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Abstract in English

This thesis presents contributions to model-based Prognostics and Health
Management (PHM) for online Remaining Useful Life (RUL) forecasting of
degraded systems. The major issue in such a prognostics approach is that
the degradation models are required for prediction purposes. However, this
practice is effort- and time-consuming specifically for large systems with mu-
tual degradation and cascading damage effects. Thus, this work aims to
overcome the knowledge dependence on the degradation models in addition
to the historical data which are accompanied by uncertainties. In conse-
quence, a threefold PHM strategy (system modeling, degradation estimation
on the micro level, RUL forecasting) with various prognostics approaches are
proposed for degraded systems and can be generalized, with soft tuning, for
further applications.

In broad, system-level prognostics are accomplished without a remarkable
interest in the root cause of the degradation on the component level. There-
fore, the important role of degradation estimation for the critical components
in systems is elaborated in this thesis for the sake of improved Condition-
Based Maintenance (CBM). Thus, stochastic-based filtering techniques for
parameter estimation and degradation prediction of the critical components
have been investigated. Whereas, the main challenge lies in the consistency
of the RUL forecasting that is subject to modeling and measurement uncer-
tainties on a system level, as concluded based on the examination of various
forecasting approaches. Consequently, a fusion between stochastic and deter-
ministic estimation techniques has been investigated in a Zonotopic Extended
Kalman filter (ZEKF) framework, which has been upgraded into a Zonotopic
Set-Membership (ZSM) observer for degradation estimation and prediction

vii



viii Abstract in English

of multiple-output systems with unknown-but-bounded noises and uncertain-
ties. Furthermore, zonotopes are adopted for their simple computations in
addition to their ability to propagate bounded sets that improve the accu-
racy of RUL forecasting. Additionally, a robustness condition is guaranteed
due to the Linear Matrix Inequality (LMI)-based offline optimal tuning of
the zonotopic observers.

Moreover, the proposed approaches are applied to a DC-DC converter with
three degradation scenarios for the validation of the threefold PHM. Even-
tually, the nonlinear model of the converter has been linearized online when
applied with the stochastic approaches. However, it has been transformed
into a polytopic Linear Parameter-Varying (LPV) model that copes with the
LMI optimization for reduced online computations in addition to generaliza-
tion purposes for real-time prognostics.

Keywords: Prognostics and health management, remaining useful life fore-
casting, deterministic observers, zonotopes, set-membership, stochastic fil-
ters, joint estimation of states and parameters, linear matrix inequality, linear
parameter-varying.



Résumé en français

Cette thèse est une contribution au pronostic à base des modèles pour la ges-
tion de l’état de santé d’un système (Prognostics and Health Management
(PHM)) en estimant en ligne la durée de vie résiduelle (Remaining Useful Life
(RUL)). Le problème majeur dans une telle approche de pronostic est que
les modèles de dégradation sont nécessaires à des fins d’estimation et de pré-
diction. Cependant, cette pratique demande beaucoup d’efforts et de temps
de calcul, en particulier pour les systèmes à grande échelle avec des effets de
dégradation mutuelle et de détérioration en cascade. Ainsi, ce travail vise
à dépasser cette contrainte de connaissance vis-à-vis des modèles de dégra-
dation en proposant une stratégie de PHM basée sur plusieurs approches
de pronostic par estimation, avec une possibilité d’adaptation et d’extension
selon l’application utilisée.

En général, on distingue deux types d’approches de pronostic, global avec
une vision macroscopique sur le système ou local allant jusqu’aux com-
posants critiques. Les travaux de cette thèse s’inscrivent dans la 2ème caté-
gorie où l’intérêt final est de suivre la dégradation de quelques composants
critiques identifiés et ainsi d’élaborer une stratégie de maintenance condi-
tionnée (Condition-Based Maintenance (CBM)). Pour ce faire, en premier
temps, nous avons développé une approche d’estimation par filtre de Kala-
man étendu et augmenté (état + paramètres à estimer) pour l’estimation
des paramètres et la prédiction de la dégradation des composants critiques.
Cela nous a permis d’estimer le RUL pour chaque composant critique sur le
système. En deuxième temps, afin d’améliorer la prédiction du RUL, soumis
à des incertitudes de modélisation et de mesure au niveau du système, on a
opté pour une fusion de deux types de technique, stochastique (par Kalman

ix



x Résumé en français

étendu augmenté) et ensembliste (par zonotopes), en proposant un filtre de
Kalman étendu « zonotopique » ZEKF (Zonotopic Extended Kalman Fil-
ter). Cela nous a permis d’améliorer l’estimation des paramètres dégradés
dont le système est soumis à des bruits inconnus mais bornés. A noter que
les zonotopes sont adoptés pour leurs calculs simples en plus de leur capacité
à propager des ensembles bornés qui améliorent la précision du RUL estimé.
De plus, une condition de robustesse est garantie en raison de l’ajustement
optimal hors ligne basé sur l’inégalité matricielle linéaire (Linear Matrix In-
equality (LMI)) des observateurs zonotopiques. En troisième temps, nous
avons proposé un pronostic basé directement sur l’estimation par observa-
teurs zonotopiques sans faire recours à un filtre de Kalman étendu. Le calcul
du RUL avec ce type d’observateurs donne plus de garanties sur la prédic-
tion de l’état de santé du système en bornant les différentes incertitudes de
modélisation et de mesure.

Sur le plan applicatif, les approches proposées ont été appliquées à un con-
vertisseur DC-DC faisant partie d’une chaine de conversion électrique dans
un véhicule électrique hybride.

Mots clés : Pronostic et gestion de l’état de santé, prévision de la durée de
vie résiduelle, observateurs déterministes, zonotopes, filtres stochastiques, fil-
tre de Kalman, état augmenté, estimation conjointe des états et des paramètres,
inégalité matricielle linéaire, Systèmes linéaires à paramètres variants.



Resumen en español

Esta tesis presenta contribuciones al pronóstico basado en modelos y la
gestión de la salud (Prognostics and Health Management (PHM)) para la
estimación en línea de la vida útil restante (Remaining Useful Life (RUL))
teniendo cuenta la degradación de los sistemas. El problema principal en
este enfoque de pronóstico es que los modelos de degradación son necesarios
para fines de predicción. Sin embargo, esta práctica requiere mucho tiempo
y esfuerzo, específicamente para sistemas grandes con degradación mutua y
efectos de daños en cascada. Así, este trabajo tiene como objetivo superar
la dependencia del conocimiento de los modelos de degradación además de
los datos históricos que van acompañados de incertidumbres. En consecuen-
cia, se propone una estrategia PHM triple con varios enfoques de pronóstico
para sistemas electrónicos y se puede generalizar, con ajustes menores, para
aplicaciones posteriores.

En este contexto, los pronósticos a nivel de sistema se logran en general
sin buscar la causa raíz de la degradación a nivel de componente. Por lo
tanto, el papel importante de la estimación de la degradación de los com-
ponentes críticos en los sistemas se elabora con el fin de mejorar el man-
tenimiento basado en las condiciones del sistema (Condition-Based Mainte-
nance (CBM)). Por tanto, existen técnicas estadísticas para la estimación de
parámetros y la predicción de la degradación que se han investigado en la lit-
eratura. Considerando que la principal dificultad radica en la coherencia de
la previsión de RUL que está sujeta a incertidumbres de modelado y medición
a nivel de sistema, como se concluyó después del estudio de varios enfoques
de previsión. En consecuencia, se ha investigado una fusión entre técnicas
de estimación estocásticas y deterministas en un marco ZEKF (Zonotopic

xi



xii Resumen en español

Extended Kalman filter), que se ha actualizado a un observador ZSM (Zono-
topic Set-Membership) para la estimación y predicción de la degradación con
ruidos e incertidumbres desconocidos pero acotados. Además, los zonotopes
se adoptan debido a sus cálculos simples además de su capacidad para propa-
gar conjuntos acotados que mejoran la precisión de la predicción del RUL.
Además, se garantiza una condición de robustez debido a la sintonización
óptima fuera de línea mediante la técnica LMI (Linear Matrix Inequality) de
los observadores zonotópicos.

Finalmente, los enfoques propuestos se aplican a un convertidor DC-DC con
tres escenarios de degradación para la validación de los métodos PHM prop-
uestos. Finalmente, el modelo no lineal del convertidor se ha linealizado en
línea cuando se aplica con los enfoques estocásticos. Sin embargo, se ha
transformado en un modelo de variación de parámetros lineales politópicos
(Linear Parameter-Varying (LPV)) que hace utiliza la técnica LMI para re-
ducir los cálculos en línea, además de facilitar el pronóstico en tiempo real.

Palabras clave: Pronósticos y gestión de la salud, pronóstico de vida útil
remanente, observadores deterministas, zonotopes, pertenencia a conjuntos,
filtros estocásticos, estimación conjunta de estados y parámetros, desigualdad
de matrices lineales, variación de parámetros lineales.



Resum en català

Aquesta tesi presenta contribucions en la prognosi basada en models i la
gestió de la salut (Prognostics and Health Management (PHM)) per a l’estimació
de la vida útil en línia (Remaining Useful Life (RUL)) tenint en compte la
degradació dels sistemes. El principal problema d’aquest enfocament per a la
prognosi és que els models de degradació són necessaris a efectes de predicció.
No obstant això, aquesta pràctica requereix molt d’esforç i temps específica-
ment per a sistemes grans amb degradació mútua i efectes de danys en cas-
cada. Per tant, aquest treball pretén superar la dependència del coneixement
dels models de degradació, a més de les dades històriques que van acompa-
nyades d’incerteses. En conseqüència, es proposa una estratègia PHM triple
amb diversos enfocaments pronòstics per a sistemes electrònics i es pot gen-
eralitzar, amb ajustos menors, per a altres aplicacions.

En aquest context, els pronòstics a nivell de sistema s’aconsegueixen a grans
trets sense cercar la causa arrel de la degradació a nivell de component.
Per tant, l’important paper de l’estimació de la degradació dels components
crítics dels sistemes s’elabora per tal de millorar el manteniment basat en
les condicions del sistema (Condition-Based Maintenance (CBM)). Per tant,
existeixen tècniques de filtratge basades en estocàstics per a l’estimació de
paràmetres i la predicció de la degradació que s’han investigat en la literatura.
Mentre que, el principal repte rau en la consistència de la predicció RUL que
està subjecta a incerteses de modelització i mesura a nivell de sistema, tal
com es conclou després de l’estudi de diversos enfocaments de predicció. En
conseqüència, s’ha investigat una fusió entre tècniques d’estimació estocàs-
tica i determinista en un marc ZEKF (Zonotopic Extended Kalman filter),
que s’ha actualitzat a un observador ZSM (Zonotopic Set-Membership) per
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estimar i predir la degradació amb sorolls i incerteses desconeguts però aco-
tats. A més, s’adopten els zonòtops per als seus càlculs senzills, a més de
la seva capacitat de propagar conjunts acotats que milloren la precisió de
la predicció RUL. A més, es garanteix una condició de robustesa expressada
como una LMI (Linear Matrix Inequality) que permet la sintonització òptima
fora de línia dels observadors zonotòpics.

A més, els enfocaments proposats s’apliquen a un convertidor DC-DC amb
tres escenaris de degradació per a la validació dels mètodes PHM proposats.
Finalment, el model no lineal del convertidor s’ha linealitzat en línia quan
s’aplica amb els enfocaments estocàstics. Tanmateix, s’ha transformat en un
model lineal politòpic que varia amb paràmetres (Linear Parameter-Varying
(LPV)) que fa ús de la tècnica LMI per a reduir els càlculs en línia, a més
de facilitat la prognosi en temps real.

Paraules clau: Pronòstic i gestió de la salut, predicció de la vida útil
restant, observadors deterministes, zonotop, pertinença a conjunts, filtres
estocàstics, estimació conjunta d’estats i paràmetres, desigualtat de matriu
lineal, variació lineal de paràmetres.
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‖ · ‖P P -norm
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∀ For all
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0n Zeros matrix in R
n×n
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R
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⊂ Subset
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mid(I) Center of an interval I
rad(I) Radius of an interval I
S General notation for a set
Z〈c,G〉 Zonotope Z with center c and generator matrix G

M(S) Image of set S
Bn Unitary box in R

n

B1 Unitary interval
�Z Interval hull of a zonotope Z
⋄Z Zonotope inclusion
VZ Notation of the vertex of a zonotope Z
conv(S) Convex hull of S

Variables
t Continuous-time instant
k Discrete-time instant
Fs Sampling frequency
Ts Sampling period
fs Switching frequency
ts Switching period
d Duty cycle
ω Process noise
υ Measurement noise
i = 1, . . . , n variable i ∈ N ranging from 1 to n
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AGE Accelerated Aging Experiment.
ANN Artificial Neural Network.

CALCE Center for Advanced Life Cycle Engineering.
CBM Condition-based Maintenance.
CM Corrective Maintenance.
CRUL Component Remaining Useful Life.

DEKF Dual Extended Kalman Filter.
DKF Dual Kalman Filter.
DoD Department of Defense.

ECAP Electrolytic Capacitor.
EKF Extended Kalman Filter.
EoL End of Life.
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FDI Fault Detection and Identification.

HUMS Health and Usage Monitoring System.
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ISHM Integrated Systems Health Management.
IVHM Integrated Vehicle Health Management.
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KF Kalman Filter.
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LMI Linear Matrix Inequality.
LPV Linear Parameter-Variant.
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LTV Linear Time-Variant.
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PCoE Prognostics Center of Excellence.
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RUL Remaining Useful Life.
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SoH State of Health.
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General Introduction

Context and Motivations

Modern-engineering applications with harsh operating conditions and crucial
decision making are interestingly gaining attention in recent years. These
critical applications such as electrical and/or autonomous vehicles, aircraft,
satellites, outer space vehicles, and huge industrial applications have con-
tributed to emphasizing on the reliability engineering aspect. Thus, apart
from the faults with unpredictable behaviors, the degradation is responsible
of deviating the optimal desired operation of a system towards a less efficient
performance that could lead to a total failure. The degradation in electronic
systems is observed through the variation of the internal parameters of ac-
tive and passive components as well as the soldering, connectors, cables, etc.
Moreover, similar deterioration behaviors are resulted in forms of cracks in
mechanical systems such as bearings, shafts, etc. Whereas, it is noteworthy
to clarify that electronics-rich systems tend to be more complex due to the
interdependency of large amount of components with different types, behav-
iors, duties, and failure rates than most of the mechanical systems (M. G.
Pecht 2018). Thus, two major factors that affect the desired operation of
those systems can be characterized by thermal and electrical overstresses. In
consequence, the resulting cascading damage of the interdependent compo-
nents in a system could lead to catastrophic events and system failure that
require time-consuming and expensive maintenance strategies that affect the
system availability and the logistics support.

The fundamental concerns in reliability assessment of the aforementioned
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applications are carried out in the practiced maintenance strategies. In
other words, the post-failure maintenance strategy is known as the Cor-
rective Maintenance (CM) and practiced after losses in terms in availability,
expenses, time, and probably lives. Whereas, the Preventive Maintenance
(PM) strategy reduces the life-cycle of the system due to the preventive
scheduled maintenance practices that occur before the failure based on his-
torical information. Therefore, the Condition-based Maintenance (CBM) is
the only strategy that is applied when needed in order to avoid the catas-
trophic events from happening in a preventive framework and cost-efficient
practice. Consequently, the CBM is elaborated based on current health as-
sessment of systems in addition to failures prediction.

The core of the CBM strategy is consolidated in the Prognostics and Health
Management (PHM), since the objectives of the PHM are characterized by
online health-monitoring and failure predictions. The online continuous mon-
itoring is employed to assess the State of Health (SoH) of a component or
a system that will allow the prediction of the degradation behaviors until
reaching known physical thresholds, in order to predict its End of Life (EoL)
and forecast its Remaining Useful Life (RUL). The radical outcome of the
PHM is interpreted in the life-cycle extension and the indirect cost reduc-
tion, in addition to the system availability, and flexible time for precautions
and rescheduling of maintenance. On the other hand, some limitations such
as uncertainties, on-board monitoring, system-level prognostics, etc., burden
the development of PHM.

In broad, there is no single PHM architecture due to the difficulty of its
standardizing as a structured practice. The PHM approaches are split into
model-based and data-driven techniques which are diverse and have com-
pletely different features and require different specifications depending on
the type of each application. Eventually, the aforementioned approaches
raise concerns about the selection of the most suitable approach with the
proper application. Although the feasibility of system modeling is limited to
a certain level of complexity and fidelity, a huge amount of historical data
would be required to overcome the modeling phase with the data-driven ap-
proach, whereas it is limited due to the fast upgrades of modern systems.
Consequently, both approaches face the uncertainties whether in modeling
or in data acquisition. By mentioning the latter, there exists various ways
to process the data that can be performed online or offline and onboard or
offboard the system that will constraint the overall PHM integration. Nev-
ertheless, the RUL forecasting is the main technical objective that leads to
the CBM, and as well is split into various practices. The RUL forecasting
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methodologies depend on whether it is performed on a component-level or a
system-level. Unlike the component-level, the system-level approaches reflect
the real engineering applications that contain multidisciplinary components,
subsystems, and devices. Thus, whether Component Remaining Useful Life
(CRUL) or System Remaining Useful Life (SRUL), they are both predicted
to assess the SoH of a component or a system respectively. Therefore, the
SoH assessment methods can be characterized using failure indicators which
are known as failure precursors that can be adopted by both model-based
and data-driven prognostics. The deviation level of the failure precursors in-
dicates the evolving degradation. Whereas, the failure precursors for system-
level prognostics are broadly limited to external parameters of the systems
such as input/output measurements. On the other hand, the failure precur-
sors of the components are more specific and provide the internal degradation
effect. Speaking of component-level prognostics, there exists an accurate yet
more effort and time-consuming approach which is based on the modeling of
the failure mechanisms of the components. The latter requires strong knowl-
edge of the Physics-of-Failure (PoF) of each components which increases the
modeling fidelity along with the complexity, which could not be practical for
components-rich systems.

Technically, the failure is predicted by regressing known PoF-based degrada-
tion or empirical failure precursors models, if the models are known. Oth-
erwise, the training-data are then used to fit the degradation trends with
data-driven prognostics, for unknown degradation models. Furthermore, the
empirical and PoF-based models of the degraded components or systems are
fit based on current and previous observations. In practice, the degradation
is estimated using Kalman Filter (KF), Extended Kalman Filter (EKF), par-
ticle filter, etc., if not all the parameters are accessible for measurements by
direct means. In broad, only external features of the systems are considered
for system-level prognostics. Thus, the predicted degradation trends are in-
tersected with the failure thresholds of the components or the system.

Finally, the motivation of this thesis is fundamentally based on the diver-
sity of PHM approaches for complex systems. Based on the aforementioned,
the reliability assessment is strongly based on the estimation of SoH of a
component or a system on which the RUL forecasting is based. Indeed, the
prognostics approach should consider practical applications characterized as
systems with multidisciplinary components. Additionally, noises and uncer-
tainties of sensors and degradation models crucially affect the failure predic-
tion process. In broad, stochastic approaches are mainly employed in the
literature to deal with such constraints following Gaussian distributions of
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noises and uncertainties, and probabilistic failure predictions. Whereas, the
degraded systems behavior with unknown noises and uncertainties necessi-
tate to be investigated. Additionally, the CBM strategy can be optimized for
system-level PHM by identifying the degradation of the critical components
rather than only considering the external features of a system. Moreover,
there is a remarkable rule that employ data-driven prognostics for unknown
degradation models, yet it is worth investigating to which extent the RUL
can be predicted without knowledge of degradation models. For these pur-
poses, the objectives and contributions of this PhD thesis are detailed in the
following section.

Objectives and Contributions

Based on the aforementioned issues, the main objective of this thesis is to
formalize a model-based PHM architecture for nonlinear systems with em-
phasizing on a guaranteed robust degradation estimation of systems. Thus,
it is essential to assess the SoH of a system by estimating the states of its crit-
ical components, especially for complex systems. Therefore, we focus on the
investigation of degradation estimation through simple indicators that do not
require a strong knowledge of the system for the sake of generalization. Thus,
the challenges that accompany the estimation problem arise. Identification
and representation of nonlinear switched-systems were encountered first by
the approximation, observability, representation, and uncertainties issues.
To this phase, we investigated various linearization approaches with differ-
ent representation throughout this thesis until adopting a polytopic Linear
Parameter-Variant (LPV) model representation that suites best for real-time
prognostics applications. The main aim of employing such representation
is motivated by the diversity of system identification approaches for LPV
modeling, that allows the implementation of the proposed PHM with more
applications with fine tuning only.

Moreover, dealing with future events has never been certain. Thus, the
classical stochastic approaches that employ KF, particle filter, etc. for states
and parameters estimation are accurate for estimation, yet not reliable for
RUL forecasting. For these reasons, these approaches have been investigated
in this thesis, and according to the observations, we intended to employ
zonotopic-based approaches for both estimation and prediction. The sim-
ple implementation of zonotopes is motivated for real-time forecasting, in
addition to the dynamic bounds that solve the issue of uncertainties in the
stochastic approaches. In broad, the bounds provide guaranteed limits for
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the estimated states and parameters that characterize the degradation pre-
cursors. Furthermore, the importance of the LPV representation can be
seen through the tuning of the aforementioned zonotopic observers. In other
words, we proposed to tune the LPV observers offline with the polytopic
model obtained using the bounding box approach using Linear Matrix In-
equality (LMI) formulation for stability, which also provides a mode reduced
computational time than the classical online gain scheduling approaches.
Consequently, the estimated zonotopic sets will be employed online by the
RUL forecasting phase.

The ideal desired outcome of the PHM is achieved if the RUL forecasting
is achieved online with high reliability from the measurement time instant
until the EoL of the component or system. Building upon this hypothe-
sis, we investigated a classical degradation prediction approach using known
degradation models, as usually followed in the literature. However, as we in-
tend to generalize the whole PHM approach, we proposed an intuitive RUL
forecasting approach which does not require any previous knowledge of the
degradation model. However, it has been eliminated along with the classical
approach due to vital reliability concerns, model-dependency, and complex
computations that consume time and effort. Therefore, we proposed a recur-
sive zonotopic approach that follows an exponential degradation trend with
no previous knowledge of the exact degradation model, that has been re-
duced and rewritten in a linear form to guarantee the homogeneity between
the estimation and the prediction process. The later approach has been
validated with unknown-but-bounded and Gaussian noises and uncertainties
with a very high forecasting reliability unlike the previously-investigated pre-
dictions.

This thesis is made up by five chapters and two appendices in total, as
illustrated in Figure 1. Here follows, a short description of the contents of
each chapter apart from the general introduction.
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General Introduction

Chapter 1:

PHM: State of the Art

Chapter 2:

Degraded System Modeling

Chapter 4:

ZEKF for JESP and
RUL Forecasting

Chapter 3:

Stochastic
Approaches for JESP
and RUL Forecasting

Chapter 5:

ZSM for JESP
and RZSM for

RUL Forecasting

Conclusions and Perspectives

Appendices:

Mathematical Background
and Additional Material

Figure 1: Thesis structure

Chapter 1: Prognostics and Health Management: State

of the Art

An overview of the PHM is presented in this chapter. The various types
of prognostics approaches are introduced with the required physical and nu-
merical tools to stand against the challenges of their applications. Thus,
the importance of integrating prognostics techniques with emphasis on the
expenses of each type with possible cost-saving methods and improvements.
Moreover, the investigation of the model-based PHM approach has been
defended for the sake of applications to power electronics-rich systems. Ad-
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ditionally, the proposed PHM methodology is structured and the essential
roles of the stochastic and the deterministic estimation techniques have been
discussed. Hence, the RUL forecasting methods have been explained, and
directed to our point of view from these contributions.

Chapter 2: Degraded System: Modeling and Analysis

This chapter highlights a principal pillar of the prognostics applications. It
starts by modeling a DC-DC converter that is used in electrical vehicles, and
can be involved in many other engineering fields such as satellites, aircraft,
power plants, etc. Alternating and average models are two representations
for switched-systems, where each one can be utilized with different types of
precursors for the prognostics study. However, the average model has been
applied in this work in order to reduce the computational effort. Moreover,
we have proposed three degradation scenarios after presenting the empirical
modeling of two crucial power electronic components. The empirical models
of the Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and
the Electrolytic Capacitor (ECAP) have been created by fitting their real
accelerated aging data which are available on an online repository (Renwick,
J. and Kulkarni, C. and Celaya, J. 2015; Celaya, J. R. and Saxena, A.
and Saha, S. and Goebel, K. 2011). Thus, the aim of the empirical degrada-
tion is to analyze the degradation effect on the remaining components in the
system and on its overall efficiency. Therefore, it allows to simulate several
degradation behaviors for the sake of investigating the prognostics techniques
with several case studies. Moreover, assuming that only the external mea-
surements of the system are allowed, the model should be represented to
allow the estimation of the internal parameters that describe the degrada-
tion precursors. For this reason, we propose to extract the parameters in
form of regressors, apply two separate filters for states and parameters esti-
mation, or reduce the computational efforts by employing only one filter for
Joint Estimation of States and Parameters (JESP). Therefore, we adopt the
augmented model representation of the dynamical model.

Chapter 3: Stochastic Approaches for PHM and RUL

Forecasting

The first PHM approach based on stochastic estimation techniques is pre-
sented in this chapter. The aim of this chapter is to present the general struc-
ture of model-based prognostics by dealing with nonlinear systems, degrada-
tion estimation, and RUL forecasting. Thus, based on its wide applications
in many industrial applications, we employ the EKF in order to estimate
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the states and the parameters. Furthermore, parameters estimation plays a
vital role in the reliability assessment of the RUL forecasting approach. The
main reason refers to the proposition of unknown degradation behaviors that
obliges the estimation of the degradation precursors. Hence, the first pro-
posed RUL approach is based on the simple EoL-RUL linear relation and the
estimated degradation level. The proposed approach is investigated with the
scenarios of the case study for the sake of a complete assessment on the whole
system. Finally, further improvements are proposed based on the obtained
results, in the following chapter.

Chapter 4: Zonotopic Extended Kalman Filter Approach

for PHM with Bounded RUL Forecasting

A major RUL-related issue had been analyzed and concluded from the pre-
vious chapter. The RUL is a sensitive prediction which is mainly applied
to crucial, autonomous, and costly systems. Thus, as the prediction is still
not happened yet, it can never follows a precise timeline for its occurrence.
In consequence, we propose to provide bounded RUL forecasting by indi-
rectly deducing the bounds from zonotopic parameters estimation using the
Zonotopic Extended Kalman Filter (ZEKF) approach for JESP. Zonotopes
have been selected because of the reduced computational effort in addition to
the high estimation accuracy as they are combined with the widely-utilized
EKF. Moreover, we propose an LMI-based optimization problem to tune the
observer offline with online arithmetic computations only, that will reduce
the time of the estimation and the prediction process, which could also be
applied to nonlinear systems.

Chapter 5: Zonotopic Set-Membership Approach for PHM

with Recursive Zonotopic-RUL Forecasting

A robust Recursive Zonotopic Set-Membership (RZSM) approach for RUL
forecasting with application to LPV systems is proposed in this chapter. It
addresses the JESP in a Zonotopic Set-Membership (ZSM) scheme with op-
timal LMI-based tuning for multi-output systems. Thus, a RZSM approach
is proposed for an indirect RUL forecasting based on the prediction of the
varying functions. Additionally, the issue of dealing with the nonlinearities
of the parameter variations, uncertainties and noises is solved in an LPV
framework. Finally, this approach is tested on the DC-DC converter case
study with unknown degradation behaviors, and the obtained results show
the estimation and the forecasting accuracy of this methodology.
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1.1 Introduction to Prognostics and Health Man-

agement

The major increase of complexity of the modern engineering applications has
emerged an essential elaboration of new techniques for health monitoring and
maintenance strategies (Elattar, Elminir, and Riad 2016; N. Kim, An, and
J. Choi 2017b). In broad, these techniques emphasize on ensuring reliable
operations with safety measures by continuously monitoring the health of
the system, where the required decisions should be taken instantly (M. G.
Pecht and Kang 2018). Thus, the continuous health monitoring of critical
systems is namely referred to Fault Detection and Identification (FDI) in a
diagnostic framework, where the faults are detected and located. In spite
of the widespread fault diagnostics techniques, critical and complex applica-
tions (i.e. autonomous transportation, nuclear power plants, aerospace, etc.)
have had necessitated upgrades to the current faults detection techniques.
These upgrades consist of failure predictions, optimal maintenance schedul-
ing, operation decision support, decision-making support, etc. Eventually,
the root cause of this development lies in the importance of the maintenance
strategies and the effects of such practices on the reliability of the systems.
Indeed, the traditional maintenance strategy is known as the CM that takes
place post-failure which is a completely passive practice that could lead to
catastrophic events. Additionally, the CM is the most expensive maintenance
strategy due to its unscheduled behavior that affects the life-cycle of systems.
Moreover, the reliability prediction techniques that have been developed in
the 1950s, focus on estimating the field-reliability of systems using analytical
modeling and data acquisition (W. Denson 1998; Elattar, Elminir, and Riad
2016; N. Kim, An, and J. Choi 2017b). Such maintenance strategy is known
as the PM, and considered as an active practice since it occurs at sched-
uled intervals of times. The PM is less expensive than the CM due to the
fact that statistical and analytical analyses of the previous failure data are
involved to develop these techniques that organize the maintenance needs
(Luo, Namburu, and Pattipati 2003). These approaches have been elabo-
rated in Mil-HDBK-217 (MIL-HDBK 217 (1965) 1965), 217-PLUS, PRISM
(W.A. Denson 1999), Telcordia SR-332 (Telcordia Technologies (2001) 2001),
and FIDES (FIDES Group (2004) 2004).

Moreover, the concerns about the reliability assessment have had been raised
despite the safe role of the PM approaches, due to the complexity of modern
critical engineering applications that does not comply efficiently with the tra-
ditional systems operation monitoring and scheduled maintenance, in order
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to avoid catastrophic failures that could lead to complete systems shutdown,
and loss of lives. In consequence, the CBM strategy has been elaborated in
order to reduce the unnecessary maintenance that increases the total life-
cycle costs, and indicates the exact damaged/faulty components or systems.
The CBM strategy accounts for the least expensive strategy in terms of the
life-cycle costs since it is considered as a proactive approach that is only ap-
plied when it is needed (Elattar, Elminir, and Riad 2016; Chang, Fan, et al.
2018; M. Pecht 2011; Schwabacher and K. Goebel 2007; M. Pecht 2006). An
example that clarifies the concept of the CBM was given in (N. Kim, An, and
J. Choi 2017b) about changing the oil of cars. It states that the conventional
old method defined a range of 3000 to 5000 miles that emerges changing the
engine oil. Whereas, this method can lead to huge oil waste, and the CBM
solves this issue by continuously measuring the health of the oil, and prevents
the driver to change it when needed only. Therefore, the CBM is carried out
by the implementation of the PHM.
Figure 1.1 illustrates the maintenance strategies versus the cost.

Number of failures

C
o

s
t

Corrective maintenance Preventive maintenanceCondition-based maintenance

Repair cost

Prevention cost

Total cost

Figure 1.1: The three maintenance strategies versus cost (N. Kim, An, and
J. Choi 2017b)

PHM is split into prognostics and health management of systems (Chang,
Fan, et al. 2018). Health management is mainly based on the health moni-
toring of the system at the actual operating time (Elattar, Elminir, and Riad
2016; Chang, Fan, et al. 2018; M. Pecht 2011; Schwabacher and K. Goebel
2007; S. Zhou, L. Zhou, and P. Sun 2013; Xiong et al. 2008; Xiang, Ran,
Tavner, S. Yang, et al. 2012; Xiang, Ran, Tavner, Bryant, et al. 2011; Mo-
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hagheghi, Harley, and Habetler 2009). Health monitoring is considered as
the in-situ fault diagnostics that reports various types of detected malfunc-
tions in the system. Thus, the Greek word “proginoskes” is the modern-day
prognostics that means foresight or foreknowledge (Chang, Fan, et al. 2018).
In an engineering framework, prognostics is defined as the process that per-
mits the prediction of the RUL of a component/subsystem/system that is
subject to degradation due to natural or harsh operation conditions (Elat-
tar, Elminir, and Riad 2016). Among various sources, ISO Central Secretary
(2015) defined the prognostics as “an estimation of time to failure and risk
for one or more existing and future failure modes”.

The concept of the PHM was first adopted for the aerospace applications
as it was initially used to reduce the helicopter accident rate by the civil avi-
ation authority of United Kingdom in the 1980s (N. Kim, An, and J. Choi
2017b). Furthermore, the development of the PHM approaches took place
in the 1990s where the desired functionalities have been achieved by Health
and Usage Monitoring System (HUMS) that reduced the accident rate of
helicopters by more than a half as stated in (UK Offshore Commercial Air
Transport Helicopter Safety Record (1981 – 2010) 2011; N. Kim, An, and J.
Choi 2017b).

During the same period, the Center for Advanced Life Cycle Engineering
(CALCE) was established in 1986 with a great interest in reliability as-
sessment for power electronic systems that has been elaborated under the
PHM practices with physics-based failure analysis (CALCE 1986). National
Aeronautics and Space Administration (NASA) Office of Space Flights also
established the Integrated Vehicle Health Management (IVHM) to monitor
the health of the space vehicles as a major technology of the future (Aero-
nautics and Technology 1992; C.D. et al. 1999). Thus, the same concept of
the IVHM has been replaced by a more extensive term, the Integrated Sys-
tems Health Management (ISHM) as a universal term, where the prognostics
play an essential role in its development. This establishment has pushed the
boundaries of systems health management to the next level by integrating the
prognostics in the ISHM (Schwabacher and K. Goebel 2007; Elattar, Elminir,
and Riad 2016; N. Kim, An, and J. Choi 2017b; M. G. Pecht and Kang 2018).

The main reason behind emphasizing on developing prognostics techniques
refers to avoid inaccurate predictions of failures that could affect the decision-
making as in logistics and maintenance (M. G. Pecht and Kang 2018). Ac-
cordingly, the United States Department of Defense (DoD) forces the employ-
ment of PHM technologies by investing in their development by NASA Ames
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Research Center and the Jet propulsion Laboratory that are game changers
in this field (defense 2002).
Later on, the Prognostics Center of Excellence (PCoE) of NASA started the
investigation of failure mechanisms with damage propagation for the wiring
insulation and electrical and electronic components of aircraft and the avionic
field in general (PCoE 1986).

The development of the prognostics has been elaborated for the sake of the
employment of CBM in order to save predefined and unnecessary mainte-
nance expenses, keep the system available, and predict an accurate and re-
liable RUL on a component-level or on a system-level. RUL forecasting is
the most important contribution in this thesis as much as it is also one of
the most challenging frontiers of PHM that provide advance warning of fail-
ures and aim for life-cycle extensions (M. Pecht 2006; B. Saha et al. 2009; M.
Pecht 2011; Elattar, Elminir, and Riad 2016; Ferhat 2020). For these reasons
the PHM practices address the reliability assessment despite the presence of
standard-based reliability assessment (Ristow and Begovi 2008; S. E. D. Le
et al. 2013; Khorshed Alam and H. Khan 2013), fault-tolerant topologies
with redundant components (Tajfar and Mazumder 2012; Dat et al. 2012; A
and K 2013) that do not prevent the failures from occurring.
Figure 1.2 illustrates the main elements in PHM as proposed in (K. Goebel,
A. Saxena, et al. 2012).

The raw data acquired by the sensors of the system are usually processed
before extracting the needed indicators for the PHM study. Despite the va-
riety of data processing methods, the aim of this step is to analyze the useful
information about the SoH of the system. It is required for the continuous
assessment of fault detection using fault diagnostics techniques. non-faulty
conditions do not necessarily mean a healthy system. Thus, failure prog-
nostics are applied in order to detect and localize the degradation for the
sake of RUL forecasting. finally, the accomplishment of the prognostics pro-
vides a clear image about the SoH of the system that has been provided by
the enhanced diagnostics in addition to the predicted RUL which combined
allow an optimized decision-making. The latter is mainly related to the re-
quired maintenance of the system (K. Goebel, A. Saxena, et al. 2012). This
brief explanation of the PHM modules in general will be further explained
throughout this thesis.

This chapter is structured as follows. Section 1.2 highlights the multidis-
ciplinary benefits of PHM along with the main challenges. Thus, Section 1.3
presents the advantages and the limitations of the two prognostics approaches
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and the possibility of merging them for optimal solutions. An overview of
the PHM applications is provided in Section 1.4 with emphasizing on the role
of electronics. Section 1.5 details the failure mechanisms of the most critical
electronics components and explains their role in lifetime predictions ver-
sus the failure precursors approach. Moreover, the RUL forecasting methods
are presented in Section 1.6. Additionally, a brief overview about prognostics
evaluation metrics is provided in Section 1.7. We proposed a structured PHM
methodology in Section 1.8. Finally, a state-of-the-art summary is provided
in Section 1.9.

System
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Decision
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Figure 1.2: PHM overview (K. Goebel, A. Saxena, et al. 2012)

1.2 Benefits and Challenges of PHM

PHM is a multidisciplinary engineering practice which assesses the level of
deviation of the system behavior from the desired operation in order to pre-
dict the system behavior and Forecast the RUL (Feather et al. 2008; M. G.
Pecht and Kang 2018; N. Kim, An, and J. Choi 2017b). The aforementioned
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targets are beneficial in terms of improving the system reliability, availability,
operation, safety, and logistics support as well as reducing the maintenance-
induced faults, time, and costs. Thus, many techniques have been developed,
integrated, and validated towards enhancing the PHM aims. However, since
the prognostic is not an easy task, many challenges such as uncertainties, lack
of information, and false readings, accompany the PHM process and require
serious development and validation. The following subsections summarize
broadly, the main benefits and challenges of PHM.

1.2.1 Benefits of PHM

The benefits of the PHM are directed towards the reduction of cost-related
actions such as the maintenance cost and extending the life-cycle of a sys-
tem via the CBM. Thus, the cost reduction of the prognostics-based CBM
is huge as claimed by General Electric, 1% efficiency improvement results
in $276 billion in oil and gas, power, healthcare, aviation, and railroad in-
dustries (Evans and Annunziata 2012). Furthermore, the cost reduction will
indirectly increase the revenue via the reliability. The reliability encourages
more investment and trust in a product with embedded PHM system. As an
example, an autonomous vehicle with reliable PHM attracts the users buyers,
which increases the revenues. A more detailed analysis about the life-cycle
benefits of PHM was elaborated by (B. Sun et al. 2012).

Moreover, prognostics can help the manufacturer to improve their products,
by investigating their abilities via the PHM which will provide reliability-
related data in various operation conditions and scenarios. Additionally, the
reliability improvements along with the RUL forecasting practices can save
time and costs in logistics. In other words, the future behaviors prediction
with the RUL forecasting provide prior failure alarm that enables the logistics
to ship the spare components and devices in advance, and avoid additional
depots fees (N. Kim, An, and J. Choi 2017b; Elattar, Elminir, and Riad
2016; M. G. Pecht and Kang 2018; R. Yan et al. 2019).

Furthermore, the ability of predicting the future behavior of the complex
and interconnected subsystems/systems, provides more time to the decision-
makers in charge to plan and reconfigure the whole operation of the system
optimally (Wheeler, Kurtoglu, and Poll 2010). Whereas, the reconfigura-
tion process could be vital in some types of applications due to components
degradation by many factors such as electrical overstress (i.e. overvoltage,
overcurrent, electromagnetic field, frequency, etc.), and mechanical overstress
(i.e. high temperature, vibration, friction, etc.).
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The operational reliability can be improved by increasing the safety of the
system which is provided by the PHM. Based on the aforementioned prog-
nostics capability to predict the future behavior that adds more flexibility
to encounter the failures, the availability of the system can be guaranteed.
Thus, the risk of failures decreases and the lifetime of the whole system in-
creases optimally with maintaining the reliable operation through the CBM
practices (N. Kim, An, and J. Choi 2017b; Elattar, Elminir, and Riad 2016).
Adding to the aforementioned benefits, the PHM improves the maintenance
strategy from PM to a proactive CBM which by its turn reduces the process-
ing and operation time, costs, and manpower that also reduces the risks that
accompany these factors. Since the CBM minimizes the scheduled mainte-
nance and increases the interval of maintenance which eliminates the redun-
dant inspections and reduces the maintenance-induced faults, the cascading
and secondary damages are eliminated (N. Kim, An, and J. Choi 2017b;
Elattar, Elminir, and Riad 2016).

Additionally, the PHM provides continuous monitoring of the systems in-
cluding black/grey box for degradation, tear, and wear slowly-evolved faults.
Consequently, the operation of the system is safely guaranteed until its pre-
dicted EoL, which increases the safety of the system.

1.2.2 Challenges of PHM

Despite the multi-aspect benefits of PHM, the challenges increase with the
complexity of critical systems particularly, due to the concept of prognostics
that is based on predicting the future behaviors of systems. Prognostics are
mostly related to observations and actual measurements, they are always
affected by uncertainties, measurement-related instrumentation, and lack of
information that will be detailed in the following (N. Kim, An, and J. Choi
2017b).

PHM require data acquisition either in real-time or historical measurements.
They are employed for filtering and estimating the damage or for building
training data-set in order to achieve the prognostics tasks. Sensors are the
only link relating the system to the PHM. An optimal configuration could be
achieved by implementing redundant multiple sensor for monitoring valida-
tion. Thus, considering the environmental effects with sensors degradation
adds a burden to the RUL forecasting that could be affected by small uncer-
tain measurements that could deteriorate the system and block the desired
PHM outcomes (Sankararaman 2018; Robinson 2018; Cheng, Azarian, and
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M. G. Pecht 2010; N. Kim, An, and J. Choi 2017b).
Moreover, prognostics uncertainties are major challenge that are related to:

• Model uncertainty which is caused by the degree of fidelity and param-
eters simplifications throughout the modeling process,

• RUL forecasting uncertainty affected by the aforementioned uncertain
measurements due to the operation conditions and encountering envi-
ronment.

• Originally-defected components and instruments by the production,
can affect the whole operating behavior of the component/system that
affects the forecasting process and the decision-making afterwards.

Thus, in order to encounter the effects of these uncertainties in RUL fore-
casting, it is crucial to develop techniques that can bound the uncertainties
for guaranteed safety region while estimating and predicting the system be-
havior and EoL/RUL (Leao et al. 2008; J. R. Celaya, A. Saxena, S. Saha,
and K. F. Goebel 2011; M. A. Djeziri, Benmoussa, and Sanchez 2018; Vacht-
sevanos, Lewis, M., et al. 2006; Vachtsevanos, Lewis, Roemer, et al. 2006b;
Wheeler, Kurtoglu, and Poll 2010; A. Saxena et al. 2010b; Elattar, Elminir,
and Riad 2016).

Furthermore, the lack of data of failures and operation conditions due to
many reasons such as novel systems which are not yet experimented enough.
Additionally, it is impossible to measure a crack growth or degradation of
any components due to some barriers, etc. Thus, this can lead to inaccurate
identification of the degradation profile.
N. Kim, An, and J. Choi (2017a) has shown an example about cracks of
bearings and how difficult is to measure their evolution in order to extract
degradation data from larger noisy signals in such dynamical system with
harsh operation conditions.

Moreover, the post-prognostics actions are to be addressed with accurate
decision-making due to the fact that they are highly-dependent on the prog-
nostics. As for example, an automated system reconfiguration is based on
the prognostics outputs, any uncertain RUL forecasting can decrease the es-
timated life-cycle of a system, or cause unnecessary system shut-down, false
maintenance alarm, and more negative effects (B. Sun et al. 2012).
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1.3 Prognostics Approaches

Three main approaches can categorize the prognostics techniques, model-
based, data-driven, and hybrid. The selection of either approach depends on
the specifications of the system, the availability of measurements and/or his-
torical failures information, in addition to the implementation cost and com-
plexity. In general, the model-based approach is more intuitive and depends
on strong knowledge of the system and its parameters which are extracted
as physical models. Whereas, the data-driven approach depends on training-
data due to historical operations that are extrapolated with mathematical
functions, and applied using statistical or soft computing approaches. Thus,
the hybrid prognostics approach is the fusion between specific selections of
features depending on the availability of the requirements of an application
(N. Kim, An, and J. Choi 2017b; Elattar, Elminir, and Riad 2016; M. G.
Pecht and Kang 2018; Robinson 2018; Luo, Namburu, and Pattipati 2003;
L.H., E.L., and R.D. 2001). In broad, each of the aforementioned approaches
has specific advantages in addition to some limitations. The choice of any
approach depends on some criteria such as the knowledge of the system be-
havior, operating conditions, the degradation mechanisms, the importance
of real-time forecasting, available measurement data, etc. Thus, the details
about the main features of each approach are explained in the following sub-
sections.

1.3.1 Data-driven prognostics

Data-driven techniques are basically applied to systems with PoF are difficult
to model. These approaches are utilized more than other PHM approaches
despite the fact that the data-driven approach performs with a relatively
lower accuracy in real-time degradation estimation and RUL forecasting.
The reason behind supporting this approach is that it is easy to implement
in most applications, and does not require deep understanding of the PoF of
the components or systems (Elattar, Elminir, and Riad 2016). Data-driven
PHM is based on previously-aggregated data from similar systems, in various
operation conditions and degradation behaviors. The training-data are uti-
lized to estimate the current SoH and predict the future behaviors (Robinson
2018; Ferhat 2020). The proper amount of needed data forms a great barrier
between the prediction accuracy and the computational time and effort, and
it is the main challenge in developing the data-driven approaches.
Moreover, there exists several artificial intelligence and machine learning
packages and already-developed algorithms that can be employed with sim-
ple tuning for prognostics.
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Artificial Neural Network (ANN) is the most used approach in the data-
driven methods (An, N. H. Kim, and J. Choi 2015). Vatani, Khorasani, and
Meskin (2015) investigated the prognosis of gas turbine due to degradation
based on recurrent neural network and nonlinear autoregressive neural net-
work techniques. However, the authors presented some challenges that can
be faced during the employment of these techniques such as the selection of
parameters, the delays, the training data-set, validation, etc.

Furthermore, support vector machine and relevance vector machine tech-
niques have been also investigated for prognostics applications. Chang, Kang,
and M. Pecht (2017) proposed a relevance-vector-machine-based regression
model approach for the sake of RUL prediction of light-emitting diodes.
Thus, M. A. Patil et al. (2015) used the support vector machine classifi-
cation method as a first stage for uncertain RUL estimation. Hence, they
used support vector regressor for more accurate RUL prediction based on
temperature and voltage data-sets for prognosis of lithium-ion batteries.

Gaussian process has also been used for prognostics in the literature. How-
ever, it is remarkable that this approach was mainly utilized for SoH prognosis
of lithium-ion batteries i.e. (Richardson, Osborne, and Howey 2017; D. Liu
et al. 2013; D. Zhou et al. 2018).

In addition to self-organizing map, principle component analysis, Hidden
Markov Models, fuzzy logic techniques, and so on (M. G. Pecht and Kang
2018; Robinson 2018; Elattar, Elminir, and Riad 2016).

The main advantage of implementing the soft computing techniques over
statistical, is that all hidden relations among parameters and components
are considered and learned in addition to their ability of noise rejection.
The failures data can be obtained through Accelerated Aging Experiments
(AGEs) which are applied in real experimental testbeds, which are effective
but not necessarily contain all types of failures. However, testing all types of
failures with various operations can be achieved, yet it is very expensive and
time-consuming as well. Failure simulation is another option that requires
high-fidelity modeling of failures which is expensive and time-consuming, and
not an easy task especially for complex systems (Q. Zhang, Basseville, and
Benveniste 1994; P. Wang and Vachtsevanos 1999; Swanson 2001; W. Yang
2001; W. Wang and Wong 2002; Luo, Namburu, and Pattipati 2003; N. Kim,
An, and J. Choi 2017b; M. G. Pecht and Kang 2018; Z. Zhang, Dong, and
Xie 2018; M. Djeziri, Benmoussa, and Benbouzid 2019; R. Yan et al. 2019;
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B. Yang, R. Liu, and Zio 2019; Y. Zhang et al. 2020).

1.3.2 Model-based prognostics

In model-based methods which are widely known as physics/PoF-based meth-
ods, it is assumed that the mathematical model of the degradation exists.
Ordinarily, the model-based approaches are used to systems that can be mod-
eled on micro-level as well the the macro-level in order to estimate the current
degradation state and predict the RUL (Robinson 2018). In other words, the
prognostics sometimes might be applied to an internal component that dete-
riorates the whole system, and a mathematical representation of the degrada-
tion requires a strong knowledge about the PoF of each relevant component.
Hence, since the PoF can be modeled, degradation models are widely used
to assess the SoH of the intended component, in addition to RUL prediction
methodologies which are mainly based on statistical failures data (N. Kim,
An, and J. Choi 2017b; M. G. Pecht and Kang 2018). In broad, degraded
systems with inaccessible internal parameters, the degradation are mainly
estimated based on failure mechanisms and/or failure precursors which are
explained in details throughout this chapter.

Thus, stochastic approaches such as KF (Kalman 1960) for linear systems
and its extensions such as EKF, Unscented Kalman Filter (UKF) (Wan and
Van Der Merwe 2000), particle filters (Arulampalam et al. 2002) for nonlinear
systems, etc. are used to estimate states and parameters of the degradation
models. Mainly the particle filters are used for non-Gaussian noises whereas
the Kalman-based filters are only concerned with Gaussian noise distribu-
tion. Furthermore, unknown input observers (Darouach, Zasadzinski, and
Xu 1994) are possible approaches to estimate the hidden degradation as pro-
posed in (Chelidze, Cusumano, and Chatterjee 2001).

Moreover, reliability-based assessment for standalone components were also
considered with knowledge about its failure history without considering the
current operating conditions. Thus, Poisson laws, Weibull analysis, and sim-
ilar techniques can be used to deal with such conditions for degraded com-
ponents. Thus, the residuals are also used as features of some RUL forecast-
ing approaches that do not require to assess the degraded component on a
system-level. Yet, it depends on the external cascading damage due to the
degradation effects (Medjaher and Zerhouni 2009).

To sum up, the major drawback of this approach is related to costly and time-
consuming of high-fidelity modeling, especially for complex systems (Elattar,
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Elminir, and Riad 2016). On the other hand, the model-based prognostics
provide relatively accurate RUL forecasting results based on the modeling
fidelity. Moreover, such approaches are beneficial since they can be validated
and verified in comparison with real degraded systems (Uckun, K. Goebel,
and P. J.F. Lucas 2008). Despite that the modeling is a time-consuming
practice, the models can be reused by simple parameters tuning. In broad,
the model-based prognostics require the selection of the fault precursors that
are identified by the identification of the failure mechanisms. Additionally,
the model-based PHM can predict both the future behavior and the RUL
of a component or a system (Luo, Namburu, and Pattipati 2003; Daigle
and K. Goebel 2013; Elattar, Elminir, and Riad 2016; N. Kim, An, and J.
Choi 2017b; Robinson 2018; M. G. Pecht and Kang 2018; Aggab et al. 2018;
Ekanayake et al. 2019; Ferhat 2020).

According to the aforementioned briefing of the model-based approaches,
it is seen that the techniques in the literature strongly depend on physical
models of degradation. Hence, one of our objectives in this thesis is to inves-
tigate the RUL forecasting techniques in order to reduce the dependency on
the time-consuming degradation modeling that could be avoided for our aim
to standardize a structured system-level PHM approach. The elaboration of
this investigation is consecutively explained throughout this thesis, while we
dedicate this part of this chapter to review and assess the main prognostics
techniques.

1.3.3 Hybrid prognostics

Hybrid prognostics approaches are the fusion between the advantages of the
model-based and data-driven methods. As the model-based requires the
availability of the degradation, failure, and system models and operation
conditions, it compensates the lack of information that are not provided by
the data-driven methods. On the other hand, the data-driven prognostics
approaches can take advantage of the knowledge of the PoF when failure
data are not available in order to process them in soft computing algorithms.
Cheng and M. Pecht (2009) investigated a hybrid prognostics approach for
RUL prediction of ceramic capacitors. The authors defined a nine-step hy-
bridization process that can be extended to further applications.
Furthermore, K. Goebel, B. Saha, et al. (2008) proposed a hybrid prognostics
approach for degraded lithium-ion batteries.
Moreover, K. Goebel, Eklund, and Bonanni (2006) applied fusion prognos-
tics for RUL forecasting of aircraft engines bearing that have shown reliable
results.
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Merging the two approaches can be achieved on different levels depending on
the actual needs by targeting the essential aim of RUL forecasting (Elattar,
Elminir, and Riad 2016; N. Kim, An, and J. Choi 2017b; M. G. Pecht and
Kang 2018; Baptista et al. 2019).

Since the hybrid prognostics approaches are not widely spread in the litera-
ture as the model-based and the data-driven, these reviews may be interesting
for more information (Zio and Di Maio 2012; Daroogheh et al. 2015).

1.3.4 Summary of prognostics approaches

There is no standard rule that specifies the selection of any prognostics ap-
proaches. However, as explained above, some criteria define the require-
ments of each application. Modeling of complex systems is costly and time-
consuming, yet physics-based prognostics approach provides accurate and
reliable predictions. Whereas, if measurements and operation conditions of
real systems are available, data-driven prognostics approach can be utilized
due to its simple and fast implementation with no necessary knowledge of the
system behavior. However, training data-sets are required and they are not
always available for all applications. In other words, data-driven prognostics
for latest real applications necessitate degrading real systems for data acqui-
sition to learn the algorithms which is also a challenge to time and expenses.
Table 1.1 summarizes the main advantages and limitations of model-based
and data-driven prognostics approaches.

Our vision in this thesis is focused on model-based PHM practices with in-
vestigation on reduced knowledge of degradation models which can save a
remarkable amount of effort and time for the sake of real-time accurate prog-
nostics. It is essential to highlight the importance of developing a standard-
ized PHM approach that suits modern-engineering applications with only
simple tuning and no requirements of studying the failure mechanisms of
the systems. Thus, this part is dedicated to a brief review about the PHM.
Hence, our perspectives are extensively elaborated in this thesis after the
problem statement in this chapter.

1.4 PHM Applications

The first elaborated application of an integrated PHM was intended for the
aerospace field, as mentioned in Section 1.1. The main goal of contributing
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Table 1.1: Advantages and limitations of prognostics techniques

Methods Model-based Data-driven
Advantages • Intuitive results • Easy and fast to imple-

ment
• Models are reusable • Consider all relation-

ships without prejudice
• Computationally ac-
ceptable to implement

Limitations • Requires understanding
of the system and the
PoF for the modeling

• Requires lots of data

• High-fidelity models
are computationally ex-
pensive

• Computationally ex-
pensive

to the development of PHM for the sake of the CBM concept, relies in the
importance of the safety of critical engineering systems as well as the hu-
mans, in addition to the operations and maintenance. Failures in aerospace
systems are mostly catastrophic while CM and PM are not sufficient to guar-
antee a reliable operation with real-time monitoring and predicted behavior
assessment (Vachtsevanos, Lewis, Roemer, et al. 2006a). Moreover, as the
prognostics yields to RUL forecasting, intermittent faults could not be pre-
dicted especially in electrical and electronic-based systems. In broad, the
PHM in engineering applications concerns the degradation prediction of a
component/subsystem/system. It is worth noting that the concept of prog-
nostics is not a new invention since it has been applied in the weather forecast
and in the medical field for prediction of the disease evolution after treat-
ment (Abu-Hanna and Peter J. Lucas 2001), however we are interested in
contributing to the PHM for complex engineering applications.

Furthermore, the PHM could be integrated with the system (plant) onboard
for critical real-time applications such as outer space missions. It could be
also applied offboard the system as the PHM aggregates the measured data
for offline RUL forecasting for the sake of maintenance assessment, system
reconfiguration, and logistics support. Thus, we can summarize that the two
main prognostics outputs are the prediction of the EoL and/or future behav-
iors of the systems (A. Saxena et al. 2010b; Kothamasu, Huang, and VerDuin
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2005). Moreover, as we previously stated, PHM is not a standardized and
structured framework, yet it depends on the type of the application, the size
of measured information, the location, static or dynamic system, and more
factors that help optimize a suitable PHM for the desired outcomes. Rather
than the faults in electronic and electrical systems, the cracks in materials
can also be described as degradation where prognostics could forecast the
future behavior of the crack evolution. The following are various examples of
some prognostics applications in electrical, electronics, storage, healthcare,
mechanical, and other critical and complex engineering fields. It is worth
mentioning that these examples are a few samples of a wider prognostics-
related application fields, yet not specific and cover aerial vehicles, cracks
in rotating machinery, semiconductors, robotics, bearings, hydraulic pumps,
nuclear plants, turbines, etc.

1.4.1 Vehicles

The automobile industry in addition to the outer space vehicles such as rock-
ets and satellites are considered as ones of the most suitable applications for
PHM that can save lives losses, and maintenance expenses. Safety first, it
has started with real-time integrated diagnostics for automobiles to monitor
the state of the actuators, that are all processed based on the onboard sensors
readings (Elattar, Elminir, and Riad 2016). As an example, a patent for a
prognostic and diagnostic system (Smith 2011) that performs online health
monitoring and prognostics functions based on the sensors readings. It is
also connected to a centralized database station that conserves all the infor-
mation about previously diagnosed systems in order to detect any anomaly
that could affect the operation of the system. The newly-measured data are
compared with the central database and proper warnings about faults are
sent back to the user/driver/commander of the vehicle. Then, the onboard
prognostics system performs the necessary RUL forecasting and trend pre-
dictions based on the current diagnostics from the central database and the
onboard Vehicle Management Computer (Smith 2011).

Moreover, NASA Ames center for diagnostic and prognostic in collabora-
tion with the US Army and many technological institutes and universities
developed PHM approaches for predicting the health of electro-mechanical
actuators with online diagnostics onboard aircraft such as UH-60 Blackhawk.
The relative error accuracy of the EoL forecasting did not exceed 10% (Bala-
ban, A. Saxena, Narasimhan, Roychoudhury, and K. Goebel 2011; Balaban,
A. Saxena, Narasimhan, Roychoudhury, Koopmans, et al. 2015).
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Another critical device in the aircraft is the turbine engine that is vital for
the safety of the whole system. PHM supports the CBM to such essential
system that is described with high complexity due to the various types of
internal and external components, and high-fidelity physical models are time-
consuming and costly behaviors that can be avoided by the implementation
of data-driven PHM approaches based on ANN (Elattar, Elminir, and Riad
2016).

1.4.2 Electronics

The electronics are engaged into many daily uses such as smartphones and
computers as well as critical applications such as electric vehicles, aerial ve-
hicles, and huge industrial applications. They are vital in any type of appli-
cations and can lead to a complete failure and system shutdown. In broad,
the main challenges that affect the optimal operation of the electronic de-
vices are thermo-electrical. The latter yield these devices to degrade with
time, which accumulates in a cascading behavior to deteriorate the whole
system. Thus, electronic components are most likely to deviate from their
optimal rated operation, and the role of PHM is to estimate the level of this
degradation and predict the RUL. However, in real applications the electronic
components are integrated in electronic circuits such as converters, inverters,
drives, controllers, and more that contain passive and active components, in
addition to connectors, cables, switches, etc. Thus, the electronic circuit is
considered as a system of many types of components that are characterized
by different degradation behaviors. Each component is affected by external
oversresses as well as internal damage due to the interdependency inside the
circuit. This formation increases the complexity of the electronic circuits
which by its turn adds a burden on the PHM to manage the transition from
component-level to system-level prognostics, in addition to the uncertainties
(B. Saha et al. 2009; M. Pecht 2011; Vasan and M. G. Pecht 2018; Hanif et
al. 2019; Schmidt, König, and Prenosil 2012; Krebs et al. 2013). Moreover,
Chang, Fan, et al. (2018) conducted research about PHM for light-emitting
diodes, which shows that all types of electronic devices are concerned.

1.4.3 Lithium-ion batteries

The recent growing interest in the lithium-ion batteries in several electronics-
rich system such as everyday portable electronics, electric/autonomous vehi-
cles, and space systems, has raised the awareness of PHM and RUL forecast-
ing for these batteries (S. Saxena, Xing, and M. G. Pecht 2018).
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Stochastic filtering techniques were implemented by a novel approach devel-
oped by (D. Wang, Miao, and M. Pecht 2013), to determine the degradation
of lithium-ion batteries. Least squares regression technique was used to fit
the degradation models which are extrapolated in order to predict the RUL.

Hu, Youn, and Chung (2012) proposed EKF to estimate the state of charge
and the capacity of batteries in a multiscale framework. Then, a particle
filter was employed in order to project the estimates evolution for RUL pre-
diction purposes with high accuracy, in (Hu, Jain, Tamirisa, et al. 2014).

Furthermore, data-driven approaches have been also proposed to estimate
the capacity of lithium-ion batteries based on charging current and voltage
curves by (Hu, Jain, P. Zhang, et al. 2014). The authors applied particle
swamp optimization to find the optimum weight combination among previ-
ously obtained features and precursors using k-nearest neighbor regression.
Finally, the capacity was estimated accurately using this data-driven ap-
proach.

Z. Wang et al. (2017) proposed voltage fault diagnosis and prognosis of bat-
tery systems of electric vehicles based on entropy and Z-score approaches.
They emphasized on predicting the voltage fault through monitoring the
battery voltage while operating in real-time.

1.4.4 Industrial

Huge industrial applications can benefit from the aforementioned advantages
of PHM implementation in terms of increasing the system availability, the
revenues, the reliability with decreasing the costs and failures risks.

Bonissone and K. Goebel (2002) employed hybrid soft computing techniques
in order to develop an online prognostics approach to predict the remaining
time to break of paper making machine in a particular phase.

J. Yan, Koç, and J. Lee (2004) developed an online prognostics algorithm
for machine performance assessment for health monitoring and prediction of
future failures behavior. This technique is implemented based on the logis-
tics regression in order to assess the probability of failure. Thus, the RUL is
predicted based on continuous monitoring in real-time autoregressive moving
average.



30 1.4. PHM Applications

1.4.5 Commercial aircraft

Commercial aircraft are a perfect example that shows the crucial role of PHM
accompanied by safety and cost benefits. As explained in Section 1.1, the con-
cept of PHM was applied to military helicopters, yet it has been extended
to the commercial applications. To elaborate the essential role that PHM
plays, it is important to emphasize on the maintenance strategy with the
risks of such application. The major risk that encounters the aircraft is their
availability while operating. In other words, in case of any critical failure,
time is the only rescuer until safe landing. Thus, the ability of RUL forecast-
ing of the devices of the aircraft such as the jet engines, electronics system,
batteries, ans sensors, provides a prior knowledge about the health of the
system which indirectly provides more time for maintenance and planning.
Furthermore, commercial airliners tend to reduce the expenses in which the
maintenance accounts for an important partition. For safety reasons, a part
of the maintenance is made at scheduled periods rather than the detected
faults by the online diagnostics that necessitates on-spot repair. The PHM
system can transfer the active PM to proactive CBM that might provided
an extended life-cycle of the devices of the aircraft in addition to reduced
maintenance costs. Moreover, a prior planning can be made to the whole
fleet in addition to optimal logistics support due to the previous knowledge
of the occurring faults. A fully-detailed discussion about the role of PHM in
commercial airlines was provided in (Walthall and Rajamani 2018).

These applications are a few and not the only examples which we summarized
about the ability of PHM to deal with complex and critical systems, which
also includes more field such as healthcare (Capelli-Schellpfeffer, Kang, and
M. G. Pecht 2018), subsea cables (Flynn et al. 2018), etc. Moreover, we
intended to express the PHM for vehicles, electronics, engines, sensors, bat-
teries, and mechanical disciplines in order to show the major role of the
electronic circuits in such applications. The electronic circuits have become
common and essential in all engineering fields, and their failures cause the
failure of the whole system. Consequently, it is vital to increase their reliabil-
ity as components/subsystems/systems with the proper PHM methodology
to guarantee the availability of the whole system. For these reasons, the
PHM tools for critical power electronic components are investigated along
with their failure mechanisms on component and system levels, in Section
1.5.
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1.5 Failures and Prognostics of Electronic De-

vices

Motivated by the importance of the electronics in modern-engineering ap-
plications, this section is dedicated to elaborate the causes of failures, their
types, and necessary practices of PHM for electronics.

Modern power electronic devices have discrete characteristics and are ex-
pected to live longer due to the advanced technologies in this field (Qingchuan
et al. 2017). However, they are exposed to harsh operating conditions which
lead to system-failure throughout the time. Whereas, the intermittent faults
fall outside the scope of the prognostics application, the focus is on the slow
degradation of the most effective power electronic components in the system.
Thus, statistical studies have shown that the ECAPs are the most fragile fol-
lowed by the power switching devices such as MOSFET and Insulated Gate
Bipolar Transistor (IGBT), as illustrated in Figure 1.3 (Wolfgang 2007; S.
Yang et al. 2010). The remaining failures are circuit-related such as the solder
joints, connectors, and the printed circuit board, and others. Consequently,
due to the fact that around 51% of the failures in the electronic devices occur
in the ECAPs and the power semiconductors, it is crucial to review the PoF
of both active and passive power electronic components.

ECAPs

30%
Printed Circuit Board

26%

Semiconductors

21%

Solder Joints

13%
Others

7%
Connectors

3%

Figure 1.3: Failures in electronic devices (Wolfgang 2007; S. Yang et al.
2010)
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1.5.1 Accelerated aging experiments

The electronic components are investigated by run-to-failure experiments,
which are also known as accelerated life tests or as AGEs, in order to es-
tablish the root causes of the occurred faults. Thus, the failure mechanisms
of each power electronic component are explained physically thanks to the
AGEs which allow to accelerate the degradation process different electrical
and thermal conditions. The fundamental interest of such practices is the
derivation of degradation models, aggregation of measurements of the degra-
dation profiles, and most importantly, the definition of the failure precursors
of power switches (Hanif et al. 2019; Anderson, Cox, and O’Connor 2013;
Samavatian, Avenas, and Iman-Eini 2018) and ECAPs (C. S. Kulkarni et al.
2012; C. Kulkarni, J. Celaya, G. Biswas, et al. 2011; J. Celaya et al. 2011;
Chen et al. 2008).

The AGEs are powerful techniques to test the reliability of electronic com-
ponents, examine their failure mechanisms, identify their failure precursors,
parameterize their degradation behaviors, etc. Although the power electronic
devices run through harsh operating conditions and degrade, they serve the
system for a relatively long time. The AGEs allow easier investigation of the
faults through degradation and examine the capabilities of the components
being tested. Furthermore, the PoF assessment is based on the run-until-
failure tests with several measurements at different precursors of the system,
which will be further explained in the following subsections (Hanif et al.
2019). The AGEs are performed throughout electrical and thermal cycling
to shorten the timescale of the electronic components such as ECAPs and
power semiconductor switches. The performed in-situ measurements reports
the occurred variations to illustrate their evolution (Z. Li, Zheng, and Out-
bib 2018; J. R. Celaya, A. Saxena, S. Saha, Vashchenko, et al. 2011a; J. R.
Celaya, A. Saxena, S. Saha, and K. F. Goebel 2011; Jose R Celaya et al.
2010; S. Saha et al. 2011; J. R. Celaya, Wysocki, et al. 2010).

1.5.2 Failure mechanisms and precursors of MOSFETs

and IGBTs

The power switching modules are accelerated in thermal testbeds that aim
to stress the gate oxide, solder joints, and bond-wires of MOSFETs and
IGBTs. Defined cycles of thermal swing amplitudes run for specific time in-
tervals until failure, while measuring their parameters using a curve tracer
machine. The parameters that vary with the degradation of the compo-
nents/circuits are considered as failure precursors. These parameters are
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monitored throughout different AGEs setups. For these reasons, there exists
industrial standards such as IEC 60747, IEC 60749, IEC 60068, AEC-Q101,
and JESD-47 in order to formalize the AGEs for semiconductors (Hanif et al.
2019).
A thermal chamber was used in (Katsis and van Wyk 2001) to degrade and
monitor high-power MOSFETs using thermal cycling. The MOSFETs were
heated up from 55°C to 100°C by a DC current for 3 minutes, then turn off
the DC current for 2 minutes to complete the cycles.

Another AGE example was accomplished by (Dusmez and Akin 2015a),
where the drain current was set at 5.2A while varying the junction tem-
perature at three different conditions: 210°C, 220°C, and 240°C.

Another AGE was intended to monitor the reliability of MOSFETs and IG-
BTs of motor drive, was accomplished in (Pippola et al. 2015). The chamber
was maintained at 85°C and 85% humidity level.

Therefore, the major failure precursors of MOSFETs and IGBTs are illus-
trated in Table 1.2.

Table 1.2: Fault precursors of electronic components

Electronic components Failure precursors
MOSFET • ON-resistance RON: Increases

• Gate threshold voltage Vth: Increases

IGBT • Gate threshold voltage Vth: Increases
• Rise and fall time: Increases
• ON-state collector-emitter voltage VCEON

:
Increases or decreases
• Turn-OFF time

A significant increase of the RON by around 17%, and the Vth of MOSFETs
have been observed in (Dupont et al. 2007; J. R. Celaya, A. Saxena, S. Saha,
Vashchenko, et al. 2011b; Azoui et al. 2012; Dusmez, Duran, and Akin 2016;
Dusmez and Akin 2015b). The observed failure precursors of IGBTs have
been characterized via the AGEs under more possibilities as shown in Table
1.2.
Thus, the increase of Vth is a major failure precursor for IGBTs as observed
in (N. Patil et al. 2009).
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The OFF-time has been identified as a precursor for latch-up failures in
(Brown et al. 2012).
The VCEON

does not reflect always the degradation of IGBT since it has shown
voltage drop in (N. Patil et al. 2009), as well as voltage increase in (Smet
et al. 2013; U. Choi, Jørgensen, and Blaabjerg 2016; Eleffendi and Johnson
2015; Xiong et al. 2008).
In addition to breakdown voltage, leakage current, body diode avalanche
voltage, gate charge, parasitic capacitance, body diode voltage drop (Dus-
mez, Ali, et al. 2017; B. Saha et al. 2009; S. Saha et al. 2011; Dusmez and
Akin 2015b; Dupont et al. 2007; Vasan and M. G. Pecht 2018).

Each failure is assigned to fault causes and might affect parameters over oth-
ers, as the thermal overstress can increase the leakage current, cause short
and open circuit, and loss of gate controls of the power switching devices.
The failures location, causes modes, and the affected parameters are reviewed
in details by Hanif et al. (2019) and Valentine, Das, and P. M. Pecht (2015).
Consequently, the researchers have categorized the failures of power switch-
ing devices into extrinsic (package-related) such as bond-wire fatigue, solder
fatigue, and Aluminum reconstruction and intrinsic (chip-related) faults such
as electrical overstress, electro-migration, latch-up, and dielectric breakdown
(Hanif et al. 2019; Anderson, Cox, and O’Connor 2013; S. Saha et al. 2011;
J. R. Celaya, Wysocki, et al. 2010; Valentine, Das, and P. M. Pecht 2015;
Ciappa 2002).
Figure 1.4 illustrates the typical structure of a power module (Hanif et al.
2019).

Figure 1.4: Multilayer structure of a power module by (Hanif et al. 2019)

Chip-related failures

• Electro-migration: The degradation caused by such failure mechanism
is less likely to happen. It creates a void among metal connections
which causes resistance increment. Consequently, it results a high cur-
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rent density in silicon interconnections which is the main responsible
of the degradation (Hanif et al. 2019).

• Latch-Up: Overvoltage, irradiation and high electric field may cause
loss in the control gate of IGBTs and MOSFETs, if the bipolar junction
transistor is triggered. Hence, any high current can destroy the device
if it is not cleared immediately (Hanif et al. 2019). In this case, the
affected parameter is the VCEON

(Valentine, Das, and P. M. Pecht 2015).

• Dielectric Breakdown: It affects the gate oxide degradation of the di-
electric (Hanif et al. 2019). It introduces different failure mechanisms
such as anode hole injection, trap creation and impact ionization (Lom-
bardo et al. 2005). Therefore, the MOSFET experiences an increased
gate current and decreased drain current after the dielectric breakdown
(Nasrin, Khan, and Alam 2014). This results in loss of gate control and
short-circuit caused by over voltages, high temperature and high elec-
tric field. The fault precursor in this case is Vth (Hanif et al. 2019;
Valentine, Das, and P. M. Pecht 2015).

• Electrical Overstress: Due to overvoltages and overcurrents, the heat
affects the device functionality (Hanif et al. 2019).

Package-related failures

• Bond wire fatigue: There exists two types of bond wire failures. the
bond wire lift-off that creates a crack between the Silicon and Alu-
minum surfaces, is caused by the mismatch of the thermal expansion
coefficient between them. And, the bond wire heel is caused by the frac-
ture fatigue (Ciappa 2002). Thus, the high current density and high
temperature may result open-circuit fault and affect VCEON

(Valentine,
Das, and P. M. Pecht 2015).

• Solder fatigue: The overheating of the device, also known as thermal
and power cycling creates cracks in the layer attached by solder. Hence,
the thermal impedance increases which accelerates the propagation of
voids (Hanif et al. 2019). Similar to the bond wire fatigue, the solder
fatigue is affected by the same causes and results similar faults.

• Aluminum reconstruction: The metallization layer of the Silicon chips
are subject to degradation process that causes the Aluminum recon-
struction (Hanif et al. 2019).



36 1.5. Failures and Prognostics of Electronic Devices

1.5.3 Failure mechanisms and precursors of ECAPs

Similar to the power semiconductor switches, the ECAPs are one of the
major responsible of the electronic-system failures. Therefore, the electrical
and thermal overstresses cause major perturbation in the capacitor normal
functionality. Thus, the ECAP can be expressed by its capacitance and its
Equivalent Series Resistance (ESR) as shown in the lumped model in Figure
1.5.

c ESR

Figure 1.5: Lumped model of ECAP

Moreover, the failure mechanisms of the ECAPs are extrapolated by electri-
cal and thermal overstresses through AGEs.

In (C. Kulkarni, J. Celaya, G. Biswas, et al. 2011), a controlled thermal
chamber was used to raise the temperature of the ECAPs above their max-
imum rated storage temperature of 85°C. The authors followed a gradual
increase of temperature of 25°C in order to avoid permanent shocks with
15 minutes intervals until reaching a constant 125°C. Thus, using the proper
instrumentation techniques it was noticeable by direct measurement that the
ESR of the degraded ECAP increases, where the computed capacitance de-
creases.

In (C. S. Kulkarni et al. 2012), the AGEs were conducted to electrically-
overstress the ECAPs in order to extract the features of their failure mecha-
nisms. A batch of the same ECAPs rated at 10V were continuously charging
and discharging at 12V with a square voltage waveform of 20 mHz frequency.
The experiments have shown that the ECAPs fail at 20% degradation of their
initial rated capacitance.

Moreover, the electrolyte inside the capacitor unit evaporates which increases
the pressure and decreases the oxide area. The ESR is the sum of the re-
sistance due to the parameters of the capacitor itself such as the aluminum
Oxide layer, the electrolyte, the electrodes, and the spacer. Figure 1.6 illus-
trates the physical model of ECAP that shows the affected parameters due to
the aforementioned failure mechanisms (Chetan Kulkarni, Gautam Biswas,
X. Koutsoukos, et al. 2010).
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Figure 1.6: Physical model of ECAP (Chetan Kulkarni, Gautam Biswas,
X. Koutsoukos, et al. 2010)

Table 1.3 illustrates the observed failure precursors of ECAPs.

Table 1.3: Fault precursors of ECAPs

Electronic component Failure precursors

ECAPs

• Capacitance
• ESR
• Leakage current/resistance
• Radio frequency noise
• Dissipation factor

Therefore, the degradation of ECAPs is characterized by an increase of the
ESR while the capacitance decreases which deteriorates and leads to a com-
plete failure (C. Kulkarni, J. Celaya, G. Biswas, et al. 2011; Vasan and M. G.
Pecht 2018). Thus, the main degradation mechanisms are related to the fol-
lowing effects (Chetan Kulkarni, Gautam Biswas, X. Koutsoukos, et al. 2010;
J. Celaya et al. 2011):

• High voltage: The capacitance of ECAPs decreases while the ESR in-
creases due to a supplied voltage higher than the rated value.

• High ripple current: The ECAPs age gradually due to high ripple cur-
rent that increases the internal heat which increases the core tempera-
ture.
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• Transients: High leakage-current occurs due to transients that can
cause internal short-circuits.

• Reverse bias: The capacitance can be totally lost and the ESR increases
due to the induced high leakage-current of the reverse bias.

• Strong vibrations: Mechanical damages can affect many parameters
of ECAPs such as internal short-circuits, open-circuits, high leakage
current, increase in ESR, and capacitance loss.

1.5.4 Failure precursors of other components

The failure precursors are parameters that indicate variations in an electronic
component/circuit. Thus, the main fault precursors of more active and pas-
sive components in electronic circuits, that can be measured by direct means
or observed by filtering techniques, are provided in Table 1.4.

Table 1.4: Potential failure precursors for electronic components
(M. G. Pecht and Kang 2018)

Electronic components Failure precursors
Diodes • Forward voltage drop

• Power dissipation
• Thermal resistance
• Radio frequency noise
• Reverse leakage current

Cables and connectors • Impedance changes
• Physical damage
• High-energy dielectric breakdown

Switching power supply • Ripples
• Efficiency
• DC output
• Duty cycle
• Leakage current
• Radio frequency noise
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1.5.5 Failure predictions methods

The failure mechanisms in Section 1.5 and the failure precursors in Table 1.4
are the foundation methods for PHM of electronic components. The assess-
ment of each method is not straightforward and requires accurate analysis
for reliable predictions. Evidently, the electronic components/circuits can
be modeled due to the strong knowledge of their manufacturing and failure
mechanisms which makes the model-based PHM for electronics a favorable
approach to investigate, test, and simulate different failures and degradation
scenarios. However, the data-driven PHM approaches are also advantageous
and can be explored with multidisciplinary systems, or with highly complex
electronics-rich systems, especially that the degradation and test data can
be aggregated and simulated for this purpose.

Failure mechanisms-based prognostics

The failure mechanisms can be described by empirical models or PoF mod-
els. Table 1.5 summarizes the main features of the different failure methods
(Hanif et al. 2019; W. Denson 1998).

Table 1.5: Failure methods: PoF versus empirical

Methods Physics-of-failure Empirical
Advantages • Allows modeling of spe-

cific failure mechanisms
• Provides a wider image
of the failures and their
occurrences

• Reliable with prognos-
tics implementation

• Accurate indicator for
reliability assessment

Limitations • Complex, expensive,
and time-consuming to
obtain and employ

• Requires updates with
novel technologies in elec-
tronics and power elec-
tronics

• Unpractical for system-
level reliability assess-
ment

• Requires collection of
an important amount of
degradation

Hence, as illustrated in Table 1.5, both modeling methods can be elaborated
depending on the type of the application, the fidelity level, the size of the
system, etc. However, it is worth noting that the failure modeling that is
based on the failure mechanisms of the components is normally treated by
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number of cycles. Whereas, the failure precursors-based modeling allow ex-
pressing the degradation process in real time such as days, minutes, etc.
Moreover, we intend to show a brief example of the two failure precursors of
ECAPs, the capacitance (C) and the ESR are obtained based on the PoF of
the failure mechanisms as shown in (1.1).

Example 1.5.1.

C =
2 εR εo Ao

to
, (1.1a)

ESR =
ρE to PE

2 L W
, (1.1b)

where εR is the relative dielectric constant, εo is the permittivity of free space,
Ao is the oxide area, to is the oxide thickness, ρE is the electrolyte resistivity,
L and W are the physical parameters of the anode area, PE is the correlation
factor related to electrolyte space porosity and average liquid path-away (C.
Kulkarni, J. Celaya, G. Biswas, et al. 2011; Chetan S. Kulkarni, Gautam
Biswas, José R. Celaya, et al. 2012).

As shown in Example 1.5.1, it is complex to consider all the failure mech-
anisms with many parameters in function of the PoF since it requires a strong
knowledge.

Failure precursors-based prognostics

The failure precursors are physical parameters of the electronic components
which reflect the degradation level on the micro-level or the macro-level.
However, the failure precursors-based prognostic is not a straightforward ap-
proach, since the measurement of these parameters is challenging. The barri-
ers arise especially for online circuits such as converters, or black-box systems
that make the direct measurement difficult to perform. It also requires spe-
cial instrumentation to measure resistance, capacitance, temperature as well
as voltage and current. However, for the RUL forecasting, the intended fail-
ure precursors can be estimated which also can create more challenges with
respect to the uncertainties and the complexity of the system.

The failure mechanisms-based prognostics and the failure precursors-based
prognostics are two approaches that can be carried out for model-based, data-
driven, and hybrid PHM. The failure mechanisms-based approach requires
more knowledge of the components and becomes highly complex for bigger
systems. On the other hand, the failure precursors-based approach reflects
the degradation with a wider image with no strong interest of internal pa-
rameters monitoring of the component.
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The final assessment of the aforementioned approaches and our perspective
with respect to the RUL forecasting is detailed in Section 1.6.

1.6 Remaining Useful Life Forecasting: Com-

ponent Versus System-level

The background review of the PHM and the value which the prognostics
add to the maintenance strategy show many benefits that involves the oper-
ational reliability, the expenses, the system availability, the logistics. More-
over, many challenges such as uncertainties, modeling fidelity, data acquisi-
tion, and more obstruct the fast development and standardization of PHM.
Despite that, the PHM involve multidisciplinary applications such as land
and outer space vehicles, batteries, industrial applications, healthcare, elec-
tronics, etc. Hence, the main role of the PHM in these applications is to
forecast the RUL and/or predict the future behavior of a component/subsys-
tem/system which are subject to degradation that deviates their operation
from their optimal operating. The degradation of a component deteriorates
a whole system due to its cascading effect.

Thus, it is worth noting that the electronics are one common, yet essen-
tial devices that control, measure, observe, and protect the aforementioned
applications. For these reasons, we intend to investigate the PHM role in
modern-days electronics. Furthermore, the PHM in broad can be addressed
by model-based or data-driven approaches that can be merged together in a
hybrid method depending on the type of application. Thus, due to the fact
that the electronic devices are widely utilized and their modeling is mainly
practical to a certain level of system complexity, the model-based PHM for
electronics is a favorable approach to adopt in this thesis. The data-driven
approaches exist to address the same problems, however they require more
information and test data as measurements in normal and in degraded opera-
tions. Whereas, our aim is to contribute to a generalized structured strategy
for model-based PHM that can be applicable to various systems with trivial
tuning and reduced knowledge about the PoF.

• For all of the above-mentioned reasons, we have adopted the model-based
PHM approach for further investigations and contributions in this thesis.

Moreover, as stated in Section 1.5, ECAPs and power switching devices
as MOSFETs and IGBTs are the major responsible of systems failure due
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to their degradation that is affected by electrical and thermal overstresses.
Hence, we have briefed the main degradation causes from the failure mecha-
nisms perspective, and explained the different methods of lifetime predictions
by exploiting the empirical and PoF modeling methods of the failure mech-
anisms, or by the failure precursors approach.

Additionally, in practice, these components are not applied as standalone
devices, they are integrated in complete circuits such as converters, inverters,
drives, etc. Evidently, the level of complexity of these systems is considered
high enough that makes the failure precursors-based prediction a preferred
approach in this thesis. The reasons of eliminating the failure mechanisms-
based prediction are related the features extraction of the internal parame-
ters of each component, which requires strong knowledge of all failures, and
is strictly specific to each type of failure. Thus, this approach is not recom-
mended for big circuits where all the components interconnect.

• It is worth noting that the conventional RUL forecasting approaches are
based on stochastic regression of observed degradation data that predict
degradation profiles until reaching the failure Threshold (TH). Our proposi-
tions concerning this approach are discussed in Section 1.8.

• Therefore, we have considered the failure precursors-based prognostics of a
switching converter with degraded MOSFET and ECAP to be investigated
under different scenarios with unknown degradation models and generalized
prediction approach.

1.6.1 Component-level prognostics approaches

The RUL forecasting is the main objective which is based on constructive
phases that are targeted towards the failure precursors. The failure precur-
sors are crucial indicators of the SoH of any system. Yet, online aggregating
of their measurements is not a trivial task in most applications.

• We intend to generalize the utilization of our contributions to systems
with no direct access to the internal parameters.

Therefore, the failure precursors are required to be estimated either in a
standalone application or as critical parameters of a system.

In the literature, C. Kulkarni, J. Celaya, K. Goebel, et al. (2012) devel-
oped empirical models of the capacitance and the ESR of ECAPs based on
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their current SoH for failure predictions.

Moreover, Kwon, Azarian, and M. Pecht (2015) and Kwon and Yoon (2016)
used particle filtering technique in order to predict the RUL based on failure
mechanisms of solder joints using the radio frequency impedance analysis
and Gaussian process regression using a model.

Nishad Patil, Das, and Michael Pecht (2012) and J. R. Celaya, A. Sax-
ena, S. Saha, and K. F. Goebel (2011) employed statistical filtering with
known empirical models of IGBTs in order to predict their failures based on
the collector-emitter resistance. These methods aim for CRUL forecasting
on a micro-level, and mostly based on stochastic approaches with statistical
regression for the failure predictions.

1.6.2 System-level prognostics approaches

As was discussed above, in practice, the electronics are embedded in a circuit
scheme which increases the complexity of the prognostics. Additionally, the
analysis of the SoH of a circuit which represents a system, is based on the
interdependent electronic components and their failure mechanisms (Vasan
and M. G. Pecht 2018; Goodman, Hofmeister, and Judkins 2007).

Some studies as in (Sai Sarathi Vasan, Long, and M. Pecht 2013; M. Li et al.
2013; C. Zhang et al. 2014; J. Zhou, Tian, and C. Yang 2014), have employed
machine learning techniques in order to estimate the SoH of the whole cir-
cuit which becomes the system that contains many electronic components.
The SoH of the whole system has been estimated using a distance-based
method and known empirical models of extracted features with particle filter
of relevance vector machine. The extracted features such as statistical, time-
domain, wavelet, and more are assessed to estimate the health of the whole
electronic circuit using Mahalanobis distance in (Sai Sarathi Vasan, Long,
and M. Pecht 2013). C. Zhang et al. (2014) and M. Li et al. (2013) used a
regression technique for RUL prediction. Whereas, C. Zhang et al. (2014)
employed the relevance vector machine model for RUL predictions instead of
regression fit. However, this technique assumes a Gaussian distribution for
the random variables of the RUL model. C. Zhang et al. (2014) and J. Zhou,
Tian, and C. Yang (2014) employed the same health indicator assumption
technique that is based on calculating the cosine and sine of the distance be-
tween the deviated features and their rated values. However, this technique
lacks the ability of considering the induced measurement noises that affect
the prognostics.
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Qingchuan et al. (2017) contributed to the prognostics of a DC-DC converter
by estimating its SoH based on the output voltage as a failure precursor. A
defined percentage of the deviation of the rated output voltage at different
temperatures was considered as the main failure criterion. Hence, the RUL
was predicted based on an empirical model of the output voltage.

Samavatian, Avenas, and Iman-Eini (2018) contributed to the self and cou-
pling thermal influences of power semiconductors of a DC-DC converter.
They analyzed the thermal deviation point of an IGBT and a diode due to
degradation.

Chen et al. (2008) conducted an online failure prediction method for ECAPs
in an LC filter of a DC-DC converter. Only the capacitor voltage was re-
quired for the health estimation due to the fact that the ESR of the ECAP
is reflected by the output ripple of the converter. This failure prediction
method requires a band-pass filter, a rectifier, a low-pass filter, a hysteresis
comparator, and a time-delay, and it is dedicated to the ESR of the ECAP
only.

1.6.3 Summary and problem statement

To sum up, the component-level prognostics are effective and mainly based
on statistical techniques. Additionally, their assessment is specific and ac-
complished by implementing known empirical degradation models for each
chosen failure precursor or failure mechanisms. Despite the promising results
of such approaches, they may depend on strong knowledge of the degraded
components. Thus, stochastic filtering techniques are usually used along with
previous observations in order to predict the degradation behaviors. More-
over, most of the existing techniques consider only Gaussian uncertainties
due to the implementation of the stochastic filters.

Moreover, the system-level prognostics approaches exploit the predictions
based on the health assessment of the whole system by monitoring exter-
nal precursors of the system that reflect the overall interdependency of the
internal interconnected parameters. The presented techniques monitor the
electronic circuit and estimate its deviation with respect to the optimal oper-
ation. However, they lack the identification of the main responsible parame-
ters of the degradation, in most cases. This feature is sensitive and crucial for
the CBM, an overall system prognostic requires maintenance for the whole
system if the failed parameters were not identified and repaired, which is the
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core of the PHM with the CBM strategy.

Furthermore, the given examples of modern-engineering applications have
shown the diversity of the implementation of various prognostics techniques
with known degradation behaviors that elaborate the model-based approaches,
and unknown degradation behaviors that elaborate the data-driven approaches.
In (N. Kim, An, and J. Choi 2017d), they presented the least squares regres-
sion as an approach to estimate and fit the degradation data to provide a
prior prediction of failure. Then, the RUL is computed by comparing the
predicted degradation model with the TH of the parameter. In the case of
known degradation model, the parameters of the model are mostly unknown
due to the effects of the measurement noises and other uncertainties. Thus,
the parameters are identified using the Bayesian approaches for real-time
degradation estimation, in (N. Kim, An, and J. Choi 2017d). Additionally,
(N. Kim, An, and J. Choi 2017c) emphasized on the same RUL prediction
approach by propagating the degradation until failure, after identifying the
parameters. Moreover, (Gavin 2020) employed the nonlinear least squares
technique for the parameters identification of the degradation models. And
other approaches that considers the Gaussian noises such as the KF (Kalman
1960) for linear systems, and EKF, UKF, particle filter, and more for non-
linear systems (Ristic, Arulampalm, and Gordon 2004; Julier and Uhlmann
2004).

As discussed above, the model-based PHM necessitates parameters estima-
tion for the degradation models in order to propagate the model until fail-
ure for the sake of RUL prediction. In broad, the conducted studies employ
stochastic and statistical approaches for parameter estimation and the deriva-
tives of the least squares for fitting of the degradation models.

Figure 1.7 illustrates most of the RUL forecasting methodologies for component-
and system-level prognostics that already carried out in the literature.
Therefore, we intended to investigate the following:

• The possibility of RUL forecasting with partial or without knowledge
of the degradation models without the use of training data-sets.

• Apply system-level prognostics by predicting the RUL of the internal
critical components instead of employing external features such as in-
put/output voltage and current.

• The ability of replacing the statistical RUL confidence interval by a
dynamical online bounded RUL via the estimated SoH of the critical
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Figure 1.7: A broad overview about most of the existing model-based
prognostics structures

components of a system.

• The performance of deterministic observers with different types of un-
certainties rather than classical Gaussian distribution.

• Guaranteeing the observers stability.

1.7 Prognostics Evaluation Metrics

The RUL forecasting is the final step of the PHM before the maintenance-
related decision-making. Thus, it is crucial to evaluate the performance of the
prognostic in order to guarantee a safe operation of the system and a reliable
decision for the CBM. Although there exist various performance evaluation
techniques, they lack the standardization due to difference of applications,
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the prognostics approaches, the constraints, online or offline, etc. (A. Saxena
et al. 2010b; D. Zhang 2018; Robinson 2018; N. Kim, An, and J. Choi 2017d).
Furthermore, some of these metrics are employed to evaluate the prognos-
tic performance such as the accuracy, robustness, precision, steadiness, and
convergence as summarized below with some metrics:

• Prognostic Horizon (PH): It defines the time when the prediction suc-
cessfully occurs in a safe zone with respect to the real RUL. PH is the
difference in time between the successful prediction and the true EoL.
Thus, reliable EoL and therefore RUL forecasting are accomplished
with larger PH which allows early-time prediction (A. Saxena et al.
2010b; N. Kim, An, and J. Choi 2017d; D. Zhang 2018).

• α−λ Accuracy : It determines if the prediction occurs in a safe accuracy
zone. Unlike the constant accuracy zone of the PH, the accuracy zone
shrinks with time as a cone while converging towards the EoL (A.
Saxena et al. 2010b; A. Saxena et al. 2010a; N. Kim, An, and J. Choi
2017d; D. Zhang 2018; Rigamonti, Baraldi, and Zio 2018).

• Relative Accuracy (RA): It quantifies the estimation/prediction accu-
racy with respect to the real values (A. Saxena et al. 2010b; N. Kim,
An, and J. Choi 2017d; D. Zhang 2018).

• Convergence: It is defined by the Euclidean distance between the origin
and the centroid area of a curve that characterizes accuracy or precision
metrics. The convergence index can be calculated with the relative er-
ror for example, and as the convergence speed increases as the distance
decreases (A. Saxena et al. 2010b; N. Kim, An, and J. Choi 2017d).

1.8 Proposed PHM Methodology: Positioning

and Discussions

We previously confirmed that for electronics applications, we intend to inves-
tigate the model-based approaches due to the advanced knowledge of model-
ing the electronic circuits such as switching power converters, and especially
a DC-DC converter in this thesis.

Moreover, the studies that contribute to the model-based PHM generally
base their degradation assessment on known degradation models. The pa-
rameters of these models are usually estimated using stochastic approaches
and propagated until reaching the defined TH. In broad, Gaussian noises are
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concerned with these techniques that utilize KF for linear systems and its
derivatives for nonlinear systems. Particle filter can be implemented to non-
linear systems with non-Gaussian noises (Robinson 2018). Moreover, these
approaches employ failure precursors of electronic components for RUL pre-
dictions, such as capacitance, resistance, voltage, current, etc. Hence, for
electronic circuits which are considered as systems, the failure precursors are
mainly dedicated to external features such as output voltage, ripples, etc.
The latter methods are promising for indicating the health of the whole cir-
cuit, however the root target of prognostics in which we are interested, is
to perform the CBM for internal components for the sake of extending the
lifetime of the system and reduce the expenses. Additionally, we observe
that employing the output voltage as a failure precursor of a circuit lacks the
condition of closed-loop converters which regulates the output voltage and
the varying parameter become the duty cycle which can be monitored for
degradation assessment.

Thus, the main problematic involves the current SoH estimation of the criti-
cal components which are the internal parameters of the system, and predict
their future behavior regardless of the degradation models. The latter are
the base of the model-based prognostics since the run-until-failure data are
not available for all systems and not reliable for online PHM practices.

Consequently, we propose to estimate the degradation of the critical com-
ponents of the multicomponent system instead of estimating the SoH of the
system itself.

Moreover, we assume that we do not have any direct access the internal
components of the system in order to mimic real applications. Eventually,
we are required to measure the inputs and/or outputs of the system for
the sake of estimating the internal parameters in real-time without previous
knowledge of any degradation model or failure mechanisms.

As we previously mentioned that the studies in the literature address this
problematic depending on stochastic methods with Gaussian noises and re-
gression techniques to predict the RUL with decisions based on the Proba-
bility Density Function (PDF). We intend to investigate the RUL forecasting
methods based on the estimated critical components which are parameters
of the system. In other words, instead of statistically process the estimation
and predict the RUL, we opted for assessing a guaranteed bounded degrada-
tion estimation towards the RUL forecasting. We initiated this research in
order to:
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• Estimate the degradation of the critical components of a system by
online monitoring of the input/output sensors only.

• Consider different types of uncertainties.

• Forecast the RUL based on the estimated SoH of the internal parame-
ters regardless of the knowledge of the degradation models.

• Consider bounded RUL forecasting which could be exploited to en-
counter the uncertainties of the modeling and the measurements, by
only propagating bounded estimated parameters that represent the de-
graded components.

• Structurize the model-based PHM methodology for multicomponent
nonlinear systems.

• Minimize the computational time for online PHM.

1.8.1 Phase 1

The key point of model-based PHM is the modeling phase. This phase is the
first in our proposed structure, and consists of the following:

1. Definition of the model characteristics. The system in this thesis is
a power converter that can describe any dynamical system with de-
graded components. The characteristics can be defined by the sensors
locations, the most critical components, the complexity of the model,
etc.

2. Representation of the subsystems of the dynamical model. Some ap-
plications such as switched-systems consist of two or more subsystems
that operate consecutively. Thus, it is essential to model the subsys-
tems without any degradation effect at first.

3. Nonlinear representation of the dynamical system. The subsystems
could be averaged into one system or kept. Despite the advantages
and the limitations of each method, we recommend an average repre-
sentation for the sake of reducing the computational effort. Therefore,
the nonlinear dynamical system is represented with varying parameters
that describe the degraded critical components. Thus, based on the as-
sumption of no direct measurement is provided, the model requires pa-
rameters and/or states estimation for degradation assessment. Hence,
the possibilities can vary among separate observers, joint estimation,
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etc. Such representation depends on the system itself and the number
of critical degraded components.

4. In order to proceed to the second structured phase of the PHM, it is re-
quired to linearize the dynamical model. Hence, among many lineariza-
tion techniques, we proposed a generalized and effective linearization
approach that can be utilized with any nonlinear system and does not
require high computational effort, after investigating and presenting
different techniques throughout this thesis.

The modeling phase is explained in details in Chapter 2. We suggest to utilize
the model of the system instead of modeling the critical components based on
their failure mechanisms or PoF, and estimate their failure precursors. The
case study is modeled in a state-space representation. Then, we discussed the
possibilities of different nonlinear representation and their formalities with
our generalization intentions. A linearized model is presented in Chapter 3
that highlights stochastic PHM approaches. Thus, we adopted an upgraded
linearization technique that will be explained in details in Chapter 4. We
aim to emphasize on the importance of unifying the linearized representation
due to our intentions of extending the proposed PHM structure to more ap-
plications such as automatic control.

Moreover, we previously mentioned that we suggest to investigate to reduce
the knowledge of degradation models of the selected failure precursors of the
critical components, in order to estimate the value of the precursor instead of
the parameters of its model. It is worth noting that in this phase we obtained
the empirical models of the failure precursors for two reasons:

1. To mimic the various degradation scenarios in simulation which will
provide us the reference to investigate our proposed approaches.

2. To obtain the EoL TH of these precursors based on real AGEs that are
provided by the online repository of NASA PCoE (Renwick, J. and
Kulkarni, C. and Celaya, J. 2015; Celaya, J. R. and Saxena, A. and
Saha, S. and Goebel, K. 2011).

Thus, the empirical degradation models are only utilized for degradation
simulation and not considered as known nor integrated in any part of the
proposed PHM approaches in the following phases.
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1.8.2 Phase 2

Degradation estimation by employing the failure precursors of the most crit-
ical components without knowledge of the degradation models is the core of
this PHM phase. Thus, it is dedicated to estimate the current SoH of the
critical components and then of the whole system. An online assessment of
the estimated failure precursors is accomplished to either trigger an alarm
for fault or to continue towards the prognostics. This phase can be extended
to FDI along with the estimation process, for a robust fault diagnosis and
prognosis assessment.

Therefore, we propose to employ estimation techniques for parameters and
states by real-time measuring voltages and/or currents of the input/output
sensors. Alternating subsystems or average modeling are two representations
that open the gate towards many estimation techniques which consist of sepa-
rate states and parameters estimation or joint approaches. These approaches
are discussed in Chapter 2.

Thus, RUL forecasting is based on the current estimation of the critical
degraded parameters of the system. In consequence, the studies focus on
estimating the parameters of the failure precursors models, whereas we pro-
posed to estimate the failure precursors states. Stochastic approaches were
our starting point in Chapter 3 with Gaussian noises and uncertainties, where
we implemented EKF for nonlinear systems in order to estimate the states
and the parameters of the model. Moreover, we upgraded the proposed
approach in Chapter 4 to implement a deterministic observer by merging
zonotopes with EKF for many benefits on the estimation and the predic-
tion levels. Then, finally we investigated the ZSM in Chapter 5 as the main
observer due to the proven similarities with the ZEKF to a certain level,
whereas the two observers are designed differently. Further details will be
explained in the following chapters.
Figure 1.8 illustrates the main stochastic and deterministic states and pa-
rameters estimation techniques, and pinpoints the approaches in which we
are interested to investigate.
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Figure 1.8: States-parameters estimation approaches

1.8.3 Phase 3

The last phase in the PHM methodology is crucial for the decision-making
and the CBM which are based on the RUL forecasting of the component/-
subsystem/system. The methods of RUL forecasting in the literature differ
among regression techniques for model-based component-level prognostics
and machine learning based on data-set for data-driven prognostics, and
more approaches depending on each application as explained in Section 1.3.
In this thesis, the classical degradation prediction and RUL forecasting ap-
proach using known degradation model has been applied in order to investi-
gated two proposed approaches.

1. RUL forecasting with unknown degradation behavior based on the lin-
ear relation between RUL, EoL, and the current time. It requires partial
knowledge of statistical PM for EoL acknowledgment. This proposed
approach is examined in Chapter 3 and extended to bounded RUL
forecasting in Chapter 4 without predicting the degradation behaviors.

2. Homogeneous RUL forecasting approach based on the critical system
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parameters estimation with recursive prediction of their behavior using
an exponential regressor that describes the degradation trends in broad.
This approach provides bounded RUL forecasting for risk prevention
with very high reliability and guaranteed convergence. It is elaborated
in Chapter 5.

The EoL-RUL relation is:

tRUL = tEoL − tcurrent, (1.2)

where tEoL, tRUL, and tcurrent denote the time of EoL, RUL, and the measure-
ment at the current time respectively.

Furthermore, it is crucial to emphasize the uncertainty effect on RUL fore-
casting as illustrated in Figure 1.9. The divergence of the predicted degrada-
tion trajectories due to uncertainties negatively affect the RUL forecasting
which can reduce the lifecyle of the system or lead to a complete failure.
According to this effect, the two proposed approaches are motivated for in-
vestigation, by either eliminating the phase of predicting the degradation
trajectories, or by bounding the prediction using a robust estimation ap-
proach with reduced degradation model for real-time applications.

Figure 1.9: Uncertainty effects on RUL forecasting

Finally, Figure 1.10 illustrates the proposed threefold PHM methodology
that consists of:
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1. Modeling: Model a parameter-varying system without previous knowl-
edge of the degradation models nor their statistical data. Hence, repre-
sent a linearized model of the system for further interests and possible
extensions to various nonlinear applications. It is worth reminding
that data-driven approaches with training-data are usually used when
the degradation models are not used, however we are not employing
any historical data in the PHM. The historical data are only used to
simulate different degradation scenarios to mimic the real AGEs.

2. Degradation estimation: Estimate the varying parameters that describe
the degraded components by only measuring input/output features of
the system. In addition to the assessment of the current health of the
system.

3. RUL forecasting: Apply a classical RUL forecasting approach with
stochastic methods, and investigate two proposed approaches to im-
prove the performance and reduce the uncertainty effect on RUL fore-
casting. The proposed approaches are only based on the previously-
estimated varying parameters, and the RUL forecasting is accomplished
online at each measurement.

1.9 Summary

This chapters presents the state of the art of PHM with focusing on system-
level power electronics applications. We first provided a general background
review about prognostics and the importance of the maintenance strategies.
Then, we highlighted the main benefits and challenges that face the PHM in
various fields of applications. Moreover, the failure mechanisms of ECAPs
and MOSFETs/IGBTs are explained with the possible modeling methods
based on their PoF or empirical modeling, in addition to their most accu-
rate failure precursors. Finally, we discussed our positioning regarding the
existing studies by explaining our investigations that consider deterministic
estimation approaches and bounding the predicted RUL without implement-
ing the PoF models. This chapter is essential to pinpoint our contributions
towards multicomponent systems prognostics in a structured PHM method-
ology. The latter consists of the modeling phase that considers a common
linearized representation of nonlinear systems for future extensions to more
applications. Then, the failure precursors estimation with online health mon-
itoring. Hence, the RUL forecasting and/or degradation behaviors predic-
tions which are strongly based on the online degradation estimation.
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2.1 Introduction

The foundation of model-based PHM approaches relies on accurate modeling
for the sake of achieving the intended objective of methodology generaliza-
tion as shown in the proposed PHM structure in Figure 1.10. Thus, the
prognostics applications do not embrace intermittent faults, and are more
directed towards predicting the RUL of components, devices, and systems,
as stated in Chapter 1. Based on the fact that slowly-varying systems such
as degraded power electronic devices, or cracks in mechanical and structural
systems are the most suitable case studies for prognostics, we have selected
a DC-DC converter that is used in some architectures for electric vehicles,
due to the following reasons:

• In broad, the power electronic systems are integrated in most of the
modern engineering applications.

• The ability to analytically model such converter with high accuracy,
and validate the results in simulation and on real systems.

• The availability of real degradation data of power electronic compo-
nents on open-source repositories.

• The ability to operate in harsh operation conditions, and examine the
proposed PHM approaches under various working conditions.

• The ability to extend the micro-level model to a macro-level by consid-
ering sources, and loads and different components, in order to extend
the prognostics applications.

Harsh operation conditions, uncertainties, perturbations, noises, and over-
stresses could affect the desired operation conditions of any system whether
in control, automation, protection, diagnosis and prognosis fields of applica-
tions. Moreover, electronics-rich systems are interestingly gaining attention
in applications such as electric vehicles, aircraft industry, satellites, and huge
industrial applications where critical decisions and expensive maintenance
are requisite (Tidriri et al. 2019). Furthermore, by excluding the intermit-
tent faults for their unpredictable behaviors, the power electronic systems
are subject to failures characterized by slow degradation behaviors of par-
ticular components that lead to cascading damage and affect the efficiency

This chapter is included in all the publications related to this thesis.
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of the whole system. These reasons motivate investigating the CBM in a
prognostics framework.

Moreover, the adopted case study for the PHM investigation is a bi-directional
buck-boost converter that is used in some of the architectures of electric vehi-
cles as a bridge between the bank of batteries and the inverter of the electric
motor (Al-Sheikh, Bennouna, and Hoblos 2014). Thus, such converters cor-
respond to the aim of our research of reassessing the prognostics perspective
from a component-level towards a system-level with a great interest in the
internal critical components. Moreover, ECAPs followed by power semicon-
ductors such as MOSFETs and IGBTs are the most vulnerable components
that are responsible of the failure occurrences in the electronics-rich systems
(S. Yang et al. 2010). In broad, the failures in power electronic systems
are widely investigated in (Hanif et al. 2019; M. Pecht 2006; B. Saha et
al. 2009). Additionally, the authors in (J. Celaya et al. 2011; Chetan S.
Kulkarni, Gautam Biswas, and Xenofon Koutsoukos 2009; Chetan S. Kulka-
rni, Gautam Biswas, José R. Celaya, et al. 2012; Chetan Kulkarni, Gautam
Biswas, X. Koutsoukos, et al. 2010; C. Kulkarni, J. Celaya, G. Biswas, et al.
2011; C. S. Kulkarni et al. 2012; Chetan Kulkarni, Gautam Biswas, Jose
Celaya, et al. 2011) have extensively investigated the degradation behaviors
of ECAPs under thermal and electrical overstresses in AGEs, and character-
ized their failure mechanisms. Similarly, the authors in (Z. Li, Zheng, and
Outbib 2018; Jose R Celaya et al. 2010; J. R. Celaya, A. Saxena, S. Saha,
and K. F. Goebel 2011; Hanif et al. 2019) have also examined the MOS-
FETs under thermal overstress in AGEs framework and classified various
types of failure precursors as mentioned in Chapter 1. The degradation pre-
cursors of power electronic devices could vary among voltage, current, and
flux indications, or physical parameters of the components themselves such
as resistance and capacitance. Thus, the failure precursors play an essential
role in the prognostics framework, since their variations indicate the degra-
dation level of the system, which leads to the RUL forecasting that will be
extensively discussed in the following chapters. Furthermore, phase I of the
proposed model-based PHM approach consists of the model identification in
addition to its accurate representation that enables the transition to phase II.

In this chapter, the normal operation of the application is first modeled and
investigated. Hence, the degradation integration and its effects are analyzed
under three scenarios. The degradation has been simulated using empirical
degradation models of the aforementioned critical components of the case
study. The empirical models of the failure precursors have been modeled
based on aggregated data of real AGEs from online open-source repositories
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(Renwick, J. and Kulkarni, C. and Celaya, J. 2015; Celaya, J. R. and
Saxena, A. and Saha, S. and Goebel, K. 2011), and their behaviors have
been fitted in order to examine our case study. It is worth noting that the
empirical degradation analysis is the key to run multiple degradation scenar-
ios on the system-level to test our proposed PHM approaches with reference
to the aggregated data.

Therefore, the degradation integration raises the problem of model represen-
tation which is crucial for the health assessment of the system. Decreasing
the modeling uncertainties and computational time and effort, is the main
objective of this phase. Thus, the nonlinear dynamical nature of the time-
varying parameters which are represented by the failure precursors of the
model, affects the genuine Linear Time-Invariant (LTI) model of the nor-
mal operation of the system. Additionally, this representation considers the
degradation estimation of the internal parameter of the system in order to
contribute the CBM on a component-level as well as a system-level. For there
reasons, various model representations have been proposed for investigation
by considering the aforementioned objectives with regards to the estimation
burdens.

Finally, the main aim of this phase is to reproduce a linearized and an observ-
able model that highlights the critical parameters of the degraded system.
It is essential to estimate the degradation while their failure precursors are
unknown, in addition to guaranteeing a less uncertain and time-consuming
model in order to cope with the target of the system-level prognostics and
online RUL forecasting. thus, among many linearization and approximations
possibilities, a generalized model has been selected for our proposed PHM
approaches that can describe any real degraded application. These possibili-
ties will be further explained in the following chapters along with the proper
degradation estimation approaches.

This chapter is structured as follows. Section 2.2 is dedicated to the DC-
DC converter modeling in normal operation. Thus, the degradation analysis
is investigated with different scenarios in Section 2.3. Then, the model repre-
sentations approaches for degradation estimation purposes are explained in
Section 2.4. Finally, the conclusions are drawn in Section 2.5
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2.2 DC-DC Converter Modeling

The DC-DC converter is used in electric vehicles (Al-Sheikh, Bennouna, and
Hoblos 2014) and represents an application towards system-level prognos-
tics. The first step of this phase consists of modeling the converter in normal
operation. The adopted DC-DC converter is a bridge Buck-Boost between
the batteries and the motor of some of the architectures of the electric ve-
hicles. Hence, only the Boost operation is employed and explained in this
thesis for the sole reason of similarities with the Buck operation, from the
modeling point of view. We have examined the buck converter in (Alyakhni,
Al-Mohamad, and Hoblos 2019).
Figure 2.1 shows the circuit diagram of the Boost converter.

vin

Rin

iin

cin

iCin

ESRin

L RL iL
D

Co

iCo

ESRo

LOAD

i0

S

Figure 2.1: Boost converter circuit

2.2.1 Switched-system modeling

Such types of converters are known as switched-systems due to their switch-
ing behavior resulting two split subsystems in this case. Thus, the power
switch S is fired during a duty cycle d that describes the ON-state of the
MOSFET S which is characterized by its internal resistance RON, and sub-
system 1 is operational. Oppositely, subsystem 2 describes the OFF-state of
the MOSFET S (Al-Sheikh, Bennouna, Hoblos, and Moubayed 2014; Hart
2010).

Subsystem 1: MOSFET ON-state

The circuit diagram of subsystem 1 during the ON-state of the MOSFET is
shown in Figure 2.2:
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Figure 2.2: Subsystem 1 during the ON-state of the MOSFET

Applying the Kirchhoff’s Voltage Law (KVL) to the three loops of the sub-
system 1 circuit in Figure 2.2:

−vin + (Riniin) + vCin
+ (ESRiniCin

) = 0, (2.1a)

−(ESRiniCin
)− vCin

+ vL + (RLiL) + (RONiL) = 0, (2.1b)

vo − (ESRoiCo
)− vCo

= 0, (2.1c)

next, by applying Kirchhoff’s Current Law (KCL) to the same circuit, we
obtain:

iin − iCin
− iL = 0, (2.2a)

iCo
+ io = 0. (2.2b)

Then, given the measurement equations of the output vector y as follows:

y =







iin = iL + Cin

dvCin

dt
,

vo = vCo
− ESRoio,

(2.3a)

(2.3b)

the state equations are then obtained by restructuring (2.1) with the substi-
tution of (2.2) and (2.3):

dvCin

dt
=

−vCin
− (Riniin) + vin

CinESRin

,

=
−vCin

− (RinCin
dvCin

dt
)− vin

CinESRin

,

=
−vCin

−RiniL + vin

Cin(Rin + ESRin)
,

(2.4a)
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diL
dt

=
ESRinCin

dvCin

dt
+ vCin

− (RL +RON)iL

L
,

=
1

L(Rin + ESRin)
[RinvCin

− (RinESRin + (RL +RON)(Rin + ESRin))iL

+ ESRinvin],

(2.4b)

dvCo

dt
=

vo − vCo

ESRoCo

,

= − io
Co

.

(2.4c)

Thus, the states matrices A1 and B1 of subsystem 1 are created by rewriting
the differential equations of the states (2.4) and the input vector u as:

ẋ
︷ ︸︸ ︷







dvCin

dt

diL
dt

dvCo

dt







=

A1
︷ ︸︸ ︷







−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+RON)(Rin+ESRin))

L(Rin+ESRin)
0

0 0 0








x
︷ ︸︸ ︷






vCin

iL

vCo







+








1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
0

0 −1
Co








︸ ︷︷ ︸

B1

[
vin

io

]

︸ ︷︷ ︸
u

.

(2.5)
Moreover, the KVL equations (2.1) are rewritten in function of the output
vector y (2.3) as:

0 = vin + (Riniin) + vCin
+ ESRin(iin − iL),

iin =
ESRiniL + vin − vCin

RinESRin

,
(2.6a)

vo = vCo
− ESRoio, (2.6b)
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Hence, the matrices C1 and D1 are obtained by rewriting (2.6) in function
of x and u as:

y
︷ ︸︸ ︷
[
iin

vo

]

=

C1
︷ ︸︸ ︷
[

−1
(Rin+ESRin)

ESRin

(Rin+ESRin)
0

0 0 1

]

x
︷ ︸︸ ︷






vCin

iL

vCo







+

[
1

(Rin+ESRin)
0

0 −ESRo

]

︸ ︷︷ ︸

D1

[
vin

io

]

︸ ︷︷ ︸
u

.

(2.7)

Finally, the state-space matrices of subsystem 1 during the ON-state of the
Boost converter are represented as follows:

A1 =








−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+RON)(Rin+ESRin))

L(Rin+ESRin)
0

0 0 0







, (2.8a)

B1 =








1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
0

0 −1
Co







, (2.8b)

C1 =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0

0 0 1

]

, (2.8c)

D1 =

[
1

(Rin+ESRin)
0

0 −ESRo

]

. (2.8d)

Subsystem 2: MOSFET OFF-state

The circuit diagram of subsystem 2 of the Boost converter during the OFF-
state of the MOSFET is illustrated in Figure 2.3.
Applying KVL to the loops of the OFF-state circuit in Figure 2.3 yields to:

−vin + (Riniin) + vCin
+ (ESRiniCin

) = 0, (2.9a)

−(ESRiniCin
)− vCin

+ vL + (RLiL) + vCo
+ (ESRoiCo

) = 0, (2.9b)

−(ESRoiCo
)− vCo

+ vo = 0, (2.9c)
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Figure 2.3: Boost converter OFF

Then, by applying the KCL to the same circuit, we obtain:

iin − iCin
− iL = 0, (2.10a)

iL − iCo
− io = 0. (2.10b)

Therefore, the state equations of subsystem 2 are obtained by restructuring
(2.9) with the substitution of (2.10) and (2.3) as:

dvCin

dt
=

−vCin
− (Riniin) + vin

CinESRin

,

=
−vCin

− (RinCin
dvCin

dt
)− vin

CinESRin

,

=
−vCin

−RiniL + vin

Cin(Rin + ESRin)
,

(2.11a)

diL
dt

=
ESRin

vin−(Riniin)−vCin

ESRin
+ vCin

− (RLiL)− vCo
− (ESRo(iL − io))

L
,

=
1

L(Rin + ESRin)
[RinvCin

− (RinESRin + (RL + ESRo)(Rin + ESRin))iL

− 1

L
vCo

+ ESRinvin +
ESRo

L
io],

(2.11b)
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dvCo

dt
=

vo − vCo

ESRoCo

,

=
vCo

+ ESRo(iCo
− iL)

CoESRo

,

=
io
Co

− iL
Co

.

(2.11c)

Thus, the state-space matrices A2 and B2 of subsystem 2 are obtained by
rewriting the equations (2.4) as:

ẋ
︷ ︸︸ ︷







dvCin

dt

diL
dt

dvCo

dt







=

A2
︷ ︸︸ ︷







−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ESRo)(Rin+ESRin))

L(Rin+ESRin)
−1
L

0 1
Co

0








x
︷ ︸︸ ︷






vCin

iL

vCo







+








1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
ESRo

L

0 −1
Co








︸ ︷︷ ︸

B2

[
vin

io

]

︸ ︷︷ ︸
u

.

(2.12)

Moreover, the KVL equations of subsystem 2 (2.9) are rewritten in function
of the output equations (2.3) as:

iin =
vin − vCin

+ ESRiniL
Rin + ESRin

, (2.13a)

vo = vCo
+ ESRoiL − ESRinio. (2.13b)

Hence, the matrices C2 and D2 are obtained by rewriting (2.13) in function
of x and u as:

y
︷ ︸︸ ︷
[
iin

vo

]

=

C2
︷ ︸︸ ︷
[

−1
(Rin+ESRin)

ESRin

(Rin+ESRin)
0

0 ESRo 1

]

x
︷ ︸︸ ︷






vCin

iL

vCo







+

[
1

(Rin+ESRin)
0

0 −ESRo

]

︸ ︷︷ ︸

D2

[
vin

io

]

︸ ︷︷ ︸
u

.

(2.14)
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Finally, the state-space matrices of subsystem 2 during the OFF-state of the
Boost converter are represented as follows:

A2 =








−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ESRo)(Rin+ESRin))

L(Rin+ESRin)
−1
L

0 1
Co

0







, (2.15a)

B2 =








1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
ESRo

L

0 −1
Co







, (2.15b)

C2 =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0

0 ESRo 1

]

, (2.15c)

D2 =

[
1

(Rin+ESRin)
0

0 −ESRo

]

. (2.15d)

2.2.2 Average representation of the switched-systems

The switched-systems can be expressed by alternating or averaged models.
The alternating model conserves the switching between the original subsys-
tems according to the period of the duty cycle. Whereas, the averaged model
is obtained by averaging the subsystems to extract only one model. The alter-
nating model representation can represent the degradation on a system-level,
due to the kept varying ripples. Whereas, we intend to forecast the CRUL as
well as the SRUL of a system while minimizing the computational effort and
time for real-time applications, as we proposed in Chapter 1. Consequently,
we propose to employ the averaged model representation due to its reduced
computations by half. Additionally, we intend to investigate the parame-
ters of the system as the failure precursors, and not the external indicators
such as the output voltage ripples. Consequently, only one model is obtained
following the illustrated subsystems switching in Figure 2.4. The averaged
state-space matrices are computed as:

Aavg = A1d+A2(1− d), (2.16a)

Bavg = B1d+B2(1− d), (2.16b)

Cavg = C1d+C2(1− d), (2.16c)

Davg = D1d+D2(1− d). (2.16d)
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Figure 2.4: Subsystems switching

Remark 2.2.1. It is worth noting that the alternating and the averaged
models have been examined and presented in Chapter 3.

The average state-space representation of an LTI system is:
{

ẋ(t) = Aavgx(t) +Bavgu(t),

y(t) = Cavgx(t) +Davgu(t),

(2.17a)

(2.17b)

where x(t) ∈ R
nx , y(t) ∈ R

ny , and u(t) ∈ R
nu denote the state, output, and

input vectors respectively.

u =
[
vin io

]⊺
, (2.18a)

y =
[
iin vo

]⊺
, (2.18b)

x =
[
vCin

iL vCo

]⊺
, (2.18c)

where the variable vin denotes the input source voltage of the circuit, io is
the output load current, iin is the input current and vo is the output voltage.
Thus, the states are the input capacitor voltage vCin

, the inductor current iL
and vCo

the output capacitor voltage.

Remark 2.2.2. For the sake of simplicity, the average state-space matrices
(i.e. Aavg, etc.) are henceforth denoted without the subscripts (i.e. A, etc.).

In the normal operation mode, A ∈ R
nx×nx represents the state matrix

with dim[A(·)] = 3×3, B ∈ R
nx×nu is the input matrix with dim[B(·)] = 3×2,
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C ∈ R
ny×nx is the output matrix with dim[C(·)] = 2 × 3 and D ∈ R

ny×nu

represents the feed-through matrix of the system with dim[D(·)] = 2× 2.

Moreover, the model is discretized following the zero-order hold assumption
for the input:

Ad = eATs , (2.19a)

Bd = A−1(Ad − I)B, (2.19b)

Cd = C, (2.19c)

Dd = D. (2.19d)

Furthermore, the exact discretization is approximated based on the Euler
method to reduce the computational effort of the exponential calculation:

Ad = eATs ≈ I+ATs, (2.20a)

Bd = A−1(Ad − I)B ≈ TsB. (2.20b)

Finally, the discrete-time state-space model is obtained as:

{
xk+1 = Adxk +Bduk,

yk = Cdxk +Dduk,

(2.21a)

(2.21b)

Remark 2.2.3. Different types of noises and uncertainties are considered
and investigated in the following chapters.

2.2.3 Numerical application: normal operation of the

Boost converter

The components and the parameters of the proposed DC-DC converter are
presented in Table 2.1.
Moreover, the switching frequency is rated at fs = 15000 Hz, and the duty
cycle is set at d = 0.35 to control the gate of the MOSFET.
The input vector is initialized as:

u0 =

[
vin0

io0

]

=

[
200
100

]

, (2.22)

and the states are initialized as:

x0 =





vCin0

iL0

vCo0



 =





200
150
300



 . (2.23)
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Table 2.1: Converter parameters

Component Symbol Value Unit
Input resistance Rin 0.01 Ω
Input capacitance Cin 80 mF
Input capacitor resistance ESRin 100 mΩ
Inductance L 146 µH
Inductor internal resistance RL 5 mΩ
MOSFET ON-resistance RON 0.2 Ω
Output capacitance Co 5 mF
Output capacitor resistance ESRo 80 mΩ

The numerical state-space matrices (2.24) and (2.25) represent the models
of subsystem 1 and subsystem 2 respectively in continuous-time in normal
operation condition of the Boost converter as:

A1 =





−113636 −1136.36 0
622.665 −1466.37 0

0 0 0



 , B1 =





113636 0
6226.65 0

0 −200



 ,

C1 =

[
−9.09 0.909 0

0 0 1

]

, D1 =

[
9.09 0
0 −0.08

]

,

(2.24)

A2 =





−113636 −1136.36 0
622.665 −644.45 −6849.315

0 200 0



 , B2 =





113636 0
6226.65 547.94

0 −200



 ,

C2 =

[
−9.0909 0.90909 0

0 0.08 1

]

, D2 =

[
9.0909 0

0 −0.08

]

.

(2.25)
Hence, the average continuous-time state-space matrices of subsystem 1 (2.24)
and subsystem 2 (2.25) are:

A =





−113636 −1136.36 0
622.665 −932.12 −4452.054

0 130 0



 , B =





113636 0
6226.65 356.16

0 −200



 ,

C =

[
−9.0909 0.90909 0

0 0.052 1

]

, D =

[
9.0909 0

0 −0.08

]

,

(2.26)
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Then, by discretizing the average continuous-time model (2.26) with a sam-
pling frequency Fs = 15000 Hz, we obtain:

Ad =





0.00046 −0.00945 0.0025
0.00518 0.93817 −0.2876
0.00004 0.00839 0.99874



 , Bd =





0.99568 −0.00021
0.43728 0.02494
0.00189 −0.01322



 ,

Cd =

[
−9.0909 0.90909 0

0 0.052 1

]

, Dd =

[
9.0909 0

0 −0.08

]

.

(2.27)
The three states are illustrated in Figures 2.5, 2.6, and 2.7 based on the
simulation of the discrete-time average state-space model (2.27) in normal
operation condition without noises.
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Figure 2.5: x1 in normal operation of the Boost converter

2.3 Degradation Modeling and Analysis

The degradation integration in the model on a system-level requires a detailed-
component level analysis first. As previously mentioned in Chapter 1, the
MOSFET and the output ECAP are the most crucial power electronic com-
ponents that can affect the health of the converter due to their degradation
behaviors. For this reason, we propose to consider the parameters of the
aforementioned components as their failure precursors as well as for the sys-
tem itself. Thus, the interdependency of these parameters will be observed
by the cascading damage, following this strategy. Therefore, the very first
step of the degradation analysis consists of the degradation modeling in a
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Figure 2.6: x2 in normal operation of the Boost converter
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Figure 2.7: x3 in normal operation of the Boost converter

deterministic interval of time of the AGEs on each component (Renwick, J.
and Kulkarni, C. and Celaya, J. 2015; Celaya, J. R. and Saxena, A. and
Saha, S. and Goebel, K. 2011). The acquired measurements of the AGEs
play an essential role in the degradation simulation, since they represent ac-
celerated degradation data of real power electronic components. Finally, a
numerical fitting has been accomplished in order to obtain empirical models
of the degradation for simulation purposes and investigations only.

Remark 2.3.1. By recalling that the SRUL forecasting with unknown degra-
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dation behaviors is one of the main objectives of this research, the empirical
degradation analysis is essential to assess the effects on different operations
and scenarios. In other words, the empirical assessment and its integration
on the system-level is employed to simulate different scenarios of degradation
that will be used as case studies for the application of our proposed PHM
approaches.

Proposition 2.3.1 (Degradation scenarios to investigate the direct and mu-
tual effects of the critical components on the whole system). Due to the fact
that the degradation precursors are parameters of the system itself, we pro-
posed three scenarios for this assessment by considering the MOSFET and
the ECAP as degraded components.

• Scenario 1: The converter is degraded by the MOSFET which is repre-
sented by its precursor RON. Among the various degradation precursors
of power electronic switches, the choice of RON refers to our intention of
targeting real applications that always matters in this thesis. In other
words, designing such degradation scenario without harming the model
in addition to an easy access to the internal components would be much
easier by embedding a resistor to emulate the degradation behavior of
the MOSFET or other power electronic components. Additionally, the
RON is an accurate failure precursor for MOSFETs in specific, as stated
in Chapter 1.

• Scenario 2: The converter is degraded by the output ECAP which is
represented by its precursor ESRo. The choice of the ESR instead of
the capacitance as a precursor refers to our intention to investigate the
proposed approaches with different degradation behaviors. In other
words, the RON precursor follows an exponential increase through-
out the degradation process as well as the capacitance of the ECAP.
Whereas, the ESR follows a double exponential functions that could
be approximated as linear increase, which can provide a different type
of variation to examine. In addition to the aforementioned reason of
the advantages of dealing with resistors rather than other precursors in
real applications.

• Scenario 3: The converter is degraded by the MOSFET and the output
ECAP components at the same time which are represented by their
precursors RON and ESRo respectively. The aim of this scenario is to
assess the mutual effect of multiple critical components in a system for
the sake of developing the prognostics approaches of such systems that
characterize most of the real applications.



2.3. Degradation Modeling and Analysis 75

The LTI models of (2.8) and (2.15) become dynamical due to the integration
of the time-varying parameters that represent the failure precursors as men-
tioned in the proposed scenarios. Thus, the system has been simulated as
a black-box without any additional transformation, in order to observe the
effect of each scenario on the components as well as the whole system.

Therefore, the empirical modeling of the acquired measurement data for
the MOSFET and the output ECAP will be detailed in the following sub-
sections.

Remark 2.3.2. The approximation ≈ is used with the empirical models
to emphasize on the fact that they are obtained from real measurements of
AGEs that have been numerically fit and approximated in an accelerated
time (Renwick, J. and Kulkarni, C. and Celaya, J. 2015; Celaya, J. R. and
Saxena, A. and Saha, S. and Goebel, K. 2011).

2.3.1 MOSFET degradation

The ON-resistance RON of the MOSFET is considered as the precursor of
degradation. Although there exists different possibilities to choose a proper
degradation precursor such as the gate and collector-emitter voltages and
currents, the RON has been selected for a very important reason that suites
our proposed prognostics method. Other precursors are not directly repre-
sented in the system identification, in another meaning, the RON is a fun-
damental parameter of the model that differentiates between the switching
states. Thus, its empirical model is only utilized to simulate the degradation
behavior of the converter and not included in the estimation process. The
empirical continuous-time non-linear model of the degradation of RON has
been derived based on the AGEs of thermal overstress accomplished in (J. R.
Celaya, A. Saxena, C. S. Kulkarni, et al. 2012; J. R. Celaya, A. Saxena, S.
Saha, and K. F. Goebel 2011; Celaya, J. R. and Saxena, A. and Saha, S.
and Goebel, K. 2011), and approximated as follows:

∆RONemp
(t) ≈ RONemp

(t)−RON0 = α(eβt − 1), (2.28a)

RONemp
(t) ≈ RON0 + α(eβt − 1), (2.28b)

where ∆RONemp
denotes the empirical variation resulted during an acceler-

ated degradation process. α ≈ 0.0003332 and β ≈ 0.0003331 denote the
parameters of the empirical degradation model. Therefore, α is smaller than
a very small value denoted by ǫ, the degradation equation can be rewritten
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in the following manner (Alyakhni, Al-Mohamad, and Hoblos 2019):

∆RONemp
(t) ≈ αeβt, for α << ǫ, (2.29a)

RONemp
(t) ≈ RON0 + αeβt, (2.29b)

Figure 2.8 illustrates the degradation variation % in function of the available
degradation data which are fitted for 15000 accelerated minutes. As stated
in Chapter 1, the TH that defines the maximum EoL of MOSFETs could
vary between 10% and 17% increase in RON. For safety reasons, the 10%
increase has been selected to define the TH of RON.
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Figure 2.8: MOSFET ON-resistance variation due to degradation using
empirical model.

2.3.2 ECAP degradation

The empirical models of capacitance loss and ESR increase are given by
the following equations based on (J. Celaya et al. 2011; Chetan S. Kulkarni,
Gautam Biswas, and Xenofon Koutsoukos 2009; Chetan S. Kulkarni, Gautam
Biswas, José R. Celaya, et al. 2012; Chetan Kulkarni, Gautam Biswas, X.
Koutsoukos, et al. 2010; C. Kulkarni, J. Celaya, G. Biswas, et al. 2011; C. S.
Kulkarni et al. 2012; Chetan Kulkarni, Gautam Biswas, Jose Celaya, et al.
2011):

Cemp%(t) ≈ eat + b, (2.30a)

Cemp(t) ≈ C0

(

1− Cemp%(t)

100

)

= C0

(

1− eat + b

100

)

, (2.30b)
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where a = 0.8815 and b = 0.0003158 are the parameters of the fitted em-
pirical models of the capacitance degradation. The capacitance degradation
percentage is denoted by Cemp%(t), and represents the degradation percent-
age increase. Cemp(t) denotes the capacitance degradation which decreases
exponentially.
Moreover, unlike the capacitance, the ESR of the ECAP increases with the
degradation, and refitted from polynomial models and remodelled in the fol-
lowing exponential form:

ESRemp%(t) ≈ a1e
b1t + c1e

d1t, (2.31a)

ESRemp(t) ≈ ESR0(1 +
ESRemp%(t)

100
), (2.31b)

where a1 = 22.02, b1 = 9.62.10−5, c1 = −21.72, and d1 = −0.0004157 are
the parameters of the empirical degradation model. ESRemp%(t) denotes the
increase percentage of the ESR throughout the degradation of the ECAP.
ESRemp(t) denotes the increase of the ESR starting from its initial rated value.
Thus, Figures 2.9a and 2.9b illustrate the evolution of the empirical models
considering the capacitance degradation and ESR increase percentages. A
20% decrease in the capacitance value results in around 57% increase in the
the ESR, that represent their failure TH respectively.

2.3.3 Numerical application: empirical degradation anal-

ysis

The empirical degradation models of the failure precursors RONemp
and ESRemp

are integrated without any model transformation as mentioned in Proposi-
tion 2.3.1. Figures 2.10a, 2.10b and 2.10c illustrate the empirical degradation
effect on the states in the three scenarios.
The simulation of the empirical degradation on the system-level has clearly
shown the effect of the cascading damage on the remaining components of the
system. The first two scenarios show almost similar degradation rate with
a different evolution, as shown in Figures 2.10a, 2.10b and 2.10c. Whereas,
the degradation impact in scenario 3 is more important on the three states
of the DC-DC converter. Additionally, the degradation effect on the input
capacitance voltage represented by x1 is negligible as the voltage increases
between 0.02 V and 0.04 V with respect to the initial value of 198.54 V in the
three scenarios. The inductor current x2 drops between 2 A in the first two
scenarios and 4 A in the third scenario, during the whole degradation pro-
cess. Finally, the output capacitance voltage drops between approximately
3 V to 7 V in the first two scenarios and the third scenario respectively.
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(a) Evolution of capacitance degradation using empirical model.
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(b) Evolution of ESR using empirical model.

Figure 2.9: Evolution of the lumped model of ECAPs

The observation of the degradation effects on the components of the system is
essential for the next step in this phase, where different model transformation
approaches are investigated for the sake of creating a structured modeling
approach that can be generalized with further real applications. The main
aim of the following step is to emphasize on the critical components of the
system in order to facilitate the assessment of the system-level prognostics
via the critical components and not the external features, as proposed in
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Figure 2.10: The states during the three degradation scenarios
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Chapter 1. Additionally, this aim can not be achieved without considering
less computational effort and time with high modeling accuracy, in order to
decrease the cost and the modeling uncertainties.

2.4 Model Representation with Degradation In-

tegration for Estimation Purposes

In broad, rather than the technical perspective, the prognostics approaches
depend on time which is one of the triads of universe by which the past,
the present, and the future are defined. In the context of our research and
the importance of time in prognostics applications, the past consists of all
the degradation actions that happened and affected the present time which
is characterized by uncertain observations of the system. Furthermore, the
main goal of the RUL forecasting depends on projecting from the present to
the future with exponentially increasing unknown uncertainties (D. W. Boyd
2001a). Moreover, only the components with degraded profiles in the past
referring to the present are concerned in the forecasting process. Although
the forecasting is based on the present observations, we assume that we do
not have any direct access to measure the parameters of the system. Conse-
quently, parameters estimation is the proposed solution to overcome the ob-
servation barrier. It is worth noting to differentiate between the parameters
which describe real physical components such as resistance and capacitance,
and the variables which are defined as the independent energy-storage ele-
ments.

Wherefore, it has become crucial to put forward a systematical method for
parameters estimation for model-based prognostics applications in the inter-
est of generalization to other applications. Thus, the ideal estimation and
forecasting results can be obtained if less computations are required.

To this point we are only responsible of structuring the estimation method-
ology with respect to the three degradation scenarios. Thus, the endogenous
parameters where the variations occur internally, follow either stochastic,
constant, logical, Malthusian, or exponential forms (D. W. Boyd 2001b).
Therefore, based on previous experimental observations of the AGEs for
power electronic devices, the degraded components show in general either
exponential growth (i.e. the resistance) or exponential decline (i.e. the ca-
pacitance) as shown in Section 2.3.
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Therefore, we present an overview about three model representation ap-
proaches that have been investigated for the parameters extraction for es-
timation purposes. Stochastic or deterministic estimation approaches could
be implemented, yet they are not detailed in this section since the focus is
on synthesizing the modeling phase of the general PHM approach.

Remark 2.4.1. Henceforth, the degradation precursors such as RON and
ESRo are included in the parameter vector ρ.

2.4.1 Hybrid states estimation and parameters regres-

sion

Proposition 2.4.1 (States estimation and parameters regression using one
observer). This strategy combines the state estimation of the genuine dy-
namical model and compute the varying parameters in function of the states,
input, and/or output components as illustrated in the diagram of Figure 2.11.

Start

Genuine dy-
namical model

Observer for states
(x) estimation

Precursors regres-
sors extraction

Parameters (ρ)
computation

Update x, ρ, and
state-space matrices

Figure 2.11: Hybrid states estimation and parameters regression approach

The parameters ρ are extracted as regressors from the main state-space
model. The observer is only used for states estimation that will update
the regressors online.
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Let us consider scenario 1 as a demonstrating example with the degraded
MOSFET. The modeling phase in normal operation condition has shown
that the RON precursor is only shown in the matrix A1 of the subsystem 1
(2.5).

Example 2.4.1. The state equation in function of RON is:

ẋ2(t) =
Rin

L(Rin + ESRin)
x1(t)

− (RinESRin + (RL +RON(t))(Rin + ESRin))

L(Rin + ESRin)
x2(t)

+
ESRin

L(Rin + ESRin)
u1(t),

(2.32)

then, the regressor equation of RON(t) is rewritten as:

RON(t) =

(
1

Rin + ESRin

)[(
L(Rin + ESRin)

x2(t)

)

(
Rin

L(Rin + ESRin)
x1(t) +

ESRin

L(Rin + ESRin)
u1(t)− ẋ2(t)

)

−RinESRin

]

−RL.

(2.33)

The major drawback in the regressor equation (2.33) is that this represen-
tation is accompanied by regression error with no correction step. Addition-
ally, for scenario 2 and 3 the complexity of forming the regression increases
with the number of variables and the correlation among the equations become
unrealistic. Consequently, this method has not been considered further since
that no concessions in accuracy and reliability are accepted in the prognostics
applications.

2.4.2 Dual observers for separate states and parameters

estimation or for switched-systems

Proposition 2.4.2 (Multifunctional dual-observer approaches). As the pa-
rameter regression in Proposition 2.4.1 lacks the correction step in the pa-
rameter computation, another observer can be dedicated for the parameter
estimation in order to improve its accuracy, following the average represen-
tation of the main model.
Moreover, dual observers can also be used in a different approach for switched-
systems, by alternating between the two subsystems. In other words, if the
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external features are considered as the failure precursors for system-level
prognostics, the dual-observer approach provides ripples estimation of the
states.
Figure 2.12 illustrates the proposed improved approach of the dual-observers
for separate states and parameters estimation.

Start

Genuine
dynamical model

Observer 1 Observer 2

Update x, ρ, and
state-space matrices

Figure 2.12: Dual-Observers for Separate States and Parameters
Estimation Approach or Switched-Systems

Table 2.2 shows two different approaches that can be employed with the
dual-observer technique for system-level prognostics.

Table 2.2: Dual-observer approaches

Observer
Approach 1: Approach 2:

Average model Alternating model
Observer 1 states (x) estimation states (x) estimation

for subsystem 1

Observer 2 parameters (ρ) estimation states (x) estimation
for subsystem 2

Both approaches require two separate observers which increases the computa-
tional time and effort. Without detailing the observers design in this section,
this approach has been also tried and therefore eliminated due to the unsat-
isfactory estimation results. The design and the results of the dual-observer
approaches are presented in Chapter 3 in addition to a third approach that
combines the dual-observer with Proposition 2.4.3.
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2.4.3 Augmented representation for joint estimation of

states and parameters

Proposition 2.4.3 (Joint states and parameters estimation for an aug-
mented representation using only one observer). The correction issue in
Proposition 2.4.1 and the double computational effort using two observers in
Proposition 2.4.2 can be solved by joining the states and the varying param-
eters together. This technique provides direct availability of the parameters
as part of the state vector and requires only one observer for the joint es-
timation. However, the augmented representation of the model extends its
size. Figure 2.13 illustrates the flowchart of the augmentation process and
its representation with the observer.

Start

Genuine dynamical model

States/Parameters augmentation
[
x ρ

]⊺

Augmented model representation

Observer for joint estima-
tion of states and parameters

Update x, ρ, and state-space matrices

Figure 2.13: Proposed augmented model representation for JESP

The augmented state vector with the varying parameters ρ1, . . . , ρnρ
which

describe the degradation precursors in our case, becomes:

xaug =
[
x1 . . . xnx

ρ1 . . . ρnρ

]⊺
, (2.34)
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Then, by considering the three scenarios of the case study, the state vectors
become:

xS1 =
[
vCin

iL vCo
RON

]⊺
, (2.35a)

xS2 =
[
vCin

iL vCo
ESRo

]⊺
, (2.35b)

xS3 =
[
vCin

iL vCo
ESRo RON

]⊺
. (2.35c)

Remark 2.4.2. Henceforth, the augmented representation will be adopted
in this thesis, and the augmented state vector xaug will be denoted as x for
the sake of notation simplification.

Proposition 2.4.3 is therefore adopted for the implementation with the
model of the case study. Consequently, due to the augmentation process,
the dynamical nonlinear state-space model is represented in function of the
time-varying parameters as:

{
ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t) +D(t)u(t),

(2.36a)

(2.36b)

and after discretization as:

{
xk+1 = A(ρk)xk +B(ρk)uk,

yk = C(ρk)xk +D(ρk)uk.

(2.37a)

(2.37b)

For notation simplification purposes, the state-space matrices A(ρk), B(ρk),
C(ρk), and D(ρk) will be denoted by Ak, Bk, Ck, and Dk, respectively.

2.4.4 Numerical application: Augmented models

The average numerical models of the three scenarios with the augmentation
process are shown below.

Augmented model of scenario 1

The numerical averaged augmented dynamical model of scenario 1 is obtained
by averaging the two subsystems (B.1) and (B.2) as in (2.16), and shown in
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(2.38).

AS1(t) =








−113636 −1136.363 0 0

622.665 −2397.26 RON(t) − 452.677 −4452.054 0

0 130 0 0
0 0 0 1







,

(2.38a)

BS1(t) =







113636 0
6226.65 356.164

0 −200
0 0






, (2.38b)

CS1(t) =

[
−9.0909 0.90909 0 0

0 0.052 1 0

]

, (2.38c)

DS1(t) =

[
9.0909 0

0 −0.08

]

. (2.38d)

It is clearly shown that the augmented parameter RON(t) only affects the
matrix AS1

1 , and therefore AS1.

Augmented model of scenario 2

The numerical augmented dynamical averaged model of scenario 2 is obtained
by averaging the two subsystems (B.6) and (B.7) as in (2.16), and shown in
(2.39).

AS2(t) =








−113636 −1136.36 0 0

622.665 −4452.054 ESRo(t) − 98.9103 −4452.054 0

0 0 130 0
0 0 0 1







,

(2.39a)

BS2(t) =








113636 0

6226.65 4452.054 ESRo(t)

0 −200
0 0







, (2.39b)

CS2(t) =

[

−9.0909 0.909 0 0

0 0 0.65 ESRo(t) 0

]

, (2.39c)

DS2(t) =

[

9.0909 0

0 − ESRo(t)

]

. (2.39d)
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It is remarkable that the ESRo precursor has a larger effect on more matrices
than the case of the MOSFET degradation.

Augmented model of scenario 3

The numerical augmented dynamical averaged model of scenario 3 is obtained
by averaging the two subsystems (B.10) and (B.11) as in (2.16), and shown
in (2.40).

AS3(t) =










−113636 −1136.36 0 0 0

622.665 aS3
22 −4452.054 0 0

0 130 0 0 0
0 0 0 1 0
0 0 0 0 1










, (2.40a)

BS3(t) =










113636 0

6226.65 4452.054 ESRo(t)

0 −200
0 0
0 0










, (2.40b)

CS3(t) =

[

−9.09 0.909 0 0 0

0 0.65 ESRo(t) 1 0 0

]

, (2.40c)

DS3(t) =

[

9.09 0

0 − ESRo(t)

]

, (2.40d)

where, aS3
22 = −4452.04 ESRo(t) − 2397.26 RON(t) − 96.513.

2.4.5 Inspection of the augmented model representation

The augmented states/parameters representation of the model is an effective
method to extract all the endogenous parameters that are subject to estima-
tion. Based on the fact that the system is dynamic with nonlinear varying
parameters that represent the degradation precursors, the augmented model
is therefore nonlinear. Additionally, we intend to use only one observer for
the JESP by adopting the augmented representation, as shown in Figure
2.13. Degradation estimation is the second phase of the proposed PHM
approaches, however it is crucial to represent an accurate linearized model
compared to the original for efficient estimation results. Since the online
estimation is required, the first inspection of the augmented models has re-
sulted nonobservable systems in all three scenarios. The observability matrix
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is computed as follows:

O =










C

CA

CA2

...
CAnx−1










. (2.41)

The system is observable ⇐⇒ rank(O) = nx + nρ. Whereas, rank(O)
of all the three scenarios with the augmented model representation have
resulted 3, which yields only successful states estimation with nonobservable
parameters. The following examples demonstrate the observability matrices
of the augmented models of the three scenarios at the initial conditions.

Example 2.4.2. The observability matrix of the augmented model of sce-
nario 1 is OS1((2.38a), (2.38c)):

OS1 =















−0.000001 0 0 0
0 0 0 0

0.10336 0.00094 −0.0004 0
0.000003 0.000008 −0.00002 0

−11745.1357 −118.39383 −4.22196 0
−0.36286 −0.01428 −0.03629 0

1334600799.4944 13456554.7228 527095.8348 0
41225.4065 420.9431 63.6134 0
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Example 2.4.3. The observability matrix of the augmented model of sce-
nario 2 is OS2((2.39a), (2.39c)):

OS2 =















−0.000001 0 0 0
0 0 0 0

0.10336 0.00099 −0.0004 0
0.000003 0.00001 −0.00002 0

−11745.10876 −117.96117 −4.41504 0
−0.361317 −0.011528 −0.04734 0

334598000.249184 13399821.69554 525169.59071 0
41051.59858 409.67951 51.32355 0
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Example 2.4.4. The observability matrix of the augmented model of sce-
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nario 3 is OS3((2.40a), (2.40c)):

OS3 =



















0 0 0 0 0
0 0 0 0 0

0.000001 0 0 0 0
0 0 0 0 0

−0.11745 −0.00118 −0.00004 0 0
−0.000004 0 0 0 0
13346.008 134.5668 5.271 0 0
0.4135 0.0042 0.0006 0 0

−1516508035.0543 −0.01529 −0.00059 0 0
−46992.35891 −0473.8081 −18.8002 0 0
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The observability issue appears in the last column of OS1 and OS2, and
the last two columns of OS3 which are null. Hence, evidently the rank(O)
= 3 in all scenarios, and the augmented models are not able to be employed
without transformation. In consequence, the nonlinear and nonobservable
augmented models require a transformed model representation that will be
extensively explained in each application in the following chapters.

2.5 Conclusions

This chapter highlights the essential role of system modeling in the PHM. The
presented case study is widely utilized in many engineering applications that
necessitate the employment of prognostics techniques, since the power elec-
tronics systems are essential in electric vehicles, satellites, power plants, and
other huge industrial applications. Firstly, a DC-DC converter has been mod-
eled in the normal operation mode, and the average model representation has
been adopted to minimize the computational effort of such switched-systems.
Secondly, three degradation scenarios have been proposed for investigation
purposes after obtaining the empirical models of the most crucial power elec-
tronic components in the case study. Eventually, the cascading effects of
the degraded components on the system have been assessed. Furthermore,
the different propositions concerning the states and parameters estimation
have been explained and discussed for the sake of employing the most conve-
nient model representation that allows the states and parameters estimation
with high accuracy and reduced computational effort. Consequently, the
augmented model representation has been adopted for the JESP. Whereas,
such representation with the integration of the time-varying parameters can
face nonobservablity barriers in addition to the nonlinearities. Therefore,
this issue will be carried out in the following chapters. Figure 2.14 illustrates
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the adopted procedures of phase I of the proposed PHM approach, that can
be generalized to similar real applications of dynamical systems with de-
graded behaviors. Finally, the following chapters will discuss the second and
the third phases with proper model representations, estimation approaches,
tuning, and RUL forecasting.

Subsystem 1 Subsystem 2

Averaged
model

Degradation
analysis

Degradation
precursors

AGEs mea-
surements

Empirical
models

Augmented
represen-

tation

Linearized
represen-

tation

nonlinear
and nonob-

servable

Phase II:
estimation

Phase III:
RUL

forecasting

Figure 2.14: Diagram showing the formulation of the modeling phase
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3.1 Introduction

The proposed PHM methodology for model-based applications requires a reli-
able degradation estimation method, on which the RUL forecasting approach
relies, as shown in Figure 1.10. For this reason each proposed approach
in this thesis is mainly based on the state and parameter estimation tech-
niques for nonlinear systems, in order to establish the most reliable threefold
methodology for prognostics. In Chapter 1, we elaborated the importance
of estimating the internal parameters of the system for an efficient CBM.
Additionally, we proposed the JESP of the augmented model representation
as a technique that encounters most of the components and the failure pre-
cursors of a system. As mentioned earlier, the modeling, estimation, and
RUL forecasting phases are investigated for nonlinear systems with degraded
behaviors as shown in the proposed case study in Chapter 2.

We adopted a stochastic technique for JESP in the first proposed approach for
the sake of emphasizing on the development of the RUL forecasting method
from the literature perspective. In other words, the stochastic observers such
as KF and its extensions (EKF, UKF, dual KF, sigma-point KF, square-root
sigma-point KF etc.), are widely utilized in industrial applications for state
and parameter estimation purposes (Kalman 1960; He et al. 2018; Merhy
2019). For these reasons, they are employed in the prognostics applications
for degradation estimation. Furthermore, we can endorse the nontrivial fast
and accurate simultaneous estimation by the application of the EKF to the
augmented state-space representation of the dynamical model (Blanchard,
A. Sandu, and C. Sandu 2007). This motivation allows the investigation
of our proposed structured PHM approach with the stochastic observers for
nonlinear systems on a macro level.

Therefore, we intend to employ the estimated parameters that describe the
physical degraded components, in the RUL forecasting phase. In broad, the
later is accomplished by predicting the degradation trajectories using their
known polynomial, or exponential models for model-based prognostics, as
stated in Chapter 1. However, in the case of unknown degradation mod-
els with no historical measurements acquired, we assume that the estimated

This chapter is based on the following publications: (Al-Mohamad, Hoblos, and V.
Puig 2020; Alyakhni, Al-Mohamad, and Hoblos 2019; Al-Mohamad, Hoblos, and V. Puig
2019).
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varying failure precursors are the indicators for the RUL forecasting. In other
words, we intend to investigate the possibility of RUL forecasting based on
the estimated critical parameters without predicting their behaviors nor using
their models. The aforementioned conventional technique has been investi-
gated along with the EoL-RUL approach that will be detailed throughout
this chapter.

In this chapter, we intend to focus on the linear EoL-RUL forecasting ap-
proach, that refers to the linear relation between EoL and the RUL, despite
the investigation of another approach in Chapter 5. Given the stochastic
nature of the JESP, Gaussian noises and uncertainties are considered in or-
der to complete the full proposed threefold PHM structure. Thus, the aim of
assessing the stochastic approaches of the literature with our proposed three-
fold PHM strategy, is to contribute to its development towards system-level
prognostics with unknown degradation models. It is worth recalling the im-
portance of improving the forecasting reliability by improving the estimation
accuracy in real-time applications.

This chapter is structured as follows. Section 3.2 presents the problem formu-
lation of the PHM approach based on stochastic estimation. The augmented
EKF for JESP is explained in Section 3.3. Thus, Section 3.4 is dedicated to
the RUL forecasting approaches using a known degradation model and the
proposed approach of linear EoL-RUL relation. The full algorithm of the
PHM is explained in Section 3.5. Section 3.6 shows the implementation of
the Dual Extended Kalman Filter (DEKF) for switched-systems. The appli-
cation of the proposed PHM approach to the case study is shown in Section
3.7. Finally, the conclusions are drawn with an assessment in Section 3.8.

3.2 PHM Problem Formulation in a Stochastic

Framework

As stated in the introduction, in this chapter we intend to formulate the
proposed PHM approach with stochastic estimation techniques for nonlin-
ear systems. The direct method of the RUL forecasting approach using the
estimated degradation level to compute the EoL, and therefore the RUL, is
henceforth called the linear EoL-RUL approach. As well, the classical predic-
tion approach with known degradation models is tested. Figure 3.1 broadly
highlights the employed methodology for the prognostics in this chapter.
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Modeling

EKF
versus
DKF

RUL
forecasting

Phase I

Phase II

Phase III

• Average augmented
representation
• Alternating representation
• Jacobian linearization

• Gaussian noises and
uncertainties

• known degradation
models for EoL prediction
• Linear EoL-RUL
approach

Figure 3.1: Stochastic-based proposed PHM methodology

1. System modeling: The modeling phase has been carried out in Chap-
ter 2, where we adopted the average augmented representation of the
model. Whereas, the switched approach is also explained and investi-
gated since it keeps the ripples characteristics, which could open more
possibilities of RUL forecasting development based on such external
features. However, for computational effort reduction and fast estima-
tion purposes, we propose to adopt the averaged model in this thesis.

2. EKF for JESP and dual-observer for switched-systems: The accurate
estimation of the varying parameters is the core of the model-based
prognostics. Therefore, the well-known stochastic EKF has been em-
ployed for the JESP, applied to the average augmented model with
online Jacobian linearization. On the other hand, the SoH of the sys-
tem is assessed continuously due to the knowledge of the physical TH of
the fault precursors, as explained in Chapter 2. The JESP is assessed
at each measurement, and the RUL forecasting follows if the TH is not
crossed. Furthermore, the dual-observer approach for switched-systems
has been investigated for research purposes, despite the fact that we
motivate the augmented representation for its beneficial features.

3. RUL forecasting: The RUL forecasting is the main objective of the
whole PHM methodology, on which the maintenance-related decision
making is based. To cope with this fundamental role, we proposed to
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directly compute the EoL of each varying parameter that describes the
precursor of a degraded component in our case study. Consequently,
the estimated parameter, its rated value, and its breakdown TH are
needed for this process. Therefore, the RUL is then obtained online
at each measurement. We proposed in 3.2.1 that the SRUL is the
CRUL based on the First Critical Component to Fail (FCCF). More-
over, this strategy is compared to the degradation trajectory prediction
with known polynomial models of the failure precursors. Thus, an Re-
cursive Least Squares (RLS) filter has been employed to estimate the
parameters of the degradation models and predict their behaviors until
failure to obtain their EoL.

Proposition 3.2.1 (FCCF). The SRUL is the CRUL of the FCCF.
Technically, the EoL of the system is decided based on the component
that reaches the TH first. It should be noted that this strategy is
followed since no maintenance is being considered at this point of this
thesis.

3.3 Augmented EKF for JESP

The EKF is specifically used for nonlinear systems, which follows the same
procedure as the standard KF with the Jacobian linearization of the state-
space equations, as mentioned in Section 3.2. Moreover, Gaussian noises and
uncertainties are considered in Assumption 3.3.1.

Assumption 3.3.1. The process and measurement noises and uncertainties
are denoted by ω ∈ R

nx and υ ∈ R
ny respectively. They are assumed to

follow a Gaussian distribution with independent zero-mean, and no cross-
correlations with covariances Q and R. Thus, they are considered unknown
at each time-step as (Kalman 1960; Ma et al. 2020):

ωk ∼ N(0,Q), (3.1a)

υk ∼ N(0,R), (3.1b)

where the expectations are:

E[ωk] = 0, (3.2a)

E[υk] = 0, (3.2b)

E[ωkω
⊺

k] = Q, (3.2c)

E[υkυ
⊺

k] = R. (3.2d)
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Thus, the process and measurement covariances are discretized as:

Qd =

∫ Ts

τ

eAτQeA
⊺τdτ, (3.3a)

Rd = R
1

Ts

. (3.3b)

Finally, the discrete-time state-space model is obtained as:

{
xk+1 = Axk +Buk + ωk,

yk = Cxk +Duk + υk,

(3.4a)

(3.4b)

The nonlinear discrete-time state-space model can be represented as:

xk+1 = f (xk,uk, ωk) , (3.5a)

yk = g (xk,uk, υk) , (3.5b)

where f (xk,uk, ωk) is the state transition matrix, and g (xk,uk, υk) is the
observation matrix. Recalling that that the varying parameter ρk ∈ xk, as
discussed in (2.34) for notations simplification purposes. Thus, f is written
as:

f























x1
...

xnx

ρ1
...

ρnρ























=












f1(x1, . . . , xnx
, ρ1, . . . , ρnρ

)
...

fnx
(x1, . . . , xnx

, ρ1, . . . , ρnρ
)

fρ1(x1, . . . , xnx
, ρ1, . . . , ρnρ

)
...

fnρ
(x1, . . . , xnx

, ρ1, . . . , ρnρ
)












, (3.6)

and similarly for g.
Then, based on the Assumption 3.3.1 of Gaussian noises and uncertainties,
the prediction process can be approximated as:

x̃k+1|k = f
(
x̂k|k,uk, 0

)
, (3.7a)

ỹk+1|k = g
(
x̃k+1|k,uk, 0

)
, (3.7b)

where x̃k+1|k and ỹk+1|k denote the predicted state and measurement vectors
respectively. Thus, x̂k denotes the posteriori state estimate.

Remark 3.3.1. For notations simplification purposes, the (⋆̃), and (⋆̂) are
henceforth denoting predicted and estimated elements, respectively.
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Therefore, the states and the measurements vectors are predicted as fol-
lows:

x̃k+1|k = Akx̂k|k +Bkuk, (3.8)

ỹk+1|k = Ckx̃k+1|k +Dkuk. (3.9)

Thus, it is required to compute the Jacobian matrices for f and g in order
to proceed with the following filtering steps as:

J(x1, . . . , xnx
, ρ1, . . . , ρnρ

) =












▽⊺f1
...

▽⊺fnx

▽⊺fρ1
...

▽⊺fnρ












=







∂f1
∂x1

. . . ∂f1
∂xnx

∂f1
∂xρ1

. . . ∂f1
∂xρnρ

...
. . .

...
...

. . .
...

∂fnρ

∂x1
. . .

∂fnρ

∂xnx

∂fnρ

∂ρ1
. . .

∂fnρ

∂ρnρ






.

(3.10)
Next, the prediction of the filter error covariance is computed as:

Pk+1|k =

[
∂fk
∂x

]

Pk|k

[
∂fk
∂x

]⊺

+Qk. (3.11)

Then, the filter gain matrix is computed as:

Kk+1 = Pk+1|k

[
∂gk

∂x

]⊺ ([
∂gk

∂x

]

Pk+1|k

[
∂gk

∂x

]⊺

+Rk+1

)−1

, (3.12)

to perform the filter update as:

x̂k+1|k+1 = x̃k+1|k +Kk+1

(
yk+1 − ỹk+1|k

)
. (3.13)

Finally, the prediction error covariance is updated as:

Pk =

(

I−Kk

[
∂gk

∂x

])

P̃k. (3.14)

Remark 3.3.2. The initial value of the error covariance diagonal matrix
P0 ∈ R

nx×nx defines how much confidence we have regarding the model.
A low P0 indicates more confidence in the inputs than the estimation, and
vice-versa. However, it should be noted that high values of P0 could lead to
numerical instability in the filtering process. Whereas, a moderately lower
values could lead to faster filtering convergence. Moreover, Q can be found
intuitively depending on each application, and the dynamics and the pa-
rameters uncertainties that are not modeled, are generally included in the
process noise. However, R can be computed by a straightforward processing
of measurements while keeping the outputs constant (Ma et al. 2020).
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Finally, the estimated states and parameters are obtained in order to
assess the SoH of the system, and proceed to the online RUL forecasting
which only employs the estimated augmented parameters. Furthermore, the
observability issue that was faced with the augmented model representation,
has been solved with the Jacobian linearization that restructured the model
as will be shown in Section 3.7.

Remark 3.3.3. Coping with real-time prognostics is a crucial mission in
this study. One of the main objectives of this thesis is to structurize the
PHM strategy for real applications with only fine tuning. Thus, the online
linearization using the Jacobian is a widely-used approximation approach for
dynamical systems. However, it requires a relatively high computational time
that can burden the estimation and the prediction practices. Additionally, for
future extensions of the PHM with automated control and larger applications,
this approximation approach of the model will be developed to a generalized
form that can suit many modern engineering applications. The later problem
set-up is detailed in Chapter 4 and used as well in Chapter 5, while the
Jacobian linearization is adopted in this chapter for investigation purposes.

3.4 RUL Forecasting Based on Stochastic Ap-

proaches

This section is dedicated to the classical RUL forecasting strategies and the
proposed linear EoL-RUL approach that will be investigated throughout this
thesis.

3.4.1 Classical RUL forecasting with known degrada-

tion models

In broad, the SoH assessment is related to the critical components. As men-
tioned in Chapter 2, the degradation of the critical components usually fol-
lows exponential or double exponential evolution. Thus, these degradation
models can be used exactly with a dedicated filter for parameter estimation,
in order to predict their behaviors. Hence, with known TH of each degraded
component and predicted behavior using the known models and their esti-
mated parameters, the two are intersected in order to obtain the EoL. This
existing strategy has been illustrated in Figure 1.7.

In this thesis, we propose the employment of an RLS filter to estimate the
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parameters of a defined-degree polynomial equation equivalent to the ex-
ponential degradation models. Thus, the failure precursors of the critical
components will be expressed following the polynomial form as:

ρ(t) = pnt
n + pn−1t

n−1 + · · ·+ p2t
2 + p1t+ p0, (3.15)

where pn, . . . , p0 are the parameters that will be estimated using the RLS.
Thus, the model will be refitted using the same polynomial model and inter-
sected with the proper known TH.
Moreover, the degradation prediction uncertainties can affect the EoL pre-
diction due to measurements and modeling uncertainties, as shown in Figure
1.9.

3.4.2 Proposed RUL forecasting based on the linear EoL-

RUL approach

The slowly-degraded components have a long-term impact on the efficiency
of the whole system, as we analyzed the cascading damage in Chapter 2.
Thus, the SoH of the system could be predicted in order to keep the de-
sired operation, with the advantages of reducing the scheduled maintenance
expenses at the first place. Therefore, the first proposed RUL forecasting
approach is based on the following linear EoL-RUL relation:

tRUL = tEoL − tcurrent, (3.16)

where tcurrent can be replaced by k that represents the actual measurement
time instant in discrete-time.
Additionally, the breakdown TH of each component is known and the degra-
dation level is estimated.

Proposition 3.4.1 (RUL forecasting based on the EoL-RUL relation with-
out degradation prediction). Given the degradation variation level equation
based on the estimated parameters with respect to its rated value as:

ˆdeg%k
=

x̂k − x0

x0

× 100. (3.17)

where x̂k denotes the estimated augmented vector of states and parameters
which is previously-obtained from the EKF. Thus, the main aim is to re-
late the estimated degradation level ˆdeg% (3.17) with the linear EoL-RUL
equation (3.16). Hence, a linear degradation level equations is assumed as:

ˆdeg%k
≈ akk + bk, (3.18)
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where ak and bk denote the parameters of the linear equation at each mea-
surement instant k.

Therefore, it is known that the EoL occurs once the TH of each parame-
ter has been crossed. Consequently, the EoL can be obtained by replacing
this statement with the parameters of (3.18) as:

˜EoLk ≈
TH − bk

ak
. (3.19)

Remark 3.4.1. It is worth noting that ˜EoLk is in discrete-time due to the
simulation purposes. Whereas, the final value will be referred again to the
real time in minutes.

After relating the EoL-RUL equation with the TH and the degradation
level, it is necessary to compute the parameters ak and bk. A parameter
estimation technique such as RLS can be employed in order to estimate the
parameters ak and bk. However, the filter is not built on concrete accurate
information, which will delay the converging process due to Assumption 3.4.1,
which allows us to eliminate such filtering technique if no other information
is provided 1.

Assumption 3.4.1. The initial condition of each parameter that describes
a critical component is assumed to be 100% healthy in the case no further in-
formation provided about any previous working conditions, times, and main-
tenance.

Consequently, by eliminating the parameter estimation of (3.19), it is
required to assume an initial condition based on previous maintenance expe-
riences for such systems, rated information, inspections, or any other infor-
mation. This condition states that the system will be fully-degraded (100%)
after an assumed ˘EoL. In other words, an EoL will be assumed based on pre-
vious experiences from the manufacturers of the critical components, without
knowing the degradation behaviors.
It is essential to note that the investigation of this approach considers an
extreme case where no degradation models nor previous measurements data
are known.
Thus, a drawback of this assumption is that it could be too conservative in a
way that ˘EoL < EoL, or too optimistic-but-hazardous such that ˘EoL > EoL.
The main aim of employing such technique in this chapter, is to show how
critical is the RUL forecasting problem set-up in such conditions.

1A recursive approach for degradation behavior prediction is employed in Chapter 5.
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Furthermore, a system of linear equations is formed as:

{

ak ˘EoL + bk ≈ 100%,

akk + bk ≈ ˆdeg%k
.

(3.20a)

(3.20b)

Hence, based on the aforementioned assumptions, ˘EoL is assumed for a longer
duration that the empirical EoL, to push the RUL forecasting algorithm to
the limits while investigating.
Finally, after computing the parameters, the predicted ˜RUL is obtained in
discrete-time as:

˜RULk ≈ ˜EoLk − k ≈ TH − bk
ak

− k. (3.21)

Where k is the current sample, the shown RUL forecasting results will be
related to the accelerate time in minutes in this case study as:

t̃RUL = t̃EoL − tcurrent, (3.22)

3.5 Algorithm of the Proposed PHM Approach

Algorithm 1 presents the implementation of the EKF for JESP and the on-
line RUL forecasting.
This approach is simple to implement and the JESP is accurate and reli-
able. The overall performance of this proposition will be further numerically-
investigated and analyzed in Section 3.7.

3.6 Dual Observers Approaches for Degrada-

tion Estimation of Switched-Systems

According to the statements in Section 3.1 and in Chapter 2, there exist
possible estimation approaches. Separate states and parameters estimation
using the average model or for genuine one-model systems, or achieving states
estimation of each subsystem of switched-systems.
Moreover, a third approach can be investigated using the augmented repre-
sentation for JESP of alternating systems. In other words, the subsystems
can be augmented with the critical parameters and implemented with two
separate observers as detailed in Algorithm 2 that employs the DEKF for
JESP of switched-systems.
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Switched-Systems

Algorithm 1: Stochastic algorithm for JESP and RUL forecasting

Result: x̂, ˜RULk

initialization: x0, ρ0, ω0, υ0, Q0, R0, P0;
for k = 1 : N do

Compute:

Ak,Bk,Ck,Dk;
The predicted state vector x̃k+1|k as in (3.8);
The Jacobian matrices (3.10);
The predicted measurement vector ỹk+1|k (3.9);
The filter covariance Pk+1|k (3.11);
The filter gain matrix Kk+1 (3.12);
The filter update x̂k+1|k+1 (3.13);
The prediction error covariance Pk (3.14);
The estimated degradation percentage ˆdeg% (3.18);
Solve the system of equations (3.20);
Predict ˜RULk (3.21);
Illustrate the predicted RUL in real time t̃RUL (3.22);
Update Ak,Bk,Ck,Dk with ρ̂k, x̂k and repeat;

end

Remark 3.6.1. Although the alternating approach estimate the ripples that
can play an important role in the SoH assessment, it arises the burden of the
computational effort in addition to the closed-loop regulations and variable
loads that can affect the ripples levels.
For all these reasons, the dual-observer approach has been examined in this
thesis despite the aforementioned limitations in order to establish an efficient
PHM structure with reliable estimation and prediction.

The results of the alternating approach with separate states estimation are
shown in Section 3.7. Algorithm 2 and approach 1 in Table 2.2 are not shown
since, the DEKF is similar to the JESP using the EKF in the parameters
estimation framework. We propose to compare the KF-based dual-observer
approach for alternating states estimation with the JESP using EKF for the
sake of assessing the efficiency of the proposed JESP against the Dual Kalman
Filter (DKF) (KF-based dual-observer). Additionally, this comparison em-
phasizes on the importance of the estimation of the critical parameters in
addition to the external features for the SoH assessment and specifically for
the CBM.
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Algorithm 2: DEKF for switched-systems
Result: JESP
initialization: x0, ω0, υ0, Q0, R0, P0;
for k = 1 : N do

Predict the states of subsystem 1: x̃1k+1|k
= A1k x̂1k|k +B1kuk;

Predict the outputs of subsystem 1: ỹ1k+1|k
= C1k x̃1k+1|k

+D1kuk;
Compute the error covariance of subsystem 1:
P1k+1|k

=
[
∂f1k
∂x

]

P1k|k

[
∂f1k
∂x

]⊺

+Qk;
Compute the gain of subsystem 1:

K1k+1
= P1k+1|k

[
∂g1k

∂x

]⊺ ([∂g1k

∂x

]

P1k+1|k

[
∂g1k

∂x

]⊺

+Rk+1

)−1

;
Estimate the states of subsystem 1:
x̂1k+1|k+1

= x̃1k+1|k
+K1k+1

(

y1k+1
− ỹ1k+1|k

)

;
Update the error covariance of subsystem 1 for subsystem 2:
P1k =

(

I−K1k

[
∂g1k

∂x

])

P̃1k ;
Predict the states of subsystem 2 in function of the estimated
state of subsystem 1 (x̂1k+1|k+1

): x̃2k+1|k
= A2k x̂1k+1|k+1

+B2kuk;
Predict the outputs of subsystem 2: ỹ2k+1|k

= C2k x̃2k+1|k
+D2kuk;

Compute the error covariance of subsystem 2 in function of the
updated error covariance 1: P2k+1|k

=
[
∂f2k
∂x

]

P1k

[
∂f2k
∂x

]⊺

+Qk;
Compute the gain of subsystem 2:

K2k+1
= P2k+1|k

[
∂g2k

∂x

]⊺ ([∂g2k

∂x

]

P2k+1|k

[
∂g2k

∂x

]⊺

+Rk+1

)−1

;
Estimate the states of subsystem 2:
x̂2k+1|k+1

= x̃2k+1|k
+K2k+1

(

y2k+1
− ỹ2k+1|k

)

;
Update the error covariance for the sake of repeating the process
with subsystem 1: P1k =

(

I−K2k

[
∂g2k

∂x

])

P̃2k ;

end

3.7 Case Study: Results and Analysis

The proposed PHM approach in this chapter is applied to the DC-DC con-
verter case study. The augmentation process with the time-varying parame-
ters that describe the degraded critical electronic components have been ex-
tensively explained in Chapter 2. Thus, the stochastic estimation approaches
of the second phase of the proposed PHM are simulated using the EKF-based
JESP and the DKF for switched-systems. Hence, the classical degradation
prediction approach with known models has been investigated along with the
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proposed linear EoL-RUL forecasting.
Firstly, the empirical degradation models have been simulated in order to
obtain the measurements vector online. As we previously mentioned, the
empirical models are only used to degrade the model with real critical com-
ponents with AGEs data.
Secondly, the EKF for JESP has been applied to the augmented state-space
average model in each scenario, noting that it has been linearized using the
Jacobian technique. Thus, the DKF with the switched-system have been
applied to scenario 2 as an illustrative example and to avoid repetitions since
it is not adopted in this thesis.
Thirdly, after retrieving the estimated varying parameter(s) at each time in-
stant k, the RUL forecasting algorithm using the system of linear equations
is solved to predict the EoL and therefore the RUL of each component. Fi-
nally, based on the FCCF proposition, the SRUL is the first CRUL.
The assessment of the model representation, estimation technique and pro-
posed RUL methodology is discussed in the following subsections.

3.7.1 Scenario 1

The nonlinear continuous-time RON-augmented state-space model2 is:

[
AS1(2.38a) BS1(2.38b)
CS1(2.38c) DS1(2.38d)

]

. (3.23)

Recalling that the model (3.23) is nonlinear, only AS1 is parameter-dependent
while the remaining matrices are LTI. Thus, the Jacobian matrix of AS1 is
computed as in (4.1), and obtained as:

JA
S1(t) =








−1.136105 −1.136103 0 0

6.226102 aS1
22(t) −4.452103 −2.397103 x2(t)

0 130 0 0
0 0 0 1







, (3.24)

where aS1
22(t) = −2.397103 RON(t) − 4.526102. As clearly shown that the

model depends on the state x2 in addition to the parameter RON.
Hence, the observability matrix is checked after obtaining the discrete couple

2The model is discretized during the estimation and the forecasting process.
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(JA
S1,CS1) as:

OS1

(JA
S1,CS1) =















−9.090909 0.90909 0 0
0 0.052 1 0

−0.931904 0.972644 −0.085055 −6.869962
0.00026 0.053605 0.995298 −0.379778

−0.091261 0.96253 −0.171341 −13.839433
0.000295 0.055166 0.990455 −0.770947
−0.004729 0.944938 −0.256276 −20.699851
0.000306 0.056685 0.985475 −1.173201















.

(3.25)
Therefore, rank(OS1

(JA
S1,CS1)) = 4, which yields a fully-observable model

in this case.

Remark 3.7.1. It should be noted that the observability matrix has been
computed and verified ∀k, and (3.25) shows only the initial time instant as
a representative numerical example.

Results of the JESP using the EKF

The EKF has been applied as explained in Section 3.3 to the augmented
model of the presented case study. Figures 3.2a, 3.2b, and 3.2c show the
states estimation in comparison with the empirically-degraded model with
Gaussian noises.
The estimated states follow the empirical degradation with high accuracy.
Furhtermore, the augmented parameter RON is simultaneously estimated
with the states using the JESP technique. Eventually, the parameter es-
timation is as accurate as the state estimation as shown in Figure 3.3.

RLS-based degradation prediction using known models of the fail-

ure precursors

According to Section 3.4, the existing RUL forecasting approach by predict-
ing the degradation trajectories, has been investigated in this chapter. The
exponential degradation model (2.29) of the augmented RON of scenario 1
has been rewritten in a 5-degree polynomial equation in order to apply a
RLS filter for parameters estimation. The empirical polynomial degradation
model of RON is written in (3.26) with R-square = 1.

∆RONpoly
(t) ≈ 1.615.10−22t5 − 3.465.10−18t4 + 3.684.10−14t3

−1.247.10−10t2 + 3.575.10−7t− 7.607.10−5.
(3.26)
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Figure 3.2: The estimated states versus the corresponding empirical
degradation in scenario 1
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Figure 3.3: x̂4 versus empirical degradation in scenario 1

The EKF estimates the states and the parameters, then the RLS filter is
employed to estimate the parameters of the polynomial degradation model
and predict the future behavior until reaching the TH.

Figures 3.4 illustrates the evolution of the degradation prediction based on
the existing estimated critical parameter RON. It is clearly shown that the
predicted degradation converges with more available observations. In other
words, it took around 8000 accelerated minutes in order to forecast the EoL
with high precision. Thus, we conclude that this approach can forecast the
RUL to a relatively short time before the real EoL of the system, based on
the obtained results. It is worth mentioning that the prediction uncertainties
increase with the presence of the considered noises.
Table 3.1 shows the predicted EoL using the classical approach at the four
illustrated measurements.

Table 3.1: RLS-based EoL prediction in scenario 1

Online measurements (minutes) 2000 4000 6000 8000

˜EoL (minutes) 3274 6781 10625 12029
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Figure 3.4: Degradation and EoL prediction of RON using RLS filter

RUL forecasting using the linear EoL-RUL approach

Figure 3.5 illustrates the predicted RUL in scenario 1, compared to the em-
pirical RUL until the EoL. It is shown that the predicted RUL in scenario 1,
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Figure 3.5: ˜RUL versus empirical RUL in scenario 1
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diverges using the linear EoL-RUL approach. It can be explained due to the
initialized expected EoL that can reduce the prediction accuracy.
Therefore, Table 3.2 shows the online RUL forecasting of both approaches at
four measurements, for illustration purposes. Consequently, the RLS-based

Table 3.2: RUL forecasting comparison in scenario 1

Measurement time True RUL RLS-based ˜RUL Proposed ˜RUL
(minutes) (minutes) (minutes) (minutes)

2000 10272 1274 11698.4
4000 8272 2781 9892.6
6000 6272 4625 8085.48
8000 4272 4029 6281.45

degradation prediction approach for RUL forecasting has shown inaccurate
results compared to the proposed forecasting based on the linear EoL-RUL
approach.

3.7.2 Scenario 2

The nonlinear ESRo-augmented state-space model3 is:

[
AS2(2.39a) BS2(2.39b)
CS2(2.39c) DS2(2.39d)

]

. (3.27)

Unlike scenario 1, the state-space matrices of scenario 2 are all parameter-
dependent, and the observability matrix is computed based on the Jacobian
couple (JA

S2,JC
S2) as:

JA
S2(t) =








−113636 −1136.36 0 0

622.665 aS2
22(t) −4452.054 −4452.054 x2(t)

0 130 0 0
0 0 0 1







, (3.28a)

JC
S2(t) =

[

−9.09 0.909 0 0

0 0.65 ESR(t) 1 0.65 x2(t) ,

]

. (3.28b)

3The model is discretized during the estimation and the forecasting process.
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where aS2
22 = −4452.054 ESR(t) − 575.9.

Thus, the observability matrix at the initial condition is obtained as follows:

OS2

(JA
S2,JC

S2) =















−9.090909 0.90909 0 0
0 0.052 1 −2.5

−0.931904 0.972644 −0.085055 −12.758501
0.00026 0.053605 0.995298 −3.205352

−0.091261 0.96253 −0.171341 −25.701804
0.000295 0.055166 0.990455 −3.931859
−0.004729 0.944938 −0.256276 −38.442581
0.000306 0.056685 0.985475 −4.678952















.

(3.29)

Results of the JESP using the EKF

Similar to scenario 1, the same approaches have been investigated for states
and parameters estimation, in scenario 2. Figure 3.6a, 3.6b, and 3.6c illus-
trate the estimated states.
The performance of the EKF for JESP in states estimation have proven its
ability for both scenarios. Hence, Figure 3.7 illustrates the estimated aug-
mented parameter ESRo, compared to the empirical degradation that also
shows an accurate parameter estimation.

RLS-based degradation prediction using known models of the fail-

ure precursors

According to the aforementioned strategy as explained in scenario 1, the
RLS filter has been employed to predict the parameters of the polynomial
degradation model of the failure precursor based on the estimated parameter
using the EKF for JESP. The empirical 4-degree polynomial degradation
model of the ESR increase that is equivalent to the exponential model in
(2.31), is given in (3.30) with R-square = 1.

∆ESRpoly(t) ≈ −1.106.10−18t4 + 5.047.10−14t3 − 7.086.10−10t2

+7.171.10−6t+ 0.0005673.
(3.30)

Nevertheless, we propose a linear model with only two unknown parameters
for the ESR increase, since the double exponential model can be fit with
such model with R-square = 0.9952. The reasons behind this proposition
are referred to the investigation a model with reduced unknown parameters
with the RLS filter prediction. In other words, the results of scenario 1
with the 5-degree polynomial model were not accurate for the degradation
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Figure 3.6: The estimated states versus the corresponding empirical
degradation in scenario 2
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Figure 3.7: x̂4 versus empirical degradation in scenario 2

prediction and affected the RUL forecasting. Thus, this can be repeated in
this scenario, whereas we intend to reduce the computations with keeping a
high R-square. Therefore, we propose to estimate the following linear model
of the ESR variation as given in (3.31).

∆ESRlinear(t) ≈ p1t+ p2, (3.31)

where p1 and p2 are the unknown parameters that will be estimated using
an RLS filter, and the EKF provides the estimated value of ˆESRo.
Thus, Figure 3.8 illustrates the predicted degradation until the TH of the
ESRo.
Due to the fact that the double-exponential evolution of the ESRo is similar
to a linear evolution, the prediction results using the RLS filter have shown
better results in scenario 2 than in scenario 1.
Table 3.3 shows the predicted EoL using the classical approach at the four
illustrated measurements.

Table 3.3: RLS-based EoL prediction in scenario 2

Online measurements (minutes) 2000 4000 6000 8000

˜EoL (minutes) 11619 9508 10101 10641
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Figure 3.8: Degradation and EoL prediction of ESRo using RLS filter

RUL forecasting using the linear EoL-RUL approach

Figure 3.9 shows the predicted RUL.
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Figure 3.9: ˜RUL versus empirical RUL in scenario 2

Therefore, Table 3.4 shows the online RUL forecasting of both approaches at
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four measurements, for illustration purposes.

Table 3.4: RUL forecasting comparison in scenario 2

Measurement time True RUL RLS-based ˜RUL Proposed ˜RUL
(minutes) (minutes) (minutes) (minutes)

2000 9119 9619 6183.63
4000 7119 5508 4455.74
6000 5119 4101 2914.94
8000 3119 2641 1524.9

Unlike scenario 1, the RLS-based approach has shown better RUL fore-
casting than the proposed approach with respect to the empirical RUL, due
to the reduced number of the unknown parameters of the proposed degrada-
tion model.

DKF for switched-systems in scenario 2

One of the main objectives of this chapter is to examine various approaches in
order to define a roadmap for structured PHM practices. Thus, we proposed
to investigate a DKF for states estimation of the proposed switched-system
without the estimation of any critical component.
The rate of change of the estimated alternating states is not remarkable as
seen in the illustrated results.

3.7.3 Scenario 3

Two parameters are augmented to the states vector in scenario 3 as shown in
(2.35c). Thus, the nonlinear continuous-time augmented state-space model4

of scenario 3 is represented in (3.32) as:

[
AS3(2.40a) BS3(2.40b)
CS3(2.40c) DS3(2.40d)

]

. (3.32)

4The model is discretized during the estimation and the forecasting process.
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Figure 3.10: DKF-based estimated states versus the corresponding
empirical degradation and the EKF in scenario 2
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Moreover, the Jacobian of the couple (JA
S3,JC

S3) becomes:

JA
S3(t) =









−113636 −1136.36 0 0 0

622.665 asys
22 (t) −4452.04 −4452.04 x2(t) −2397.26 x2(t)

0 130 0 0 0
0 0 0 1 0
0 0 0 0 1









,

(3.33a)

JC
S3(t) =

[

−9.09 0.909 0 0 0

0 0.65 ESR(t) 1 0.65 x2(t) 0

]

. (3.33b)

Therefore, the full-rank observability matrix at k = 1, as an example, is
obtained as:

OS3 =



















−9.0909 0.90909 0 0 0
0 0.052 1 97.5 0

−0.9319 0.97264 −0.08505 −12.75850 −6.86996
0.0002 0.05360 0.99529 96.79664 −0.37977
−0.0912 0.96253 −0.17134 −25.70180 −13.83943
0.0002 0.05516 0.99045 96.07214 −0.77094
−0.0047 0.94493 −0.25627 −38.44258 −20.69985
0.0003 0.05668 0.98547 95.32704 −1.17320
0.0040 0.92668 −0.33960 −50.94242 −27.43053
0.0003 0.05816 0.98036 94.56192 −1.58623



















(3.34)

Results of the JESP using the EKF

Figures 3.11a, 3.11b, 3.11c, 3.12a, and 3.12b illustrate the estimated states
and parameters of scenario 3 that simulate a case of multiple-components
degradation which increases the mutual effects on a system-level.
Based on the estimated parameters in scenario 3 using the EKF for JESP,
the RUL forecasting has not been assessed due to the estimation errors that
will be reflected negatively on the RUL forecasting as seen in scenario 1 and
2. For these reasons, we propose to improve this approach but guaranteeing a
reliable parameters estimation in order to improve the efficiency of the RUL
forecasting. A proposition is explained in the following part to be investigated
in the following chapters concerning the assessment of the stochastic-based
prognostics.
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(c) x̂3 versus empirical degradation in scenario 3

Figure 3.11: The estimated states versus the corresponding empirical
degradation in scenario 3
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Figure 3.12: The estimated parameters versus the corresponding empirical
degradation in scenario 3
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3.7.4 Assessment of the proposed approaches

In broad, the JESP using the augmented EKF has shown accurate estimation
results for the investigated scenarios. Thus, the RA in (3.35) can assess the
estimation and the prediction accuracy.

RA =
x− |x− x̂|

x
× 100. (3.35)

Table 3.5 illustrates the average RA for the estimated states and parameters.

Table 3.5: The average RA of the JESP by EKF of the investigated
scenarios

States and Parameters RAS1 % RAS2 % RAS3 %

x̂1 99.99999 99.99991 99.99997
x̂2 99.99996 99.99722 99.99670
x̂3 99.99995 99.98934 95.81004
x̂4 99.99089 99.89643 90.93163
x̂5 - - 93.82725

The average RA of the first two scenarios show accurate and robust JESP,
however the parameters estimation in scenario 3 have been affected due to
the multiple degradation integration and the average RA has been decreased
up to 90%.
Table 3.6 shows the average RA of the RUL forecasting through the proposed
linear EoL-RUL approach. The average RA has been calculated until 80%
of the actual EoL in order to provide the last 20% of the EoL as a safety
margin.

Table 3.6: Average RA of RUL forecasting of the investigated scenarios for
80% of the actual EoL

˜RUL RULS1 RULS2

RA % 69.6655 61.4503

Therefore, the three simulated scenarios are based on the EKF for JESP and
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dual-observer approach for external features assessment, in addition to the
classical RLS-based degradation and EoL prediction with known degradation
behaviors against the proposed linear EoL-RUL approach.

According to the obtained results, the EKF has shown accurate and reli-
able results in the first two scenarios, where the estimation accuracy has
decreases by around 10% for the third scenario, specifically for the param-
eters. The dual-observer approach has been examined and can be further
optimized and developed for prognostics in future work, since our intention
is to reduce all the time and computational burdens for a better estimation-
prediction performance.

Moreover, the classical approach of RUL that predict the degradation and
therefore the EoL, is limited to the knowledge of the degradation models that
necessitate a parameter estimation filter such as the RLS filter in order to
predict their behaviors. The polynomial degradation model as seen in sce-
nario 1, has not provided a long-term EoL prediction prior to the true EoL.
This condition is explained due to the provided or observed information in
addition to the uncertainties in measuring, estimating, modeling, etc. How-
ever, we examined a linear model in scenario 2 that is approximated of the
4-degree true polynomial model of the ESR degradation, in order to reduce
the computations. Eventually, the prediction efficiency is more efficient that
scenario 1.

On the other hand, the proposed linear EoL-RUL approach does not depend
on the knowledge of the degradation behavior, yet it is limited to an EoL ex-
pectation based on previous experiences from the manufacturers, users, etc.
The forecasting results in general have shown a difference gap compared to
the true RUL, whether too pessimistic or optimistic.

To sum up, the stochastic-based approaches require a development in the
uncertainty management for RUL forecasting which is mainly based on the
online degradation estimation in this case. The major drawback in such ap-
proaches is that they deal with the future events with strict decisions. For
all these reasons, and following the objectives of this thesis towards general-
ized system-level prognostics, we intend to bound the estimated parameters
using zonotopic approaches in order to overcome the faced issue in scenario 3
along with resulting a bounded RUL. Indirect bounding of the predicted RUL
by propagating bounded parameters will increase the efficiency and provide
flexible forecasting that can be assessed using prognostics metrics for post-
prognosis decisions. Moreover, it is also essential to examine the estimation-
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prediction performance with unknown-but-bounded noises and uncertainties
rather than the Gaussian distribution.

3.8 Conclusions

This chapter highlights the application of the proposed model-based PHM
structure for RUL forecasting based on stochastic estimation and prediction
approaches. The aim of investigating the existing RUL forecasting approach
with known degradation models along with the proposed linear EoL-RUL
approach, is to endorse the advantages of each approach and contribute to
the development of a generalized RUL forecasting approach based on the ex-
amined limitations. The RLS-based degradation and EoL prediction depends
on known degradation models and has shown its availability to a relatively
short time before the real EoL occurs as seen in scenario 1. However, it has
shown better results than the proposed EoL-RUL approach in scenario 2 due
to the linear degradation model adopted. In other words, both approaches
are limited by whether a required knowledge of the degradation models or a
rough EoL expectations from previous experiments. Moreover, throughout
the roadmap towards the generalization of a structured PHM, we intended
to investigate a nonlinear system with focusing on the estimation of the crit-
ical components unlike most of the existing system-level approaches that
emphasize on the external features only. The JESP with Gaussian noises
and uncertainties reduces the computational time and effort in comparison
with the dual-observer approach as seen throughout this chapter, yet its ef-
ficiency for parameters estimation has decreased with multiple-degradation.
Consequently, both RUL forecasting approaches are limited and require im-
provements for a guaranteed reliability. Therefore, we propose to indirectly
bound the predicted RUL by employing a bounded JESP in a zonotopic
framework merged with the EKF considering unknown-but-bounded noises.
This approach provides less computations and guaranteed estimation with
optimized bounded RUL forecasting unlike the existing statistical bounds.
The following chapter contributes to the improved PHM approach towards
more reliable system-level prognostics with our proposed linear EoL-RUL
forecasting technique.



This page is intentionally left blank



CHAPTER 4

Zonotopic Extended Kalman Filter Approach for PHM

with Bounded RUL Forecasting

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 124

4.2 PHM Problem Formulation in a ZEKF Framework126

4.2.1 Problem set-up in an LPV framework . . . . . . . 127

4.3 ZEKF Observer Design for JESP . . . . . . . . . . 133

4.3.1 LMI-based Optimization of the tuning matrix . . . 133

4.3.2 Classical approach for online tuning of the observer 137

4.4 Bounded RUL Forecasting in a Zonotopic Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.5 ZEKF-based Algorithm for JESP and RUL Fore-

casting . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Case Study: Results and Analysis . . . . . . . . . 140

4.6.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 141

4.6.2 Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . 144

4.6.3 Assessment of the proposed approaches . . . . . . 150

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . 151

123



124 4.1. Introduction

4.1 Introduction

The core rule of the proposed model-based PHM approach states that the
RUL forecasting strictly depends on the estimated varying parameters. De-
spite the fact that the EKF has shown accurate JESP, the proposed RUL
forecasting was supposed to prove higher reliability than the obtained results.
The reason refers to the pessimistic condition of the EoL assumption or to
the knowledge of the exact degradation models, as seen in Chapter 3. The
main concern is not linked to the parameter estimation accuracy as much as
the flexibility of the RUL technique under some constraints. Therefore, based
on the methodology assessment made in Section 3.8, we proposed to bound
the predicted RUL using the linear EoL-RUL approach instead of extending
the complexity of the polynomial system that opposes the fast estimation-
prediction constraint. In consequence, we aim to merge the advantages of the
EKF for JESP with the deterministic zonotopic approach in a ZEKF frame-
work for JESP that will result in bounded states and parameters. Hence, the
proposed RUL forecasting approach is examined with propagated zonotopic
sets. Additionally, the online Jacobian approximation of the nonlinear system
attributed to the stochastic approach has been improved in this chapter for
the sake of endorsing more modern-engineering applications rather than the
reliability-related field of study. In other words, we propose an LPV trans-
formation of the nonlinear model that copes with reduced computations due
to a proposed LMI-based optimization of the ZEKF observer that will be
detailed throughout this chapter with proven improved performance.

Unlike stochastic observers, the uncertainties, the perturbations, and the
measurement noises are modeled as bounded convex sets in a zonotopic
scheme (Schweppe 1968). The complexity arises from the geometrical sets
approximation (V. Le et al. 2013a; Merhy 2019). The sets can be repre-
sented with different degrees of complexity and approximations depending on
their utilization, i.e. polytopes (such as box and parallelotopes) (E. Walter
and Piet-Lahanier 1989; Vicino and Zappa 1996; Vicenç Puig, Saludes, and
Joseba Quevedo 2003) could show good estimation results with linear models,
ellipsoids (Schweppe 1968; Witsenhausen 1968; Bertsekas and Rhodes 1971;
Durieu, É. Walter, and Polyak 2001; Becis-Aubry and Ramdani 2012) are

This chapter is based on the following publications: (Al-Mohamad, V. Puig, and
Hoblos 2021b; Al-Mohamad, V. Puig, and Hoblos 2021c; Al-Mohamad, V. Puig, and
Hoblos 2020).
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simply implemented, whatsoever their lack of flexibility might lead to pes-
simistic estimation, and zonotopes (V. Puig, Cugueró, and J. Quevedo 2001;
Combastel 2003; T. Alamo, Bravo, and Camacho 2005; T. Alamo, Bravo,
Redondo, et al. 2008) have become extensively applied for the sake of their
simple arithmetic operations, in addition to their flexibility compared to the
other geometrical sets (V. Le et al. 2013a; Merhy 2019). Additionally, the
author in (Kühn 1998) showed more precise results due to the reduced wrap-
ping effects in a zonotopic estimation. The geometrical shape of zonotopes
allows the reduction of the computational complexity while propagating the
estimated sets of states and parameters, by employing simple calculations
(Y. Wang, Vicenç Puig, and Cembrano 2018; S. E. D. Le et al. 2013; M.
Pourasghar, V. Puig, and Ocampo-Martinez 2016; Masoud Pourasghar et
al. 2019; V. Le et al. 2013b). Thus, the authors in (T. Alamo, Bravo, and
Camacho 2005) proposed possible solutions for the sake of minimizing the
zonotopes, such as segments and volume minimization techniques. The seg-
ments minimization method is mainly based on minimizing the F−radius of
the estimated zonotope, which provides an improved accuracy and reduced
vertices in the zonotopic sets. The volume minimization method is solved
by a convex optimization problem, and showed improved estimation, yet its
complexity could lead to increased computations and narrow zonotopic sets.
Moreover, the P−radius minimization (proposed in (Vu Tuan Hieu Le et
al. 2013)) is an efficient technique that guarantees the zonotopic inclusion
and can be extended to multi-output systems. The author in (Combastel
2003) introduced a reduction operator which limits the maximum number of
columns of the generator matrix of the zonotopic sets, as explained in Prop-
erty A.2.8. Thus, it was improved in (Combastel 2005) with a weighting
strictly positive definite matrix that can benefit from the same advantages of
the previously mentioned P−radius minimization technique, when applied to
the FW−radius as defined in A.2.19 in an LMI framework (Combastel 2015).

According to the fact that the RUL forecasting is based on critical param-
eters estimation, the PHM approach is therefore based on the utilized ob-
server. For this purpose, we propose to optimally tune the observer in an
LMI framework for guaranteed JESP. Additionally, a polytopic LPV is solved
offline with the LMI-based optimization for the sake of an improved real-time
estimation and prediction, that can be applied to any nonlinear system with
bounded parameters.

This chapter is structured as follows. Section 4.2 presents the problem set-up
of the ZEKF-based approach in an LPV framework. Section 4.3 is dedicated
for the ZEKF observer design with an LMI-based optimal tuning. Thus, the
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improved zonotopic RUL forecasting approach is determined in Section 4.4.
Moreover, the algorithm of the ZEKF-based JESP and bounded RUL fore-
casting is detailed in Section 4.5. The results of the adopted case study are
shown in Section 4.6. Finally, the conclusions are drawn in Section 4.7.

4.2 PHM Problem Formulation in a ZEKF Frame-

work

Based on the assessment of the previous stochastic PHM approach, we pro-
pose to increase the reliability of the linear EoL-RUL approach for RUL
forecasting by indirectly bounding the prediction through extending the EKF
for JESP to a zonotopic framework. Thus, by emphasizing on the reliability
concerns based on the aforementioned flaws and limitations which have had
been faced with the stochastic-based PHM approach, a few major upgrades
have been introduced to the ZEKF-based PHM approach. The Jacobian
representation of the dynamical model has been transformed into an LPV
representation which will be explained in Section 4.2.1. Thus, unknown-
but-bounded noises and uncertainties have been considering instead of the
Gaussian distribution. Moreover, an offline LMI-based optimization problem
has been integrated due to the presence of bounded parameters that can pro-
vide robust observer functionality and reduce the processing time. Finally,
only the zonotopic linear EoL-RUL approach is examined due to the lower
obtained overall efficiency with the RLS-based that requires the knowledge
of the degradation models. Figure 4.1 highlights the proposed PHM method-
ology with the current upgrades and adaptations.

1. System modeling: The nonlinear modeling phase has been carried out
in Chapter 2, where we adopted the augmented representation of the
model. Hence, a polytopic LPV representation has been employed for
an accurate model approximation with the bounding box approach that
considers the bounds of the varying parameters. The main advantage of
such representation is related to the following LMI-based optimization
problem that will be solved offline for the sake of real-time application,
in addition to the possible extensions of LPV-based models towards
more engineering applications.

2. ZEKF for JESP: The second phase is the core of the model-based PHM.
The ZEKF observer has been adopted due to its post-effect on the RUL
forecasting. As the EKF has been proved in many applications, and
the zonotopes require simple implementation, they are merged in a
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Figure 4.1: ZEKF-based PHM

ZEKF observer (Combastel 2015). The aim is to estimate zonotopic
states and parameters, where the bounds of the estimated zonotopic
varying parameters are retrieved at each time instant and provided
as inputs of the RUL forecasting algorithm. Moreover, the unknown-
but-bounded noises and uncertainties are considered in this approach
which has been optimally tuned based on an LMI approach for robust
stability and expressed in a polytopic LPV representation.

3. Bounded RUL forecasting: The third phase strongly depends on the
previously estimated zonotopic parameters. The linear EoL-RUL ap-
proach is now bounded due to the propagated zonotopic parameters.

4.2.1 Problem set-up in an LPV framework

The previously-derived augmented model characterizes most of the real dy-
namical applications in terms of nonlinearities. Additionally, the nonobserv-
able model in its augmented form can not accomplish its role for degradation
estimation in the following phase of the proposed PHM structure. Thus, the
observability challenge in the three scenarios highlights the key issue of the
parameter augmentation that necessitates a model transformation in order
to overcome the null rows as demonstrated in Chapter 2. Therefore, non-
linear embedding or other approximation techniques can be applied in order
to linearize the model and solve the aforementioned issues. A high-accuracy
approximation technique should be employed in order to successfully vali-
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date the model representation in the presence of perturbations, noises and
uncertainties to reach the goal of an accurate estimation. By gathering the
information from all the previously-explained barriers and constraints in the
previous chapters, it has been observed that the online Jacobian lineariza-
tion requires relatively high computations that can be improved by adopting
different representations.

Moreover, the varying parameters characterize the critical degraded compo-
nents of the system which can be described as the operating points. To deal
with the variations of the operating points, the gain-scheduling technique has
become popular for industrial control applications due to the interpolation
of local LTI models in an LPV framework (Rugh 1991). Despite the fact
that LPV models are widely used in many engineering applications such as
gain-scheduling control (Packard 1994; Shamma and Athans 1992), and fault-
tolerant control (Tudón-Martínez et al. 2013; O. Sename, Tudon-Martinez,
and S. Fergani 2013), etc., there is not a single structured strategy to trans-
form a nonlinear system into an LPV (Tóth 2010). Additionally, the LPV
identification is mainly framed by the nonlinear augmented model which is
the starting point of the transformation process, following our proposition of
a standardized PHM architecture. Thus, the state-space representation of the
LPV is adopted in this thesis rather than input-output, or series-expansion
methods thanks to its appreciation in the automatic control applications.
Another fact that characterizes the transformation process, is that multi-
varying-parameters with different types of noises parametrize the model that
can be generalized to non-exceptional case study. Next, the model estimation
is a crucial criterion that should be guaranteed in the LPV transformation.

The LPV modeling is inspired by the LTI representation with more flexi-
bility in noise types integration in the LPV and an extension of the Linear
Time-Variant (LTV) models (Tóth 2010). The state-space representation
of MIMO LPV models can be categorized under different approaches. The
full state measurement approaches assume the the states are measurable in
an Linear Fractional Transformation (LFT) framework, and mainly appli-
cable with linear regression and stochastic approaches with Gaussian noises
using RLS filters for the estimation (Nemani, Ravikanth, and B. A. Bamieh
1995; M. C. Mazzaro, Movsichoff, and Pena 1999). The gradient methods are
nonlinear-optimization-based techniques that are formulated for the estima-
tion of the varying parameters (L. H. Lee and Poolla 1996; Verdult, Ljung,
and Verhaegen 2002). Moreover, classical gain-scheduling techniques applied
in intuitive manners are categorized under multiple model approaches. Some
methods of these approaches transform the local LTI models into canoni-
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cal state-space forms for the interpolation computation. Other methods are
dedicated to reduce the LTI models before interpolation, LTI discretization
(Groot Wassink et al. 2005; Yung 2001; Steinbuch, van de Molengraft, and
van der Voort 2003), and pole location (Paijmans et al. 2008). Moreover,
the authors in (Sznaier, C. Mazzaro, and Inanc 2000) proposed an LPV rep-
resentation with known noise model with a moving average structure, and
the estimation of the LTI models is formulated as an LMI-based optimization
problem. Thus, the global subspace techniques are created based on the LTI
multi-variable output-error state-space algorithms where the state evolution
and the state-space matrices are being estimated (Verhaegen 1994). More-
over, the observer-based grey-box techniques identify the LPV transformation
based on a parameter estimation problem of known nonlinear models (Gas-
par, Szabo, and Bokor 2005; Gaspar, Szabo, and Bokor 2007).

Heretofore, the possible methods to transform the nonlinear augmented model
into an LPV representation have been reviewed above. Thus, it is remark-
able that the observer-based grey-box techniques can be employed in this case
study, since they are tailored to the same augmented model representation
of nonlinear models, similar to what has been accomplished in Chapter 3.
However, such techniques along with the full-state measurement approaches
depend on the knowledge of the noise models that burden our proposition of
dealing with unknown-but-bounded noises as will be explained henceforth.
Moreover, the remaining techniques require high computational effort which
does not match the real-time estimation-prediction requirement for online
prognostics.

Furthermore, Considering that the nonobservability issue is located and iden-
tified, we intended to apply substitution-based transformation approach by
interchanging among the coefficients of the state-space matrices to reshape
them. This intuitive transformation could be applied to nonlinear systems,
whereas in this case-study, the system remains nonobservable after testing
due to the overall combination of elements.

In an optimization-based trial, we intended to extract the time-varying degra-
dation parameters from the nonlinear model in form of polynomial parameter-
dependent approximation as a way of nonlinear embedding approach. How-
ever, a few constraints have not motivated the implementation of such tech-
nique. As we assumed that the degradation behaviors are unknown, that
means that our system is a grey-box and we can only estimate the varia-
tions. However, if we suppose that the degradation behavior is known as
an exponential evolution as previously stated, and we assume that the poly-
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nomial regression approximation is acceptable, we obtain polynomial degra-
dation equations up to order 5 as shown in Chapter 3. The complexity of
the problem increases with the more varying parameters. In consequence,
we eliminated this trial of nonlinear embedding technique for the last con-
straint of solving the optimization-based problem for LPV approximation for
the sake of its polynomial formulation that contradicts our trade-off between
complexity and estimation speed.

It is worth mentioning that the nonlinear embedding can be accomplished
to various nonlinear systems, whereas the aim is to transform the dynamical
system to an LPV representation. Whereas, each technique could fit bet-
ter in some nonlinear models than others in the LPV model approximation.
Hence, under these conditions and the fact the augmented nonlinear model
cope with the observer-based grey-box techniques, we intend to transform the
previously-adopted Jacobian approximation approach in Chapter 3 into an
LPV model. This transition permits to investigate the same approximation
of the nonlinear model for comparison assessment using the bounding box ap-
proach to obtain an LPV model. This transformation is not unique, however
it is motivated in this thesis given all the aforementioned constraints, in addi-
tion to the problem description that characterizes the degraded components
which are bounded between their rated value and the EoL TH. According
to (Tóth 2010), such model approximation is capable to perform with high
accuracy with the slowly-varying parameters. Moreover, since the Jacobian
approximation provides a parameter-varying model (Tóth 2010; Rugh and
Shamma 2000; Shamma and Athans 1990; Hyde and Glover 1993; Rugh 1991;
Shamma and Athans 1990; Åström and Wittenmark 1898), an interpolation
with the bounding box approach is accomplished to obtain a polytopic LPV
model representation with bounded parameters (Olivier Sename and Soheib
Fergani 2017; Lovera, Bergamasco, and Casella 2013; B. Bamieh and Giarre
2002; Rugh and Shamma 2000).

Finally, the aim of adopting the LPV representation is motivated by fur-
ther extension of the prognostics to control-related applications. Assump-
tion 4.2.1 characterizes the type of the degradation parameters which are
bounded in their operational interval.

Assumption 4.2.1. The degradation parameters are bounded between their
rated values and the maximum TH.

Moreover, the dynamical averaged model is locally linearized using the
first order linearization technique (Jacobian) around the varying parameters
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ρi for i = 1, . . . , nρ:

Ai =
∂f

∂x
(ρi), Bi =

∂f

∂u
(ρi),

Ci =
∂g

∂x
(ρi), Di =

∂g

∂u
(ρi).

(4.1)

Furthermore, a local LTI model is obtained around each equilibrium pa-
rameter ρi, and the first-order Taylor expansion of f and g are applied to
approximate the state and output vectors as:

˙̆x ≈ Ai(x− xi) +Bi(u− ui), (4.2a)

y̆ ≈ Ci(x− xi) +Di(u− ui) + g(ρi), (4.2b)

where x̆ and y̆ are the approximated state and output vectors, respectively.
Hence, the parameter-varying representation is rewritten with a scheduling

function µ is introduced as
N∑

i=1

µi(ρ) = 1 ∀ ρ:

˙̆x =
N∑

i=1

µi(ρ)(Aix̆+Biu)−

γx(ρ)
︷ ︸︸ ︷

N∑

i=1

µi(ρ)(Aixi +Biui), (4.3a)

y̆ =
N∑

i=1

µi(ρ)(Cix̆+Diu)−
N∑

i=1

µi(ρ)(Cixi +Diui − g(ρi))

︸ ︷︷ ︸

γy(ρ)

, (4.3b)

where γx(ρ) and γy(ρ) are the remainder terms of the approximation pro-
cess. It should be noted that (4.3) is not an LPV representation, yet the
LPV is obtained by either including γx(ρ) and γy(ρ) as additional pertur-
bations and measurement noises, or by locally eliminating them and then
interpolate them with the global model. Therefore, to conserve the adequate
approximation of the LPV model, γx(ρ) and γy(ρ) are included in ω and υ
respectively (Tóth 2010).

The polytopic coordinates µi are computed with respect to the bounded
parameters [ρ

1,...,nρ
, ρ1,...,nρ

] by interpolation. For the case study of this work,
the maximum number of the augmented parameters is two. Then, the poly-
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topic coordinates are obtained:

µ1 =

(
ρ1 − ρ1
ρ1 − ρ1

)(
ρ2 − ρ2
ρ2 − ρ2

)

, (4.4a)

µ2 =

(
ρ1 − ρ1
ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)

, (4.4b)

µ3 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2
ρ2 − ρ2

)

, (4.4c)

µ4 =

(
ρ1 − ρ1

ρ1 − ρ1

)(
ρ2 − ρ2

ρ2 − ρ2

)

. (4.4d)

Finally, the LPV is represented in the following polytopic form for the case
of two varying parameters:

[
A(ρ1, ρ2) B(ρ1, ρ2)
C(ρ1, ρ2) D(ρ1, ρ2)

]

=

µ1

[
A(ρ

1
, ρ

2
) B(ρ

1
, ρ

2
)

C(ρ
1
, ρ

2
) D(ρ

1
, ρ

2
)

]

+ µ2

[
A(ρ

1
, ρ2) B(ρ

1
, ρ2)

C(ρ
1
, ρ2) D(ρ

1
, ρ2)

]

+µ3

[
A(ρ1, ρ2) B(ρ1, ρ2)

C(ρ1, ρ2) D(ρ1, ρ2)

]

+ µ4

[
A(ρ1, ρ2) B(ρ1, ρ2)
C(ρ1, ρ2) D(ρ1, ρ2)

]

.

(4.5)

Remark 4.2.1. For the sake of notations simplification, the approximated
state x̆ and output y̆ vectors are written in the following as x and y, respec-
tively.

Finally, the discrete-time LPV state-space representation is written as:
{

xk+1 = Akxk +Bkuk + Eωωk,

yk = Ckxk +Dkuk + Eυυk.
(4.6)

Assumption 4.2.2. The disturbances and measurement noises are assumed
to be zonotopes as:

W = ωc ⊕ EωBnx , (4.7a)

V = υc ⊕ EυBny , (4.7b)

where Eω ∈ R
nx×nx

6=0 and Eυ ∈ R
ny×ny

6=0 are nonzero diagonal generator matrices
of the zonotopes W and V respectively. Bnx and Bny are unitary boxes.
Thus, ωk ∈ R

nω and υk ∈ R
nυ are the process and output measurement noises
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respectively, and they are bounded by a unitary hypercube centered at 0 as:

ωk ∈ 〈0, Inω
〉, ∀k ≥ 0, (4.8a)

υk ∈ 〈0, Inυ
〉, ∀k ≥ 0. (4.8b)

Remark 4.2.2. The model (4.6) is a polytopic LPV with varying parameters
bounded by intervals denoted by [ρk, ρk]. Using this representation, the pair
(Ak,Ck) becomes observable at each time instant k.

4.3 ZEKF Observer Design for JESP

The ZEKF observer is based on the stochastic EKF that propagates the
states in a zonotopic scheme. Thus, the Gaussian PDF in the conventional
KF and its extensions can be replaced by zonotopic sets in order to design
the ZEKF observer (Combastel 2015).

Thus, by introducing a varying tuning matrix (λ) to the model (4.6), the
states vector of the observer is written as:

xk+1 = Akxk +Bkuk + Eωωk + λk(yk − (Ckxk +Dkuk + Eυυk)). (4.9)

Hence, the estimated center x̂ and the estimated generator matrix G of the
ZEKF observer are written as:

x̂c
k+1 = (Ak − λkCk)x̂

c
k − (Bk − λkDk)uk + λkyk, (4.10a)

Ĝk+1 =
[

(Ak − λkCk) ↓q,W Ĝk Eω −λkEυ

]
, (4.10b)

where x̂c
k denotes the estimated state vector center at time instant k, and

Ĝk denotes its estimated generator matrix. Thus, ↓q,W Ĝk is the reduced
generator matrix that is computed based on the Property A.2.8 (Combastel
2015). It should be noted that the states are initialized at k = 0 based
on the zonotopic inclusion property as x ∈ 〈xc

k,Gk〉, and similarly assumed
∀k > 0. The following subsection explains the implementation of an LMI-
based optimization problem in order to guarantee a robust tuning of the
ZEKF observer.

4.3.1 LMI-based Optimization of the tuning matrix

Divergence, numerical instability and other problems could be resulted due
to the negative effect of uncertainties on the generator matrix as shown in
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(4.10b). Therefore, there exists a few methods to compute the tuning param-
eter for optimal enclosures. Online and offline techniques have been carried
out with remarkable performances. However, to avoid computational stress
and delays in the online estimation process, an offline LMI-based optimiza-
tion problem has been proposed especially to guarantee the robustness of
the ZEKF observer. Hence, using the FW−radius minimization property as
shown in Definition A.2.18, an optimal tuning parameter λ∗

LMI is obtained by
solving an optimization problem in an LMI framework.

Proposition 4.3.1 (A robust LMI-based optimization of the tuning matrices
of the ZEKF observer). Given the LPV model in (4.6) and following the
structure of the ZEKF for JESP (5.1), the optimal tuning matrix λ∗

LMI is
computed based on the feasible solutions Ψ and W if there exists a positive
scalar γ such that:

λ⋆
LMI = Ψ−1W. (4.11)

Hence, by introducing the matrices Q = Q⊺ and R = R⊺ as tuning pa-
rameters, the proposed optimization problem is solved1 following this form:

minimize
W,Ψ

γ (4.12a)

subject to
[
γI I

I Ψ

]

≻ 0, (4.12b)






−Ψ ΨA−WC Ψ
√
Q

⊺
W

⋆ −Ψ 0 0

⋆ ⋆ −I 0

⋆ ⋆ ⋆ −R−1






≺ 0 (4.12c)

where ⋆ denotes symmetrical elements.

Proof. Based on the (Combastel 2015), minimizing the F−radius of zonotope
is equivalent to minimizing the trace of its covariation cov(↓q,W G). More-
over, the author also proved by analogy, that minimizing the FW−radius is
equivalent to the non-weighted case. The advantages of the size minimiza-
tion based on the FW−radius with the consistency of the reduction operator
↓q,W , are similar to the P−radius minimization method (Vu Tuan Hieu Le
et al. 2013). Both approaches provide robust stability analysis in an optimal
LMI framework. Thus minimizing the FW−radius is computed as follows:

JW = ‖Gk+1‖2F,W = tr(Gk+1G
⊺

k+1), (4.13)

1The LMI-based optimization problem is solved in MATLAB using YALMIP toolbox
https://yalmip.github.io/
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where JW denotes the weighted Frobenius function of the covariation of the
generator matrices of a zonotope. Thus, a possible optimal solution of the
tuning matrix λ⋆ is obtained by achieving (4.13) is being lower than a given
scalar γ. Hence, by considering the Lyapunov function:

V(x) = x⊺Px. (4.14)

If there exists a positive definite matrix P ≻ 0 ∈ R
nx×nx , we get a weighted

norm
√
x⊺Px =

√

V(x) that represents the distance from the origin x = 0.
Furthermore, the system is stable if the weighting norm is decreasing such
that (Alamo et al. 2006):

d

dt
(V(x)) =

d

dt
(x⊺Px)

= ẋ⊺Px+ x⊺Pẋ⊺

= x⊺A⊺Px+ x⊺PAx

= x⊺(A⊺P+PA)x < 0, ∀x 6= 0.

(4.15)

Hence, by introducing the following conditions with the weighting norm is
less than the scalar γ, and the variations are less than the FW−radius as
(M. Pourasghar, V. Puig, and Ocampo-Martinez 2019):

V(x0) = x0
⊺Px0 < γ, (4.16a)

V(xk+1)−V(xk) + JW < 0, (4.16b)

with the evolution of the system is confined in the following ellipsoid:

{ x : x
⊺
0Px0 < γ }. (4.17)

Hence, by introducing Ψ = P−1, the condition in (4.16a) becomes:

γ − x0
⊺Ψ−1x0 > 0, (4.18)

and by applying the Schur complement to (4.18), the LMI is obtained as:
[
γ x

⊺
0

x0 Ψ

]

≻ 0. (4.19)

Then, we multiply (4.19) by Inx×nx
, we obtain the first constraint in (4.11).

Hence, by substituting (5.2a) with (4.15), and considering (4.16b), the LMI
of (4.15) is thus rewritten as:

(A− λC)P+P(A− λC)⊺ +Q+ λRλ⊺ ≺ 0. (4.20)
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Then, by multiplying (4.20) by Ψ = P−1, and introducing W = Ψλ⋆, it
becomes:

ΨA−WC+A⊺ −C⊺W⊺ +ΨQΨ+WRW⊺ ≺ 0. (4.21)

Finally, Eq. (4.21) is reformulated as:

−Ψ+
[
ΨA−WC Ψ

√
Q W

]





−Ψ 0 0

0 −I 0

0 0 −R−1









A⊺Ψ−C⊺W⊺

√
QΨ
W⊺



 ≺ 0.

(4.22)
Consequently, the LMI (4.12c) is obtained from (4.22) and (4.19), where
Q = Eω and R = Eυ. Furthermore, Ψ and W are the feasible solutions and
the optimal tuning parameter λ⋆ is computed as in (4.11).

Proposition 4.3.2 (A polytopic offline solving of the LMI optimization
problem). A polytopic approach is proposed to solve the LMI optimization
problem offline considering only the vertices of varying parameters intervals.
Based on the augmented model (4.6), ρik denotes the varying parameters in
zonotopic form as:

ρik ∈ 〈ρ0i ,Gρik
〉, (4.23)

where ρ0i denotes the rated value of the parameter ρi.

ρik ∈ R
nρ

+ : |ρik − ρ0k | ≤ ρTH
i , ∀k > 0, (4.24)

where ρTH
i is the value of the statistically and experimentally obtained TH

of the physical components as explained in Chapter 2 (Celaya, J. R. and
Saxena, A. and Saha, S. and Goebel, K. 2011; Renwick, J. and Kulkarni, C.
and Celaya, J. 2015). Thus, the polytopic representation of (4.6) is obtained
using the bounding box approach and considering the range of variation of
the varying parameters.

xk+1 =
N∑

i=1

µi (ρik) (Aixk +Biuk), (4.25)

yk =
N∑

i=1

µi (ρik) (Cixk +Diuk), (4.26)

where µi are the coefficients of the polytopic decomposition such that:

N∑

i=1

µi (ρik) = 1, µi(ρik) ≥ 0, ∀i = 1, . . . , N (4.27)
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Furthermore, the interval limits [λ⋆
LMI, λ

⋆

LMI] of the tuning matrix λ⋆ are ob-
tained such that:

λ⋆
LMIi

= min λ⋆
LMIi

, λ
⋆

LMIi
= max λ⋆

LMIi
, (4.28)

where λ⋆
LMIi

is represented as:

λ⋆
i = M1i(λ

⋆
i )λ

⋆
i +M2i(λ

⋆
i )λ

⋆

i , (4.29)

with respect to the following condition:

M1i(λ
⋆
i ) +M2i(λ

⋆
i ) = 1, (4.30)

where the membership functions are calculated as:

M1i(λ
⋆
i ) =

λ
⋆

i − λ⋆
i

λ
⋆

i − λ⋆
i

, M2i(λ
⋆
i ) =

λ⋆
i − λ⋆

i

λ
⋆

i − λ⋆
i

. (4.31)

Finally, a varying value for the tuning matrix (4.11) is obtained as follows:

λ⋆(ρik) =
N∑

i=1

µi (ρik)λ
⋆
i , (4.32)

where λ⋆
i are obtained by solving (4.12c) at the vertices of the polytopic

model (4.25)-(4.26).

The principal advantage of this LMI-based approach for the computation
of the tuning matrix of the ZEKF, is that the optimization problem (4.12c)
is solved offline. Consequently, the maximum number of optimization com-
putations is reduced to N , and only the interpolation of the offline-obtained
tuning matrices is computed online at each estimation operation.

Remark 4.3.1. It is worth mentioning that the same tuning matrices of the
offline LMI-optimization have been obtained by solving the same problem on-
line. Nevertheless, it is preferable to adopt the offline polytopic interpolation
that provides reduced computational time and memory consumption.

4.3.2 Classical approach for online tuning of the ob-

server

There exists a classical online method to compute the tuning matrix of the
ZEKF observer, based on the minimization of the Frobenius norm of the
generator vertices. Additionally, the proof of the computation of the optimal
λ∗ has shown its independence of the weighting matrix (Combastel 2015).
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Proposition 4.3.3 (Classical online approach to tune the observer gain
(Combastel 2015; V. T. H. Le et al. 2013; Y. Wang, Vicenç Puig, and Cem-
brano 2018)). λ∗

c denotes the tuning matrix of the online classical approach
and is determined as follows:
Decompose the generator matrix Ĝk(λc) as (T. Alamo, Bravo, and Camacho
2005; V. Le et al. 2013a):

Ĝk(λc) = M+ λcθ
⊺, (4.33)

where M = [G̃k 0], θ⊺ = [−C⊺G̃kEυ]. Thus, the Frobenius norm of Ĝk(λc)
is calculated as follows:

‖Ĝk‖2F = ‖M+ λcθ
⊺‖2F

= tr((M⊺ + θλ⊺
c)(M+ λcθ

⊺))

= tr(M⊺M) + tr(θλ⊺
cM) + tr(M⊺λcθ

⊺ + tr(θλ⊺
cλcθ

⊺)

= 2λ⊺
cMθ + θ⊺θλ⊺

cλc + tr(M⊺M),

(4.34)

The minimum value of ‖Ĝ(λc)‖2F is obtained as:

d‖Ĝ(λc)‖2F
dλc

= 0,

d(2λ⊺
cMθ + θ⊺θλ⊺

cλc + tr(M⊺M))

dλc

= 0,

(4.35)

consequently,
2Mθ + 2θ⊺θλ∗ = 0. (4.36)

Finally, the optimal tuning matrix is obtained online as:

λ∗
c =

−Mθ

θ⊺θ
≡ G̃kG̃

⊺

kCk

C
⊺

kG̃kG̃
⊺

kCk + EυE
⊺
υ

. (4.37)

It is remarkable that the optimal tuning matrix obtained in (4.37) is similar
to the statistical gain of the KF as shown in Chapter 3 (Combastel 2015).

Remark 4.3.2. It is advised to employ the proposed LMI-based approach
in Section 4.3.1 over the classical online approach (4.37) for its applicability
to nonlinear systems, in addition to the reduced online computations.
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4.4 Bounded RUL Forecasting in a Zonotopic

Framework

As we previously discussed in this chapter, the aim of implementing the
ZEKF is to make use of the bounds of the estimated zonotopic parameters.
Therefore, in order to test the validity of the improved bounded RUL propo-
sition based on zonotopes, the same approach of linear EoL-RUL (3.20) in
Section 3.4, has been implemented with bounded parameters.

The estimated parameters bounds are:
[

Ĝ(ρik), Ĝ(ρik)

]

, ∀k ∈ N (4.38)

Thus, the estimated degradation level are bounded as:






ˆdeg
%k

=
Ĝ(ρik)− x0

x0

× 100,

ˆdeg%k
=

Ĝ(ρik)− x0

x0

× 100.

(4.39a)

(4.39b)

Next, the bounded systems for linear EoL-RUL computation are:






aik
˘EoLi + bik ≈ 100%,

aikk + bik ≈ ˆdeg
%k

,

(4.40a)

(4.40b)







aik
˘EoLi + bik ≈ 100%,

aikk + bik ≈ ˆdeg%k
.

(4.41a)

(4.41b)

Finally, the bounded RUL is predicted as:






˜RULik
≈ THi − bik

aik
− k,

˜RULik ≈ THi − bik
aik

− k,

(4.42a)

(4.42b)

where i refers to the selection of each augmented parameter. Hence, k refers
to tcurrent of the accelerated degradation time in this case study, and the
bounded predicted RUL of (4.42) are then presented as [̃tRUL, t̃RUL].
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4.5 ZEKF-based Algorithm for JESP and RUL

Forecasting

This section is dedicated to summarize the computation of the ZEKF-based
approach for JESP and RUL forecasting.

Algorithm 3: ZEKF-based Algorithm for JESP and RUL Forecast-
ing

Result: [ ˜RUL, ˜RUL]
Initialization:x̂c, Ĝ ,Eω, Eυ, W , V , ρ;
Solve the LMI-based optimization problem and return 2nρλ (4.12c);
for k = 1 : N do

Compute Ak,Bk,Ck,Dk;
Run the online bounding box approach to calculate λ⋆

ik
(4.32);

Compute the reduced generator matrix ↓q,W Ĝk;
Prediction of the state vector center x̂c

k+1 (4.10a) and the
generator matrix Ĝk+1 (4.10b) of X̂k;

return X̂k;
Compute the estimated bounds of the augmented parameters as
in (4.38);

Compute the bounded estimation of the degradation level as in
(4.39);

Solve the systems of linear EoL-RUL equations (4.40) and (4.41);
Predict the bounded RUL as in (4.42);

return
[

˜RULik
, ˜RULik

]

end

4.6 Case Study: Results and Analysis

The DC-DC converter case study has been tested for the ZEKF-based PHM
approach as well as the stochastic-based. Thus, the polytopic LPV model
has been employed as shown in Section 4.2.1. The augmented parameters are
bounded between the rated value and the TH of each, for the sake of the ap-
plication of the polytopic LPV model. Hence, the parameters of the bound-
ing box approach are defined as [RON0 , R

TH
ON] and [ESRo0 ,ESRTH

o ]. Given
that the LPV model is observable according to the linearization approach
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that has proven its functionality against the previously-faced numerical con-
straints. Thus, the ZEKF has been implemented as explained in 4.3 where
the zonotopic states and parameters are returned. The estimated zonotopic
parameters are bounded at each time instant for the sake of the implementa-
tion of the proposed RUL forecasting approach as presented in Section 4.4.
The dual-observer approach for switched-systems is not examined for the
reasons that have been mentioned in the previous chapters.

It is worth noting that the ZEKF-based observer for JESP is tuned using
the offline LMI-based optimization as explained in Section 4.3.1 and com-
pared to the classical online tuning approach as shown in Section 4.3.2.

4.6.1 Scenario 1

The direction matrices of the unknown-but-bounded noises and uncertainties
are defined as:

Eω = diag(0.01, 0.01, 0.01, 0.0005), (4.43a)

Eυ = diag(0.1, 0.1). (4.43b)

Results of the JESP using the ZEKF

Figures 4.2a, 4.2b, 4.2c, and 4.3 illustrate the estimated zonotopic states and
parameter RON of degradation scenario 1.
The JESP using the ZEKF approach has proven its accuracy by the illus-
trated results. The online classical (λ∗

c) and the offline LMI-based optimiza-
tion (λ∗

LMI) tuning approaches have both optimally tuned the observer where
the zonotopic bounds always enclose the empirical degradation that describes
the true accelerated aging of the critical components. Yet, λ∗

LMI is motivated
due to its reduced computations in an offline optimization, in addition to the
ability of adding constraints of the physical system to the LMIs. Table 4.1
shows the average RA of the ZEKF-based JESP tuned by both approaches
against the EKF for JESP. Therefore, the average RA is very reliable using
any of the aforementioned approaches. However, it is essential to charac-
terize the advantages of that the LMI-based JESP using the ZEKF provide
such as the offline optimization and the propagated bounds. As mentioned,
the bounds of the estimated parameters are the foundation of the RUL fore-
casting. Thus, by recalling our objective to estimate the degradation of the
critical components in a system unlike most of the system-level prognostics
approaches, it is crucial to emphasize on Figure 4.3 that represents the pa-
rameter estimation and is employed for the RUL forecasting approach.
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(a) ZEKF-based X̂1 with both tuning approaches versus the stochastic estimation
and the empirical degradation in Scenario 1

(b) ZEKF-based X̂2 with both tuning approaches versus the stochastic estimation
and the empirical degradation in Scenario 1

(c) ZEKF-based X̂3 with both tuning approaches versus the stochastic estimation
and the empirical degradation in Scenario 1

Figure 4.2: ZEKF-based states estimation with both tuning approaches
versus the stochastic estimation and the empirical degradation in Scenario 1
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Figure 4.3: ZEKF-based X̂4 with both tuning approaches versus the
stochastic estimation and the empirical degradation in Scenario 1

Table 4.1: Average RA of the estimated centers of states and parameters by
ZEKF versus EKF in scenario 1

States and Parameters
RAS1 %

ZEKF: λ∗
LMI ZEKF: λ∗

c EKF

X̂1 99.99950 99.99950 99.99999
X̂2 99.99276 99.99276 99.99996
X̂3 99.99818 99.99818 99.99995
X̂4 99.85852 99.85852 99.99089

RUL forecasting using the zonotopic linear EoL-RUL approach

The linear EoL-RUL approach has been applied based on the ZEKF as shown
in Figure 4.4.

Remark 4.6.1. It is essential to recall throughout this thesis that the RLS-
based approach with known degradation models could have been also applied
using the zonotopic approach. However, we intend to examine, provide, and
show a generalized case with unknown degradation behaviors on a system-
level in order to characterize the threefold proposed PHM. Noting that a gen-
eral degradation approach using recursive zonotopic prediction is proposed
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in Chapter 5.
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Figure 4.4: ZEKF-based RUL forecasting using the linear EoL-RUL
approach versus the empirical RUL in Scenario 1

It is eventually clear that the gap difference between the true empirical
RUL and the predicted RUL is larger than the safe zonotopic bounds. Con-
sequently, the limitation of the unknown degradation behaviors could not
guarantee a reliable RUL forecasting following the linear EoL-RUL approach
in this scenario, despite the guaranteed zonotopic states and parameters.
Consequently, these limitations build up the problematic that will be con-
tributed to and solved in Chapter 5.

Nevertheless, scenario 3 will show different results due to the interdependent
mutual degradation effects that will be explained in the following subsection.

4.6.2 Scenario 3

The empirical degradation models have been employed in order to simulta-
neously simulate the varying behaviors of the parameters as accomplished in
the previous scenarios. Unknown-but-bounded noises and uncertainties have
been defined as explained in (4.8). Thus, we intend in this scenario to test
the reliability of the ZEKF for JESP with multiple-component degradation
with a larger weight of noises compared to scenario 1, in order to emphasize
on the robustness of the ZEKF observer. Hence, the direction matrices that
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weigh the noises and uncertainties are given as:

Eω = diag(1, 1, 2, 0.003, 0.035), (4.44a)

Eυ = diag(0.01, 0.09). (4.44b)

Results of the JESP by the ZEKF

The varying parameters in scenario 3 are propagated in form of zonotopes
as ˆESRo ∈ X̂4 and R̂ON ∈ X̂5. Thus, Figures 4.5a, 4.5b, and 4.5c illus-
trate the estimation of the zonotopic states using the ZEKF approach for
JESP. Both tuning approaches have shown similar bounds in the first two
estimated states along with the estimation of the EKF that follow the empir-
ical degradation of the same states. However, as shown in Figure 4.5c, state
3 is bounded with some differences, the LMI-based tuning approach using
λ∗

LMI has shown complete bounding during the whole degradation process as
well as the classical online tuning approach using λ∗

c. Whereas, the upper
bounds are close to the initial value of x3 using λ∗

c, opposing to the λ∗
LMI.

The estimated bounds of the zonotope X̂3 will not affect the RUL forecasting
process nor the accuracy of the results since they cover all the degradation
in an optimal way.

Moreover, Figures 4.6a, and 4.6b illustrate the estimated augmented pa-
rameters in form of zonotopes, and compared to the EKF estimation with
the empirical degradation reference.
As shown in Figure 4.6a, the λ∗

c-tuned ZEKF has shown too conservative
upper bounds which intersect the empirically-degraded model. Whereas, the
λ∗

LMI-tuned approach has shown better results in terms estimated bounds
that cover the whole degradation process with no violations. The estimated
bounds using both tuning approaches have shown better results as shown in
Figure 4.6b. The EKF clearly shows the least accurate JESP compared to
the ZEKF, where the main focus is on the estimated parameters bounds that
will be utilized in the following phase of RUL forecasting.

The previously illustrated results are evaluated in Table 4.2 by calculating
the average RA to the center of the bounds using both tuning approaches,
and the EKF estimation in comparison with the empirically-degraded states
and parameters. Recalling that the estimated parameters are essential for
RUL forecasting, the RA in the zonotopic approach is not essential since the
estimated bounds are guaranteed starting from the healthy operation until
reaching the EoL of each critical component. Thus, the zonotopic linear
Eol-RUL approach is examined in the following part.
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(a) X̂1 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 3

(b) X̂2 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 3

(c) X̂3 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 3

Figure 4.5: The estimated zonotopic states versus the corresponding
stochastic estimation and the empirical degradation in scenario 3
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(a) X̂4 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 3

(b) X̂5 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 3

Figure 4.6: The estimated zonotopic parameters versus the corresponding
stochastic estimation and the empirical degradation in scenario 3
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Table 4.2: Average RA of the estimated centers of the zonotopic states and
parameters by ZEKF versus EKF in scenario 3

States and Parameters
RAS3 %

ZEKF: λ∗
LMI ZEKF: λ∗

c EKF

X̂1 99.99962 99.99954 99.99997
X̂2 99.99033 99.89536 99.99670
X̂3 95.63094 97.58018 95.81004
X̂4 82.07027 64.81468 90.93163
X̂5 91.84298 89.88081 93.82725

Zonotopic linear EoL-RUL approach for RUL forecasting

The application of the RUL forecasting approach depends on the estimated
bounds of the augmented parameters [Ĝ4, Ĝ4] and [Ĝ5, Ĝ5].
Thus, Figure 4.7 illustrates the bounded RUL forecasting. As stated in
Proposition 3.2.1, the SRUL is assumed to follow the CRUL of the FCCF.
In this case, without considering any scheduled maintenance, the ESRo has
a shorter lifespan compared to the RON.
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in scenario 3
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Adopting the ZEKF-based estimation has affected the linear EoL-RUL ap-
proach, specifically in scenario 3. The RUL at each online measurement
is bounded and converges towards the estimated EoL. The RON-based RUL
forecasting shows complete bounding of the empirical EoL-RUL, with tighter
bounds obtained using the classical online tuning approach of ZEKF. Fur-
thermore, the ESR-based RUL forecasting has shown more conservative re-
sults with respect to the empirical EoL-RUL. For this reason, following the
predicted RUL via the FCCF leads to a completely safe prediction, yet not
optimal due to the major weakness of the intuitive expectation of the EoL,
as mentioned in Chapter 3.

Table 4.3: The average RA of RUL forecasting of the scenario 3 for 80% of
the actual EoL

Zonotopic EoL-RUL ESR-based ˜RUL
S3

RON−based ˜RUL
S3

Approach RA % RA %

LMI-based tuning 82.033 97.7702

Classical online tuning 86.017 96.8746

Moreover, a numerical example of an online measurement at 6000 minutes is
shown in Table 4.4, in order to compare among the predicted RUL and the
empirical RUL.

Table 4.4: RUL forecasting intervals at an online measurement at 6000
minutes

Critical parameters at 6000 minutes ˜RUL ˜RUL Empirical RUL

ESRo
λ∗

LMI 3091 4189
4491

λ∗
c 3781 3940

RON
λ∗

LMI 5120 5795
5600

λ∗
c 5134 5704

Therefore, the FCCF-based RUL interval at 6000 minutes of the acceler-
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ated online measurement using the LMI-based approach, is [ ˆRUL, ˆRUL] =
[3091, 4189] minutes.

4.6.3 Assessment of the proposed approaches

The main motivation of bounding the estimated parameters using zonotopic
approaches have been investigated due to the unreliable parameters esti-
mation of scenario 3 using the stochastic-based approaches. We based our
proposition on the linear EoL-RUL relation that can forecast without the
need of degradation models and reduced computations. For these reasons,
we adopted the ZEKF in order to bound the estimated parameters which will
indirectly provide bounded RUL prediction. By this proposition, we intended
to guarantee a RUL enclosure. However, the zonotopes have shown a very
reliable effect on the JESP in all conditions and scenarios, while the main
issue is still related to the RUL forecasting approach which is affected by the
EoL expectations in this case. As shown, the ESR-based RUL forecasting in
scenario 3 has shown increased safety with reduced predicted lifecycle of the
component. On the other hand, the RUL is still overpredicted in scenario 1
which increases the risk of a complete failure in the system.

To sum up, the zonotopes have provided a remarkable advantage by bound-
ing the estimated parameters. The linear EoL-RUL approach is still affected
by the EoL expectation and the RLS-based approach is a model-dependent
technique and strongly related to the observed data. Therefore, it is crucial to
keep the bounding of the JESP for the sake of guaranteed safety, in addition
to the optimization advantages and the simple and reduced computations of
zonotopes. Thus, it is also essential to develop a RUL forecasting approach
that considers a general degradation model with reduced computations in
order to provide predicted degradation and EoL. The aforementioned limi-
tations will be developed in Chapter 5 in order to obtain a guaranteed RUL
forecasting with guaranteed estimation in a generalized manner to achieve
the main target of this thesis.
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4.7 Conclusions

In this chapter, the RUL forecasting has been improved by providing a
bounded safety margin for each concerned critical parameter of the system.
The main contribution refers to the degradation estimation phase, where a
ZEKF has been employed for JESP. The ZEKF merges between the relia-
bility of the stochastic EKF and the deterministic zonotopic sets that deal
with unknown-but-bounded noises and uncertainties. Additionally, this ap-
proach has been tuned by an LMI-based optimization problem that is solved
offline with reduced computations. The main aim of adopting this approach
was motivated by the unreliable degradation estimation resulted in scenario
3 for multiple-component degradation using the stochastic EKF. Moreover,
the RUL forecasting can be improved by either stated approaches.

Furthermore, the online linearization of the nonlinear model has been im-
proved for several reasons, and opted for an LPV representation. The later
has been transformed from the Jacobian linearization as accomplished us-
ing the EKF, into a polytopic LPV for reduced computations and counting
on the bounded parameters that characterize one of the pillars of the PHM
features. In addition to that, an LPV model can be designed by various
approaches in order to be employed for different engineering applications.

In conclusion, the elaboration of the ZEKF does not require complex im-
plementation, and increases the overall efficiency of the JESP in addition to
the bounded RUL forecasting. However, in scenario 3, the RUL forecasting
was more conservative on a parameter over the other. The main reason be-
hind this observation refers to the EoL-RUL approach condition as explained
in Chapter 3. In consequence, we have proposed to investigate an approach
that recursively predicts the degradation behaviors of the augmented pa-
rameters in a zonotopic framework with a general degradation model with
reduced computations. This approach will follow the same structure of the
ZEKF with considering each measured output separately and eliminating
any intuitive condition. Chapter 5 is dedicated to explain the improvements
on both the JESP and the zonotopic RUL forecasting approaches.
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5.1 Introduction

Building upon the proposed approaches in the previous chapters, this chapter
contributes the RUL forecasting from a different perspective. The zonotopic
integration in the estimation process has improved the RUL forecasting as
well as the JESP by providing guaranteed bounds enclosure. Thus, as the
linear EoL-RUL approach is based on an partially intuitive assumption, the
RUL forecasting based on the EKF estimation were not reliable in terms of
high fidelity to the prediction. Furthermore, the improved zonotopic RUL
forecasting based on the ZEKF for JESP, has shown an interesting bounded
RUL forecasting, specifically in scenario 3 where the EKF could not perform
as reliable as the ZEKF approach. However, the improved reliability was too
conservative in the zonotopic approach, which raises the importance of elim-
inating all the intuitive conditions. In other words, a trade-off between an
increased complexity that yields a high reliability is essential to be adopted.
For that reason, a ZSM for multi-output systems is implemented in this ap-
proach for JESP. Additionally, the RUL forecasting is reformulated for the
sake of degradation prediction of the critical varying parameters.

The ZSM observer has been proposed for the JESP in this approach rather
than the accuracy of the ZEKF as shown in Chapter 4. The set-based de-
terministic approach is based on a Luenberger observer and simply follows
three main steps, the prediction, the measurement, and the correction. The
main intention of implementing the ZSM observer is to investigate the effect
of each measurement of the system on the JESP. Additionally, the states
and parameters are estimated based on an intersection between certain sets
of states and parameters, and the measurements at the current time instant.
On the other hand, the ZEKF-based approach considers measurements from
a previous time instant and follows the structure of an EKF. Moreover, the
unknown-but-bounded noises are also considered in this case study as well
as in many engineering applications (Schweppe 1968; Witsenhausen 1968;
Bertsekas and Rhodes 1971; V. Le et al. 2013a; Merhy 2019).

The proposed RUL forecasting approach is the turning point in this chapter.
Hence, we recursively reformulated the steps of the second and third phases of
the proposed model-based PHM approach. Furthermore, instead of directly

This chapter is based on the following publications: (Al-Mohamad, V. Puig, and
Hoblos 2021b; Al-Mohamad, V. Puig, and Hoblos 2021a).
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implementing the polynomial approach using the RLS filter for degradation
prediction, or following the intuitive linear EoL-RUL approach, we have pro-
posed to indirectly forecast the linear RUL with reduced computations using
a generalized degradation model that can cope with such applications. The
most common degradation evolution follows an exponential decay which will
add a complex computational burden to design a recursive observer that can
be avoidable for the sake of real-time prognostics. Therefore, a RZSM ap-
proach has been proposed in order to homogenize the degradation estimation
via the ZSM for JESP with the degradation and EoL prediction following a
general degradation model with reduced computations. The main objective
of such implementation is to employ the same estimation technique for the
prediction as well in a zonotopic framework that provides bounded RUL. Fi-
nally, the predicted degradation bounds are intersected with the TH of each
critical component, and the EoL is then predicted online at each measure-
ment instant.

Moreover, according to previous statements, the LPV model representation
is practically and theoretically efficient to be employed for the prognostics
applications. Thus, the ZSM observer that allows the estimation of states
and parameters by intersecting with each output measurement of the system
is provided to guarantee the zonotopic inclusion. Hence, the ZSM observer
for JESP is also tuned using the LMI-based optimization, as explained in
Chapter 4.

In this context, the aim of this chapter is to guarantee the zonotopic in-
clusion for JESP and predict the degradation recursively, with reduced effort
for real-time applications in a homogeneous deterministic approach.

This chapter is structured as follows. Section 5.2 addresses the problem
formulation. Hence, the multi-output ZSM observer is designed in Section
5.3. Section 5.4 is dedicated to the recursive zonotopic RUL forecasting.
The algorithm of this proposed methodology is shown in Section 5.5. Thus,
a case-study featuring a DC-DC converter with degraded components is as-
sessed, and the results are illustrated in Section 5.6. Finally, the conclusions
are drawn in Section 5.7.
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5.2 PHM Problem Formulation in ZSM and

RZSM Framework

Based on the aforementioned improvements regarding the ZSM for JESP and
the homogenization with the RUL forecasting approach, this chapter exten-
sively investigates a ZSM-RZSM approach in a zonotopic LPV framework.
The major key points in this chapter are related to the multi-output observer
structure that requires several intersection, in addition to the RZSM for pa-
rameters estimation design for a general degradation model.
Thus, Figure 5.1 highlights the improved overall proposed model-based PHM
approach of this chapter.

Modeling

ZSM
for JESP

RZSM
for RUL

Phase I

Phase II

Phase III

• Augmented average LPV
representation

• Sequential intersection
for multi-output systems
• Unknown-but-bounded
noises and uncertainties
• LMI-based tuning

• Recursive prediction of
the degradation
• RUL forecasting via in-
tersection with the TH

Figure 5.1: ZSM-based PHM

1. System modeling: The system is represented in an LPV framework as
explained in Chapter 4.

2. ZSM for JESP: The most crucial phase in the model-based PHM ap-
proach has been handled by the proposed ZSM observer that is spe-
cially designed for multi-output systems. It predicts uncertain states
and parameters that will be intersected with a measurement strip of
each output at the current time instant, in order to estimate the certain
zonotopic states and parameters. Similar to the ZEKF, the ZSM is also
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tuned with an LMI-based optimization approach and compared to the
online gain scheduling method.

3. RZSM for RUL forecasting: The RZSM for degradation prediction and
RUL forecasting is designed based on the investigations of the previous
chapters. Firstly, the linear EoL-RUL approach is intuitive and is not
guaranteed in some situations. Secondly, the classic RUL forecasting
approach depends on the exact known models, and the degradation pre-
diction is misleading with less observations. For all these reasons, we
propose to adopt a general exponential degradation model in a logarith-
mic form to recursively predict the degradation. Thus, zonotopes play
an important role in this approach due to the fact that the estimation
is guaranteed in ZSM which will guarantee the parameter estimation
in the RZSM. Finally, the bounded RUL forecasting is accomplished
online in a zonotopic homogeneous framework.

The contribution to such challenging approaches requires strong knowledge of
systems being dealt with. The cascading damage caused by the degradation
of a critical component, affects the behavior of the whole system including
the internal parameters, the input, and the output variables. Moreover, since
no direct measurement is considered at a component-level, the degradation
estimation plays an essential role in the RUL prediction towards a system-
level. Additionally, the promising applications of zonotopes lead to a step
further from estimation to prediction by designing a RZSM observer. The
latter shows some technical similarities with the RLS filter, and it is employed
to predict the degradation equations without prior knowledge and based on
estimated data only. Finally, the aforementioned characteristics are designed
and implemented in an LPV model with the assumption of unknown-but-
bounded noises and uncertainties.

5.3 ZSM-based JESP observer design for multi-

output systems

Given the multi-output LPV model in (4.6), the consistent state-bounding
zonotope X̂ik at each component of the measured output yik can be obtained
based on Luenberger observer as follows:

X̂ik = x̂c
ik
⊕ ĜikBm+nx+ny , (5.1)
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where,

x̂c
ik
= x̃c

ik
+ λik(yik − (Cik x̃

c
ik
+Dikuk)), (5.2a)

Ĝik = [(I− λikCik)G̃ik − λikEυ], (5.2b)

with,

x̃c
k = Ak−1x̂

c
k−1 +Bk−1uk−1, (5.3a)

G̃k = [Ak−1Ĝk−1 Eω], (5.3b)

where x̂c
k is the estimated center of the consistent state-bounding zonotope,

Ĝk denotes its generator matrix, x̃c
k denotes the center of the uncertain pre-

dicted zonotope X̃k, and λ is the tuning matrix that is extensively explained
throughout this section. i refers to the ith output component at each time
sample k.

Remark 5.3.1. For simplification purposes x̂c
k will be denoted by the states

vector x̂k which is considered as the center of the state zonotopic set X̂k, and
similarly for x̃c

k and all the other zonotopes in this chapter.

Figure 5.2 illustrates the JESP using ZSM approach. It shows the in-
tersection between the predicted state-bounding zonotope at k based on the
k − 1 exact estimation with the measurement strip at k.

Figure 5.2: Diagram of the ZSM approach for multi-output systems

In broad, the consistent state-bounding zonotope X̂ik is estimated by
intersecting the predicted state set X̃k with the consistent measurement state
set Xyik

using the known measurement yik . Therefore, the three required
steps for a guaranteed estimation are explained in the following.
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Theorem 5.3.1 (Prediction (T. Alamo, Bravo, and Camacho 2005; Com-
bastel 2005; V. Le et al. 2013a; V. Le et al. 2013b)). The predicted state set
X̃k = 〈x̃k, G̃k〉, is bounded in a zonotopic form to limit the number of uncer-
tain states in the prediction based on the previous exact uncertain estimation
X̂k−1, and on an actual output measurement yk (Combastel 2003). Thus, the
predicted state set is defined as follows:

X̃k = Ak−1X̂k−1 +Bk−1uk−1 ⊕W
= Ak−1(x̂k−1 ⊕ Ĝk−1Bm) +Bk−1uk−1 ⊕ EωBnx

= Ak−1x̂k−1 ⊕Ak−1Ĝk−1Bm +Bk−1uk−1 ⊕ EωBnx

= (Ak−1x̂k−1 +Bk−1uk−1)⊕ [Ak−1Ĝk−1 Eω]Bm+nx

= x̃k ⊕ G̃kBm+nx ,

(5.4)

where x̃k = Ak−1x̂k−1+Bk−1uk−1 and G̃k = [Ak−1Ĝk−1 Eω] are the center
and the generator matrix of the prediction state set X̃k respectively.

Remark 5.3.2. The computation of the predicted state set is similar for
single-output and multi-output systems.

Theorem 5.3.2 (Measurement Strip (T. Alamo, Bravo, and Camacho 2005;
Combastel 2005; V. Le et al. 2013a; V. Le et al. 2013b)). Given each mea-
surement yik of the measurements vector yk at time instant k of the same
model, the consistent measurement set Xyik

denoting the strip, is computed
as follows:

Xyik
= {x ∈ R

nx : |yik − (Cikxk +Dikuk)| ≤ Eυi}, (5.5)

where C
⊺
ik

is a vector of the ith row of the matrix Ck at time instant k. Based
on Definition A.2.13, the estimated consistent zonotope (5.1) is obtained by
intersecting the uncertain predicted zonotope (5.4) and the strip (5.5) as:

X̂ik = X̃k ∩ Xyik

= 〈x̂ik , Ĝik〉,
(5.6)

Proposition 5.3.1 (Multiple strip intersection for multiple outputs (T.
Alamo, Bravo, and Camacho 2005)). For a guaranteed zonotopic inclusion,
the intersection between the measurement strip Xyik

of each of the output
components, and the predicted state-bounding set X̃k is successively repeated
for i = 1, . . . , ny at each time sample k.



160 5.3. ZSM-based JESP observer design for multi-output systems

Proof. The guaranteed state estimation set X̂k for multi-output systems is
obtained by repeating the zonotopic intersection between the strip of a par-
ticular output component yk,i and the uncertain predicted state set X̃k (Vu
Tuan Hieu Le et al. 2013; V. T. H. Le et al. 2013). Thus, the output vector
yk for ny measured components is defined as follows:

yk =

ny∑

i=1

Cixik +Dikuk + Eυiυik , i = 1, . . . , ny. (5.7)

The first intersection between the strip of the first output component Xyik
and

the predicted sate set X̃k results the following consistent estimated zonotopic
state set:

X̂1k(λ1k) = x̂1k(λ1k)⊕ Ĝ1k(λ1k)Bm+nx+1, (5.8)

where,

x̂1k(λ1k) = Ak−1x̂k−1 +Bk−1uk−1

+ λ1k(y1k − (C1k(Ak−1x̂k−1 +Bk−1uk−1) +D1kuk)),
(5.9a)

Ĝ1k(λ1k) = [(I− λ1kC1k)Ak−1Ĝk−1 (I− λ1kC1k)Eω1 − λ1kEυ1 ], (5.9b)

therefore, the obtained X̂k,1(λk,1) from the first intersection at k will be in-
tersected with the strip of the following output component yk,2 as follows:

X̂2k(λ1k , λ2k) = x̂2k(λ1k , λ2k)⊕ Ĝ2k(λ1k , λ2k)Bm+nx+2, (5.10)

where,

x̂2k(λ1k , λ2k) = x̂1k(λ1k) + λ2k(y2k − (C2k x̂1k +D2kuk), (5.11a)

Ĝ2k(λ1k , λ2k) = [(I− λ2kC2k)Ĝ1k(λ1k) − λ2kEυ2 ]. (5.11b)

Then, repeat this correction step with every output component yk,i of yk

until ny in order to obtain the consistent estimated state zonotopic set with
guaranteed inclusion, at each time instant k as:

X̂nyk
(λ1, . . . , λny

) = x̂nyk
(λ1, . . . , λny

)⊕ Ĝnyk
(λ1, . . . , λny

)Bm+nx+ny , (5.12)

where,

x̂nyk
(λ1, . . . , λny

) = x̂ny−1k
(λ1, . . . , λny−1)

+ λnyk
(ynyk

− (Cnyk
x̂ny−1k

(λ1, . . . , λny
) +Dnyk

uk),

(5.13a)

Ĝnyk
(λ1, . . . , λny

) = [(I− λnyk
Cnyk

)Ĝny−1k
(λ1, . . . , λny

) − λnyk
Eυny

].

(5.13b)

Hence, the guaranteed state zonotopic set is finally obtained as in (5.1).
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Moreover, the tuning matrix λ is crucial to guarantee the inclusion of
the zonotopes A.2.7, in addition to the size reduction operator that provides
less computational complexity for the benefits of real-time estimation and
forecasting. The following subsection is dedicated to characterize this matter.

5.3.1 ZSM observer tuning

The proposed LMI-based optimization problem is also employed to tune the
ZSM observer as shown in Subsection 4.3.1, and has been compared to the
classical tuning approach as shown in Subsection 4.3.2.

5.4 RZSM for RUL Forecasting

The objectives of the RZSM are fulfilled by the following steps:

1. Proposition of an exponential degradation model with unknown pa-
rameters (α).

2. Transformation of the exponential degradation model into a state-space
model.

3. Estimation of the parameters α using the ZSM approach for parameters
estimation.

4. Propagation of the bounds of the estimated zonotopic degradation pa-
rameters.

5. Prediction of the bounded degradation trajectories using the RZSM
approach.

6. Intersection between the predicted profiles and the TH of each compo-
nent to obtain the bounded EoL.

7. Forecasting of the bounded RUL of the system.

5.4.1 Prediction of degradation trajectories

The proposed strategy of RUL forecasting in this chapter is the improved
version of the previously-investigated approaches in Chapters 3 and 4. The
main difference between the classical polynomial approach and the proposed
RZSM is that the 5-degree polynomial degradation model has been elimi-
nated by transforming a general exponential decay form into a logarithmic
regressor. Hence, the later is then modeled in a state-space representation
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in order to employ the zonotopic parameters estimation. The main moti-
vation of this approach is based on the fact that the electronic components
degrade with exponential trend. Consequently, this approach can be utilized
to predict the degradation of the critical components through their failure
precursors. Most importantly, since the parameters estimation is guaran-
teed, the RUL forecasting reliability will increase compared to the previous
approaches. Thus, it is worth mentioning that the logarithmic representation
of the degradation requires less computation with reduced unknown param-
eters.

Assumption 5.4.1. The degradation behavior of each and every parameter
is always considered as an unknown exponential trend. Consequently, the
historical degradation data and EoL expectations are not needed for any
part of the RUL forecasting step.

Proposition 5.4.1 (Degradation trajectory prediction using a linearized
general exponential degradation model). The final discrete-time state-space
model that describes an exponential degradation is written as:

xαik+1
= Aαxαik

, (5.14a)

yαik
= Cαk

αik , (5.14b)

where,

Aα = I, (5.15a)

yαik
= ln (ρ̂ik − ρ0i), (5.15b)

Cαk
=

[
1 kTs

]
, (5.15c)

with ρ̂ik is the previously estimated parameter using the ZSM approach. xαik

is the parameter vector of the exponential degradation equation.

Proof. Let the following exponential equation describe the degradation of
each augmented component denoted by ρi, and previously estimated as a
zonotope using the JESP using the ZSM approach:

∆ρi(t) ≡ ρi(t)− ρ0i = α1ie
α2i

t, (5.16)

where ∆ρi(t) is the difference between the actual value of the parameter ρi
at time instant t and the rated value of the same parameter ρ0i . It should be
noted that α1 and α2 are the two unknown parameters that will be estimated
using the RZSM applied to the state-space model (5.14).
Thus, it is rewritten in a logarithmic form as:

ln (ρi(t)− ρ0i) = ln (α1i) + α2it, (5.17)
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then, it is discretized for the purpose of transforming it to a state-space
model, so that the intended RZSM would be applied:

ln (ρik − ρ0i) = ln (α1ik
) + α2ik

kTs. (5.18)

Furthermore, given the fact that ρik is a varying parameter that is estimated
as a zonotope at each iteration as explained in Section 5.3, and ρ0i is known as
the rated value of each parameter. Thus, in order to differentiate between the
ZSM for JESP and the RZSM for the degradation parameters estimation, the
previously estimated parameter is denoted by ρ̂ZSM

ik
∈ X̂ρik

, and is guaranteed
by ZSM A.2.7.
Hence, the degradation model (5.18) is rewritten in a matrix multiplication
form in order to reformulate it as a state-space:

ln (ρ̂ZSM
ik

− ρ0i)
︸ ︷︷ ︸

yρik

=
[
1 kTs

]

︸ ︷︷ ︸

Cαik

[
ln (α1ik

) α2ik

]⊺

︸ ︷︷ ︸

x
⊺

αik

, (5.19)

where ln (ρ̂ZSM
ik

− ρ0i) is considered as the output measurement component
yρik

which is already estimated in our case. Thus,
[
ln (α1ik

) α2ik

]⊺
is the vec-

tor containing the parameters x⊺
αik

to be estimated using the RZSM.
[
1 kTs

]

is the output vector Cαik
that varies in function of the time instant k.

Furthermore, there is no external input components affecting the degradation
model as shown in (5.16) and in (5.19). Since the variations ρ̂ZSM

ik+1
− ρ̂ZSM

ik
are

very small, the variations of the degradation parameters are therefore small,
and xαik+1

≈ xαik
. In consequence, Aα = I, uα = 0 and the state-space

model of the degradation equation is obtained as shown in (5.14).

It is worth noting that the index i is introduced so that the degradation
model (5.19) with its state-space model can be applied to more augmented
critical parameters that describe the degradation of the components.

Moreover, the parameters α1i and α2i of the model (5.14) are estimated
using the ZSM technique as shown in (5.2) in the first step of the RZSM
approach, with obvious adaptations. Finally, the estimated zonotopes of the
parameters are obtained as:

X̂αik
= 〈x̂αik

, Ĝαik
〉. (5.20)

Remark 5.4.1. The RZSM for degradation parameters estimation do not
require multiple-intersection process. Additionally, since the estimated pa-
rameters ρ by the previous ZSM for JESP are guaranteed and robust due to
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the LMI-based optimization, we propose to tune the RZSM with the classical
gain as follows:

Lαik
=

(Ĝαik
Ĝ⊺

αik
)Cαik

C
⊺
αik

(Ĝαik
Ĝ

⊺
αik

)Cαik
+ Inα

. (5.21)

5.4.2 RUL forecasting based on the RZSM approach

The degradation prediction of the varying critical parameters ρ is recursively
computed based on the previously-estimated degradation parameters in form
of zonotopes X̂αik

. Therefore, the degradation profile of the proposed degra-
dation model (5.16) will be predicted online starting from the kth time instant
that is assigned to the current measurement tcurrent as:

x̃ρi[k→N ]
= ρ0i + α̂1ie

α̂2i
[k+1→N ], (5.22)

where x̃ρi[k→N ]
is the predicted degradation starting from the current obser-

vation k which represents the tcurrent until N time units. Hence, N ≥ tEoL

is computed once an intersection between TH and the predicted degradation
trajectory is detected. i refers to each varying parameter ρi.

Moreover, the bounds of the degradation parameters α are computed as
follows:

[α̂1i
, α̂1i ] = [min (Ĝαik

), max (Ĝαik
)], (5.23a)

[α̂2i
, α̂2i ] = [min (Ĝαik

), max (Ĝαik
)]. (5.23b)

Next, the bounded degradation models are predicted by substituting (5.23)
with (5.22) as:

x̃ρi[k→N ]
= ρ0i + α̂1i

eα̂2i
[k+1→N ], (5.24a)

x̃ρi[k→N ]
= ρ0i + α̂1ie

α̂2i
[k+1→N ]. (5.24b)

Finally, the bounded EoL is computed by intersecting the bounded degrada-
tion models (5.24) with the THρi of each degraded component as shown in
Chapter 2 and Chapter 3:

˜EoLik
: x̃ρi[k→N ]

∩ THρi , k ≤ EoLik < N, (5.25a)

˜EoLik : x̃ρi[k→N ]
∩ THρi , k ≤ EoLik < N, (5.25b)

where the predicted bounded EoL of each component are denoted by ˜EoLik

and ˜EoLik for the lower and higher bounds respectively which are predicted
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at time instant k for the varying parameter ρi. Therefore, the predicted EoL
bounds are referred to the actual continuous time units (accelerated minutes
in this case study), as [̃tEoLik

, t̃EoLik
]. Consequently, the bounded RUL are

predicted as shown in Figure 5.3.

t̃RULik
= t̃EoLik

− tcurrent, (5.26a)

t̃RULik
= t̃EoLik

− tcurrent. (5.26b)
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Figure 5.3: Bounded RUL demonstration

5.5 Homogeneous Algorithm of ZSM and RZSM

The full algorithm of the final proposed PHM approach in this thesis, is
based on ZSM for JESP and RZSM for degradation and EoL prediction, and
detailed in 4.
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Algorithm 4: ZSM for JESP and RZSM for RUL Forecasting

Result: [t̃RUL, t̃RUL]
Initialization: X̃ , Eω, Eυ, W , V , ρ, α;
Solve the LMI-based optimization problem offline and return 2nρλ
(4.12c);

for k = 1 : N do
Compute Ak,Bk,Ck,Dk;
Online bounding box approach to calculate λ⋆

ik
(4.32);

Prediction of the state vector center x̃k (5.3a) and the generator
matrix G̃k (5.3b) of X̃k (5.4);

while i ≤ ny do
Computation of the strip Xyik

of measurement i (5.5);
Intersection between X̃k and Xyik

(5.6);
Estimation of the state vector center x̂ik (5.2a) and the
generator matrix Ĝik (5.2b) of X̂ik (5.1);

Application of the reduction operator ↓q,W Ĝik ;
Repeat (5.12) until achieving the intersections with all the
measurement outputs;

end

return X̂k;
Comment: Based on the proposed degradation model, the RZSM
runs with a single-time intersection;

Computation of the regressor vector Cαk
and the output

measurement yαk
(5.19);

Prediction of the degradation coefficients center x̃αk
and their

generator matrices G̃αk
of the zonotope X̃αk

of (5.15), by
following the same structure of the ZSM in (5.3) for α
parameters;

Computation of the tuning matrix Lαk
(5.21);

Estimation of the degradation coefficients, the center x̂αk
, and

their generator matrices Ĝαk
of the zonotope X̂αk

in (5.20) by
following the same structure of the ZSM in (5.2), for α
parameters;

Application of the reduction operator ↓q Ĝαk
;

return [αi, αi] (5.23);
Prediction of the bounded degradation equations (5.24);

Locate the intersection with TH and compute [̃tEoLik
, t̃EoLik

]

(5.25);

return The forecasted bounded RUL [t̃RUL, t̃RUL] (5.26);
Update X̂k+1, X̂αk+1

, Ak+1,Bk+1,Ck+1,Dk+1;
end
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5.6 Case Study: Results and Analysis

The case study in this chapter follows the same problem set-up in Section
4.6 in a zonotopic LPV framework.

5.6.1 Scenario 1

Results of JESP using ZSM

The proposed ZSM approach for JESP of multi-output system has been ap-
plied in scenario 1. Both the classical online tuning approach (4.37) with
λ⋆

on, and the LMI-based optimal tuning (4.12c) with λ⋆, have been compared
in the same case study. The estimation results of the first three zonotopic
states are illustrated in Figures 5.4a, 5.4b, and 5.4c. Accordingly featuring
the propagated center and bounds of the generator matrices of each zono-
topic state, compared to the stochastic EKF approach in Chapter 3, and the
empirically-simulated degradation in Section 2.3.
A slight increment has affected the first state which describes vCin

as shown
in Figure 5.4a. On the other hand, the degradation has decreased the second
and the third states which represent IL in Figure 5.4b and vCo

in Figure 5.4c
respectively. The proposed LMI-tuned ZSM approach results perfect zono-
topic estimation. In other words, the estimated centers x̂1, x̂2 and x̂3, and
their respective bounds Ĝ1, Ĝ2 and Ĝ3, of the states follow the empirical
states degradation with guaranteed bounding throughout the full simula-
tion. Additionally, the classical-online-tuned ZSM approach has also been
examined and show almost the same estimated zonotopes in the LMI-tuned
approach. Furthermore, both approaches are also compared to the EKF in
terms of centers estimation, and all approaches show very high accurate re-
sults and similarities in terms of centers estimation in the LPV framework.
Moreover, Figure 5.5 illustrates the estimation of the augmented critical pa-
rameter RON that shows an increment in the ON-resistance of the MOSFET
with very high RA with respect to the empirical true degradation.
As illustrated in Figure 5.5, the λ⋆

c-tuned ZSM has provided a narrower and
more conservative estimated bounds than the λ∗

LMI-tuned approach.
Table 5.1 shows the average RA of the estimated centers of the zonotopic
states and the augmented parameter with both tuning approaches, compared
to the stochastic EKF results.
Additionally, the bounds are perfectly adapted to each state, while a small
difference was obtained in terms of zonotopic radii between the online and
offline tuning techniques in the parameter estimation. Thus, the effect of
cascading degradation is clearly propagating through the other components.
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(a) X̂1 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 1

(b) X̂2 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 1

(c) X̂3 with both tuning approaches versus the stochastic estimation and the
empirical degradation in scenario 1

Figure 5.4: The estimated zonotopic states versus the corresponding
stochastic estimation and the empirical degradation in scenario 1
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Figure 5.5: X̂4 with both tuning approaches versus the stochastic
estimation and the empirical degradation in scenario 1

Table 5.1: Average RA of the estimated centers of states and parameters by
ZSM versus EKF in scenario 1

States and Parameters
RAS1 %

ZSM: λ∗
LMI ZSM: λ∗

c EKF

X̂1 99.9999 99.9999 99.99999
X̂2 99.9999 99.9998 99.99996
X̂3 99.9998 99.9980 99.99995
X̂4 99.9971 99.9573 99.99089

RZSM for RUL forecasting

As mentioned in Section 5.4, the proposed methodology consists of employing
a second ZSM for parameters estimation of the proposed degradation model
that has been linearized with two unknown parameters. The aim of this
method is to predict the bounds of the degradation profiles recursively based
on the critical parameters estimation.
Figures 5.6a and 5.6b illustrate the estimated parameters α1 and α2 of the
proposed degradation model respectively.
After predicting the degradation model using the RZSM approach, the EoL



170 5.6. Case Study: Results and Analysis

0 5000 10000 15000

Cycles

3.699999

3.6999995

3.7

3.7000005

3.700001

1
10-4

(a) α̂1 of the predicted degradation model
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(b) α̂2 of the predicted degradation model

Figure 5.6: The predicted parameters of the proposed degradation model

is first computed by intersecting the predicted degradation profile with the
TH of RON in this scenario (10% increase) using (5.25), as shown in Section
2.3 in Chapter 2. Hence, the RUL bounds are predicted as in (5.26).
Figure 5.7 illustrates the zonotopic RUL prediction, where the x-axis denotes
the online measurements that covers the period until after the true EoL of
the concerned component. The y-axis shows the predicted RUL in minutes.
The predicted zonotopic RUL is compared to the empirical true RUL.
Moreover, the predicted zonotopic RUL by the RZSM approach is assessed
by its RA to the true empirical RUL. According to the estimated centers of
the critical parameter as illustrated in Figure 5.5, the RA of RUL forecasting
through both tuning approaches of ZSM for JESP is similar. Therefore, the
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Figure 5.7: [ ˜RUL, ˜RUL] with the LMI-tuned RZSM approach versus the
true empirical RUL in scenario 1

RA of the RUL forecasting in scenario 1 is 98.8664 %.

5.6.2 Comparative assessment: ZSM versus ZEKF for

JESP

The ZSM and the ZEKF approaches were both used for JESP in this the-
sis. The main difference between the two deterministic methods is that the
ZSM depends on the current time instant of output measurements, whereas
the ZEKF depends on the previous time instant of the output measurements.
Moreover, the ZSM approach considers each output of a multi-output system
in order to perform simultaneous intersection between the predicted uncer-
tain states and parameters and the outputs. On the other hand, the ZEKF
follows the same structure of prediction and correction as in an EKF, in order
to estimate the states and the parameters. Thus, the LMI-based optimization
has been implemented to tune both observers as well as the classical online
approach which performs as a typical KF gain. The estimated states and
parameter of both estimation approaches that are tuned using two methods,
are illustrated in Figures 5.8a, 5.8b, 5.8c, and 5.9.
Since the degradation analysis has been discussed in Chapter 2, the main
differences between both estimation observers are briefly commented. It is
clearly shown that the ZSM observer for JESP has shown tighter bounds than
the ZEKF, given the same weighting of noises and uncertainties. This can be
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(a) Ĝ1 with both tuning approaches: ZSM versus ZEKF in scenario 1

(b) Ĝ2 with both tuning approaches: ZSM versus ZEKF in scenario 1

(c) Ĝ3 with both tuning approaches: ZSM versus ZEKF in scenario 1

Figure 5.8: The estimated zonotopic bounds of the states by ZSM versus
ZEKF approaches in scenario 1
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Figure 5.9: Ĝ4 with both tuning approaches: ZSM versus ZEKF in scenario
1

related to the multiple-intersection of the output measurements which pro-
vides more accurate estimation. Most importantly, the online classical tuning
and the LMI-based optimization approaches have resulted similar bounds in
each observer case, which proves the efficiency of the proposed LMI-based
approach that is validated in different scenarios as shown in Chapter 4 and
this chapter.

5.7 Conclusions

This chapter has been built upon the improvements of the previously-investigated
PHM approaches. According to Chapter 4, the zonotopic observer performs
for the benefits of the JESP with an indirect effect on the RUL, specifically
when scenario 3 is compared to the stochastic approach. In addition to these
reasons, the simple computation of zonotopes has motivated the employment
of a ZSM observer in order to examine its performance with each output mea-
surement. The differences of the structures of both zonotopic-based observers
have not affected the estimation accuracy. However, considering each output
measurement independently in the ZSM is recommended to guarantee the
zonotopic inclusion of the propagated sets of states and parameters. More-
over, the polytopic LPV model representation has been utilized as explained
in Chapter 4. Most importantly, the RUL forecasting has been accomplished
with the same ZSM observer that recursively predicts the degradation tra-
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jectories until the TH. In the proposed RUL forecasting approach, the degra-
dation model is considered with an exponential trend that does not nec-
essarily describes the same structure of the empirical degradation models.
Whereas, the classical approach requires an exact knowledge of the poly-
nomial degradation model with multiple unknown parameters which require
more computations using an RLS filter for parameters estimation. Moreover,
while the RLS-based prediction converges with more available observations,
the RZSM-based prediction is guaranteed since the beginning until the EoL.
Therefore, this approach has solved the intuitive EoL expectation issue us-
ing the linear EoL-RUL approach and exact knowledge of the high-degree
degradation models. Additionally, the RZSM depends only on the estimated
critical parameters and functions with unknown-but-bounded noises and un-
certainties that did not affect the convergence of the RUL forecasting as seen
in the previous approaches.



Conclusions and Perspectives

Conclusions

In this thesis, we investigated different model-based PHM approaches in or-
der to fulfill the proposed objectives. Due to the lack of standardized PHM
architectures for general-purpose applications, we decided to contribute to
the whole structure towards the development of system-level prognostics.
Throughout this research work, many challenges have arisen from the mod-
eling of degraded system until the RUL forecasting process. Therefore, the
contributions in each chapter along with the constructive development of the
threefold PHM approaches are addressed below.

Chapter 1 is an essential starting phase of this work that addresses the
existing PHM approaches. The literature review helps clarifying the main
challenges that we can contribute to improve. Among many multidisciplinary
prognostics approaches, it has been clear that the majority of the existing
work focuses on the effort- and time-consuming knowledge of the PoF of the
components. On the other hand, data-driven prognostics are employed for
their simple application while they require huge amount of historical data for
reliable prediction. Hence, the ideal PHM case is hypothetically proposed by
featuring real applications which include various complex subsystems with
degraded internal components, in addition to the lack of historical degrada-
tion data. Based on this proposition, some existing works proposed to deal
with external observed effects of the degradation instead of localizing the
main cause. However, to fulfill the main objective of the CBM strategy, we
proposed to track and estimate the degradation of the critical components

175
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in the system in order to optimize the lifecycle of the whole system. There-
fore, we proposed a threefold PHM structure that deals with the modeling
of a system with degraded components, degradation estimation of the criti-
cal components on a system-level, and online RUL forecasting with reduced
computations.

Chapter 2 is dedicated to the modeling phase of the proposed PHM. The
DC-DC converter case study has been chosen for many reasons that cope
with the investigation of prognostics. Firstly, the power electronic systems
suite best with model-based prognostics approach due to the advanced knowl-
edge of their identification. Secondly, a power electronic converter describes
subsystems with different operations and structures that form a complete
system with multidisciplinary degraded parameters. Thirdly, such applica-
tion can be generalized to all nonlinear dynamical systems to cope with the
main objective of this thesis. For these purposes, we investigated this appli-
cation under three degradation scenarios to analyze the most suitable and
less complex failure precursors to adopt while estimating the SoH of the sys-
tem. Hence, preparing the following PHM phase has necessitated a model
representation that allows the estimation of the critical parameters in the
system without knowledge of their degradation behaviors. Thus, among the
investigated representation approaches, the average augmented system has
been adopted for the benefits of decreasing the computations in addition to
the global estimation of most states and parameters of the system. Conse-
quently, a nonobservability issue was faced with such nonlinear model with
varying parameter that requires to be fixed for the following phase.

Chapter 3 addresses the stochastic-based prognostics techniques applied
to the proposed PHM structure. The investigation in this chapter has been
carried out with EKF for JESP as most of the existing model-based ap-
proaches. The main reason behind this study is to assess the reliability of
the existing approaches with such nonlinear application that allows us to
point out the drawbacks that we can contribute to. Hence, the augmented
model was linearized online using Jacobian method and has shown very accu-
rate estimation results with scenarios of one degraded parameter. Whereas,
the estimation error increases with the third scenario of multiple degraded
parameters, which highlights a crucial issue since all real applications are sub-
ject to such degradation scenario and RUL forecasting is only based on the
degradation estimation. Moreover, the classical RUL forecasting approach
that depends on the knowledge of the degradation models of the failure pre-
cursors has been examined. It is worth noting that the PoF-based degrada-
tion models were eliminated for the sake of reducing the controversial issue



Conclusions 177

of time-consuming degradation modeling, and polynomial empirical degra-
dation models of failure precursors have been employed for the prediction
process. thus, the classical RUL forecasting is split into two steps, prediction
of degradation profiles and intersection with the parameter TH for RUL fore-
casting. RLS filter for parameters estimation was adopted to estimate the
parameters of the polynomial degradation models in addition to their regres-
sion until the TH. Hence, the predicted profile intersects with the TH and
the EoL is then obtained. It was remarkable that the Gaussian uncertainties
have affected the prediction process in addition to the elevated number of
unknown parameters. For these reasons, we proposed to investigate a direct
RUL prediction that eliminate the need of the degradation models, yet with
intuitive EoL expectations. The overall results of these approaches have not
proved a reliable condition for a generalized PHM application. Therefore,
further propositions to improve these limitations are explained in the follow-
ing chapter.

Chapter 4 has been conducted to overcome the majors issues due to the
uncertain RUL forecasting and degradation estimation in multiple degrada-
tion scenario. Thus, the ZEKF is a suitable observer for JESP that merges
the accuracy of the stochastic EKF in estimation and propagates bounded
states and parameters by the simple implementation of the deterministic
zonotopes. The main purpose that motivates this approach is that it bounds
the estimated parameters which can solve the faced problem in scenario 3.
Additionally, it indirectly bounds the predicted RUL which can increases its
reliability. However, investigating the linear EoL-RUL approach using the
ZEKF has shown improved but pessimistic results against the reliability con-
straint. Thus, we recall that the model representation has been transformed
into a polytopic LPV framework to cope with the offline LMI-based tuning
approach of the ZEKF observer for the sake of increasing the estimation
robustness and decreasing the computational effort. Consequently, as the
JESP issue has been validated for all degradation scenarios using zonotopes,
the consisted cause of the low RUL forecasting reliability has been clarified.
For these reasons, we propose to eliminate the linear EoL-RUL approach and
investigate a generalized exponential trend with reduced number of parame-
ters in a zonotopic framework.

The previously-experienced drawbacks and limitations have been solved
in Chapter 5. A small difference between the ZSM observer and the ZEKF
is related to the estimation of the measurements. However, we adopted
the ZSM-based approach due to its ability to propagate guaranteed zono-
topic states and parameters by considering each measurement alone that has
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shown an improved accuracy. Moreover, similar to the ZEKF, the observer
was tuned by the optimal LMI-based approach with an LPV representa-
tion. Furthermore, we proposed to follow a general exponential trend for
degradation as remarked in most electronics applications. However, to avoid
the 5-degree polynomial approximation or the implementation of stochastic
observers, we proposed to recursively employ a ZSM for degradation pre-
dictions. Thus, in order to accomplish it with reduced computations, we
created a regressor model with two unknown parameters and applied it for
prediction using a RZSM which functions online and homogeneously with the
ZSM for JESP. Consequently, the degradation profiles have been predicted
with zonotopic bounds and the RUL has been forecasted with very high RA
without using the exact degradation model and with reduced computations
for real-time applications.

Perspectives

According to our observations throughout this work, we propose some po-
tential applications for further investigations of the PHM.

• This case study has been investigated with constant load, however it is
essential to investigate the effect of regulated application with variable
load on the failure precursors. Since the estimation of failure precursors
is crucial, the SoH assessment can be accomplished by monitoring the
duty cycle of the switch. This case can be investigated in closed-loop
system with variable resistive, inductive, etc. loads.

• According to the failure mechanisms of power semiconductors, high
temperatures degraded the switches. Thus, as the temperature in-
creases with the increase of the switching frequency, it is worth investi-
gating the effect of the switching frequency on the age of the semicon-
ductor module.

• Post-prognosis actions and decisions have not been addressed in this
thesis. Hence, the CBM strategy could be extensively investigated in
a cost optimization framework that studies the lifecyle of a system
and optimizes the maintenance strategies for the degraded components
in order to extend the life of the system and reduce the maintenance
expenses.

• Further investigation on system-level prognostics will improve the re-
liability of such approaches with the objective of embedding enhanced
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diagnostics with automatic control in a macro-system that is able to
localize the degraded components and predict their RUL with an in-
terrupted online diagnosis in a fault-tolerant control framework.

• It is also interesting to investigate the possibility of system-level RUL
forecasting by direct degradation assessment without estimating the
failure precursors.

• Uncertainties are the only link between simulation and real applica-
tions. Thus, it is crucial to consider the real effect of uncertainties on
the whole prognostics process with validation on real systems.
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APPENDIX A

Mathematical Background: Definition and Properties

A.1 Matrices

Definition A.1.1 (Singular Matrix). A singular matrix M is a square matrix
that does not have an inverse. In other words, M is singular ⇐⇒ det(M) =
0.

Definition A.1.2 (Symmetric Positive Definite Matrix). A symmetric pos-
itive definite matrix is a matrix whose eigen values are positive. In other
terms, a square and symmetric matrix M is positive definite if:
λ⊺Mλ > 0, ∀ λ ∈ R

nλ .

Definition A.1.3 (Strictly Positive Definite Matrix). A matrix M = M⊺ ∈
R

n×n is called a strictly positive definite matrix, denoted by M ≻ 0, if:
x⊺Mx > 0, ∀ nonzero vectors x with real entries (x ∈ R

n
6=0).

Definition A.1.4 (Strictly Negative Definite Matrix). A matrix M = M⊺ ∈
R

n×n is called a strictly negative definite matrix, denoted by M ≺ 0, if:
x⊺Mx < 0, ∀ nonzero vectors x with real entries (x ∈ R

n
6=0).

Definition A.1.5 (Positive Definite Matrix). A matrix M = M⊺ ∈ R
n×n is

called a positive definite matrix, denoted by M � 0, if:
x⊺Mx ≥ 0, ∀ nonzero vectors x with real entries (x ∈ R

n
6=0).

Definition A.1.6 (Negative Definite Matrix). A matrix M = M⊺ ∈ R
n×n

is called a negative definite matrix, denoted by M � 0, if:
x⊺Mx ≤ 0, ∀ nonzero vectors x with real entries (x ∈ R

n
6=0).
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Definition A.1.7 (Euclidean Norm). The Euclidean norm of a matrix M ∈
R

n×n is denoted by ‖x‖2M and defined by the quantity x⊺Mx = ‖x‖2M, where
x ∈ R

n, and M = M⊺ ≻ 0.

Definition A.1.8 (Trace). The trace of a square matrix M ∈ R
n×n is de-

noted by tr(M) and defined by the sum of the elements on its main diagonal
(from upper left to lower right).

tr(M) =
n∑

i=1

aii = a11 + a22 + · · ·+ ann. (A.1)

Moreover, for given square matrices A and B, and a scalar a:

tr(A) = tr(A⊺),

tr(A+B) = tr(A) + tr(B),

tr(a A) = a tr(A),

tr(BAB−1) = tr(A),

tr(AB) = tr(BA).

(A.2)

Definition A.1.9 (Frobenius Norm). The Frobenius norm of a matrix M ∈
R

n×m is defined as the square root of the sum of the absolute squares of its
elements:

‖M‖F =
√

tr(MM⊺) =

√
√
√
√

n∑

i=1

m∑

j=1

|aij|2, (A.3)

where aij are the elements of M.

Definition A.1.10 (Linear Matrix Inequality (LMI)). A Linear Matrix In-
equality (LMI) is formulated in the following form:

F(x)
∆
= F0 +

n∑

i=1

xiFi ≻ 0

= F0 + x1F1 + x2F1 + · · ·+ xnFn ≻ 0,

(A.4)

where the matrices Fi = F
⊺
i ∈ Rm×m, i = 0, . . . , n, and x = [x1 x2 . . . xn]

⊺ ∈
R

n is the vector of the decision variables.

Remark A.1.1. The LMI in (A.4) is a convex constraint on x (i.e., the set
{x ∈ R

n : F(x) ≻ 0} is convex). Moreover, the aforementioned LMI can
represent a wide variety of convex constraints on x such as linear inequal-
ities, convex quadratic inequalities, matrix norm inequalities, in addition
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to constraints such as Lyapunov and convex quadratic matrix inequalities.
Furthermore, the matrix decision variables can be used to formulate LMI
problems (i.e., the Lyapunov inequality) as shown below:

A⊺P+PA ≺ 0, (A.5)

where the matrix A ∈ R
n×n is given, and P = P⊺ ∈ R

n×n denotes the
decision variable.

Remark A.1.2. The LMI in (A.4) is equivalent to a set of n polynomial
inequalities in x (i.e., the leading principal minors of F(x) must be positive).

Property A.1.1. Multiple LMIs F(1)(x) > 0, . . . ,F(p)(x) > 0 can be ex-
pressed as a single LMI diag(F(1)(x), . . . ,F(p)(x) > 0).

Definition A.1.11 (Schur Complement (S. Boyd et al. 1994)). Considering
the following LMI: [

Q(x) S(x)
S⊺(x) R(x)

]

≻ 0, (A.6)

where Q(x), R(x) are symmetric matrices and Q(x), R(x), and S(x) are
affine in x. Thus, the LMI in (A.6) is equivalent to:

{

Q(x) ≻ 0,

Q(x)− S(x)R−1(x)S⊺(x) ≻ 0,
(A.7)

or, {

R(x) ≻ 0,

R(x)− S⊺(x)Q−1(x)S(x) ≻ 0.
(A.8)
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A.2 Sets

Definition A.2.1 (Convex Set). A set S ⊂ R
m is called a convex set if for

any x1, x2, . . . , xn ∈ S, and any α1, α2, . . . , αn ∈ R+ such that
n∑

i=1

αi = 1,

then the element
n∑

i=1

αixi is in S.

Definition A.2.2 (Convex Hull). A convex hull of a set S, denoted by
conv(S), is the smallest convex set that contains S.

Definition A.2.3 (Inclusion Operator). The inclusion operator between two
sets is defined by X ⊆ Y , X is a subset of Y , ⇐⇒ ∀ x ∈ X , then x ∈ Y .

Definition A.2.4 (Intersection Operator). The intersection operator of two
sets X and Y is defined by X ∩ Y = {x : x ∈ X and x ∈ Y}.

Definition A.2.5 (Image of Sets). The image of a set S, projected under a
map M is defined by a set M(S) = {y : y = M(x), x ∈ S}.

Definition A.2.6 (Minkowski Sum). The Minkowski sum of two sets X and
Y is defined by X ⊕ Y = {x+ y : x ∈ X and y ∈ Y}.

A.2.1 Interval sets

Definition A.2.7 (Interval). An interval [a, b] ⊂ R is defined by the set
{x ∈ R : a ≤ x ≤ b}.

Definition A.2.8 (Unitary Interval). A unitary interval is defined as B1 =
[−1, 1].

Definition A.2.9 (Center and Radius). The center of an interval I = [a, b]
is defined by mid(I) = a+b

2
, and its radius is defined by rad(I) = b−a

2
.

Definition A.2.10 (Interval Vector: box). An interval vector is a
box([a1, b1], . . . , [an, bn])

⊺, with a1 ≤ bi for i = 1, . . . , n.

Definition A.2.11 (Unitary Box). A unitary box, denoted by Bn ∈ R, is a
box composed of n unitary intervals defined by {x ∈ ([a1, b1], . . . , [an, bn])

⊺ :
ai = −1, bi = 1, i = 1, . . . , n} ⊂ R

n.

Definition A.2.12 (Interval Matrix). An interval matrix [M] is a matrix
whose elements are intervals. The center of [M] is denoted by mid([M])ij =
aij+bij

2
and its radius is denoted by rad([M])ij =

aij−bij
2

, with aij ≤ mij ≤
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bij, i = 1, . . . , n, and j = 1, . . . ,m.
The interval matrix [M] can be rewritten as:

[M = mid([M]) + ∆M], (A.9)

with ∆M is the uncertain part of the interval matrix [M]. Thus, for ρ denot-
ing the vector of the nρ uncertain parameters scalars, ∆M is thus decomposed
as:

∆M =

nρ∑

i=1

Mρiρi, (A.10)

Remark A.2.1. The property of the interval matrix is applied for the pre-
sented system in this thesis, where the considered dynamical system is trans-
formed into an LPV model containing interval parameters.

Property A.2.1 (Interval Operations). The four basic operations with given
interval matrices [X] = [x, x] and [Y] = [y, y] are shown below:

[X] + [Y] = [x, x] + [y, y] = [x+ y, x+ y], (A.11a)

[X]− [Y] = [x, x]− [y, y] = [x− y, x− y], (A.11b)

[X][Y] = [x, x][y, y]

= [min(x× y, x× y, x× y, x× y),max(x× y, x× y, x× y, x× y)],

(A.11c)
[X]

[Y]
=

[x, x]

[y, y]
= [x, x][

1

y
,
1

y
], if 0 /∈ [y, y]. (A.11d)

Definition A.2.13 (Strip). A strip is defined as a set as shown below:

S(y,d, σ) = {x ∈ R
n : |y − d⊺x| ≤ σ}, (A.12)

where y ∈ R,d ∈ R
n and σ ∈ R+.
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A.2.2 Zonotopic sets

Definition A.2.14 (Zonotope). A zonotope Z = 〈c,G〉 ⊂ R
n with a center

c ∈ R
n and a generator matrix G ∈ R

n×m is a polytopic set defined as a
linear image of the unit hypercube [−1, 1]m, as follows:

〈c,G〉 = {c+Gs, ‖s‖∞ ≤ 1}. (A.13)

Definition A.2.15 (Generator Representation). Given a vector c ∈ R
n and

a set of vectors G = {g1,g2, . . . ,gm} ⊂ R
n,m ≥ n, a zonotope Z of order m

is called an m−zonotope which means that this zonotope has m generators,
and defined as follows:

Z = (c; g1,g2, . . . ,gm)

= {x ∈ R
n : x = c+

m∑

i=1

αigi; −1 ≤ αi ≤ 1}, (A.14)

Furthermore, this definition is equivalent to the definition of zonotopes ob-
tained by the Minkowski sum of a finite number of line segments defined as
follows:

Z = (c; g1,g2, . . . ,gm)

= c⊕ g1B1 ⊕ · · · ⊕ gmB1 (A.15)

Example A.2.1. Consider a 3-zonotope (third order) Z〈c,G〉 in R
2 as il-

lustrated in Figure A.1.

c =

[
0
0

]

, G =

[
1 2 3
3 2 1

]

, (A.16)

Each vertex of the zonotope vZi
∈ VZ , with i = 1, . . . , 23 can be calculated

by using the following equation:

vZi
= c+Gvi, (A.17)

where vi ∈ VB3 .

Definition A.2.16 (Hypercube Affine Projection Representation). An m−zonotope
in R

n, with m ≥ n is the translation by the center p ∈ R
n of the image of

an unitary hypercube of dimenstion m ∈ R
n under a linear transformation.

Given a matrix H ∈ R
n×m representing the linear transformation, the zono-

tope Z is then defined by:

Z = (p;H) = p⊕HBm. (A.18)
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Figure A.1: 3-zonotope in R
2

Remark A.2.2. The hypercube affine projection of a zonotope allows the
representation of a zonotope using one vector and a matrix, or a matrix in
the case of a centered zonotope (i.e. c = 0n×1).

Property A.2.2 (Particular Zonotope). Given a centered zonotope Z =
GBm ∈ R

n.

• If G is an identity matrix, then Z is a unit box.

• If G is an diagonal matrix, then Z is a box.

• If G is an orthogonal matrix, then Z is a hypercube.

• If G is an invertible matrix, then Z is a parallelotope.

Property A.2.3 (Generator Permutation). The permutation of the columns
of the generator matrix G of a zonotope Z does not affect the zonotope.

Property A.2.4 (Sum of Zonotopes). The Minkowski sum of two zonotopes
results a zonotope. Given two zonotopes Z1 = c1 ⊕ G1Bm1 ∈ R

n, and
Z2 = c2 ⊕G2Bm2 ∈ R

n, their sum is defined as follows:

Z = Z1 ⊕Z2 = (c1 + c2)⊕ [G1 G2]Bm1+m2 . (A.19)

Proof. Based on the Definition A.2.6, the Minkowski sum of the two zono-
topes can be obtained as follows:

Z1 ⊕Z2 = {c1 + c2 +G1z1 +G1z1 : z1 ∈ Bm1 , z2 ∈ Bm2}, (A.20)
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thus, it is rewritten in a matrix form as shown below:

Z1 ⊕Z2 = {c1 + c2 + [G1G1] ·
[
z1
z2

]

:

[
z1
z2

]

∈ Bm1+m2}

= (c1 + c2)⊕ [G1 G2]Bm1+m2 = Z.

(A.21)

Property A.2.5 (Linear Image of a Zonotope). The image of a zonotope
Z = c⊕GBm ∈ R

n by a linear mapping K is computed by a standard matrix
multiplication:

K⊙Z = (K · c)⊕ (K ·G)Bm. (A.22)

Proof. By applying the conventional matrix product: K · Z = {K(c+Gz) :
z ∈ Bm} = {Kc+KGz : z ∈ Bm} = (Kc)⊕ (KG)Bm.

Definition A.2.17 (Covariance). The covariance of a zonotope Z = 〈c,G〉
is defined as cov(Z) = GZG

⊺
Z .

Definition A.2.18 (F−radius). The F−radius of a given zonotope Z =
〈c,GZ〉 ∈ R

n is the Frobenius norm of the same zonotope:

‖Z‖F = ‖G‖F . (A.23)

Definition A.2.19 (FW−radius). The weighted Frobenius radius of a given
zonotope Z = 〈c,GZ〉 ∈ R

n is the weighted Frobenius norm of the same
zonotope:

‖Z‖F,W = ‖G‖F,W . (A.24)

Definition A.2.20 (P−radius). The P−radius of a zonotope Z = p⊕GBm

is defined by:
r = max

z∈Z
(‖z− p‖2P), (A.25)

where P is a strictly symmetric and positive definite matrix P = P⊺ ≻ 0.

Property A.2.6 (Interval hull (Kühn 1998)). The smallest interval box
containing a given zonotope Z = c⊕GBm ∈ R

n is calculated as follows:

�Z = c⊕ diag(G)Bn, (A.26)

where diag(G) is a diagonal matrix such that diag(G)ii =
∑m

j=1 |Gij|, i =
1, . . . , n.
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Property A.2.7 (Zonotope Inclusion (T. Alamo, Bravo, and Camacho
2005)). Given a zonotope Z = c ⊕ [G]Bm, where c ∈ R

n, and [G] is an
interval matrix of size n × m, a zonotope inclusion is denoted by ⋄Z, and
defined by:

⋄ Z = c⊕
[
mid([G]) diag(M)

]
[
Bm

Bn

]

= c⊕ JBm+n, (A.27)

where diag(M) ∈ R
n×n is a diagonal matrix that satisfies:

diag(M)ii =
m∑

j=1

rad(Mij)

2
, i = 1, . . . , n. (A.28)

Therefore, Z ⊆ ⋄Z under the aforementioned conditions.

Property A.2.8 (Reduction Operator ↓q (Combastel 2003; Combastel 2015)).
A reduction operator ↓q is developed to achieve the numbers of vertices of the
generator matrices of a zonotope 〈c,G〉 to a fixed number q while preserv-
ing the inclusion property 〈c,G〉 ∩ 〈c, ↓q {G}〉. The author in (Combastel
2003) proposed a simple and efficient method to sorting the columns of G
based on decreasing the Euclidean norm and enclosing the influence of the
smaller columns, into an easily computable interval hull, so that the reduced
generator matrix ↓q {G} consists of only q columns.

Property A.2.9 (Criterion-based reduction (Combastel 2003; T. Alamo,
Bravo, and Camacho 2005)). Given a zonotope Z = 〈c,G〉 ∈ R

n and an
integer s, with n < s < m. The resulting matrix from the reordering of the
columns of the generator matrix G, by a criterion, is denoted by G. Thus
the zonotope is rewritten as: Z = c ⊕ G1Bs−n ⊕ G2Bm−s+n, where G1 is
obtained from the first s− n columns of the matrix G, and G2 accounts for
the remainder of G. Thus, the initial zonotope has been reduced by order
s due to the over-approximation, i.e.Z ⊆ c⊕G1Bs−n ⊕QBn, where QBn is
the over-approximation of the zonotope G2Bm−s+n.
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APPENDIX B

Additional Modeling Material

B.1 Numerical Models

B.1.1 Scenario 1: Augmented models

The augmented state-space matrices of subsystem 1 with RON(t) are:

AS1
1 (t) =












−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ RON(t) )(Rin+ESRin))

L(Rin+ESRin)
0 0

0 0 0 0

0 0 0 1












,

(B.1a)

BS1
1 (t) =











1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
0

0 −1
Co

0 0











, (B.1b)

CS1
1 (t) =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0 0

0 0 1 0

]

, (B.1c)
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DS1
1 (t) =

[
1

(Rin+ESRin)
0

0 −ESRo

]

, (B.1d)

then, the augmented state-space matrices of subsystem 2 with RON(t) are:

AS1
2 (t) =











−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ESRo)(Rin+ESRin))

L(Rin+ESRin)
−1
L

0

0 1
Co

0 0

0 0 0 1











,

(B.2a)

BS1
2 (t) =











1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
ESRo

L

0 −1
Co

0 0











, (B.2b)

CS1
2 (t) =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0 0

0 ESRo 1 0

]

, (B.2c)

DS1
2 (t) =

[
1

(Rin+ESRin)
0

0 −ESRo

]

. (B.2d)

The numerical augmented state-space matrices of subsystem 1 with RON(t)
are:

AS1
1 (t) =








−113636 −1136.36 0 0

622.665 −6849.315 RON(t) − 96.513 0 0

0 0 0 0
0 0 0 1







, (B.3a)

BS1
1 (t) =







113636 0
6226.65 0

0 −200
0 0






, (B.3b)

CS1
1 (t) =

[
−9.09 0.909 0 0

0 0 1 0

]

, (B.3c)

DS1
1 (t) =

[
9.09 0
0 −0.08

]

, (B.3d)
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then, the numerical augmented state-space matrices of subsystem 2 with
RON(t) are:

A
RON

2 (t) =







−113636 −1136.36 0 0
622.665 −644.45 −6849.315 0

0 200 0 0
0 0 0 1






, (B.4a)

B
RON

2 (t) =







113636 0
6226.65 547.945

0 −200
0 0






, (B.4b)

C
RON

2 (t) =

[
−9.0909 0.90909 0 0

0 0.08 1 0

]

, (B.4c)

D
RON

2 (t) =

[
9.0909 0

0 −0.08

]

. (B.4d)

The Jacobian matrix of the scenario 1 is obtained as:

JA
S1
1 (t) =







−1.136.105 −1.136.103 0 0

6.226.102 −6.849.103 RON(t) − 96.513 0 −6.849.103 x2(t)

0 0 0 0
0 0 0 1






.

(B.5)
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B.1.2 Scenario 2: Augmented models

The augmented state-space matrices of subsystem 1 with ESRo(t) are:

AS2
1 (t) =











−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+RON)(Rin+ESRin))

L(Rin+ESRin)
0 0

0 0 0 0

0 0 0 1











, (B.6a)

BS2
1 (t) =











1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)
0

0 −1
Co

0 0











(B.6b)

CS2
1 (t) =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0 0

0 0 1 0

]

, (B.6c)

DS2
1 (t) =





1
(Rin+ESRin)

0

0 − ESRo(t)



 , (B.6d)

then, the augmented state-space matrices of subsystem 2 with ESRo(t) are:

AS2
2 (t) =












−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ ESRo(t) )(Rin+ESRin))

L(Rin+ESRin)
−1
L

0

0 1
Co

0 0

0 0 0 1












,

(B.7a)

BS2
2 (t) =












1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)

ESRo(t)
L

0 −1
Co

0 0












, (B.7b)

CS2
2 (t) =





−1
(Rin+ESRin)

ESRin

(Rin+ESRin)
0 0

0 ESRo(t) 1 0



 , (B.7c)
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DS2
2 (t) =





1
(Rin+ESRin)

0

0 − ESRo(t)



 . (B.7d)

The Jacobian matrices of Scenario 2 are obtained as:

JA
S2
2 (t) =







−1.136.105 −1.136.103 0 0

6.226.102 −6.849.103 ESRo(t) − 96.513 −6.849103 −6.849.103 x2(t)

0 200 0 0
0 0 0 1






,

(B.8)

JC
S2
2 (t) =

[

−9.09 0.909 0 0

0 ESRo(t) 1 x2(t)

]

, (B.9)
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B.1.3 Scenario 3: Augmented models

The augmented matrices of subsystem 1 with RON(t) and ESRo(t) are:

AS3
1 (t) =















−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ RON(t) )(Rin+ESRin))

L(Rin+ESRin)
0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1















,

(B.10a)

BS3
1 (t) =














1
CinRiCin

0

ESRin

L(Rin+ESRin)
0

0 −1
Co

0 0

0 0














, (B.10b)

CS3
1 (t) =

[
−1

(Rin+ESRin)
ESRin

(Rin+ESRin)
0 0 0

0 0 1 0 0

]

, (B.10c)

DS3
1 (t) =





1
(Rin+ESRin)

0

0 − ESRo(t)



 , (B.10d)

then, the augmented state-space matrices of subsystem 2 with RON(t) and
ESRo(t) are:

AS3
2 (t) =















−1
Cin(Rin+ESRin)

−Rin

Cin(Rin+ESRin)
0 0 0

Rin

L(Rin+ESRin)

−(RinESRin+(RL+ ESRo(t) )(Rin+ESRin))

L(Rin+ESRin)
−1
L

0 0

0 1
Co

0 0 0

0 0 0 1 0

0 0 0 0 1















,

(B.11a)
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BS3
2 (t) =















1
Cin(Rin+ESRin)

0

ESRin

L(Rin+ESRin)

ESRo(t)
L

0 −1
Co

0 0

0 0















, (B.11b)

CS3
2 (t) =





−1
(Rin+ESRin)

ESRin

(Rin+ESRin)
0 0 0

0 ESRo(t) 1 0 0



 , (B.11c)

DS3
2 (t) =





1
(Rin+ESRin)

0

0 − ESRo(t)



 . (B.11d)
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