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Abstract - Résumé

This document presents in a unified way different results about the optimal solution of several multi-
armed bandit problems. We present and analyze algorithms for sequential decision making that adap-
tively sample several probability distributions with unknown characteristics, in order to achieve different
types of objectives. Our contributions cover two types of problems. On the one hand, we study rewards
maximization in some variants of the classical bandit model and on the other hand we focus and so-
called active identification problems, in which there is no incentive to maximize reward, but one should
optimize exploration in order to answer some (possibly complex) question about the underlying distri-
butions. We highlight several common tools for solving these problems. First, lower bounds, that not
only permit to assess the optimality of an algorithm, but also guide the design of asymptotically optimal
algorithms. We indeed provide several examples of lower-bound-inspired algorithms. Then, we empha-
size the importance of time-uniform self-normalized concentration inequalities to analyze algorithms.
Finally, on the algorithmic side, we present several variants of an important Bayesian principle called
Thompson Sampling, which leads to easy-to-implement asymptotically optimal algorithms in some par-
ticular cases.

—————————————————

Ce document présente d’une manière unifiée plusieurs résultats liés à la résolution optimale de
problèmes dits de bandit à plusieurs bras. Nous présentons et analysons des algorithmes pour la prise de
décision séquentielle qui échantillonnent de manière adaptative des distributions de probabilités ayant
des caractéristiques inconnues, dans le but de remplir différents types d’objectifs. Nous présentons
des contributions pour la résolution de deux types de problèmes. D’une part nous nous intéressons à
la maximization de récompenses dans des variantes du modèle de bandit classique, et d’autre part nous
étudions différents problèmes d’identification active, pour lesquels l’objectif est d’optimiser l’exploration
de l’environement de sorte à pouvoir répondre une question (possiblement complexe) sur les distributions
sous-jacentes, mais sans la contrainte de maximiser des récompenses. Nous mettons en avant plusieurs
outils communs pour traiter ces deux types de problèmes. Tout d’abord l’utilisation de bornes inférieures,
qui permettent non seulement de valider l’optimalité d’un algorithme, mais qui servent aussi à guider
la conception d’algorithmes asymptotiquement optimaux. Nous présentons en effet plusieurs exemples
d’algorithmes inspirés par des bornes inférieures. Ensuite, nous insistons sur l’importance des inégalités
de concentration auto-normalisées et uniformes en temps pour l’analyse d’algorithmes de bandits. En-
fin, nous présentons plusieurs variantes d’un important principe bayésien appelé l’échantillonnage de
Thompson, qui conduit à des algorithmes asymptotiquement optimaux et faciles d’implémentation dans
certains cas particuliers.
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poussée à me mettre plus sérieusement à l’apprentissage par renforcement pour le projet DELTA. Au-
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Introduction

This manuscript describes some research directions I followed since my PhD defense in October
2014. After one very interesting year of post-doc at Inria Paris, in which I worked on community de-
tection with Marc Lelarge and Thomas Bonald (Kaufmann et al., 2017), I joined the CRIStAL computer
science lab at the University of Lille as a CNRS junior researcher, where I am also a member of the
Inria team Scool (the brand new name of SequeL). Being in contact with experts of sequential decision
making, I naturally went back to my main research interest: sequential learning and in particular multi-
armed bandit problems. This document gives an overview of the contributions I made to this field after
my PhD, in collaboration with several students and colleagues.

1 Multi-Armed Bandit Problems

The multi-armed bandit model is often associated to the simplest reinforcement learning problem, in
which an agent repeatedly selects an action among a fixed set of actions, with the goal to maximize the
total reward collected when performing these actions. I want to argue here that it is much more than that,
and that there is no such thing as “the” multi-armed bandit problem.

From clinical trials to online content recommendation The stochastic Multi-Armed Bandit (MAB)
model was historically introduced as a simple model for a sequential clinical trial (Thompson, 1933;
Robbins, 1952). Imagine for example that a doctor is investigating the efficacy of some drugs for a new
disease on a population of similar patients. Each drug a is associated with an unknown probability of
efficacy pa, that is unknown to the doctor prior to the trial.

p1 p2 p3 p4 p5

For the t-th patient involved in the trial, the doctor has to select a treatment At ∈ {1, . . . ,A} in a
pool of A available treatments (A = 5 in the above illustration). After giving the treatment, the doctor
observes a response Xt that is assumed to be drawn from a Bernoulli distribution with parameter pAt
such that Xt = 1 if the treatment is successful and Xt = 0 otherwise. Assuming the doctor wants to cure
as many patients as possible, this response Xt can be interpreted as a reward signal. In trials targeted
towards maximizing the number of patients cured, the objective can also be phrased as maximizing the
total reward gathered during the trial.
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This sequential interaction between the doctor and the treatments fits the more general framework
of a stochastic multi-armed bandit model, in which an agent (the doctor) is facing a collection of arms
(the treatments) that are unknown probability distributions. The term “arm” is used in reference to the
arm of a slot-machine (also called one-armed bandit) in a casino, as drawing the arm of a slot-machine
delivers some random reward. In each time step t = 1, . . . , T of the interaction, the agent selects an arm
At and observes a sample (often called reward) Xt from the distribution associated to the chosen arm
At. The interaction is sequential in that the arm selected at time t can be adaptively chosen based on
the observation made in previous rounds, A1,X1, . . . ,At−1,Xt−1. The agent can learn from previous
observations. Back to the example of clinical trials, the doctor may want to progressively focus on the
treatments that look more promising based on the outcomes observed so far.

However, the drug development pipeline is complex and despite the very natural model proposed
for phase III clinical trials (in which different treatments are compared, while earlier phases assess the
safety and efficacy of a given treatment), it appears that bandit algorithms have been seldom used for
clinical trials (see e.g. Réda et al. (2020)). More recently, different types of applications to online content
optimization have justified a regain of interest for bandit models. A website that displays advertisement
aims at picking, for each visitor, an add on which the visitor has a high probability to click, as clicks
generate revenue (reward). A good recommender systems aims at proposing, for each user, an item that
the user will like (a good rating can be seen as a reward).

This type of applications have motivated the study of different variants of multi-armed bandit models,
for example contextual bandits, in which the average reward also depends on some characteristics of
the user or items (see, e.g. Abbasi-Yadkori et al. (2011); Chapelle and Li (2011)). But many other
variants of bandit models have been proposed in the literature such as combinatorial bandits (Chen et al.,
2013) in which subsets of arms can be selected, duelling bandits (Komiyama et al., 2016) in which
one can sequentially perform pairwise comparisons between arms, structured bandits (Combes et al.,
2017) in which some prior knowledge about the arm means can speed up learning, or partial monitoring
(Lattimore and Szepesvári, 2019) in which the reward is not directly observed.

This list is by far not exhaustive and shows that the study of multi-armed bandits is now a research
field in its own, that cannot be reduced to a simple case of reinforcement learning. The interested reader
can refer to the introductory and quite exhaustive survey of Lattimore and Szepesvari (2019) or to that
of Slivkins (2019) to discover more bandit problems.

Should we maximize reward? A lot of these bandit problems can indeed be related to reinforcement
learning as the learning process is targeted toward maximizing some notion of cumulative reward. Max-
imizing rewards requires to achieve a balance between exploration (learning the unknown distribution of
all arms based on samples) and exploitation (trying to focus on the arms that may lead to more reward
according to current knowledge). However, not all bandit problems have this incentive on exploitation,
and several pure exploration problems have been studied in the literature. In pure exploration, one should
sample the arms so as to gain relevant information on the model quickly, regardless of rewards.

In order to give a concrete example of a pure exploration problem, we can go back to the initial
example of clinical trials. As explained above, in this context maximizing the sum of rewards gathered
during the trial amounts to maximize the number of patients healed. However, in most cases the main
purpose of clinical trials is not therapeutic. In a phase III trial, the goal is rather to identify one treatment
that will later be produced and given to a much larger population than that involved in the trial. Hence
one needs to be very sure that all these resources are invested in the most successful treatment, even
at the cost of curing less patients during the trial. In the multi-armed bandit language this means that
instead of maximizing the sum of rewards, the goal is to output a guess â for the arm a⋆ with largest
mean reward. This guess should be as accurate as possible, and based on as few observation as possible.
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This particular pure exploration task is often referred to as the best arm identification problem, and can
have different mathematical formulations.

Ideally, one may want to identify the best treatment as quickly as possible while maximizing the
number of patients cured. However, the bandit literature tells us that it is not possible to find a sampling
strategy (At) that solves both objectives optimally. This has been known since the work of Bubeck
et al. (2011). In a joint work with Aurélien Garivier (Garivier and Kaufmann, 2016), in which we
identify the minimal number of samples needed to produce a guess that satisfies P(â = a⋆) ≥ 1 − δ, we
also contributed to a better understanding of the difference between algorithms for (fixed-confidence)
best arm identification and algorithms for maximizing rewards. This fundamental difference is further
discussed in the paper Kaufmann and Garivier (2017).

Beyond the best arm identification problem, several other pure exploration problems have been stud-
ied in the literature. These alternative objectives can be informally described as sampling the arms
adaptively in order to quickly learn something about the underlying unknown means. For example in the
thresholding bandit problem (Locatelli et al., 2016) the goal is to identify all arms whose means lie below
a certain threshold. This fits the more generic objective of identifying to which fold of a partitioning the
vector of means of the arms belongs. This problem has been studied for example by Juneja and Krish-
nasamy (2019). In this document, we will present several examples of such general pure exploration
problems, which we shall refer to as active identification problems.

Content of this document The research works presented in this document contribute to two research
directions, that correspond to the two parts of this manuscript.

First, I have been working on the design and analysis of new algorithms for different reward maxi-
mization tasks, beyond the classical multi-armed bandit model. Although I cannot claim to be a “practi-
tioner”, the different works presented in part I have been motivated by different applications, or at least
by colleagues working on those applications: privacy preserving in recommender systems, early stage
clinical trials and adaptive channel selection for cognitive radio. In Chapter 1, we will present some
variants of a Bayesian algorithm called Thompson Sampling for two different contexts: first, in a setting
in which the reward is not observed or in which there is no clear notion of reward and then for a par-
ticular example of a structured bandit. In Chapter 2, we will present our contributions to the study of
multi-player bandit problems, that are mostly the outcome of my first PhD co-supervision. Lilian Besson
defended his PhD on multi-player bandit algorithms applied to telecommunications in November 2019,
that he did in CentraleSupélec Rennes, under the supervision of Christophe Moy and myself.

The second line of research presented in this document is focused on active identification problems.
My main contribution in this field is the outcome of a collaboration with Aurélien Garivier, in which
we proposed a new lower bound on the sample complexity of fixed-confidence best arm identification as
well as the first algorithm whose sample complexity asymptotically matches the lower bound (Garivier
and Kaufmann, 2016). The Track-and-Stop strategy proposed in this work can be easily extended to
other types of active identification problems, as highlighted in part II of this document. In Chapter 3,
we will properly introduce active identification problems and present a generic stopping rule, based on
parallel Generalized Likelihood Ratio Tests. Notably, we will highlight a new concentration inequality
used to prove the correctness of this stopping rule, which was obtained with Wouter Koolen using some
nice martingale techniques. In Chapter 4, through the best arm identification example, we will focus
on sampling rules for active identification, and on the sample complexity of their combination with
the stopping rule previously studied. In Chapter 5, we will investigate the (optimal) solution of two
particular active identification problems that we studied with Wouter Koolen and Aurélien Garivier. Both
are motivated by providing sample complexity guarantees for Monte-Carlo Tree Search algorithms.

Both parts share a few common ingredients that we emphasize in the next section, in which we also
give a formal introduction to the standard multi-armed bandit model.
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2 Theoretical Framework and Important Tools

We denote by ν1, ν2, . . . , νA the distributions associated to each arm a in [A], where for each integer
n, [n] is a shorthand for the set {1, . . . , n}. We denote by µa = EX∼νa[X] the mean of arm a. In each
round t = 1, . . . , T , an agent (or learner), who is unaware of the means of the arms (and possibly of
the horizon T ), selects an arm At ∈ [A] and subsequently observes a sample Xt from the distribution
νAt , assumed to be independent from previous samples. For each a ∈ [A], defining (Xa,t)t∈N∗ an i.i.d.
sequence distributed under νa, we have Xt = XAt,t. Equivalently, one can define (Ya,s)s∈N∗ to be the
i.i.d. sequence of successive observations from arm a, and let Xt = Ya,Na(t) where Na(t) is the number
of selections of arm a up to round t.

A sampling strategy or bandit algorithm is a sequence A = (At)t∈N for which At may depend
on previous observation and some exogenous randomness. Formally, At is Ft−1 measurable where
Ft = σ(U0,A1,X1, U1, . . . ,At,Xt, Ut) is the σ-algebra generated by the observations available up to
round t, where Ut ∼ U([0,1]) materializes the possible independent randomness used by the algorithm.

Performance measures In the reward maximization objective, the samples Xt are viewed as rewards
and the goal of the agent is to design a strategy to maximize the expected sum of rewards, Eν [∑

T
t=1Xt]

where Pν and Eν denote the probability and expectation under the bandit model with distributions ν =

(ν1, . . . , νA). Letting a⋆ ∈ argmaxa∈[A] µa be the arm with largest mean, an oracle optimal strategy for
maximizing reward consists in always selecting arm a⋆, whose mean is denoted by µ⋆. The performance
of an algorithm is often measured by the gap between the cumulative rewards of this oracle strategy and
that of the algorithm, called regret. The (expected) regret of an algorithm A in T rounds is defined by

Rν(A, T ) = µ⋆T −Eν [
T

∑
t=1

Xt] = Eν [
T

∑
t=1

(µ⋆ − µAt)] .

A simple conditioning argument permits to express the regret in terms of number of times each arm has
been selected. Letting Na(t) = ∑

t
s=1 1 (As = a) be the number of selections of arm a, it holds that

Rν(A, T ) =
A

∑
a=1

(µ⋆ − µa)Eν[Na(T )].

Under different assumptions on the distributions ν1, . . . , νA, one can propose algorithms with sub-linear
regret, i.e. such that Rν(A, T ) = o(T ). In particular under such strategies, the ratio Na(T )/T goes to
zero for sub-optimal arms a, i.e. arms such that µa < µ⋆. This is very different from the behavior of
good sampling strategies for pure exploration problems, that have no incentive to maximize rewards and
for which Na(T )/T may converge to a constant for all arms, as will be seen in part II of this document.

Strategies for pure exploration not only consist of a sampling strategy (At)t∈N, but also of a stopping
rule τ , which is a stopping time with respect to the filtration (Ft)t∈N that indicates when enough ex-
ploration has been performed, and a recommendation rule âτ , which is Fτ -measurable and provides an
answer to the pure exploration problem. For the best arm identification, âτ is a guess for the optimal arm
a⋆, but we will see more general questions to answer in part II of this document. In this work, we will
mainly consider the fixed-confidence setting, in which the goal is to guarantee that Pν (âτ = a⋆) ≥ 1 − δ
(for best arm identification) while minimizing the number of samples τ needed to make this recommen-
dation, called the sample complexity. Other possible objectives, such as the fixed-budget setting in which
τ is set to a known budget n, will be discussed in Chapter 3.

Assumptions on the arm distributions Different bandit algorithms have been designed under dif-
ferent assumptions on the arm distributions. The seminal work of Lai and Robbins (1985) considered
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parametric distributions that are continuously parameterized by their means. Under this assumption, the
authors derived an asymptotic lower bound on the regret of any uniformly efficient algorithm 1 which
served as a guideline for designing so-called asymptotically optimal algorithm, whose regret is matching
the lower bound. An asymptotically optimal algorithm called kl-UCB has been designed assuming fur-
ther that the arms distributions belong to a one-parameter canonical exponential family. This algorithm
can be traced back to the work of Lai (1987), and a finite-time upper bound on its regret was given by
Cappé et al. (2013).

A one-parameter canonical exponential family is a set P of probability distributions, indexed by a
real parameter θ called the natural parameter, that is defined by

P = {νθ, θ ∈ Θ ∶ νθ has a density fθ(x) = exp(θx − b(θ)) w.r.t. ξ},

where Θ = (θ−, θ+) ⊆ R is an open interval, b a twice-differentiable and convex function (called the
log-partition function) and ξ a reference measure. Examples of such distributions include Bernoulli
distributions, Gaussian distributions with known variance, Poisson distributions, or Gamma distributions
with known shape parameter. IfX ∼ νθ, it can be shown that E[X] = ḃ(θ) and Var[X] = b̈(θ) > 0, where
ḃ (resp. b̈) is the derivative (resp. second derivative) of b with respect to the natural parameter θ. Thus
there is a one-to-one mapping between the natural parameter θ and the mean µ = ḃ(θ), and distributions
in an exponential family can alternatively be parameterized by their mean. Letting I = ḃ(Θ), for µ ∈ I

we denote by νµ the unique distribution in P that has mean µ : νµ = νḃ−1(µ). We introduce the following
notation for the Kullback-Leibler divergence between two distributions in the same exponential family,
for which a closed-form featuring the log-partition function can be given:

d(µ,µ′) = KL (νµ, νµ
′

) = EX∼νµ
⎡
⎢
⎢
⎢
⎢
⎣

log
fḃ−1(µ)(X)

fḃ−1(µ′)(X)

⎤
⎥
⎥
⎥
⎥
⎦

= µ × (ḃ−1
(µ) − ḃ−1

(µ′)) − b (ḃ−1
(µ)) + b (ḃ−1

(µ′)) . (1)

For the particular case in which the exponential family is the set of Bernoulli distributions, we will use
the special notation kl(µ,µ′) for the binary relative entropy:

kl(µ,µ′) = KL (B(µ),B(µ′)) = µ log (
µ

µ′
) + (1 − µ) log (

1 − µ

1 − µ′
) .

We will refer to an exponential family bandit model as a bandit model for which all distributions
belong to an exponential family P , of the form ν = (νµ1 , νµ2 , . . . , νµA). Such a bandit model can be
parameterized by the vector of means µ = (µ1, µ2, . . . , µA) ∈ I

A and we will use the notation Pµ and Eµ
for the probability and expectation under such a bandit model. In this document we will mostly present
lower bounds and algorithms for exponential family bandits, that are parameterized by their mean vector
µ ∈ IA. However, the lower bounds will typically apply to the more general class of distributions
parameterized by their means, and many algorithms can be easily extended to some non-parametric
classes of distributions such as bounded distribution or sub-Gaussian distributions.

The assumption of bounded (or sub-Gaussian) distributions is indeed very common in the bandit
literature, for example Auer et al. (2002a) provide a simple finite-time upper bound on the regret of
the UCB1 algorithm under these assumptions. Asymptotic optimality for bounded distributions is a
more complex notion, supported by a lower bound given by Burnetas and Katehakis (1996) (that also
applies to more general distributions). Algorithms matching this lower bound for bounded distributions
include a non-parametric version of KL-UCB (Cappé et al., 2013) or Thompson Sampling (Riou and
Honda, 2020). But bandit algorithms have been analyzed under other assumptions, such as Gaussian
with unknown mean and variance (Cowan et al., 2017) or heavy-tailed distributions (Bubeck et al., 2013).

1. A uniformly efficient algorithm has a regret in o(Tα) for all α ∈ (0,1] and for every bandit model in a given class.
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Tools for Lower Bounds A common feature of most of the work presented in this document is that we
strive to design optimal solutions for the considered bandit problem. Regret or sample complexity lower
bound are essential to assess this optimality and both can be obtained by lower bounding the number of
selections of some arms. For the sake of clarity we present the lower bound methodology for exponential
family bandit models, parameterized by their vector of means µ, for which it will be used in the sequel.

To the best of my knowledge, all the lower bounds obtained in the bandit literature follow from a
change of distribution argument. The idea is to find an alternative bandit model λ close enough to µ but
under which the algorithm is supposed to have a totally different behavior (for example due to a different
optimal arm), which will give constraints on the number of selections of certain arms in the initial model.
The most classical expression of a change of distribution between two bandit models µ and λ is, for an
event E ∈ Ft,

Pµ(E) = Eλ [1(E) exp (Lt(µ,λ))]

whereLt(µ,λ) = log
`(X1,...,Xt;µ)
`(X1,...,Xt;λ) = ∑

t
s=1 log

fḃ−1(µAs )
(Xs)

fḃ−1(λAs )
(Xs) is the log-likelihood ratio of the observation.

This elementary change of distribution has been a key ingredient for the derivation of lower bounds in
the bandit literature. The most notable example is the famous regret lower bound of Lai and Robbins
(1985), and further examples notably include Audibert et al. (2010). In particular, it follows from the Lai
and Robbins’ lower bound that a uniformly efficient algorithm A for a given exponential family bandit
models satisfies, for all sub-optimal arm a,

lim inf
T→∞

Eµ[Na(T )]

log(T )
≥

1

d(µa, µ⋆)
,

which yields a lower bound on its regret asRµ(A, T ) = ∑a∶µa<µ⋆(µ⋆ − µa)Eµ[Na(T )].
More recently, several works came up with a simpler expression for the change of distribution, that

directly relates the expected log-likelihood (that can be easily related to the number of selections of
each arm) to the probabilities Pµ(E) and Pλ(E), and leads to shorter lower bound proofs. For example
Combes and Proutière (2014b) and Kaufmann et al. (2016) independently proposed such a change-of-
distribution lemma. A more elegant information-theoretic proof and expression was given by Garivier
et al. (2019b) and is presented below. Denoting by

It = (U0,A1,X1, U1, . . . ,At,Xt, Ut)

the information available in round t (so that At is a deterministic function of It−1), the data-processing
inequality permits to lower bound the Kullback-Leibler divergence of the distribution of It under two
different bandit models parameterized by µ and λ.

Lemma 0.1. Let µ = (µ1, . . . , µA) and λ = (λ1, . . . , λA) be two bandit models. Let τ be a stopping
time w.r.t. (Ft)t∈N where Ft = σ(It), that is almost surely finite. For every event E ∈ Fτ ,

KL (PIτµ ,P
Iτ
λ ) ≥ kl (Pµ(E),Pλ(E)) .

Proof. The data-processing inequality states that, if P and Q are some probability distributions on the
same measurable space X and if f ∶ X → Y is a measurable function, then KL(P,Q) ≥ KL(P f ,Qf),
where P f (resp. Qf ) denotes the push-forward measure of P (resp. Q) by f . Using this, we get

KL (PIτµ ,P
Iτ
λ ) ≥ KL (P1Eµ ,P1Eλ ) = kl(Pµ(E),Pλ(E)) .

◻
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By definition of the Kullback-Leibler divergence, observe that KL (PIτµ ,P
Iτ
λ ) = Eµ [Lτ(µ,λ)] and

by Wald’s inequality, if τ is almost surely finite, we have Eµ [Lτ(µ,λ)] = ∑
A
a=1 Eµ[Na(τ)]d(µa, λa).

By choosing the event E appropriately, one can easily control the right hand side of the inequality in
Lemma 0.1. The following corollary gives an example of such a choice and will be useful to prove lower
bounds for regret minimization in different variants of the classical bandit model.

Lemma 0.2. Let A be an algorithm that is uniformly efficient on a class of bandit modelsM, i.e. for
all µ ∈M, for any sub-optimal arm a in µ, Eµ[Na(T )] = o(Tα) for all α ∈ (0,1). Then for all bandit
models µ and λ that do not have an optimal arm in common,

lim
T→∞

KL (PITµ ,P
IT
λ )

log(T )
≥ 1.

Proof. Let Aµ and Aλ be the set of optimal arms in the bandit models parameterized by µ and λ. We
assume that Aµ ∩Aλ = ∅. For T ∈ N∗, we let ET be the event

ET =

⎧⎪⎪
⎨
⎪⎪⎩

∑
a∈Aµ

Na(T ) ≤ T /2

⎫⎪⎪
⎬
⎪⎪⎭

.

The event ET belongs to FT and has intuitively a small probability under µ in which the optimal arms
in Aµ should be selected a lot, and a large probability under λ in which Aµ only contains sub-optimal
arms. Using Markov’s inequality, we can make this more formal:

Pµ (ET ) = Pµ
⎛

⎝
∑
a∉Aµ

Na(T ) > T /2
⎞

⎠
≤

2∑a∉Aµ Eµ [Na(T )]

T
,

Pλ (ET ) = Pλ
⎛

⎝
∑
a∈Aµ

Na(T ) > T /2
⎞

⎠
≤

2∑a∈Aµ Eλ [Na(T )]

T
.

Letting uT = 2∑a∉Aµ Eµ [Na(T )] and vT = 2∑a∈Aµ Eλ [Na(T )] by the assumption made on the
algorithm, we know that uT , vT = o(Tα) for all α ∈ (0,1].

Using a lower bound on the binary relative entropy given in Garivier et al. (2019b), namely kl(p, q) ≥
(1 − p) log(1/(1 − q)) − log(2), one can write

kl (Pµ(ET ),Pλ(ET )) ≥ (1 −
uT
T

) log (
T

vT
) − log(2) .

Using the above properties of uT and vT yields limT→∞ (1 − uT
T

) = 1 and log(T /vT ) ∼ log(T ) which
concludes the proof together with the inequality in Lemma 0.1.

◻

The change of distribution lemmas introduced in this paragraph will be useful in several places in this
document. First, Lemma 0.2 will be used in part I to prove variants of the Lai and Robbins’ lower bound
for more complex rewards maximization problems. Then, Lemma 0.1 will be useful in part II to prove
sample complexity lower bounds for active identification problems. We will also see that lower bounds
are not only useful for checking the (asymptotic) optimality of an algorithm, but that they can also guide
the design of algorithms. We will indeed see several examples of lower bound inspired algorithms.
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Tools for algorithms: concentration and posterior distributions Different exploration mechanisms
exist for solving the exploration/exploitation trade-off inherent to rewards maximization, or for pure
exploration. A common feature of these mechanisms is that they do not only rely on point estimates of
the unknown means. For example, the greedy strategy that always selects the arm with largest empirical
mean is known to have a linear regret.

A first approach consists in leveraging confidence intervals on the unknown means of the arm. For re-
ward maximization, the celebrated optimism in face of uncertainty principle recommends to pick the arm
that can lead to the largest possible pay-off which corresponds to the arm with highest Upper Confidence
Bound (UCB) (Agrawal, 1995; Auer et al., 2002a). For best arm identification, algorithms leveraging
both upper and lower confidence bounds have been proposed, like LUCB (Kalyanakrishnan et al., 2012).

To build good confidence intervals, tight concentration inequalities are needed, which depend on
the assumptions made on the arm distributions. For exponential bandit models, the Chernoff inequality
(which follows from applying the Crámer-Chernoff method) takes the following form, which features
the KL-divergence function d(⋅, ⋅). For every arm a ∈ [A],

for x > µa, P (µ̂a,s > x) ≤ e
−sd(µa,x) and for x < µa, P (µ̂a,s < x) ≤ e

−sd(µa,x) ,

where µ̂a,s = 1
s ∑

s
i=1 Ya,s is the empirical mean of arm a based on the first s observation from this arm.

Exploiting the monotonicity properties of the divergence d, one can also write, for all u > 0,

P (sd+ (µ̂a,s, µa) > u) ≤ e
−u and P (sd− (µ̂a,s, µa) > u) ≤ e

−u ,

where d+(x, y) = d(x, y)1(x≤y) and d−(x, y) = d(x, y)1(x≥y). Hence we see that in an exponential
family, deviations are naturally measured with respect to the associated divergence d, which is not a
standard quadratic distance (except in the case of Gaussian distribution with known variance σ2 for
which d(x, y) = (x−y)2

2σ2 ).
One of the tricky aspects of the analysis of a bandit algorithm is that the number of observations

from each arm at a current stage of the algorithm, Na(t), is itself a random variable, so one cannot
simply replace s by Na(t) in the above inequalities. To circumvent this issue, one need to resort to self-
normalized inequalities, such that the one below, in which we denote by µ̂a(t) = µ̂a,Na(t) the empirical
mean of the observation collected from arm a after t rounds.

Lemma 0.3 (Garivier and Cappé (2011)). For every exponential family bandit model with divergence
function d, for every arm a ∈ [A], for u > 0,

P(Na(t)d
+
(µ̂a(t), µa) > u) ≤ P(∃s ∈ [t] ∶ sd+ (µ̂a,s, µa) > u) ≤ e⌈u log(t)⌉ exp(−u) .

This inequality permits to calibrate the upper confidence bound used by the kl-UCB algorithm
(Cappé et al., 2013), which is

UCBa(t) = max{q ∶ Na(t)d(µ̂a(t), q) ≤ log(t) + c log log(t)}

and satisfies P (µa ≤ UCBa(t)) ≳ 1 − (t log(t)c−2)
−1

. KL-based confidence intervals will be used in
several places in this document. We will also present some new concentration tools that allow to measure
deviations for multiple arms at the same time, and can further provide deviation that are uniform in
time for every t ∈ N. A part of Chapter 3 will be dedicated to the presentation of this new inequality
(Theorem 3.1) and its proof.

A popular alternative to the use of confidence intervals is the use of Bayesian methods, notably
Thompson Sampling, also known as posterior sampling. Thompson Sampling was proposed as the very
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first bandit algorithm strategy for two-armed Bernoulli bandit (Thompson, 1933) and has recently gained
a lot of popularity for rewards maximization in complex bandit models (Agrawal and Goyal, 2013b;
Riquelme et al., 2018) or reinforcement learning (Osband et al., 2013), see Russo et al. (2018) for a tuto-
rial. On the theoretical side, Thompson Sampling is known to be asymptotically optimal in exponential
family bandit models (Korda et al., 2013).

Given a prior distribution on the means µ, the algorithm maintains a posterior distribution Πt on µ,
defined as the conditional distribution of the vector of means (seen as a random vector drawn from the
prior) given the observation made in the first t rounds. Thompson Sampling is a randomized algorithm
which selects each arm according to its posterior probability of being optimal. Instead of computing the
posterior probability of each arm to be the best, which can be numerically costly, a simple implementation
consists in drawing a possible mean vector θ(t) from Πt and picking the arm with largest entry θa(t). In
an exponential family bandit model, a common choice of prior distribution consists in using independent
conjugate prior for each µa. For example, in Bernoulli bandits with a uniform prior on each mean, the
posterior distribution on µa takes the simple form

πa(t) = Beta (Sa(t) + 1,Na(t) − Sa(t) + 1)

where Sa(t) = ∑ts=1Xa,t1 (As = a) is the sum of ones observed from arm a and Na(t) − Sa(t) is the
sum of zeros.

Thompson Sampling will appear in both parts of this document. In part I, we will see that some
variants of this algorithm can be proposed for more sophisticated rewards maximization problems, and
remain asymptotically optimal. In part II, we will present two adaptations of Thompson Sampling to two
different active identification problems that also achieve some notion of optimality.

3 List of Associated Publications

This document highlights a selection of contributions that have been published in journals or mostly
in conference proceedings, that are very important in the machine learning community. A list of the
published work posterior to my PhD defense and not related to the PhD work is given below. I highlight
in bold the student with whom I have collaborated. This includes the PhD students I co-supervise(d):
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Part I

Maximizing Rewards, with a Twist





Chapter 1

Optimal Solution for Variants of the
Classical Multi-Armed Bandit

In this chapter we study some extensions of the standard rewards maximization problem in a multi-
armed armed bandit problem, that are motivated by different applications.

On the algorithmic side, we mostly explore how to design variants of Thompson Sampling in two
different contexts. We first consider transductive settings, in which the feedback observed during the
interaction is not the reward that the agent seeks to maximize. Then we present a first step in designing
a variant of Thompson Sampling for structured bandits with the example of Unimodal Thompson Sam-
pling motivated by rank-one bandits. For these different settings, our goal remains the design of asymp-
totically optimal algorithms and we therefore explain how the lower bound methodology presented in
the Introduction can lead to more sophisticated lower bounds with simple proofs.

1.1 Thompson Sampling in Transductive Settings

In the classical bandit setting, a learner tries to maximize her total reward and the feedback she
obtained during learning is the observation of the rewards themselves. In this section, we present two
variants of this problem that have in common that the feedback observed during learning is only loosely
related to the rewards that the learner aims at maximizing.

1.1.1 Thompson Sampling for Corrupt Bandits

Motivated by (local) privacy preserving, we studied with Patrick Gajane, who was then doing a
CIFRE PhD at Orange Labs, and his advisor Tanguy Urvoy, the problem of maximizing rewards based
on a feedback which is a stochastic transformation of the rewards, when the link between the reward and
feedback distributions is known.

More precisely, the setting, that we call “corrupt bandits” is the following. A corrupt bandit model
is described by A reward distributions {νa}a=1...A, A feedback distributions {ςa}a=1,...,A, and a list of
mean-corruption functions {ga}a=1,...,A. The reward and feedback distributions are unknown to the
learner, while the mean-corruption functions are assumed to be known. At round t, if the learner selects
arm At = a, she receives a reward Rt drawn from the distribution νa with mean µa and observes a
feedback Ft drawn from the distribution ςa with mean λa. We assume that, for each arm, there exists a
loose link between the reward and the feedback through the corruption function ga which maps the mean
of the reward distribution to the mean of the feedback distribution : for all a ∈ [A], ga(µa) = λa.

The motivation of this setting stems from the use of a privacy-preserving mechanism in a recom-
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mender system. To avoid disclosing the tastes of each user (materialized by the click, or rating that
plays the role of a reward) to a local observer having access to its database, the system stores on purpose
“corrupted” versions of these rewards. Based on this corrupted feedback, the goal is still to propose
items which generate large expected rewards. If the rewards are binary, randomized response can be
used (Warner, 1965): for each arm a the noisy feedback F is generated from the reward R is such a way
that P(F = x∣R = y) =Ma(y, x), whereMa is some corruption matrix

Ma = [

0 1

0 p00(a) 1 − p11(a)
1 1 − p00(a) p11(a)

] (1.1)

For an arm a with expected reward µa the expected feedback under this corrupting scheme is ga(µa) =
1−p00(a)+[p00(a)+p11(a)−1] ⋅µa. In the paper Gajane et al. (2018), we proposed two asymptotically
optimal algorithms for the corrupt bandit problems, for general corruption functions that are assumed to
be continuous and monotone, when the reward and feedback are binary. 1

A binary corrupt bandit problem with given corruption functions {ga}a=1∈[A] can be parameterized
by its vector of means µ = (µ1, . . . , µA): when the learner selects arm a, a Bernoulli reward with mean
µa and a Bernoulli feedback with mean λµa = ga(µa) are generated.

Regret and best achievable performance Despite observing only the feedback, the learner still aims
at maximizing the sum of her (unobserved) rewards. Hence the regret is measured with respect to the
strategy always playing the arm with largest mean as in the classical setting:

Rµ(A, T ) = µ⋆T −Eµ [
T

∑
t=1

Rt] = ∑
a∈[A]

∆µ
aEµ [Na(T )] ,

where µ⋆ = max
a

µa and ∆µ
a = µ⋆ − µa.

One can extend the notion of uniformly efficient algorithms of Lai and Robbins (1985) to the binary
corrupt bandit problem with a given family of corruption functions: an algorithmA is uniformly efficient
if, for every µ ∈ [0,1]A, for every α ∈ (0,1), its regret satisfies Rµ(A, T ) = o(Tα). One can use the
powerful Lemma 0.2 presented in the Introduction to derive an asymptotic lower bound on the number
of selections of each sub-optimal arm. Consider a corrupt bandit instance µ for which we assume to fix
the ideas that arm 1 is the best arm. Let µ′ be any corrupt bandit instance in which arm 1 is sub-optimal.
Then Lemma 0.2 yields

lim
T→∞

KL (PITµ ,P
IT
µ′ )

log(T )
≥ 1.

where we recall that It is the information available for the learner after t observations. In the corrupted
setting, the information contains the feedback, and not the reward:

It = (U0,A1, F1, U1, . . . ,At, Ft, Ut).

Hence, one can show that KL (PITµ ,P
IT
µ′ ) = ∑

A
a=1 Eµ[Na(T )]kl (λµa , λ

µ′
a ). The final lower bound stated

below follows from selecting the alternative instance µ′ defined by

µ′b =
⎧⎪⎪
⎨
⎪⎪⎩

µ1 + ε, if b = a
µb otherwise

for each sub-optimal arm a (for which λµ
′

a = ga(µ1 + ε)) and by letting ε go to zero.

1. The proposed strategies can be adapted to sub-Gaussian distributions or to rewards that belong to another one-
dimensional exponential family, but we present the binary case for the sake of simplicity.
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(a) Uninformative ga function (b) Informative ga function

Figure 1.1 – In Figure 1.1(a), ga such that λa = ga(µ1) thereby making it impossible to discern arm a
from the optimal arm 1 given the mean feedback. In Figure 1.1(b), a steep monotonic ga transforms the

reward gap ∆µ
a = µ1 − µa into a clear gap between λa and ga(µ1).

Theorem 1.1. Given continuous corruption functions {ga}a∈A, an algorithmA that is uniformly efficient
for the Bernoulli corrupt bandit problem satisfies, for any sub-optimal arm a,

lim inf
T→∞

Eµ[Na(T )]

log(T )
≥

1

kl (λµa , ga(µ⋆))
,

where kl(x, y) = x log (xy ) + (1 − x) log (1−x
1−y ) is the binary relative entropy.

The lower bound reveals that the divergence between the mean feedback for arm a and the image of
the optimal reward µ⋆ with ga plays a crucial role in distinguishing arm a from the optimal arm. The
shape of the ga function in the neighborhood of both a and a⋆ has a great impact on the information
that the learner can extract from the received feedback. Particularly, if the ga function is non-monotonic
and ga(µ⋆) = ga(µa), it may be impossible to distinguish between arm a and the optimal arm, arm 1.
See Figure 1.1(a) for an illustration. To avoid this problem, we will propose algorithms under the extra
assumption that each corruption function ga is strictly monotonic. The inverse function of ga is therefore
well defined and we denote it by g−1

a . Such an informative corruption function is shown in Figure 1.1(b).
To clarify that the gap between λa and λ⋆ = ga⋆(µ⋆) is not relevant here, we also add in Figure 1.1(b), a
corruption function ga⋆ which differs from ga and causes fortuitously the two arms a and a⋆ to have the
same mean feedback with different interpretations in terms of mean rewards.

The TSCF algorithm We now explain how to adapt an algorithm which is asymptotically optimal in
the classical setting, Thompson Sampling, to the corrupt bandit problem. The kl-UCB algorithm (Cappé
et al., 2013) can be similarly adapted as explained in the paper (Gajane et al., 2018), but we focus on
Thompson Sampling in this document, stated as Algorithm 1 below.

Given a uniform prior distribution over the mean feedback of each arm, λµa , the algorithm updates
a posterior distribution after the observation of a Bernoulli feedback with mean λµa each time arm a is
sampled. The posterior distribution of λµa after t rounds of the algorithm is

πa(t) = Beta (Sa(t) + 1,Na(t) − Sa(t) + 1) ,

where Sa(t) = ∑ts=1 Fs1(As=a) is the sum of feedback observed on arm a and Na(t) = ∑
t
s=1 1(As=a) is

the number of selections of arm a. Thompson Sampling draws at time t + 1 one sample θa(t) from each
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Algorithm 1 Thompson Sampling for MAB with corrupted feedback (TS-CF)
1: Input: Horizon T , corruption functions g1, . . . , gK
2: Initialization: for each a ∈ [A], Na = 0, Sa = 0
3: for t = 1 . . . T do
4: For each arm a ∈ [A], sample θa ∼ Beta(Sa + 1,Na − Sa + 1)
5: Select arm At = arg max

a
g−1
a (θa) and observe feedback Ft

6: Update number of visits and sum of feedback:
7: NAt ← NAt + 1, SAt ← SAt + Ft
8: end for

posterior distribution πa(t). As the mapping between mean feedback and mean reward is known, the
algorithm then selects At+1 as the arm for which g−1

a (θa(t)) is largest. It can easily be checked that the
the probability to select arm a at round t is exactly the posterior probability that arm a has largest mean
reward, which is the general philosophy of Thompson Sampling.

We prove the following regret bound for this TS-CF algorithm. The proof follows the analysis of
Agrawal and Goyal (2013a) to upper bound Eµ[Na(T )] for each a such that µa < µ⋆. It requires to
distinguish 4 cases depending on whether g1 and ga are increasing or decreasing. Some of them require
adaptations of the arguments of Agrawal and Goyal (2013a), that are highlighted in the sketch below.

Theorem 1.2. Let µ be a Bernoulli corrupt bandit model with continuous and monotone corruption
functions. For every ε > 0, there exists a constant Cε = C(ε,µ,{ga}a∈[A]) such that

Rµ (TS-CF, T ) ≤ (1 + ε) ∑
a∈[A]/{a⋆}

∆µ
a log(T )

kl(λµa , ga(µ⋆))
+Cε.

Sketch of proof. To ease the notation, assume arm 1 is optimal and fix some sub-optimal arm a. We
define two high-probability events on which the empirical mean λ̂a(t) of the collected feedback and the
posterior sample θa(t) do not deviate too much from λµa . Introducing two thresholds x and y (to be
chosen at the end of the proof) such that λµa < x < y < ga(µ1) (resp. λµa > x > y > ga(µ1)) when ga is
increasing (resp. decreasing), we let

Eλa (t) = {g−1
a (λ̂a(t)) ≤ g

−1
a (x)} and Eθa(t) = {g−1

a (θa(t)) ≤ g
−1
a (y)}

and upper bound the number of sub-optimal selections as follows:

Eµ[Na(T )] =

T−1

∑

t=0

Pµ(At+1 = a,Eλa (t),E
θ
a(t)) +

T−1

∑

t=0

Pµ(At+1 = a,Eλa (t),Eθa(t)) +
T−1

∑

t=0

Pµ(At+1 = a,Eλa (t)). (1.2)

Controlling the third term in (1.2) amounts to upper bounding∑Ts=1 P (λ̂a,s > x) for x > λµa (increasing
ga) or ∑Ts=1 P (λ̂a,s < x) for x < λµa (decreasing ga) where λ̂a,s is the empirical mean of the first s
observed feedbacks from arm a. In both cases, using the Chernoff inequality permits to prove that

T−1

∑
t=0

Pµ(At+1 = a,Eλa (t)) ≤ 1 +
1

kl (x,λµa )
.

Controlling the second term in (1.2) amounts to upper bounding

T−1

∑
t=0

Pµ (At+1 = a, λ̂a(t) ≤ x, θa(t) > y) or
T−1

∑
t=0

Pµ (At+1 = a, λ̂a(t) ≥ x, θa(t) < y)
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when ga is increasing or decreasing. While the increasing case is directly handled by Lemma 3 in
Agrawal and Goyal (2013a), for the decreasing case, we need to prove a counterpart of this result.
Leveraging the Beta-Binomial trick together with the Chernoff inequality, one can prove in both cases
that

T−1

∑
t=0

Pµ(At+1 = a,E
λ
a (t),E

θ
a(t)) ≤

log(T )

kl(x′, y)
+ 1

for any x′ in (x, y) and T large enough (see Lemma 4 in Gajane et al. (2018)).

Lemma 1.3 (Beta-binomial trick). Let F Beta
α,β denote the cdf of a Beta distribution with parameter α and

β and F Bin
n,p denote the cdf of a Binomial distribution with parameters n and p. If α and β are integers,

F Beta
α,β (w) = 1 − F Bin

α+β−1,w(α − 1) .

Proving that the first term in (1.2) is a constant is the most challenging part of the analysis of Thompson
Sampling, even for the classical algorithm. For the corrupt bandit problem, one first generalizes the trick
which relates the probability of selecting arm a to that of selecting arm 1:

Lemma 1.4. Letting pa,t ∶ =P (g−1
1 (θ1(t)) > g

−1
a (y)∣Ft), it holds that

Pµ (At+1 = a,E
θ
a(t),E

λ
a (t)∣Ft) ≤

(1 − pa,t)

pa,t
Pµ (At+1 = 1,Eθa(t),E

λ
a (t)∣Ft) .

Lemma 1.4 permits to upper bound

T−1

∑
t=0

Pµ(At+1 = a,E
λ
a (t),E

θ
a(t)) ≤

T−1

∑
t=0

Eµ [
1 − pa,t

pa,t
1(At+1=1)] ≤

T−1

∑
s=0

(Eµ [
1

pa,τs+1
] − 1) ,

where τs is the instant of the s-th selection of arm 1. To prove that the first term in (1.2) is a constant, we
prove that

Eµ [
1

pa,τs+1
] ≤ 1 + f(s) (1.3)

for some function f that satisfies ∑s f(s) <∞.
Now one can observe that
● when g1 is increasing, pa,t = Pµ(θ1(t) > ỹ∣Ft) for some ỹ < λµ1
● when g1 is decreasing, pa,t = Pµ(θ1(t) < ỹ∣Ft) for some ỹ > λµ1

When g1 is increasing, (1.3) directly follows from the technical Lemma 4 in Agrawal and Goyal (2013a).
When g1 is decreasing, exploiting some symmetries allows to leverage the same arguments to prove (1.3).
In the decreasing case, thanks to the Beta-Binomial trick,

pa,τs+1 = F
Beta
(S1(τs)+1,s−S1(τs)+1)(ỹ) = 1 − FBin

(s+1,ỹ)(S1(τs)) and S1(τs) ∼ Bin (s, λµ1 ) .

Using that fBin
n,p(j) = f

Bin
n,1−p(n− j) and FBin

n,p (j) = 1−FBin
n,1−p(n− j −1) where FBin

n,p and fBin
n,p respectively

denote the cdf and pdf of a Binomial distribution with parameters n and p, one can write

Eµ [
1

pa,τs+1
] =

s

∑
j=0

fBin
(s,λµ1 )(j)

1 − FBin
(s+1,ỹ)(j)

=
s

∑
j=0

fBin
(s,1−λµ1 )(s − j)

FBin
(s+1,1−ỹ)(s − j)

=
s

∑
j=0

fBin
(s,1−λµ1 )(j)

FBin
(s+1,1−ỹ)(j)

.

In the proof of their Lemma 4, Agrawal and Goyal (2013a) provide an upper bound on the quantity
∑
s
j=0 f

Bin
(s,c)(j)/F

Bin
(s+1,d)(j) whenever c is larger that d. This bound can be used here as 1 − λµ1 > 1 − ỹ

and it permits to prove that (1.3) holds.



28 CHAPTER 1. OPTIMAL SOLUTION FOR VARIANTS OF THE CLASSICAL MULTI-ARMED BANDIT

Putting things together, if for example ga is increasing we proved that for every λµa < x′ < y < ga(µ1)

there exists a constant Ca(µ, x′, y) such that

Eµ[Na(T )] ≤
1

kl(x′, y)
log(T ) +Ca(µ, x

′, y).

Choosing x′ and y such that kl(x′, y) = kl(λµa , ga(µ1))/(1 + ε) and summing over sub-optimal arms
yields the conclusion.

◻

A trade-off between privacy and regret Let us go back to our motivating example of designing a
recommender system that learns to display items that the users like using only the stored noisy versions
of their preferences. If the stored feedback is obtained with a randomized response mechanism (given
by the matrix (1.1)) which is identical for each arm (p00(a) = p00 and p11(a) = p11), it follows from
Theorem 1.2 (and Pinsker’s inequality: kl(x, y) ≥ 2(x − y)2) that the regret of TS-CF is of order

1

∣p00 + p11 − 1∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
multiplicative factor

× (
K

∑
a≠a⋆

log(T )

2∆µ
a

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
best possible regret

(sub-Gaussian approx.)

.

Hence the more secure feedback comes at a multiplicative cost in the regret, this cost being small if both
p00 and p11 are large. It is therefore interesting to find the smallest possible cost which guarantees the
randomized response scheme to be differentially private.

Differential Privacy (DP) is a notion introduced by Dwork et al. (2006) to quantify how much sharing
information about a database can reveal information about individual entries in this database. In our
context, a corruption scheme g̃ (generating feedback from rewards) is ε-differentially private if for all
rewards sequences R1, . . . ,Rt and R′

1, . . . ,R
′
t that differ by at most one entry P (g̃(R1, . . . ,Rt) ∈ S) ≤

eε ⋅ P (g̃(R′
1, . . . ,R

′
t) ∈ S). Wang et al. (2016) show that randomized response is differentially private

provided that max(p00/(1 − p11), p11/(1 − p00)) ≤ e
ε. They also show that maximizing p00 + p11 while

maintaining ε-DP requires to chose p00 = p11 = eε/(1 + eε), which yields the smallest multiplicative
factor of (1 + eε)2/(1 − eε)2 ≃ 2/ε2.

We note the the notion of ε-DP that we require here is local: the entries of the bandit algorithms
(feedback) are required to be an ε-DP transformation of the rewards. Other notions of privacy can be
defined in the context of bandit algorithms. For example, one may want the selected actions not to leak
too much information about the rewards, see, e.g. Tossou and Dimitrakakis (2016).

1.1.2 Thompson Sampling for Dose-Finding

The second “transductive” setting for which I studied Thompson Sampling is motivated by a different
field of applications: clinical trials. I’ve been very curious how to actually apply bandit algorithms for this
purpose, and thanks to discussions with Marie-Karelle Rivière, a biostatistician at Sanofi, I discovered
the dose-finding problem, which occurs at early stages of clinical trials. I briefly described the work we
did on this problem with Maryam Aziz, who did an internship with us in 2016 (Aziz et al., 2018).

In an early stage clinical trial (phase I/II), the goal is to identify a good dosage of a given drug that
should be used in further phases of the trial, in which the drug will be compared to other treatments or
a placebo. In particular, doctors are interested in finding the Maximum Tolerated Dose (MTD), defined
as the dose whose probability to be toxic (i.e. the patient shows severe side effects) is closest to some
pre-specified threshold θ, among a set of A candidate doses (typically A varies between 5 to 10). Letting
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pa denote the probability that dose a is toxic, the MTD is formally defined as

a⋆ ∈ argmin
a∈[A]

∣θ − pa∣

In the context of oncology, efficacy comes at a price of a certain level of toxicity and the threshold θ is
typically set to θ = 0.3. Figure 1.2 illustrates the MTD in a situation in which the probability of toxicity
is increasing with the dose. This assumption is common for single-drug trials but is not meaningful when
combinations of drugs are on trial. Forgetting about possible monotonicity constraints for a while, we
now formalize sequential dose-finding as a variant of a multi-armed bandit problem.

Figure 1.2 – The Maximal Tolerated Dose

In a dose-finding study, a dose At ∈ [A] is selected for the t-th patient, and a binary outcome Xt

indicating whether a harmful side-effect occurred is observed. We assume that Xt is drawn from a
Bernoulli distribution with mean pAt , independently from previous observations. The selection rule
At is sequential and At can only depend on the previously allocated doses and the observed outcomes
A1,X1, . . . ,At−1,Xt−1 (and some possible exogenous randomness). A guess ât for the MTD a⋆ may
also be proposed after the first t patients. The goal of a dose-finding study can be twofold. A first possible
objective is to minimize the probability of error P(ât ≠ a⋆), which is a variant of a best arm identification
problem, discussed further in part II of this document. Then, if the goal of the trial is therapeutic, another
objective is to treat as many patients as possible with the MTD, which is the most efficient tolerable dose.
In either case, the feedback observed (the toxicity of the given dose) cannot be viewed as a reward that
we seek to maximize.

In the “therapeutic view” on the trial, a possible (unobserved) reward associated to the dose selected
in round t could be Rt = 1 (At = a⋆) and the target behavior of the algorithm is then to maximize
Ep[Na⋆(T )] (in a Bernoulli bandit model parameterized by p = (p1, . . . , pA)). This goal makes sense
in oncology in which patients involved in the trial are in need for a therapeutic effect, hence should
ideally be treated at the dose with largest efficacy given acceptable side effects, which is the MTD. This
defines a variant of the classical MAB problem where the goal is to maximize the number of selections
of some target arm a⋆, which is not necessarily the arm with largest mean. We explain below for the
MTD identification example how the standard MAB theory can be extended to cover this case.

First, the lower bound methodology presented in the Introduction can be used for the MTD identifi-
cation problem as well, introducing an appropriate definition of uniform efficiency, directly expressed in
terms of the sub-optimal selections.

Theorem 1.5. We define a uniformly efficient algorithm as an algorithm satisfying for all possible tox-
icity probabilities p = (p1, . . . , pA), for all arm a ∶ ∣θ − pa∣ ≠ ∣θ − pa⋆ ∣, Ep[Na(T )] = o(Tα) for all
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α = (0,1]. Any uniformly efficient algorithm satisfies, for p such that pa⋆ ≠ θ,

lim inf
T→∞

Ep[Na(T )]

log(T )
≥

1

kl(pa, d⋆a)
, where d⋆a ∶ = argmin

d∈{pa⋆ ,2θ−pa⋆}
∣pa − d∣.
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Figure 1.3 – Optimal dose d∗a defined in Theorem 1.5.
d∗a is either the toxicity of the MTD or that of its symmetric with respect to θ

Next, we show that Thompson Sampling with independent uniform prior distributions over each
probability of toxicity, formally stated in Algorithm 2, is matching the lower bound of Theorem 1.5.
Given a sample θa(t) from the posterior distribution on pa, the arm selected at round t + 1 is At+1 =

argmina ∣θ − θa(t)∣. This randomized algorithm satisfies the Thompson Sampling property: P(At+1 =

a∣Ft) is equal to the posterior probability that arm a is the MTD.

Algorithm 2 Independent Thompson Sampling for MTD Identification

1: Input: Horizon T , threshold θ.
2: Initialization: for each a ∈ [A], Na = 0, Sa = 0
3: for t = 1 . . . T do
4: For each arm a ∈ [A], sample θa ∼ Beta(Sa + 1,Na − Sa + 1)
5: Select arm At = arg min

a
∣θa − θ∣ and observe toxic outcome Xt

6: Update number of trials and toxic outcomes:
7: NAt ← NAt + 1, SAt ← SAt +Xt

8: end for

We prove the following upper bound on the number of sub-optimal selections.

Theorem 1.6. For all ε > 0, there exists a constant Cε,θ,p (depending on ε, the threshold θ and the vector
of toxicity probabilities p) such that Algorithm 2 satisfies, for all a : ∣pa − θ∣ ≠ ∣θ − pa⋆ ∣,

Ep[Na(T )] ≤
1 + ε

kl(pa, d∗a)
log(T ) +Cε,θ,p .

Sketch of proof. We follow the same approach as for the analysis of the TS-CF algorithm in the previous
section: we adapt the analysis of Agrawal and Goyal (2013a) to upper bound the number of selections
of a sub-optimal arm a. We use the same decomposition as in (1.2) but we modify the definition of the
high-probability events, here Epa(t) and Eθa(t), to be adapted to the new notion of optimal arm a⋆.

To fix the ideas, we consider the case pa⋆ ≥ θ > pa. In that case d⋆a = 2θ − pa⋆ satisfies pa < d⋆a ≤ θ:

pa

da
*

pa*

x
y

y'

θ
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Let x, y ∈]0,1[2 be such that pa < x < y < d∗a (chosen at the end of the proof). We let y′ = 2θ − y > θ be
symmetric to y with respect to the threshold (see the illustration above). Letting p̂a(t) be the empirical
mean of the toxicity responses gathered from dose a up to the end of round t and θa(t) be the sample
from the Beta posterior on pa after t rounds, we define Epa(t) = (p̂a(t) ≤ x) and Eθa(t) = (θa(t) ≤ y).

The proof is then very similar to that of Theorem 1.2 and consists in upper bounding each of the
three terms in (1.2) by using concentration inequalities and the Beta-binomial trick. As before, the most
delicate part is the first term. Introducing this time pa,t ∶= P(θa⋆(t) ∈ [y, y′]∣Ft), we prove that

Pp (At+1 = a ∣E
θ
a(t + 1),Ft ) ≤

1 − pa,t

pa,t
Pp (At+1 = a⋆ ∣E

θ
k(t + 1),Ft ) .

As in the previous proof, it remains to upper bound ∑T−1
s=0 Ep [ 1

pa,τs+1
] by a constant, where τs is the

instant of the s-th selection of the MTD a⋆. Observe however the different definition of pa,t, which
is now the posterior probability of pa being in an interval [y, y′] instead of pa being simply larger or
smaller than some threshold. The proof requires therefore a few extra technicalities, that are detailed in
Appendix A of Aziz et al. (2018).

◻

In the paper Aziz et al. (2018) the theoretical results introduced in this section are presented as a
sanity-check for the use of more sophisticated variants of Thompson Sampling for MTD identification.
Indeed, both our upper and lower bounds are asymptotic in the number of patients T , whereas for real
clinical trials we typically care about small sample sizes. In order to propose practically meaningful de-
signs for MTD identification, we propose the use of Thompson Sampling with a prior enforcing a certain
structure on the toxicity probabilities (for example a toxicity increasing in the dose as in Figure 1.2).
We show that Thompson Sampling compares favorably with standard baselines for MTD identification,
notably the Continuous Reassessment Method (O’Quigley et al., 1990).

Through two examples, we illustrated the flexibility of Thompson Sampling, which can be easily
adapted when the optimal arm is not the arm with largest mean feedback. Interestingly, while for corrupt
bandits we also proposed an adaptation of the optimistic kl-UCB algorithm (Gajane et al., 2018), defining
a UCB-like algorithm that maximizes the number of selections of some arbitrary arm, as needed in the
dose finding problem, is not as straightforward. Indeed, Thompson Sampling only requires to be able to
define some notion of optimal arm, whereas the optimism principle requires the optimal arm to be the
maximizer of some expected payoff.

1.2 Structured Bandits

Going back to the setting in which the learner does observe the actual signal she seeks to maximize,
the vanilla bandit problem can be complexified in several other ways. Over the past years, I have been
particularly interested to see an increasing number of papers dealing with structured bandits. In our
parametric setting, the structure is some prior knowledge that the vector of means µ = (µ1, . . . , µA) lies
in some known subset S of the set of all possible means. A good algorithm should exploit this knowledge
in order to have a regret which is smaller than that of a UCB algorithm agnostic to S.

Here are three interesting examples of structures that have been studied in the literature:

● Lipschitz bandits (Magureanu et al., 2014) in which the reward of arm a is a Lipschitz function
of some characteristic xa. Both the (xa)a∈[A] and the Lipschitz constant L are known in

SLipschitz = {µ = (µx1 , . . . , µxA) ∶ ∀(a, b) ∈ [A]
2, ∣µxa − µxb ∣ ≤ L∣xa − xb∣} .
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● Unimodal bandits (Combes and Proutière, 2014a) in which it is known that the mean reward is
first increasing, then decreasing:

Sunimodal = {µ = (µ1, . . . , µA) ∶ ∃a ∈ [A] ∶ µ1 ≤ ⋅ ⋅ ⋅ ≤ µa and µa ≥ µa+1 ≥ ⋅ ⋅ ⋅ ≥ µA} .

This notion was extended to that of graphical unimodal bandits, detailed in Section 1.3.
● Linear bandits in which µa = x⊺aθ for some known context vector xa ∈ Rd describing arm a and

some unknown regression parameter θ ∈ Rd. Letting X ∈ RK×d the matrix whose row a is x⊺a,

Slinear = {µ = (Xθ)⊺ ∣ θ ∈ Rd} .

Linear bandits have been studied a lot in the multi-armed bandit literature (see, e.g., Abbasi-
Yadkori et al. (2011) and references therein) yet Lattimore and Szepesvári (2017) are the first to
present an optimal algorithm for linear bandits with a finite number of arms.

Of course, this framework allows to recover classical bandits in which there is no structure knowl-
edge, by defining Sclassical = I

A to be the set of all possible means. Other examples of structures are
given by Lattimore and Munos (2014), Kwon et al. (2017) or Jedor et al. (2019).

A regret lower bound for structured bandits A counterpart of the Lai and Robbins lower bound for
structured bandits was first given by Agrawal et al. (1989) when the set S is finite. The case ∣S ∣ = +∞

is covered by the more general work of Graves and Lai (1997), which also applies to controlled Markov
chains. We now explain how this lower bound for structured bandits can be deduced from Lemma 0.2.

Letting a⋆(µ) denote the set of optimal arms in the bandit model parameterized by µ, we introduce
the following sets of alternative (structured) bandit models:

AltS(µ) = {λ ∈ S ∶ a⋆(µ) ∩ a⋆(λ) = ∅}

BS(µ) = {λ ∈ S ∶ ∀a ∈ a⋆(µ), µa = λa and a⋆(µ) ∩ a⋆(λ) = ∅} .

AltS(µ) is the set of bandit instances that have no common optimal arm with the bandit instance µ.
BS(µ) ⊆ AltS(µ) considers only alternatives in which all arms in a⋆(µ) are unchanged.

The notion of uniformly efficient algorithms is straightforwardly extended to a structure S as follows:
algorithm A is uniformly efficient ifRµ (A, T ) = o(Tα) for all µ ∈ S and all α ∈ (0,1). This implies in
particular that for all a ∉ a⋆(µ), Eµ[Na(T )] = o(Tα) for all α ∈ (0,1). Recalling that d(µ,µ′) denotes
the Kullback-Leibler divergence between the distribution of mean µ and that of mean µ′ in a context of
arms parameterized by their means (e.g., exponential family bandit models), Lemma 0.2 yields

Lemma 1.7. Let A be a uniformly efficient bandit algorithm for a structure S . Then,

∀λ ∈ AltS(µ), lim inf
T→∞

∑
A
a=1 d(µa, λa)Eµ[Na(T )]

log(T )
≥ 1.

This result is similar to the first statement in Theorem 1 of Graves and Lai (1997) (Equation (2.16)), the
difference being that the set AltS(µ) in Lemma 1.7 is replaced by the smaller set BS(µ). Considering
alternative instances in the set BS(µ) is indeed sufficient to obtain the Graves and Lai lower bound,
stated below as Theorem 1.8. However for some particular structures (such as linear bandits) considering
only alternatives in BS(µ), that cannot change the marginal distributions of the optimal arms, may be
restrictive, and exploiting Lemma 1.7 might lead to tighter lower bounds.
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Theorem 1.8 (Graves and Lai lower bound). Let A be a uniformly efficient bandit algorithm for the
structure S. Then for every instance µ ∈ S ,

lim inf
T→∞

Rµ(A, T )

log(T )
≥ CS(µ)

where

CS(µ) = inf

⎧⎪⎪
⎨
⎪⎪⎩

∑
a∉a⋆(µ)

(µ⋆ − µa)ca

RRRRRRRRRRRR

∀a∉a⋆(µ), ca≥0,
∀λ∈BS(µ), ∑a∉a⋆(θ) d(µa,λa)ca≥1

⎫⎪⎪
⎬
⎪⎪⎭

(1.4)

= inf

⎧⎪⎪
⎨
⎪⎪⎩

sup
λ∈BS(µ)

∑a∉a⋆(µ)(µ⋆ − µa)xa

∑a∉a⋆(µ) d(µa, λa)xa

RRRRRRRRRRR

xa ≥ 0, ∑
a∉a⋆(µ)

xa = 1

⎫⎪⎪
⎬
⎪⎪⎭

. (1.5)

The form (1.4) for the complexity quantity cS(µ) is the one given by Graves and Lai (1997) while
the form (1.5) is the one presented by Agrawal et al. (1989) originally for ∣S ∣ < ∞. The equivalence
between the two forms will be proved below but we will start by proving Theorem 1.8 for the expression
(1.4). This derivation is presented as a trivial corollary of Lemma 1.7 by Graves and Lai (1997), who do
not provide a proof. However, some care is needed to provide a correct proof of this result, as was noted
by a colleague who reminded me that taking the liminf is not a linear operation. The proof given below
is the outcome of a discussion with Richard Combes, Gilles Stoltz and Claire Vernade.

Proof of Theorem 1.8 We first assume that `(µ) ∶= lim infT→∞Rµ(A, T )/ log(T ) is finite (otherwise
the lower bound is trivial). By definition of the liminf, there exists a sequence (Ti)i∈N such that

lim inf
T→∞

Rµ(A, T )

log(T )
= lim
i→∞

⎡
⎢
⎢
⎢
⎢
⎣

∑
a∉a⋆(µ)

(µ⋆ − µa)
Eµ[Na(Ti)]

log(Ti)

⎤
⎥
⎥
⎥
⎥
⎦

= `(µ).

This convergence implies that for each a ∉ a⋆(µ) the sequence (Eµ[Na(Ti)]/log(Ti)) is bounded.
Therefore there exists a sub-sequence (T ′i )i∈N of (Ti)i∈N and non-negative values ca ∈ R+ such that

∀a ∉ a⋆(µ), lim
i→∞

Eµ[Na(T
′
i )]

log(T ′i )
= ca.

Hence,

lim inf
T→∞

Rµ(A, T )

log(T )
= lim
i→∞

⎡
⎢
⎢
⎢
⎢
⎣

∑
a∉a⋆(µ)

(µ⋆ − µa)
Eµ[Na(T

′
i )]

log(T ′i )

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
a∉a⋆(µ)

(µ⋆ − µa)ca. (1.6)

Now, using Lemma 1.7, we know that for all λ ∈ AltS(µ)

lim inf
T→∞

[
A

∑
a=1

Eµ[Na(T )]

log(T )
d(µa, λa)] ≥ 1 .

In particular, for all λ ∈ BS(µ),

lim inf
i→∞

⎡
⎢
⎢
⎢
⎢
⎣

∑
a∉a⋆(µ)

Eµ[Na(T
′
i )]

log(T ′i )
d(µa, λa)

⎤
⎥
⎥
⎥
⎥
⎦

≥ 1 ,

∑
a∉a⋆(µ)

cad(µa, λa) ≥ 1 .
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Hence the quantities ca in (1.6) satisfy ∀λ ∈ BS(µ),∑a∉a⋆(µ) cad(µa, λa) ≥ 1, which leads to (1.4).
We now establish the equivalence between (1.4) and (1.5), by introducing the two sets of constraints

Cµ =

⎧⎪⎪
⎨
⎪⎪⎩

x ∈ RA ∶ xa ≥ 0, ∑
a∉a⋆(µ)

xa = 1

⎫⎪⎪
⎬
⎪⎪⎭

and Dµ =

⎧⎪⎪
⎨
⎪⎪⎩

c ∈ RA ∶ ca ≥ 0, inf
λ∈BS(µ)

∑
a∉a⋆(µ)

d(µa, λa)ca ≥ 1

⎫⎪⎪
⎬
⎪⎪⎭

.

We first observe that if x ∈ Cµ, any c such that ∀a ∉ a⋆(µ), ca = xa
infλ∈B

S
(µ)∑a∉a⋆(µ)

d(µa,λa)xa belongs to
Dµ, which yields

(1.5) = inf
x∈Cµ

⎛

⎝
∑

a∉a⋆(µ)
(µ⋆ − µa)

xa
infλ∈BS(µ)∑a∉a⋆(µ) d(µa, λa)xa

⎞

⎠
≥ inf
c∈Dµ

⎛

⎝
∑

a∉a⋆(µ)
(µ⋆ − µa)ca

⎞

⎠
= (1.4).

Then, observing that if c ∈ Dµ, any x such that ∀a ∉ a⋆(µ), xa = ca
∑a∉a⋆(µ)

ca
belongs to Cµ yields

(1.4) = inf
c∈Dµ

∑a∉a⋆(µ)(µ⋆ − µa)ca

1
≥ inf
c∈Dµ

∑a∉a⋆(µ)(µ⋆ − µa)ca

infλ∈BS(µ)∑a∉a⋆(µ) d(µa, λa)ca

= inf
c∈Dµ

sup
λ∈BS(µ)

∑a∉a⋆(µ)(µ⋆ − µa)
ca

∑a∉a⋆(µ)
ca

∑a∉a⋆(µ) d(µa, λa)
ca

∑a∉a⋆(µ)
ca

≥ inf
x∈Cµ

sup
λ∈BS(µ)

∑a∉a⋆(µ)(µ⋆ − µa)xa

∑a∉a⋆(µ) d(µa, λa)xa
= (1.5).

◻

Computing the lower bound The quantity CS(µ) may be very hard to compute for general structured
bandits, as it requires to minimize a linear function under an infinite number of linear constraints:

∀λ ∈ BS(µ), ∑
a∉a⋆(µ)

d(µa, λa)ca ≥ 1.

In order to make it a finite number of constraints, one can introduce for each a ∉ a⋆(µ) the closest
alternative in BS(µ) for which a is optimal, defined as

λaS(µ,c) ∈ argmin
λ∈BS(µ)∶ a∈a⋆(λ)

⎡
⎢
⎢
⎢
⎢
⎣

∑
i∉a⋆(µ)

cid(µi, λi)

⎤
⎥
⎥
⎥
⎥
⎦

(1.7)

and rewrite

CS(µ) = inf

⎧⎪⎪
⎨
⎪⎪⎩

∑
a∉a⋆(µ)

(µ⋆ − µa)ca

RRRRRRRRRRRR

∀a∉a⋆(µ) ca ≥ 0,

∀a∉a⋆(µ) ∑i∉a⋆(µ)
d(µi,(λaS(µ,c))i)ci ≥ 1

⎫⎪⎪
⎬
⎪⎪⎭

. (1.8)

This rewriting may look a bit artificial as solving the optimization problem (1.7) and therefore computing
the constraints in (1.8) may be very difficult for some structures.

However, if S is such that λaS(µ,c) is easy to compute and independent of c, the optimization
problem (1.8) becomes a Linear Program for which standard optimization techniques can be used. This
is the case for Lipschitz bandits, for which Magureanu et al. (2014) show that

∀c,∀i, (λaSLipschitz
(µ,c))

i
= max{µi, µ⋆ −L∣xa − xi∣} .

On the contrary, for unimodal bandits, solving (1.7) happens to be harder than computing (1.4) directly
and Combes and Proutière (2014a) exhibit the following closed-form expression:

CSunimodal(µ) = ∑
a∈N (a⋆)

1

d(µa, µ⋆)
.



1.2. STRUCTURED BANDITS 35

This quantity looks like the complexity term in the un-structured case CSclassical(µ) = ∑a≠a⋆
1

d(µa,µ⋆) with
the notable difference that the sum is restricted to arms in the set N (a⋆), defined as the neighboring
arms of a⋆, which involves at most two arms. Hence the minimal regret one can achieve by exploiting
the knowledge of a unimodal structure is much smaller than CSclassical(µ) log(T ) when K > 3.

Through these two examples, we can guess that finding a universal algorithm that can efficiently
compute CS(µ) for any structure S may be too much to ask. However, we note that so far our discus-
sion was only based on the form (1.4) for the complexity term, and the form (1.5) may provide some
insights too. Indeed, this saddle-point formulation allows to interpret CS(µ) as the value of some game
between a player choosing a distribution over sub-optimal arms x, and an adversary selecting a confus-
ing alternative bandit model λ ∈ BS(µ). This interpretation of lower bounds was recently popularized
by Degenne et al. (2019) for pure exploration problems, and will be explained in more details in Chapter
4. For structured bandits, Degenne et al. (2020) then proposed a saddle-point view on a relaxation of the
optimization problem that defines CS(µ), that they also leverage to design algorithms.

Linear bandits We now consider the important example of linear bandits with Gaussian rewards.
Given a set of contexts {x1, . . . , xA} ⊆ Rd, the reward upon choosing arm At is rt = x⊺Atθ + εt where
θ ∈ Rd is an unknown regression parameter and εt ∼ N (0, σ2) is independent noise. A bandit instance
in L ∶= Slinear is necessarily of the form λ = (x⊺aθ

′)Aa=1 for some θ′ in Rd and the KL-divergence between
the distribution of arm a under µ and λ is d(µa, λa) =

(µa−λa)2
2σ2 =

(x⊺a(θ−θ′))2
2σ2 . Lattimore and Szepesvári

(2017) prove a tight lower bound in this particular setting (matched by an algorithm): they show that a
uniformly efficient algorithm satisfies lim infT→∞

Rθ(A,T )
log(T ) ≥ C̃L(µ), where

C̃L(µ) = inf

⎧⎪⎪
⎨
⎪⎪⎩

∑
a∉a⋆(µ)

ca(µ⋆ − µa)

RRRRRRRRRRRR

∀a∈[A], ca ≥ 0,

∀a∉a⋆(µ), ∣∣xa∣∣2
H(c)−1

≤ (µ⋆−µa)
2

2σ2

⎫⎪⎪
⎬
⎪⎪⎭

,

with H(c) = ∑
A
a=1 caxax

⊺
a ∈ Rd×d and ∣∣x∣∣M =

√
x⊺Mx is the Mahalanobis norm associated to a

symmetric and positive definite matrix M .
What is interesting here is that, to the best of my understanding, this (optimal) lower bound is not ob-

tained as a consequence of Theorem 1.8, therefore we may have C̃L(µ) > CL(µ). Indeed, the constraint
∣∣xa∣∣

2
H(c)−1 ≤

(µ⋆−µa)2
2σ2 is obtained by a sophisticated reasoning still based on a change-of-measure

argument but which considers alternative models in AltL(µ) and not only in BL(µ). In the definitions

AltL(µ) = {λ = (x⊺aθ
′
)
A
a=1 ∶ θ

′
∈ Rd,∃a ∉ a⋆(µ) ∶ x⊺aθ

′
> x⊺a⋆(µ)θ

′
}

BL(µ) = {λ = (x⊺aθ
′
)
A
a=1 ∶ θ

′
∈ Rd,∀a ∈ a⋆(µ), x⊺aθ

′
= µa and ∃a ≠ a⋆(µ) ∶ x⊺aθ

′
> x⊺a⋆(µ)θ

′
}

the extra constraint on θ′ (in orange) present in BL(µ) can be very restrictive. It can be checked that the
constraint ∑i∉a⋆(µ) d (µi, (λ

a
S(µ,c))i) ci ≥ 1 that appears in (1.8) and involves a minimization over

BL(µ) is actually not equivalent to the constraint ∣∣xa∣∣2H(c)−1 ≤
(µ⋆−µa)2

2σ2 present in C̃L(µ).

An informal justification for C̃L(µ), made much more rigorous by Lattimore and Szepesvári (2017),
is the following. Letting θ such that µ = (x⊺aθ)

A
a=1 and GT = ∑

A
a=1 Eθ[Na(T )]xax

⊺
a, it follows from

Lemma 1.7 that for every a ∉ a⋆(µ),

inf
{θ′∶x⊺aθ′>x⊺a⋆θ′}

lim inf
T→∞

1
2σ2 ∣∣θ − θ′∣∣2GT

log(T )
≥ 1.

Assuming we are allowed to invert the inf and the lim inf yields

lim inf
T→∞

inf{θ′∶x⊺aθ′>x⊺a⋆θ′}
1

2σ2 ∣∣θ − θ′∣∣2GT
log(T )

≥ 1.
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Now the infimum in θ′ can be computed exactly: the argmin is θ′ = θ+ µ⋆−µa
∣∣xa⋆−xa∣∣2

G
−1
T

G
−1
T (xa−xa⋆), which

does not belong to BL(µ) in general. Computing the value of the minimization problems yields

lim inf
T→∞

(µ⋆ − µa)2

2σ2∣∣xa⋆ − xa∣∣
2

G
−1
T

log(T )
≥ 1.

This inequality is proved rigorously in Theorem 1 of Lattimore and Szepesvári (2017). It is the corner-
stone for the lower bound, as ∣∣xa⋆ − xa∣∣

2

G
−1
T

≃ ∣∣xa∣∣
2

G
−1
T

due to the optimal arm being selected a lot.

Towards universal algorithms for structured bandits The reason why it is so important to be able
to compute the lower bound is that it is possible to build asymptotically optimal algorithm for structured
bandits from an oracle which can return the optimal allocation for any bandit instance µ ∈ S.

Indeed, more than the value CS(µ) itself, the interesting thing to compute is the vector c which
attains the minimum in (1.4), that we denote by cS(µ) and which satisfies

CS(µ) = ∑
a∉a⋆(µ)

(µ⋆ − µa) (cS(µ))a .

From the proof of Theorem 1.8, an algorithm matching the lower bound should explore each sub-optimal
arm a in such a way that Eµ[Na(T )]

log(T ) ≃ (cS(µ))a. This motivates a family of algorithms that enforce this
condition by computing the vector cS(µ̂(t)) for the current empirical estimate of the arm means µ̂(t)
and then forces with some tracking procedure the current amount of exploration Na(t)/ log(t) to be
close to (cS(µ̂(t)))a. Such an idea was first proposed by Magureanu et al. (2014) for Lipschitz bandits,
and later generalized to other structures as the OSSB algorithm which stands for Optimal Sampling for
Structured Bandits (Combes et al., 2017). The optimal algorithm proposed by Lattimore and Szepesvári
(2017) for linear bandits is also of this flavor.

In classical bandits, the kl-UCB algorithm is asymptotically optimal and Cappé et al. (2013) also
provide a nice and explicit finite-time upper bound on its regret. On the contrary, the regret analysis of
the optimal algorithms for structured bandit of the above flavor is very asymptotic in nature. Also, to
ensure that the “plug-in” estimate cS(µ̂(t)) converges to cS(µ), some additional exploration needs to be
added to make sure that µ̂(t) converges to µ. This forced exploration can hurt the practical performance
of the algorithm, and may not be needed for all structures. So the natural question is: could other well
known principles such as optimism in face-of-uncertainty or Thompson Sampling be used to perform the
right amount of exploration in structured bandits?

Upper Confidence Bounds algorithms have indeed been proposed for structured bandits. Lattimore
and Munos (2014) have proposed a first structured UCB algorithm which builds an individual confidence
interval on each arm a, Ia(t) and defines the UCB on each arm a as the maximal value for the mean of
arm a in a bandit model that is compatible with both the structure and the observations:

UCBa(t) = max{λa∣λ ∈ S ∩ I1(t) × ⋅ ⋅ ⋅ × IA(t)} .

Lattimore and Munos (2014) show that the UCB algorithm associated to this index achieves a constant
regret for some S satisfying certain conditions (which are sufficient to prove that indeed CS(µ) = 0 and
constant regret is possible). Magureanu et al. (2014) introduce an alternative structured UCB index for
Lipschitz bandits, in which instead of using individual confidence intervals for each mean, a confidence
set on µ is built by aggregating samples from all arms. This index can be extended to any structure S
and exponential family bandit model as

UCBa(t) = max{λa ∣λ ∈ S,
A

∑
i=1

Ni(t)d (µ̂i(t), λi) ≤ f(t)} ,
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where the threshold function f(t) is chosen such that the set {λ ∶ ∑
A
i=1Ni(t)d (µ̂i(t), λi) ≤ f(t)}

contains the true vector of means µ with probability of order 1 − 1/t 2. For some structures, it may be
shown that using such structured UCB algorithms can be optimal (see the examples in Lattimore and
Munos (2014)) or at least better than a classical UCB for some instances µ (this is essentially what
Magureanu et al. (2014) prove for Lipschitz bandits, but CKL-UCB isn’t proved to be asymptotically
optimal). However, there is no hope for structured UCB to be optimal for any S as Lattimore and
Szepesvári (2017) provide a counter-example in the linear case, thus predicting the “end of optimism”.
On the computational side, note that computing the above UCBa(t) still requires to solve an optimization
problem that may be numerically hard for some structure (such as unimodal bandits).

The same linear bandit instance for which Lattimore and Szepesvári (2017) shows that a Lin-UCB
algorithm cannot be asymptotically optimal is also used to disqualify Thompson Sampling as an asymp-
totically optimal algorithm for any structure S and any instance µ ∈ S . However, there is still hope that
some variants of Thompson Sampling (or UCB), possibly also leveraging some properties of the lower
bound for a given structure S, may be asymptotically optimal. Finding a universal algorithm of this
flavor that is asymptotically optimal for every structure S, and alleviate the computational burden and
bad practical performance of OSSB would be extremely interesting 3.

In the meantime, we study in the next section a variant that is asymptotically optimal for unimodal
bandits: Unimodal Thompson Sampling.

1.3 Thompson Sampling for Rank-One Bandits

The motivation to study Unimodal Thompson Sampling came from an on-going project with Claire
Vernarde and Richard Combes on rank-one bandits. Rank-one bandits are structured bandits motivated
by the low-rank structure of a user-item matrix in recommender systems, and were first studied by
Katariya et al. (2017b,a). For Bernoulli rewards, achieving asymptotic optimality in this model was
left as an open question by Katariya et al. (2017a), that we have been trying to solve with Claire and
Richard. When Richard realized that rank-one bandits were particular instances of graphical unimodal
bandits, we changed our focus to proposing a new analysis for Unimodal Thompson Sampling, that
would give us an asymptotically optimal algorithm for rank-one bandits. I supervised the master thesis
of Cindy Trinh on this topic, which led to the joint publication Trinh et al. (2020).

Rank-one bandits are unimodal In a Bernoulli rank-one bandit model, there are A =K ×L arms and
the vector (or matrix) of means µ ∈ [0,1]K×L belongs to the set

SR1 = {µ = (µk,`)1≤k≤K
1≤`≤L

∣∃u ∈ [0,1]K ,v ∈ [0,1]L ∶ µk,` = ukv`}

For each µ ∈ SR1, this matrix of means can be written of the form µ = uv⊺, and is therefore of rank
one. Each arm (k, `) could for example model the click of a user on an button with shape k and color
`. In this context, the rank-one structure means that the effect of the shape and color on the click are
independent.

We now argue that any rank-one bandit model µ = uv⊺ such that u ≻ 0 or v ≻ 0 belongs to a
family of graphical unimodal bandits. This definition, extracted from Combes and Proutière (2014a),
generalizes the example presented in Section 1.2.

2. Theorem 3.1 in Chapter 3 allows to make this choice.
3. Degenne et al. (2020) proposed very recently the first asymptotically optimal algorithm that doesn’t resort to costly

oracle computations, yet its finite time performance could still be improved.
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Definition 1.9. Given an undirected graph G = (V,E) with no self-edges, a vector µ = (µa)a∈V is
unimodal with respect to G if (i) there exists a unique a⋆ ∈ V such that µa⋆ = maxa µa and (ii) from
any a ≠ a⋆, we can find an increasing path to the optimal arm: ∀a ≠ a⋆, there exists a path p = (a1 =

a, a2, ..., ama = a⋆) of length ma, such that for all i = 1, ...,ma − 1, (ai, ai+1) ∈ E, and µai < µai+1 .
We denote by U(G) the set of vectors µ that are unimodal with respect to G. For µ ∈ U(G), for

all a ∈ V we denote by NG(a) = {b ∈ V ∶ (a, b) ∈ E} the set of neighbors of a and let N +
G(a) ∶=

NG(a)⋃{a} be the extended neighborhood of a.

We define the undirected graphG1 = (V,E1) as the graph with vertices V = {1, . . . ,K}×{1, . . . , L}
and such that ((i, j), (k, `)) ∈ E1 if and only if (i, j) ≠ (k, `) and (i = k or j = `). In words, viewing
the vertices as a K ×L matrix, two distinct entries are neighbors if they belong to the same line or to the
same column. It can be easily shown that rank-one bandit are unimodal with respect to G1.

Proposition 1.10. Let u = (u1, u2, ..uK) and v = (v1, v2, ..vL) be two nonzero vectors such that u ≻ 0
or v ≻ 0. A rank-one bandit instance parameterized by u,v satisfies µ ∈ U(G1).

Note that the graph G1 has diameter two. In particular, one can exhibit increasing paths of length
at most two between any sub-optimal arm (k, `) and the best arm (k⋆, `⋆). An example is provided in
Figure 1.4, in which we also illustrate the neighborhood of an arm.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(u1v1) (u1v2) (((u1v3))) (u1v4)

(u2v1) (u2v2) (((u2v3))) (u2v4)

(((u3v1))) (((u3v2))) (u3v3) (((u3v4)))

(u4v1) (u4v2) (((u4v3))) (u4v4)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(((u1v1))) (u1v2) (((u1v3))) (u1v4)

(u2v1) (u2v2) (u2v3) (u2v4)

(u3v1) (u3v2) (((u3v3))) (u3v4)

(u4v1) (u4v2) (u4v3) (u4v4)
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Figure 1.4 – NG1((3,3)) in bold (left). Increasing path from (3,3) to (k⋆ = 1, `⋆ = 1) (right).

Best achievable regret for Rank-One Bandits Combes and Proutière (2014a) provide the following
closed-form expression of the lower bound of Theorem 1.8 for graphical unimodal bandits, that we state
below for Bernoulli reward with the associated binary relative entropy kl(µ,µ′).

Proposition 1.11. Let G = (V,E) be an undirected graph with no self-edges. Any algorithm A which is
uniformly efficient on U(G) satisfies

∀µ ∈ U(G), lim inf
T→∞

Rµ(A, T )

log(T )
≥ ∑
a∈NG(a⋆)

µ⋆ − µa
kl (µa, µ⋆)

.

Interestingly, for rank-one bandits (that is, for G = G1), this lower bound coincides with the lower
bound independently proved by Katariya et al. (2017a). This lower bound shows that for graphical
unimodal bandits the optimal allocation is supported on the neighborhood of the leader, NG(a⋆). For
rank-one bandits, it means that all arms (k, `) that do not belong to the same row or the same column as
the best arm a⋆ = (k⋆, `⋆) should be selected only a sub-logarithmic number of times.

Any algorithm that is matching the lower bound of Proposition 1.11 is therefore asymptotically
optimal for rank-one bandits when G is particularized to G1. We now present such an algorithm.

Unimodal Thompson Sampling The principle of Unimodal Thompson Sampling (UTS) for graphical
unimodal bandits is very simple: given that an optimal algorithm should only focus on neighbors of
the best arm, UTS performs in every round Thompson Sampling restricted to the neighborhood of the
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empirical best arm. In order for this to work, we should be confident about this “leader” being the true
best arm most of the time. To ensure that, the algorithm performs additional forced exploration of the
leader, governed by the leader exploration parameter γ.

More precisely, after an initialization phase where each entry is pulled once, for each t ≥ A, the
algorithm computes the empirical leader L(t) = argmaxa∈[A]µ̂a(t). If the number of times L(t) has
been the leader is a multiple of γ, UTS selects At+1 = L(t). Otherwise, UTS draws a posterior sample
for every entry in the extended neighborhood of the leader,N +

G(L(t)) = NG(L(t))∪{L(t)} and selects
the arm associated to the largest posterior sample. The pseudo code of UTS is given in Algorithm 3.
In the particular case of rank-one bandits, L(t) is the largest entry in the matrix µ̂(t) ∈ RK×L, and
N +
G1

(L(t)) is the set of entries in the matrix of arms that are in the same row or column than L(t).

Algorithm 3 Unimodal Thompson Sampling UTS(γ)

1: Input: Horizon T , neighborhoods (NG(a))a∈[A], leader exploration parameter γ
2: Initialization: for each a ∈ [A], Na = 0, Sa = 0, La = 0
3: for t = 1 . . . T do
4: Compute the leader At = argmaxa∈[A]Sa/Na

5: Update the leader count LAt ← LAt + 1
6: if LAt /≡ 0[γ] then
7: For each a ∈ N +

G(At) = NG(At)⋃{At}, θa ∼ Beta(Sa + 1,Na − Sa + 1)
8: At ← argmaxa∈N+

G(At)θa
9: end if

10: Select arm At and get reward Rt
11: Update the number of visits and the sum of rewards:
12: NAt ← NAt + 1, SAt ← SAt +Rt
13: end for

The idea of using an optimal bandit algorithm in the neighborhood of the leader was first proposed
by Combes and Proutière (2014a) who build on the kl-UCB algorithm to propose the OSUB algorithm.
OSUB is analyzed for an exploration parameter γ which is equal to the maximal degree of a node in
G (that is γ = K + L − 1 for rank-one bandits). Unimodal Thompson Sampling was first proposed by
Paladino et al. (2017). In their version of the algorithm, the exploration parameter γ can vary in every
round and is equal to the degree of the current leader (for rank-one bandits, one also get γt =K +L− 1).

We now present a new analysis of UTS which shows that if the leader exploration parameter is set
to any integer larger or equal to 2, UTS is asymptotically optimal. The analysis follows the general
decomposition introduced by Paladino et al. (2017) and then adapts some elements from both Agrawal
and Goyal (2013a) and Kaufmann et al. (2012).

Theorem 1.12. Let µ be a unimodal bandit instance with respect to a graph G. For all γ ≥ 2, UTS with
parameter γ satisfies, for every ε > 0,

Rµ(UTS(γ), T ) ≤ (1 + ε) ∑
a∈NG(a⋆)

(µ⋆ − µa)

kl(µa, µ⋆)
log(T ) +C(µ, γ, ε),

where C(µ, γ, ε) is some constant depending on the environment µ, on ε and on γ.

Sketch of proof. To ease notation we write V = {1, . . . ,A}. Recall that L(t) = argmaxa µ̂a(t) is the
leader after t rounds and let `a(t) = ∑ts=1 1 (L(s) = a) be the number of times a was leader in the first t
rounds. Observe that the leader exploration scheme ensures that

∀a ∈ [A],∀t ∈ N∗, Na(t) ≥ ⌊`a(t)/γ⌋. (1.9)
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Just like in the analysis of Combes and Proutière (2014a); Paladino et al. (2017), we first decompose the
regret in two terms, according to whether the current leader is the optimal arm.

Rµ(UTS(γ), T ) = ∑
a≠a⋆

∆aEµ [
T−1

∑
t=0

1(At+1 = a)]

= ∑
a≠a⋆

∆aEµ [
T−1

∑
t=0

1(At+1 = a,L(t) = a⋆)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1(T )

+ ∑
a≠a⋆

∆aEµ [
T−1

∑
t=0

1(At+1 = a,L(t) ≠ a⋆)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2(T )

.

To upper boundR1(T ), it can be noted that when a⋆ is the leader, the selected arm a is necessarily in
the neighborhood of a⋆, hence the sum can be restricted to the neighborhood of a⋆. Therefore, we expect
to upper bound R1(T ) by the same quantity which upper bounds the regret of Thompson Sampling
restricted to N +

G(a⋆). Note that a proper justification does need some care, as between two times the
leader is a⋆, UTS may update the posterior of some arms inN +

G(a⋆) for they belong to the neighborhoods
of other potential leaders. A careful adaptation of the analysis of Agrawal and Goyal (2013a) yields the
following lemma (see Appendix B in Trinh et al. (2020) for a proof).

Lemma 1.13. For all ε > 0 and all T ≥ 1,

R1(T ) ≤ (1 + ε) ∑
a∈NG(a⋆)

∆a

kl(µa, µ⋆)
log(T ) + C̃(µ, ε),

for some quantity C̃(µ, ε) which depends on the means µ and on ε but not on T .

NowR2(T ) can be related to the probability of choosing any given sub-optimal arm a as the leader:

R2(T ) ≤ ∑
b≠a⋆

∑
a≠a⋆

∆aEµ [
T−1

∑
t=0

1(At+1 = a,L(t) = b)]

≤ ∑
b≠a⋆

T−1

∑
t=0

Eµ [1(L(t) = b) ∑
a≠a⋆

1(At+1 = a)] = ∑
a≠a⋆

T−1

∑
t=0

Pµ (L(t) = a) .

For each a ≠ a⋆, we define the set of best neighbors of a, Ba = argmaxb∈NG(a)µb. Due to the unimodal
structure, we know this set is nonempty because there exists at least one arm b ∈ NG(a) such that
µb > µa on the increasing path from a to a⋆. All arms belonging to Ba have same mean, that we denote
by µa2 = maxb∈NG(a) µb. We also introduce B̃ = maxa∈[A]∖{a⋆} ∣Ba∣, the maximal number of best arms
in the neighborhood of all sub-optimal arms, which is bounded by the maximum degree of the graph.
With these notations, for any β ∈ (0,1), one can write

T−1

∑
t=0

Pµ (L(t) = a) =
T−1

∑
t=0

Pµ (L(t) = a,∃a2 ∈ Ba,Na2(t) > (`a(t))
β)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T a1 (T )

+
T−1

∑
t=0

Pµ (L(t) = a,∀a2 ∈ BNG(a),Na2(t) ≤ (`a(t))
β)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T a2 (T )

.

The first term can be easily upper bounded by using the fact that if both arm a and one of its best
neighbors a2 ∈ Ba are selected enough, it is unlikely that µ̂a(t) ≥ µ̂a2(t) (which has to hold if L(t) = a).
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Using the leader exploration (1.9) and introducing δa =
µa2−µa

2 , one can indeed upper bound

T
a

1 (T ) ≤
T−1

∑
t=0

Pµ (L(t) = a, µ̂a(t) > µa + δa,Na(t) ≥ ⌊`a(t)/γ⌋) (1.10)

+
T−1

∑
t=0

Pµ (L(t) = a,∃a2 ∈ Ba, µ̂a2(t) ≤ µa2 − δa,Na2(t) > (`a(t))
β) , (1.11)

Both terms can be upper bounded in the same way, by introducing the sequence of stopping times (τai )i,
where τai is the instant at which arm a is the leader for the i-th time (one can have τka > T or τai = +∞ if
arm a would be the leader less than i time when UTS is run forever). For example

(1.11) ≤ ∑
a2∈Ba

T−1

∑
i=1

T−1

∑
t=0

Eµ[1(L(t) = a, `a(t) = i, µ̂a2(t) ≤ µa2 − δa,Na2(t) > i
β
)]

= B̃
T−1

∑
i=1

Pµ (µ̂a2(τ
a
i ) ≤ µa2 − δa,Na2(τ

a
i ) > i

β, τai ≤ T)

≤ B̃
T−1

∑
i=1

T

∑
u=iβ

Pµ (µ̂a2,u ≤ µa2 − δa,Na2(τ
a
i ) = u)

≤ B̃
∞
∑
i=1

∞
∑
u=iβ

exp(−2δ2
au) ≤ B̃

∞
∑
i=1

exp(−2δ2
ai
β)

1 − exp(−2δ2
a)
.

The notation µ̂a2,u denotes the empirical mean of the first u observations from arm k2, which are i.i.d.
Bernoulli random variables with mean µa2 . Proceeding similarly for (1.10) yields

T
a

1 (T ) ≤
∞
∑
i=1

exp(−2δ2
ai
β)

1 − exp(−2δ2
a)

+
∞
∑
i=1

exp(−2δ2
a⌊i/γ⌋)

1 − exp(−2δ2
a)

<∞.

To conclude the proof, we show that T a2 (T ) is also upper bounded by a constant for some well
chosen value of β ∈ (0,1). This follows from the following adaptation of Proposition 1 in Kaufmann
et al. (2012), which says that for vanilla Thompson Sampling restricted toN +

G(a⋆), the (unique) optimal
arm a2 cannot be drawn too many times. Observe that Lemma 1.14 permits to handle possible multiple
optimal arms, and handles again the extra difficulty that arms inN +

G(a⋆) are not only selected when a is
the leader. Its proof can be found in Appendix C of Trinh et al. (2020).

Lemma 1.14. When γ ≥ 2, there exists β ∈ (0,1) and a constant Da(µ, β, γ) such that

T−1

∑
t=0

Pµ (L(t) = a,∀a2 ∈ Ba,Na2(t) ≤ (`a(t))
b) ≤Da(µ, β, γ).

◻

Solving rank-one bandits, and beyond We illustrate below the practical impact of using Unimodal
Thompson Sampling for solving the rank-one bandit problem. In Figure 1.5, we see that on a large
rank-one instance in which the previous state-of-the art algorithm RANK1ELIMKL (Katariya et al.,
2017a) was shown to outperform kl-UCB, UTS largely outperforms RANK1ELIMKL. Moreover, unlike
RANK1ELIMKL, UTS also outperforms kl-UCB on smaller instances, as illustrated in Figure 1.6.

In the experiments whose results are reported in these figures, UTS was run with the parameter
γ = 2, which appeared to be consistently the best choice among the different values we tried on different
scenarios. We also did some experiments with the tuning γ = +∞, which corresponds to no forced
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Figure 1.5 – Regret as a function of the horizon T for various algorithm on a 128 × 128 instance with
u = v = (0.75,0.25, . . . ,0.25) (average over N = 20 simulations)

Figure 1.6 – Regret as a function of the horizon T (in log scale) for various algorithm on a 8 × 8 (left)
and 16 × 16 (right) instance with u = v = (0.75,0.25, . . . ,0.25) (average over N = 100 simulations)

exploration of the leader. We conjecture that this choice, which is currently not supported by theory,
also leads to asymptotically optimal regret. However, our experiments overall revealed that forcing
the exploration of the leader (which actually introduces more exploitation in the algorithm) is actually
helping in practice.

Finally, we can take a step back and think about the insights provided by this algorithm for the design
of asymptotically optimal algorithms for more general structures. In this particular case, assuming that
the optimal arm a⋆ is known, it is possible to design a variant of Thompson Sampling, namely Thompson
Sampling restricted to NG(a⋆), which achieves the optimal allocation among sub-optimal arms. This
property, combined with the leader exploration scheme described above, easily yields asymptotic opti-
mality. In future work we will investigate a more general combination of Thompson Sampling with some
knowledge of the optimal allocation cS(µ) achieving the optimal allocation. It would also be interest-
ing to find out whether forcing the exploration of the leader remains empirically good for more general
structures.



Chapter 2

Multi-Player Bandits

In the last ten years, researchers working on cognitive radio systems started to investigate the use of
multi-armed bandit tools for adaptive channel selection (Jouini et al., 2009). In particular, in crowded
communication networks several radio devices (agents) may try to communicate in the same set of
channels (arms), which gives rise to an interesting multi-agent bandit problem. This chapter presents
some contributions to the study of this problem. Some of them were obtained in collaboration with
Lilian Besson, my first PhD student, whom I supervised with Christophe Moy (Université de Rennes).

2.1 Several Decentralized Bandit Problems

In a Multi-Player Multi-Armed Bandit model (MP-MAB), there areA arms andM agents, or players,
with M ≤ A. For each player m ∈ [M], each arm a is associated to an i.i.d. reward stream (Xm

a,t)t∈N
with mean µma . In each round t, each player m selects an arm Amt and receives a reward Rmt with is
equal to Xm

Amt ,t
if she is the only one to select arm Amt and to zero reward otherwise 1. Hence

Rmt =Xm
Amt ,t

(1 − 1 (C
m
t )) ,

where Cmt ∶= {∃m′ ≠ m ∶ Amt = Am
′

t } is the event that a collision occurs for player m at time t. The
goal is to find an arm selection strategy for each agent that maximizes the expected total reward of the
system, E [∑

T
t=1∑

M
m=1R

m
t ], without allowing explicit communications between agents.

This model is inspired by what may happen in a cognitive radio system in which M smart radio
devices are allowed to use A distinct frequency bands (channels). The random variable Xm

a,t models the
quality of channel a for device m at time t. For example, Xm

a,t = 1 if the channel is free from other types
of users, Xm

a,t = 0 otherwise. In each round, all devices select a channel for communication. If several
devices try to communicate in the same channel none of their communications is successful, possibly
due to some interference. From this story, one can think of two interesting settings:

● the homogeneous setting in which ∀a ∈ [A], µma = µa, that is the average quality of a channel a
is the same for the M devices. This assumption makes sense for example when Xm

a,t =Xa,t mea-
sures the availability of channel a, and all devices communicate successfully on a free channel.

● the heterogeneous setting in which one may have µma ≠ µm
′

a for some channel a and two devices
m and m′. This assumption makes sense when there are external reasons (such as configuration
or position) that make some channels better for some devices.

1. Alternative models in which the reward is reduced in some other way when a collision occurs can be considered, see
e.g., Liu and Zhao (2010).
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The multi-player MAB was pioneered by Liu and Zhao (2010) and Anandkumar et al. (2010) who
considered the homogeneous setting in which Xm

a,t = Xa,t, and we will first stick to this particular case,
that already captures the interesting trade-off between exploration, exploitation... and collisions. We will
go back to the heterogeneous setting in Section 2.4.

To understand the challenges of learning in a MP-MAB model, we now clarify what information
each agent can use to guide its arm selection strategy.

Several feedback models We consider a decentralized setting in which agentm only observes her own
reward Rmt , and maybe a little bit more. Indeed, for some applications it makes sense that the agent also
observes the sensing information Xm

t ∶= XAmt ,t
and/or the collision information Cmt ∶= 1(Cmt ). With

this notation, one can rewrite
Rmt =Xm

t (1 −Cmt ).

One can consider four different feedback models that we present below and of which we explain the
relevance for cognitive radio systems:

● (I) Learning from rewards only: player m only observes Rmt at the end of round t. In the
context of IoT networks, it is common that after sending a packet to a base station, a radio device
receives an acknowledgment if the communication is successful. The smart device can then
adjust its next channel selection using this reward signal. However when a communication fails,
it is impossible to know whether it is because of the intrinsic bad channel quality at this time
(Xm

t = 0) or because a collision with another smart device occurred (Cmt = 1).

● (II) Learning from sensing and rewards: player m first observes Xm
t , then the reward Rmt .

This is the feedback model originally studied by Anandkumar et al. (2010), as it is relevant to
model Opportunistic Spectrum Access (OSA). In OSA, there are two types of users of radio
resources: primary users who pay to be guaranteed channel access when they want to commu-
nicate, and secondary users (our M players), who can communicate if the channel they select is
free from primary users. When selecting a channel a, a secondary user has to perform sensing to
detect the presence (Xa,t = 0) or absence (Xa,t = 1) of primary users. If the channel is free, the
secondary user can try to communicate, and the communication is successful if and only if no
collision occurs.

● (III) Learning from collisions and rewards: player m first observes Cmt (that is, she always
knows if she was the only one to select a channel), then the reward Rmt . It would correspond to
a system in which a radio device has a way to first detect the presence of the other devices using
the same standard (the M − 1 other players) on the selected channel.

● (IV) Learning with full feedback: player m observes Xm
t and Cmt (and therefore Rmt ).

For some types of distributions for the arms, these four feedback models are actually equivalent. In-
deed, if for each arm a, P(Xa,1 = 0) = 0 (which is the case if νa is a continuous distribution for example),
observing Rmt always permits to reconstruct both Xm

t and Cmt . However, this assumption is not satisfied
for Bernoulli distributions which are often used to model successful or failed communications. Hence, in
the rest of the chapter, we will focus on the MP-MAB model with Bernoulli arms 2. In that case, none of
the four feedback models are equivalent: under (II) one can only reconstruct Cmt when Xm

t = 1 whereas
under (III) one can only reconstruct Xm

t when Cmt = 0.
Given one of these observation models, a multi-player MAB strategy is a tupleAM = (A1, . . . ,AM)

of strategies for each player such that underAm the armAmt chosen by playerm at time t depends on the
observations made by player m up to round t− 1 (and possibly some independent external randomness).

2. All the algorithms that we will propose naturally extend to reward distributions that are bounded in [0,1].
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For example, under the observation model (II), Amt is Fmt−1-measurable where

F
m
t = σ (Um0 ,A

m
1 ,X

m
1 ,R

m
1 , U

m
1 , . . . ,A

m
t ,R

m
t ,X

m
t , U

m
t )

is the σ-algebra generated by the observations up to round t, where Umt ∼ U([0,1]) materializes the
extra randomness possibly used at round t+ 1. Under other observation models, one can similarly define
an appropriate σ-algebra Fmt .

Regret for multi-player bandits In the homogeneous setting, the oracle strategy that maximizes the
total reward is simple: the M players should be assigned to the M arms with largest means. One can
therefore define the regret incurred by algorithm AM in T rounds as the difference between the total
reward of the oracle strategy and that of the algorithm:

Rµ(AM , T ) = T (
M

∑
a=1

µ[a]) −E [
T

∑
t=1

M

∑
m=1

Rmt ] ,

where µ[a] denotes the mean of the arm with a-th largest mean: µ[1] ≥ µ[2] ≥ ⋅ ⋅ ⋅ ≥ µ[A]. We denote by
TopM(µ) the set of M arm with largest mean, {[1], . . . , [M]}.

As in the classical MAB problem, one can express the regret in terms of the number of selections
of each arm, but the rewriting also features the number of collisions that happen on each arm. Letting
Nm
a (t) = ∑ts=1 1 (Ams = a) be the number of selections of arm a by player m in the first t rounds,

Na(t) =
M

∑
m=1

Nm
a (t) and Ca(t) =

t

∑
s=1

M

∑
m=1

Cmt 1 (Ams = a)

respectively denote the total number of selections of arm a and the total number of collisions on arm
a. In the paper Besson and Kaufmann (2018) we propose the following rewriting of the regret, which
generalizes the usual regret decomposition used in the classical MAB.

Lemma 2.1. For every µ such that µ[M] > µ[M+1] it holds that

Rµ(AM , T ) =
A

∑
a=M+1

(µ[M] − µ[a])Eµ[N[a](T )] +
M

∑
a=1

(µ[a] − µ[M]) (T −Eµ[N[a](T )]) +
A

∑
a=1

µaEµ[Ca(T )].

The three terms in this regret decomposition suggest that a good multi-player algorithm AM
Ü selects each sub-optimal arm in {[M + 1], . . . , [A]} very little,
Ü selects each optimal arm, i.e. each arm in TopM(µ), almost in every round,
Ü and experiences few collision on each arm.

For classical bandits (M = 1) the regret decomposition features only the first of these three terms, and
upper bounds on the number of selections of each sub-optimal arm directly yield a regret bound. With
M > 1, the second and third terms are the most difficult to upper bound, as we shall see.

This decomposition of the regret also applies to a “centralized” version of our problem, in which in
each round a central controller selects a subset (A1

t , . . . ,A
M
t ) of M distinct arms with the same goal

to maximize total reward. This so-called multiple-play bandit problem was introduced by Anantharam
et al. (1987). For multiple-play bandits, the third term in Lemma 2.1 disappears as the selected arms are
always distinct, however the second term remains and an asymptotically optimal algorithm in this setting
actually needs to satisfy (T −Eµ[Na(T )]) = o(log(T )) for every arm a in TopM(µ). Proving this is
in general the tricky part of the analysis a multiple-play bandit algorithms.

Algorithms for the multiple-play problem are interesting as they can serve as a “centralized” (ora-
cle) baseline for our decentralized problem. For example, the algorithms that select the arms with M
largest Thompson samples or M largest kl-UCB indices were proved to be asymptotically optimal for
the multiple-play bandit problem (Komiyama et al., 2015; Luedtke et al., 2019). Equipped with these
baselines, we are now ready to investigate the cost of decentralization.



46 CHAPTER 2. MULTI-PLAYER BANDITS

2.2 Algorithms for the Homogeneous Multi-Player MAB

During the PhD of Lilian, we worked together on algorithms for the Bernoulli MP-MAB under the
observation models (I) and (II) that we found the most relevant for applications to communication.

Lilian’s PhD had an emphasis on the design of smart IoT devices (e.g. connected watches, fridges,
sensors...). The most common assumption for IoT communication it that each smart object would be
able to learn how to communicate more efficiently only by receiving an acknowledgment (reward) from
the base station after each successful communication. Hence we first investigated algorithms under
observation model (I), and came across the surprisingly good behavior of a “selfish” learning approach.
However, the theoretical guarantees obtained for this algorithm are a bit disappointing, as we shall see.
We then turned our attention to algorithms that could be used for the Opportunistic Spectrum Access
problem, i.e. under observation model (II). We proposed the MCTopM algorithm, which outperformed
state-of-the-art algorithms both in theory and in practice when the paper Besson and Kaufmann (2018)
was published.

2.2.1 The Selfish and MCTopM algorithms

Selfish learning from rewards only This idea of the Selfish heuristic is the following: each player m
pretends she is alone and uses a classical MAB algorithm in order to select Amt+1 based on the past se-
lected arms Am1 , . . . ,A

m
t and past observed rewards Rm1 , . . . ,R

m
t . Due to the presence of other players,

the distribution of Rmt conditionally to the past observations is not B (µAmt ), hence player m is not in-
teracting with a stochastic bandit model. Thus in principle, only the use of adversarial bandit algorithms
such that EXP3 (Auer et al., 2002b) is legitimate. Quite surprisingly, we found that the performance is
better when each player uses a stochastic MAB algorithm such as kl-UCB or Thompson Sampling.
The pseudo-code for Selfish-kl-UCB is given in Algorithm 4 below.

Algorithm 4 Selfish-kl-UCB for player m under observation model (I)
1: Initialization: for each a ∈ [A], Sa ← 0, Na ← 0,
2: for t = 1 . . . T do
3: if t ∈ [A] then
4: Amt = t
5: else
6: Amt ∈ argmax

a∈[A]
[max{q ∈ [0,1] ∶ Nakl ( SaNa , q) ≤ log(t)}]

7: end if
8: Select arm Amt and observe reward Rmt .
9: SAmt ← SAmt +Rmt , NAmt

← NAmt
+ 1.

10: end for

In Bonnefoi et al. (2017), we present an empirical evaluation the Selfish heuristic in a model which is
a bit more realistic for long-range communications in unlicensed bands which is the dominant approach
for IoT networks (Centenaro et al., 2016): there is a very large number M > A of radio devices, but
in each time step, only a small fraction of the devices needs to communicate. We then investigated the
theoretical properties of Selfish in the simpler MP-MAB and our conclusions are a bit disappointing: we
show that Selfish has actually a small probability to “get stuck” on some MP-MAB instances in which
the players may end up colliding at every round (see Appendix E of Besson and Kaufmann (2018)). The
work of Boursier and Perchet (2019) sheds light on the same phenomenon.

Still, our experiments showed that most of the time, Selfish does perform extremely well empirically,
sometimes even better than algorithms using more feedback (sensing or collisions). Yet, this algorithm
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does not have a logarithmic regret. Since we made this observation, algorithms with logarithmic regret
in the observation model (I) were proposed by Lugosi and Mehrabian (2018) and Boursier and Perchet
(2019). However, the practical performance of these algorithms is not clear, and some of the proposed
algorithms require the knowledge of a lower bound on µ[M] or µ[A]. Therefore, a multi-player algorithm
that learns from rewards only with minimal regret and good finite-time performance is still to be found.

MCTopM for learning based on rewards and sensing Existing algorithms for observation model
(II) such as TDFS (Liu and Zhao, 2010) or RhoRand (Anandkumar et al., 2010) combine a classical
bandit algorithm with an orthogonalization mechanism. We propose a new such combination, called
MCTopM, which builds on kl-UCB and a new orthogonalization mechanism inspired by the Musical
Chair algorithm of Rosenski et al. (2016).

The first ingredient to describe our algorithm (and other related ones) is the set of candidate “Top M”
arms, taken to be the M arms with highest Upper Confidence Bounds for each player m:

M̂m(t) = {[1], . . . , [M], where UCBm
[1](t) ≥ ⋅ ⋅ ⋅ ≥ UCBm

[A](t)} ,

where UCBm
a (t) is the kl-UCB index of arm a for player m:

UCBm
a (t) = max{q ∶ Nm

a (t)kl(µ̂ma (t), q) ≤ log(t) + c log log(t)}, (2.1)

with µ̂ma (t) = 1
Nm
a (t) ∑

t
s=1X

m
s 1(As = a) if Nm

a (t) > 1. Note that as the sensing information Xm
t is

always observed, the UCB of the chosen arm will always be refined, regardless of collisions.
In MCTopM and other algorithms, playerm selects at round t one well-chosen arm in M̂m(t−1). To

choose this arm, the TDFS algorithm of Liu and Zhao (2010) relies on a pre-agreement between players
on the time-steps at which they will target the arm in M̂m(t − 1) with a-th largest UCB, for a ∈ [M].
The RhoRand algorithm of Anandkumar et al. (2010) instead assigns a rank Rmt ∈ [M] to each player
m at each round t so that the selected arm Amt is the arm with Rmt -th largest UCB in M̂m(t − 1). If a
collision is observed after this selection, a new rank Rmt+1 is assigned to player m uniformly at random.

Our algorithm, called MCTopM, doesn’t rely on such a rank but instead tries to enforce a minimal
number of arm switches in the following way. The first time player m is the only one to select some arm
Amt in M̂m(t − 1), she fixes herself on that arm for the next rounds (smt+1 = 1), and keeps selecting it,
regardless of future collisions, until some future time t′ in which this arm is no longer in M̂m(t′ − 1).
When this happens, a new arm is selected uniformly at random among arms with smaller UCB: 3

Amt′ ∼ U (M̂m(t′ − 1)⋂{a ∶ UCBa(t
′
− 2) ≤ UCBAm

t′−1
(t′ − 2)}) , (2.2)

and player m un-fixes herself (smt′ = 0). When an un-fixed player experiences a collision in round t, she
remains un-fixed for next round (smt+1 = 1) and selects a new armAmt+1 ∼ M̂

m(t). This orthogonalization
strategy is inspired by the Musical Chair protocol used in the work of Rosenski et al. (2016): the first time
a player finds an empty chair (i.e. an arm free from other players) she get “seated” on it. In MCTopM,
player remain seated until their arm does not look good anymore.

In Besson and Kaufmann (2018), we present and analyze the MCTopM algorithm under observation
model (IV), which is slightly easier as collision are always observed. The pseudo-code of this version of
the algorithm is given in Algorithm 5. However, it is possible to define MCTopM for observation model
(II), as described in Algorithm 6. When only sensing and rewards are observed, an un-fixed player m
knows that she experienced a collision only when (Xm

t−1 = 1)∩(Rmt−1 = 0), hence the modification in line
6 of the algorithm (highlighted in orange). Similarly, the only way player m can be sure no collisions
occurred before fixing is when observing a reward (Rmt−1 = 1), hence the updated lines 12-15.

3. We know that there exists at least one such arm as Amt′−1 ∈ M̂m
(t′ − 2)/M̂m

(t′ − 1), hence this arm must have been
replaced by one arm that was not in M̂m

(t′ − 2), whose UCB is therefore smaller than that of Amt′−1.
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Algorithm 5 MCTopM for player m under observation model (IV)
1: Initialization: Let Am0 ∼ U({1, . . . ,A}), sm1 = 0
2: for t = 1 . . . T do
3: if Amt−1 ∉ M̂

m(t − 1) then
4: # switch if the previous arm looks bad
5: Amt ∼ U (M̂m(t − 1)⋂{a ∶ UCBa(t − 2) ≤ UCBAmt−1

(t − 2)}) ; smt = 0
6: else if (smt−1 = 0) and (Cmt−1 = 1) then
7: # unfixed player experiencing a collision switches
8: Amt ∼ U(M̂m(t − 1)) ; smt = 0
9: else

10: # play the previous arm
11: Amt = Amt−1 ; smt = 1
12: end if
13: Select arm Amt . Observe Xm

t and Rmt .
14: Compute (UCBm

a (t))Aa=1 and the set M̂m(t).
15: end for

Algorithm 6 MCTopM for player m under observation model (II)
1: Initialization: Let Am0 ∼ U({1, . . . ,A}), sm1 = 0
2: for t = 1 . . . T do
3: if Amt−1 ∉ M̂

m(t − 1) then
4: # switch if the previous arm looks bad
5: Amt ∼ U (M̂m(t − 1)⋂{a ∶ UCBa(t − 2) ≤ UCBAmt−1

(t − 2)}) ; smt = 0
6: else if (smt−1 = 0) and (Xm

t−1 = 1) ∩ (Rmt−1 = 0) then
7: # unfixed player experiencing a collision switches
8: Amt ∼ U(M̂m(t − 1)) ; smt = 0
9: else

10: # play the previous arm
11: Amt = Amt−1

12: if (smt−1 = 1)⋃(Rmt−1 = 1) then
13: # stay fixed or get fixed after a first reward
14: smt = 1
15: end if
16: end if
17: Select arm Amt . Observe Xm

t and Rmt .
18: Compute (UCBm

a (t))Aa=1 and the set M̂m(t).
19: end for

2.2.2 Elements of analysis of MCTopM

To ease the notation, we assume that the arms’ means satisfy µ1 ≥ µ2 ≥ µM > µM+1 ≥ . . . µA.
In this section, we present an upper bound the regret of MCTopM under the extra assumption that all
these means are distinct (which is necessary for the upper bound on the collisions given in Theorem 2.3).
The regret decomposition of Lemma 2.1 features two important quantities: the number of sub-optimal
selections, that is E[Na(T )] for each arm a ∈ {M + 1, . . . ,A}, and the number of collisions that happen
on a given arm a, E[Ca(T )].
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Upper bound on the number of sub-optimal selections The first part of our analysis exploits the
definition of the “Top-M” set M̂m(t) in order to get an upper bound on E[Nm

a (T )] for each player m.
We highlight that this result is not specific to the MCTopM algorithm but applies for any algorithm for
which Am(t) ∈ M̂m(t − 1), such as variants of RhoRand and TDFS based on kl-UCB indices.

Theorem 2.2. For each player m, under any algorithm for which Am(t) ∈ M̂m(t − 1) for all t ≥ 1, it
holds that for all a ∈ {M + 1, . . . ,A},

Eµ[Nm
a (T )] ≤

log(T )

kl(µa, µM)
+Oµ(

√
log(T )) ,

for c in the definition of the kl-UCB indices (2.1) that satisfies c ≥ 3.

Proof. The key observation is that if (Amt = a) for some sub-optimal arm a, as Amt ∈ M̂m(t − 1), there
must exists one arm b ∈ [M] that is not in M̂m(t − 1), and whose UCB is therefore smaller than that of
arm a:

(Amt = a) = (Amt = a,∃b ∈ [M] ∶ UCBm
b (t) < UCBm

a (t)) .

This yields

Eµ[Nm
a (T )] =

T

∑
t=1

Pµ (Amt = a, ∃b ∈ [M] ∶ UCBm
b (t − 1) < UCBm

a (t − 1))

≤
T

∑
t=1

Pµ (Amt = a, ∃b ∈ [M] ∶ UCBm
b (t − 1) ≤ UCBm

a (t − 1),∀b′ ∈ [M] ∶ UCBm
b′ (t − 1) ≥ µb′)

+
T

∑
t=1

Pµ (∃b′ ∈ [M] ∶ UCBm
b′ (t − 1) < µb′)

≤
T

∑
t=1

Pµ (Amt = a, ∃b ∈ [M] ∶ µb ≤ UCBm
a (t − 1)) +

M

∑
b′=1

T

∑
t=1

Pµ (UCBm
b′ (t − 1) < µb)

≤
T

∑
t=1

Pµ (Amt = a, µM ≤ UCBm
a (t − 1)) +

M

∑
b′=1

T

∑
t=1

Pµ (UCBm
b′ (t − 1) < µb) ,

where the last inequality comes from the fact that µM is the smallest of the µb for b ∈ [M]. Now
each term can be upper bounded using standard tools developed by Cappé et al. (2013) for the analysis
of kl-UCB. For c ≥ 3, the second term is in O (log(log(T ))) using the concentration inequality of
Lemma 0.3 stated in the Introduction, while as µa < µM the first term can be upper bounded by

log(T ) + 3 log log(T )

kl(µa, µM)
+Oµ (

√
log(T )) ,

using the same technique as in Appendix A of Cappé et al. (2013).

◻

Upper bound on the number of collisions The most intricate part of our analysis is the control of the
total number of collisions C(T ) = ∑

A
a=1Ca(T ). It is given in the following theorem.

Theorem 2.3. Under observation model (IV), the total number of collisions under MCTopM satisfies,
if all the arm means are distinct,

Eµ[C(T )] ≤ 2M3 ⎛

⎝
∑

a,b∶µa<µb

1

kl(µa, µb)

⎞

⎠
log(T ) + oµ(log(T )) .

Under observation model (II), the upper bound is multiplied by (mink µk)
−1.
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Sketch of proof. Under MCTopM, if all players are fixed (smt = 1), it means that they found a configu-
ration of different arms, therefore no collision can occur. Hence, if a collision occurs, it occurs at least
for one non-fixed player: (Cmt = 1) ⊆ ⋃j∈[M] (C

j
t = 1, sjt = 0). Therefore

Eµ[C(T )] =
M

∑
m=1

T

∑
t=1

Pµ(Cmt = 1)

≤M
M

∑
m=1

T

∑
t=1

Pµ (Cmt = 1, smt = 0)

≤M
M

∑
m=1

T

∑
t=1

Pµ (Amt−1 ∉ M̂
m(t − 1)) +M

M

∑
m=1

Eµ [
T

∑
t=1

1 (Amt−1 ∈ M̂
m(t − 1),Cmt = 1, smt = 0)] .

The first term can be upper bounded using the following lemma, which shows that MCTopM cannot
switch arms too much. The proof of this result, that can be found in Appendix D.2 of Besson and
Kaufmann (2018) crucially exploits the rule (2.2) for selecting a new arm when Amt−1 ∉ M̂

m(t − 1).

Lemma 2.4. For any arm a ∈ [A], MCTopM satisfies, if all the arm means are distinct,

T

∑
t=1

Pµ (Amt = a, a ∉ M̂m(t)) =
⎛

⎝
∑

b∶µb<µa

1

kl(µa, µb)
+ ∑
b∶µb>µa

1

kl(µb, µa)

⎞

⎠
log(T ) + oµ(log(T )) .

To control the second term, we note that as long as Amt−1 ∈ M̂m(t − 1) and the player is not fixed
(smt = 0), arm Amt is chosen at random from a pool of M arms, out of which as least one if free from
other players. The probability to fix in the next round is therefore at least 1

M if collisions are observed and
1
M (mink µk) if collisions are not observed (the sensing also needs to be 1 in that case). Hence, the aver-
age length of a sequence of consecutive time steps t in which (Amt−1 ∈ M̂

m(t − 1),Cmt = 1, smt = 0) holds
is upper bounded byM orM/(mink µk) when collisions are not observed. It remains to control the num-
ber of times in which such a sequence can begin, and to observe that if (Amt−1 ∈ M̂

m(t − 1),Cmt = 1, smt = 0)

holds at time t but not at time t − 1, we must have (Amt−2 ∉ M̂m(t − 2)). Hence, one can again use
Lemma 2.4 to upper bound the expected number of beginnings of such consecutive sequences.

◻

Logarithmic regret Going back the the regret decomposition in Lemma 2.1, it remains to upper bound
the middle term, that quantifies the under-selection of optimal arms. Fortunately, Lemma 7 in Besson
and Kaufmann (2018) gives the following upper bound

M

∑
a=1

(µa − µM)(T −Eµ[Na(T )]) ≤ (µ⋆ − µM) [
A

∑
a=M+1

Eµ[Na(T )] +
M

∑
a=1

Eµ[Ca(T )]]

which implies the following (crude) bound on the regret of any algorithm A:

Rµ (AM , T ) ≤ 2(
A

∑
a=M+1

Eµ[Na(T )] +Eµ[C(T )]) . (2.3)

Hence, it follows from Theorem 2.2 (and a sum over players) and from Theorem 2.3 that the regret of
MCTopM is logarithmic, under observation model (II) and observation model (IV).
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2.2.3 Empirical Evaluation

We report here a subset of the experimental results that can be found in Besson and Kaufmann
(2018) to compare the performance of MCTopM and Selfish-kl-UCB with that of other algorithms. In
Figure 2.1, we display the empirical regret as a function of time for several algorithms with provable
sub-linear regret: RhoRand (Anandkumar et al., 2010) but also MEGA (Avner and Mannor, 2015) and
Musical Chair (Rosenski et al., 2016). Musical Chair requires to specify the length T0 of a uniform
exploration phase in which each player estimates the set of M best arms from the sensing information.
At the end of the exploration phase, players perform a musical chair protocol after which they end up on
M distinct arms (with high probability). (Rosenski et al., 2016) propose a tuning of T0 as a function of
δ (and a lower bound on µM − µM+1) under which, w.p. 1 − δ the regret is in O (log(1/δ)). Selecting
δ = 1/T yields a provable logarithmic expected regret at time T . The three instances in the figure
correspond to δ = 0.1,0.5 and δ = 1/T .

We see that MCTopM and another variant that we propose in Besson and Kaufmann (2018), called
RandTopM largely outperform MEGA and Musical Chair, and are also doing better than RhoRand. In
order to measure the empirical cost of decentralized learning for our algorithms, we display the regret of
a centralized (multiple-play) algorithm based on kl-UCB, which unsurprisingly performs better.

Figure 2.1 – Regret of several algorithms on a MP-MAB with A = 9 arms and M = 6 players estimated
over N = 100 simulations

We then include the Selfish heuristic in our study. First, to measure its robustness we compare its
regret to that of MCTopM, RandTopM and RhoRand averaged over N = 500 random Bernoulli MP-
MAB instances with A = 9 arms and M = 6 players (which produces an estimate of the Bayesian regret,
which is the regret averaged over a prior distribution onµ). The results, which are displayed in Figure 2.2
(left), show that Selfish is on average a bit worse than MCTopM and a bit better than RhoRand. This is
promising as we recall that Selfish can also be used without the observation of the sensing information,
which is crucial for other algorithms. However, we also put forward a drawback of Selfish: on some
instances, it has a small probability to behave very badly. To illustrate this fact, in the right part of
Figure 2.2 we display a histogram of the final regret pseudo-regret RT = T ∑Ma=1 µ[a] −∑

T
t=1∑

M
m=1R

m
t

(such that Rµ(Selfish-kl-UCB, T ) = Eµ[RT ]) for T = 5000 in a Bernoulli MP-MAB with A = 3 arms
and M = 2 players: we see that in 17 out of 1000 simulations, the pseudo-regret of Selfish was of order
7000, whereas the pseudo-regret of other algorithms never exceeded 70.
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Figure 2.2 – Bayesian regret for A = 9,M = 6 estimated over N = 500 simulations (left) and histogram
of RT on a specific instance with A = 3 and M = 2 based on N = 1000 simulations (right)

2.3 Towards Optimal Multi-Player Algorithms

Our emphasis in this document is on optimal algorithms for different types of bandit problems.
Hence, we naturally asked ourselves the question: is MCTopM optimal in some way?

Our final regret bound for MCTopM is actually quite loose, first because of the rough approximation
(2.3) but mostly because of the large constant that multiplies log(T ) in Theorem 2.3. Still, at the time
our paper was published, this upper bound on the total number of collisions was improving upon the one
available for RhoRand. But then Boursier and Perchet (2019) came up with an algorithm suffering from
fewer collisions. Forgetting collisions, we thought for some time that MCTopM could achieve the min-
imal number of sub-optimal selections (the bound in Theorem 2.2 was also the smallest existing bound
available). But this turned out not to be the case, as our claim was based on an erroneous lower bound.
We explain below why one needs to be very careful with the usual change-of-distribution arguments in
the context of a multi-player MAB, and what lower bound can still be derived using them.

Existing lower bounds A first observation is that the regret of a multi-player algorithm AM is always
larger than the regret of a centralized algorithmA′M built fromAM by reassigning players that would ex-
perience a collision underAM to a random subset of the arms that are still available. IfAM is uniformly
efficient (Rµ(AM , T ) = o(Tα) for all µ), so is A′M , hence the lower bound given by Anantharam et al.
(1987) for the centralized multiple-play problem also applies for the MP-MAB.

Proposition 2.5. Any uniformly efficient algorithm for the Bernoulli MP-MAB algorithm (under any of
the observation models (I) - (IV)) satisfies

∀µ, lim inf
T→∞

Rµ(AM , T )

log(T )
≥

A

∑
a=M+1

1

kl(µ[a], µ[M])
.

This lower bound may be too good to be achievable by a MP-MAB algorithm as there may be a cost
for decentralization. At least this was believed until the work of Boursier and Perchet (2019), and was
supported by two (wrong) larger lower bounds given by Liu and Zhao (2010) and by us in Besson and
Kaufmann (2018). As usual, these lower bounds rely on change-of-measure arguments, but there is an
extra difficulty in the multi-player model which makes the both aforementioned lower bounds wrong.
We now explain what type of lower bounds can be obtained for multi-player algorithms when following
our usual methodology.
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Change-of-measure arguments for multi-player bandits We first observe that the regret is always
lower bounded in terms of the number of sub-optimal selections:

Rµ(AM , T ) ≥ ∑
a∈[A]/TopM

(µ[M] − µa)Eµ[Na(T )].

This inequality is actually non-trivial, as one has to show that the sum of the second and third terms in
the regret decomposition of Lemma 2.1 is always non-negative. This is done for example in Lemma 4 of
Besson and Kaufmann (2018). Hence, a uniformly efficient algorithm also satisfies Eµ[Na(T )] = o(Tα)
for all arms a ∉ TopM(µ), and thus Eµ[Nm

a (T )] = o(Tα) for each player m.
Consider a multi-player algorithm AM based on observation model (IV). Using the vocabulary of

the Introduction, the information available to each player m for selecting Amt under AM is Imt−1 where

Imt = (Um0 ,A
m
1 ,X

m
1 ,C

m
1 , U

m
1 . . . ,Amt ,X

m
t ,C

m
t , U

m
t ).

with Umt ∼ U([0,1]) independent from all other variables. Amt is a deterministic function of Imt−1. Using
similar tools as in the proof of Lemma 0.2 in the Introduction, one can prove that, for all alternative
models λ such that TopM(µ) ≠ TopM(λ), for each player m,

lim inf
T→∞

KL (PI
m
T
µ ,PI

m
T

λ )

log(T )
≥ 1.

Now the difficulty comes from the computation of KL (PI
m
T
µ ,PI

m
T

λ ) under the multi-player model in which
the information features both sensing (which is random once the chosen arm is fixed) and collisions
(which depend on other players). Using the chain rule, one can write

KL (PI
m
T
µ ,PI

m
T

λ ) = KL (PI
m
T−1
µ ,PI

m
T−1

λ ) +KL (PX
m
T ,C

m
T ,UT ∣ImT−1

µ ,PX
m
T ,C

m
T ,UT ∣ImT−1

λ ) .

Now given ImT−1, the random variables Xm
t ,C

m
t and Umt are independent and the distribution of Umt is

the same under µ and λ. Hence one can write

KL (PI
m
T
µ ,PI

m
T

λ ) = KL (PI
m
T−1
µ ,PI

m
T−1

λ ) +KL (PX
m
T ∣ImT−1

µ ,PX
m
T ∣ImT−1

λ ) +KL (PC
m
T ∣ImT−1
µ ,PC

m
T ∣ImT−1
λ )

= KL (PI
m
T−1
µ ,PI

m
T−1

λ ) +Eµ [
A

∑
a=1

1(Am(T )=a)kl (µa, λa)] +KL (PC
m
T ∣ImT−1
µ ,PC

m
T ∣ImT−1
λ )

=
A

∑
a=1

E[Nm
a (T )]kl (µa, λa) +

T

∑
t=1

KL (PC
m
T ∣ImT−1
µ ,PC

m
T ∣ImT−1
λ )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=Im
µ,λ

(A,T )

,

where the last line is obtained by induction. Compared to the standard bandit model, note the presence of
an extra term that we denote by Imµ,λ(A, T ). This terms somehow quantifies the “collision information”,
and the lower bound given in Besson and Kaufmann (2018) relied on the wrong claim that Imµ,λ(A, T ) =

0. However, Pµ(Cmt = 1∣Imt−1) does depend on µ, as the probability that one of the (M −1) other players
selects arm Amt depends on their previous observation, which depends on the mean values.

Still, for an algorithm for which the collision information term is small, one can derive the following
lower bound. Theorem 2.6 introduces a class of algorithms C that are doomed to have a regret at least
M times larger than the regret of the best centralized algorithm.
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Theorem 2.6. Let C be the class of algorithms that satisfy Imµ,λ(AM , T ) = o(log(T )) for all player m
and all µ,λ with TopM(µ) ≠ TopM(λ). Any uniformly efficient algorithm AM that belongs to this
class C is such that for any player m and arm a ∈ TopM(µ)

lim inf
T→∞

Eµ[Nm
a (T )]

log(T )
≥

1

kl(µa, µ[M])
,

which yields lim infT→∞
Rµ(AM ,T )

log(T ) ≥M × (∑
A
a=M+1

1
kl(µ

[a],µ[M]
)).

Proof. To fix the ideas, assume that µ is such that µ1 ≥ µ2 ≥ . . . µA. For ε > 0, choosing λ such that

{
λk = µk for all k ≠ a,
λa = µM + ε.

In this alternative model, TopM(λ) = {1, . . . ,M − 1, a} ≠ TopM(λ) and

lim inf
T→∞

Eµ[Nm
a (T )]kl(µa, µM + ε)

log(T )
= lim inf

T→∞

Eµ[Nm
a (T )]kl(µa, µM + ε) + Imµ,λ(A, T )

log(T )

= lim inf
T→∞

KL (PI
m
T
µ ,PI

m
T

λ )

log(T )
≥ 1

Hence, for all ε > 0,

lim inf
T→∞

Eµ[Nm
a (T )]

log(T )
≥

1

kl(µa, µM + ε)

and the conclusion follows by letting ε go to zero.

◻

Closing the gap with algorithms exploiting collisions Under MCTopM, Eµ[Nm
a (T )] attains the

lower bound given in Theorem 2.6, as proved in Theorem 2.2. However, we did not establish that
MCTopM actually belongs to the class C of algorithms to which this lower bound applies, i.e. that
Imµ,λ(MCTopM, T ) = o(log(T )). If it is the case, MCTopM would have the smallest possible number
of sub-optimal selections among algorithms in the class C.

Still, this is only a conjecture, and it actually rather motivates the search for algorithm outside the
class C, for which Theorem 2.6 does not hold and we have a hope to achieve a smaller regret and
possibly match the lower bound of Proposition 2.5. An algorithm close to matching this lower bound
was recently given by Boursier and Perchet (2019). The proposed algorithm, called SIC-MMAB relies
on the interesting idea that the players may use voluntary collisions as a means of implicit communication
(Synchronization Involves Communication). Players can transmit to each other sequences of bits using
sequences of collisions/no collisions during some known time steps, which allows to share observation
and speed up learning. We will explain this nice idea in more detail in the next section, as we build on it
to propose a new algorithm for the heterogeneous MP-MAB problem.

Boursier and Perchet (2019) prove that under observation model (III) or (IV) (i.e. when the collision
information is observed), the regret of SIC-MMAB is of order

(
A

∑
a=M+1

1

kl(µa, µM)
+MA) log(T ) + o(log(T )) .

Hence, it is matching the lower bound of Theorem 2.5 up to an extra MA log(T ). This extra factor was
recently removed by Proutière and Wang (2019), who propose a similar algorithm exploiting collisions
that is asymptotically optimal, under observation models (III)-(IV).
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2.4 An Algorithm Exploiting Collisions for the Heterogeneous Case

The powerful idea of leveraging collisions for implicit communication can also be used for minimiz-
ing regret in the more challenging heterogeneous multi-player model, in which the mean reward of each
arm varies across players. In this section, we present the M-ETC-Elim algorithm for this setting, which
is based on a joint work with Abbas Mehrabian (who visited SequeL in 2018) and Etienne Boursier and
Vianney Perchet who proposed some improvements to our initial algorithm (Boursier et al., 2020).

Regret in a heterogeneous MP-MAB model First, let us recall the heterogeneous version of the multi-
player MAB. A stream of i.i.d. rewards (Xm

a,t)t∈N which comes from some distribution with mean µma is
associated to each arm a and each player m. In each round t, player m selects an arm Amt and observes
a reward

Rmt =Xt
m(1 −Ctm)

with Xt
m = Xm

Am,t the sensing information and Ctm = 1 (∃m′ ≠m ∶ Amt = Am
′

t ) the collision indicator.
The goal is still to maximize the total reward E [∑

T
t=1∑

M
m=1R

m
t ].

If the mean rewards µma were known and a central controller would assign arms to players, an oracle
strategy would boil down to finding a maximum matching between players and arms. A matching is
a one-to-one assignment of players to arms; formally, any one-to-one function π ∶ [M] → [A] is a
matching. The utility (or weight) of a matching π is defined as U(π) ∶ =∑Mm=1 µ

m
π(m). We denote byM

the set of all matchings and let U⋆ ∶ =maxπ∈MU(π) denote the maximum attainable utility. A maximum
matching (or optimal matching) is a matching with utility U⋆. The strategy maximizing the social utility
of the players (i.e. the sum of all their rewards) would be to play according to a maximum matching in
each round. The (expected) regret of an algorithm AM with respect to that oracle is defined as

Rµ(AM , T ) = TU⋆
−E [

T

∑
t=1

M

∑
m=1

Rmt ] .

We are interested in decentralized algorithms AM = (A1, . . . ,AM) that have a small regret. Under a
decentralized algorithm, the arm selection strategy Am for each player m can only leverage the past
observations made by this player.

For observation model (III), in which player m observes first the collision indicator Cmt and then the
reward Rmt , we now propose an algorithm that has (quasi)-logarithmic regret.

The M-ETC-Elim algorithm Our algorithm operates under the extra assumption that rewards are
bounded in [0,1], that is, we assume that Xm

a,t ∈ [0,1] for all a,m, t.
The algorithm relies on three ingredients, that are borrowed from Boursier and Perchet (2019):
● an initialization phase, after which players end up on M different arms, and get assigned M

distinct ranks {1, . . . ,M}. The distinct arms are the default communication arms of the players,
while the rank determine in which order to perform communications.

● exploration phases, that are designed to be collision-free (provided that the initialization phase
is successful), during which players select some arms on which they should gain information

● communication phases, that start simultaneously for all players and have a known pre-determined
length L. In a communication phase, the default behavior of each player m is to pull her commu-
nication arm am during L time steps. It is crucial that the communication arms are all distinct.
One player (say player i) will send another player (say player j) a sequence of bits of length L,
b1, . . . , bL using the following method: the receiving player, j, keeps selecting her communica-
tion arm aj whereas the sending player, i, selects aj if bi = 1 and ai if bi = 0. By observing the
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collisions that occurred on arm aj , player j can reconstruct the sequence of 0’s and 1’s sent by
player i, as no other player can have selected this arm. Figure 2.3 provides an illustration.

Agent 1 Agent 2 Agent 3

t=1
t=2

01101011

10101110

Figure 2.3 – Two successive communication phases of length L = 8 in a MP-MAB model with M = 3
agents and A = 6 arms: one from agent 2 (with communication arm 3) to agent 1 (with communication

arm 1) followed by one from agent 3 (with communication arm 4) to agent 1

While in the original SIC-MMAB algorithm, designed for the homogeneous setting, each player
sends her statistics for each arm to all the other players during each communication phase, we propose in
M-ETC-Elim a leader/follower architecture in which the role of the players is asymmetric. The leader,
i.e. the player that has rank 1 after the initialization phase, is responsible for aggregating all the estimates
of the means (µma ) and telling to the followers which arm to explore. These instructions are based on an
efficient matching elimination procedure that we describe below.

Under M-ETC-Elim each player executes the algorithm described in Algorithm 7, which requires
as input the number of arms A and the time horizon T .

Algorithm 7 M-ETC-Elim with parameter c
1: Input:Time horizon T , number of arms A
2: R,M← INIT(A,1/AT )

3: if R = 1 then
4: LEADERALGORITHM(M,A,c)
5: else
6: FOLLOWERALGORITHM(R,M,A,c)
7: end if

As an initialization procedure we use the one proposed by Boursier and Perchet (2019) which relies
on a “musical chairs” phase after which the players end up on distinct arms, followed by a “sequential
hopping” protocol that permits to know their ordering. Formally INIT(A, δ0) outputs for each player a
rank R ∈ [M] as well as the value of M , which is initially unknown to the players, with a probability of
accuracy of that is at least 1 − δ0.

Lemma 2.7. With probability at least 1 − δ0, if the M players run the INIT(A, δ0) procedure, which
takes less than A log(A/δ0) + 2A − 2 time steps, all players obtain a distinct ranking from 1 to M .
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The leader and follower algorithms, described below, rely on several communication phases as de-
scribed above. To minimize regret, each player uses as a communication arm her arm in the best matching
found so far. In the first communication phase, such an assignment is unknown and players simply use
their ranking as communication arm. The rankings are also useful to know in which order communica-
tions are performed, as the leader successively communicates messages to the M −1 followers, and then
the M − 1 followers successively communicate messages to the leader.

Leader and Follower Algorithms Consider a bipartite graph with parts of size M and A, where the
edge (m,a) has weight µma and associates player m to arm k. The weights µma are unknown to the
players, but the leader maintains a set of estimated weights that are sent to her by the followers, and
approximate the real weights. The goal of these algorithms is for the players to jointly explore the
matchings in this graph, while gradually focusing on better and better matchings. For this purpose, the
leader maintains a set of candidate edges E , which is initially [M]×[A], that can be seen as edges that
are potentially contained in optimal matchings, and gradually refines this set by performing eliminations,
based on the information obtained from the exploration phases and shared during communication phases.

M-ETC-Elim proceeds in epochs whose length is parameterized by an integer c ≥ 1. In epoch
p = 1,2, . . . , the leader weights the edges using the estimated weights. Then for every edge (m,a) ∈ E ,
the leader computes an associated matching π̃m,ap defined as the estimated maximum matching containing
the edge (m,a). This computation can be done in polynomial time using, e.g., the Hungarian algorithm
(Munkres, 1957). The leader then computes the utility of the maximum matching and eliminates from E
any edge for which the weight of its associated matching is smaller by at least 4Mεp, where

εp ∶ =

√
log(2/δ)

21+pc
, with δ ∶ =

1

M2AT 2
. (2.4)

The leader then forms the set of associated candidate matchings C ∶ ={π̃m,ap , (m,a) ∈ E} and com-
municates to each follower the list of arms to explore in these matchings. Then exploration begins, in
which for each candidate matching every player pulls its assigned arm 2p

c
times and records the received

reward. Then another communication phase begins, during which each follower sends her observed esti-
mated mean for the arms to the leader. More precisely, for each explored arm, the follower truncates the
estimated mean (a number in [0,1]) and sends only the pc+1

2 most significant bits of this number to the
leader. The leader updates the estimated weights and everyone proceeds to the next epoch.

If at some point the list of candidate matchings C becomes a singleton, it means that (with high
probability) the actual maximum matching is unique and has been found; so all players jointly pull that
matching for the rest of the game, that is, the players enter an exploitation phase. Note that in the
presence of several optimal matchings, the players will not enter the exploitation phase but will keep
exploring several optimal matchings, which still ensures small regret. On the contrary, in the presence
of a unique optimal matching, they are guaranteed to eventually enter the exploitation phase. Also,
observe that the set C of candidate optimal matchings does not necessarily contain all potentially optimal
matchings, but all the edges in those matchings remain in E and are guaranteed to be explored.

The pseudo-code of the Leader and Follower algorithms are given in Algorithm 8 and 9 respectively.
In these pseudo-code, comm refers to a call to the communication protocol. In Algorithm 8, we specify
for each call to the communication protocol the identity of the communicating players, as well as the
length L of the message. In Algorithm 9, we omit to mention that each corresponding call to comm
lasts (M − 1) × L time steps, divided in (M − 1) communication slots, and the player with rank R is a
communicating player in the (R − 1)-th slot.
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Algorithm 8 LEADERALGORITHM(M,A,c)
1: Input: Number of players M , number of arms A, parameter c
2: E ← [M] × [A] # list of candidate edges
3: µ̃ma ← 0 for all (m,a) ∈ [M] × [A] # empirical estimates for utilities
4: for p = 1,2, . . . do
5: C ← ∅ # list of associated matchings
6: π1 ← argmax{∑

M
n=1 µ̃

n
π(n) ∶ π ∈M} (Hungarian algorithm)

7: for (m,a) ∈ E do
8: π ← argmax{∑

M
n=1 µ̃

n
π(n) ∶ π(m) = a} (Hungarian algorithm)

9: if ∑Mn=1{µ̃
n
π1(n) − µ̃

n
π(n)}≤4Mεp then

10: add π to C
11: else
12: remove (m,a) from E
13: end if
14: end for
15: for m = 2, . . . ,M do
16: Send to player m the value of size(C) (comm) 1→m,L = ⌈log2(MA)⌉

17: for i = 1,2, . . . , size(C) do
18: Send to player m the arm associated to player m in C[i] (comm) 1→m,L = ⌈log2(A)⌉

19: end for
20: Send to player m her communication arm π1(m) (comm) 1→m,L = ⌈log2(A)⌉

21: Send to player m the communication arm of the leader π1(1) (comm) 1→m,L = ⌈log2(A)⌉

22: end for
23: if size(C) = 1 then
24: # enter the exploitation phase
25: pull for the rest of the game the arm assigned to player 1 in the unique matching in C
26: end if
27: for i = 1,2, . . . , size(C) do
28: # exploration
29: pull 2p

c
times the arm assigned to player 1 in the matching C[i]

30: end for
31: for a = 1,2, . . . ,A do
32: µ̃1

a ← empirically estimated utility of arm a if it was pulled in this epoch, 0 otherwise
33: end for
34: for m = 1,2, . . . ,M do
35: for a = 1,2, . . . ,A do
36: Receive from player m the value µ̃ma (comm)m→ 1, L =

pc+1
2

37: end for
38: end for
39: end for
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Algorithm 9 FOLLOWERALGORITHM(R,M,A,c)
1: Input: Ranking R, number of players M , parameter c
2: for p = 1,2, . . . do
3: Receive the value of size(C) (comm)
4: for i = 1,2, . . . , size(C) do
5: Receive the arm assigned to this player in C[i] (comm)
6: end for
7: Receive the new communication arm (comm)
8: Receive the communication arm of the leader (comm)
9: if size(C) = 1 then

10: # enter exploitation phase
11: Pull for the rest of the game the arm assigned to this player in the unique matching in C
12: end if
13: for i = 1,2, . . . , size(C) do
14: # exploration
15: Pull 2p

c
times the arm assigned to this player in the matching C[i]

16: end for
17: for a = 1,2, . . . ,A do
18: µ̂Ra ←Ð empirically estimated utility of arm a if arm a has been pulled in this epoch, 0 otherwise
19: Truncate µ̂Ra to µ̃Ra using the pc+1

2 most significant bits
20: end for
21: Send the values µ̃R1 , µ̃

R
2 , . . . , µ̃

R
A to the leader A× (comm)

22: end for

Regret analysis of M-ETC-Elim We now present a regret analysis of M-ETC-Elim which permits
to derive problem-dependent regret bounds that feature the gap of each matching π, defined as ∆(π) ∶
=U⋆ − U(π). In Theorem 2.8, we present the scaling of these problem-dependent bounds in terms of
the smallest gap defined as ∆ ∶ = infπ∶∆(π)>0 ∆(π). Observe that ∆ > 0 even in the presence of several
optimal matchings.

Theorem 2.8. Assume that ∆ <∞ 4. For every integer parameter c ∈ {1,2, . . .}, M-ETC-Elim satisfies

Rµ(M-ETC-Elim, T ) = O
⎛
⎜
⎝
MA(

M2 log(T )

∆
)

1+1
c ⎞
⎟
⎠
.

Furthermore, if the optimal matching is unique, M-ETC-Elim with parameter c = 1 satisfies

Rµ(M-ETC-Elim, T ) = O (
M3A log(T )

∆
) .

The heterogeneous multi-player multi-armed bandit was first studied by Bistritz and Leshem (2018),
who proposed the Game-Of-Thrones (GOT) algorithm and proved aO(log2(T )) regret upper bound for
it, leaving as an open question as to whether one can get closer to the Ω(log(T )) lower bound. The
motivation of our work was to try to answer this question, and the second statement in Theorem 2.8 does
answer it positively in the presence of a unique optimal matching. For multiple optimal matchings, we

4. This excludes the degenerate case in which all matchings have the same utility, for which we still propose bounds in
Boursier et al. (2020).
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prove that there exists an algorithm with a nearly-logarithmic regret: for every κ > 0, M-ETC-Elim run
with parameter c = ⌊1/κ⌋ has a O(log1+κ(T )) regret.

As can be seen in the proof sketch given below, the result for multiple optimal matchings is quite
asymptotic in nature (it holds for T larger than some constant T0(c) which can be very large) and is
therefore mostly of theoretical interest. However, the improved result obtained for a unique optimal
matching (which comes from the fact that the players are guaranteed to enter an exploitation phase after
a controlled number of epochs in that case) doesn’t suffer from this drawback. For M-ETC-Elim with
c = 1 we further provide in Boursier et al. (2020) a problem-independent O(M3

√
AT log(T )) regret

bound that holds whether or not the optimal matching is unique, and recommend the use of this parameter
tuning in practice, which outperforms GOT in our experiments.

In parallel to our work, several authors also improved the log2(T ) upper bound of Bistritz and
Leshem (2018). First, in an updated preprint, Bistritz and Leshem (2019) propose a new analysis of
GOT (with slightly modified phase lengths) which also achieves O(log1+κ(T )) for every κ > 0 (with a
worse, less explicit scaling in ∆). Then, Tibrewal et al. (2019) independently studied a slightly different
model in which each player in each round has the option of “observing whether a given arm has been
pulled by someone,” without actually pulling that arm (thus avoiding collision due to this “observation”).
Due to the stronger feedback, communications do not need to be implicitly done through collisions and
bits can be broadcast to other players via this operation. Still, algorithms for this alternative feedback
model can be modified to obtain algorithms for the MP-MAB. The two algorithms proposed by Tibrewal
et al. (2019) share similarities with M-ETC-Elim: they also have exploration, communication and ex-
ploitation phases, but they do not use eliminations. Tibrewal et al. (2019) also obtain logarithmic regret
in the presence of a unique optimal matching (with a slightly worse dependency in 1/∆). Moreover, we
note that the idea of “implicit communication” is also present in this work, that was done independently
from Boursier and Perchet (2019).

We conclude this discussion with a few words about optimality for the heterogeneous multi-player
MAB. The Ω(log(T )) lower bound proven by Bistritz and Leshem (2018) hides the dependency in the
problem parameter, hence it is hard to know whether the bounds in Theorem 2.8 have a good scaling in
A,M and ∆. However, just like in the homogeneous case, these bounds can be compared to the existing
bounds for an easier centralized version of the problem, in which a central controller would choose one
matching from players to arms in every round. This setting is a particular instance of a combinatorial
semi-bandit problem (Gai et al., 2012). Audibert et al. (2014) provide a minimax Ω(

√
MAT ) lower

bound for combinatorial bandits, while Combes et al. (2015) give a problem dependent lower bound of
the form c(µ,M) log(T ) and show that c(µ,M) = Θ (A/∆) for many common combinatorial struc-
tures, including matchings. This tells us that the dependency in M in our bounds may not be optimal.
However, we note that the popular CUCB algorithm for combinatorial bandits (Chen et al., 2013) has a
regret upper bound that scales in O ((M2A/∆) log(T )) (Kveton et al., 2015), which is only a factor M
smaller the the bound obtained in Theorem 2.8 for a unique optimal matching.

Sketch of proof of Theorem 2.8. We let lg(T ) = log2(T ) to ease the notation.
Let Cp and Ep denote the set of candidate matchings and candidate edges used in epoch p, and for

each matching π let Ũp(π) be the utility of π that the leader can estimate based on the information
received by the end of epoch p. Let p̂T be the total number of epochs before the (possible) start of the
exploitation phase. As 2p̂

c
T ≤ T , we have p̂T ≤ lg(T ). Recall that a successful initialization means all

players identify M and their ranks are distinct. Define the good event

GT ∶ ={INIT(A,1/AT ) is successful and ∀p ≤ p̂T ,∀π ∈ Cp+1, ∣Ũp(π) −U(π)∣ ≤ 2Mεp}.

During epoch p, for each candidate edge (m,a), player m has pulled arm a at least 2p
c

times and the
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quantization error is smaller than εp. Hoeffding’s inequality and a union bound over at most lg(T )

epochs yield that GT holds with large probability.

Lemma 2.9. P (GT ) ≥ 1 − 2
MT .

We now upper bound the pseudo-regret RT = ∑
T
t=1 (U

⋆ −∑Mm=1 µ
m
Amt

(1 −Cmt )) when the event GT
holds, by separately upper bounding the contributions from the different phases of the algorithm. We
also use sometimes that the pseudo-regret incurred in each time step t is (crudely) upper bounded by M .

● initialization phase: from Lemma 2.7, the initialization lasts A log(A2T ) + 2A − 2 times steps,
which contributes RINIT = O(MA log(A2T )) to the pseudo-regret.

● communication phases: in each epoch p, the leader first communicate to the M − 1 other
players 1. one message of length lg(MA) (the size of Cp) 2. at most MA messages of length
lg(A) (the list of arms to explore) and 3. two messages of length lg(A) (the communicat-
ing arms). This takes a total of (M − 1) [(MA + 2) lg(A) + lg(MA)] time steps. Then each
follower communicates to the leader A messages of length (1 + pc)/2, which uses a total of
(M −1)A(1+pc)/2 times steps. Summing over epochs yields a total contribution to the pseudo-
regret of RCOMM = O(M3A lg(A)p̂T +M

2A(p̂T )
c+1).

● exploitation phase: on the event GT , Cp always contains an optimal matching, hence if the
players enter an exploitation phase, they suffer zero regret in it: REXPLOIT = 0.

During exploration phases, the players always play arms in a matching, hence no collision occurs.
The contribution to the pseudo regret of the exploration phase in epoch p is

∑
π∈Cp

∆(π)2p
c

= ∑
(m,a)∈Ep

∆̃m,a
p 2p

c

,

where ∆̃m,a
p = U⋆ −U(π̃m,ap ) is the gap of the matching associated to the edge (m,a) in epoch p. Now

for each edge (m,a), we let πm,a be the best sub-optimal matching containing that edge:

πm,a ∶ =argmax{U(π) ∶ π(m) = a,U(π) < U⋆
} .

We further introduce, for any matching π, the quantity

P (π) ∶ = inf{p ∈ N∗
∶ 8Mεp < ∆(π)}

On GT , if p > P (πm,a) either (m,a) does not belong to Ep or its associated matching π̃m,ap is an
optimal matching, i.e. ∆̃m,a

p = 0. Moreover, if (m,a) ∈ Ep for p ≤ P (πm,a), it holds that ∆̃m,a
m ≤

εp−1
εP (πm,a)

∆(πm,a) (which follows by combining the fact that ∆̃m,a
m ≤ 8Mεp−1, otherwise (m,a) ∉ Ep and

∆(πm,a) > 8MεP (πm,a)). Finally, the total pseudo-regret due to exploration phases is upper bounded by

REXPLORE = ∑
(m,a)∈[M]×[A]

P (πm,a)
∑
p=1

εp−1

εP (πm,a)
∆ (πm,a)2p

c

.

The regret of M-ETC-Elim is upper bounded as

Rµ(M-ETC-Elim, T ) ≤ E [RT1(GT )] +MTP (GT )

≤ RINIT +REXPLORE +RCOMM +REXPLOIT + 2

From there, the conclusion is mostly technical and follows from upper bounds on RCOMM and REXPLORE,
which respectively require to upper bound p̂T and the sum of ∆ (πm,a)2p

c
. An instrumental result for

this purpose is Lemma 6 from Boursier et al. (2020), that we re-state below.
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Lemma 2.10. If T is larger than T0(c) ∶= exp(2
cc

logc(1+ 1
2c )), for any matching π,

∆(π)2P (π)c
≤ (32M2 log(2M2AT 2

)/∆(π))
1+ 1

c if c > 1,

∆(π)2P (π)
≤ 64M2 log(2M2AT 2

)/∆(π) if c = 1.

Moreover, 2c ≤ 2 lg(log(T )), p̂T ≤ 2(lgT )1/c and (p̂T )
c ≤ e lgT .

The improved result for c = 1 in the presence of a unique optimal matching follows the improved
bound in Lemma 2.10 for c = 1 but also from a tighter bound on p̂T . Indeed, when the optimal matching
is unique, on GT one is guaranteed to enter an exploration phase when the second best matching π2

satisfies ∆(π2) > 8Mεp, which leads to

p̂T ≤ lg(
64M2 log(2M2AT 2)

∆2
) .

◻

To summarize, we presented an analysis of two different algorithms, MCTopM and M-ETC-Elim
for the homogeneous and heterogeneous multi-player multi-armed bandit, respectively. The two algo-
rithms also rely on different observation models: MCTopM requires the observation of the sensing in-
formation followed by the reward (observation model (II)) while M-ETC-Elim requires the observation
of the collision information followed by the reward (observation model (III)). While the two algorithms
achieve (nearly) logarithmic regret, they have not been proved to be optimal, that is, they do not exactly
match existing lower bounds.

In the homogeneous setting, we explained that when the collisions are observed (under models
(III)-(IV)) an asymptotically optimal algorithm has been found (Proutière and Wang, 2019), whose
regret is similar to that of the best centralized algorithm. However, to the best of my knowledge,
there is no algorithm matching the lower bound of Proposition 2.5 under observation models (I)-(II),
despite the fact that they are particularly relevant for applications to IoT communications or Oppor-
tunistic Spectrum Access. For learning based on rewards only (i.e., under model (I)), the best known
logarithmic regret bounds scale in (MA) log(T )/(µ[M] − µ[M+1])

2 (Lugosi and Mehrabian, 2018)
and (M ∑a>M(µ[M] − µ[a])

−1 +MA2/µ[A]) log(T ) (Boursier and Perchet, 2019). Under observation
model (II), to the best of my knowledge MCTopM enjoys the smallest regret bound among algorithms
analyzed in this setting, but is probably far from optimal. Hence, investigating the minimal regret under
observation (I)-(II) remains a crucial open question.

As for the heterogeneous setting, it seems algorithms have only been proposed under the assumption
that collisions can be observed, and it would be interesting to study the heterogeneous MP-MAB model
under more challenging observation models.
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Active Identification Problems





Chapter 3

A Universal Stopping Rule for Active
Identification

Over the past years, I have worked on different examples of pure exploration problems, in which the
samples collected by the agent in a bandit model are no longer perceived as rewards, but instead some
decision has to be made as quickly as possible.

In this chapter, I introduce a general framework called Active Identification that encompasses these
different problems, and present a single stopping rule, which leads to correct decision with high proba-
bility, whatever the sampling rule. This stopping rule was introduced under different names in different
papers, but in this document I settle for the Parallel GLRT test. After presenting this stopping rule, I also
highlight the technical tools needed to prove its correctness, namely time-uniform deviation inequalities.

3.1 Active Identification in a Bandit Model

As in the rest of this document, we consider a bandit model with A arms, parameterized by its vector
of means µ = (µ1, µ2, . . . , µA), typically an exponential family bandit model. The set of possible means
µ belongs to some known region R ⊆ IA, a learner seeks to discover something about the unknown
vector µ, as quickly and accurately as possible.

More precisely, given I regions R1, . . . ,RI that form a covering of the region R, i.e., such that
R ⊆ ⋃

I
k=1Ri, an agent wants to identify a region that contains µ. In order to gain information to identify

such a region, she interacts with the bandit model as usual, by selecting an armAt at time t and observing
an independent sample Xt from the distribution with mean µAt . Note that this sample is no longer called
a reward. After enough observations, the agent can make a confident recommendation of a region.

A strategy for active identification in a bandit model consists of three components. Letting (Ft)t∈N∗
be the filtration generated by the observations collected by the agent up to time t (and some possible
exogenous randomness), a strategy is composed of

● a sampling rule At which is Ft−1 measurable,
● a stopping rule τ which is a stopping time with respect to Ft that indicates when the agent stops

collecting observations
● a recommendation rule ı̂τ which outputs a guess for a region to which µ belongs

In words, the objective of the agent is to make a confident recommendation (i.e. that is correct with high
probability) after seeing as few samples as possible.

After presenting a few motivating examples, we will introduce several mathematical formalizations
of this objective that have been studied, notably the fixed-confidence setting that will be our focus.



66 CHAPTER 3. A UNIVERSAL STOPPING RULE FOR ACTIVE IDENTIFICATION

3.1.1 Examples

In the bandit literature, the first and most studied active identification problem is (ε)-Best Arm Iden-
tification (BAI), in which the goal is to identify the arm with largest mean.

(Exact) Best Arm Identification In this context, the region R is either the set of all possible mean
vectorsR = IA or may be restricted to the set of vectors that have a unique optimal arm

R = {µ ∈ I
A
∶ ∃a ∈ [A] ∶ µa > max

b≠a
µb} .

There are I = A regions withRi being the set of models in which arm i is optimal:

Ri = {µ ∈R ∶ µi > max
a≠i

µa} .

IfR is the set of vectors with a unique optimal arm, note thatR1, . . . ,RA form a partition ofR and one
seeks to identify to which fold of this partition the true vector of means µ belongs.

ε - Best Arm Identification The following relaxation of the BAI problem, that depends on a parameter
ε ∈ (0,1) has also been studied a lot: we setR = IA and for all i ∈ [A],

Ri = {µ ∈R ∶ µi ≥ max
a≠i

µa − ε} .

In this setting, the goal is to identify one arm whose mean is at most ε away from that of the optimal
arm. In that case, note that theRi no longer form a partition ofR.

Why BAI? The question of finding the distribution with largest mean among a pool of distributions
(possibly with some kind of adaptive sampling) is an old question in statistics, studied since the 1950s
under the name ranking and selection (Bechhofer, 1954; Bechhofer et al., 1968). It was revisited in the
bandit literature since the works of Even-Dar et al. (2006); Audibert et al. (2010); Bubeck et al. (2011).

A typical application of Best Arm Identification problems is A/B(/C) testing, which is a process often
used in e-commerce in which the goal is to assess the impact that different versions of the same webpage
have (e.g. different layout as in the naive example of Figure 3.1) on the conversion probability. A
conversion is some target event the company wants to enforce such as visitors buying products, spending
time on the website, creating an account, subscribing to a mailing list, etc.

. . .

µ1 µ2 . . . µA

Figure 3.1 – Conversion probabilities for different versions of a website

In order to identify which version of its webpage has the largest conversion probability, the company
implements a testing phase in which the different versions are shown to visitors and the conversion
indicators are observed. This testing phase is called A/B Testing when two versions are compared, and
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A/B/C Testing when the test includes 3 versions or more. A default strategy for the testing phase is to
allocate each version to n users, when n is chosen in advance as a function of the minimum improvement
we want with respect to a known baseline. Instead, viewing A/B testing as a best arm identification
problem allows for fully-sequential A/B testing: for each visitor t, the company may look at the past data
to decide which version At should be displayed, observe a possible conversion Xt and may also decide
if the test should be stopped, without specifying a sample size or a fraction of allocation in advance. As
the conversion probabilities are typically small and may be quite close to each other, it may be relevant
to consider the ε-relaxation of the BAI problem to speed-up the test.

If the objective of a company can be phrased as maximizing its total number of conversions (e.g.
when the conversions correspond to sales), one can also discuss the relevance of such a testing phase, in
which rewards (conversions) are ignored. Indeed, regret minimization algorithms are tailored to maxi-
mize the total number of conversions, and could be more suitable in this setting. So why not using them?
A possible answer could be practical: using (e.g.) a UCB algorithm would require the company to keep
alternating between a pool of versions of its website, which can be costly (a computation needs to be
performed for each visitor to decide which version should be displayed). Performing a short exploration
(testing) phase followed by an exploitation phase in which the best version is displayed for a long time
is more convenient. In the paper Garivier et al. (2016b), we investigate how sub-optimal this approach
that decouples exploration and exploitation can be, if the overall goal is to maximize rewards.

Beyond Best Arm Identification In the past few years, there has been some interest in more complex
pure-exploration problems that share with the best arm identification problem the absence of an incentive
to maximize rewards, but in which one should answer a more complex question about the means µ than
“what is the largest component in µ?”.

The general framework presented in this document is close to the adaptive sequential testing frame-
work that we introduced in Kaufmann and Koolen (2018), which is similar to the General-Samp problem
of Chen et al. (2017) and to the best partition identification problem of Juneja and Krishnasamy (2019).
In these three works, the regionsRi are supposed to form a partition ofR, whereas Degenne and Koolen
(2019) consider possible overlapping regions. Finally, the structured best arm identification framework
of Huang et al. (2017) is a special case of this framework.

To mention a few concrete examples one can first go back to the dose finding problem discussed
in Chapter 1, in which each arm a models the toxicity of a dose a, and the goal is to find the dose
whose toxicity is the closest to some threshold θ (the Maximum Tolerated Dose). Assuming increasing
toxicities leads us to define

R = {µ ∈ [0,1]A ∶ ∀a ∈ [A − 1], µa ≤ µa+1}

and the set of means for which a particular dose i is the MTD is given by

Ri = {µ ∈R ∶ ∣µi − θ∣ = min
a

∣µa − θ∣} .

This particular active identification problem was studied by Garivier et al. (2019a).
As another example we can mention anomaly detection: assume that we are monitoring A different

processes each having a probability µa to have a regular behavior. On may decide to trigger an inter-
vention if one is convinced that there exists a process with mean µa that is smaller than some (small)
threshold γ. The corresponding active identification problem setsR = [0,1]A and

R1 = {µ ∈R ∶ min
a
µa < γ} and R2 = {µ ∈R ∶ min

a
µa ≥ γ} .

We will discuss this example in Chapter 5, in which it is motivated by a different story, related to the
design of Monte-Carlo Tree Search algorithms.
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3.1.2 Several mathematical frameworks

Several performance measures have been introduced in the bandit literature for assessing the quality
of a best arm identification strategy. Most of them can be naturally extended to strategies for active
identification (also called algorithms), that we recall consist of a triple (At, τ, ı̂τ). They seek to achieve
different trade-offs between the number of samples needed before making a recommendation, τ , and the
probability of error of this recommendation, Pµ (µ ∉Rı̂τ ).

In the fixed-budget setting, the total number of samples τ cannot exceed a given budget T (i.e. τ = T ),
and the goal is to minimize the error probability Pµ (µ ∉Rı̂τ ). Fixed-budget strategies are allowed to
use the knowledge of T .

In the fixed-confidence setting, given a risk parameter δ ∈ (0,1), the error probability Pµ(µ ∉ Rı̂τ )

has to remain smaller than δ for everyµ ∈R, and the goal is to minimize the (random) number of samples
τ needed to make the recommendation, either in expectation or with high probability. Fixed-confidence
strategies use the knowledge of δ in the stopping rule and possibly in the sampling rule.

In the anytime exploration framework, instead of issuing a recommendation after enough exploration,
a recommendation It ∈ [I] has to be made at the end of every round (It is Ft-measurable), which can
be seen as the best guess for an hypothesis if exploration were to be stopped after t rounds. The goal is
to minimize, for all t, the error probability Pµ (µ ∉RIt). Unlike in the previous frameworks, a strategy
for anytime exploration does not depend on the knowledge of a maximal exploration budget (T ) or a
maximal tolerated error probability (δ) and is therefore called anytime.

The three different objectives are summarized in the following table.

Fixed-budget Fixed-confidence Anytime Exploration
Parameter budget T risk δ none

Constraint to satisfy τ ≤ T Pµ (µ ∉Rı̂τ ) ≤ δ none
Objective to minimize Pµ (µ ∉Rı̂τ ) Eµ[τ] Pµ (µ ∉RIt), for all t

The fixed-budget setting was first introduced for the best arm identification problem by Audibert
et al. (2010) and the fixed confidence setting was first studied for ε-best arm identification by Even-Dar
et al. (2006). The anytime exploration framework was studied by Bubeck et al. (2011) and Jun and
Nowak (2016) for best arm identification and top-m arms identification respectively. In the context of
BAI specifically, instead of minimizing the probability of error, an alternative goal can be minimizing the
so-called simple regret (Bubeck et al., 2011), rt = E[µ⋆ − µIt], which quantifies how far from optimal
the proposed candidate for the best arm is. Finally, we will mention in Chapter 4 another Bayesian
performance measure, recently introduced by Russo (2016).

After describing these three different frameworks, a natural question is whether one can convert al-
gorithms from one framework to another. A strategy for anytime exploration can naturally be used in
the fixed-budget setting (setting ı̂τ = Iτ ), but it may not attain the minimal possible error for a particular
budget T . Similarly, such a strategy may be used in the fixed-confidence setting when coupled with a
good stopping rule, but upper bounding its sample complexity τ may be tricky. In the other direction,
the sampling rule At of a fixed-budget or fixed-confidence algorithm may be used directly for anytime
exploration (when coupled with a good recommendation rule It) only if it is anytime, that is independent
of the budget T or the risk parameter δ. Still, its analysis may be tricky in the anytime exploration set-
ting. As for “conversions” from the fixed-budget to the fixed-confidence setting (discussed for example
in Gabillon et al. (2012); Kaufmann and Kalyanakrishnan (2013)), they are only possible when some
complexity constant characterizing the bandit instance (depending on the unknown means) is known.

In part II of this document, we will present active identification strategies for the fixed-confidence
setting. In the rest of this chapter, we will first present a general stopping rule, that may be used for any
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active identification problem. Then in Chapter 4 and 5, we will further study the sample complexity τ
of some active identification algorithms. We will in particular propose anytime sampling rules At that,
used in conjunction with our stopping rule, lead to an asymptotically optimal sample complexity.

3.2 The Parallel GLRT Stopping Rule

In this section, we propose a general stopping rule for active identification in a bandit model in the
fixed confidence setting. Recall that given I regions

R1 R2 . . . RI ,

the goal is to identify one region to which µ ∈ R belongs. For this purpose, we use a sampling rule
(At)t∈N to collect data from the different arms: at each time step t, we collect Xt ∼ νµAt . We stop
collecting information after a random number of samples τ and output a recommendation ı̂τ ∈ [I]. This
recommendation should satisfy

∀µ ∈R, Pµ (τ <∞,µ ∉Rı̂τ ) ≤ δ.

A strategy satisfying this property is called δ-correct.
Assuming that the sampling rule (At)t∈N is given and that we do not try to optimize it, the two

other components of the identification strategy, (τ, ı̂τ) can be viewed as a sequential test of multiple,
composite hypotheses H1 ∶ (µ ∈ R1), . . . , HI ∶ (µ ∈ RI). For the resulting strategy to be δ-correct, the
different types of testing error should be uniformly controlled.

Sequential testing was first studied by Wald (1945), who proposed the Sequential Probability Ratio
Test (SPRT) for two simple hypotheses, e.g. H1 ∶ (µ = µ1) and H2 ∶ (µ = µ2) when collecting i.i.d.
samples of a distribution with mean µ. Among the sequential tests with prescribed type I and type II
errors, the SPRT is proved to have the smallest average duration Eµi[τ] for i ∈ {1,2}. Later, particular
examples of sequential tests of composite hypotheses (in whichR1 andR2 are not reduced to a singleton)
have also been studied, see e.g. Robbins and Siegmund (1974); Lai (1988). Our framework is more
general as we allow for more than two hypotheses, that are possibly overlapping, when the regions Ri
do not form a partition ofR.

3.2.1 Definition of the Parallel GLRT

The idea of the Parallel Generalized Likelihood Ratio Test (GLRT) is to run in parallel I sequential
tests of the following two non-overlapping hypotheses

H̃0 ∶ (µ ∈R/Ri) against H̃1 ∶ (µ ∈Ri),

for each i ∈ {1, . . . , I}. The Parallel GLRT stops when one of these tests rejects H̃0. The i-th test causing
to stop means that µ is believed to belong to Ri (this does not exclude that it may also belong to other
regions), in which case we set ı̂τ = i.

To test H̃0 against H̃1, we propose to use a Generalized Likelihood Ratio Test, which is a well-
known extension of the standard Likelihood Ratio Test used for simple hypotheses (Wilks, 1938). We
denote by `(X1, . . . ,Xt;λ) the likelihood of the first t observation that are collected in a bandit model
parameterized by λ ∈R, under some sampling rule At (that is, Xt ∼ νλAt ). The Generalized Likelihood
Ratio statistic based on t samples is defined as

maxλ∈R `(X1, . . . ,Xt;λ)

maxλ∈R/Ri `(X1, . . . ,Xt;λ)
= inf
λ∈R/Ri

`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
,
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where µ̂(t) is the maximum likelihood estimator (inR). Large values of this GLR statistic tend to reject
H̃0. Calibrating the rejection threshold for a GLR based on a fixed sample size is often done by resorting
to asymptotic arguments (like Wilks’ phenomenon (Wilks, 1938)) describing the limit distribution of the
GLR under the null hypothesis; this is however not useful for the finite-confidence bandit analysis that
follows. We propose to use a threshold function β(t, δ) that depends on the current number of samples
t and on the risk parameter δ. In Section 3.3 we will provide a possible choice for the threshold β(t, δ)
that guarantees the δ-correctness of the corresponding test.

The parallel GLRT using the threshold function β(t, δ) is formally defined in the following way.
Given δ ∈ (0,1), the stopping rule is

τδ = inf {t ∈ N ∶ max
i=1,...,I

inf
λ∈R/Ri

log
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
> β(t, δ)} (3.1)

and the decision rule is

ı̂τδ ∈ argmax
i=1,...,I

inf
λ∈R/Ri

log
`(X1, . . . ,Xτδ ; µ̂(τδ))

`(X1, . . . ,Xτδ ;λ)
(3.2)

(ties can be resolved arbitrarily). Note that the maximum over i ∈ {1, . . . , I} in the definition of τδ and
ı̂τδ can be reduced to the set of hypotheses to which µ̂(t) belongs.

3.2.2 Simple Examples

Exponential family bandit model If we go back to our recurrent example of exponential family bandit
models, the likelihood of the observation under a vector of means λ can be written

`(X1, . . . ,Xt;λ)∝
t

∏
s=1

exp (ḃ−1
(λAs)Xs − b(ḃ

−1
(λAs))) ,

where b is the log-partition function of the exponential family (see the Introduction or Notation Index
for the notation related to exponential families). Letting µ̂(t) = (µ̂1(t), . . . , µ̂K(t)) be the vector of
empirical means of the arms, for every λ = (λ1, . . . , λK) ∈R the log-likelihood ratio can be written

log
`(X1, . . . ,Xt; µ̂(t))

`(X1, . . . ,Xt;λ)
=

A

∑
a=1

Na(t)[µ̂a(t) (ḃ
−1

(µ̂a(t)) − ḃ
−1

(λa)) − b (ḃ
−1

(µ̂a(t))) + b (ḃ
−1

(λa)) ]

=
A

∑
a=1

Na(t)d (µ̂a(t), λa) , (3.3)

where we use the closed-form expression of the Kullback-Leibler divergence in an exponential family
that can be found in Equation (1) in the Introduction.

Hence, the Parallel GLRT can be expressed as

τδ = inf {t ∈ N ∶ max
i∈[I]

inf
λ∈R/Ri

A

∑
a=1

Na(t)d (µ̂a(t), λa) > β(t, δ)} , (3.4)

ı̂τδ = argmax
i∈[I]

inf
λ∈R/Ri

A

∑
a=1

Na(τδ)d (µ̂a(τδ), λa) .

This expression still requires to compute a minimizer overR/Ri which can be solved in closed form for
some particular choice of regions, as can be seen in the next example or in those of the next chapters.
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Testing two overlapping hypotheses We now present a simple example of a sequential test between
two overlapping hypotheses. Given a stream of independent samplesX1,X2, . . . that follow aN (µ,σ2)

distribution, with a known variance σ2, the statistical problem is to determine whether µ is positive or
negative, but with an indifference region of width 2ε. We consider the two hypotheses

H1 ∶ (µ < ε) and H2 ∶ (µ > −ε) .

The hypotheses H1 and H2 are not mutually exclusive. In this particular example, one aims at building
a stopping rule τδ and a recommendation rule ı̂τδ such that

∀µ ≤ −ε, Pµ(ı̂τδ = 2) ≤ δ and ∀µ ≥ ε, Pµ(ı̂τδ = 1) ≤ δ , (3.5)

but any answer ı̂τδ is considered correct when µ ∈R1 ∩R2 = (−ε, ε).
This testing problem can be seen as a particular case of active identification in an exponential family

bandit model with a single, Gaussian arm with mean µ = µ, in which the two regions are R1 = (−∞, ε)
andR2 = (−ε;+∞). With d(µ,µ′) = (µ−µ′)2/(2σ2) and this particular choice of regions, the expression
in (3.4) can be made more explicit and the Parallel GLRT test becomes

τδ = inf {t ∈ N ∶
t(∣µ̂t∣ + ε)

2

2σ2
> β(t, δ)} ,

ı̂τδ = 2 if and only if (µ̂τδ > 0),

where µ̂t = 1
t ∑

t
s=1Xs is the empirical mean of the observation. The optimality of this test in discussed

in Garivier and Kaufmann (2019).
We now explain how to choose the threshold β(t, δ) to guarantee δ-correctness for general active

identification problems in an exponential family bandit model.

3.3 Correctness of the Parallel GLRT stopping rule

In this section we introduce a new deviation inequality to prove the δ-correctness of the Parallel
GLRT stopping rule for active identification in an exponential family bandit model, for any sampling
rule. We then provide a proof of this result, which sheds light on some interesting martingale tools.

3.3.1 A New Deviation Inequality

An expression of the Parallel GLRT (τδ, ı̂τδ) for active identification in an exponential family ban-
dit model was given in (3.4). Based on this expression, a generic argument to upper bound the error
probability is the following:

Pµ (τδ <∞,µ ∉Rı̂τδ
) ≤ P(∃t ∈ N∗,∃i ∶ µ ∉Ri, inf

λ∈R/Ri

A

∑
a=1

Na(t)d(µ̂a(t), λa) > β(t, δ))

≤ P(∃t ∈ N∗,∃i ∶ µ ∈R/Ri,
A

∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ))

≤ P(∃t ∈ N∗,
A

∑
a=1

Na(t)d(µ̂a(t), µa) > β(t, δ)) . (3.6)

To upper bound this last probability, one needs a concentration inequality in which:
● the deviation of the empirical means from their true values are measured with the KL-divergence
d(⋅, ⋅) (just like in the inequality of Lemma 0.3 in the Introduction which is instrumental for the
analysis of kl-UCB)
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● the deviations are uniform over time (t ∈ N)

● the deviations are measured simultaneously for theA arms (the sum ofNa(t)d(µ̂a(t), µa)’s need
to be controlled)

In a joint work with Wouter Koolen (Kaufmann and Koolen, 2018), we propose a new concentration
inequality which fulfills these three requirements, which is stated in Theorem 3.1 below. It features a
non-explicit function T defined by

T (x) = 2h̃(
h−1(1 + x) + log(2ζ(2))

2
) (3.7)

where ζ is the Riemann zeta function and the functions h and h̃ are defined as follows. For u ≥ 1, we let
h(u) = u− logu. As h is a one-to-one mapping from [1,+∞) to [1,+∞) its inverse function h−1 is well
defined and for any x ≥ 0, we let

h̃(x) =

⎧⎪⎪
⎨
⎪⎪⎩

e1/h−1(x)h−1(x) if x ≥ h−1(1/ log(3/2)),
(3/2)(x − log log(3/2)) otherwise.

(3.8)

The function T is easy to compute numerically and we show in Kaufmann and Koolen (2018) that it
satisfies T (x) ≃ x + 4 log (1 + x +

√
2x) for x ≥ 5 and T (x) ∼ x when x is large.

Theorem 3.1. Let µ be an exponential family bandit model. Under any sampling rule (At), for every
subset S ⊆ [A],

Pµ (∃t ∈ N ∶ ∑
a∈S

Na(t)d(µ̂a(t), µa) ≥ 3∑
a∈S

log(1 + logNa(t)) + ∣S ∣T ( x
∣S ∣)) ≤ e−x .

The proof of this inequality, given below, relies on the construction of a particular mixture martingale.
For a subset S of size 1 and Gaussian distributions, this method can be traced back to the work of Robbins
(1970) and similar inequalities were also given by Jamieson et al. (2014); Kaufmann et al. (2016). In
this particular case, observe that the presence of log(1 + log(t)) in the right-hand side of the inequality
is essentially tight due to the law of iterated logarithm. For ∣S ∣ > 1 and general exponential families,
the only other inequality of this flavor is the one proposed by Magureanu et al. (2014), which holds
for t in some times range {1, . . . , n} instead of t ∈ N∗, and whose proof does not rely on mixture
martingales. The so-called method of mixtures for proving different types of deviations inequalities
has been popularized by De La Pena et al. (2004) and used notably by Abbasi-Yadkori et al. (2011);
Balsmubramani (2015).

Applying Theorem 3.1 Combining (3.6) and Theorem 3.1, one can see that with the threshold

β(t, δ) = AT (
log(1/δ)

A ) + 3A log(1 + log(t))

the Parallel GLRT satisfies Pµ (τδ <∞,µ ∉Rı̂τδ
) ≤ δ for all µ ∈ R and is therefore δ-correct for any

active identification problem in an exponential family bandit model. This threshold has the drawback of
not having a simple closed-form, but it essentially scales in β(t, δ) ≃ log(1/δ) + 3A log(1 + log(t)).

For some specific active identification problems, this general argument can be replaced by more
specific arguments that may justify the use of different, possibly smaller thresholds. Typically, A in the
expression of β(t, δ) may be replaced by a smaller quantity called the rank of the identification problem
(see Section 6.2. of Kaufmann and Koolen (2018)). In words, the rank is R if R/Ri can be written as a
finite union of sets that are each defined in terms of only R < A arms. For example, for BAI,

{µ ∶ µi ≤ max
a
µa} = ⋃

a≠i
{µ ∶ µa ≥ µi},
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hence the best arm identification problem is of rank 2, which licentiates the use of the threshold β(t, δ) =
2T (

log(1/δ)
2 ) + 6 log(1 + log(t)). Using different concentration arguments specific to Bernoulli distri-

butions (see Theorem 10 in Garivier and Kaufmann (2016)), we also proved that in that case the more
explicit threshold β(t, δ) = log (

2t(K−1)
δ ) can be used. Observe that for large values of t, the former

threshold is guaranteed to be smaller than the latter, and it also justifies a threshold calibration often used
in practice for Best Arm Identification: β(t, δ) = log (

log(1+log(t))
δ ).

3.3.2 Proof of Theorem 3.1: A Martingale Story

Concentration inequalities play a central role in the analysis of all kind of bandit algorithms, and
in this proof we give an example of the use of mixture martingales to establish a time uniform, self-
normalized inequality that furthermore aggregates information across arms.

Why martingales? We start by giving a quick recap about why martingales (or super-martingales)
are a powerful tool for proving time-uniform deviation inequalities. The reason is due to the following
property, that we refer to as the maximal inequality for super-martingales. This result is also known under
the name Ville’s inequality as according to Shafer et al. (2011) it was already proved by Ville (1939) for
the particular case of martingales.

Lemma 3.2. Let St be a super-martingale (i.e. a sequence of random variables adapted to a filtration
(Ft)t∈N such that E[St+1∣Ft] ≤ St) such that St ≥ 0 and E[S0] = 1. For all δ ∈ (0,1),

P (∃t ∈ N ∶ St > 1/δ) ≤ δ.

Proof. In probability textbooks, Doob’s maximal inequality is often stated for martingales or sub-martingales,
saying that for all c > 0,

∀T ∈ N∗, P
⎛

⎝
sup

t∈{0,...,T}
S+t > c

⎞

⎠
≤
E[S+T ]

c
.

However, one can also prove a counterpart of this result if St is a non-negative super-martingale:

∀T ∈ N∗, P
⎛

⎝
sup

t∈{0,...,T}
St > c

⎞

⎠
≤
E[S0]

c
. (3.9)

This inequality permits to prove the maximal inequality in Lemma 3.2 as

P (∃t ∈ N ∶ St > 1/δ) = lim
T→∞

P
⎛

⎝
sup

t∈{0,...,T}
St > 1/δ

⎞

⎠
≤ δE[S0] = δ.

We now prove (3.9). Introducing the stopping time τ = inf{t ∈ N ∶ St > c}, the sequence (Sτ∧T )T ∈N∗ is
also a super-martingale, in particular E[Sτ∧T ] ≤ E[S0]. But it also holds that

E[Sτ∧T ] = E[Sτ1 (τ ≤ T )] +E[ST1 (τ > T )]

≥ E[Sτ1 (τ ≤ T )]

≥ cP (τ ≤ T )

which concludes the proof as {τ ≤ T} = {supt∈{0,...,T} St > c}.

◻
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Lemma 3.2 is very useful to build sequential tests or confidence intervals that are uniform over time.
Indeed, assume that for a standard hypothesis testing problem with two hypotheses H0 and H1 one can
find a sequence St which is a (super) martingale under H0 satisfying the properties of Lemma 3.2, i.e.
St is non-negative and E[S0] = 1. Then the sequential test which rejects H0 at time

τ = inf{t ∈ N ∶ St > 1/δ}

has a type I error which is upper bounded by δ. This explains why non-negative martingales with
expectation 1 are sometimes called test martingales (Shafer et al., 2011). More broadly, in order to
prove deviation inequalities, which allow to construct confidence intervals, a possible strategy consists
in upper-bounding the process that we want to control by a test (super) martingale.

The proof of Theorem 3.1 follows this path, and combines this idea with the Cramér-Chernoff
method. In Theorem 3.1, the process whose deviations should be controlled is

Xa(t) ∶= Na(t)d (µ̂a(t), µa) − 3 log(1 + log(Na(t)).

The technique that we propose to prove deviation inequalities for sums of these processes is summarized
in the following lemma.

Lemma 3.3. Let g ∶ Λ→ R be a function defined on a non-empty interval Λ ⊆ R. Assume that

1. For any arm a and λ ∈ Λ there exists a test martingale Mλ
a (t) such that

∀t ∈ N, Mλ
a (t) ≥ e

λXa(t)−g(λ). (∗)

2. For any subset S ⊆ {1, . . . ,K} and for any λ ∈ Λ, the product∏a∈SM
λ
a (t) is a martingale.

Letting

Cg(x) ∶= min
λ∈Λ

g(λ) + x

λ
,

for any subset S , for all x > 0,

P(∃t ∈ N ∶ ∑
a∈S

Xa(t) ≥ ∣S ∣Cg (
x

∣S ∣
)) ≤ e−x.

Proof. Fix λ ∈ Λ. For any u ∈ R, one can write

P(∃t ∈ N ∶ ∑
a∈S

Xa(t) > u) = P (∃t ∈ N ∶ eλ[∑a∈S Xa(t)] > eλu)

≤ P(∃t ∈ N ∶∏
a∈S

Mλ
a (t) > e

λu−∣S ∣g(λ)
)

≤ e−[λu−∣S ∣g(λ)],

where the last step uses the maximal inequality in Lemma 3.2 applied to the product∏a∈SM
λ
a (t) which

is a martingale by assumption 2.. Equivalently, it also holds that for all x > 0, for all λ ∈ Λ,

P(∃t ∈ N ∶ ∑
a∈S

Xa(t) >
∣S ∣g(λ) + x

λ
) ≤ e−x .

The conclusion follows from selecting λ that yields the tightest possible inequality.

◻
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The proof of Theorem 3.1 consists in building test martingales that satisfy assumptions 1. and 2. in
Lemma 3.3 for an adequate function g. More precisely, we prove the following.

Lemma 3.4. Fix ξ ∈ [0,1/2] and define for all λ ∈ Λξ ∶= [0,1/(1 + ξ)),

gξ(λ) = λ(1 + ξ) log (C(ξ)) − log(1 − λ(1 + ξ)) with C(ξ) =
2ζ(2)

(log(1 + ξ))2
.

There exists martingales satisfying assumptions 1. and 2. in Lemma 3.3 for gξ ∶ Λξ → R.

Before giving the proof of Lemma 3.4, we explain how to obtain Theorem 3.1 from it. From
Lemma 3.3, we know that for every ξ > 0, for all x > 0,

P(∃t ∈ N ∶ ∑
a∈S

Xa(t) ≥ ∣S ∣Cgξ (
x

∣S ∣
)) ≤ e−x.

where Cgξ(x) ∶= minλ∈[0,1/(1+ξ))
gξ(λ)+x

λ . To obtain the result, it remains to optimize over the possible
choice for ξ (which depends on x), that leads to

P(∃t ∈ N ∶ ∑
a∈S

Xa(t) ≥ ∣S ∣T (
x

∣S ∣
)) ≤ e−x,

with

T (x) = inf
ξ∈[0,1/2]

λ∈[0,(1+ξ)−1)

gξ(λ) + x

λ
.

In order to make T explicit, we recall the definition of the function h(u) = u − log(u) for u > 1 and its
inverse function h−1 and we write

T (x) = inf
ξ∈[0,1/2]

λ∈[0,(1+ξ)−1)

[(1 + ξ) log(C(ξ)) +
x − log(1 − λ(1 + ξ))

λ
]

= inf
z∈[1,3/2]
λ∈[0,1/z)

[z (log(
2ζ(2)

log2(z)
) +

x − log(1 − λz)

λz
)]

= inf
z∈[1,3/2]

[z (log(
2ζ(2)

log2(z)
) + inf

q∈[0,1)

x − log(1 − q)

q
)]

= inf
z∈[1,3/2]

[z (log(
2ζ(2)

log2(z)
) + h−1

(1 + x))]

= 2 inf
z∈[1,3/2]

[z (
log(2ζ(2)) + h−1(1 + x)

2
− log log(z))] .

The expression in (3.7) follows by checking that the function h̃ defined in (3.8) satisfies

h̃(u) = min
z∈[1,3/2]

z(u − log log(z)).

Building the martingales: proof of Lemma 3.4 The interesting part of the proof is the construction
of a martingale for each arm which together satisfy the conditions of Lemma 3.3.
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A first natural candidate is the following, where we denote by φµ(η) ∶= logEX∼νµ [eηX] the log
moment generating function of the distribution that has mean µ ∈ I and by Sa(t) = ∑ts=1Xa,s1(As = a)
the sum of observations obtained from arm a in the first t rounds. For all η ∈ R,

Zηa(t) = exp (ηSa(t) − φµa(η)Na(t)) (3.10)

is a test martingale with respect to the filtration (Ft)t∈N, for any sampling rule. Indeed, observing that
Zηa(t) = Z

η
a(t− 1) exp((ηXa,t −φµa(η))1 (At = a)) with Xa,t the observation made from arm a is it is

selected at time t, we get E[Zηa(t)∣Ft−1] = Z
η
a(t − 1) using the fact that At is Ft−1-measurable and the

definition of the moment generating function.
More generally, for any probability distribution π, the mixture martingale

Z̃πa (t) = ∫ Zηa(t)dπ(η) (3.11)

is also a test martingale, as can be seen by applying Tonelli’s theorem

E [ Z̃πa (t)∣Ft−1] = ∫ E [Z̃ηa(t)∣Ft−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Z̃ηa(t−1)

dπ(η) = Z̃πa (t − 1).

Given a family of priors π = (πa)
K
a=1, the product martingale Z̃πS (t) = ∏a∈S Z̃

πa
a (t) is also a test

martingale with respect to Ft, for any subset S. Indeed, when At ∈ S we have

E [ Z̃πS (t)∣At,Ft−1] = Z̃πS∖{At}(t − 1)E [ Z̃
πAt
At

(t)∣At,Ft−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Z̃

πAt
At

(t−1)

= Z̃πS (t − 1),

and the same result holds trivially when At ∉ S . The martingale property follows by the tower rule.
Hence, by associating one mixture martingale to each arm, assumption 2. in Lemma 3.3 is readily

satisfied. Thus, to prove Lemma 3.4 it remains to construct for each arm a, each ξ ∈ [0,1/2] and each
λ ∈ [0, (1 + ξ)−1) a prior π = πa,λ,ξ such that

∀t ∈ N, Z̃πa,λ,ξa (t) ≥ eλXa(t)−gξ(λ),

which proves that inequality (∗) is satisfied with Mλ
a (t) = Z

πa,λ,ξ
a (t).

In the literature, mixture martingales have often been defined for a prior π under which Z̃πa (t) can
be computed in closed-form, or tightly approximated. For example, in the Gaussian case, a com-
mon choice of prior is π = N (0, y−2) for which the corresponding mixture martingale is Z̃πa (t) =

y√
y2+σ2Na(t)

exp (
(Sa(t)−µaNa(t))2

2(y2+σ2Na(t)) ) (see e.g. De La Pena et al. (2004); Abbasi-Yadkori et al. (2011)).

Applying the maximal inequality to this martingale directly yields the deviation inequality

P
⎛
⎜
⎝
∃t ∈ N∗

∶
Na(t)(µ̂a(t) − µa)

2

2σ2
>

¿
Á
ÁÀ1 +

y2

Na(t)σ2
(x +

1

2
log(1 +

σ2Na(t)

y2
))

⎞
⎟
⎠
≤ e−x.

Compared to what we prove in Theorem 3.1 for ∣S ∣ = 1, observe that the log log(Na(t)) featured in
Theorem 3.1 is smaller than the log(Na(t)) in the right-hand side of the above inequality (at the cost
of a less explicit threshold) . Moreover, this log logNa(t) is compatible with the Law of Iterated Loga-
rithm. To obtain this tighter threshold (at least in a regime of large values of Na(t)), and handle general
exponential families, we need to resort to a more complex prior distribution. As will be seen shortly, the
prior πa,λ,ξ will be a hierarchical prior, i.e. a continuous average of discrete priors.

The first step of our construction is the following lemma, which states that the processXa(t) crossing
some threshold (slightly larger than) x implies that some mixture martingale with a prior π(x) having
discrete support exceeds a threshold. The proof of this result is postponed to the end of this section.
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Lemma 3.5. Fix ξ ∈ (0,1/2) and x > 0. There exists a (discrete) prior π(x) = π(x, ξ) such that the
corresponding mixture martingale satisfies, for all t ∈ N,

{Xa(t) − (1 + ξ) log (C(ξ)) ≥ x} ⊆ {Z̃π(x)a (t) ≥ e
x

1+ξ } .

We now exploit Lemma 3.5 to upper bound eλXa(t)−(1+ξ) log(C(ξ)) by a martingale. To do so, we first
note that for every z > 1, and every λ > 0

{eλ(Xa(t)−(1+ξ) logC(ξ))
≥ z} ⊆ {Z̃π(log(z)/λ)

a (t) ≥ e
log(z)
λ(1+ξ)}

⊆ { Z̃π(log(z)/λ)
a (t)e

− log(z)
λ(1+ξ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=W z,λ

a (t)

≥ 1},

where W z,λ
a (t) is a martingale that satisfies E[W z,λ

a (0)] = e
− log(z)
λ(1+ξ) and, due to the above inclusion,

W z,λ
a (t) ≥ 1(eλ(Xa(t)−(1+ξ) logC(ξ))≥z). (3.12)

We now define another mixture martingale, for λ ∈ ]0, 1
1+ξ [, this time using a continuous prior:

W λ
a (t) = 1 + ∫

∞

1
W z,λ
a (t)dz.

Using inequality (3.12) yields
W λ
a (t) ≥ e

λ(Xa(t)−(1+ξ) logC(ξ)).

Moreover, a direct computation shows that W λ
a (0) =

1
1−λ(1+ξ) . Finally defining

Mλ
a (t) = (1 − λ(1 + ξ))W λ

a (t),

one has that Mλ
a (t) is a test martingale, i.e. E[Mλ

a (t)] = 1, that satisfies

Mλ
a (t) ≥ exp (λXa(t) − λ(1 + ξ) log(C(ξ)) + log(1 − λ(1 + ξ)))

= exp (λXa(t) − gξ(λ)) ,

which proves Lemma 3.4. Taking a step back, Mλ
a (t) is indeed a mixture martingale as it can be written

Mλ
a (t) = Z̃

πa,λ,ξ
a (t) with

Z̃
πa,λ,ξ
a (t) = (1 − λ(1 + ξ))Z0

a(t) + ∫
∞

1
(∫ Zηa(t)d(π(log(z)/λ))(η)) (1 − λ(1 + ξ))e

− log(z)
λ(1+ξ) dz.

Proof of Lemma 3.5 Recall that Xa(t) = Na(t)d (µ̂a(t), µa) − 3 log(1 + log(Na(t)). The first step
of the construction consists in relating the deviation of Na(t)d

+(µ̂a(t), µa) and Na(t)d
−(µ̂a(t), µa)

to those of ηSa(t) − φµa(η)Na(t) for a well chosen η, provided that Na(t) belongs to some “slice”
[(1 + ξ)i−1, (1 + ξ)i].

More precisely, we prove that for all i ∈ N∗, there exists η+i (x, ξ) and η−i (x, ξ) such that, if Na(t) ∈
[(1 + ξ)i−1, (1 + ξ)i] it holds that

{Na(t)d
+
(µ̂a(t), µa) ≥ x} ⊆ {η+i Sa(t) −Na(t)φµa(η

+
i ) ≥

x

1 + ξ
} (3.13)

{Na(t)d
−
(µ̂a(t), µa) ≥ x} ⊆ {η−i Sa(t) −Na(t)φµa(η

−
i ) ≥

x

1 + ξ
} . (3.14)
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To prove these two inclusions, we introduce the notation θ for the natural parameter associated to µa,
defined as θ = ḃ−1(µa) and define η+i < 0 and η−i > 0 by

KL(θ + η+i , θ) = KL(θ + η−i , θ) =
x

(1 + ξ)i
,

where KL(θ, θ′) denotes the Kullback-Leibler divergence between the distributions of natural parameter
θ and θ′. Using properties of the KL-divergence, one can write

KL(θ + η+i , θ) = η+i µ
+
i − φµa(η

+
i ) with µ+i ∶= ḃ

−1
(θ + η+i ) < µa,

KL(θ + η−i , θ) = η−i µ
−
i − φµa(η

−
i ) with µ−i ∶= ḃ

−1
(θ + η−i ) > µa.

For Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i], one can prove (3.13) by writing

{Na(t)d
+
(µ̂a(t), µa) ≥ x} ⊆ {d+(µ̂a(t), µa) ≥

x

(1 + ξ)i
}

⊆ {µ̂a(t) ≤ µ
+
i }

⊆ {η+i µ̂a(t) − φµa(η
+
i ) ≥ KL(θ + η+i , θ)}

⊆ {(1 + ξ)i−1
(η+i µ̂a(t) − φµa(η

+
i )) ≥

x

1 + ξ
}

⊆ {Na(t) (η
+
i µ̂a(t) − φµa(η

+
i )) ≥

x

1 + ξ
} ,

where the third inclusion uses that η+i < 0. Similarly, using this time that η−i > 0 one can prove (3.14):

{Na(t)d
−
(µ̂a(t), µa) ≥ x} ⊆ {µ̂a(t) ≥ µ

−
i }

⊆ {η−i µ̂a(t) − φµa(η
−
i ) ≥ KL(θ + η−i , θ)}

⊆ {Na(t) (η
−
i µ̂a(t) − φµa(η

−
i )) ≥

x

1 + ξ
} .

The next step is to relate the deviation of Xa(t) to those of a martingale for every t ∈ N and not only
for Na(t) is some slice: this will be achieved by a mixture martingale with a well-chosen discrete prior.
Given x, we define the following probability distribution. Letting

γi = 1
2

1
i2ζ(2) xi = x + log ( 1

γi
)

η+i = η+i (xi, ξ) η−i = η−i (xi, ξ),

where η±i (x, ξ) are defined above, we define the discrete prior

π =
∞
∑
i=1

γiδη+i +
∞
∑
i=1

γiδη−i

and the corresponding mixture martingale

Z̃πa (t) =
∞
∑
i=1

γiZ
η+i
a (t) +

∞
∑
i=1

γiZ
η−i
a (t),

where we recall that Zηa(t) = exp(ηSa(t) − φµa(η)Na(t)) for all η ∈ R.
Therefore, we get

{Xa(t) − (1 + ξ) logC(ξ) ≥ x}

⊆ {[Na(t)d(µ̂a(t), µa) − 3 log(1 + log(Na(t)))]
+
≥ x + (1 + ξ) logC(ξ)}

= {Na(t)d(µ̂a(t), µa) − 3 log(1 + log(Na(t))) ≥ x + (1 + ξ) logC(ξ)} ,
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where we use that x + (1 + ξ) logC(ξ) > 0 as ξ < 1/2. Now, as 2(1 + ξ) < 3, one has

{Xa(t) − (1 + ξ) logC(ξ) ≥ x}

⊆ {Na(t)d (µ̂a(t), µa) − 2(1 + ξ) log (1 + log(Na(t))) ≥ x + (1 + ξ) log(
2ζ(2)

log(1 + ξ)2
)}

⊆ {Na(t)d (µ̂a(t), µa) ≥ x + (1 + ξ) log(
2ζ(2)(1 + log(Na(t))

2

log(1 + ξ)2
)}

⊆ {Na(t)d (µ̂a(t), µa) ≥ x + (1 + ξ) log(
2ζ(2)(log(1 + ξ) + log(Na(t))

2

log(1 + ξ)2
)} ,

where the last inequality uses log(1 + ξ) ≤ log(3/2) ≤ 1.
We now define i(t) ≥ 1 to be the integer such that Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i] and observe that

logNa(t)
log(1+ξ) ≥ i(t) − 1. Using (3.13) and (3.14) yields

{Xa(t) − (1 + ξ) logC(ξ) ≥ x}

⊆ {Na(t)d (µ̂a(t), µa) ≥ x + (1 + ξ) log(
1

γi(t)
)}

⊆

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

max
η∈{η+

i(t)
,η−
i(t)

}
[ηSa(t) − φµa(η)Na(t)] ≥

1

1 + ξ
[x + (1 + ξ) log(

1

γi(t)
)]

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⊆

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

max
η∈{η+

i(t)
,η−
i(t)

}
γi(t) exp (ηSa(t) − φµa(η)Na(t)) ≥ e

x
1+ξ

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⊆

⎧⎪⎪
⎨
⎪⎪⎩

max
i∈N

max
η∈{η+i ,η−i }

γi exp (ηSa(t) − φµa(η)Na(t)) ≥ e
x

1+ξ

⎫⎪⎪
⎬
⎪⎪⎭

⊆ {Z̃πa (t) ≥ e
x

1+ξ } .

◻

3.4 From Sequential to Active Testing

We recall that the goal of active identification in a bandit model is to find a sampling rule, a stopping
rule and a recommendation rule such that the resulting strategy is δ-correct and also has a small sample
complexity τ .

From the previous section, we already have a good candidate for the stopping and recommendation
rule (τδ, ı̂τδ): the Parallel GLRT. However, to minimize the sample complexity, the sampling rule now
plays a crucial rule: intuitively it should be designed so that the stopping rule (3.4) is met as early as
possible. Optimizing the sampling rule alongside (τδ, ı̂τδ), we move from sequential testing to active
testing. Active testing was pioneered by Chernoff (1959) who considered a setting in which there are
two mutually exclusive hypotheses and A experiments that can be chosen to gather information about
these hypotheses. Interestingly, the stopping rule proposed in this work for the case of two overlapping
hypotheses coincides with the Parallel GLRT rule.

In the next chapters, we focus on the construction of good sampling rules for various active iden-
tification problems. As we shall see, lower bounds on the sample complexity can guide the design of
asymptotically optimal algorithms, just like for regret minimization in structured bandits, that was dis-
cussed in Chapter 1.
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Chapter 4

Towards Optimal and Efficient Best Arm
Identification

In this chapter, we discuss the sample complexity of a particular active identification problem: Best
Arm Identification. The main result presented in this chapter was obtained in collaboration with Aurélien
Garivier in 2016. It provides the first asymptotically optimal algorithm for fixed-confidence best arm
identification in an exponential bandit model.

4.1 Lower Bounds for Best Arm Identification and Beyond

In this chapter, we consider an exponential bandit model, in which arms belong to a one-parameter
exponential family with divergence function d(x, y): the distribution of arm a is νµa with µa ∈ I. We
further assume that there is a unique optimal arm, that is µ ∈R where

R = {µ ∈ I
A
∶ ∃a ∈ [A] ∶ µa > max

b≠a
µb} ,

and recall the best arm identification problem in the fixed-confidence setting. Letting a⋆(µ) be the arm
with the largest mean in the bandit model parameterized by µ ∈ R, the goal is to design a δ-correct
strategy (At, τ, âτ), such that for all µ ∈ R, P (âτ ≠ a⋆(µ)) ≤ δ. This strategy should further have
the smallest possible sample complexity Eµ[τ]. To clarify the presentation, we will materialize the
dependency on δ of the sample complexity of a δ-correct strategy, denoted by τδ.

Building on the change-of-distribution tools presented in the Introduction and already used in several
places in Part I of this document, we provide a tight lower bound on the sample complexity of any δ-
correct strategy. The first lower bound of this kind was given by Mannor and Tsitsiklis (2004) for ε-best
arm identification in a Bernoulli bandit model: it features the gaps µ⋆ − µa of sub-optimal arms a and
the parameter ε, but writes as a sum over a (non-explicit) subset of the arms. For ε = 0, the bound we
proved with Aurélien Garivier and Olivier Cappé in Kaufmann et al. (2016) applies to any exponential
bandit model and features a sum over all arms. It says that under any δ-correct strategy,

Eν[τδ] ≥ [
1

d(µ1, µ2)
+

A

∑
a=2

1

d(µa, µ1)
]kl(δ,1 − δ),

where we assume that µ1 > µ2 ≥ ⋅ ⋅ ⋅ ≥ µA to ease the presentation. This lower bound features an
individual complexity quantity for each arm which is the inverse of a Kullback-Leibler divergence and
it therefore looks like a (non asymptotic) counterpart of the Lai and Robbins lower bound for regret
minimization. However, we found that this simple and natural lower bound is not tight.
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Just like the Lai and Robbins lower bound for regret minimization, the lower bounds of Mannor
and Tsitsiklis (2004) and Kaufmann et al. (2016) were derived by considering an explicit change-of-
distribution, that is, by picking some explicit alternative bandit models λ in which the optimal arm
differs from that in µ, in order to obtain constraints on the number of selections of some arms. In the
lower bound presented below, that we derived in Garivier and Kaufmann (2016), we instead directly aim
for the tightest possible lower bound, without being explicit on the corresponding alternative model λ in

Alt(µ) ∶= {µ ∈ I
A
∶ a⋆(λ) ≠ a⋆(µ)} .

Theorem 4.1. Let δ ∈ (0,1). For any δ-PAC strategy and any bandit model µ ∈R,

Eµ[τδ] ≥ T ⋆(µ)kl(δ,1 − δ),

where
T ⋆(µ)−1

∶= sup
w∈ΣA

inf
λ∈Alt(µ)

(
A

∑
a=1

wad(µa, λa)) . (4.1)

with ΣA = {w ∈ [0,1]A ∶ ∑Aa=1wa = 1}. Note that kl(δ,1 − δ) ≥ log ( 1
3δ

).

Proof. Let δ ∈ (0,1), µ ∈ S , and consider a δ-PAC strategy. We assume that τδ is almost surely finite,
otherwise E[τδ] = +∞ and the lower bound is trivial. From Lemma 0.1 in the Introduction, for any event
E ∈ Fτδ and for all λ ∈ Alt(µ),

KL (PIτδµ ,PIτδλ ) ≥ kl (Pµ(E),Pλ(E)) ,

where we recall that It = (U0,A1,X1, U1, . . . ,At,Xt, Ut) is the information available after t rounds.
On the one hand, for exponential family bandits, it follows from Wald’s inequality that

KL (PIτδµ ,PIτδλ ) =
A

∑
a=1

Eµ[Na(τδ)]d(µa, λa).

On the other hand, choosing the event E = (âτδ = a⋆(λ)) it holds that Pµ(E) ≤ δ while Pλ(E) ≥ 1 − δ
and exploiting monotonicity properties of the binary relative entropy yields

kl (Pµ(E),Pλ(E)) ≥ kl(δ,1 − δ).

This leads to
∀λ ∈ Alt(µ),

A

∑
a=1

Eµ[Na(τδ)]d(µa, λa) ≥ kl(δ,1 − δ). (4.2)

Instead of choosing for each arm a a specific instance of λ that yields a lower bound on Eµ[Na(τδ)],
we combine here the inequalities given by all alternatives λ:

inf
λ∈Alt(µ)

A

∑
a=1

Eµ[Na(τδ)]d(µa, λa) ≥ kl(δ,1 − δ)

Eµ[τδ] × inf
λ∈Alt(µ)

A

∑
a=1

Eµ[Na(τδ)]

Eµ[τδ]
d(µa, λa) ≥ kl(δ,1 − δ)

Eµ[τδ] × ( sup
w∈ΣA

inf
λ∈Alt(µ)

A

∑
a=1

wad(µa, λa)) ≥ kl(δ,1 − δ).

In the last inequality, the strategy-dependent proportions of arm draws are replaced by their supremum
(using that Eµ[τδ] = ∑Aa=1 Eµ[Na(τδ)]) so as to obtain a bound valid for any δ-PAC algorithm.

◻
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It can be observed from this proof that for a strategy to match the lower bound, the last inequality
needs to be an equality. Introducing the (set of) vector(s) of optimal proportions

w⋆
(µ) ∶= argmax

w∈ΣA
inf

λ∈Alt(µ)

A

∑
a=1

wad(µa, λa), (4.3)

this means that the vector (
Eµ[Na(τδ)]

Eµ[τδ] )
A

a=1
should belong to w⋆(µ). Note that, at this stage we have no

clue whether the argmax in (4.3) is unique, but we will prove that it is the case in the next section. We
will further propose an algorithm to efficiently computew⋆(µ) as well as the non-explicit characteristic
time T ⋆(µ) in (4.1).

Lower Bounds for Active Identification The proof technique to establish Theorem 4.1 can be used to
derive a (non-explicit) lower bound for any active identification problem with non-overlapping regions
R1, . . . ,RI . By appropriately redefining the set Alt(µ) = R/Ri⋆(µ) if i⋆(µ) is the (only) region to
which µ belongs, we obtain exactly the same lower bound as in Theorem 4.1. Note that for arbitrary
active identification problems, computing T ⋆(µ) and w⋆(µ) may be harder than what we will present
for BAI shortly. We will see another example in Chapter 5.

Lower Bounds for Non-Overlapping regions Deriving lower bounds (and matching algorithms) for
active identification problems where the regionsR1, . . . ,RI may be overlapping can be much harder, as
explained by Degenne and Koolen (2019). In Garivier and Kaufmann (2019) we study the particular case
of ε-best arm identification. Interestingly, when µ belongs to the intersection of two or more regions,
one can only provide asymptotic lower bounds on Eµ[τδ] (when δ goes to zero), whereas Theorem 4.1
is non asymptotic as it holds for any δ ∈ (0,1).

4.2 The Track-and-Stop Algorithm

For the best arm identification problem, we now explain how the characteristic time T ⋆(µ) and the
optimal allocation w⋆(µ) can be efficiently computed for any µ ∈ R. Having access to this oracle
permits to design a lower-bound inspired algorithm called Track-And-Stop. We prove that the sample
complexity of this algorithm is matching the lower bound of Theorem 4.1, at least for a small δ.

4.2.1 Computing the Optimal Allocation

To ease the presentation we present the results for µ such that µ1 > µ2 ≥ ⋅ ⋅ ⋅ ≥ µA. To compute

T ⋆(µ)−1
= sup

w∈ΣA
inf

λ∈Alt(µ)
(
A

∑
a=1

wad(µa, λa))

and w⋆
(µ) = argmax

w∈ΣA
inf

λ∈Alt(µ)
(
A

∑
a=1

wad(µa, λa))

we start by making the minimization over Alt(µ) slightly more explicit.

Lemma 4.2. For every w ∈ ΣA,

inf
λ∈Alt(µ)

(
A

∑
a=1

wad(µa, λa)) = min
a≠1

[w1d(µ1,
w1µ1 +waµa
w1 +wa

) +wad(µa,
w1µ1 +waµa
w1 +wa

)] .



84 CHAPTER 4. TOWARDS OPTIMAL AND EFFICIENT BEST ARM IDENTIFICATION

Proof. Using the fact that Alt(µ) = ⋃a≠1 {λ ∈ S ∶ λa > λ1} , one has

T ⋆(µ)−1
= sup

w∈ΣA
min
a≠1

inf
λ∈S ∶λa>λ1

A

∑
a′=1

wa′d(µa′ , λa′)

= sup
w∈ΣA

min
a≠1

inf
λ∶λa≥λ1

[w1d(µ1, λ1) +wad(µa, λa)] .

Minimizing
f(λ1, λa) = w1d(µ1, λ1) +wad(µa, λa)

under the constraint λa ≥ λ1 is a convex optimization problem that can be solved analytically. The
minimum is obtained for

λ1 = λa =
w1

w1 +wa
µ1 +

wa
w1 +wa

µa,

which concludes the proof.

◻

Using Lemma 4.2 and the fact that at the optimum w⋆
1 ≠ 0 (otherwise the value of the objective is

zero), one can write

T ⋆(µ)−1
= sup

w∈ΣA
min
a≠1

[w1d(µ1,
w1µ1 +waµa
w1 +wa

) +wad(µa,
w1µ1 +waµa
w1 +wa

)]

= sup
w∈ΣA

w1 min
a≠1

⎡
⎢
⎢
⎢
⎢
⎣

d
⎛

⎝
µ1,

µ1 +
wa
w1
µa

1 + wa
w1

⎞

⎠
+
wa
w1
d
⎛

⎝
µa,

µ1 +
wa
w1
µa

1 + wa
w1

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= sup
w∈ΣA

w1 min
a≠1

ga (
wa
w1

) ,

where we introduce for all a ∈ {2, . . . ,A} the function

ga(x) = d(µ1,
µ1 + xµa

1 + x
) + xd(µa,

µ1 + xµa
1 + x

) .

The function ga is a strictly increasing one-to-one mapping from [0,+∞[ onto [0, d(µ1, µa)[. We define
xa ∶ [0, d(µ1, µa)[→ [0,+∞[ as its inverse function: xa(y) = g−1

a (y). Denoting by x1 the function
constantly equal to 1, one obtains the following characterization of w⋆(µ).

Theorem 4.3. For every a ∈ [A],

w⋆
a(µ) =

xa(y
⋆)

∑
A
a=1 xa(y

⋆)
, (4.4)

where y⋆ is the unique solution of the equation Fµ(y) = 1, and where

Fµ ∶ y ↦
A

∑
a=2

d (µ1,
µ1+xa(y)µa

1+xa(y) )

d (µa,
µ1+xa(y)µa

1+xa(y) )
(4.5)

is a continuous, increasing function on [0, d(µ1, µ2)[ such that Fµ(0) = 0 and Fµ(y) → ∞ when
y → d(µ1, µ2)).
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Proof. The function ga rewrites

ga(x) = d (µ1,ma(x)) + xd(µa,ma(x)), with ma(x) =
µ1 + xµa

1 + x
.

Using that m′
a(x) = (µa − µ1)/(1 + x)

2 and d
dyd(x, y) = (y − x)/b̈(ḃ−1(y)) where b denotes the log-

partition function of the exponential family, one can show that ga is strictly increasing, since g′a(x) =

d(µa,ma(x)) > 0. As ga(x) tends to d(µ1, µa) when x goes to infinity, the inverse function xa(y) =
g−1
a (y) is defined on [0, d(µ1, µa)[ and satisfies

x′a(y) =
1

d(µa,ma(xa(y)))
> 0 .

Let w⋆ be an element in

argmax
w∈ΣA

w1 min
a≠1

ga (
wa
w1

) .

Introducing x⋆a =
w⋆a
w⋆1

for all a ≠ 1, one has

w⋆
1 =

1

1 +∑Aa=2 x
⋆
a

and, for a ≥ 2, w⋆
a =

x⋆a
1 +∑Aa=2 x

⋆
a

and (x⋆2 , . . . , x
⋆
A) ∈ R

A−1 belongs to

argmax
(x2,...,xA)∈RA−1

mina≠1 ga (xa)

1 + x2 + ⋅ ⋅ ⋅ + xA
. (4.6)

We now prove that all the ga(x⋆a) have to be equal. Let

B = {b ∈ {2, . . . ,A} ∶ gb(x
⋆
b ) = min

a≠1
ga(x

⋆
a)}

and A = {2, . . . ,A}/B. Assume that A ≠ ∅. For all a ∈ A and b ∈ B, one has ga(x⋆a) > gb(x
⋆
b ). Using

the continuity of the g functions and the fact that they are strictly increasing, there exists ε > 0 such that

∀a ∈ A, b ∈ B, ga(x
⋆
a − ε/∣A∣)) > gb (x

⋆
b + ε/∣B∣) > gb (x

⋆
b ) .

Introducing xa = x⋆a − ε/∣A∣ for all a ∈ A and xb = x⋆b + ε/∣B∣ for all b ∈ B, there exists b ∈ B:

mina≠1 ga (xa)

1 + x2 + . . . xA
=
gb (x

⋆
b + ε/∣B∣)

1 + x⋆2 + ⋅ ⋅ ⋅ + x
⋆
A

>
gb (x

⋆
b )

1 + x⋆2 + ⋅ ⋅ ⋅ + x
⋆
A

=
mina≠1 ga(x

⋆
a)

1 + x⋆2 + ⋅ ⋅ ⋅ + x
⋆
A

,

which contradicts the fact that x⋆ belongs to (4.6). Hence A = ∅ and there exists y⋆ ∈ [0, d(µ1, µ2)[

such that
∀a ∈ {2, . . . ,A}, ga(x

⋆
a) = y

⋆
⇔ x⋆a = xa(y

⋆
),

with the function xa introduced above. From (4.6), y⋆ belongs to

argmax
y∈[0,d(µ1,µ2)[

G(y) with G(y) =
y

1 + x2(y) + ⋅ ⋅ ⋅ + xA(y)
.
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G is differentiable and, using the derivative of the xa given above, G′(y) = 0 is equivalent to

A

∑
a=2

y

d(µa,ma(xa(y))
= 1 + x2(y) + ⋅ ⋅ ⋅ + xA(y)

A

∑
a=2

d(µ1,ma(xa(y))) + xa(y)d(µa,ma(xa(y))

d(µa,ma(xa(y))
= 1 + x2(y) + ⋅ ⋅ ⋅ + xA(y)

A

∑
a=2

d(µ1,ma(xa(y)))

d(µa,ma(xa(y))
= 1 . (4.7)

For the the second equality, we use that ∀a, d(µ1,ma(xa(y))) + xa(y)d(µa,ma(xa(y)) = y. Thus y⋆

is a solution to the equation (4.7). This equation has a unique solution since

Fµ(y) =
A

∑
a=2

d(µ1,ma(xa(y)))

d(µa,ma(xa(y))
(4.8)

is strictly increasing and satisfies Fµ(0) = 0 and limy→d(µ1,µ2) Fµ(y) = +∞. As G is positive and
satisfies G(0) = 0, limy→d(µ1,µ2)G(y) = 0, the unique local extremum obtained in y⋆ is a maximum.

◻

Thus, w⋆(µ) can be easily computed by applying (for example) the bisection method to a function
whose evaluations require the resolution of A smooth scalar equations. By using efficient numerical
solvers, we obtain a fast algorithm of complexity, roughly speaking, proportional to the number of arms.
This characterization of w⋆(µ) also permits to establish the following properties.

Proposition 4.4. 1. For all µ ∈ S, for all a, w⋆
a(µ) ≠ 0.

2. w⋆ is continuous in every µ ∈R.

3. If µ1 > µ2 ≥ ⋅ ⋅ ⋅ ≥ µA, one has w⋆
2(µ) ≥ ⋅ ⋅ ⋅ ≥ w

⋆
A(µ).

In general, it is not possible to give closed-form formulas for T ⋆(µ) and w⋆(µ). In particular,
T ⋆(µ) cannot be written as a sum over the arms of individual complexity terms as in previous works
(Mannor and Tsitsiklis, 2004; Kaufmann et al., 2016). Still, in the Gaussian case, a tight approximation
of this form can be given for T ⋆(µ): we show in Appendix A of Garivier and Kaufmann (2016) that

2σ2

(µ1 − µ2)
2
+

A

∑
a=2

2σ2

(µ1 − µa)2
≤ T ⋆(µ) ≤ 2 [

2σ2

(µ1 − µ2)
2
+

A

∑
a=2

2σ2

(µ1 − µa)2
] .

For two-armed bandits, it is also possible to obtain a more explicit expression: T ⋆(µ) = 1/d⋆(µ1, µ2)

where d⋆(µ1, µ2) = d(µ1, µ̄) with µ̄ is defined by d(µ1, µ̄) = d(µ2, µ̄), which is some ‘reversed’ notion
of Chernoff information.

4.2.2 Track-and-Stop and Its Analysis

Track-and-Stop combines the Parallel GLRT stopping rule presented in Chapter 4 with a sampling
rule under which the empirical proportions of draws of each arm a, Na(t)/t, converges to the cor-
responding optimal proportion w⋆

a(µ). To achieve this, the sampling rule is “tracking” the empirical
optimal proportion w⋆(µ̂(t)) where µ̂(t) = (µ̂1(t), . . . , µ̂A(t)): it makes sure that Na(t)/t is always
close to w⋆

a(µ̂(t)). In order to ensure that w⋆
a(µ̂(t)) is also eventually close to w⋆

a(µ), we need to add
a bit of forced exploration so that all arms are sufficiently selected and µ̂(t) converges to µ.
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Sampling rule The “tracking” idea can be implemented in different ways by monitoring the ratio or
difference between Na(t) and t ×w⋆

a(µ̂(t)) or the cumulative proportion ∑ts=1w
⋆
a(µ̂(s)). We propose

two different tracking rules in Garivier and Kaufmann (2016), and mention only the so-called Direct
Tracking rule below. Note that similar tracking approaches have been used in previous work, see e.g.
Antos et al. (2008). The (direct) Tracking rule goes as follows. Introducing Ut = {a ∶ Na(t) <

√
t−A/2},

the sampling rule (At) is sequentially defined as

At+1 ∈

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

argmin
a∈Ut

Na(t) if Ut ≠ ∅, (forced exploration)

argmax
a∈[A]

t w⋆
a(µ̂(t)) −Na(t) otherwise. (direct tracking) (4.9)

The following property shows that this sampling rule has the desired property: if w⋆
a(µ̂(t)) is close

to w⋆
a(µ) for t large enough, Na(t)/t will eventually be close to w⋆

a(µ).

Lemma 4.5. Under the tracking rule, for all a ∈ [A], Na(t) ≥ (
√
t −A/2)+ − 1 and for all ε > 0, for all

t0, there exists tε ≥ t0 such that

sup
t≥t0

max
a

∣w⋆
a(µ̂(t)) −w

⋆
a(µ)∣ ≤ ε ⇒ sup

t≥tε
max
a

∣
Na(t)

t
−w⋆

a(µ)∣ ≤ 3(A − 1)ε .

In particular, from Lemma 4.5, the law of large numbers and the continuity of w⋆ onR, one has

Pµ ( lim
t→∞

Na(t)

t
= w⋆

a(µ)) = 1 .

Stopping rule and recommendation rule We now particularize the Parallel GLRT presented in Chap-
ter 4 for the best arm identification problem. From (3.4), the stopping rule can be written

τδ = inf {t ∈ N ∶ max
a=1,...,A

inf
{λ∈R∶a∗(λ)≠a}

A

∑
b=1

Nb(t)d (µ̂b(t), λb) > β(t, δ)}

= inf {t ∈ N ∶ inf
λ∈Alt(µ̂(t))

A

∑
a=1

Na(t)d (µ̂a(t), λa) > β(t, δ)} . (4.10)

The equality comes from the fact that the maximizer in a in the first expression is obtained for â⋆(t) =
argmaxaµ̂a(t), indeed for all other values of a the infimum is zero as µ̂(t) belongs to the set. Upon
stopping, the arm âτδ = argmaxaµ̂a(τδ) is recommended.

The expression in (4.10) explains why the Parallel GLRT rule is a natural candidate for matching
the lower bound when coupled with a sampling rule that ensures the convergence of each Na(t)/t to its
corresponding optimal proportion. Indeed for large values of t, under such a sampling rule

inf
λ∈Alt(µ̂(t))

A

∑
a=1

Na(t)d (µ̂a(t), λa) ≃ t × inf
λ∈Alt(µ)

A

∑
a=1

w⋆
a(µ)d (µa, λa) =

t

T ⋆(µ)

With this approximation, τδ cannot be much larger than the first t such that t ≥ T ⋆(µ)β(t, δ), which is
of order T ⋆(µ) log(1/δ) for the threshold under which we proved that the Parallel GLRT is δ-correct in
Chapter 4. Note that this heuristic reasoning could be generalized to any active identification problem
for which the weights w⋆(µ) are uniquely defined and continuous on R. However, the corresponding
combination of the tracking rule with the Parallel GLRT may be much harder to implement, as it requires
an efficient computation of the weights w⋆(µ) for any µ as well as an efficient computation of the
minimizer in (4.10), which may not always exist beyond best arm identification.
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For BAI, the minimization in (4.10) can be solved in closed form (with similar arguments as in the
proof of Lemma 4.2), leading to

τδ = inf {t ∈ N ∶ min
a≠â⋆(t)

[Na⋆(t)d (µ̂â⋆(t)(t), µ̂â⋆(t),a(t)) +Na(t)d (µ̂a(t), µ̂â⋆(t),a(t))] > β(t, δ)} , (4.11)

where µ̂a,b(t) =
Na(t)µ̂a(t)+Nb(t)µ̂b(t)

Na(t)+Nb(t) is the weighted average of the empirical means of arms a and b.

Theoretical guarantees The Track-and-Stop (TaS) algorithm combines the Tracking rule (4.9) with
the Parallel GLRT rule (4.11) using some threshold β(n, δ). We already explained that this algorithm
can be efficiently implemented as each computation of w⋆(µ̂(t)) requires to solve a one-dimensional
optimization problem using binary search. We formally state below the sample complexity guarantees
obtained for this algorithm, showing that TaS is matching the lower bound of Theorem 4.1, at least in a
regime of small values of δ. This is why we say that this algorithm is asymptotically optimal.

Theorem 4.6. Let µ be an exponential family bandit model. The Track-and-Stop algorithm in which
the Parallel GLRT stopping rule uses the threshold β(t, δ) = 2T (log(1/δ)/2)+ 6 log(1+ log(t)) where
T (x) ∼ x is defined in (3.7) in Chapter 3 is δ-correct and satisfies

lim sup
δ→0

Eµ[τδ]
log(1/δ)

≤ T ⋆(µ) .

The correctness easily follows from Theorem 3.1 in Chapter 3 while the sample complexity analysis
can be found in Appendix D of Garivier and Kaufmann (2016). The convergence of the empirical pro-
portions to the optimal weights permits to easily establish that lim supδ→0 τδ/ log(1/δ) ≤ T ⋆(µ) almost
surely (like in the proof of Lemma 4.8 in the next section), but the proof of the expected sample complex-
ity bound of Theorem 4.6 requires to control the convergence speed, and further exploits Lemma 4.5.

Practical performance Theorem 4.6 provides an asymptotic upper bound on the sample complexity,
hence Track-and-Stop is expected to match the optimal performance when δ is small enough. However,
performing numerical simulations reveals that TaS actually has a very good sample complexity for any
value of δ: its sample complexity is typically twice smaller than that of previous algorithms.

Among existing algorithms for BAI that come with problem-dependent sample complexity guaran-
tees in the fixed-confidence setting, there are two types of algorithms. First, algorithms using uniform
sampling and elimination, like Successive Elimination (Even-Dar et al., 2006) or KL-Racing (Kaufmann
and Kalyanakrishnan, 2013), under which an arm is eliminated from the list of candidate best arms when
an upper confidence bound on its mean is smaller than a lower confidence bound on the mean of the
empirical best arm. Such algorithms stop when there is a single arm remaining in the list. The second
category is that of algorithms using more adaptive sampling, that are based on upper and possibly lower
confidence bounds (calibrated as a function of the risk level δ). Lil’UCB (Jamieson et al., 2014) chooses
the arm with largest UCB and stops when one arm has been drawn more than all others. Other algorithms
such that (KL)-LUCB (Kalyanakrishnan et al., 2012; Kaufmann and Kalyanakrishnan, 2013) or UGapE
Gabillon et al. (2012) also exploit lower confidence bounds and stop when the lower confidence bound
of the empirical best arm is larger than the upper confidence bound of all others.

We believe that the main reason for the good practical performance of TaS is the stopping rule: com-
pared to confidence-based stopping rules, the Parallel GLRT (also referred to as the Chernoff stopping
rule in the paper) exploits the geometry of the distributions better, which leads to earlier stopping. In
Figure 4.1 we display the (KL) confidence intervals on the unknown means (represented as the black di-
amonds) of Bernoulli arms after TaS reaches its stopping rule: we see that the Parallel GLRT has enough
information to identify the best arm before the confidence intervals are separated.
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Figure 4.1 – KL confidence intervals for the means (black diamonds) in a 4-armed bandit problem when
TaS reaches its stopping rule. The number of selections of each arm is reported on the x axis.

To justify the good performance of TaS, we compare its empirical sample complexity to that of other
algorithms for two Bernoulli bandit problems whose means are given by µ1 = [0.5 0.45 0.43 0.4] and
µ2 = [0.3 0.21 0.2 0.19 0.18]. For these two vectors, the optimal allocations are given by

w⋆
(µ1) = [0.417 0.390 0.136 0.057] ,

w⋆
(µ2) = [0.336 0.251 0.177 0.132 0.104] .

Track-and-Stop Chernoff-Racing KL-LUCB KL-Racing
µ1 4052 4516 8437 9590
µ2 1406 3078 2716 3334

Table 4.1 – Expected number of draws Eµ[τδ] for δ = 0.1, estimated over N = 3000 runs.

Track-and-Stop was run with the threshold β(t, δ) = log (
log(t)+1

δ ), which is an approximation of
the threshold in Theorem 4.6 that we recommend to use in practice, as we found that it was sufficient to
have an empirical error (much) smaller than δ on all the experiments we performed (not reported here).
A similar tweak of the threshold used inside the confidence intervals of confidence-based was suggested
before (Kaufmann and Kalyanakrishnan, 2013), and is used in our experiments. We see in Table 4.1
that TaS has indeed a sample complexity twice smaller than that of KL-LUCB and KL-Racing. We also
compared to an improved Racing algorithm, called Chernoff-Racing, that uses a GLRT test to assess that
one arm is better than an other instead of comparing confidence intervals to perform eliminations. We see
that Chernoff-Racing always outperforms KL-Racing, and that on some instances it can be competitive
with TaS. However, this approach is not sufficient for asymptotic optimality.

4.3 Beyond Track-and-Stop

We showed that TaS has nice theoretical properties, as it is the first asymptotically optimal algorithm
for BAI in exponential family bandit models, and that it has good practical performance, i.e. its empirical
sample complexity is much smaller than that of other algorithms. However, we did not spend too much
time on its computational cost. While confidence-based algorithm are quite easy to implement, TaS
requires a call to the oracle w⋆ in each round. This call boils down to solving the equation Fµ(y) = 1
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with Fµ defined in (4.8) using binary search. But each evaluation of Fµ is costly as it also requires to
compute the inverse function xa for each arm. Hence, the running time of TaS is an order of magnitude
larger than that of confidence-based algorithms, which makes its use prohibitive when the number of
arms gets large, for example.

Finding alternative approaches to Track-and-Stop that are asymptotically optimal without the need
to compute the optimal proportion in every round has been an active line of research over the past years,
and I present below two interesting directions, to which I contributed little, but would be very interested
to contribute more in the future.

4.3.1 Online Optimization and Optimism

The first work replacing the oracle call in Track and Stop with a gradient ascent step is that of Pierre
Ménard (Ménard, 2019). To understand the proposed approach, we first recall that the computation of
the optimal weights consists in computing the argmax in w in the optimization problem

sup
w∈ΣA

F (w,µ), where F (w,µ) = inf
λ∈Alt(µ)

A

∑
a=1

wad(µa, λa).

With the appropriate definition of Alt(µ) this actually permits to compute the optimal weights for any
active identification problem. For best arm identification, we proposed an ad hoc algorithm for computing
w⋆, however we can take a step back and investigate the use of generic optimization techniques.

On the use of online optimization algorithms The simplex ΣA is convex and F (w,µ) is concave in
w, however it is not necessarily smooth. Still in the Best Arm Identification case, recalling that

F (w,µ) = min
a≠a⋆(µ)

[wa⋆(µ)d (µa⋆(µ), µa⋆(µ),a(w)) +wad (µa, µa⋆(µ),a(w))] (4.12)

with the weighted average µa,b(w) =
waµa+wbµb
wa+wb , we notice that F has sub-gradients. Indeed, some

computations show that for every arm a that is a minimizer in (4.12), the vector

∂wF (w,µ) = d(µa⋆(µ), µa⋆(µ),a(w))ea⋆(µ) + d(µa, µa⋆(µ),a(w))ea

where ei is the i-th vector of the canonical basic of RA is a sub-gradient of F . Hence, one could
use Projected Subgradient Descent or Mirror Descent (see, e.g. Bubeck (2015)) to compute w⋆(µ).
These online optimization algorithms would however be much slower than the algorithm suggested by
Theorem 4.3 to produce accurate oracle calls.

The idea of Ménard (2019) is not to use a gradient-based algorithm to perform the oracle calls in
Track-and-Stop but instead to replace the oracle call by one step of a (sub)-gradient based algorithm in
each round of the algorithm. The optimization algorithm chosen is lazy mirror descent. Denoting by
π0 = ( 1

A , . . . ,
1
A
) the uniform distribution on {1, . . . ,A}, the proposed algorithm takes the form

w̃(t + 1) = argmax
w∈ΣA

[ηt+1w
⊺
(

t

∑
s=A

Clips (∂wF (w̃(s), µ̂(s)))) −KL (w, π0)]

w′
(t + 1) = (1 − γt)w̃(t + 1) + γtπ0

At+1 ∈ argmax
a∈[A]

t+1

∑
s=1

w′
a(s) −Na(t),

where the clipping Clips(x) = (xa ∧M
√
s)a∈[A] for an arbitrary constant M is a technical trick to

handle possibly un-bounded sub-gradients. Note also that the mixing with the uniform distribution in the
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second line can be seen as a counterpart of the forced exploration used in Track-and-Stop. Ménard (2019)
proves that this sampling rule used in conjunction with the Parallel GLRT is δ-correct and asymptotically
optimal for the choices ηt = 1/

√
t and γt = 1/(4

√
t). This algorithm avoids the computational cost of

the oracle calls, but still uses some kind of forced exploration.

How about Frank-Wolfe? Even if the Frank-Wolfe algorithm is in principle suited for optimizing
smooth functions and F is not smooth, one can write the Frank-Wolfe update on the objective w ↦

F (w,µ):
wt+1 = (1 − ηt)wt + ηtst where st ∈ argmax

w∈ΣA
w⊺∂wtF (wt,µ) .

With the above expression of the sub-gradient in the BAI case, st ∈ {ea⋆ , ect} where

ct ∈ argmin
a≠a⋆

[wa⋆d(µa⋆ , µa⋆,a(wt)) +wad(µa, µa⋆,a(wt))]

and st = ea⋆ if and only if d(µa⋆ , µa⋆,ct(wt)) > d(µct , µa⋆,ct(wt)).

This update inspires the following sampling rule: letting w(t) = (
Na(t)
t )

a∈[A]
be the vector of

empirical fraction of selection of each arm, on can compute

Bt = argmax
a∈[A]

µ̂a(t) (candidate best arm)

Ct = argmin
a≠Bt

[wBt(t)d(µ̂Bt(t), µ̂Bt,a(w(t))) +wa(t)d(µ̂a(t), µ̂Bt,a(w(t)))] (challenger)

and select

At+1 = {
Bt if d (µ̂Bt , µ̂Bt,Ct(w(t))) > d (µ̂Ct , µ̂Bt,Ct(w(t))) ,
Ct else .

This sampling rule, proposed by Ménard (2019), is reminiscent of the Best Challenger sampling rule that
we proposed in Garivier and Kaufmann (2016). However, it is not clear that it ensures convergence to the
optimal weights (even with forced exploration), or that the noise-free version wt converges to w⋆(µ).
Indeed, numerical experiments that we performed with Pierre Ménard revealed that in bandit models
such that µ1 > µ2 = µ3, Frank-Wolfe and the Best Challenger rule fail to converge.

Yet, this does not mean that a Frank-Wolfe algorithm cannot work for other active identification
problems: as explained by Ménard (2019), it leads to an optimal algorithm for the thresholding bandit
problem (Locatelli et al., 2016), even if the corresponding F is not smooth. Meanwhile, Berthet and
Perchet (2017) studied different bandit optimization problems in which there is also an underlying func-
tion F (w,µ) to optimize in w based on sampling the arms of the bandit model µ: when F is smooth,
they advocate the use of Frank-Wolfe combined with upper confidence bounds on the gradients.

A two-player game interpretation By proposing a new interpretation of the lower bound as the solu-
tion of a two-players game, Degenne et al. (2019) open new directions for algorithms. The quantity

sup
w∈ΣA

inf
λ∈Alt(µ)

A

∑
a=1

wad(µa, λa)

is viewed as the value of a “pure exploration game” between a MAX player who selects actions in [A]

(using a mixed strategy) and a MIN player, who plays λ ∈ Alt(µ). The payoff of the MAX player
selecting a when the MIN player selects λ is d(µa, λa) (or equivalently, her loss is −d(µa, λa)).

The idea of Degenne et al. (2019) consists in playing two no-regret learning algorithms (aimed at
minimizing the loss) against each other: an algorithmAMAX for the MAX player (or rather one algorithm



92 CHAPTER 4. TOWARDS OPTIMAL AND EFFICIENT BEST ARM IDENTIFICATION

AMAX
a for each possible best arm a) and an algorithm AMIN for the MIN player. Both algorithms may

play distributions over [A] or over the alternative of the current best arm. An additional feature of the
algorithm is that it uses some optimism, in the sense that the learner used by the MAX player is fed
with upper-confidence bounds on the payoffs. This allows to get rid of the forced exploration used in
Track-and-Stop and in the algorithm of Ménard (2019) described above.

Several instances of this general principle (corresponding to different learning algorithms for the two
players) are studied by Degenne et al. (2019) and are proved to be asymptotically optimal for Bernoulli
and Gaussian bandits. For the sake of concreteness, we present only one for best arm identification, in
which the MIN player uses Best Response and the learning algorithm AMAX

a is AdaHedge (de Rooij
et al., 2014), an Exponentiated Gradient algorithm for minimizing a sum of loss functions ∑ts=1 `s(w)

which can cope with unbounded gradients. In each round t, the empirical means µ̂(t) and the empirical
best arm Bt are computed. Then the MAX player calls AMAX

Bt
which outputs a weight vector w(t). The

best response for the MIN player is

λ(t) = argmin
λ∈Alt(µ̂(t))

A

∑
a=1

wa(t)d(µ̂a(t), λa).

To update the learning algorithm, an upper confidence bound on the payoff of the MAX player is com-
puted: Ua(t) = maxξ∈[LCBa(t),UCBa(t)] d(ξ, λa(t)) for some underlying confidence interval and AMAX

Bt

is fed with the loss function `(w) = −∑
A
a=1waUa(t). To deduce an arm to play from the sequence of

weights w(s) used by the algorithm, a Tracking procedure is needed and At+1 = argmax
a∈[A]

Na(t)
∑ts=1wa(s)

.

Hence, we presented an asymptotically optimal algorithm (at least for Bernoulli and Gaussian ban-
dits) which avoids the computational complexity of the oracle calls and gets rid of forced exploration
with optimism. It would be interesting to investigate whether a Thompson scheme could be used instead,
which avoids the (conservative) design of a confidence interval. We now discuss other possible variants
of Thompson Sampling for BAI.

4.3.2 Bayesian Approaches to the Rescue

Another idea to propose a simple and asymptotically optimal algorithm is to come up with a variant
of Thompson Sampling, which is a Bayesian, anytime algorithm, for best arm identification. Why is a
variant needed? Thompson Sampling is asymptotically optimal for regret minimization, hence we know
that for all a ∈ [A], it satisfies Na(t)/t→ δ(a=a⋆). Therefore, there is no hope for Thompson to converge
to the optimal proportions, that are supported on all arms. This fundamental difference between regret
minimization and pure exploration algorithms has been known since the work of Bubeck et al. (2011).

The question of whether Thompson Sampling could be adapted to best arm identification is actually
the very reason I discovered the best arm identification literature a long time ago, as it was asked to me by
Shivaram Kalyanakrishnan, with whom I collaborated during my PhD. But this collaboration made me
discover many other interesting questions, especially regarding lower bounds, and I did not come back
to answering the very first one. Fortunately, Daniel Russo answered it in 2016 by proposing Top-Two
Thompson Sampling and several other variants (Russo, 2016).

Top-Two Thompson Sampling (TTTS) follows a simple idea: as vanilla Thompson Sampling selects
the optimal arm too much, with some probability 1 − β, TTTS forces itself to select an arm which is
not the one selected by TS, by re-sampling the posterior until another arm has the largest posterior
sample. The pseudo-code of the TTTS sampling rule can be found in Algorithm 10, where Πt denotes
the posterior distribution after t observations, and Π0 the prior distribution.

The TTTS sampling rule can be used in conjunction with the Parallel GLRT and can be studied in
the fixed-confidence setting, as will be seen shortly. However, this is not the setting initially considered
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Algorithm 10 Top-Two Thompson Sampling (TTTS)

1: Input: Parameter β ∈ (0,1)
2: for t = 1,2, . . . do
3: Sample θ ∼ Πt−1

4: I(1) ← argmax
a∈[A]

θa

5: Draw an independent Bernoulli random variable b ∼ B(β)
6: if b = 1 then
7: At = I

(1)

8: else
9: Repeat sample θ′ ∼ Πt−1

10: I(2) ← argmax
a∈[A]

θ′a

11: until I(2) ≠ I(1)

12: At = I
(2)

13: end if
14: Select arm At and observe Xt ∼ ν

µAt

15: Compute the new posterior Πt

16: end for

by Russo (2016). Instead, he studies some intrinsic (Bayesian) properties of the sampling rule in terms
of posterior convergence. More precisely, under some assumption on the prior distribution Π0 to be
specified shortly, he proves that TTTS satisfies

lim
n→∞

−
1

n
logPθ∼Πn (θa⋆(µ) < max

a
θa) = Γ⋆β(µ), Pµ − a.s., (4.13)

where the quantity Γ⋆β(µ) can be expressed with our notation as

Γ⋆β(µ) = sup
w∈ΣA∶

wa⋆(µ)
=β

inf
λ∈Alt(µ)

A

∑
a=1

wad(µa, λa).

Interestingly, Γ⋆β(µ) is very close to the inverse of the characteristic time T ⋆(µ) defined in (4.1), the
only difference being the extra condition that wa⋆(µ) = β in the supremum. Intuitively, this condition
comes from the fact that by design TTTS spends a fraction β selecting the same arm as Thompson
Sampling would, and this arm is often a⋆(µ).

In words, Equation (4.13) says that the posterior probability of the set of bandit models that have
an optimal arm different from a⋆(µ) decays in e−nΓ⋆β(µ). The assumption made by Russo on the prior
distribution are the following: the prior Π0 on the vector of natural parameter θ should satisfy:

● Π0 is supported on Θ = (θ, θ)A, where θ, θ ∈ R.
● Π0 has a density π0 with respect to the Lebesgue measure that satisfies

0 < inf{π0(λ),λ ∈ Θ} < sup{π0(λ),λ ∈ Θ} <∞.

Under these assumption, it is further shown that Γ⋆β(µ) is the best possible rate of decay for strategies that
spend a fraction β of the time on the optimal arm, that is, any strategy such that Na⋆(µ)(t)/t converges
to β satisfies

lim sup
n→∞

−
1

n
logPθ∼Πn (θa⋆(µ) < max

a
θa) ≤ Γ⋆β(µ).

Note that in order to have the fastest decay rate, one should further select β⋆ = argmaxβΓ⋆β(µ) which is
such that T ⋆(µ) = 1/Γ⋆β⋆(µ). Yet this optimal tuning depends on the arms’ means.
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From Bayesian to fixed-confidence guarantees Under some conditions on the prior distribution, a
sufficient condition to prove (4.13) is to establish the almost sure convergence of the vector (Na(t)/t)

A
a=1

to the weight vector wβ(µ), where

wβ
(µ) ∈ argmax

w∈ΣA∶
wa⋆(µ)

=β

inf
λ∈Alt(µ)

A

∑
a=1

wad(µa, λa).

Indeed Russo (2016) proves the following result, under the above condition on the prior Π0.

Lemma 4.7. If the prior Π0 has a bounded support in natural parameter space with a positive density,
any allocation rule satisfying Na⋆(µ)(t)/t→ wβa (µ) Pµ-a.s. for all a ∈ [A] satisfies

lim
n→∞

−
1

n
logPθ∼Πn (θa⋆(µ) < max

a
θa) = Γ⋆β(µ), Pµ − a.s..

The assumptions on Π0 are a bit restrictive, as they rule out the typical conjugate priors used for
Bernoulli and Gaussian bandits. In the paper Qin et al. (2017), the author later proved that this result
also holds for Gaussian distribution with the usual improper prior, and in the paper Shang et al. (2020),
we prove that it also holds for Bernoulli bandits with a Beta prior (see Theorem 6 therein). In this work,
we also show that under TTTS with parameter β the empirical proportions of draws of each arm do
converge to w⋆

β(µ) for Gaussian and Bernoulli bandits with these practical prior distributions, hence
TTTS is optimal in terms of the decay of posterior probability of the set of wrong models.

A natural question is whether this convergence property is sufficient to provide sample complexity
guarantees for the δ-correct algorithm that combines the Parallel GLRT stopping and recommendation
rule with the TTTS sampling rule 1. From the convergence property, one can easily deduce the following
bound on τδ, which holds almost surely.

Lemma 4.8. Fix µ a bandit model. Under an anytime sampling rule that satisfies, for all a ∈ [A]

limt→∞
Na(t)
t = wβa (µ), almost surely, it holds that

Pµ
⎛

⎝
lim sup
δ→0

τδ
log(1/δ)

≤
1

Γ⋆β(µ)

⎞

⎠
= 1.

Proof. We assume that a⋆(µ) = 1 to fix the ideas and let E be the event

E = {∀a ∈ [A],
Na(t)

t
→
t→∞

(w⋆
β(µ))a and µ̂(t) →

t→∞
µ} .

From the assumption on the sampling rule and the law of large numbers (as all arms are drawn a linear
amount of time since the weights are non-zero), E is of probability 1.

On E , there exists t0 such that for all t ≥ t0, µ̂1(t) > maxa≠1 µ̂a(t), hence Alt(µ̂(t)) = Alt(µ) and
the Parallel GLRT stops when Z(t) exceed β(t, δ) where

Z(t) = inf
λ∈Alt(µ)

A

∑
a=1

Na(t)d(µ̂a(t), λa) = t ×min
a≠1

Ga (ŵ(t), µ̂(t)) ,

with ŵa(t) =
Na(t)
t and

Ga(w,λ) = w1d(λ1,
w1λ1 +waλa
w1 +wa

) +wad(λa,
w1λ1 +waλa
w1 +wa

) .

1. Recall that the Parallel GLRT rule is δ-correct under any sampling rule, in particular with TTTS.
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For all a ≥ 2, the mapping (w,λ) → Ga(w,λ) is continuous at (wβ(µ),µ). Therefore, for all ε > 0
there exists t1 ≥ t0 such that for all t ≥ t1 and all a ∈ [A],

Ga (ŵ(t), µ̂(t)) ≥
Ga (w

β(µ),µ)

1 + ε
.

Hence, for t ≥ t1,

Z(t) ≥
t

1 + ε
min
a≠1

Ga (w
β
(µ),µ) =

t

1 + ε
min

λ∈Alt(µ)

A

∑
a=1

wβa (µ)d(µa, λa) =
t

1 + ε
Γ⋆β(µ).

Consequently,

τδ = inf{t ∈ N ∶ Z(t) ≥ β(t, δ)}

≤ t1 ∨ inf

⎧⎪⎪
⎨
⎪⎪⎩

t ∈ N ∶ t ≥
1 + ε

Γ⋆β(µ)
β(t, δ)

⎫⎪⎪
⎬
⎪⎪⎭

.

The threshold β(t, δ) satisfies β(t, δ) ≤ log ( t
δ
) + oδ→0 (log (1

δ
)) and simple algebra (e.g. Lemma 18 in

Garivier and Kaufmann (2016)) shows that

τδ ≤ t1 ∨
⎡
⎢
⎢
⎢
⎣

(1 + ε)

Γ⋆β(µ)
log (

1

δ
) + oδ→0 (log (

1

δ
))

⎤
⎥
⎥
⎥
⎦
.

Thus τδ is finite on E for every δ ∈ (0,1), and

lim sup
δ→0

τδ
log(1/δ)

≤
(1 + ε)

Γ⋆β(µ)
.

Letting ε go to zero concludes the proof.

◻

However, the almost sure convergence of the empirical proportions is not sufficient to prove a bound
on the expected sample complexity. To prove such a result for Track-and-Stop, a more precise result on
the convergence speed was needed (Lemma 4.5). In Shang et al. (2020), we establish an expected sample
complexity bound for TTTS by following the same technique as the one introduced by Qin et al. (2017)
to analyse the sample complexity of another Bayesian algorithm named TTEI (for Top-Two Expected
Improvement). They show that a sufficient condition to establish

lim sup
δ→∞

Eµ[τδ]
log (1/δ)

≤
1

Γ⋆β(µ)
(4.14)

for any sampling rule used in conjunction with the Parallel GLRT is to show that this sampling rule
satisfies, for all ε ∈ (0,1), E [T εβ] <∞ where T εβ is the random variable

T εβ ∶= inf {N ∈ N ∶ max
a∈[A]

∣
Na(n)

n
−wβa ∣ ≤ ε;∀n ≥ N} .

In Theorem 3 of Shang et al. (2020), we prove that TTTS satisfies E [T εβ] < ∞ for Gaussian bandits.
Establishing this property for TTTS is much more intricate than for TTEI due to the randomized nature
of TTTS.

Hence, the BAI algorithm that uses TTTS as a sampling rule and the Parallel GLRT stopping and
recommendation rule satisfies (4.14). The following lower bound (proved using the exact same technique
as for Theorem 4.1) shows that this is optimal, among algorithms allocating a β fraction of the samples
to the optimal arm. We call an algorithm matching this lower bound a β-optimal algorithm.
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Theorem 4.9. Let δ ∈ (0,1). For any δ-PAC strategy, for all µ such that the sampling rule satisfies
Na⋆(µ)

(t)
t → β Pµ - a.s., it holds that

Eµ[τδ] ≥
1

Γ⋆β(µ)
kl(δ,1 − δ).

Is TTTS a good alternative to Track-And-Stop? We established that a Bayesian BAI algorithm
can have a near-optimal sample complexity without performing a costly computation of the optimal
proportion in every-round. However, to be asymptotically optimal for BAI, TTTS would need to be run
with the oracle parameter β⋆ where β⋆ =w⋆

a⋆(µ)(µ), which is of course unknown.

In practice, Russo (2016) suggests the use of β = 1/2 which is proved to satisfy Γ⋆1/2(µ) ≥ Γ⋆β⋆(µ)/2

for all µ. But he also shows that if the algorithm uses in each step t a parameter βt that satisfies βt → β⋆

almost surely, then the Bayesian optimality properties are preserved. However, this is less clear for the
fixed-confidence guarantees, and an efficient adaptive tuning (that does not need a complex oracle call in
every round) has still to be found.

Under TTTS, the cost of an oracle call to w⋆ is replaced by the cost of sampling the posterior.
While sampling from the typical conjugate posterior used in exponential families is easy, note that the
re-sampling step (l. 9-11 in Algorithm 10) can be quite long. Indeed, when the posterior on all arms
become concentrated, a lot of samples are needed before the optimal arm appears sub-optimal. In Shang
et al. (2020), we propose an efficient approximation of this costly re-sampling step, which leads to the
T3C algorithm (for Top Two Transportation Cost). Introducing the transportation cost

Wn(a, b) ∶ ={
0 if µ̂b(n) ≥ µ̂a(n),

Na(n)d (µ̂a(n), µ̂a,b(n)) +Nb(n)d (µ̂b(n), µ̂a,b(n)) otherwise,

it can be observed that under TTTS, if I(1)n and I(2)n are the two candidate arms that can be sampled in
round n + 1,

P (I(2)n = b∣I(1)n = a) =
an,b

∑k≠a an,k
(4.15)

where an,k is the posterior probability that arm k is optimal: an,k = Πn (θk > maxi≠k θi). When a

coincides with the empirical best mean (this will often be the case for I(1)n when n is large due to
posterior convergence) one can write

an,b ≃ Πn (θb ≥ θa) ≃ exp (−Wn(a, b)) ,

where the last step is justified for Gaussian and Bernoulli distribution by upper bound that we provide
in Shang et al. (2020). In T3C we propose to replace sampling from the distribution (4.15) by an
approximation of its mode, which is easy to compute. That is, we define

I(2)n = argmin
b≠I(1)n

Wn (I(1)n , b)

where I(1)n = argmaxaθa with θ ∼ Πn and the T3C sampling rule selects

An+1 =

⎧⎪⎪
⎨
⎪⎪⎩

I
(1)
n with probability β ,
I
(2)
n with probability 1 − β .

Experiments performed in Shang et al. (2020) reveal that T3C has comparable performance to TTTS
but with smaller computational cost.

Hence, the next step is to combine T3C with an adaptive tuning of β in order to propose a computa-
tionally simple asymptotically optimal algorithm.



Chapter 5

Applications to Monte-Carlo Tree Search

In this chapter, we focus on two more sophisticated examples of Active Identification problems that
are motivated by the search for a better theoretical understanding of Monte-Carlo Tree Search. The
presented works are the outcome of a fruitful collaboration with Wouter Koolen and Aurélien Garivier.

5.1 A Simple Model for Planning in Games

The word “planning” has different meanings in the context of reinforcement learning. It often means
computing the optimal policy in a Markov Decision Process (MDP) with known reward function and
transition probabilities, i.e. find out what is the best next action to take in each possible state. But when
the MDP is large, this task is already very hard as the usual Dynamic Programming solution is intractable.
A simpler objective is therefore to find the best action to perform in the current state, based on possible
calls to a generative model, which simulates transitions in the MDP often in the form of trajectories
starting in the current state. This is the planning task we have in mind in this chapter: finding the best
action to take in a given state using as few calls to the generative model as possible.

Such a planning problem has also been studied in the context of two player games, where the goal is
to find the best possible move to take for a given player in a given state of the game, by exploring several
trajectories (sequences of successive moves by the two players) starting from this state. Besides simple
(solved) games in which the tree of all possible trajectories can be fully stored, Monte-Carlo Tree Search
methods (see, e.g., Browne et al., 2012, for a survey) may be used to smartly explore a subset of this very
large game tree in order to find a good move. The architecture of a typical MCTS algorithm in shown in
Figure 5.1.

Figure 5.1 – The 4 steps of common MCTS algorithms. White nodes present the states in which the
root player takes action (MAX nodes), grey states the states in which the adversary plays (MIN nodes)
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A MCTS algorithm has two crucial components: a selection strategy, which (adaptively) chooses a
path down the search tree, and a leaf evaluation method. The first MCTS algorithms often relied on a
random evaluation (called simulation in Figure 5.1) in the form of a playout which consists in finishing
the game from the current position using a simple heuristic (typically, playing at random) and reporting
1 if the game was won by the root player, 0 otherwise. Outcomes of theses playouts are then back-
propagated to the state visited before reaching the leaf, and may be used by an adaptive selection strategy.
In more recent MCTS algorithms that lead to a breakthrough in Go, namely AlphaGo (Silver et al., 2016)
and AlphaZero (Silver et al., 2018), playouts are combined or even replaced by a leaf evaluation function
that is learned by a neural network, mapping the board to a value. Still, we propose below an idealized
model for the vanilla playout based Monte-Carlo Tree Search, trying to answer the following question:
how many (random) leaf evaluations are needed to be able to find a good move at the root of the game
tree?

As will be seen shortly, in the proposed model this question can be framed as an active identification
problem in a multi-armed bandit model. Since the seminal work of Kocsis and Szepesvári (2006) who
proposed the UCT algorithm (for Upper Confidence bounds applied to Trees), selection rules based on
bandit tools have been successfully used for MCTS, in particular for the design of the first computer Go
programs (Coulom, 2006). UCT goes down the search tree by selecting the most promising children to
explore using a UCB algorithm, that is, exploration is targeted toward the parts of the search tree that
lead to successful playouts. However, the goal of an MCTS algorithm is not to win a large number of
simulated games (i.e. maximize some notion of reward), but rather to identify the best first action to
take when exploration in over. In light of the fundamental difference between algorithms for reward
maximization and best arm identification that has been discussed in previous chapters, it is natural to
wonder whether alternative approaches ignoring these rewards could have a better performance.

Despite the practical success of UCT, this algorithm has only been analyzed in terms of conver-
gence towards a good recommendation when the number of sampled trajectories is large, and no sample
complexity guarantees are available for this algorithm. With Aurélien Garivier and Wouter Koolen, we
worked on new MCTS algorithms based on BAI tools and gave upper bounds on their sample complexity
(Garivier et al., 2016a; Kaufmann and Koolen, 2017).

A simple model for MCTS in games We present an idealized model for Monte-Carlo Tree Search in
a two-player game represented by a game tree G. This tree models the possible action sequences by a
collection of MAX nodes, that correspond to states in the game in which player A should take action,
MIN nodes, for states in the game in which player B should take action, and leaves in which random
evaluations of the positions can be performed. The root of this tree is a MAX node, and the goal is to
find the best first action to take at the root for player A.

Letting L be the set of leaves of this tree, for each ` ∈ L we introduce a stochastic oracle O` that
represents the playout performed when this leaf is reached by an MCTS algorithm. In this model, we do
not try to optimize the evaluation or playout strategy, but we rather assume that the oracle O` produces
i.i.d. samples from an unknown distribution whose mean µ` is the value of the position `. To ease the
presentation, we focus on binary oracles (indicating the win or loss of a playout), in which the oracle O`
is a Bernoulli distribution with unknown mean µ`, which is the probability of player A winning the game
in the corresponding state.

We denote by µ = (µ`)`∈L the collection of leaf values. For each node s in the tree, we denote by
C(s) the set of its children and by P(s) its parent. The root is denoted by s0. The value (for player A)
of any node s is recursively defined by Vµ(`) = µ` if ` ∈ L and

Vµ(s) = {
maxc∈C(s) Vµ(c) if s is a MAX node,
minc∈C(s) Vµ(c) if s is a MIN node.
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 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Figure 5.2 – A depth three maxmin tree with expected payoff in the leaves

Assuming that player B is strategic, an optimal move for player A is the action leading to a depth-one
node with highest value,

s⋆ ∈ argmax
s∈C(s0)

Vµ(s) ,

so that Vµ(s0) = Vµ(s
⋆). In order to identify a near-optimal move, an MCTS algorithm sequentially

selects paths in the game tree and calls the corresponding leaf oracle. At round t, a leaf Lt ∈ L is chosen
by this adaptive sampling rule, after which a sample Xt ∼ OLt is collected. The strategy also requires
a stopping rule τ , after which leaves are no longer evaluated, and a recommendation rule that outputs
upon stopping a guess ŝτ ∈ C(s0) for the best move of player A.

Given a risk level δ ∈ (0,1] and some accuracy parameter ε ≥ 0 our goal is to have a recommendation
ŝτ ∈ C(s0) whose value is within ε of the value of the best move, with probability larger than 1 − δ:

P (Vµ(s
⋆
) − Vµ(ŝτ) ≤ ε) ≥ 1 − δ.

An algorithm satisfying this property is called (ε, δ)-correct. The main challenge is to design (ε, δ)-
correct algorithms that minimize the sample complexity, that is, the number of leaf evaluations τ needed
to make the recommendation.

This problem fits the active identification framework introduced in Chapter 3, as in a bandit model pa-
rameterized by the leaf valuesµ = (µ`)`∈L the goal it to identify a regionRs = {µ ∶ Vµ(s) ≥ Vµ(s

⋆) − ε}
for s ∈ C(s0) to which µ belongs by adaptively sampling the arms of means µ. Note however that the
regions are expressed with the value function Vµ which depends in a complex way of the means µ. This
problem can be viewed as a particular instance of the structured best arm identification framework of
Huang et al. (2017), which was also introduced as a possible model for MCTS.

5.2 Monte-Carlo Tree Search by Best Arm Identification

We now present the UGapE-MCTS algorithm, which fits the more general BAI-MCTS framework
that we introduced in Kaufmann and Koolen (2017), and later discuss optimal MCTS algorithms.

5.2.1 UGapE-MCTS

Recall that our goal is to identify the action at the root that leads to the state at depth one that has
largest value. If one had access to a stochastic oracle producing i.i.d. samples with means V (s) for each
s ∈ C(s0) this would be a standard best arm identification problem. However, the difficulty in the MCTS



100 CHAPTER 5. APPLICATIONS TO MONTE-CARLO TREE SEARCH

problem comes from the fact that we can only sample the leaves to refine our estimates about the values
of the target depth-one nodes.

Still, UGapE-MCTS builds on a best arm identification algorithm called UGapE (Gabillon et al.,
2012) (designed for finding the m best arms but used here for m = 1) for choosing the first step towards
a leaf. The specificity of UGapE is that its stopping, sampling and recommendation rules are fully
determined by confidence intervals on the means of the arms. Hence, used in conjunction with confidence
intervals on the values at depth one, UGapE permits to select a promising depth-one node to explore.
This is the first step of the two-staged UGapE-MCTS, which then select a representative leaf to sample
from the selected depth-one node.

Before giving a more precise description of UGapE-MCTS, we elaborate on its two central ele-
ments: the construction of the confidence intervals and the notion of a representative leaf.

Confidence intervals and representative nodes For each leaf ` ∈ L, using the past (i.i.d.) observations
from this leaf we may build a confidence interval

I`(t) = [LCB`(t),UCB`(t)],

where UCB`(t) (resp. LCB`(t)) is an Upper Confidence Bound (resp. a Lower Confidence Bound) on
the value V (`) = µ`. The specific confidence interval we shall use will be discussed later.

These confidence intervals are then propagated upwards in the tree using the following construction.
For each internal node s, we recursively define Is(t) = [LCBs(t),UCBs(t)] with

LCBs(t) = {
maxc∈C(s) LCBc(t) for a MAX node s,
minc∈C(s) LCBc(t) for a MIN node s,

UCBs(t) = {
maxc∈C(s) UCBc(t) for a MAX node s,
minc∈C(s) UCBc(t) for a MIN node s.

Note that these intervals are the tightest possible on the parent under the sole assumption that the
confidence intervals of the children are all valid. A similar construction was used in the OMS algorithm
of Borsoniu et al. (2014) in a different context. It is easy to convince oneself (or prove by induction) that
the accuracy of the confidence intervals is preserved under this construction, as stated below.

Proposition 5.1. Let t ∈ N. One has ⋂`∈L (µ` ∈ I`(t)) ⇒ ⋂s∈G (Vµ(s) ∈ Is(t)).

We further define the representative child cs(t) of an internal node s as

cs(t) ∈ {
argmaxc∈C(s) UCBc(t) if s is a MAX node,
argminc∈C(s) LCBc(t) if s is a MIN node,

and the representative leaf `s(t) of a node s ∈ G, which is the leaf obtained when going down the tree
by always selecting the representative child:

`s(t) = s if s ∈ L, `s(t) = `cs(t)(t) otherwise.

The confidence intervals in the tree represent the statistically plausible values in each node, hence the
representative child can be interpreted as an “optimistic move” in a MAX node and a “pessimistic move”
in a MIN node (assuming we play against the best possible adversary). This is reminiscent of the behavior
of the UCT algorithm (Kocsis and Szepesvári, 2006), which uses however different types of confidence
intervals. In UCT, the confidence interval used in a given node is built as if the outcomes of the playouts
performed in the whole sub-tree rooted at this node were i.i.d. whereas in UGapE-MCTS the confidence
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intervals are built in the leaves only (in which the observations are indeed i.i.d.) and propagated in the
tree.

The construction of confidence intervals and the representative child are illustrated in Figure 5.3
while Figure 5.4 illustrates the confidence intervals in the whole tree as well as the path down to the
representative leaf.

(a) Children (b) Parent

Figure 5.3 – Construction of confidence interval and representative child (in red) for a MAX node.

s0

Figure 5.4 – Confidence intervals in the whole tree built recursively from the leaves. Arrows show the
path down to the representative leaf from each depth-one node.

UGapE-MCTS Following what is done in the UGapE algorithm of Gabillon et al. (2012), we introduce
for each depth-one node the index

Bs(t) = max
s′∈C(s0)/{s}

UCBs′(t) − LCBs(t).

Bs(t) is meant to be an upper confidence bound on the simple regret Vµ(s⋆) − Vµ(s). Next, we define
the following two promising depth-one nodes, a candidate best arm bt and a challenger ct:

bt = argmin
a∈C(s0)

Ba(t) and ct = argmax
b∈C(s0)/{bt}

UCBb(t).

At round t + 1, UGapE-MCTS first computes and selects as the first node to explore the one among bt
and ct whose confidence interval is the largest (that is, the most uncertain node):

Rt+1 = argmax
i∈{bt,ct}

[UCBi(t) − LCBi(t)] .
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Then the algorithm goes down the tree and samples the representative leaf of Rt+1: Lt+1 = `Rt+1(t).
UGapE-MCTS stops when the confidence intervals of the two promising arms overlap by less than ε:

τ = inf {t ∈ N ∶ UCBct
(t) − LCBbt

(t) < ε} ,

and it recommends ŝτ = bτ .

Analysis of UGapE-MCTS The confidence interval for the mean of each leaf µ` depends on N`(t),
the number of visits of this leaf in the first t rounds, and µ̂`(t) the empirical mean of the playouts from
this leaf. We analyze UGapE-MCTS based on the following confidence intervals:

LCB`(t) = max{q ∶ N`(t)kl (µ̂`(t), q) ≤ β(N`(t), δ)} (5.1)

and UCB`(t) = min{q ∶ N`(t)kl (µ̂`(t), q) ≤ β(N`(t), δ)} , (5.2)

where kl is the binary relative entropy and β(s, δ) is some exploration function. An interesting practi-
cal feature of these confidence intervals is that they only depend on the local number of draws N`(t),
whereas most of the confidence-based BAI algorithms use exploration functions that depend on the num-
ber of rounds t. Hence the only confidence intervals that need to be updated at round t are those of the
ancestors of the selected leaf, which can be done recursively.

Using Theorem 3.1 in Chapter 3, the threshold can be tuned to ensure that the event

E = ⋂
`∈L

(µ` ∈ [LCB`(t),UCB`(t)])

holds with probability 1 − δ. On this event, it can be observed that by definition of the stopping rule, the
algorithm outputs an action which is ε-optimal, which yields the following result.

Lemma 5.2. Letting T (x) be the threshold function defined in (3.7) in Chapter 3. Choosing

β(s, δ) = T (log(
∣L∣

δ
)) + 3 log(log s + 1) (5.3)

UGapE-MCTS satisfies P(V (s⋆) − V (ŝτ) ≤ ε) ≥ 1 − δ.

To introduce our sample complexity guarantees, we first introduce some notation. Recall that s⋆ is
the optimal action at the root, identified with the depth-one node satisfying V (s⋆) = V (s0), and define
the second-best depth-one node as s⋆2 = argmaxs∈C(s0)/{s⋆} V (s). Recall P(s) denotes the parent of a
node s different from the root. Introducing furthermore the set Anc(s) of all the ancestors of a node s,
we define the complexity term by

H⋆
ε (µ) ∶=∑

`∈L

1

∆2
` ∨∆2

∗ ∨ ε2
, where

∆∗ ∶= V (s⋆) − V (s⋆2)
∆` ∶= maxs∈Anc(`)/{s0} ∣V (s) − V (P(s))∣

(5.4)

The intuition behind these squared terms in the denominator is the following. We will sample a leaf
` until we either prune it (by determining that it or one of its ancestors is a bad move), prune everyone
else (this happens for leaves below the optimal arm) or reach the required precision ε.

Theorem 5.3. Let δ ∈ (0,1). UGapE-MCTS using the exploration function (5.3) is such that, with
probability larger than 1 − δ, (V (s⋆) − V (ŝτ) < ε) and, letting ∆`,ε = ∆` ∨∆∗ ∨ ε,

τ ≤ ∑
`∈L

8

∆
2
`,ε

⎛

⎝
T (log(

∣L∣

δ
)) + 4 log log

1

∆
2
`,ε

⎞

⎠
+ 32H⋆

ε (µ) log log(8eT (log
∣L∣

δ
)) + 1 .
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Recalling that T (x) ∼ x+log log(x), with high probability the sample complexity of UGapE-MCTS
is of orderO (H⋆

ε (µ) log (1
δ
)). This sample complexity improves over the one of the FindTopWinner al-

gorithm previously proposed by Teraoka et al. (2014), which is based on eliminations and stops exploring
a sub-tree rooted in a particular node if a gap between this node and its parents is detected. Numerical
simulations reported in Kaufmann and Koolen (2017) also reveal that UGapE-MCTS greatly outper-
forms FindTopWinner in practice.

The independent work of Huang et al. (2017) proposed the LUCBMinMax algorithm, which is very
similar to UGapE-MCTS. The two algorithms only differ in the way the best guess bt is picked. The
analysis is very similar to ours, but features some refined complexity measure, in which ∆` (which is
the maximal distance between consecutive ancestors of the leaf, see (5.4)) is replaced by the maximal
distance between any ancestors of that leaf. We note that an improvement along these lines could be
obtained in our analysis, by updating Lemma 5.5, as explained in the proof below.

Sketch of proof of Theorem 5.3. Letting Et = ⋂`∈L (µ` ∈ I`(t)) and E = ⋂t∈N Et, we upper bound τ
assuming the event E holds. To do so, we shall relate the number of selections of each leaf N`(τ) to the
associated gap ∆`,ε = ∆` ∨∆∗ ∨ ε.

A first observation is the following important consequence of the definition of the representative leaf,
which says that along a path s0, s1, . . . , sD to a leaf ` = sD, the confidence intervals are nested.

Lemma 5.4. Let t ∈ N and s0, s1, . . . , sD be a path from the root down to a leaf ` = sD.

(`s1(t) = sD)⇒ (∀k = 2, . . . ,D, Isk−1(t) ⊆ Isk(t)) .

As a consequence, on the event E , if a path s0, s1, . . . , sD = ` is selected by UGapE-MCTS at
round t+1, the interval ILt+1(t) – whose width is upper bounded by

√
2β(N`(t), δ)/N`(t) by Pinsker’s

inequality – contains all the values V (s1), . . . , V (sD). Hence the following result.

Lemma 5.5. Let t ∈ N and s0, s1, . . . , sD be a path from the root down to a leaf ` = sD. If Et holds and
` is selected at round t + 1 then

max
k=2...D

∣V (sk) − V (sk−1)∣ ≤

¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
.

We note that this lemma could be tightened to obtain a sample complexity in the spirit of the one
given by Huang et al. (2017): as all the values V (sk) belong to I`(t) for k = 1, . . . ,D, the width of
this confidence interval is also larger than the maximal distance between any two V (sk), and not only
consecutive values.

The next step of the analysis is a consequence of some properties of the UGapE mechanism used at
depth one, which relates the width of IRt+1(t) (and thus that of ILt+1(t)) to the gap in depth one.

Lemma 5.6. If Et holds, t < τ and Rt+1 = s1, then

(V (s0) − V (s1)) ∨∆∗ ∨ ε ≤ 2 (UCBs1(t) − LCBs1(t)) .

Using that

UCBRt+1(t) − LCBRt+1(t) ≤ UCBLt+1(t) − LCBLt+1(t) ≤

¿
Á
ÁÀ2β(N`(t), δ)

N`(t)

by Lemma 5.4 and Pinsker’s inequality, it follows from Lemma 5.5 and Lemma 5.6 that if the path
s0, s1, . . . , sD = ` is selected in round t + 1 when Et holds and t < τ ,

(V (s0) − V (s1)) ∨∆∗ ∨ ε ∨ max
k=2...D

∣V (sk) − V (sk−1)∣ ≤ 2

¿
Á
ÁÀ2β(N`(t), δ)

N`(t)
.
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From the definition of ∆`, this is equivalent to the following statement.

Lemma 5.7. Let t ∈ N. Et ∩ (τ > t) ∩ (Lt+1 = `) ⇒ N`(t) ≤
8β(N`(t),δ)
∆2
`
∨∆2

∗
∨ε2 .

The last tool for the proof is the following lemma (which is a variant of Lemma 6 in Kaufmann and
Koolen (2017)), which permits to invert the above inequality and find the largest possible value of N`(t)
for which it holds, for the specific exploration rate in (5.3).

Lemma 5.8. Let β(s) = C + 3 log(1 + log(s)) and define S = sup{s ≥ 1 ∶ aβ(s) ≥ s}. Then

S ≤ aC + 4a log(1 + log(aC)).

On the event E , letting τ` be the last instant before τ at which the leaf ` has been played before
stopping, one has N`(τ − 1) = N`(τ`) that satisfies by Lemma 5.7

N`(τ`) ≤
8β(N`(τ`), δ)

∆2
` ∨∆2

∗ ∨ ε2
.

Applying Lemma 5.8 with a = a` = 8
∆2
`
∨∆2

∗
∨ε2 and C = T (log (

∣L∣
δ )) leads to

N`(τ − 1) ≤
8

∆2
` ∨∆2

∗ ∨ ε2
[T (log(

∣L∣

δ
)) + 4 log(1 + log(

8

∆2
` ∨∆2

∗ ∨ ε2
T (log(

∣L∣

δ
))))] .

Recalling that ∆`,ε = ∆` ∨∆∗ ∨ ε and summing over arms, we find

τ = 1 +∑
`

N`(τ − 1)

≤ 1 +∑
`

8

∆
2
`,ε

⎡
⎢
⎢
⎢
⎢
⎣

T (log(
∣L∣

δ
)) + 4 log

⎛

⎝
1 + log

⎛

⎝

8

∆
2
`,ε

T (log(
∣L∣

δ
))

⎞

⎠

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 1 +∑
`

8

∆
2
`,ε

⎛

⎝
T (log(

∣L∣

δ
)) + 4 log log

1

∆
2
`,ε

⎞

⎠
+ 32H⋆

ε (µ) log log(8eT (log
∣L∣

δ
)) .

To conclude the proof, we use that, as already noted above, V (s⋆) − V (ŝτ) < ε on the event E and that
the threshold β(s, δ) was calibrated in Lemma 5.2 so that E holds with probability larger than 1 − δ.

◻

5.2.2 Towards Optimal Strategies

By leveraging a sub-optimal best arm identification algorithm, UGapE, to propose an algorithm for
the MCTS problem, one may be quite far from designing a MCTS algorithm with a minimal sample
complexity. This is corroborated by the fact that the complexity terms H⋆

ε (µ) features a sum over all
leaves, while one could expect only a few leaves to be useful, as in the best case of α − β pruning.

As the MCTS is a particular active identification problem, to measure the room for improvement,
one can write the lower bound of Theorem 4.1, at least in the special case ε = 0.

Theorem 5.9. Assume ε = 0 and define Alt(µ) = {λ ∈ [0,1]∣L∣ ∶ s⋆(λ) ≠ s⋆(µ)}. Any δ-correct
algorithm satisfies

Eµ[τ] ≥ T ⋆(µ) log (
1

3δ
) , where T ⋆(µ)−1

∶= sup
w∈Σ

∣L∣

inf
λ∈Alt(µ)

∑
`∈L

w`kl (µ`, λ`) (5.5)

with Σk = {w ∈ [0,1]k ∶ ∑ki=1wi = 1} and kl(x, y) = x log(x/y) + (1 − x) log((1 − x)/(1 − y)).
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To compare T ⋆(µ) and H⋆
0 (µ), a more explicit expression of the former quantity is needed. For

depth-two trees with K (resp. M ) actions for player A (resp. B), T ⋆(µ) can be made more explicit,
revealing an interesting sparsity pattern.

Lemma 5.10. Assume ε = 0 and consider a tree of depth two with µ = (µi,j)1≤i≤K,1≤j≤M such that
∀(i, j), µ1,1 > µi,1, µi,1 < µi,j . The supremum in the definition of T ⋆(µ)−1 can be restricted to

Σ̃K,M ∶= {w ∈ ΣK×M ∶ wi,j = 0 if i ≥ 2 and j ≥ 2}

and

T ⋆(µ)−1
= max
w∈Σ̃K,M

min
i=2,...,K
a=1,...,M

[w1,ad(µ1,a,
w1,aµ1,a +wi,1µi,1

w1,a +wi,1
)+wi,1kl(µi,1,

w1,aµ1,a +wi,1µi,1

w1,a +wi,1
)] .

For depth-two trees, the fact that the optimal weights w⋆(µ) are supported on only K +M − 1 of
the K ×M leaves suggests that matching algorithms should draw many of the leaves much less than
O(log(1/δ)) times. This shows that the complexity quantity H⋆

0 (µ), which scales in KM
∆2
⋆

for depth-two
trees, is not optimal in the case (assuming the lower bound can be reached).

In order to design an asymptotically optimal algorithm, one could try to follow a similar approach as
that of Track-and-Stop for best arm identification, described in Chapter 4: use a sampling rule tracking
the optimal weights (with some forced exploration) together with the Parallel GLRT as a stopping rule.
We first tried this approach for depth-two trees with K = 2 actions for the root player, for which we
could obtain an efficient algorithm for computing the optimal weights in the lines of the one proposed in
Theorem 4.3 for best arm identification. However, the resulting sample complexity was not significantly
smaller than that of UGapE-MCTS, unlike what happens for best arm identification where the sample
complexity of Track-and-Stop is twice smaller than that of UGapE.

Beyond K = 2 and beyond depth-two trees, computing the optimal weights is more involved. Using
software for disciplined optimization (CVX), Wouter Koolen wrote a program for computing the optimal
weights for depth-three trees. We found out that, as in the depth-two cases, a lot of these optimal weights
are indeed zero. However we couldn’t provide a characterization of their support as we do in Lemma 5.10
for depth-two trees.

Hence, finding an asymptotically optimal algorithm for MCTS that is both numerically efficient and
has a small empirical sample complexity for moderate values of δ remains an open question.

5.3 From Thompson Sampling to Murphy Sampling

A crucial component of the UGapE-MCTS algorithm is the construction of confidence intervals on
the values V (s) of all nodes in the tree. UGapE-MCTS relies on a simple construction that builds an
upper confidence bound on the minimum (resp. a lower confidence bound on the maximum) of several
values by taking the minimum of the upper confidence bounds on these values (resp. the maximum of
the lower confidence bounds). Motivated by possible improvements to UGapE-MCTS, we worked with
Wouter Koolen and Aurélien Garivier on improved confidence intervals on the minimum and maximum,
and on a related active identification problem: that of finding whether the minimum of a set of means
is smaller or larger than a threshold. This work was published in Kaufmann et al. (2018) and we now
describe its key features.

Given a finite collection of probability distributions in a one-parameter exponential family parame-
terized by their means µ = (µ1, . . . , µA) ∈ I

A, we are interested in learning about µmin = mina µa from
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adaptive samples Xt ∼ µAt , where At indicates the distribution sampled at time t. More precisely, given
a threshold γ ∈ I, our goal is to decide whether µmin < γ or µmin > γ. We introduce the regions

R< = {µ ∈ I
A
∶ µmin < γ} and R> = {µ ∈ I

A
∶ µmin > γ} , and their unionR = R< ∪R>

We want to propose a sequential and adaptive testing procedure, that consists of a sampling rule At, a
stopping rule τ and a decision rule m̂ ∈ {<,>}. The algorithm samples Xt ∼ µAt while t ≤ τ , and then
outputs a decision m̂. Given a risk parameter δ ∈ (0,1], we aim for a δ-correct algorithm, that satisfies
Pµ (µ ∈Rm̂) ≥ 1 − δ for all µ ∈ R. Our goal is to build δ-correct algorithms that use a small number of
samples τδ in order to reach a decision. In particular, we want the sample complexity Eµ[τ] to be small.

This active identification problem can have different types of applications. For example in e-learning,
we may want to certify that a given student has sufficient understanding of a range of subjects, asking as
few questions as possible about the different subjects. Then in anomaly detection, the more anomalies
are present, the faster we may want to flag the presence of an anomaly. Yet, our motivation for studying
this problem came from the modeling of a simple Monte-Carlo Tree Search problem, in which the value
of a MIN node should be compared to the known values of its neighbors, as illustrated in Figure 5.5. Note
that we study minimums to fix the ideas, but one could develop similar methods to adaptively compare
the maximum of a bunch of means to a threshold.

Figure 5.5 – Game tree search problem of “depth 1 + 1/2”. We consider the scenario where it has been
established that the right subtree (grey) of the root has value γ. Learning the optimal action at the root

(orange) is equivalent to determining how the minimum (blue) of the leaf means (green) compares to γ.

Computing the lower bound For the active identification problem studied in this section, it is actually
possible to provide an explicit expression of the sample complexity lower bound —and the associated
optimal proportions— which can be derived with the methodology presented in Chapter 3.

Lemma 5.11. Any δ-correct strategy satisfies Eµ[τδ] ≥ T ⋆(µ)kl(δ,1 − δ) with

T ⋆(µ) =

⎧⎪⎪
⎨
⎪⎪⎩

1
kl(µmin,γ) if µmin < γ,

∑
A
a=1

1
kl(µa,γ) if µmin > γ.

The vector of optimal proportions w⋆(µ) 1 is such that

∀a ∈ [A], w⋆
a(µ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1(µa=µmin)
∑Aj=1 1(µj=µmin)

if µmin < γ,
1

kl(µa,γ)

∑Aj=1 1
kl(µj,γ)

if µmin > γ.

1. If the arm with smallest mean is not unique, any probability distribution whose support is included in the set of arms
with mean µmin is an optimal allocation, not just the example given
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Proof. We recall from Chapter 4 that

(T ⋆(µ))−1
= sup
w∈ΣA

inf
λ∈Alt(µ)

A

∑
a=1

wakl(µa, λa)

where for this active identification problem Alt(µ) =R< (resp. R>) if µ ∈R> (resp. R<).
If µmin < γ, then we find

1

T ⋆(µ)
= max
w∈ΣA

∑
a∶µa<γ

wakl(µa, γ) = max
a∶µa<γ

kl(µa, γ) = kl(µmin, γ)

and a maximizer is obtained for any distribution supported on arms a whose mean is equal to µmin. On
the other hand, if µmin > γ, we find

1

T ⋆(µ)
= max
w∈ΣA

min
a

wa kl(µa, γ) =
1

∑a
1

kl(µa,γ)

and the maximum is attained for w⋆
a(µ) =

1
kl(µa,γ)

∑j 1
kl(µj,γ)

.

◻

As explained in Chapter 3, the oracle weights w⋆(µ) correspond to the fraction of samples that
should be allocated to each arm under a strategy matching the lower bound. The interesting feature here
is that the lower bound indicates that an oracle algorithm should have very different behavior depending
on whether µ belongs to R< or to R>. On R< it should sample the arm with lowest mean (or all lowest
means, if there are several) exclusively, while on R> it should sample all arms with certain specific
proportions.

In light of the lower bound in Lemma 5.11, we now investigate the design of optimal learning algo-
rithms (sampling rule At and stopping rule τ ). To ease the presentation, we assume that there is a unique
arm with smallest mean, which we denote by amin.

5.3.1 Sampling Rule: Murphy Sampling

The key contribution of this work is a new sampling rule under which the empirical fraction of
selections of each arm, Na(t)/t, converges to the corresponding optimal proportion w⋆

a(µ), for any
µ ∈ R. Unlike previously proposed asymptotically optimal algorithms for active identification, this
sampling rule does not rely on the Tracking idea, hence doesn’t need any forced exploration. Before
presenting Murphy Sampling, we explain that it is easy to propose sampling rules that converge tow⋆(µ)
for either µ ∈R< or µ ∈R>, but not for both.

Thompson Sampling For µ ∈ R<, the empirical proportion of draws of the arm amin with smallest
mean should converge to 1. The literature on regret minimization provides candidate algorithms that
have this type of behavior, for example Thompson Sampling. Given independent prior distributions on
the mean of each arm, we recall that this Bayesian algorithm selects an arm at random according to its
posterior probability of being optimal (in our case, the arm with smallest mean). Letting πta refer to the
posterior distribution of µa after t samples, this can be implemented as

TS: Sample ∀a ∈ [A], θa(t) ∼ π
t−1
a , then play At = arg mina∈[A] θa(t).
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If Thompson Sampling is run without stopping, one can show (see Theorem 12 in Kaufmann et al.
(2018)) that Namin(t)/t converges almost surely to 1, for every µ ∈ R. Hence, TS converges to the
optimal proportions for µ ∈R<. However, TS cannot be optimal for µ ∈R>, as the empirical proportion
of draws doesn’t converge to w⋆(µ) ≠ 1amin .

LCB For µ ∈ R>, one can show that a different algorithm, called LCB, can converge to the optimal
proportions. It requires to define confidence regions, i.e. upper and lower confidence bounds

UCBa(t) = max{q ∶ Na(t)d
+
(µ̂a(t), q) ≥ C<(δ,Na(t))}, (5.6)

LCBa(t) = min{q ∶ Na(t)d
−
(µ̂a(t), q) ≥ C>(δ,Na(t))}, (5.7)

for two threshold functions C<(δ, r) and C>(δ, r). The LCB strategy selects at each round the arm with
smallest Lower Confidence Bound:

LCB: Play At = argmina LCBa(t) .

In Appendix E of Kaufmann et al. (2018) we prove that LCB is optimal forµ ∈R> however we show that
on instances ofR< it draws all arms a ≠ amin too much and cannot converge to the optimal proportions.

Murphy Sampling We denote by Πn = P (⋅∣Fn) the posterior distribution of the mean parameters after
n rounds. We introduce a new (randomised) sampling rule called Murphy Sampling after Murphy’s Law,
as it performs some conditioning on the “worst event” (µ ∈R<):

MS: Sample θt ∼ Πt−1 (⋅∣R<), then play At = amin(θt) . (5.8)

As we will argue below, the subtle difference of sampling from Πn−1 (⋅∣R<) instead of Πn−1 (as reg-
ular Thompson Sampling does) ensures the required split personality behavior. Note that MS always
conditions on R< (and never on R>) regardless of the position of µ w.r.t. γ. This is different from the
symmetric Top Two Thompson Sampling (Russo, 2016), which essentially conditions on a⋆(θ) ≠ a⋆(µ)
a fixed fraction 1 − β of the time, where β is a parameter that needs to be tuned with knowledge of µ.
MS on the other hand needs no parameters. Also note that MS is an anytime sampling algorithm, being
independent of the risk parameter δ.

MS is technically an instance of Thompson Sampling with a joint prior Π supported only on R<.
This viewpoint is conceptually interesting, as we will apply MS identically to R< and R>. To im-
plement MS, we use that independent conjugate per-arm priors induce likewise posteriors, admitting
efficient (unconditioned) posterior sampling. Rejection sampling then achieves the required condition-
ing. Its computational cost is limited: the acceptance probability cannot be much smaller than the risk
δ provided to the algorithm. Indeed, the fact that the stopping rule (see Section 5.3.2) has not yet fired,
combined with the posterior concentration (Proposition 5.13) and the convergence of the sampling efforts
to track the sampling proportions (Theorem 5.12) reveals that the MS rejection sampling step accepts
with probability at least of order δ/(log t)3. So for reasonable values of δ, this can be small and require
a few thousands of draws (not a big deal for today’s computers), but it cannot be prohibitively small.

We now prove the convergence of Murphy Sampling under the same assumptions made by Russo
(2016): the parameter space Θ ∋ µ (or the support of the prior) is the interior of a bounded subset of RA.
This ensures that supµ,θ∈Θ kl(µ, θ) < ∞ and supµ,θ∈Θ ∥µ − θ∥ < ∞. We further assume that the prior Π

has a density π with bounded ratio supµ,θ∈Θ
π(θ)
π(µ) <∞.

Theorem 5.12. Under the above assumptions, Murphy Sampling ensures that for any µ ∈R

∀a ∈ [A],
Na(t)

t
→ w⋆

a(µ) a.s. .
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Proof. Following Russo (2016), we denote the sampling probabilities in round n by

ψa(n) = P (An = a∣Fn−1) = Πn−1 (a = arg min
j
θj ∣R<) ,

and abbreviate Ψa(n) = ∑
n
t=1ψa(t) and ψ̄a(n) =

Ψa(n)
n .

The first step of the analysis is to show that for all µ ∈R, under Murphy Sampling all arms are drawn
infinitely often, that is Na(t) → +∞, a.s., which is proved in Proposition 11 of Kaufmann et al. (2018).
An interesting corollary (which follows from a martingale convergence theorem as proved by Russo
(2016)) is the fact that limn→∞

Ψa(n)
Na(n) = 1 a.s.. Hence, the convergence of the empirical proportions to

w⋆(µ) is equivalent to the convergence of ψ̄(t) = (ψ̄a(t))a∈[A] to w⋆(µ).
Then, consider µ ∈R<. In this case the conditioning in MS is asymptotically immaterial as Πn(R<)

converges to 1, and the algorithm behaves like regular Thompson Sampling (targeted toward minimizing
rewards instead of maximizing them). As Thompson sampling has sublinear regret (Agrawal and Goyal,
2012), we should have E[Namin(t)]/t → 1. The crux of the proof is to show that the convergence
occurs almost surely. For this, we prove that ψ̄amin(t) → 1, which follows from the fact that for all
ζ ∈ (µmin,mina≠amin µa),

ψamin(t) ≥ Πt (arg min
j
θj = amin,min

j
θj ≤ γ) ≥ Πt (θamin ≤ ζ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→ 1

∏
a≠amin

Πt (θa ≥ ζ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

→ 1

→ 1.

The fact that Πt (θamin ≤ ζ) and Πt (θa ≥ ζ) converge to 1 for a ≠ amin follows from posterior conver-
gence and the fact that all arms are drawn infinitely often.

Next, consider µ ∈ R>. Let us abbreviate w⋆ = w⋆(µ). Our strategy is similar to that Russo (2016)
for proving the convergence of TTTS. It relies on two important results stated below.

Lemma 5.13 ((Russo, 2016, Proposition 4)). For any open subset Θ̃ ⊆ Θ, the posterior concentrates at
rate Πn(Θ̃) ≐ exp (−nminλ∈Θ̃∑a ψ̄a(n)kl(µa, λa)) a.s. where an ≐ bn means 1

n log an
bn
→ 0.

Lemma 5.14 ((Russo, 2016, Simplified version of Lemma 11)). Consider any sampling rule (At)t. If
for any arm a ∈ [A] and all c > 0

∑
n

ψa(n)1 (ψ̄a(n) ≥ w
⋆
a + c) <∞ ,

then ψ̄(n)→w⋆.

First, recall from Lemma 5.11 that

T ⋆(µ)−1
= max

w
min

λ∶mina λa<γ
∑
a

wad (µa, λa) = max
w

min
a
wakl (µa, γ) = w⋆

akl(µa, γ) ∀a. (5.9)

Furthermore, by Lemma 5.13, for any a ∈ [A]

Πn(θa < γ) ≐ exp(−n min
λ∶λa<γ

∑
b

ψ̄b(n)kl (µb, λb)) = exp (−nψ̄a(n)d (µa, γ)) .

In particular, there is a sequence εn decreasing to zero such that

∀n ∶ Πn(θa < γ) ∈ exp (−n (ψ̄a(n)d (µa, γ) ± εn)) .
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To establish the precondition of Lemma 5.14 above, fix a ∈ [A] and c > 0 and consider any round n
where ψ̄a(n) ≥ w⋆

a + c. Then

ψa(n) =
Πn−1 (a = arg minj θj ,minj θj < γ)

Πn−1 (minj θj < γ)
≤

Πn−1 (θa < γ)

maxaΠn−1 (θa < γ)

≤
e−n(ψ̄a(n)kl(µa,γ)−εn)

maxa e−n(ψ̄a(n)kl(µa,γ)+εn)
= e−n(ψ̄a(n)kl(µa,γ)−mina ψ̄a(n)kl(µa,γ)−2εn) .

By (5.9) mina ψ̄a(n)kl(µa, γ) ≤ maxwminawakl(µa, γ) = w
⋆
akl(µa, γ). Also ψ̄a(n) ≥ w⋆

a + c, so

ψa(n) ≤ e−n((w
⋆

a+c)kl(µa,γ)−w⋆akl(µa,γ)−2εn) = e−n(ckl(µa,γ)−2εn).

Now as εn → 0, this establishes eventual exponential decay, hence ensuring that

∑
n

ψa(n)1 (ψ̄a(n) ≥ w
⋆
a + c) <∞ ,

as required. The conclusion follows from Lemma 5.14.

◻

5.3.2 Stopping Rules

Before resorting to (variants) of the Parallel GLRT test, we will prove that when combined with
a simple and intuitive stopping rule based on confidence intervals, the sample complexity of Murphy
Sampling is close to T ⋆(µ) log(1/δ).

The “Box” stopping rule The first stopping rule that comes to mind consists in comparing each arm
to the threshold separately and stopping when either one arm looks significantly below the threshold or
all arms look significantly above. With the Kullback-Leibler upper and lower confidence bounds defined
in (5.6) and (5.7), we let τBox = τ< ∧ τ> where

τ< = inf {t ∈ N ∶ min
a∈[A]

UCBa(t) < γ}

τ> = inf {t ∈ N ∶ min
a∈[A]

LCBa(t) > γ}

This intuitive stopping rule is illustrated in Figure 5.6. When the algorithm stops when τ = τ< the
recommendation m̂ is <, whereas the recommendation is > if τ = τ>.

We recall the threshold function T (x) introduced in (3.7) in Chapter 3, which satisfies T (x) ≃

x + c log (x) for some constant c:

T (x) = 2h̃(
h−1(1 + x) + log(2ζ(2))

2
) (5.10)

where for u ≥ 1, h(u) = u − logu and for any x ≥ 0

h̃(x) =

⎧⎪⎪
⎨
⎪⎪⎩

e1/h−1(x)h−1(x) if x ≥ h−1(1/ log(3/2)),
(3/2)(x − log log(3/2)) otherwise.
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Figure 5.6 – A Box stopping rule

Theorem 3.1 in Chapter 3 permits to prove that for a calibration of the confidence intervals with

C<(n, δ) = T (log(1/Aδ)) + 3 log(1 + log(n))

C>(n, δ) = T (log(1/δ)) + 3 log(1 + log(n))

the corresponding Box stopping rule is δ-correct. From Lemma 5.15 below we deduce that Murphy
Sampling combined with this stopping rule satisfies limδ→0

τδ
log(1/δ) ≤ T

⋆(µ), almost surely. The proof
of this result is very similar to that of Lemma 4.8 in Chapter 4.

Lemma 5.15. Fix µ ∈ R. Fix an anytime sampling strategy (At) ensuring Na(t)
t → w⋆

a(µ) for all
a ∈ [A]. Let τδ be a stopping rule such that τδ ≤ τBox

δ , for a Box stopping rule whose threshold C≶ in the
confidence intervals (5.6) and (5.7) satisfy the following: they are non-decreasing in r and there exists a
function f such that,

∀r ≥ r0, C≶(δ, r) ≤ f(δ) + log r, where f(δ) = log(1/δ) + o(log(1/δ)).

Then lim supδ→0
τδ

log 1
δ

≤ T ⋆(µ) almost surely.

We remark that in order to prove that Murphy Sampling is asymptotically optimal, one should rather
provide an upper bound on the expectation E[τδ], which is technically more involved that obtaining the
result of Lemma 5.15. A possibility to do that would be to use the tools presented in Chapter 4 for the
fixed-confidence analysis of Top-Two Thompson Sampling and prove that the expected number of time
steps before the empirical proportions are ε-close to the optimal proportions is bounded.

More sophisticated stopping rules It can be checked that the stopping rule τ< is already that of a
sequential Generalized Likelihood Ratio Test for rejecting H0 ∶ (µ ∈ R>). However, a GLRT for
rejecting H0 ∶ (µ ∈ R<) is summing evidence across arms whose empirical means are smaller than γ in
the sense that it stops when ∑a∶µ̂a(t)≤γNa(t)d

+ (µ̂a(t), γ) is larger than some threshold. Still based on
Theorem 3.1, a δ-correct Parallel GLRT is τGLRT = τGLRT

< ∧ τ> where

τGLRT
< = inf

⎧⎪⎪
⎨
⎪⎪⎩

t ∈ N⋆
∶ ∑
a∶µ̂a(t)≤γ

[Na(t)kl (µ̂a(t), γ) − 3 log(1 + log(Na(t)))]
+
≥ AT (

log(1/δ)

A
)

⎫⎪⎪
⎬
⎪⎪⎭

Instead of summing evidence across arms, one can go further and aggregate evidence by merging
samples from a well-chosen subset of arms. This is justified by a new time-uniform deviation inequality,
featuring, for every subset S ⊆ [A], the quantities

NS(t) = ∑
a∈S

Na(t) and µ̂S(t) =
∑a∈S Na(t)µ̂a(t)

NS(t)
.
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The proof of Theorem 5.16 bears strong similarities with that of Theorem 3.1 presented in Chapter 3.

Theorem 5.16. Let T be the threshold function defined in (5.10). For every subset S of arms and x ≥ 0,

P(∃t ∈ N ∶ NS(t)d
+
(µ̂S(t),min

a∈S
µa) ≥ 3 log(1 + log(NS(t))) + T (x)) ≤ e−x, (5.11)

P(∃t ∈ N ∶ NS(t)d
−
(µ̂S(t),max

a∈S
µa) ≥ 3 log(1 + log(NS(t))) + T (x)) ≤ e−x. (5.12)

Fix a subset prior π ∶ ℘({1, . . . ,A}) → R+ such that ∑S⊆{1,...,A} π(S) = 1. We define the stopping
rule τπ ∶= τ> ∧ τπ< , where

τ> = inf {t ∈ N⋆
∶ ∀a ∈ {1, . . . ,A}Na(t)d

−
(µ̂a(t), γ) ≥ 3 log(1 + log(Na(t))) + T (log(1/δ))} ,

τπ< = inf {t ∈ N⋆
∶ ∃S ∶ NS(t)d

+
(µ̂S(t), γ) ≥ 3 log(1 + log(NS(t))) + T (log(1/(δπ(S)))} .

For the practical computation of τπ< , note that the search over subsets can be reduced to nested sub-
sets including arms sorted by increasing empirical mean and smaller than γ. The following result is a
consequence of Theorem 5.16.

Lemma 5.17. Any algorithm using the stopping rule τπ and selecting m̂ = > iff τπ = τ>, is δ-correct.

Practical performance As explained in the beginning of this section, the Box stopping rule based on
confidence intervals is sufficient to obtain an asymptotically optimal algorithm. Yet we report results of
experiments that reveal that a well chosen aggregate stopping rule may indeed stop earlier. Quantifying
the potential benefits of such a stopping rule is left for future work.

We discuss the results of numerical experiments performed on Gaussian bandits with variance 1,
using the threshold γ = 0. Thompson and Murphy sampling are run using a flat (improper) prior on R,
which leads to a conjugate Gaussian posterior. The experiments demonstrate the flexibility of our MS
sampling rule, which attains optimal performance on instances from both R< and R>. Moreover, they
show the advantage of using a stopping rule aggregating samples from subsets of arms when µ ∈ R<.
This aggregating stopping rule, that we refer to as τAgg is an instance of the τπ stopping rule presented
above for π(S) = A−1(

A
∣S ∣)

−1
. We investigate the combined use of three sampling rules, MS, LCB and

Thompson Sampling with three stopping rules, τAgg, τBox and τGLRT.
We first study an instance µ ∈ R< with A = 10 arms that are linearly spaced between −1 and 1.

We run the different algorithms (excluding the TS sampling rule, that essentially coincides with MS
on R<) for different values of δ and report the estimated sample complexity in Figure 5.7 (left). For
each sampling rule, it appears that E[τAgg] ≤ E[τBox] ≤ E[τGLRT]. Moreover, for each stopping rule,
MS is outperforming LCB, with a sample complexity of order T ⋆(µ) log(1/δ) + C. Then we study an
instance µ ∈ R> with A = 5 arms that are linearly spaced between 0.5 and 1, with τAgg as the sampling
rule (which matters little as the algorithm mostly stops because of τ> on R>). Results are reported in
Figure 5.7 (right), in which we see that MS is performing very similarly to LCB (that is also proved
optimal on R>), while vanilla TS fails dramatically. On those experiments, the empirical error was
always zero, which shows that our theoretical thresholds are still quite conservative.

We report in Figure 5.8 further results illustrating the convergence of the sampling proportions
Na(τ)/τ under the two instances of R< and R> described above, for the smallest value of δ used in
each experiment and under the stopping rule τAgg. Under R< we see that MS has indeed spent a larger
fraction of the time on the arm with smallest mean (arm 1 in these experiments), even if it does not yet
reach the fraction 1 prescribed by the lower bound. Under R>, we see that the empirical fractions of
draws of both MS and LCB converge tow⋆(µ) whereas the TS sampling rule departs significantly from
those optimal weights, by drawing mostly arm amin = 1.
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Figure 5.7 – E[τδ] as a function of log(1/δ) for several algorithms on an instance µ ∈R< (left) and
µ ∈R> (right), estimated using N = 5000 (resp. 500) repetitions.
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Figure 5.8 – Empirical proportions of samples versus w⋆(µ) for one instance inR< (left) and one
instance inR> (right), in the same experimental setup as that of Figure 5.7.

To summarize, we presented in this chapter two active identification problems motivated by the
design of MCTS algorithms with sample complexity guarantees. For the first full MCTS problem, de-
signing an asymptotically optimal algorithm is hard as there is in general no efficient way to compute the
optimal allocationw⋆(µ). However, we managed to propose an efficient algorithm based on confidence
intervals, albeit doomed to be sub-optimal.

For the second “1 + 1/2” MCTS problem, the optimal allocation is easy to compute, and is very
different under each of the two possible hypotheses. A variant of Track-and-Stop presented in Chapter
4 for best arm identification could certainly be applied. However, in this particular case we managed to
propose a variant of Thompson Sampling that also ensures the convergence of the sampling proportions
towards w⋆(µ), under both hypotheses. Unlike Top Two Thompson Sampling that was presented in
Chapter 4 as a possible alternative to Track-and-Stop, Murphy Sampling does not need any problem-
dependent tuning (the parameter β in TTTS) to be asymptotically optimal.

In future work, I will continue to investigate variants of Thompson Sampling for different active
identification problems, hoping to propose a unified algorithm using possibly some conditioning in the
spirit of Murphy Sampling.
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Perspective

We presented several bandit algorithms in different contexts: rewards maximization in complex, for
example structured bandit models, and active identification problems in the fixed-confidence setting. In
both cases, our focus was on proposing asymptotically optimal algorithms, i.e. algorithms whose regret or
sample complexity is matching a distribution-dependent lower bound, for every possible bandit instance
µ, at least in an asymptotic regime in the horizon T or in the risk parameter δ. Beyond this asymptotic
notion of optimality, that can be viewed as a sanity-check for the design of algorithms, we also cared
about their finite-time performance, often assessed through numerical simulation.

Now we can take a step back and examine the similarities between the different approaches that have
been discussed. For both regret minimization in structured bandits and active identification, we have
presented lower-bound inspired algorithms that leverage the computation of the oracle allocation under a
given configuration of the means. As the computation of this allocation is costly, it is important to come
up with algorithms that can avoid these oracle calls, possibly based on Thompson Sampling, an approach
also discussed in both parts of this document. We elaborate on these two aspects below.

Beyond lower-bound inspired algorithms Lower bound-inspired algorithms for structured bandits
were presented in Chapter 1, while the Track-and-Stop approach for best arm identification (and other
active identification problems) was described in Chapter 4. Several approaches to overcome the com-
putational cost of Track-and-Stop for pure exploration have already been proposed, including a nice
game view on the lower bound given by Degenne et al. (2019). The generic approach proposed relies on
the use of an online learning algorithm for each of the two players, and understanding what is the best
combination of these algorithms depending on the problem at hand would be interesting.

In particular, we have been investigating with Pierre Ménard the use of a Saddle-Point Frank-Wolfe
algorithm, as least for the best arm identification problem. In that case the optimization problem to solve
in w can be written as, letting Fa⋆,a(w,µ) = wa⋆d (µa⋆ , µa⋆,a(w)) +wad (µa, µa⋆,a(w)),

sup
w∈ΣA

min
a≠a⋆(µ)

Fa⋆,s(w,µ) = sup
w∈ΣA

inf
q∈ΣA−1

∑
a≠a⋆(µ)

qaFa⋆,s(w,µ) .

The function G(w,q) = ∑a≠a⋆(µ) qaFa⋆,s(w,µ) is concave in w, convex in q and the set ΣA × ΣA−1

is convex and compact. Hence we could apply saddle-point solvers such as Mirror Prox (Bubeck, 2015)
or Saddle-Point Frank-Wolfe (SP-FW). However, the function G does not satisfy the assumptions under
which Gidel et al. (2017) manage to analyze this algorithm. Despite this lack of theoretical guarantees, in
our numerical experiments, SP-FW seems to converge to the optimal proportionsw⋆(µ), and we would
like to investigate a noisy version of this algorithm as a possible sampling rule for BAI that may converge
faster to the optimal weights.

The game view on lower bounds was recently also used for reward maximization in structured bandits
by (Degenne et al., 2020), leading to algorithms with a better performance than OSSB (Combes et al.,
2017) at a smaller computational cost. Still, several open research directions are pointed out by the
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authors, including the question whether it is possible to exploit the structure in a small horizon regime,
and always improve over UCB approaches.

Towards a universal Thompson Sampling algorithm We mentioned several variants of Thompson
Sampling in the previous chapters. First, for regret minimization in structured bandits, it is known
that vanilla Thompson Sampling cannot always be asymptotically optimal as it fails for linear bandits
(Lattimore and Szepesvári, 2017). Still, for unimodal bandits knowing the structure of the (sparse)
optimal allocation allows to design a simple variant of TS that is asymptotically optimal, as explained
in Chapter 1. It would be interesting to understand for which other structures variants of TS can be
designed by using some minimal information about the optimal allocation.

For active identification problems, vanilla Thompson Sampling fails for an even simpler reason:
under this algorithm the empirical allocation converges towards a Dirac in the optimal arm, whereas the
optimal allocation can be supported on more than one arm. Still, we studied two variants of TS that have
near-optimal performance. Murphy Sampling, presented in Chapter 5 for deciding whether one of the
means in the bandit model is smaller than a threshold, is particularly interesting as this parameter-free
algorithm ensures convergence towards the optimal proportions in all possible bandit models, even if
the optimal allocation can have very different forms under different bandit instances. We also proposed
in Chapter 4 a new fixed-confidence analysis of Top-Two Thompson Sampling (Russo, 2016) which is
β-optimal for best arm identification and requires an oracle tuning of the parameter β to be optimal.

Both algorithms use some kind of conditioning which triggers some posterior re-sampling. In future
work, I want to investigate whether it is possible to propose a generic re-sampling version of Thompson
Sampling for active identification and possibly also for regret minimization in structured bandits.

Regarding the mathematical tools that have been useful in this study, we highlighted the importance
of information-theoretic lower bounds that can shape the design of optimal algorithms, and that of con-
centration inequalities. In particular, we presented the proof of a concentration inequality that measures
the deviations for multiple arms simultaneously (Theorem 3.1). Such an inequality can be useful in the
analysis of algorithms for structured bandits, for which constructing individual confidence intervals on
each arm can be sub-optimal. But we mostly highlighted in Chapter 3 its use as a means to prove the
correctness of a Parallel Generalized Likelihood Ratio test for any active identification problem in an
exponential bandit model, possibly involving overlapping regions.

Generalized Likelihood Ratio is a very old statistical tool (Wilks, 1938) to handle composite hypothe-
ses, and a GLR test is often calibrated using some asymptotic properties, such as the Wilks phenomenon.
We thus presented examples of sequential, active GLR tests whose calibration (choice of threshold) is
not based on asymptotic arguments. In the preprint Garivier and Kaufmann (2019) we advocate the use
of a Parallel GLRT for any (sequential, adaptive) statistical testing problem with composite and possi-
bly overlapping hypotheses, for which other deviation inequalities may be found. We are also currently
investigating the non-asymptotic calibration of change-point detection tests based on GLRT, for which
an asymptotic calibration was given by Lai and Xing (2010). This work requires some adaptation of the
techniques to prove Theorem 3.1.

I now highlight below a few other research directions that I want to pursue.

Beyond fixed-confidence best arm identification In part II of this document, we studied active identi-
fication in the fixed-confidence setting, in which one should find a correct answer with probability larger
than 1 − δ using as few samples from the arms as possible. As explained in Section 3.1.2, several other
mathematical frameworks exist, including the fixed-budget setting in which given a budget n one should
minimize the error probability of a recommendation made after n arm selections.
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I am quite intrigued by the possible difference in complexity between the fixed-confidence and fixed-
budget setting. If the complexity were similar, one could expect a minimal error probability of order
exp(−n/T⋆(µ)) for a budget n, as T⋆(µ) log(1/δ) is the minimal number of samples needed to have
an error of at most δ in the fixed-confidence setting. However, it is unclear whether this conjecture is
true. First, it seems that lower bounds are much harder to prove in the fixed-budget setting and to the
best of my knowledge, the tightest existing lower bound does not feature information-theoretic quantities
(Carpentier and Locatelli, 2016). One can note that the assumption made on the algorithm in the fixed-
budget setting (its probability of error should go to zero for all instances µ) is much weaker than having
the probability of error uniformly bounded by δ, which makes the use of our lower bound methodology
more intricate. Second, there are elements suggesting that the complexity of the two problems may be
different. It is possible to provide tight upper and lower bounds on the error probability of a strategy using
a fixed allocation w and recommending the empirical best arm (using e.g. a similar technique as that of
Glynn and Juneja (2004)) which reveals that the allocation that yields the smallest error probability is

argmax
w∈ΣA

min
a≠a⋆(µ)

min
x

[wa⋆d(x,µa⋆) +wad(x,µa)] .

The difference with the optimal allocation in the fixed-confidence setting is that the arguments of the
KL-divergence are reversed. However, it is unclear whether an adaptive algorithm, that is agnostic to µ
and thus to the optimal static allocation, can have a probability of error as small as that of the best static
allocation. Indeed if a Tracking procedure were to be applied, the dominant term in the error probability
would be the estimation error. Hence, I am very eager to understand what is the smallest error that an
adaptive algorithm can achieve in the fixed-budget setting.

Among all the settings studied for best arm identification or more generally active identification, the
one that I find the most interesting is the anytime setting of Jun and Nowak (2016). In this framework,
there is no risk δ, no budget n but one needs the algorithm to make a recommendation, whenever it is
stopped, that is as accurate as possible. In particular, anytime algorithms (that neither depend on n or δ)
are needed, while state of the art fixed-budget algorithms require the knowledge of n to tune the size of
some elimination phases (Karnin et al., 2013). Among the fixed-confidence algorithms that we proposed,
we noted that Track-and-Stop and variants of Thompson Sampling are naturally anytime. In future work,
I would like to obtain a non-asymptotic bound on the error probability for variants of TTTS (hopefully
adaptive to β) in each round t, to justify the practical use of such algorithms in applications in which
there is no natural risk δ or budget n.

Reinforcement learning I have also been interested in more general reinforcement learning problems.
While in reward maximization in a bandit model the agent repeatedly faces the same actions, in rein-
forcement learning it is assumed that the state of the agent evolves after each action, following a Markov
Decision Process (MDP). I have been working on reinforcement learning since the beginning of the PhD
of Omar Darwiche Domingues, in October 2018, which is part of the collaborative DELTA project on
lifelong reinforcement learning, lead by Anders Jonsson at UPF (Barcolona).

Monte-Carlo Tree Search algorithms that are discussed in Chapter 5 were originally proposed both
for planning in games and in Markov Decision Processes (i.e. for finding the best action to take in a
given state of the MDP based on trajectories sampled using a generative model). However, the simple
model we proposed for MCTS and the BAI-MCTS algorithm are specific to deterministic games with
random terminal rewards, whereas in MDPs intermediate rewards may be collected and transitions are
stochastic. In the recent work (Jonsson et al., 2020) we proposed the MDP-GapE algorithm for planning
in Markov Decision Processes. The algorithm is inspired by UGapE-MCTS for games but its analysis
is more involved and notably requires new time uniform confidence intervals for transition probabilities,
that were derived by Pierre Ménard. The algorithm is suited for planning in MDPs with a finite branching
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factor, in which there is a (known) maximal number B of possible next states. We note that state-of-the-
art planning algorithms for B = ∞ (Grill et al., 2016, 2019) are mostly theoretical, as their actual run-
time is prohibitively high. Designing practical planning algorithms for B =∞ is therefore an interesting
direction of future work.

In this document, we noted in several places the fundamental difference between optimal sampling
strategies designed for minimizing regret and optimal sampling strategies for identifying the best arm,
at least through our problem-dependent lens. In reinforcement learning, one can also define two similar
objectives: on the one hand learning to interact with the environment in order to maximize the total
reward received (a notion of regret can also be defined) and on the other hand learning a good policy
(a mapping from state to actions). In the paper Jin et al. (2018), the authors explain that if a regret
minimizing algorithm is run for enough episodes, picking a policy uniformly at random among the ones
used by the algorithm produces a policy that is ε optimal with high probability. However, it is not clear
that this conversion (which has a very bad scaling in the error probability δ) is the best thing one can do
if the initial goal is to find a good policy, regardless of the received rewards. In future work I want to get
a better understanding of the relationship between regret minimization and best policy identification in
reinforcement learning.

Alternative exploration methods How to achieve good exploration or a good exploration/exploitation
trade-off in a bandit model is a well-studied topic also because it inspires some exploration methods for
reinforcement learning. In this document, we encountered two families of exploration methods: the use
of confidence intervals and that of posterior sampling. While they can lead to asymptotically optimal
algorithms, they are also very much tailored to the specific distributions of the reward. For example
kl-UCB requires the right divergence function d(⋅, ⋅) to build the upper confidence bound whereas TS
requires the right prior distribution to match the Lai and Robbins lower bound. A single algorithm that
is simultaneously optimal for different classes of distributions would therefore be more powerful.

To come up with such an algorithm, it is necessary to exploit the empirical distribution of the rewards,
regardless of any parametric assumption. This has been done with the IMED (Honda and Takemura,
2015) and kl-UCB-Switch (Garivier et al., 2018) algorithms but it applies only to bounded distribu-
tions, with known bounds. Under the same assumption, Non Parametric Thompson Sampling (Riou and
Honda, 2020) is also asymptotically optimal for any bounded distribution, matching the lower bound of
Burnetas and Katehakis (1996). This index policy computes for each arm a weighted sum of the observed
rewards and the upper bound of the support, in which the weights are drawn uniformly at random in the
simplex. This can be seen as some kind of bootstrap estimator of the mean. Another natural bootstrap
idea is to use a sample obtained using the non-parametric bootstrap as an index for each arm. That is,
given a history of n rewards from an arm, n rewards are sampled with replacement from this history and
their average is computed. Yet this approach is known to suffer from linear regret, as shown by (Kveton
et al., 2019b) who also propose a fix. This fix consists in adding a certain amount of fake samples in each
history before bootstrapping (see also Kveton et al. (2019a)). The Giro and PHE algorithms are proved
to have logarithmic regret for bounded distributions, but their asymptotic optimality, e.g. for Bernoulli
rewards, remains unclear.

In an on-going work with Odalric-Ambrym Maillard and our new PhD student Dorian Baudry, we
are currently investigating alternative re-sampling approaches based on pairwise comparisons and sub-
sampling, in the spirit of the BESA algorithm of Baransi et al. (2014), with an emphasis on proving
the asymptotic optimality of the proposed approach for different distributions, see the recent publication
Baudry et al. (2020).
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On the applications side I am very interested in understanding why bandit algorithms, whose moti-
vating story is often clinical trials —at least in the introduction of theoretical papers— have seldom been
used in this field, and what (variants of) bandit algorithms could be useful. The gold standard in clinical
trials seems to be randomized clinical trials, in which each treatment is given to the same number of
patients, often decided in advance. Both the statistical power and the number of saved lives have the
potential to be improved by using Adaptive Clinical Trials, whose use has been recently promoted (Food
and Drugs Administration (FDA), 2018). In particular, Bayesian Adaptive Designs have been studied a
lot (Berry et al., 2010).

A particular field in which a Bayesian Adaptive Design is concretely used is that of dose-finding
clinical trials in oncology, that is the context of our work Aziz et al. (2018) presented in Chapter 1. The
algorithm is called the Continual Reassessment Method (CRM) and can be seen from a bandit eye as a
greedy algorithm for toxicity probabilities following a Bayesian logistic regression model. We showed
through numerical experiments that variants of Thompson Sampling can also be competitive in this
setting, but we could not provide a theoretical analysis beyond the simpler model studied in Chapter 1.
In future work, I plan to start new projects on the use of bandit tools for clinical trials, beyond early-stage
dose-finding designs.

On a related topic, I also started to work on possible applications of sequential decision making to
drug repurposing with the co-supervision of the PhD thesis of Clémence Reda with Andrée Delahaye-
Duriez from INSERM (Paris) since September 2019.



120 PERSPECTIVE



Index of Notation

MAB Multi-Armed Bandit

[n] set of integers {1, . . . , n}

E the complement of the event E

A number of arms in a bandit model

νa distribution associated to arm a

µa mean of arm a

t index of a decision round

T horizon of the bandit game

(Xa,t)s∈N∗ i.i.d. rewards stream associated to arm a

(Ya,s)s∈N∗ i.i.d. sequence of successive observations from arm a

At arm selected in round t by a bandit algorithm

Xt observation in round t (called Rt for reward in part I)

Ft σ-algebra generated by the observation available after t rounds

a⋆ arm with largest mean

µ⋆ largest mean in the bandit model

Rν(A, T ) regret of a bandit algorithm A in T rounds on the bandit model ν

Na(t) number of selections of arm a in the first t rounds

b(θ) log-partition function of an exponential family with canonical parameter θ

fθ(x) density in an exponential family as a function of the natural parameter: fθ(x) = exp(θx − b(θ))

I set of possible means in an exponential family

νµ distribution with mean µ in a one-parameter exponential family

KL(ν, ν′) Kullback-Leibler divergence between the distributions ν and ν′

d(µ,µ′) Kullback-Leibler divergence between νµ and νµ
′

in an exponential family

kl(µ,µ′) binary relative entropy, i.e. d(µ,µ′) for Bernoulli distributions

ν bandit model ν = (ν1, . . . , νA)

µ vector of means that parameterized the (exponential family) bandit model µ = (µ1, µ2, . . . , µA)
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d+(x, y) d+(x, y) = d(x, y)1(x≤y)

d−(x, y) d−(x, y) = d(x, y)1(x≥y)

µa,s empirical mean based on the first s observations from arm a

µ̂a(t) empirical mean of arm a after t rounds: µ̂a(t) = µ̂a,Na(t)

UCBa(t) upper confidence bound on µa

Πt posterior distribution on µ

πa(t) posterior distribution on µa

−− − − − − − − − − − − − − − − − − − − −−

a⋆(µ) optimal arm in the bandit model parameterized by µ

S set of possible means in a structured bandit model

AltS(µ) set of bandit models in S that do not share an optimal arm with µ

CS(µ) constant in the optimal regret rate in a structured bandit

cS(µ) optimal allocation for the sub-optimal arms

NG(a) neighborhood of arm a in a graphical unimodal bandit with graph G

N +
G(a) extended neighborhood of arm a: N +

G(a) = NG(a) ∪ {a}

−− − − − − − − − − − − − − − − − − − − −−

MP-MAB Multi-Player Multi-Armed Bandit

M number of players in a multi-player bandit model

µma mean of arm a for player m

Xm
t sensing information for player m in round t

Cmt collision information for player m in round t: 1 if player m experiences a collision at time t

Rmt reward of player m in round t: Rmt =Xm
t (1 −Cmt )

TopM(µ) set of M arms with largest means

Nm
a (t) number of selections of arm a by player m in the first t rounds

Ca(t) number of collisions on arm a in the first t rounds

UCBm
a (t) upper confidence bound on arm a for player m after t rounds

M̂m(t) candidate top M arms for player M after t rounds

TopM(µ) set of M arms with largest mean in an homogeneous MP-MAB

U(π) Utility of a matching π ∶ [M]→ [A] from players to arms

∆(π) Gap of a matching π : ∆(π) = U⋆ −U(π)

∆ Smallest positive gap

p̂T Number of epochs in the M-ETC-Elim algorithm run with a budget T

−− − − − − − − − − − − − − − − − − − − −−
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I number of regions in an active identification problem

R set of possible values of µ

Ri region i to which µ could belong

BAI Best Arm Identification

τ stopping rule

ı̂τ recommendation rule (denoted by âτ for best arm identification, ŝτ for MCTS...)

δ risk parameter

β(t, δ) threshold used in the parallel GLRT

T (x) function used to express the threshold in Theorem 3.1

`(X1, . . . ,Xt;µ) likelihood of the observation under the model parameterized by µ

φµ(x) log moment generating function of the distribution with mean µ ∈ I

Sa(t) sum of observations made from arm a in the first t rounds

Z̃πa (t) mixture martingale with prior π: Z̃πa (t) = ∫ exp(ηSa(t) − φµa(η)Na(t))dπ(η)

−− − − − − − − − − − − − − − − − − − − −−

ΣA simplex of dimension A − 1: ΣA = {w ∈ [0,1]A ∶ ∑Aa=1wa = 1}

Alt(µ) set of bandit models that a different best arm than that in µ

T ⋆(µ) characteristic number of samples for µ

w⋆(µ) vector of optimal sampling proportions under µ

µ̂(t) vector of empirical means of the arms after t rounds

TaS the Track-and-Stop algorithm

µa,b(w) weighted average of µa and µb: µa,b(w) =
waµa+wbµb
wa+wb

β fraction of samples assigned to the optimal arm under Top-Two Thompson Sampling (TTTS)

−− − − − − − − − − − − − − − − − − − − −−

G a maxmin game tree

L the set of leaves of G

Vµ(s) value of a node s ∈ G when the leaves values are given by µ

C(s0) depth-one nodes in G (children of the root s0)

s⋆ depth-one node with largest value

Is(t) confidence interval on the value of node s after t rounds Is(t) = [LCBs(t),UCBs(t)]

`s(t) representative leaf of node s after t rounds

µmin minimum of the arms means: µmin = mina µa

γ value of the threshold

R< set of means whose minimum is smaller than γ

R> set of means whose minimum is larger than γ
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Kaufmann, E., Cappé, O., and Garivier, A. (2016). On the Complexity of Best Arm Identification in
Multi-Armed Bandit Models. Journal of Machine Learning Research, 17(1):1–42.

Kaufmann, E. and Garivier, A. (2017). Learning the distribution with largest mean: two bandit frame-
works. ESAIM: Proceedings and Surveys, 60:114–131.

Kaufmann, E. and Kalyanakrishnan, S. (2013). Information complexity in bandit subset selection. In
Proceeding of the 26th Conference On Learning Theory.

Kaufmann, E. and Koolen, W. (2018). Mixture martingales revisited with applications to sequential tests
and confidence intervals. arXiv:1811.11419.

Kaufmann, E., Koolen, W., and Garivier, A. (2018). Sequential test for the lowest mean: From Thompson
to Murphy Sampling. In Advances in Neural Information Processing Systems (NeurIPS).

Kaufmann, E. and Koolen, W. M. (2017). Monte-Carlo tree search by best arm identification. In Ad-
vances in Neural Information Processing Systems (NeurIPS).

Kaufmann, E., Korda, N., and Munos, R. (2012). Thompson Sampling : an Asymptotically Optimal
Finite-Time Analysis. In Proceedings of the 23rd conference on Algorithmic Learning Theory.
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Paladino, S., Trovò, F., Restelli, M., and Gatti, N. (2017). Unimodal thompson sampling for graph-
structured arms. In AAAI.

Proutière, A. and Wang, P. (2019). An optimal algorithm in multiplayer multi-armed bandits.
arXiv:1909.13079.



132 BIBLIOGRAPHY

Qin, C., Klabjan, D., and Russo, D. (2017). Improving the expected improvement algorithm. In Advances
in Neural Information Processing Systems 30 (NIPS).

Riou, C. and Honda, J. (2020). Bandit algorithms based on thompson sampling for bounded reward
distributions. In Algorithmic Learning Theory (ALT).

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep bayesian bandits showdown: An empirical compar-
ison of bayesian deep networks for thompson sampling. In 6th International Conference on Learning
Representations (ICLR).

Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 58(5):527–535.

Robbins, H. (1970). Statistical Methods Related to the law of the iterated logarithm. Annals of Mathe-
matical Statistics, 41(5):1397–1409.

Robbins, H. and Siegmund, D. (1974). The expected sample size of some tests of power one. The Annals
of Statistics, 2(3):415–436.

Rosenski, J., Shamir, O., and Szlak, L. (2016). Multi-Player Bandits – A Musical Chairs Approach. In
International Conference on Machine Learning, pages 155–163.

Russo, D. (2016). Simple Bayesian algorithms for best arm identification. In Proceedings of the 29th
Conference on Learning Theory (COLT).

Russo, D., Roy, B. V., Kazerouni, A., Osband, I., and Wen, Z. (2018). A tutorial on thompson sampling.
Foundations and Trends in Machine Learning, 11(1):1–96.
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