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This document presents in a unified way different results about the optimal solution of several multiarmed bandit problems. We present and analyze algorithms for sequential decision making that adaptively sample several probability distributions with unknown characteristics, in order to achieve different types of objectives. Our contributions cover two types of problems. On the one hand, we study rewards maximization in some variants of the classical bandit model and on the other hand we focus and socalled active identification problems, in which there is no incentive to maximize reward, but one should optimize exploration in order to answer some (possibly complex) question about the underlying distributions. We highlight several common tools for solving these problems. First, lower bounds, that not only permit to assess the optimality of an algorithm, but also guide the design of asymptotically optimal algorithms. We indeed provide several examples of lower-bound-inspired algorithms. Then, we emphasize the importance of time-uniform self-normalized concentration inequalities to analyze algorithms. Finally, on the algorithmic side, we present several variants of an important Bayesian principle called Thompson Sampling, which leads to easy-to-implement asymptotically optimal algorithms in some particular cases.
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Ce document présente d'une manière unifiée plusieurs résultats liés à la résolution optimale de problèmes dits de bandit à plusieurs bras. Nous présentons et analysons des algorithmes pour la prise de décision séquentielle qui échantillonnent de manière adaptative des distributions de probabilités ayant des caractéristiques inconnues, dans le but de remplir différents types d'objectifs. Nous présentons des contributions pour la résolution de deux types de problèmes. D'une part nous nous intéressons à la maximization de récompenses dans des variantes du modèle de bandit classique, et d'autre part nous étudions différents problèmes d'identification active, pour lesquels l'objectif est d'optimiser l'exploration de l'environement de sorte à pouvoir répondre une question (possiblement complexe) sur les distributions sous-jacentes, mais sans la contrainte de maximiser des récompenses. Nous mettons en avant plusieurs outils communs pour traiter ces deux types de problèmes. Tout d'abord l'utilisation de bornes inférieures, qui permettent non seulement de valider l'optimalité d'un algorithme, mais qui servent aussi à guider la conception d'algorithmes asymptotiquement optimaux. Nous présentons en effet plusieurs exemples d'algorithmes inspirés par des bornes inférieures. Ensuite, nous insistons sur l'importance des inégalités de concentration auto-normalisées et uniformes en temps pour l'analyse d'algorithmes de bandits. Enfin, nous présentons plusieurs variantes d'un important principe bayésien appelé l'échantillonnage de Thompson, qui conduit à des algorithmes asymptotiquement optimaux et faciles d'implémentation dans certains cas particuliers.

Introduction

This manuscript describes some research directions I followed since my PhD defense in October 2014. After one very interesting year of post-doc at Inria Paris, in which I worked on community detection with Marc Lelarge and Thomas Bonald (Kaufmann et al., 2017), I joined the CRIStAL computer science lab at the University of Lille as a CNRS junior researcher, where I am also a member of the Inria team Scool (the brand new name of SequeL). Being in contact with experts of sequential decision making, I naturally went back to my main research interest: sequential learning and in particular multiarmed bandit problems. This document gives an overview of the contributions I made to this field after my PhD, in collaboration with several students and colleagues.

Multi-Armed Bandit Problems

The multi-armed bandit model is often associated to the simplest reinforcement learning problem, in which an agent repeatedly selects an action among a fixed set of actions, with the goal to maximize the total reward collected when performing these actions. I want to argue here that it is much more than that, and that there is no such thing as "the" multi-armed bandit problem.

From clinical trials to online content recommendation The stochastic Multi-Armed Bandit (MAB) model was historically introduced as a simple model for a sequential clinical trial [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF][START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF]. Imagine for example that a doctor is investigating the efficacy of some drugs for a new disease on a population of similar patients. Each drug a is associated with an unknown probability of efficacy p a , that is unknown to the doctor prior to the trial. For the t-th patient involved in the trial, the doctor has to select a treatment A t ∈ {1, . . . , A} in a pool of A available treatments (A = 5 in the above illustration). After giving the treatment, the doctor observes a response X t that is assumed to be drawn from a Bernoulli distribution with parameter p At such that X t = 1 if the treatment is successful and X t = 0 otherwise. Assuming the doctor wants to cure as many patients as possible, this response X t can be interpreted as a reward signal. In trials targeted towards maximizing the number of patients cured, the objective can also be phrased as maximizing the total reward gathered during the trial.

INTRODUCTION

This sequential interaction between the doctor and the treatments fits the more general framework of a stochastic multi-armed bandit model, in which an agent (the doctor) is facing a collection of arms (the treatments) that are unknown probability distributions. The term "arm" is used in reference to the arm of a slot-machine (also called one-armed bandit) in a casino, as drawing the arm of a slot-machine delivers some random reward. In each time step t = 1, . . . , T of the interaction, the agent selects an arm A t and observes a sample (often called reward) X t from the distribution associated to the chosen arm A t . The interaction is sequential in that the arm selected at time t can be adaptively chosen based on the observation made in previous rounds, A 1 , X 1 , . . . , A t-1 , X t-1 . The agent can learn from previous observations. Back to the example of clinical trials, the doctor may want to progressively focus on the treatments that look more promising based on the outcomes observed so far.

However, the drug development pipeline is complex and despite the very natural model proposed for phase III clinical trials (in which different treatments are compared, while earlier phases assess the safety and efficacy of a given treatment), it appears that bandit algorithms have been seldom used for clinical trials (see e.g. [START_REF] Réda | Machine learning applications in drug development[END_REF]). More recently, different types of applications to online content optimization have justified a regain of interest for bandit models. A website that displays advertisement aims at picking, for each visitor, an add on which the visitor has a high probability to click, as clicks generate revenue (reward). A good recommender systems aims at proposing, for each user, an item that the user will like (a good rating can be seen as a reward).

This type of applications have motivated the study of different variants of multi-armed bandit models, for example contextual bandits, in which the average reward also depends on some characteristics of the user or items (see, e.g. [START_REF] Abbasi-Yadkori | Improved Algorithms for Linear Stochastic Bandits[END_REF]; [START_REF] Chapelle | An empirical evaluation of Thompson Sampling[END_REF]). But many other variants of bandit models have been proposed in the literature such as combinatorial bandits [START_REF] Chen | Combinatorial multi-armed bandit: General framework and applications[END_REF] in which subsets of arms can be selected, duelling bandits [START_REF] Komiyama | Copeland dueling bandit problem: Regret lower bound, optimal algorithm, and computationally efficient algorithm[END_REF] in which one can sequentially perform pairwise comparisons between arms, structured bandits [START_REF] Combes | Minimal exploration in structured stochastic bandits[END_REF] in which some prior knowledge about the arm means can speed up learning, or partial monitoring [START_REF] Lattimore | Cleaning up the neighborhood: A full classification for adversarial partial monitoring[END_REF] in which the reward is not directly observed.

This list is by far not exhaustive and shows that the study of multi-armed bandits is now a research field in its own, that cannot be reduced to a simple case of reinforcement learning. The interested reader can refer to the introductory and quite exhaustive survey of [START_REF] Lattimore | Bandit Algorithms[END_REF] or to that of [START_REF] Slivkins | Introduction to multi-armed bandits[END_REF] to discover more bandit problems.

Should we maximize reward? A lot of these bandit problems can indeed be related to reinforcement learning as the learning process is targeted toward maximizing some notion of cumulative reward. Maximizing rewards requires to achieve a balance between exploration (learning the unknown distribution of all arms based on samples) and exploitation (trying to focus on the arms that may lead to more reward according to current knowledge). However, not all bandit problems have this incentive on exploitation, and several pure exploration problems have been studied in the literature. In pure exploration, one should sample the arms so as to gain relevant information on the model quickly, regardless of rewards.

In order to give a concrete example of a pure exploration problem, we can go back to the initial example of clinical trials. As explained above, in this context maximizing the sum of rewards gathered during the trial amounts to maximize the number of patients healed. However, in most cases the main purpose of clinical trials is not therapeutic. In a phase III trial, the goal is rather to identify one treatment that will later be produced and given to a much larger population than that involved in the trial. Hence one needs to be very sure that all these resources are invested in the most successful treatment, even at the cost of curing less patients during the trial. In the multi-armed bandit language this means that instead of maximizing the sum of rewards, the goal is to output a guess â for the arm a ⋆ with largest mean reward. This guess should be as accurate as possible, and based on as few observation as possible.

This particular pure exploration task is often referred to as the best arm identification problem, and can have different mathematical formulations.

Ideally, one may want to identify the best treatment as quickly as possible while maximizing the number of patients cured. However, the bandit literature tells us that it is not possible to find a sampling strategy (A t ) that solves both objectives optimally. This has been known since the work of [START_REF] Bubeck | Pure Exploration in Finitely Armed and Continuous Armed Bandits[END_REF]. In a joint work with Aurélien Garivier (Garivier and Kaufmann, 2016), in which we identify the minimal number of samples needed to produce a guess that satisfies P(â = a ⋆ ) ≥ 1 -δ, we also contributed to a better understanding of the difference between algorithms for (fixed-confidence) best arm identification and algorithms for maximizing rewards. This fundamental difference is further discussed in the paper [START_REF] Kaufmann | Learning the distribution with largest mean: two bandit frameworks[END_REF].

Beyond the best arm identification problem, several other pure exploration problems have been studied in the literature. These alternative objectives can be informally described as sampling the arms adaptively in order to quickly learn something about the underlying unknown means. For example in the thresholding bandit problem [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF] the goal is to identify all arms whose means lie below a certain threshold. This fits the more generic objective of identifying to which fold of a partitioning the vector of means of the arms belongs. This problem has been studied for example by [START_REF] Juneja | Sample complexity of partition identification using multi-armed bandits[END_REF]. In this document, we will present several examples of such general pure exploration problems, which we shall refer to as active identification problems.

Content of this document

The research works presented in this document contribute to two research directions, that correspond to the two parts of this manuscript.

First, I have been working on the design and analysis of new algorithms for different reward maximization tasks, beyond the classical multi-armed bandit model. Although I cannot claim to be a "practitioner", the different works presented in part I have been motivated by different applications, or at least by colleagues working on those applications: privacy preserving in recommender systems, early stage clinical trials and adaptive channel selection for cognitive radio. In Chapter 1, we will present some variants of a Bayesian algorithm called Thompson Sampling for two different contexts: first, in a setting in which the reward is not observed or in which there is no clear notion of reward and then for a particular example of a structured bandit. In Chapter 2, we will present our contributions to the study of multi-player bandit problems, that are mostly the outcome of my first PhD co-supervision. Lilian Besson defended his PhD on multi-player bandit algorithms applied to telecommunications in November 2019, that he did in CentraleSupélec Rennes, under the supervision of Christophe Moy and myself.

The second line of research presented in this document is focused on active identification problems. My main contribution in this field is the outcome of a collaboration with Aurélien Garivier, in which we proposed a new lower bound on the sample complexity of fixed-confidence best arm identification as well as the first algorithm whose sample complexity asymptotically matches the lower bound (Garivier and Kaufmann, 2016). The Track-and-Stop strategy proposed in this work can be easily extended to other types of active identification problems, as highlighted in part II of this document. In Chapter 3, we will properly introduce active identification problems and present a generic stopping rule, based on parallel Generalized Likelihood Ratio Tests. Notably, we will highlight a new concentration inequality used to prove the correctness of this stopping rule, which was obtained with Wouter Koolen using some nice martingale techniques. In Chapter 4, through the best arm identification example, we will focus on sampling rules for active identification, and on the sample complexity of their combination with the stopping rule previously studied. In Chapter 5, we will investigate the (optimal) solution of two particular active identification problems that we studied with Wouter Koolen and Aurélien Garivier. Both are motivated by providing sample complexity guarantees for Monte-Carlo Tree Search algorithms.

Both parts share a few common ingredients that we emphasize in the next section, in which we also give a formal introduction to the standard multi-armed bandit model.

INTRODUCTION 2 Theoretical Framework and Important Tools

We denote by ν 1 , ν 2 , . . . , ν A the distributions associated to each arm a in [A], where for each integer n, [n] is a shorthand for the set {1, . . . , n}. We denote by µ a = E X∼νa [X] the mean of arm a. In each round t = 1, . . . , T , an agent (or learner), who is unaware of the means of the arms (and possibly of the horizon T ), selects an arm A t ∈ [A] and subsequently observes a sample X t from the distribution ν At , assumed to be independent from previous samples. For each a ∈ [A], defining (X a,t ) t∈N * an i.i.d. sequence distributed under ν a , we have X t = X At,t . Equivalently, one can define (Y a,s ) s∈N * to be the i.i.d. sequence of successive observations from arm a, and let X t = Y a,Na(t) where N a (t) is the number of selections of arm a up to round t.

A sampling strategy or bandit algorithm is a sequence A = (A t ) t∈N for which A t may depend on previous observation and some exogenous randomness. Formally, A t is F t-1 measurable where F t = σ(U 0 , A 1 , X 1 , U 1 , . . . , A t , X t , U t ) is the σ-algebra generated by the observations available up to round t, where U t ∼ U([0, 1]) materializes the possible independent randomness used by the algorithm.

Performance measures In the reward maximization objective, the samples X t are viewed as rewards and the goal of the agent is to design a strategy to maximize the expected sum of rewards, E ν ∑ T t=1 X t where P ν and E ν denote the probability and expectation under the bandit model with distributions ν = (ν 1 , . . . , ν A ). Letting a ⋆ ∈ argmax a∈ [A] µ a be the arm with largest mean, an oracle optimal strategy for maximizing reward consists in always selecting arm a ⋆ , whose mean is denoted by µ ⋆ . The performance of an algorithm is often measured by the gap between the cumulative rewards of this oracle strategy and that of the algorithm, called regret. The (expected) regret of an algorithm A in T rounds is defined by

R ν (A, T ) = µ ⋆ T -E ν T t=1 X t = E ν T t=1 (µ ⋆ -µ At ) .
A simple conditioning argument permits to express the regret in terms of number of times each arm has been selected. Letting N a (t) = ∑ t s=1 1 (A s = a) be the number of selections of arm a, it holds that

R ν (A, T ) = A a=1 (µ ⋆ -µ a )E ν [N a (T )].
Under different assumptions on the distributions ν 1 , . . . , ν A , one can propose algorithms with sub-linear regret, i.e. such that R ν (A, T ) = o(T ). In particular under such strategies, the ratio N a (T ) T goes to zero for sub-optimal arms a, i.e. arms such that µ a < µ ⋆ . This is very different from the behavior of good sampling strategies for pure exploration problems, that have no incentive to maximize rewards and for which N a (T ) T may converge to a constant for all arms, as will be seen in part II of this document. Strategies for pure exploration not only consist of a sampling strategy (A t ) t∈N , but also of a stopping rule τ , which is a stopping time with respect to the filtration (F t ) t∈N that indicates when enough exploration has been performed, and a recommendation rule âτ , which is F τ -measurable and provides an answer to the pure exploration problem. For the best arm identification, âτ is a guess for the optimal arm a ⋆ , but we will see more general questions to answer in part II of this document. In this work, we will mainly consider the fixed-confidence setting, in which the goal is to guarantee that P ν (â τ = a ⋆ ) ≥ 1 -δ (for best arm identification) while minimizing the number of samples τ needed to make this recommendation, called the sample complexity. Other possible objectives, such as the fixed-budget setting in which τ is set to a known budget n, will be discussed in Chapter 3.

Assumptions on the arm distributions Different bandit algorithms have been designed under different assumptions on the arm distributions. The seminal work of [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF] considered parametric distributions that are continuously parameterized by their means. Under this assumption, the authors derived an asymptotic lower bound on the regret of any uniformly efficient algorithm 1 which served as a guideline for designing so-called asymptotically optimal algorithm, whose regret is matching the lower bound. An asymptotically optimal algorithm called kl-UCB has been designed assuming further that the arms distributions belong to a one-parameter canonical exponential family. This algorithm can be traced back to the work of [START_REF] Lai | Adaptive treatment allocation and the multi-armed bandit problem[END_REF], and a finite-time upper bound on its regret was given by [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF].

A one-parameter canonical exponential family is a set P of probability distributions, indexed by a real parameter θ called the natural parameter, that is defined by

P = {ν θ , θ ∈ Θ ∶ ν θ has a density f θ (x) = exp(θx -b(θ)) w.r.t. ξ},
where Θ = (θ -, θ + ) ⊆ R is an open interval, b a twice-differentiable and convex function (called the log-partition function) and ξ a reference measure. Examples of such distributions include Bernoulli distributions, Gaussian distributions with known variance, Poisson distributions, or Gamma distributions with known shape parameter. If X ∼ ν θ , it can be shown that E[X] = ḃ(θ) and Var[X] = b(θ) > 0, where ḃ (resp. b) is the derivative (resp. second derivative) of b with respect to the natural parameter θ. Thus there is a one-to-one mapping between the natural parameter θ and the mean µ = ḃ(θ), and distributions in an exponential family can alternatively be parameterized by their mean. Letting I = ḃ(Θ), for µ ∈ I we denote by ν µ the unique distribution in P that has mean µ : ν µ = ν ḃ-1 (µ) . We introduce the following notation for the Kullback-Leibler divergence between two distributions in the same exponential family, for which a closed-form featuring the log-partition function can be given:

d(µ, µ ′ ) = KL ν µ , ν µ ′ = E X∼ν µ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ log f ḃ-1 (µ) (X) f ḃ-1 (µ ′ ) (X) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = µ × ḃ-1 (µ) -ḃ-1 (µ ′ ) -b ḃ-1 (µ) + b ḃ-1 (µ ′
) .

(1)

For the particular case in which the exponential family is the set of Bernoulli distributions, we will use the special notation kl(µ, µ ′ ) for the binary relative entropy:

kl(µ, µ ′ ) = KL B(µ), B(µ ′ ) = µ log µ µ ′ + (1 -µ) log 1 -µ 1 -µ ′ .
We will refer to an exponential family bandit model as a bandit model for which all distributions belong to an exponential family P, of the form ν = (ν µ 1 , ν µ 2 , . . . , ν µ A ). Such a bandit model can be parameterized by the vector of means µ = (µ 1 , µ 2 , . . . , µ A ) ∈ I A and we will use the notation P µ and E µ for the probability and expectation under such a bandit model. In this document we will mostly present lower bounds and algorithms for exponential family bandits, that are parameterized by their mean vector µ ∈ I A . However, the lower bounds will typically apply to the more general class of distributions parameterized by their means, and many algorithms can be easily extended to some non-parametric classes of distributions such as bounded distribution or sub-Gaussian distributions.

The assumption of bounded (or sub-Gaussian) distributions is indeed very common in the bandit literature, for example Auer et al. (2002a) provide a simple finite-time upper bound on the regret of the UCB1 algorithm under these assumptions. Asymptotic optimality for bounded distributions is a more complex notion, supported by a lower bound given by [START_REF] Burnetas | Optimal adaptive policies for sequential allocation problems[END_REF] (that also applies to more general distributions). Algorithms matching this lower bound for bounded distributions include a non-parametric version of KL-UCB [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF] or Thompson Sampling [START_REF] Riou | Bandit algorithms based on thompson sampling for bounded reward distributions[END_REF]. But bandit algorithms have been analyzed under other assumptions, such as Gaussian with unknown mean and variance [START_REF] Cowan | Normal bandits of unknown means and variances[END_REF] or heavy-tailed distributions [START_REF] Bubeck | Bandits with heavy tail[END_REF].
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Tools for Lower Bounds A common feature of most of the work presented in this document is that we strive to design optimal solutions for the considered bandit problem. Regret or sample complexity lower bound are essential to assess this optimality and both can be obtained by lower bounding the number of selections of some arms. For the sake of clarity we present the lower bound methodology for exponential family bandit models, parameterized by their vector of means µ, for which it will be used in the sequel.

To the best of my knowledge, all the lower bounds obtained in the bandit literature follow from a change of distribution argument. The idea is to find an alternative bandit model λ close enough to µ but under which the algorithm is supposed to have a totally different behavior (for example due to a different optimal arm), which will give constraints on the number of selections of certain arms in the initial model. The most classical expression of a change of distribution between two bandit models µ and λ is, for an event E ∈ F t ,

P µ (E) = E λ [1(E) exp (L t (µ, λ))]
where L t (µ, λ) = log (X 1 ,...,Xt;µ) (X 1 ,...,Xt;λ) = ∑ t s=1 log f ḃ-1 (µ As ) (Xs)

f ḃ-1 (λ As ) (Xs) is the log-likelihood ratio of the observation. This elementary change of distribution has been a key ingredient for the derivation of lower bounds in the bandit literature. The most notable example is the famous regret lower bound of [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF], and further examples notably include [START_REF] Audibert | Best Arm Identification in Multi-armed Bandits[END_REF]. In particular, it follows from the Lai and Robbins' lower bound that a uniformly efficient algorithm A for a given exponential family bandit models satisfies, for all sub-optimal arm a, lim inf

T →∞ E µ [N a (T )] log(T ) ≥ 1 d(µ a , µ ⋆ ) ,
which yields a lower bound on its regret as R µ (A, T ) = ∑ a∶µa<µ⋆ (µ ⋆ -µ a )E µ [N a (T )].

More recently, several works came up with a simpler expression for the change of distribution, that directly relates the expected log-likelihood (that can be easily related to the number of selections of each arm) to the probabilities P µ (E) and P λ (E), and leads to shorter lower bound proofs. For example [START_REF] Combes | Unimodal Bandits without Smoothness[END_REF] and [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF] independently proposed such a change-ofdistribution lemma. A more elegant information-theoretic proof and expression was given by Garivier et al. (2019b) and is presented below. Denoting by

I t = (U 0 , A 1 , X 1 , U 1 , . . . , A t , X t , U t )
the information available in round t (so that A t is a deterministic function of I t-1 ), the data-processing inequality permits to lower bound the Kullback-Leibler divergence of the distribution of I t under two different bandit models parameterized by µ and λ.

Lemma 0.1. Let µ = (µ 1 , . . . , µ A ) and λ = (λ 1 , . . . , λ A ) be two bandit models. Let τ be a stopping time w.r.t. (F t ) t∈N where F t = σ(I t ), that is almost surely finite. For every event E ∈ F τ , KL P Iτ µ , P Iτ λ ≥ kl (P µ (E), P λ (E)) .

Proof. The data-processing inequality states that, if P and Q are some probability distributions on the same measurable space X and if f ∶ X → Y is a measurable function, then KL(P, Q) ≥ KL(P f , Q f ), where P f (resp. Q f ) denotes the push-forward measure of P (resp. Q) by f . Using this, we get

KL P Iτ µ , P Iτ λ ≥ KL P 1 E µ , P 1 E λ = kl P µ (E), P λ (E) .

◻

By definition of the Kullback-Leibler divergence, observe that KL P Iτ µ , P Iτ λ = E µ [L τ (µ, λ)] and by Wald's inequality, if τ is almost surely finite, we have E µ [L τ (µ, λ)] = ∑ A a=1 E µ [N a (τ )]d(µ a , λ a ). By choosing the event E appropriately, one can easily control the right hand side of the inequality in Lemma 0.1. The following corollary gives an example of such a choice and will be useful to prove lower bounds for regret minimization in different variants of the classical bandit model. Lemma 0.2. Let A be an algorithm that is uniformly efficient on a class of bandit models M, i.e. for all µ ∈ M, for any sub-optimal arm a in µ, E µ [N a (T )] = o(T α ) for all α ∈ (0, 1). Then for all bandit models µ and λ that do not have an optimal arm in common, Proof. Let A µ and A λ be the set of optimal arms in the bandit models parameterized by µ and λ. We assume that A µ ∩ A λ = ∅. For T ∈ N * , we let E T be the event

E T = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ a∈Aµ N a (T ) ≤ T 2 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
The event E T belongs to F T and has intuitively a small probability under µ in which the optimal arms in A µ should be selected a lot, and a large probability under λ in which A µ only contains sub-optimal arms. Using Markov's inequality, we can make this more formal:

P µ (E T ) = P µ ⎛ ⎝ a∉Aµ N a (T ) > T 2 ⎞ ⎠ ≤ 2 ∑ a∉Aµ E µ [N a (T )]
T ,

P λ E T = P λ ⎛ ⎝ a∈Aµ N a (T ) > T 2 ⎞ ⎠ ≤ 2 ∑ a∈Aµ E λ [N a (T )]
T . T )] by the assumption made on the algorithm, we know that u T , v T = o(T α ) for all α ∈ (0, 1].

Letting u T = 2 ∑ a∉Aµ E µ [N a (T )] and v T = 2 ∑ a∈Aµ E λ [N a (
Using a lower bound on the binary relative entropy given in Garivier et al. (2019b), namely kl(p, q) ≥ (1 -p) log(1 (1 -q)) -log(2), one can write

kl (P µ (E T ), P λ (E T )) ≥ 1 - u T T log T v T -log(2) .
Using the above properties of u T and v T yields lim T →∞ 1 -u T T = 1 and log(T v T ) ∼ log(T ) which concludes the proof together with the inequality in Lemma 0.1.

◻

The change of distribution lemmas introduced in this paragraph will be useful in several places in this document. First, Lemma 0.2 will be used in part I to prove variants of the Lai and Robbins' lower bound for more complex rewards maximization problems. Then, Lemma 0.1 will be useful in part II to prove sample complexity lower bounds for active identification problems. We will also see that lower bounds are not only useful for checking the (asymptotic) optimality of an algorithm, but that they can also guide the design of algorithms. We will indeed see several examples of lower bound inspired algorithms.
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Tools for algorithms: concentration and posterior distributions Different exploration mechanisms exist for solving the exploration/exploitation trade-off inherent to rewards maximization, or for pure exploration. A common feature of these mechanisms is that they do not only rely on point estimates of the unknown means. For example, the greedy strategy that always selects the arm with largest empirical mean is known to have a linear regret.

A first approach consists in leveraging confidence intervals on the unknown means of the arm. For reward maximization, the celebrated optimism in face of uncertainty principle recommends to pick the arm that can lead to the largest possible pay-off which corresponds to the arm with highest Upper Confidence Bound (UCB) [START_REF] Agrawal | Sample mean based index policies with O(log n) regret for the multi-armed bandit problem[END_REF]Auer et al., 2002a). For best arm identification, algorithms leveraging both upper and lower confidence bounds have been proposed, like LUCB [START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF].

To build good confidence intervals, tight concentration inequalities are needed, which depend on the assumptions made on the arm distributions. For exponential bandit models, the Chernoff inequality (which follows from applying the Crámer-Chernoff method) takes the following form, which features the KL-divergence function d(⋅, ⋅). For every arm a ∈ [A],

for x > µ a , P (μ a,s > x) ≤ e -sd(µa,x) and for x < µ a , P (μ a,s < x) ≤ e -sd (µa,x) , where μa,s = 1 s ∑ s i=1 Y a,s is the empirical mean of arm a based on the first s observation from this arm. Exploiting the monotonicity properties of the divergence d, one can also write, for all u > 0,

P (sd + (μ a,s , µ a ) > u) ≤ e -u and P (sd - (μ a,s , µ a ) > u) ≤ e -u , where d + (x, y) = d(x, y)1 (x≤y) and d -(x, y) = d(x, y)1 (x≥y)
. Hence we see that in an exponential family, deviations are naturally measured with respect to the associated divergence d, which is not a standard quadratic distance (except in the case of Gaussian distribution with known variance σ 2 for which d(x, y) = (x-y) 2 2σ 2 ). One of the tricky aspects of the analysis of a bandit algorithm is that the number of observations from each arm at a current stage of the algorithm, N a (t), is itself a random variable, so one cannot simply replace s by N a (t) in the above inequalities. To circumvent this issue, one need to resort to selfnormalized inequalities, such that the one below, in which we denote by μa (t) = μa,Na(t) the empirical mean of the observation collected from arm a after t rounds. Lemma 0.3 [START_REF] Garivier | The KL-UCB algorithm for bounded stochastic bandits and beyond[END_REF]). For every exponential family bandit model with divergence function d, for every arm a ∈ [A], for u > 0,

P N a (t)d + (μ a (t), µ a ) > u ≤ P ∃s ∈ [t] ∶ sd + (μ a,s , µ a ) > u ≤ e⌈u log(t)⌉ exp(-u) .
This inequality permits to calibrate the upper confidence bound used by the kl-UCB algorithm [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF], which is

UCB a (t) = max {q ∶ N a (t)d(μ a (t), q) ≤ log(t) + c log log(t)}
and satisfies P (µ a ≤ UCB a (t)) ≳ 1 -t log(t) c-2 -1 . KL-based confidence intervals will be used in several places in this document. We will also present some new concentration tools that allow to measure deviations for multiple arms at the same time, and can further provide deviation that are uniform in time for every t ∈ N. A part of Chapter 3 will be dedicated to the presentation of this new inequality (Theorem 3.1) and its proof.

A popular alternative to the use of confidence intervals is the use of Bayesian methods, notably Thompson Sampling, also known as posterior sampling. Thompson Sampling was proposed as the very first bandit algorithm strategy for two-armed Bernoulli bandit [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] and has recently gained a lot of popularity for rewards maximization in complex bandit models [START_REF] Agrawal | Thompson Sampling for Contextual Bandits with Linear Payoffs[END_REF][START_REF] Riquelme | Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling[END_REF] or reinforcement learning [START_REF] Osband | More) Efficient Reinforcement Learning Via Posterior Sampling[END_REF], see [START_REF] Russo | A tutorial on thompson sampling[END_REF] for a tutorial. On the theoretical side, Thompson Sampling is known to be asymptotically optimal in exponential family bandit models [START_REF] Korda | Thompson Sampling for 1-dimensional Exponential family bandits[END_REF].

Given a prior distribution on the means µ, the algorithm maintains a posterior distribution Π t on µ, defined as the conditional distribution of the vector of means (seen as a random vector drawn from the prior) given the observation made in the first t rounds. Thompson Sampling is a randomized algorithm which selects each arm according to its posterior probability of being optimal. Instead of computing the posterior probability of each arm to be the best, which can be numerically costly, a simple implementation consists in drawing a possible mean vector θ(t) from Π t and picking the arm with largest entry θ a (t). In an exponential family bandit model, a common choice of prior distribution consists in using independent conjugate prior for each µ a . For example, in Bernoulli bandits with a uniform prior on each mean, the posterior distribution on µ a takes the simple form

π a (t) = Beta (S a (t) + 1, N a (t) -S a (t) + 1)
where S a (t) = ∑ t s=1 X a,t 1 (A s = a) is the sum of ones observed from arm a and N a (t) -S a (t) is the sum of zeros.

Thompson Sampling will appear in both parts of this document. In part I, we will see that some variants of this algorithm can be proposed for more sophisticated rewards maximization problems, and remain asymptotically optimal. In part II, we will present two adaptations of Thompson Sampling to two different active identification problems that also achieve some notion of optimality.
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This document highlights a selection of contributions that have been published in journals or mostly in conference proceedings, that are very important in the machine learning community. A list of the published work posterior to my PhD defense and not related to the PhD work is given below. I highlight in bold the student with whom I have collaborated. This includes the PhD students I co-supervise(d):

• Papers in international workshops (5) Optimal Solution for Variants of the Classical Multi-Armed Bandit

In this chapter we study some extensions of the standard rewards maximization problem in a multiarmed armed bandit problem, that are motivated by different applications.

On the algorithmic side, we mostly explore how to design variants of Thompson Sampling in two different contexts. We first consider transductive settings, in which the feedback observed during the interaction is not the reward that the agent seeks to maximize. Then we present a first step in designing a variant of Thompson Sampling for structured bandits with the example of Unimodal Thompson Sampling motivated by rank-one bandits. For these different settings, our goal remains the design of asymptotically optimal algorithms and we therefore explain how the lower bound methodology presented in the Introduction can lead to more sophisticated lower bounds with simple proofs.

Thompson Sampling in Transductive Settings

In the classical bandit setting, a learner tries to maximize her total reward and the feedback she obtained during learning is the observation of the rewards themselves. In this section, we present two variants of this problem that have in common that the feedback observed during learning is only loosely related to the rewards that the learner aims at maximizing.

Thompson Sampling for Corrupt Bandits

Motivated by (local) privacy preserving, we studied with Patrick Gajane, who was then doing a CIFRE PhD at Orange Labs, and his advisor Tanguy Urvoy, the problem of maximizing rewards based on a feedback which is a stochastic transformation of the rewards, when the link between the reward and feedback distributions is known.

More precisely, the setting, that we call "corrupt bandits" is the following. A corrupt bandit model is described by A reward distributions {ν a } a=1...A , A feedback distributions {ς a } a=1,...,A , and a list of mean-corruption functions {g a } a=1,...,A . The reward and feedback distributions are unknown to the learner, while the mean-corruption functions are assumed to be known. At round t, if the learner selects arm A t = a, she receives a reward R t drawn from the distribution ν a with mean µ a and observes a feedback F t drawn from the distribution ς a with mean λ a . We assume that, for each arm, there exists a loose link between the reward and the feedback through the corruption function g a which maps the mean of the reward distribution to the mean of the feedback distribution : for all a ∈ [A], g a (µ a ) = λ a .

The motivation of this setting stems from the use of a privacy-preserving mechanism in a recom-mender system. To avoid disclosing the tastes of each user (materialized by the click, or rating that plays the role of a reward) to a local observer having access to its database, the system stores on purpose "corrupted" versions of these rewards. Based on this corrupted feedback, the goal is still to propose items which generate large expected rewards. If the rewards are binary, randomized response can be used [START_REF] Warner | Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias[END_REF]: for each arm a the noisy feedback F is generated from the reward R is such a way that P(F = x R = y) = M a (y, x), where M a is some corruption matrix

M a = 0 1 0 p 00 (a) 1 -p 11 (a) 1 1 -p 00 (a) p 11 (a) (1.1)
For an arm a with expected reward µ a the expected feedback under this corrupting scheme is g a (µ a ) = 1 -p 00 (a) + [p 00 (a) + p 11 (a) -1] ⋅ µ a . In the paper [START_REF] Gajane | Corrupt bandits for preserving local privacy[END_REF], we proposed two asymptotically optimal algorithms for the corrupt bandit problems, for general corruption functions that are assumed to be continuous and monotone, when the reward and feedback are binary. 1 A binary corrupt bandit problem with given corruption functions {g a } a=1∈[A] can be parameterized by its vector of means µ = (µ 1 , . . . , µ A ): when the learner selects arm a, a Bernoulli reward with mean µ a and a Bernoulli feedback with mean λ µ a = g a (µ a ) are generated.

Regret and best achievable performance Despite observing only the feedback, the learner still aims at maximizing the sum of her (unobserved) rewards. Hence the regret is measured with respect to the strategy always playing the arm with largest mean as in the classical setting:

R µ (A, T ) = µ ⋆ T -E µ T t=1 R t = a∈[A] ∆ µ a E µ [N a (T )] ,
where µ ⋆ = max a µ a and ∆ µ a = µ ⋆ -µ a . One can extend the notion of uniformly efficient algorithms of [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF] to the binary corrupt bandit problem with a given family of corruption functions: an algorithm A is uniformly efficient if, for every µ ∈ [0, 1] A , for every α ∈ (0, 1), its regret satisfies R µ (A, T ) = o(T α ). One can use the powerful Lemma 0.2 presented in the Introduction to derive an asymptotic lower bound on the number of selections of each sub-optimal arm. Consider a corrupt bandit instance µ for which we assume to fix the ideas that arm 1 is the best arm. Let µ ′ be any corrupt bandit instance in which arm 1 is sub-optimal. Then Lemma 0.2 yields

lim T →∞ KL P I T µ , P I T µ ′ log(T ) ≥ 1.
where we recall that I t is the information available for the learner after t observations. In the corrupted setting, the information contains the feedback, and not the reward:

I t = (U 0 , A 1 , F 1 , U 1 , . . . , A t , F t , U t ).
Hence, one can show that KL P I T µ , P

I T µ ′ = ∑ A a=1 E µ [N a (T )]kl λ µ a , λ µ ′ a .
The final lower bound stated below follows from selecting the alternative instance µ ′ defined by

µ ′ b = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ µ 1 + ε, if b = a µ b otherwise
for each sub-optimal arm a (for which λ µ ′ a = g a (µ 1 + ε)) and by letting ε go to zero. , g a such that λ a = g a (µ 1 ) thereby making it impossible to discern arm a from the optimal arm 1 given the mean feedback. In Figure 1.1(b), a steep monotonic g a transforms the reward gap ∆ µ a = µ 1 -µ a into a clear gap between λ a and g a (µ 1 ).

Theorem 1.1. Given continuous corruption functions {g a } a∈A , an algorithm A that is uniformly efficient for the Bernoulli corrupt bandit problem satisfies, for any sub-optimal arm a, lim inf

T →∞ E µ [N a (T )] log(T ) ≥ 1 kl (λ µ a , g a (µ ⋆ ))
, where kl(x, y) = x log x y + (1 -x) log 1-x 1-y is the binary relative entropy.

The lower bound reveals that the divergence between the mean feedback for arm a and the image of the optimal reward µ ⋆ with g a plays a crucial role in distinguishing arm a from the optimal arm. The shape of the g a function in the neighborhood of both a and a ⋆ has a great impact on the information that the learner can extract from the received feedback. Particularly, if the g a function is non-monotonic and g a (µ ⋆ ) = g a (µ a ), it may be impossible to distinguish between arm a and the optimal arm, arm 1. See Figure 1.1(a) for an illustration. To avoid this problem, we will propose algorithms under the extra assumption that each corruption function g a is strictly monotonic. The inverse function of g a is therefore well defined and we denote it by g -1 a . Such an informative corruption function is shown in Figure 1.1(b). To clarify that the gap between λ a and λ ⋆ = g a⋆ (µ ⋆ ) is not relevant here, we also add in Figure 1.1(b), a corruption function g a⋆ which differs from g a and causes fortuitously the two arms a and a ⋆ to have the same mean feedback with different interpretations in terms of mean rewards.

The TSCF algorithm We now explain how to adapt an algorithm which is asymptotically optimal in the classical setting, Thompson Sampling, to the corrupt bandit problem. The kl-UCB algorithm [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF] can be similarly adapted as explained in the paper [START_REF] Gajane | Corrupt bandits for preserving local privacy[END_REF]), but we focus on Thompson Sampling in this document, stated as Algorithm 1 below.

Given a uniform prior distribution over the mean feedback of each arm, λ µ a , the algorithm updates a posterior distribution after the observation of a Bernoulli feedback with mean λ µ a each time arm a is sampled. The posterior distribution of λ µ a after t rounds of the algorithm is

π a (t) = Beta (S a (t) + 1, N a (t) -S a (t) + 1) ,
where S a (t) = ∑ t s=1 F s 1 (As=a) is the sum of feedback observed on arm a and N a (t) = ∑ t s=1 1 (As=a) is the number of selections of arm a. Thompson Sampling draws at time t + 1 one sample θ a (t) from each Algorithm 1 Thompson Sampling for MAB with corrupted feedback (TS-CF) 1: Input: Horizon T , corruption functions g 1 , . . . , g K 2: Initialization: for each a ∈ [A], N a = 0, S a = 0 3: for t = 1 . . . T do

4:

For each arm a ∈ [A], sample θ a ∼ Beta(S a + 1, N a -S a + 1)

5:

Select arm A t = arg max a g -1 a (θ a ) and observe feedback F t

6:

Update number of visits and sum of feedback:

7:

N At ← N At + 1, S At ← S At + F t 8: end for
posterior distribution π a (t). As the mapping between mean feedback and mean reward is known, the algorithm then selects A t+1 as the arm for which g -1 a (θ a (t)) is largest. It can easily be checked that the the probability to select arm a at round t is exactly the posterior probability that arm a has largest mean reward, which is the general philosophy of Thompson Sampling.

We prove the following regret bound for this TS-CF algorithm. The proof follows the analysis of Agrawal and Goyal (2013a) to upper bound E µ [N a (T )] for each a such that µ a < µ ⋆ . It requires to distinguish 4 cases depending on whether g 1 and g a are increasing or decreasing. Some of them require adaptations of the arguments of Agrawal and Goyal (2013a), that are highlighted in the sketch below.

Theorem 1.2. Let µ be a Bernoulli corrupt bandit model with continuous and monotone corruption functions. For every ε > 0, there exists a constant

C ε = C(ε, µ, {g a } a∈[A] ) such that R µ (TS-CF, T ) ≤ (1 + ε) a∈[A] {a⋆} ∆ µ a log(T ) kl(λ µ a , g a (µ ⋆ )) + C ε .
Sketch of proof. To ease the notation, assume arm 1 is optimal and fix some sub-optimal arm a. We define two high-probability events on which the empirical mean λa (t) of the collected feedback and the posterior sample θ a (t) do not deviate too much from λ µ a . Introducing two thresholds x and y (to be chosen at the end of the proof) such that λ µ a < x < y < g a (µ 1 ) (resp. λ µ a > x > y > g a (µ 1 )) when g a is increasing (resp. decreasing), we let

E λ a (t) = g -1 a ( λa (t)) ≤ g -1 a (x) and E θ a (t) = {g -1 a (θ a (t)) ≤ g -1 a (y)}
and upper bound the number of sub-optimal selections as follows:

Eµ[Na(T )] = T -1 t=0 Pµ(At+1 = a, E λ a (t), E θ a (t)) + T -1 t=0 Pµ(At+1 = a, E λ a (t), E θ a (t)) + T -1 t=0 Pµ(At+1 = a, E λ a (t)). (1.2)
Controlling the third term in (1.2) amounts to upper bounding ∑ T s=1 P λa,s > x for x > λ µ a (increasing g a ) or ∑ T s=1 P λa,s < x for x < λ µ a (decreasing g a ) where λa,s is the empirical mean of the first s observed feedbacks from arm a. In both cases, using the Chernoff inequality permits to prove that

T -1 t=0 P µ (A t+1 = a, E λ a (t)) ≤ 1 + 1 kl (x, λ µ a )
.

Controlling the second term in (1.2) amounts to upper bounding

T -1 t=0 P µ A t+1 = a, λa (t) ≤ x, θ a (t) > y or T -1 t=0 P µ A t+1 = a, λa (t) ≥ x, θ a (t) < y
when g a is increasing or decreasing. While the increasing case is directly handled by Lemma 3 in Agrawal and Goyal (2013a), for the decreasing case, we need to prove a counterpart of this result.

Leveraging the Beta-Binomial trick together with the Chernoff inequality, one can prove in both cases that

T -1 t=0 P µ (A t+1 = a, E λ a (t), E θ a (t)) ≤ log(T ) kl(x ′ , y) + 1
for any x ′ in (x, y) and T large enough (see Lemma 4 in Gajane et al. (2018)).

Lemma 1.3 (Beta-binomial trick). Let F Beta α,β denote the cdf of a Beta distribution with parameter α and β and F Bin n,p denote the cdf of a Binomial distribution with parameters n and p. If α and β are integers,

F Beta α,β (w) = 1 -F Bin α+β-1,w (α -1) .
Proving that the first term in (1.2) is a constant is the most challenging part of the analysis of Thompson Sampling, even for the classical algorithm. For the corrupt bandit problem, one first generalizes the trick which relates the probability of selecting arm a to that of selecting arm 1:

Lemma 1.4. Letting p a,t ∶ =P g -1 1 (θ 1 (t)) > g -1 a (y) F t , it holds that P µ A t+1 = a, E θ a (t), E λ a (t) F t ≤ (1 -p a,t ) p a,t P µ A t+1 = 1, E θ a (t), E λ a (t) F t .
Lemma 1.4 permits to upper bound

T -1 t=0 P µ (A t+1 = a, E λ a (t), E θ a (t)) ≤ T -1 t=0 E µ 1 -p a,t p a,t 1 (A t+1 =1) ≤ T -1 s=0 E µ 1 p a,τs+1 -1 ,
where τ s is the instant of the s-th selection of arm 1. To prove that the first term in (1.2) is a constant, we prove that

E µ 1 p a,τs+1 ≤ 1 + f (s) (1.3)
for some function f that satisfies ∑ s f (s) < ∞. Now one can observe that • when g 1 is increasing, p a,t = P µ (θ

1 (t) > ỹ F t ) for some ỹ < λ µ 1 • when g 1 is decreasing, p a,t = P µ (θ 1 (t) < ỹ F t ) for some ỹ > λ µ 1
When g 1 is increasing, (1.3) directly follows from the technical Lemma 4 in Agrawal and Goyal (2013a).

When g 1 is decreasing, exploiting some symmetries allows to leverage the same arguments to prove (1.3).

In the decreasing case, thanks to the Beta-Binomial trick,

p a,τs+1 = F Beta (S 1 (τs)+1,s-S 1 (τs)+1) (ỹ) = 1 -F Bin (s+1,ỹ) (S 1 (τ s )) and S 1 (τ s ) ∼ Bin s, λ µ 1 .
Using that f Bin n,p (j) = f Bin n,1-p (n -j) and F Bin n,p (j) = 1 -F Bin n,1-p (n -j -1) where F Bin n,p and f Bin n,p respectively denote the cdf and pdf of a Binomial distribution with parameters n and p, one can write

E µ 1 p a,τs+1 = s j=0 f Bin (s,λ µ 1 ) (j) 1 -F Bin (s+1,ỹ) (j) = s j=0 f Bin (s,1-λ µ 1 ) (s -j) F Bin (s+1,1-ỹ) (s -j) = s j=0 f Bin (s,1-λ µ 1 ) (j) F Bin (s+1,1-ỹ) (j)
.

In the proof of their Lemma 4, Agrawal and Goyal (2013a) provide an upper bound on the quantity ∑ s j=0 f Bin (s,c) (j) F Bin (s+1,d) (j) whenever c is larger that d. This bound can be used here as 1 -λ µ 1 > 1 -ỹ and it permits to prove that (1.3) holds.

Putting things together, if for example g a is increasing we proved that for every λ µ a < x ′ < y < g a (µ 1 ) there exists a constant C a (µ, x ′ , y) such that

E µ [N a (T )] ≤ 1 kl(x ′ , y) log(T ) + C a (µ, x ′ , y).
Choosing x ′ and y such that kl(x ′ , y) = kl(λ µ a , g a (µ 1 )) (1 + ε) and summing over sub-optimal arms yields the conclusion. ◻

A trade-off between privacy and regret Let us go back to our motivating example of designing a recommender system that learns to display items that the users like using only the stored noisy versions of their preferences. If the stored feedback is obtained with a randomized response mechanism (given by the matrix (1.1)) which is identical for each arm (p 00 (a) = p 00 and p 11 (a) = p 11 ), it follows from Theorem 1.2 (and Pinsker's inequality: kl(x, y) ≥ 2(xy) 2 ) that the regret of TS-CF is of order

1 p 00 + p 11 -1 2 multiplicative factor × K a≠a⋆ log(T ) 2∆ µ a best possible regret (sub-Gaussian approx.)
.

Hence the more secure feedback comes at a multiplicative cost in the regret, this cost being small if both p 00 and p 11 are large. It is therefore interesting to find the smallest possible cost which guarantees the randomized response scheme to be differentially private.

Differential Privacy (DP) is a notion introduced by [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF] to quantify how much sharing information about a database can reveal information about individual entries in this database. In our context, a corruption scheme g (generating feedback from rewards) is ε-differentially private if for all rewards sequences R 1 , . . . , R t and R ′ 1 , . . . , R ′ t that differ by at most one entry P (g(R 1 , . . . , R t ) ∈ S) ≤ e ε ⋅ P (g(R ′ 1 , . . . , R ′ t ) ∈ S). [START_REF] Wang | Using randomized response for differential privacy preserving data collection[END_REF] show that randomized response is differentially private provided that max(p 00 (1 -p 11 ), p 11 (1 -p 00 )) ≤ e ε . They also show that maximizing p 00 + p 11 while maintaining ε-DP requires to chose p 00 = p 11 = e ε (1 + e ε ), which yields the smallest multiplicative factor of (1 + e ε ) 2 (1 -e ε ) 2 ≃ 2 ε 2 .

We note the the notion of ε-DP that we require here is local: the entries of the bandit algorithms (feedback) are required to be an ε-DP transformation of the rewards. Other notions of privacy can be defined in the context of bandit algorithms. For example, one may want the selected actions not to leak too much information about the rewards, see, e.g. [START_REF] Tossou | Algorithms for differentially private multi-armed bandits[END_REF].

Thompson Sampling for Dose-Finding

The second "transductive" setting for which I studied Thompson Sampling is motivated by a different field of applications: clinical trials. I've been very curious how to actually apply bandit algorithms for this purpose, and thanks to discussions with Marie-Karelle Rivière, a biostatistician at Sanofi, I discovered the dose-finding problem, which occurs at early stages of clinical trials. I briefly described the work we did on this problem with Maryam Aziz, who did an internship with us in 2016 [START_REF] Aziz | On multi-armed bandit designs for dose-finding clinical trials[END_REF].

In an early stage clinical trial (phase I/II), the goal is to identify a good dosage of a given drug that should be used in further phases of the trial, in which the drug will be compared to other treatments or a placebo. In particular, doctors are interested in finding the Maximum Tolerated Dose (MTD), defined as the dose whose probability to be toxic (i.e. the patient shows severe side effects) is closest to some pre-specified threshold θ, among a set of A candidate doses (typically A varies between 5 to 10). Letting p a denote the probability that dose a is toxic, the MTD is formally defined as

a ⋆ ∈ argmin a∈[A] θ -p a
In the context of oncology, efficacy comes at a price of a certain level of toxicity and the threshold θ is typically set to θ = 0.3. Figure 1.2 illustrates the MTD in a situation in which the probability of toxicity is increasing with the dose. This assumption is common for single-drug trials but is not meaningful when combinations of drugs are on trial. Forgetting about possible monotonicity constraints for a while, we now formalize sequential dose-finding as a variant of a multi-armed bandit problem. In a dose-finding study, a dose A t ∈ [A] is selected for the t-th patient, and a binary outcome X t indicating whether a harmful side-effect occurred is observed. We assume that X t is drawn from a Bernoulli distribution with mean p At , independently from previous observations. The selection rule A t is sequential and A t can only depend on the previously allocated doses and the observed outcomes A 1 , X 1 , . . . , A t-1 , X t-1 (and some possible exogenous randomness). A guess ât for the MTD a ⋆ may also be proposed after the first t patients. The goal of a dose-finding study can be twofold. A first possible objective is to minimize the probability of error P(â t ≠ a ⋆ ), which is a variant of a best arm identification problem, discussed further in part II of this document. Then, if the goal of the trial is therapeutic, another objective is to treat as many patients as possible with the MTD, which is the most efficient tolerable dose. In either case, the feedback observed (the toxicity of the given dose) cannot be viewed as a reward that we seek to maximize.

In the "therapeutic view" on the trial, a possible (unobserved) reward associated to the dose selected in round t could be R t = 1 (A t = a ⋆ ) and the target behavior of the algorithm is then to maximize E p [N a⋆ (T )] (in a Bernoulli bandit model parameterized by p = (p 1 , . . . , p A )). This goal makes sense in oncology in which patients involved in the trial are in need for a therapeutic effect, hence should ideally be treated at the dose with largest efficacy given acceptable side effects, which is the MTD. This defines a variant of the classical MAB problem where the goal is to maximize the number of selections of some target arm a ⋆ , which is not necessarily the arm with largest mean. We explain below for the MTD identification example how the standard MAB theory can be extended to cover this case.

First, the lower bound methodology presented in the Introduction can be used for the MTD identification problem as well, introducing an appropriate definition of uniform efficiency, directly expressed in terms of the sub-optimal selections. Theorem 1.5. We define a uniformly efficient algorithm as an algorithm satisfying for all possible toxicity probabilities p = (p 1 , . . . , p A ), for all arm a ∶ θp a ≠ θp a⋆ , E p [N a (T )] = o(T α ) for all α = (0, 1]. Any uniformly efficient algorithm satisfies, for p such that p a⋆ ≠ θ, lim inf

T →∞ E p [N a (T )] log(T ) ≥ 1 kl(p a , d ⋆ a )
, where a is either the toxicity of the MTD or that of its symmetric with respect to θ

d ⋆ a ∶ = argmin d∈{pa ⋆ ,2θ-pa ⋆ } p a -d .
Next, we show that Thompson Sampling with independent uniform prior distributions over each probability of toxicity, formally stated in Algorithm 2, is matching the lower bound of Theorem 1.5. Given a sample θ a (t) from the posterior distribution on p a , the arm selected at round t + 1 is A t+1 = argmin a θθ a (t) . This randomized algorithm satisfies the Thompson Sampling property: P(A t+1 = a F t ) is equal to the posterior probability that arm a is the MTD.

Algorithm 2 Independent Thompson Sampling for MTD Identification 1: Input: Horizon T , threshold θ. 2: Initialization: for each a ∈ [A], N a = 0, S a = 0 3: for t = 1 . . . T do

4:

For each arm a ∈ [A], sample θ a ∼ Beta(S a + 1, N a -S a + 1)

5:

Select arm A t = arg min a θ a -θ and observe toxic outcome X t

6:

Update number of trials and toxic outcomes: 7:

N At ← N At + 1, S At ← S At + X t 8: end for
We prove the following upper bound on the number of sub-optimal selections. Theorem 1.6. For all ε > 0, there exists a constant C ε,θ,p (depending on ε, the threshold θ and the vector of toxicity probabilities p) such that Algorithm 2 satisfies, for all a : p a -θ ≠ θp a⋆ ,

E p [N a (T )] ≤ 1 + ε kl(p a , d * a ) log(T ) + C ε,θ,p .
Sketch of proof. We follow the same approach as for the analysis of the TS-CF algorithm in the previous section: we adapt the analysis of Agrawal and Goyal (2013a) to upper bound the number of selections of a sub-optimal arm a. We use the same decomposition as in (1.2) but we modify the definition of the high-probability events, here E p a (t) and E θ a (t), to be adapted to the new notion of optimal arm a ⋆ . To fix the ideas, we consider the case p a⋆ ≥ θ > p a . In that case

d ⋆ a = 2θ -p a⋆ satisfies p a < d ⋆ a ≤ θ: p a d a * p a*
x y y' θ Let x, y ∈]0, 1[ 2 be such that p a < x < y < d * a (chosen at the end of the proof). We let y ′ = 2θ -y > θ be symmetric to y with respect to the threshold (see the illustration above). Letting pa (t) be the empirical mean of the toxicity responses gathered from dose a up to the end of round t and θ a (t) be the sample from the Beta posterior on p a after t rounds, we define E p a (t) = (p a (t) ≤ x) and E θ a (t) = (θ a (t) ≤ y). The proof is then very similar to that of Theorem 1.2 and consists in upper bounding each of the three terms in (1.2) by using concentration inequalities and the Beta-binomial trick. As before, the most delicate part is the first term. Introducing this time p a,t ∶= P θ a⋆ (t) ∈ [y, y ′ ] F t , we prove that

P p A t+1 = a E θ a (t + 1), F t ≤ 1 -p a,t p a,t P p A t+1 = a ⋆ E θ k (t + 1), F t .
As in the previous proof, it remains to upper bound ∑ T -1 s=0 E p 1 p a,τs+1 by a constant, where τ s is the instant of the s-th selection of the MTD a ⋆ . Observe however the different definition of p a,t , which is now the posterior probability of p a being in an interval [y, y ′ ] instead of p a being simply larger or smaller than some threshold. The proof requires therefore a few extra technicalities, that are detailed in Appendix A of [START_REF] Aziz | On multi-armed bandit designs for dose-finding clinical trials[END_REF].

◻

In the paper [START_REF] Aziz | On multi-armed bandit designs for dose-finding clinical trials[END_REF] the theoretical results introduced in this section are presented as a sanity-check for the use of more sophisticated variants of Thompson Sampling for MTD identification. Indeed, both our upper and lower bounds are asymptotic in the number of patients T , whereas for real clinical trials we typically care about small sample sizes. In order to propose practically meaningful designs for MTD identification, we propose the use of Thompson Sampling with a prior enforcing a certain structure on the toxicity probabilities (for example a toxicity increasing in the dose as in Figure 1.2). We show that Thompson Sampling compares favorably with standard baselines for MTD identification, notably the Continuous Reassessment Method [START_REF] O'quigley | Continual reassessment method: A practical design for phase i clinical trials in cancer[END_REF].

Through two examples, we illustrated the flexibility of Thompson Sampling, which can be easily adapted when the optimal arm is not the arm with largest mean feedback. Interestingly, while for corrupt bandits we also proposed an adaptation of the optimistic kl-UCB algorithm [START_REF] Gajane | Corrupt bandits for preserving local privacy[END_REF], defining a UCB-like algorithm that maximizes the number of selections of some arbitrary arm, as needed in the dose finding problem, is not as straightforward. Indeed, Thompson Sampling only requires to be able to define some notion of optimal arm, whereas the optimism principle requires the optimal arm to be the maximizer of some expected payoff.

Structured Bandits

Going back to the setting in which the learner does observe the actual signal she seeks to maximize, the vanilla bandit problem can be complexified in several other ways. Over the past years, I have been particularly interested to see an increasing number of papers dealing with structured bandits. In our parametric setting, the structure is some prior knowledge that the vector of means µ = (µ 1 , . . . , µ A ) lies in some known subset S of the set of all possible means. A good algorithm should exploit this knowledge in order to have a regret which is smaller than that of a UCB algorithm agnostic to S.

Here are three interesting examples of structures that have been studied in the literature:

• Lipschitz bandits [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF] in which the reward of arm a is a Lipschitz function of some characteristic x a . Both the (x a ) a∈[A] and the Lipschitz constant L are known in

S Lipschitz = µ = (µ x 1 , . . . , µ x A ) ∶ ∀(a, b) ∈ [A] 2 , µ xa -µ x b ≤ L x a -x b .
• Unimodal bandits (Combes and Proutière, 2014a) in which it is known that the mean reward is first increasing, then decreasing:

S unimodal = µ = (µ 1 , . . . , µ A ) ∶ ∃a ∈ [A] ∶ µ 1 ≤ ⋅ ⋅ ⋅ ≤ µ a and µ a ≥ µ a+1 ≥ ⋅ ⋅ ⋅ ≥ µ A .
This notion was extended to that of graphical unimodal bandits, detailed in Section 1.3. • Linear bandits in which µ a = x ⊺ a θ for some known context vector x a ∈ R d describing arm a and some unknown regression parameter θ ∈ R d . Letting X ∈ R K×d the matrix whose row a is x ⊺ a ,

S linear = µ = (Xθ) ⊺ θ ∈ R d .
Linear bandits have been studied a lot in the multi-armed bandit literature (see, e.g., [START_REF] Abbasi-Yadkori | Improved Algorithms for Linear Stochastic Bandits[END_REF] and references therein) yet [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF] are the first to present an optimal algorithm for linear bandits with a finite number of arms.

Of course, this framework allows to recover classical bandits in which there is no structure knowledge, by defining S classical = I A to be the set of all possible means. Other examples of structures are given by [START_REF] Lattimore | Bounded regret for finite-armed structured bandits[END_REF], [START_REF] Kwon | Sparse stochastic bandits[END_REF] or [START_REF] Jedor | Categorized bandits[END_REF].

A regret lower bound for structured bandits A counterpart of the Lai and Robbins lower bound for structured bandits was first given by [START_REF] Agrawal | Asymptotically Efficient Adaptive Allocation Schemes for Controlled i.i.d. Processes: Finite Parameter Space[END_REF] when the set S is finite. The case S = +∞ is covered by the more general work of [START_REF] Graves | Asymptotically Efficient adaptive choice of control laws in controlled markov chains[END_REF], which also applies to controlled Markov chains. We now explain how this lower bound for structured bandits can be deduced from Lemma 0.2.

Letting a ⋆ (µ) denote the set of optimal arms in the bandit model parameterized by µ, we introduce the following sets of alternative (structured) bandit models:

Alt S (µ) = {λ ∈ S ∶ a ⋆ (µ) ∩ a ⋆ (λ) = ∅} B S (µ) = {λ ∈ S ∶ ∀a ∈ a ⋆ (µ), µ a = λ a and a ⋆ (µ) ∩ a ⋆ (λ) = ∅} .
Alt S (µ) is the set of bandit instances that have no common optimal arm with the bandit instance µ. B S (µ) ⊆ Alt S (µ) considers only alternatives in which all arms in a ⋆ (µ) are unchanged.

The notion of uniformly efficient algorithms is straightforwardly extended to a structure S as follows: algorithm A is uniformly efficient if R µ (A, T ) = o(T α ) for all µ ∈ S and all α ∈ (0, 1). This implies in particular that for all a ∉ a ⋆ (µ), E µ [N a (T )] = o(T α ) for all α ∈ (0, 1). Recalling that d(µ, µ ′ ) denotes the Kullback-Leibler divergence between the distribution of mean µ and that of mean µ ′ in a context of arms parameterized by their means (e.g., exponential family bandit models), Lemma 0.2 yields Lemma 1.7. Let A be a uniformly efficient bandit algorithm for a structure S. Then, ∀λ ∈ Alt S (µ), lim inf

T →∞ ∑ A a=1 d(µ a , λ a )E µ [N a (T )] log(T ) ≥ 1.
This result is similar to the first statement in Theorem 1 of Graves and Lai (1997) (Equation (2.16)), the difference being that the set Alt S (µ) in Lemma 1.7 is replaced by the smaller set B S (µ). Considering alternative instances in the set B S (µ) is indeed sufficient to obtain the Graves and Lai lower bound, stated below as Theorem 1.8. However for some particular structures (such as linear bandits) considering only alternatives in B S (µ), that cannot change the marginal distributions of the optimal arms, may be restrictive, and exploiting Lemma 1.7 might lead to tighter lower bounds.

Theorem 1.8 (Graves and Lai lower bound). Let A be a uniformly efficient bandit algorithm for the structure S. Then for every instance µ ∈ S,

lim inf T →∞ R µ (A, T ) log(T ) ≥ C S (µ)
where

C S (µ) = inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ a∉a⋆(µ) (µ ⋆ -µ a )c a ∀a∉a⋆(µ), ca≥0, ∀λ∈B S (µ), ∑ a∉a ⋆ (θ) d(µa,λa)ca≥1 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (1.4) = inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ sup λ∈B S (µ) ∑ a∉a⋆(µ) (µ ⋆ -µ a )x a ∑ a∉a⋆(µ) d(µ a , λ a )x a x a ≥ 0, a∉a⋆(µ) x a = 1 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
(1.5)

The form (1.4) for the complexity quantity c S (µ) is the one given by [START_REF] Graves | Asymptotically Efficient adaptive choice of control laws in controlled markov chains[END_REF] while the form (1.5) is the one presented by [START_REF] Agrawal | Asymptotically Efficient Adaptive Allocation Schemes for Controlled i.i.d. Processes: Finite Parameter Space[END_REF] originally for S < ∞. The equivalence between the two forms will be proved below but we will start by proving Theorem 1.8 for the expression (1.4). This derivation is presented as a trivial corollary of Lemma 1.7 by [START_REF] Graves | Asymptotically Efficient adaptive choice of control laws in controlled markov chains[END_REF], who do not provide a proof. However, some care is needed to provide a correct proof of this result, as was noted by a colleague who reminded me that taking the liminf is not a linear operation. The proof given below is the outcome of a discussion with Richard Combes, Gilles Stoltz and Claire Vernade.

Proof of Theorem 1.8 We first assume that (µ) ∶= lim inf T →∞ R µ (A, T ) log(T ) is finite (otherwise the lower bound is trivial). By definition of the liminf, there exists a sequence (T i ) i∈N such that lim inf

T →∞ R µ (A, T ) log(T ) = lim i→∞ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ a∉a⋆(µ) (µ ⋆ -µ a ) E µ [N a (T i )] log(T i ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = (µ).
This convergence implies that for each a ∉ a ⋆ (µ) the sequence

(E µ [N a (T i )] log(T i )) is bounded.
Therefore there exists a sub-sequence (T ′ i ) i∈N of (T i ) i∈N and non-negative values

c a ∈ R + such that ∀a ∉ a ⋆ (µ), lim i→∞ E µ [N a (T ′ i )] log(T ′ i ) = c a .
Hence,

lim inf T →∞ R µ (A, T ) log(T ) = lim i→∞ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ a∉a⋆(µ) (µ ⋆ -µ a ) E µ [N a (T ′ i )] log(T ′ i ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = a∉a⋆(µ) (µ ⋆ -µ a )c a .
(1.6) Now, using Lemma 1.7, we know that for all λ ∈ Alt S (µ)

lim inf T →∞ A a=1 E µ [N a (T )] log(T ) d(µ a , λ a ) ≥ 1 .
In particular, for all λ ∈ B S (µ),

lim inf i→∞ ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ a∉a⋆(µ) E µ [N a (T ′ i )] log(T ′ i ) d(µ a , λ a ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ≥ 1 , a∉a⋆(µ) c a d(µ a , λ a ) ≥ 1 .
Hence the quantities c a in (1.6) satisfy ∀λ ∈ B S (µ), ∑ a∉a⋆(µ) c a d(µ a , λ a ) ≥ 1, which leads to (1.4).

We now establish the equivalence between (1.4) and (1.5), by introducing the two sets of constraints

C µ = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ x ∈ R A ∶ x a ≥ 0, a∉a⋆(µ) x a = 1 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ and D µ = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c ∈ R A ∶ c a ≥ 0, inf λ∈B S (µ) a∉a⋆(µ) d(µ a , λ a )c a ≥ 1 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
We first observe that if x ∈ C µ , any c such that ∀a ∉ a ⋆ (µ), c a = xa inf λ∈B S (µ) ∑ a∉a ⋆ (µ) d(µa,λa)xa belongs to D µ , which yields

(1.5) = inf x∈Cµ ⎛ ⎝ a∉a⋆(µ) (µ ⋆ -µ a ) x a inf λ∈B S (µ) ∑ a∉a⋆(µ) d(µ a , λ a )x a ⎞ ⎠ ≥ inf c∈Dµ ⎛ ⎝ a∉a⋆(µ) (µ ⋆ -µ a )c a ⎞ ⎠ = (1.4).
Then, observing that if c ∈ D µ , any x such that ∀a ∉ a ⋆ (µ),

x a = ca ∑ a∉a ⋆ (µ) ca belongs to C µ yields (1.4) = inf c∈Dµ ∑ a∉a⋆(µ) (µ ⋆ -µ a )c a 1 ≥ inf c∈Dµ ∑ a∉a⋆(µ) (µ ⋆ -µ a )c a inf λ∈B S (µ) ∑ a∉a⋆(µ) d(µ a , λ a )c a = inf c∈Dµ sup λ∈B S (µ) ∑ a∉a⋆(µ) (µ ⋆ -µ a ) ca ∑ a∉a ⋆ (µ) ca ∑ a∉a⋆(µ) d(µ a , λ a ) ca ∑ a∉a ⋆ (µ) ca ≥ inf x∈Cµ sup λ∈B S (µ) ∑ a∉a⋆(µ) (µ ⋆ -µ a )x a ∑ a∉a⋆(µ) d(µ a , λ a )x a = (1.5).

◻

Computing the lower bound The quantity C S (µ) may be very hard to compute for general structured bandits, as it requires to minimize a linear function under an infinite number of linear constraints:

∀λ ∈ B S (µ), a∉a⋆(µ) d(µ a , λ a )c a ≥ 1.
In order to make it a finite number of constraints, one can introduce for each a ∉ a ⋆ (µ) the closest alternative in B S (µ) for which a is optimal, defined as

λ a S (µ, c) ∈ argmin λ∈B S (µ)∶ a∈a⋆(λ) ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ i∉a⋆(µ) c i d(µ i , λ i ) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ (1.7)
and rewrite

C S (µ) = inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ a∉a⋆(µ) (µ ⋆ -µ a )c a ∀a∉a⋆(µ) ca ≥ 0, ∀a∉a⋆(µ) ∑ i∉a ⋆ (µ) d µ i , λ a S (µ,c) i c i ≥ 1 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ . (1.8)
This rewriting may look a bit artificial as solving the optimization problem (1.7) and therefore computing the constraints in (1.8) may be very difficult for some structures. However, if S is such that λ a S (µ, c) is easy to compute and independent of c, the optimization problem (1.8) becomes a Linear Program for which standard optimization techniques can be used. This is the case for Lipschitz bandits, for which [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF] show that ∀c, ∀i, λ a S Lipschitz (µ, c)

i = max µ i , µ ⋆ -L x a -x i .
On the contrary, for unimodal bandits, solving (1.7) happens to be harder than computing (1.4) directly and Combes and Proutière (2014a) exhibit the following closed-form expression:

C S unimodal (µ) = a∈N (a⋆) 1 d(µ a , µ ⋆ ) .
This quantity looks like the complexity term in the un-structured case C S classical (µ) = ∑ a≠a⋆ 1 d(µa,µ⋆) with the notable difference that the sum is restricted to arms in the set N (a ⋆ ), defined as the neighboring arms of a ⋆ , which involves at most two arms. Hence the minimal regret one can achieve by exploiting the knowledge of a unimodal structure is much smaller than C S classical (µ) log(T ) when K > 3.

Through these two examples, we can guess that finding a universal algorithm that can efficiently compute C S (µ) for any structure S may be too much to ask. However, we note that so far our discussion was only based on the form (1.4) for the complexity term, and the form (1.5) may provide some insights too. Indeed, this saddle-point formulation allows to interpret C S (µ) as the value of some game between a player choosing a distribution over sub-optimal arms x, and an adversary selecting a confusing alternative bandit model λ ∈ B S (µ). This interpretation of lower bounds was recently popularized by Degenne et al. (2019) for pure exploration problems, and will be explained in more details in Chapter 4. For structured bandits, [START_REF] Degenne | Structure adaptive algorithms for stochastic bandits[END_REF] then proposed a saddle-point view on a relaxation of the optimization problem that defines C S (µ), that they also leverage to design algorithms.

Linear bandits We now consider the important example of linear bandits with Gaussian rewards. Given a set of contexts {x 1 , . . . ,

x A } ⊆ R d , the reward upon choosing arm A t is r t = x ⊺ At θ + ε t where θ ∈ R d is an unknown regression parameter and ε t ∼ N 0, σ 2 is independent noise. A bandit instance in L ∶= S linear is necessarily of the form λ = (x ⊺ a θ ′ ) A a=1 for some θ ′ in R d and the KL-divergence between the distribution of arm a under µ and λ is d(µ a , λ a ) = (µa-λa) 2 2σ 2 = (x ⊺ a (θ-θ ′ )) 2 2σ 2
. Lattimore and Szepesvári (2017) prove a tight lower bound in this particular setting (matched by an algorithm): they show that a uniformly efficient algorithm satisfies lim inf

T →∞ R θ (A,T ) log(T ) ≥ CL (µ), where CL (µ) = inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ a∉a⋆(µ) c a (µ ⋆ -µ a ) ∀a∈[A], ca ≥ 0, ∀a∉a⋆(µ), xa 2 H(c) -1 ≤ (µ ⋆ -µa) 2 2σ 2 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ , with H(c) = ∑ A a=1 c a x a x ⊺ a ∈ R d×d and x M = √
x ⊺ M x is the Mahalanobis norm associated to a symmetric and positive definite matrix M .

What is interesting here is that, to the best of my understanding, this (optimal) lower bound is not obtained as a consequence of Theorem 1.8, therefore we may have CL (µ) > C L (µ). Indeed, the constraint

x a 2 H(c) -1 ≤ (µ⋆-µa) 2 2σ 2
is obtained by a sophisticated reasoning still based on a change-of-measure argument but which considers alternative models in Alt L (µ) and not only in B L (µ). In the definitions

Alt L (µ) = λ = (x ⊺ a θ ′ ) A a=1 ∶ θ ′ ∈ R d , ∃a ∉ a ⋆ (µ) ∶ x ⊺ a θ ′ > x ⊺ a⋆(µ) θ ′ B L (µ) = λ = (x ⊺ a θ ′ ) A a=1 ∶ θ ′ ∈ R d , ∀a ∈ a ⋆ (µ), x ⊺ a θ ′ = µ a and ∃a ≠ a ⋆ (µ) ∶ x ⊺ a θ ′ > x ⊺ a⋆(µ) θ ′ the extra constraint on θ ′ (in orange) present in B L (µ) can be very restrictive. It can be checked that the constraint ∑ i∉a⋆(µ) d µ i , (λ a S (µ, c)) i c i ≥ 1 that appears in (1.8) and involves a minimization over B L (µ) is actually not equivalent to the constraint x a 2 H(c) -1 ≤ (µ⋆-µa) 2 2σ 2
present in CL (µ).

An informal justification for CL (µ), made much more rigorous by [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF], is the following. Letting θ such that µ = (x ⊺ a θ) A a=1 and

G T = ∑ A a=1 E θ [N a (T )]x a x ⊺ a , it follows from Lemma 1.7 that for every a ∉ a ⋆ (µ), inf {θ ′ ∶x ⊺ a θ ′ >x ⊺ a ⋆ θ ′ } lim inf T →∞ 1 2σ 2 θ -θ ′ 2 G T log(T ) ≥ 1.
Assuming we are allowed to invert the inf and the lim inf yields lim inf

T →∞ inf {θ ′ ∶x ⊺ a θ ′ >x ⊺ a ⋆ θ ′ } 1 2σ 2 θ -θ ′ 2 G T log(T ) ≥ 1.
Now the infimum in θ ′ can be computed exactly: the argmin is

θ ′ = θ + µ⋆-µa xa ⋆ -xa 2 G -1 T G -1
T (x a -x a⋆ ), which does not belong to B L (µ) in general. Computing the value of the minimization problems yields

lim inf T →∞ (µ ⋆ -µ a ) 2 2σ 2 x a⋆ -x a 2 G -1 T log(T ) ≥ 1.
This inequality is proved rigorously in Theorem 1 of [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF]. It is the cornerstone for the lower bound, as

x a⋆ -x a 2 G -1 T ≃ x a 2 G -1 T
due to the optimal arm being selected a lot.

Towards universal algorithms for structured bandits The reason why it is so important to be able to compute the lower bound is that it is possible to build asymptotically optimal algorithm for structured bandits from an oracle which can return the optimal allocation for any bandit instance µ ∈ S. Indeed, more than the value C S (µ) itself, the interesting thing to compute is the vector c which attains the minimum in (1.4), that we denote by c S (µ) and which satisfies

C S (µ) = a∉a⋆(µ) (µ ⋆ -µ a ) (c S (µ)) a .
From the proof of Theorem 1.8, an algorithm matching the lower bound should explore each sub-optimal arm a in such a way that

Eµ[Na(T )] log(T ) ≃ (c S (µ)) a .
This motivates a family of algorithms that enforce this condition by computing the vector c S (μ(t)) for the current empirical estimate of the arm means μ(t) and then forces with some tracking procedure the current amount of exploration N a (t) log(t) to be close to (c S (μ(t))) a . Such an idea was first proposed by [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF] for Lipschitz bandits, and later generalized to other structures as the OSSB algorithm which stands for Optimal Sampling for Structured Bandits [START_REF] Combes | Minimal exploration in structured stochastic bandits[END_REF]. The optimal algorithm proposed by [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF] for linear bandits is also of this flavor.

In classical bandits, the kl-UCB algorithm is asymptotically optimal and Cappé et al. ( 2013) also provide a nice and explicit finite-time upper bound on its regret. On the contrary, the regret analysis of the optimal algorithms for structured bandit of the above flavor is very asymptotic in nature. Also, to ensure that the "plug-in" estimate c S (μ(t)) converges to c S (µ), some additional exploration needs to be added to make sure that μ(t) converges to µ. This forced exploration can hurt the practical performance of the algorithm, and may not be needed for all structures. So the natural question is: could other well known principles such as optimism in face-of-uncertainty or Thompson Sampling be used to perform the right amount of exploration in structured bandits?

Upper Confidence Bounds algorithms have indeed been proposed for structured bandits. Lattimore and Munos ( 2014) have proposed a first structured UCB algorithm which builds an individual confidence interval on each arm a, I a (t) and defines the UCB on each arm a as the maximal value for the mean of arm a in a bandit model that is compatible with both the structure and the observations:

UCB a (t) = max λ a λ ∈ S ∩ I 1 (t) × ⋅ ⋅ ⋅ × I A (t) .
Lattimore and Munos (2014) show that the UCB algorithm associated to this index achieves a constant regret for some S satisfying certain conditions (which are sufficient to prove that indeed C S (µ) = 0 and constant regret is possible). [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF] introduce an alternative structured UCB index for Lipschitz bandits, in which instead of using individual confidence intervals for each mean, a confidence set on µ is built by aggregating samples from all arms. This index can be extended to any structure S and exponential family bandit model as

UCB a (t) = max λ a λ ∈ S, A i=1 N i (t)d (μ i (t), λ i ) ≤ f (t) ,
where the threshold function f (t) is chosen such that the set {λ ∶ ∑ A i=1 N i (t)d (μ i (t), λ i ) ≤ f (t)} contains the true vector of means µ with probability of order 1 -1 t2 . For some structures, it may be shown that using such structured UCB algorithms can be optimal (see the examples in Lattimore and Munos ( 2014)) or at least better than a classical UCB for some instances µ (this is essentially what [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF] prove for Lipschitz bandits, but CKL-UCB isn't proved to be asymptotically optimal). However, there is no hope for structured UCB to be optimal for any S as Lattimore and Szepesvári (2017) provide a counter-example in the linear case, thus predicting the "end of optimism". On the computational side, note that computing the above UCB a (t) still requires to solve an optimization problem that may be numerically hard for some structure (such as unimodal bandits).

The same linear bandit instance for which [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF] shows that a Lin-UCB algorithm cannot be asymptotically optimal is also used to disqualify Thompson Sampling as an asymptotically optimal algorithm for any structure S and any instance µ ∈ S. However, there is still hope that some variants of Thompson Sampling (or UCB), possibly also leveraging some properties of the lower bound for a given structure S, may be asymptotically optimal. Finding a universal algorithm of this flavor that is asymptotically optimal for every structure S, and alleviate the computational burden and bad practical performance of OSSB would be extremely interesting 3 .

In the meantime, we study in the next section a variant that is asymptotically optimal for unimodal bandits: Unimodal Thompson Sampling.

Thompson Sampling for Rank-One Bandits

The motivation to study Unimodal Thompson Sampling came from an on-going project with Claire Vernarde and Richard Combes on rank-one bandits. Rank-one bandits are structured bandits motivated by the low-rank structure of a user-item matrix in recommender systems, and were first studied by Katariya et al. (2017b,a). For Bernoulli rewards, achieving asymptotic optimality in this model was left as an open question by Katariya et al. (2017a), that we have been trying to solve with Claire and Richard. When Richard realized that rank-one bandits were particular instances of graphical unimodal bandits, we changed our focus to proposing a new analysis for Unimodal Thompson Sampling, that would give us an asymptotically optimal algorithm for rank-one bandits. I supervised the master thesis of Cindy Trinh on this topic, which led to the joint publication [START_REF] Trinh | Solving bernoulli rank-one bandits with unimodal thompson sampling[END_REF].

Rank-one bandits are unimodal In a Bernoulli rank-one bandit model, there are A = K × L arms and the vector (or matrix) of means µ ∈ [0, 1] K×L belongs to the set

S R1 = µ = (µ k, ) 1≤k≤K 1≤ ≤L ∃u ∈ [0, 1] K , v ∈ [0, 1] L ∶ µ k, = u k v
For each µ ∈ S R1 , this matrix of means can be written of the form µ = uv ⊺ , and is therefore of rank one. Each arm (k, ) could for example model the click of a user on an button with shape k and color . In this context, the rank-one structure means that the effect of the shape and color on the click are independent.

We now argue that any rank-one bandit model µ = uv ⊺ such that u ≻ 0 or v ≻ 0 belongs to a family of graphical unimodal bandits. This definition, extracted from Combes and Proutière (2014a), generalizes the example presented in Section 1.2. Definition 1.9. Given an undirected graph G = (V, E) with no self-edges, a vector µ = (µ a ) a∈V is unimodal with respect to G if (i) there exists a unique a ⋆ ∈ V such that µ a⋆ = max a µ a and (ii) from any a ≠ a ⋆ , we can find an increasing path to the optimal arm: ∀a ≠ a ⋆ , there exists a path p = (a 1 = a, a 2 , ..., a ma = a ⋆ ) of length m a , such that for all i = 1, ..., m a -1, (a i , a i+1 ) ∈ E, and µ a i < µ a i+1 .

We denote by U(G) the set of vectors µ that are unimodal with respect to G. For µ ∈ U(G), for all a ∈ V we denote by N G (a) = {b ∈ V ∶ (a, b) ∈ E} the set of neighbors of a and let N + G (a) ∶= N G (a) ⋃{a} be the extended neighborhood of a.

We define the undirected graph G 1 = (V, E 1 ) as the graph with vertices V = {1, . . . , K} × {1, . . . , L} and such that ((i, j), (k, )) ∈ E 1 if and only if (i, j) ≠ (k, ) and (i = k or j = ). In words, viewing the vertices as a K × L matrix, two distinct entries are neighbors if they belong to the same line or to the same column. It can be easily shown that rank-one bandit are unimodal with respect to G 1 .

Proposition 1.10. Let u = (u 1 , u 2 , ..u K ) and v = (v 1 , v 2 , ..v L ) be two nonzero vectors such that u ≻ 0 or v ≻ 0. A rank-one bandit instance parameterized by u, v satisfies µ ∈ U(G 1 ).
Note that the graph G 1 has diameter two. In particular, one can exhibit increasing paths of length at most two between any sub-optimal arm (k, ) and the best arm (k ⋆ , ⋆ ). An example is provided in Figure 1.4, in which we also illustrate the neighborhood of an arm.
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Best achievable regret for Rank-One Bandits Combes and Proutière (2014a) provide the following closed-form expression of the lower bound of Theorem 1.8 for graphical unimodal bandits, that we state below for Bernoulli reward with the associated binary relative entropy kl(µ, µ ′ ).

Proposition 1.11. Let G = (V, E) be an undirected graph with no self-edges. Any algorithm A which is uniformly efficient on U(G) satisfies

∀µ ∈ U(G), lim inf T →∞ R µ (A, T ) log(T ) ≥ a∈N G (a⋆) µ ⋆ -µ a kl (µ a , µ ⋆ )
.

Interestingly, for rank-one bandits (that is, for G = G 1 ), this lower bound coincides with the lower bound independently proved by Katariya et al. (2017a). This lower bound shows that for graphical unimodal bandits the optimal allocation is supported on the neighborhood of the leader, N G (a ⋆ ). For rank-one bandits, it means that all arms (k, ) that do not belong to the same row or the same column as the best arm a ⋆ = (k ⋆ , ⋆ ) should be selected only a sub-logarithmic number of times.

Any algorithm that is matching the lower bound of Proposition 1.11 is therefore asymptotically optimal for rank-one bandits when G is particularized to G 1 . We now present such an algorithm.

Unimodal Thompson Sampling

The principle of Unimodal Thompson Sampling (UTS) for graphical unimodal bandits is very simple: given that an optimal algorithm should only focus on neighbors of the best arm, UTS performs in every round Thompson Sampling restricted to the neighborhood of the empirical best arm. In order for this to work, we should be confident about this "leader" being the true best arm most of the time. To ensure that, the algorithm performs additional forced exploration of the leader, governed by the leader exploration parameter γ.

More precisely, after an initialization phase where each entry is pulled once, for each t ≥ A, the algorithm computes the empirical leader L(t) = argmax a∈[A] μa (t). If the number of times L(t) has been the leader is a multiple of γ, UTS selects A t+1 = L(t). Otherwise, UTS draws a posterior sample for every entry in the extended neighborhood of the leader, N + G (L(t)) = N G (L(t)) ∪ {L(t)} and selects the arm associated to the largest posterior sample. The pseudo code of UTS is given in Algorithm 3. In the particular case of rank-one bandits, L(t) is the largest entry in the matrix μ(t) ∈ R K×L , and

N + G 1 (L(t))
is the set of entries in the matrix of arms that are in the same row or column than L(t).

Algorithm 3 Unimodal Thompson Sampling UTS(γ)

1: Input: Horizon T , neighborhoods (N G (a)) a∈[A] , leader exploration parameter γ 2: Initialization: for each a ∈ [A], N a = 0, S a = 0, L a = 0 3: for t = 1 . . . T do 4:
Compute the leader

A t = argmax a∈[A] S a N a 5:
Update the leader count

L At ← L At + 1 6: if L At ≡ 0[γ] then 7: For each a ∈ N + G (A t ) = N G (A t ) ⋃{At}, θ a ∼ Beta(S a + 1, N a -S a + 1) 8: A t ← argmax a∈N + G (At) θ a 9:
end if 10:

Select arm A t and get reward R t 11:

Update the number of visits and the sum of rewards:

12:

N At ← N At + 1, S At ← S At + R t 13: end for
The idea of using an optimal bandit algorithm in the neighborhood of the leader was first proposed by Combes and Proutière (2014a) who build on the kl-UCB algorithm to propose the OSUB algorithm. OSUB is analyzed for an exploration parameter γ which is equal to the maximal degree of a node in G (that is γ = K + L -1 for rank-one bandits). Unimodal Thompson Sampling was first proposed by [START_REF] Paladino | Unimodal thompson sampling for graphstructured arms[END_REF]. In their version of the algorithm, the exploration parameter γ can vary in every round and is equal to the degree of the current leader (for rank-one bandits, one also get γ t = K + L -1).

We now present a new analysis of UTS which shows that if the leader exploration parameter is set to any integer larger or equal to 2, UTS is asymptotically optimal. The analysis follows the general decomposition introduced by Paladino et al. ( 2017) and then adapts some elements from both Agrawal and Goyal (2013a) and [START_REF] Kaufmann | Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis[END_REF].

Theorem 1.12. Let µ be a unimodal bandit instance with respect to a graph G. For all γ ≥ 2, UTS with parameter γ satisfies, for every ε > 0,

R µ (UTS(γ), T ) ≤ (1 + ε) a∈N G (a⋆) (µ ⋆ -µ a ) kl(µ a , µ ⋆ ) log(T ) + C(µ, γ, ε),
where C(µ, γ, ε) is some constant depending on the environment µ, on ε and on γ.

Sketch of proof.

To ease notation we write V = {1, . . . , A}. Recall that L(t) = argmax a μa (t) is the leader after t rounds and let a (t) = ∑ t s=1 1 (L(s) = a) be the number of times a was leader in the first t rounds. Observe that the leader exploration scheme ensures that

∀a ∈ [A], ∀t ∈ N * , N a (t) ≥ ⌊ a (t) γ⌋.
(1.9)

Just like in the analysis of Combes and Proutière (2014a); [START_REF] Paladino | Unimodal thompson sampling for graphstructured arms[END_REF], we first decompose the regret in two terms, according to whether the current leader is the optimal arm.

R µ (UTS(γ), T ) = a≠a⋆ ∆ a E µ T -1 t=0 1(A t+1 = a) = a≠a⋆ ∆ a E µ T -1 t=0 1(A t+1 = a, L(t) = a ⋆ ) R 1 (T ) + a≠a⋆ ∆ a E µ T -1 t=0 1(A t+1 = a, L(t) ≠ a ⋆ ) R 2 (T )
.

To upper bound R 1 (T ), it can be noted that when a ⋆ is the leader, the selected arm a is necessarily in the neighborhood of a ⋆ , hence the sum can be restricted to the neighborhood of a ⋆ . Therefore, we expect to upper bound R 1 (T ) by the same quantity which upper bounds the regret of Thompson Sampling restricted to N + G (a ⋆ ). Note that a proper justification does need some care, as between two times the leader is a ⋆ , UTS may update the posterior of some arms in N + G (a ⋆ ) for they belong to the neighborhoods of other potential leaders. A careful adaptation of the analysis of Agrawal and Goyal (2013a) yields the following lemma (see Appendix B in Trinh et al. (2020) for a proof).

Lemma 1.13. For all ε > 0 and all T ≥ 1,

R 1 (T ) ≤ (1 + ε) a∈N G (a⋆) ∆ a kl(µ a , µ ⋆ ) log(T ) + C(µ, ε),
for some quantity C(µ, ε) which depends on the means µ and on ε but not on T .

Now R 2 (T ) can be related to the probability of choosing any given sub-optimal arm a as the leader:

R 2 (T ) ≤ b≠a⋆ a≠a⋆ ∆ a E µ T -1 t=0 1(A t+1 = a, L(t) = b) ≤ b≠a⋆ T -1 t=0 E µ 1(L(t) = b) a≠a⋆ 1(A t+1 = a) = a≠a⋆ T -1 t=0 P µ (L(t) = a) .
For each a ≠ a ⋆ , we define the set of best neighbors of a, B a = argmax b∈N G (a) µ b . Due to the unimodal structure, we know this set is nonempty because there exists at least one arm b ∈ N G (a) such that µ b > µ a on the increasing path from a to a ⋆ . All arms belonging to B a have same mean, that we denote by µ a 2 = max b∈N G (a) µ b . We also introduce B = max a∈[A]∖{a⋆} B a , the maximal number of best arms in the neighborhood of all sub-optimal arms, which is bounded by the maximum degree of the graph. With these notations, for any β ∈ (0, 1), one can write

T -1 t=0 P µ (L(t) = a) = T -1 t=0 P µ L(t) = a, ∃a 2 ∈ B a , N a 2 (t) > ( a (t)) β T a 1 (T ) + T -1 t=0 P µ L(t) = a, ∀a 2 ∈ B N G (a) , N a 2 (t) ≤ ( a (t)) β T a 2 (T )
.

The first term can be easily upper bounded by using the fact that if both arm a and one of its best neighbors a 2 ∈ B a are selected enough, it is unlikely that μa (t) ≥ μa 2 (t) (which has to hold if L(t) = a).

Using the leader exploration (1.9) and introducing δ a = µa 2 -µa 2

, one can indeed upper bound

T a 1 (T ) ≤ T -1 t=0 P µ (L(t) = a, μa (t) > µ a + δ a , N a (t) ≥ ⌊ a (t) γ⌋) (1.10) + T -1 t=0 P µ L(t) = a, ∃a 2 ∈ B a , μa 2 (t) ≤ µ a 2 -δ a , N a 2 (t) > ( a (t)) β , (1.11)
Both terms can be upper bounded in the same way, by introducing the sequence of stopping times (τ a i ) i , where τ a i is the instant at which arm a is the leader for the i-th time (one can have τ k a > T or τ a i = +∞ if arm a would be the leader less than i time when UTS is run forever). For example

(1.11) ≤ a 2 ∈Ba T -1 i=1 T -1 t=0 E µ [1(L(t) = a, a (t) = i, μa 2 (t) ≤ µ a 2 -δ a , N a 2 (t) > i β )] = B T -1 i=1 P µ μa 2 (τ a i ) ≤ µ a 2 -δ a , N a 2 (τ a i ) > i β , τ a i ≤ T ≤ B T -1 i=1 T u=i β P µ (μ a 2 ,u ≤ µ a 2 -δ a , N a 2 (τ a i ) = u) ≤ B ∞ i=1 ∞ u=i β exp(-2δ 2 a u) ≤ B ∞ i=1 exp(-2δ 2 a i β ) 1 -exp(-2δ 2 a )
.

The notation μa 2 ,u denotes the empirical mean of the first u observations from arm k 2 , which are i.i.d. Bernoulli random variables with mean µ a 2 . Proceeding similarly for (1.10) yields

T a 1 (T ) ≤ ∞ i=1 exp(-2δ 2 a i β ) 1 -exp(-2δ 2 a ) + ∞ i=1 exp(-2δ 2 a ⌊i γ⌋) 1 -exp(-2δ 2 a )
< ∞.

To conclude the proof, we show that T a 2 (T ) is also upper bounded by a constant for some well chosen value of β ∈ (0, 1). This follows from the following adaptation of Proposition 1 in [START_REF] Kaufmann | Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis[END_REF], which says that for vanilla Thompson Sampling restricted to N + G (a ⋆ ), the (unique) optimal arm a 2 cannot be drawn too many times. Observe that Lemma 1.14 permits to handle possible multiple optimal arms, and handles again the extra difficulty that arms in N + G (a ⋆ ) are not only selected when a is the leader. Its proof can be found in Appendix C of [START_REF] Trinh | Solving bernoulli rank-one bandits with unimodal thompson sampling[END_REF].

Lemma 1.14. When γ ≥ 2, there exists β ∈ (0, 1) and a constant D a (µ, β, γ) such that

T -1 t=0 P µ L(t) = a, ∀a 2 ∈ B a , N a 2 (t) ≤ ( a (t)) b ≤ D a (µ, β, γ).

◻

Solving rank-one bandits, and beyond We illustrate below the practical impact of using Unimodal Thompson Sampling for solving the rank-one bandit problem. In Figure 1.5, we see that on a large rank-one instance in which the previous state-of-the art algorithm RANK1ELIMKL (Katariya et al., 2017a) was shown to outperform kl-UCB, UTS largely outperforms RANK1ELIMKL. Moreover, unlike RANK1ELIMKL, UTS also outperforms kl-UCB on smaller instances, as illustrated in Figure 1.6.

In the experiments whose results are reported in these figures, UTS was run with the parameter γ = 2, which appeared to be consistently the best choice among the different values we tried on different scenarios. We also did some experiments with the tuning γ = +∞, which corresponds to no forced exploration of the leader. We conjecture that this choice, which is currently not supported by theory, also leads to asymptotically optimal regret. However, our experiments overall revealed that forcing the exploration of the leader (which actually introduces more exploitation in the algorithm) is actually helping in practice.

Finally, we can take a step back and think about the insights provided by this algorithm for the design of asymptotically optimal algorithms for more general structures. In this particular case, assuming that the optimal arm a ⋆ is known, it is possible to design a variant of Thompson Sampling, namely Thompson Sampling restricted to N G (a ⋆ ), which achieves the optimal allocation among sub-optimal arms. This property, combined with the leader exploration scheme described above, easily yields asymptotic optimality. In future work we will investigate a more general combination of Thompson Sampling with some knowledge of the optimal allocation c S (µ) achieving the optimal allocation. It would also be interesting to find out whether forcing the exploration of the leader remains empirically good for more general structures.

Chapter 2

Multi-Player Bandits

In the last ten years, researchers working on cognitive radio systems started to investigate the use of multi-armed bandit tools for adaptive channel selection [START_REF] Jouini | Multi-armed bandit based policies for cognitive radio's decision making issues[END_REF]. In particular, in crowded communication networks several radio devices (agents) may try to communicate in the same set of channels (arms), which gives rise to an interesting multi-agent bandit problem. This chapter presents some contributions to the study of this problem. Some of them were obtained in collaboration with Lilian Besson, my first PhD student, whom I supervised with Christophe Moy (Université de Rennes).

Several Decentralized Bandit Problems

In a Multi-Player Multi-Armed Bandit model (MP-MAB), there are A arms and M agents, or players, with M ≤ A. For each player m ∈ [M ], each arm a is associated to an i.i.d. reward stream (X m a,t ) t∈N with mean µ m a . In each round t, each player m selects an arm A m t and receives a reward R m t with is equal to X m A m t ,t if she is the only one to select arm A m t and to zero reward otherwise1 . Hence

R m t = X m A m t ,t (1 -1 (C m t )) ,
where

C m t ∶= {∃m ′ ≠ m ∶ A m t = A m ′ t }
is the event that a collision occurs for player m at time t. The goal is to find an arm selection strategy for each agent that maximizes the expected total reward of the system, E ∑ T t=1 ∑ M m=1 R m t , without allowing explicit communications between agents. This model is inspired by what may happen in a cognitive radio system in which M smart radio devices are allowed to use A distinct frequency bands (channels). The random variable X m a,t models the quality of channel a for device m at time t. For example, X m a,t = 1 if the channel is free from other types of users, X m a,t = 0 otherwise. In each round, all devices select a channel for communication. If several devices try to communicate in the same channel none of their communications is successful, possibly due to some interference. From this story, one can think of two interesting settings:

• the homogeneous setting in which ∀a ∈ [A], µ m a = µ a , that is the average quality of a channel a is the same for the M devices. This assumption makes sense for example when X m a,t = X a,t measures the availability of channel a, and all devices communicate successfully on a free channel.

• the heterogeneous setting in which one may have µ m a ≠ µ m ′ a for some channel a and two devices m and m ′ . This assumption makes sense when there are external reasons (such as configuration or position) that make some channels better for some devices.

The multi-player MAB was pioneered by [START_REF] Liu | Distributed learning in Multi-Armed Bandit with multiple players[END_REF] and [START_REF] Anandkumar | Opportunistic Spectrum Access with multiple users: Learning under competition[END_REF] who considered the homogeneous setting in which X m a,t = X a,t , and we will first stick to this particular case, that already captures the interesting trade-off between exploration, exploitation... and collisions. We will go back to the heterogeneous setting in Section 2.4.

To understand the challenges of learning in a MP-MAB model, we now clarify what information each agent can use to guide its arm selection strategy.

Several feedback models We consider a decentralized setting in which agent m only observes her own reward R m t , and maybe a little bit more. Indeed, for some applications it makes sense that the agent also observes the sensing information X m t ∶= X A m t ,t and/or the collision information

C m t ∶= 1(C m t ). With this notation, one can rewrite R m t = X m t (1 -C m t ).
One can consider four different feedback models that we present below and of which we explain the relevance for cognitive radio systems:

• (I) Learning from rewards only: player m only observes R m t at the end of round t. In the context of IoT networks, it is common that after sending a packet to a base station, a radio device receives an acknowledgment if the communication is successful. The smart device can then adjust its next channel selection using this reward signal. However when a communication fails, it is impossible to know whether it is because of the intrinsic bad channel quality at this time (X m t = 0) or because a collision with another smart device occurred (C m t = 1). • (II) Learning from sensing and rewards: player m first observes X m t , then the reward R m t . This is the feedback model originally studied by [START_REF] Anandkumar | Opportunistic Spectrum Access with multiple users: Learning under competition[END_REF], as it is relevant to model Opportunistic Spectrum Access (OSA). In OSA, there are two types of users of radio resources: primary users who pay to be guaranteed channel access when they want to communicate, and secondary users (our M players), who can communicate if the channel they select is free from primary users. When selecting a channel a, a secondary user has to perform sensing to detect the presence (X a,t = 0) or absence (X a,t = 1) of primary users. If the channel is free, the secondary user can try to communicate, and the communication is successful if and only if no collision occurs.

• (III) Learning from collisions and rewards: player m first observes C m t (that is, she always knows if she was the only one to select a channel), then the reward R m t . It would correspond to a system in which a radio device has a way to first detect the presence of the other devices using the same standard (the M -1 other players) on the selected channel.

• (IV) Learning with full feedback: player m observes X m t and C m t (and therefore R m t ).

For some types of distributions for the arms, these four feedback models are actually equivalent. Indeed, if for each arm a, P(X a,1 = 0) = 0 (which is the case if ν a is a continuous distribution for example), observing R m t always permits to reconstruct both X m t and C m t . However, this assumption is not satisfied for Bernoulli distributions which are often used to model successful or failed communications. Hence, in the rest of the chapter, we will focus on the MP-MAB model with Bernoulli arms2 . In that case, none of the four feedback models are equivalent: under (II) one can only reconstruct C m t when X m t = 1 whereas under (III) one can only reconstruct X m t when C m t = 0. Given one of these observation models, a multi-player MAB strategy is a tuple A M = (A 1 , . . . , A M ) of strategies for each player such that under A m the arm A m t chosen by player m at time t depends on the observations made by player m up to round t -1 (and possibly some independent external randomness).

For example, under the observation model (II), A m t is F m t-1 -measurable where

F m t = σ (U m 0 , A m 1 , X m 1 , R m 1 , U m 1 , . . . , A m t , R m t , X m t , U m t )
is the σ-algebra generated by the observations up to round t, where U m t ∼ U([0, 1]) materializes the extra randomness possibly used at round t + 1. Under other observation models, one can similarly define an appropriate σ-algebra F m t .

Regret for multi-player bandits In the homogeneous setting, the oracle strategy that maximizes the total reward is simple: the M players should be assigned to the M arms with largest means. One can therefore define the regret incurred by algorithm A M in T rounds as the difference between the total reward of the oracle strategy and that of the algorithm:

R µ (A M , T ) = T M a=1 µ [a] -E T t=1 M m=1 R m t ,
where µ [a] denotes the mean of the arm with a-th largest mean:

µ [1] ≥ µ [2] ≥ ⋅ ⋅ ⋅ ≥ µ [A]
. We denote by TopM(µ) the set of M arm with largest mean,

{[1], . . . , [M ]}.
As in the classical MAB problem, one can express the regret in terms of the number of selections of each arm, but the rewriting also features the number of collisions that happen on each arm. Letting N m a (t) = ∑ t s=1 1 (A m s = a) be the number of selections of arm a by player m in the first t rounds,

N a (t) = M m=1 N m a (t) and C a (t) = t s=1 M m=1 C m t 1 (A m s = a)
respectively denote the total number of selections of arm a and the total number of collisions on arm a. In the paper [START_REF] Besson | Multi-player bandits revisited[END_REF] we propose the following rewriting of the regret, which generalizes the usual regret decomposition used in the classical MAB. Lemma 2.1. For every µ such that µ

[M ] > µ [M +1] it holds that R µ (A M , T ) = A a=M +1 (µ [M ] -µ [a] )E µ [N [a] (T )] + M a=1 (µ [a] -µ [M ] ) T -E µ [N [a] (T )] + A a=1 µ a E µ [C a (T )].
The three terms in this regret decomposition suggest that a good multi-player algorithm A M § selects each sub-optimal arm in {[M + 1], . . . , [A]} very little, § selects each optimal arm, i.e. each arm in TopM(µ), almost in every round, § and experiences few collision on each arm. For classical bandits (M = 1) the regret decomposition features only the first of these three terms, and upper bounds on the number of selections of each sub-optimal arm directly yield a regret bound. With M > 1, the second and third terms are the most difficult to upper bound, as we shall see.

This decomposition of the regret also applies to a "centralized" version of our problem, in which in each round a central controller selects a subset (A 1 t , . . . , A M t ) of M distinct arms with the same goal to maximize total reward. This so-called multiple-play bandit problem was introduced by [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF]. For multiple-play bandits, the third term in Lemma 2.1 disappears as the selected arms are always distinct, however the second term remains and an asymptotically optimal algorithm in this setting actually needs to satisfy (T -E µ [N a (T )]) = o(log(T )) for every arm a in TopM(µ). Proving this is in general the tricky part of the analysis a multiple-play bandit algorithms.

Algorithms for the multiple-play problem are interesting as they can serve as a "centralized" (oracle) baseline for our decentralized problem. For example, the algorithms that select the arms with M largest Thompson samples or M largest kl-UCB indices were proved to be asymptotically optimal for the multiple-play bandit problem [START_REF] Komiyama | Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays[END_REF][START_REF] Luedtke | Asymptotically optimal algorithms for budgeted multiple play bandits[END_REF]. Equipped with these baselines, we are now ready to investigate the cost of decentralization.

Algorithms for the Homogeneous Multi-Player MAB

During the PhD of Lilian, we worked together on algorithms for the Bernoulli MP-MAB under the observation models (I) and (II) that we found the most relevant for applications to communication.

Lilian's PhD had an emphasis on the design of smart IoT devices (e.g. connected watches, fridges, sensors...). The most common assumption for IoT communication it that each smart object would be able to learn how to communicate more efficiently only by receiving an acknowledgment (reward) from the base station after each successful communication. Hence we first investigated algorithms under observation model (I), and came across the surprisingly good behavior of a "selfish" learning approach. However, the theoretical guarantees obtained for this algorithm are a bit disappointing, as we shall see.

We then turned our attention to algorithms that could be used for the Opportunistic Spectrum Access problem, i.e. under observation model (II). We proposed the MCTopM algorithm, which outperformed state-of-the-art algorithms both in theory and in practice when the paper [START_REF] Besson | Multi-player bandits revisited[END_REF] was published.

The Selfish and MCTopM algorithms

Selfish learning from rewards only This idea of the Selfish heuristic is the following: each player m pretends she is alone and uses a classical MAB algorithm in order to select A m t+1 based on the past selected arms A m 1 , . . . , A m t and past observed rewards R m 1 , . . . , R m t . Due to the presence of other players, the distribution of R m t conditionally to the past observations is not B µ A m t , hence player m is not interacting with a stochastic bandit model. Thus in principle, only the use of adversarial bandit algorithms such that EXP3 (Auer et al., 2002b) is legitimate. Quite surprisingly, we found that the performance is better when each player uses a stochastic MAB algorithm such as kl-UCB or Thompson Sampling. The pseudo-code for Selfish-kl-UCB is given in Algorithm 4 below.

Algorithm 4 Selfish-kl-UCB for player m under observation model (I)

1: Initialization: for each a ∈ [A], S a ← 0, N a ← 0, 2: for t = 1 . . . T do 3: if t ∈ [A] then 4: A m t = t 5: else 6: A m t ∈ argmax a∈[A] max q ∈ [0, 1] ∶ N a kl Sa Na , q ≤ log(t) 7:
end if

8:

Select arm A m t and observe reward R m t . 9:

S A m t ← S A m t + R m t , N A m t ← N A m t + 1. 10: end for
In [START_REF] Bonnefoi | Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings[END_REF], we present an empirical evaluation the Selfish heuristic in a model which is a bit more realistic for long-range communications in unlicensed bands which is the dominant approach for IoT networks [START_REF] Centenaro | Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios[END_REF]: there is a very large number M > A of radio devices, but in each time step, only a small fraction of the devices needs to communicate. We then investigated the theoretical properties of Selfish in the simpler MP-MAB and our conclusions are a bit disappointing: we show that Selfish has actually a small probability to "get stuck" on some MP-MAB instances in which the players may end up colliding at every round (see Appendix E of [START_REF] Besson | Multi-player bandits revisited[END_REF]). The work of [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF] sheds light on the same phenomenon.

Still, our experiments showed that most of the time, Selfish does perform extremely well empirically, sometimes even better than algorithms using more feedback (sensing or collisions). Yet, this algorithm does not have a logarithmic regret. Since we made this observation, algorithms with logarithmic regret in the observation model (I) were proposed by [START_REF] Lugosi | Multiplayer bandits without observing collision information[END_REF] and [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF]. However, the practical performance of these algorithms is not clear, and some of the proposed algorithms require the knowledge of a lower bound on µ [M ] or µ [A] . Therefore, a multi-player algorithm that learns from rewards only with minimal regret and good finite-time performance is still to be found.

MCTopM for learning based on rewards and sensing Existing algorithms for observation model (II) such as TDFS [START_REF] Liu | Distributed learning in Multi-Armed Bandit with multiple players[END_REF] or RhoRand [START_REF] Anandkumar | Opportunistic Spectrum Access with multiple users: Learning under competition[END_REF] combine a classical bandit algorithm with an orthogonalization mechanism. We propose a new such combination, called MCTopM, which builds on kl-UCB and a new orthogonalization mechanism inspired by the Musical Chair algorithm of [START_REF] Rosenski | Multi-Player Bandits -A Musical Chairs Approach[END_REF].

The first ingredient to describe our algorithm (and other related ones) is the set of candidate "Top M" arms, taken to be the M arms with highest Upper Confidence Bounds for each player m:

M m (t) = [1], . . . , [M ], where UCB m [1] (t) ≥ ⋅ ⋅ ⋅ ≥ UCB m [A] (t) ,
where UCB m a (t) is the kl-UCB index of arm a for player m:

UCB m a (t) = max q ∶ N m a (t)kl(μ m a (t), q) ≤ log(t) + c log log(t) , (2.1) with μm a (t) = 1 N m a (t) ∑ t s=1 X m s 1(A s = a) if N m a (t) > 1.
Note that as the sensing information X m t is always observed, the UCB of the chosen arm will always be refined, regardless of collisions.

In MCTopM and other algorithms, player m selects at round t one well-chosen arm in M m (t-1). To choose this arm, the TDFS algorithm of [START_REF] Liu | Distributed learning in Multi-Armed Bandit with multiple players[END_REF] relies on a pre-agreement between players on the time-steps at which they will target the arm in M m (t -1) with a-th largest UCB, for a ∈ [M ]. The RhoRand algorithm of [START_REF] Anandkumar | Opportunistic Spectrum Access with multiple users: Learning under competition[END_REF] instead assigns a rank R m t ∈ [M ] to each player m at each round t so that the selected arm A m t is the arm with R m t -th largest UCB in M m (t -1). If a collision is observed after this selection, a new rank R m t+1 is assigned to player m uniformly at random. Our algorithm, called MCTopM, doesn't rely on such a rank but instead tries to enforce a minimal number of arm switches in the following way. The first time player m is the only one to select some arm A m t in M m (t -1), she fixes herself on that arm for the next rounds (s m t+1 = 1), and keeps selecting it, regardless of future collisions, until some future time t ′ in which this arm is no longer in M m (t ′ -1). When this happens, a new arm is selected uniformly at random among arms with smaller UCB:3 

A m t ′ ∼ U M m (t ′ -1) ⋂ a ∶ UCB a (t ′ -2) ≤ UCB A m t ′ -1 (t ′ -2) , (2.2) 
and player m un-fixes herself (s m t ′ = 0). When an un-fixed player experiences a collision in round t, she remains un-fixed for next round (s m t+1 = 1) and selects a new arm A m t+1 ∼ M m (t). This orthogonalization strategy is inspired by the Musical Chair protocol used in the work of [START_REF] Rosenski | Multi-Player Bandits -A Musical Chairs Approach[END_REF]: the first time a player finds an empty chair (i.e. an arm free from other players) she get "seated" on it. In MCTopM, player remain seated until their arm does not look good anymore.

In [START_REF] Besson | Multi-player bandits revisited[END_REF], we present and analyze the MCTopM algorithm under observation model (IV), which is slightly easier as collision are always observed. The pseudo-code of this version of the algorithm is given in Algorithm 5. However, it is possible to define MCTopM for observation model (II), as described in Algorithm 6. When only sensing and rewards are observed, an un-fixed player m knows that she experienced a collision only when (X m t-1 = 1)∩(R m t-1 = 0), hence the modification in line 6 of the algorithm (highlighted in orange). Similarly, the only way player m can be sure no collisions occurred before fixing is when observing a reward (R m t-1 = 1), hence the updated lines 12-15.

Algorithm 5 MCTopM for player m under observation model (IV)

1: Initialization: Let A m 0 ∼ U({1, . . . , A}), s m 1 = 0 2: for t = 1 . . . T do 3: if A m t-1 ∉ M m (t -1) then 4:
# switch if the previous arm looks bad 5:

A m t ∼ U M m (t -1) ⋂ a ∶ UCB a (t -2) ≤ UCB A m t-1 (t -2) ; s m t = 0 6: else if (s m t-1 = 0) and (C m t-1 = 1) then 7:
# unfixed player experiencing a collision switches 8:

A m t ∼ U( M m (t -1)) ; s m t = 0 9:
else 10:

# play the previous arm 11:

A m t = A m t-1 ; s m t = 1 12: end if 13:
Select arm A m t . Observe X m t and R m t .

14:

Compute (UCB m a (t)) A a=1 and the set M m (t). 15: end for Algorithm 6 MCTopM for player m under observation model (II)

1: Initialization: Let A m 0 ∼ U({1, . . . , A}), s m 1 = 0 2: for t = 1 . . . T do 3: if A m t-1 ∉ M m (t -1) then 4:
# switch if the previous arm looks bad 5:

A m t ∼ U M m (t -1) ⋂ a ∶ UCB a (t -2) ≤ UCB A m t-1 (t -2) ; s m t = 0 6: else if (s m t-1 = 0) and (X m t-1 = 1) ∩ (R m t-1 = 0) then 7:
# unfixed player experiencing a collision switches 8:

A m t ∼ U( M m (t -1)) ; s m t = 0 9:
else 10:

# play the previous arm 11:

A m t = A m t-1 12: if (s m t-1 = 1) ⋃(R m t-1 = 1) then 13:
# stay fixed or get fixed after a first reward 14:

s m t = 1 15: end if 16: end if 17:
Select arm A m t . Observe X m t and R m t .

18:

Compute (UCB m a (t)) A a=1 and the set M m (t). 19: end for

Elements of analysis of MCTopM

To ease the notation, we assume that the arms' means satisfy

µ 1 ≥ µ 2 ≥ µ M > µ M +1 ≥ . . . µ A .
In this section, we present an upper bound the regret of MCTopM under the extra assumption that all these means are distinct (which is necessary for the upper bound on the collisions given in Theorem 2.3). The regret decomposition of Lemma 2.1 features two important quantities: the number of sub-optimal selections, that is E[N a (T )] for each arm a ∈ {M + 1, . . . , A}, and the number of collisions that happen on a given arm a, E[C a (T )].

Upper bound on the number of sub-optimal selections The first part of our analysis exploits the definition of the "Top-M" set M m (t) in order to get an upper bound on E[N m a (T )] for each player m. We highlight that this result is not specific to the MCTopM algorithm but applies for any algorithm for which A m (t) ∈ M m (t -1), such as variants of RhoRand and TDFS based on kl-UCB indices.

Theorem 2.2. For each player m, under any algorithm for which A m (t) ∈ M m (t -1) for all t ≥ 1, it holds that for all a ∈ {M + 1, . . . , A},

E µ [N m a (T )] ≤ log(T ) kl(µ a , µ M ) + O µ ( log(T )) ,
for c in the definition of the kl-UCB indices (2.1) that satisfies c ≥ 3.

Proof. The key observation is that if (A m t = a) for some sub-optimal arm a, as A m t ∈ M m (t -1), there must exists one arm b ∈ [M ] that is not in M m (t -1), and whose UCB is therefore smaller than that of arm a:

(A m t = a) = (A m t = a, ∃b ∈ [M ] ∶ UCB m b (t) < UCB m a (t)) . This yields E µ [N m a (T )] = T t=1 P µ (A m t = a, ∃b ∈ [M ] ∶ UCB m b (t -1) < UCB m a (t -1)) ≤ T t=1 P µ A m t = a, ∃b ∈ [M ] ∶ UCB m b (t -1) ≤ UCB m a (t -1), ∀b ′ ∈ [M ] ∶ UCB m b ′ (t -1) ≥ µ b ′ + T t=1 P µ ∃b ′ ∈ [M ] ∶ UCB m b ′ (t -1) < µ b ′ ≤ T t=1 P µ (A m t = a, ∃b ∈ [M ] ∶ µ b ≤ UCB m a (t -1)) + M b ′ =1 T t=1 P µ (UCB m b ′ (t -1) < µ b ) ≤ T t=1 P µ (A m t = a, µ M ≤ UCB m a (t -1)) + M b ′ =1 T t=1 P µ (UCB m b ′ (t -1) < µ b ) ,
where the last inequality comes from the fact that µ M is the smallest of the µ b for b ∈ [M ]. Now each term can be upper bounded using standard tools developed by [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF] for the analysis of kl-UCB. For c ≥ 3, the second term is in O (log(log(T ))) using the concentration inequality of Lemma 0.3 stated in the Introduction, while as µ a < µ M the first term can be upper bounded by

log(T ) + 3 log log(T ) kl(µ a , µ M ) + O µ log(T ) ,
using the same technique as in Appendix A of [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF].

◻

Upper bound on the number of collisions The most intricate part of our analysis is the control of the total number of collisions C(T ) = ∑ A a=1 C a (T ). It is given in the following theorem. Theorem 2.3. Under observation model (IV), the total number of collisions under MCTopM satisfies, if all the arm means are distinct,

E µ [C(T )] ≤ 2M 3 ⎛ ⎝ a,b∶µa<µ b 1 kl(µ a , µ b ) ⎞ ⎠ log(T ) + o µ (log(T )) .
Under observation model (II), the upper bound is multiplied by (min k µ k ) -1 . Sketch of proof. Under MCTopM, if all players are fixed (s m t = 1), it means that they found a configuration of different arms, therefore no collision can occur. Hence, if a collision occurs, it occurs at least for one non-fixed player:

(C m t = 1) ⊆ ⋃ j∈[M ] C j t = 1, s j t = 0 . Therefore E µ [C(T )] = M m=1 T t=1 P µ (C m t = 1) ≤ M M m=1 T t=1 P µ (C m t = 1, s m t = 0) ≤ M M m=1 T t=1 P µ A m t-1 ∉ M m (t -1) + M M m=1 E µ T t=1 1 A m t-1 ∈ M m (t -1), C m t = 1, s m t = 0 .
The first term can be upper bounded using the following lemma, which shows that MCTopM cannot switch arms too much. The proof of this result, that can be found in Appendix D.2 of [START_REF] Besson | Multi-player bandits revisited[END_REF] crucially exploits the rule (2.2) for selecting a new arm when A m t-1 ∉ M m (t -1).

Lemma 2.4. For any arm a ∈ [A], MCTopM satisfies, if all the arm means are distinct,

T t=1 P µ A m t = a, a ∉ M m (t) = ⎛ ⎝ b∶µ b <µa 1 kl(µ a , µ b ) + b∶µ b >µa 1 kl(µ b , µ a ) ⎞ ⎠ log(T ) + o µ (log(T )) .
To control the second term, we note that as long as A m t-1 ∈ M m (t -1) and the player is not fixed (s m t = 0), arm A m t is chosen at random from a pool of M arms, out of which as least one if free from other players. The probability to fix in the next round is therefore at least 1 M if collisions are observed and 1 M (min k µ k ) if collisions are not observed (the sensing also needs to be 1 in that case). Hence, the average length of a sequence of consecutive time steps t in which A m t-1 ∈ M m (t -1), C m t = 1, s m t = 0 holds is upper bounded by M or M (min k µ k ) when collisions are not observed. It remains to control the number of times in which such a sequence can begin, and to observe that if

A m t-1 ∈ M m (t -1), C m t = 1, s m t = 0 holds at time t but not at time t -1, we must have (A m t-2 ∉ M m (t -2)
). Hence, one can again use Lemma 2.4 to upper bound the expected number of beginnings of such consecutive sequences. ◻ Logarithmic regret Going back the the regret decomposition in Lemma 2.1, it remains to upper bound the middle term, that quantifies the under-selection of optimal arms. Fortunately, Lemma 7 in [START_REF] Besson | Multi-player bandits revisited[END_REF] gives the following upper bound

M a=1 (µ a -µ M )(T -E µ [N a (T )]) ≤ (µ ⋆ -µ M ) A a=M +1 E µ [N a (T )] + M a=1 E µ [C a (T )]
which implies the following (crude) bound on the regret of any algorithm A:

R µ (A M , T ) ≤ 2 A a=M +1 E µ [N a (T )] + E µ [C(T )] . (2.3)
Hence, it follows from Theorem 2.2 (and a sum over players) and from Theorem 2.3 that the regret of MCTopM is logarithmic, under observation model (II) and observation model (IV).

Empirical Evaluation

We report here a subset of the experimental results that can be found in [START_REF] Besson | Multi-player bandits revisited[END_REF] to compare the performance of MCTopM and Selfish-kl-UCB with that of other algorithms. In Figure 2.1, we display the empirical regret as a function of time for several algorithms with provable sub-linear regret: RhoRand [START_REF] Anandkumar | Opportunistic Spectrum Access with multiple users: Learning under competition[END_REF] but also MEGA [START_REF] Avner | Learning to Coordinate Without Communication in Multi-User Multi-Armed Bandit Problems[END_REF] and Musical Chair [START_REF] Rosenski | Multi-Player Bandits -A Musical Chairs Approach[END_REF]. Musical Chair requires to specify the length T 0 of a uniform exploration phase in which each player estimates the set of M best arms from the sensing information. At the end of the exploration phase, players perform a musical chair protocol after which they end up on M distinct arms (with high probability). [START_REF] Rosenski | Multi-Player Bandits -A Musical Chairs Approach[END_REF] propose a tuning of T 0 as a function of δ (and a lower bound on µ M -µ M +1 ) under which, w.p. 1 -δ the regret is in O (log(1 δ)). Selecting δ = 1 T yields a provable logarithmic expected regret at time T . The three instances in the figure correspond to δ = 0.1, 0.5 and δ = 1 T .

We see that MCTopM and another variant that we propose in [START_REF] Besson | Multi-player bandits revisited[END_REF], called RandTopM largely outperform MEGA and Musical Chair, and are also doing better than RhoRand. In order to measure the empirical cost of decentralized learning for our algorithms, we display the regret of a centralized (multiple-play) algorithm based on kl-UCB, which unsurprisingly performs better. We then include the Selfish heuristic in our study. First, to measure its robustness we compare its regret to that of MCTopM, RandTopM and RhoRand averaged over N = 500 random Bernoulli MP-MAB instances with A = 9 arms and M = 6 players (which produces an estimate of the Bayesian regret, which is the regret averaged over a prior distribution on µ). The results, which are displayed in Figure 2.2 (left), show that Selfish is on average a bit worse than MCTopM and a bit better than RhoRand. This is promising as we recall that Selfish can also be used without the observation of the sensing information, which is crucial for other algorithms. However, we also put forward a drawback of Selfish: on some instances, it has a small probability to behave very badly. To illustrate this fact, in the right part of Figure 2.2 we display a histogram of the final regret pseudo-regret

R T = T ∑ M a=1 µ [a] -∑ T t=1 ∑ M m=1 R m t (such that R µ (Selfish-kl-UCB, T ) = E µ [R T ]
) for T = 5000 in a Bernoulli MP-MAB with A = 3 arms and M = 2 players: we see that in 17 out of 1000 simulations, the pseudo-regret of Selfish was of order 7000, whereas the pseudo-regret of other algorithms never exceeded 70. 

Towards Optimal Multi-Player Algorithms

Our emphasis in this document is on optimal algorithms for different types of bandit problems. Hence, we naturally asked ourselves the question: is MCTopM optimal in some way?

Our final regret bound for MCTopM is actually quite loose, first because of the rough approximation (2.3) but mostly because of the large constant that multiplies log(T ) in Theorem 2.3. Still, at the time our paper was published, this upper bound on the total number of collisions was improving upon the one available for RhoRand. But then Boursier and Perchet (2019) came up with an algorithm suffering from fewer collisions. Forgetting collisions, we thought for some time that MCTopM could achieve the minimal number of sub-optimal selections (the bound in Theorem 2.2 was also the smallest existing bound available). But this turned out not to be the case, as our claim was based on an erroneous lower bound. We explain below why one needs to be very careful with the usual change-of-distribution arguments in the context of a multi-player MAB, and what lower bound can still be derived using them.

Existing lower bounds A first observation is that the regret of a multi-player algorithm A M is always larger than the regret of a centralized algorithm A ′ M built from A M by reassigning players that would experience a collision under A M to a random subset of the arms that are still available. If A M is uniformly efficient (R µ (A M , T ) = o(T α ) for all µ), so is A ′ M , hence the lower bound given by [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF] for the centralized multiple-play problem also applies for the MP-MAB.

Proposition 2.5. Any uniformly efficient algorithm for the Bernoulli MP-MAB algorithm (under any of the observation models (I) -(IV)) satisfies ∀µ, lim inf

T →∞ R µ (A M , T ) log(T ) ≥ A a=M +1 1 kl(µ [a] , µ [M ]
) .

This lower bound may be too good to be achievable by a MP-MAB algorithm as there may be a cost for decentralization. At least this was believed until the work of [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF], and was supported by two (wrong) larger lower bounds given by [START_REF] Liu | Distributed learning in Multi-Armed Bandit with multiple players[END_REF] and by us in [START_REF] Besson | Multi-player bandits revisited[END_REF]. As usual, these lower bounds rely on change-of-measure arguments, but there is an extra difficulty in the multi-player model which makes the both aforementioned lower bounds wrong. We now explain what type of lower bounds can be obtained for multi-player algorithms when following our usual methodology.

Change-of-measure arguments for multi-player bandits We first observe that the regret is always lower bounded in terms of the number of sub-optimal selections:

R µ (A M , T ) ≥ a∈[A] TopM (µ [M ] -µ a )E µ [N a (T )].
This inequality is actually non-trivial, as one has to show that the sum of the second and third terms in the regret decomposition of Lemma 2.1 is always non-negative. This is done for example in Lemma 4 of [START_REF] Besson | Multi-player bandits revisited[END_REF]. Hence, a uniformly efficient algorithm also satisfies E µ [N a (T )] = o(T α ) for all arms a ∉ TopM(µ), and thus E µ [N m a (T )] = o(T α ) for each player m. Consider a multi-player algorithm A M based on observation model (IV). Using the vocabulary of the Introduction, the information available to each player m for selecting A m t under A M is I m t-1 where

I m t = (U m 0 , A m 1 , X m 1 , C m 1 , U m 1 . . . , A m t , X m t , C m t , U m t ).
with U m t ∼ U([0, 1]) independent from all other variables. A m t is a deterministic function of I m t-1 . Using similar tools as in the proof of Lemma 0.2 in the Introduction, one can prove that, for all alternative models λ such that TopM(µ) ≠ TopM(λ), for each player m, lim inf

T →∞ KL P I m T µ , P I m T λ log(T ) ≥ 1.
Now the difficulty comes from the computation of KL P

I m T µ , P I m T λ
under the multi-player model in which the information features both sensing (which is random once the chosen arm is fixed) and collisions (which depend on other players). Using the chain rule, one can write

KL P I m T µ , P I m T λ = KL P I m T -1 µ , P I m T -1 λ + KL P X m T ,C m T ,U T I m T -1 µ , P X m T ,C m T ,U T I m T -1 λ .

Now given I m

T -1 , the random variables X m t , C m t and U m t are independent and the distribution of U m t is the same under µ and λ. Hence one can write

KL P I m T µ , P I m T λ = KL P I m T -1 µ , P I m T -1 λ + KL P X m T I m T -1 µ , P X m T I m T -1 λ + KL P C m T I m T -1 µ , P C m T I m T -1 λ = KL P I m T -1 µ , P I m T -1 λ + E µ A a=1 1 (A m (T )=a) kl (µ a , λ a ) + KL P C m T I m T -1 µ , P C m T I m T -1 λ = A a=1 E[N m a (T )]kl (µ a , λ a ) + T t=1 KL P C m T I m T -1 µ , P C m T I m T -1 λ ∶=I m µ,λ (A,T )
, where the last line is obtained by induction. Compared to the standard bandit model, note the presence of an extra term that we denote by I m µ,λ (A, T ). This terms somehow quantifies the "collision information", and the lower bound given in [START_REF] Besson | Multi-player bandits revisited[END_REF] relied on the wrong claim that I m µ,λ (A, T ) = 0. However, P µ (C m t = 1 I m t-1 ) does depend on µ, as the probability that one of the (M -1) other players selects arm A m t depends on their previous observation, which depends on the mean values. Still, for an algorithm for which the collision information term is small, one can derive the following lower bound. Theorem 2.6 introduces a class of algorithms C that are doomed to have a regret at least M times larger than the regret of the best centralized algorithm.

Theorem 2.6. Let C be the class of algorithms that satisfy I m µ,λ (A M , T ) = o(log(T )) for all player m and all µ, λ with TopM(µ) ≠ TopM(λ). Any uniformly efficient algorithm A M that belongs to this class C is such that for any player m and arm a ∈ TopM(µ) lim inf

T →∞ E µ [N m a (T )] log(T ) ≥ 1 kl(µ a , µ [M ] )
,

which yields lim inf T →∞ Rµ(A M ,T ) log(T ) ≥ M × ∑ A a=M +1 1 kl(µ [a] ,µ [M ] ) .
Proof. To fix the ideas, assume that µ is such that µ 1 ≥ µ 2 ≥ . . . µ A . For ε > 0, choosing λ such that

λ k = µ k for all k ≠ a, λ a = µ M + ε.
In this alternative model, TopM(λ) = {1, . . . , M -1, a} ≠ TopM(λ) and lim inf

T →∞ E µ [N m a (T )]kl(µ a , µ M + ε) log(T ) = lim inf T →∞ E µ [N m a (T )]kl(µ a , µ M + ε) + I m µ,λ (A, T ) log(T ) = lim inf T →∞ KL P I m T µ , P I m T λ log(T ) ≥ 1 
Hence, for all ε > 0, lim inf

T →∞ E µ [N m a (T )] log(T ) ≥ 1 kl(µ a , µ M + ε)
and the conclusion follows by letting ε go to zero.

◻

Closing the gap with algorithms exploiting collisions Under MCTopM, E µ [N m a (T )] attains the lower bound given in Theorem 2.6, as proved in Theorem 2.2. However, we did not establish that MCTopM actually belongs to the class C of algorithms to which this lower bound applies, i.e. that I m µ,λ (MCTopM, T ) = o(log(T )). If it is the case, MCTopM would have the smallest possible number of sub-optimal selections among algorithms in the class C.

Still, this is only a conjecture, and it actually rather motivates the search for algorithm outside the class C, for which Theorem 2.6 does not hold and we have a hope to achieve a smaller regret and possibly match the lower bound of Proposition 2.5. An algorithm close to matching this lower bound was recently given by [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF]. The proposed algorithm, called SIC-MMAB relies on the interesting idea that the players may use voluntary collisions as a means of implicit communication (Synchronization Involves Communication). Players can transmit to each other sequences of bits using sequences of collisions/no collisions during some known time steps, which allows to share observation and speed up learning. We will explain this nice idea in more detail in the next section, as we build on it to propose a new algorithm for the heterogeneous MP-MAB problem. [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF] prove that under observation model (III) or (IV) (i.e. when the collision information is observed), the regret of SIC-MMAB is of order

A a=M +1 1 kl(µ a , µ M ) + M A log(T ) + o(log(T )) .
Hence, it is matching the lower bound of Theorem 2.5 up to an extra M A log(T ). This extra factor was recently removed by [START_REF] Proutière | An optimal algorithm in multiplayer multi-armed bandits[END_REF], who propose a similar algorithm exploiting collisions that is asymptotically optimal, under observation models (III)-(IV).

An Algorithm Exploiting Collisions for the Heterogeneous Case

The powerful idea of leveraging collisions for implicit communication can also be used for minimizing regret in the more challenging heterogeneous multi-player model, in which the mean reward of each arm varies across players. In this section, we present the M-ETC-Elim algorithm for this setting, which is based on a joint work with Abbas Mehrabian (who visited SequeL in 2018) and Etienne Boursier and Vianney Perchet who proposed some improvements to our initial algorithm [START_REF] Boursier | A practical algorithm for multiplayer bandits when arm means vary among players[END_REF].

Regret in a heterogeneous MP-MAB model First, let us recall the heterogeneous version of the multiplayer MAB. A stream of i.i.d. rewards (X m a,t ) t∈N which comes from some distribution with mean µ m a is associated to each arm a and each player m. In each round t, player m selects an arm A m t and observes a reward

R m t = X t m (1 -C t m ) with X t m = X m A m ,t the sensing information and C t m = 1 ∃m ′ ≠ m ∶ A m t = A m ′ t
the collision indicator. The goal is still to maximize the total reward E ∑ T t=1 ∑ M m=1 R m t . If the mean rewards µ m a were known and a central controller would assign arms to players, an oracle strategy would boil down to finding a maximum matching between players and arms. A matching is a one-to-one assignment of players to arms; formally, any one-to-one function π ∶ [M ] → [A] is a matching. The utility (or weight) of a matching π is defined as U (π) ∶ = ∑ M m=1 µ m π(m) . We denote by M the set of all matchings and let U ⋆ ∶ = max π∈M U (π) denote the maximum attainable utility. A maximum matching (or optimal matching) is a matching with utility U ⋆ . The strategy maximizing the social utility of the players (i.e. the sum of all their rewards) would be to play according to a maximum matching in each round. The (expected) regret of an algorithm A M with respect to that oracle is defined as

R µ (A M , T ) = T U ⋆ -E T t=1 M m=1 R m t .
We are interested in decentralized algorithms A M = (A 1 , . . . , A M ) that have a small regret. Under a decentralized algorithm, the arm selection strategy A m for each player m can only leverage the past observations made by this player.

For observation model (III), in which player m observes first the collision indicator C m t and then the reward R m t , we now propose an algorithm that has (quasi)-logarithmic regret.

The M-ETC-Elim algorithm Our algorithm operates under the extra assumption that rewards are bounded in [0, 1], that is, we assume that X m a,t ∈ [0, 1] for all a, m, t. The algorithm relies on three ingredients, that are borrowed from [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF]:

• an initialization phase, after which players end up on M different arms, and get assigned M distinct ranks {1, . . . , M }. The distinct arms are the default communication arms of the players, while the rank determine in which order to perform communications. • exploration phases, that are designed to be collision-free (provided that the initialization phase is successful), during which players select some arms on which they should gain information • communication phases, that start simultaneously for all players and have a known pre-determined length L. In a communication phase, the default behavior of each player m is to pull her communication arm a m during L time steps. It is crucial that the communication arms are all distinct. One player (say player i) will send another player (say player j) a sequence of bits of length L, b 1 , . . . , b L using the following method: the receiving player, j, keeps selecting her communication arm a j whereas the sending player, i, selects a j if b i = 1 and a i if b i = 0. By observing the collisions that occurred on arm a j , player j can reconstruct the sequence of 0's and 1's sent by player i, as no other player can have selected this arm. Figure 2.3 provides an illustration. While in the original SIC-MMAB algorithm, designed for the homogeneous setting, each player sends her statistics for each arm to all the other players during each communication phase, we propose in M-ETC-Elim a leader/follower architecture in which the role of the players is asymmetric. The leader, i.e. the player that has rank 1 after the initialization phase, is responsible for aggregating all the estimates of the means (µ m a ) and telling to the followers which arm to explore. These instructions are based on an efficient matching elimination procedure that we describe below.

Under M-ETC-Elim each player executes the algorithm described in Algorithm 7, which requires as input the number of arms A and the time horizon T .

Algorithm 7 M-ETC-Elim with parameter c

1: Input:Time horizon T , number of arms A 2: R, M ← INIT(A, 1 AT ) 3: if R = 1 then 4: LEADERALGORITHM(M,A,c) 5: else 6: FOLLOWERALGORITHM(R,M,A,c) 7: end if
As an initialization procedure we use the one proposed by [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF] which relies on a "musical chairs" phase after which the players end up on distinct arms, followed by a "sequential hopping" protocol that permits to know their ordering. Formally INIT(A, δ 0 ) outputs for each player a rank R ∈ [M ] as well as the value of M , which is initially unknown to the players, with a probability of accuracy of that is at least 1 -δ 0 .

Lemma 2.7. With probability at least 1 -δ 0 , if the M players run the INIT(A, δ 0 ) procedure, which takes less than A log(A δ 0 ) + 2A -2 time steps, all players obtain a distinct ranking from 1 to M .

The leader and follower algorithms, described below, rely on several communication phases as described above. To minimize regret, each player uses as a communication arm her arm in the best matching found so far. In the first communication phase, such an assignment is unknown and players simply use their ranking as communication arm. The rankings are also useful to know in which order communications are performed, as the leader successively communicates messages to the M -1 followers, and then the M -1 followers successively communicate messages to the leader.

Leader and Follower Algorithms Consider a bipartite graph with parts of size M and A, where the edge (m, a) has weight µ m a and associates player m to arm k. The weights µ m a are unknown to the players, but the leader maintains a set of estimated weights that are sent to her by the followers, and approximate the real weights. The goal of these algorithms is for the players to jointly explore the matchings in this graph, while gradually focusing on better and better matchings. For this purpose, the leader maintains a set of candidate edges E, which is initially [M ]×[A], that can be seen as edges that are potentially contained in optimal matchings, and gradually refines this set by performing eliminations, based on the information obtained from the exploration phases and shared during communication phases.

M-ETC-Elim proceeds in epochs whose length is parameterized by an integer c ≥ 1. In epoch p = 1, 2, . . . , the leader weights the edges using the estimated weights. Then for every edge (m, a) ∈ E, the leader computes an associated matching πm,a p defined as the estimated maximum matching containing the edge (m, a). This computation can be done in polynomial time using, e.g., the Hungarian algorithm [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF]. The leader then computes the utility of the maximum matching and eliminates from E any edge for which the weight of its associated matching is smaller by at least 4M ε p , where

ε p ∶ = log(2 δ) 2 1+p c , with δ ∶ = 1 M 2 AT 2 .
(2.4)

The leader then forms the set of associated candidate matchings C ∶ ={π m,a p , (m, a) ∈ E} and communicates to each follower the list of arms to explore in these matchings. Then exploration begins, in which for each candidate matching every player pulls its assigned arm 2 p c times and records the received reward. Then another communication phase begins, during which each follower sends her observed estimated mean for the arms to the leader. More precisely, for each explored arm, the follower truncates the estimated mean (a number in [0, 1]) and sends only the p c +1 2 most significant bits of this number to the leader. The leader updates the estimated weights and everyone proceeds to the next epoch.

If at some point the list of candidate matchings C becomes a singleton, it means that (with high probability) the actual maximum matching is unique and has been found; so all players jointly pull that matching for the rest of the game, that is, the players enter an exploitation phase. Note that in the presence of several optimal matchings, the players will not enter the exploitation phase but will keep exploring several optimal matchings, which still ensures small regret. On the contrary, in the presence of a unique optimal matching, they are guaranteed to eventually enter the exploitation phase. Also, observe that the set C of candidate optimal matchings does not necessarily contain all potentially optimal matchings, but all the edges in those matchings remain in E and are guaranteed to be explored.

The pseudo-code of the Leader and Follower algorithms are given in Algorithm 8 and 9 respectively. In these pseudo-code, comm refers to a call to the communication protocol. In Algorithm 8, we specify for each call to the communication protocol the identity of the communicating players, as well as the length L of the message. In Algorithm 9, we omit to mention that each corresponding call to comm lasts (M -1) × L time steps, divided in (M -1) communication slots, and the player with rank R is a communicating player in the (R -1)-th slot. 

C ← ∅

# list of associated matchings 6:

π 1 ← argmax ∑ M n=1 μn π(n) ∶ π ∈ M (Hungarian algorithm) 7:
for (m, a) ∈ E do 8: for i = 1, 2, . . . , size(C) do 5:

π ← argmax ∑ M n=1 μn π(n) ∶ π(m) = a (Hungarian algorithm) 9: if ∑ M n=1 μn π 1 (n) -μn π(n) ≤4M ε p then
Receive the arm assigned to this player in

C[i] (comm) 6:
end for 7:

Receive the new communication arm (comm)

8:

Receive the communication arm of the leader (comm)

9:

if size(C) = 1 then 10:

# enter exploitation phase 11:

Pull for the rest of the game the arm assigned to this player in the unique matching in C Truncate μR a to μR a using the p c +1 2 most significant bits 20:

end for

21:

Send the values μR 1 , μR 2 , . . . , μR A to the leader A× (comm) 22: end for Regret analysis of M-ETC-Elim We now present a regret analysis of M-ETC-Elim which permits to derive problem-dependent regret bounds that feature the gap of each matching π, defined as ∆(π) ∶ =U ⋆ -U (π). In Theorem 2.8, we present the scaling of these problem-dependent bounds in terms of the smallest gap defined as ∆ ∶ = inf π∶∆(π)>0 ∆(π). Observe that ∆ > 0 even in the presence of several optimal matchings. Theorem 2.8. Assume that ∆ < ∞4 . For every integer parameter c ∈ {1, 2, . . .}, M-ETC-Elim satisfies

R µ (M-ETC-Elim, T ) = O ⎛ ⎜ ⎝ M A M 2 log(T ) ∆ 1+ 1 c ⎞ ⎟ ⎠ .
Furthermore, if the optimal matching is unique, M-ETC-Elim with parameter c = 1 satisfies

R µ (M-ETC-Elim, T ) = O M 3 A log(T ) ∆ .
The heterogeneous multi-player multi-armed bandit was first studied by [START_REF] Bistritz | Distributed multi-player bandits -a game of thrones approach[END_REF], who proposed the Game-Of-Thrones (GOT) algorithm and proved a O(log 2 (T )) regret upper bound for it, leaving as an open question as to whether one can get closer to the Ω(log(T )) lower bound. The motivation of our work was to try to answer this question, and the second statement in Theorem 2.8 does answer it positively in the presence of a unique optimal matching. For multiple optimal matchings, we prove that there exists an algorithm with a nearly-logarithmic regret: for every κ > 0, M-ETC-Elim run with parameter c = ⌊1 κ⌋ has a O(log 1+κ (T )) regret.

As can be seen in the proof sketch given below, the result for multiple optimal matchings is quite asymptotic in nature (it holds for T larger than some constant T 0 (c) which can be very large) and is therefore mostly of theoretical interest. However, the improved result obtained for a unique optimal matching (which comes from the fact that the players are guaranteed to enter an exploitation phase after a controlled number of epochs in that case) doesn't suffer from this drawback. For M-ETC-Elim with c = 1 we further provide in [START_REF] Boursier | A practical algorithm for multiplayer bandits when arm means vary among players[END_REF] a problem-independent O(M 3 AT log(T )) regret bound that holds whether or not the optimal matching is unique, and recommend the use of this parameter tuning in practice, which outperforms GOT in our experiments.

In parallel to our work, several authors also improved the log 2 (T ) upper bound of [START_REF] Bistritz | Distributed multi-player bandits -a game of thrones approach[END_REF]. First, in an updated preprint, [START_REF] Bistritz | Game of thrones: Fully distributed learning for multi-player bandits[END_REF] propose a new analysis of GOT (with slightly modified phase lengths) which also achieves O(log 1+κ (T )) for every κ > 0 (with a worse, less explicit scaling in ∆). Then, [START_REF] Tibrewal | Multiplayer multi-armed bandits for optimal assignment in heterogeneous networks[END_REF] independently studied a slightly different model in which each player in each round has the option of "observing whether a given arm has been pulled by someone," without actually pulling that arm (thus avoiding collision due to this "observation"). Due to the stronger feedback, communications do not need to be implicitly done through collisions and bits can be broadcast to other players via this operation. Still, algorithms for this alternative feedback model can be modified to obtain algorithms for the MP-MAB. The two algorithms proposed by [START_REF] Tibrewal | Multiplayer multi-armed bandits for optimal assignment in heterogeneous networks[END_REF] share similarities with M-ETC-Elim: they also have exploration, communication and exploitation phases, but they do not use eliminations. Tibrewal et al. ( 2019) also obtain logarithmic regret in the presence of a unique optimal matching (with a slightly worse dependency in 1 ∆). Moreover, we note that the idea of "implicit communication" is also present in this work, that was done independently from [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF].

We conclude this discussion with a few words about optimality for the heterogeneous multi-player MAB. The Ω(log(T )) lower bound proven by [START_REF] Bistritz | Distributed multi-player bandits -a game of thrones approach[END_REF] hides the dependency in the problem parameter, hence it is hard to know whether the bounds in Theorem 2.8 have a good scaling in A, M and ∆. However, just like in the homogeneous case, these bounds can be compared to the existing bounds for an easier centralized version of the problem, in which a central controller would choose one matching from players to arms in every round. This setting is a particular instance of a combinatorial semi-bandit problem [START_REF] Gai | Combinatorial network optimization with unknown variables: Multi-armed bandits with linear rewards and individual observations[END_REF]. [START_REF] Audibert | Regret in online combinatorial optimization[END_REF] provide a minimax Ω( √ M AT ) lower bound for combinatorial bandits, while [START_REF] Combes | Combinatorial bandits revisited[END_REF] give a problem dependent lower bound of the form c(µ, M ) log(T ) and show that c(µ, M ) = Θ (A ∆) for many common combinatorial structures, including matchings. This tells us that the dependency in M in our bounds may not be optimal. However, we note that the popular CUCB algorithm for combinatorial bandits [START_REF] Chen | Combinatorial multi-armed bandit: General framework and applications[END_REF] has a regret upper bound that scales in O (M 2 A ∆) log(T ) [START_REF] Kveton | Tight regret bounds for stochastic combinatorial semi-bandits[END_REF], which is only a factor M smaller the the bound obtained in Theorem 2.8 for a unique optimal matching. Sketch of proof of Theorem 2.8. We let lg(T ) = log 2 (T ) to ease the notation.

Let C p and E p denote the set of candidate matchings and candidate edges used in epoch p, and for each matching π let Ũp (π) be the utility of π that the leader can estimate based on the information received by the end of epoch p. Let pT be the total number of epochs before the (possible) start of the exploitation phase. As 2 pc T ≤ T , we have pT ≤ lg(T ). Recall that a successful initialization means all players identify M and their ranks are distinct. Define the good event

G T ∶ = INIT(A, 1 AT ) is successful and ∀p ≤ pT , ∀π ∈ C p+1 , Ũp (π) -U (π) ≤ 2M ε p .
During epoch p, for each candidate edge (m, a), player m has pulled arm a at least 2 p c times and the quantization error is smaller than ε p . Hoeffding's inequality and a union bound over at most lg(T ) epochs yield that G T holds with large probability.

Lemma 2.9. P (G T ) ≥ 1 -2 M T .

We now upper bound the pseudo-regret

R T = ∑ T t=1 U ⋆ -∑ M m=1 µ m A m t (1 -C m t )
when the event G T holds, by separately upper bounding the contributions from the different phases of the algorithm. We also use sometimes that the pseudo-regret incurred in each time step t is (crudely) upper bounded by M .

• initialization phase: from Lemma 2.7, the initialization lasts A log(A 2 T ) + 2A -2 times steps, which contributes R INIT = O(M A log(A 2 T )) to the pseudo-regret. • communication phases: in each epoch p, the leader first communicate to the M -1 other players 1. one message of length lg(M A) (the size of C p ) 2. at most M A messages of length lg(A) (the list of arms to explore) and 3. two messages of length lg(A) (the communicating arms). This takes a total of (M -1) [(M A + 2) lg(A) + lg(M A)] time steps. Then each follower communicates to the leader A messages of length (1 + p c ) 2, which uses a total of (M -1)A(1 + p c ) 2 times steps. Summing over epochs yields a total contribution to the pseudo-

regret of R COMM = O(M 3 A lg(A)p T + M 2 A(p T ) c+1
). • exploitation phase: on the event G T , C p always contains an optimal matching, hence if the players enter an exploitation phase, they suffer zero regret in it: R EXPLOIT = 0.

During exploration phases, the players always play arms in a matching, hence no collision occurs. The contribution to the pseudo regret of the exploration phase in epoch p is

π∈Cp ∆(π)2 p c = (m,a)∈Ep ∆m,a p 2 p c ,
where ∆m,a p = U ⋆ -U (π m,a p ) is the gap of the matching associated to the edge (m, a) in epoch p. Now for each edge (m, a), we let π m,a be the best sub-optimal matching containing that edge:

π m,a ∶ =argmax {U (π) ∶ π(m) = a, U (π) < U ⋆ } .
We further introduce, for any matching π, the quantity

P (π) ∶ = inf{p ∈ N * ∶ 8M ε p < ∆(π)} On G T , if p > P (π m,a
) either (m, a) does not belong to E p or its associated matching πm,a p is an optimal matching, i.e. ∆m,a

p = 0. Moreover, if (m, a) ∈ E p for p ≤ P (π m,a ), it holds that ∆m,a m ≤ ε p-1 ε P (π m,a )
∆(π m,a ) (which follows by combining the fact that ∆m,a m ≤ 8M p-1 , otherwise (m, a) ∉ E p and ∆(π m,a ) > 8M P (π m,a ) ). Finally, the total pseudo-regret due to exploration phases is upper bounded by

R EXPLORE = (m,a)∈[M ]×[A] P (π m,a ) p=1 ε p-1 ε P (π m,a ) ∆ (π m,a ) 2 p c .
The regret of M-ETC-Elim is upper bounded as

R µ (M-ETC-Elim, T ) ≤ E [R T 1(G T )] + M T P G T ≤ R INIT + R EXPLORE + R COMM + R EXPLOIT + 2
From there, the conclusion is mostly technical and follows from upper bounds on R COMM and R EXPLORE , which respectively require to upper bound pT and the sum of ∆ (π m,a ) 2 p c . An instrumental result for this purpose is Lemma 6 from [START_REF] Boursier | A practical algorithm for multiplayer bandits when arm means vary among players[END_REF], that we re-state below.

Lemma 2.10. If T is larger than T 0 (c) ∶= exp 2 c c log c (1+ 1 2c ) , for any matching π,

∆(π)2 P (π) c ≤ 32M 2 log(2M 2 AT 2 ) ∆(π) 1+ 1 c if c > 1, ∆(π)2 P (π) ≤ 64M 2 log(2M 2 AT 2 ) ∆(π) if c = 1.
Moreover, 2 c ≤ 2 lg(log(T )), pT ≤ 2(lg T ) 1 c and (p T ) c ≤ e lg T .

The improved result for c = 1 in the presence of a unique optimal matching follows the improved bound in Lemma 2.10 for c = 1 but also from a tighter bound on pT . Indeed, when the optimal matching is unique, on G T one is guaranteed to enter an exploration phase when the second best matching π 2 satisfies ∆(π 2 ) > 8M p , which leads to

pT ≤ lg 64M 2 log(2M 2 AT 2 ) ∆ 2 .

◻

To summarize, we presented an analysis of two different algorithms, MCTopM and M-ETC-Elim for the homogeneous and heterogeneous multi-player multi-armed bandit, respectively. The two algorithms also rely on different observation models: MCTopM requires the observation of the sensing information followed by the reward (observation model (II)) while M-ETC-Elim requires the observation of the collision information followed by the reward (observation model (III)). While the two algorithms achieve (nearly) logarithmic regret, they have not been proved to be optimal, that is, they do not exactly match existing lower bounds.

In the homogeneous setting, we explained that when the collisions are observed (under models (III)-(IV)) an asymptotically optimal algorithm has been found [START_REF] Proutière | An optimal algorithm in multiplayer multi-armed bandits[END_REF], whose regret is similar to that of the best centralized algorithm. However, to the best of my knowledge, there is no algorithm matching the lower bound of Proposition 2.5 under observation models (I)-(II), despite the fact that they are particularly relevant for applications to IoT communications or Opportunistic Spectrum Access. For learning based on rewards only (i.e., under model (I)), the best known logarithmic regret bounds scale in [START_REF] Lugosi | Multiplayer bandits without observing collision information[END_REF] and [START_REF] Boursier | SIC-MMAB: synchronisation involves communication in multiplayer multi-armed bandits[END_REF]. Under observation model (II), to the best of my knowledge MCTopM enjoys the smallest regret bound among algorithms analyzed in this setting, but is probably far from optimal. Hence, investigating the minimal regret under observation (I)-(II) remains a crucial open question.

(M A) log(T ) (µ [M ] -µ [M +1] ) 2
M ∑ a>M (µ [M ] -µ [a] ) -1 + M A 2 µ [A] log(T )
As for the heterogeneous setting, it seems algorithms have only been proposed under the assumption that collisions can be observed, and it would be interesting to study the heterogeneous MP-MAB model under more challenging observation models.

Part II

Active Identification Problems

Chapter 3

A Universal Stopping Rule for Active Identification

Over the past years, I have worked on different examples of pure exploration problems, in which the samples collected by the agent in a bandit model are no longer perceived as rewards, but instead some decision has to be made as quickly as possible.

In this chapter, I introduce a general framework called Active Identification that encompasses these different problems, and present a single stopping rule, which leads to correct decision with high probability, whatever the sampling rule. This stopping rule was introduced under different names in different papers, but in this document I settle for the Parallel GLRT test. After presenting this stopping rule, I also highlight the technical tools needed to prove its correctness, namely time-uniform deviation inequalities.

Active Identification in a Bandit Model

As in the rest of this document, we consider a bandit model with A arms, parameterized by its vector of means µ = (µ 1 , µ 2 , . . . , µ A ), typically an exponential family bandit model. The set of possible means µ belongs to some known region R ⊆ I A , a learner seeks to discover something about the unknown vector µ, as quickly and accurately as possible.

More precisely, given I regions R 1 , . . . , R I that form a covering of the region R, i.e., such that R ⊆ ⋃ I k=1 R i , an agent wants to identify a region that contains µ. In order to gain information to identify such a region, she interacts with the bandit model as usual, by selecting an arm A t at time t and observing an independent sample X t from the distribution with mean µ At . Note that this sample is no longer called a reward. After enough observations, the agent can make a confident recommendation of a region.

A strategy for active identification in a bandit model consists of three components. Letting (F t ) t∈N * be the filtration generated by the observations collected by the agent up to time t (and some possible exogenous randomness), a strategy is composed of • a sampling rule A t which is F t-1 measurable,

• a stopping rule τ which is a stopping time with respect to F t that indicates when the agent stops collecting observations • a recommendation rule îτ which outputs a guess for a region to which µ belongs In words, the objective of the agent is to make a confident recommendation (i.e. that is correct with high probability) after seeing as few samples as possible.

After presenting a few motivating examples, we will introduce several mathematical formalizations of this objective that have been studied, notably the fixed-confidence setting that will be our focus.

Examples

In the bandit literature, the first and most studied active identification problem is (ε)-Best Arm Identification (BAI), in which the goal is to identify the arm with largest mean.

(Exact) Best Arm Identification In this context, the region R is either the set of all possible mean vectors R = I A or may be restricted to the set of vectors that have a unique optimal arm

R = µ ∈ I A ∶ ∃a ∈ [A] ∶ µ a > max b≠a µ b .
There are I = A regions with R i being the set of models in which arm i is optimal:

R i = µ ∈ R ∶ µ i > max a≠i µ a .
If R is the set of vectors with a unique optimal arm, note that R 1 , . . . , R A form a partition of R and one seeks to identify to which fold of this partition the true vector of means µ belongs.

ε -Best Arm Identification The following relaxation of the BAI problem, that depends on a parameter ε ∈ (0, 1) has also been studied a lot: we set R = I A and for all i ∈ [A],

R i = µ ∈ R ∶ µ i ≥ max a≠i µ a -ε .
In this setting, the goal is to identify one arm whose mean is at most ε away from that of the optimal arm. In that case, note that the R i no longer form a partition of R.

Why BAI? The question of finding the distribution with largest mean among a pool of distributions (possibly with some kind of adaptive sampling) is an old question in statistics, studied since the 1950s under the name ranking and selection [START_REF] Bechhofer | A single-sample multiple decision procedure for ranking means of normal populations with known variances[END_REF][START_REF] Bechhofer | Sequential identification and ranking procedures[END_REF] A typical application of Best Arm Identification problems is A/B(/C) testing, which is a process often used in e-commerce in which the goal is to assess the impact that different versions of the same webpage have (e.g. different layout as in the naive example of Figure 3.1) on the conversion probability. A conversion is some target event the company wants to enforce such as visitors buying products, spending time on the website, creating an account, subscribing to a mailing list, etc. In order to identify which version of its webpage has the largest conversion probability, the company implements a testing phase in which the different versions are shown to visitors and the conversion indicators are observed. This testing phase is called A/B Testing when two versions are compared, and A/B/C Testing when the test includes 3 versions or more. A default strategy for the testing phase is to allocate each version to n users, when n is chosen in advance as a function of the minimum improvement we want with respect to a known baseline. Instead, viewing A/B testing as a best arm identification problem allows for fully-sequential A/B testing: for each visitor t, the company may look at the past data to decide which version A t should be displayed, observe a possible conversion X t and may also decide if the test should be stopped, without specifying a sample size or a fraction of allocation in advance. As the conversion probabilities are typically small and may be quite close to each other, it may be relevant to consider the ε-relaxation of the BAI problem to speed-up the test.

If the objective of a company can be phrased as maximizing its total number of conversions (e.g. when the conversions correspond to sales), one can also discuss the relevance of such a testing phase, in which rewards (conversions) are ignored. Indeed, regret minimization algorithms are tailored to maximize the total number of conversions, and could be more suitable in this setting. So why not using them? A possible answer could be practical: using (e.g.) a UCB algorithm would require the company to keep alternating between a pool of versions of its website, which can be costly (a computation needs to be performed for each visitor to decide which version should be displayed). Performing a short exploration (testing) phase followed by an exploitation phase in which the best version is displayed for a long time is more convenient. In the paper [START_REF] Garivier | On explore-then-commit strategies[END_REF], we investigate how sub-optimal this approach that decouples exploration and exploitation can be, if the overall goal is to maximize rewards.

Beyond Best Arm Identification In the past few years, there has been some interest in more complex pure-exploration problems that share with the best arm identification problem the absence of an incentive to maximize rewards, but in which one should answer a more complex question about the means µ than "what is the largest component in µ?".

The general framework presented in this document is close to the adaptive sequential testing framework that we introduced in Kaufmann and Koolen (2018), which is similar to the General-Samp problem of [START_REF] Chen | Nearly optimal sampling algorithms for combinatorial pure exploration[END_REF] and to the best partition identification problem of [START_REF] Juneja | Sample complexity of partition identification using multi-armed bandits[END_REF]. In these three works, the regions R i are supposed to form a partition of R, whereas Degenne and Koolen (2019) consider possible overlapping regions. Finally, the structured best arm identification framework of [START_REF] Huang | Structured best arm identification with fixed confidence[END_REF] is a special case of this framework.

To mention a few concrete examples one can first go back to the dose finding problem discussed in Chapter 1, in which each arm a models the toxicity of a dose a, and the goal is to find the dose whose toxicity is the closest to some threshold θ (the Maximum Tolerated Dose). Assuming increasing toxicities leads us to define

R = µ ∈ [0, 1] A ∶ ∀a ∈ [A -1], µ a ≤ µ a+1
and the set of means for which a particular dose i is the MTD is given by

R i = µ ∈ R ∶ µ i -θ = min a µ a -θ .
This particular active identification problem was studied by Garivier et al. (2019a).

As another example we can mention anomaly detection: assume that we are monitoring A different processes each having a probability µ a to have a regular behavior. On may decide to trigger an intervention if one is convinced that there exists a process with mean µ a that is smaller than some (small) threshold γ. The corresponding active identification problem sets R = [0, 1] A and

R 1 = µ ∈ R ∶ min a µ a < γ and R 2 = µ ∈ R ∶ min a µ a ≥ γ .
We will discuss this example in Chapter 5, in which it is motivated by a different story, related to the design of Monte-Carlo Tree Search algorithms.

Several mathematical frameworks

Several performance measures have been introduced in the bandit literature for assessing the quality of a best arm identification strategy. Most of them can be naturally extended to strategies for active identification (also called algorithms), that we recall consist of a triple (A t , τ,î τ ). They seek to achieve different trade-offs between the number of samples needed before making a recommendation, τ , and the probability of error of this recommendation, P µ (µ ∉ R îτ ).

In the fixed-budget setting, the total number of samples τ cannot exceed a given budget T (i.e. τ = T ), and the goal is to minimize the error probability P µ (µ ∉ R îτ ). Fixed-budget strategies are allowed to use the knowledge of T .

In the fixed-confidence setting, given a risk parameter δ ∈ (0, 1), the error probability P µ (µ ∉ R îτ ) has to remain smaller than δ for every µ ∈ R, and the goal is to minimize the (random) number of samples τ needed to make the recommendation, either in expectation or with high probability. Fixed-confidence strategies use the knowledge of δ in the stopping rule and possibly in the sampling rule.

In the anytime exploration framework, instead of issuing a recommendation after enough exploration, a recommendation I t ∈ [I] has to be made at the end of every round (I t is F t -measurable), which can be seen as the best guess for an hypothesis if exploration were to be stopped after t rounds. The goal is to minimize, for all t, the error probability P µ (µ ∉ R It ). Unlike in the previous frameworks, a strategy for anytime exploration does not depend on the knowledge of a maximal exploration budget (T ) or a maximal tolerated error probability (δ) and is therefore called anytime.

The three different objectives are summarized in the following table.

Fixed-budget Fixed-confidence Anytime Exploration Parameter budget T risk δ none Constraint to satisfy

τ ≤ T P µ (µ ∉ R îτ ) ≤ δ none Objective to minimize P µ (µ ∉ R îτ ) E µ [τ ] P µ (µ ∉ R It ), for all t
The fixed-budget setting was first introduced for the best arm identification problem by [START_REF] Audibert | Best Arm Identification in Multi-armed Bandits[END_REF] and the fixed confidence setting was first studied for ε-best arm identification by [START_REF] Even-Dar | Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems[END_REF]. The anytime exploration framework was studied by [START_REF] Bubeck | Pure Exploration in Finitely Armed and Continuous Armed Bandits[END_REF] and [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF] for best arm identification and top-m arms identification respectively. In the context of BAI specifically, instead of minimizing the probability of error, an alternative goal can be minimizing the so-called simple regret [START_REF] Bubeck | Pure Exploration in Finitely Armed and Continuous Armed Bandits[END_REF], r t = E[µ ⋆ -µ It ], which quantifies how far from optimal the proposed candidate for the best arm is. Finally, we will mention in Chapter 4 another Bayesian performance measure, recently introduced by Russo (2016).

After describing these three different frameworks, a natural question is whether one can convert algorithms from one framework to another. A strategy for anytime exploration can naturally be used in the fixed-budget setting (setting îτ = I τ ), but it may not attain the minimal possible error for a particular budget T . Similarly, such a strategy may be used in the fixed-confidence setting when coupled with a good stopping rule, but upper bounding its sample complexity τ may be tricky. In the other direction, the sampling rule A t of a fixed-budget or fixed-confidence algorithm may be used directly for anytime exploration (when coupled with a good recommendation rule I t ) only if it is anytime, that is independent of the budget T or the risk parameter δ. Still, its analysis may be tricky in the anytime exploration setting. As for "conversions" from the fixed-budget to the fixed-confidence setting (discussed for example in [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF]; Kaufmann and Kalyanakrishnan ( 2013)), they are only possible when some complexity constant characterizing the bandit instance (depending on the unknown means) is known.

In part II of this document, we will present active identification strategies for the fixed-confidence setting. In the rest of this chapter, we will first present a general stopping rule, that may be used for any active identification problem. Then in Chapter 4 and 5, we will further study the sample complexity τ of some active identification algorithms. We will in particular propose anytime sampling rules A t that, used in conjunction with our stopping rule, lead to an asymptotically optimal sample complexity.

The Parallel GLRT Stopping Rule

In this section, we propose a general stopping rule for active identification in a bandit model in the fixed confidence setting. Recall that given I regions

R 1 R 2 . . . R I ,
the goal is to identify one region to which µ ∈ R belongs. For this purpose, we use a sampling rule (A t ) t∈N to collect data from the different arms: at each time step t, we collect X t ∼ ν µ A t . We stop collecting information after a random number of samples τ and output a recommendation îτ ∈ [I]. This recommendation should satisfy

∀µ ∈ R, P µ (τ < ∞, µ ∉ R îτ ) ≤ δ.
A strategy satisfying this property is called δ-correct.

Assuming that the sampling rule (A t ) t∈N is given and that we do not try to optimize it, the two other components of the identification strategy, (τ,î τ ) can be viewed as a sequential test of multiple, composite hypotheses H 1 ∶ (µ ∈ R 1 ), . . . , H I ∶ (µ ∈ R I ). For the resulting strategy to be δ-correct, the different types of testing error should be uniformly controlled.

Sequential testing was first studied by [START_REF] Wald | Sequential Tests of Statistical Hypotheses[END_REF], who proposed the Sequential Probability Ratio Test (SPRT) for two simple hypotheses, e.g. H 1 ∶ (µ = µ 1 ) and H 2 ∶ (µ = µ 2 ) when collecting i.i.d. samples of a distribution with mean µ. Among the sequential tests with prescribed type I and type II errors, the SPRT is proved to have the smallest average duration E µ i [τ ] for i ∈ {1, 2}. Later, particular examples of sequential tests of composite hypotheses (in which R 1 and R 2 are not reduced to a singleton) have also been studied, see e.g. [START_REF] Robbins | The expected sample size of some tests of power one[END_REF]; [START_REF] Lai | Boundary Crossing problems for samples means[END_REF]. Our framework is more general as we allow for more than two hypotheses, that are possibly overlapping, when the regions R i do not form a partition of R.

Definition of the Parallel GLRT

The idea of the Parallel Generalized Likelihood Ratio Test (GLRT) is to run in parallel I sequential tests of the following two non-overlapping hypotheses

H0 ∶ (µ ∈ R R i ) against H1 ∶ (µ ∈ R i ),
for each i ∈ {1, . . . , I}. The Parallel GLRT stops when one of these tests rejects H0 . The i-th test causing to stop means that µ is believed to belong to R i (this does not exclude that it may also belong to other regions), in which case we set îτ = i.

To test H0 against H1 , we propose to use a Generalized Likelihood Ratio Test, which is a wellknown extension of the standard Likelihood Ratio Test used for simple hypotheses [START_REF] Wilks | The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses[END_REF]. We denote by (X 1 , . . . , X t ; λ) the likelihood of the first t observation that are collected in a bandit model parameterized by λ ∈ R, under some sampling rule A t (that is, X t ∼ ν λ A t ). The Generalized Likelihood Ratio statistic based on t samples is defined as

max λ∈R (X 1 , . . . , X t ; λ) max λ∈R R i (X 1 , . . . , X t ; λ) = inf λ∈R R i (X 1 , . . . , X t ; μ(t)) (X 1 , . . . , X t ; λ)
, where μ(t) is the maximum likelihood estimator (in R). Large values of this GLR statistic tend to reject H0 . Calibrating the rejection threshold for a GLR based on a fixed sample size is often done by resorting to asymptotic arguments (like Wilks' phenomenon [START_REF] Wilks | The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses[END_REF]) describing the limit distribution of the GLR under the null hypothesis; this is however not useful for the finite-confidence bandit analysis that follows. We propose to use a threshold function β(t, δ) that depends on the current number of samples t and on the risk parameter δ. In Section 3.3 we will provide a possible choice for the threshold β(t, δ) that guarantees the δ-correctness of the corresponding test. The parallel GLRT using the threshold function β(t, δ) is formally defined in the following way. Given δ ∈ (0, 1), the stopping rule is

τ δ = inf t ∈ N ∶ max i=1,...,I inf λ∈R R i log (X 1 , . . . , X t ; μ(t)) (X 1 , . . . , X t ; λ) > β(t, δ) (3.1)
and the decision rule is

îτ δ ∈ argmax i=1,...,I inf λ∈R R i log (X 1 , . . . , X τ δ ; μ(τ δ )) (X 1 , . . . , X τ δ ; λ) (3.2)
(ties can be resolved arbitrarily). Note that the maximum over i ∈ {1, . . . , I} in the definition of τ δ and îτ δ can be reduced to the set of hypotheses to which μ(t) belongs.

Simple Examples

Exponential family bandit model If we go back to our recurrent example of exponential family bandit models, the likelihood of the observation under a vector of means λ can be written

(X 1 , . . . , X t ; λ) ∝ t s=1 exp ḃ-1 (λ As )X s -b( ḃ-1 (λ As )) ,
where b is the log-partition function of the exponential family (see the Introduction or Notation Index for the notation related to exponential families). Letting μ(t) = (μ 1 (t), . . . , μK (t)) be the vector of empirical means of the arms, for every λ = (λ 1 , . . . , λ K ) ∈ R the log-likelihood ratio can be written

log (X 1 , . . . , X t ; μ(t)) (X 1 , . . . , X t ; λ) = A a=1 N a (t) μa (t) ḃ-1 (μ a (t)) -ḃ-1 (λ a ) -b ḃ-1 (μ a (t)) + b ḃ-1 (λ a ) = A a=1 N a (t)d (μ a (t), λ a ) , (3.3)
where we use the closed-form expression of the Kullback-Leibler divergence in an exponential family that can be found in Equation ( 1) in the Introduction.

Hence, the Parallel GLRT can be expressed as

τ δ = inf t ∈ N ∶ max i∈[I] inf λ∈R R i A a=1 N a (t)d (μ a (t), λ a ) > β(t, δ) , (3.4) îτ δ = argmax i∈[I] inf λ∈R R i A a=1 N a (τ δ )d (μ a (τ δ ), λ a ) .
This expression still requires to compute a minimizer over R R i which can be solved in closed form for some particular choice of regions, as can be seen in the next example or in those of the next chapters.

Testing two overlapping hypotheses We now present a simple example of a sequential test between two overlapping hypotheses. Given a stream of independent samples X 1 , X 2 , . . . that follow a N µ, σ 2 distribution, with a known variance σ 2 , the statistical problem is to determine whether µ is positive or negative, but with an indifference region of width 2ε. We consider the two hypotheses

H 1 ∶ (µ < ε) and H 2 ∶ (µ > -ε) .
The hypotheses H 1 and H 2 are not mutually exclusive. In this particular example, one aims at building a stopping rule τ δ and a recommendation rule îτ δ such that

∀µ ≤ -ε, P µ (î τ δ = 2) ≤ δ and ∀µ ≥ ε, P µ (î τ δ = 1) ≤ δ , (3.5) but any answer îτ δ is considered correct when µ ∈ R 1 ∩ R 2 = (-ε, ε).
This testing problem can be seen as a particular case of active identification in an exponential family bandit model with a single, Gaussian arm with mean µ = µ, in which the two regions are R 1 = (-∞, ε) and R 2 = (-ε; +∞). With d(µ, µ ′ ) = (µ-µ ′ ) 2 (2σ 2 ) and this particular choice of regions, the expression in (3.4) can be made more explicit and the Parallel GLRT test becomes

τ δ = inf t ∈ N ∶ t( μt + ε) 2 2σ 2 > β(t, δ) , îτ δ = 2 if and only if (μ τ δ > 0),
where μt = 1 t ∑ t s=1 X s is the empirical mean of the observation. The optimality of this test in discussed in [START_REF] Garivier | Non-asymptotic sequential tests for overlapping hypotheses and application to near optimal arm identification in bandit models[END_REF].

We now explain how to choose the threshold β(t, δ) to guarantee δ-correctness for general active identification problems in an exponential family bandit model.

Correctness of the Parallel GLRT stopping rule

In this section we introduce a new deviation inequality to prove the δ-correctness of the Parallel GLRT stopping rule for active identification in an exponential family bandit model, for any sampling rule. We then provide a proof of this result, which sheds light on some interesting martingale tools.

A New Deviation Inequality

An expression of the Parallel GLRT (τ δ ,î τ δ ) for active identification in an exponential family bandit model was given in (3.4). Based on this expression, a generic argument to upper bound the error probability is the following:

P µ τ δ < ∞, µ ∉ R îτ δ ≤ P ∃t ∈ N * , ∃i ∶ µ ∉ R i , inf λ∈R R i A a=1 N a (t)d(μ a (t), λ a ) > β(t, δ) ≤ P ∃t ∈ N * , ∃i ∶ µ ∈ R R i , A a=1 N a (t)d(μ a (t), µ a ) > β(t, δ) ≤ P ∃t ∈ N * , A a=1 N a (t)d(μ a (t), µ a ) > β(t, δ) . (3.6)
To upper bound this last probability, one needs a concentration inequality in which:

• the deviation of the empirical means from their true values are measured with the KL-divergence d(⋅, ⋅) (just like in the inequality of Lemma 0.3 in the Introduction which is instrumental for the analysis of kl-UCB)

• the deviations are uniform over time (t ∈ N)

• the deviations are measured simultaneously for the A arms (the sum of N a (t)d(μ a (t), µ a )'s need to be controlled) In a joint work with Wouter Koolen (Kaufmann and Koolen, 2018), we propose a new concentration inequality which fulfills these three requirements, which is stated in Theorem 3.1 below. It features a non-explicit function T defined by

T (x) = 2 h h -1 (1 + x) + log(2ζ(2)) 2 (3.7)
where ζ is the Riemann zeta function and the functions h and h are defined as follows. For u ≥ 1, we let

h(u) = u -log u.
As h is a one-to-one mapping from [1, +∞) to [1, +∞) its inverse function h -1 is well defined and for any x ≥ 0, we let

h(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ e 1 h -1 (x) h -1 (x) if x ≥ h -1 (1 log(3 2)), ( 3 
2)(x -log log(3 2)) otherwise.
(3.8)

The function T is easy to compute numerically and we show in Kaufmann and Koolen (2018) that it satisfies T (x) ≃ x + 4 log 1 + x + √ 2x for x ≥ 5 and T (x) ∼ x when x is large.

Theorem 3.1. Let µ be an exponential family bandit model. Under any sampling rule (A t ), for every subset S ⊆ [A],

P µ ∃t ∈ N ∶ a∈S N a (t)d(μ a (t), µ a ) ≥ 3 a∈S log(1 + log N a (t)) + S T x S ≤ e -x .
The proof of this inequality, given below, relies on the construction of a particular mixture martingale. For a subset S of size 1 and Gaussian distributions, this method can be traced back to the work of [START_REF] Robbins | Statistical Methods Related to the law of the iterated logarithm[END_REF] and similar inequalities were also given by [START_REF] Jamieson | lil'UCB: an Optimal Exploration Algorithm for Multi-Armed Bandits[END_REF]; [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF]. In this particular case, observe that the presence of log(1 + log(t)) in the right-hand side of the inequality is essentially tight due to the law of iterated logarithm. For S > 1 and general exponential families, the only other inequality of this flavor is the one proposed by [START_REF] Magureanu | Lipschitz Bandits: Regret lower bounds and optimal algorithms[END_REF], which holds for t in some times range {1, . . . , n} instead of t ∈ N * , and whose proof does not rely on mixture martingales. The so-called method of mixtures for proving different types of deviations inequalities has been popularized by [START_REF] De La Pena | Self-Normalized Processes: Exponential inequalities, moment bounds and iterated logarithm laws[END_REF] and used notably by [START_REF] Abbasi-Yadkori | Improved Algorithms for Linear Stochastic Bandits[END_REF][START_REF] Balsmubramani | Sharp finite-time iterated-logarithm martingale concentration[END_REF].

Applying Theorem 3.1 Combining (3.6) and Theorem 3.1, one can see that with the threshold

β(t, δ) = AT log(1 δ) A + 3A log(1 + log(t))
the Parallel GLRT satisfies P µ τ δ < ∞, µ ∉ R îτ δ ≤ δ for all µ ∈ R and is therefore δ-correct for any active identification problem in an exponential family bandit model. This threshold has the drawback of not having a simple closed-form, but it essentially scales in β(t, δ) ≃ log(1 δ) + 3A log(1 + log(t)).

For some specific active identification problems, this general argument can be replaced by more specific arguments that may justify the use of different, possibly smaller thresholds. Typically, A in the expression of β(t, δ) may be replaced by a smaller quantity called the rank of the identification problem (see Section 6.2. of Kaufmann and Koolen (2018)). In words, the rank is R if R R i can be written as a finite union of sets that are each defined in terms of only R < A arms. For example, for BAI,

µ ∶ µ i ≤ max a µ a = ⋃ a≠i µ ∶ µ a ≥ µ i ,
hence the best arm identification problem is of rank 2, which licentiates the use of the threshold β(t, δ) = 2T log(1 δ) 2

+ 6 log(1 + log(t)). Using different concentration arguments specific to Bernoulli distributions (see Theorem 10 in Garivier and Kaufmann (2016)), we also proved that in that case the more explicit threshold β(t, δ) = log 2t(K-1) δ can be used. Observe that for large values of t, the former threshold is guaranteed to be smaller than the latter, and it also justifies a threshold calibration often used in practice for Best Arm Identification: β(t, δ) = log log(1+log(t)) δ .

Proof of Theorem 3.1: A Martingale Story

Concentration inequalities play a central role in the analysis of all kind of bandit algorithms, and in this proof we give an example of the use of mixture martingales to establish a time uniform, selfnormalized inequality that furthermore aggregates information across arms.

Why martingales? We start by giving a quick recap about why martingales (or super-martingales) are a powerful tool for proving time-uniform deviation inequalities. The reason is due to the following property, that we refer to as the maximal inequality for super-martingales. This result is also known under the name Ville's inequality as according to [START_REF] Shafer | Test martingales, Bayes factors and pvalues[END_REF] it was already proved by [START_REF] Ville | Étude critique de la notion de collectif[END_REF] for the particular case of martingales.

Lemma 3.2. Let S t be a super-martingale (i.e. a sequence of random variables adapted to a filtration

(F t ) t∈N such that E[S t+1 F t ] ≤ S t ) such that S t ≥ 0 and E[S 0 ] = 1. For all δ ∈ (0, 1), P (∃t ∈ N ∶ S t > 1 δ) ≤ δ.
Proof. In probability textbooks, Doob's maximal inequality is often stated for martingales or sub-martingales, saying that for all c > 0,

∀T ∈ N * , P ⎛ ⎝ sup t∈{0,...,T } S + t > c ⎞ ⎠ ≤ E[S + T ] c .
However, one can also prove a counterpart of this result if S t is a non-negative super-martingale:

∀T ∈ N * , P ⎛ ⎝ sup t∈{0,...,T } S t > c ⎞ ⎠ ≤ E[S 0 ] c . (3.9)
This inequality permits to prove the maximal inequality in Lemma 3.2 as

P (∃t ∈ N ∶ S t > 1 δ) = lim T →∞ P ⎛ ⎝ sup t∈{0,...,T } S t > 1 δ ⎞ ⎠ ≤ δE[S 0 ] = δ.
We now prove (3.9). Introducing the stopping time

τ = inf{t ∈ N ∶ S t > c}, the sequence (S τ ∧T ) T ∈N * is also a super-martingale, in particular E[S τ ∧T ] ≤ E[S 0 ]. But it also holds that E[S τ ∧T ] = E[S τ 1 (τ ≤ T )] + E[S T 1 (τ > T )] ≥ E[S τ 1 (τ ≤ T )] ≥ cP (τ ≤ T )
which concludes the proof as {τ ≤ T } = sup t∈{0,...,T } S t > c .

◻

Lemma 3.2 is very useful to build sequential tests or confidence intervals that are uniform over time. Indeed, assume that for a standard hypothesis testing problem with two hypotheses H 0 and H 1 one can find a sequence S t which is a (super) martingale under H 0 satisfying the properties of Lemma 3.2, i.e. S t is non-negative and E[S 0 ] = 1. Then the sequential test which rejects H 0 at time τ = inf{t ∈ N ∶ S t > 1 δ} has a type I error which is upper bounded by δ. This explains why non-negative martingales with expectation 1 are sometimes called test martingales [START_REF] Shafer | Test martingales, Bayes factors and pvalues[END_REF]. More broadly, in order to prove deviation inequalities, which allow to construct confidence intervals, a possible strategy consists in upper-bounding the process that we want to control by a test (super) martingale.

The proof of Theorem 3.1 follows this path, and combines this idea with the Cramér-Chernoff method. In Theorem 3.1, the process whose deviations should be controlled is

X a (t) ∶= N a (t)d (μ a (t), µ a ) -3 log(1 + log(N a (t)).
The technique that we propose to prove deviation inequalities for sums of these processes is summarized in the following lemma.

Lemma 3.3. Let g ∶ Λ → R be a function defined on a non-empty interval Λ ⊆ R. Assume that 1. For any arm a and λ ∈ Λ there exists a test martingale M λ a (t) such that ∀t ∈ N, M λ a (t) ≥ e λXa(t)-g(λ) . ( * )

2. For any subset S ⊆ {1, . . . , K} and for any λ ∈ Λ, the product ∏ a∈S M λ a (t) is a martingale. Letting

C g (x) ∶= min λ∈Λ g(λ) + x λ ,
for any subset S, for all x > 0,

P ∃t ∈ N ∶ a∈S X a (t) ≥ S C g x S ≤ e -x .
Proof. Fix λ ∈ Λ. For any u ∈ R, one can write

P ∃t ∈ N ∶ a∈S X a (t) > u = P ∃t ∈ N ∶ e λ[∑ a∈S Xa(t)] > e λu ≤ P ∃t ∈ N ∶ a∈S M λ a (t) > e λu-S g(λ) ≤ e -[λu-S g(λ)] ,
where the last step uses the maximal inequality in Lemma 3.2 applied to the product ∏ a∈S M λ a (t) which is a martingale by assumption 2.. Equivalently, it also holds that for all x > 0, for all λ ∈ Λ,

P ∃t ∈ N ∶ a∈S X a (t) > S g(λ) + x λ ≤ e -x .
The conclusion follows from selecting λ that yields the tightest possible inequality.

◻

The proof of Theorem 3.1 consists in building test martingales that satisfy assumptions 1. and 2. in Lemma 3.3 for an adequate function g. More precisely, we prove the following.

Lemma 3.4. Fix ξ ∈ [0, 1 2] and define for all λ ∈ Λ ξ ∶= [0, 1 (1 + ξ)), g ξ (λ) = λ(1 + ξ) log (C(ξ)) -log(1 -λ(1 + ξ)) with C(ξ) = 2ζ(2) (log(1 + ξ)) 2 .
There exists martingales satisfying assumptions 1. and 2. in Lemma 3.3 for

g ξ ∶ Λ ξ → R.
Before giving the proof of Lemma 3.4, we explain how to obtain Theorem 3.1 from it. From Lemma 3.3, we know that for every ξ > 0, for all x > 0,

P ∃t ∈ N ∶ a∈S X a (t) ≥ S C g ξ x S ≤ e -x .
where C g ξ (x) ∶= min λ∈[0,1 (1+ξ))

g ξ (λ)+x λ
. To obtain the result, it remains to optimize over the possible choice for ξ (which depends on x), that leads to

P ∃t ∈ N ∶ a∈S X a (t) ≥ S T x S ≤ e -x , with 
T (x) = inf ξ∈[0,1 2] λ∈[0,(1+ξ) -1 ) g ξ (λ) + x λ .
In order to make T explicit, we recall the definition of the function h(u) = ulog(u) for u > 1 and its inverse function h -1 and we write

T (x) = inf ξ∈[0,1 2] λ∈[0,(1+ξ) -1 ) (1 + ξ) log(C(ξ)) + x -log(1 -λ(1 + ξ)) λ = inf z∈[1,3 2] λ∈[0,1 z) z log 2ζ(2) log 2 (z) + x -log(1 -λz) λz = inf z∈[1,3 2] z log 2ζ(2) log 2 (z) + inf q∈[0,1) x -log(1 -q) q = inf z∈[1,3 2] z log 2ζ(2) log 2 (z) + h -1 (1 + x) = 2 inf z∈[1,3 2] z log(2ζ(2)) + h -1 (1 + x) 2 -log log(z) .
The expression in (3.7) follows by checking that the function h defined in (3.8) satisfies

h(u) = min z∈[1,3 2] z(u -log log(z)).
Building the martingales: proof of Lemma 3.4 The interesting part of the proof is the construction of a martingale for each arm which together satisfy the conditions of Lemma 3.3.

A first natural candidate is the following, where we denote by φ µ (η) ∶= log E X∼νµ e ηX the log moment generating function of the distribution that has mean µ ∈ I and by S a (t) = ∑ t s=1 X a,s 1(A s = a) the sum of observations obtained from arm a in the first t rounds. For all η ∈ R,

Z η a (t) = exp (ηS a (t) -φ µa (η)N a (t)) (3.10)
is a test martingale with respect to the filtration (F t ) t∈N , for any sampling rule. Indeed, observing that Z η a (t) = Z η a (t -1) exp((ηX a,t -φ µa (η))1 (A t = a)) with X a,t the observation made from arm a is it is selected at time t, we get E[Z η a (t) F t-1 ] = Z η a (t -1) using the fact that A t is F t-1 -measurable and the definition of the moment generating function.

More generally, for any probability distribution π, the mixture martingale

Zπ a (t) = Z η a (t)dπ(η) (3.11)
is also a test martingale, as can be seen by applying Tonelli's theorem

E Zπ a (t) F t-1 = E Zη a (t) F t-1 = Zη a (t-1) dπ(η) = Zπ a (t -1).
Given a family of priors π = (π a ) K a=1 , the product martingale Zπ S (t) = ∏ a∈S Zπa a (t) is also a test martingale with respect to F t , for any subset S. Indeed, when A t ∈ S we have

E Zπ S (t) A t , F t-1 = Zπ S∖{At} (t -1) E Zπ A t At (t) A t , F t-1 = Zπ A t A t (t-1) = Zπ S (t -1),
and the same result holds trivially when A t ∉ S. The martingale property follows by the tower rule.

Hence, by associating one mixture martingale to each arm, assumption 2. in Lemma 3.3 is readily satisfied. Thus, to prove Lemma 3.4 it remains to construct for each arm a, each ξ ∈ [0, 1 2] and each λ ∈ [0, (1 + ξ) -1 ) a prior π = π a,λ,ξ such that ∀t ∈ N, Zπ a,λ,ξ a (t) ≥ e λXa(t)-g ξ (λ) , which proves that inequality ( * ) is satisfied with M λ a (t) = Z π a,λ,ξ a (t). In the literature, mixture martingales have often been defined for a prior π under which Zπ a (t) can be computed in closed-form, or tightly approximated. For example, in the Gaussian case, a common choice of prior is π = N (0, y -2 ) for which the corresponding mixture martingale is Zπ

a (t) = y y 2 +σ 2 Na(t) exp (Sa(t)-µaNa(t)) 2 2(y 2 +σ 2 Na(t))
(see e.g. De La Pena et al. ( 2004); Abbasi-Yadkori et al. ( 2011)).

Applying the maximal inequality to this martingale directly yields the deviation inequality

P ⎛ ⎜ ⎝ ∃t ∈ N * ∶ N a (t)(μ a (t) -µ a ) 2 2σ 2 > 1 + y 2 N a (t)σ 2 x + 1 2 log 1 + σ 2 N a (t) y 2 ⎞ ⎟ ⎠ ≤ e -x .
Compared to what we prove in Theorem 3.1 for S = 1, observe that the log log(N a (t)) featured in Theorem 3.1 is smaller than the log(N a (t)) in the right-hand side of the above inequality (at the cost of a less explicit threshold) . Moreover, this log log N a (t) is compatible with the Law of Iterated Logarithm. To obtain this tighter threshold (at least in a regime of large values of N a (t)), and handle general exponential families, we need to resort to a more complex prior distribution. As will be seen shortly, the prior π a,λ,ξ will be a hierarchical prior, i.e. a continuous average of discrete priors. The first step of our construction is the following lemma, which states that the process X a (t) crossing some threshold (slightly larger than) x implies that some mixture martingale with a prior π(x) having discrete support exceeds a threshold. The proof of this result is postponed to the end of this section.

Lemma 3.5. Fix ξ ∈ (0, 1 2) and x > 0. There exists a (discrete) prior π(x) = π(x, ξ) such that the corresponding mixture martingale satisfies, for all t ∈ N,

X a (t) -(1 + ξ) log (C(ξ)) ≥ x ⊆ Zπ(x) a (t) ≥ e x 1+ξ
.

We now exploit Lemma 3.5 to upper bound e λXa(t)-( 1+ξ) log(C(ξ)) by a martingale. To do so, we first note that for every z > 1, and every λ > 0 1+ξ) and, due to the above inclusion,

e λ(Xa(t)-(1+ξ) log C(ξ)) ≥ z ⊆ Zπ(log(z) λ) a (t) ≥ e log(z) λ(1+ξ) ⊆ Zπ(log(z) λ) a (t)e - log(z) λ(1+ξ) ∶=W z,λ a (t) ≥ 1 , where W z,λ a (t) is a martingale that satisfies E[W z,λ a (0)] = e - log(z) λ(
W z,λ a (t) ≥ 1 e λ(Xa(t)-(1+ξ) log C(ξ)) ≥z .
(3.12)

We now define another mixture martingale, for λ ∈ 0, 1 1+ξ , this time using a continuous prior:

W λ a (t) = 1 + ∞ 1 W z,λ a (t)dz.
Using inequality (3.12) yields W λ a (t) ≥ e λ(Xa(t)-(1+ξ) log C(ξ)) . Moreover, a direct computation shows that W λ a (0) = 1 1-λ(1+ξ) . Finally defining

M λ a (t) = (1 -λ(1 + ξ))W λ a (t),
one has that M λ a (t) is a test martingale, i.e. E[M λ a (t)] = 1, that satisfies

M λ a (t) ≥ exp (λX a (t) -λ(1 + ξ) log(C(ξ)) + log(1 -λ(1 + ξ))) = exp λX a (t) -g ξ (λ) ,
which proves Lemma 3.4. Taking a step back, M λ a (t) is indeed a mixture martingale as it can be written

M λ a (t) = Zπ a,λ,ξ a (t) with Zπ a,λ,ξ a (t) = (1 -λ(1 + ξ))Z 0 a (t) + ∞ 1 Z η a (t)d(π(log(z) λ))(η) (1 -λ(1 + ξ))e - log(z) λ(1+ξ) dz. Proof of Lemma 3.5 Recall that X a (t) = N a (t)d (μ a (t), µ a ) -3 log(1 + log(N a (t))
. The first step of the construction consists in relating the deviation of N a (t)d + (μ a (t), µ a ) and N a (t)d -(μ a (t), µ a ) to those of ηS a (t) -φ µa (η)N a (t) for a well chosen η, provided that N a (t) belongs to some "slice"

[(1 + ξ) i-1 , (1 + ξ) i ].
More precisely, we prove that for all i ∈ N * , there exists η + i (x, ξ) and η

- i (x, ξ) such that, if N a (t) ∈ [(1 + ξ) i-1 , (1 + ξ) i ] it holds that {N a (t)d + (μ a (t), µ a ) ≥ x} ⊆ η + i S a (t) -N a (t)φ µa (η + i ) ≥ x 1 + ξ (3.13) {N a (t)d - (μ a (t), µ a ) ≥ x} ⊆ η - i S a (t) -N a (t)φ µa (η - i ) ≥ x 1 + ξ . (3.14)
To prove these two inclusions, we introduce the notation θ for the natural parameter associated to µ a , defined as θ = ḃ-1 (µ a ) and define η + i < 0 and η - i > 0 by

KL(θ + η + i , θ) = KL(θ + η - i , θ) = x (1 + ξ) i ,
where KL(θ, θ ′ ) denotes the Kullback-Leibler divergence between the distributions of natural parameter θ and θ ′ . Using properties of the KL-divergence, one can write

KL(θ + η + i , θ) = η + i µ + i -φ µa (η + i ) with µ + i ∶= ḃ-1 (θ + η + i ) < µ a , KL(θ + η - i , θ) = η - i µ - i -φ µa (η - i ) with µ - i ∶= ḃ-1 (θ + η - i ) > µ a . For N a (t) ∈ [(1 + ξ) i-1 , (1 + ξ) i ],
one can prove (3.13) by writing

{N a (t)d + (μ a (t), µ a ) ≥ x} ⊆ d + (μ a (t), µ a ) ≥ x (1 + ξ) i ⊆ {μ a (t) ≤ µ + i } ⊆ {η + i μa (t) -φ µa (η + i ) ≥ KL(θ + η + i , θ)} ⊆ (1 + ξ) i-1 (η + i μa (t) -φ µa (η + i )) ≥ x 1 + ξ ⊆ N a (t) (η + i μa (t) -φ µa (η + i )) ≥ x 1 + ξ ,
where the third inclusion uses that η + i < 0. Similarly, using this time that η - i > 0 one can prove (3.14):

{N a (t)d - (μ a (t), µ a ) ≥ x} ⊆ {μ a (t) ≥ µ - i } ⊆ {η - i μa (t) -φ µa (η - i ) ≥ KL(θ + η - i , θ)} ⊆ N a (t) (η - i μa (t) -φ µa (η - i )) ≥ x 1 + ξ .
The next step is to relate the deviation of X a (t) to those of a martingale for every t ∈ N and not only for N a (t) is some slice: this will be achieved by a mixture martingale with a well-chosen discrete prior. Given x, we define the following probability distribution. Letting

γ i = 1 2 1 i 2 ζ(2) x i = x + log 1 γ i η + i = η + i (x i , ξ) η - i = η - i (x i , ξ),
where η ± i (x, ξ) are defined above, we define the discrete prior

π = ∞ i=1 γ i δ η + i + ∞ i=1 γ i δ η - i
and the corresponding mixture martingale

Zπ a (t) = ∞ i=1 γ i Z η + i a (t) + ∞ i=1 γ i Z η - i a (t),
where we recall that Z η a (t) = exp(ηS a (t) -φ µa (η)N a (t)) for all η ∈ R. Therefore, we get

{X a (t) -(1 + ξ) log C(ξ) ≥ x} ⊆ [N a (t)d(μ a (t), µ a ) -3 log(1 + log(N a (t)))] + ≥ x + (1 + ξ) log C(ξ) = {N a (t)d(μ a (t), µ a ) -3 log(1 + log(N a (t))) ≥ x + (1 + ξ) log C(ξ)} ,
where we use that x + (1 + ξ) log C(ξ) > 0 as ξ < 1 2. Now, as 2(1 + ξ) < 3, one has

{X a (t) -(1 + ξ) log C(ξ) ≥ x} ⊆ N a (t)d (μ a (t), µ a ) -2(1 + ξ) log (1 + log(N a (t))) ≥ x + (1 + ξ) log 2ζ(2) log(1 + ξ) 2 ⊆ N a (t)d (μ a (t), µ a ) ≥ x + (1 + ξ) log 2ζ(2)(1 + log(N a (t)) 2 log(1 + ξ) 2 ⊆ N a (t)d (μ a (t), µ a ) ≥ x + (1 + ξ) log 2ζ(2)(log(1 + ξ) + log(N a (t)) 2 log(1 + ξ) 2 ,
where the last inequality uses log(1 + ξ) ≤ log(3 2) ≤ 1.

We now define i(t) ≥ 1 to be the integer such that N a (t) ∈ [(1 + ξ) i-1 , (1 + ξ) i ] and observe that log Na(t) log(1+ξ) ≥ i(t) -1. Using (3.13) and (3.14) yields

{X a (t) -(1 + ξ) log C(ξ) ≥ x} ⊆ N a (t)d (μ a (t), µ a ) ≥ x + (1 + ξ) log 1 γ i(t) ⊆ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ max η∈ η + i(t) ,η - i(t) [ηS a (t) -φ µa (η)N a (t)] ≥ 1 1 + ξ x + (1 + ξ) log 1 γ i(t) ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⊆ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ max η∈ η + i(t) ,η - i(t) γ i(t) exp (ηS a (t) -φ µa (η)N a (t)) ≥ e x 1+ξ ⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ ⊆ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ max i∈N max η∈ η + i ,η - i γ i exp (ηS a (t) -φ µa (η)N a (t)) ≥ e x 1+ξ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ⊆ Zπ a (t) ≥ e x 1+ξ
. ◻

From Sequential to Active Testing

We recall that the goal of active identification in a bandit model is to find a sampling rule, a stopping rule and a recommendation rule such that the resulting strategy is δ-correct and also has a small sample complexity τ .

From the previous section, we already have a good candidate for the stopping and recommendation rule (τ δ ,î τ δ ): the Parallel GLRT. However, to minimize the sample complexity, the sampling rule now plays a crucial rule: intuitively it should be designed so that the stopping rule (3.4) is met as early as possible. Optimizing the sampling rule alongside (τ δ ,î τ δ ), we move from sequential testing to active testing. Active testing was pioneered by [START_REF] Chernoff | Sequential design of Experiments[END_REF] who considered a setting in which there are two mutually exclusive hypotheses and A experiments that can be chosen to gather information about these hypotheses. Interestingly, the stopping rule proposed in this work for the case of two overlapping hypotheses coincides with the Parallel GLRT rule.

In the next chapters, we focus on the construction of good sampling rules for various active identification problems. As we shall see, lower bounds on the sample complexity can guide the design of asymptotically optimal algorithms, just like for regret minimization in structured bandits, that was discussed in Chapter 1.

Chapter 4 Towards Optimal and Efficient Best Arm Identification

In this chapter, we discuss the sample complexity of a particular active identification problem: Best Arm Identification. The main result presented in this chapter was obtained in collaboration with Aurélien Garivier in 2016. It provides the first asymptotically optimal algorithm for fixed-confidence best arm identification in an exponential bandit model.

Lower Bounds for Best Arm Identification and Beyond

In this chapter, we consider an exponential bandit model, in which arms belong to a one-parameter exponential family with divergence function d(x, y): the distribution of arm a is ν µa with µ a ∈ I. We further assume that there is a unique optimal arm, that is µ ∈ R where

R = µ ∈ I A ∶ ∃a ∈ [A] ∶ µ a > max b≠a µ b ,
and recall the best arm identification problem in the fixed-confidence setting. Letting a ⋆ (µ) be the arm with the largest mean in the bandit model parameterized by µ ∈ R, the goal is to design a δ-correct strategy (A t , τ, âτ ), such that for all µ ∈ R, P (â τ ≠ a ⋆ (µ)) ≤ δ. This strategy should further have the smallest possible sample complexity E µ [τ ]. To clarify the presentation, we will materialize the dependency on δ of the sample complexity of a δ-correct strategy, denoted by τ δ . Building on the change-of-distribution tools presented in the Introduction and already used in several places in Part I of this document, we provide a tight lower bound on the sample complexity of any δcorrect strategy. The first lower bound of this kind was given by [START_REF] Mannor | The Sample Complexity of Exploration in the Multi-Armed Bandit Problem[END_REF] for ε-best arm identification in a Bernoulli bandit model: it features the gaps µ ⋆ -µ a of sub-optimal arms a and the parameter ε, but writes as a sum over a (non-explicit) subset of the arms. For ε = 0, the bound we proved with Aurélien Garivier and Olivier Cappé in [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF] applies to any exponential bandit model and features a sum over all arms. It says that under any δ-correct strategy,

E ν [τ δ ] ≥ 1 d(µ 1 , µ 2 ) + A a=2 1 d(µ a , µ 1 ) kl(δ, 1 -δ),
where we assume that µ 1 > µ 2 ≥ ⋅ ⋅ ⋅ ≥ µ A to ease the presentation. This lower bound features an individual complexity quantity for each arm which is the inverse of a Kullback-Leibler divergence and it therefore looks like a (non asymptotic) counterpart of the Lai and Robbins lower bound for regret minimization. However, we found that this simple and natural lower bound is not tight.

Just like the Lai and Robbins lower bound for regret minimization, the lower bounds of [START_REF] Mannor | The Sample Complexity of Exploration in the Multi-Armed Bandit Problem[END_REF] and [START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF] were derived by considering an explicit change-ofdistribution, that is, by picking some explicit alternative bandit models λ in which the optimal arm differs from that in µ, in order to obtain constraints on the number of selections of some arms. In the lower bound presented below, that we derived in Garivier and Kaufmann (2016), we instead directly aim for the tightest possible lower bound, without being explicit on the corresponding alternative model λ in

Alt(µ) ∶= µ ∈ I A ∶ a ⋆ (λ) ≠ a ⋆ (µ) .
Theorem 4.1. Let δ ∈ (0, 1). For any δ-PAC strategy and any bandit model µ ∈ R,

E µ [τ δ ] ≥ T ⋆ (µ) kl(δ, 1 -δ),
where

T ⋆ (µ) -1 ∶= sup w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ) . (4.1) with Σ A = {w ∈ [0, 1] A ∶ ∑ A a=1 w a = 1}. Note that kl(δ, 1 -δ) ≥ log 1 3δ .
Proof. Let δ ∈ (0, 1), µ ∈ S, and consider a δ-PAC strategy. We assume that τ δ is almost surely finite, otherwise E[τ δ ] = +∞ and the lower bound is trivial. From Lemma 0.1 in the Introduction, for any event E ∈ F τ δ and for all λ ∈ Alt(µ), KL P

Iτ δ µ , P Iτ δ λ ≥ kl (P µ (E), P λ (E)) ,
where we recall that

I t = (U 0 , A 1 , X 1 , U 1 , . . . , A t , X t , U t )
is the information available after t rounds. On the one hand, for exponential family bandits, it follows from Wald's inequality that

KL P Iτ δ µ , P Iτ δ λ = A a=1 E µ [N a (τ δ )]d(µ a , λ a ).
On the other hand, choosing the event E = (â τ δ = a ⋆ (λ)) it holds that P µ (E) ≤ δ while P λ (E) ≥ 1 -δ and exploiting monotonicity properties of the binary relative entropy yields

kl (P µ (E), P λ (E)) ≥ kl(δ, 1 -δ).
This leads to

∀λ ∈ Alt(µ), A a=1 E µ [N a (τ δ )]d(µ a , λ a ) ≥ kl(δ, 1 -δ). (4.2) 
Instead of choosing for each arm a a specific instance of λ that yields a lower bound on

E µ [N a (τ δ )],
we combine here the inequalities given by all alternatives λ:

inf λ∈Alt(µ) A a=1 E µ [N a (τ δ )]d(µ a , λ a ) ≥ kl(δ, 1 -δ) E µ [τ δ ] × inf λ∈Alt(µ) A a=1 E µ [N a (τ δ )] E µ [τ δ ] d(µ a , λ a ) ≥ kl(δ, 1 -δ) E µ [τ δ ] × sup w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ) ≥ kl(δ, 1 -δ).
In the last inequality, the strategy-dependent proportions of arm draws are replaced by their supremum (using that

E µ [τ δ ] = ∑ A a=1 E µ [N a (τ δ )]
) so as to obtain a bound valid for any δ-PAC algorithm. ◻ It can be observed from this proof that for a strategy to match the lower bound, the last inequality needs to be an equality. Introducing the (set of) vector(s) of optimal proportions

w ⋆ (µ) ∶= argmax w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ), (4.3) 
this means that the vector

Eµ[Na(τ δ )] Eµ[τ δ ] A a=1
should belong to w ⋆ (µ). Note that, at this stage we have no clue whether the argmax in (4.3) is unique, but we will prove that it is the case in the next section. We will further propose an algorithm to efficiently compute w ⋆ (µ) as well as the non-explicit characteristic time T ⋆ (µ) in (4.1).

Lower Bounds for Active Identification The proof technique to establish Theorem 4.1 can be used to derive a (non-explicit) lower bound for any active identification problem with non-overlapping regions R 1 , . . . , R I . By appropriately redefining the set Alt(µ) = R R i⋆(µ) if i ⋆ (µ) is the (only) region to which µ belongs, we obtain exactly the same lower bound as in Theorem 4.1. Note that for arbitrary active identification problems, computing T ⋆ (µ) and w ⋆ (µ) may be harder than what we will present for BAI shortly. We will see another example in Chapter 5.

Lower Bounds for Non-Overlapping regions Deriving lower bounds (and matching algorithms) for active identification problems where the regions R 1 , . . . , R I may be overlapping can be much harder, as explained by Degenne and Koolen (2019). In [START_REF] Garivier | Non-asymptotic sequential tests for overlapping hypotheses and application to near optimal arm identification in bandit models[END_REF] we study the particular case of ε-best arm identification. Interestingly, when µ belongs to the intersection of two or more regions, one can only provide asymptotic lower bounds on E µ [τ δ ] (when δ goes to zero), whereas Theorem 4.1 is non asymptotic as it holds for any δ ∈ (0, 1).

The Track-and-Stop Algorithm

For the best arm identification problem, we now explain how the characteristic time T ⋆ (µ) and the optimal allocation w ⋆ (µ) can be efficiently computed for any µ ∈ R. Having access to this oracle permits to design a lower-bound inspired algorithm called Track-And-Stop. We prove that the sample complexity of this algorithm is matching the lower bound of Theorem 4.1, at least for a small δ.

Computing the Optimal Allocation

To ease the presentation we present the results for µ such that

µ 1 > µ 2 ≥ ⋅ ⋅ ⋅ ≥ µ A . To compute T ⋆ (µ) -1 = sup w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ) and w ⋆ (µ) = argmax w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a )
we start by making the minimization over Alt(µ) slightly more explicit.

Lemma 4.2. For every

w ∈ Σ A , inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ) = min a≠1 w 1 d µ 1 , w 1 µ 1 + w a µ a w 1 + w a + w a d µ a , w 1 µ 1 + w a µ a w 1 + w a .
Proof. Using the fact that Alt(µ) = ⋃ a≠1 {λ ∈ S ∶ λ a > λ 1 } , one has

T ⋆ (µ) -1 = sup w∈Σ A min a≠1 inf λ∈S∶λa>λ 1 A a ′ =1 w a ′ d(µ a ′ , λ a ′ ) = sup w∈Σ A min a≠1 inf λ∶λa≥λ 1 [w 1 d(µ 1 , λ 1 ) + w a d(µ a , λ a )] . Minimizing f (λ 1 , λ a ) = w 1 d(µ 1 , λ 1 ) + w a d(µ a , λ a )
under the constraint λ a ≥ λ 1 is a convex optimization problem that can be solved analytically. The minimum is obtained for

λ 1 = λ a = w 1 w 1 + w a µ 1 + w a w 1 + w a µ a ,
which concludes the proof.

◻

Using Lemma 4.2 and the fact that at the optimum w ⋆ 1 ≠ 0 (otherwise the value of the objective is zero), one can write

T ⋆ (µ) -1 = sup w∈Σ A min a≠1 w 1 d µ 1 , w 1 µ 1 + w a µ a w 1 + w a + w a d µ a , w 1 µ 1 + w a µ a w 1 + w a = sup w∈Σ A w 1 min a≠1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ d ⎛ ⎝ µ 1 , µ 1 + wa w 1 µ a 1 + wa w 1 ⎞ ⎠ + w a w 1 d ⎛ ⎝ µ a , µ 1 + wa w 1 µ a 1 + wa w 1 ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = sup w∈Σ A w 1 min a≠1 g a w a w 1 ,
where we introduce for all a ∈ {2, . . . , A} the function

g a (x) = d µ 1 , µ 1 + xµ a 1 + x + xd µ a , µ 1 + xµ a 1 + x .
The function g a is a strictly increasing one-to-one mapping from

[0, +∞[ onto [0, d(µ 1 , µ a )[. We define x a ∶ [0, d(µ 1 , µ a )[→ [0, +∞[ as its inverse function: x a (y) = g -1 a (y).
Denoting by x 1 the function constantly equal to 1, one obtains the following characterization of w ⋆ (µ).

Theorem 4.3. For every a ∈ [A], w ⋆ a (µ) = x a (y ⋆ ) ∑ A a=1 x a (y ⋆ ) , (4.4) 
where y ⋆ is the unique solution of the equation F µ (y) = 1, and where

F µ ∶ y ↦ A a=2 d µ 1 , µ 1 +xa(y)µa 1+xa(y) d µ a , µ 1 +xa(y)µa 1+xa(y) (4.5) is a continuous, increasing function on [0, d(µ 1 , µ 2 )[ such that F µ (0) = 0 and F µ (y) → ∞ when y → d(µ 1 , µ 2 )).
Proof. The function g a rewrites

g a (x) = d (µ 1 , m a (x)) + xd(µ a , m a (x)), with m a (x) = µ 1 + xµ a 1 + x .
Using that m ′ a (x) = (µ a -µ 1 ) (1 + x) 2 and d dy d(x, y) = (y -x) b( ḃ-1 (y)) where b denotes the logpartition function of the exponential family, one can show that g a is strictly increasing, since g ′ a (x) = d(µ a , m a (x)) > 0. As g a (x) tends to d(µ 1 , µ a ) when x goes to infinity, the inverse function x a (y) = g -1 a (y) is defined on [0, d(µ 1 , µ a )[ and satisfies

x ′ a (y) = 1 d(µ a , m a (x a (y))) > 0 .
Let w ⋆ be an element in

argmax w∈Σ A w 1 min a≠1 g a w a w 1 . Introducing x ⋆ a = w ⋆ a w ⋆ 1 for all a ≠ 1, one has w ⋆ 1 = 1 1 + ∑ A a=2 x ⋆ a and, for a ≥ 2, w ⋆ a = x ⋆ a 1 + ∑ A a=2 x ⋆ a and (x ⋆ 2 , . . . , x ⋆ A ) ∈ R A-1 belongs to argmax (x 2 ,...,x A )∈R A-1 min a≠1 g a (x a ) 1 + x 2 + ⋅ ⋅ ⋅ + x A . (4.6) 
We now prove that all the g a (x ⋆ a ) have to be equal. Let

B = b ∈ {2, . . . , A} ∶ g b (x ⋆ b ) = min a≠1 g a (x ⋆ a )
and A = {2, . . . , A} B. Assume that A ≠ ∅. For all a ∈ A and b ∈ B, one has g a (x ⋆ a ) > g b (x ⋆ b ). Using the continuity of the g functions and the fact that they are strictly increasing, there exists ε > 0 such that

∀a ∈ A, b ∈ B, g a (x ⋆ a -ε A )) > g b (x ⋆ b + ε B ) > g b (x ⋆ b ) . Introducing x a = x ⋆ a -ε A for all a ∈ A and x b = x ⋆ b + ε B for all b ∈ B, there exists b ∈ B: min a≠1 g a (x a ) 1 + x 2 + . . . x A = g b x ⋆ b + ε B 1 + x ⋆ 2 + ⋅ ⋅ ⋅ + x ⋆ A > g b x ⋆ b 1 + x ⋆ 2 + ⋅ ⋅ ⋅ + x ⋆ A = min a≠1 g a (x ⋆ a ) 1 + x ⋆ 2 + ⋅ ⋅ ⋅ + x ⋆ A ,
which contradicts the fact that x ⋆ belongs to (4.6). Hence A = ∅ and there exists y

⋆ ∈ [0, d(µ 1 , µ 2 )[ such that ∀a ∈ {2, . . . , A}, g a (x ⋆ a ) = y ⋆ ⇔ x ⋆ a = x a (y ⋆ ),
with the function x a introduced above. From (4.6), y ⋆ belongs to

argmax y∈[0,d(µ 1 ,µ 2 )[ G(y) with G(y) = y 1 + x 2 (y) + ⋅ ⋅ ⋅ + x A (y)
.

G is differentiable and, using the derivative of the x a given above, G ′ (y) = 0 is equivalent to

A a=2 y d(µ a , m a (x a (y)) = 1 + x 2 (y) + ⋅ ⋅ ⋅ + x A (y) A a=2 d(µ 1 , m a (x a (y))) + x a (y)d(µ a , m a (x a (y)) d(µ a , m a (x a (y)) = 1 + x 2 (y) + ⋅ ⋅ ⋅ + x A (y) A a=2 d(µ 1 , m a (x a (y))) d(µ a , m a (x a (y)) = 1 . (4.7)
For the the second equality, we use that ∀a, d(µ 1 , m a (x a (y))) + x a (y)d(µ a , m a (x a (y)) = y. Thus y ⋆ is a solution to the equation (4.7). This equation has a unique solution since

F µ (y) = A a=2 d(µ 1 , m a (x a (y))) d(µ a , m a (x a (y)) (4.8)
is strictly increasing and satisfies F µ (0) = 0 and lim y→d(µ 1 ,µ 2 ) F µ (y) = +∞. As G is positive and satisfies G(0) = 0, lim y→d(µ 1 ,µ 2 ) G(y) = 0, the unique local extremum obtained in y ⋆ is a maximum.

◻

Thus, w ⋆ (µ) can be easily computed by applying (for example) the bisection method to a function whose evaluations require the resolution of A smooth scalar equations. By using efficient numerical solvers, we obtain a fast algorithm of complexity, roughly speaking, proportional to the number of arms. This characterization of w ⋆ (µ) also permits to establish the following properties. 1. For all µ ∈ S, for all a, w ⋆ a (µ) ≠ 0. 2. w ⋆ is continuous in every µ ∈ R.

If µ

1 > µ 2 ≥ ⋅ ⋅ ⋅ ≥ µ A , one has w ⋆ 2 (µ) ≥ ⋅ ⋅ ⋅ ≥ w ⋆ A (µ).
In general, it is not possible to give closed-form formulas for T ⋆ (µ) and w ⋆ (µ). In particular, T ⋆ (µ) cannot be written as a sum over the arms of individual complexity terms as in previous works [START_REF] Mannor | The Sample Complexity of Exploration in the Multi-Armed Bandit Problem[END_REF][START_REF] Kaufmann | On the Complexity of Best Arm Identification in Multi-Armed Bandit Models[END_REF]. Still, in the Gaussian case, a tight approximation of this form can be given for T ⋆ (µ): we show in Appendix A of Garivier and Kaufmann (2016) that

2σ 2 (µ 1 -µ 2 ) 2 + A a=2 2σ 2 (µ 1 -µ a ) 2 ≤ T ⋆ (µ) ≤ 2 2σ 2 (µ 1 -µ 2 ) 2 + A a=2 2σ 2 (µ 1 -µ a ) 2 .
For two-armed bandits, it is also possible to obtain a more explicit expression:

T ⋆ (µ) = 1 d ⋆ (µ 1 , µ 2 ) where d ⋆ (µ 1 , µ 2 ) = d(µ 1 , μ) with μ is defined by d(µ 1 , μ) = d(µ 2 , μ), which is some 'reversed' notion of Chernoff information.

Track-and-Stop and Its Analysis

Track-and-Stop combines the Parallel GLRT stopping rule presented in Chapter 4 with a sampling rule under which the empirical proportions of draws of each arm a, N a (t) t, converges to the corresponding optimal proportion w ⋆ a (µ). To achieve this, the sampling rule is "tracking" the empirical optimal proportion w ⋆ ( μ(t)) where μ(t) = (μ 1 (t), . . . , μA (t)): it makes sure that N a (t) t is always close to w ⋆ a ( μ(t)). In order to ensure that w ⋆ a ( μ(t)) is also eventually close to w ⋆ a (µ), we need to add a bit of forced exploration so that all arms are sufficiently selected and μ(t) converges to µ.

Sampling rule

The "tracking" idea can be implemented in different ways by monitoring the ratio or difference between N a (t) and t × w ⋆ a ( μ(t)) or the cumulative proportion ∑ t s=1 w ⋆ a ( μ(s)). We propose two different tracking rules in Garivier and Kaufmann (2016), and mention only the so-called Direct Tracking rule below. Note that similar tracking approaches have been used in previous work, see e.g. [START_REF] Antos | Active learning in multi-armed bandits[END_REF]. The (direct) Tracking rule goes as follows. Introducing U t = {a ∶ N a (t) < √ t-A 2}, the sampling rule (A t ) is sequentially defined as

A t+1 ∈ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ argmin a∈Ut N a (t) if U t ≠ ∅, (forced exploration) argmax a∈[A] t w ⋆ a ( μ(t)) -N a (t) otherwise. (direct tracking) (4.9)
The following property shows that this sampling rule has the desired property: if w ⋆ a ( μ(t)) is close to w ⋆ a (µ) for t large enough, N a (t) t will eventually be close to w ⋆ a (µ).

Lemma 4.5. Under the tracking rule, for all a ∈ [A], N a (t) ≥ ( √ t -A 2) + -1 and for all ε > 0, for all t 0 , there exists t ε ≥ t 0 such that

sup t≥t 0 max a w ⋆ a ( μ(t)) -w ⋆ a (µ) ≤ ε ⇒ sup t≥tε max a N a (t) t -w ⋆ a (µ) ≤ 3(A -1)ε .
In particular, from Lemma 4.5, the law of large numbers and the continuity of w ⋆ on R, one has

P µ lim t→∞ N a (t) t = w ⋆ a (µ) = 1 .
Stopping rule and recommendation rule We now particularize the Parallel GLRT presented in Chapter 4 for the best arm identification problem. From (3.4), the stopping rule can be written

τ δ = inf t ∈ N ∶ max a=1,...,A inf {λ∈R∶a * (λ)≠a} A b=1 N b (t)d (μ b (t), λ b ) > β(t, δ) = inf t ∈ N ∶ inf λ∈Alt( μ(t)) A a=1 N a (t)d (μ a (t), λ a ) > β(t, δ) . (4.10) 
The equality comes from the fact that the maximizer in a in the first expression is obtained for â⋆ (t) = argmax a μa (t), indeed for all other values of a the infimum is zero as μ(t) belongs to the set. Upon stopping, the arm âτ δ = argmax a μa (τ δ ) is recommended. The expression in (4.10) explains why the Parallel GLRT rule is a natural candidate for matching the lower bound when coupled with a sampling rule that ensures the convergence of each N a (t) t to its corresponding optimal proportion. Indeed for large values of t, under such a sampling rule

inf λ∈Alt( μ(t)) A a=1 N a (t)d (μ a (t), λ a ) ≃ t × inf λ∈Alt(µ) A a=1 w ⋆ a (µ)d (µ a , λ a ) = t T ⋆ (µ)
With this approximation, τ δ cannot be much larger than the first t such that t ≥ T ⋆ (µ)β(t, δ), which is of order T ⋆ (µ) log(1 δ) for the threshold under which we proved that the Parallel GLRT is δ-correct in Chapter 4. Note that this heuristic reasoning could be generalized to any active identification problem for which the weights w ⋆ (µ) are uniquely defined and continuous on R. However, the corresponding combination of the tracking rule with the Parallel GLRT may be much harder to implement, as it requires an efficient computation of the weights w ⋆ (µ) for any µ as well as an efficient computation of the minimizer in (4.10), which may not always exist beyond best arm identification.

For BAI, the minimization in (4.10) can be solved in closed form (with similar arguments as in the proof of Lemma 4.2), leading to

τ δ = inf t ∈ N ∶ min a≠â⋆(t)
N a⋆ (t)d μâ⋆(t) (t), μâ⋆(t),a (t) + N a (t)d μa (t), μâ⋆(t),a (t) > β(t, δ) , (4.11) where μa,b (t) =

Na(t)μa(t)+N b (t)μ b (t) Na(t)+N b (t)
is the weighted average of the empirical means of arms a and b.

Theoretical guarantees

The Track-and-Stop (TaS) algorithm combines the Tracking rule (4.9) with the Parallel GLRT rule (4.11) using some threshold β(n, δ). We already explained that this algorithm can be efficiently implemented as each computation of w ⋆ ( μ(t)) requires to solve a one-dimensional optimization problem using binary search. We formally state below the sample complexity guarantees obtained for this algorithm, showing that TaS is matching the lower bound of Theorem 4.1, at least in a regime of small values of δ. This is why we say that this algorithm is asymptotically optimal.

Theorem 4.6. Let µ be an exponential family bandit model. The Track-and-Stop algorithm in which the Parallel GLRT stopping rule uses the threshold

β(t, δ) = 2T (log(1 δ) 2) + 6 log(1 + log(t)) where T (x) ∼ x is defined in (3.7) in Chapter 3 is δ-correct and satisfies lim sup δ→0 E µ [τ δ ] log(1 δ) ≤ T ⋆ (µ) .
The correctness easily follows from Theorem 3.1 in Chapter 3 while the sample complexity analysis can be found in Appendix D of Garivier and Kaufmann (2016). The convergence of the empirical proportions to the optimal weights permits to easily establish that lim sup δ→0 τ δ log(1 δ) ≤ T ⋆ (µ) almost surely (like in the proof of Lemma 4.8 in the next section), but the proof of the expected sample complexity bound of Theorem 4.6 requires to control the convergence speed, and further exploits Lemma 4.5.

Practical performance Theorem 4.6 provides an asymptotic upper bound on the sample complexity, hence Track-and-Stop is expected to match the optimal performance when δ is small enough. However, performing numerical simulations reveals that TaS actually has a very good sample complexity for any value of δ: its sample complexity is typically twice smaller than that of previous algorithms.

Among existing algorithms for BAI that come with problem-dependent sample complexity guarantees in the fixed-confidence setting, there are two types of algorithms. First, algorithms using uniform sampling and elimination, like Successive Elimination [START_REF] Even-Dar | Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems[END_REF] or KL-Racing [START_REF] Kaufmann | Information complexity in bandit subset selection[END_REF], under which an arm is eliminated from the list of candidate best arms when an upper confidence bound on its mean is smaller than a lower confidence bound on the mean of the empirical best arm. Such algorithms stop when there is a single arm remaining in the list. The second category is that of algorithms using more adaptive sampling, that are based on upper and possibly lower confidence bounds (calibrated as a function of the risk level δ). Lil'UCB [START_REF] Jamieson | lil'UCB: an Optimal Exploration Algorithm for Multi-Armed Bandits[END_REF] chooses the arm with largest UCB and stops when one arm has been drawn more than all others. Other algorithms such that (KL)-LUCB [START_REF] Kalyanakrishnan | PAC subset selection in stochastic multi-armed bandits[END_REF][START_REF] Kaufmann | Information complexity in bandit subset selection[END_REF] or UGapE [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF] also exploit lower confidence bounds and stop when the lower confidence bound of the empirical best arm is larger than the upper confidence bound of all others.

We believe that the main reason for the good practical performance of TaS is the stopping rule: compared to confidence-based stopping rules, the Parallel GLRT (also referred to as the Chernoff stopping rule in the paper) exploits the geometry of the distributions better, which leads to earlier stopping. In Figure 4.1 we display the (KL) confidence intervals on the unknown means (represented as the black diamonds) of Bernoulli arms after TaS reaches its stopping rule: we see that the Parallel GLRT has enough information to identify the best arm before the confidence intervals are separated. To justify the good performance of TaS, we compare its empirical sample complexity to that of other algorithms for two Bernoulli bandit problems whose means are given by µ 1 = [0.5 0.45 0.43 0.4] and µ 2 = [0.3 0.21 0.2 0.19 0.18]. For these two vectors, the optimal allocations are given by Track-and-Stop was run with the threshold β(t, δ) = log with F µ defined in (4.8) using binary search. But each evaluation of F µ is costly as it also requires to compute the inverse function x a for each arm. Hence, the running time of TaS is an order of magnitude larger than that of confidence-based algorithms, which makes its use prohibitive when the number of arms gets large, for example.

w ⋆ (µ 1 ) = [0.
Finding alternative approaches to Track-and-Stop that are asymptotically optimal without the need to compute the optimal proportion in every round has been an active line of research over the past years, and I present below two interesting directions, to which I contributed little, but would be very interested to contribute more in the future.

Online Optimization and Optimism

The first work replacing the oracle call in Track and Stop with a gradient ascent step is that of Pierre Ménard [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF]. To understand the proposed approach, we first recall that the computation of the optimal weights consists in computing the argmax in w in the optimization problem

sup w∈Σ A F (w, µ), where F (w, µ) = inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ).
With the appropriate definition of Alt(µ) this actually permits to compute the optimal weights for any active identification problem. For best arm identification, we proposed an ad hoc algorithm for computing w ⋆ , however we can take a step back and investigate the use of generic optimization techniques.

On the use of online optimization algorithms The simplex Σ A is convex and F (w, µ) is concave in w, however it is not necessarily smooth. Still in the Best Arm Identification case, recalling that

F (w, µ) = min a≠a⋆(µ)
w a⋆(µ) d µ a⋆(µ) , µ a⋆(µ),a (w) + w a d µ a , µ a⋆(µ),a (w) (4.12)

with the weighted average µ a,b (w) = waµa+w b µ b wa+w b , we notice that F has sub-gradients. Indeed, some computations show that for every arm a that is a minimizer in (4.12), the vector ∂ w F (w, µ) = d(µ a⋆(µ) , µ a⋆(µ),a (w))e a⋆(µ) + d(µ a , µ a⋆(µ),a (w))e a where e i is the i-th vector of the canonical basic of R A is a sub-gradient of F . Hence, one could use Projected Subgradient Descent or Mirror Descent (see, e.g. [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF]) to compute w ⋆ (µ). These online optimization algorithms would however be much slower than the algorithm suggested by Theorem 4.3 to produce accurate oracle calls.

The idea of [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF] is not to use a gradient-based algorithm to perform the oracle calls in Track-and-Stop but instead to replace the oracle call by one step of a (sub)-gradient based algorithm in each round of the algorithm. The optimization algorithm chosen is lazy mirror descent. Denoting by π 0 = 1 A , . . . , 1 A the uniform distribution on {1, . . . , A}, the proposed algorithm takes the form

w(t + 1) = argmax w∈Σ A η t+1 w ⊺ t s=A Clip s (∂ w F ( w(s), μ(s))) -KL (w, π 0 ) w ′ (t + 1) = (1 -γ t ) w(t + 1) + γ t π 0 A t+1 ∈ argmax a∈[A] t+1 s=1 w ′ a (s) -N a (t),
where the clipping Clip s (x) = (x a ∧ M √ s) a∈[A] for an arbitrary constant M is a technical trick to handle possibly un-bounded sub-gradients. Note also that the mixing with the uniform distribution in the second line can be seen as a counterpart of the forced exploration used in Track-and-Stop. [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF] proves that this sampling rule used in conjunction with the Parallel GLRT is δ-correct and asymptotically optimal for the choices η t = 1 √ t and γ t = 1 (4 √ t). This algorithm avoids the computational cost of the oracle calls, but still uses some kind of forced exploration.

How about Frank-Wolfe? Even if the Frank-Wolfe algorithm is in principle suited for optimizing smooth functions and F is not smooth, one can write the Frank-Wolfe update on the objective w ↦ F (w, µ): This sampling rule, proposed by [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF], is reminiscent of the Best Challenger sampling rule that we proposed in Garivier and Kaufmann (2016). However, it is not clear that it ensures convergence to the optimal weights (even with forced exploration), or that the noise-free version w t converges to w ⋆ (µ). Indeed, numerical experiments that we performed with Pierre Ménard revealed that in bandit models such that µ 1 > µ 2 = µ 3 , Frank-Wolfe and the Best Challenger rule fail to converge. Yet, this does not mean that a Frank-Wolfe algorithm cannot work for other active identification problems: as explained by [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF], it leads to an optimal algorithm for the thresholding bandit problem [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF], even if the corresponding F is not smooth. Meanwhile, [START_REF] Berthet | Fast rates for bandit optimization with upper-confidence frank-wolfe[END_REF] studied different bandit optimization problems in which there is also an underlying function F (w, µ) to optimize in w based on sampling the arms of the bandit model µ: when F is smooth, they advocate the use of Frank-Wolfe combined with upper confidence bounds on the gradients.

w t+1 = (1 -η t )
A two-player game interpretation By proposing a new interpretation of the lower bound as the solution of a two-players game, Degenne et al. (2019) open new directions for algorithms. The quantity

sup w∈Σ A inf λ∈Alt(µ) A a=1 w a d(µ a , λ a )
is viewed as the value of a "pure exploration game" between a MAX player who selects actions in [A] (using a mixed strategy) and a MIN player, who plays λ ∈ Alt(µ). The payoff of the MAX player selecting a when the MIN player selects λ is d(µ a , λ a ) (or equivalently, her loss is -d(µ a , λ a )).

The idea of Degenne et al. (2019) consists in playing two no-regret learning algorithms (aimed at minimizing the loss) against each other: an algorithm A MAX for the MAX player (or rather one algorithm Select arm A t and observe X t ∼ ν µ A t 15:

Compute the new posterior Π t 16: end for by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF]. Instead, he studies some intrinsic (Bayesian) properties of the sampling rule in terms of posterior convergence. More precisely, under some assumption on the prior distribution Π 0 to be specified shortly, he proves that TTTS satisfies where the quantity Γ ⋆ β (µ) can be expressed with our notation as

Γ ⋆ β (µ) = sup w∈Σ A ∶ w a ⋆ (µ) =β inf λ∈Alt(µ) A a=1 w a d(µ a , λ a ).
Interestingly, Γ ⋆ β (µ) is very close to the inverse of the characteristic time T ⋆ (µ) defined in (4.1), the only difference being the extra condition that w a ⋆ (µ) = β in the supremum. Intuitively, this condition comes from the fact that by design TTTS spends a fraction β selecting the same arm as Thompson Sampling would, and this arm is often a ⋆ (µ).

In words, Equation (4.13) says that the posterior probability of the set of bandit models that have an optimal arm different from a ⋆ (µ) decays in e -nΓ ⋆ β (µ) . The assumption made by Russo on the prior distribution are the following: the prior Π 0 on the vector of natural parameter θ should satisfy:

• Π 0 is supported on Θ = (θ, θ) A , where θ, θ ∈ R.

• Π 0 has a density π 0 with respect to the Lebesgue measure that satisfies

0 < inf{π 0 (λ), λ ∈ Θ} < sup{π 0 (λ), λ ∈ Θ} < ∞.
Under these assumption, it is further shown that Γ ⋆ β (µ) is the best possible rate of decay for strategies that spend a fraction β of the time on the optimal arm, that is, any strategy such that N a⋆(µ) (t) t converges to β satisfies

lim sup n→∞ - 1 n log P θ∼Πn θ a⋆(µ) < max a θ a ≤ Γ ⋆ β (µ).
From Bayesian to fixed-confidence guarantees Under some conditions on the prior distribution, a sufficient condition to prove (4.13) is to establish the almost sure convergence of the vector (N a (t) t) A a=1 to the weight vector w β (µ), where

w β (µ) ∈ argmax w∈Σ A ∶ w a ⋆ (µ) =β inf λ∈Alt(µ) A a=1
w a d(µ a , λ a ).

Indeed [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] proves the following result, under the above condition on the prior Π 0 .

Lemma 4.7. If the prior Π 0 has a bounded support in natural parameter space with a positive density, any allocation rule satisfying N a⋆(µ) (t) t → w β a (µ) P µ -a.s. for all a ∈ [A] satisfies

lim n→∞ - 1 n log P θ∼Πn θ a⋆(µ) < max a θ a = Γ ⋆ β (µ), P µ -a.s..
The assumptions on Π 0 are a bit restrictive, as they rule out the typical conjugate priors used for Bernoulli and Gaussian bandits. In the paper [START_REF] Qin | Improving the expected improvement algorithm[END_REF], the author later proved that this result also holds for Gaussian distribution with the usual improper prior, and in the paper [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF], we prove that it also holds for Bernoulli bandits with a Beta prior (see Theorem 6 therein). In this work, we also show that under TTTS with parameter β the empirical proportions of draws of each arm do converge to w ⋆ β (µ) for Gaussian and Bernoulli bandits with these practical prior distributions, hence TTTS is optimal in terms of the decay of posterior probability of the set of wrong models.

A natural question is whether this convergence property is sufficient to provide sample complexity guarantees for the δ-correct algorithm that combines the Parallel GLRT stopping and recommendation rule with the TTTS sampling rule1 . From the convergence property, one can easily deduce the following bound on τ δ , which holds almost surely. = w β a (µ), almost surely, it holds that

P µ ⎛ ⎝ lim sup δ→0 τ δ log(1 δ) ≤ 1 Γ ⋆ β (µ) ⎞ ⎠ = 1.
Proof. We assume that a ⋆ (µ) = 1 to fix the ideas and let E be the event

E = ∀a ∈ [A], N a (t) t → t→∞ w ⋆ β (µ) a and μ(t) → t→∞ µ .
From the assumption on the sampling rule and the law of large numbers (as all arms are drawn a linear amount of time since the weights are non-zero), E is of probability 1. On E, there exists t 0 such that for all t ≥ t 0 , μ1 (t) > max a≠1 μa (t), hence Alt( μ(t)) = Alt(µ) and the Parallel GLRT stops when Z(t) exceed β(t, δ) where

Z(t) = inf λ∈Alt(µ) A a=1 N a (t)d(μ a (t), λ a ) = t × min a≠1 G a ( ŵ(t), μ(t)) , with ŵa (t) = Na(t) t and G a (w, λ) = w 1 d λ 1 , w 1 λ 1 + w a λ a w 1 + w a + w a d λ a , w 1 λ 1 + w a λ a w 1 + w a .
For all a ≥ 2, the mapping (w, λ) → G a (w, λ) is continuous at (w β (µ), µ). Therefore, for all ε > 0 there exists t 1 ≥ t 0 such that for all t ≥ t 1 and all a ∈ [A],

G a ( ŵ(t), μ(t)) ≥ G a w β (µ), µ 1 + ε .
Hence, for t ≥ t 1 ,

Z(t) ≥ t 1 + ε min a≠1 G a w β (µ), µ = t 1 + ε min λ∈Alt(µ) A a=1 w β a (µ)d(µ a , λ a ) = t 1 + ε Γ ⋆ β (µ).
Consequently,

τ δ = inf{t ∈ N ∶ Z(t) ≥ β(t, δ)} ≤ t 1 ∨ inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t ∈ N ∶ t ≥ 1 + ε Γ ⋆ β (µ) β(t, δ) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
The threshold β(t, δ) satisfies β(t, δ) ≤ log t δ + o δ→0 log 1 δ and simple algebra (e.g. Lemma 18 in Garivier and Kaufmann ( 2016)) shows that

τ δ ≤ t 1 ∨ ⎡ ⎢ ⎢ ⎢ ⎣ (1 + ε) Γ ⋆ β (µ) log 1 δ + o δ→0 log 1 δ ⎤ ⎥ ⎥ ⎥ ⎦
.

Thus τ δ is finite on E for every δ ∈ (0, 1), and

lim sup δ→0 τ δ log(1 δ) ≤ (1 + ε) Γ ⋆ β (µ)
.

Letting ε go to zero concludes the proof.

◻

However, the almost sure convergence of the empirical proportions is not sufficient to prove a bound on the expected sample complexity. To prove such a result for Track-and-Stop, a more precise result on the convergence speed was needed (Lemma 4.5). In [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF], we establish an expected sample complexity bound for TTTS by following the same technique as the one introduced by [START_REF] Qin | Improving the expected improvement algorithm[END_REF] to analyse the sample complexity of another Bayesian algorithm named TTEI (for Top-Two Expected Improvement). They show that a sufficient condition to establish

lim sup δ→∞ E µ [τ δ ] log (1 δ) ≤ 1 Γ ⋆ β (µ) (4.14)
for any sampling rule used in conjunction with the Parallel GLRT is to show that this sampling rule satisfies, for all ε ∈ (0, 1), E T ε β < ∞ where T ε β is the random variable

T ε β ∶= inf N ∈ N ∶ max a∈[A] N a (n) n -w β a ≤ ε; ∀n ≥ N .
In Theorem 3 of [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF], we prove that TTTS satisfies E T ε β < ∞ for Gaussian bandits. Establishing this property for TTTS is much more intricate than for TTEI due to the randomized nature of TTTS.

Hence, the BAI algorithm that uses TTTS as a sampling rule and the Parallel GLRT stopping and recommendation rule satisfies (4.14). The following lower bound (proved using the exact same technique as for Theorem 4.1) shows that this is optimal, among algorithms allocating a β fraction of the samples to the optimal arm. We call an algorithm matching this lower bound a β-optimal algorithm. Theorem 4.9. Let δ ∈ (0, 1). For any δ-PAC strategy, for all µ such that the sampling rule satisfies

N a ⋆ (µ) (t) t → β P µ -a.s., it holds that E µ [τ δ ] ≥ 1 Γ ⋆ β (µ) kl(δ, 1 -δ).
Is TTTS a good alternative to Track-And-Stop? We established that a Bayesian BAI algorithm can have a near-optimal sample complexity without performing a costly computation of the optimal proportion in every-round. However, to be asymptotically optimal for BAI, TTTS would need to be run with the oracle parameter β ⋆ where β ⋆ = w ⋆ a ⋆ (µ) (µ), which is of course unknown. In practice, [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] suggests the use of β = 1 2 which is proved to satisfy Γ ⋆ 1 2 (µ) ≥ Γ ⋆ β ⋆ (µ) 2 for all µ. But he also shows that if the algorithm uses in each step t a parameter β t that satisfies β t → β ⋆ almost surely, then the Bayesian optimality properties are preserved. However, this is less clear for the fixed-confidence guarantees, and an efficient adaptive tuning (that does not need a complex oracle call in every round) has still to be found.

Under TTTS, the cost of an oracle call to w ⋆ is replaced by the cost of sampling the posterior. While sampling from the typical conjugate posterior used in exponential families is easy, note that the re-sampling step (l. 9-11 in Algorithm 10) can be quite long. Indeed, when the posterior on all arms become concentrated, a lot of samples are needed before the optimal arm appears sub-optimal. In [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF], we propose an efficient approximation of this costly re-sampling step, which leads to the T3C algorithm (for Top Two Transportation Cost). Introducing the transportation cost where a n,k is the posterior probability that arm k is optimal: a n,k = Π n (θ k > max i≠k θ i ). When a coincides with the empirical best mean (this will often be the case for I

W n (a, b) ∶ = 0 if μb (n) ≥ μa (n), N a (n)d μa (n), μa,b (n) + N b (n)d μb (n),
(1) n

when n is large due to posterior convergence) one can write

a n,b ≃ Π n (θ b ≥ θ a ) ≃ exp (-W n (a, b)) ,
where the last step is justified for Gaussian and Bernoulli distribution by upper bound that we provide in [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF]. In T3C we propose to replace sampling from the distribution (4.15) by an approximation of its mode, which is easy to compute. That is, we define

I (2) n = argmin b≠I (1) n W n I (1)
n , b

where I

(1) n = argmax a θ a with θ ∼ Π n and the T3C sampling rule selects

A n+1 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ I (1) n
with probability β , I

(2) n with probability 1 -β . [START_REF] Shang | Fixed-confidence guarantees for bayesian best-arm identification[END_REF] reveal that T3C has comparable performance to TTTS but with smaller computational cost.

Experiments performed in

Hence, the next step is to combine T3C with an adaptive tuning of β in order to propose a computationally simple asymptotically optimal algorithm.

Chapter 5

Applications to Monte-Carlo Tree Search

In this chapter, we focus on two more sophisticated examples of Active Identification problems that are motivated by the search for a better theoretical understanding of Monte-Carlo Tree Search. The presented works are the outcome of a fruitful collaboration with Wouter Koolen and Aurélien Garivier.

A Simple Model for Planning in Games

The word "planning" has different meanings in the context of reinforcement learning. It often means computing the optimal policy in a Markov Decision Process (MDP) with known reward function and transition probabilities, i.e. find out what is the best next action to take in each possible state. But when the MDP is large, this task is already very hard as the usual Dynamic Programming solution is intractable. A simpler objective is therefore to find the best action to perform in the current state, based on possible calls to a generative model, which simulates transitions in the MDP often in the form of trajectories starting in the current state. This is the planning task we have in mind in this chapter: finding the best action to take in a given state using as few calls to the generative model as possible.

Such a planning problem has also been studied in the context of two player games, where the goal is to find the best possible move to take for a given player in a given state of the game, by exploring several trajectories (sequences of successive moves by the two players) starting from this state. Besides simple (solved) games in which the tree of all possible trajectories can be fully stored, Monte-Carlo Tree Search methods (see, e.g., [START_REF] Browne | A survey of monte carlo tree search methods[END_REF], for a survey) may be used to smartly explore a subset of this very large game tree in order to find a good move. The architecture of a typical MCTS algorithm in shown in Figure 5.1. A MCTS algorithm has two crucial components: a selection strategy, which (adaptively) chooses a path down the search tree, and a leaf evaluation method. The first MCTS algorithms often relied on a random evaluation (called simulation in Figure 5.1) in the form of a playout which consists in finishing the game from the current position using a simple heuristic (typically, playing at random) and reporting 1 if the game was won by the root player, 0 otherwise. Outcomes of theses playouts are then backpropagated to the state visited before reaching the leaf, and may be used by an adaptive selection strategy. In more recent MCTS algorithms that lead to a breakthrough in Go, namely AlphaGo [START_REF] Silver | Mastering the game of go with deep neural networks and tree search[END_REF] and AlphaZero [START_REF] Silver | A general reinforcement learning algorithm that masters chess, shogi, and go through self-play[END_REF], playouts are combined or even replaced by a leaf evaluation function that is learned by a neural network, mapping the board to a value. Still, we propose below an idealized model for the vanilla playout based Monte-Carlo Tree Search, trying to answer the following question: how many (random) leaf evaluations are needed to be able to find a good move at the root of the game tree?

As will be seen shortly, in the proposed model this question can be framed as an active identification problem in a multi-armed bandit model. Since the seminal work of [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF] who proposed the UCT algorithm (for Upper Confidence bounds applied to Trees), selection rules based on bandit tools have been successfully used for MCTS, in particular for the design of the first computer Go programs [START_REF] Coulom | Efficient selectivity and backup operators in monte-carlo tree search[END_REF]. UCT goes down the search tree by selecting the most promising children to explore using a UCB algorithm, that is, exploration is targeted toward the parts of the search tree that lead to successful playouts. However, the goal of an MCTS algorithm is not to win a large number of simulated games (i.e. maximize some notion of reward), but rather to identify the best first action to take when exploration in over. In light of the fundamental difference between algorithms for reward maximization and best arm identification that has been discussed in previous chapters, it is natural to wonder whether alternative approaches ignoring these rewards could have a better performance.

Despite the practical success of UCT, this algorithm has only been analyzed in terms of convergence towards a good recommendation when the number of sampled trajectories is large, and no sample complexity guarantees are available for this algorithm. With Aurélien Garivier and Wouter Koolen, we worked on new MCTS algorithms based on BAI tools and gave upper bounds on their sample complexity (Garivier et al., 2016a;[START_REF] Kaufmann | Monte-Carlo tree search by best arm identification[END_REF].

A simple model for MCTS in games

We present an idealized model for Monte-Carlo Tree Search in a two-player game represented by a game tree G. This tree models the possible action sequences by a collection of MAX nodes, that correspond to states in the game in which player A should take action, MIN nodes, for states in the game in which player B should take action, and leaves in which random evaluations of the positions can be performed. The root of this tree is a MAX node, and the goal is to find the best first action to take at the root for player A.

Letting L be the set of leaves of this tree, for each ∈ L we introduce a stochastic oracle O that represents the playout performed when this leaf is reached by an MCTS algorithm. In this model, we do not try to optimize the evaluation or playout strategy, but we rather assume that the oracle O produces i.i.d. samples from an unknown distribution whose mean µ is the value of the position . To ease the presentation, we focus on binary oracles (indicating the win or loss of a playout), in which the oracle O is a Bernoulli distribution with unknown mean µ , which is the probability of player A winning the game in the corresponding state.

We denote by µ = (µ ) ∈L the collection of leaf values. For each node s in the tree, we denote by C(s) the set of its children and by P(s) its parent. The root is denoted by s 0 . The value (for player A) of any node s is recursively defined by V µ ( ) = µ if ∈ L and Assuming that player B is strategic, an optimal move for player A is the action leading to a depth-one node with highest value,

V µ (s) = max c∈C(s) V µ (c) if s is a MAX node, min c∈C(s) V µ (c) if s is a MIN node.
s ⋆ ∈ argmax s∈C(s 0 ) V µ (s) , so that V µ (s 0 ) = V µ (s ⋆ ).
In order to identify a near-optimal move, an MCTS algorithm sequentially selects paths in the game tree and calls the corresponding leaf oracle. At round t, a leaf L t ∈ L is chosen by this adaptive sampling rule, after which a sample X t ∼ O Lt is collected. The strategy also requires a stopping rule τ , after which leaves are no longer evaluated, and a recommendation rule that outputs upon stopping a guess ŝτ ∈ C(s 0 ) for the best move of player A. Given a risk level δ ∈ (0, 1] and some accuracy parameter ε ≥ 0 our goal is to have a recommendation ŝτ ∈ C(s 0 ) whose value is within ε of the value of the best move, with probability larger than 1 -δ:

P (V µ (s ⋆ ) -V µ (ŝ τ ) ≤ ε) ≥ 1 -δ.
An algorithm satisfying this property is called (ε, δ)-correct. The main challenge is to design (ε, δ)correct algorithms that minimize the sample complexity, that is, the number of leaf evaluations τ needed to make the recommendation. This problem fits the active identification framework introduced in Chapter 3, as in a bandit model parameterized by the leaf values µ = (µ ) ∈L the goal it to identify a region R s = {µ ∶ V µ (s) ≥ V µ (s ⋆ ) -ε} for s ∈ C(s 0 ) to which µ belongs by adaptively sampling the arms of means µ. Note however that the regions are expressed with the value function V µ which depends in a complex way of the means µ. This problem can be viewed as a particular instance of the structured best arm identification framework of [START_REF] Huang | Structured best arm identification with fixed confidence[END_REF], which was also introduced as a possible model for MCTS.

Monte-Carlo Tree Search by Best Arm Identification

We now present the UGapE-MCTS algorithm, which fits the more general BAI-MCTS framework that we introduced in Kaufmann and Koolen (2017), and later discuss optimal MCTS algorithms.

UGapE-MCTS

Recall that our goal is to identify the action at the root that leads to the state at depth one that has largest value. If one had access to a stochastic oracle producing i.i.d. samples with means V (s) for each s ∈ C(s 0 ) this would be a standard best arm identification problem. However, the difficulty in the MCTS problem comes from the fact that we can only sample the leaves to refine our estimates about the values of the target depth-one nodes.

Still, UGapE-MCTS builds on a best arm identification algorithm called UGapE [START_REF] Gabillon | Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence[END_REF] (designed for finding the m best arms but used here for m = 1) for choosing the first step towards a leaf. The specificity of UGapE is that its stopping, sampling and recommendation rules are fully determined by confidence intervals on the means of the arms. Hence, used in conjunction with confidence intervals on the values at depth one, UGapE permits to select a promising depth-one node to explore. This is the first step of the two-staged UGapE-MCTS, which then select a representative leaf to sample from the selected depth-one node.

Before giving a more precise description of UGapE-MCTS, we elaborate on its two central elements: the construction of the confidence intervals and the notion of a representative leaf.

Confidence intervals and representative nodes For each leaf ∈ L, using the past (i.i.d.) observations from this leaf we may build a confidence interval

I (t) = [LCB (t), UCB (t)],
where UCB (t) (resp. LCB (t)) is an Upper Confidence Bound (resp. a Lower Confidence Bound) on the value V ( ) = µ . The specific confidence interval we shall use will be discussed later.

These confidence intervals are then propagated upwards in the tree using the following construction. For each internal node s, we recursively define Note that these intervals are the tightest possible on the parent under the sole assumption that the confidence intervals of the children are all valid. A similar construction was used in the OMS algorithm of [START_REF] Borsoniu | An analysis of optimistic, best-first search for minimax sequential decision making[END_REF] in a different context. It is easy to convince oneself (or prove by induction) that the accuracy of the confidence intervals is preserved under this construction, as stated below.

I s (t) = [LCB s (t), UCB s (t)] with LCB s (t) = max c∈C(s) LCB c (t)
Proposition 5.1. Let t ∈ N. One has ⋂ ∈L (µ ∈ I (t)) ⇒ ⋂ s∈G (V µ (s) ∈ I s (t)).

We further define the representative child c s (t) of an internal node s as

c s (t) ∈ argmax c∈C(s) UCB c (t) if s is a MAX node, argmin c∈C(s) LCB c (t) if s is a MIN node,
and the representative leaf s (t) of a node s ∈ G, which is the leaf obtained when going down the tree by always selecting the representative child:

s (t) = s if s ∈ L, s (t) = cs(t) (t) otherwise.
The confidence intervals in the tree represent the statistically plausible values in each node, hence the representative child can be interpreted as an "optimistic move" in a MAX node and a "pessimistic move" in a MIN node (assuming we play against the best possible adversary). This is reminiscent of the behavior of the UCT algorithm [START_REF] Kocsis | Bandit based monte-carlo planning[END_REF], which uses however different types of confidence intervals. In UCT, the confidence interval used in a given node is built as if the outcomes of the playouts performed in the whole sub-tree rooted at this node were i.i.d. whereas in UGapE-MCTS the confidence intervals are built in the leaves only (in which the observations are indeed i.i.d.) and propagated in the tree.

The construction of confidence intervals and the representative child are illustrated in Figure 5.3 while Figure 5.4 illustrates the confidence intervals in the whole tree as well as the path down to the representative leaf. 

B s (t) = max s ′ ∈C(s 0 ) {s} UCB s ′ (t) -LCB s (t).
B s (t) is meant to be an upper confidence bound on the simple regret V µ (s ⋆ ) -V µ (s). Next, we define the following two promising depth-one nodes, a candidate best arm b t and a challenger c t :

b t = argmin a∈C(s 0 ) B a (t) and c t = argmax b∈C(s 0 ) {b t } UCB b (t).
At round t + 1, UGapE-MCTS first computes and selects as the first node to explore the one among b t and c t whose confidence interval is the largest (that is, the most uncertain node):

R t+1 = argmax i∈{b t ,c t } [UCB i (t) -LCB i (t)] .
Then the algorithm goes down the tree and samples the representative leaf of R t+1 : L t+1 = R t+1 (t). UGapE-MCTS stops when the confidence intervals of the two promising arms overlap by less than ε:

τ = inf t ∈ N ∶ UCB c t (t) -LCB b t (t) < ε ,
and it recommends ŝτ = b τ .

Analysis of UGapE-MCTS The confidence interval for the mean of each leaf µ depends on N (t), the number of visits of this leaf in the first t rounds, and μ (t) the empirical mean of the playouts from this leaf. We analyze UGapE-MCTS based on the following confidence intervals:

LCB (t) = max {q ∶ N (t)kl (μ (t), q) ≤ β(N (t), δ)} (5.1)
and

UCB (t) = min {q ∶ N (t)kl (μ (t), q) ≤ β(N (t), δ)} , (5.2)
where kl is the binary relative entropy and β(s, δ) is some exploration function. An interesting practical feature of these confidence intervals is that they only depend on the local number of draws N (t), whereas most of the confidence-based BAI algorithms use exploration functions that depend on the number of rounds t. Hence the only confidence intervals that need to be updated at round t are those of the ancestors of the selected leaf, which can be done recursively. Using Theorem 3.1 in Chapter 3, the threshold can be tuned to ensure that the event

E = ⋂ ∈L (µ ∈ [LCB (t), UCB (t)])
holds with probability 1 -δ. On this event, it can be observed that by definition of the stopping rule, the algorithm outputs an action which is ε-optimal, which yields the following result.

Lemma 5.2. Letting T (x) be the threshold function defined in (3.7) in Chapter 3. Choosing

β(s, δ) = T log L δ + 3 log(log s + 1) (5.3) UGapE-MCTS satisfies P(V (s ⋆ ) -V (ŝ τ ) ≤ ε) ≥ 1 -δ.
To introduce our sample complexity guarantees, we first introduce some notation. Recall that s ⋆ is the optimal action at the root, identified with the depth-one node satisfying V (s ⋆ ) = V (s 0 ), and define the second-best depth-one node as s ⋆ 2 = argmax s∈C(s 0 ) {s ⋆ } V (s). Recall P(s) denotes the parent of a node s different from the root. Introducing furthermore the set Anc(s) of all the ancestors of a node s, we define the complexity term by

H ⋆ ε (µ) ∶= ∈L 1 ∆ 2 ∨ ∆ 2 * ∨ ε 2 , where ∆ * ∶= V (s ⋆ ) -V (s ⋆ 2 ) ∆ ∶= max s∈Anc( ) {s 0 } V (s) -V (P(s))
(5.4)

The intuition behind these squared terms in the denominator is the following. We will sample a leaf until we either prune it (by determining that it or one of its ancestors is a bad move), prune everyone else (this happens for leaves below the optimal arm) or reach the required precision ε.

Theorem 5.3. Let δ ∈ (0, 1). UGapE-MCTS using the exploration function (5.3) is such that, with probability larger than 1 -δ, (V (s ⋆ ) -V (ŝ τ ) < ε) and, letting

∆ ,ε = ∆ ∨ ∆ * ∨ ε, τ ≤ ∈L 8 ∆ 2 ,ε ⎛ ⎝ T log L δ + 4 log log 1 ∆ 2 ,ε ⎞ ⎠ + 32H ⋆ ε (µ) log log 8eT log L δ + 1 .
From the definition of ∆ , this is equivalent to the following statement.

Lemma 5.7.

Let t ∈ N. E t ∩ (τ > t) ∩ (L t+1 = ) ⇒ N (t) ≤ 8β(N (t),δ) ∆ 2 ∨∆ 2 * ∨ε 2 .
The last tool for the proof is the following lemma (which is a variant of Lemma 6 in [START_REF] Kaufmann | Monte-Carlo tree search by best arm identification[END_REF]), which permits to invert the above inequality and find the largest possible value of N (t) for which it holds, for the specific exploration rate in (5.3).

Lemma 5.8. Let β(s) = C + 3 log(1 + log(s)) and define S = sup{s ≥ 1 ∶ aβ(s) ≥ s}. Then S ≤ aC + 4a log(1 + log(aC)).

On the event E, letting τ be the last instant before τ at which the leaf has been played before stopping, one has N (τ -1) = N (τ ) that satisfies by Lemma 5.7

N (τ ) ≤ 8β(N (τ ), δ) ∆ 2 ∨ ∆ 2 * ∨ ε 2 . Applying Lemma 5.8 with a = a = 8 ∆ 2 ∨∆ 2 * ∨ε 2 and C = T log L δ leads to N (τ -1) ≤ 8 ∆ 2 ∨ ∆ 2 * ∨ ε 2 T log L δ + 4 log 1 + log 8 ∆ 2 ∨ ∆ 2 * ∨ ε 2 T log L δ .
Recalling that ∆ ,ε = ∆ ∨ ∆ * ∨ ε and summing over arms, we find

τ = 1 + N (τ -1) ≤ 1 + 8 ∆ 2 ,ε ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ T log L δ + 4 log ⎛ ⎝ 1 + log ⎛ ⎝ 8 ∆ 2 ,ε T log L δ ⎞ ⎠ ⎞ ⎠ ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = 1 + 8 ∆ 2 ,ε ⎛ ⎝ T log L δ + 4 log log 1 ∆ 2 ,ε ⎞ ⎠ + 32H ⋆ ε (µ) log log 8eT log L δ .
To conclude the proof, we use that, as already noted above, V (s ⋆ ) -V (ŝ τ ) < ε on the event E and that the threshold β(s, δ) was calibrated in Lemma 5.2 so that E holds with probability larger than 1 -δ.

◻

Towards Optimal Strategies

By leveraging a sub-optimal best arm identification algorithm, UGapE, to propose an algorithm for the MCTS problem, one may be quite far from designing a MCTS algorithm with a minimal sample complexity. This is corroborated by the fact that the complexity terms H ⋆ ε (µ) features a sum over all leaves, while one could expect only a few leaves to be useful, as in the best case of αβ pruning.

As the MCTS is a particular active identification problem, to measure the room for improvement, one can write the lower bound of Theorem 4.1, at least in the special case ε = 0. Theorem 5.9. Assume ε = 0 and define Alt

(µ) = {λ ∈ [0, 1] L ∶ s ⋆ (λ) ≠ s ⋆ (µ)}. Any δ-correct algorithm satisfies E µ [τ ] ≥ T ⋆ (µ) log 1 3δ , where T ⋆ (µ) -1 ∶= sup w∈Σ L inf λ∈Alt(µ) ∈L w kl (µ , λ ) (5.5) with Σ k = {w ∈ [0, 1] k ∶ ∑ k i=1 w i = 1} and kl(x, y) = x log(x y) + (1 -x) log((1 -x) (1 -y)).
To compare T ⋆ (µ) and H ⋆ 0 (µ), a more explicit expression of the former quantity is needed. For depth-two trees with K (resp. M ) actions for player A (resp. B), T ⋆ (µ) can be made more explicit, revealing an interesting sparsity pattern.

Lemma 5.10. Assume ε = 0 and consider a tree of depth two with µ = (µ i,j ) 1≤i≤K,1≤j≤M such that ∀(i, j), µ 1,1 > µ i,1 , µ i,1 < µ i,j . The supremum in the definition of T ⋆ (µ) -1 can be restricted to

ΣK,M ∶= {w ∈ Σ K×M ∶ w i,j = 0 if i ≥ 2 and j ≥ 2} and T ⋆ (µ) -1 = max w∈ ΣK,M min i=2,...,K a=1,...,M w 1,a d µ 1,a , w 1,a µ 1,a + w i,1 µ i,1 w 1,a + w i,1 +w i,1 kl µ i,1 , w 1,a µ 1,a + w i,1 µ i,1 w 1,a + w i,1 . 
For depth-two trees, the fact that the optimal weights w ⋆ (µ) are supported on only K + M -1 of the K × M leaves suggests that matching algorithms should draw many of the leaves much less than O(log(1 δ)) times. This shows that the complexity quantity H ⋆ 0 (µ), which scales in KM ∆ 2

⋆

for depth-two trees, is not optimal in the case (assuming the lower bound can be reached).

In order to design an asymptotically optimal algorithm, one could try to follow a similar approach as that of Track-and-Stop for best arm identification, described in Chapter 4: use a sampling rule tracking the optimal weights (with some forced exploration) together with the Parallel GLRT as a stopping rule. We first tried this approach for depth-two trees with K = 2 actions for the root player, for which we could obtain an efficient algorithm for computing the optimal weights in the lines of the one proposed in Theorem 4.3 for best arm identification. However, the resulting sample complexity was not significantly smaller than that of UGapE-MCTS, unlike what happens for best arm identification where the sample complexity of Track-and-Stop is twice smaller than that of UGapE.

Beyond K = 2 and beyond depth-two trees, computing the optimal weights is more involved. Using software for disciplined optimization (CVX), Wouter Koolen wrote a program for computing the optimal weights for depth-three trees. We found out that, as in the depth-two cases, a lot of these optimal weights are indeed zero. However we couldn't provide a characterization of their support as we do in Lemma 5.10 for depth-two trees.

Hence, finding an asymptotically optimal algorithm for MCTS that is both numerically efficient and has a small empirical sample complexity for moderate values of δ remains an open question.

From Thompson Sampling to Murphy Sampling

A crucial component of the UGapE-MCTS algorithm is the construction of confidence intervals on the values V (s) of all nodes in the tree. UGapE-MCTS relies on a simple construction that builds an upper confidence bound on the minimum (resp. a lower confidence bound on the maximum) of several values by taking the minimum of the upper confidence bounds on these values (resp. the maximum of the lower confidence bounds). Motivated by possible improvements to UGapE-MCTS, we worked with Wouter Koolen and Aurélien Garivier on improved confidence intervals on the minimum and maximum, and on a related active identification problem: that of finding whether the minimum of a set of means is smaller or larger than a threshold. This work was published in Kaufmann et al. (2018) and we now describe its key features.

Given a finite collection of probability distributions in a one-parameter exponential family parameterized by their means µ = (µ 1 , . . . , µ A ) ∈ I A , we are interested in learning about µ min = min a µ a from Proof. We recall from Chapter 4 that

(T ⋆ (µ)) -1 = sup w∈Σ A inf λ∈Alt(µ) A a=1 w a kl(µ a , λ a )
where for this active identification problem Alt

(µ) = R < (resp. R > ) if µ ∈ R > (resp. R < ). If µ min < γ, then we find 1 T ⋆ (µ) = max w∈Σ A a∶µa<γ w a kl(µ a , γ) = max a∶µa<γ kl(µ a , γ) = kl(µ min , γ)
and a maximizer is obtained for any distribution supported on arms a whose mean is equal to µ min . On the other hand, if µ min > γ, we find

1 T ⋆ (µ) = max w∈Σ A min a w a kl(µ a , γ) = 1 ∑ a 1 kl(µa,γ)
and the maximum is attained for w

⋆ a (µ) = 1 kl(µa,γ) ∑ j 1 kl(µ j ,γ)
.

◻

As explained in Chapter 3, the oracle weights w ⋆ (µ) correspond to the fraction of samples that should be allocated to each arm under a strategy matching the lower bound. The interesting feature here is that the lower bound indicates that an oracle algorithm should have very different behavior depending on whether µ belongs to R < or to R > . On R < it should sample the arm with lowest mean (or all lowest means, if there are several) exclusively, while on R > it should sample all arms with certain specific proportions.

In light of the lower bound in Lemma 5.11, we now investigate the design of optimal learning algorithms (sampling rule A t and stopping rule τ ). To ease the presentation, we assume that there is a unique arm with smallest mean, which we denote by a min .

Sampling Rule: Murphy Sampling

The key contribution of this work is a new sampling rule under which the empirical fraction of selections of each arm, N a (t) t, converges to the corresponding optimal proportion w ⋆ a (µ), for any µ ∈ R. Unlike previously proposed asymptotically optimal algorithms for active identification, this sampling rule does not rely on the Tracking idea, hence doesn't need any forced exploration. Before presenting Murphy Sampling, we explain that it is easy to propose sampling rules that converge to w ⋆ (µ) for either µ ∈ R < or µ ∈ R > , but not for both.

Thompson Sampling For µ ∈ R < , the empirical proportion of draws of the arm a min with smallest mean should converge to 1. The literature on regret minimization provides candidate algorithms that have this type of behavior, for example Thompson Sampling. Given independent prior distributions on the mean of each arm, we recall that this Bayesian algorithm selects an arm at random according to its posterior probability of being optimal (in our case, the arm with smallest mean). Letting π t a refer to the posterior distribution of µ a after t samples, this can be implemented as

TS: Sample ∀a ∈ [A], θ a (t) ∼ π t-1 a , then play A t = arg min a∈[A] θ a (t).
If Thompson Sampling is run without stopping, one can show (see Theorem 12 in Kaufmann et al. (2018)) that N a min (t) t converges almost surely to 1, for every µ ∈ R. Hence, TS converges to the optimal proportions for µ ∈ R < . However, TS cannot be optimal for µ ∈ R > , as the empirical proportion of draws doesn't converge to w ⋆ (µ) ≠ 1 a min .

LCB For µ ∈ R > , one can show that a different algorithm, called LCB, can converge to the optimal proportions. It requires to define confidence regions, i.e. upper and lower confidence bounds

UCB a (t) = max{q ∶ N a (t)d + (μ a (t), q) ≥ C < (δ, N a (t))}, (5.6) LCB a (t) = min{q ∶ N a (t)d - (μ a (t), q) ≥ C > (δ, N a (t))}, (5.7) 
for two threshold functions C < (δ, r) and C > (δ, r). The LCB strategy selects at each round the arm with smallest Lower Confidence Bound:

LCB: Play A t = argmin a LCB a (t) .
In Appendix E of Kaufmann et al. (2018) we prove that LCB is optimal for µ ∈ R > however we show that on instances of R < it draws all arms a ≠ a min too much and cannot converge to the optimal proportions.

Murphy Sampling We denote by Π n = P (⋅ F n ) the posterior distribution of the mean parameters after n rounds. We introduce a new (randomised) sampling rule called Murphy Sampling after Murphy's Law, as it performs some conditioning on the "worst event" (µ ∈ R < ):

MS: Sample θ t ∼ Π t-1 (⋅ R < ), then play A t = a min (θ t ) .
(5.8)

As we will argue below, the subtle difference of sampling from Π n-1 (⋅ R < ) instead of Π n-1 (as regular Thompson Sampling does) ensures the required split personality behavior. Note that MS always conditions on R < (and never on R > ) regardless of the position of µ w.r.t. γ. This is different from the symmetric Top Two Thompson Sampling [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF], which essentially conditions on a ⋆ (θ) ≠ a ⋆ (µ) a fixed fraction 1 -β of the time, where β is a parameter that needs to be tuned with knowledge of µ.

MS on the other hand needs no parameters. Also note that MS is an anytime sampling algorithm, being independent of the risk parameter δ.

MS is technically an instance of Thompson Sampling with a joint prior Π supported only on R < . This viewpoint is conceptually interesting, as we will apply MS identically to R < and R > . To implement MS, we use that independent conjugate per-arm priors induce likewise posteriors, admitting efficient (unconditioned) posterior sampling. Rejection sampling then achieves the required conditioning. Its computational cost is limited: the acceptance probability cannot be much smaller than the risk δ provided to the algorithm. Indeed, the fact that the stopping rule (see Section 5.3.2) has not yet fired, combined with the posterior concentration (Proposition 5.13) and the convergence of the sampling efforts to track the sampling proportions (Theorem 5.12) reveals that the MS rejection sampling step accepts with probability at least of order δ (log t) 3 . So for reasonable values of δ, this can be small and require a few thousands of draws (not a big deal for today's computers), but it cannot be prohibitively small.

We now prove the convergence of Murphy Sampling under the same assumptions made by Russo (2016): the parameter space Θ ∋ µ (or the support of the prior) is the interior of a bounded subset of R A . This ensures that sup µ,θ∈Θ kl(µ, θ) < ∞ and sup µ,θ∈Θ µθ < ∞. We further assume that the prior Π has a density π with bounded ratio sup µ,θ∈Θ π(θ) π(µ) < ∞. Theorem 5.12. Under the above assumptions, Murphy Sampling ensures that for any µ ∈ R ∀a ∈ [A],

N a (t) t → w ⋆ a (µ) a.s. .

Proof. Following Russo (2016), we denote the sampling probabilities in round n by

ψ a (n) = P (A n = a F n-1 ) = Π n-1 a = arg min j θ j R < ,
and abbreviate Ψ a (n) = ∑ n t=1 ψ a (t) and ψa (n) = Ψa(n)

n . The first step of the analysis is to show that for all µ ∈ R, under Murphy Sampling all arms are drawn infinitely often, that is N a (t) → +∞, a.s., which is proved in Proposition 11 of Kaufmann et al. (2018). An interesting corollary (which follows from a martingale convergence theorem as proved by Russo ( 2016)) is the fact that lim n→∞ Ψa(n) Na(n) = 1 a.s.. Hence, the convergence of the empirical proportions to w ⋆ (µ) is equivalent to the convergence of ψ(t) = ( ψa (t)) a∈[A] to w ⋆ (µ).

Then, consider µ ∈ R < . In this case the conditioning in MS is asymptotically immaterial as Π n (R < ) converges to 1, and the algorithm behaves like regular Thompson Sampling (targeted toward minimizing rewards instead of maximizing them). As Thompson sampling has sublinear regret [START_REF] Agrawal | Analysis of Thompson Sampling for the multi-armed bandit problem[END_REF], we should have E[N a min (t)] t → 1. The crux of the proof is to show that the convergence occurs almost surely. For this, we prove that ψa min (t) → 1, which follows from the fact that for all ζ ∈ (µ min , min a≠a min µ a ),

ψ a min (t) ≥ Π t arg min j θ j = a min , min j θ j ≤ γ ≥ Π t (θ a min ≤ ζ) → 1 a≠a min Π t (θ a ≥ ζ) → 1 → 1.
The fact that Π t (θ a min ≤ ζ) and Π t (θ a ≥ ζ) converge to 1 for a ≠ a min follows from posterior convergence and the fact that all arms are drawn infinitely often.

Next, consider µ ∈ R > . Let us abbreviate w ⋆ = w ⋆ (µ). Our strategy is similar to that Russo (2016) for proving the convergence of TTTS. It relies on two important results stated below. 

n ψ a (n)1 ψa (n) ≥ w ⋆ a + c < ∞ , then ψ(n) → w ⋆ .
First, recall from Lemma 5.11 that

T ⋆ (µ) -1 = max w min λ∶mina λa<γ a w a d (µ a , λ a ) = max w min a w a kl (µ a , γ) = w ⋆ a kl(µ a , γ) ∀a.
(5.9) Furthermore, by Lemma 5.13, for any a ∈

[A] Π n (θ a < γ) ≐ exp -n min λ∶λa<γ b ψb (n)kl (µ b , λ b ) = exp -n ψa (n)d (µ a , γ) .
In particular, there is a sequence ε n decreasing to zero such that

∀n ∶ Π n (θ a < γ) ∈ exp -n ψa (n)d (µ a , γ) ± ε n .
To establish the precondition of Lemma 5.14 above, fix a ∈ [A] and c > 0 and consider any round n where ψa (n) ≥ w ⋆ a + c. Then

ψ a (n) = Π n-1 (a = arg min j θ j , min j θ j < γ) Π n-1 (min j θ j < γ) ≤ Π n-1 (θ a < γ) max a Π n-1 (θ a < γ) ≤ e -n( ψa(n)kl(µa,γ)-εn)
max a e -n( ψa(n)kl(µa,γ)+εn)

= e -n ψa(n)kl(µa,γ)-mina ψa(n)kl(µa,γ)-2εn .

By (5.9) min a ψa (n)kl(µ a , γ) ≤ max w min a w a kl(µ a , γ) = w ⋆ a kl(µ a , γ). Also ψa (n) ≥ w ⋆ a + c, so

ψ a (n) ≤ e -n((w ⋆ a +c)kl(µa,γ)-w ⋆ a kl(µa,γ)-2εn)
= e -n(ckl(µa,γ)-2εn) .

Now as ε n → 0, this establishes eventual exponential decay, hence ensuring that

n ψ a (n)1 ψa (n) ≥ w ⋆ a + c < ∞ ,
as required. The conclusion follows from Lemma 5.14.

◻

Stopping Rules

Before resorting to (variants) of the Parallel GLRT test, we will prove that when combined with a simple and intuitive stopping rule based on confidence intervals, the sample complexity of Murphy Sampling is close to T ⋆ (µ) log(1 δ).

The "Box" stopping rule The first stopping rule that comes to mind consists in comparing each arm to the threshold separately and stopping when either one arm looks significantly below the threshold or all arms look significantly above. With the Kullback-Leibler upper and lower confidence bounds defined in (5.6) and (5.7), we let τ Box = τ < ∧ τ > where

τ < = inf t ∈ N ∶ min a∈[A] UCB a (t) < γ τ > = inf t ∈ N ∶ min a∈[A] LCB a (t) > γ
This intuitive stopping rule is illustrated in Figure 5.6. When the algorithm stops when τ = τ < the recommendation m is <, whereas the recommendation is > if τ = τ > .

We recall the threshold function T (x) introduced in (3.7) in Chapter 3, which satisfies T (x) ≃ x + c log x for some constant c:

T (x) = 2 h h -1 (1 + x) + log(2ζ(2)) 2 (5.10)
where for u ≥ 1, h(u) = ulog u and for any x ≥ 0 h We remark that in order to prove that Murphy Sampling is asymptotically optimal, one should rather provide an upper bound on the expectation E[τ δ ], which is technically more involved that obtaining the result of Lemma 5.15. A possibility to do that would be to use the tools presented in Chapter 4 for the fixed-confidence analysis of Top-Two Thompson Sampling and prove that the expected number of time steps before the empirical proportions are ε-close to the optimal proportions is bounded.

(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ e 1 h -1 (x) h -1 (x) if x ≥ h -1 (1 log(3 2)), ( 3 
More sophisticated stopping rules It can be checked that the stopping rule τ < is already that of a sequential Generalized Likelihood Ratio Test for rejecting H 0 ∶ (µ ∈ R > ). However, a GLRT for rejecting H 0 ∶ (µ ∈ R < ) is summing evidence across arms whose empirical means are smaller than γ in the sense that it stops when ∑ a∶μa(t)≤γ N a (t)d + (μ a (t), γ) is larger than some threshold. Still based on Theorem

3.1, a δ-correct Parallel GLRT is τ GLRT = τ GLRT < ∧ τ > where τ GLRT < = inf ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ t ∈ N ⋆ ∶ a∶μa(t)≤γ [N a (t)kl (μ a (t), γ) -3 log(1 + log(N a (t)))] + ≥ AT log(1 δ) A ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
Instead of summing evidence across arms, one can go further and aggregate evidence by merging samples from a well-chosen subset of arms. This is justified by a new time-uniform deviation inequality, featuring, for every subset S ⊆ [A], the quantities

N S (t) = a∈S N a (t) and μS (t) = ∑ a∈S N a (t)μ a (t) N S (t) .
The proof of Theorem 5.16 bears strong similarities with that of Theorem 3.1 presented in Chapter 3.

Theorem 5.16. Let T be the threshold function defined in (5.10). For every subset S of arms and x ≥ 0, (5.11)

P ∃t ∈ N ∶ N S (t)d + μS (t), min a∈S µ a ≥ 3 log(1 + log(N S (t))) + T (x) ≤ e -x ,
P ∃t ∈ N ∶ N S (t)d -μS (t), max a∈S µ a ≥ 3 log(1 + log(N S (t))) + T (x) ≤ e -x .
(5.12)

Fix a subset prior π ∶ ({1, . . . , A}) → R + such that ∑ S⊆{1,...,A} π(S) = 1. We define the stopping rule τ π ∶= τ > ∧ τ π < , where

τ > = inf {t ∈ N ⋆ ∶ ∀a ∈ {1, . . . , A}N a (t)d - (μ a (t), γ) ≥ 3 log(1 + log(N a (t))) + T (log(1 δ))} , τ π < = inf {t ∈ N ⋆ ∶ ∃S ∶ N S (t)d + (μ S (t), γ) ≥ 3 log(1 + log(N S (t))) + T (log(1 (δπ(S)))} .
For the practical computation of τ π < , note that the search over subsets can be reduced to nested subsets including arms sorted by increasing empirical mean and smaller than γ. The following result is a consequence of Theorem 5.16.

Lemma 5.17. Any algorithm using the stopping rule τ π and selecting m = > iff τ π = τ > , is δ-correct.

Practical performance As explained in the beginning of this section, the Box stopping rule based on confidence intervals is sufficient to obtain an asymptotically optimal algorithm. Yet we report results of experiments that reveal that a well chosen aggregate stopping rule may indeed stop earlier. Quantifying the potential benefits of such a stopping rule is left for future work.

We discuss the results of numerical experiments performed on Gaussian bandits with variance 1, using the threshold γ = 0. Thompson and Murphy sampling are run using a flat (improper) prior on R, which leads to a conjugate Gaussian posterior. The experiments demonstrate the flexibility of our MS sampling rule, which attains optimal performance on instances from both R < and R > . Moreover, they show the advantage of using a stopping rule aggregating samples from subsets of arms when µ ∈ R < . This aggregating stopping rule, that we refer to as τ Agg is an instance of the τ π stopping rule presented above for π(S) = A -1 A S -1

. We investigate the combined use of three sampling rules, MS, LCB and Thompson Sampling with three stopping rules, τ Agg , τ Box and τ GLRT .

We first study an instance µ ∈ R < with A = 10 arms that are linearly spaced between -1 and 1. We run the different algorithms (excluding the TS sampling rule, that essentially coincides with MS on R < ) for different values of δ and report the estimated sample complexity in Figure 5.7 (left). For each sampling rule, it appears that E[τ Agg ] ≤ E[τ Box ] ≤ E[τ GLRT ]. Moreover, for each stopping rule, MS is outperforming LCB, with a sample complexity of order T ⋆ (µ) log(1 δ) + C. Then we study an instance µ ∈ R > with A = 5 arms that are linearly spaced between 0.5 and 1, with τ Agg as the sampling rule (which matters little as the algorithm mostly stops because of τ > on R > ). Results are reported in Figure 5.7 (right), in which we see that MS is performing very similarly to LCB (that is also proved optimal on R > ), while vanilla TS fails dramatically. On those experiments, the empirical error was always zero, which shows that our theoretical thresholds are still quite conservative.

We report in Figure 5.8 further results illustrating the convergence of the sampling proportions N a (τ ) τ under the two instances of R < and R > described above, for the smallest value of δ used in each experiment and under the stopping rule τ Agg . Under R < we see that MS has indeed spent a larger fraction of the time on the arm with smallest mean (arm 1 in these experiments), even if it does not yet reach the fraction 1 prescribed by the lower bound. Under R > , we see that the empirical fractions of draws of both MS and LCB converge to w ⋆ (µ) whereas the TS sampling rule departs significantly from those optimal weights, by drawing mostly arm a min = 1. To summarize, we presented in this chapter two active identification problems motivated by the design of MCTS algorithms with sample complexity guarantees. For the first full MCTS problem, designing an asymptotically optimal algorithm is hard as there is in general no efficient way to compute the optimal allocation w ⋆ (µ). However, we managed to propose an efficient algorithm based on confidence intervals, albeit doomed to be sub-optimal.

For the second "1 + 1/2" MCTS problem, the optimal allocation is easy to compute, and is very different under each of the two possible hypotheses. A variant of Track-and-Stop presented in Chapter 4 for best arm identification could certainly be applied. However, in this particular case we managed to propose a variant of Thompson Sampling that also ensures the convergence of the sampling proportions towards w ⋆ (µ), under both hypotheses. Unlike Top Two Thompson Sampling that was presented in Chapter 4 as a possible alternative to Track-and-Stop, Murphy Sampling does not need any problemdependent tuning (the parameter β in TTTS) to be asymptotically optimal.

In future work, I will continue to investigate variants of Thompson Sampling for different active identification problems, hoping to propose a unified algorithm using possibly some conditioning in the spirit of Murphy Sampling.

Perspective

We presented several bandit algorithms in different contexts: rewards maximization in complex, for example structured bandit models, and active identification problems in the fixed-confidence setting. In both cases, our focus was on proposing asymptotically optimal algorithms, i.e. algorithms whose regret or sample complexity is matching a distribution-dependent lower bound, for every possible bandit instance µ, at least in an asymptotic regime in the horizon T or in the risk parameter δ. Beyond this asymptotic notion of optimality, that can be viewed as a sanity-check for the design of algorithms, we also cared about their finite-time performance, often assessed through numerical simulation.

Now we can take a step back and examine the similarities between the different approaches that have been discussed. For both regret minimization in structured bandits and active identification, we have presented lower-bound inspired algorithms that leverage the computation of the oracle allocation under a given configuration of the means. As the computation of this allocation is costly, it is important to come up with algorithms that can avoid these oracle calls, possibly based on Thompson Sampling, an approach also discussed in both parts of this document. We elaborate on these two aspects below.

Beyond lower-bound inspired algorithms Lower bound-inspired algorithms for structured bandits were presented in Chapter 1, while the Track-and-Stop approach for best arm identification (and other active identification problems) was described in Chapter 4. Several approaches to overcome the computational cost of Track-and-Stop for pure exploration have already been proposed, including a nice game view on the lower bound given by Degenne et al. (2019). The generic approach proposed relies on the use of an online learning algorithm for each of the two players, and understanding what is the best combination of these algorithms depending on the problem at hand would be interesting.

In particular, we have been investigating with Pierre Ménard the use of a Saddle-Point Frank-Wolfe algorithm, as least for the best arm identification problem. In that case the optimization problem to solve in w can be written as, letting F a⋆,a (w, µ) = w a⋆ d (µ a⋆ , µ a⋆,a (w)) + w a d (µ a , µ a⋆,a (w)), q a F a⋆,s (w, µ) .

The function G(w, q) = ∑ a≠a⋆(µ) q a F a⋆,s (w, µ) is concave in w, convex in q and the set Σ A × Σ A-1 is convex and compact. Hence we could apply saddle-point solvers such as Mirror Prox [START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF] or Saddle-Point Frank-Wolfe (SP-FW). However, the function G does not satisfy the assumptions under which [START_REF] Gidel | Frank-wolfe algorithms for saddle point problems[END_REF] manage to analyze this algorithm. Despite this lack of theoretical guarantees, in our numerical experiments, SP-FW seems to converge to the optimal proportions w ⋆ (µ), and we would like to investigate a noisy version of this algorithm as a possible sampling rule for BAI that may converge faster to the optimal weights.

The game view on lower bounds was recently also used for reward maximization in structured bandits by [START_REF] Degenne | Structure adaptive algorithms for stochastic bandits[END_REF], leading to algorithms with a better performance than OSSB [START_REF] Combes | Minimal exploration in structured stochastic bandits[END_REF] at a smaller computational cost. Still, several open research directions are pointed out by the authors, including the question whether it is possible to exploit the structure in a small horizon regime, and always improve over UCB approaches.

Towards a universal Thompson Sampling algorithm We mentioned several variants of Thompson Sampling in the previous chapters. First, for regret minimization in structured bandits, it is known that vanilla Thompson Sampling cannot always be asymptotically optimal as it fails for linear bandits [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF]. Still, for unimodal bandits knowing the structure of the (sparse) optimal allocation allows to design a simple variant of TS that is asymptotically optimal, as explained in Chapter 1. It would be interesting to understand for which other structures variants of TS can be designed by using some minimal information about the optimal allocation.

For active identification problems, vanilla Thompson Sampling fails for an even simpler reason: under this algorithm the empirical allocation converges towards a Dirac in the optimal arm, whereas the optimal allocation can be supported on more than one arm. Still, we studied two variants of TS that have near-optimal performance. Murphy Sampling, presented in Chapter 5 for deciding whether one of the means in the bandit model is smaller than a threshold, is particularly interesting as this parameter-free algorithm ensures convergence towards the optimal proportions in all possible bandit models, even if the optimal allocation can have very different forms under different bandit instances. We also proposed in Chapter 4 a new fixed-confidence analysis of Top-Two Thompson Sampling [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] which is β-optimal for best arm identification and requires an oracle tuning of the parameter β to be optimal.

Both algorithms use some kind of conditioning which triggers some posterior re-sampling. In future work, I want to investigate whether it is possible to propose a generic re-sampling version of Thompson Sampling for active identification and possibly also for regret minimization in structured bandits.

Regarding the mathematical tools that have been useful in this study, we highlighted the importance of information-theoretic lower bounds that can shape the design of optimal algorithms, and that of concentration inequalities. In particular, we presented the proof of a concentration inequality that measures the deviations for multiple arms simultaneously (Theorem 3.1). Such an inequality can be useful in the analysis of algorithms for structured bandits, for which constructing individual confidence intervals on each arm can be sub-optimal. But we mostly highlighted in Chapter 3 its use as a means to prove the correctness of a Parallel Generalized Likelihood Ratio test for any active identification problem in an exponential bandit model, possibly involving overlapping regions.

Generalized Likelihood Ratio is a very old statistical tool [START_REF] Wilks | The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses[END_REF] to handle composite hypotheses, and a GLR test is often calibrated using some asymptotic properties, such as the Wilks phenomenon. We thus presented examples of sequential, active GLR tests whose calibration (choice of threshold) is not based on asymptotic arguments. In the preprint [START_REF] Garivier | Non-asymptotic sequential tests for overlapping hypotheses and application to near optimal arm identification in bandit models[END_REF] we advocate the use of a Parallel GLRT for any (sequential, adaptive) statistical testing problem with composite and possibly overlapping hypotheses, for which other deviation inequalities may be found. We are also currently investigating the non-asymptotic calibration of change-point detection tests based on GLRT, for which an asymptotic calibration was given by [START_REF] Lai | Sequential change-point detection when the pre-and post-change parameters are unknown[END_REF]. This work requires some adaptation of the techniques to prove Theorem 3.1. I now highlight below a few other research directions that I want to pursue.

Beyond fixed-confidence best arm identification In part II of this document, we studied active identification in the fixed-confidence setting, in which one should find a correct answer with probability larger than 1 -δ using as few samples from the arms as possible. As explained in Section 3.1.2, several other mathematical frameworks exist, including the fixed-budget setting in which given a budget n one should minimize the error probability of a recommendation made after n arm selections. I am quite intrigued by the possible difference in complexity between the fixed-confidence and fixedbudget setting. If the complexity were similar, one could expect a minimal error probability of order exp(-n T ⋆ (µ)) for a budget n, as T ⋆ (µ) log(1 δ) is the minimal number of samples needed to have an error of at most δ in the fixed-confidence setting. However, it is unclear whether this conjecture is true. First, it seems that lower bounds are much harder to prove in the fixed-budget setting and to the best of my knowledge, the tightest existing lower bound does not feature information-theoretic quantities [START_REF] Carpentier | Tight (lower) bounds for the fixed budget best arm identification bandit problem[END_REF]. One can note that the assumption made on the algorithm in the fixedbudget setting (its probability of error should go to zero for all instances µ) is much weaker than having the probability of error uniformly bounded by δ, which makes the use of our lower bound methodology more intricate. Second, there are elements suggesting that the complexity of the two problems may be different. It is possible to provide tight upper and lower bounds on the error probability of a strategy using a fixed allocation w and recommending the empirical best arm (using e.g. a similar technique as that of [START_REF] Glynn | A large deviations perspective on ordinal optimization[END_REF]) which reveals that the allocation that yields the smallest error probability is argmax The difference with the optimal allocation in the fixed-confidence setting is that the arguments of the KL-divergence are reversed. However, it is unclear whether an adaptive algorithm, that is agnostic to µ and thus to the optimal static allocation, can have a probability of error as small as that of the best static allocation. Indeed if a Tracking procedure were to be applied, the dominant term in the error probability would be the estimation error. Hence, I am very eager to understand what is the smallest error that an adaptive algorithm can achieve in the fixed-budget setting.

Among all the settings studied for best arm identification or more generally active identification, the one that I find the most interesting is the anytime setting of [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF]. In this framework, there is no risk δ, no budget n but one needs the algorithm to make a recommendation, whenever it is stopped, that is as accurate as possible. In particular, anytime algorithms (that neither depend on n or δ) are needed, while state of the art fixed-budget algorithms require the knowledge of n to tune the size of some elimination phases [START_REF] Karnin | Almost optimal Exploration in multi-armed bandits[END_REF]. Among the fixed-confidence algorithms that we proposed, we noted that Track-and-Stop and variants of Thompson Sampling are naturally anytime. In future work, I would like to obtain a non-asymptotic bound on the error probability for variants of TTTS (hopefully adaptive to β) in each round t, to justify the practical use of such algorithms in applications in which there is no natural risk δ or budget n.

Reinforcement learning I have also been interested in more general reinforcement learning problems. While in reward maximization in a bandit model the agent repeatedly faces the same actions, in reinforcement learning it is assumed that the state of the agent evolves after each action, following a Markov Decision Process (MDP). I have been working on reinforcement learning since the beginning of the PhD of Omar Darwiche Domingues, in October 2018, which is part of the collaborative DELTA project on lifelong reinforcement learning, lead by Anders Jonsson at UPF (Barcolona).

Monte-Carlo Tree Search algorithms that are discussed in Chapter 5 were originally proposed both for planning in games and in Markov Decision Processes (i.e. for finding the best action to take in a given state of the MDP based on trajectories sampled using a generative model). However, the simple model we proposed for MCTS and the BAI-MCTS algorithm are specific to deterministic games with random terminal rewards, whereas in MDPs intermediate rewards may be collected and transitions are stochastic. In the recent work [START_REF] Jonsson | Planning in markov decision processes with gap-dependent sample complexity[END_REF] we proposed the MDP-GapE algorithm for planning in Markov Decision Processes. The algorithm is inspired by UGapE-MCTS for games but its analysis is more involved and notably requires new time uniform confidence intervals for transition probabilities, that were derived by Pierre Ménard. The algorithm is suited for planning in MDPs with a finite branching factor, in which there is a (known) maximal number B of possible next states. We note that state-of-theart planning algorithms for B = ∞ [START_REF] Grill | Blazing the trails before beating the path: Sample-efficient monte-carlo planning[END_REF][START_REF] Grill | Planning in entropyregularized markov decision processes and games[END_REF] are mostly theoretical, as their actual runtime is prohibitively high. Designing practical planning algorithms for B = ∞ is therefore an interesting direction of future work.

In this document, we noted in several places the fundamental difference between optimal sampling strategies designed for minimizing regret and optimal sampling strategies for identifying the best arm, at least through our problem-dependent lens. In reinforcement learning, one can also define two similar objectives: on the one hand learning to interact with the environment in order to maximize the total reward received (a notion of regret can also be defined) and on the other hand learning a good policy (a mapping from state to actions). In the paper [START_REF] Jin | Is Q-learning provably efficient?[END_REF], the authors explain that if a regret minimizing algorithm is run for enough episodes, picking a policy uniformly at random among the ones used by the algorithm produces a policy that is ε optimal with high probability. However, it is not clear that this conversion (which has a very bad scaling in the error probability δ) is the best thing one can do if the initial goal is to find a good policy, regardless of the received rewards. In future work I want to get a better understanding of the relationship between regret minimization and best policy identification in reinforcement learning.

Alternative exploration methods How to achieve good exploration or a good exploration/exploitation trade-off in a bandit model is a well-studied topic also because it inspires some exploration methods for reinforcement learning. In this document, we encountered two families of exploration methods: the use of confidence intervals and that of posterior sampling. While they can lead to asymptotically optimal algorithms, they are also very much tailored to the specific distributions of the reward. For example kl-UCB requires the right divergence function d(⋅, ⋅) to build the upper confidence bound whereas TS requires the right prior distribution to match the Lai and Robbins lower bound. A single algorithm that is simultaneously optimal for different classes of distributions would therefore be more powerful.

To come up with such an algorithm, it is necessary to exploit the empirical distribution of the rewards, regardless of any parametric assumption. This has been done with the IMED [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semibounded rewards[END_REF] and kl-UCB-Switch [START_REF] Garivier | Kl-ucb-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints[END_REF] algorithms but it applies only to bounded distributions, with known bounds. Under the same assumption, Non Parametric Thompson Sampling [START_REF] Riou | Bandit algorithms based on thompson sampling for bounded reward distributions[END_REF] is also asymptotically optimal for any bounded distribution, matching the lower bound of [START_REF] Burnetas | Optimal adaptive policies for sequential allocation problems[END_REF]. This index policy computes for each arm a weighted sum of the observed rewards and the upper bound of the support, in which the weights are drawn uniformly at random in the simplex. This can be seen as some kind of bootstrap estimator of the mean. Another natural bootstrap idea is to use a sample obtained using the non-parametric bootstrap as an index for each arm. That is, given a history of n rewards from an arm, n rewards are sampled with replacement from this history and their average is computed. Yet this approach is known to suffer from linear regret, as shown by [START_REF] Kveton | Garbage in, reward out: Bootstrapping exploration in multi-armed bandits[END_REF] who also propose a fix. This fix consists in adding a certain amount of fake samples in each history before bootstrapping (see also Kveton et al. (2019a)). The Giro and PHE algorithms are proved to have logarithmic regret for bounded distributions, but their asymptotic optimality, e.g. for Bernoulli rewards, remains unclear.

In an on-going work with Odalric-Ambrym Maillard and our new PhD student Dorian Baudry, we are currently investigating alternative re-sampling approaches based on pairwise comparisons and subsampling, in the spirit of the BESA algorithm of [START_REF] Baransi | Sub-sampling for multi-armed bandits[END_REF], with an emphasis on proving the asymptotic optimality of the proposed approach for different distributions, see the recent publication [START_REF] Baudry | Sub-sampling for Efficient Non-Parametric Bandit Exploration[END_REF].

On the applications side I am very interested in understanding why bandit algorithms, whose motivating story is often clinical trials -at least in the introduction of theoretical papers-have seldom been used in this field, and what (variants of) bandit algorithms could be useful. The gold standard in clinical trials seems to be randomized clinical trials, in which each treatment is given to the same number of patients, often decided in advance. Both the statistical power and the number of saved lives have the potential to be improved by using Adaptive Clinical Trials, whose use has been recently promoted (Food and Drugs Administration (FDA), 2018). In particular, Bayesian Adaptive Designs have been studied a lot [START_REF] Berry | Bayesian adaptive methods for clinical trials[END_REF].

A particular field in which a Bayesian Adaptive Design is concretely used is that of dose-finding clinical trials in oncology, that is the context of our work [START_REF] Aziz | On multi-armed bandit designs for dose-finding clinical trials[END_REF] presented in Chapter 1. The algorithm is called the Continual Reassessment Method (CRM) and can be seen from a bandit eye as a greedy algorithm for toxicity probabilities following a Bayesian logistic regression model. We showed through numerical experiments that variants of Thompson Sampling can also be competitive in this setting, but we could not provide a theoretical analysis beyond the simpler model studied in Chapter 1. In future work, I plan to start new projects on the use of bandit tools for clinical trials, beyond early-stage dose-finding designs.

On a related topic, I also started to work on possible applications of sequential decision making to drug repurposing with the co-supervision of the PhD thesis of Clémence Reda with Andrée Delahaye-Duriez from INSERM (Paris) since September 2019. 

  Figure1.1 -In Figure1.1(a), g a such that λ a = g a (µ 1 ) thereby making it impossible to discern arm a from the optimal arm 1 given the mean feedback. In Figure1.1(b), a steep monotonic g a transforms the reward gap ∆ µ a = µ 1 -µ a into a clear gap between λ a and g a (µ 1 ).
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  Figure 1.2 -The Maximal Tolerated Dose

  Figure 1.3 -Optimal dose d * a defined in Theorem 1.5. d *a is either the toxicity of the MTD or that of its symmetric with respect to θ
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 1 Figure 1.5 -Regret as a function of the horizon T for various algorithm on a 128 × 128 instance with u = v = (0.75, 0.25, . . . , 0.25) (average over N = 20 simulations)
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 2 Figure 2.1 -Regret of several algorithms on a MP-MAB with A = 9 arms and M = 6 players estimated over N = 100 simulations

  Figure 2.2 -Bayesian regret for A = 9, M = 6 estimated over N = 500 simulations (left) and histogram of R T on a specific instance with A = 3 and M = 2 based on N = 1000 simulations (right)
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 2 Figure 2.3 -Two successive communication phases of length L = 8 in a MP-MAB model with M = 3 agents and A = 6 arms: one from agent 2 (with communication arm 3) to agent 1 (with communication arm 1) followed by one from agent 3 (with communication arm 4) to agent 1

Algorithm 8

 8 LEADERALGORITHM(M,A,c) 1: Input: Number of players M , number of arms A, parameter c 2: E ← [M ] × [A] # list of candidate edges 3: μm a ← 0 for all (m, a) ∈ [M ] × [A] # empirical estimates for utilities 4: for p = 1, 2, . . . do 5:

  m the value of size(C) (comm) 1 → m, L = ⌈log 2 (M A)⌉ 17: for i = 1, 2, . . . , size(C) do 18: Send to player m the arm associated to player m in C[i] (comm) 1 → m, L = ⌈log 2 (m her communication arm π 1 (m) (comm) 1 → m, L = ⌈log 2 (A)⌉ 21: Send to player m the communication arm of the leader π 1 (1) (comm) 1 → m, L = ⌈log 2 (rest of the game the arm assigned to player 1 in the unique matching in C c times the arm assigned to player 1 in the matching C[i] estimated utility of arm a if it was pulled in this epoch, Input: Ranking R, number of players M , parameter c 2: for p = 1, 2, . . . do

  . It was revisited in the bandit literature since the works of Even-Dar et al. (2006); Audibert et al. (2010); Bubeck et al. (2011).
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 3 Figure 3.1 -Conversion probabilities for different versions of a website

Figure 4

 4 Figure 4.1 -KL confidence intervals for the means (black diamonds) in a 4-armed bandit problem whenTaS reaches its stopping rule. The number of selections of each arm is reported on the x axis.

Algorithm 10

 10 Top-Two Thompson Sampling (TTTS) 1: Input: Parameter β ∈ (0, 1) 2: for t = 1, 2, . . . do

  θ a⋆(µ) < max a θ a = Γ ⋆ β (µ), P µ -a.s.,(4.13) 
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 48 Fix µ a bandit model. Under an anytime sampling rule that satisfies, for all a ∈ [A] lim t→∞ Na(t) t

  μa,b (n) otherwise, it can be observed that under TTTS, if I

Figure 5

 5 Figure 5.1 -The 4 steps of common MCTS algorithms. White nodes present the states in which the root player takes action (MAX nodes), grey states the states in which the adversary plays (MIN nodes)
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 05 Figure 5.2 -A depth three maxmin tree with expected payoff in the leaves
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 054 Figure 5.3 -Construction of confidence interval and representative child (in red) for a MAX node.

  Lemma 5.13 ((Russo, 2016, Proposition 4)). For any open subset Θ ⊆ Θ, the posterior concentrates at rate Π n ( Θ) ≐ exp -n min λ∈ Θ ∑ a ψa (n)kl(µ a , λ a ) a.s. where a n ≐ b n means 1 n log an bn → 0. Lemma 5.14 ((Russo, 2016, Simplified version of Lemma 11)). Consider any sampling rule (A t ) t . If for any arm a ∈ [A] and all c > 0

  2)(xlog log(3 2)) otherwise.

Figure 5

 5 Figure 5.6 -A Box stopping rule

Figure 5

 5 Figure 5.7 -E[τ δ ] as a function of log(1 δ) for several algorithms on an instance µ ∈ R < (left) and µ ∈ R > (right), estimated using N = 5000 (resp. 500) repetitions.

  Figure 5.8 -Empirical proportions of samples versus w ⋆ (µ) for one instance in R < (left) and one instance in R > (right), in the same experimental setup as that of Figure 5.7.
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  + (x, y) d + (x, y) = d(x, y)1 (x≤y) d -(x, y) d -(x, y) = d(x, y)1 (x≥y) µ a,s empirical mean based on the first s observations from arm a μa (t) empirical mean of arm a after t rounds: μa (t) = μa,Na(t) UCB a (t) upper confidence bound on µ a Π t posterior distribution on µ π a (t) posterior distribution on µ a ---------------------a ⋆ (µ) optimal arm in the bandit model parameterized by µ S set of possible means in a structured bandit model Alt S (µ) set of bandit models in S that do not share an optimal arm with µ C S (µ) constant in the optimal regret rate in a structured bandit c S (µ) optimal allocation for the sub-optimal arms N G (a) neighborhood of arm a in a graphical unimodal bandit with graph G N + G (a) extended neighborhood of arm a: N + G (a) = N G (aplayer m in round t: 1 if player m experiences a collision at time t R m t reward of player m in round t: R m t = X m t (1 -C m t ) TopM(µ) set of M arms with largest means N m a (t) number of selections of arm a by player m in the first t rounds C a (t) number of collisions on arm a in the first t rounds UCB m a (t) upper confidence bound on arm a for player m after t rounds M m (t) candidate top M arms for player M after t rounds TopM(µ) set of M arms with largest mean in an homogeneous MP-MAB U (π) Utility of a matching π ∶ [M ] → [A] from players to arms ∆(π) Gap of a matching π : ∆(π) = U ⋆ -U (π) ∆ Smallest positive gap pT Number of epochs in the M-ETC-Elim algorithm run with a budget T ----------------------I number of regions in an active identification problem R set of possible values of µ R i region i to which µ could belong BAI Best Arm Identification τ stopping rule îτ recommendation rule (denoted by âτ for best arm identification, ŝτ for MCTS...) δ risk parameter β(t, δ) threshold used in the parallel GLRT T (x) function used to express the threshold in Theorem 3.1 (X 1 , . . . , X t ; µ) likelihood of the observation under the model parameterized by µ φ µ (x) log moment generating function of the distribution with mean µ ∈ I S a (t) sum of observations made from arm a in the first t rounds Zπ a (t) mixture martingale with prior π: Zπ a(t) = ∫ exp(ηS a (t) -φ µa (η)N a (t))dπ(η) ----------------------Σ A simplex of dimension A -1: Σ A = {w ∈ [0, 1] A ∶ ∑ A a=1 w a = 1} Alt(µ) set ofbandit models that a different best arm than that in µ T ⋆ (µ) characteristic number of samples for µ w ⋆ (µ) vector of optimal sampling proportions under µ μ(t) vector of empirical means of the arms after t rounds TaS the Track-and-Stop algorithm µ a,b (w) weighted average of µ a and µ b : µ a,b (w) = waµa+w b µ b wa+w b β fraction of samples assigned to the optimal arm under Top-Two Thompson Sampling (TTTS) ----------------------G a maxmin game tree L the set of leaves of G V µ (s) value of a node s ∈ G when the leaves values are given by µ C(s 0 ) depth-one nodes in G (children of the root s 0 ) s ⋆ depth-one node with largest value I s (t) confidence interval on the value of node s after t rounds I s (t) = [LCB s (t), UCB s (t)] s (t) representative leaf of node s after t rounds µ min minimum of the arms means: µ min = min a µ a γ value of the threshold R < set of means whose minimum is smaller than γ R > set of means whose minimum is larger than γ

  Dorian Baudry, with Odalric-Ambrym Maillard (Inria Lille), 2019but also one master student(Cindy Trinh), two PhD students who did research visits in SequeL (Maryam Aziz and Rianne de Heide) and other collaborators. On Bayesian Index Policies for Sequential Resource Allocation. Emilie Kaufmann. Annals of Statistics, Vol 46(2): 842-865, 2017. Planning in Markov Decision Processes with Gap-Dependent Sample Complexity. Anders Jonsson, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Edouard Leurent and Michal Valko. Advances in Neural Processing Systems (NeurIPS), 2020. • Fixed Confidence Guarantees for Bayesian Best Arm Identification. Xuedong Shang, Rianne de Heide, Emilie Kaufmann, Pierre Ménard and Michal Valko. International Conference on Artificial Intelligence and Statistics (AISTATS), 2020. • A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among Players. Etienne Boursier, Emilie Kaufmann, Abbas Mehrabian and Vianney Perchet. International Conference on Artificial Intelligence and Statistics (AISTATS), 2020. • Solving Bernoulli Rank-One Bandits with Unimodal Thompson Sampling. Cindy Trinh, Emilie Kaufmann, Claire Vernade and Richard Combes. International Conference on Algorithmic Learning Theory (ALT), 2020. • General Parallel Optimization without Metric. Xuedong Shang, Emilie Kaufmann and Michal Valko. International Conference on Algorithmic Learning Theory (ALT), 2019. • Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling. Emilie Kaufmann, Wouter Koolen and Aurélien Garivier. Advances in Neural Information Processing Systems (NeurIPS), 2018. • Multi-Player Bandits Revisited. Lilian Besson and Emilie Kaufmann. International Conference on Algorithmic Learning Theory (ALT), 2018. • Corrupt Bandits for Preserving Local Privacy. Pratik Gajane, Tanguy Urvoy and Emilie Kaufmann. International Conference on Algorithmic Learning Theory (ALT), 2018. • Pure Exploration in Infinite Bandit Models with Fixed Confidence. Maryam Aziz, Jesse Anderton, Emilie Kaufmann and Javed Aslam. International Conference on Algorithmic Learning Theory (ALT), 2018. • Aggregation of Multi-Armed Bandits learning algorithms for Opportunistic Spectrum Access. Lilian Besson, Emilie Kaufmann, Christophe Moy. IEEE Wireless Communications and Networking Conference (WCNC), 2018. • Monte-Carlo Tree Search by Best Arm Identification. Emilie Kaufmann and Wouter M. Koolen. Advances in Neural Processing Systems (NeurIPS), 2017. • Multi-Armed Bandit Learning in IoT Networks: Learning helps even in non-stationary settings. Rémi Bonnefoi, Lilian Besson, Christophe Moy, Emilie Kaufmann and Jacques Palicot. International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), 2017. • On Explore-Then-Commit Strategies. Aurélien Garivier, Emilie Kaufmann and Tor Lattimore. Advances in Neural Processing Systems (NeurIPS), 2016. • A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks. Emilie Kaufmann, Thomas Bonald and Marc Lelarge. International Conference on Algorithmic Learning Theory (ALT), 2016.

	Paper in international conferences with proceedings (17)
	• Sub-sampling for Efficient Non-Parametric Bandit Exploration. Dorian Baudry, Emilie Kauf-
	mann, Odalric-Ambrym Maillard. Advances in Neural Processing Systems (NeurIPS), 2020.
	•
	Journal papers (5)
	• Machine learning applications in drug development. Clémence Réda, Emilie Kaufmann, Andrée
	Delahaye-Duriez. Computational and Structural Biotechnology Journal 18: 241-252, 2020.
	• Asymptotically Optimal Algorithms for Budgeted Multiple Play Bandits. Alexander Luedtke,
	Emilie Kaufmann and Antoine Chambaz. Machine Learning 108(11): 1919-1949, 2019.

Lilian Besson, with 

Christophe Moy (Université de Rennes), 2016-2019 • Xuedong Shang, with Michal Valko (Inria Lille, now Deepmind), 2017-• Omar Darwiche Domingues, with Michal Valko (Inria Lille, now Deepmind), 2018-• Clémence Réda, with Andrée Delahaye-Duriez (INSERM, Paris), 2019-• • A Spectral Algorithm with Additive Clustering for the Recovery of Overlapping Communities in Networks. Emilie Kaufmann, Thomas Bonald and Marc Lelarge. Theoretical Computer Science, Vol 742: 3-26, 2018. • Learning the distribution with largest mean: two bandit frameworks. Emilie Kaufmann and Aurélien Garivier. ESAIM: Proceedings and Surveys, Vol 60:114-131, 2017. INTRODUCTION • • Maximin Action Identification: a New Bandit Framework for Games. Aurélien Garivier, Emilie Kaufmann and Wouter M. Koolen. 29th Conference on Learning Theory (COLT), 2016. • Optimal Best-Arm Identification with Fixed Confidence. Aurélien Garivier and Emilie Kaufmann. 29th Conference on Learning Theory (COLT), 2016.

•

  Adaptive Reward-Free Exploration. Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent and Michal Valko. Theoretical Foundations of Reinforcement Learning Workshop @ ICML, 2020. • A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. Theoretical Foundations of Reinforcement Learning Workshop @ ICML, 2020. • A simple dynamic bandit algorithm for hyper-parameter tuning. Xuedong Shang, Emilie Kaufmann and Michal Valko. AutoML workshop @ ICML, 2019. • Adaptive Black-Box Optimization Got Easier: HCT Only Needs Local Smoothness. Xuedong Shang, Emilie Kaufmann and Michal Valko. European Workshop on Reinforcement Learning (EWRL), 2018. • Corrupt Bandits. Pratik Gajane, Tanguy Urvoy and Emilie Kaufmann. European Workshop on Reinforcement Learning (EWRL), 2016. Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals. Emilie Kaufmann and Wouter M. Koolen. Under revision for the Journal of Machine Learning Research, 2018. arXiv:1811.11419 • A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. Submitted to AISTATS 2021. arXiv:2007.05078 • Regret Bounds for Kernel-Based Reinforcement Learning. Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann and Michal Valko. Submitted to ALT 2021. arXiv:2004.05599 • Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited . Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann and Michal Valko. Submitted to ALT 2021. arXiv:2010.03531 • Adaptive Reward-Free Exploration. Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent and Michal Valko. Submitted to ALT 2021. arXiv:2006.06294

	Chapter 1
	Part I
	Maximizing Rewards, with a Twist

Papers in French conferences or journals (2) • Analyse non asymptotique d'un test séquentiel de détection de ruptures et application aux bandits non stationnaires. Lilian Besson and Emilie Kaufmann. GRETSI, 2019. • Modèles de bandit : une histoire bayésienne et fréquentiste. Emilie Kaufmann. MATAPLI 109:51-64, 2016. Submitted papers (7) • Non-Asymptotic Sequential Tests for Overlapping Hypotheses and application to near optimal arm identification in bandit models. Aurélien Garivier and Emilie Kaufmann. Accepted for publication in Sequential Analysis, to appear in 2021. arXiv:1905.03495 • On Multi-Armed Bandit Designs for Dose-Finding Trials. Maryam Aziz, Emilie Kaufmann and Marie-Karelle Rivière. Accepted for publication in the Journal of Machine Learning Research, to appear in 2021. arXiv:1903.07082 •

Table 4 .

 4 

				417 0.390 0.136 0.057] ,
		w ⋆	(µ 2 ) = [0.336 0.251 0.177 0.132 0.104] .
		Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing
	µ 1	4052	4516	8437	9590
	µ 2	1406	3078	2716	3334

1 -Expected number of draws E µ [τ δ ] for δ = 0.1, estimated over N = 3000 runs.

  w t + η t s t where s t ∈ argmax w∈Σ A w ⊺ ∂ wt F (w t , µ) . With the above expression of the sub-gradient in the BAI case, s t ∈ {e a⋆ , e ct } where c t ∈ argmin a≠a⋆ [w a⋆ d(µ a⋆ , µ a⋆,a (w t )) + w a d(µ a , µ a⋆,a (w t ))] and s t = e a⋆ if and only if d(µ a⋆ , µ a⋆,ct (w t )) > d(µ ct , µ a⋆,ct (w t )).

	This update inspires the following sampling rule: letting w(t) =	Na(t) t	a∈[A]	be the vector of
	empirical fraction of selection of each arm, on can compute
	B t = argmax	μa (t)		(candidate best arm)
	a∈[A]			
	C t = argmin	[w Bt (t)d(μ Bt (t), μBt,a (w(t))) + w a (t)d(μ a (t), μBt,a (w(t)))]	(challenger)
	a≠Bt			
	and select			
			A t+1 =	B t if d (μ Bt , μBt,Ct (w(t))) > d (μ Ct , μBt,Ct (w(t))) , C t else .

  for a MAX node s, min c∈C(s) LCB c (t) for a MIN node s,

	UCB s (t) =	max c∈C(s) UCB c (t) for a MAX node s, min c∈C(s) UCB c (t) for a MIN node s.

Theorem

3.1 in Chapter 3 allows to make this choice. 3.[START_REF] Degenne | Structure adaptive algorithms for stochastic bandits[END_REF] proposed very recently the first asymptotically optimal algorithm that doesn't resort to costly oracle computations, yet its finite time performance could still be improved.

Alternative models in which the reward is reduced in some other way when a collision occurs can be considered, see e.g.,[START_REF] Liu | Distributed learning in Multi-Armed Bandit with multiple players[END_REF].

All the algorithms that we will propose naturally extend to reward distributions that are bounded in [0, 1].

We know that there exists at least one such arm asA m t ′ -1 ∈ M m (t ′-2) M m (t ′ -1), hence this arm must have been replaced by one arm that was not in M m (t ′ -2), whose UCB is therefore smaller than that of A m t ′ -1 .

This excludes the degenerate case in which all matchings have the same utility, for which we still propose bounds in[START_REF] Boursier | A practical algorithm for multiplayer bandits when arm means vary among players[END_REF].

log(t)+1 δ, which is an approximation of the threshold in Theorem 4.6 that we recommend to use in practice, as we found that it was sufficient to have an empirical error (much) smaller than δ on all the experiments we performed (not reported here). A similar tweak of the threshold used inside the confidence intervals of confidence-based was suggested before[START_REF] Kaufmann | Information complexity in bandit subset selection[END_REF], and is used in our experiments. We see in Table4.1 that TaS has indeed a sample complexity twice smaller than that of KL-LUCB and KL-Racing. We also compared to an improved Racing algorithm, called Chernoff-Racing, that uses a GLRT test to assess that one arm is better than an other instead of comparing confidence intervals to perform eliminations. We see that Chernoff-Racing always outperforms KL-Racing, and that on some instances it can be competitive with TaS. However, this approach is not sufficient for asymptotic optimality.

Note that in order to have the fastest decay rate, one should further selectβ ⋆ = argmax β Γ ⋆ β (µ) which is such that T ⋆ (µ) = 1 Γ ⋆ β ⋆ (µ).Yet this optimal tuning depends on the arms' means.

Recall that the Parallel GLRT rule is δ-correct under any sampling rule, in particular with TTTS.

If the arm with smallest mean is not unique, any probability distribution whose support is included in the set of arms with mean µmin is an optimal allocation, not just the example given
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A MAX a for each possible best arm a) and an algorithm A MIN for the MIN player. Both algorithms may play distributions over [A] or over the alternative of the current best arm. An additional feature of the algorithm is that it uses some optimism, in the sense that the learner used by the MAX player is fed with upper-confidence bounds on the payoffs. This allows to get rid of the forced exploration used in Track-and-Stop and in the algorithm of [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF] described above.

Several instances of this general principle (corresponding to different learning algorithms for the two players) are studied by Degenne et al. (2019) and are proved to be asymptotically optimal for Bernoulli and Gaussian bandits. For the sake of concreteness, we present only one for best arm identification, in which the MIN player uses Best Response and the learning algorithm A MAX a is AdaHedge [START_REF] De Rooij | Follow the leader if you can, hedge if you must[END_REF], an Exponentiated Gradient algorithm for minimizing a sum of loss functions ∑ t s=1 s (w) which can cope with unbounded gradients. In each round t, the empirical means μ(t) and the empirical best arm B t are computed. Then the MAX player calls A MAX Bt which outputs a weight vector w(t). The best response for the MIN player is

To update the learning algorithm, an upper confidence bound on the payoff of the MAX player is computed: U a (t) = max ξ∈[LCBa(t),UCBa(t)] d(ξ, λ a (t)) for some underlying confidence interval and A MAX Bt is fed with the loss function (w) = -∑ A a=1 w a U a (t). To deduce an arm to play from the sequence of weights w(s) used by the algorithm, a Tracking procedure is needed and

Hence, we presented an asymptotically optimal algorithm (at least for Bernoulli and Gaussian bandits) which avoids the computational complexity of the oracle calls and gets rid of forced exploration with optimism. It would be interesting to investigate whether a Thompson scheme could be used instead, which avoids the (conservative) design of a confidence interval. We now discuss other possible variants of Thompson Sampling for BAI.

Bayesian Approaches to the Rescue

Another idea to propose a simple and asymptotically optimal algorithm is to come up with a variant of Thompson Sampling, which is a Bayesian, anytime algorithm, for best arm identification. Why is a variant needed? Thompson Sampling is asymptotically optimal for regret minimization, hence we know that for all a ∈ [A], it satisfies N a (t) t → δ (a=a⋆) . Therefore, there is no hope for Thompson to converge to the optimal proportions, that are supported on all arms. This fundamental difference between regret minimization and pure exploration algorithms has been known since the work of [START_REF] Bubeck | Pure Exploration in Finitely Armed and Continuous Armed Bandits[END_REF].

The question of whether Thompson Sampling could be adapted to best arm identification is actually the very reason I discovered the best arm identification literature a long time ago, as it was asked to me by Shivaram Kalyanakrishnan, with whom I collaborated during my PhD. But this collaboration made me discover many other interesting questions, especially regarding lower bounds, and I did not come back to answering the very first one. Fortunately, Daniel Russo answered it in 2016 by proposing Top-Two Thompson Sampling and several other variants [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF].

Top-Two Thompson Sampling (TTTS) follows a simple idea: as vanilla Thompson Sampling selects the optimal arm too much, with some probability 1 -β, TTTS forces itself to select an arm which is not the one selected by TS, by re-sampling the posterior until another arm has the largest posterior sample. The pseudo-code of the TTTS sampling rule can be found in Algorithm 10, where Π t denotes the posterior distribution after t observations, and Π 0 the prior distribution.

The TTTS sampling rule can be used in conjunction with the Parallel GLRT and can be studied in the fixed-confidence setting, as will be seen shortly. However, this is not the setting initially considered Recalling that T (x) ∼ x+log log(x), with high probability the sample complexity of UGapE-MCTS is of order O H ⋆ ε (µ) log 1 δ . This sample complexity improves over the one of the FindTopWinner algorithm previously proposed by [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF], which is based on eliminations and stops exploring a sub-tree rooted in a particular node if a gap between this node and its parents is detected. Numerical simulations reported in [START_REF] Kaufmann | Monte-Carlo tree search by best arm identification[END_REF] also reveal that UGapE-MCTS greatly outperforms FindTopWinner in practice.

The independent work of [START_REF] Huang | Structured best arm identification with fixed confidence[END_REF] proposed the LUCBMinMax algorithm, which is very similar to UGapE-MCTS. The two algorithms only differ in the way the best guess b t is picked. The analysis is very similar to ours, but features some refined complexity measure, in which ∆ (which is the maximal distance between consecutive ancestors of the leaf, see (5.4)) is replaced by the maximal distance between any ancestors of that leaf. We note that an improvement along these lines could be obtained in our analysis, by updating Lemma 5.5, as explained in the proof below.

Sketch of proof of Theorem 5.3. Letting E t = ⋂ ∈L (µ ∈ I (t)) and E = ⋂ t∈N E t , we upper bound τ assuming the event E holds. To do so, we shall relate the number of selections of each leaf N (τ ) to the associated gap

A first observation is the following important consequence of the definition of the representative leaf, which says that along a path s 0 , s 1 , . . . , s D to a leaf = s D , the confidence intervals are nested.

Lemma 5.4. Let t ∈ N and s 0 , s 1 , . . . , s D be a path from the root down to a leaf = s D .

As a consequence, on the event E, if a path s 0 , s 1 , . . . , s D = is selected by UGapE-MCTS at round t + 1, the interval I L t+1 (t) -whose width is upper bounded by 2β(N (t), δ) N (t) by Pinsker's inequality -contains all the values V (s 1 ), . . . , V (s D ). Hence the following result.

Lemma 5.5. Let t ∈ N and s 0 , s 1 , . . . , s D be a path from the root down to a leaf = s D . If E t holds and is selected at round t + 1 then

We note that this lemma could be tightened to obtain a sample complexity in the spirit of the one given by [START_REF] Huang | Structured best arm identification with fixed confidence[END_REF]: as all the values V (s k ) belong to I (t) for k = 1, . . . , D, the width of this confidence interval is also larger than the maximal distance between any two V (s k ), and not only consecutive values.

The next step of the analysis is a consequence of some properties of the UGapE mechanism used at depth one, which relates the width of I R t+1 (t) (and thus that of I L t+1 (t)) to the gap in depth one.

Lemma 5.6. If E t holds, t < τ and R t+1 = s 1 , then

by Lemma 5.4 and Pinsker's inequality, it follows from Lemma 5.5 and Lemma 5.6 that if the path s 0 , s 1 , . . . , s D = is selected in round t + 1 when E t holds and t < τ ,

adaptive samples X t ∼ µ At , where A t indicates the distribution sampled at time t. More precisely, given a threshold γ ∈ I, our goal is to decide whether µ min < γ or µ min > γ. We introduce the regions

We want to propose a sequential and adaptive testing procedure, that consists of a sampling rule A t , a stopping rule τ and a decision rule m ∈ {<, >}. The algorithm samples X t ∼ µ At while t ≤ τ , and then outputs a decision m. Given a risk parameter δ ∈ (0, 1], we aim for a δ-correct algorithm, that satisfies P µ (µ ∈ R m) ≥ 1 -δ for all µ ∈ R. Our goal is to build δ-correct algorithms that use a small number of samples τ δ in order to reach a decision. In particular, we want the sample complexity E µ [τ ] to be small. This active identification problem can have different types of applications. For example in e-learning, we may want to certify that a given student has sufficient understanding of a range of subjects, asking as few questions as possible about the different subjects. Then in anomaly detection, the more anomalies are present, the faster we may want to flag the presence of an anomaly. Yet, our motivation for studying this problem came from the modeling of a simple Monte-Carlo Tree Search problem, in which the value of a MIN node should be compared to the known values of its neighbors, as illustrated in Figure 5.5. Note that we study minimums to fix the ideas, but one could develop similar methods to adaptively compare the maximum of a bunch of means to a threshold. Figure 5.5 -Game tree search problem of "depth 1 + 1 2". We consider the scenario where it has been established that the right subtree (grey) of the root has value γ. Learning the optimal action at the root (orange) is equivalent to determining how the minimum (blue) of the leaf means (green) compares to γ.

Computing the lower bound For the active identification problem studied in this section, it is actually possible to provide an explicit expression of the sample complexity lower bound -and the associated optimal proportions-which can be derived with the methodology presented in Chapter 3.

Lemma 5.11. Any δ-correct strategy satisfies E

The vector of optimal proportions w ⋆ (µ) 1 is such that ∀a 

Index of Notation