a test set with three SNRs : SNR € {20,40, 100} ; a typical
input is shown in Fig.7.11. Fig.7.12 presents the distribution of the quality factor Q4g for
waveform estimations given by the three models in the proposed cases.

Waveform 3800

0.15

0.10

0.05

0.00

-0.05

-0.10

0 20 40 60 80 100 120
Frequency bins

Frequency bins

Figure 7.11 - For a noisy input (grey) corresponding to the dotted blue signal at SNR = 50, example of
waveform denoising by PCA (orange) and IAE (green). Upper row : comparison in linear scale. Bottom
row : module in log scale. For the same model dimension, the IAE recovers all the variations of the wa-
veform whereas PCA can only capture part of the waveform morphology features.

First, we notice that PCA and APs provide signal estimates which quality do not im-
prove as the SNR increases. In fact, the quality of estimation remains strictly the same :
this is the proof that the error is due not to the noise but to the fact that the model
represents poorly the sought signals. On the contrary, the IAE has a performance that
improves as the SNR increases. Moreover, it performs much better than both APs and
PCA :in the "worst case scenario” (SNR = 20), the IAE-estimated signal has in average a
quality 3 times better than the PCA or APs one. The impact of this difference of recovery
quality is illustrated in Fig.7.11: for a noisy input at SNR = 20, we can see the recoveries
given by IAE and PCA compared to the true signal. While IAE remains really close to the
real signal, this is not the case for PCA.

The main conclusion here is that non-linear models can efficiently reproduce a com-
plex signal. We surely could use more PCA components to approximate the signal. Ho-
wever, PCA vectors are hardly interpretable in terms of parameter estimation. On the
contrary, the organisation of the latent space is highly correlated to the signal shape,
and thus directly to the physical parameters (see Section 7.4.3 for more information).
This could be a way to perform a fast parameter estimation on the signal - this work is
still ongoing, and is presented in Section 7.4.3.

Sparse modeling versus IAE modeling

One of the goals of changing the waveform model from a sparse representation
to a non-linear model was to improve the signal representation. This improvement is
related to two levels of information : first, representing the signal itself. Second, being
able to characterize the system from the model. Here, we tackle the first level. The
second level is probed in an exploratory work presented in Section 7.4.3.

8. Direct projection on elements of the training set
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Figure 7.12 - Distribution of quality estimator Qgg for various input SN R for IAE (green), PCA (blue) and
APs (orange). Left : SNR = 20, Middle : SNR = 40, Right : SNR = 100. IAE performance improves with
the SN R at variance with the two other models.

We consider the same test set which elements are transformed as :
d=ho(SNR)-h+n, (7.3.2)

such that all elements have a fixed SNR. We study comparatively the answers of sparse
representation versus IAE models - both full and multi-scale- in terms of the recovery
quality Qgp for both channels A and E.

For the sparse representation, we selected the combined approach "atom reweigh-
ting for block sparsity" described in Section 5.4.4 (labelled simply as "sparse" here) .
We have to highlight that IAE models were learned over the frequency range [2, 3] mHz,
which is more restricted than for the sparse representation benchmark (the main fre-
quency was in [1, 10] mHz). Hence the sparse representation benchmark realized here
having slightly different results than the one presented in Section 5.5.5.

—A— Sparse
25 A IAE MS

- IAE Full )’x‘x

10* 102
SNR

Figure 7.13 - Quality factor of the recovered signal for sparse signal modeling combined with BlockTree
algorithm (labelled as "Sparse", blue triangles), for classical IAE (labelled as "IAE Full", green squares) and
for multi-scale IAE (labelled as "IAE MS", orange circles).

Fig.7.13 shows the evolution of recovery quality with the input SN R. The quality of

the sparsity-based approach increases linearly with SN R for these types of inputs. In
comparison, IAE models are characterized by two behaviors. The IAE full model also
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has a recovery quality that improves linearly with the input SN R, faster than for the
sparse model. For input SNR at 110, there is already a 5 dB difference of quality in
the recovery. Looking at this statement, we can conclude that our objective of building
a model that represents waveforms better has been fulfilled. On the other hand, the
multi-scale IAE performs as well as the full IAE at low SN R but falters at higher SNR.
This is due to the fact that we reach the model’s limit : because of its low-dimensionality,
fine details of the signal escape an IAE model with a low number of APs. We foresee a
tradeoff between the low-dimensionality and the accuracy of the |AE representation.
This remark concerns only the IAE architecture and not the principle of the detection
algorithm. A bias clearly appears at high SN R and dominates the approximation error.

7.3.3 Detection algorithm performance

IAE behavior in absence of signal

The IAE can provide a signal estimate for any type of input, as noisy as it can be. This
is still true in the extreme case where the input consists in noise only. This is illustrated
in Fig.7.14 : for an input consisting in noise only, IAE is still able to estimate a signal
with maximal likelihood of presence. However, its amplitude is close to noise ampli-
tude : the detected signal is merely noise over-fitting. This gives us the right quantity
to consider to tell apart noise and signal : the SNR of the estimated signal. We will call it
"estimated SNR" and denote it by SNR. in the following study.

T | T
ALAFININ
M“ ‘H \_H,» H

RN

Input (

Frequency bins

Figure 7.14 - Comparison between an input consisting in noise only (light grey) and the signal estimate
that IAE performs in this case (green) in linear scale (upper row) (scale on which IAE works) and log scale
(lower row) of the module. IAE estimates a signal which amplitude is close to noise level.

Going back to an input containing signal like in Eq.7.3.2, it is now interesting to ana-
lyze the behavior of SNRes; depending on the SNR of input signals. In Fig.7.15 we plotted
the distributions of SNRest, the response of IAE for inputs with various SNRs (SN R = 10,
SNR =5and SNR = 0 - this corresponds to noise-only inputs). In order to get the tar-
get SN R on the test set, we proceed similarly as in Sec. 7.3.2.

Let us first look at the IAE response to noisy test sets with SNR = 10and SNR = 5.
Even if all input signals have the same SN R, the repartition of the estimated SNR
SN Rest on the output corresponds to a normal distribution with a mean and a stan-
dard deviation depending on the input SN R. This spread is due to the fact that the
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Figure 7.15 - Estimated SNR on IAE output for an input consisting in noise only (blue), in signal with
SNR = 5 (orange) and in signal with SNR = 10 (green). The dashed red line shows the limit of detectability
set like in Eq.(7.3.7). Left : multi-scale model; Right : Full model. Both models give coherent results when
assessing the detectability threshold.

identification is not perfect because of the noise. The lower the SN R, the more biased
is the mean of the estimated SN R with regard to the input SNR. This behavior can
be explained : when the SN R is low, the signal amplitude is close to the noise level.
In this context, it is harder for IAE to separate the signal from the noise, and the risk
of over-fitting noise becomes more important. Noise over-fitting artificially increases
the recovered signal SN R (compared to the input SN R), this explains why SN R, is
usually higher than the input SN R when signals are close to the noise level.

The aforementioned case where the signal is totally absent (i.e. SN R = 0 for the in-
put) corresponds to the blue distribution on Fig.7.15. We observe in Fig.7.16 that the
distribution of SN Res; can still be assimilated to a Gaussian distribution SN Rest ~
N (ptest, 02) which mean s and standard deviation o can be estimated :

est
{uest —5.992 ,

Oest = 0.5356 , (7.3-3)

for the multi-scale model - we found a similar distribution in the full model case (pest =
6.067, oest = 0.5423). We can use this distribution to set a detectability threshold above
which we are practically certain that there is a signal. The multi-scale IAE and full IAE
models yield close distributions with nearly equal selection thresholds.

This characteristic no-signal behavior can be used as a founding stone for a detec-
tion process. It is based on a hypothesis test similar to the ones we conducted before
in Chapter 5 and it would confront two hypothesis :

Ho : There is no signal.
H, : There is a signal.

The choice is made according to a p-value statistical test : we set a probability threshold
corresponding to the expected false positive rate pgpr When trying to distinguish a signal
from noise. Then the corresponding limit SN Ry, is defined such that :

P (SN Rest > SN Rjim) = Drer - (7.3.4)

137



Approximation
0.8 -

8.7 -
D.6 -
B.5 -
B.4 -
B.3 -
5.2 -

8.1

6.8

4.5 5.0 55 6.8 65 7.0 7.5 8.0
Estimated SNR

Figure 7.16 - For an input made of noise only, the IAE-estimated SNR matches with a Gaussian distribu-
tion.

It can be interpreted as the limit of detectability upon which we accept or reject H; :

Accept Hy , Reject H; <=  SNRest < SN Rjim (7.3.5)
Reject Hy , Accept H; <=  SNRest > SN Rjim - (7.3.6)

False negative rate

The false negative rate (FNR) quantifies the detection capacity of the model for the
proposed hypothesis test. This rate will depend on the input SN R. To assess the FNR,
we apply IAE to the noisy test set with SN R varying between 0 and 30, and we apply the
hypothesis test proposed above to the IAE output with a threshold probability pepr =
0.01. Then we compute the proportion of undetected signals. For the chosen pgeg, the
limit SNRis :

SNRjim = 7.238 . (7.3.7)

(we found SN Ry, = 7.33 for the full model). This detection threshold is represented
in Fig.7.15 : whatever falls on the left hand side will be assimilated to noise, everything
falling on the right hand side will be detected as signal. With this value, we compute the
proportion of undetected signals.

Fig.7.17 displays the evolution of the estimated FNR with the input SN R compa-
red to the performances of the unstructured sparse representation combined with the
BlockTree algorithm realised in Section 5.5.6. For SNR > 7, all signals are detected.
When the SN R decreases to 0, the detection becomes harder as the signals estimated
SN R are more likely to be compatible with noise. Yet we see that IAE is able to detect
signals with very low SN R - down to SNR = 2, even if their recovery has a poor qua-
lity. Moreover, we notice a huge improvement when comparing the performances of
the new algorithm to the detection performed when using sparse modeling. Indeed,
signals are detected by IAE at a much lower SN R than using sparse modeling. The cor-
responding false negative rate decreases much faster with SNR:at SNR = 7, nearly
all signals are detected by IAE, whereas less than 10% are detected by sparse modeling.
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Figure 7.17 - False negative rate (FNR) as a function of SNR for IAE models (in green, labelled as "IAE")
compared to the one obtained for BlockTree sparse modeling (in orange, labelled as "Blocktree"). Left :
multi-scale IAE model; Right : Full IAE model. IAE models perform a more precise detection than the
BlockTree algorithm as they are able to detect a signal with a much lower SN R.

7.4 Towards a pipeline for GB characterization

The study conducted in Section 7.3 focuses on the ability of IAE models to represent
individual GB signals, centered in the analysis window - whether with or without noise.
In fact, the data we expect are much more complex. Fig.4.3 is a simulated example of
a GW signal produced by all GBs in the galaxy : it is not known how many sources are
present and detectable and where they are located; moreover, the signals may have
significant overlap. Under these conditions, characterizing GB signals becomes much
more complex. It is necessary to develop a framework answering several questions :

B How to localize GBs?

B How to separate overlapping GB signals?

B How to determine the number of GBs emitting in a given frequency range?

B How to characterize an individual signal?

These questions are key elements to build a robust GB characterization pipeline.
We propose here several answers based on IAE models.

7.4.1 Detection

The detection test lead in Section 7.3 focused on inputs similar to what the training
set contains, i.e. centered signals to which noise is added. In a more realistic situation,
even if we focus on a limited frequency range, we do not know a priori where individual
GB signal stand. Previously, we showed that the estimated SN R could play the role of
a selection criterion for detection. Here we want to show that it is still adapted to detect
the position of a signal.

We consider the following situation : a full data set containing only one GB signal
roughly located between f,,;, and f..... |AE is applied to windows of consecutive fre-
quency data like the one delimited in orange in Fig.7.18 (left). This window slides from
fmin tO fimaz: fOr each input the IAE estimates the underlying signal and its correspon-

139



ding SN R (Fig.7.18, right). We can make three observations : first, SN R, only exceeds
the detection threshold SN Ry;,, when the signal is within the detection window. Se-
cond, the estimated SN R reaches its maximum values when the signal is centered in
the input window. Indeed, Fig.7.18 (right) displays the position of the window for which
SN R, is maximal : the GB peak is right in the middle. Third, we observe that the lear-
ned model admits a slight translation invariant : the SN R varies relatively little as long
as the signal remains around the center of the input window.

101 4 max SNRest 25 n —— SNRijim
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Figure 7.18 - Left : Module of the whitened signal with Fourier frequency index. There is 1 GB signal that
we want to detect. Right : Estimated SN R of signal found vs sliding window starting index. The SN R is
maximal when the signal is centered in the input window.

7.4.2 GB sources separation

Going toward more realistic data - such as the galaxy signal proposed during the
LISA Data Challenges 1 and 2 [20], we wish to have a model that is adapted to the
case where the measurement s is the sum of several overlapping signals. When several
sources are lying in the same frequency range of interest, their identification becomes
more complicated as they get closer in frequency, because their signals mutually conta-
minate each other by overlapping. This phenomenon is represented in Fig.7.19 : when
only the sum of two signals is measured, separating the individual signals becomes
challenging. Even estimating the precise number of sources is difficult.

To face this problem, one can adopt a simple pursuit strategy, i.e. estimating at each
step which signal seems to correlate the most with the residuals of the previous steps.
This strategy can work if the signals do not overlap too much or if overlapping signals
present very different characteristics (for instance, if one bright source is overlapping
with a low SNR source, it might be possible to first identify the bright source and after
subtracting the signal to identify the other one without any loss). However, there is
generally no guarantee that the signals will be properly estimated without any leakage
or over-fitting others overlapping signals. The presence of other signals is likely to bias
the identification of one source.

Amore appropriate strategy is to conduct a joint search of the signals : this way, the
contamination that happens when signals are overlapping is directly taken into account
during the search. Such a strategy can be conducted using an IAE-based algorithm, in a
fashion similar to the barycentric span projection algorithm that we described earlier.
Indeed, the search Eq. (BSP) can be generalized for the case where K > 1 sources
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Figure 7.19 - Left : Example of overlapping GB signals in linear scale (upper row) and the log of its module
(lower row). Right : In practice, we only observe the sum of the two signals (upper row in linear scale and
lower row in log scale). This makes identification complicated, as signals are contaminating each others.
Even estimating the exact number of sources can become challenging.

are lying in the same frequency range of interest (i.e. the frequency range serving as

input for IAE). To the k-th signal, we can associate its barycentric coordinates {)\Ek)}i, its
amplitude A®) and a shift 7;, - for now and on, signals are not centered anymore. Then
we can identify the characteristics of each signal solving the joint problem :

2

K
A(s),A(s),T = Argnin  [s—Y D, [A(k) U ({Ag’“}i)} ., (multi-BSP)
A= {AM} k=1 2
A = {0}
T == {Tk}k

where A(s) gathers the barycentric coordinates of all the sources identified in s, A(s)
is the collection of amplitudes, T is the vector of shifts for each source and D.. is the
delay operator applying the shift 7 to a source. More details can be found about shift
estimation in App.D.6. De facto, Eq.(multi-BSP) is solved using JAX [19] optimizing tool.

In the next paragraph, we demonstrate the performances of source separation with
IAE for an observation composed of a superposition of two sources and, elaborating
on this example, we investigate a process to identify the number of sources that are
present.

Signal estimation

We consider 1,000 observations of type :

d=h(SNR;))-h; + h3(SNRy) -hy +n, (7.4.1)

where h;, h, are two signals with amplitudes i}, h2 computed such that they reach a

chosen SN R with regard to noise n. Their main frequencies are chosen in [2,3] mHz
such that the two signals are overlapping. For this benchmark, the SN R is chosen ac-
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cording to a uniform law : SNR ~ U([10,30])°. We investigate here the relevance of
using the multi-BSP instead of a classical BSP.

Overlapping input signals Noisy input V5 TAE output Residuals
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Figure 7.20 - Result of source separation using IAE for a sum of overlapping signals such that SN Ry = 44
and SNRy = 32.

Fig.7.20 (left) shows the type of input we are dealing with : the two signals can be so
close that they nearly totally overlap, and have different SNRs. On the middle plot, the
noisy input is compared to the noiseless sum of signals and the recovery done by IAE.
The IAE estimate is close to the superposition of signals, even in the presence of noise.
The right hand side plot displays the residuals once the IAE estimate has been subtrac-
ted. After applying the detection test proposed in Section 7.3.3, they do not present
any power excess that could be interpreted as signal leftover or as an undetected si-
gnal. Performing a joint estimate of the signals proves to be better than subtracting
the signals one by one in a "pursuit" fashion. Indeed, if two GB signals overlap, then
estimating the signals one by one can importantly mislead the results. Fig.7.21 (middle
plot) compares the results given by IAE, either combined with the simple BSP or the
multi-BSP. For the simple BSP, we display the residual signal after identifying one single
source (which corresponds to the first step of a pursuit mechanism) to show that the
presence of two signals bias the recovery process. Indeed, the simple BSP blindly iden-
tifies a signal that lies exactly between the sum of signals, leaving significant residuals.
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Figure 7.21 - Result of source separation using IAE simple BSP (red) and multi-BSP (green) for a sum of
overlapping signals such that SNR; = 25 and SN Ry = 51. Performing a pursuit (i.e. trying to estimate
the signals in presence one after another) would result on an erroneous signal estimation.

We can directly compare the quality of recovered signals when applying simple BSP
or multi-BSP. The distribution of the quality factor Eq.(5.5.4) is displayed in Fig.7.22 for
the simple BSP and multi BSP. Using the multi-scale IAE model, we see that multi-BSP
contributes to improve the quality of the recovered signal in average by a factor 2. On

9. We chose this interval as it was plausible considering the SN R found for sources of LDC1-3.
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the other hand, the full IAE model estimates signals of equivalent qualities when using
simple BSP and multi-BSP. It reaches the same quality distribution as when using the
multi-BSP of the multiscale model. Here, we see a clear difference of behavior between
the two models : the full model cannot distinguish whether there are one or two signals
(since both hypothesis result in average in the same approximation quality) whereas
the multi-scale model can. Indeed, in presence of two signals using the multi-BSP pro-
duces an approximation of better quality than when using the simple BSP. Based on
that, we can build a criterion to estimate the number of sources that are present in a
frequency range - i.e. for model selection.

multi-scale model Full model
simple 0.10 simple
multi multi
0.08 -
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0.04 -
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_ ! ! ! ! y $ 0.00 ! : ; ; ; ; _
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Figure 7.22 - For an input that is the superposition of two GB signals, we apply BSP and multi-BSP to
estimate the underlying content. We plot the histogram of the global signal recovery quality in blue for
BSP (labelled as 'simple’) and in orange for multi-BSP (labelled as 'multi’). Left : For multi-scale IAE model;
Right : For full IAE model. Using multi BSP enables to double the quality of the recovered signal. Separa-
ting the scales (and thus reducing the dimensionality) results in a more pronounced separation between
the quality of signals estimated by BSP and multi-BSP.

7.4.3 Prospective work

There are many points deserving further exploration. We present here several pre-
liminary results that will pave the ground of our future work along the lines of repre-
sentation learning.

Criterion to estimate the number of sources

This work is based on the results of Section 7.4.2 on the quality of recovered signal
for the full model and multi-scale model. The simple-BSP IAE identifies a single source
which borrows features from the two true signals and leaves residuals with a mani-
fest power excess at two separated locations reminiscent of the main frequencies of
the corresponding GBs. This is a case of source confusion. In fact, this power excess
provides us a criterion to identify the number of sources : if hypothesis

Hy. : exactly k sources are present,
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is true, then for any i < k, we will see a power excess showing that the model cannot fit
the sources in presence. In order to check if such a power excess can be a valid selec-
tion criterion when applying IAE, we applied the simple BSP to the residuals obtained
by subtracting the estimated signal (for both simple and multi BSP) to the observed
superposition. Then, we applied the detection described in Section 7.3.3 to check if the
residuals are compatible with noise.

On Fig.7.23, we plotted the distribution of the estimated SN R over the residuals ob-
tained after applying simple BSP and multi-BSP, for a full IAE model and a multi-scale
IAE model. In the case of IAE multi-scale model problem, we notice that the residuals
obtained after applying the multi-BSP model are globally compatible with noise, whe-
reas this is scarcely the case for simple BSP. Thanks to the low dimensionality of the
model, we can clearly discriminate hypothesis H; and #, using the usual detectability
threshold. On the other hand, the full IAE model does not allow to discriminate the two
hypothesis since all the residuals - for both simple and multiple BSP - are compatible
with noise. Because the dimension of the model is too high, it cannot constrain enough
the shape of the sought signal.
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Figure 7.23 - Applying simple BSP on the residuals after subtracting the signal found by either simple
BSP (blue) or multi-BSP (orange), we estimate the SN R of the result to check its compatibility with noise.
As multi-BSP has a better recovery quality than simple BSP, the residuals better compare to noise.

IAE & fast parameter estimation

The last step towards GB characterization is the identification of the individual sources
based on the measurements. We present here preliminary results about partial para-
meter estimation for GB systems using IAE.

An IAE model learns from signals morphology; and the morphology is directly (al-
though non-linearly) related to the physical parameters used to generate the signals.
This is why we expect that the latent space organization is somehow correlated to the
physical parameters, or at least shows sensitivity to some of them. Here we typically
think about the parameter (5 : as mentioned in Section 5.4.3, cos(f) is related to the
signal’s width in Fourier domain. To a lesser extent, A also has an impact on the signal’s
morphology.
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Let us consider the training set Tyain With corresponding known parameters 6 €
Orrain. We also know their barycentric coordinates in the latent space :

Atrain = {{Az(s)}u S c ﬁrain} . (7.4.2)

We would like to estimate the parameters 6 Of a waveform that does not belong to
the set but which parameters are still compatible with the distribution over which the
training set parameters were sampled. For that purpose, we propose to make use of
the latent space to recover (at least partially) parameters g and .

We perform a simple "nearest neighbor" estimate on the barycentric coordinates :
using (BSP), we can estimate the waveform's barycentric coordinates {\!*'};. Then we
compute the distance between {\[*s'}; and all of the elements of Ayain :

d({hde I =Y (At —)" forany  {Ai}i € Avain (7.4.3)

(2

Ideally, the element of Ain minimizing the distance with {\!*s'}; should have parame-
ters that are close with the sought parameters. Fig.7.24 shows for an element of the test
set the distance between {\!*'}; and the elements of Ay.in as a function of parameter
cos(8) and A. The "closest neighbor" minimizing the distance has parameters that are
close to the true parameters.

6.30 6.30

0.25 6.25
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=3
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¥
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*
0.10 . 8.10 =
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Figure 7.24 - Distance between the barycentric coordinates of an unknown waveform and the bary-
centric coordinates of the elements of the training set. Using this distance, the closest neighbor in the
training set (orange square) has ecliptic coordinates that are close to the one of the unknown waveform
(green triangle).

On the overall test set, this is often verified. However, since the training set has a
limited size, an estimator only based on the closest neighbor can only have limited per-
formances. Fig.7.25 shows the distribution of the quadratic error on the overall test set
without and with noise. Without noise, there is a accurate estimation of g with quadra-
tic error essentially inferior to 0.01. For sin()), the approximation is less efficient : the
distribution tails are heavier, and the standard deviation is bigger. When noise is added,
the estimation is further degraded with heavier distribution tails. Yet the approximation
seems to be close to the real value in number of cases.

The error is mainly due to 2 elements : first and already mentioned is that the ap-
proximation is based on few elements, i.e. the elements available in the training set.
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Figure 7.25 - Fast parameter estimation through nearest neighbor. Quadratic error when using a fast
parameter estimation based on closest neighbor. Upper line : without noise. Lower line : With high noise
level. Most times, the parameters are properly estimated. Noise degrades the quality of the estimation
(the distribution tails are heavier), but the results remains encouraging.

The low size of the training set does not provide a fine enough discretization of the
joint parameter space for (3, \) to have a more precise approximation. The second ele-
ment is related to the number of APs and information redundancy : two elements with
close shapes can be encoded using two different APs that are highly correlated. This is
a priori not the case since we tried to select APs as much as possible, but 26 APs (for the
full model) is still too many in comparison with the underlying number of parameters.
This can mislead the closest neighbor search.

To palliate this issue, we could either increase the number of elements in the trai-
ning set, use several neighbors instead of only 1, or change the estimator. For instance,
we could learn a multi-layer perceptron (MLP) directly based on the latent domain to
perform a regression in the parameter space. We could even imagine that this MLP
would be learned simultaneously with the IAE encoder and decoder.

If we were able to estimate quickly intrinsic parameters g, A, fo, we would have a
very strong prior to perform parameter estimation : App. A detailed how the sampling
can be accelerated when separating intrinsic and extrinsic parameters.

7.5 Conclusion

We introduced a way to create a non-parametric model for GB signals which, to
the best of our knowledge, has so far not been considered in the field of GW analysis.
By non-parametric, we mean that the model does not rely explicitly on the GB system

physical parameters Even if the parameters are implicitly contained in the choice of the

146



training set, we do not rely on them to estimate the signal. Instead, we rely on the use
of "pseudo-parameters" (A, {\; },).

This model can represent a wide range of signal morphologies and can be used ei-
ther to compress information related to GB waveforms or to perform the denoising
of observed signals. We paved the way for a new pipeline that could be dedicated to
GB detection and partial characterization by extending the spectrum of potential ap-
plications to detection, partial parameter identification and source separation. On the
whole, we expect IAE models to prove useful to LISA data analysis - not only because
it is very simple to apply to any type of data, but also because of the wide range of
applications it opens.

Prospects : Many improvements can be thought of to enrich this model. First of all,
processing jointly all data channels is the first step towards a model that would even
better constrain the extraction of sought signals. We can also think about changing
the architecture of the encoder ® and decoder V¥, for instance by using convolutional
layers. These convolutional layers could replace our wavelet-transform preprocessing
for a preprocessing that would be even more adapted to the data we want to learn from.
Then, there is the question of the frequency range on which the model is learned. For
now, it is quite restricted to a range of about 1 mHz. However, the final goal should be
to have a model that can represent all types of GB signals.

Finally, there is still a lot more work to do on the potential applications. Many more
could come to mind, they would need to be investigated thoroughly. In particular, we
think that IAE models bears some resemblance with the reduced basis models [5; 21;

; 23; 24] introduced in LVC. In our opinion this connection deserves some further
investigation.
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Chapter 8

Conclusion

Major results & prospects

We summed up here the "take home" messages concerning the results of this thesis.

Sparse Signal Representation : We developed a model based on a very simple hy-
pothesis that enables to get an instantaneous estimate of the underlying GB signals. It
works independently of the number of sources. This type of model can be used in cases
where we do not know precisely the waveform of the signal we seek, but nevertheless
know some of its characteristics that could be used to identify it regardless. There is
also a potential application with glitches fast detection and removal. On a wider scale,
sparse modeling could be used to operate source separation.

Inpainting LISA data: We proposed two algorithms that can mitigate the impact of
gaps on data analysis. In particular, the noise distribution is recovered, and signals are
detected properly. These algorithms recreate the missing signals and missing noise,
and the processing time is independent of the number of detected sources - all sources
are managed simultaneously without having to identify them individually. The algo-
rithms proved to be efficient with as much as 28% of missing data, and was shown to
correct posteriors of MCMC identification on an example. Of course, we would like to
extend this algorithm to the context where several types of sources are present - in par-
ticular transients in time domain. The generalized inpainting algorithm is expected to
keep a similar layout, alternating between signal and noise estimation. We also wish to
compare the inpainting technique with other existing methods dealing with data gaps.

Learning-based representation : We introduced a model based on the interpola-
tory auto-encoder that ensures the low-dimensionality of the underlying representa-
tion. Thanks to this property, the denoising process is efficient and can lead to high
detection rates. Moreover, the training set is kept to an acceptable size. Many more
applications can be thought of, such as template bank compression or source sepa-
ration. There are many other points to investigate : first, an improvement is expected
when processing jointly all information channels. Then the latent space also showed or-
ganizational properties that could lead to a fast parameter estimation; this should be
investigated thoroughly. Finally, we could of course develop similar models for other
source types or even for glitches.
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Final words

There is so much left to do and so little time! Working on LISA data analysis is a real
challenge that twisted my brain for the last three years. Nonetheless, | am glad | was
given the opportunity to work on such complex and yet thrilling problems.
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Annexe A

Parameter Estimation

In this section, we present the asymmetric role intrinsic and extrinsic parameters
play in data analysis, and how it can be exploited when performing Bayesian data ana-
lysis. We follow the argument of [1].

A.1 Origin of the separation between intrinsic and ex-
trinsic parameters
The distinction made in Tab.4.1 between extrinsic and intrinsic parameters origi-

nates directly from the form of the expected waveform for GBs. Indeed, any GB GW
signal h;(0) can be written under the form [2; 1] :

4 4
hI (9 = (eimh eext)) = Z a'j(eext) h[(eext = egxpja eznt) = Z aj(eext)h]](eint) 5 (A'1*1)
j=1 —~~ j=1

h (Oint)
and the 6g,, ; are constants defined as in Table A..
Oext1 | exta | Poxta | Ooxca
ho | 1 1 1 1
N T T I
| 0| 2 | 0| 3
$o| O 0 3 3

Table A.1 - Extrinsic parameters needed to compute h{(@mt) in Eq.(A.1.1). Source : [3]

Eqg.(A.1.1) presents a great interest for parameter estimation, as there is a separation
between the impact of the two types of parameters. The idea is now to make use of the
asymmetry between intrinsic and extrinsic parameters by first estimating the intrinsic
parameters and then deducing the corresponding extrinsic parameters.

Basically, if the log-posterior writes :

1 4
1 ! . }
log £,(6 = (Bint, Oear)) = —3 (d > a]-(eext)hf,(eint)) S~ (d - aj(ewohﬂf(emt)) +Hlog [p((Bint, Beat))] -
j=1 Jj=1
(A.1.2)
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Then we will work in the "reduced" log-posterior, restricted to intrinsic parameters :

4 f 4
1 , - ,
log Lint(0int) = max —3 (d — Z ajhjl(ﬁmt)> gt (d — z; ozjh]](ﬁmt)> + log [p(Oint)]
]:

{a;};
(A1.3)
Solving the max with regard to parameters {«;}; is simply solving the least squares mi-
nimizing the residuals between the data d and its approximation on the set of functions

{hj(int)};.
We can define the estimator of intrinsic parameters as :

=1

-~

O;ny = Argmax {log Eint(@m)} . (A.4)
emt

Now, if one has found the maximum of the log-posterior @-nt, one can build an estimator

for the extrinsic parameters based on the {«;};. Let us introduce the amplitudes of the

two GW polarizations :

{hi — ho(1 + cos? 1) | g
hy = 2hgcost .
Then the {«;}, are related to the extrinsic parameters as :
ap = ha cos ¢ cos 2¢p — h sin ¢g sin 29 |
ay = ha cos ¢g sin 2¢) + b sin ¢ cos 29 | (A1.6)
a3 = — hg sin¢gcos 2¢p — h§ cos ¢g sin 21 o
ay = — hg sin¢gsin 2 + b cos ¢g cos 29 .

A.2 Solving the extrinsic parameters

Conversely, we can compute the extrinsic parameters knowing the {«; };, by setting :

A =at+ai+ai+a2=hi*+n}*, (A21)
D = 104 — g = hghg; .
Then, we have :
1
ht =5 <\/A 12D+ VA 2D> , (A.2.2)
1
by =5 (x/A oD — VA 2D> , (A.2.3)
1
o= 2 <hg Y th) | (A2.4)
hy
cost = ohg (A.2.5)
and :
2(0[10(3 + OCQOC4>
tan 2¢¢ = A.2.6
an 2o ai+al—a?—ai’ ( )
2
fan 4y = 2102+ A304) (A2.7)

2 2 2 2"

This can lead to consequent optimization when doing parameter estimation.
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Annexe B

Sparse Signal Representation

B.1 Open Source code

The code is open source and can be found online at https://github. com/GW-IRFU/
gw-irfu on version 3 of the GPL (GPLv3).

B.2 Galactic binary parameters

The example of Fig.5.7 was plot choosing the GB physical parameters contained in
Tab.B.1.

Parameter Value

Frequency fo=3mHz

Frequency Derivative | f, = 2.04973995 - 10~ '8Hz>
Ecliptic Latitude g =0.orn/2Rad

Ecliptic Longitude A = —2.18009 Rad
Amplitude ho = 1.76276 - 10~22 Strain
Inclination v = 0.523599 Rad
Polarization 1 = 3.61909315 Rad

Initial Phase Po = 2.97459105 Rad

Table B.1 - Parameters values used to generate the GB signal.

These parameters are the one needed to create a GB signal by the LDC code [1].
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B.3 BlockTree Algorithm

B.3.1 BlockTree

Algorithme 3 : BlockTree

Result : BlockTree

Data: p : threshold probability

Data : np : minimal block size

Data: treey : initial tree of identical size blocks (size ng)

Data: +[B, p] : threshold, function of block B and probability p

Data : R.., : Comparability ratio : max ratio until which we consider that 2
blocks have comparable sizes

while (treen_l #* treen) do

if First Iteration then

# Try to group elementary blocks by 4;

For blocks By, Biy1, Bri2, Bris :

B=U"3B;

Compute D = HUH

if D < [B,p] then

# Try to group elementary blocks by 2;
Merge By, By11, Biyo, Brys into By;
else

Bl = Bk U Bk+1;

By = Bpyo U Byy3;

Compute D, = HU‘

322

By 22
Compute D, = HU‘
3222

if D < ’}/[Bl, ] then

| Merge By, Byt into By;
end
if Dy < v[Bs,p| then

| Merge By2, Biis into Byio;
end
end
GO TO next 4 blocks;
else
#Try to group blocks 2 by 2;

For blocks By, B :
if (Bl [ B
mln(|3k\ |Bk+1D
B = k1

Compute D=

< Reomp then

7
if D < ~[B,p] then

| Merge By, By into By;
end

end

GO TO next 2 blocks
end

end

B22

-



B.3.2 BlockTree algorithm parameters

Unless otherwise mentioned, when using the BlockTree Algorithm 3 combined with
the unstructured reweighting as in Section 5.4.4, we use the following parameters :

np = 10 (minimal block size)

Reomp =5 (comparability ratio)

piree = 1078 (BlockTree rejection rate)
Punstructured = 0.5 (reweighting rejection rate)
7% =1 (initial weight in frequency domain)
k = 3 (Reweighting coefficient)

e, = 0.1 (convergence criterion for the reweighting algorithm : maxy, |v,,+1[k] =7 [k]| <
€+)

B.4 PSD correction parameters

The polynomial correction that we used for LDC1-3 for frequencies f < 0.027 Hz is
given by :
op(f) = asf* + azf° + asf* + ar f +ao

with :

ay, = 6.04730527 - 106 Hz* |

as = —2.05476168 - 10° Hz 2 |
as = 3.47246590 - 10° Hz 2 , (B.4.1)
a; = —1.38239339 - 10 Hz ',

ap = 9.94485004 - 1071 .
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Annexe C

Inpainting for LISA gapped data

C.1 Parameter estimation with data gaps

Parameter Value

Frequency fo=1.25313 mHz
Frequency Derivative | fo = 9.15958730¢ — 19
Ecliptic Latitude B = —0.529009
Ecliptic Longitude A = —2.51031
Amplitude ho = 1.36368e — 22
Inclination v = 0.244346000e — 01
Polarization Y = 2.22942636

Initial Phase Po = 2.64414439

Table C.1 - Waveform parameters. Signal used to show the impact of gaps on parameter estimation.
This is one of the verification binaries used in LDC data sets.
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C.2 Linearity of low frequency inpainting algorithm

Let us denote :

1 _ 2imkn
7= {\/ Nr exp }OgngNT_1 ) (C.2.1)

ke[-K,K]
the matrix containing the coefficients needed to perform the discrete Fourier trans-

form. F is invertible such that :
Fl=Ft. (C.2.2)

For any measurement V € RV we have :
v[k| = Fv[n] . (C.2.3)

Using the Fourier operator F, we can express the noise correlation matrix in time do-
main :
C;=F'SF. (C.2.4)

We denote by C the joint time correlation matrix for all the channels.
Let v,[n] be a gapped measurement with mask /. We want to study the dependence
of :

ferlv,) = Argnin %(q[k‘],q[k])s

Maln]=v,4(n]

1
= Argénin §<q[n],q[n]>c. (C.2.5)

Ma|[n]=v[n]

with the input v,. The lower line is the same expression as the upper line, but in time
domain. The resulting cost function is separable with respect to each channel. For a
channel I, the Lagrangian of this problem writes solely in time domain as :

1
Ly, (qr,A) = Eq? F*S7 Fqr + (A, vi — Mqy) , (C.2.6)

where (,) denotes the classical hermitian inner product. The solution of the problem
can be written using the Lagrangian :

fer(v) = (Argmin Argmax Ly, (ar, A)) : (C.2.7)
ar A Ie{A,E}
The optimality conditions read :
0Ly
T (and) = F*S; ' Far — MA=0,
anvf (C.2.8)
They resultin:
— *S_l —IMA
I — VI -
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Thus :

_ xQ—1 -1
{ql = (F"8; F)""MA, (C.2.10)

M(F*S;'\F)"'MA =vr .

The solution of the Lagrangian problem thus linearly depends on v, i.e. for any mea-
surements v!, vZ gapped with the same mask M, we have :

for(vi4+v?) = for(vY) + for(v?) . (C.2.11)

C.3 Algorithms : proofs of convergence

Aswe built Alg.1as a block coordinate descent (BCD) procedure (the variables (ﬁ, &,\n)
minimize the cost function (6.2.1)), the argument of [1; 2] applies and establishes the
convergence of Alg. 1. In order to prove that Alg. 2 also converges, we similarly recast it
as the minimization of a cost function through a BCD procedure.

Consider a fixed noise sample :

Ngamp ~~ 9(07 S) ) (C.3.1)

corresponding to the expected noise distribution in frequency domain, and the follo-
wing algorithm :

(P+1
Ngyy = dg — Mh? + Mngnp ,

p+1
ng; = for(ngap) ,
+1  _ ptl
n” =g — Nsamp

C3.2
@ —dy (1= M)+ ) (32

1
2

bt = Argnin | [y © As(v)[l, + 5 (@™ —v,d"" —v)s |,

initialized with h® = 0. R
Instead of looking for the solution as a decomposition signal/noise (h, N), we seek

the decomposition in terms of signal/missing data (ﬁ, &,\n). To this aim, we change va-
riables similarly to Egs. (6.2.3-6.2.4) that link the noise variable q and the missing data
variable u. This relation writes :

d, + Mngmp +u=h"+q. (C.3.3)

By definition :

and the constraint on the noise solution reads :
+1 _
Ngp = Mdq, (C.3.5)
Combining both with the change of variables formula provides :

because d, € Ran(A/). Thus, the constraint on the missing data variable u writes :

Mu=0. (C.3.7)



Considering the alternate gapped data :
dlg = dg + Mnsamp ) (C.3.8)
and its corresponding Fourier transform, the equation on the missing data (for classical
inpainting) reads :
1
dy'ey = Argnin g || +u -1, (C.3.9)
Mu=0
and thanks to the change of variables the following equality holds :
d] +dbfo =h"+ 0l (C.3.10)

~—
dg —I'_ Mnsamp

Subtracting nsamp from both sides yields :
d, +do " =drtt, (C.3.11)

which can be plugged in the equation for h?*! ;

bt = Argnin | [y © As(v)], + Sl =ik

. 2
= Argmin | ||y © As(v)|l, + ||d +db L — (I — M)Dsamplk] — v||zs (C.3.12)

before expanding the quadratic norm :

2 2

Hdg + de,—(IJI — (I = M)nsamplk] — V”Q,S = Hdg + dg:i(ljl + Mngamplk] — VH2,S + Hnsamp[k]”;s
—2%(d, + dfn-i,_él + Mngamp k] — v, Nsampk])s

(C.3.13)

As we are optimizing with regard to the variable v, we can remove all the terms that
are independent of it. Finally h?*! is defined as :

. 2
Argmin | ||y © As(v)||;, + Hd deI + Mngamplk] — VH2,S + R(V, ngamp)s | - (C.3.14)

The cost function :

JIwi(v,u) =

1
v ® As(v)]|, + 3 |dy + u+ Mngmplk] — VH;S—F§R<V, Nsamp)s | » (C.3.15)

is block-convex and its minimum can be reached through :

d?'l, = Argnin Jy.(b”, ) ,
Mu=0 " (C.3.16)
h* = Argmin Ju..(v, d} o))

with initialization h® = 0. We recognize the form of a BCD algorithm, hence justifying
the convergence of the system (C.3.2) to the global minimum of the cost function Jy,;..
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C.4 Solvingthe noise with the Chambolle-Pock algorithm

To keep notations compact, we will respectively denote D = RV7*2and D = C@Ns+1)x2
the time and frequency domains.

C.4.1 Primal-dual formulation

Chambolle and Pock developed the primal-dual algorithm to solve problems with

the general form :
Argmin G(z) + F(Kz) , (C.4.1)
zeD

where K is a matrix, F'and G are convex functions also satisfying some extra assump-
tions [3] not reminded here.

Denoting by K* the conjugate operator of K and by F*, G* the conjugate applica-
tions of F, GG (see [4] for a definition of conjugate applications), it was shown in [3] that
using the following primal-dual algorithm :

y'rt = prox,p. (yP + AKT?) |
Pt = prox, (P — TK*yPT) | (C.4.2)

P+l — pptl g(xpﬂ _ xp) .

the sequence (z?),en converges to the solution of the optimization problem Eq. (C.4.1).
The induction (C.4.2) can be initialized with arbitrary 2° € D,y° € D and z° = 2°. The
parameters 6 € (0,1) and A, T are chosen to fulfill the criterion :

TAL? < 1, (C.4.3)

where L denotes the norm of the matrix K. The proximal function prox,, , is defined for
a function f and areal a > 0 by :

) 1
prox,(u) = Argmin |af(z) + 3 |z — u||§2 . (C.4.4)

In the present context of gapped data in LISA, we have to minimize a function de-
fined in the Fourier domain D (where the PSD is diagonal) subjected to the constraint
u € Ker(M) expressed in the time domain D. The inpainted noise within the gaps is
solution of Eq. (6.2.6) reminded here :

o1
nlg;;l = Argnin 5 ||Q||§,s
nggpleq
. 1
= Argmin 1 [ngjzrpl = Mq] + 5 Hq||§S , (C.4.5)
a

where n?! = d, — Mh?*! and the characteristic function 1 satisfies :

0ifn?tl = Mq
1Pt = Mql = gap . C.4.6
= d {—I—oo otherwise (C.4.6)
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This problem is amenable to a resolution with the Chambolle-Pock algorithm with the
following identification :

Kv  =S7Y2y[k],
F(V) =5V, (C.4.7)
G,(v) =1[d, — Mh**t = Mv].

After some algebra involving Moreau's identity, we obtain :

prox,q (v) = (dg — Mh"*') + (Iy — M)v , (C.4.8)
1
/ /
= C.4.
prox, (v’ oY (C.4.9)
1
Prox, p= (V) == 1—|——)\V . (C410)

C.4.2 Preconditioned formulation

The parameters 7 and o are constrained by Eq. (C.4.3) involving the norm of the ma-
trix K, i.e. the norm of the inverse square root of the noise PSD. Since this PSD is very
ill-conditioned, we will have to select very small 7, A to satisfy Eq. (C.4.3) which leads
to a slow convergence. This calls for a preconditioning of the primal-dual formulation
along the lines of [5]. The main idea consists in changing the inner products equipping
the time D and frequency D domains. This results in a mere modification of the proxi-
mal operators used in the iteration (C.4.2) which leaves its computational complexity
basically unchanged.

We thus define new prox operators using two symmetric definite positive matrices
TandA:

) 1
proxs(u) = Argmin G(z) + 3 ||u — z||;27T : (C.4.m)
) 1
proxo(u) = Argmin F(z) + 3 ||lu — z||;27A . (C.4.12)
The preconditioned primal-dual algorithm writes :

yP™t = proxZ (y? + AKZ?) |
2P = prox® (aP — TK*yPTt) | (C.4.13)
TP = Pt 4 g(aPtl — ) |
with the same initialization as before at arbitrary 2° € D,3° € D and 2° = 2°. This
algorithm converges if the norm of the matrix A'/2KT"/? is (strictly) smaller than 1.

In the case of LISA data with a known PSD ¥, we chose the following :

A=8Y%, (C.4.14)
T = min(SY?) . (C.4.15)

Thanks to this choice, the prox operators can still be computed in closed form.
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C.5 Effective computation of KL-Divergence

For a frequency f;, let us define a neighborhood of size n;, :

L (fi) = {fj}k7%§j§k+"7’“ : (C.5.1)
Then defining :
an approximation” of Kullback-Leibler divergence is given by :
~ 1
Dicu(fi) = 5 (VI + B[P — 1~ n VIQ(A)]) (C5.3)

where V[Q( fx)] and E[Q)( f)] respectively denote the variance and the expectation over
the elements of Q(fx).

For the plots, we chose a window width of Af = 0.1 mHz with an overlap of fre-
qguencies between two consecutive estimations of the divergence.

C.6 Inpainting behavior on a specific GB

The study was conducted choosing the parameters reported in Table C.2 for the
considered GB signal :

Parameter Value

Frequency fo=3mHz

Frequency Derivative | fo = 2.04973995 - 10~ '8Hz?
Ecliptic Latitude £ =0.Rad

Ecliptic Longitude A = —2.18009 Rad
Amplitude ho = 1.76276 - 10722 Strain
Inclination v = 0.523599 Rad
Polarization 1 = 3.61909315 Rad

Initial Phase 0o = 2.97459105 Rad

Table C.2 - Parameters values used to generate the GB signal used for the performance assessment.

These parameters are those needed to create a GB signal by the LDC code [6].

C.7 Algorithms Parameters

Signal extraction : We refer to [7] for details about the implementation of the si-
gnal extraction algorithm for ungapped data and the tuning of its parameters.

1. In the sense that we consider that the KL divergence is constant over a few consecutive frequency
bins
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e = 1073 : Convergence parameter for the BCD algorithm (global convergence pa-
rameter).

ecp = 107° : Convergence parameter for the Chambolle-Pock algorithm.
Nitsep = 20 : Maximal number of iterations for the BCD algorithm.

Nit,cp = 500 — 2,000 : Maximal number of iterations for the Chambolle-Pock algo-
rithms for small/medium and large gaps.
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Annexe D

Learning Based representation

D.1 Open source code

IAE [1] codeis open source and can be found onlineathttps://github.com/jbobin/
IAE on version 3 of the GPL (GPLv3).

D.2 Notation index & definitions
Norm 1: for a signal h in discrete Fourier domain, denoting h = {h[k|}y :

1Rl = Ihlk]] - (D.2.1)
k

Norm 2: for a signal h in discrete Fourier domain, denoting h = {h[k]}, :
Inls =S Ik 2 = ST AlkIR[K (D.2.2)
k k

where h[k]* is the complex conjugate of h[k].

D.3 Simulation parameter settings

D.3.1 Parameter space

Our training, validation and test sets are composed of waveforms which parameters
are sampled under the statistic distributions described in Tab.D.1. The waveforms were
produced using the LDC code [2], with observation parameters set as follow :

Total Observation duration : 7,,s = 31457280 s (for one year of data)
Timestep: At=15s

D.3.2 IAE model parameters

The sets used for the learning and the tests are composed of :
Training set : 5, 000 waveforms
Validation set : 1,000 waveforms
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Parameter

Prior

Frequency
Frequency Derivative
Ecliptic Latitude
Ecliptic Longitude
Amplitude
Inclination

Polarization

Initial Phase

fo ~ U([2 mHz, 3 mHz])

fo=0

sin(3) ~ U([-1,1])

A~ U([0,27])

Computed to obtain the desired norm
cos(t) ~U([—1,1])

W~ U([0, 27])

¢o ~ U([0,2m))

Table D.1 - The algorithms will be tested on a set of 1,000 waveforms which parameters have been
chosen according to the the laws reported here.

Test set: 1,000 waveforms

The network parameters are chosen as :

Noise level : o4, = 0.01

Regularization parameter: ;= 1,000
Training duration : Nierations = 2, 500

D.4 Signal-to-noise ratio

In [3], the SNR is defined by :

Sn(f)

SNR? = 4R [/fm df—X(f)X*(f>] .

Discretizing this equation results in :

Snlk]

SNR? = 4R [df > w] .

0<k<K

Now, the one-sided PSD S, is defined by :

.~ E |

N

2|XFFT(k)|2At] . [2|XFFT(k)|2At2}

Tobs

(D.4.2)

(D.4.3)

where X is the Fourier transform of X produced by python FFT, X = AtXger and

df = 1/Tops-

Now, when simulating the noise as :

n;[k] = o[k](G(0,1) +4iG(0,1)) ,

we get :

E [|)~([k]ﬂ = I [A| Xeer[K]2] = 20[K]? = 00g[K]2 .
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Thus :
Sylk] = 2aeq[k:]2df ) (D.4.6)

Hence:

SNR? = 4% [df > S][ ][ ]] = 4R [df Z 2df]

n

X[k]f(*[k]
B 0<§k<:K ’)J([[:]]f ' (D.4.7)

Now, when considering multiple noise-decorrelated channels, we define the total SN R
as:

SNR,, = SNR% + SNR2, . (D.4.8)

D.5 Anchor Points selection

Some of the APs selected by the process described in Section 7.2.3 are presented in
Fig.D.1.

6.2
— AP 1 8.1 4 — AP 5
8.1
8.8
6.0 W
8.1 1 .11
T T T T T T T T T T T T T T
] 20 48 68 8o lae 128 i 28 48 68 Ba 186 126
— AP 2 — AP 7
8.2
k| 8.0 4
0.2 1
T T T T T T T T T
lae 128 i 28 48 68 Ba 186 126
0.2 — AP 3 8.10 1 — AP B
6.1- 8.65
6.9 0.00 -
0.1 1 -0.05 4
0.2 1
T T T T T T T T T T T T T
] 20 48 68 8o lae 128 28 48 68 Ba 186 126

)

Figure D.1 - Several APs selected by the process described in Section 7.2.3. There is a wide morphological
diversity.
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D.6 Estimating the shift

De facto, solving Eq.(multi-BSP) is not trivial - in particular because it requires to
estimate the shift. To make the resolution easier, we consider that the shift can be ob-
tained directly from comparing the observation as the delay maximizing the correlation

between A®). ¥ <{/\§k)}i> and theresiduals—Y %"} D, [A(j) - ({Af.j)}i)] .This correla-
tion is computed according to the method investigated in [4]. The overall minimization

is done using JAX [5] minimizers that perform well in such cases.
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Annexe E

Synthese en francgais

E.1 Introduction

Cette these porte sur la caractérisation des systemes binaires galactiques (GBs) par
ondes gravitationnelles dans le cadre de la mission LISA (Laser Space Interferometer
Antenna) [1]. LISA est un détecteur spatial d'ondes gravitationnelles dont le lancement
est prévu en 2034. Constitué de trois satellites formant des bras interférométriques de
2.5 millions de km de longueur, il sera capable de détecter des sources d'ondes gra-
vitationnelles de fréquences beaucoup plus faibles que les observatoires terrestres.
Parmi elles, les scientifiques estiment que les binaires galactiques seront des sources
omniprésentes, car notre galaxie en compte plusieurs millions. Toutefois, seulement
quelques dizaines de milliers seraient potentiellement identifiables, car ces sources
sont de faible amplitude. De plus, LISA ne présente qu'un nombre limité de canaux
d'observation et mesurera la somme de ces signaux. Dans ce contexte, les caractéri-
ser individuellement est un véritable défi car d'autres sources d'ondes gravitationnelles
sont, elles aussi, présentes. De plus, LISA sera sujet a un bruit instrumental complexe
et présente de nombreux artéfacts (interruptions de prises de données, glitches) [2].

L'analyse des données LISA doit tenir compte des caractéristiques du bruit et des
artéfacts et prouver qu'elle est robuste face a eux. C'est dans ce cadre que je propose
d'introduire des méthodes non paramétriques d'analyse de données; ces méthodes,
si elles ne permettent pas l'identification directe des systémes, sont trés complémen-
taires avec l'approche Bayésienne qui est la plus représentée aujourd’hui au sein du
consortium. Elles proposent un cadre permettant d'intégrer facilement la présence de
bruit et d'artéfacts dans les données.

E.2 Modélisation parcimonieuse des signauxissus de bi-
naires galactiques

Modélisation parcimonieuse

La parcimonie [3; 4; 5] est un cadre qui convient particulierement bien aux signaux
de GB. En effet, les GB émettent des signaux lisses, stationnaires et presque sinusoi-
daux. Sur la base de cette observation, la meilleure solution est de procéder a leur étude
directement dans le domaine de Fourier ou toute l'information se rassemble principa-
lement sur quelques atomes de Fourier. Par conséquent, nous pouvons dire qu'ils sont
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Figure E.1 - Qualité d'approximation Q45 d'un signal GB en fonction du nombre d’atomes de Fourier
HEH utilisés pour approcher le signal. Deux régimes sont observables : les 40 premiers atomes contri-
0

buent fortement a améliorer la qualité de la solution. Au-dela, tout atome supplémentaire considéré ne
contribue que faiblement a I'amélioration de la qualité d’approximation.

naturellement faiblement parcimonieux dans le dictionnaire des atomes de Fourier.

Cette affirmation peut étre illustrée par un exemple treés simple. La Fig.E.1 montre
comment le nombre de coefficients de Fourier (et donc d’atomes de Fourier) utilisés
pour approcher le signal impacte la qualité de I'approximation Q45. L'évolution de la
qualité en fonction du nombre de coefficients utilisés pour I'approximation évolue en
deux temps. Au début, la pente de progression est forte : chaque coefficient ajouté
contribue fortement a I'amélioration de la qualité du signal reconstruit. Mais au-dela
d'un certain nombre de coefficients (la limite se situe autour de 40 coefficients dans
cet exemple), la pente se casse et 'amélioration apportée par l'ajout d'un coefficient
supplémentaire est beaucoup plus faible. Néanmoins, en présence de bruit, la courbe
de récupération est dégradée et la tache d'estimer le signal malgré le bruit devient un
véritable défi.

Application & Résultats

Nous proposons de construire une approximation parcimonieuse d'un jeu de me-
sures bruité afin de séparer les signaux GB du bruit. Cette séparation s'appuie sur un
algorithme de type LASSO [6] pour lequel nous proposons plusieurs versions permet-
tant de prendre en compte plusieurs canaux d'information ainsi qu'une modélisation
basique de la morphologie des signaux recherchés. Ce dernier point s'appuie sur la
mise en place d'une parcimonie dite "par blocs" [4; 3] permettant de traiter conjoin-
tement des clusters d'information. Ces blocs sont adaptés aux mesures via la mise en
place d'un arbre (algorithme dit "BlockTree") et contribuent fortement a améliorer la
qualité de reconstruction du signal ainsi que les capacités de détection. Nous effec-
tuons par la suite une étude de performances détaillée afin de mieux caractériser le
comportement du modele. Ce travail a conduit a une publication [7].

Nous avons appliqué notre modeéle au cas proposeé lors du LISA Data Challenge 1[8]
sur I'ensemble des binaires de vérification (challenge 1-3). La mesure était composée de
10 signaux GB entachés de bruitinstrumental complexe. En Fig.E.2 nous présentons I'es-
timation de signal que produit notre modéle. Toutes les sources ont été identifiées et
aucune "fausse détection" (faux positif) n'a été observée. Les signaux reconstruits dans
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Figure E.2 - Application au LDC1-3 : extraction des signaux GB a partir de mesures bruitées simulées par
modeélisation parcimonieuse. Le signal réel est représenté en bleu et le signal estimé par notre modele
est représenté en orange. Les solutions globales sont représentées en ligne supérieure, et des zooms
sont représentés sur la ligne inférieure. Gauche : solutions dans le domaine de Fourier, avec un zoom
sur le 10éme pic en partant de la gauche. Droite : solutions dans le domaine temporel, avec un zoom sur
une période temporelle d’environ 45 minutes. Le modeéle a extrait un signal dont la phase correspond
exactement a celle du signal réel. En revanche, 'amplitude est moins bien estimée.

le domaine temporel ont une phase qui coincide trés bien avec celle du signal recher-
ché, mais I'amplitude est moins bien estimée. Ce dernier point pourrait étre amélioré
en prenant mieux en compte les spécificités des signaux GB.

E.3 Corriger les données manquantes par inpainting

LISA subira des interruptions temporelles de prises de données de fréquences et
durées variables [2]. Nous montrons que ces interruptions peuvent impacter la qualité
d'identification des GB car elle se fait directement dans le domaine de Fourier pour des
raisons de coUts calculatoires.

Prendre en compte ces interruptions dans l'analyse pourrait se faire simplement si
I'estimation des parametres se faisait sur les données temporelles. Mais le colt calcula-
toire serait alors beaucoup plus élevé. Afin de pouvoir continuer a réaliser I'analyse di-
rectement dans le domaine de Fourier méme en présence d'interruptions de prises de
données, nous proposons une méthode consistant a estimer les données manquantes
- a la fois le signal et le bruit - via deux algorithmes d'inpainting. Dans les deux cas,
I'estimation jointe du bruit est nécessaire en raison des caractéristiques du bruit ins-
trumental.

Le premier algorithme, appelé Inpainting Classique, est entierement déterministe et
ne peut recouvrir que des bruits basses fréquences dans les périodes d'interruptions.
Le deuxieme, appelé Inpainting Modifié, et une variante du premier permettant de re-
couvrir les bonnes distributions de bruit au niveau des trous. La Fig.E.3 représente un
bruit typique estimé par le premier algorithme dans un trou. Malgré une estimation tres
lisse du bruit, la transformée de Fourier du signal ainsi corrigé admet bien un spectre de
bruit qui correspond a celui attendu, modulo une perte de puissance (due a I'absence
de bruits haute fréquence dans les trous). L'algorithme d'Inpainting Modifié permet de
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Figure E.3 - Haut : Estimation de bruit réalisée par un de nos algorithmes d'inpainting (C.l.) au niveau
d’'une interruption temporelle de prises de données. Cet algorithme peut uniquement recouvrir les fré-
quences de bruit dont la longueur de corrélation est supérieure a la taille du trou. Bas : Comparaison
entre 'amplitude du bruit pour un signal troué (bleu) et un signal inpainté (orange). Dans le domaine de
Fourier, le spectre du bruit a bien été corrigé de 'empreinte des trous.
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Figure E.4 - Comparaison des distributions a posteriori obtenues par échantillonnage des transformées
de Fourier d'un signal complet (vert), d'un signal troué (bleu) totalisant 28% de pertes et du méme signal
troué corrigé par inpainting (orange). L'estimateur utilisé est le maximum de la postérieure, et doit se
rapprocher le plus possible de la valeur vraie (trait rouge). Alors que l'estimation sur des données trouées
donne lieu a un biais dans les parametres estimés, I'inpainting permet de corriger ce biais.

corriger cette perte de puissance et de recouvrir une distribution de bruit tres similaire
a celle attendue.
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Dans les deux cas, le signal est efficacement recouvert en utilisant le modele parci-
monieux mis au point auparavant. Les algorithmes ont été éprouveés pour des pertes
allant jusqu’'a 28% des données totales observées. Les résultats de I'étude détaillée des
comportements des algorithmes ont été publiés [9].

La Fig. E.4 illustre Iimpact que peut avoir une telle correction de signal sur l'esti-
mation de 3 parametres liés a un signal GB : la fréquence centrale f; et la position
dans le ciel 8, A. Alors que travailler directement sur des données trouées (avec 28%
de données manquantes) biaise I'estimation des parametres, travailler sur les données
corrigées produit une estimation des parametres trés similaire au cas ou toutes les
données sont observées.

E.4 Utiliser un modéle appris pour mieux caractériser
les signaux binaires galactiques
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Figure E.5 - Principe de I'|AE : dans le domaine direct, il n'est pas possible de décrire n‘importe quel signal
s comme une combinaison linéaire des points d'ancrages {e; } car les données sont trop complexes. On
peut toutefois apprendre une transformation non-linéaire ® telle que, pour n'importe quel signal GB s,
®(s) puisse étre exprimé comme une combinaison linéaire des transformations des points d'ancrages

{®(ei)}i.

On touche a la limite du modele de représentation parcimonieuse lorsqu'on com-
mence a s'intéresser aux signaux GB individuellement. En effet, 'hypothese de parci-
monie ne permet pas de séparer des signaux de fréquences proches, ni de caractériser
de maniere précise la morphologie du signal détecté. Nous avons donc développé un
nouveau modele de faible dimensionnalité, toujours non-paramétrique’ et capable de
représenter de maniere précise la diversité morphologique des signaux issus de GB.

Nous avons choisi d’utiliser un modele non linéaire en raison de la non-linéarité qui
existe entre les parameétres physiques d'un systeme et le signal correspondant observe.
Dans ce contexte, les Auto-Encodeurs sont les modeles non-linéaires construits par ap-
prentissage qui donnent les meilleurs résultats [10]. Parmi tous les modeles existants,

1. Par cela, nous entendons que la morphologie du signal est modélisée indépendamment des para-
métres physiques qui ont servi a générer le signal.
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Figure E.6 - Exemple d’approximation d’'un signal GB (en pointillés bleus) par le modéle IAE (en vert) et
par une PCA a g éléments (orange) en échelle linéaire (haut). La ligne basse représente le logarithme du
module des signaux réel et approchés. L'IAE donne une meilleure approximation que la PCA car la PCA
n‘arrive pas bien a capturer toutes les variations du signal.

nous en avons sélectionné un qui permet d'apprendre de maniere efficace a partir d'un
ensemble d’entrainement de taille réduite : 'Auto-Encodeur Interpolatoire (IAE) [11; 12].

Le fonctionnement de I'IAE est illustré en Fig.E.5 : on considére un ensemble d'ap-
prentissage Tain @ partir duquel nous étiquetons un certain nombre d’éléments en tant
que "points d'ancrage" (e; sur la figure). Nous cherchons maintenant a apprendre une
transformation non linéaire ® telle que la transformée de tout élément de I'ensemble
d'apprentissage s, ®(s), puisse étre exprimée comme une interpolation linéaire des
transformées des points d'ancrages {®(e;)};. De facto, cela revient a chercher un do-
maine alternatif dans lequel les données ont une représentation linéaire. En parallele,
nous apprenons également un décodeur ¥ qui peut retransformer les données inter-
polées en signaux GB. La réduction de dimensionnalité se fait au moment de l'interpo-
lation : siI'on choisit peu de points d’'ancrages, alors le modéle sera de faible dimension.

Une partie du travail réalisé pour la construction du modeéle est liée au choix "opti-
mal" de ces points d'ancrages. Une autre partie se concentre sur les applications pos-
sibles, a savoir : générer un modele approximatif de signaux GB de faible dimension,
débruiter des observations, détecter la présence de signaux GB au sein d'une mesure
bruitée, mais aussi séparer des sources GB proches et réaliser une estimation rapide
partielle des parametres physiques correspondant au signal.

La Fig.E.6 illustre la possibilité d'approcher des signaux GB par des modéles de faible
dimension; on compare avec un modele linéaire de méme dimensionnalité, a savoir
une reconstruction basée sur les vecteurs principaux d'une PCA? apprise sur 'ensemble
d’entrainement. SiI'on contraint le modéle a avoir une trés faible dimensionnalité, alors
le modele linéaire approche tres mal les signaux car ils sont trop complexes. En re-
vanche, le modele appris arrive a représenter les données de maniére précise. De plus,
il est possible d’extraire des informations plus précises sur la source qui a émit le signal,
comme typiquement sa position dans le ciel.

2. Principal Component Analysis
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E.5 Conclusion

Nous résumons ici les messages a retenir concernant les résultats de cette thése.

Représentation parcimonieuse des signaux : Nous avons développé un modele
basé sur une hypothése trées simple qui permet d'obtenir une estimation instantanée
des signaux GB sous-jacents. Il fonctionne indépendamment du nombre de sources.
Ce type de modeéle peut étre utilisé dans les cas ou nous ne connaissons pas préci-
sément la forme d'onde du signal que nous recherchons, mais nous connaissons cer-
taines de ses caractéristiques qui pourraient étre utilisées pour l'identifier malgré tout.
Il existe également une application potentielle avec la détection et la suppression ra-
pide des glitches. A plus grande échelle, la modélisation parcimonieuse pourrait étre
utilisée pour opérer la séparation des sources.

Corriger les données manquantes par inpainting : Nous avons proposé deux al-
gorithmes qui peuvent atténuer I'impact des lacunes des données sur leur analyse. En
particulier, la distribution du bruit est récupérée, et les signaux sont détectés correcte-
ment. Ces algorithmes recréent le signal manquant et le bruit manquant, et le temps de
traitement est indépendant du nombre de sources détectées : toutes les sources sont
gérées simultanément sans avoir a les identifier individuellement. Les algorithmes se
sont avérés efficaces avec jusqu'a 28% de données manquantes, et il a été démontré
qu'ils corrigeaient les distributions a posteriori de l'identification MCMC sur un exemple.
Bien entendu, nous aimerions étendre cet algorithme au contexte ou plusieurs types
de sources sont présents - en particulier les transitoires dans le domaine temporel.
L'algorithme d'inpainting généralisé devrait conserver une disposition similaire, alter-
nant entre l'estimation du signal et du bruit. Nous souhaitons également comparer la
meéthode d'inpainting avec celle proposée dans [13].

Représentation apprise des signaux GB: Nous avons introduit un modele basé sur
un auto-encodeur interpolatoire qui garantit la faible dimensionnalité de la représen-
tation sous-jacente. Grace a cette propriété, le processus de débruitage est efficace et
peut conduire a des taux de détection élevés. De plus, 'ensemble d’apprentissage est
maintenu a une taille acceptable. De nombreuses autres applications peuvent étre en-
visagées, comme la compression de banques de modeéles ou la séparation de sources.
Il existe de nombreux autres points a étudier : tout d'abord, une amélioration est at-
tendue lors du traitement conjoint de tous les canaux d'information. Ensuite, I'espace
latent a également montré des propriétés organisationnelles qui pourraient conduire a
une estimation rapide des paramétres; ceci devrait étre étudié de maniére approfon-
die. Enfin, nous pourrions bien sir développer des modéles similaires pour d'autres
types de sources ou méme pour les glitches.
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Résumé : Le futur observatoire spatial d’ondes
gravitationnelles LISA ouvrira une nouvelle fenétre
pour la mesure des ondes gravitationnelles, per-
mettant d'observer des sources difficilement vi-
sibles avec les observatoires terrestres actuels.
Parmi ces sources, la détection des binaires ga-
lactiques promet une richesse d'informations sans
précédent, mais souléve également plusieurs dé-
fis d'analyse de données. En particulier, le grand
nombre de sources attendues et la présence a la
fois de bruit et d'artefacts entachant les données

nécessitent le développement de méthodes d'ana-
lyse robustes.

Grace a une modélisation simple des signaux
recherchés, nous montrons qu'il est possible de dé-
tecter les signaux en présence de bruit et de les esti-
mer. Nous expliquons ensuite comment ce modéle
peut &tre utilisé pour atténuer efficacement |'im-
pact des données manquantes sur I'analyse. Enfin,
nous étudierons ce qu'un nouveau modéle appris
peut apporter en termes de caractérisation du si-
gnal.

Title : Characterization of galactic binaries by gravitational waves
Keywords : Gravitational waves, Galactic binaries, Sparse modeling, Missing data, Inpainting, Learned

representation, Auto-encoder

Abstract : The forthcoming space-based gravita-
tional wave observatory LISA will open a new win-
dow for the measurement of gravitational waves,
making it possible to observe emitting systems
hardly visible with the current Earth-based obser-
vatories.

Among these sources, the detection of galac-
tic binaries promises an unprecedented wealth of
information about these systems, but also raises
several challenges in signal processing. In particu-
lar the large number of expected sources and the

presence of both complex instrumental noise and
artifacts tainting the data call for the development
of robust methods.

Through simple modeling of the sought si-
gnals, we show that it is possible to detect them
accurately in presence of instrumental noise and to
recover the signals. We then explain how this mo-
del can be used to efficiently mitigate the impact
of missing data on the analysis. Finally, we inves-
tigate what a new learning-based model can bring
in terms of signal characterization.
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